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Abstract. In this paper, we first define the concept of bipolar single neutrosophic graphs as the 

generalization of bipolar fuzzy graphs, N-graphs, intuitionistic fuzzy graph, single valued 

neutrosophic graphs and bipolar intuitionistic fuzzy graphs. 

1. Introduction 

Zadeh [9] coined the term ‘degree of membership’ and defined the concept of fuzzy set in order to 

deal with uncertainty. Atanassov [8] incorporated the degree of non-membership in the concept of 

fuzzy set as an independent component and defined the concept of intuitionistic fuzzy set. 

Smarandache [2] grounded the term ‘degree of indeterminacy’ as an independent component and 

defined the concept of neutrosophic set from the philosophical point of view to deal with 

incomplete, indeterminate and inconsistent information in real world. The concept of neutrosophic 

set is a generalization of the theory of fuzzy set, intuitionistic fuzzy set. Each element of a 

neutrosophic set has three membership degrees including a truth membership degree, an 

indeterminacy membership degree, and a falsity membership degree which are within the real 

standard or nonstandard unit interval ]
−
0, 1

+
[. Therefore, if their range is restrained within the real 

standard unit interval [0, 1], the neutrosophic set is easily applied to engineering problems. For this 

purpose, Wang et al. [6] introduced the concept of the single-valued neutrosophic set (SVNS) as a 

subclass of the neutrosophic set. Recently, Deli et al. [7] defined the concept of bipolar 

neutrosophic, as a generalization of single valued neutrosophic set, and bipolar fuzzy graph, also 

studying some of their related properties. The neutrosophic set theory of and their extensions have 

been applied in various domains [22] (refer to the site http://fs.gallup.unm.edu/NSS/). 

When the relations between nodes (or vertices) in problems are indeterminate, the concept of 

fuzzy graphs [15] and its extensions, such as intuitionistic fuzzy graphs [11, 16], N-graphs [13], 

bipolar fuzzy graphs [11, 12, 14], bipolar intuitionistic fuzzy graphs [1] are not suitable. For this 

purpose, Smarandache [3] defined four main categories of neutrosophic graphs, two based on literal 

indeterminacy (I), calling them I-edge neutrosophic graph and I-vertex neutrosophic graph; these 

concepts are deeply studied and gained popularity among some researchers [4, 5, 19, 20, 21] due to 

their applications in the real world problems. The two others graphs are based on (t, i, f) 

components, and are called: (t, i, f)-edge neutrosophic graph and (t, i, f)-vertex neutrosophic graph; 

but these new concepts are not developed at all yet. Later on, Broumi et al. [18] introduced a third 

neutrosophic graph model. The single valued neutrosophic graph is the generalization of fuzzy 

graph and intuitionstic fuzzy graph. Also, the same authors [17] introduced neighborhood degree of 

a vertex and closed neighborhood degree of a vertex in the single valued neutrosophic graph, as a 

generalization of neighborhood degree of a vertex and closed neighborhood degree of vertex in 

fuzzy graph and intuitionistic fuzzy graph.  
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In this paper, motivated by the works of Deli et al. [7] and Broumi et al. [18], we introduced the 

concept of bipolar single valued neutrosophic graph and proved some propositions. 

2. Preliminaries 

In this section, we mainly recall some notions, which we are also going to use in the rest of the 

paper. The readers are referred to [6, 7, 10, 11, 13, 15, 18] for further details and background. 

Definition 2.1 [6]  

Let U be an universe of a discourse; then, the neutrosophic set A is an object having the form A 

= {< x: , , >, x ∈ U}, where the functions T, I, F: U→]
−
0,1

+
[  define respectively 

the degree of membership, the degree of indeterminacy, and the degree of non-membership of the 

element x ∈ U to the set A with the condition:
 −

0 ≤ + + ≤ 3
+
.                         

Definition 2.2 [7]  

A bipolar neutrosophic set A in X is defined as an object of the form A={<x, (x), (x), 

(x), (x), (x), (x)>: x  X}, where , , :X  [1, 0] and , , : X  [-1, 0]. 

The positive membership degree (x), (x), (x) denotes the truth membership, indeterminate 

membership and false membership of an element  X corresponding to a bipolar neutrosophic set 

A, and the negative membership degree (x), (x), (x) denotes the truth membership, 

indeterminate membership and false membership of an element  X to some implicit counter-

property corresponding to a bipolar neutrosophic set A. 

Example 2.1  

Let X = { , , }; 

A =  is a bipolar neutrosophic subset of X. 

Definition 2.3 [7]  

Let  = {<x, (x), (x), (x), (x), (x), (x)>} and  = {<x, (x), (x), x), 

(x), (x), (x) >} be two bipolar neutrosophic sets. Then,    if and only if (x)  

(x) , (x)  (x), (x)  (x)  and  (x)  (x) , (x)  (x) , (x) (x)  for all 

x  X. 

Definition 2.4 [15]  

A fuzzy graph with V as the underlying set is a pair G = (σ, μ), where σ: V → [0, 1] is a fuzzy 

subset and μ: V × V → [0, 1] is a fuzzy relation on σ such that μ(x, y)  σ(x)  σ(y) for all x, y ∈ V 

where stands for minimum. 

Definition 2.5 [13]  

By a N-graph G of a graph , we mean a pair G= ( , ) where  is an N-function in V and  

is an N-relation on E such that (u,v)  max ( (u), (v)) all u, v  V. 

Definition 2.6 [10]  

An intuitionistic fuzzy graph is of the form G = (V, E), where 

i. V = { , ,…., } such that : V  [0,1] and : V  [0,1] denoting the degree 

of membership and non-membership of the element   V, respectively, and 0≤ ( ) + 

( )) ≤ 1 for every    V, (i = 1, 2, ……. n),                                              (1) 

ii. E    V x V where  : VxV [0,1] and  : VxV  [0,1] are such that ( , ) ≤ 

min [ ( ), ( )] and ( , )  max [ ( ), ( )] and 0 ≤ ( , ) + ( , ) ≤ 1 for 

every ( , )  E, ( i, j = 1,2, ……. n).                                                            (2) 

 

Definition 2.7 [11]  

Let X be a non-empty set. A bipolar fuzzy set A in X is an object having the form A = {(x, (x), 

(x)) | x  X}, where (x): X → [0, 1] and (x): X → [−1, 0] are mappings. 
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Definition 2.8 [11]  

A bipolar fuzzy graph of a graph =  (V, E)  is a pair G = (A,B), where A = ( , ) is a 

bipolar fuzzy set in V and B = ( , ) is a bipolar fuzzy set on  E  V x V such that (xy)  

min{ (x), (y)} for all xy ,  (xy) min{ (x), (y)} for all xy  and (xy) = (xy) 

= 0 for all xy  –E. Here A is called bipolar fuzzy vertex set of V, and B - the bipolar fuzzy edge 

set of E. 

Definition 2.9 [18]  

A single valued neutrosophic graph (SVNG) of a graph = (V, E) is a pair G = (A, B), where:  

i. V = { , ,…, } such that :V [0, 1], :V [0, 1] and :V [0, 1] denote the degree 

of truth-membership, degree of indeterminacy-membership and falsity-membership of the 

element   V, respectively, and 0   + ( ) +  3 for every  V (i=1, 2, 

…, n).                                                                                                                    (3) 

ii. E  V x V, where  :V x V [0, 1],  :V x V [0, 1] and :V x V [0, 1] are such that 

  min [ , ],   max [ , ] and   max 

[ , ] and  0   + +  3, for every  E (i, j = 

1, 2,…, n).                                                                                                             (4) 

3. Bipolar Single Valued Neutrosophic Graphs   

In this section, we firstly define the concept of a bipolar single valued neutrosophic relation. 

Definition 3.1  

Let X be a non-empty set. Then we call a mapping A = (x, (x), (x), (x), (x), (x), 

(x)):X × X → [−1, 0] × [0, 1] a bipolar single valued neutrosophic relation on X such that (x, 

y)  [0, 1], (x, y)  [0, 1], (x, y)  [0, 1], and (x, y)  [−1, 0], (x, y)  [−1, 0], (x, y)  

[−1, 0].   

Definition 3.2  

Let A = ( , ,  ,  ,  ) and B = ( , , ,  ,  ) be a bipolar single valued 

neutrosophic graph on a set X. If B = ( , ,  , ,  ) is a bipolar single valued 

neutrosophic relation on A = ( , , ,  ,  ) then: 

(x, y)  min( (x), (y)),   (x, y)  max( (x), (y))                                   (5) 

(x, y)  max( (x), (y)), (x, y)  min( (x), (y))                                           (6) 

(x, y)  max( (x), (y)), (x, y)  min( (x), (y)), for all x, y  X.           (7) 

A bipolar single valued neutrosophic relation B on X is called symmetric if (x, y) = (y, 

x), (x, y) = (y, x), (x, y) = (y, x) and (x, y) = (y, x), (x, y) = (y, x), (x, y) = 

(y, x), for all x, y  X.     

Definition 3.3  

A bipolar single valued neutrosophic graph of a graph  = (V, E) is a pair G = (A, B), where A 

= ( , ,  ,  ,  ) is a bipolar single valued neutrosophic set in V, and B = ( , ,  

,  ,  ) is a bipolar single valued neutrosophic set in , such that 

(x, y)  min( ( ), ( )),      (x, y)  max( ( ), ( ))                         (8) 

(x, y)  max( ( ), ( )),      (x, y)  min( ( ), ( )), and                      (9) 

(x, y)  max( ( ), ( )),  (x, y)  min( ( ), ( )), for all xy .  (10) 

Notation  

An edge of BSVNG is denoted by   E or   E. 

Here, the sextuple ( , , , , ,  ) denotes the positive degree of truth-membership, 

the positive degree of indeterminacy-membership, the positive degree of falsity-membership, the  

negative degree of truth-membership, the negative degree of indeterminacy-membership, the 

negative degree of falsity- membership of the vertex .  

The sextuple (  , , ,  ,  ,  ) denotes the positive degree of truth-membership, the 

positive degree of indeterminacy-membership, the positive degree of falsity-membership, the 
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negative degree of truth-membership, the negative degree of indeterminacy-membership, the 

negative degree of falsity- membership of the edge relation  = ( , ) on V  V. 

 

Notes  

i. When   =  = = 0 and  =  = = 0 for some i and j, then there is no edge 

between and  . Otherwise there exists an edge between and  . 

ii. If one of the inequalities is not satisfied, then G is not a BSVNG. 
 

 
Fig.1: Bipolar single valued neutrosophic graph. 

 

Proposition 3.1 

A bipolar single valued neutrosophic graph is the generalization of the fuzzy graph. 

Proof 

Suppose G = (A, B) is a bipolar single valued neutrosophic graph. Then, by setting the positive 

indeterminacy-membership, positive falsity-membership and negative truth-membership, negative 

indeterminacy-membership, negative falsity-membership values of vertex set and edge set equals to 

zero, it reduces the bipolar single valued neutrosophic graph to a fuzzy graph. 

Example 3.1 

 
Fig. 2: Fuzzy graph 

 

Proposition 3.2 

 

A bipolar single valued neutrosophic graph is the generalization of the bipolar intuitionstic fuzzy 

graph. 
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Proof 

Suppose G = (A, B) is a bipolar single valued neutrosophic graph. Then, by setting the positive 

indeterminacy-membership, negative indeterminacy-membership values of vertex set and edge set 

equals to zero, it reduces the bipolar single valued neutrosophic graph to a bipolar intuitionistic 

fuzzy graph. 

 

Example 3.2 

 
Fig.3:  Intuitionistic fuzzy graph.                

Proposition 3.3 

A bipolar single valued neutrosophic graph is the generalization of the single valued 

neutrosophic graph. 

Proof 

Suppose G = (A, B) is a bipolar single valued neutrosophic graph. Then, by setting the negative 

truth-membership, negative indeterminacy-membership, negative falsity-membership values of 

vertex set and edge set equals to zero, it reduces the bipolar single valued neutrosophic graph to a 

single valued neutrosophic graph. 

Example 3.3 

                             
Fig. 4: Single valued neutrosophic graph. 

Proposition 3.4 

A bipolar single valued neutrosophic graph is the generalization of the bipolar intuitionstic fuzzy 

graph. 
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Proof 

Suppose G = (A, B) is a bipolar single valued neutrosophic graph. Then, by setting the positive 

indeterminacy-membership, negative indeterminacy-membership values of vertex set and edge set 

equals to zero, it reduces the bipolar single valued neutrosophic graph to a bipolar intuitionistic 

fuzzy graph. 

 

Example 3.4 

                                       
Fig.5: Bipolar intuitionistic fuzzy graph. 

Proposition 3.5 

A bipolar single valued neutrosophic graph is the generalization of the N-graph. 

Proof 

Suppose G = (A, B) is a bipolar single valued neutrosophic graph. Then, by setting the positive 

degree membership such truth-membership, indeterminacy-membership, falsity-membership and 

negative indeterminacy-membership, negative falsity-membership values of vertex set and edge set 

equals to zero, it reduces the single valued neutrosophic graph to a N-graph. 

Example 3.5 

 
Fig. 6: N-graph. 
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4. Conclusion 

In this paper, we have introduced the concept of bipolar single valued neutrosophic graphs and also 

proved that the most widely used extensions of fuzzy graphs are particular cases of bipolar single 

valued neutrosophic graphs. So our future work will focus on: (1) The study of certains types of 

bipolar single valued neutrosophic graphs such as, complete bipolar single valued neutrosophic 

graphs, strong bipolar single valued neutrosophic graphs, regular bipolar single valued neutrosophic 

graphs. (2) The concept of energy of bipolar single valued neutrosophic graphs. (3) The study about 

applications, especially in traffic light problem.  
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