
Research Article
A New Approach for Optimization of Real Life Transportation
Problem in Neutrosophic Environment

A. Thamaraiselvi and R. Santhi

Department of Mathematics, NGM College, Pollachi, Tamil Nadu 642001, India

Correspondence should be addressed to A. Thamaraiselvi; kavinselvi3@gmail.com

Received 15 November 2015; Accepted 14 February 2016

Academic Editor: M. I. Herreros

Copyright © 2016 A. Thamaraiselvi and R. Santhi. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Neutrosophic sets have been introduced as a generalization of crisp sets, fuzzy sets, and intuitionistic fuzzy sets to represent
uncertain, inconsistent, and incomplete information about a real world problem. For the first time, this paper attempts to introduce
themathematical representation of a transportation problem in neutrosophic environment.The necessity of themodel is discussed.
A new method for solving transportation problem with indeterminate and inconsistent information is proposed briefly. A real life
example is given to illustrate the efficiency of the proposed method in neutrosophic approach.

1. Introduction

In the present day, problems are there with different types
of uncertainties which cannot be solved by classical theory
of mathematics. To deal with the problems with imprecise
or vague information, Zadeh [1] first introduced the fuzzy
set theory in 1965, which is characterized by its membership
values. But, in many situations, the results or decisions
based on the available information are not enough to the
level of accuracy. So several higher order fuzzy sets were
introduced to deal with such problems. One was the concept
of intuitionistic fuzzy set introduced by Atanassov [2] in
1986. Intuitionistic fuzzy sets are suitable to handle problems
with imprecision information and are characterized by its
membership and nonmembership values [3]. Hence, both the
theories of fuzzy and intuitionistic fuzzy sets were applied in
many real life decision making problems.

In due course, any generalization of fuzzy set failed
to handle problems with indeterminate or inconsistent in-
formation. To overcome this, Smarandache [4], in 1998,
introduced neutrosophic sets as an extension of classical
sets, fuzzy sets, and intuitionistic fuzzy sets. The compo-
nents of neutrosophic set, namely, truth-membership degree,
indeterminacy-membership degree, and falsity-membership
degree, were suitable to represent indeterminacy and incon-
sistent information. Wang et al. [5] introduced the idea of

single valued neutrosophic set in many practical problems.
The notion of single valued neutrosophic set was more
suitable for solving many real life problems like image pro-
cessing, medical diagnosis, decision making, water resource
management, and supply chain management.

Study of optimal transportation model with cost effective
manner played a predominant role in supply chain man-
agement. Many researchers [6, 7] formulated the mathe-
matical model for transportation problem in various envi-
ronments. The basic transportation model was introduced
by Hitchcock [8], in 1941, in which the transportation
constraints were based on crisp values. But, in the present
world, the transportation parameters like demand, supply,
and unit transportation cost may be uncertain due to
several uncontrolled factors. In this situation, fuzzy trans-
portation problem was formulated and solved by many
researchers.

Though many researchers worked on transportation
problem in fuzzy environment, it was ÓhÉigeartaigh [9]
who proposed a new method to solve fuzzy transportation
problem with triangular fuzzy demand and supply. Chanas
and Kuchta [10] proposed a method for optimal solution
of fuzzy transportation problem with fuzzy cost coefficients.
Jiménez and Verdegay [11] investigated the solution of fuzzy
solid transportation problem in which the transportation
parameters are trapezoidal fuzzy numbers. Kaur and Kumar
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[12] proposed a method for solving transportation problem
using ranking function. Nagoor Gani and Abdul Razak
[13] introduced a two-stage cost minimization method for
solving fuzzy transportation problem. Pandian and Natara-
jan [14] introduced a new method, namely, fuzzy zero
point method, to find the optimal solution for fuzzy trans-
portation problem. Kaur and Kumar [15] solved the fuzzy
transportation problem with generalized trapezoidal fuzzy
numbers.

Sometimes the membership function in fuzzy set theory
was not a suitable one to describe an ambiguous situation of
a problem. So, in 1986, Atanassov [2] introduced the concept
of intuitionistic fuzzy set theory as an extension of fuzzy set
theory, which included the degree of both membership and
nonmembership of each element in the set. In recent research,
intuitionistic fuzzy set theory plays an important role in
decision making problems [16, 17]. Many researchers [18, 19]
used intuitionistic fuzzy approach to solve transportation
problems.

In a supply chain optimization, transportation system
was the most important economic activity among all the
components of business logistics system. Apart from the
vagueness or uncertainty in the constraints of the present day
transportationmodel, there exists some indeterminacy due to
various factors like unawareness of the problem, imperfection
in data, and poor forecasting. Intuitionistic fuzzy set theory
can handle incomplete information but not indeterminate
and inconsistent information. Smarandache [20] proposed a
new theory, namely, neutrosophic logic, by adding another
independentmembership function named as indeterminacy-
membership 𝐼(𝑥) along with truth membership 𝑇(𝑥) and
falsity 𝐹(𝑥) membership functions. Neutrosophic set is a
generalization of intuitionistic fuzzy sets. If hesitancy degree
𝐻(𝑥) of intuitionistic fuzzy set and the indeterminacy-
membership degree 𝐼(𝑥) of neutrosophic set are equal,
then neutrosophic set will become the intuitionistic fuzzy
set.

Even thoughmany scholars applied the notion of neutro-
sophic theories in multiattribute decision making problems
[21–23] to the best of their knowledge, the existing supply
chain theories of transportationmodel are not viewed in neu-
trosophic logic. For example, in a given conclusion, “The total
transportation cost of delivering the goods would be 1000
units,” the supplier cannot conclude immediately that the
precise cost is exactly 1000 units. There may be some neutral
part, which is neither truthfulness nor falsity of the statement.
This is very close to our humanmind reasoning. In the neutral
part, there may be some indeterminacy in deciding unit
transportation cost, demand and supply units due to various
causes like vehicle routing, road factors, no uniformity in
traffic regulations, delivery time of goods, poor demand fore-
casting, demandmismatches, price fluctuations, lack of trust,
and so on.

The aim of this paper is to obtain the optimal trans-
portation cost in neutrosophic environment. This paper is
well organized as follows. In Section 2, the basic concepts
of fuzzy sets, intuitionistic fuzzy sets, and neutrosophic
sets are briefly reviewed. In Section 3, the mathematical
model of neutrosophic transportation problem is introduced.

In Section 4, the solution algorithms are developed for
solving neutrosophic transportation problem. In Section 5,
the algorithms are illustrated with suitable real life problems.
In Section 6, the results are interpreted. Finally, Section 7
concludes the paper with future work.

2. Preliminaries

Definition 1 (fuzzy set, see [1]). Let 𝑋 be a nonempty set. A
fuzzy set 𝐴 of 𝑋 is defined as 𝐴 = {⟨𝑥, 𝜇

𝐴
(𝑥)⟩|𝑥 ∈ 𝑋} where

𝜇
𝐴
(𝑥) is called the membership function which maps each

element of 𝑋 to a value between 0 and 1.

Definition 2 (fuzzy number). A fuzzy number �̃� is a convex
normalized fuzzy set on the real line R such that

(i) there exist at least one 𝑥 ∈ R with 𝜇
�̃�
(𝑥) = 1;

(ii) 𝜇
�̃�
(𝑥) is piecewise continuous.

Definition 3 (trapezoidal fuzzy number, see [15]). A fuzzy
number �̃� = (𝑎

1
, 𝑎
2
, 𝑎
3
, 𝑎
4
) is a trapezoidal fuzzy number,

where 𝑎
1
, 𝑎
2
, 𝑎
3
, and 𝑎

4
are real numbers and its membership

function is given as follows:

𝜇
�̃�
(𝑥) =

{{{{{{{{{{

{{{{{{{{{{

{

𝑥 − 𝑎
1

𝑎
2
− 𝑎
1

, for 𝑎
1
≤ 𝑥 ≤ 𝑎

2

1, for 𝑎
2
≤ 𝑥 ≤ 𝑎

3

𝑎
4
− 𝑥

𝑎
4
− 𝑎
3

, for 𝑎
3
≤ 𝑥 ≤ 𝑎

4

0, otherwise.

(1)

Definition 4 (intuitionistic fuzzy set, see [2]). Let 𝑋 be a
nonempty set. An intuitionistic fuzzy set 𝐴𝐼 of 𝑋 is defined
as 𝐴
𝐼

= {⟨𝑥, 𝜇
𝐴
𝐼(𝑥), ]

𝐴
𝐼(𝑥)⟩|𝑥 ∈ 𝑋} where 𝜇

𝐴
𝐼(𝑥) and ]

𝐴
𝐼(𝑥)

are membership and nonmembership functions such that
𝜇
𝐴
𝐼(𝑥), ]

𝐴
𝐼(𝑥) : 𝑋 → [0, 1] and 0 ≤ 𝜇

𝐴
𝐼(𝑥) + ]

𝐴
𝐼(𝑥) ≤ 1

for all 𝑥 ∈ 𝑋.

Definition 5 (intuitionistic fuzzy number, see [3]). An intu-
itionistic fuzzy subset �̃�𝐼 = {⟨𝑥, 𝜇

�̃�
𝐼(𝑥), ]

�̃�
𝐼(𝑥)⟩|𝑥 ∈ R} of the

real line R is called an intuitionistic fuzzy number (IFN) if
the following conditions hold:

(i) There exists 𝑚 ∈ R such that 𝜇
�̃�
𝐼(𝑚) = 1 and

]
�̃�
𝐼(𝑚) = 0.

(ii) 𝜇
�̃�
𝐼 is a continuous function from R → [0, 1] such

that 0 ≤ 𝜇
�̃�
𝐼(𝑥) + ]

�̃�
𝐼(𝑥) ≤ 1 for all 𝑥 ∈ 𝑋.
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(iii) The membership and nonmembership functions of
�̃�
𝐼 are in the following form:

𝜇
�̃�
𝐼 (𝑥) =

{{{{{{{{{{

{{{{{{{{{{

{

0, for − ∞ < 𝑥 ≤ 𝑎
1

𝑓 (𝑥) , for 𝑎
1
≤ 𝑥 ≤ 𝑎

2

1, for 𝑥 = 𝑎
2

𝑔 (𝑥) , for 𝑎
2
≤ 𝑥 ≤ 𝑎

3

0, for 𝑎
3
≤ 𝑥 < ∞,

]
�̃�
𝐼 (𝑥) =

{{{{{{{{{{

{{{{{{{{{{

{

1, for − ∞ < 𝑥 ≤ 𝑎
󸀠

1

𝑓
󸀠
(𝑥) , for 𝑎󸀠

1
≤ 𝑥 ≤ 𝑎

2

0, for 𝑥 = 𝑎
2

𝑔
󸀠
(𝑥) , for 𝑎

2
≤ 𝑥 ≤ 𝑎

󸀠

3

1, for 𝑎󸀠
3
≤ 𝑥 < ∞,

(2)

where 𝑓, 𝑓
󸀠
, 𝑔, 𝑔
󸀠 are functions from R → [0, 1], 𝑓 and 𝑔

󸀠

are strictly increasing functions, and 𝑔 and 𝑓
󸀠 are strictly

decreasing functionswith the conditions 0 ≤ 𝑓(𝑥)+𝑓
󸀠
(𝑥) ≤ 1

and 0 ≤ 𝑔(𝑥) + 𝑔
󸀠
(𝑥) ≤ 1.

Definition 6 (trapezoidal intuitionistic fuzzy number, see
[16]). A trapezoidal intuitionistic fuzzy number is denoted by
�̃�
𝐼

= (𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
), (𝑎󸀠
1
, 𝑎
2
, 𝑎
3
, 𝑎
󸀠

4
), where 𝑎

󸀠

1
≤ 𝑎
1
≤ 𝑎
2
≤ 𝑎
3
≤

𝑎
4
≤ 𝑎
󸀠

4
with membership and nonmembership functions are

defined as follows:

𝜇
�̃�
(𝑥) =

{{{{{{{{

{{{{{{{{

{

𝑥 − 𝑎
1

𝑎
2
− 𝑎
1

, for 𝑎
1
≤ 𝑥 ≤ 𝑎

2

1, for 𝑎
2
≤ 𝑥 ≤ 𝑎

3

𝑎
4
− 𝑥

𝑎
4
− 𝑎
3

, for 𝑎
3
≤ 𝑥 ≤ 𝑎

4

0, otherwise,

]
�̃�
(𝑥) =

{{{{{{{{

{{{{{{{{

{

𝑎
2
− 𝑥

𝑎
2
− 𝑎
󸀠

1

, for 𝑎󸀠
1
≤ 𝑥 ≤ 𝑎

2

0, for 𝑎
2
≤ 𝑥 ≤ 𝑎

3

𝑥 − 𝑎
3

𝑎
󸀠

4
− 𝑎
3

, for 𝑎
3
≤ 𝑥 ≤ 𝑎

󸀠

4

1, otherwise.

(3)

Definition 7 (neutrosophic set, see [4]). Let𝑋 be a nonempty
set. Then a neutrosophic set 𝐴

𝑁 of 𝑋 is defined as
𝐴
𝑁

= {⟨𝑥, 𝑇
𝐴
𝑁(𝑥), 𝐼

𝐴
𝑁(𝑥), 𝐹

𝐴
𝑁(𝑥)⟩|𝑥 ∈ 𝑋, 𝑇

𝐴
𝑁(𝑥), 𝐼

𝐴
𝑁(𝑥),

𝐹
𝐴
𝑁(𝑥) ∈ ]

−
0, 1
+
[}, where 𝑇

𝐴
𝑁(𝑥), 𝐼

𝐴
𝑁(𝑥) and 𝐹

𝐴
𝑁(𝑥) are

truth membership function, an indeterminacy-membership
function, and a falsity-membership function and there is
no restriction on the sum of 𝑇

𝐴
𝑁(𝑥), 𝐼

𝐴
𝑁(𝑥) and 𝐹

𝐴
𝑁(𝑥),

so −0 ≤ 𝑇
𝐴
𝑁(𝑥) + 𝐼

𝐴
𝑁(𝑥) + 𝐹

𝐴
𝑁(𝑥) ≤ 3

+ and ]
−
0, 1
+
[ is a

nonstandard unit interval.

But it is difficult to apply neutrosophic set theories in
real life problems directly. So Wang introduced single valued
neutrosophic set as a subset of neutrosophic set and the
definition is as follows.

Definition 8 (single valued neutrosophic set, see [5]). Let 𝑋
be a nonempty set. Then a single valued neutrosophic set 𝐴𝑁

𝑆

of 𝑋 is defined as 𝐴
𝑁

𝑆
= {⟨𝑥, 𝑇

𝐴
𝑁(𝑥), 𝐼

𝐴
𝑁(𝑥), 𝐹

𝐴
𝑁(𝑥)⟩|𝑥 ∈ 𝑋}

where 𝑇
𝐴
𝑁(𝑥), 𝐼

𝐴
𝑁(𝑥) and 𝐹

𝐴
𝑁(𝑥) ∈ [0, 1] for each 𝑥 ∈ 𝑋 and

0 ≤ 𝑇
𝐴
𝑁(𝑥) + 𝐼

𝐴
𝑁(𝑥) + 𝐹

𝐴
𝑁(𝑥) ≤ 3.

Definition 9 (single valued trapezoidal neutrosophic num-
ber). Let 𝑤

�̃�
, 𝑢
�̃�
, 𝑦
�̃�

∈ [0, 1] and 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4

∈ R such that
𝑎
1

≤ 𝑎
2

≤ 𝑎
3

≤ 𝑎
4
. Then a single valued trapezoidal

neutrosophic number, �̃� = ⟨(𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
); 𝑤
�̃�
, 𝑢
�̃�
, 𝑦
�̃�
⟩ is a

special neutrosophic set on the real line set R, whose
truth-membership, indeterminacy-membership, and falsity-
membership functions are given as follows:

𝜇
�̃� (𝑥) =

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑤
�̃�
(

𝑥 − 𝑎
1

𝑎
2
− 𝑎
1

) , for 𝑎
1
≤ 𝑥 ≤ 𝑎

2

𝑤
�̃�
, for 𝑎

2
≤ 𝑥 ≤ 𝑎

3

𝑤
�̃�
(

𝑎
4
− 𝑥

𝑎
4
− 𝑎
3

) , for 𝑎
3
≤ 𝑥 ≤ 𝑎

4

0, otherwise,

]
�̃� (𝑥) =

{{{{{{{{{{{{

{{{{{{{{{{{{

{

𝑎
2
− 𝑥 + 𝑢

�̃�
(𝑥 − 𝑎

1
)

𝑎
2
− 𝑎
1

, for 𝑎
1
≤ 𝑥 ≤ 𝑎

2

𝑢
�̃�
, for 𝑎

2
≤ 𝑥 ≤ 𝑎

3

𝑥 − 𝑎
3
+ 𝑢
�̃�
(𝑎
4
− 𝑥)

𝑎
4
− 𝑎
3

, for 𝑎
3
≤ 𝑥 ≤ 𝑎

4

1, otherwise,

𝜆
�̃� (𝑥) =

{{{{{{{{{{{{

{{{{{{{{{{{{

{

𝑎
2
− 𝑥 + 𝑦

�̃�
(𝑥 − 𝑎

1
)

𝑎
2
− 𝑎
1

, for 𝑎
1
≤ 𝑥 ≤ 𝑎

2

𝑦
�̃�
, for 𝑎

2
≤ 𝑥 ≤ 𝑎

3

𝑥 − 𝑎
3
+ 𝑦
�̃�
(𝑎
4
− 𝑥)

𝑎
4
− 𝑎
3

, for 𝑎
3
≤ 𝑥 ≤ 𝑎

4

1, otherwise,

(4)

where 𝑤
�̃�
, 𝑢
�̃�
, and 𝑦

�̃�
denote the maximum truth-

membership degree, minimum-indeterminacy membership
degree, and minimum falsity-membership degree, res-
pectively. A single valued trapezoidal neutrosophic number
�̃� = ⟨(𝑎

1
, 𝑎
2
, 𝑎
3
, 𝑎
4
); 𝑤
�̃�
, 𝑢
�̃�
, 𝑦
�̃�
⟩ may express an ill-defined

quantity about 𝑎, which is approximately equal to [𝑎
2
, 𝑎
3
].
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Definition 10 (arithmetic operations on single valued
trapezoidal neutrosophic numbers). Let �̃� = ⟨(𝑎

1
, 𝑎
2
,

𝑎
3
, 𝑎
4
); 𝑤
�̃�
, 𝑢
�̃�
, 𝑦
�̃�
⟩ and �̃� = ⟨(𝑏

1
, 𝑏
2
, 𝑏
3
, 𝑏
4
); 𝑤
�̃�
, 𝑢
�̃�
, 𝑦
�̃�
⟩ be two

single valued trapezoidal neutrosophic numbers and 𝑘 ̸= 0;
then

(i) �̃� + �̃� = ⟨(𝑎
1
+ 𝑏
1
, 𝑎
2
+ 𝑏
2
, 𝑎
3
+ 𝑏
3
, 𝑎
4
+ 𝑏
4
) ; 𝑤
�̃�
∧ 𝑤
�̃�
, 𝑢
�̃�
∨ 𝑢
�̃�
, 𝑦
�̃�
∨ 𝑦
�̃�
⟩ ,

(ii) �̃� − �̃� = ⟨(𝑎
1
− 𝑏
4
, 𝑎
2
− 𝑏
3
, 𝑎
3
− 𝑏
2
, 𝑎
4
− 𝑏
1
) ; 𝑤
�̃�
∧ 𝑤
�̃�
, 𝑢
�̃�
∨ 𝑢
�̃�
, 𝑦
�̃�
∨ 𝑦
�̃�
⟩ ,

(iii) �̃� =

{{{{

{{{{

{

⟨(𝑎
1
𝑏
1
, 𝑎
2
𝑏
2
, 𝑎
3
𝑏
3
, 𝑎
4
𝑏
4
) ; 𝑤
�̃�
∧ 𝑤
�̃�
, 𝑢
�̃�
∨ 𝑢
�̃�
, 𝑦
�̃�
∨ 𝑦
�̃�
⟩ if 𝑎

4
> 0, 𝑏

4
> 0

⟨(𝑎
1
𝑏
4
, 𝑎
2
𝑏
3
, 𝑎
3
𝑏
2
, 𝑎
4
𝑏
1
) ; 𝑤
�̃�
∧ 𝑤
�̃�
, 𝑢
�̃�
∨ 𝑢
�̃�
, 𝑦
�̃�
∨ 𝑦
�̃�
⟩ if 𝑎

4
< 0, 𝑏

4
> 0

⟨(𝑎
4
𝑏
4
, 𝑎
3
𝑏
3
, 𝑎
2
𝑏
2
, 𝑎
1
𝑏
1
) ; 𝑤
�̃�
∧ 𝑤
�̃�
, 𝑢
�̃�
∨ 𝑢
�̃�
, 𝑦
�̃�
∨ 𝑦
�̃�
⟩ if 𝑎

4
< 0, 𝑏

4
< 0,

(iv) �̃�

𝑏

=

{{{{{{{{

{{{{{{{{

{

⟨(
𝑎
1

𝑏
4

,
𝑎
2

𝑏
3

,
𝑎
3

𝑏
2

,
𝑎
4

𝑏
1

) ;𝑤
�̃�
∧ 𝑤
�̃�
, 𝑢
�̃�
∨ 𝑢
�̃�
, 𝑦
�̃�
∨ 𝑦
�̃�
⟩ if 𝑎

4
> 0, 𝑏

4
> 0

⟨(
𝑎
4

𝑏
4

,
𝑎
3

𝑏
3

,
𝑎
2

𝑏
2

,
𝑎
1

𝑏
1

) ;𝑤
�̃�
∧ 𝑤
�̃�
, 𝑢
�̃�
∨ 𝑢
�̃�
, 𝑦
�̃�
∨ 𝑦
�̃�
⟩ if 𝑎

4
< 0, 𝑏

4
> 0

⟨(
𝑎
4

𝑏
1

,
𝑎
3

𝑏
2

,
𝑎
2

𝑏
3

,
𝑎
1

𝑏
4

) ;𝑤
�̃�
∧ 𝑤
�̃�
, 𝑢
�̃�
∨ 𝑢
�̃�
, 𝑦
�̃�
∨ 𝑦
�̃�
⟩ if 𝑎

4
< 0, 𝑏

4
< 0,

(v) 𝑘�̃� =

{

{

{

⟨(𝑘𝑎
1
, 𝑘𝑎
2
, 𝑘𝑎
3
, 𝑘𝑎
4
) ; 𝑤
�̃�
, 𝑢
�̃�
, 𝑦
�̃�
⟩ if 𝑘 > 0

⟨(𝑘𝑎
4
, 𝑘𝑎
3
, 𝑘𝑎
2
, 𝑘𝑎
1
) ; 𝑤
�̃�
, 𝑢
�̃�
, 𝑦
�̃�
⟩ if 𝑘 < 0,

(vi) �̃�
−1

= ⟨(
1

𝑎
4

,
1

𝑎
3

,
1

𝑎
2

,
1

𝑎
1

) ;𝑤
�̃�
, 𝑢
�̃�
, 𝑦
�̃�
⟩ , where �̃� ̸= 0.

(5)

Definition 11 (score and accuracy functions of single val-
ued trapezoidal neutrosophic number). One can compare
any two single valued trapezoidal neutrosophic numbers
based on the score and accuracy functions. Let �̃� =

⟨(𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
); 𝑤
𝑎
, 𝑢
𝑎
, 𝑦
𝑎
⟩ be a single valued trapezoidal neu-

trosophic number; then

(i) score function 𝑆(�̃�) = (1/16)[𝑎
1
+ 𝑎
2
+ 𝑎
3
+ 𝑎
4
] × [𝜇
�̃�
+

(1 − ]
�̃�
) + (1 − 𝜆

�̃�
)];

(ii) accuracy function 𝐴(�̃�) = (1/16)[𝑎
1
+ 𝑎
2
+ 𝑎
3
+ 𝑎
4
] ×

[𝜇
�̃�
+ (1 − ]

�̃�
) + (1 + 𝜆

�̃�
)].

Definition 12 (comparison of single valued trapezoidal neu-
trosophic number). Let �̃� and �̃� be any two single valued
trapezoidal neutrosophic numbers; then one has the follow-
ing:

(i) If 𝑆(�̃�) < 𝑆(�̃�) then �̃� < 𝑏.
(ii) If 𝑆(�̃�) = 𝑆(�̃�) and if

(1) 𝐴(�̃�) < 𝐴(�̃�) then �̃� < 𝑏,
(2) 𝐴(�̃�) > 𝐴(�̃�) then �̃� > 𝑏,
(3) 𝐴(�̃�) = 𝐴(�̃�) then �̃� = 𝑏.

Example 13. Let �̃� = ⟨(4, 8, 10, 16); 0.5, 0.3, 0.6⟩ and �̃� =

⟨(3, 7, 11, 14); 0.4, 0.5, 0.6⟩ be two single valued trapezoidal
neutrosophic numbers; then

(i) �̃� + �̃� = ⟨(7, 15, 21, 30); 0.4, 0.5, 0.6⟩,

(ii) �̃� − �̃� = ⟨(−10, −3, 3, 13); 0.4, 0.5, 0.6⟩,
(iii) �̃��̃� = ⟨(12, 56, 110, 224); 0.4, 0.5, 0.6⟩,
(iv) �̃�/𝑏 = ⟨(4/14, 8/11, 10/7, 16/3); 0.4, 0.5, 0.6⟩,
(v) 3�̃� = ⟨(12, 24, 30, 48); 0.4, 0.5, 0.6⟩,
(vi) �̃�
−1

= ⟨(1/16, 1/10, 1/8, 1/4); 0.4, 0.5, 0.6⟩,
(vii) 𝑆(�̃�) = (1/16)[4+8+10+16]×[0.5+(1−0.3)+(1−0.6)] =

3.8,
(viii) 𝐴(�̃�) = (1/16)[4 + 8 + 10 + 16] × [0.5 + (1 − 0.3) + (1 +

0.6)] = 6.65.

3. Introduction of Transportation Problem in
Neutrosophic Environment

3.1. Mathematical Formulation

3.1.1. Model I. In this model, a transportation problem is
introduced in a single valued neutrosophic environment.
Consider a transportation problem with “𝑚” sources and “𝑛”
destinations in which the decision maker is indeterminate
about the precise values of transportation cost from 𝑖th
source to 𝑗th destination, but there is no uncertainty about
the demand and supply of the product with the following
assumptions and constraints.

Distribution Assumptions

𝑖 is the source index for all 𝑖 = 1, 2, 3, . . . , 𝑚.
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𝑗 is the destination index for all 𝑗 = 1, 2, 3, . . . , 𝑛.

Transportation Parameters

𝑥
𝑖𝑗
is the number of units of the product transported

from 𝑖th source to 𝑗th destination.

�̃�
𝑁

𝑖𝑗
is the neutrosophic cost of one unit quantity

transported from 𝑖th source to 𝑗th destination.

𝑥
𝑖
is the total availability of the product at the source

𝑖.

𝑥
𝑗
is the total demandof the product at the destination

𝑗.

Transportation Constraints

Supply constraints: ∑𝑛
𝑗=0

𝑥
𝑖𝑗

= 𝑎
𝑖
for all sources 𝑖.

Demand constraints: ∑𝑚
𝑖=0

𝑥
𝑖𝑗

= 𝑏
𝑗
for all destinations

𝑗 and ∑
𝑚

𝑖=0
𝑎
𝑖
= ∑
𝑛

𝑗=0
𝑏
𝑗
.

Nonnegativity constraints: 𝑥
𝑖𝑗

≥ 0 ∀𝑖, 𝑗.

Now the mathematical formulation of the problem is
given by

Minimize �̃�
𝑁

=

𝑚

∑

𝑖=0

𝑛

∑

𝑗=0

𝑥
𝑖𝑗
�̃�
𝑁

𝑖𝑗

subject to
𝑛

∑

𝑗=0

𝑥
𝑖𝑗

= 𝑎
𝑖
, 𝑖 = 1, 2, . . . , 𝑚

𝑚

∑

𝑖=0

𝑥
𝑖𝑗

= 𝑏
𝑗
, 𝑗 = 1, 2, . . . , 𝑛,

𝑥
𝑖𝑗

≥ 0 ∀𝑖, 𝑗.

(6)

3.1.2. Model II. In this model the decision maker will not
be sure about the unit transportation costs, supply, and
the demand units. So the mathematical formulation of the
problem becomes

Minimize �̃�
𝑁

=

𝑚

∑

𝑖=0

𝑛

∑

𝑗=0

�̃�
𝑁

𝑖𝑗
�̃�
𝑁

𝑖𝑗

subject to
𝑛

∑

𝑗=0

�̃�
𝑁

𝑖𝑗
= �̃�
𝑁

𝑖
, 𝑖 = 1, 2, . . . , 𝑚

𝑚

∑

𝑖=0

�̃�
𝑁

𝑖𝑗
= 𝑏
𝑁

𝑗
, 𝑗 = 1, 2, . . . , 𝑛,

�̃�
𝑁

𝑖𝑗
≥ 0 ∀𝑖, 𝑗.

(7)

4. Procedure for Proposed Algorithms Based
on Neutrosophic Numbers

4.1. Basic Assumptions of the Proposed Algorithms

(1) Requirement Assumption. The entire supply units from
each source must be distributed to destinations.

(2) Feasible Solution Assumption. The neutrosophic trans-
portation problem will have feasible solution if and only if
∑
𝑚

𝑖=0
𝑎
𝑖
= ∑
𝑛

𝑗=0
𝑏
𝑗
, 𝑖 = 1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑛.

(3) Cost Assumption. The total transportation cost depends
only on the number of units transported and the unit
transportation cost but not on other factors like distance and
mode of transport.

(4) Input Assumption. The parameters of the problem will
be represented by either crisp or trapezoidal neutrosophic
numbers.

4.2. Neutrosophic Initial Basic Feasible Solution for Model I

Step 1. Calculate the score value of each neutrosophic cost
�̃�
𝑁

𝑖𝑗
and replace all the neutrosophic costs by its score value

to obtain the classical transportation problem.

Step 2. For each row and column of the table obtained in
Step 1, calculate the difference betweenminimum and next to
minimumof the transportation costs and denote it as Penalty.

Step 3. In the row/column, corresponding to maximum
penalty, make the maximum allotment in the cell having the
minimum transportation cost.

Step 4. If the maximum penalty corresponding to
(i) more than one row, select the topmost row,
(ii) more than one column, select the extreme left col-

umn.

Repeat the above procedure until all the supplies are fully
exhausted and all the demands are satisfied.

4.3. Neutrosophic Optimal Solution for Model I

Step 1. Convert each neutrosophic cost into crisp value by
the score function and obtain the classical transportation
problem.

Step 2. Choose the minimum in each row and subtract it
from the corresponding row entries. Do the same procedure
for each column. Now there will be at least one zero in each
row and column in the resultant table.

Step 3. Verify whether the demand of each column is less
than the sum of supplies whose reduced costs are zero in
that column and supply of each row are less than the sum of
demands whose reduced costs in that row are zero. If so, go
to Step 5, otherwise go to Step 4.
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Step 4. Draw the minimum number of horizontal and verti-
cal lines that cover all the zeros in the reduced table and revise
the table as follows:

(i) Find the least element from the uncovered entries.

(ii) Subtract it from all the uncovered entries and add it
to the entries at the intersection of any two lines.

Again check the condition at Step 3.

Step 5. Select a cell (𝑥, 𝑦)whose reduced cost is maximum in
the reduced cost table. If the maximum exists at more than
one cell, then select any cell.

Step 6. Select a cell in 𝑥-row and 𝑦-column, which is the
only cell whose reduced cost is zero. And then allot the
maximum possible units in it. If such cell does not occur for
the maximum cost, go for next maximum. If such cell does
not occur for any value, then choose any cell at randomwhose
reduced cost is zero.

Step 7. Revise the reduced table by omitting fully exhausted
row and fully satisfied column and repeat Steps 5 and 6 again.

Repeat the procedure until all the supply units are fully
used and all the demand units are fully received.

4.4. Neutrosophic Solution for Model II. Initial basic feasible
solution and the optimum solution of Model II will be
obtained by the procedure in Sections 4.1 and 4.2 without
altering the neutrosophic demand and supply units. Subtrac-
tion of single valued trapezoidal neutrosophic numbers is
applied to modify the neutrosophic demand and supply units
in each iteration.

5. Illustrative Example

5.1. Model I. Consider a transportation problem in which the
peanuts are initially stored at three sources, namely, O1, O2,
and O3 and are transported to peanut butter manufactur-
ing company located at four different destinations, namely
D1, D2, D3, and D4, with trapezoidal neutrosophic unit
transportation cost and crisp demand and supply as given
in Table 1. Obtain the optimal transportation of peanuts to
minimize the total transportation cost.

5.1.1. Neutrosophic Initial Basic Feasible Solution for Model I.
Now by score function of trapezoidal neutrosophic number,
calculate the score value of each neutrosophic cost to obtain
the crisp transportation problem. (Here score values are
rounded off to the nearest integer.) The results are given in
Table 2. Then calculate the penalty for each row and each
column which is presented in Table 3.

In Table 3, the highest penalty 3 (marked with ∗) occurs
at column 3. Now allot the maximum possible units 28 in
the minimum cost cell (3, 3) and revise the supply units
corresponding to row 3. Then the penalties are to be revised
in Table 4.

Proceeding the neutrosophic initial basic feasible solution
algorithm and after few iterations we get the complete
allotment transportation units as given in Table 5.

The initial basic feasible solution is

𝑥
12

= 23,

𝑥
14

= 3,

𝑥
21

= 17,

𝑥
24

= 7,

𝑥
33

= 28,

𝑥
34

= 2.

(8)

Hence the minimum total neutrosophic cost is

Minimize �̃�
𝑁

=

3

∑

𝑖=0

4

∑

𝑗=0

𝑥
𝑖𝑗
�̃�
𝑁

𝑖𝑗

= 23 (5, 8, 10, 14) ; 0.3, 0.6, 0.6

+ 3 (14, 17, 21, 28) ; 0.8, 0.2.0.6

+ 17 (0, 1, 3, 6) ; 0.7, 0.5, 0.3

+ 7 (9, 11, 14, 16) ; 0.5, 0.4, 0.7

+ 28 (5, 7, 8, 10) ; 0.5, 0.4, 0.7

+ 2 (5, 9, 14, 19) ; 0.3, 0.7, 0.6

= (370, 543, 694, 938) ; 0.3, 0.7, 0.7.

(9)

5.1.2. Neutrosophic Optimum Solution for Model I. Consider
the neutrosophic optimal solution for the transportation
problem given in Table 1. After applying Steps 1 and 2 of the
optimal solution algorithm we obtain Table 6.

Now Table 6 does not satisfy the optimal solution condi-
tion stated in Step 3 of Section 4.2. So proceed to Step 4, and
get the revised costs as given in Table 7.

As per allotment rules given in Steps 5 to 7, one can get the
complete allotment schedule which is presented in Table 8.

The optimal solution is

𝑥
11

= 3,

𝑥
12

= 23,

𝑥
21

= 14,

𝑥
24

= 10,

𝑥
33

= 28,

𝑥
34

= 2.

(10)
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Table 1: Input data for neutrosophic transportation problem.

D1 D2 D3 D4 Supply
O1 (3, 5, 6, 8); 0.6, 0.5, 0.4 (5, 8, 10, 14); 0.3, 0.6, 0.6 (12, 15, 19, 22); 0.6, 0.4, 0.5 (14, 17, 21, 28); 0.8, 0.2.0.6 26
O2 (0, 1, 3, 6); 0.7, 0.5, 0.3 (5, 7, 9, 11); 0.9, 0.7, 0.5 (15, 17, 19, 22); 0.4, 0.8, 0.4 (9, 11, 14, 16); 0.5, 0.4, 0.7 24
O3 (4, 8, 11, 15); 0.6, 0.3, 0.2 (1, 3, 4, 6); 0.6, 0.3, 0.5 (5, 7, 8, 10); 0.5, 0.4, 0.7 (5, 9, 14, 19); 0.3, 0.7, 0.6 30
Demand 17 23 28 12

Table 2: Crisp transportation problem.

D1 D2 D3 D4 Supply
O1 2 3 7 10 26
O2 1 3 6 4 24
O3 5 2 3 3 30
Demand 17 23 28 12

Table 3: Tabular representation with penalties.

D1 D2 D3 D4 Supply Penalty
O1 2 3 7 10 26 1
O2 1 3 6 4 24 2
O3 5 2 3 3 30 1
Demand 17 23 28 12
Penalty 1 1 3∗ 1

Table 4: First allotment with penalties.

D1 D2 D3 D4 Supply Penalty
O1 2 3 — 10 26 1
O2 1 3 — 4 24 2
O3 5 2 28 3 2 1
Demand 17 23 — 12
Penalty 1 1 — 1

Table 5: Table with complete allotment.

D1 D2 D3 D4 Supply
O1 — 23 — 3 —
O2 17 — — 7 —
O3 — — 28 2 —
Demand — — — —

Table 6: Table with zero point.

D1 D2 D3 D4 Supply
O1 0 1 4 7 26
O2 0 2 4 2 24
O3 3 0 0 0 30
Demand 17 23 28 12

Table 7: Modified table with zero point.

D1 D2 D3 D4 Supply
O1 0 0 3 6 26
O2 0 1 3 1 24
O3 4 0 0 0 30
Demand 17 23 28 12

Table 8: Table with complete allocation.

D1 D2 D3 D4 Supply
O1 3 23 —
O2 14 10 —
O3 28 2 —
Demand — — — —

Hence the minimum total neutrosophic cost is

Minimize �̃�
𝑁

=

3

∑

𝑖=0

4

∑

𝑗=0

𝑥
𝑖𝑗
�̃�
𝑁

𝑖𝑗

= 3 (3, 5, 6, 8) ; 0.6, 0.5, 0.4

+ 23 (5, 8, 10, 14) ; 0.3, 0.6, 0.6

+ 14 (0, 1, 3, 6) ; 0.7, 0.5, 0.3

+ 10 (9, 11, 14, 16) ; 0.5, 0.4, 0.7

+ 28 (5, 7, 8, 10) ; 0.5, 0.4, 0.7

+ 2 (5, 9, 14, 19) ; 0.3, 0.7, 0.6

= (364, 537, 682, 908) ; 0.3, 0.7, 0.7.

(11)

5.2. Model II. Consider a problem for Model II with single
valued neutrosophic trapezoidal cost, demand, and supply
given in Table 9.

For Table 9, calculate the score value of each neutrosophic
cost to get crisp cost and consider the demand and supply
units as they are. The modified cost is presented in Table 10.

Here, the arithmetic operations of single valued neu-
trosophic trapezoidal numbers are applied to modify the
neutrosophic demand and supply in each iteration. Proceed
the neutrosophic optimal solution method and after few
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Table 9: Input data for neutrosophic transportation problem.

D1 D2 D3 D4 Supply

O1 (3, 5, 6, 8);
0.6, 0.5, 0.4 (5, 8, 10, 14); 0.3, 0.6, 0.6 (12, 15, 19, 22); 0.6, 0.4, 0.5 (14, 17, 21, 28); 0.8, 0.2, 0.6 (22, 26, 28, 32); 0.7, 0.3, 0.4

O2 (0, 1, 3, 6);
0.7, 0.5, 0.3 (5, 7, 9, 11); 0.9, 0.7, 0.5 (15, 17, 19, 22); 0.4, 0.8, 0.4 (9, 11, 14, 16); 0.5, 0.4, 0.7 (17, 22, 27, 31); 0.6, 0.4, 0.5

O3 (4, 8, 11, 15);
0.6, 0.3, 0.2 (1, 3, 4, 6); 0.6, 0.3, 0.5 (5, 7, 8, 10); 0.5, 0.4, 0.7 (5, 9, 14, 19); 0.3, 0.7, 0.6 (21, 28, 32, 37); 0.8, 0.2, 0.4

Demand (13, 16, 18, 21);
0.5, 0.5, 0.6 (17, 21, 24, 28); 0.8, 0.2, 0.4 (24, 29, 32, 35); 0.9, 0.5, 0.3 (6, 10, 13, 15); 0.7, 0.3, 0.4

Table 10: Neutrosophic transportation problem with crisp cost.

D1 D2 D3 D4 Supply

O1 2 3 7 10 (22, 26, 28, 32);
0.7, 0.3, 0.4

O2 1 3 6 4 (17, 22, 27, 31);
0.6, 0.4, 0.5

O3 5 2 3 3 (21, 28, 32, 37);
0.8, 0.2, 0.4

Demand (13, 16, 18, 21);
0.5, 0.5, 0.6

(17, 21, 24, 28);
0.8, 0.2, 0.4

(24, 29, 32, 35);
0.9, 0.5, 0.3

(6, 10, 13, 15);
0.7, 0.3, 0.4

iterations the optimal solution in terms of single valued
neutrosophic trapezoidal numbers is obtained as follows:

𝑥
11

= (−6, 2, 7, 15) ; 0.7, 0.3.0.4,

𝑥
12

= (17, 21, 24, 28) ; 0.8, 0.2, 0.4,

𝑥
21

= (−8, 6, 19, 33) ; 0.6, 0.5, 0.5,

𝑥
24

= (−2, 8, 16, 25) ; 0.7, 0.5, 0.4,

𝑥
33

= (26, 29, 32, 35) ; 0.9, 0.5, 0.3,

𝑥
34

= (−6, 0, 6, 14) ; 0.8, 0.5, 0.4,

Minimize �̃�
𝑁

=

3

∑

𝑖=0

4

∑

𝑗=0

�̃�
𝑁

𝑖𝑗
�̃�
𝑁

𝑖𝑗

= (3, 5, 6, 8) ; 0.6, 0.5, 0.4

× (−6, 2, 7, 15) ; 0.7, 0.3, 0.4

+ (5, 8, 10, 14) ; 0.3, 0.6, 0.6

× (17, 21, 24, 28) ; 0.8, 0.2, 0.4

+ (0, 1, 3, 6) ; 0.7, 0.5, 0.3

× (−8, 6, 19, 33) ; 0.6, 0.5, 0.5

+ (9, 11, 14, 16) ; 0.5, 0.4, 0.7

× (−2, 8, 16, 25) ; 0.7, 0.5, 0.4

+ (5, 7, 8, 10) ; 0.5, 0.4, 0.7

× (26, 29, 32, 35) ; 0.9, 0.5, 0.3

+ (5, 9, 14, 19) ; 0.3, 0.7, 0.6

× (−6, 0.6, 14) ; 0.8, 0.5, 0.4

= (149, 475, 903, 1726) ; 0.3, 0.7, 0.7.

(12)

6. Results and Discussions

In Section 5.1, the neutrosophic optimum solution (364, 537,

682, 908); 0.3, 0.7, 0.7 is better than the neutrosophic initial
basic feasible solution. In the optimum solution, the total
minimum transportation cost will be greater than 364 and
less than 908. And as the total minimum transportation cost
lies between 537 and 682, the overall level of acceptance or
satisfaction or the truthfulness is 30%. Also for the remaining
values of total minimum transportation cost, the degree of
truthfulness is 𝜇(𝑥) × 100 where 𝑥 denotes the total cost and
𝜇(𝑥) is given by

𝜇 (𝑥) =

{{{{{{{

{{{{{{{

{

0.3 (
𝑥 − 364

537 − 364
) , for 364 ≤ 𝑥 ≤ 537

0.3, for 537 ≤ 𝑥 ≤ 682

0.3 (
908 − 𝑥

908 − 682
) , for 682 ≤ 𝑥 ≤ 908

0, otherwise.

(13)

In the optimum solution, the degrees of indeterminacy
and falsity are the same. Hence, degree of indeterminacy and
falsity for the minimum transportation cost are
] (𝑥)

=

{{{{{{{

{{{{{{{

{

537 − 𝑥 + 0.7 (𝑥 − 364)

537 − 364
, for 364 ≤ 𝑥 ≤ 537

0.7, for 537 ≤ 𝑥 ≤ 682

𝑥 − 682 + 0.7 (908 − 𝑥)

908 − 682
, for 682 ≤ 𝑥 ≤ 908

1, otherwise

(14)
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𝜆 (𝑥)

=

{{{{{{{{

{{{{{{{{

{

537 − 𝑥 + 0.7 (𝑥 − 364)

537 − 364
, for 364 ≤ 𝑥 ≤ 537

0.7, for 537 ≤ 𝑥 ≤ 682

𝑥 − 682 + 0.7 (908 − 𝑥)

908 − 682
, for 682 ≤ 𝑥 ≤ 908

1, otherwise,

(15)

respectively. Hence, a decision maker can conclude the total
neutrosophic cost from the range 364 to 908, with its truth
degree, indeterminacy degree, and falsity degree. Based on
the above result, he may schedule the transportation and
budget constraints.

7. Conclusion

Neutrosophic sets being a generalization of intuitionistic
fuzzy sets provide an additional possibility to represent the
indeterminacy along with the uncertainty. Though there are
many transportation problems that have been studied with
different types of input data, this research has investigated
the solutions of transportation problems in neutrosophic
environment. Two different models in neutrosophic environ-
ment were considered in the study. The arithmetic opera-
tions on single valued neutrosophic trapezoidal numbers are
employed to find the solutions. The solution procedures are
illustrated with day-to-day problems. Though the proposed
algorithms concretely analyze the solutions of neutrosophic
transportation problems, there are some limitations in pre-
dicting the solutions of qualitative and complex data. The
computational complexity in handling higher dimensional
problems will be overcome by genetic algorithm approach.
In future, the research will be extended to deal with mul-
tiobjective solid transportation problems in environment.
The researchers will be interested to overcome the above
stated limitations. Further, the approaches of transportation
problems on fuzzy and intuitionistic fuzzy logic may be
extended to neutrosophic logic.
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[11] F. Jiménez and J. L. Verdegay, “Solving fuzzy solid transporta-
tion problems by an evolutionary algorithm based parametric
approach,” European Journal of Operational Research, vol. 117,
no. 3, pp. 485–510, 1999.

[12] A. Kaur and A. Kumar, “A new method for solving fuzzy trans-
portation problems using ranking function,” Applied Mathe-
matical Modelling, vol. 35, no. 12, pp. 5652–5661, 2011.

[13] A. Nagoor Gani and K. Abdul Razak, “Two stage fuzzy trans-
portation problem,” Journal of Physical Sciences, vol. 10, pp. 63–
69, 2006.

[14] P. Pandian and G. Natarajan, “A new algorithm for finding
a fuzzy optimal solution for fuzzy transportation problem,”
Applied Mathematical Sciences, vol. 4, no. 2, pp. 79–90, 2010.

[15] A. Kaur and A. Kumar, “A new approach for solving fuzzy
transportation problems using generalized trapezoidal fuzzy
numbers,” Applied Soft Computing, vol. 12, no. 3, pp. 1201–1213,
2012.

[16] W. Jianqiang and Z. Zhong, “Aggregation operators on intu-
itionistic trapezoidal fuzzy number and its application to
multi-criteria decision making problems,” Journal of Systems
Engineering and Electronics, vol. 20, no. 2, pp. 321–326, 2009.

[17] D.-F. Li, “A ratio ranking method of triangular intuitionistic
fuzzy numbers and its application to MADM problems,” Com-
puters &Mathematics with Applications, vol. 60, no. 6, pp. 1557–
1570, 2010.

[18] A. Nagoor Gani and S. Abbas, “Solving intuitionistic fuzzy
transportation problem using zero suffix algorithm,” Interna-
tional Journal of Mathematical Sciences & Engineering Applica-
tions, vol. 6, pp. 73–82, 2012.

[19] R. J. Hussain and P. Senthil Kumar, “Algorithmic approach for
solving intuitionistic fuzzy transportation problem,” Applied
Mathematical Sciences, vol. 6, no. 80, pp. 3981–3989, 2012.

[20] F. Smarandache, “Neutrosophic set, a generalization of the intu-
itionistic fuzzy set,” International Journal of Pure and Applied
Mathematics, vol. 24, no. 3, pp. 287–297, 2005.

[21] J. Ye, “Similarity measures between interval neutrosophic sets
and their applications in multicriteria decision-making,” Jour-
nal of Intelligent and Fuzzy Systems, vol. 26, no. 1, pp. 165–172,
2014.

[22] H.-Y. Zhang, J.-Q. Wang, and X.-H. Chen, “Interval neu-
trosophic sets and their application in multicriteria decision
making problems,” The Scientific World Journal, vol. 2014,
Article ID 645953, 15 pages, 2014.

[23] J. Wang, R. Nie, H. Zhang, and X. Chen, “New operators on
triangular intuitionistic fuzzy numbers and their applications in
system fault analysis,” Information Sciences, vol. 251, pp. 79–95,
2013.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


