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Abstract: Neutrosophic hesitant fuzzy set is the generalization of neutrosophic set and the hesitant 

fuzzy set, which can easily express the uncertain, incomplete and inconsistent information in cognitive 

activity, and the VIKOR (from Serbian:VIseKriterijumska Optimizacija I Kompromisno Resenje) 

method is an effective decision making tool which can select the optimal alternative by the maximum 

‘‘group utility’’ and minimum of an ‘‘individual regret’’ with cognitive computation. In this paper, we 

firstly introduced some operational laws, comparison rules and the Hamming distance measure of 

neutrosophic hesitant fuzzy set, and described the traditional VIKOR method which only processes the 

crisp numbers. Then we extended the VIKOR method to process the Neutrosophic hesitant fuzzy 

information, and proposed an extended VIKOR method for the multiple criteria decision making 

problems with neutrosophic hesitant fuzzy information, and an illustrative example shows the 

effectiveness and feasibility of the proposed approach. 

Key words: Neutrosophic hesitant fuzzy set; VIKOR method; multiple criteria decision making 

(MCDM) 

1. Introduction 

Decision making has been widely used in the politics, economic, military, management and the 

other fields. But in real decision making, the decision-making information is often inconsistent, 

incomplete and indeterminate, and how to express the decision-making information is very important. 

Since the fuzzy set (FS) theory was proposed by Zadeh [1], fuzzy multiple criteria decision-making 

problems have been widely researched. But FS only has one membership, and it cannot denote some 

complex fuzzy information. For example, during voting, there are ten persons voting for an issue, three 

of them give the “agree’’, four of them give the “disagree”, and the others abstain from voting. 

Obviously, FS cannot fully express the polling information. Atanassov [2, 3] defined the intuitionistic 

fuzzy set (IFS) by adding a non-membership function based on FS, i.e., IFS consists of 

truth-membership ( )
A

T x and falsity-membership ( )
A

F x . The above example can be expressed by 

membership 0.3 and non-membership 0.4. However, IFSs can only handle incomplete information, and 

cannot deal with the inconsistent and indeterminate information. And the indeterminacy 

degree1- ( ) - ( )
A A

T x F x  in IFSs is by default. In some complicated decision making environment, IFS 

also has some limitations in some complex decision-making situation. For instance, when an expert is 

called to make an opinion about a statement, he/she may give the possibility of right is 0.5 and the 

possibility of false is 0.6 and the uncertain possibility is 0.2 [4]. Obviously, this is a typical cognitive 

activity. However, on this occasion, IFS doesn’t cope with this type of information. To handle this type 

of decision-making problems, Smarandache [5] proposed the neutrosophic set (NS) by adding an 

indeterminacy-membership function based on IFS. In NS, the truth-membership, false-membership and 

indeterminacy-membership are totally independent. To simplify neutrosophic set and apply it to 
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practical problems, Wang et al. [6] defined a single valued neutrosophic set (SVNS) with some 

examples. Ye [7, 8] defined the cross-entropy and the correlation coefficient of SVNS which was 

applied to single valued neutrosophic decision-making problems.  

On the other hand, FS only has one membership which will limit some decision making problems. 

As a generalization of fuzzy set, Torra and Narukawa [9], Torra [10] put forward the hesitant fuzzy sets 

(HFSs) which use several possible values instead of the single membership degree. Then, Chen et al. 

[11] defined interval valued hesitant fuzzy sets (IVHFSs) which each membership degree is extended 

to interval numbers. Zhao et al. [12] developed hesitant triangular fuzzy set and series of aggregation 

operators for the hesitant triangular fuzzy sets based on the Einstein operations. Meng et al. [13] gave 

the linguistic hesitant fuzzy sets (LHFSs) and developed a series of linguistic hesitant fuzzy hybrid 

weighted operators. Farhadinia [14] and Ye [15] proposed the dual hesitant fuzzy sets and dual interval 

hesitant fuzzy sets. Peng et al. [16] represented the hesitant interval-valued intuitionistic fuzzy sets 

(HIVIFSs), and developed some hesitant interval intuitionistic fuzzy number weighted averaging 

operators based on t-conorms and t-norms.  

As mentioned above, HFS and NS are extended in two directions based on FS, the HFS assigns 

the membership function a set of possible values, which is a good method to deal with uncertain 

information in practical decision making; however, it cannot process indeterminate and inconsistent 

information, while the NS can easily character uncertainty, incomplete and inconsistent information. 

Obviously, each of them has its advantages and disadvantages. Further, Ye [17] proposed a 

neutrosophic hesitant fuzzy set by combining the hesitant fuzzy sets with single-valued neutrosophic 

sets (SVNHFS), and then some weighted averaging and weighted geometric operators for SVNHFS are 

developed. Obviously, the neutrosophic hesitant fuzzy sets (NHFSs), which extend truth-membership 

degree, indeterminacy-membership degree, and falsity-membership degree of NS to a set of possible 

values in interval [0,1], can easily express the uncertain, incomplete and inconsistent information in .  

In addition, the VIKOR (from Serbian: VIseKriterijumska Optimizacija I Kompromisno 

Resenje) method is an important tool to process the fuzzy decision-making problems, which is based 

on the particular measure of “closeness” to the ‘‘ideal” solution and the ‘‘negative ideal” solution, and 

can achieve the maximum ‘‘group utility’’ and minimum of ‘‘individual regret’’. Obviously, this is a 

cognitive computation [18-21]. Because the traditional VIKOR method can only deal with the crisp 

numbers, some new extensions of VIKOR for the different fuzzy information have been studied. Zhang 

and Wei [22] extended VIKOR to deal with hesitant fuzzy set. Liu and Wu [23] extended VIKOR to 

process the multi-granularity linguistic variables and apply it to the competency evaluation of human 

resources managers. Zhang and Liu [24] VIKOR to process the hybrid information, including crisp 

numbers, interval numbers, triangular fuzzy numbers, trapezoid fuzzy number s, linguistic variables, 

and so on. Du and Liu [25] extended VIKOR to deal with intuitionistic trapezoidal fuzzy numbers. 

However, until now, the extended VIKOR cannot process the neutrosophic hesitant fuzzy information, 

so it is useful and necessary to extend the VIKOR to neutrosophic hesitant fuzzy information. 

In order to achieve the above purposes, the organization structure is shown as follows. In the next 

section, we introduce the single valued neutrosophic set, HFSs, NHFSs, and the traditional VIKOR 

method. In section 3, we extend the traditional VIKOR method to the neutrosophic hesitant fuzzy 

information, and a multiple criteria decision making approach is proposed. In Section 4, we give a 

numerical example to elaborate the effectiveness and feasibility of our approach. In Section 5, we give 

the main concluding remarks of this paper. 

http://58.194.172.13/OneClickSearch.do?product=WOS&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&colName=WOS&SID=U2UTL9uLKM6AYBLIFCv&field=AU&value=Farhadinia,%20B


 

 3 

2. Preliminaries 

2.1 The single valued neutrosophic set 

Definition 1 [5, 26]. Let X be a universe of discourse, with a generic element in X denoted by x . A 

single valued neutrosophic set A in X is characterized by: 

 = ( ( ), ( ), ( ))
A A A

A x T x I x F x x X  ,                      (1) 

where the functions )( xT
A

, )( xI
A

and )( xF
A

denote the truth-membership, the  

indeterminacy-membership and the falsity-membership of the element Xx  to the set A respectively. 

For each point x in X , we have  1,0)(),(),( xFxIxT
AAA

, and 3)()()(0  xFxIxT
AAA

. 

For convenience, we can use ),,(
xxx

FITx  to denote an element x in SVNS, and the element x is 

called a single valued neutrosophic number (SVNN). 

To compare two SVNNs, Smarandache and Vlâdâreanu [27] proposed the partial order relation 

between two neutrosophic numbers as follows. 

Definition 2 [27]. For two SVNNs ),,(
111

FITx  and ),,(
222

FITy  , iff (if and only if) ，
21

TT   

，
21

II 
21

FF  , then yx  . 

Obviously, in practical applications, many cases can’t satisfy the above conditions. With respect to 

these, Ye [28] presented a comparison method based on the cosine similarity measure of a SVNN 

( , , )x T I F to ideal solution (1,0,0), and offered the definition of the cosine similarity: 

222

)(

FIT

T
xS



 .                                               (2) 

Definition 3 [28]. Suppose ),,(
111

FITx  and ),,(
222

FITy  are two SVNNs, if )()( ySxS  , 

then yx  . 

Definition 4. Let ),,(
111

FITx  and ),,(
222

FITy  are two SVNNs, then the normalized Hamming 

distance between x and y is defined as follows: 

 
212121

3

1
),( FFIITTyxd  .                                  (3) 

2.2 The hesitant fuzzy set (HFS) 

Definition 5 [29]. Let X be a non-empty fixed set, a HFS A on X is in terms of a function )( xh
A

that 

when applied to X returns a subset of [0,1], which can be denoted by the following mathematical 

symbol: 

                             XxxhxA
A

 )(,                                   (4) 

where )( xh
A

is a set of some values in  1,0 , representing the possible membership degrees of the 

element Xx  to A .For convenience, we call )( xh
A

a hesitant fuzzy element (HFE), denoted by h , 

which reads }{ hh   . 

For any three HFEs }{ hh   ,
1 1 1 1

{ }h h   and
2 2 2 2

{ }h h   , Torra [29] defined some 

operations as follows:  

(1)  





1
h

c
h                                                              (5) 
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(2)  .,a
21

,
21

2211




xmhh
hh 

                                                 (6) 

(3)  .,min
21

,
21

2211


 hh

hh


                                                 (7) 

After that, Xia and Xu [30] gave four operations about the 

HFEs }{ hh   ,
1 1 1 1

{ }h h   and
2 2 2 2

{ }h h   with a positive scale n : 

(1) 
n n

h

h





                                                       (8) 

(2) 1 (1 ) ,
n

h

n h





                                                           (9) 

(3)  ,
2121

,
21

2211





 hh

hh                                            (10) 

(4)  .
21

,
21

2211


 hh

hh


                                                      (11) 

Definition 6. Let
1

h and
2

h be two HFSs on },,,{
21 n

xxxX  , then the hesitant normalized Hamming 

distance measure between
1

h and
2

h is defined as: 

,
1

1

)(2)(121 




l

j

jj
hh

l
hh 

                                (12) 

where )(hl is the number of the elements in the h , in most cases, )()(
21

hlhl  , and for convenience, 

let )}(),(max{
21

hlhll  . 
1 ( )j

h


and
2 ( )j

h


express the jth element in 
1

h and
2

h , respectively. For 

operability, we should extend the shorter ones until both of them have the same length when compared. 

The best way to extend the shorter one is to add the same value in it. In fact, we can extend the shorter 

one by adding any value in it. The selection of the value mainly depends on the decision makers’ risk 

preferences. Optimists anticipate desirable outcomes and may add the maximum value, while 

pessimists expect unfavorable outcomes and may add the minimum value. 

For example, let
1

h ={0.1, 0.2, 0.3},
2

h ={0.4, 0.5}, and )()(
21

hlhl  . For operability, we 

extend
2

h to
2

h ={0.4, 0.4, 0.5} until it has the same length of 
1

h , the optimist may extend
2

h as 

2
h ={0.4, 0.5, 0.5} and the pessimist may extend it as

2
h ={0.4, 0.4, 0.5}. Although the results may be 

different when we extend the shorter one by adding different values, this is reasonable because the 

decision makers’ risk preferences can directly influence the final decision. The same situation can also 

be found in many existing Refs. [30]. In this study, we assume that the decision makers are all 

pessimistic (other situations can be studied similarly). 

2.3 The neutrosophic hesitant fuzzy set 

In this section, we will introduce the neutrosophic hesitant fuzzy set by combining neutrosophic 

set with hesitant fuzzy set.  

Definition 7 [17]. Let X be a non-empty fixed set, a neutrosophic hesitant fuzzy set (NHFS) on X is 

expressed by: 

                          ,)(
~

),(
~

),(
~

,









 XxxfxixtxN                             (13) 

where  ,)(
~~~

)(
~

xtxt    ,)(
~~~

)(
~

xixi    and  )(
~~~

)(
~

xfxf   are three sets with some 



 

 5 

values in interval ]1,0[ , which represents the possible truth-membership hesitant degrees, 

indeterminacy-membership hesitant degrees, and falsity-membership hesitant degrees of the element 

Xx  to the set N , and satisfies these limits : 

]1,0[
~

]1,0[
~

]1,0[
~

  ，， and 3
~

sup
~

sup
~

sup0 


 ,where 

}
~

max{
~

)(
~~ 

 xt


  , }

~
max{

~

)(
~~ 

 xi


  , and }

~
max{

~
)(

~~ 
 xf


  for Xx  . 

The )}(
~

),(
~

),(
~

{
~

xfxixtn  is called a neutrosophic hesitant fuzzy element (NHFE) which is the 

basic unit of the NHFS and is denoted by the symbol  fitn
~

,
~

,
~~

 . 

Then, some basic operations of NHFEs are defined as follows: 

Definition 8. Let 
1111

~
,

~
,

~~
fitn   and 

2222

~
,

~
,

~~
fitn  be two NHFEs in a non-empty fixed set X , then 

(1)  ;
~~

,
~~

,
~~~~

21212121
ffiittnn                                                (14) 

(2)  .
~~

,
~~

,
~~~~

21212121
ffiittnn                                                (15) 

Therefore, for two NHFEs 
1111

~
,

~
,

~~
fitn  , 

2222

~
,

~
,

~~
fitn  and a positive scale 0k , the operations 

can be defined as follows: 

(1)   
1 1 1 1 1 1 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
, , , , ,

, , , ,
t i f t i f

n n t t i i f f
     

       
     

           (16) 

(2)   
1 1 1 1 1 1 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
, , , , ,

, , , ,
t i f t i f

n n t t i i f f
     

         
     

          (17) 

(3)  kkk

fit

nk
111~~

,
~~

,
~~

1
,,)1(1

~

111112








                                        (18) 

(4)  kkk

fit

k
n )1(1,)1(1,
~

111~~
,

~~
,

~~
1

111112








                                  (19) 

Example 1. Let }2.0{}2.0,1.0{}6.0{
~

1
，，n and }3.02.0{}3.0{}5.0{

~
2

，，，n be two NHFEs, and 2k , 

then 

(1) 06.004.0{},06.003.0{},80.0{
~~

21
，， nn  

(2) }44.036..0{},44.037.0{},30.0{
~~

21
，， nn  

(3) }04.0{},04.001.0{},84.0{
~

2
1

， n  

(4) }36.0{},36.019.0{},36.0{
~ 2

1
，n  

Theorem 1. Let 
1111

~
,

~
,

~~
fitn  and 

2222

~
,

~
,

~~
fitn  be two NHFEs in a non-empty fixed set X , and 

0,,
21
 , then we have 

(1) ;
~~~~

1221
nnnn                                                               (20) 
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(2) ;
~~~~

1221
nnnn                                                               (21) 

(3) ;
~~

)
~~

(
2121

nnnn                                                            (22) 

(4) ;
~

)(
~~

1211211
nnn                                                          (23) 

(5) ;)
~~

(
~~

1221


nnnn                                                           (24) 

(6) ;
~~~ 2121

111

 
 nnn                                                            (25) 

Definition 9. For an NHFE n , 

1 1 1

1 1 1
( ) (1 ) (1 ) 3

p ql

i i i

i i i

S n
l p q

  

  

 
     
 
                                  (26) 

is called the score function of n
~ , where qpl ,, are the numbers of the values 

~~~
，， , respectively. 

Obviously, ( )S n is a value belonging ]1,0[ . 

Suppose }
~

,
~

,
~

{
~

1111
fitn  and }

~
,

~
,

~
{

~
2222

fitn  are any two NHFEs, the comparison method of NHFEs 

is expressed as follows [17]: 

(1) If )
~

()
~

(
21

nSnS  , then
21

~~
nn  ; 

(2) If )
~

()
~

(
21

nSnS  , then
21

~~
nn  ; 

(3) If )
~

()
~

(
21

nSnS  , then
21

~~
nn  . 

Example 2. Let }2.0{}2.0,1.0{}6.0{
~

1
，，n and }3.02.0{}3.0{}5.0{

~
2

，，，n be two NHFEs, then 

1

1
( ) 0 .6 [(1 0 .1) (1 0 .2 )] (1 0 .2 ) 3 0 .7 5

2
S n

 
       
 
 

 

2

1
( ) 0 .5 (1 0 .3) [(1 0 .2 ) (1 0 .3)] 3 0 .6 5

2
S n

 
       
 
 

 

Because
1 2

( ) ( )S n S n , we can get 
21

~~
nn  . 

Definition 10. Let }
~

,
~

,
~

{
~

1111
fitn  and }

~
,

~
,

~
{

~
2222

fitn  are any two NHFEs, then the normalized Hamming 

distance between
1

~
n and

2

~
n is defined as follows: 

 


























l

j

jj

l

j

jj

l

j

jj
lll

nnnnd

1

)(2)(1

1

)(2)(1

1

)(2)(1

2121212121

~~1~~1~~1

3

1

~~~~~~

3

1~~
) 

~
,

~
 (

 



.    (27) 

Example 3. Let }2.0{}2.0,1.0{}6.0{
~

1
，，n and }3.02.0{}3.0{}5.0{

~
2

，，，n be two NHFEs, then 

1.0)3.02.02.02.0(
2

1
)3.02.03.01.0(

2

1
5.06.0

3

1~~
) 

~
,

~
 (

2121















 nnnnd  

2.4 VIKOR method 

The VIKOR method was introduced for multi-criteria optimization problem. This method focuses 

on ranking a set of alternatives and selecting a compromise solution. Here, the compromise means that 

an agreement was established by mutual concessions [31-33]. The decision making problem, which can 
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be solved by VIKOR, is described as follows.   

Suppose there are m alternatives which are denoted as
1 2
, , ...,

m
A A A , and there are n  criteria 

which are denoted as
1 2
, , ...,

n
C C C , the evaluation value of alternative

i
A with respect to criterion 

j
C is expressed by ij

f . Suppose the *

j
f and 

j
f  express the virtual positive ideal value and virtual 

negative ideal value under the criterion
j

C . T

n
wwww ),,(

21
 is the criterion weight vector 

satisfying   11,0

1

 


n

j

jj
ww ， .The compromise ranking could be performed by comparing the measure 

of closeness to the ideal alternative. The multi-criteria measure for compromise ranking is developed 

from the p
L -metric used as an aggregating function in a compromise programming method [33]. The 

VIKOR method is started with the following form of p
L -metric: 

1

* *

1

( ) ( ) 1 ; 1, 2 , 3, .. . , .

p
n

p

p i j j i j j j

j

L w f f f f p i m




 
         

 
             (28) 

In the VIKOR method, the 
i

L
,1

(as
i

S ) and
i

L
,

(as
i

R ) are used to formulate ranking measure. The 

solution obtained by min
i

S is with a maximum group utility (‘‘majority” rule), and the solution 

obtained by min
i

R is with a minimum individual regret of the “opponent”. 

The compromise ranking algorithm of the VIKOR method has the following steps: 

Step 1. Determine the virtual positive ideal *

j
f and the virtual negative ideal 

j
f values under the 

criterion 
j

C , we have 

ij
i

j
ff max

*
 ,

ij
i

j
ff min

                                                 (29) 

Step 2. Compute the values
i

S and
i

R ; mi ,...,2,1 , by these relations: 

)/()(
*

1

* 



  jjij

n

j

jji
ffffwS ,                                              (30) 

)/()(max
** 


jjijjj
j

i
ffffwR                                              (31) 

Step 3. Compute the values
i

Q : mi ,...,2,1 , by the following relation: 

)/())(1()/()(
****

RRRRvSSSSvQ
iii


                              (32) 

where 

i
i

i
i

SSSS max,min
*


 , i

i
i

i

RRRR max,min
*




 

v is the weight of the strategy of ‘‘the majority of criteria” (or ‘‘the maximum group utility”). 
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When 5.0v , considering ‘‘the maximum group utility” is more than “minimum individual regret”, 

and when 5.0v , considering “minimum individual regret” is more than ‘‘the maximum group utility”. 

In this study, we suppose that 5.0v which “minimum individual regret” and ‘‘the maximum group 

utility” are the same important. 

Step 4. Rank the alternatives. Sorting by the values S , R and Q in decreasing order. The results are 

three ranking lists. 

Step 5. Propose as a compromise solution
)1(

A , which is ranked in the first position by the 

measure Q  (Minimum) if the following two conditions are satisfied: 

Condition 1: Acceptable advantage: 
1

1
)()(

)1()2(




m
AQAQ , where )(

)2(
AQ is the value of 

alternative with second position in the ranking list. m is the number of alternatives. 

Condition 2: Acceptable stability in decision making: Alternative
)1(

A must also be the best ranked 

by S or/and R .  

If one of above conditions does not meet, then we will get a set of compromise solutions: 

(1) If condition 2 is not met, then alternatives
)1(

A and
)2(

A are compromise solutions. 

(2) If condition 1 is not be met, then the maximum M can be got by the 

relation DQAQAQ
M

 )()(
)1()（ , and alternatives

)1(
A , )2(

A ,…, ）（ M
A  are compromise solutions. 

Based on the above analysis, we know that the best alternative is the one with the minimum value 

of Q  when the conditions1 and 2 are met, and if one of two conditions is not met, the compromise 

solutions may be have more than one. VIKOR is an effective tool in multi-criteria decision making. 

The obtained compromise solution could be accepted by the decision makers because it provides a 

maximum ‘‘group utility” (represented by min S ) of the ‘‘majority”, and a minimum of the ‘‘individual 

regret” (represented by min R ) of the ‘‘opponent”. The compromise solutions could be the basis for 

negotiations, involving the decision maker’s preference by criteria weights. 

3. VIKOR method for decision making problem with neutrosophic 

hesitant fuzzy numbers 

In real decision making, it is difficult or impossible to obtain the criteria values by the exact 

numbers, however, the neutrosophic hesitant fuzzy set is a very useful tool to deal with uncertain 

decision making problems in which each criteria can be described as a neutrosophic hesitant fuzzy 

numbers [17]. The VIKOR is very effective method to solve the decision making problems, however, 

the traditional VIKOR is only suitable for crisp numbers, and then it has been extended to process the 

different fuzzy information [22-25]. Until now, it has not been used to process the neutrosophic 

hesitant fuzzy information. So, in this paper, we will extend the VIKOR method to solve MADM 

problem with the neutrosophic hesitant fuzzy information.  

To do this, we firstly describe the decision making problem.  

For a multiple criteria decision making problem, let  
m

AAAA ,,,
21
 be a collection of 

m alternatives,  
m

CCCC ,,,
21
 be a collection of n criteria, which weight vector is 

T

n
wwww ),,(

21
 satisfying   11,0

1

 


n

j

jj
ww ， .Suppose that )

~
,

~
,

~
(

~
ijijijij

fitn  is the evaluation value 

of the alternative
i

A  with respect to the criteria j
C  which is expressed by the neutrosophic hesitant 
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fuzzy information, where }
~~~

{
~

ijijijij
tt   , }

~~~
{

~
ijijijij

ii   and }
~~~

{
~

ijijijij
ff   are three collections 

of some values in interval ]1,0[ , which represent the possible truth-membership hesitant degrees, 

indeterminacy-membership hesitant degrees, and falsity-membership hesitant degrees, and satisfy 

following limits: 

]1,0[
~

]1,0[
~

]1,0[
~

  ，， , and 3
~

sup
~

sup
~

sup0 


 , where m ax { }
ij ij

ij
t

 




 , 

m ax { }
i j i j

ij
i

 





 and m ax { }

ij ij

ij
f

 




 . The decision matrix denoted by the neutrosophic 

hesitant fuzzy numbers are shown in Table 1, and then we can rank the order of the alternatives.  

The procedures of the proposed method as follows: 

Table 1 Decision making matrix with the neutrosophic hesitant fuzzy information 

 1
C  

2
C    n

C  

1
A  

11

~
n  

12

~
n    n

n
1

~  

2
A  

21

~
n  

22

~
n    n

n
2

~  

          

m
A  

1

~
m

n  
2

~
m

n    mn
n
~  

 

Step 1. Normalize the decision matrix. 

In MAGDM problems, there are two types in criteria, that is, benefit criteria and cost criteria. To 

maintain consistency of the criteria, we usually transform the cost criteria into benefit criteria. 

For the cost criteria, the normalization formula is 

 ( ) {1 } , {1 } , {1 }
i j i j i j

k

ij t i f
n

  
  

  
   

                                         (33) 

Step 2. Determine the positive ideal solution (PIS) and the negative ideal solution (NIS). There are two 

methods to determine them. 

(1) According to the partial order relation, we have 

the positive ideal solution (PIS): }
~

,,
~

{
**

1

*

n
nnA                                  (34) 

Where 

 *
m ax { } , m in { } , m in{ } , 1, 2 , ,

i j i j i j
j t i f

i ii

n j n
  

  
  

               (35) 

the negative ideal solution (NIS) }
~

,,
~

{
1




n
nnA                                  (36) 

where  m in { } , m a x { } , m a x{ } , 1, 2 , ,
i j i j i j

j t i f
i i i

n j n
  

  


  
         (37) 

(2) According to score function, we have  

}
~

,,
~

{
**

1

*

n
nnA  , where njnSnSn

mjjj
,,2,1)},

~
(,),

~
(max{

~
1

*
                   (38) 

}
~

,,
~

{
1




n
nnA  , where njnSnSn

mjjj
,,2,1)},

~
(,),

~
(min{

~
1

 
                  (39) 

Where ( .)S is the score function of neutrosophic hesitant fuzzy number which is defined 

by (26). 
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Step 3. Compute
i

S and
i

R , and we have 





  jjijj

n

j

ji
nnnnwS
~~~~ **

1

, mi ,...,2,1 ,                                     (40) 




jjijjj
j

i
nnnnwR
~~~~

max
** , mi ,...,2,1                                     (41) 

 Where 
1 2

n n is the distance between two neutrosophic hesitant fuzzy numbers 

1
n and

2
n , which is defined by (27). 

Step 4. Compute the values
i

Q , and we have 

)/())(1()/()(
****

RRRRvSSSSvQ
iii


                              (42) 

Where 
i

i
i

i

SSSS max,min
*


 ,

i
i

i
i

RRRR max,min
*




 

where v is introduced as weight of the strategy of ‘‘the majority of criteria” (or ‘‘the maximum group 

utility”), here suppose that v = 0.5 

Step 5. Same as the step 4 of section 2. 

Step 6. Same as the step5 of section 2. 

4. An numerical example 

We consider an example [34] where one investment company intends to select an enterprise from 

the following four alternatives to invest. The four enterprises are marked by )4.3,2,1( iA
i

, and they 

are measured by three criteria: (1)
1

C (the risk index); (2)
2

C (the growth index); (3)
3

C (environmental 

impact index) (suppose it is cost type), and the evaluation values are denoted by NHFNs and their 

weight is  
T

w 4.0,25.0,35.0 . The decision matrix R is shown in the Table 2. Then give the ranking the 

alternatives. 

Table 2 The neutrosophic hesitant fuzzy decision matrix 

 1
C  

2
C  

3
C  

1
A  {{0.4, 0.5},{0.2}, {0.3}} {{0.4 },{0.2,0.3},{0.3}} {{0.2},{0.2},{0.5}} 

2
A  {{0.6},{0.1,0.2},{0.2}} {{0.6},{0.1},{0.2}} {{0.5},{0.2},{0.1,0.2}} 

3
A  {{0.3,0.4},{0.2},{0.3}} {{0.5},{0.2},{0.3}} {{0.5},{0.2,0.3},{0.2}} 

4
A  {{0.7},{0.1,0.2},{0.1}} {{0.6},{0.1},{0.2}} {{0.6},{0.3},{0.2}} 

 

4.1 The evaluation steps by the proposed method 
Step 1. Normalize the decision matrix. 

Considering all the criteria should be uniform types, the cost type
3

C should be transformed into benefit 

type, and then we obtain the normalized NHFNS decision matrix 34
)(

~




k

ij

k
R  by (33) as follows: 
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Table 3 The normalized neutrosophic hesitant fuzzy decision matrix 

 1
C  

2
C  

3
C  

1
A  {{0.4, 0.5},{0.2}, {0.3}} {{0.4 },{0.2,0.3},{0.3}} {{0.8},{0.8},{0.5}} 

2
A  {{0.6},{0.1,0.2},{0.2}} {{0.6},{0.1},{0.2}} {{0.5},{0.8},{0.9,0.8}} 

3
A  {{0.3,0.4},{0.2},{0.3}} {{0.5},{0.2},{0.3}} {{0.5},{0.8,0.7},{0.8}} 

4
A  {{0.7},{0.1,0.2},{0.1}} {{0.6},{0.1},{0.2}} {{0.6},{0.7},{0.8}} 

 

Step 2. Determine the positive ideal solution (PIS) and the negative ideal solution (NIS) by (34) - (37), 

we can get  

}
~~

,
~

{
*

3

*

2

*

1

*
nnnA ， ={{{0.7},{0.1},{0.1}}, {{0.6},{0.1},{0.2}}, {{0.8},{0.7},{0.5}}} 

}
~~

,
~

{
321


 nnnA ， ={{{0.3},{0.2},{0.3}}, {{0.4},{0.3},{0.3}}, {{0.5},{0.8},{0.9}} 

Step 3. Compute
i

S and
i

R  by (40) and (41), and we have  






















3

*

3

13

*

33

2

*

2

12

*

22

1

*

1

11

*

11

1

nn

nnw

nn

nnw

nn

nnw

S 0.450 






















3

*

3

23

*

33

2

*

2

22

*

22

1

*

1

21

*

11

2

nn

nnw

nn

nnw

nn

nnw

S 0.587 






















3

*

3

33

*

33

2

*

2

32

*

22

1

*

1

31

*

11

3

nn

nnw

nn

nnw

nn

nnw

S 0.783 






















3

*

3

43

*

33

2

*

2

42

*

22

1

*

1

41

*

11

4

nn

nnw

nn

nnw

nn

nnw

S 0.184 

225.0,,max

3

*

3

13

*

33

2

*

2

12

*

22

1

*

1

11

*

11

3
1


































nn

nnw

nn

nnw

nn

nnw

R  

516.0,,max

3

*

3

23

*

33

2

*

2

22

*

22

1

*

1

21

*

11

3
2


































nn

nnw

nn

nnw

nn

nnw

R  

447.0,,max

3

*

3

33

*

33

2

*

2

32

*

22

1

*

1

31

*

11

3
3


































nn

nnw

nn

nnw

nn

nnw

R  

167.0,,max

3

*

3

43

*

33

2

*

2

42

*

22

1

*

1

41

*

11

3
4


































nn

nnw

nn

nnw

nn

nnw

R  

Step 4. Compute the values )4,3,2,1( iQ
i

by (42) (suppose 5.0v ), we have 

1 2 3 4
0 .3 0 5 0 .8 3 6 0 .9 0 1 0Q Q Q Q   ， ， ，  

Step 5. Rank the alternatives. Sorting by the values S , R and Q in decreasing order. The results are 

javascript:void(0);
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three ranking lists, which is depicted in Table 4.  

Step 6. The ranking of alternatives by Q in decreasing order, the alternative with first position 

is
4

A with 0)(
4

AQ , and
1

A is the alternative with second position with )(
1

AQ =0.305. As 

DQ=1/(m-1)=1/(4-1)=0.333, so 

333.0305.0)()(
41

 AQAQ  

Which is not satisfied
14

1
)()(

41


 AQAQ , but alternative 
4

A is the best ranked by S and R , which 

satisfies the condition 2. By computing, we get: 

333.0901.0)()(
43

 AQAQ  

333.0836.0)()(
42

 AQAQ  

333.0305.0)()(
41

 AQAQ  

so
4

A ,
1

A are both compromise solutions. 

Table 4 The ranking and the compromise solutions. 

 1
A  

2
A  

3
A  

4
A  Ranking Compromise 

solutions 

S  0.450 0.587 0.783 0.184 3214
AAAA   

4
A  

R  0.225 0.516 0.447 0.167 2314
AAAA   

4
A  

)5.0( vQ  0.305 0.836 0.901 0 3214
AAAA   

4
A  

Compromise 

solutions 

     
4

A ,
1

A  

 

4.2 Comparison analysis 

In order to verify the feasibility and effectiveness of the proposed decision-making approach, a 

comparison analysis with multi-valued neutrosophic TODIM (an acronym in Portuguese of Interactive 

and Multicriteria Decision Making) method introduced by Wang and Li [34] is given based on the same 

illustrative example. 

With regard to the method in Wang and Li [34], the multi-valued neutrosophic number is defined, 

and the traditional TODIM method is extended to the neutrosophic environment. In this new method, a 

reference criterion is selected first and then built the value function based on the Hamming distance 

between multi-valued neutrosophic numbers. Its decision-making steps are shown as below: 

Step 1: Select the highest weight criterion as the reference criterion, so select
3

C as the reference 

criterion. 

Step 2: Calculate the degree of alternative
i

A superior to alternative j
A which are shown in the Table 5.  

Step 3: Calculate the comprehensive ranking value of
i

A , and get 1,0,702.0,492.0
4321
   

Step 4: Rank all the alternatives )4,3,2,1( iA
i

based on the values of
i

 . The bigger the
i

 is, the better 

the alternative is )4,3,2,1( iA
i

, we can get
3124

AAAA  . 

Clearly, the ranking has a little difference; however, the best alternative is the same as
4

A . The 



 

 13 

advantage of the proposed method is that it can select the optimal alternative by the maximum ‘‘group 

utility’’ and minimum of an ‘‘individual regret’’ and the advantage of the extended TODIM method is 

that it can consider the bounded rationality of decision makers. Because the ranking principle is 

different, it is reasonable for not completely same ranking results. In this example, these two methods 

produced the same best and worst alternatives, and this can show the validity of the proposed in this 

paper. 

 Table 5 The degree of priority among alternatives [34] 

 1
A  

2
A  

3
A  

4
A  

1
A  0 -0.893 0.236 -1.358 

2
A  0.539 0 0.272 -0.765 

3
A  0.927 -1.406 0 -1.955 

4
A  -0.415 0.248 0.498 0 

5. Conclusion 

Neutrosophic hesitant fuzzy set is the generalization of neutrosophic set and the hesitant fuzzy set. 

Some operational laws, comparison rules of neutrosophic hesitant fuzzy set and the Hamming distance 

between two neutrosophic hesitant fuzzy numbers are defined. For multiple criteria decision making 

with neutrosophic hesitant fuzzy sets, the traditional VIKOR method is extended, and an approach is 

given. In this method, which is based on the particular measure of “closeness” to the ‘‘ideal” solution, 

using linear programing method during the process of decision-making, and order the hesitant fuzzy 

numbers by index of attitude and choose the alternatives under the acceptable advantage and the 

stability of the decision-making process to get a compromise solution, which achieving the maximum 

‘‘group utility’’ and minimum of an ‘‘individual regret’’. This method has its own advantages compared 

with other multiple criteria decision making method based on distance, but it can only solve the 

decision making problems in which the criteria is neutrosophic hesitant fuzzy numbers and fixed 

weights, in the case of uncertain weights is universal in real life, which needs further study. 
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