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Image thresholding is an important field in image processing. It has been employed to seg-
ment the images and extract objects. A variety of algorithms have been proposed in this
field. However, these methods perform well on the images without noise, and their results
on the noisy images are not good. Neutrosophic set (NS) is a new general formal framework
to study the neutralities’ origin, nature, and scope. It has an inherent ability to handle the
indeterminant information. Noise is one kind of indeterminant information on images.
Therefore, NS has been successfully applied into image processing and computer vision
research fields. This paper proposed a novel algorithm based on neutrosophic similarity
score to perform thresholding on image. We utilize the neutrosophic set in image process-
ing field and define a new concept for image thresholding. At first, an image is represented
in the neutrosophic set domain via three membership subsets T, I and F. Then, a neutro-
sophic similarity score (NSS) is defined and employed to measure the degree to the ideal
object. Finally, an optimized value is selected on the NSS to complete the image threshold-
ing task. Experiments have been conducted on a variety of artificial and real images.
Several measurements are used to evaluate the proposed method’s performance. The
experimental results demonstrate that the proposed method selects the threshold values
effectively and properly. It can process both images without noise and noisy images having
different levels of noises well. It will be helpful to applications in image processing and
computer vision.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Image thresholding, one of the simple image segmenta-
tion procedures, is a crucial step for several image-process-
ing applications such as object detection, shape recognition,
and optical character recognition [1]. In the image thres-
holding process, a threshold value is selected, and the pixels
on the images are classified into background or objects
according to their values. Image thresholding can convert
the gray level images into binary ones [2]. Thresholding is
quite efficient when the object pixels and background pixels
have distinct gray level distributions. Furthermore, it is easy
to be implemented and usually be run fast [3,4].

A variety of algorithms have been proposed. Generally,
image thresholding methods are classified into two groups
based on the criteria to select the threshold value: global
and local methods [5]. Global methods select the threshold
values according to the characteristics of the entire images,
and local ones adopt threshold values using the local infor-
mation on the images. Threshold value selection method
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(a) Artificial images with 
Gaussian noise.

(b) Result by the NS method. (c) Result by the NSS method.

Fig. 1. Performance comparison on a high contrast artificial noisy image.

(a) Low contrast artificial 
image with Gaussian noise.

(b) Result by the NS method. (c) Result by the NSS method.

Fig. 2. Performance comparison on a high contrast artificial noisy image.
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based on image histogram is a kind of the global methods [6].
For a high contrast image, the histogram has two distin-
guished peaks, and a wide valley between the two peaks.
The threshold value is selected the value in the valley.
However, the histogram based methods fail to find a proper
value to segment the image on a low contrast image because
the histogram does not have distinguished peaks and valleys.
A variety of methods have been presented to select the
thresholds based on histogram and fuzzy logic [7–14].

A fuzzy based image thresholding scheme was pro-
posed by Pal and Rosenfeld [7]. The authors used the fuzzy
compactness by using the S-function for membership eval-
uation. Huang and Wang proposed an efficient fuzzy thres-
holding method based on Yager’s measure which is a
measure of fuzziness depending on the relationship
between the fuzzy set and its complement [8,9]. Chaira
and Ray [10] used the Gamma membership function to
compute the membership values of the pixels, and pro-
posed the fuzzy divergence for image thresholding. Ramar
et al. proposed the neural networks for selecting the opti-
mum threshold value using fuzzy measure [11]. Cheng and
Chen used fuzzy homogeneity and fuzzy co-occurrence



Fig. 3. The relation between SNR and ME. *: NSS method, O: NS method.

Fig. 4. The relation between SNR and FOM. *: NSS method, O: NS method.
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matrix for image thresholding [12]. The method [12]
employed the homogeneity vectors and the fuzzy member-
ship function, and extracted the feature of an image to
determine fuzzy regions. The fuzzy entropy values were
utilized to determine the thresholds for segmenting the
input images. Tizhoosh proposed a thresholding technique
based on ultra-fuzzy sets [13]. The ultra-fuzzy set was used
to remove the vagueness in the image. Cheng et al. pro-
posed a two dimensional fuzzy entropy method for obtain-
ing the best threshold value [14]. The proposed method
involved fuzzy partitioning on a two-dimensional histo-
gram where fuzzy entropy was defined. Finally a genetic
algorithm was employed to obtain the optimal threshold
value.

In [15], Xiao et al. presented a thresholding method
using an artificial bee colony (ABC) algorithm and entropy
function. The ABC searched the maximum value of the
entropy, and the optimal thresholds were determined
based on the maximum. Xiong et al. proposed a threshold
selection mechanism for the radar images thresholding
which combines the characteristics of two different mea-
sures using the Markov random field model [16]. In [17],
He et al. presented a threshold method using a two-dimen-
sional histogram and multi-resolution analysis. The
method determined the optimal threshold value using
the spatial correlation of gray level and the flexibility,
and searched the threshold value via multi-resolution
way. Jun et al. proposed a two-dimensional Tsallis sym-
metric cross entropy for image thresholding [18]. The
two-dimensional Tsallis symmetric cross entropy was
defined, and a recursive algorithm was used to search the
optimal threshold vector. A fuzzy entropy measure on a
two-dimensional histogram method was proposed in
[19]. The image was separated into several different grids
with different densities. Then the intensity in the image
and the average intensity of the local neighborhood were
used to build a two-dimensional histogram. A multi-thresh-
old method was presented based on the maximum fuzzy
entropy principle and the two-dimensional histogram. The
parameters of the entropy function were tuned via a
genetic algorithm. In [20], Bustince et al. defined an igno-
rance function and used it to obtain a threshold value.
Measurements were constructed using t-norms and auto
morphism. The degree of ignorance was employed to
describe the background and objects. Based on the igno-
rance degree, the threshold is obtained from the interval-
valued fuzzy set having the lowest associated ignorance.

However, the above methods suffer from finding the
optimal threshold value when the input images have noise.
Especially, under the low SNR levels the above-mentioned
methods’ achievements drop considerably. To overcome
the limitations of the above methods, we proposed a neu-
trosophic set based image thresholding scheme for effi-
cient bi-level segmentation. More specifically, the
proposed method uses the neutrosophic similarity mea-
sures for determining the optimal threshold value.

Neutrosophy is a new kind of generalizations of dialec-
tics, and it studies the neutralities’ origin, nature, and
scope [21]. It represents every entity hAi, the opposite
hAnti-Ai, and the neutralities hNeut-Ai that is neither hAi
nor hAnti-Ai.
The traditional fuzzy set utilizes a membership to rep-
resent the degree belonging to a set. When the fuzzy mem-
bership value is uncertain and vague, it is challenging to be
defined using a crisp value [22]. In some situations, we
have to consider both the membership and the indetermi-
nacy of the membership.

In the neutrosophic set (NS), each entity is depicted via
three memberships: truth, indeterminacy and falsity mem-
berships. This characteristic is essential to such applica-
tions as information fusion where data might have a
degree of uncertainty.

The image thresholding methods based on the tradi-
tional fuzzy set can be affected by noise severely. This paper
newly develops a neutrosphic set approach for image thres-
holding. First, an image is mapped into the NS domain.
Then, a novel similarity measurement, neutrosophic simi-
larity score, is defined to measure the pixels’ belonging
degree to the object on the image. Finally, the image is per-
formed thresholding using the neutrosophic similarity
score. The experiments on synthetic images having differ-
ent levels of noise and noisy real world images are con-
ducted to evaluate the proposed approach’s performance.

The paper is organized as follows. Section 2 describes
the proposed method, Section 3 discusses the experimental
results and comparisons, and the conclusions are drawn in
Section 4.



   

   

   

(a) “Lena” image with 
different Gaussian noise 
level: variance: 0, 10, 20 

(b) Thresholding results of 
the NS method. 

(c) Thresholding results of 
the NSS method. 

Fig. 5. Comparison results on ‘‘Lena’’ image.
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2. Proposed method

2.1. Neutrosophic similarity score

A neutrosophic set can be defined under different crite-
ria as: let A ¼ fA1;A2; . . . . . . ;Amg be a set of alternatives in
neutrosophic set, and C ¼ fC1;C2; . . . . . . Cng be a set of cri-
teria. The alternative Ai at Cj criterion is denoted as

TCj
ðAiÞ; ICj

ðAiÞ; FCj
ðAiÞ

n o
=Ai, where TCj

ðAiÞ, ICj
ðAiÞ and FCj

ðAiÞ
are the membership values to the true, indeterminacy
and false set at the Cj criterion.

A similarity measurement is proposed to evaluate the
similarity degree between two elements in neutrosophic
set under multicriteria [23]:

SCj
ðAm;AnÞ

¼
TCj
ðAmÞTCj

ðAnÞþ ICj
ðAmÞICj

ðAnÞþFCj
ðAmÞFCj

ðAnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

Cj
ðAmÞþ I2

Cj
ðAmÞþF2

Cj
ðAmÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

Cj
ðAnÞþ I2

Cj
ðAnÞþF2

Cj
ðAnÞ

q ð1Þ

In multi-criteria environment, the concept of ideal element
can be used to identify the best alternative. The ideal
alternative A* is denoted as: fT�Cj
ðAiÞ; I�Cj

ðAiÞ; F�Cj
ðAiÞg=A�i .

The similarity to the ideal alternative is computed as:
SCj
ðAi;A

�Þ¼
TCj
ðAiÞTCj

ðA�Þþ ICj
ðAiÞICj

ðA�ÞþFCj
ðAiÞFCj

ðA�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

Cj
ðAiÞþ I2

Cj
ðAiÞþF2

Cj
ðAiÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

Cj
ðA�Þþ I2

Cj
ðA�ÞþF2

Cj
ðA�Þ

q
ð2Þ

An image is defined in the NS as: let U be a universe, BP
be a bright pixel set in U, and an image Im described using
NS is called neutrosophic image INS. The neutrosophic
image INS is depicted using subsets T, I and F. A pixel in
INS is denoted as PNS(T, I, F), and it belongs to the bright
pixel set BP in the means as: it is T true in the bright pixel
set, I indeterminate, and F false. The range of the values in
T, I is in [0 1].

According to the definition of neutrosophic image, a
pixel Pðx; yÞ is interpreted in the neutrosophic set domain:
PNSðx; yÞ ¼ fTðx; yÞ; Iðx; yÞ; Fðx; yÞg. Tðx; yÞ, Iðx; yÞ and Fðx; yÞ
represent memberships belonging to bright pixel set, inde-
terminate set and non-bright pixel set, respectively. At the
intensity criterion, they are defined as:



(a) “Woman” image with 
different Gaussian noise level: 

variance: 0, 10, 20

(b) Thresholding results of the NS 
method.

(c) Thresholding results of the NSS 
method.

Fig. 6. Comparison results on ‘‘Woman’’ image.

Y. Guo et al. / Measurement 58 (2014) 175–186 179
TCg ðx; yÞ ¼
gðx; yÞ � gmin

gmax � gmin
ð3Þ

ICg ðx; yÞ ¼ 1� Gdði; jÞ � Gdmin

Gdmax � Gdmin
ð4Þ

FCg ðx; yÞ ¼ 1� TCg ðx; yÞ ð5Þ

where g(x,y) and Gd(x,y) are the intensity value and gradi-
ent value at the position of (x,y) on the image.

Then, a similarity score is calculated to identify the
degree to the ideal object under intensity condition.

SCg ðPðx;yÞ;A
�Þ

¼
TCg ðx;yÞTCg ðA

�Þþ ICg ðx;yÞICg ðA
�ÞþFCg ðx;yÞFCg ðA

�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

Cg
ðx;yÞþ I2

Cg
ðx;yÞþF2

Cg
ðx;yÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

Cg
ðA�Þþ I2

Cg
ðA�ÞþF2

Cg
ðA�Þ

q
ð6Þ
The similarity value is sensitive to noise on image. If it is
used for image thresholding, the noisy regions on images
will be labeled into a wrong group. In order to make the
thresholding results robust to noise, we propose two new
criteria, local mean intensity criterion Cm and local homo-
geneity criterion Ch, and then calculate the neutrosophic
similarity score under them.

The neutrosophic set under the local mean intensity
criterion Cm is defined as:

TCm ðx; yÞ ¼
gmðx; yÞ � gm min

gm max � gm min
ð7Þ

gmðx; yÞ ¼
1

w�w

Xxþw=2

m¼x�w=2

Xyþw=2

n¼y�w=2

gðm;nÞ ð8Þ



(a) “Panda” image with 
different Gaussian noise level: 

variance: 0, 10, 20

(b) Thresholding results of 
the NS method.

(c) Thresholding results of 
the NSS method.

Fig. 7. Comparison results on ‘‘Panda’’ image.
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ICm ðx; yÞ ¼ 1� Gdmði; jÞ � Gdm min

Gdm max � Gdm min
ð9Þ

FCm ðx; yÞ ¼ 1� TCm ðx; yÞ ð10Þ

where gm(x,y) and Gd(x,y) are the intensity value and gradi-
ent magnitude value at the position of (x,y) on the image
after mean filter processing. gm min and gm max are minimum
and maximum intensity values, respectively. Gdm min and Gdm

max are minimum and maximum of the gradient value in the
image. Mean filtering is known as the simple and intuitive
procedure that has been used in image processing for smooth-
ing the images and noise reduction. The procedure of mean
filtering is replacing each pixel0s intensity value in an image
with the mean value of its neighbors and itself. The mean filter
eliminates noises by replacing it using its surroundings. In
addition, homogeneity is largely related to the local informa-
tion extracted from an image and reflects how uniform a
region is. It plays and important role in image segmentation.
SCa ðPðx; yÞ;A
�Þ ¼ TCa ðx; yÞTCaðA

�Þ þ ICaðx; yÞICa ðA
�Þ þ FCa ðx; yÞFCaðA

�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

Ca
ðx; yÞ þ I2

Ca
ðx; yÞ þ F2

Ca
ðx; yÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

Ca
ðA�Þ þ I2

Ca
ðA�Þ þ F2

Ca
ðA�Þ

q ð15Þ

SCh
ðPðx; yÞ;A�Þ ¼ TCh

ðx; yÞTCh
ðA�Þ þ ICh

ðx; yÞICh
ðA�Þ þ FCh

ðx; yÞFCh
ðA�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T2
Ch
ðx; yÞ þ I2

Ch
ðx; yÞ þ F2

Ch
ðx; yÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

Ch
ðA�Þ þ I2

Ch
ðA�Þ þ F2

Ch
ðA�Þ

q ð16Þ
The neutrosophic set under the local homogeneity crite-
rion Ch is also defined as:
TCh
ðx; yÞ ¼ Hðx; yÞ � Hmin

Hmax � Hmin
ð11Þ

ICh
ðx; yÞ ¼ 1� Gdhði; jÞ � Gdh min

Gdh max � Gdh min
ð12Þ

FCh
ðx; yÞ ¼ 1� TCh

ðx; yÞ ð13Þ

Hðx; yÞ ¼ TEMðgðx; yÞÞ ð14Þ

where H(x,y) is the homogeneity value at (x,y), which is
depicted as the filtering result with the texture energy
measures (TEM) filters [31]. Gdh(x,y) is the gradient value
on H(x,y). Hmin and Hmax are minimum and maximum
homogeneity values respectively. In addition, Gdh min

and Gdh max are minimum and maximum of the gradient
value.

Using the same way, another two NSS values to the
ideal alternative are calculated as:
The value of A* under three criteria are same as:
fT�Cj
ðAiÞ; I�Cj

ðAiÞ; F�Cj
ðAiÞg=A�i ¼ f1;0;0g=A� .



(a) “Cameraman” image with 
different Gaussian noise level: 

variance: 0, 10, 20

(b) Thresholding results of the 
NS method.

(c) Thresholding results of the 
NSS method.

Fig. 8. Comparison results on ‘‘Cameraman’’ image.
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In the proposed method, we use the average value of
SCg , SCm and SCh

as the final neutrosophic similarity score
for the future application, such as image thresholding:

NSðx; yÞ ¼
SCg ðx; yÞ þ SCa ðx; yÞ þ SCh

ðx; yÞ
3

ð17Þ
2.2. Image thresholding based on NSS

After the neutrosophic similarity score is determined,
Otsu’s method is employed to obtain the optimized value
for thresholding [24]. It selects an optimum threshold
value by minimizing the within-class variance of the object
and background.

The variance is used to define a function as:

rðtÞ ¼ c1ðtÞ � r1ðtÞ þ c2ðtÞ � r2ðtÞ ð18Þ
where r(t) is the sum of variances of the background and
object pixels separated by the threshold t. r1(t) and c1(t)
are the variance and probability of pixels whose intensities
are less than the threshold t, while r2(t) and c2(t) are the
variance and probability of pixels whose values are greater
than t.

The optimized threshold t* with the minimization of
r(t) can separate the pixels into the foreground and back-
ground groups.

t� ¼ arg min
minðtÞ6t6maxðtÞ

ðrðtÞÞ ð19Þ

The data whose value is greater than t* will be grouped
into object set Obj, and others are background set Bkg.

Obj ¼ ftjt > t�g ð20Þ
Bkg ¼ ftjt 6 t�g ð21Þ



(a) “Discover” image with 
different Gaussian noise level: 

variance: 0, 10, 20

(b) Thresholding results of the 
NS method.

(c) Thresholding results of the 
NSS method.

Fig. 9. Comparison results on ‘‘Discover’’ image.
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In the proposed thresholding method, we calculate the
probabilities and variances of the two classes using the
NSS value on the image and select the tNSS

* value with min-
imized sum of variances of background and objects as the
optimized threshold value. The image will be segment into
background and object sets using the optimized threshold
value on NSS.

rNSSðtÞ ¼ cNSS1ðtÞ � rNSS1ðtÞ þ cNSS2ðtÞ � rNSS2ðtÞ ð22Þ
t�NSS ¼ arg min

minðtNSSÞ6t6maxðtNSSÞ
ðrðtNSSÞÞ ð23Þ

The steps in the algorithm can be summarized as follows:
Step 1: Convert the image into NS domain.
Step 2: Compute the NSS values under three conditions.
Step 3: Calculate the probabilities and variances of the

two classes using the NSS values.
Step 4: Select the value with minimized sum of the two

weighted variances on NSS values as the thresh-
old value.
Step 5: Transfer the image into binary image using the
threshold value on NSS.

3. Experimental results and discussions

We have tested the proposed algorithm using different
images, and compared its performance with those of newly
developed algorithms. In the experiments, we compare the
NSS method with a newly published thresholding method
based on neutrosophic set (NS) [25] which performed better
thresholding results than those of Otsu method [24], Parzen
window technique [26], the minimal error thresholding
(MET)algorithm[27]andaentropybasedapproach[28].

3.1. Performance on artificial images

We use artificial images to compare the NSS method
and NS method visually, and then evaluate their results



(a) “Blood” image with 
different Gaussian noise level: 

variance: 0, 10, 20

(b) Thresholding results of the 
NS method.

(c) Thresholding results of the 
NSS method.

Fig. 10. Comparison results on ‘‘Blood’’ image.
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quantitatively. In [25], several artificial images having two
intensities (one is 0 and another is 255) and impaired by
different levels of noise were employed to evaluation the
performance of the NS method. In Fig. 1, the first column
has two same artificial images as in [25] having Gaussian
noise, whose mean values are 0 and standard variance val-
ues 25.5 and 178.5, respectively. The second and third col-
umns display the thresholded results by the NS method
and NSS method. From the results in Fig. 1, the NSS method
achieved the same performance as the NS algorithm.

To identify the performance difference of the NS and
NSS methods, we employ a new artificial image with lower
contrast and different levels of Gaussian noise. Another
synthetic image having two gray levels (64 and 128) is
impaired by different levels of Gaussian noise to test the
performance of two thresholding methods. Fig. 2(a) are
synthetic images having Gaussian noise, whose mean
values are 0 and standard variance values are 15 and 30,
respectively. Figs. 2(b) and (c) are the results by the NS
and NSS methods, respectively.

The results on the second synthetic image with low
contrast show the NSS method performs better than NS
method on the synthetic images with two different noise
levels. A lot of pixels in Fig. 2(b) are identified in wrong
classes, while they are classified correctly by NSS method
in Fig. 2(c).

To evaluate the thresholding results for artificial images
quantitatively, we utilize a metric: misclassification error
measure (ME) [26,29], to measure the thresholding perfor-
mances. The ME depicts the percentage of background
points wrongly grouped to foreground set, and object
points wrongly grouped to background set [26,29]:

ME ¼ 1� jB0 \ BT j þ jF0 \ FT j
jB0j þ jF0j

ð24Þ



(a) “Rice” image with different 
Gaussian noise level: variance: 

0, 10, 20

(b) Thresholding results of the 
NS method.

(c) Thresholding results of the 
NSS method.

Fig. 11. Comparison results on ‘‘Rice’’ image.
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where F0 and B0 are the object and background sets on the
ground truth image. FT and BT are the object and back-
ground sets on the result image. |�| denotes the elements’
number in the set. The ME defines a metric of the
misgrouped points between the ground truth image and
the test image.

Another metric figure of merit FOM proposed by Pratt
[30] is also utilized to evaluate the difference between
the methods’ results with the ideal thresholding result
quantitatively:

FOM ¼ 1
maxðNI;NAÞ

XNA

k¼1

1

1þ bd2ðkÞ
ð25Þ

where NI and NA are the numbers of the object points and
the ideal object pixels, respectively. d(k) is the distance
from the kth actual point to the nearest thresholding point.
b is a constant, and set as 1/9 in Pratt’s paper [30]. The
greater the FOM, the better the thresholding results are.

The quality of noisy images can be measured using the
SNR (signal to noise ratio):

SNR ¼ 10 log
PH�1

r¼0

PW�1
c¼0 im2ðr; cÞPH�1

r¼0

PW�1
c¼0 ðimðr; cÞ � imnðr; cÞÞ2

" #
ð26Þ

where imn(r, c) and im(r, c) are the intensities of pixel (r, c)
in the noisy and original images, respectively.

The values of ME are plotted at different SNR levels in
Fig. 3. It demonstrates the NSS method archives lower
MEs at all SNRs. All ME values of the NSS method are smal-
ler than 0.015, and all values of NS method are higher than
those of the NSS method. The NSS algorithm achieves the



(a) “Coins” image with different 
Gaussian noise level: variance: 0, 

10, 20

(b) Thresholding results of the NS 
method.

(c) Thresholding results of the 
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Fig. 12. Comparison results on ‘‘Coins’’ image.
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optimum performance with ME = 0.0065 which is nearly
equal to zero when SNR is 20.1144 dB, while NS obtains
the optimum value with ME = 0.0068. Meanwhile, the val-
ues of FOM of NSS are bigger than those of NS at most SNR
levels. The average value of FOM of NSS and NS are 0.953
and 0.8517, respectively (see Fig. 4).

3.2. Performance on real world images

A great number of real world images are employed to
measure the NSS method’s performance. Eight representa-
tive images are selected to demonstrate the effectiveness
and robustness of the NSS method against the various
noise levels. These images are ‘‘Lena’’, ‘‘Woman’’, ‘‘Panda’’,
‘‘Cameraman’’, ‘‘Discover’’, ‘‘Blood’’, ‘‘Rice’’ and ‘‘Coins’’,
respectively. In Figs. 5–12, the first row lists the original
images without noise and the results of NS and NSS
method on them. The second and third rows demonstrate
the results on the noisy images with different Gaussian
noise variances. The experimental results demonstrate that
the results by NSS method exhibits visually better quality
than those of NS method. The results by NS method are
affected severely by the noise on the real images. The
results of the NSS method eliminate noise effect and most
pixels are segmented into the right groups.

The thresholding results of the ‘‘Lena’’ image are given
in the second and the third columns of the Fig. 5. It is obvi-
ous that the results obtained under the first and second
noise variance are better than the NS method. The shoul-
der, face and the hat regions are recovered correctly. On
the other hand, the NS based method yields several wrong
segmentations especially in the shoulder and the face
regions. It is worth mentioning that the both NSS and NS
have several wrong segmentations for the third noise level.
Especially both methods have misclassified pixels the
background region and the shoulder and face of the ‘‘Lena’’.
However, by visual inspection, the proposed method has
better segmentation than the NS method when we con-
sider the overall results. Similar results can be seen in
the ‘‘Woman’’ image, which is depicted in Fig. 6. The face,
hair, background regions are thresholded correctly by the
NSS method for the first and second noise levels. In
addition, the proposed NSS method can obtain reasonable
segmentations even for the third noise level. For the sec-
ond and third noise levels the NS based method yields
many misclassifications in the face and background of
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the ‘‘Woman’’ image. In Fig. 7, there are two pandas in a
grass background. In the first noise variance level, both
NS and NSS methods obtain similar segmentation results.
The background and the pandas are correctly segmented.
For the second and third noise variance levels, the image
becomes more complicated and the NS method yields
many misclassified pixels in the back ground. There are
also several numbers of misclassified pixels on the panda
regions. The superiority of the proposed NSS method can
be seen in the rest of the experiments. In the ‘‘Camera-
man’’, ‘‘Discover’’, ‘‘Blood’’, ‘‘Rice’’ and ‘‘Coins’’ images, it
is obvious that our proposal obtains almost all the ground
truth segmentations. Especially for the ‘‘Discover’’, ‘‘Rice’’,
‘‘Blood’’ and ‘‘Coins’’ images the obtained results for all
noise variance levels are better than the NS algorithm. Only
there are several misclassified pixel in the grass region of
the ‘‘Cameraman’’ image.

From the experiments on the artificial and real world
images, we can make a conclusion that the NSS method
is feasible to select better threshold values for both the
clear images without noise and the noisy images with dif-
ferent levels.
4. Conclusions

This paper presents a new image thresholding algo-
rithm using neutrosophic similarity score. The image is
depicted in neutrosophic set via three subsets. Then, a neu-
trosophic similarity score is defined to measure the degree
to the object pixels on the image. Finally, an optimized
value is selected on the NSS to perform image threshold-
ing. The experimental results show that the NSS method
can obtain the thresholds properly and effectively. It is able
to process both images without noise and noisy images
with different levels of noises. This advantage will bring
the proposed method into more applications in the
research areas such as image processing and computer
vision.
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