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Preface  
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Abstract 

We describe research fusing heterogeneous information in an effort eventually to detect 

terrorists, reduce false alarms, and exonerate those falsely identified. The specific research is 

more humble, using synthetic data and first versions of fusion methods. Both the information and 

the fusion methods are subject to deep uncertainty. The information may also be fragmentary, 

indirect, soft, conflicting, and even deceptive. We developed a research prototype of an analyst-

centric fusion platform. This uses (1) causal computational models rooted in social science to 

relate observable information about individuals to an estimate of the threat that the individual 

poses and (2) a battery of different methods to fuse across information reports. We account for 

uncertainties about the causal model, the information, and the fusion methods. We address 

structural and parametric uncertainties, including uncertainties about the uncertainties, at 

different levels of detail. We use a combination of (1) probabilistic and parametric methods, (2) 

alternative models, and (3) alternative fusion methods that include nonlinear algebraic 

combination, Bayesian inference, and an entropy-maximizing approach. This paper focuses 

primarily on dealing with deep uncertainty in multiple dimensions. 

1 Introduction 

This paper has substantive and methodological purposes. Substantively, we describe basic 

research on using information fusion to assess whether individuals pose a terrorism threat. 

Methodologically, we illustrate how causal social-science models can be used as part of doing 

so. We also describe our analytical architecture for exploratory analysis under multi-dimensional 

deep uncertainty.  

Earlier work reviewed technologies for using behavioral observations as part of threat 

detection (Davis, Perry, Brown, Jeung, et al, 2013). A conclusion was that some of the 

technologies were promising, but magic bullets were unlikely and future success would probably 

depend on greatly improving methods for information fusion. Unlike fusion in many domains, 

however, the information in question is mixed in character and often both complex and soft—

i.e., qualitative, subjective, fuzzy, or ambiguous. It is likely also to be uncertain, conflicting, and 

sometimes deliberately deceptive. Further, the underlying phenomena are more poorly 

understood than in physics problems. All of this motivated our current research, the report for 

which is in the publications process (Davis, et al., forthcoming). 

We sought to build a prototype system that would fuse reports on an individual to be assessed 

as a possible terrorist threat. It should, we concluded: 

(1) Address matters probabilistically (how likely is it that the individual poses some degree 

of threat?);  
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(2) Employ causal social-science models as part of the fusion;  

(3) Use a mixed-methods approach to span the range of reasonable causal relationships and 

fusion methods;  

(4) Have competitive streams of analysis because results depend on human imagination and 

judgment;  

(5) Design for routine exploratory analysis under deep uncertainty; and 

(6) Embody the system in a comprehensible analyst-centric computer platform that would 

facilitate review, debate, and eventual sharing and re-use.  

We focused on terrorism, but the research should be relevant to law enforcement, intelligence, 

and other domains. Our approach is very different from machine-driven mining of information 

from “Big Data.”  

Subsequent sections describe our analytical architecture, representation of heterogeneous 

information and related uncertainties, causal models, mix of fusion methods, creation of 

synthetic data for testing, and implementation challenges. We end with illustrative results and 

conclusions. 

2 Top-Level Analytical Architecture 

Figure 1 shows the conceptual analytical architecture, which embodies the characteristics 

identified above. When assessing an individual for the degree to which he poses a threat of 

terrorism, information derives from various sources as shown on the far left (1). It must be 

“interpreted” to create the inputs needed for subsequent processing (2). The interpreted data then 

enters the several separate streams of analysis, with different causal models and variants (3). 

Information result is then fused (4), drawing on an entire suite of methods and tools. The results, 

by method, are passed along for comparisons and for refinement of analysis with case-dependent 

tuning (5)-(6), This leads to results (7), which are also starting points for iteration with new 

information or the revisiting of old raw data (9). In the future, the analysis will also used to 

identify priorities for obtaining new information to sharpen analysis (8).  
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Figure 1. Top-Level System Vision 

 

An important element (6) is labeled “interface model.” This is where the analyst can change 

elements of the fusion process, perhaps to reflect different interpretations of the original raw data 

or to generate displays responsive to high-level questions that have to be mapped into the inputs 

of the fusion system. To illustrate, suppose that several “stories” are floating around in peoples’ 

heads about how to understand the information coming in. These might be akin to what a 

detective novel might call different theories of the case. They may also stem from intuition or 

biases, depending on perspective. If they are made explicit, then an “interface model” can be 

written that says, e.g., “If we want to see things through the lens of story 1, then …” As indicated 

in Figure 2, this may affect some of the priors for Bayesian analysis, the form of some input 

probability distributions, the way in which missing information is dealt with, and parameter 

settings. It can also cause the analyst to look harder at some fusion methods than others. Much of 

this corresponds to nontrivial 1:n mappings requiring knowledge, imagination, and artistry. We 

should never imagine that such information fusion is a mechanical and objective process.  

Figure 2. How Different “Stories” Can Affect Fusion 
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3 Representing Heterogeneous Information 

3.1 Types of Information 

Heterogeneous information comes from different sources (e.g., detection devices, digital 

records, and human sources) and also varies in character. It can be complex and “soft”—i.e., 

qualitative, subjective, fuzzy, or ambiguous—and also contradictory or even deceptive. Human 

sources sometimes lie, sometimes to curry favor and sometimes with malicious intent. Sensor 

data and archival digital records can simply be wrong. Information can also be complex, as in 

“He is either a committed terrorist or a good-hearted naïf in bad company where he acts as he is 

expected to act in that group. I’m not sure which” (resulting in a bimodal probability 

distribution). Another example would be “I’m not sure whether his motivation for the cause is 

high or very high, but it’s up there.” 

The problems of dealing with complex information have been discussed for decades, some of 

it debating about Bayesian, Dempster-Shafer, Possibility Theory, Dezert-Smarandache Theory, 

and other methods; some of it in connection with “fuzzy mathematics.” We constructed a lengthy 

list of complex information types to challenge ourselves. We found that we could represent all 

the classes of complex information with the methods that we adopted. These included (1) going 

beyond binary thinking; (2) using probability distributions for report data; (3) using causal 

models; (4) using fusion methods that allow inequalities and either promote convergence or 

preserve distinctions, depending on context; (5) representing qualitative variables on a common 

0 to 10 scale (or its discrete version {1.3.5.7.9}); and (6) characterizing the credibility and 

salience of information elements. In principle, these can also be achieved with a more complex 

Bayesian-network approach. 

3.2 Representing Uncertainty 

Representing uncertainty was a major issue. We had to deal with model uncertainty 

(structural uncertainty) and parametric uncertainty. These, however, appeared in numerous 

places as indicated by Table 1. We had various causal models, fusion methods, and ways to 

combine them (a meta-model of fusion). Even when dealing with structural uncertainty, we also 

had parametric choices. And, as discussed in Figures 1 and 2, we needed some models of our 

data to deal with higher-level issues and questions. 

We used a variety of methods to deal with uncertainty (Table 2) and were careful to maintain 

distinctions between source data and methods used. Multiple methods were applied for each 

uncertainty type: we varied parameter values; we employed probability distributions, both for 

representing gaps in knowledge and effects of random processes; and we used combinations. We 

used alternative causal and fusion models. And, finally, we used interface models. Other authors 

have encountered the same issues and made some of the same distinctions (Walker, Lempert, and 

Kwakkel; Bankes, Lempert, and Popper, 2005), but it did appear that we had more than usual 
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complexity. This was because we had no constraints—no sponsor insisting that we worry about 

only some uncertainties. We also wanted to make the various choices easy for an analyst to 

adjust, which can be difficult with other methods for exploratory analysis. 

Table 1. Types of Uncertainty or Disagreement for Different Elements of Platform 

Type of 
Uncertainty 

Causal model of 
phenomenon 

Causal-model 
data 

Model of 
causal-model 

data 

Fusion model Data for fusion 
model (tuning 
parameters) 

Structural •  • •  

Parametric • •  • • 

As indicated in Table 2, we distinguished between uncertainties due to random processes and 

uncertainties due to lack of knowledge. Both can be represented by probability distributions, but 

they are different and the differences matter. This was a continuing source of confusion because 

many researchers refer to both classes in terms of random variables without noting subtleties 

involved (e.g., the need to use mixture distributions for some of the work). 
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Table 2. Methods for Dealing with Uncertainty 

Mechanism Causal model of 
phenomenon 

Causal-model 
data 

Model of 
causal-model 
data 

Fusion model Data for fusion 
model 

Deterministic 
parameter 
variation 

•   •  

Chunky 
variations 
(e.g., different 
data tables) 

••• •••   ••• 

Probability 
distributions for 
knowledge 

 •••    

Probability 
distributions for 
random 
processes 

•     

Alternative 
models •••   •••  

Interface model  ••• •••   

4 Causal Social-Science Models in Counterterrorism 

The causes for an individual becoming a terrorist are complex and only partially understood. 

To compound this uncertainty, if an individual is being evaluated for the threat of terrorism he 

poses, the evidence is likely to be about observed or inferred attributes that might suggest that he 

represents some degree of threat (to include zero). For example, he might have military expertise 

with explosives and a high degree of interest in radical Islamic philosophy. To use available 

information, we needed a causal model rooted in social science to represent causal factors and 

their effects. 

An earlier review of scholarly social science bearing on terrorism synthesized in terms of 

easy-to-understand “factor trees” identifying the factors contributing in a causal way to terrorism 

and public support thereof (Davis and Cragin 2009). Factor trees are “thinking models” to 

structure reasoning and discussion. Case studies were then conducted to test or “validate” a 

particular factor tree, that for public support of terrorism. This factor tree (Figure 3) held up well 

as a general qualitative theory with myriad context-specific specializations (Davis, Larson, et al., 
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2012). The study discussed what “validation” does and does not mean in such work, a matter of 

interest to all concerned with deep uncertainty. It is one thing to validate that a model has 

captured the right factors; it is quite another to predict combined consequences.  

The first point from Figure 3 is that a given higher level factor such as motivation can have 

many sources: religious zealotry is one, but so also the sources may be a sense of identity, a 

desire for glory and excitement, or a sense of duty. Recognizing such multiple causes changes 

discussion from arguing about which single cause is correct to something more realistic. The 

second point is that factor tree use “~ands” to indicate that, to a first approximation, where all of 

the contributing factors need to be present if the factor to which they contribute is to be 

significant. They use “ors” to indicate where any or all of contributing factors may be sufficient 

to create the higher-level factor (i.e., where the contributing factors are substitutable).  

Figure 3 is a multi-resolution model (MRM) (Davis 2003): one can specify inputs at the top 

level, at the level with four main factors, at the next more detailed level, etc. Making such 

relationships explicit is very helpful conceptually and also for empirical analysis. In empirical 

work, whether using real-world or model-generated data, higher level factors are good theory-

informed abstractions. Those—not simple-hypothesis variables—should often be the core of 

multivariate regression.  

Factor trees are qualitative, but it proved possible subsequently to build a computational 

model based on the factor tree of Figure 3. This was an unusual computational model, however. 

It was developed exclusively for exploratory analysis under deep uncertainty, rather than making 

best-estimate predictions (Davis and O'Mahony 2013).  
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Figure 3: A Factor Tree for Public Support of Insurgency and Terrorism 

 

For the present work we extended the Davis-O’Mahony methods to develop the Propensity 

for Terrorism (PFT) model, a truncated version of which is shown in Figure 4. It depicts the 

factors influencing an individual’s propensity to commit terrorism, and, thus, the threat posed by 

the individual. Although not separately validated by social-science research, it builds on the 

earlier work and seemed as a reasonably credible example. We used only the top layer that 

asserts that the threat T posed by an individual is a function of that individual’s motivation (M), 

perception of terrorism’s legitimacy (L), capability-opportunity (CO), and acceptability of costs 

(A). These inputs can be informed by observations or inferences about the lower-level factors in 

the tree, or by interpreting other data that might not connect straightforwardly to the causal 

model. This would include using statistical information to inform base rates. 
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Figure 4. A Truncated Factor Tree of Propensity for Terrorism 

.  

We defined M, L, CO, and A so as to make them essentially independent, both logically and 

probabilistically. This depends, however, on the model being used with data that has been 

properly interpreted. Thus, we allow, by exception, for explicit correlations to be specified. For 

example, if a given human source does not understand the model’s difference between 

motivation for a cause and a sense of legitimacy in using terrorism tactics, then he may report M 

and L as the same. Thus, his inputs on M and L would not be independent.  

The PFT model is deliberately not that of a rational actor doing cost-benefit calculations. 

Real individuals are affected by emotions, cognitive biases, and other non-rational 

considerations. Further, they may not even have stable utility functions, instead “discovering” 

their values as matters develop, rather as with “wicked problems” in the policy domain. Such 

issues are discussed, with pointers to the literature, in a recent National Academy report about 

deterrence (National Research Council 2014, 35ff) to which one of us (Davis) contributed.  

Briefly, some technical elements of the PFT model are as follows.  

We define the factors (variables) on an interval scale of 0 to 10, often using the discretized 

scale of 1, 3, 5, 7, 9 with equally spaced values corresponding to very low, low, medium, 

high, very high.  

Although we don’t know the potentially complex actual functions describing the combined 

effects at each node of a factor tree, we find that much can be accomplished with a 
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combination of two building-block functional forms that more or less bound ways to 

represent nonlinear effects. We call them Thresholded Linear Weighted Sums (TLWS) and 

Primary Factors (PF).  

The TLWS method is akin to ordinary linear weighted sums, but it sets the result to 0 unless 

each of the contributing variables exceeds its threshold. This addresses a number of practical 

nonlinearities in a simple way. For example, if someone will very likely not become a 

terrorist unless he is willing to accept associated costs and risks, then there is some threshold 

level constituting “enough” acceptance.  

The Primary Factors (PF) method states that the result is determined by the largest of the 

contributing factors, or that plus a minor upward adjustment reflecting the next-biggest. For 

example, an individual might have numerous sources of motivation, but the strength of his 

motivation might be largely dictated by the biggest single one (e.g., extremist religion or a 

love of danger and violence).  

We developed the model (and the larger platform) with the Analytica® modeling platform. It 

uses visual modeling that is largely understandable to people who are not “real” 

programmers. Also, its modeling paradigm is closely related to the natural mathematics of 

the problem: it exploits array mathematics, which makes multi-dimensional exploratory 

analysis easy. Creating multidimensional visual displays requires more effort, as everyone 

who does deep-uncertainty work. Figure 5 is one display that we have found comprehensible. 

It was constructed in Excel with Analytica output. It shows results by color or number of a 

cell, as a function of five parameters X1, X2, X3, X4, and X5.  
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Figure 5 An Illustrative Output of Exploratory Analysis 

 

5 A Mixed-Methods Battery of Fusion Methods 

We needed alternative fusion methods. We drew on the classic literature on basic information 

theory (Jaynes and Bretthorst, 2003), Bayesian analysis (Gelman and Shalizi 2010), Dempster-

Shafer theory (Shafer 1976), and Dezert Smarandache theory (Smarandache and Dezert 2009a; 

Smarandache and Dezert 2009b), Bayesian networks (Pearl, 2009), and several others as 

surveyed in our earlier work (Davis, Perry, et al., 2013). We also drew on the literature on expert 

forecasts and judgment (Clement and Winkler, 2007).  

We considered four types of fusion method: (a) purely subjective, (b) nonlinear algebraic, (c) 

quasi-Bayesian, and (d) a new entropy maximizing method (MEMP). All of these required 

adaptation or new work. Our nonlinear algebraic methods use the TLWS and PF methods 

discussed earlier. Our quasi-Bayesian method is “quasi” because we used heuristic methods to 

determine the weight given to different evidence and our model does not represent the full set of 

relationships and likelihoods.1 We also constructed alternative “generic” likelihood functions and 

routinely show results for all of them because the “real” likelihood function is often unknowable. 

Finally, the ME/MP method comes from the perspective of information-theory entropy and uses 

methods from the machine-learning literature, such as those on regularization (see Davis, et al. 

                                                 
1
 Bayesian-network approaches can use more complex relationships. These require uncertain parameterization of 

likelihood functions and management of the resulting uncertainty. Potential problems include false precision and 
systematic model errors (Small and Fishbeck, 1999), which can be much worse than the problems from our 
simplifications. Using such models correctly can also be computationally intractable or at least very difficult.   

X1

X2

X3

X4

X4

X5
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forthcoming for citations). Technically, the approach uses nonlinear programming for fusion. It 

maximizes an objective function that includes a weighted sum of entropy-maximization terms 

and terms minimizing contradictions with reports, such as a claim that a person’s motivation is in 

the medium-to-high range, but no lower or higher. The method yields estimates of threat level 

that are as conservative (i.e., uncertain, in an information-theoretic sense) as possible given what 

has been reported, but with recognition that the reports’ assertions may not be correct.  

Table 3 summarizes the methods. Since our information fusion involves multiple steps, we 

distinguish between (1) combining factors to estimate threat T and (2) fusing across reports, 

whether to improve the estimate of factors M, L, CO, and A, or to fuse the reports’ separate 

estimates of T. 

Table 3 Mixed Fusion Methods 

Combine factors to 
generate T for a given 
report 

Fuse threat 
estimates across 
reports 

Fuse factors 
across reports 

Combine refined 
factors to generate 
T 

Linear weighted sums 
(LWS) 

Linear weighted 
sums (LWS) 

Linear weighted 
sums (LWS) 

Linear weighted 
sums (LWS) 

Thresholded linear 
weighted sums (TLWS) 

Thresholded linear 
weighted sums 
(TLWS) 

Thresholded 
linear weighted 
sums (TLWS) 

Thresholded linear 
weighted sums 
(TLWS) 

Primary factors (PF) Primary factors 
(PF) 

Primary factors 
(PF) 

Primary factors (PF) 

Maximum 
entropy/minimum 
penalty (MEMP) 

Maximum 
entropy/minimum 
penalty (MEMP) 

Maximum 
entropy/minimum 
penalty (MEMP) 

Maximum 
entropy/minimum 
penalty (MEMP) 

 Quasi-Bayes Quasi-Bayes  

Note: Although methods are mostly the same for all columns, inputs and outputs are context dependent.  

6 Data 

The results of even the most sophisticated analysis are limited by the data itself. We were 

doing research, not developing an application program. What should we use for data? It would 

have been a major effort to obtain “real” data and, had we done so, it might well have been 

classified or trivialized. More important scientifically, the data would not have really tested our 

platform adequately because the data would be whatever happened to be available. We instead 

created synthetic data to pose numerous challenges for our methods and platform—challenges 

that we had identified early, such as dealing with ambiguities in information (e.g., bimodal inputs 
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corresponding to equivocation), contradictions, even possible deception. We also designed cases 

that we suspected would show differences among methods.  

This synthetic data took the form of narrative vignettes, followed by synthetic versions of 

analyst interpretations of raw data. 

Here we give merely one short example, a single report from a human agent, Agent B, about 

an individual, Harry Smith, who is under scrutiny. 

Agent B 

 Harry talks big and seems to see no problem at all with violence, even terrorist 
violence, in support of the group’s objectives. I have to take that seriously, 
although he might be just “talking big.” 

It’s hard to tell how motivated Harry is to participate in the Slammers’ activity 
and from my position in the club membership I do not know if he would be 
provided with means and tools to participate in a violent act if he should choose 
to do so. Interestingly, I did hear comments that suggest Harry is nonetheless 
dubious about paying the cost and taking the risks associated with violent 
action—even though he has endorsed violence as a legitimate route to right 
society’s wrongs. 

 From my vantage point, Harry does not appear to be a threat—he likes to talk 
big about the need for bringing down the system, but never wants to actually do 
anything other than talk. The few times he’s been pushed he always comes up 
with some excuse about taking care of some pressing need. 

Such narrative information must be “interpreted” in terms of probability distributions for 

Harry’s motivation, sense of legitimacy, capability, and willingness to accept costs and risks (M, 

L, CO, and A). Those become the inputs for the analysis. 

7 Designing and Implementing a Platform for Exploratory Analysis 

Implementing the concept of Figure 1 involved more detailed design and some advanced 

programming. The initial version of the platform was much more procedural and 

straightforward—something an analyst who was not a programming expert could understand 

within days or a few weeks. That, however, hard-wired many of the choices we saw as 

important. Thus, we redesigned to achieve the flexibilities discussed earlier in connection with 

Figure 1. This involved tradeoffs. To our biased eyes, the design seems elegant, reviewable, and 

maintainable while maintaining the uncertainty information. That is so, however, only for those 

who have paid the price of a steeper learning curve than is required for more usual programming. 

As an example, a significant meta-method issue is whether to combine the probability 

distributions for factors M, L, CO, and A for each report to generate a threat estimate T, and then 

fuse those T estimates across reports, or to fuse factors across reports to improve the estimated 

distributions for M, L, CO, and A, and then combine to estimate T. A number of such choices 

exist and—lacking settled theory and solid data—no a priori reason exists for believing that one 
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is “right.” The best choice depends on the individual case and its data. This is analogous to 

empirical statistical analysis where data-cleaning and model choice are often justified 

heuristically on a case-by-case basis. 

One way to think about the structural issues around which we had to design is to think of the 

meta-level fusion as performed by operators as indicated in Figure 6. We have to operate on the 

data to map the raw data into the inputs of the platform; we have to assign the data to each of the 

streams; we have to decide on what order we process reports; we have to decide on when and 

how to combine and fuse; and we have to decide on when to fuse across reports rather than 

streams. Some of these operators don’t commute. The answers are different if we combine first 

rather than fuse first, etc. 

Figure 6. Operators Employed in the Information Fusion 

 

The resulting dimensionality is suggested by Table 5, which shows choices available for four 

of the structural issues and Table 5, which discusses data-grouping issues. The structural issues 

in Table 4 establish 48 analytical paths, each with uncertain parameters, as well as the choices 

indicated in Table 5. Exploratory analysis can generate tens of thousands of distinguishable 

cases, or more. It’s best not to dwell on the number because it isn’t conceptually important, or 

even computationally limiting at this stage, although applications of exploratory analysis benefit 

from supercomputers.  

Table 5: The Primary Dimensions of Structural Uncertainty 

Stream and Model Combine or Fuse First? Combining Method? Fusion Method 

A (with Propensity for 
Terrorism model, PFT) 

Combine first TLWS (Thresholded 
linear weighted sums) 

TLWS (Thresholded 
linear weighted sums)*  

B (with a variant model) Fuse first PF (Primary Factors)* PF (Primary Factors)* 

  MEMP (Maximum 
Entropy/Minimum 

MEMP (Maximum 
Entropy/Minimum 
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Penalty)* Penalty)* 

   Quasi-Bayesian* 

Note: All the methods include tuning parameters such as weights, thresholds, or maximum adjustments. 
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Table 6 Illustrative Data Groupings 

Individual Order of Report Processing Report Weightings (for 
credibility…) 

Harry As received (chronological) Uniform 

Ahmed Reverse order (newest first) Through Lens 1 

 Arbitrary 1 (e.g., best source first) Through Lens 2 

 Arbitrary 2 … 

To elaborate slightly, we dealt with such organizational complexity as follows. At the visual-

modeling level we treated the stream and the combine/fuse order as explicitly distinct flows, as 

in the architecture of Figure 1. Where possible, we represented the various operators mentioned 

above with functions. These functions have parameters to deal with structural issues and some 

data-group issues. Analytica deals with all of this using array mathematics. The result is that the 

mathematics of the heterogeneous fusion can be expressed compactly. For example, the node at 

which threat estimates are to be fused across reports is defined as a table, as in Table 7. The 

definition specifies that all four fusion methods will be used, each with its own function. The 

arguments specify on what data the functions are to operate. Thus, what appears to be a simple 

table of functions is actually a table of functions with multidimensional arrays of probabilities as 

inputs and new multidimensional arrays of probabilities as outputs. The design allows more 

extensive and comprehensible exploratory analysis that explains what assumptions and choices 

are affecting results.  

Table 7. The Definition of the Node Accomplishing Fusion Across Reports 

Fusion 
Method 

 

PF Primary_Factor_Funct (Combined_Threat, R_ind, Tau, Final_Rpt_Wts_Agg, Min_Q_for_PF) 

 TLWS TLWS_Function(MEMP_Fix_R_Threat,Final_Rpt_Wts_Agg, R_Ind, Threshold:4) 

Bayes Bayes_fx_TD(MEMP_Fix_R_Threat,R_Ind, Final_Rpt_Wts_Agg, Likelihood, Report_Order) 

MEMP Continuous_MEM_Threat[Harry_or_Ahmed_Index=Choose_Harry_or_Ahmed] 
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8 Illustrative Results and Conclusions 

8.1 Results 

Mostly to illustrate that the design was achieved and that the platform runs, Figure 7 shows 

illustrative but simplified results for one case. It shows the probabilities, after fusion, for 

assigning an individual, Harry Smith, to one of three categories: threat, gray-area, or non-threat 

(corresponding to cumulative probabilities of T between 6 and 10, 4 to 6, and 0 to 4). Results are 

shown as a function of fusion method. The dashed lines indicate what the assessment was with 

just the initial information. The “slicer bars” at the top indicate major contributors to the result 

beyond the choice of fusion method. For the example, in this particular projection of results, the 

TLWS method was used to estimate threat by combining factor values, Quasi-Bayesian fusion 

was accomplished using a postulated “asymmetric” likelihood function, and the reports were 

processed in the order received. Such parameter values can be changed interactively by clicking 

through their menus (note arrows). This is interactive exploratory analysis.  

We see that in this fusion greatly increases the likelihood ascribed to Harry being a threat. 

The primary factors method is extreme in this regard, as one would expect, but a rather striking 

result is that the Bayesian method drops the estimate by a factor of 4 (0.28 to 0.07)! This doesn’t 

exonerate Harry, but it strongly suggests that he is not a terrorist. But what if we used other 

fusion methods? Would we get the same answer? Not necessarily. Seeing discrepancies tells us 

to look more deeply into the particulars of Harry’s case, perhaps all the way back to raw data. 

After doing so, we will probably be able to focus on one or two fusion method and refine the 

tuning. Again, however, this envisions an intelligent analyst-centric process, not an automated 

statistical analysis.  
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Figure 7: Illustrative Results from Prototype Experiments (not chosen for drama) 

 

8.2 Conclusions 

By the end of our project, the methods were falling into place, the prototype analytical 

platform was operating and we saw significant consequences of going about heterogeneous 

fusion in different ways. This was “good,” not “bad,” because we had used the mixed-method 

approach precisely because we expected discrepancies and the need to look at the problem from 

different perspectives. Follow-up analysis would be different depending on context. For 

example, if we were desperately trying to find the most plausible suspect among a set of people, 

we might “look for trouble,” choosing methods and tuning parameters accordingly. If instead we 

were trying to objectively and dispassionately assess threat likelihoods, we would do something 

else. And, finally, if we were second-guessing the decision to regard someone as a probable 

terrorist, we would look to find what formation elements were most critical in that assessment. If 

one element had particularly high leverage, then we would scrutinize it in more detail and seek 

new information to corroborate or disconfirm it. The result might be exoneration. 
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We conclude that such fusion methods have promise for increasing the probability of 

detecting the rare potential terrorist, decreasing false alarms, and increasing the probability of 

exonerating individuals who might otherwise be falsely assessed. Much future work will be 

needed, however, to determine actual value in real-world settings. We were merely establishing 

some groundwork for next steps. 
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