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Abstract In the theory of belief functions, the measure of uncertainty is an important concept,

which is used for representing some types of uncertainty incorporated in bodies of evidence such

as the discord and the non-specificity. For the non-specificity part, some traditional measures use

for reference the Hartley measure in classical set theory; other traditional measures use the simple

and heuristic function for joint use of mass assignments and the cardinality of focal elements. In this

paper, a new non-specificity measure is proposed using lengths of belief intervals, which represent

the degree of imprecision. Therefore, it has more intuitive physical meaning. It can be proved that

our new measure can be rewritten in a general form for the non-specificity. Our new measure is also

proved to be a strict non-specificity measure with some desired properties. Numerical examples,

simulations, the related analyses and proofs are provided to show the characteristics and good

properties of the new non-specificity definition. An example of an application of the new non-

specificity measure is also presented.
� 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The theory of belief functions1 is an important tool for

uncertainty modeling and reasoning. It can distinguish the
‘unknown’ and the ‘imprecision’ and provides a method for
fusing different evidences by using the commutative and
associative Dempster’s rule of combination. The theory of

belief functions has been widely used in the fields of informa-
tion fusion,2 pattern classification,3–5 and multiple attribute
decision making,6,7 etc. Some modified or extended frame-
works including the transferable belief model (TBM)8 and

Dezert-Smarandache theory (DSmT)9 were also proposed by
researchers in the past decades.

The measure of uncertainty10–12 is very crucial in all kinds

of theories of uncertainty. The concept of uncertainty is intri-
cately connected to the concept of information. Therefore, to
describe the uncertainty, measures in information theory are

often used for reference. E.g., in probability theory, the
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Shannon entropy13 is developed. In fuzzy set theory14 and its
related applications,15,16 some entropy-alike measures also
are proposed to represent the uncertainty.17 Also, in the theory

of belief functions, many entropy-alike measures are proposed
such as the ambiguity measure (AM),10 the aggregated uncer-
tainty(AU) measure18 to measure the total uncertainty in a

basic belief assignment (BBA). Actually, in a BBA, there are
two types of uncertainty.10 One is the discord (or randomness
or conflict). Another is the non-specificity. They can be unified

under the term ambiguity.
For the discord part, many Shannon entropy-alike

measures were introduced by researchers.19 Non-
specificity10,18,20–22 means two or more alternatives are left

unspecified, which represents a degree of imprecision. It only
focuses on those focal elements with cardinality larger than
1. Non-specificity is a distinctive uncertainty type in the theory

of belief functions when compared with the probability theory.
Therefore, in this paper, we focus on the non-specificity part.
There are also some non-specificity measures proposed.21,23,24

The most typical one23 is a generalization of the Hartley
measure,25 which is originally for the classical set theory. In
probability theory, there is only discord (or randomness or

conflict).10 Other available non-specificity measures21,24 use
the simple and heuristic function for joint use of mass assign-
ments and the cardinality of focal elements.

In this paper, we aim to design a new non-specificity mea-

sure without using the measure of classical set theory or using
heuristic joint use of mass assignments and the cardinality of
the focal elements, but to design using intuitive physical expla-

nations of the uncertainty in the theory of belief functions. As
aforementioned, the non-specificity actually represents a kind
of imprecision. In the theory of belief functions, the precision

is often modeled by lengths of the belief intervals. The mean of
the belief intervals’ lengths for all singletons is defined as the
non-specificity. Therefore, our new definition can be consid-

ered as an averaging imprecision of different singletons. Fur-
thermore, the new measure can be rewritten to a general
form of non-specificity measure and it has several desired
properties for uncertainty measures.

The rest of this paper is organized as follows. In Section 2,
the essentials of the theory of belief functions are introduced.
Some available uncertainty measures, especially the non-

specificity measures in the theory of belief functions are briefly
introduced in Section 3. In Section 4, a novel non-specificity
measure is proposed. Some desired properties are provided

together with related proofs. In Section 5, we use some numer-
ical examples and simulations to show the rationality of the
proposed new non-specificity measure, where the comparisons
between the available measures and the new one are provided.

Also, an example of the application of the new non-specificity
measure is given in Section 6. Section 7 concludes this paper.
2. Basics of the theory of belief functions

In the theory of belief functions, also called Dempster–Shafer
evidence theory (DST)1, the basic concept is the frame of

discernment (FOD), which is a discrete and finite set. The
elements in FOD are mutually exclusive and exhaustive. Given
an FOD H, on its power set 2H, a BBA m:2H ? [0, 1] can be

defined satisfying
Please cite this article in press as: Yang Y et al. A new non-specificity measure in evid
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X
A#H

mðAÞ ¼ 1; and mð£Þ ¼ 0 ð1Þ

A BBA is also called a mass function. All the A with m(A) > 0
are called focal elements of a BBA m(�). The set of all the focal
elements denoted by F and their corresponding mass assign-
ments m constitute a body of evidence (BOE): (F, m). Based
on the definition of BBA in Eq. (1), the belief function (Bel)
and the plausibility function (Pl) are defined for any A # H
as follows1:

BelðAÞ ¼
X

B#H;B#A

mðBÞ

PlðAÞ ¼
X

B#H;B\A–£

mðBÞ

8>><
>>: ð2Þ

The belief function and plausibility function can be interpreted
as a lower and a upper bound of the probability P(A), respec-

tively, i.e., P(A) e [Bel(A), Pl(A)], which is a belief interval of
the focal element A. The length of the belief interval Len(A)
= Pl(A) � Bel(A) represents the degree of imprecision for A.1

The mass assignment for the total set H, i.e., m(H) repre-
sents the degree of ignorance (or unknown) for a given BBA
m. Therefore, the theory of belief functions can discriminate

the ‘‘imprecision” and the ‘‘ignorance”.
In the theory of belief functions, independent BBAs (m1,

m2) are combined using Dempster’s rule of combination as
follows1:

mðAÞ ¼
0 A ¼ £X
Ai\Bj¼A

m1ðAiÞm2ðBjÞ

1�K
A– £

8><
>: ð3Þ

where Ai and Bj denote the focal element of m1 and m2, respec-

tively. K denotes the conflict coefficient between m1 and m2.
Note that the BBAs to be combined using Dempster’s rule
should be independent. The research related to the dependent

BBAs can found in Ref.26 Dempster’s rule of combination is
both associative and commutative. There exist many other
alternative combination rules, see details in Refs.9,27

DST has been argued for its drawbacks in past
decades.28–31 Some modified or improved frameworks were
also proposed including the TBM8 and DSmT.9

3. Uncertainty measures in the theory of belief functions

There are various kinds of uncertainty,10 e.g., the fuzziness,

randomness (or discord or conflict), non-specificity, which
can be represented and processed by different types of uncer-
tainty theories.10,11 In the theory of belief functions, a BBA
has two types of uncertainty, i.e., the discord and the non-

specificity, hence ambiguity.10 Many uncertainty measures
were proposed for the discord, the non-specificity, and the
total uncertainty (including both two parts).

3.1. Measures for discord in the theory of belief functions

Measures for discord is to depict the randomness (or discord

or conflict) in a BOE. Available measures for discord in the
theory of belief functions are listed below. Although with dif-
ferent names, they are all for the discord part of the uncer-

tainty in the theory of belief functions.
ence theory based on belief intervals, Chin J Aeronaut (2016), http://dx.doi.org/
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(1) Confusion measure (1982)

The confusion measure is proposed by Hohle32 asX
Please cite
10.1016/j.c
ConfðmÞ ¼ �
A#H

mðAÞlog2ðBelðAÞÞ ð4Þ
(2) Dissonance measure (1983)
The dissonance measure is proposed by Yager21 asX
DissoðmÞ ¼ �
A#H

mðAÞlog2ðPlðAÞÞ ð5Þ
(3) Discord measure (1990)
The discord measure Disc is proposed by Klir and
Ramer33 as " #
DiscðmÞ ¼ �
X
A#H

mðAÞlog2 1�
X
B#H

mðBÞ jB� Aj
jBj

ð6Þ

(4) Strife measure (1992)

The strife measure Strif is proposed by Klir and Parviz34" #

StrifðmÞ ¼ �

X
A#H

mðAÞlog2 1�
X
B#H

mðBÞ jA� Bj
jAj

ð7Þ
As we can see, they are all Shannon entropy-alike measure.
The differences and relationships between the measures above

can be found in Refs.19,34

3.2. Measures for non-specificity in the theory of belief functions

Non-specificity20,21,23,35 means two or more alternatives are
left unspecified. It represents a degree of imprecision and only
focus on those focal elements with cardinality larger than one.
Non-specificity is a distinctive uncertainty type in the belief

functions framework when compared with the probabilistic
framework. So, the non-specificity is mainly concerned here.
The available non-specificity measures are as follows.

(1) Dubois & Prade’s non-specificity23
NSDPðmÞ ¼
X
A#H

mðAÞlog2jAj ð8Þ

It is a generalized Hartley measure25 from the classical

set theory to the belief functions framework. When the
BBA m(�) is a Bayesian BBA, i.e., it only has singleton
focal elements, it reaches the minimum value 0. When

BBA m(�) is a vacuous BBA, i.e., m(H) = 1, it reaches
the maximum value log2(|H|). In fact, due to
log21 = 0, the mass assignments of singletons are nui-
sances in the computation of NSDP. This definition

was proved to have the uniqueness by Ramer22, that
is, it satisfies all the expected requirements of the non-
specificity measure.20,22
(2) Yager’s specificity21
SYðmÞ ¼
X
A#H

mðAÞ
jAj ð9Þ

The maximum value is 1 (when the BBA is Bayesian);

the minimum value is 1/|H| (when the BBA is vacuous).
One can use 1 � SY(m) to denote the non-specificity.
this article in press as: Yang Y et al. A new non-specificity measure in evidence th
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Actually, here the mass assignments of singletons are

involved in the computation.

(3) Korner’s non-specificity24
NSKðmÞ ¼
X
A#H

mðAÞ � jAj ð10Þ

The maximum value is |H| (vacuous BBA); the mini-

mum value is 1 (Bayesian BBA). Actually, here the mass
assignments of singletons are involved in the
computation.
(4) In Korner’s work, a general form of the non-specificity

(or specificity) measure is proposed as

NS fðmÞ ¼
X
A#H

mðAÞ � fðjAjÞ ð11Þ
eory
As referred in Ref.24, if a measure satisfies Eq. (11), it is a
non-specificity measure (function).

3.3. Measures for total uncertainty in the theory of belief
functions

(1) AU18
AUðmÞ ¼ maxð�Ph2Hphlog2phÞ s:t:

ph 2 ½0; 1�; 8h 2 HX
h2H

ph ¼ 1

BelðAÞ 6
X
h2A

ph 6 1� Belð �AÞ; 8A#H

8>>>>>><
>>>>>>:

ð12Þ

It is also called the ‘‘upper entropy”. AU is an aggre-

gated total uncertainty (ATU) measure, which can cap-
ture both non-specificity and discord. AU satisfies all the
requirements for uncertainty measure including proba-

bility consistency, set consistency, value range, sub-
additivity and additivity for the joint BBA in Cartesian
space.35
(2) AM X

AMðmÞ ¼ �

h2H
BetPmðhÞlog2ðBetPmðhÞÞ ð13Þ

where BetPmðhÞ ¼
P

h2B#HmðBÞ=jBj; 8A#H is the pig-

nistic probability8 of a BBA. AM does not satisfy the
sub-additivity which has been pointed out by Klir and
Lewis.36 Moreover in the work of Abellan and

Masegosa35, AM has been proved to be logically non-
monotonic under some circumstances.
Note that non-specificity can also be defined in the frame-

work of fuzzy sets37 or intuitionistic fuzzy sets.38 Here what
we are concerned is the non-specificity in the theory of belief
functions.

4. Novel non-specificity measure based on the length of the belief

intervals

As we can see in the previous section, traditional non-
specificity measures are either the generalization of the Hartley
measure in classical set theory, or the one heuristically built

from the joint use of the cardinality and the mass assignment
based on belief intervals, Chin J Aeronaut (2016), http://dx.doi.org/
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of the BBA. We do not prefer such expedient ways and aim to
design a new non-specificity measure directly using the intu-
itive concept of uncertainty in the framework of belief func-

tions. The new measure is introduced below.

4.1. Definition of new non-specificity measure in the theory of
belief functions

Non-specificity is in fact a kind of imprecision for different
propositions in FOD. In the framework of belief functions,

the degree of imprecision for each proposition A is represented
by the length of the corresponding focal element’s belief inter-
val [Bel(A), Pl(A)]. Given an FOD H= {h1,h2, . . .,hn}, the

belief interval for each singleton {hi}, i.e., [Bel({hi}), Pl({hi})]
can be obtained together with n belief intervals’ lengths Len
(i) = Pl({hi}) � Bel({hi}). We define the mean of all the n belief
intervals’ lengths as the new non-specificity as follows.

NSBIðmÞ ¼ 1

n

Xn
i¼1

ðPlðfhigÞ � BelðfhigÞÞ ð14Þ

Here, BI denotes the belief interval. NSBI(m) represents the

averaging imprecision in m, i.e., the non-specificity. To avoid
the redundant use of the imprecision for each singleton, here
we only use the belief intervals of singletons.

Since

BelðhiÞ ¼ mðfhigÞ

PlðhiÞ ¼ mðfhigÞ þ
Xn
j¼1
i<j

mðfhi; hjgÞ

þ
Xn
j¼1
i<j

Xn
k¼1
j<k

mðfhi; hj; hkgÞ þ � � � þmðHÞ

8>>>>>>>><
>>>>>>>>:

ð15Þ

then, "i = 1, 2, . . ., n,

PlðfhigÞ � BelðfhigÞ ¼
Xn
j¼1
i<j

mðfhi; hjgÞ þ
Xn
j¼1
i<j

Xn
k¼1
j<k

mðfhi; hj; hkgÞ

þ � � � þmðHÞ ð16Þ
Therefore, the non-specificity definition in Eq. (14) can be

rewritten as

NSBIðmÞ¼ 1

n

Xn
i¼1

ðPlðfhigÞ�BelðfhigÞÞ

¼ 1

n

Xn
i¼1

Xn
j¼1
i<j

mðfhi;hjgÞþ
Xn
j¼1
i<j

Xn
k¼1
j<k

mðfhi;hj;hkgÞþ �� �þmðHÞ

2
64

3
75

¼ 1

n
2
Xn
i;j¼1
i<j

mðfhi;hjgÞþ3
Xn
i;j;k¼1
i<j<k

mðfhi;hj;hkgÞþ �� �þn �mðHÞ

2
64

3
75

¼ 1

n
2
X
A#H
jAj¼2

mðAÞþ3
X
A#H
jAj¼3

mðAÞþ �� �þn �mðHÞ

2
64

3
75

¼
X
A#H
jAj>1

mðAÞ � jAj
n

ð17Þ

So, it is actually the weighted summation of the normalized
cardinality size of the focal elements except for singletons,
where the weights are their mass assignments. That is to say
Please cite this article in press as: Yang Y et al. A new non-specificity measure in evid
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in computation of our belief interval-based non-specificity,
there is no need to calculate the belief intervals but to just fol-
low the final step in Eq. (17) with simple multiplication and

summation operations. Eq. (17) can be further rewritten as

NSBIðmÞ ¼
X
A#H

mðAÞ � jAj
n

ð1� dðjAj � 1ÞÞ ð18Þ

where d(�) is the Dirac delta function defined as

dðxÞ ¼ 1 x ¼ 0

0 x – 0

�
ð19Þ

Eq. (18) satisfies the general form in Eq. (11) if

fðjAjÞ ¼ jAj
n

ð1� dðjAj � 1ÞÞ ð20Þ

So, the definition in Eq. (14) is a non-specificity measure.
According to Eqs. (14) and (18), obviously, NSBI(m) reaches
its minimum value 0, when m is a Bayesian BBA; NSBI(m)
reaches its maximum value 1, when m is a vacuous BBA. It

should be noted that our new measure expressed by Eq. (17)
has two differences with that in NSK, although the Eqs. (10)
and (17) have closely similar expressions. The first difference

is that in our new definition in Eq. (17), singletons are not
involved in computation. Actually, the mass assignments are
canceled in the calculation of the singletons’ belief intervals’

lengths. However, in NSK, mass assignments of singletons
are used. The second difference is that, our definition has a
normalization factor n while NSK has no such a factor.

Note that NSBI(m) has many desired properties for an

uncertainty measure as analyzed in the next subsection.

4.2. Desired properties of new non-specificity measure

(1) Range
As aforementioned, NSBI(m) reaches its minimum value
0, when m is a Bayesian BBA; NSBI(m) reaches its max-
imum value 1, when m is a vacuous BBA. This means

that a Bayesian BBA corresponds to a maximally precise
statement, while a BBA expressing total ignorance rep-
resents the most non-specific (or the most imprecise)

statement on the FOD.20

(2) Monotonicity
For ðF 1;m1Þ# ðF 2;m2Þ, i.e., 8A 2 PðHÞ : Bel1ðAÞ P
Bel2ðAÞ; Pl1ðAÞ 6 Pl2ðAÞ or 8A 2 PðHÞ : ½Bel1ðAÞ;
Pl1ðAÞ�# ½Bel2ðAÞ;Pl2ðAÞ�, if a non-specificity measure
NS satisfies NSðm1Þ 6 NSðm2Þ, then the property of
Monotonicity20 holds. This means that a non-

specificity measure in the belief functions theory must
not decrease the total quantity of uncertainty in situa-
tions where there is a clear decrease in information

(increment of uncertainty).

Our new non-specificity measure in Eq. (14) satisfies the

monotonicity. See the proof below.

Proof. If 8A 2 PðHÞ : Bel1ðAÞ P Bel2ðAÞ; Pl1ðAÞ 6 Pl2ðAÞ,
then there exists

8hi 2 H : Pl1ðfhigÞ 6 Pl2ðfhigÞ;Bel1ðfhigÞ P Bel2ðfhigÞ:
Therefore,
ence theory based on belief intervals, Chin J Aeronaut (2016), http://dx.doi.org/
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Len1ðiÞ ¼ Pl1ðfhigÞ � Bel1ðfhigÞ 6 Len2ðiÞ

¼ Pl2ðfhigÞ � Bel2ðfhigÞ ) 1

n

X
i

Len1ðiÞ

6 1

n

X
i

Len2ðiÞ ) NSBIðm1Þ 6 NSBIðm2Þ

End of Proof h
(3) SymmetryIf two BBAs m1, m2 assign the same summa-

tion of mass assignment values to focal elements with
the same cardinality, then the non-specificity values of
the two BBAs are equal. This is called symmetry.22

Our new non-specificity measure in Eq. (14) satisfies the
symmetry. See the proof below.

Proof. According to Eq.(17), NSBIðmÞ ¼ 1
n

Xn

i¼1
ðPlðfhigÞ�

BelðfhigÞÞ ¼ 1
n 2
X

A#H
jAj¼2

mðAÞ þ 3
X

A#H
jAj¼3

mðAÞ þ � � � þ n �mðHÞ
� �

If
X

A#H;jAj¼a
m1ðAÞ¼

X
A#H;jAj¼a

m2ðAÞ; 8a¼ 2;3; . . . ;n,

obviously, NSBI(m1) = NSBI(m2).

End of Proof h

(4) Multiplicativity for joint BBAA joint BBA10

m : PðHX �HY Þ ! ½0; 1� is a BBA defined on the Carte-

sian product of two sets (two distinct FODs) HX with
cardinality nHX and HX with cardinality nHY , where

PðHX �HY Þ is the power set of HX � HY. Suppose that
F is a set of focal elements of the joint BBA on the joint
FOD HX � HY, and S 2 F .

The projections of S on to HX is denoted by Sx = {x e HX|
(x, y) e S, "x e HX}. The projections of S on to HY is denoted

by Sy = {y e HY|(x, y) e S, "y e HY}. Then, the marginal
BBAs can be defined as10

mHX
ðAÞ ¼

X
SjSx¼A

mðRÞ 8A#HX

mHY
ðAÞ ¼

X
SjSy¼A

mðRÞ 8A#HY

8>><
>>: ð21Þ

If mð�Þ ¼ mHX
�mHY

is a joint BBA on HX � HY, and two

independent marginal BBAs are mHX
ð�Þ and mHY

ð�Þ then
NSðmÞ ¼ NSðmHX

Þ �NSðmHY
Þ ð22Þ

This is called the property of multiplicativity.
Our new non-specificity measure in Eq. (14) satisfies the

multiplicativity.20 See the proof below.
Proof.

NSBIðmÞ ¼
X
A;B

mðA� BÞ jA� Bj
nHX

� nHY

¼
X
A;B

mHX
ðAÞmHY

ðBÞ � jAj � jBj
nHX

� nHY

¼
X
A

mHX
ðAÞ jAj

nHX

�
X
B

mHY
ðBÞ jBj

nHY

¼ NSBIðmHX
Þ �NSBIðmHY

Þ ð23Þ
Please cite this article in press as: Yang Y et al. A new non-specificity measure in evid
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End of Proof h
intervals 5
(5) Sub-multiplicativity for joint BBAIf mð�Þ ¼ mHX � mHY is

a joint BBA on HX � HY, and its marginal BBAs mHX ð�Þ
and mHY ð�Þ, which are unknown to be independent or

not, then, NSðmÞ 6 NSðmHX Þ �NSðmHY Þ. This is called
the property of sub-multiplicativity. The ‘‘ = ”holds only

when mHX ð�Þ and mHY ð�Þ are independent.

Note that the physical meaning of sub-multiplicativity is in
essential the conservation of information, i.e., the amount of

uncertainty in a joint BBA is no greater than the total amount
of uncertainty of its corresponding marginal BBAs. The equa-
tion holds if and only if the corresponding marginal BBAs are
independent, i.e., there is not correlated part. If two marginal

BBAs are dependent, then the double counting uncertainty
amount should be removed, therefore, the total amount of
uncertainty in the joint BBA is larger than the total amount

in marginal BBAs.

Proof. Suppose that S is the focal element in Cartesian space
HX � HY; proj(S; HX) = Sx and proj (S; HY) = Sy represent
the projections of S on HX and HY, respectively.

The non-specificity NSBI of two marginal BBA mHX
ð�Þ and

mHY
ð�Þ are

NSBIðmHX
Þ ¼

X
A#HX
jAj>1

mHX
ðAÞ jAj

nHX

¼
X
A#HX
jAj>1

X
A¼projðS;HXÞ¼Sx

mðSÞ
 !

jAj
nHX

NSBIðmHY
Þ ¼

X
B#HY
jBj>1

mHY
ðBÞ jBj

nHY

¼
X
B#HY
jBj>1

X
B¼projðS;HYÞ¼Sy

mðSÞ
0
@

1
A jBj

nHY

The multiplication of the NSBI for two marginal BBAs are

NSBIðmHX
Þ �NSBIðmHY

Þ ¼
X
A#HX
jAj>1

X
A¼Sx

mðSÞ
 !

jAj
nHX

�
X
B#HY
jBj>1

X
B¼Sy

mðSÞ
 !

jBj
nHY

¼
X

S#HX�HY
jSx j>1

mðSÞ jSxj
nHX

�
X

S#HX�HY
jSy j>1

mðSÞ jSyj
nHY

¼
X

S#HX�HY
jSx j>1;jSy j>1

mðSÞ jSxj � jSyj
nHX

� nHY

P
X

S#HX�HY
jSx j>1;jSy j>1

mðSÞ jSj
nHX

� nHY

¼ NSBIðmHX
�mHY

Þ
End of Proof h

It should be noted that Dubois & Prade’s non-specificity in
Eq. (8) also satisfies all the properties including the monotonic-

ity, the symmetry, the additivity (which is the counter-part of
the multiplicativity here), and the sub-additivity (which is the
counter-part of the sub-multiplicativity here).20 Here we pro-

vide detailed explanations for the additivity and sub-additivity.
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Fig. 1 Change of different non-specificity measures and total

uncertainty measures in Example 1.

Fig. 2 Change of different non-specificity measures and total

uncertainty measures in Example 2.
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If m(�) is a joint BBA on HX � HY, and the associated mar-
ginal BBAs mHX

ð�Þ and mHY
ð�Þ are independent, then

NSDPðmÞ ¼ NSDPðmHX
Þ þNSDPðmHY

Þ because of log function

involved in the definition of NS measure in Eq. (8). This is
called the property of additivity. The additivity is in essential

equivalent to the multiplicativity, i.e., they both describe the
relationship between the non-specificity of a joint BBA and
their corresponding independent marginal BBAs.

If the marginal BBAs mHX
ð�Þ and mHY

ð�Þ are unknown

to be independent or not, then NSDPðmÞ 6 NSDPðmHX
Þþ

NSDPðmHY
Þ. This is called the property of sub-additivity.

The sub-additivity is in essential equivalent to the

sub-multiplicativity.
Therefore, both Dubois & Prade’s non-specificity in Eq. (8)

and our new measure in Eq. (14) strictly satisfy all the require-

ments (properties) of a non-specificity measure. Not all the
requirements or properties can be satisfied for Yager’s defini-
tion and Kornor’s definition. Our new definition in Eq. (14)

and Dubois & Prade’s definition in Eq. (8) can both be used
as a strict non-specificity measure. Our new measure can be
a good alternative of the traditional strict NSDP. We want to
emphasize that the theoretic consistency is an very important

issue when one defines some measure under a given theoretic
framework. Our proposed measure keeps the consistency,
thus, it is not the generalization of any measure in other frame-

works. In the next section, some illustrative examples and
simulations are provided to show the rationality of our new
non-specificity measure.

5. Illustrative examples and simulations

5.1. Example 1

Suppose that the FOD H = {h1, h2, h3}. A BBA defined on H
is m(A) = 1, "A= H. At each step, m(H) has a decrease of
D = 0.05 and each singleton mass m({hi}), i= 1, 2, 3 has an
increase of D/3. At the final step, m(H) becomes zero and m
({hi}) = 1/3, i= 1, 2, 3. At each step, Dubois & Prade’s

non-specificity (NSDP), Yager’s non-specificity (NSY),
Kornor’s non-specificity (NSK), our proposed belief interval
based non-specificity (NSBI), total uncertainty measure AU

and AM (they also include the non-specificity part according
to their definitions) are calculated. The changes of these
uncertainty values at different steps are illustrated in Fig. 1.

As shown in Fig. 1, all non-specificity measures decrease
with the increase of the mass assignments for singletons and
the decrease of the mass assignment for H. All the
non-specificity measures compared here reach their minimum

value when m becomes a Bayesian BBA, and they reach their
maximum value when m is a vacuous BBA. They all provide
rational behavior. Our proposed NSBI e [0, 1] has natural

normalization. Such a value range is more preferred as an
uncertainty measure. Both of the minimum values of NSY

and NSDP are 0. Therefore, by using normalization factor, they

can have the value range of [0, 1]. However, the minimum
value of NSK is 1 but not 0, which is not preferred.

For the total uncertainty measure AU and AM, they never

change in the whole procedure (at their maximum value).
Although AU and AM declare that they can also depict the
non-specificity part in the total uncertainty, they cannot dis-
criminate the changes of BBAs at each step. This is because
Please cite this article in press as: Yang Y et al. A new non-specificity measure in evid
10.1016/j.cja.2016.03.004
they are defined based on some probabilistic transformation
from BBAs. In this example, for the probabilistic transforma-
tion used in AM and AU, the results are always a uniformly
distributed probability mass function (p.m.f.) P(hi) = 1/3,

i= 1, 2, 3, therefore AM and AU will never change here.
According to our opinion, it is not judicious to define total
uncertainty measure in the theory of belief functions by using

for reference the uncertainty measure in probability frame-
work, i.e., Shannon entropy. It should be better not to switch
the framework but to directly design in the framework of belief

functions. This is also our concerns and motivations for the
design of belief interval based non-specificity measure.

5.2. Example 2

Suppose that the FOD H = {h1, h2, h3}. A BBA defined on H
is m(A) = 1, "A= H. At each step, m(H) has a decrease of
D = 0.05 and one singleton mass m({h1}) has an increase of

D. In the final step, m(H) becomes zero and m({h1}) = 1.
The changes of these uncertainty values (including NSDP,
NSY, NSK, NSBI, AU and AM) at different steps are illus-

trated in Fig. 2.
ence theory based on belief intervals, Chin J Aeronaut (2016), http://dx.doi.org/
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Fig. 4 Change of different non-specificity measures and total

uncertainty measures in Example 4.
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At the first step, the BBA is a vacuous one, and at the last
step, the BBA is a categorical one. So, each uncertainty mea-
sure changes from their maximum value to the minimum

value. In this example, AM and AU can also bring intuitive
results because at each step the probabilistic transformation
results are not always uniformly distributed p.m.f.

Although in this simple case, all compared measures per-
form well, it should be noted that some traditional measures
will bring counter-intuitive behaviors as shown in the follow-

ing examples.

5.3. Example 3

Suppose that the FOD is H = {h1, h2, h3, h4}. A BBA defined
on H is m(A) = 1, "A= {h1, h2}. At each step, m(A) has a
decrease of D = 0.05, and the other focal elements with
cardinality of 2 (including {h1, h3}, {h1, h4}, {h2, h3}, {h2, h4},
{h3, h4}) increase D/5 = 0.01. At the final step, m(B) = 1/6,
"|B| = 2. The changes of these uncertainty values (including
NSDP, NSY, NSK, NSBI, AU and AM) at different steps are

illustrated in Fig. 3.
Since in the whole procedure, all the focal elements’ cardi-

nality is 2, all the non-specificity measures do not change. The

total uncertainty AM and AU increase at each step and reach
their maximum value finally. This is because that the proba-
bilistic transformations of the BBAs gradually approach a uni-
formly distributed p.m.f. with the change of the BBA at each

step.

5.4. Example 4

Suppose that the FODH = {h1, h2}. A BBA defined onH is m
({h1}) = a, m({h2}) = b, m(H) = 1 � a � b, where a, b e [0,
0.5]. We calculate all the uncertainty values (including NSDP,

NSY, NSK, NSBI, AU and AM). The change of different
uncertainty measures with the change of a and b is illustrated
in Fig. 4.

As shown in Fig. 4, the values of NSDP and NSBI are the
same, because log2|A| = |A|/2, "|A| = 2. All non-specificity
measures reach their maximum values when a = b = 0, i.e.,
m(H) = 1, and reach their minimum values when
Fig. 3 Change of different non-specificity measures and total

uncertainty measures in Example 3.

Please cite this article in press as: Yang Y et al. A new non-specificity measure in evid
10.1016/j.cja.2016.03.004
a= b = 0.5, i.e., m(H) = 0. Since AU tries to find a p.m.f.

with maximum Shannon entropy, and the uniformly dis-
tributed P(h1) = P(h2) = 0.5 always satisfies the constraints
above (because a, b e [0, 0.5]), no matter how a and b change,

therefore, P(h1) = P(h2) = 0.5 is always picked up when cal-
culating AU and thus, AU always equals log2 2 = 1. AM
reaches its maximum value when a = b, because for a = b,

the corresponding pignistic probability of the BBA is uni-
formly distributed.

5.5. Example 5

This example is used for reference from.10 Given the size of the
FOD |H| = 5. Randomly generate 10 BBAs with k
(1 6 k 6 31) focal elements according to algorithm39 in

Table 1. Here, we set the number of focal elements to a fixed
value 15.

These generated 10 BBAs (m1, m2, . . ., m10) are then com-

bined one by one using Dempster’s rule of combination,

respectively. At each combination instant t: mDS
tþ1 ¼

mtþ1�DSm
DS
t ; where t= 1, 2, . . ., 9, and we start with

mDS
t ¼ m1. The values for NSDP, NSY, NSK, NSBI, AU and

AM of the combination result at t are calculated for

mDS
t ; t ¼ 1; 2; . . . ; 10. The whole procedure is repeated 100
Table 1 Algorithm: Random generation of BBA.

Algorithm: Random generation of BBA

Input: H: Frame of discernment;

Nmax: Maximum number of focal elements

Output: m: a BBA

Generate the power set of H: PðHÞ
Generate a random permutation of PðHÞ ! RðHÞ;
Generate a integer between 1 and Nmax ! k;

FOR each First k elements of RðHÞ do
Generate a value within ½0; 1� ! mvðiÞ; i ¼ 1; 2; . . . ; k;

END

Normalize the vector mv ¼ ½mvð1Þ;mvð2Þ; . . . ;mvðkÞ� ! mv0

mðAjÞ ¼ mv0ðjÞ; j ¼ 1; 2; . . . ; k

ence theory based on belief intervals, Chin J Aeronaut (2016), http://dx.doi.org/
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Fig. 5 Change of different non-specificity measures and total

uncertainty measures in Example 5.

Table 2 Gaussian distribution parameters of the samples.

Features Class 1 Class 2 Class 3

Feature 1
Mean 0 4.0 5.5

Std 1 1.2 1.2

Feature 2
Mean 0 5.0 8.0

Std 1 1.2 1.2

Feature 3
Mean 5 5.0 5.0

Std 1 1.1 1.1
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times and the average values of different uncertainty measures
at different instants are shown in Fig. 5.

As shown in Fig. 5, all the uncertainty measures compared
here decrease with the increase of the combination steps. This
makes sense, because it is intuitive that the uncertainty

decreases in the information fusion procedure like the evidence
combination. The non-specificity measures drop faster and
more significantly than the total uncertainty measures. This
is because that in the evidence combination based on Demp-

ster’s rule, the focal elements are split into focal elements with
smaller cardinality.

As we can see in the above examples, our new proposed

belief interval-based non-specificity measure is rational and
effective in representing the non-specificity in BBAs.

6. Application of belief interval-based non-specificity measure

Uncertainty measures including the non-specificity measure
have be used in many applications such as the weighted evi-

dence combination.40,41 Here we provide an example of using
our new non-specificity in feature evaluation for pattern recog-
nition to further show the rationality of the proposed measure.

We artificially generate three classes of samples. Each class
has 100 samples. Each sample has 3 dimensions. In each class,
each dimension of the samples is Gaussian distributed with dif-
ferent mean and standard deviation (Std) values as illustrated

in Fig. 6 and Table 2.
Fig. 6 Probability density function of different fea

Please cite this article in press as: Yang Y et al. A new non-specificity measure in evid
10.1016/j.cja.2016.03.004
As we can see in Fig. 6 and Table 2, the class discrimination
capability of Feature 2 is the best, because the three Gaussian
probability density functions (PDFs) are quite well separated;

that of Feature 3 is the worst, and that of the Feature 1 is in
the middle. This can also be verified by using the discrimina-
tion criterion as follows.

J ¼ trðSwÞ
trðSbÞ ð24Þ

where tr(�) denotes the trace of a matrix. Suppose that there are

C classes and each class Ci has Ni samples. The degree of inner-
class cohesion Sw and the degree of inter-class separability Sb

are as follows.42

Sw ¼
XC
i¼1

PðCiÞE X� 1
Ni

X
X2Ci

X

 !
X� 1

Ni

X
X2Ci

X

 !T" #

Sb ¼
XC
i¼1

PðCiÞ 1
Ni

X
X2Ci

X�M

 !
1
Ni

X
X2Ci

X�M

 !T

8>>>>><
>>>>>:

ð25Þ

where X is feature(s) of a sample and

M ¼ 1

C

XC
i¼1

1

Ni

X
X2Ci

X

 !
ð26Þ

is the mean of all the classes’ centroids. If J of some feature (or
set of features) in Eq. (23) is smaller, then such a feature (or set
of features) is more crisp and discriminable.

For our artificially generated samples J(1) = 0.2557, J(2)
= 0.1013, J(3) = 326.8135, which means that Feature 2 is
the best, Feature 3 is the worst, and Feature 1 is in the middle.

First, we use the following way43 to generate BBAs for each
sample xq on different feature i e {1, 2, 3}.
tures of the samples belonging to three classes.
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Fig. 7 Illustration of BBA generation.
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mi
xq
ðAjÞ ¼

jAjj�a=ðb�1Þ
d
�2=ðb�1Þ
qjP

Ak – £jAkj�a=ðb�1Þ
d
�2=ðb�1Þ
qk þ d�2=ðb�1Þ ð27Þ

where dqj denotes the distance between the query sample xq and
the class Aj. Parameters a = 1, b = 2 as suggested in Ref.43 It
should be noted that in the original form in Ref.43, there exists

the mass assignment for the emptyset£ representing the possi-
bility of xq to be an outlier. In this paper, we only concern the
closed-world assumption, i.e., there is no mass assignment for

£. Here we give an illustrative example in Fig. 7.
In Fig. 7, three different colors represent three different

classes. c1 denotes the centroid of samples in Class 1; c1,2
denotes the centroid of samples in Class 1 and Class 2; c1,2,3
denotes the centroid of samples in Class 1, 2, and 3. Calculate
the distance d between xq and those centroids of single classes
and compound classes. Then according to Eq. (26), the BBA

can be generated.
Second, we calculate NSBI for all the BBAs generated. Then

calculate the average values of NSBI for different feature i as

mean NSBIðiÞ ¼
X

xq2fC1 ;C2 ;C3g
NSBIðmi

xq
Þ ð28Þ

The averaging non-specificity of a feature is larger, then it is

more discriminable.
For our artificially generated samples illustrated in Fig. 6

and Table 2,

mean NSBIð1Þ ¼ 0:3447;mean NSBIð2Þ
¼ 0:3088;mean NSBIð3Þ ¼ 0:4285:

This is consistent with the intuition and the feature evalua-

tion based on the discrimination criterion in Eq. (23).

7. Conclusions

A novel strict non-specificity measure in the theory of belief
functions is proposed with several desired properties. It should
be noted that the new measure is defined directly in the frame-
work of belief functions. There is no need to switch (and thus

lose information) from belief functions to the classical proba-
bilistic framework. Numerical examples, simulations, and the
application of the new measure are also provided, which show

that the new measure can well measure the non-specificity in a
BBA and can be effectively used in applications such as feature
evaluation.
Please cite this article in press as: Yang Y et al. A new non-specificity measure in evid
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In future work, we attempt to apply our new measure in
other applications such as the weighted evidence combination,
etc. We will also research on the other part of uncertainty, i.e.,

the discord, and the total uncertainty directly in the framework
of belief functions (not transforming to the probability frame-
work). There are already some related tentative related works

on this.44–46
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