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Adjustable soft discernibility matrix based
on picture fuzzy soft sets and its applications

in decision making

Yong Yang*, Chencheng Liang, Shiwei Ji and Tingting Liu

College of Computer Science and Engineering, Northwest Normal University

Abstract. In this work, we first define picture fuzzy soft sets and study some of their relevant properties, especially, a sufficient
and necessary condition is presented to ensure that the dual laws are true in picture fuzzy soft theory. We then introduce an
algorithm based on adjustable soft discernibility matrix by using level soft set of a picture fuzzy soft set to solve decision making
problems, which can find an order relation of all the objects. Finally, an illustrative example is employed to show that they can be

successfully applied to problems that contain uncertainties.

Keywords: Soft set, Picture fuzzy set, picture fuzzy soft set, soft discernibility matrix, decision making

1. Introduction

The real world is full of uncertainty, imprecision
and vagueness. Actually most of the concepts we
meet in everyday life are vague than precise. Dealing
with uncertainties is a major problem in many areas
such as economics, engineering, environmental sci-
ence, medical science and social science. So many
authors have become interested in modeling vague-
ness recently. Classical theories like probability theory,
fuzzy set theory, rough set theory [1], vague set theory
[2] and interval mathematics [3] are well known and
play important roles in modeling uncertainty. How-
ever, with the rapidly increasing quantity-and type of
uncertainties, these theories show their inherent diffi-
culties as pointed out by Molodtsov in [4]. In 1999,
Molodtsov initiated soft set theory as a completely new
mathematical tool for dealing with uncertainties that is
free from the difficulties affecting existing methods [4].

*Corresponding author. Yong Yang, College of Computer
Science and Engineering, Northwest Normal University. E-mail:
yangzt@nwnu.edu.cn.

This theory has shown wide application prospects in
many different fields like decision making [5—14], data
analysis [15] and forecasting [16].

Soft set theory has received much attention since its
introduction by Molodtsov. The concept and basic prop-
erties of soft set theory are further studied in [4, 17, 18].
Up to the present, research on combinations of the soft
set theory and other mathematical models is very active
and many important results have been achieved in the
theoretical aspect. Maji et al. presented the concept of
fuzzy soft set [19] which is based on a combination
of the fuzzy set and soft set models. Later, the same
authors amalgamated the intuitionistic fuzzy set and
soft set models and initiated the intuitionistic fuzzy soft
set [20]. Then the concepts of the interval-valued fuzzy
soft set [21], the soft rough set [22, 23], the vague soft
set [24], the generalized fuzzy soft set [25], the trape-
zoidal fuzzy soft set [26], the multi-fuzzy soft set [27],
the neutrosophic soft set [28] and the intuitionistic neu-
trosophic soft set [29] were introduced as some further
extensions of soft sets. These models have been suc-
cessfully applied in decision making problems under
imprecise circumstances.
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In [6] Cagman and Enginoglu introduced soft matrix
in soft sets and researched its operations. Then a method
based on soft matrix was presented to solve the prob-
lems of decision making. With this method, the optimal
choice object(s) can be found. Recently, the notion of
soft discernibility matrix was firstly proposed by Feng
and Zhou [30], and a new technique is shown to solve
decision making problems based on soft discernibil-
ity matrix. It can find not only the optimal object(s),
but also an order relation of all the objects easily by
scanning the soft discernibility matrix at most one time.

In 2013, authors [31, 32] proposed the new con-
cept of picture fuzzy sets, which are directly extensions
of fuzzy sets (Zadeh) and of intuitionistic fuzzy
sets (Atanassov), its membership function is a triple.
Classical fuzzy sets give one degree (the degree of mem-
bership) of an element in a given set, intuitionistic fuzzy
sets give two degrees (a degree of membership and a
degree of non-membership) of an element, however,
picture fuzzy sets give three degrees (a degree of posi-
tive membership, a degree of neutral membership and a
degree of negative membership, respectively) of an ele-
ment. The notion of picture fuzzy sets provides a new
method to represent some problems which are difficult
to explain in other extensions of fuzzy set theory, such
as human opinions involving four answers of type: yes,
abstain, no and refusal.

The purpose of this paper is to combine the picture
fuzzy set and soft set, from which we can obtain a new
soft set model named picture fuzzy soft set. This new
model makes descriptions of the objective world more
realistic, practical and accurate in some cases. Mean-
while, we aim to solve decision making problems by
using adjustable soft discernibility matrix. To facilitate
our discussion, we first review some background on soft
set, soft discernibility matrix, fuzzy soft set, intuition-
istic fuzzy soft set and picture fuzzy set in Section 2. In
Section 3, the concept of picture fuzzy soft set with its
operation rules are presented. In Section 4, the picture
fuzzy soft setis used to analyze a decision making prob-
lem and an adjustable algorithm is proposed. Finally,
some conclusions are pointed out in Section 5.

2. Preliminaries

In this section, we will briefly recall the basic con-
cepts of soft sets, soft discernibility matrices, fuzzy soft
sets, intuitionistic fuzzy soft sets and picture fuzzy sets.
See especially [4, 17-20, 30-32] for further details and
background.

The soft set is defined by Molodtsov [4] in the fol-
lowing way.

Let U be an initial universe set of objects and E the set
of parameters in relation to objects in U. Parameters are
often attributes, characteristics or properties of objects.
Let P(U) denote the power set of U and A C E.

Definition 1. ([4]) A pair (F, A) is called a soft set over
U, where F is a mapping given by F :'A — P(U).

In other words, a soft set over U is a mapping from
parameters to the power set of U, and it is not a kind
of set in ordinary sense, but a parameterized family of
subsets of U. For any parameter ¢ € A, F(¢) may be
considered as the set of e—approximate elements of the
soft set (F, A).

Definition 2. ([30]) Let (F, A) be a soft set over U.
Partition U|IND(F, A) = {C;: i < |U|} is determined
by F. The soft discernibility matrix is defined as
D = (D(Ci, Cj))i,j§|U|, where

D(C;,Cj))={E"UE’:i, j<|Ul}

is called the set of soft discernibility parameters
between C;.and C;. In which

E'={el: F(hj,e)=1 and F(hj, e) =0,
Vh,‘ (S Ci,th € Cj,e[ € A}
and ‘
Ei={e] : F(hj,e)) = 1 and F(h;, ) = 0,Vh; €
Ci,Vhje Cj, e € A}

the symbol ef (or el] ) represents the objects in C;
(or C;) have the value 1 at parameter e, that is,
F(hi,e)) =1, h; € C; (or F(hj,el) = 1,]1]' € Cj).

By introducing the concepts of fuzzy sets and intu-
itionistic fuzzy sets into the theory of soft sets, Maji
et al. [19, 20] proposed the notions of fuzzy soft sets
and intuitionistic fuzzy soft sets as follows.

Definition 3. ([19]) Let F(U) be the set of all fuzzy
subsets of U. Let E be a set of parameters and A C E.
A pair (F, A) is called a fuzzy soft set over U, where F
is a mapping given by F : A — F(U).

Generally speaking, for Ve € A, F(¢) is a fuzzy sub-
set of U and it is called fuzzy value set of parameter .
It is easy to see that every soft set may be considered as
a fuzzy soft set. If Ve € A, F(e) is a crisp subset of U,
then (F, A) is degenerated to be a standard soft set.

Definition 4. ([20]) Let U be auniverse set and E be a set
of parameters. ZF (U) denotes the set of all intuitionistic
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fuzzy sets of U. Let A C E. A pair (F, A) is called
an intuitionistic fuzzy soft set over U, where F is a
mapping given by F : A — ZF(U).

For any parameter ¢ € A, F(e) is an intuitionistic
fuzzy subset of U and it is called intuitionistic fuzzy
value set of parameter €. Obviously, a fuzzy soft set can
be considered as a special intuitionistic fuzzy soft set.

Recently, Cuong and Kreinovich [31, 32] introduced
a new concept of picture fuzzy sets, which can be seen
as directly extensions of fuzzy sets and of intuitionistic
fuzzy sets. They proposed the concept as follows.

Definition 5. ([31]) A picture fuzzy set A on a universe
U is an object of the form

A = {(x, pax), nax), vax)lx € U},

where p4(x) € [0, 1] is called the degree of posi-
tive membership of x in A, n4(x) € [0, 1] is called
the degree of neutral membership of x in A and
vA(x) € [0, 1] is called the degree of negative mem-
bership of x in A, and p4, n4 and vy satisfy the
following condition:

0 < palx)+n4(x) +vax) <1, Vx e U.

Then for x € U, rq(x)=1— (ua(x)+ nalx)+
v_4(x)) could be called the degree of refusal membership
of x in A.

Clearly, if Vx € U, r4(x) = 0, then A will be degen-
erated to be a standard intuitionistic fuzzy set. If
Vx e U na(x) =0 and rg(x) =0, then A will be
degenerated to be a classical fuzzy set. Let PF(U)
denote the set of all the picture fuzzy sets of U.

Basically, the model of picture fuzzy set may be
adequate in situations when we face human opinions
involving more answers of type: yes, abstain, no,
refusal. Voting can be a good example of such a sit-
uation as the human voters may be divided into four
groups of those who: vote for, abstain, vote-against,
refusal of the voting.

In[31, 32], the authors defined the following relations
and operations on picture fuzzy sets and studied some
basic properties.

Definition 6. ([31]) For A, B € PF(U), define

(1) AC B iff pyx) < pup(x), natx) < np(x) and
va(x) > vg(x), Vx € U.
2) A=Biff AC Band B C A.

(3) AUB = {(x, pa(x) vV up(x), na(x) A np(x),
vA(x) Avp(x))|x € U}

@) AN B = {(x, pax) A up(x), n.a(x) A np(x),
va(x) Vvp(x))|x € U}

(5) A = {(x, v4(x), na(x), pA(x)|x € U}

Proposition 1. Let A, B,C € PF(U). Then

() fAC Band BCC,then ACC.

(2) (A) = A

(3) Operations N and U are commutative, associa-
tive and distributive.

(4) Operations N and U satisfy DeMorgan’s laws.

3. Picture fuzzy soft sets

In this section, weintroduce the concept of a picture
fuzzy soft set and define some operations on a picture
fuzzy soft set, namely subset, complement, AND, OR,
union, intersection and so on.

Now we propose the definition of a picture fuzzy soft
set and we give an illustrative example of it.

Definition 7. Let U be an initial universe set and E a
set of parameters. By a picture fuzzy soft set (PFSS)
over U we mean a pair (F, A), where A C E and F is
a mapping given by F : A — PF(U).

Clearly, a PFSS is a mapping from parameters to
PF(U). It is not a set, but it is a parameterized fam-
ily of picture fuzzy subsets of U. For any ¢ € A,
F(e) is a picture fuzzy subset of U. Clearly, F(e)
can be written as a picture fuzzy set such that
F(e) = {(x, LF@e)(X), NFE)(X), VRE)(X)|x € U}, where
WEE)(X), NFEx) and vpe)(x) are the positive
membership, neutral membership and negative mem-
bership functions, respectively. If Vx € U, wpe)(x) +
NFE)(x) + VEE)(x) = 1, then F(e) will be degenerated
to be a traditional intuitionistic fuzzy set and (F, A)
will be degenerated to be an intuitionistic fuzzy soft
set. If Vx € U, F(e)(x) + Vi) (x) = 1, then F(e) will
be degenerated to be a classical fuzzy set and (F, A)
will be degenerated to be a fuzzy soft set.

Example 1. Consider a PFSS (F, A) over U, where
U = {hy, hy, h3, h4} isthe set of four houses under con-
sideration of a decision maker to purchase, and A =
{e1, &2, €3} is the set of parameters, where ¢ stands
for the parameter ‘cheap’, &, stands for the parame-
ter ‘beautiful’ and e3 stands for the parameter ‘in the
good location’. The PFSS (F, A) describes the “attrac-
tiveness of the houses" to this decision maker. Suppose
that
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Table 1
Tabular representation of the PFSS (F, A).
U €1 & 3
hy (0.3,0.2,04) (0.5,0.2,0.1) (0.6, 0.1, 0.2)
ho (0.5,0.1,0.3) (0.8, 0.1, 0.0) (0.1,0.2,0.5)
h3 (0.1,04,0.2) (0.3,04,0.2) (0.5,0.2,0.2)
hy (0.4,0.0,0.5) (0.2,0.6,0.1) (0.2,0.5,0.1)

F(e1) =cheap houses
=1{(0.3,0.2,0.4)/h1,(0.5,0.1,0.3)/ ha,
(0.1,0.4,0.2)/ h3, (0.4,0.0,0.5)/ ha},
F(&7) =beautiful houses
=1{(0.5,0.2,0.1)/ k1, (0.8,0.1, 0.0)/ h»,
(0.3,0.4,0.2)/ h3,(0.2,0.6,0.1)/ ha},
F(e3) =houses in the good location
=1{(0.6,0.1,0.2)/ h1, (0.1,0.2,0.5)/ ha,
(0.5,0.2,0.2)/ h3,(0.2,0.5,0.1)/ ha}.

The PFSS (F, A) is a parameterized family
{F(ei),i=1,2,3} of picture fuzzy sets on U, and
(F, A) = {cheap houses = {(0.3,0.2,0.4) / hy, (0.5,
0.1,0.3)/ h2,(0.1,0.4,0.2)/ h3, (0.4,0.0, 0.5)/ ha},
beautiful houses= {(0.5,0.2,0.1)/ k1, (0.8, 0.1, 0.0)/
hy,(0.3,0.4,0.2)/ h3,(0.2,0.6,0.1)/ hsa}, houses in
the good location= {(0.6, 0.1, 0.2)/ A1, (0.1, 0.2, 0.5)/
hy,(0.5,0.2,0.2)/ h3, (0.2,0.5,0.1)/ ha}}, where each
approximation has two parts: (i) a predicate p, and (ii)
an approximate value set v. Thus, each PFSS (F, A)
can be viewed as a collection of approximation like
(F,A) ={pi=vili=12,---,|Al}.

By analogy with soft sets, one easily sees that each
PFSS can be viewed as an information system and be
represented by a data table for the purpose of storing a
PFSS ina computer. Table 1 is the tabular representation
of the PFSS (F, A). Foranyi=1,2,3,4, j=1,2,3,
hij = (e (hi), nFe;)(hi), VEE;)(hi)), where hjj are
the entries corresponding to the house /; and the param-
eter ¢;.

For convenience of explanation, we can also repre-
sent the PFSS (F, A) which is described in the above in
matrix form as follows: (F, A) =

€| & &3
hy (0.3,0.2,0.4) (0.5,0.2,0.1) (0.6, 0.1,0.2)
s (0.5,0.1,0.3) (0.8, 0.1, 0.0) (0:1, 0.2,0.5)
h3 (0.1,0.4,0.2) (0.3,0.4,0.2) (0.5,0.2,0.2)
ha (0.4,0.0,0.5) (0.2, 0.6, 0.1) (0.2,0.5,0.1)

Definition 8. Let (F, A) and (G, B) be two PFSSs over
U. Then (F, A) is called a picture fuzzy soft subset of
(G, B), denoted by (F, AYC(G, B), if

(I) A C B,and
(2) Ve e A, F(e) C G(g).

Example 2. Let U = {x1, x2, x3, x4, x5} and E =
{e1, &2, €3, €4, €5, €6}. Suppose that (F, A) and (G, B)
are two PFSSs over U given by

A = {e1, 2,63}, and B = {¢e1, &2, €3, &5},

(F,A) =

€1 1) &3
x1 (0.2,0.2,0.5) (0.1, 0.2, 0.6) (0.6, 0.1, 0.3)
x2 (0.5,0.1,0.3) (0.2, 0.1,0.4) (0.1, 0.2, 0.5)
x3 (0.1,0.3,0.2) (0.1,0.4,0.2) (0.5, 0.0, 0.2)
x4 (0.6,0.0,0.3) (0.2,0.0,0.7) (0.2, 0.4, 0.0)
x5 (0.2,0.2,0.6) (0.2,.0.3,0.1) (0.2,0.1,0.5)

(G, B) =

&1 &2
x1 (0.4,0.2,0.3) (0.1,0.4,0.2)
x2 (0.6,0.2,0.2) (0.3,0.1,0.2)
x3(0:3,0.4,0.1) (0.2,0.5,0.2)
x4 (0.7,0.1,0.1) (0.9, 0.0, 0.1)
x5 (0.2,0.3,0.5) (0.4,0.4,0.1)

€3 &5
(0.7,0.1,0.2) (0.1, 0.5, 0.3)
(0.5,0.3,0.1) (0.4, 0.2, 0.3)
(0.8,0.0,0.1) (0.1,0.1,0.1)
(0.2,0.5,0.1) (0.0, 0.7, 0.2)
(0.3,0.3,0.2) (0.8, 0.0, 0.0)

Then (F, A) is a picture fuzzy soft subset of (G, B).

Definition 9. Two PFSSs (F, A) and (G, B) over U are
called to be picture fuzzy soft equal, if and only if (F, A)
is a picture fuzzy soft subset of (G, B) and (G, B) is a
picture fuzzy soft subset of (F, A).

Definition 10. Let (F, A) be a PFSS over U. The com-
plement of (F, A), denoted by (F, A)¢, is defined by
(F, A)¢ = (F¢, A), where F¢: A — PF(U) is a map-
ping given by F¢(e) = (F(¢)) forall ¢ € A.

It is worth noting that in the aboge definition, the
parameter set of the complement (F, A)¢ is still the
original parameter set A, instead of —A. Clearly, (F)°
is the same as F and so ({F, A)°)° = (F, A).
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Example 3. Consider the PFSS (F, A) in Example 1.
Then the complement of (F, A) is represented as
follows:

(FLA) =(F° A) =

€1 &2 &3
h1 (0.4,0.2,0.3) (0.1,0.2,0.5) (0.2,0.1, 0.6)
h> (0.3,0.1,0.5) (0.0, 0.1, 0.8) (0.5,0.2, 0.1)
I3 (0.2,0.4,0.1) (0.2, 0.4, 0.3) (0.2,0.2, 0.5)
h4 (0.5,0.0,0.4) (0.1, 0.6, 0.2) (0.1, 0.5, 0.2)

By the suggestions given by molodtsov in [4], we
define the AND and OR operations on two PFSSs as
follows.

Definition 11. If (F, A) and (G, B) are two PFSSs over
U, the “(F, A) AND (G, B)", denoted by (F, A) A
(G, B), is defined by (F, A) A (G, B) = (H, A X B),
where H(a, f) = F(o) N G(B), for all (a, B) €
A X B.

Definition 12. If (F, A) and (G, B) are two PFSSs
over U, the “(F, A) OR (G, B)", denoted by (F, A) v
(G, B), is defined by (F, A) v (G, B) = (O, A x B),
where O(w, B) = F(a) U G(B), for all (o, B) € A x B.

Example 4. Let U = {x1, x2, x3, x4} and E = {¢,
€2, €3, €4, &5}. Take A = {¢, &2} and B = {¢}, €3, &5},
define

£l &
x1 (0.1,0.2,0.6) (0.4,0.2,0.3)

(F, Ay = | x2(0.2,0.1,0.1) (0.3, 0.1, 0.6)
x3 (0.7,0.3,0.0) (0.5,0.2,0.3)
x4 (0.4,0.0,0.3) (0.8,0.0,0.1)

and
(G, B) =
€1 &3 &5

x1 (0.4,0.3,0.2) (0.2,0.7,0.1) (0:6, 0.1, 0.2)
x2 (0.7,0.1,0.1) (0.8, 0.0, 0:2) (0.3, 0.2, 0.4)
x3 (0.3,0.5,0.1) (0.2,0.4,0.2) (0.5, 0.3, 0.0)
x4 (0.6,0.1,0.2) (0.4,0.3,0.1) (0.1, 0.1, 0.6)

Then we have (F, A) A (G, B) and (F, A) v (G, B)
as follows:

(F,AYA(G,B)= (H, A x B) =

(e1, 1) (e1,€3) (e1, €5)
x1 (0.1,0.2,0.6) (0.1,0.2,0.6) (0.1, 0.1, 0.6)
x2 (0.2,0.1,0.1) (0.2,0.0,0.2) (0.2,0.1, 0.4)
x3 (0.3,0.3,0.1) (0.2,0.3,0.2) (0.5,0.3,0.0)
x4 (0.4,0.0,0.3) (0.4, 0.0, 0.3) (0.1, 0.0, 0.6)

(&2, €1) (&2, €3) (€2, €5)
0.4,0.2,0.3) (0.2,0.2,0.3) (0.4,0.1,0.3)
(0.3,0.1,0.6) (0.3,0.0,0.6)(0.3,0.1,0.6)
(0.3,0.2,0.3) (0.2,0.2,0:3) (0.5, 0.2, 0.3)
(0.6,0.0,0.2) (04, 0.0,0.1) (0.1,0.0,0.6)

and

(F, A) v (G,B)=(0,A x B) =

(15 €1) (e1,€3) (e1, &)
x1 (04,0.2,0.2) (0.2,0.2,0.1) (0.6,0.1,0.2)
X2 (07,0.1,0.1) (0.8, 0.0, 0.1) (0.3, 0.1, 0.1)
x3 (0.7, 0.3,0.0) (0.7,0.3,0.0) (0.7,0.3,0.0)
x4 (0.6,0.0,0.2) (0.4,0.0,0.1) (0.4,0.0,0.3)

(&2, €1) (&2, €3) (&2, &5)
(0.4,0.2,0.2) (0.4,0.2,0.1) (0.6,0.1,0.2)
(0.7,0.1,0.1) (0.8,0.0,0.2) (0.3,0.1, 0.4)
(0.5,0.2,0.1) (0.5,0.2,0.2) (0.5, 0.2, 0.0)
(0.8,0.0,0.1) (0.8,0.0,0.1) (0.8, 0.0, 0.1)

Theorem 1. Let (F, A) and (G, B) be two PFSSs over
U. Then

(1) (F, A) A (G, B))
(2 (F.A) Vv (G, B))

).

c _ )€.

(F, AV (G, B
(F, A A (G, B

Proof. (1)Suppose that (F, A) A (G, B) = (H, A X B).
Therefore ((F, A) A (G, B))° = (H, A x B)° = (H®,
A x B). Now, (F, AV (G, B)"=(F° A)V (G°,
B) = (0, A x B). Take (a, ) € A x B, therefore,
He, B) = (H(a, B)) = (F(a) N G(B)) = F(x)U
G¢(B), again, O(w, B) = F(x) U G°(B). Hence,
H¢ (e, B) = O(«, B). Proved.
(2) The result can be proved in the similar way.

Definition 13. Union of two PFSSs (F, A) and (G, B)
over U can be defined as (F, A)J(G, B) = (H, C),
where C = AU B, and Ve € C,
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F(e), ifee A— B,
H(e) = < G(g), ifee B—A,
F(e)UG(e), ifee ANB.

Theorem 2. Union of two PFSSs (F, A) and (G, B) is
a PFSS.

Proof. In fact, according to Definition 13, Ve € C, if
g€ A—Boree B— A,then H(e) = F(g)or H(e) =
G (e). So, in either case, we have H(¢) is a picture fuzzy
set.

If e e AN B, for a fixed x € U, without loss of
generality, suppose [Lr(e)(x) < 1G(s)(X), we have

HHE(X) + NHE(X) + VEE(X)
= UFE)®) V 16eE)(X) + 1nFE)(X) A N6 (X) + VFE)
(%) A vg(e)(x)
= UGE) ) FNFE)(X) A NGEe)(X) + VEE)(X) A Vo) ()
< uGE®) +n6eE ) +veex) < 1.

Therefore, (H, C) is a picture fuzzy soft set.

Example 5. Consider Example 4. We have (F, A)JU(G,
B) = (H, C), where C = AU B = {¢, &2, &3, €5}, and
(F, A)U(G, B) = (H,C) =

&1 &

x1 (0.4,0.2,0.2) (0.4,0.2,0.3)
x2 (0.7,0.1,0.1) (0.3,0.1, 0.6)
x3 (0.7,0.3,0.0) (0.5,0.2,0.3)
x4 (0.6, 0.0, 0.2) (0.8, 0.0, 0.1)

&3 &5
(0.2,0.7,0.1) (0.6, 0.1, 0.2)
(0.8,0.0,0.2) (0.3,0.2,0.4)
(0.2,0.4,0.2) (0.5,0.3,0.0)
(0.4,0.3,0.1) (0.1,0.1,0.6)

Definition 14. Intersection of two PFESSs (F, A)
and (G, B) with AN B = ¢ over U can be defined
s (F, A\N(G, B) = (H, C), where. C = AN B, and
VeeC,
H(e) = F(e) N G(e).

Theorem 3. Intersection of two PFSSs (F, A) and
(G, B) is a PFSS.

Proof. According to Definition 14, Ve € AN B, for
a fixed x € U, without loss of generality, suppose
VF(e)(X) < VG(e)(x), we have

HHE)(X) + NHE)(X) + VEE(X)
= WFE)(X) A UG (X) + NFE(X) A N6 (x) +
VF(e)(X) V VG(e)(X)
= UFE) ) A UG E)(X) + NFE)(X) A N6eE) ) +
VG(e)(X)
< UG (X)) + 16 (X) + V) (x) <.

Therefore, (H, C) is a picture fuzzy soft set.

Example 6. Reconsider Example 4. We have (F, A)N

(G, B) = (H, C), where C = AN B ={¢e1}, and
€1
x1 (0.1,0.2,0.6)
(F, ARG, B) = (H,C)y = | x2(0.2,0.1,0.1)

x3(0.3,0.3,0.1)
x4 (0.4,0.0,0.3)

Theorem 4. Let (F,
over U. Then

A), (G, B) and (H, C) be PFSSs

(1) (F. A)U(F, A) = (F. A)

(2) (E, A)(F. A) = (F, A).

(3) (F, A)U(G, B) = (G, B)U(F, A).

@). (F, AN(G, B) = (G, B)N(F, A).

(3) (F, A)U(G, BYU(H, C) = (F, A)U((G, BYU
(H, C)). ) ) )

(6) (F. NG, BNA(H, C) = (F, AN((G, B))
(H, C)).

Proof. The proofs are straightforward by using the def-
initions of union and intersection and Proposition 1.

Theorem 5. Let (F,
over U. Then

A), (G, B) and (H, C) be PFSSs

() (F, A)U(G, BA(H, C)) = ({F, A)O(G, BN
((F, A)O(H, C)). ] )

) (F, NG, BO(H, C)) = ({F, AY(G, BD
((F, A)Y(H, C)).

Proof. The proofs are straightforward by using the fact
that the union and intersection of picture fuzzy sets are
distributive in Proposition 1.

Theorem 6. (the dual law) Let (F, A) and (G, B) be
PFSSs over U. Then
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(1) (F, A)U(G, B))‘ = NG
(2) (F, A)NN(G, B)) =(F, A)°U(G,

Proof. (1) If A = B, then we have (F, A)U(G, B) =
(F, A\U(G, A) = (H, A). Now for Ve € A, H(s) =
F(g) U G(g). Hence ({F, A)U(G, B))" = ((F, A)U(G,
A) = (H, A = (H°,A), and He)= (F(s)U
G(e))° = F(e) N G°(e).

Again suppose that (F, A)N(G, B)° = (F, A)°N
(G, AY¢ = (F°, A\DV(G®, A) = (I, A), and Ve € A,
I(e) = F¢(e) N G(¢).

We see that Ve € A, I(e) = H (e). Therefore, the
result is true.

Conversely, hypothesize A # B. Suppose that
(F, A)U(G, B) = (H,C), where C=AUB, and
Vee C,

F(e), if e € A— B,
H(e) =< G(e), ifee B—A,
F(e)UG(e), ifee ANB.

Thus ((F, AYJ(G, B))® = (H, C)¢ = (H¢, C), and

F<(e), ifee A— B,
H¢(e) = < G°(e), ifee B—A,
Fe(e)NG(e), ifee ANB.

Again suppose that (F, A)N\(G, B) = (F°¢, A)
MG, B) =(I,J), where J=ANB, and Ve e J,
I(g) = F(e) N G°(¢).

Obviously, when A # B, we have C =AU B #
ANB=1J, so, (H C)# (I,J). This contradicts
the condition ({F, A)U(G, B))° = (F, A)*N{G, B).
Hence, A = B.

(2)The result can be proved in the similar way.

From the above theory, we know that DeMorgan’s
laws are invalid for PFSSs with the different parameter
sets, but they are true for PESSs with the same parameter
set.

4. Application of the picture fuzzy soft set
model based on adjustable soft discernibility
matrix

Combining the algorithm based on soft discernibility
matrix [30] with the decision making methods regard to
fuzzy soft sets, intuitionistic fuzzy soft sets and interval-
valued intuitionistic fuzzy soft sets in [5, 10, 14], in
this section, we present an adjustable approach to pic-
ture fuzzy soft set based decision making problems.

Using this approach, we not only choose the optimal
object, but also can obtain an order relation among all
the objects. We first propose the concept of level soft
sets of a PFSS.

Definition 15. Let w = (F, A) be a PFSS over U. For
atriple (r, s, t) € [0, 173, the (r, s, t)—level soft set of @
isacrisp softset L(w; (1, s, 1)) = (F5,n), A) defined by

Fr.s,(&8) = L(F(8);(r, 5, 1)) = {x € Ul p(e)(x)
> 1, NFE)(x) < sand vre)(x) < t}, forall e € A.

In the above definition, r € [0, 1] can be viewed as
a given least threshold on the degree of positive mem-
bership, s € [0, 1] can be viewed as a given greatest
threshold on the degree of neutral membership, and
t € [0, 1] can be viewed as a given greatest threshold on
the degree of negative membership. For practical appli-
cations, the thresholds are pre-established by decision
makers and represent their requirements.

To illustrate this idea, let us consider the following
example.

Example 7. Assume that Mr.X wants to buy a house,
and describes the “attractiveness of houses" by a PFSS
(F, A).

Suppose that there five houses U = {h1, h3, h3, h4,
hs} under consideration and that A = {g1, &>, €3, €4} is
a setof decision parameters. The ;(i = 1, 2, 3, 4) stand
for the parameters ‘expensive’, ‘large’, ‘beautiful’ and
‘in the good location’, respectively.

Suppose that o = (F, A) =

&1 &
h1(0.3,0.4,0.2) (0.4,0.2,0.2)
h, (0.7,0.0,0.1) (0.5,0.2,0.1)
h3 (0.4,0.3,0.1) (0.3,0.4,0.2)
h4 (0.2,0.1,0.3) (0.6,0.1,0.2)
hs (0.6,0.2,0.1) (0.2,0.3,0.1)

&3 &4
(0.5,0.1,0.2) (0.3,0.2,0.4)
(0.1,0.3,0.2) (0.5,0.2,0.1)
(0.6,0.2,0.1) (0.4,0.2, 0.3)
(0.8,0.1,0.1) (0.6,0.2,0.2)
(0.4, 0.0, 0.0) (0.4,0.0,0.5)

Now we take (r, s, 1) = (0.4, 0.2, 0.3), then we have
the following results:
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Table 2
Tabular representation of the (0.4, 0.2, 0.3)—level soft set
L(z;(0.4,0.2,0.3))

U €1 & €3 &4
h 0 1 1 0
hy 1 1 0 1
h3 0 0 1 1
hy 0 1 1 1
hs 1 0 1 0

L(F(e1);(0.4,0.2,0.3)) = {ho, hs},
L(F(£2);(0.4,0.2,0.3)) = {h1, ha, ha},
L(F(£3);(0.4,0.2,0.3)) = {h1, h3, ha, hs},
L(F(£4);(0.4,0.2,0.3)) = {h2, h3, h4}.

Hence, the (0.4,0.2, 0.3)—level soft set of w =
(F, A) is a soft set L(ww;(0.4,0.2, 0.3)). Table 2 gives
the tabular representation of L(z; (0.4, 0.2, 0.3)).

Sometimes, decision makers need to impose different
thresholds on different parameters. To cope with such
problems, we use a function to replace a constant value
triple as the thresholds on positive membership value,
neutral membership value and negative membership
value, respectively.

Definition 16. Let @w = (F, A) be a PFSS over U.
Let A : A — [0, 1]° be a function, i.e. Ve € A, Ae) =
(r(e), s(e), t(e)), and r(¢), s(e), t(e) € [0, 1]. The level
soft set of @ with respect to A is a crisp soft set
L(w; A) = (F), A) defined by

Fy(e) = L(F(e);M(e)) = {x € Ulpp(e)(x) >
(&), nre)(x) < s(e) and vre)(x) < 1(8)},
for all ¢ € A.

Remark 1. Here the function A : A — [0, 1]° is not
restricted to be a picture fuzzy set, it is only a func-
tion, r(¢) can be viewed as a given least threshold w.r.t.
the parameter ¢ on the degree of positive member-
ship, s(¢) can be viewed as a given greatest threshold
w.r.t. the parameter ¢ on the degree of neutral mem-
bership, and #(¢) can be viewed as a given greatest
threshold w.r.t. the parameter ¢ on the degree of neg-
ative membership. In Definition 5 in [10], A 'is an
intuitionistic fuzzy set in A which is called a threshold
intuitionistic fuzzy set, in fact, the top-top-threshold is
not an intuitionistic fuzzy set as shown in Example 3
in [10].

Let @ = (F, A) be a PFSS over U. The familiar four
threshold functions are shown as follows.

i. the Mid-level threshold function midg:

midy, : A — [0, 11, i.e. midgy(8) = (ryig, (),
smidm(a), "mid,, (e)) for all ¢ € A, where

Tmid,, () = |le| x%;/ WF(e)(X),
Smid,, (8) = ﬁ E;J NFe)(X),
Xe
Imid,, (&) = 77 %VF(»;)(X)-
xXe

The function mid, is called the mid-threshold of
@ = (F, A), the level soft set w.r.t. mid,, namely
L(w; midg) is called the mid-level soft set of @.

ii. the Top-bottom-bottom-level (simply Tbb-level)
threshold function tbb;:

thby : A — [0, 11, i.e. thbyy(8) = (rgpp,, (&),
stbbw(s), ttbbw(g)) for all e € A, where

Ttbb,, (€) = Igleag M) (X),
Stbb,, (6) = xmellljl N F(e)(X)s
t = .
tbb,, (€) min VF(e)(X)

The function tbb,; is called the top-bottom-bottom-
threshold of @ = (F, A), the level soft set w.r.t. tbb,;,
namely L(w;tbby;) is called the top-bottom-bottom-
level soft set of @.

iii. the Bottom-bottom-bottom-level (simply Bbb-
level) threshold function bbby, :

bbby : A — [0, 117, i.e. bbby, (s) = ("bbb,, (6),
Sbbb,, (e), bbb, (¢)) forall e € A, where

bbb, (€) = ‘,}2{} HF@E)(X),
Sbbb,, (€) = f}g{} NF(e) (%),
4 = .
bbb, (£) = MiN Vr(e)(X)

The function bbb, is called the bottom-bottom-
bottom-threshold of @w = (F, A), the level soft set
w.r.t. bbby, namely L(w;bbbyy) is called the bottom-
bottom-bottom-level soft set of @.

iv. the Med-level threshold function med,;:

medy @ A — [0, 113, i.e. medy(e) = ("med,, ();
Smed,, (e), tmedw(e)) foralle € A,
where for Ve € A, riyeq_(¢) is the median by ranking
the degree of positive membership of all alternatives
according to order from large to small (or from small
to large), namely

if |U| is odd,

nro ()
"med,, (6) = (MF<E><X(@))+

HF(s) (X(%H))) /2,

if |U] is even.
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Smed,, (¢) is the median by ranking the degree of neutral
membership of all alternatives according to order from
large to small (or from small to large), namely

WF(S)(X(%)), it |U] is odd,

Smed,, (8) = § (7@ (¥ (1z1))+

nF(S)(X(BﬂJ’_l) )/2, if |U| is even.
and fyeq () is the median by ranking the degree of
negative membership of all alternatives according to
order from large to small (or from small to large),
namely

VF(e)(X(w)), if |U]| is odd,

med,, (&) = (”F(e)(x(%) )+

vF(g)(x(%H)))/Z, if |U| is even.
The function med, is called the med-threshold of

@ = (F, A), the level soft set w.r.t. med,, namely

L(w; med,) is called the med-level soft set of .

Example 8. Let us reconsider the PFSS @ = (F, A)
with its matrix form shown in Example 7. The above
mentioned thresholds and the level soft sets with their
tabular representations are given as follows.

i. midyy = {(e1, (0.44,0.20, 0.16)),
(e2, (0.40, 0.24, 0.16)), (e3, (0.48,0.14, 0.12)),
(e, (0.44, 0.16, 0.30))}

ii. thbyy = {(e1, (0.7, 0.0, 0.1)), (€2, (0.6, 0.1,
0.1)), (e3, (0.8, 0.0, 0.0)), (e4, (0.6, 0.0, 0.1))}

iiii. bbby = {(£1, (0.2, 0.0, 0.1)), (£2, (0.2, 0.1, 0.1)),
(e3, (0.1, 0.0, 0.0)), (24, (0.3,0.0, 0.1))}

iv.medyy = {(e1,(0.4,0.2, 0.1)), (£2,(0.40, 0.2,0.2)),
(e3,(0.5,0.1,0.1)), (e, (0.4, 0.2, 0.3))}

Remark 2. The function midg; sets threshold triples by
use of mean value of all positive membership, neutral
membership and negative membership degrees under

Table 3
Tabular representation of the mid-level soft set L(w; mid,y)
u 81 & £3 £4
hy 0 0 0 0
hy 1 1 0 0
h3 0 0 0 0
hy 0 0 1 0
hs 1 0 0 0

Table 4
Tabular representation of the top-bottom-bottom-level soft set
L(w;tbby)
U £1 £ ) €4
hy 0 0 0 0
ha 1 0 0 0
h3 0 0 0 0
hy 0 0 0 0
hs 0 0 0 0
Table 5
Tabular representation of the bottom-bottom-bottom-level soft set
L(w; bbby,)
U £l & &3 €4
hy 0 0 0 0
hy 1 0 0 0
h3 0 0 0 0
hy 0 0 0 0
hs 0 0 1 0
Table 6
Tabular representation of the med-level soft set L(z; med,)
U 1 £ &3 €4
hy 0 1 0 0
ha 1 1 0 1
h3 0 0 0 1
hy 0 1 1 1
hs 1 0 0 0

different attributes. But in reality, mean value is easily
affected by extreme value. So decision makers may not
choose the mid-level decision rule under extreme cir-
cumstances. To avoid adverse effect of extreme value,
they often use other decision rule (usually the med-level
decision rule) instead of the mid-level decision rule.

According to the discussions above, once the
level soft set has been arrived at, an order relation
of the objects can be easily obtained from the soft
discernibility matrix as pointed out in [30]. Now a
novel algorithm based on adjustable soft discernibility
matrix for solving the problems of decision making
will be given as follows.

Algorithm. Decision making based on adjustable soft
discernibility matrix

1. Input the picture fuzzy soft set w = (F, A).

2. Input a threshold function A : A — [0, 1% (or
give a threshold triple (7, s,¢) € [0, 1]3; or
choose the mid-level decision rule; or choose
the top-bottom-bottom-level decision rule; or
choose the bottom-bottom-bottom-level deci-
sion rule; or choose the med-level decision rule)
for decision making.
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3. Compute the level soft set L(w;A) of
o = (F, A) with respect to the threshold
function A (or the (r,s,t)—level soft set
L(w;(r,s,t)); or the mid-level soft set
L(w; midg); or the top-bottom-bottom-level
soft set L(w;tbby); or the bottom-bottom-
bottom-level soft set L(w;bbb,); or the
med-level soft set L(zo; medy,)).

4. Present the level soft set L(zw; L) (or L(@; (7, s,
1)); or L(w;midg); or L(w;tbby); or L(w;
bbby ); or L(w; medy)) in tabular form.

5. Compute the partition of U and the soft discerni-
bility matrix D = D(C;, C}).

6. Select D1 and D; from the soft discernibility
matrix, respectively, where

Dy ={D(C;,Cj): |ID(C;,Cj)| =2n,n € NT}
and D; = {D(C;, C)) : |D(C;, Cj)| =2n + 1,
neNTt)

7. For every element of Dy, if |E'| = |E/|, then
the object(s) ; € C; and hj € C; are kept in the
same class. Otherwise, there must exist an order
relation between h; € C; and h j € Cj, that is,
either h; is superior to /i , or hj is superior to A;.

8. Output the result of the step 7. If it is a global
relation for all of the objects in U, then turn to
the step 11, otherwise, turn to the next step.

9. Combine with the result of the step 8, find the
corresponding elements in D, to compare the
order relation.

10. Output the order relation among all the objects
by combining the step 8 with the step 9.

11. Choose the optimal object(s) at the first place
lined according to order relation from large to
small. If the optimal object is more than one,
then any one of them may be chosen.

Remark 3. In the last step of the above algorithm,
one may go back to the second step and change
the threshold (or decision rule) that one once used
so as to adjust the final optimal decision, especially
when there are too many “optimal choices" to be
chosen.

The following example is utilized to illustrate the
basic idea of Algorithm given above.

Example 9. Assume there is an investment company,
which wants to invest a sum of money in the best
option (adapted from [33]). Let us consider a PFSS
@ = (F, A) which describes the “attractiveness of

projects” that the investment company is considering for
investment. Suppose there are six alternative projects
under consideration, U = {py, p2, p3, p4, Ps, pe}. The
investment company must take a decision according
to criteria set A = {&1, &3, €3, &4}, where g1 stands
for the risk analysis, & stands for the growth
analysis, e3 stands for the social-political impact
analysis, and &4 stands for the environment analy-
sis. The company evaluates the alternatives p; (i =
1,2,3,4,5,6) with respect to the criteria ¢; (j =
1, 2, 3, 4) and constructs a PFSS @ = (F, A) given as
follows.
o =(F A)=

€l &
p1 (0.31,0.22,0.41) (0.54,0.21, 0.15)
p2 (0.12,0.41,0.33) (0.81,0.11, 0.02)
p3 (0.23,0.52,0.21) (0.13, 0.48, 0.37)
pa (0.45,0.09,0.36) (0.23,0.59,0.18)
ps (0.57,0.30,0.05) (0.60, 0.23, 0.14)
e (0.44,0.40,0.13) (0.42, 0.36, 0.22)

&3 &4
(0.60, 0.14, 0.26) (0.38, 0.21, 0.40)
(0.26,0.51, 0.20) (0.65, 0.15, 0.18)
(0.72,0.15,0.03) (0.29, 0.58, 0.12)
(0.32,0.49, 0.15) (0.14, 0.32, 0.45)
(0.81,0.11, 0.06) (0.43, 0.18, 0.35)
(0.43,0.27,0.13) (0.35,0.29, 0.34)

Suppose the investment company would like to
select the optimal and the suboptimal projects to invest.
As an adjustable approach, one can use different rules
(or the thresholds) in decision making problem. For
example, if the company deals with this problem
by med-level decision rule, it is clear that the med-
threshold of @ = (F, A) is

med,, = {{e1, (0.375,0.35,0.27)),
(£2, (0.48, 0.295, 0.165)), (e3, (0.515,0.21, 0.14)),
(4, (0.365, 0.25, 0.345))}

and we shall obtain the med-level soft set L(z; med)
of @ with tabular representation as in Table 7.

From Table 7, we can obtain the partition of U is
{C1 ={p1}, C2 = {p2}, C3 = {p3}, C4 = {p4, ps},
Cs = {ps}} and the constructed soft discernibility
matrix is as Table 8.

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703



704

705

706

707

708

709

710

71

712

713

714

715

716

77

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

Y. Yang, et al. / Adjustable soft discernibility matrix based on picture fuzzy soft sets 11

Table 7
Tabular representation of the med-level soft set L(z; medy)
u 8 & 3 &4
p1 0 1 0 0
P2 0 1 0 1
P3 0 0 1 0
pa 0 0 0 0
Ds 1 1 1 0
Ds 0 0 0 0
Table 8
The soft discernibility matrix of the med-level soft set L(z; medz)
Cy C Cs Cy Cs
Cy ]
C {e2} ¢
o = S )
Cy {e1} {e2. £7) {e3) ¢
Cs (.8 lg.a.8) 6.8 {8.8.a) ¢

From Table 8, we have

D1 ={D(C3, C1),D(C4, C2),D(Cs, C1), D(Cs, C3)}

Dy ={D(C>, C1),D(C3, C2),D(C4, C1), D(C4, C3),
D(Cs, C3), D(Cs, Cy)}.

In Dy, we note that |E'| = |E3| in D(C3, Cy). So
the objects in C3 and C are in the same decision class,
that is, p3 and p; are in the same decision class. Since
|E?| > |E3|in D(C3, C3), the objects in C are superior
to the objects in C3, thatis, p is superior to p3. Thus we
have ps> > {p1, p3}. In D», we note that |[E>| > |E?|in
D(Cs, Co)and |E'| > |E*|in D(C4, C)),sothe objects
in Cs are superior to the objects in C» and the objects in
C are superior to the objects in Cy, thatis, ps is superior
to pp and p; is superior to ps and pg. With the above
discussions, we have ps > p» > {p1, p3} > {p4, pe}-
So an order relation is obtained. And the optimal deci-
sion is to select p5 and the suboptimal is to select p;.
Therefore, the company should select the project psas
the best project and project p» as the second-best choice
to invest.

5. Conclusion

In this paper, we generalize the concept of soft sets.
Concretely, we propose the concept of the picture fuzzy
soft set, which is a combination of a picture fuzzy
set and a soft set. We then define various operations
on picture fuzzy soft sets and study their properties.
Especially, we prove DeMorgan’s laws in the theory of
picture fuzzy soft sets. Finally, an illustrative example is
used to show the validity of the picture fuzzy soft set by

using adjustable soft discernibilit matrix in a decision
making problem.

This new extension not only provides a significant
mathematical model to deal with uncertainties, but also
leads to potential areas of further field research and
pertinent applications. We hope that our work would
help enhancing this study on picture fuzzy soft sets for
the researchers.
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