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Breast cancer is the second leading cause of death for women all over the world. Since the cause of the
disease remains unknown, early detection and diagnosis is the key for breast cancer control, and it can
increase the success of treatment, save lives and reduce cost. Ultrasound imaging is one of the most
frequently used diagnosis tools to detect and classify abnormalities of the breast. In order to eliminate
the operator dependency and improve the diagnostic accuracy, computer-aided diagnosis (CAD) system
is a valuable and beneficial means for breast cancer detection and classification. Generally, a CAD system
consists of four stages: preprocessing, segmentation, feature extraction and selection, and classification. In
this paper, the approaches used in these stages are summarized and their advantages and disadvantages
are discussed. The performance evaluation of CAD system is investigated as well.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Breast cancer is the second leading cause of death for women
all over the world and more than 8% women will suffer this disease
during their lifetime. In 2008, there were reported approximately
182,460 newly diagnosed cases and 40,480 deaths in the United
States [4]. Since the causes of breast cancer still remain unknown,
early detection is the key to reduce the death rate (40% or more)
[2]. The earlier the cancers are detected, the better treatment can
be provided. However, early detection requires an accurate and re-
liable diagnosis which should also be able to distinguish benign and
malignant tumors. A good detection approach should produce both
low false positive (FP) rate and false negative (FN) rate.

Previously, the most effective modality for detecting and diagnos-
ing is mammography [1,2]. However, there are limitations of mam-
mography in breast cancer detection. Many unnecessary (65-85%)
biopsy operations are due to the low specificity of mammography
[5]. The unnecessary biopsies not only increase the cost, but also
make the patients suffer from emotional pressure. Mammography
can hardly detect breast cancer in adolescent women with dense
breasts. In addition, the ionizing radiation of mammography can in-
crease the health risk for the patients and radiologists.

Currently, an important alternative to mammography is ultra-
sound (US) imaging, and it shows an increasing interest in the use
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of ultrasound images for breast cancer detection [6-8]. Statistics
showed that more than one out of every four researches is using
ultrasound images, and the proportion increases more and more
quickly [3]. Studies have demonstrated that using US images can dis-
criminate benign and malignant masses with a high accuracy [9,10].
Use of ultrasound can increase overall cancer detection by 17% [11]
and reduce the number of unnecessary biopsies by 40% which can
save as much as $1 billion per year in the United Sates [12]. Breast
ultrasound (BUS) imaging is superior to the mammography in the
facts: (1) Since having no radiation, ultrasound examination is more
convenient and safer than mammography for patients and radi-
ologists in daily clinical practice [11,13,16]. It is also cheaper and
faster than mammography. Thus, ultrasound is especially fit for the
low-resource countries in different continents [153]. (2) Ultrasound
is more sensitive than mammography for detecting abnormalities in
dense breasts, hence, it is more valuable for women younger than
35 years of age [11,14]. (3) There is a high rate of false positives in
mammography which causes a lot of unnecessary biopsies [10]. In
contrast, the accuracy rate of BUS imaging in the diagnosis of simple
cysts can reach 96-100% [9]. US imaging becomes one of the most
important diagnostic tools for breast cancer detection. However,
sonography is much more operator-dependent than mammography,
reading ultrasound image requires well-trained and experienced ra-
diologists. Even well-trained experts may have a high inter-observer
variation rate, therefore, computer-aided diagnosis (CAD) is needed
to help radiologists in breast cancer detection and classification [13].
Recently, several CAD approaches have been studied to minimize the
effect of the operator-dependent nature inherent in US imaging [15],
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Fig. 1. CAD system for breast cancer detection and classification.

and to increase the diagnostic sensitivity and specificity [13,16]. As
much as 65-90% of the biopsies turned out to be benign, therefore,
a crucial goal of breast cancer CAD systems is to distinguish benign
and malignant lesions to reduce FPs. Many techniques such as linear
discriminant analysis (LDA), support vector machine (SVM) and ar-
tificial neural network (ANN) [5,10,17,18,20] have been studied for
mass detection and classification. Most of the CAD systems need a
large number of samples to construct the models or rules, but [22]
proposed a novel diagnosis system requiring very few samples.

This survey focuses on summarizing the approaches for breast
cancer detection and classification utilizing BUS images. Generally,
the ultrasound CAD systems for breast cancer detection involve four
stages as shown in Fig. 1.

(1) Image preprocessing: The major limitations of BUS imaging are
the low contrast and interference with speckle [3]. The task
of image preprocessing is to enhance the image and to reduce
speckle without destroying the important features of BUS im-
ages for diagnosis.

(2) Image segmentation: Image segmentation divides the image into
non-overlapping regions, and it will separate the objects from
the background. The regions of interest (ROIs) will be allocated
for feature extraction.

(3) Feature extraction and selection: This step is to find a feature set of
breast cancer lesions that can accurately distinguish lesion/non-
lesion or benign/malignant. The feature space could be very large
and complex, so extracting and selecting the most effective fea-
tures is very important. Most of the reported effective features
are listed in Table 4.

(4) Classification: Based on the selected features, the suspicious re-
gions will be classified as lesion/non-lesion or benign/malignant
by various classification methods. The commonly used classi-
fiers are discussed in Section 5.

Some CAD systems do not have image preprocessing and image
segmentation components. In such a framework, only some texture
features obtained directly from the images or ROIs are used as inputs
of classifiers [13,16,20,22]. The advantage of such CAD system is its
simple structure and fast processing speed, and disadvantage is that
the features extracted directly from ROIs may not provide robust
and accurate performance.

At last, we need to measure the performance of CAD systems.
There is no a benchmark database of US images for comparing the
performance of the algorithms/CAD systems, and it makes the eval-
uation of different CAD systems very difficult or even impossible.
This indicates the necessity to build a benchmark BUS image base
accessible to the public.

2. Preprocessing

The preprocessing of BUS images consists of speckle reduction
and image enhancement. Speckle is a form of multiplicative noise

generated by a number of scatterers with random phase within the
resolution cell of ultrasound beam [33,34]. Ref. [29] has demon-
strated that the k-distribution is a good model for the amplitude
distribution of the received signal. A more generalized statistical
model, the homodyned k-distribution, has been analyzed in [30]. It
combined the features of the k-distribution and Rice distribution to
better account for the statistics of the signal. To detect speckles, the
parameters for the speckles should be estimated first. The speckle
parameters of the k-distribution model can be estimated based
on the moments [31]. An iterative method using the statistics of
ultrasound signal is proposed to find the parameters of the ho-
modyned k-distribution model [32]. Speckle makes the visual ob-
servation and interpretation difficult. Therefore, removing speckle
without destroying important features for diagnosis is critical. Some
speckle reduction techniques only work well on additive noise, and
logarithmic compression is often employed to convert multiplica-
tive noise into additive noise [33]. Image enhancement is used to
improve the quality of low contrast images. We will review speckle
reduction and image enhancement separately, however, many
techniques can achieve both goals at the same time.

2.1. Speckle reduction

Speckle reduction techniques are classified into three groups:
(1) filtering techniques [34-59]; (2) wavelet domain techniques
[60-79]; and (3) compounding approaches [80-83].

2.1.1. Filtering techniques
Most filters are traditional techniques in spatial domain and can
be categorized as linear and nonlinear filters.

2.1.1.1. Linear filters.

2.1.1.1.1. Mean filter. The mean filter [41,42] replaces each pixel
by the average value of the intensities in its neighborhood. It can
locally reduce the variance and is easy to implement. It has the effect
of smoothing and blurring the image, and is optimal for additive
Gaussian noise in the sense of mean square error. Speckled image is
a multiplicative model with non-Gaussian noise, and therefore, the
simple mean filter is not effective in this case.

2.1.1.1.2. Adaptive mean filter. In order to alleviate the blurring
effect, the adaptive mean filters [35-40] have been proposed to
achieve a balance between straightforward averaging (in homo-
geneous regions) and all-pass filtering (where edges exist). They
adapt to the properties of the image locally and selectively remove
speckles from different parts of the image. They use local image
statistics such as mean, variance and spatial correlation to effectively
detect and preserve edges and features. The speckle noise is removed
by replacing it with a local mean value. The adaptive mean filters
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outperform mean filters, and generally reduce speckles while pre-
serving the edges.

The Lee [36], Kuan [35] and Frost [37] filters are well-known ex-
amples of adaptive mean filters. They are based on the multiplicative
speckle model which can be represented as

1(6) = R(O)u(t)

where t = (x, y) is the coordinates of the current pixel, R(t) denotes

the intensity of the ideal image without speckle, I(t) is the observed

image intensity and u(t) is the speckle with mean # and variance o2.
The Lee and Kuan filters have the general form:

ROy =1(6) + [1(6) — I(0)] < W(t)

where R(t) is the output of the filter, I(t) and a,z(t) are the local mean
and variance of the intensities within the filter window, respectively.
W(t) denotes the coefficient function of the adaptive filter. The Lee
filter has a coefficient function defined as [38]
2
u
(o

a2 a2(t)
where (2 = 2—5 )= PI—(t)

W(t)=1-

62 and Z are the intensity variance and mean over a homogeneous
area of the image, respectively. Thus C2 can be considered as a con-
stant for a given image.

The coefficient function of Kuan filter is defined as [38]

1-C2/C(t)
W(t)= ——1—
1+C

From the formulations of the Lee and Kuan filters, the difference
between them is only a constant factor 1+ C2. So we could discuss
them together. In the homogeneous regions, C,z(t) — (2. Thus the
value of W(t) approaches 0, which makes the filters act like a mean
filter. On the other hand, in the areas where edges exist, C,z(t) — 00,
and the value of W(t) approaches 1, which tends to preserve the
originally observed image and makes the filters behave like an all-
pass filter.
The Frost filter can be represented as

Rxy)=>">"mx+iy+j) x (x + i,y +})
i

where i and j are the indices of the filter window and m is the
weighting function [38]:

m(x +1i,y +j) = Ko exp[-KC?(£),/i2 +j2] where t =(x,y)

where Kj is a normalizing constant, and K is a damping factor.

Frost filter has similar attributes as Lee and Kuan filters. The
damping factor K is chosen such that when in homogeneous regions,
I(C,z(t) approaches 0. Thus the value of m(x+i, y+j) approaches 1,
which makes the filter act like a mean filter; in the areas where
edges exist, I(C,z(t) becomes so large that the value of m(x+i, y+j)
approaches 0 for the pixels surrounding (x, ¥), and remains 1 for
the pixel (x, y). This makes the filter behave like an all-pass filter
preserving the originally observed image.

The classical Lee, Kuan and Frost filters are only reliable in a
bounded field. Ref. [38] enhanced the Lee and Frost filters by divid-
ing the image into three classes according to the local coefficient of
variation Cy(t). If Cj(t) is below a lower threshold, pure averaging is
used. All-pass filter is performed when C(t) is above a higher thresh-
old. When Cj(t) exists in between the two thresholds, standard Lee
and Frost filters are applied. The enhanced filters adequately aver-
age the homogeneous areas and preserve the edges better than the
standard filters. Ref. [45] proposed a directional adaptive mean filter
based on 2D texture homogeneity histogram to suppress speckles in
ultrasound images.

2.1.1.2. Nonlinear filters.

2.1.1.2.1. Order-statistic filter. Order-statistic filters are particu-
larly effective in reducing noise whose probability density function
has significant tail. The median filter [34,41,42] is a special case of
order-statistic filters. It preserves the edge sharpness and produces
less blurring than mean filter. Specially, it is effective when image is
affected by impulsive noise. Several researchers have experimented
with adaptive median filters which outperform the median filters
[43,46]. An adaptive weighted median filter (AWMF) was developed
to achieve maximum speckle reduction in uniform areas and to pre-
serve the edges and features [47]. The weighted median of a se-
quence {X;} is defined as the pure median of the extended sequence
which is generated by repeating each term X; by w; times. Here, {w;}
are the corresponding weight coefficients. The weight coefficients
are adjusted according to the local statistics as

w(i,j) = [W(K + 1,K + 1) — bda?/]

where b is a scaling constant, &t and ¢2 are the local mean and vari-
ance of the (2K+1)«(2K+1) window, d is the distance of the point (i,
j) from the center of the window at (K+1, K+1), and [x] denotes the
nearest integer to x if x is positive, or zero if x is negative. How-
ever, this algorithm uses an operator which can cause difficulties in
enhancing image features such as line segments. To overcome this
drawback, [48] applied a bank of oriented one-dimensional median
filters and retained at each point the largest value among all the fil-
ter bank outputs. The directional median filter suppresses speckle
noise while retaining the structure of the image, particularly, the
thin bright streaks.

2.1.1.2.2. MAP filter. Maximum a posteriori (MAP) filter [41,
49,50] estimates an unobserved signal x by maximizing Bayes
theorem:

flax)f(x)
fxiz)= W

where f(x|z) is the a posteriori probability density function, f(x) is
the denoised original signal model, f(z|x) is the maximum likelihood
term and f(z) is the model of the observed data. To utilize it, the
priori knowledge of the probability density function (PDF) of the
image is needed. The PDF is assumed to be Gaussian distributed in
[49]. Ref. [51] modified the MAP filter in [49] by assuming a gamma
and symmetric Beta distribution.

Comparisons of standard de-speckle filters (Fig. 2) with the adap-
tive MAP filter for ultrasound images are presented in [41]. MAP
Gauss denotes the MAP filter with Gaussian distribution assigned to
the original image, and MAP Pearlman Gauss denotes the MAP Gauss
filter using the adaptive windowing proposed in [154]. MDb1 is the
filter using Daubechies wavelets with Db1 basis. Contrast to speckle
ratio (CRS) is used to evaluate the performance and the results show
that the MAP Pearlman Gauss is the best among the filters being
compared.

2.1.1.2.3. Nonlinear diffusion. Nonlinear diffusion is actually an
adaptive filter, where the direction and strength of the diffusion are
controlled by an edge detection function. It can remove speckles and
enhance edges at the same time. It removes speckles by modifying
the image via solving a partial differential equation (PDE).

Ref. [52] proposed the nonlinear PDE for smoothing image in a
continuous domain:

I _ div[evi) - vi)

I(t=0)=1Iy

where V is the gradient operator, div is the divergence operator, ||
denotes the magnitude, c(x) is the diffusion coefficient and Iy is the
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Fig. 2. CRS values of phantom image using various filters [41].

original image. The diffusion coefficient function c(x) should mono-
tonically decrease, the diffusion decreases as the gradient strength
increases, and the diffusion is stopped across edges.

Anisotropic diffusion (AD) performs well with additive Gaussian
noise. However, edge estimation using gradient operator makes it
difficult to handle multiplicative noisy image. In order to eliminate
such disadvantage, Speckle Reducing Anisotropic Diffusion (SRAD) is
proposed particularly for envelope US images without logarithmic
compression [53]. In SRAD, the instantaneous coefficient of variation
servers as the edge detector in speckled images. The function ex-
hibits high values at edges and produces low values in homogeneous
regions. Thus, it ensures the mean-preserving behavior in the ho-
mogeneous regions, and edge-preserving and edge-enhancing at the
edges. Ref. [44] extended 2D SRAD to 3D SRAD to process 3D ultra-
sound images more efficiently. Nonlinear coherence enhancement
diffusion (NCD) is another method for handling speckle noise [33].
Unlike SRAD, NCD works with the US images after logarithmic com-
pression. It combines three different models. According to speckle
extent and image anisotropy, the NCD model changes progressively
from isotropic diffusion through anisotropic coherent diffusion to,
finally, mean curvature motion.

Diffusion stick method for speckle suppression is proposed in
[54]. It divides the traditional rectangular filter kernel into a set
of asymmetric sticks of variable orientations. The weighted sum of
averages along each stick is used to produce the filtered images.
Ref. [55] developed a multi-resolution median-anisotropic diffusion
interactive method. It used a two resolution level process to convert
speckle to quasi-impulsive noise. Then the low-resolution images
are processed by the median-anisotropic diffusion interactive algo-
rithm. The computational cost is lower than that of the conventional
AD schemes. In [56] a hybrid method is designed based on median
filtering, improved AD filtering and isotropic diffusion filtering. The
gradient matrix is analyzed, and the thresholds are chosen by ex-
periments. The hybrid method combines the three filtering methods
for three different grayscale gradient ranges, respectively.

The advantage of nonlinear diffusion is that the speckle reduction
is carried out directionally by the edge function and the edges are
enhanced. The disadvantage is that it relies on the diffusion flux to
iteratively eliminate the small variations caused by noise, and to
preserve the large variations caused by edges. For the multiplicative
noisy image, however, the general signal/noise relationship no longer
exists, since the variations caused by noise may be larger than those
caused by signal. Hence, it is not suitable for this case.

2.1.1.2.4. Other nonlinear filters. Geometric filter (GF) is a nonlin-
ear, iterative algorithm which changes the pixel values in a neigh-
borhood based on their relative values [34]. The geometric concepts
(convex, 8-Hull) and the algorithm were described in [57]. GF effec-
tively removes speckle noise while preserves important details. An
adaptive algorithm called aggressive region growing filtering (ARGF)
was proposed in [58]. It selected a filtering region in the image using

an appropriately estimated homogeneity threshold for region grow-
ing. Homogeneous regions are smoothed by applying an arithmetic
mean filter and edge pixels are filtered using a nonlinear median
filter. A directional line-matched filtering scheme was proposed in
[59]. It could detect and enhance the image features while suppress-
ing speckle noise.

The filter techniques are simple and fast, however, they have cer-
tain limitations as they are sensitive to the size and shape of the
filter window. If the window size is too large, over-smoothing will
occur. If the window size is too small, the smoothing capability of
the filter will decrease and the speckle noise cannot be reduced ef-
fectively. Considering window shape, the square window, which is
mostly adopted, will lead to corner rounding of rectangular features.
Some despeckling filters require thresholds which have to be esti-
mated empirically.

2.1.2. Wavelet domain techniques

The discrete wavelet transform (DWT) translates the image into
an approximation sub-band consisting of the scale coefficients and a
set of detail sub-bands at different orientations and resolution scales
composed of the wavelet coefficients [72]. DWT provides an appro-
priate basis for separating the noise from an image. As the wavelet
transform is good at energy compaction, the small coefficients more
likely represent noise, and large coefficients represent important im-
age features. The coefficients representing features tend to persist
across the scales and form spatially connected clusters within each
sub-band. These properties make DWT attractive for denoising. A
number of wavelet-based despeckling techniques have been devel-
oped. The general procedure is: (1) calculate the discrete wavelet
transform; (2) remove noise by changing the wavelet coefficients;
and (3) apply the inverse wavelet transform (IDWT) to construct
the despeckled image. The techniques are grouped as: (1) wavelet
shrinkage; (2) wavelet despeckling under Bayesian framework; and
(3) wavelet filtering and diffusion.

2.1.2.1. Wavelet shrinkage. The wavelet shrinkage is based on
thresholding the wavelet coefficients. It suppresses the coefficients
representing noise while retains the coefficients that more likely
representing image features. It is usually performed using one of
the two dominant thresholding schemes: hard thresholding and
soft thresholding.

Suppose the image in wavelet domain is represented as

0=S+n

where o is the observed wavelet coefficients, s is the noise-free com-
ponent and n is the additive noise. The wavelet shrinkage estimator
can be represented as

S=Ho
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where H denotes shrinkage factor. For the classical wavelet thresh-
olding rules, a threshold value T is defined and H is specified as fol-
lows. For hard thresholding

[0 ifjo|<T
H_{l iflo|=T

For soft thresholding

H:{?—T/w

if loj<T
if o|=T

where |o| denotes the absolute value of 0. Soft thresholding provides
smoothness when applied to an image while hard thresholding pre-
serves the features of an image. Applications of hard and soft thresh-
olding can be found in [61,62,73-75]. Most of them have focused on
developing the best uniform threshold. Adaptive thresholding which
makes threshold values adaptive to the spatially changing statistics
of the images has attracted more attention [76-77]. Adaptive thresh-
olding improves the performance by incorporating additional local
information such as the identification of edge into the despeckling
algorithm.

The drawback of thresholding methods is that the choice of the
threshold is usually done in an ad hoc manner.

2.1.2.2. Wavelet despeckling under Bayesian framework. An alter-
nate approach to the standard thresholding technique is employing
Bayesian rules [60,63-71]. It relies on the knowledge of the wavelet
coefficient statistics. This approach assumes that p is a random vari-
able with a given prior probability density function. Given a set of
wavelet coefficients g, the goal is to find the Bayesian risk estimator
p minimizing the conditional risk, which is the cost averaged over
the conditional distribution of p (denoted as Pp4(pIq)):

b(q) = arg min / Lip, B(@)1Ppig(plq) dp

where L is a cost function to be specified.

In [67], the two-sided generalized Nakagami distribution (GND)
is used to model the speckle wavelet coefficients, and the wavelet
coefficients are modeled by the generalized Gaussian distribution
(GGD). Combining these statistics priors with the Bayesian MAP
(maximum a posteriori) criterion, the algorithm can deal with either
envelope speckle image or log-compressed image. Ref. [69] designed
both the minimum absolute error (MAE) and the MAP estimators for
alpha-stable signal mixed in Gaussian noise. Ref. [64] extended
the approach [69] in two aspects: the use of bivariate alpha-stable
distributions to model the signal wavelet coefficients and the
use of oriented 2D dual-tree complex wavelet transform in the
multi-scale decomposition step. Ref. [70] employed a preliminary
detection of the wavelet coefficients representing the features of
interest to empirically estimate the conditional PDFs of the useful
feature coefficients and background noise. It has to be applied to
the original speckled image before log-compression. A speckle re-
duction algorithm is developed by integrating the wavelet Bayesian
despeckling technique with Markov random filed based image regu-
larization [71]. The wavelet coefficients are modeled by a two-state
Gaussian mixture model and their spatial dependence is charac-
terized by a Markov random field imposed on the hidden state of
Gaussian mixtures.

Most of the thresholding methods do not take into account the
specific properties of the image. Wavelet despeckling under Bayesian
Framework outperforms the thresholding methods by exploiting the
statistics of wavelet coefficients. The disadvantage of wavelet de-
speckling under Bayesian Framework is that it relies on prior distri-
butions of the noise-free image, however, in the real world, there is
no speckle-free US images since speckle is inherent in US images.

Table 1
Edge map FOM of various filters [155].

Noisy Lee Kuan Gamma Frost Geometric Oddy Wavelet
FOM(%)@ 0.9 61 64 6.2 282 183 109 381
L=19
FOM(%)@ 3.7 495 49.6 55.0 58.6 585 444 641
L=94

2.1.2.3. Wavelet filtering and diffusion. Besides thresholding, we
can use filtering or diffusion method in wavelet domain to reduce
speckle [78,79]. Wiener filtering is applied in the wavelet domain
[78]. The experimental results show that the approach performs
better than wavelet thresholding visually and quantitatively. Nor-
malized modulus-based nonlinear multi-scale wavelet diffusion
(NMWD) is proposed for speckle suppression and edge enhance-
ment [79]. The approach has more favorable despeckling properties
than that of nonlinear diffusion because the multi-scale representa-
tion gives more efficient signal/noise separation. It also outperforms
wavelet-based despeckling methods by taking the advantage of edge
enhancement inherited from nonlinear diffusion. Both the envelop
speckle image and log-compressed image can be directly processed
using this technique.

A study that compares different speckle filters in the image do-
main and wavelet domain is presented in [155]. It compared wavelet
coefficient shrinkage (WCS) filter and several standard speckle filters
(Lee, Kuan, Frost, Geometric, Kalman, Gamma, etc.) It calculates the
figure of merit (FOM) of the edge map to get a quantitative evalua-
tion of edge preservation and the results show that wavelet domain
filters preserve image details better (Table 1).

The disadvantage of wavelet-based despeckling methods is
that the time complexity is increased due to the DWT and IDWT
operations.

2.1.3. Compounding approaches

In compounding approaches, the image acquisition procedure has
been modified to produce several images of the same region that are
partially correlated or non-correlated, and averages them to form
a single image. There are two general methods for de-correlation
among the individual images. Spatial compounding is obtained by
generating each original image while the transducer is located at dif-
ferent spatial locations [80,81]. 3D spatial compounding is adopted
to reduce speckle in 3D ultrasound images [83]. Frequency com-
pounding is generated when the transducer operates at different fre-
quencies [82]. The compounding technique reduces speckle at the
expense of increasing the complexity of image registration and re-
construction.

Some speckle reduction methods are listed in Table 2.

2.2. Image enhancement

As stated at the beginning of the preprocessing section, many
methods enhance the image and remove speckle at the same time.
Nonlinear diffusion is such an example. It not only preserves edges
but also enhances edges by inhibiting diffusion across edges and al-
lowing diffusion on either side of the edges. Since we already re-
viewed those techniques in the previous section, now we will focus
on the algorithms merely for image enhancement.

Histogram equalization is used to enhance the contrast [13]. The
multi-peak generalized histogram equalization was proposed in [85].
It combined multi-peak histogram equalization with local informa-
tion to enhance the contrast. Ref. [86] proposed stick technique for
image enhancement. Sticks (line segments) in different orientations
are used as the templates and the orientation which is most likely
to represent a line is selected to improve edge information. This
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Table 2
Speckle reduction methods.

Method Description

Advantage Disadvantage

Filtering techniques [34-59]
the image to reduce speckles

Wavelet approaches [60-79]
noise by modifying wavelet coefficients

Compounding approaches [80-83] Average images obtained by varying scanning

frequency or view angle

Use moving window to convolve the filter with

Transform image to wavelet domain and remove

Simple and fast 1. Single scale representation is difficult
to discriminate signal from noise

2. Sensitive to the size and shape of the
filter window

DWT and IDWT computations increase

time complexity

1. In wavelet domain, the statistics
of the signals are simplified

2. Noise and signal are processed at
different scales and orientations
Simple Requires hardware support. Increases
time complexity by registration and
reconstruction

algorithm only enhances edges and the non-line features are not af-
fected. A contrast-enhancement algorithm based on fuzzy logic and
the characteristics of breast ultrasound images was proposed in [19].
It used the maximum fuzzy entropy principle to map the original
image into fuzzy domain and then the edge and textural informa-
tion were extracted to describe the lesion features. The contrast ratio
measuring the degree of enhancement is calculated and modified.
The defuzzification process is finally applied to obtain the enhanced
image. Experimental results show that the method could effectively
enhance the image details without over- or under-enhancement.

3. Segmentation

Image segmentation is a critical and essential component and
is one of the most difficult tasks in image processing and pattern
recognition, and determines the quality of the final analysis.

Segmentation [87] is a partition of the image I into non-
overlapping regions

Ul =1 and Iiﬂl‘=® i£j

Computer-aided diagnosis system will help radiologists in read-
ing and interpreting sonography. The goal for the segmentation is to
locate the suspicious areas to assist radiologists in diagnoses.

3.1. Histogram thresholding

Histogram thresholding is one of the widely used techniques for
monochrome image segmentation [87,88]. Histogram thresholding
was proposed for segmenting breast ultrasound images [89-92].
The algorithms [90,91] proposed for segmenting masses in US im-
ages involved the following steps: (1) preprocessing using cropping
and median filtering, (2) multiplying the preprocessed image with
a Gaussian constrain function, (3) determining the potential lesion
margins through gray-value thresholding, and (4) maximizing a
utility function for potential lesion margins. However, the center,
width and height of the lesions needed to be selected manually or
semi-manually.

Another thresholding algorithm [89,92] had four steps: First, the
regions of interest (ROIs) were preprocessed with a 4x4 median fil-
ter to reduce the speckle noise and to enhance the features. Sec-
ond, a 3x3 unsharp filter was constructed using the negative of a
two-dimensional Laplacian filter to emphasize the elements with
meaningful signal level and to enhance the contrast between object
and background. Third, the ROIs were converted to a binary image
by thresholding. The threshold was determined by the histogram
of ROIs. If a valley of histogram between 33% and 66% of the pixel
population could be found, this intensity value was selected as the
threshold. If there was no such valley in that range, the intensity of
50% pixel population was selected as the threshold value. Finally, the
selected nodule’s boundary pixels were obtained using morphologic
operations.

Ref. [93] adopted an automatic threshold method [94] to obtain
the initial image for the gradient vector flow (GVF) snake to locate the
tumor contour. The thresholding method is too simple and primitive,
and does not perform well for the images with histograms that are
unimodal.

3.2. Active contour model

The active contour model, more widely known as snake [95], is
a framework for delineating an object outline from a possibly noisy
2D image, and has been massively used as an edge-based segmen-
tation method. This approach attempts to minimize the energy as-
sociated with the current contour as the sum of the internal and
external energies. The snake model modifies its shape actively and
approximates the desired contour. During the deformation process,
the force is calculated from the internal energy and external energy.
The external energy derived from image feature energy is used to
extract the contour of the desired object boundary. The internal en-
ergy derived from the contour model is used to control the shape
and regularity of the contour [95].

The snake model has been extensively used for US images
[93,96-100]. The active contour model was applied to a 3D ultra-
sonic data file for segmenting breast tumor [93,96], and a snake
technique was used to obtain the tumor contour for pre- and
post-operative malignant breast excision [93].

Combining intensity and texture with empirical domain-specific
knowledge and directional gradient, a deformable shape-based
model [97] was studied to find lesion margins automatically. A
formulation of the empirical rules used by radiologists in detecting
ultrasonic breast lesions was employed to automatically determine
a seed point in the image. Followed by region growing to obtain
an initial segmentation of the lesion, image pixels were classified
according to the intensity and texture. Boundary points were found
using the directional gradient of the image. These boundary points
were supplied as the initial estimate to a deformable model. No
manual initialization of the contour was required. The directional
gradient of the image was used as the stopping criterion.

Level set method is employed to improve the active contour
segmentation for ultrasound images. Ref. [98] discussed a level set
maximum likelihood method to achieve a maximum likelihood seg-
mentation of the target. The Rayleigh probability distribution was
utilized to model gray level behavior of ultrasound images. A partial
differential equation-based flow was derived as the steepest descent
of an energy function taking into account the density probability
distribution of the gray levels as well as smoothness constraints. A
level set formulation for the associated flow was derived to search
the minimal value of the model. Finally, the image was segmented
according to the minimum energy.

The methods based on snake-deformation model were used to
handle only the ROIs, not the entire image. Automatically generating
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a suitable initial contour is very difficult, and the snake-deformation
procedure is very time-consuming.

3.3. Markov random field

Ultrasound image segmentation can be considered as a labeling
problem where the solution is to assign a set of labels to pixels, which
is a natural representation for Markov random fields. Markov random
field model has been used for US image segmentation [101-107].
The algorithm alternatively approximates the maximization of the
posterior (MPM) estimation of the class labels, and estimates the
class parameters. Markov random field model deals with the spatial
relations between the labels obtained in an iterative segmentation
process. The process assigning pixel labels iteratively can be achieved
by maximizing either a posteriori estimation or posterior marginal
estimation.

The algorithms based on Markov random field (MRF)/Gibbs ran-
dom field (GRF) [101] was adopted to segment US images. The
Metropolis sampler approach was used, and a new local energy was
defined.

The new local neighboring energy is

Un-4(Xij) = Upocai(Xij1Yn;;) + Utocar(Xi-1,jIYN; ;)
+ UIOCUI(X”UWNM‘;) + Ulocal(Xij11 YN )
+ Upocar(Xij-1 YN )

where Upocai(XilYn;; ) Utocat(Xi—141YN;_1; ) Utocat(Xi11,i1YN;, 1 ) Utocar(Xij 11
YN, ) and Upeai(Xij_11yn,;_, ) are the local energies of site x;, and its
four first order neighbors, X;_1j, Xiy1;, Xij+1, and x;;_1.

Then, AU can be represented as

AU = U_4(x];) — Un_a(x;))

where X;J is accepted as a new label of site x;;, U(x) is the global
energy of each configuration.

The newly defined local energy can fit into the Metropolis sampler
algorithm AU. The Expectation-Maximization (EM) method is used
for parameters estimation of each class.

Ref. [103] used a combination of the maximum a posteriori and
Markov random field to estimate the US image distortion field fol-
lowing a multiplicative model while labeling image regions based
on the corrected intensity statistics. The MAP was used to esti-
mate the intensity model parameters while the MRF provided a
way of incorporating the distributions of tissue classes as a spatial
smoothness constraint.

A segmentation algorithm for breast lesion was based on
multi-resolution texture adaptive clustering [104], which improved
the algorithm in [108] by using a new energy function to measure
textural properties of various tissues. The segmentation problem
was formulated as a maximum a posteriori estimation problem.
The MAP estimation utilized Besag’s iterative conditional mode al-
gorithm for minimizing an energy function constraining the region
to be close to the data, imposing spatial continuity and considering
the texture of various regions. However, the input images for this
algorithm were only ROIs.

Ref. [105] used a Markov random field to model the region pro-
cess and to focus on the adaptive characteristics of the algorithm.
It introduced a function to control the adaptive properties of the
segmentation process, and took into account both local and global
statistics during the segmentation process. A new formulation of the
segmentation problem was utilized to control the effective contri-
bution of each statistical component.

Ref. [106] combined EM (expectation maximization) for hyper-
parameter estimation and MPM (maximization of posterior
marginals), and extended the EM/MPM framework to 3D by includ-
ing pixels from neighboring frames in the Markov random field

clique. However, there were many noisy spots in the segmentation
results, and the algorithm was quite time-consuming.

The merit of MRF modeling is that it provides a strong exploitation
of the pixel correlations. The segmentation results can be further
enhanced via the application of maximum a posteriori segmentation
estimation scheme based on the Bayesian learning paradigm [102].
However, its iteration process is complex and time-consuming.

3.4. Neural network

Neural network (NN) based methods [11,109,110] are popular
in image segmentation, which transform the segmentation problem
into classification decision based on a set of input features.

In [109], a NN approach was combined with wavelet analysis for
US image segmentation. A multi-layered perceptron (MLP) neural
network having one hidden layer was designed with variance con-
trast and auto-correlation contrast as input features, and trained by
error back propagation.

A study [110] integrated neural network classification and mor-
phological watershed segmentation to extract the contours of breast
tumors. Textural analysis was employed to find the inputs for the NN.
Watershed transformation automatically determined the contour of
the tumor. However, how to select the training set was problematic,
and training a NN was time-consuming.

A Bayesian neural network (BNN) with five hidden units and an
output node were employed for segmentation and detection [11]
where input features were the depth-to-width ratio, the radial gradi-
ent index (RGI) value, texture, and posterior acoustic behavior of the
suspected lesion. At first, a radial gradient index filtering technique
was used to locate the ROIs and their centers were documented as
the points of interest, and a region growing algorithm was used to
determine candidate lesion margins. The lesion candidates were seg-
mented and detected by the BNN. However, the algorithm would
fail if the lesion was not compact and round-like. In addition, the
appropriate number of hidden units for the neural network was de-
termined empirically.

In order to compare different segmentation methods clearly, de-
scriptions, advantages and disadvantages of different methods are
discussed briefly in Table 3.

4. Feature extraction and selection

Feature extraction and selection are important steps in breast
cancer detection and classification. An optimum feature set should
have effective and discriminating features, while mostly reduce
the redundancy of feature space to avoid “curse of dimensionality”
problem. The “curse of dimensionality” suggests that the sampling
density of the training data is too low to promise a meaningful
estimation of a high dimensional classification function with the
available finite number of training data [111]. For some advanced
classification methods, such as artificial neural network and support
vector machine, the dimension of feature vectors not only highly
affects the performance of the classification, but also determines the
training time of the algorithm. Thus, how to extract useful features
and make a good selection of the features is a crucial task for CAD
systems.

The features of breast US images can be divided into four cate-
gories: texture, morphologic, model-based and descriptor features.
We summarize and list the typical and effectiveness-proved features
in Table 4. Certainly, one cannot use all of them at the same time.
Extraction and selection of effective features is a necessary step.
The general guidelines for selecting significant features mainly in-
clude four considerations: discrimination, reliability, independence
and optimality [112]. However, simply combining the best per-
formed features will not definitely make the systems work well and
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Table 3
Summary of segmentation approaches.

Methods Descriptions

Advantages

Disadvantages

Histogram thresholding
method [89-92]
Active Contour model

Threshold value is selected to segment the
image
Snake-deformation mode is utilized

[93,96-100]

MRF [101-106] It estimates US image distortion field fol-
lowing a multiplicative model while label-
ing image regions based on the corrected
intensity statistics

NN [109,110] Segmentation is regarded as a classification

task

Simple and fast

It could extract lesion with different
shape and keep the boundary correctly
Precise and accurate

No good results for images with non-
bimodel histograms
Slow in the iteration speed

It extracts the contours of tumors auto-
matically

Complex and time-consuming for many
iterations

How to select the training set is prob-
lematic, and training is time-consuming
and depending on the image database

effectively. The goal of feature extraction and selection is to maxi-
mize the discriminating performance of the feature group.

4.1. Texture features

Most of the texture features are calculated from the entire image
or ROIs using the gray level values. FT1 (auto-covariance coefficient)
is a basic and traditional texture feature which can reflect the inner-
pixel correlation within an image. FT2 (BDIP)-FT3 (BVLC) measure
the variation of intensities and texture smoothness, respectively. The
higher value of BDIP is, the larger the variance of intensities in a
block is, and the larger BVLC value indicates that the ingredients
in the block are rough [20]. Both the first and second order of FT2
and FT3 can be used as the features too. FT4 is defined as the ra-
tio of the variance, auto-correlation coefficients or intensity average
inside the lesion to that outside the lesion. The larger the ratio is,
the lower the possibility of the tumor being malignant is. FT5 is de-
fined as the summation of differences among the real distribution of
wavelet coefficients in each high-frequency sub-band and distribu-
tion of the expected Laplacian distribution. This feature can reflect
the margin smoothness. FT6 is an order statistics-based feature vec-
tor extracted from wavelet decomposition sub-bands. After 3rd level
wavelet decomposition, the length (length = 20) of order statistics
filter is chosen based on Monte Carlo simulation and Akaike’s final
prediction criterion. Twenty mean values and 20 variance values of
order statistics parameters for the 12 wavelet coefficient bands were
calculated and formed 480-D feature vectors [116]. The dimension
of the feature vector was reduced from 480-D to 7-D by using fea-
ture analysis. The stepwise feature selection method or PCA could
be a better choice for reducing the feature dimensionality. FT7 and
FT8 are defined as

CON =y (i —j)*p(i.j)
ij

and
> ijp(i, j) — mymy

where p(i, j) is the probability that two pixels with gray value i and
gray value j are in a fixed distance apart, and

my=Y iy pij), my=)"jy p(ij)
i j j i

S2=Y"iy plij)-mi S}=>jY plij)-m3
i j j i

Another way to define FT7 is CON = E{I(i,j) - I(i + Ai,j + Aj)}, where
I(i,j) is the gray value at position (i,j) and (Ai, Aj) is the dis-
tance between two pixels. By the same notation, FT9 is defined as
Diss = E{I(i,j) — I(i + Ai,j + Aj)}. FT10 is defined as Npon-zero/Nai,
where Npon-zero 1S the number of pixels having non-zero average

COR =

gradients and N, is the total number of pixels in the region. FT7,
FT8 and FT10 were features labeled with strong distinguishing abil-
ity in [139]. FT11 is calculated from the minimal rectangular ROI
containing the lesion:

Ng—1 =

cor= Y o)
n=0 CY(O)

where

o Mg—1 Ng—1-n

G(n)= Y ¢(mn), G(mn)= > P(mn+p)(m,p)
m=0 p=0

Mp is the number of pixels in the lateral direction of the ROI and Ng
is the number of pixels in the depth direction of the ROI, and I is the
gray level value matrix of the ROL Because COR is a sum, it includes
not only the texture information but also the size information.

Based on understanding of the posterior acoustic behavior or pos-
terior shadow, different numeric expressions are proposed to calcu-
late FT12. In [90], three ROIs were defined whose width and depth
were the same as the ROI contains the lesion itself. As Fig. 3 shows,
the post ROI represents the posterior region of the lesion and the
right ROI and left ROI are adjacent tissues at the same depth of the
post ROL The narrow blank boundaries are used to avoid the edge
shadows. Finally, the minimum side difference (MSD) is defined as:
MSD = min(Apost — Aleft, Apost — Aright), Where Apost, Aright and Aleg: are
the average gray-level values of the corresponding ROIs. In [131],
another method to calculate posterior shadow was proposed. First a
skewness image is built by

(I(x.,y) —1(x,y))

3

1
Skew(x,y) = N > =

(xy)eA

where A is a specified region centered at point (x, y), I(x',y’) is the
gray value in the original image, N is the total number of data points
in region A and g4 is the standard deviation of the gray values in
area A. The skewness image is filtered with a threshold to get the
detection points, i.e., the shadow. In [25], the posterior shadow was
defined as the difference between the gray scale histograms of the
regions inside the lesion and posterior to the lesion. For the same
characteristic of breast lesions, we can use different ways to define
the numeric expressions. To find more accurate and efficient expres-
sions should be one of the future works.

FT13 is the Boltzmann/Gibbs entropy over the gray scale his-
togram relative to the maximum entropy. The higher the entropy
is, the more homogeneous the lesion is. FT15-FT16 are well-known
texture features which have already been well defined. However,
they are not frequently used in recent US image characterization.
This may be due to their high computation cost. The definition of the
fractal dimension (FT17) is similar to the Hausdorff dimension [137].
Informally, the dimension d can be calculated by N = s?, where N is
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Table 4
Features.

Feature category Feature description

Texture features FT1: Auto-covariance coefficients [3,13,16,20,22,125-127,132-134]

FT2: Block difference of inverse probabilities (BDIP) [20]

FT3: Block variation of local correlation coefficients (BVLC) [20]
FT4: Variance, auto-correlation, or average contrast [18,109,120]

FT5: Distribution distortion of wavelet coefficients [109]

FT6: Mean and variance of the order statistics after wavelet decomposition [116]

FT7: Contrast of grey level values [22,132,134,139]
FT8: Correlation of the co-occurrence matrix [139]
FT9: Dissimilarity [22,132,139]

FT10: Relative frequency of the edge elements [139]

FT11: Auto-correlation in depth of R (COR) [11,90,113,129,130,140,141]
FT12: Posterior acoustic behavior, minimum side difference (MSD) or posterior acoustic shadow [9,11,25,90,113,117,129,130,140,141]

FT13: Homogeneity of the lesion [25]

FT14: Standard deviation of gray value and its gradient of the lesion [129]
FT15: SGLD matrix based features: correlation, energy, entropy, sum entropy, difference entropy, inertia and local homogeneity [16,21,24]
FT16: GLD matrix based features: contrast, mean, entropy, inverse difference moment and angular second moment [16]

FT17: Fractal dimension and related features [21,150]

Morphologic features FM1: Spiculation [18,119,141]

FM2: Depth to width ratio (or width to depth ratio) [9,10,11,18,90,113,114,119,121,136,140-143]

FM3: Branch pattern [18,119]

FM4: Number of lobulations [18,25,119,141,152]
FM5: Margin sharpness [17,123,129,130]

FM6: Margin echogenicity [17,123]

FM7: Angular variance in margin [17,123]

FM8: Number of substantial protuberances and depressions (NSPD) [10]

FM9: Lobulation index (LI) [10]

FM10: Elliptic-normalized circumference (ENC) [10]
FM11: Elliptic-normalized skeleton (ENS) [10]
FM12: Long axis to short axis ratio (L:S) [10]
FM13: Area of lesion [10,25,143]

FM14: Normalized radial gradient (NRG) along the margin [11,90,113,114,129,130,140,141]

FM15: Margin circularity [25]

FM16: Degree of abrupt interface across lesion boundary [152]

FM17: Angular characteristic [152]

Model-based features FB1: fic, fis, and f,,, of PLSN model [122,144]2

FB2: m and Q of Nakagami model based features [120,122]2
FB3: Single and combined parameters of GS model [122]
FB4: binverse and M of K distribution model based features [120]2

FB5: Normalized skewness K [124]

FB6: Signal to noise ratio of the envelope 7 [124]
FB7: Normalized spectral power « [124]

FB8: Margin strength [124]

FB9: Quality of margin f [120,124]

FB10: Speckle factor [84,118]

Descriptor features

FD1: Non-circumscribed or spiculated margins [9,14,115,119,121,135,136,138,142,143]

FD2: Shape (round, oval or irregular) [9,14,115,119,121,135,136,138,142]

FD3: Presence of calcifications [9,119,115,135,136]

FD4: Posterior shadow or posterior echo [119,121,135,136,142]
FD5: Decreased sound transmission or acoustic transmission [14]

FD6: Echogenicity [14,121,135,136,142]

FD7: Heterogeneous echo texture [115,121,135,136,143]

FD8: Duct extension [119]
FD9: Thickened cooper ligaments [143]
FD10: Antiparallel orientation [14,135,138]

FD11: Distortion, echogenic halo or rim of surrounding tissue [14,136]

FD12: Bilateral refraction sign [121]
FD13: Microlobution [119,136]

the number of similar pieces, s is the magnification factor, and d is
the “dimension” of the scaling law, known as the Hausdorff dimen-
sion, and the fractal dimension-based features are verified to be the
valuable features [21].

4.2. Morphologic features

Unlike texture features extracted from the rough ROIs, the mor-
phologic features focus on some local characteristics of the lesion,
such as the shape and margin.

In the polar coordinates (r,0), each boundary pixel is represented
as r(0) and FM1 (spiculation) is the ratio of low-frequency compo-
nent (area under the graph |R(w)| from 0 to n/4) to high-frequency
component (area under the graph |R(w)| from 7/4 to «), where |R(w)|
is the Fourier transform of r(0) and the cutoff frequency 7/4 was
experimentally chosen [18]. The larger the value is, the lower pos-
sibility of the tumor being malignant is. FM2 is one of the most
effective distinguishing features mentioned in many papers. Ma-
lignant lesions tend to have the ratio bigger than 1 while benign
lesions usually have the ratio smaller than 1. FM3-FM4 are the
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Fig. 4. ROC curves of classification using five features [18].
Table 5

Quantitative margin features comparison [123].

Cases Margin sharpness  Margin echogenicity ~ Angular variance
Benign 73.7 £ 10.0 229+ 132 0.39 +0.13
Malignant 66.5 + 12.0 148 + 7.7 0.27 + 0.06

P (2-tailed t-test) 0.027 0.0048 0.000009

Values are mean + SD.

numbers of local extremes in the low-pass-filtered radial distance
graph and the curve-fitted radial distance graph, respectively. Ma-
lignant lesions tend to have higher value of FM3 or FM4. The ROC
curves of classification using FM1-FM4 are compared in Fig. 4. For
FM5-FM7, the lesion is divided into N sectors, and in each sector,
the mean gray levels of the pixels in the inner and outer shells are
compared. By using a user-defined threshold, some of the sectors
are chosen distinctly. The margin sharpness is calculated as (num-
ber of distinct sectors)+100/N. Margin echogenicity is the mean gray
level difference of the inside and outside of the sector. Angular vari-
ance in margin is the ratio SD/mean for the difference in the mean
gray level of the inside and outside of each sector. All of the above
three features are proved to be significantly different by Student t-
test when they are used to distinguish benign and malignant lesions
[123]. Table 5 summarizes the mean =+ SD and p values of the three
features.

FM8-FM12 are newly proposed morphologic features [10]. As
shown in Figs. 5 and 6, a breast lesion is delineated by a convex hull

convex hull .
IES 1on.contour

6" '.‘“'# T
N S
A

4— depressions

protuberances

Fig. 5. Convex hull of a lesion (FM8) [10].

Fig. 6. Concave hull of a lesion (FM8 and FM9) [10].

and concave polygon. Given a threshold angle of 0 (0 € {20°, 30°, 40°,
50°, 60°}), let A={A1,42,..., 4p} and Q= {w1, 3, ..., wp} denote the
set of representative convex and concave points of a lesion boundary,
respectively, where p and d are the numbers of points in each set.
Thus, the NSPD is defined as p+d. Ideally, a malignant breast lesion
has a larger NSPD. FM9 (L) is defined as (Amax —Amin)*N/>_ Ai where
Amax and Amin are the sizes of maximum and minimum lobes as
illustrated in Fig. 6 and N is the total number of the lobes. LI is an
effective complement of NSPD, and can correctly characterize the
benign lesions with multiple large lobes of similar sizes which are
easily to be misclassified by NSPD [10]. FM10 (ENC) is defined as the
circumference ratio of the lesion to its equivalent ellipse (Fig. 7), and
it represents the anfractuosity of a lesion which is a characteristic of
malignant lesions. FM11 (ENS) is defined as the number of skeleton
points normalized by the circumference of the equivalent ellipse
of the lesion. The calculation cost of this feature is relatively high.
Same as FM10, a malignant lesion tends to have a higher value of
FM11. These four features capture mainly the contour and shape
characteristics of the lesion. FM12 (L:S) is the ratio of the long- to
short-axis, where the long and short axes are determined by the
major and minor axes of the equivalent ellipse. Therefore, L:S ratio
is different from the traditional depth/width ratio (FM2) because
it is independent of the scanning angle. For both FM12 and FM13
(lesion area), clinically, the larger the value is, the lesion is more
likely malignant. Among the five newly proposed features (FM8-12),
NSPD is proved to be the most important feature, and NSPD, LI, ENS
and ENC are better than lesion size, L:S ratio and depth/width ratio.
FM14 is used to measure the average orientation of the gray level
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Fig. 7. Equivalent ellipse of a lesion (FM10 and FM11) [10].

gradients along the margin. The formula for FM14 is

X VICG.y) - H (%)

NRG ya
ijo IVI(x;, y;)ll

where VI is the gradient image computed using Sobel filter, ] is the
number of points on the margin and #(x;,y;) is the unit vector in the
radial direction from the geometric center to the point (x;, y;). FM15
is defined as the standard deviation of the normalized distances of
every boundary point to the ROI's geometric centers [25]. A high
value of FM15 is a sign of malignancy. FM16 and FM17 are proved
to be two important features in [152]. To define FM16 and FM17, a
distance map should be first calculated. For each pixel in the image,
its value in the distance map is defined as the shortest distance from
the pixel to the lesion boundary. FM16 is designed to estimate the
degree of abrupt interface across the lesion boundary. The formula
is LBp = avgrissue — AV&Mass,

k
Zt,flis(n):ll(n)
NTissue

k
Z;lis(n)ﬂ I(n)

aVgrissue =
N Mass

»  AUEMass =

where I(n) is the gray level value of pixel n, dis(n) is the value of
pixel n in the distance map, Nrjse iS the number of pixels in the sur-
rounding tissue and Ny is the number of pixels in the outer mass.
Both the surrounding tissue and outer mass areas are composed of
pixels whose distances to the lesion boundary are no more than k
in the distance map. Width k was set to 3 in [152]. The likelihood of
malignancy was decreased as the increasing of FM16. FM17 (angular
characteristics) is defined as the sum of numbers of local maxima in
each lobulate area [152]. Fig. 8 displays an example of lobulate areas.
By the maximum inside circle, some lobulate areas are partitioned
from the mass. Some small lobulate areas with maximum distance
< 4 are discarded. For the remained lobulate areas, the local max-
ima in each lobulate area are grouped as follows: when a new local
maximum is discovered, the Euclidean distance from it to the center
of the grouped local maxima is calculated. If the distance is larger
than a predefined threshold, this local maximum is regarded as a
new grouped local maximum. At last, the total number of local max-
ima in the lobulate areas represents the angular characteristics. In
[152], the predefined threshold was set to 10. The larger the value
is, the lesion is more likely malignant.

4.3. Model-based features

Model-based feature is a special type of US features which focuses
on the backscattered echo from the breast tissue. Different models

lobulate areas

Fig. 8. Maximum inner circle and lobulate areas of a lesion [152].

are developed to simulate the echo of the backscattered envelope.
Once a model is chosen and the echo is modeled, the parameters
of the model can be used as the features to distinguish malignant
and benign lesions. The models have been used for breast cancer
diagnosis including power-law shot noise (PLSN) model, Nakagami
model, K distribution model and generalized spectrum (GS) model.
Comparing with texture features and morphologic features, the ad-
vantages of model-based features are that they are not influenced by
the experience of the radiologists, and not influenced by the ways
in which the images are collected. They are operator- and machine-
independent [120]. The disadvantage of model-based features is that
the background of the models is quite complex and the estimation
of the parameters is very complicated as well.

4.4. Descriptor features

Descriptor features are easier to understand because they are ac-
tually the empirical classification criteria of the radiologists. Most of
them are descriptive and have no numeric expressions. The reason
we list this type of features is that some of the useful features for
current CAD systems are transferred from the descriptor features.
There are still useful descriptor features that have not been trans-
ferred to numeric expressions, and cannot be used in CAD systems.
In this subsection, we have chosen the most frequently used de-
scriptor features which are proved to be effective in distinguishing
benign and malignant lesions. Except FD2 and FD12, all the listed
descriptor features are malignant characteristics.

FD1 and FD2 are the most powerful features to characterize ma-
lignant lesions. For FD2, oval or round shape is a sign for benign
and “taller than wide” or other irregular shape is a sign for malig-
nancy. FD3 describes calcifications or microcalcifications in the le-
sion. FD4 is called posterior shadow or posterior echo, and it focuses
on the region posterior to the lesion ROI which has darker gray value
than that of the surrounding. FD5 is defined as the shadow effect
of surrounding tissues. FD6 works well for differentiating large tu-
mors but not small tumors. FD7 is an argumentative feature. This
might be caused by the subjective nature of this feature so that an
accurate numeric expression of FD7 is needed. FD8 is a projection
from the nodule that extends radially within or around a duct and
toward the nipple [119]. FD9 represents thickened suspensory liga-
ments of the breast which tend to stretch over time. FD11 describes
the echogenicity of the surrounding tissue of the tumor. FD12 is an
acoustic phenomenon that mostly occurs in benign tumors. FD13 is
recognized by the presence of many small lobulations on the surface
of the solid lesion. Most of these descriptor features are included in
the Breast Imaging Reporting and Data System (BI-RADS) [146].
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4.5. Other features

Sometimes, other information can be integrated to help the di-
agnosis. Patient’s age is proved to be an effective feature to diagnose
malignancy [14,17,122,123]. Also, family disease history is another
useful feature for the diagnosis.

4.6. Reduce feature space dimension

With so many features available, the crucial task is to find an
optimal set of features with relative low dimension. The feature ex-
traction transforms the coordinate system to improve a determined
goal; whereas feature selection only reduces the dimensionality, i.e.,
does not change the coordinate system of the data [156].

4.6.1. Feature extraction

Feature extraction, linearly or nonlinearly, transforms the coor-
dinate system of the original variables [156]. The most well-known
feature extraction technique is principal component analysis (PCA).
PCA performs on the symmetric covariance matrix or symmetric cor-
relation matrix, and solves the eigenvalues and eigenvectors of the
matrix. PCA is good at reducing the high dimensional correlated fea-
tures into low dimensional features. The feature vector of the auto-
covariance coefficients can be optimized by PCA effectively [13,16].
Other feature extraction techniques such as factor analysis (FA) [162],
independent component analysis (ICA) [158], and discriminant anal-
ysis (DA) [159] can also be used to reduce the feature dimension.

4.6.2. Feature selection

Generally, algorithms for feature selection can be categorized into
two classes: wrapper and filter. Filter approach (such as FOCUS and
Relief algorithms [157]) selects features using a preprocessing step
and does not take into account the bias of induction algorithms. On
the contrary, to search for a good subset of the features, wrapper
approach uses the induction algorithm as a part of the evaluation
function. Ref. [157] provided detailed explanations and summaries
of these two classes of feature selection algorithms. As the wrapper
approach has obvious advantages over filter approach, especially for
complex feature data set, wrapper approach has more applications
in breast cancer detection [9,21,113,114]. For example, [114] applied
a wrapper approach (linear stepwise feature selection) to a feature
set composed of 15 sonographic features of breast cancer and found
that the two most significant features were the average orientation
of gray level gradients along the margin and depth-to-width ratio.

5. Classifiers

After the features have been extracted and selected, they are in-
put into a classifier to categorize the images into lesion/non-lesion
or benign/malignant classes. Majority of the publications focuses on
classifying malignant and benign lesions (usually called lesion clas-
sification), and some of the articles focus on classifying lesions and
non-lesions (usually called lesion detection), and only a few of them
focus on both. Lesion detection is necessary before lesion classifi-
cation. We summarize the different classifiers commonly used in
breast cancer detection and classification in Table 6.

5.1. Linear classifiers

Frequently used linear classifiers for breast cancer detection and
classification are linear discriminant analysis [160] and logistic re-
gression (LOGREG) [161]. The main idea of LDA is to find the linear
combination of the features which best separate two or more classes
of the data. If there are n classes, and LDA classifies the data by the

following linear functions:
1 .
fi=wC'x - j#iC_IHiTJrlﬂ(Pi)y 1=i=n

where

n; is the number of samples in the ith class, N is the number of total
samples, y; is the mean of class i, and G is the covariance matrix of
class i.

The above parameters can be obtained from the training data.
When a new data x; is in, it is assigned to class i with the highest f;.

Logistic regression is a model for predicting the probability of
an event occurring as a function of other factors. The probability of
X =X1,X2, ..., Xy is formulated as

. P .
logit(P) = log s— = bo + > bix;
-1

where by, ...,bn are model parameters which could be estimated
from the training data. When LOGREG is used to classify two-class
problem, for each feature vector x;, threshold = 0.5 is used to decide
which class X belongs to.

In [90], LDA was applied to the data set of 400 cases with four au-
tomatically extracted features. The average A, under ROC curve was
0.87 over eleven independent trials. In [123], LOGREG was used to
determine the probability of malignancy in a database of 58 cases.
Three margin-based features were evaluated and the area under
the ROC curve with the best feature combination of age, margin
echogenicity and angular variation was 0.87 + 0.05. Here, we can see
that the performances of LDA and LOGREG are not high because the
classifiers are linear, and for nonlinear separable data, the methods
have intrinsic limits.

5.2. Artificial neural networks

Artificial neural networks are the collection of mathematical
models that imitate the properties of biological nervous system and
the functions of adaptive biological learning [2]. It is a self-learning
system that changes its parameters based on external or internal
information that flows through the network during the learning
phase. ANN is composed of an input layer, an output layer and
one or more hidden layers. Layer is composed of neurons. In the
field of breast cancer detection and classification, three types of
artificial neural networks are frequently used: Back-propagation
neural network, self-organizing map (SOM) and hierarchical ANN
[10,17,18,109,125-127].

5.2.1. Back-propagation neural network

Back-propagation (BP) neural network is a feed-forward ANN
with supervised learning process. Frequently used back-propagation
neural networks have one or two hidden layers and 2-10 neurons in
each layer. There is no universal rule to decide the number of layers
or number of neurons in each layer. In [10], a BP neural network was
used in the proposed CAD and the result was compared with that in
[125]. The CAD in [10] achieved A, = 0.959 + 0.005 with the selected
morphologic features and outperformed the one in [125]. Ref. [150]
combined K-means classification with BP neural network. K-means
classification was used to select training samples for BP neural net-
work and only those samples within a distance to the cluster center
would be used for training. The performance of back-propagation
neural network is better than that of linear classifiers. However, the
training process is stochastic and unrepeatable even with the same
data and same initial conditions.
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Table 6
Classifiers.
Classifier Features used Advantage Disadvantage

Linear classifiers: Construct decision
boundaries by optimizing certain crite-
ria: LDA and LOGREG [9,90,116,120,121,
122,123,124,139,143,152]

ANNs: Construct nonlinear

mapping functions: Back-propagation,
SOM and

hierarchical ANN [10,16,17,18,109,125,
126,127,150]

BNN: A probabilistic approach to esti-
mate the class conditional probability
density functions [11,129,130,141]
Decision tree: A tree structure with clas-
sification rules on each node [22,132]
Support vector machines: Map the input
data into a higher dimension space and
seek an optimal hyperplane to separate
samples [3,20,21,25,133]

Template matching: Uses retrieval
technique to find the most alike image
in the database and assign the query
image to the class of the most alike
image [13,16,134]

Human classifiers: Physicians/
radiologists, use empirical criteria to
classify US images [14,115,135,136,

Text features (FT6-FT8, FT10, FT12),
morphologic features (FM2, FM5-FM7,
FM14), descriptor features (FD1-FD4,
FD6-FD7, FD9, FD12)

Texture features (FT1, FT4, FT5),
morphologic features (FM1-FM4,
FM8-FM13)

Texture features (FT11, FT12, FT14),
morphologic features (FM2, FM5, M14)
Texture features (FT1, FT7, FT9)

Text features (FT1-FT3, FT12, FT13),

morphologic features (FM4, FM13, FM15)

Texture features (FT1, FT7, FT9,
FT15, FT16)

Descriptor features (FD1-FD14),
morphologic features (FM2)

Simple and effective for linearly
separable data

Robustness, no rule or explicit expres-
sion is needed, and widely applicable

Priori information can incorporate in
models, useful when there is finite
training data

Low complexity

Training process is faster than NN's,
Repeatable training process, good per-
formance

No training process needed, new data
can be directly added to the system

Incorporate human knowledge and
use the features that cannot be used
by computers

Poor performance for nonlinearly
separable data. Poor adaptability for
complex problem

Long training time, initial value
dependent, unrepeatable,
over-parameterization and
over-training

Need to construct model and estimate
the associated parameters

Accuracy depends fully on the design
of the tree and the features
Supervised learning (training data
should be labeled),
parameter-dependent

Requiring large size database, images
should come from the same platform
to archive better performance

Interobserver variability, unstable and
inaccurate, human error, and
subjectiveness

138,142]

5.2.2. SOM

SOM can automatically classify input data into different classes
(number of classes could be more than 2) and it is a totally unsu-
pervised method. The disadvantages are that the number of param-
eters grows exponentially with the dimension of input space, and
user cannot decide the number of classes. In [126], SOM was em-
ployed as the classification method with 24-D auto-correlation tex-
ture features. By 10-folder cross-validation, A; was 0.9357 4+ 0.0152
on a data set of 243 lesions images.

5.2.3. Hierarchical ANNs

In a hierarchical ANN structure, individual ANNs are combined
into a tree structure, and each node is associated with an ANN. In
[127], a 2-layer hierarchical ANN was developed with 4 ANNs in
the first layer and one ANN in the second layer. The performance
of the proposed hierarchical ANN system was A; = 0.9840 + 0.0072
on a data set of 1020 images. Although the performance is high,
the extraction of the 4 ROIs is troublesome and the whole training
process is time-consuming.

5.3. Bayesian neural networks

Bayesian neural network is a kind of neural network using
Bayesian method to regularize the training process [145]. The idea
behind BNN is to cast the task of training a network as a problem
of inference, which is solved using Bayes’ theorem [128]. Bayesian
neural network is more optimal and robust than conventional neural
networks, especially when the training data set is small.

A BNN with one hidden layer and five neurons in the hidden
layer was chosen to detect lesions [11]. This work focused on dis-
tinguishing true lesions from non-lesions. The performance was
A; = 0.84 on the database of 757 images. Using the same database,
in [129], two BNNs were trained and tested separately with different
tasks. One was used to classify true lesions from non-lesions, and
the other was used to classify malignant lesions from other detec-
tions. The performance of these two BNNs were A; = 0.91 and 0.81,
respectively. In [130], a 3-way BNN was used to classify the data

into three classes (malignant, benign and non-lesion). To evaluate
the performance, the output can be projected to 2-way classifiers.
In this way, on database of 858 cases (1832 images), the perfor-
mance of classifying lesions from non-lesions was A; = 0.92, and
the performance of classifying malignant from other detections was
A; = 0.83. The BNN model is easy to incorporate priori information,
but to estimate those statistical parameters requires a relatively
huge database.

5.4. Decision tree

A decision tree is a simple tree structure where non-terminal
nodes represent tests on one or more attributes and terminal nodes
reflect decision outcomes. Each non-terminal node has a threshold
associating with one or more features to divide the data into its
descendents, and the process stops when each terminal node only
contains one class. Thus decision tree can be used as a classification
tool after the thresholds are set in the training process. Comparing
with neural networks, the decision tree approach is much simpler
and faster [2]. However, it highly relies on the design of classification
rules on each non-terminal node and the set of threshold values.

A well known algorithm for constructing decision trees is C4.5
[131]. This algorithm has been incorporated into the free classi-
fier package WEKA (it is called J48 in WEKA) and widely used in
artificial intelligence. An updated version C5.0 provides a number
of improvements on C4.5. In [132], algorithm C5.0 was used to
build the decision tree with 153 training samples and 90 testing
samples. Covariance coefficients of the ROIs were features in-
putting to the decision tree, and the performance on the testing
data set was accuracy = 96% (86/90), sensitivity = 93.33% (28/30)
and specificity = 96.67% (58/60), respectively. The performance was
compared with that of an experienced physician on the same testing
data set and experiment result showed that the proposed CAD did a
better job. Ref. [22] used bootstrap technique to train the decision
tree with small size training sets which were parts of the database
in [132]. Bootstrap technique was proved to be effective and useful,
especially, for the case that a huge database was not available.
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Table 7
Different classification targets: lesion/non-lesion and malignant/benign.

Target Features used

Classification method References

Lesion detection: Distinguish lesions
from non-lesions

Lesion classification: Distinguish
malignant lesions from benign
lesions

(FM5, FM14), model-based feature (FB1)

FD7, FD9, FD12), patient’s age

Texture features (FT6, FT11-FT13), morphologic features

Texture features (FT1-FT5, FT7-FT16), morphologic fea-
tures (FM1-FM13, FM15), model-based feature
(FB1-FB10), descriptor features (FD1-FD2, FD4, FD6,

Linear classifier, BNN [11,116,129,130,144]
LDA, LOGREG, ANN, BNN,
decision tree, SVM, template
matching

[3,6,9,10,11,13,16-18,20,24-26,84,90,
109,113,120,121,122,124-127,129,130,
132-134,139,143,144,150]

5.5. Support vector machine

Support vector machine, is a supervised learning technique that
seeks an optimal hyperplane to separate two classes of samples. Ker-
nel functions are used to map the input data into a higher dimen-
sion space where the data are supposed to have a better distribution,
and then an optimal separating hyperplane in the high-dimensional
feature space is chosen.

In [3,20,21,133], SVM was applied to classify malignant and
benign lesions. Both the performance and time cost of SVM were
compared with ANN on the same data set [133]. Experiment re-
sult showed that SVM (A; =0.970) not only outperformed the
ANN (A; = 0.956), but also was almost 700 times faster than ANN.
Ref. [21] proposed a fuzzy support vector machine (FSVM) based
on a regression model. The performance of the FSVM outperformed
both the ANN and SVM with classification accuracy = 94.25%. The
drawback of SVM is that the parameters such as the cost parameter
C which controls the trade-off between allowing training errors and
forcing rigid margins, and the kernel type needs to be tuned. Also,
the mapping to higher dimension is complex and training time
increases exponentially with the input data dimension.

5.6. Template matching

Image retrieval technique can be used to classify malignant and
benign lesions. The methods use feature vectors to represent the
query image and the images in the database. Based on the similarity
formula, the distance between the query image and each image in
the database was calculated. The final class of the query image was
decided by combining the first K retrieved images with the K highest
similarity scores.

In [134], texture features were used directly as the feature vector
to calculate the similarity score and the disadvantage of the method
is that it requires the images in the database come from the same
platform. In [13], the principle component analysis (PCA) was applied
to the entire database to form a basic set of the images and each
image was represented by a weighted linear combination of the
images in the basic set. The weight vector was the new feature vector
used to calculate the similarity score. This method was robust with
the images from different sources.

The advantage of using image retrieval technique to classify
breast lesions is that no training is needed and new images can be
incorporated into the system easily. The disadvantages are that for
some systems the images in the database have to come from the
same platform to guarantee that the similarity measure is fair, and
the running time of the algorithm increases if the size of database in-
creases. However, to get a better performance, the method requires
that the database is big enough to include various lesion types. There
is a trade-off between database’s size and algorithm’s efficiency.

5.7. Human classifier

Human classifiers imply the radiologists who classify the lesions
using empirical criteria. They are not a component of CAD systems.

True-Positive Fraction
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02l . Database B: Az = 0.82 y
A Database C: Az = 0.93
0.0 1 1 'l 1
0.0 0.2 0.4 0.6 08 1.0

False-Positive Fraction

Fig. 9. ROC analysis of three databases [90].

CAD has the advantage over human classifiers since CAD is fast,
stable, accurate, objective and consistent. In [9], experiment result
showed that with CAD, the average diagnosis accuracy of five radi-
ologists was improved to A, = 0.90 from 0.83.

We summarize the classification targets and the results in
Table 7.

6. Evaluations

As we all know, to evaluate different CAD systems fairly and cor-
rectly, the same database should be used. However, there is no a
benchmark of US image database available to the public yet, and most
of the works in this field are done by using their own databases. Not
only the sizes of these databases are different, but also the portions
of each class are different, and the sources of images are different as
well. Different image sources imply that the US images are acquired
by different equipments or techniques. For example, the images ob-
tained with or without spatial compounding technique perform dif-
ferently in the same CAD system [113], and they should be treated
separately. Without a public database accessible by the researchers,
even though the same evaluation criteria are used, it is still hard to
make the evaluation fair and justified.

Next we study several frequently used evaluation criteria. A re-
ceiver operating characteristic (ROC) curve is most frequently used
because of its comprehensive and fair evaluation ability. A ROC curve
is a plotting of true positive fraction (TPF) as a function of false
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Table 8
Databases used by CAD systems.
Database Description Source Performance
DB1 [129] The database consists of two parts: The first subset of DB1 is obtained from North- A, =0.94 and 0.91 on training and
1. 757 images, including 229 complex cysts, 334 benign western Umver.sny, Chlcago, IL. Tl}e s§cond testing data sets, respectively
. . . . subset of DB1 is obtained from University of
solid lesions and 194 malignant lesions Chicago. Chicago. IL
2. 1740 images, including 258 complex cysts, 520 simple 1cago, Lhicago,
cysts, 210 benign solid lesions, 87 other benign breast
disease, 87 malignant lesions and 578 normal images
DB2 [116] The database has 204 US images. 204 ROIs are labeled with Images are acquired at Thomas Jefferson Uni- A, =091
lesions and 816 ROIs are labeled without lesions versity Hospital, Philadelphia
DB3 [133] The database consists of two subsets obtained from different Taiwan, China A, =0.97
periods:
1. 88 benign lesions and 52 malignant lesions
2. 215 benign lesions and 35 malignant lesions
DB4 [10] This database consists of two subsets: Images are collected from a database of a med- A, = 0.95
1. 91 benign lesions and 69 malignant lesions ical center in Taiwan, China
2. 40 benign lesions and 71 malignant lesions
DB5 [18] The database consists of two subsets: Images are provided by the Seoul National Uni- A, =0.95
1. 300 benign lesions and 284 malignant lesions versity Hospital, Seoul, Korea
2. 167 benign lesions and 99 malignant lesions
DB6 [21] 51 Benign lesions and 36 malignant lesions Images are acquired from 2nd Affiliated Hospital Accuracy = 94.25%,

of Harbin Medical University, Harbin, China

sensitivity = 91.67%,
specificity = 96.08%, PPV = 94.29%,
NPV = 94.23%

As mentioned before, there is no a benchmark accessible to the public yet, therefore, the results listed just have some reference value.

positive fraction (FPF). The area (A;) under the ROC curve can be
used as a criterion. Fig. 9 shows an example of ROC curve evaluation
of the performance of CAD systems using three different data sets.
Other frequently used criteria are [10,14,17,18,21,115]:

Overall accuracy = P+ TN
Y= TP IN+FP+IN
g N
Specificity = TN+ FP
Sensitivity = Ll
V=TI N
Positive predictive value (PPV) = Ll
b TP+ FP
Negative predictive value (NPV) = N
gatvep “INTIN

TP x TN — FP x FN
/(TP + FP)(TP 4 FN)(TN + FP)(TN + FN)

MCC =

where TP is the number of true positives, TN is the number of true
negatives, FP is the number of false positives and FN is the number
of false negatives.

The last formula is Matthew’s correlation coefficient (MCC), which
has seldom been used for breast cancer CAD performance evalua-
tion. However, MCC is a powerful accuracy evaluation criterion of
machine learning methods. Especially, when the number of negative
samples and positive samples are obviously unbalanced, MCC gives
a better evaluation than overall accuracy. As more and more breast
cancer CAD systems employed machine learning methods, such as
SVM, ANN and BNN, MCC should be used as an additional evaluation
criterion.

The performance of some CAD systems and the databases used
are listed in Table 8.

7. Future directions

Masses and microcalcifications are both important signs of breast
cancer [1,2]. Currently, in the field of breast cancer CAD systems
using US images, most of the works focus on mass detection and clas-
sification since the ordinary US images can hardly show microcalci-
fications. One of the future directions is high-resolution US imaging
devices which can support microcalcification detection [27,28]. Some
successful experiments proved that high-resolution US can show mi-
crocalcifications within breast cancer with a sensitivity of 95%. With
the development of US equipments and refinement of image tech-
niques, the rate of microcalcification detection and characterization
will be higher. Besides, such advancement will also improve the de-
tection of blood flow, an indicator of malignancy [147].

Three-dimensional ultrasound imaging is another future direction
which has been paid more and more attention. Three-dimensional
ultrasound imaging can provide more comprehensive information
of the breast lesion than 2D imaging and incorporate all 2D charac-
teristics. The advantages of 3D US are especially obvious in a CAD
system because CAD system is good for processing a large amount of
data in a short time, which can greatly reduced the variability of the
observations and the work load of radiologists. Most of the 2D tech-
niques can be directly applied to 3D US images with some prepro-
cessing or post-processing methods [9,16,23-25,136]. Some newly
developed methods, especially for 3D US images, can be found in
[26,82,83,93,96].

In order to handle the fuzzy and uncertainty nature of the US
images, some new techniques and approaches based on fuzzy logic,
rough set and neutrosophic logic have been developed. Neutrosophic
logic, a new powerful theory which handles indeterminate and un-
certain characteristics in different sets, could be applied to medical
image processing [148]. Some research works using fuzzy logic and
fuzzy entropy have obtained good results [19,21]. Quantitative ultra-
sound (QUS) technique is recently used for breast cancer detection
and diagnosis. A research group implemented a multi-parameter ap-
proach using QUS technique and the experimental result showed
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that this approach improved the diagnostic potential of ultrasound
for breast cancer detection [149]. Besides, whole breast US images
which provide more breast information are available to detect breast
cancer with the support of advanced scanner [151]. Also developing
more accurate numeric expressions for image features is another
future work to improve the performance of CADs.

Comparative studies of different preprocessing methods, segmen-
tation methods, features and classifiers should be carried out fairly,
deeply and accurately. As we stressed above, the most urgent task is
to build a benchmark database of US images accessible to the pub-
lic to support the comparison and evaluation of different algorithms
and CAD systems. Besides, more clinical trials of the currently de-
veloped CAD systems for breast cancer should be conducted, which
can provide important second opinion to physicians and can provide
the feedback from the physicians to the CAD system designers.

8. Conclusions

In this paper, we reviewed CAD systems for breast cancer detec-
tion and classification using ultrasound images in the literature. The
techniques developed in the four stages (preprocessing, segmenta-
tion, feature extraction and selection, classification) are summarized,
and their advantages and disadvantages are discussed. Different per-
formance evaluation metrics are studied, and the future develop-
ments and trends are also investigated. The paper will be useful for
the researches in BUS imaging, computer vision, image processing
and radiology.
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