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Preface  
      

This Book is devoted to the proceedings of the Sixth International Conference 
on Number Theory and Smarandache Notions held in Tianshui during April 24-25, 
2010. The organizers were myself and Professor Wangsheng He from Tianshui 
Normal University. The conference was supported by Tianshui Normal University 
and there were more than 100 participants. We had one foreign guest, Professor 
K.Chakraborty from India. The conference was a great success and will give a 
strong impact on the development of number theory in general and Smarandache 
Notions in particular. We hope this will become a tradition in our country and will 
continue to grow. And indeed we are planning to organize the seventh conference 
in coming March which will be held in Weinan, a beautiful city of shaanxi.  

In the volume we assemble not only those papers which were presented at the 
conference but also those papers which were submitted later and are concerned 
with the Smarandache type problems or other mathematical problems.  

There are a few papers which are not directly related to but should fall within 
the scope of Smarandache type problems. They are 1. A. K. S. Chandra Sekhar Rao, 
On Smarandache Semigroups; 2. X. Pan and Y. Shao, A Note on Smarandache 
non-associative rings; 3. Jiangmin Gu, A arithmetical function mean value of 
binary; etc.   

Other papers are concerned with the number-theoretic Smarandache problems 
and will enrich the already rich stock of results on them.                     

Readers can learn various techniques used in number theory and will get 
familiar with the beautiful identities and sharp asymptotic formulas obtained in the 
volume.  

Researchers can download books on the Smarandache notions from the 
following open source Digital Library of Science:  

www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm.  
  
  
  
  
                                                     

Wenpeng Zhang  
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The Smarandache sums of products for
E(n, r) and O(n, r)

Xiaoyan Li † and Xin Wu ‡

Department of Mathematics, Northwest University, Xi’an, Shaanxi, P.R.China

Abstract The main purpose of this paper is using the elementary methods to study the

properties of the function E(n, r) and O(n, r), and get two calculating formulaes for them.

Keywords The Smarandache sums of products, binomial theorem.

§1. Introduction

This paper deals with the sums of products of first n even and odd natural numbers, taken
r at a time. Many interesting results about these two functions are obtained. For example,
Mr. Ramasubramanian [1] and Anant W. Vyawahare [3] have already made some work in this
direction. This paper is an extension of their work.

Definition. For any positive integer n and r, E(n, r) are the sums of products of first
n even natural numbers, taken r at a time, r ≤ n. O(n, r) are the sums of products of first n

odd natural numbers, taken r at a time, r ≤ n, they are also without repeatition.
For example:
E(4, 1) = 2 + 4 + 6 + 8 = 20,
E(4, 2) = 2 · 4 + 2 · 6 + 2 · 8 + 4 · 6 + 4 · 8 + 6 · 8 = 140,

E(4, 3) = 2 · 4 · 6 + 2 · 4 · 8 + 4 · 6 · 8 + 2 · 6 · 8 = 400,

E(4, 4) = 2 · 4 · 6 · 8 = 384,

O(4, 1) = 3 + 5 + 7 + 9 = 24,
O(4, 2) = 3 · 5 + 3 · 7 + 3 · 9 + 5 · 7 + 5 · 9 + 7 · 9 = 206,

O(4, 3) = 3 · 5 · 7 + 3 · 5 · 9 + 5 · 7 · 9 + 3 · 7 · 9 = 744,

O(4, 4) = 3 · 5 · 7 · 9 = 945.

We assume that E(n, 0) = O(n, 0) = 1.

About the properties of functions E(n, r) and O(n, r), we can obtain some interesting
conclusions from their definitions. Following are some elementary properties of E(n, r) and
O(n, r):

1. E(n, n) = 2nE(n− 1, n− 1),
2. O(n, n) = (2n + 1)O(n− 1, n− 1),
3. E(n, 1) = n(n + 1),
4. O(n, 1) = n(n + 2),
5. (p+2)(p+4)(p+6) · · · (p+2n) = E(n, 0)pn +E(n, 1)pn−1 +E(n, 2)pn−2 +E(n, 3)pn−3 +

· · ·+ E(n, n− 1)p + E(n, n),
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6. (p+3)(p+5)(p+7) · · · (p+2n+1) = O(n, 0)pn+O(n, 1)pn−1+O(n, 2)pn−2+O(n, 3)pn−3+
· · ·+ O(n, n− 1)p + O(n, n),

7. E(n, 0) + E(n, 1) + E(n, 2) + · · · + E(n, n) = O(n + 1, n + 1), that is
∑n

r=0 E(n, r) =
O(n + 1, n + 1),

8. O(n, 0) + O(n, 1) + O(n, 2) + · · ·+ O(n, n) = E(n + 1, n + 1)/2, that is
∑n

r=0 O(n, r) =
E(n + 1, n + 1)/2.

The 7th and 8th properties can be obtained by putting p = 1 in the 5th and 6th properties.
From these properties, we can use the elementary methods to study the expanding expres-

sions for E(n, r) and O(n, r). The main purpose of this paper is using the elementary method
to study this problem, and prove the following conclusions:

Theorem 1. For any positive integer n and r, we have the following formulas:

E(n, r) = E(r, r) + 2nE(n− 1, r − 1) + 2(n− 1)E(n− 2, r − 1) +

2(n− 2)E(n− 3, r − 1) + · · ·+ 2(r + 1)E(r, r − 1))

=
[
2rCr+1

n+1E(n, 0) + 2r−1Cr
nE(n, 1) + 2r−2Cr−1

n−1E(n, 2) +

· · ·+ 2C2
n−r+2E(n, r − 1)

]
/r.

Theorem 2. For any positive integer n and r, we have the following formulas:

O(n, r) = O(r, r) + (2n + 1)O(n− 1, r − 1) + (2n− 1)O(n− 2, r − 1) +

(2n− 3)O(n− 3, r − 1) + · · ·+ (2r + 3)O(r, r − 1))

=
[
O(n, 0)

(
2rCr+1

n + 3 · 2r−1Cr
n

)
+ O(n, 1)

(
2r−1Cr

n−1 + 3 · 2r−2Cr−1
n−1

)
+

O(n, 2)
(
2r−2Cr

n−2 + 3 · 2r−3Cr−2
n−2

)
+ · · ·+ O(n, r − 1)

(
2C2

n−r+1 + 3C1
n−r+1

)]
/r.

§2. Proof of the theorems

In this section, we shall complete the proof of our Theorems. First we give two simple
Lemmas (see [1]) which are necessary in the proof of our theorems.

Lemma 1. For any positive number n and r, we have the identity

E(n, r) = E(n− 1, r) + 2nE(n− 1, r − 1), r < n.

Lemma 2. For any positive number n and r, we have the identity

O(n, r) = O(n− 1, r) + 2(n + 1)O(n− 1, r − 1), r < n.

Now we use these two Lemmas to prove our conclusions. First we use the elementary
method to obtain a formula.

From Lemma 1 we know that E(n, r) = E(n− 1, r) + 2nE(n− 1, r− 1), r < n. Using this
result repeatedly, we have:

E(n, r) = E(n− 1, r) + 2nE(n− 1, r − 1),

E(n− 1, r) = E(n− 2, r) + 2(n− 1)E(n− 2, r − 1),
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E(n− 2, r) = E(n− 3, r) + 2(n− 2)E(n− 3, r − 1),

E(n− 3, r) = E(n− 4, r) + 2(n− 3)E(n− 4, r − 1),

· · ·
E(r + 1, r) = E(r, r) + 2(r + 1)E(r, r − 1).

Adding the above formulas we get:

E(n, r) = E(r, r) + 2nE(n− 1, r − 1) + 2(n− 1)E(n− 2, r − 1) +

2(n− 2)E(n− 3, r − 1) + · · ·+ 2(r + 1)E(r, r − 1)). (1)

The equation (1) is the first part of Theorem 1, now we prove the second part. Also, from
the 5th property of E(n, r), we have:

(p + 2)(p + 4)(p + 6) · · · (p + 2n)(p + 2n + 2)

= E(n + 1, 0)pn+1 + E(n + 1, 1)pn + E(n + 1, 2)pn−1 +

E(n + 1, 3)pn−2 + · · ·+ E(n + 1, r + 1)pn−r · · ·+ E(n + 1, n + 1). (2)

Left hand side of (2) is

(p + 2)(p + 2 + 2)(p + 2 + 4)(p + 2 + 6) · · · (p + 2 + 2n− 2)(p + 2 + 2n)

= (p + 2)
{
E(n, 0)(p + 2)n + E(n, 1)(p + 2)n−1 + · · ·+ E(n, r)(p + 1)n−r + · · ·+ E(n, n)

}

= E(n, 0)(p + 2)n+1 + E(n, 1)(p + 2)n + · · ·+ E(n, r)(p + 2)n−r+1 +

· · ·+ E(n, n)(p + 2). (3)

Expanding each of (p + 2)n+1, (p + 2)n, (p + 2)n−1, · · · , (p + 2)n−r+1, by binomial
theorem, we get the right hand side of (3) is:

E(n, 0)
[
C0

n+1p
n+1 + 2C1

n+1p
n + · · ·+ 2r+1Cr+1

n+1p
n−r + · · ·+ 2n+1Cn+1

n+1

]

+ E(n, 1)
[
C0

npn + 2C1
npn−1 + · · ·+ 2rCr

npn−r + · · ·+ 2nCn
n

]

+ E(n, 2)
[
C0

n−1p
n−1 + 2C1

n−1p
n−2 + · · ·+ 2r−1Cr−1

n−1p
n−r + · · ·+ 2n−1Cn−1

n−1

]

+ · · ·
+ E(n, r)

[
C0

n−r+1p
n−r+1 + 2C1

n−r+1p
n−r + · · ·+ 2n−r+1Cn−r+1

n−r+1

]

+ E(n, r + 1)
[
C0

n−rp
n−r + 2C1

n−rp
n−r−1 + · · ·+ 2n−rCn−r

n−r

]

+ · · ·+ E(n, n)(p + 2). (4)

Comparing the coefficients of pn−r from right hand side of (2) and (4), we get

E(n + 1, r + 1)

= 2r+1Cr+1
n+1E(n, 0) + 2rCr

nE(n, 1) + 2r−1Cr−1
n−1E(n, 2) +

· · ·+ 2C1
n−r+1E(n, r) + C0

n−rE(n, r + 1).

Simultaneously, we have the following formula from Lemma 1:

E(n + 1, r + 1) = E(n, r + 1) + 2(n + 1)E(n, r).
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Then we know that

E(n, r + 1) + 2(n + 1)E(n, r)

= 2r+1Cr+1
n+1E(n, 0) + 2rCr

nE(n, 1) + 2r−1Cr−1
n−1E(n, 2) +

· · ·+ 2C1
n−r+1E(n, r) + C0

n−rE(n, r + 1)

or

2(n + 1)E(n, r)− 2C1
n−r+1E(n, r)

= 2r+1Cr+1
n+1E(n, 0) + 2rCr

nE(n, 1) + 2r−1Cr−1
n−1E(n, 2) +

· · ·+ 22C2
n−r+2E(n, r − 1).

Because C1
n−r+1 = n− r + 1, we have

2(n + 1)E(n, r)− 2C1
n−r+1E(n, r)

=
[
2(n + 1)− 2C1

n−r+1

]
E(n, r)

= 2 [n + 1− (n− r + 1)]E(n, r)

= 2rE(n, r)

= 2r+1Cr+1
n+1E(n, 0) + 2rCr

nE(n, 1) + 2r−1Cr−1
n−1E(n, 2) +

· · ·+ 22C2
n−r+2E(n, r − 1).

Hence,

E(n, r) =
{
2rCr+1

n+1E(n, 0) + 2r−1Cr
nE(n, 1) + 2r−2Cr−1

n−1E(n, 2) +

· · ·+ 2C2
n−r+2E(n, r − 1)

}
/r. (5)

Combining (1) and (5) we may immediately deduce Theorem 1.
Corollary 1. For any positive integer n, we have

E(n, 2) = n(n + 1)(n− 1)(2 + 3n)/6.

In fact, if taking r = 2 in (5), then

E(n, 2) = 2C3
n+1E(n, 0) + C2

nE(n, 1) = n(n + 1)(n− 1)(2 + 3n)/6.

If taking r = 2 in (1), then

E(n, 2) = E(2, 2) + 2nE(n− 1, 1) + 2(n− 1)E(n− 2, 1) +

2(n− 2)E(n− 3, 1) + · · ·+ 6E(2, 1)

= 8 + 2
n∑

i=3

i2(i− 1)

= 8 + 2

[
n∑

i=1

i2(i− 1)− (13 + 23)− (12 + 22)

]

= 2
n∑

i=1

i2(i− 1)

= n2(n + 1)2/2− n(n + 1)(2n + 1)/3

= n(n + 1)(n− 1)(2 + 3n)/6.
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This completes the proof of Corollary 1.
Similarly, we can use the same method to prove Theorem 2. From Lemma 2 we know that

O(n, r) = O(n−1, r)+(2n+1)O(n−1, r−1), r < n. Using this result repeatedly, the following
formulas can be obtained:

O(n, r) = O(n− 1, r) + (2n + 1)O(n− 1, r − 1),

O(n− 1, r) = O(n− 2, r) + (2n− 1)O(n− 2, r − 1),

O(n− 2, r) = O(n− 3, r) + (2n− 3)O(n− 3, r − 1),

O(n− 3, r) = O(n− 4, r) + (2n− 5)O(n− 4, r − 1),

· · · ,

O(r + 1, r) = O(r, r) + (2r + 3)O(r, r − 1).

Adding the above formulas we get:

O(n, r) = O(r, r) + (2n + 1)O(n− 1, r − 1) + (2n− 1)O(n− 2, r − 1) +

(2n− 3)O(n− 3, r − 1) + · · ·+ (2r + 3)O(r, r − 1)). (6)

This is the first part of Theorem 2. Now we prove the second part of Theorem 2.
Because

(p + 3)(p + 5)(p + 7) · · · (p + 2n + 1)(p + 2n + 3)

= O(n + 1, 0)pn+1 + O(n + 1, 1)pn + O(n + 1, 2)pn−1 +

O(n + 1, 3)pn−2 + · · ·+ O(n + 1, r + 1)pn−r + · · ·+ O(n + 1, n + 1). (7)

Left hand side of (7) is

(p + 3)(p + 2 + 3)(p + 2 + 5)(p + 2 + 7) · · · (p + 2 + 2n− 3)(p + 2 + 2n + 1) +

= (p + 3)
{
O(n, 0)(p + 2)n + O(n, 1)(p + 2)n−1 + · · ·

O(n, r)(p + 2)n−r + · · ·+ O(n, n)
}

. (8)

Expanding each of (p+2)n, (p+2)n−1, (p+2)n−3, · · · , (p+2)n−r+1, by binomial theorem,
the right hand side of (8) is:

(p + 3)
{
O(n, 0)

[
C0

npn + 2C1
npn−1 + · · ·+ 2r+1Cr+1

n pn−r−1 + · · ·+ 2nCn
n

]

+ O(n, 1)
[
C0

n−1p
n−1 + 3C1

n−1p
n−2 + · · ·+ 2rCr

n−1p
n−r−1 + · · ·+ 2n−1Cn−1

n−1

]

+ O(n, 2)
[
C0

n−2p
n−2 + 2C1

n−2p
n−3 + · · ·+ 2r−1Cr−1

n−2p
n−r−1 + · · ·+ 2n−2Cn−2

n−2

]

+ · · ·
+ O(n, r)

[
C0

n−rp
n−r + 2C1

n−rp
n−r−1 + · · ·+ 2n−rCn−r

n−r

]

+ O(n, r + 1)
[
C0

n−r−1p
n−r−1 + 2C1

n−r−1p
n−r−2 + · · ·+ 2n−r−1Cn−r−1

n−r−1

]

+ · · ·+ O(n, n)} . (9)
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Now, comparing the coefficients of pn−r from right side of (7) and (9), we get

O(n + 1, r + 1)

= 2r+1Cr+1
n o(n, 0) + 2rCr

n−1O(n, 1) + 2r−1Cr−1
n−2O(n, 2) +

· · ·+ 2C1
n−rO(n, r) + C0

n−r−1O(n, r + 1) + 3 [2rCr
nO(n, 0) +

2r−1Cr−1
n−1 + 2r−2Cr−2

n−2O(n, 2) + · · ·+ 2C1
n−r+1O(n, r − 1) + C0

n−rO(n, r)
]
.

Simultaneously, from Lemma 2, we have:

O(n + 1, r + 1) = O(n, r + 1) + (2n + 3)O(n, r),

and

O(n, r + 1) + (2n + 3)O(n, r)

= 2r+1Cr+1
n o(n, 0) + 2rCr

n−1O(n, 1) + 2r−1Cr−1
n−2O(n, 2) +

· · ·+ 2C1
n−rO(n, r) + C0

n−r−1O(n, r + 1) + 3 [2rCr
nO(n, 0) +

2r−1Cr−1
n−1O(n, 1) + 2r−2Cr−2

n−2O(n, 2) + · · · +

2C1
n−r+1O(n, r − 1) + C0

n−rO(n, r)
]
,

or

(2n + 3)O(n, r)− 2C1
n−rO(n, r)− 3C0

n−rO(n, r)

= 2r+1Cr+1
n O(n, 0) + 2rCr

n−1O(n, 1) +

2r−1Cr−1
n−2O(n, 2) + · · ·+ 22C2

n−r+1O(n, r − 1) + 3 [2rCr
nO(n, 0)+

2r−1Cr−1
n−1O(n, r) + 2r−2Cr−2

n−2O(n, 2) + · · ·+ 2C1
n−r+1O(n, r − 1)

]
.

Since C1
n−r = n− r and C0

n−r = 1, we have

(2n + 3)O(n, r)− 2C1
n−rO(n, r)− 3C0

n−rO(n, r)

= 2rO(n, r)

= 2r+1Cr+1
n O(n, 0) + 2rCr

n−1O(n, 1) + 2r−1Cr−1
n−2O(n, 2) +

· · ·+ 22C2
n−r+1O(n, r − 1) + 3

[
2rCr

nO(n, 0) + 2r−1Cr−1
n−1O(n, 1) +

2r−2Cr−2
n−2O(n, 2) + · · ·+ 2C1

n−r+1O(n, r − 1)
]
.

Therefore

O(n, r) =
[
O(n, 0)

(
2rCr+1

n + 3 · 2r−1Cr
n

)
+

O(n, 1)
(
2r−1Cr

n−1 + 3 · 2r−2Cr−1
n−1

)
+

O(n, 2)
(
2r−2Cr

n−2 + 3 · 2r−3Cr−2
n−2

)
+

· · · +

O(n, r − 1)
(
2C2

n−r+1 + 3C1
n−r+1

)]
/r. (10)

Now our Theorem 2 follows from (6) and (10).
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Corollary 2. For any positive integer n, we have

O(n, 2) = n(n− 1)(3n2 + 11n + 11)/6.

Taking r = 2 in (10), we have

O(n, 2) =
[
O(n, 0)(4C3

n + 6C2
n) + O(n, 1)(2C2

n−1 + 3C2
n−1)

]
/2

= n(n− 1)(3n2 + 11n + 11)/6.

If taking r = 2 in (6), we can also get

O(n, 2) = O(2, 2) + (2n + 1)O(n− 1, 1) + (2n− 1)O(n− 2, 1) +

(2n− 3)O(n− 3, 1) + · · ·+ 7O(2, 1)

= 15 +
n∑

p=3

(2p + 1)(p− 1)(p + 1)

=
n∑

p=1

(2p + 1)(p− 1)(p + 1)

=
n∑

p=1

(2p3 − 2p + p2 − 1)

= n2(n + 1)2/2− n(n + 1) + n(n + 1)(2n + 1)/6− n

= n(n− 1)(3n2 + 11n + 11)/6.

This completes the proof of Corollary 2.
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§1. Introduction

The study of the Smarandache concept in groupoids was initiated by W. B. Vasantha
Kandasamy in [24]. In her book [22] and first paper [23] on Smarandache concept in loops,
she defined a Smarandache loop (S-loop) as a loop with at least a subloop which forms a
subgroup under the binary operation of the loop. The present author has contributed to the
study of S-quasigroups and S-loops in [5]–[12] by introducing some new concepts immediately
after the works of Muktibodh [15]–[16]. His recent monograph [14] gives inter-relationships and
connections between and among the various Smarandache concepts and notions that have been
developed in the aforementioned papers.

But in the quest of developing the concept of Smarandache quasigroups and loops into a
theory of its own just as in quasigroups and loop theory (see [1]–[4], [17], [22]), there is the need
to introduce identities for types and varieties of Smarandache quasigroups and loops. This led
Jáıyéo. lá [13] to the introduction of second Smarandache Bol loop (S2ndBL) described by the
second Smarandache Bol identity (xs · z)s = x(sz · s) for all x, z in G and s in H where the
pair (GH , ·) is called a special loop if (G, ·) is a loop with an arbitrary subloop (H, ·). For
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now, a Smarandache loop or Smarandache quasigroup will be called a first Smarandache loop
(S1st-loop) or first Smarandache quasigroup (S1st-quasigroup).

Let L be a non-empty set. Define a binary operation (·) on L : if x · y ∈ L for all x, y ∈ L,
(L, ·) is called a groupoid. If the equations: a · x = b and y · a = b have unique solutions
for x and y respectively, then (L, ·) is called a quasigroup. For each x ∈ L, the elements
xρ = xJρ, x

λ = xJλ ∈ L such that xxρ = eρ and xλx = eλ are called the right, left inverses of x

respectively. Furthermore, if there exists a unique element e = eρ = eλ in L called the identity
element such that for all x in L, x · e = e · x = x, (L, ·) is called a loop. We write xy instead of
x · y, and stipulate that · has lower priority than juxtaposition among factors to be multiplied.
For instance, x · yz stands for x(yz). A loop is called a right Bol loop (Bol loop in short) if and
only if it obeys the identity

(xy · z)y = x(yz · y).

This class of loops was the first to catch the attention of loop theorists and the first compre-
hensive study of this class of loops was carried out by Robinson [19].

The popularly known and well studied class of loops called Bol loops fall into the class of
S2ndBLs and so S2ndBLs generalize Bol loops. The aim of this work is to introduce and study
for the first time, the Smarandache isotopy of S2ndBLs. It is shown that every Smarandache
isotope (S-isotope) of a special loop is Smarandache isomorphic (S-isomorphic) to a S-principal
isotope of the special loop. It is established that every special loop that is S-isotopic to a
S2ndBL is itself a S2ndBL. A S2ndBL is shown to be a Smarandache G-special loop if and only if
each element of its special subloop is a S1st companion for a S1st pseudo-automorphism of the
S2ndBL. The results in this work generalize the results on the isotopy of Bol loops as can be
found in the Ph. D. thesis of D. A. Robinson.

§2. Preliminaries

Definition 1. Let (G, ·) be a quasigroup with an arbitrary non-trivial subquasigroup
(H, ·). Then, (GH , ·) is called a special quasigroup with special subquasigroup (H, ·). If (G, ·)
is a loop with an arbitrary non-trivial subloop (H, ·). Then, (GH , ·) is called a special loop
with special subloop (H, ·). If (H, ·) is of exponent 2, then (GH , ·) is called a special loop of
Smarandache exponent 2.

A special quasigroup (GH , ·) is called a second Smarandache right Bol quasigroup (S2nd -
right Bol quasigroup) or simply a second Smarandache Bol quasigroup (S2nd -Bol quasigroup)
and abbreviated S2ndRBQ or S2ndBQ if and only if it obeys the second Smarandache Bol identity
(S2nd -Bol identity) i.e S2ndBI

(xs · z)s = x(sz · s) for all x, z ∈ G and s ∈ H. (1)

Hence, if (GH , ·) is a special loop, and it obeys the S2ndBI, it is called a second Smarandache
Bol loop (S2nd -Bol loop) and abbreviated S2ndBL.

Remark 1. A Smarandache Bol loop (i.e a loop with at least a non-trivial subloop that
is a Bol loop) will now be called a first Smarandache Bol loop (S1st-Bol loop). It is easy to see
that a S2ndBL is a S1stBL. But the converse is not generally true. So S2ndBLs are particular
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types of S1stBL. Their study can be used to generalise existing results in the theory of Bol loops
by simply forcing H to be equal to G.

Definition 2. Let (G, ·) be a quasigroup (loop). It is called a right inverse property
quasigroup (loop) [RIPQ(RIPL)] if and only if it obeys the right inverse property (RIP) yx·xρ =
y for all x, y ∈ G. Similarly, it is called a left inverse property quasigroup (loop) [LIPQ(LIPL)]
if and only if it obeys the left inverse property (LIP) xλ · xy = y for all x, y ∈ G. Hence, it is
called an inverse property quasigroup (loop) [IPQ(IPL)] if and only if it obeys both the RIP
and LIP.

(G, ·) is called a right alternative property quasigroup (loop) [RAPQ(RAPL)] if and only
if it obeys the right alternative property(RAP) y · xx = yx · x for all x, y ∈ G. Similarly, it is
called a left alternative property quasigroup (loop) [LAPQ(LAPL)] if and only if it obeys the
left alternative property (LAP) xx · y = x ·xy for all x, y ∈ G. Hence, it is called an alternative
property quasigroup (loop) [APQ(APL)] if and only if it obeys both the RAP and LAP.

The bijection Lx : G → G defined as yLx = x · y for all x, y ∈ G is called a left translation
(multiplication) of G while the bijection Rx : G → G defined as yRx = y · x for all x, y ∈ G is
called a right translation (multiplication) of G. Let

x\y = yL−1
x = yLx and x/y = xR−1

y = xRy

and note that
x\y = z ⇐⇒ x · z = y and x/y = z ⇐⇒ z · y = x.

The operations \ and / are called the left and right divisions respectively. We stipulate that
/ and \ have higher priority than · among factors to be multiplied. For instance, x · y/z and
x · y\z stand for x(y/z) and x · (y\z) respectively.

(G, ·) is said to be a right power alternative property loop (RPAPL) if and only if it obeys
the right power alternative property (RPAP)

xyn = (((xy)y)y)y · · · y︸ ︷︷ ︸
n-times

i.e. Ryn = Rn
y for all x, y ∈ G and n ∈ Z.

The right nucleus of G denoted by Nρ(G, ·) = Nρ(G) = {a ∈ G : y ·xa = yx ·a ∀ x, y ∈ G}.
Let (GH , ·) be a special quasigroup (loop). It is called a second Smarandache right inverse

property quasigroup (loop) [S2ndRIPQ(S2ndRIPL)] if and only if it obeys the second Smaran-
dache right inverse property (S2ndRIP) ys · sρ = y for all y ∈ G and s ∈ H. Similarly, it is
called a second Smarandache left inverse property quasigroup (loop) [S2ndLIPQ(S2ndLIPL)] if
and only if it obeys the second Smarandache left inverse property(S2ndLIP) sλ · sy = y for all
y ∈ G and s ∈ H. Hence, it is called a second Smarandache inverse property quasigroup (loop)
[S2ndIPQ(S2ndIPL)] if and only if it obeys both the S2ndRIP and S2ndLIP.

(GH , ·) is called a third Smarandache right inverse property quasigroup (loop) [S3rdRIPQ
(S3rdRIPL)] if and only if it obeys the third Smarandache right inverse property (S3rdRIP)
sy · yρ = s for all y ∈ G and s ∈ H.

(GH , ·) is called a second Smarandache right alternative property quasigroup (loop) [S2nd

RAPQ(S2ndRAPL)] if and only if it obeys the second Smarandache right alternative property
(S2ndRAP) y ·ss = ys·s for all y ∈ G and s ∈ H. Similarly, it is called a second Smarandache left
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alternative property quasigroup (loop) [S2ndLAPQ(S2ndLAPL)] if and only if it obeys the second
Smarandache left alternative property (S2ndLAP) ss ·y = s · sy for all y ∈ G and s ∈ H. Hence,
it is called an second Smarandache alternative property quasigroup (loop) [S2ndAPQ(S2ndAPL)]
if and only if it obeys both the S2ndRAP and S2ndLAP.

(GH , ·) is said to be a Smarandache right power alternative property loop (SRPAPL) if
and only if it obeys the Smarandache right power alternative property (SRPAP)

xsn = (((xs)s)s)s · · · s︸ ︷︷ ︸
n-times

i.e. Rsn = Rn
s for all x ∈ G, s ∈ H and n ∈ Z.

The Smarandache right nucleus of GH denoted by SNρ(GH , ·) = SNρ(GH) = Nρ(G) ∩H.
GH is called a Smarandache right nuclear square special loop if and only if s2 ∈ SNρ(GH) for
all s ∈ H.

Remark 2. A Smarandache; RIPQ or LIPQ or IPQ (i.e a loop with at least a non-trivial
subquasigroup that is a RIPQ or LIPQ or IPQ) will now be called a first Smarandache; RIPQ
or LIPQ or IPQ (S1stRIPQ or S1stLIPQ or S1stIPQ ). It is easy to see that a S2ndRIPQ or
S2ndLIPQ or S2ndIPQ is a S1stRIPQ or S1stLIPQ or S1stIPQ respectively. But the converse is
not generally true.

Definition 3. Let (G, ·) be a quasigroup (loop). The set SY M(G, ·) = SY M(G) of
all bijections in G forms a group called the permutation (symmetric) group of G. The triple
(U, V,W ) such that U, V,W ∈ SY M(G, ·) is called an autotopism of G if and only if

xU · yV = (x · y)W ∀ x, y ∈ G.

The group of autotopisms of G is denoted by AUT (G, ·) = AUT (G).
Let (GH , ·) be a special quasigroup (loop). The set SSY M(GH , ·) = SSY M(GH) of all

Smarandache bijections (S-bijections) in GH i.e A ∈ SY M(GH) such that A : H → H

forms a group called the Smarandache permutation (symmetric) group [S-permutation group]
of GH . The triple (U, V,W ) such that U, V,W ∈ SSY M(GH , ·) is called a first Smarandache
autotopism (S1st autotopism) of GH if and only if

xU · yV = (x · y)W ∀ x, y ∈ GH .

If their set forms a group under componentwise multiplication, it is called the first Smaran-
dache autotopism group (S1st autotopism group) of GH and is denoted by S1stAUT (GH , ·) =
S1stAUT (GH).

The triple (U, V,W ) such that U,W ∈ SY M(G, ·) and V ∈ SSY M(GH , ·) is called a
second right Smarandache autotopism (S2nd right autotopism) of GH if and only if

xU · sV = (x · s)W ∀ x ∈ G and s ∈ H.

If their set forms a group under componentwise multiplication, it is called the second right
Smarandache autotopism group (S2nd right autotopism group) of GH and is denoted by S2ndRAU

T (GH , ·) = S2ndRAUT (GH).
The triple (U, V,W ) such that V, W ∈ SY M(G, ·) and U ∈ SSY M(GH , ·) is called a second

left Smarandache autotopism (S2nd left autotopism) of GH if and only if

sU · yV = (s · y)W ∀ y ∈ G and s ∈ H.
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If their set forms a group under componentwise multiplication, it is called the second left
Smarandache autotopism group (S2nd left autotopism group) of GH and is denoted by S2ndLAUT

(GH , ·) = S2ndLAUT (GH).
Let (GH , ·) be a special quasigroup (loop) with identity element e. A mapping T ∈

SSY M(GH) is called a first Smarandache semi-automorphism (S1st semi-automorphism) if
and only if eT = e and

(xy · x)T = (xT · yT )xT for all x, y ∈ G.

A mapping T ∈ SSY M(GH) is called a second Smarandache semi-automorphism (S2nd

semi-automorphism) if and only if eT = e and

(sy · s)T = (sT · yT )sT for all y ∈ G and all s ∈ H.

A special loop (GH , ·) is called a first Smarandache semi-automorphic inverse property loop
(S1stSAIPL) if and only if Jρ is a S1st semi-automorphism.

A special loop (GH , ·) is called a second Smarandache semi-automorphic inverse property
loop (S2ndSAIPL) if and only if Jρ is a S2nd semi-automorphism.

Let (GH , ·) be a special quasigroup(loop). A mapping A ∈ SSY M(GH) is a

1. First Smarandache pseudo-automorphism (S1st pseudo-automorphism) of GH if and only
if there exists a c ∈ H such that (A,ARc, ARc) ∈ S1stAUT (GH). c is reffered to as the
first Smarandache companion (S1st companion) of A. The set of such A’s is denoted by
S1stPAUT (GH , ·) = S1stPAUT (GH).

2. Second right Smarandache pseudo-automorphism (S2nd right pseudo-automorphism) of
GH if and only if there exists a c ∈ H such that (A,ARc, ARc) ∈ S2ndRAUT (GH). c is
reffered to as the second right Smarandache companion (S2nd right companion) of A. The
set of such A’s is denoted by S2ndRPAUT (GH , ·) = S2ndRPAUT (GH).

3. Second left Smarandache pseudo-automorphism (S2nd left pseudo-automorphism) of GH if
and only if there exists a c ∈ H such that (A,ARc, ARc) ∈ S2ndLAUT (GH). c is reffered
to as the second left Smarandache companion (S2nd left companion) of A. The set of such
A’s is denoted by S2ndLPAUT (GH , ·) = S2ndLPAUT (GH).

Let (GH , ·) be a special loop. A mapping A ∈ SSY M(GH) is a

1. First Smarandache automorphism (S1st automorphism) of GH if and only if A ∈ S1stPAUT (GH)
such that c = e. Their set is denoted by S1stAUM(GH , ·) = S1stAUM(GH).

2. Second right Smarandache automorphism (S2nd right automorphism) of GH if and only
if A ∈ S2ndRPAUT (GH) such that c = e. Their set is denoted by S2ndRAUM(GH , ·) =
S2ndRAUM(GH).

3. Second left Smarandache automorphism (S2nd left automorphism) of GH if and only if
A ∈ S2ndLPAUT (GH) such that c = e. Their set is denoted by S2ndLAUM(GH , ·) =
S2ndLAUM(GH).
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A special loop (GH , ·) is called a first Smarandache automorphism inverse property loop (S1stAIPL)
if and only if (Jρ, Jρ, Jρ) ∈ AUT (H, ·).

A special loop (GH , ·) is called a second Smarandache right automorphic inverse property
loop (S2ndRAIPL) if and only if Jρ is a S2nd right automorphism.

A special loop (GH , ·) is called a second Smarandache left automorphic inverse property
loop (S2ndLAIPL) if and only if Jρ is a S2nd left automorphism.

Definition 4. Let (G, ·) and (L, ◦) be quasigroups (loops). The triple (U, V,W ) such that
U, V,W : G → L are bijections is called an isotopism of G onto L if and only if

xU ◦ yV = (x · y)W ∀ x, y ∈ G. (2)

Let (GH , ·) and (LM , ◦) be special groupoids. GH and LM are Smarandache isotopic (S-
isotopic) [and we say (LM , ◦) is a Smarandache isotope of (GH , ·)] if and only if there exist
bijections U, V,W : H → M such that the triple (U, V,W ) : (GH , ·) → (LM , ◦) is an
isotopism. In addition, if U = V = W , then (GH , ·) and (LM , ◦) are said to be Smarandache
isomorphic (S-isomorphic) [and we say (LM , ◦) is a Smarandache isomorph of (GH , ·) and thus
write (GH , ·) % (LM , ◦).].

(GH , ·) is called a Smarandache G-special loop(SGS-loop) if and only if every special loop
that is S-isotopic to (GH , ·) is S-isomorphic to (GH , ·).

Theorem 1. (Jáıyéo. lá [13]) Let the special loop (GH , ·) be a S2ndBL. Then it is both a
S2ndRIPL and a S2ndRAPL.

Theorem 2. (Jáıyéo. lá [13]) Let (GH , ·) be a special loop. (GH , ·) is a S2ndBL if and only
if (R−1

s , LsRs, Rs) ∈ S1stAUT (GH , ·).

§3. Main results

Lemma 1. Let (GH , ·) be a special quasigroup and let s, t ∈ H. For all x, y ∈ G, let

x ◦ y = xR−1
t · yL−1

s . (3)

Then, (GH , ◦) is a special loop and so (GH , ·) and (GH , ◦) are S-isotopic.
Proof. It is easy to show that (GH , ◦) is a quasigroup with a subquasigroup (H, ◦) since

(GH , ·) is a special quasigroup. So, (GH , ◦) is a special quasigroup. It is also easy to see that
s · t ∈ H is the identity element of (GH , ◦). Thus, (GH , ◦) is a special loop. With U = Rt,
V = Ls and W = I, the triple (U, V,W ) : (GH , ·) → (GH , ◦) is an S-isotopism.

Remark 3. (GH , ◦) will be called a Smarandache principal isotopism (S-principal iso-
topism) of (GH , ·).

Theorem 3. If the special quasigroup (GH , ·) and special loop (LM , ◦) are S-isotopic,
then (LM , ◦) is S-isomorphic to a S-principal isotope of (GH , ·).

Proof. Let e be the identity element of the special loop (LM , ◦). Let U , V and W be 1-1
S-mappings of GH onto LM such that

xU ◦ yV = (x · y)W ∀ x, y ∈ GH .
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Let t = eV −1 and s = eU−1. Define x ∗ y for all x, y ∈ GH by

x ∗ y = (xW ◦ yW )W−1. (4)

From (2), with x and y replaced by xWU−1 and yWV −1 respectively, we get

(xW ◦ yW )W−1 = xWU−1 · yWV −1 ∀ x, y ∈ GH . (5)

In (5), with x = eW−1, we get WV −1 = L−1
s and with y = eW−1, we get WU−1 = R−1

t .
Hence, from (4) and (5),

x ∗ y = xR−1
t · yL−1

s and (x ∗ y)W = xW ◦ yW ∀ x, y ∈ GH .

That is, (GH , ∗) is a S-principal isotope of (GH , ·) and is S-isomorphic to (LM , ◦).
Theorem 4. Let (GH , ·) be a S2ndRIPL. Let f, g ∈ H and let (GH , ◦) be a S-principal

isotope of (GH , ·). (GH , ◦) is a S2ndRIPL if and only if α(f, g) = (Rg, LfR−1
g L−1

f ·g, R
−1
g ) ∈

S2ndRAUT (GH , ·) for all f, g ∈ H.
Proof. Let (GH , ·) be a special loop that has the S2ndRIP and let f, g ∈ H. For all

x, y ∈ G, define x ◦ y = xR−1
g · yL−1

f as in (3). Recall that f · g is the identity in (GH , ◦), so
x◦xρ′ = f ·g where xJ ′ρ = xρ′ i.e the right identity element of x in (GH , ◦). Then, for all x ∈ G,
x ◦ xρ′ = xR−1

g · xJ ′ρL
−1
f = f · g and by the S2ndRIP of (GH , ·), since sR−1

g · sJ ′ρL−1
f = f · g for

all s ∈ H, then sR−1
g = (f · g) · (sJ ′ρL−1

f )Jρ because (H, ·) has the RIP. Thus,

sR−1
g = sJ ′ρL

−1
f JρLf ·g ⇒ sJ ′ρ = sR−1

g L−1
f ·gJλLf . (6)

(GH , ◦) has the S2ndRIP iff (x◦s)◦sJ ′ρ = s for all s ∈ H, x ∈ GH iff (xR−1
g ·sL−1

f )R−1
g ·sJ ′ρL−1

f =
x, for all s ∈ H, x ∈ GH . Replace x by x · g and s by f · s, then (x · s)R−1

g · (f · s)J ′ρL−1
f = x · g

iff (x · s)R−1
g = (x · g) · (f · s)J ′ρL−1

f Jρ for all s ∈ H, x ∈ GH since (GH , ·) has the S2ndRIP.
Using (6),

(x · s)R−1
g = xRg · (f · s)R−1

g L−1
f ·g ⇔ (x · s)R−1

g = xRg · sLfR−1
g L−1

f ·g ⇔

α(f, g) = (Rg, LfR−1
g L−1

f ·g, R
−1
g ) ∈ S2ndRAUT (GH , ·) for all f, g ∈ H.

Theorem 5. If a special loop (GH , ·) is a S2ndBL, then any of its S-isotopes is a S2ndRIPL.
Proof. By virtue of Theorem 3, we need only to concern ourselves with the S-principal

isotopes of (GH , ·). (GH , ·) is a S2ndBL iff it obeys the S2ndBI iff (xs · z)s = x(sz · s) for all
x, z ∈ G and s ∈ H iff LxsRs = LsRsLx for all x ∈ G and s ∈ H iff R−1

s L−1
xs = L−1

x R−1
s L−1

s for
all x ∈ G and s ∈ H iff

R−1
s L−1

s = LxR−1
s L−1

xs for all x ∈ G and s ∈ H. (7)

Assume that (GH , ·) is a S2ndBL. Then, by Theorem 2,

(R−1
s , LsRs, Rs) ∈ S1stAUT (GH , ·) ⇒ (R−1

s , LsRs, Rs) ∈ S2ndRAUT (GH , ·) ⇒

(R−1
s , LsRs, Rs)−1 = (Rs, R

−1
s L−1

s , R−1
s ) ∈ S2ndRAUT (GH , ·).
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By (7), α(x, s) = (Rs, LxR−1
s L−1

xs , R−1
s ) ∈ S2ndRAUT (GH , ·) for all f, g ∈ H. But (GH , ·) has

the S2ndRIP by Theorem 1. So, following Theorem 4, all special loops that are S-isotopic to
(GH , ·) are S2ndRIPLs.

Theorem 6. Suppose that each special loop that is S-isotopic to (GH , ·) is a S2ndRIPL,
then the identities:

1. (fg)\f = (xg)\x,

2. g\(sg−1) = (fg)\[(fs)g−1]

are satisfied for all f, g, s ∈ H and x ∈ G.
Proof. In particular, (GH , ·) has the S2ndRIP. Then by Theorem 3, α(f, g) = (Rg, LfR−1

g

L−1
f ·g, R

−1
g ) ∈ S2ndRAUT (GH , ·) for all f, g ∈ H. Let

Y = LfR−1
g L−1

f ·g. (8)

Then,
xg · sY = (xs)R−1

g . (9)

Put s = g in (9), then xg · gY = (xg)R−1
g = x. But, gY = gLfR−1

g L−1
f ·g = (fg)\[(fg)g−1] =

(fg)\f . So, xg · (fg)\f = x ⇒ (fg)\f = (xg)\x.
Put x = e in (9), then sY Lg = sR−1

g ⇒ sY = sR−1
g L−1

g . So, combining this with (8),
sR−1

g L−1
g = sLfR−1

g L−1
f ·g ⇒ g\(sg−1) = (fg)\[(fs)g−1].

Theorem 7. Every special loop that is S-isotopic to a S2ndBL is itself a S2ndBL.
Proof. Let (GH , ◦) be a special loop that is S-isotopic to an S2ndBL (GH , ·). Assume that

x ·y = xα◦yβ where α, β : H → H. Then the S2ndBI can be written in terms of (◦) as follows.
(xs · z)s = x(sz · s) for all x, z ∈ G and s ∈ H.

[(xα ◦ sβ)α ◦ zβ]α ◦ sβ = xα ◦ [(sα ◦ zβ)α ◦ sβ]β. (10)

Replace xα by x, sβ by s and zβ by z, then

[(x ◦ s)α ◦ z]α ◦ s = x ◦ [(sβ−1α ◦ z)α ◦ s]β. (11)

If x = e, then
(sα ◦ z)α ◦ s = [(sβ−1α ◦ z)α ◦ s]β. (12)

Substituting (12) into the RHS of (11) and replacing x, s and z by x, s and z respectively, we
have

[(x ◦ s)α ◦ z]α ◦ s = x ◦ [(sα ◦ z)α ◦ s]. (13)

With s = e, (xα ◦ z)α = x ◦ (eα ◦ z)α. Let (eα ◦ z)α = zδ, where δ ∈ SSY M(GH). Then,

(xα ◦ z)α = x ◦ zδ. (14)

Applying (14), then (13) to the expression [(x ◦ s) ◦ zδ] ◦ s, that is

[(x ◦ s) ◦ zδ] ◦ s = [(x ◦ s)α ◦ z]α ◦ s = x ◦ [(sα ◦ z)α ◦ s] = x ◦ [(s ◦ zδ) ◦ s].
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implies
[(x ◦ s) ◦ zδ] ◦ s = x ◦ [(s ◦ zδ) ◦ s].

Replace zδ by z, then
[(x ◦ s) ◦ z] ◦ s = x ◦ [(s ◦ z) ◦ s].

Theorem 8. Let (GH , ·) be a S2ndBL. Each special loop that is S-isotopic to (GH , ·) is
S-isomorphic to a S-principal isotope (GH , ◦) where x ◦ y = xRf · yL−1

f for all x, y ∈ G and
some f ∈ H.

Proof. Let e be the identity element of (GH , ·). Let (GH , ∗) be any S-principal isotope
of (GH , ·) say x ∗ y = xR−1

v · yL−1
u for all x, y ∈ G and some u, v ∈ H. Let e′ be the identity

element of (GH , ∗). That is, e′ = u · v. Now, define x ∗ y by

x ◦ y = [(xe′) ∗ (ye′)]e′−1 for all x, y ∈ G.

Then Re′ is an S-isomorphism of (GH , ◦) onto (GH , ∗). Observe that e is also the identity
element for (GH , ◦) and since (GH , ·) is a S2ndBL,

(pe′)(e′−1q · e′−1) = pq · e′−1 for all p, q ∈ G. (15)

So, using (15),

x ◦ y = [(xe′) ∗ (ye′)]e′−1 = [xRe′R
−1
v · yRe′L

−1
u ]e′−1 = xRe′R

−1
v Re′ · yRe′L

−1
u Le′−1Re′−1

implies that

x ◦ y = xA · yB, A = Re′R
−1
v Re′ and B = Re′L

−1
u Le′−1Re′−1 . (16)

Let f = eA. then, y = e ◦ y = eA · yB = f · yB for all y ∈ G. So, B = L−1
f . In fact,

eB = fρ = f−1. Then, x = x ◦ e = xA · eB = xA · f−1 for all x ∈ G implies xf = (xA · f−1)f
implies xf = xA (S2ndRIP) implies A = Rf . Now, (16) becomes x ◦ y = xRf · yL−1

f .
Theorem 9. Let (GH , ·) be a S2ndBL with the S2ndRAIP or S2ndLAIP, let f ∈ H and let

x ◦ y = xRf · yL−1
f for all x, y ∈ G. Then (GH , ◦) is a S1stAIPL if and only if f ∈ Nλ(H, ·).

Proof. Since (GH , ·) is a S2ndBL, J = Jλ = Jρ in (H, ·). Using (6) with g = f−1,

sJ ′ρ = sRfJLf . (17)

(GH , ◦) is a S1stAIPL iff (x ◦ y)J ′ρ = xJ ′ρ ◦ yJ ′ρ for all x, y ∈ H iff

(xRf · yL−1
f )J ′ρ = xJ ′ρRf · yJ ′ρL

−1
f . (18)

Let x = uR−1
f and y = vLf and use (16), then (18) becomes (uv)RfJLf = uJLfRf · vLfRfJ

iff α = (JLfRf , LfRfJ,RfJLf ) ∈ AUT (H, ·). Since (GH , ·) is a S1stAIPL, so (J, J, J) ∈
AUT (H, ·). So, α ∈ AUT (H, ·) ⇔ β = α(J, J, J)(R−1

f−1 , Lf−1Rf−1 , Rf−1) ∈ AUT (H, ·). Since
(GH , ·) is a S2ndBL,

xLfRfLf−1Rf−1 = [f−1(fx · f)]f−1 = [(f−1f · x)f ]f−1 = x for all x ∈ G. That is,
LfRfLf−1Rf−1 = I in (GH , ·). Also, since J ∈ AUM(H, ·), then RfJ = JRf−1 and LfJ =
JLf−1 in (H, ·). So,
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β = (JLfRfJR−1
f−1 , LfRfJ2Lf−1Rf−1 , RfJLfJRf−1) =

(JLfJRf−1R−1
f−1 , LfRfLf−1Rf−1 , RfLf−1Rf−1) = (Lf−1 , I, RfLf−1Rf−1).

Hence, (GH , ◦) is a S1stAIPL iff β ∈ AUT (H, ·).
Now, assume that β ∈ AUT (H, ·). Then, xLf−1 · y = (xy)RfLf−1Rf−1 for all x, y ∈ H.

For y = e, Lf−1 = RfLf−1Rf−1 in (H, ·). So, β = (Lf−1 , I, Lf−1) ∈ AUT (H, ·) ⇒ f−1 ∈
Nλ(H, ·) ⇒ f ∈ Nλ(H, ·).

On the other hand, if f ∈ Nλ(H, ·), then, γ = (Lf , I, Lf ) ∈ AUT (H, ·). But f ∈
Nλ(H, ·) ⇒ L−1

f = Lf−1 = RfLf−1Rf−1 in (H, ·). Hence, β = γ−1 and β ∈ AUT (H, ·).
Corollary 1. Let (GH , ·) be a S2ndBL and a S1stAIPL. Then, for any special loop (GH , ◦)

that is S-isotopic to (GH , ·), (GH , ◦) is a S1stAIPL iff (GH , ·) is a S1st-loop and a S1st commu-
tative loop.

Proof. Suppose every special loop that is S-isotopic to (GH , ·) is a S1stAIPL. Then,
f ∈ Nλ(H, ·) for all f ∈ H by Theorem 9. So, (GH , ·) is a S1st-loop. Then, y−1x−1 = (xy)−1 =
x−1y−1 for all x, y ∈ H. So, (GH , ·) is a S1st commutative loop.

The proof of the converse is as follows. If (GH , ·) is a S1st-loop and a S1st commutative
loop, then for all x, y ∈ H such that x ◦ y = xRf · yL−1

f ,

(x ◦ y) ◦ z = (xRf · yL−1
f )Rf · zL−1

f = (xf · f−1y)f · f−1z.

x ◦ (y ◦ z) = xRf · (yRf · zL−1
f )L−1

f = xf · f−1(yf · f−1z).

So, (x ◦ y) ◦ z = x ◦ (y ◦ z). Thus, (H, ◦) is a group. Furthermore,

x ◦ y = xRf · yL−1
f = xf · f−1y = x · y = y · x = yf · f−1x = y ◦ x.

So, (H, ◦) is commutative and so has the AIP. Therefore, (GH , ◦) is a S1stAIPL.
Lemma 2. Let (GH , ·) be a S2ndBL. Then, every special loop that is S-isotopic to (GH , ·) is

S-isomorphic to (GH , ·) if and only if (GH , ·) obeys the identity (x·fg)g−1 ·f\(y·fg) = (xy)·(fg)
for all x, y ∈ GH and f, g ∈ H.

Proof. Let (GH , ◦) be an arbitrary S-principal isotope of (GH , ·). It is claimed that

(GH , ·)
Rfg

% (GH , ◦) iff xRfg ◦ yRfg = (x · y)Rfg iff (x · fg)R−1
g · (y · fg)L−1

f = (x · y)Rfg iff
(x · fg)g−1 · f\(y · fg) = (xy) · (fg) for all x, y ∈ GH and f, g ∈ H.

Theorem 10. Let (GH , ·) be a S2ndBL, let f ∈ H, and let x ◦ y = xRf · yL−1
f for all

x, y ∈ G. Then, (GH , ·) % (GH , ◦) if and only if there exists a S1st pseudo-automorphism of
(GH , ·) with S1st companion f .

Proof. (GH , ·) % (GH , ◦) if and only if there exists T ∈ SSY M(GH , ·) such that xT ◦yT =
(x · y)T for all x, y ∈ G iff xTRf · yTL−1

f = (x · y)T for all x, y ∈ G iff α = (TRf , TL−1
f , T ) ∈

S1stAUT (GH).
Recall that by Theorem 2, (GH , ·) is a S2ndBL iff (R−1

f , LfRf , Rf ) ∈ S1stAUT (GH , ·) for
each f ∈ H. So,

α ∈ S1stAUT (GH) ⇔ β = α(R−1
f , LfRf , Rf ) =

(T, TRf , TRf ) ∈ S1stAUT (GH , ·) ⇔ T ∈ S1stPAUT (GH)
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with S1st companion f .
Corollary 2. Let (GH , ·) be a S2ndBL, let f ∈ H and let x ◦ y = xRf · yL−1

f for all
x, y ∈ GH . If f ∈ Nρ(H, ·), then, (GH , ·) % (GH , ◦).

Proof. Following Theorem 10, f ∈ Nρ(H, ·) ⇒ TS1stPAUT (GH) with S1st companion f .
Corollary 3. Let (GH , ·) be a S2ndBL. Then, every special loop that is S-isotopic to

(GH , ·) is S-isomorphic to (GH , ·) if and only if each element of H is a S1st companion for a S1st

pseudo-automorphism of (GH , ·).
Proof. This follows from Theorem 8 and Theorem 10.
Corollary 4. Let (GH , ·) be a S2ndBL. Then, (GH , ·) is a SGS-loop if and only if each

element of H is a S1st companion for a S1st pseudo-automorphism of (GH , ·).
Proof. This is an immediate consequence of Corollary 4.
Remark 4. Every Bol loop is a S2ndBL. Most of the results on isotopy of Bol loops in

chapter 3 of [19] can easily be deduced from the results in this paper by simply forcing H to
be equal to G.
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Abstract Binary polynomial and Binary pure even polynomial through the introduction of

recursive method, using the two polynomial solve the problem of the average value formula

with the sum of numbers of binary.

Keywords Binary polynomial, binary pure even polynomial, pure even partition of set nu-

mber, characteristic function.

§1. Introduction

In the paper [1], U. S. experts in number theory Florentin Smarandache put forward
function of the digital sum of the number of columns so that people study it. Paper [2-5]
mainly to binary numbers and function of some low times have been studied. In this paper,
using a recursive method provides a binary number and function of the mean value formula
Ap

(
2k

)
and Ap (N), and give evidence. with the paper [2-5] compared to the structure of the

conclusions clear, convenient and practical, conclusions more comprehensive, easy to theoretical
study of the characteristics of. To study the convenience of, the paper k and p both are non-
negative integer, we give

Definition 1.[3] Set m = 2k1 + 2k2 + · · ·+ 2ks (k1 > k2 > · · · > ks ≥ 0), call a(m) =
s∑

i=1

1

as the sum of numbers of binary, call Ap(N) =
∑

m<N

ap(m) as the average value of function

a(m).
Definition 2. Defined polynomial tp (k) as Binary polynomial: satisfy the recurrence

relation t0 (k) = 1, tp+1 (k) = 2ktp (k)− ktp (k − 1).
Definition 3. Defined polynomial gp (k) as Binary pure even polynomial: satisfy the

recurrence relation g0 (k) = 1, g1 (k) = 0, gp+2 (k) = k2gp (k)− k (k − 1) gp (k − 2).

§2. The main conclusions

Theorem 1. Given tp (k) is Binary polynomial，then Ap(2k) = tp (k) 2k−p.
Theorem 2. Set integer N = 2k1 + 2k2 + · · ·+ 2ks (k1 > k2 > · · · > ks), gh (k) is Binary

pure even polynomial, ri = ki + 2i− 2 (i = 1, 2, · · ·, s), then

Ap(N) =
s∑

i=1




p∑

h=0


 p

h


 gh (ki) ri

p−h


2ki−p.
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Corollary. Suppose ri = ki + 2i− 2, gi4 = ki (3ki − 2), gi6 = ki

(
15ki

2 − 30ki + 16
)
, then

(1) A1 (N) =
s∑

i=1

(ki + 2i− 2) 2ki−1, (2) A2 (N) =
s∑

i=1

(
ri

2 + ki

)
2ki−2,

(3) A3 (N) =
s∑

i=1

(
ri

3 + 3kiri

)
2ki−3, (4) A4 (N) =

s∑
i=1

(
ri

4 + 6kiri
2 + gi4

)
2ki−4,

(5) A5 (N) =
s∑

i=1

(
ri

5 + 10kiri
3 + 5gi4ri

)
2ki−5,

(6) A6 (N) =
s∑

i=1

(
ri

6 + 15kiri
4 + 15gi4ri

2 + kigi6

)
2ki−6,

(7) A7 (N) =
s∑

i=1

(
ri

7 + 21kiri
5 + 35gi4ri

3 + 7gi6ri

)
2ki−7.

§3. Proof of Theorem 1

3.1. Preparation

Lemma 1. Verify (1 + ex)k =
∞∑

p=0
Ap(2k)xp

p! .

Proof. A positive integer in the binary of less than 2k, each can take a digital “0” or

“1”, and affect each other, k-digit number in a j-bit integer to take a total of


 k

j


 , (j =

0, 1, 2, · · ·, k), this


 k

j


 integer numbers that the sum of numbers are j, their sum of p-times

is


 k

j


 jp, then

Ap(2k) =
k∑

j=0


 k

j


 jp. (1)

According to the binomial theorem to know function

vk(x) = (1 + ex)k =
k∑

j=0


 k

j


ejx,

p-derivative of function is

vk
(p)(x) =

k∑

j=1

jp


 k

j


ejx,

then

vk
(p)(0) =

k∑

j=1


 k

j


 jp. (2)

Combining (1) and (2), we have

Ap(2k) = vk
(p)(0). (3)
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Then

(1 + ex)k = vk (x) =
∞∑

p=0

vk
(p)(0)

xp

p!
=

∞∑
p=0

Ap(2k)
xp

p!
.

Definition 4. Called function vk(x) = (1 + ex)k is a characteristic function of Ap(2k).

3.2. Proof of Theorem 1

Derivative of function vk(x) = (1 + ex)k is vk
′(x) = k(1 + ex)k−1ex = k(1 + ex)k −

k(1 + ex)k−1. Then vk
′(x) = kvk(x) − kvk−1(x). So vk

(p+1)(x) = kvk
(p)(x) − kvk−1

(p)(x).
Then vk

(p+1)(0) = kvk
(p)(0)− kvk−1

(p)(0). The use of (3) available

Ap+1

(
2k

)
= kAp

(
2k

)− kAp

(
2k−1

)
. (4)

Suppose
Ap(2k) = fp (k) 2k−p, (p = 0, 1, 2, · · ·). (5)

Then Ap+1(2k) = fp+1 (k) 2k−p−1, Ap(2k−1) = fp (k − 1) 2k−p−1.
All of the above three type substituted into (4) may

fp+1 (k) 2k−p−1 = k · fp (k) 2k−p − k · fp (k − 1) 2k−p−1.

Simplification may

fp+1 (k) = 2k · fp (k)− k · fp (k − 1) , (p = 0, 1, 2, · · ·). (6)

By (3) available A0(2k) = v (0) = 2k, by (5) available A0(2k) = f0 (k) 2k,
So f0 (k) 2k = 2k, that

f0 (k) = 1. (7)

By (6) and (7) available polynomial fp (k) to meet the definition of two terms in tp (k)
recursive, so fp (k) = tp (k).

Substituted into (5) available Ap(2k) = tp (k) 2k−p.
This proves the theorem.

§4. Proof of Theorem 2

4.1. Two lemma

Lemma 2.[7]
(
∞∑

p=0
ap

xp

p!

)(
∞∑

p=0
bp

xp

p!

)
=

∞∑
p=0


 p∑

h=0


 p

h


 ap−hbh


xp

p!
.

Lemma 3. chx =
ex + e−x

2
is Hyperbolic cosine function, gh (k) is Binary pure even

polynomial, verify (chx)k =
∞∑

p=0
gp (k)

xp

p!
.

Proof. Set
wk(x) = (chx)k. (8)
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Then

wk
′(x) = k(chx)k−1shx,

wk
′′(x) = k (k − 1) (chx)k−2sh2x + k(chx)k−1chx

= k (k − 1) (chx)k−2
(
ch2x− 1

)
+ k(chx)k

= k2(chx)k − k (k − 1) (chx)k−2.

The use of (8) available wk
′′(x) = k2wk(x)−k (k − 1) wk−2(x). So wk

(p+2)(x) = k2wk
(p)(x)−

k (k − 1) wk−2
(p)(x). That

wk
(p+2)(0) = k2wk

(p)(0)− k (k − 1) wk−2
(p)(0). (9)

Suppose

wk
(p)(0) = fp (k) , (p = 0, 1, 2, · · ·). (10)

Then wk
(p+2)(0) = fp+2 (k), wk−2

(p)(0) = fp (k − 2).
All of the above type substituted into (9)

fp+2 (k) = k2fp (k)− k (k − 1) fp (k − 2) . (11)

Combining (8) and (10), we have

f0 (k) = wk(0) = 1, f1 (k) = wk
′(0) = 0. (12)

By (11) and (12) available polynomial fp (k) to meet the definition of three terms in gh (k)
recursive, So fp (k) = gp (k). Combined (10) available wk

(p)(0) = gp (k). So

(chx)k = wk(x) =
∞∑

p=0

wk
(p)(0)

xp

p!
=

∞∑
p=0

gp (k)
xp

p!
.

4.2. The transformation of the problem

Given an integer N = 2k1 + 2k2 + · · ·+ 2ks(k1 > k2 > · · · > ks > 0), interval [0, N) divided
into the interval between s plots Ni =

[
2k1 + · · ·+ 2ki−1 , 2k1 + · · ·+ 2ki−1 + 2ki

)
, (i = 1, 2, · · ·, s),

Set Ap (Ni) =
∑

m∈Ni

ap(m), then

Ap(N) =
s∑

i=1

Ap (Ni). (13)

In the range of 2ki integers in interval Ni, ki -digit number in a j-bit integer to take a

total of


 ki

j


 , (j = 0, 1, 2, · · ·, ki), from the (ki + 1)-bit to the k1 -bit numbers the sum of

numbers are (i− 1), this


 ki

j


 integer numbers the sum of numbers are (i− 1 + j), their
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sum of p-times is


 ki

j


 (i− 1 + j)p, then

Ap (Ni) =
ki∑

j=0


 ki

j


(i− 1 + j)p

. (14)

The use of the binomial theorem to get function

ui (x) = e(i−1)x(1 + ex)ki = e(i−1)x
ki∑

j=0


 ki

j


ejx =

ki∑

j=0


 ki

j


e(i−1+j)x,

p-derivative of function is

ui
(p) (x) =

ki∑

j=0


 ki

j


 (i− 1 + j)p

e(i−1+j)x. (15)

Combining (14) and (15), we have

Ap (Ni) = ui
(p) (0) . (16)

So characteristic function of Ap (Ni) is ui (x) = e(i−1)x(1 + ex)ki .

4.3. Proof of Theorem 2

Because

ui (x) = e(i−1)x(1 + ex)ki = e

(
ki
2 +i−1

)
x(

e
x
2 + e−

x
2
)ki = 2kie

(
ki
2 +i−1

)
x
(
ch

x

2

)ki

,

Set
ri = ki + 2i− 2, (i = 1, 2, · · ·, s) ,

so

e

(
ki
2 +i−1

)
x = e

ri
2 x =

∞∑
p=0

ri
p

2p

xp

p!
. (17)

Also according to Lemma 3
(
ch

x

2

)ki

=
∞∑

p=0

gp (ki)
(x

2

)p 1
p!

=
∞∑

p=0

2−pgp (ki)
xp

p!
. (18)

Combining (17), (18) and Lemma 2, we have

ui (x) = 2kie

(
ki
2 +i−1

)
x
(
ch

x

2

)ki

= 2ki

( ∞∑
p=0

ri
p

2p
· xp

p!

)( ∞∑
p=0

2−pgp (ki)
xp

p!

)

= 2ki

∞∑
p=0




p∑

h=0


 p

h


 ri

p−h

2p−h
2−hgh (ki)


 xp

p!

=
∞∑

p=0

2ki−p




p∑

h=0


 p

h


 gh (ki) ri

p−h


 xp

p!
. (19)
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Combining (16) and (19), we have

Ap (Ni) = ui
(p) (0) = 2ki−p




p∑

h=0


 p

h


 gh (ki) ri

p−h


 . (20)

By (13) and (20) available Ap(N) =
s∑

i=1

Ap (Ni) =
s∑

i=1


 p∑

h=0


 p

h


 gh (ki) ri

p−h


2ki−p.

This shows that the Theorem 2 is true.

§5. The relationship between Binary pure even polynomial

and Pure even partition of set number

Can be seen from Theorem 2, Binary pure even polynomial in the expression is essential, I
have studied a class of several, as pure even partition of set number, following pointed out that
the Binary pure even polynomial and Pure even partition of set number relationships.

Definition 5.[6] j is non-negative integer, power Series
1
j!

(chx− 1)j =
∞∑

p=0

S4 (p, j)
xp

p!
the

coefficient S4(p, j) is called the definition of pure even partition of set number.
Theorem 3. Factorial function [k]j = k (k − 1) · · · (k − j + 1), then

Binary pure even polynomial gp (k) =
∞∑

j=0

S4 (p, j) [k]j .

Proof. Because

(chx)k = [(chx− 1) + 1]k =
k∑

j=0


 k

j


 (chx− 1)j =

k∑

j=0

[k]j
1
j!

(chx− 1)j
. (21)

By the definition of 5 available

1
j!

(chx− 1)j =
∞∑

p=0

S4 (p, j)
xp

p!
. (22)

Combining (21) and (22), we have

(chx)k =
k∑

j=0

[k]j

∞∑
p=0

S4 (p, j)
xp

p!
=

∞∑
p=0



∞∑

j=0

S4 (p, j) [k]j


 xp

p!
.

Combination of Lemma 3 available

∞∑
p=0

gp (k)
xp

p!
=

∞∑
p=0



∞∑

j=0

S4 (p, j) [k]j


 xp

p!
.

So gp (k) =
∞∑

j=0

S4 (p, j) [k]j , (p = 0, 1, 2, · · ·), prove complete.

Theorem 4. Pure even partition of set number S4(p, k) there is a recursive relation-
ship: S4(0, 0) = 1;S4(1, j) = 0;S4(p, 0) = S4(0, j) = 0, p > 1, j > 1, and S4(p + 2, j) =
(2j − 1) S4(p, j − 1) + j2S4(p, j), j > 1.



26 Jiangmin Gu

Proof. Know from the Definition 5
∞∑

p=0

S4 (p, j)
xp

p!
=

1
j!

(chx− 1)j =
1
j!

(
x2

2!
+

x4

4!
+

x6

6!
+ · · ·

)j

.

Because the expansion does not contain x, so S4(1, j) = 0;
When j = 0, only the constant term S4 (0, 0) = 1, S4 (p, 0) = 0, (p > 1);
When j > 1, expansion does not contain the constant term, so S4(0, j) = 0;

Set ϕ (x) =
∞∑

p=0
S4 (p, j) xp

p! .

So

ϕ′′ (x) =
∞∑

p=2

S4 (p, j)
xp−2

(p− 2)!
=

∞∑
p=0

S4 (p + 2, j)
xp

p!
. (23)

Also, according to the Definition 5 known ϕ (x) =
∞∑

p=0
S4 (p, j) xp

p! = 1
j! (chx− 1)j . So

ϕ′ (x) = 1
(j−1)! (chx− 1)j−1

shx.
Then

ϕ′′ (x) =
1

(j − 2)!
(chx− 1)j−2

sh2x +
1

(j − 1)!
(chx− 1)j−1

chx

=
j − 1

(j − 1)!
(chx− 1)j−2 (

ch2x− 1
)

+
1

(j − 1)!
(chx− 1)j−1

chx

=
1

(j − 1)!
(chx− 1)j−1 [(j − 1) (chx + 1) + chx]

=
1

(j − 1)!
(chx− 1)j−1 [(2j − 1) + j (chx− 1)]

= (2j − 1) · 1
(j − 1)!

(chx− 1)j−1 + j2 · 1
j!

(chx− 1)j

= (2j − 1)
∞∑

p=0

S4 (p, j − 1)
xp

p!
+ j2

∞∑
p=0

S4 (p, j)
xp

p!
.

So

ϕ′′ (x) =
∞∑

p=0

[
(2j − 1) S4 (p, j − 1) + j2S4 (p, j)

] xp

p!
. (24)

Combining (23) and (24), we have

∞∑
p=0

S4 (p + 2, j)
xp

p!
=

∞∑
p=0

[
(2j − 1) S4 (p, j − 1) + j2S4 (p, j)

] xp

p!
.

So S4(p + 2, j) = (2j − 1) S4(p, j − 1) + j2S4(p, j). This proves the theorem.

Conclusion

The use of Theorem 3 and Theorem 4 expression available to Binary pure even polyno-
mial.When the k value is not significant,applications (1) or (14) is also a convenient，when the
k value is significant, application of theorem 1 or theorem 2 on the much simpler.
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The adjoint semiring part of IS-algebras 1
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Abstract Let X be a IS-algebra, AS(X) = {x ∈ X|0 ∗ (0 ∗ x) = 0 ∗ x} be called the adjoint

semiring part of X. It be proved that AS(X) is subalgebra and ideal of X, and it is semiring

about operation “ + ” by which x + y = 0 ∗ (x ∗ y) and “ · ” on IS-algebra X, and its some

other properties are given.

Keywords IS-algebra, ideal, subalgebra, adjoint semiring part.

§1. Introduction

The notion of BCI–algebra was formulated first in 1966 by K. Iseki. The IS-algebra (BCI-
semigroup) was introduced in 1993 by Y. B. Jun. The author gave the ring part and the adjoint
ring part of IS-algebra and discussed their properties in [4]. In this paper, we will give the new
concept of adjoint semiring part on IS-algebras, and discuss its good properties, in order to
explain its significance.

We stated the some relational definitions and conclusions for convenience of discussion.
Definition 1.[1] An algebra (X, ∗, 0) of type (2, 0) is said to be a BCI-algebra if it satisfies:
(1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0.
(2) (x ∗ (x ∗ y)) ∗ y = 0.
(3) x ∗ x = 0.
(4) x ∗ y = 0 and y ∗ x = 0 imply x = y.
In a BCI–algebra X，define a binary relation 6 by which x 6 y if and only if x ∗ y = 0 for

any x, y ∈ X, then 6 is a partially ordered on X.
Lemma 1.[1] Let (X, ∗, 0) a BCI-algebra, for all x, y, z ∈ X, we have (1) (x∗y)∗z = (x∗z)∗y.
(2) x ∗ 0 = x.
(3) 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y).
(4) 0 ∗ (0 ∗ (0 ∗ x)) = 0 ∗ x.
(5) x ∗ 0 = 0 imply x = 0.
Definition 2.[2,3] A IS-algebra (BCI-semigroup) X is a non-empty set X with two opera-

tions“∗”and “·”, and with a constant element 0 such that following axioms are satisfied:
(1) (X, ∗, 0) is BCI-algebra.
(2) (X, ·) is semigroup.

1This work was supported by the Natural Science Basic Research Plan in Shaanxi Province of China (No.

2010JM1016) and the Science Foundation of Baoji University of Arts and Sciences (zk0913).
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(3) Distributive law: x ·(y ∗z) = (x ·y)∗(x ·z), (x∗y) ·z = (x ·z)∗(y ·z), for any x, y, z ∈ X.
x · y is usual to be written xy and IS-algebra (X, ∗, ·, 0) is usual to be written X for short.

Lemma 2.[2] In a IS-algebra X, we have 0x = x0 = 0.
Let Y be the non-empty subset of IS-algebra X, if operations “ ∗ ” and “ · ” are closed in

Y, then (Y, ∗, ·, 0) is IS-algebra too, we call it is a subalgebra of X[2].
Definition 3.[3] Let I is a non-empty subset of IS-algebra X, It is said to be ideal of X, if
(1) For any x ∈ X, for any a ∈ I, then xa, ax ∈ I.
(2) x ∗ y ∈ I and y ∈ I imply x ∈ I.
Definition 4.[4] In a IS-algebra X, the set

R(X) = {x ∈ X|0 ∗ x = x}

is said to be ring part of X.

AR(X) = {x ∈ X|0 ∗ (0 ∗ x) = x}
is said to be adjoint ring part of X.

Lemma 4.[4] In a IS-algebra X, Ring part R(X) is a subalgebra of X and a ring that
character is 2. AR(X) is subalgebra of IS-algebra X, and adjoint ring part AR(X) is a ring
about operation “ + ” by which x + y = x ∗ (0 ∗ y) and operation “ · ” on IS-algebra X.

§2. New concept

We first prove a theorem for introduction a new concept.
Theorem 1. In a IS-algebra X, Let AS(X) = {x ∈ X|0 ∗ (0 ∗ x) = 0 ∗ x}, then
(1) AS(X) is subalgebra of IS-algebra X.
(2) Let x + y = 0 ∗ (x ∗ y), then (AS(X),+, ·) is a semiring, and have

x + y = y + x, (x + y) + z = x + (y + z).

Proof. (1) Obviously, 0 ∈ AS(X), so AS(X) 6= ∅.

For any x, y ∈ AS(X), We have 0∗ (0∗ (x∗y)) = (0∗ (0∗x))∗ (0∗ (0∗y)) = (0∗x)∗ (0∗y) =
0 ∗ (x ∗ y). that is x ∗ y ∈ AS(X).

In addition, since 0 ∗ (0 ∗ (xy)) = (0y) ∗ ((0y)) ∗ (xy)) = (0 ? (0 ∗ (x))y = (0 ∗ x)y =
(0y) ∗ (xy) = 0 ∗ (xy). That is xy ∈ AS(X), hence AS(X) is a subalgebra of X.

(2) For any x, y, z ∈ AS(X), we have 0 ∗ (0 ∗ (x + y)) = 0 ∗ (0 ∗ (0 ∗ (x ∗ y))) = 0 ∗ ((0 ∗ (0 ∗
x)) ∗ (0 ∗ (0 ∗ y))) = 0 ∗ ((0 ∗ x) ∗ (0 ∗ y)) = 0 ∗ (0 ∗ (x ∗ y)) = 0 ∗ (x + y). then x + y ∈ AS(X).

In addition, since x + y = 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y) = (0 ∗ (0 ∗ x)) ∗ (0 ∗ y) =
(0 ∗ (0 ∗ y)) ∗ (0 ∗ x) = (0 ∗ y) ∗ (0 ∗ x) = 0 ∗ (y ∗ x) = y + x, that is x + y = y + x,(x + y) + z =
0 ∗ ((0 ∗ (x ∗ y)) ∗ z) = (0 ∗ (0 ∗ (x ∗ y))) ∗ (0 ∗ z) = (0 ∗ (x ∗ y)) ∗ (0 ∗ z) = 0 ∗ ((x ∗ y) ∗ z). Hence
(x + z) + y = 0 ∗ ((x ∗ z) ∗ y) = 0 ∗ ((x ∗ y) ∗ z) = (x + y) + z. Therefore, AS(X) is a semigroup
about above operation “ + ”. Also, since AS(X) is closed about operation “ · ” on IS-algebra
X, we have x(y + z) = x(0 ∗ (y ∗ z)) = (x0 ∗ (xy ∗ xz)) = (0 ∗ (xy ∗ xz)) = xy + xz.

In same reason, (x + y)z = xz + yz, so (AS(X),+, ·) is a semiring.
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Definition 4. In a IS-algebra X, the set

AS(X) = {x ∈ X|0 ∗ (0 ∗ x) = 0 ∗ x}

is said to be adjoint semiring part of X.
Clearly, the adjoint semiring part of X is semiring on above “ + ” and “ · ” by Theorem 1.
Example 2. LetX = {0, a, b, c}, operation “ · ” by xy = 0, and operation “ ∗ ” is following:

∗ 0 a b c

0 0 c 0 a

a a 0 a c

b b c 0 a

c c 0 c a

Then (X, ∗, ·, 0) is IS-algebra, and R(X) = {0}, AR(X) = {0, a, c}, AS(X) = {0, b}.

§3. Property

Theorem 2. x ∈ AS(X) if and only if 0 ∗ x ∈ AS(X).
Proof. If x ∈ AS(X), that is 0 ∗ (0 ∗ x) = 0 ∗ x, then 0 ∗ (0 ∗ (0 ∗ x)) = 0 ∗ (0 ∗ x), therefore

0 ∗ x ∈ AS(X).
Conversely, if 0 ∗ x ∈ AS(X), that is 0 ∗ (0 ∗ (0 ∗ x)) = 0 ∗ (0 ∗ x), then 0 ∗ (0 ∗ x) = 0 ∗ x,

so x ∈ AS(X).
Theorem 3. x ∈ AS(X) if and only if (0 ∗ x) ∗ x = 0.
Proof. If x ∈ AS(X), then (0 ∗ (0 ∗ x)) ∗ x = (0 ∗ x) ∗ (0 ∗ x) = (0 ∗ x) ∗ x = 0.
Conversely, if (0∗x)∗x = 0, then 0∗((0∗x)∗x) = (0∗(0 ∗ x))∗(0∗x) = 0, (0∗x)∗(0∗(0 ∗ x)) =

(0 ∗ (0 ∗ (0 ∗ x))) ∗ x = (0 ∗ x) ∗ x = 0, therefore 0 ∗ (0 ∗ x) = 0 ∗ x, that is x ∈ AS(X).
Theorem 4. Suppose x ∗ y ∈ AS(X), we have
(1) if x ∈ AS(X), then y ∈ AS(X).
(2) if y ∈ AS(X), then x ∈ AS(X).
Proof. (1) Let x ∗ y ∈ AS(X), x ∈ AS(X), by Theorem 2, AS(X) is close, we have

(x ∗ y) ∗ x = (x ∗ x) ∗ y = 0 ∗ y. Therefore, y ∈ AS(X).
(2) Let y ∈ AS(X), by Theorem 2, 0∗y ∈ AS(X), we have (0∗y)∗ (x∗y) = (0∗ (x∗y))∗y =

(0 ∗ x) ∗ (0 ∗ y)) ∗ y = ((0 ∗ (0 ∗ y)) ∗ x) ∗ y = ((0 ∗ (0 ∗ y)) ∗ y) ∗ x = 0 ∗ x. Hence x ∈ AS(X).
Theorem 5. In IS-algebra X, AS(X) is ideal of X.

Proof. In the first place, by Theorem 4 (2), x∗y ∈ AS(X) and y ∈ AS(X) imply x ∈ AS(X).
In the second place, for any x ∈ X, a ∈ AS(X), we obtain 0∗(0∗(xa)) = (x0)∗((x0)∗(xa)) =

x(0 ∗ (0 ∗ a)) = x(0 ∗ a) = (x0) ∗ (xa) = 0 ∗ (xa). So xa ∈ AS(X).
In same reason, xa ∈ AS(X), hence, AS(X) is ideal of X.

Theorem 6. AS(X) ∩AR(X) = R(X).
Proof. For any x ∈ R(X), that is 0 ∗ x = x, then 0 ∗ (0 ∗ x) = 0 ∗ x = x, hence x ∈ AR(X)

and x ∈ AS(X), that is, x ∈ AS(X) ∩AR(X).
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For any y ∈ AS(X) ∩ AR(X), that is 0 ∗ (0 ∗ x) = 0 ∗ x = x, hence y ∈ R(X), therefore
AS(X) ∩AR(X) = R(X).

Theorem 7. If x ∈ AS(X), then 0 ∗ x ∈ R(X).
Proof. By Theorem 2, 0 ∗ x ∈ RS(X), but 0 ∗ (0 ∗ (0 ∗ x)) = 0 ∗ x, that is 0 ∗ x ∈ AR(X),

hence 0 ∗ x ∈ R(X) by Theorem 6.
Theorem 8. If x ∈ R(X) and y ∈ AS(X), then x ∗ y ∈ R(X) and y ∗ x ∈ AS(X).
Proof. Let x ∈ R(X) and y ∈ AS(X), that is 0 ∗ x = x, 0 ∗ (0 ∗ y) = 0 ∗ y, we obtain

0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y) = (0 ∗ (0 ∗ y)) ∗ x = (0 ∗ y) ∗ x = (0 ∗ x) ∗ y = x ∗ y. So x ∗ y ∈ R(X).
0 ∗ (0 ∗ (y ∗ x)) = (0 ∗ (0 ∗ y)) ∗ (0 ∗ (0 ∗ x)) = (0 ∗ y) ∗ (0 ∗ x) = (0 ∗ (y ∗ x), therefore,

y ∗ x ∈ AS(X).
Theorem 9. If x ∈ AR(X) and y ∈ AS(X), then x ∗ y ∈ AR(X).
Proof. Let x ∈ AR(X) and y ∈ AS(X), that is 0 ∗ (0 ∗ x) = x, 0 ∗ (0 ∗ y) = 0 ∗ y, we obtain

0 ∗ (0 ∗ (x ∗ y)) = (0 ∗ (0 ∗ x)) ∗ (0 ∗ (0 ∗ y)) = (0 ∗ (0 ∗ (0 ∗ y))) ∗ (0 ∗ x) = (0 ∗ y) ∗ (0 ∗ x) =
(0 ∗ (0 ∗ x)) ∗ y = x ∗ y. Therefore, x ∗ y ∈ AR(X).
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Abstract For any positive integer n, the Smarandache double factorial function Sdf(n) is

defined as Sdf(n) = min {m : m ∈ N, n | m!!}. Let ϕ(n) be the Euler function. The main

purpose of this paper is using the elementary methods to study the solvability of the equation

Sdf(n) + ϕ(n) = n, and give its all positive integer solutions.
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§1. Introduction and results

For any positive integer n, let ϕ(n) denotes the Euler function. That is, ϕ(n) denotes the
number of all positive integers not exceeding n which are relatively prime to n.

For any positive integer n, the famous Smarandache double factorial function Sdf(n) is
defined as the smallest positive integer m such that m!! is divisible by n, where the double
factorial

m!! =

{
1 · 3 · 5 · · · (m− 2) ·m, if m is an odd number;

2 · 4 · 6 · · · (m− 2) ·m, if m is an even number.

That is, Sdf(n) = min {m : m ∈ N, n | m!!}, where N denotes the set of all positive integers.
For example, the first few values of Sdf(n) are: Sdf(1) = 1, Sdf(2) = 2, Sdf(3) = 3, Sdf(4) = 4,
Sdf(5) = 5, Sdf(6) = 6, Sdf(7) = 7, Sdf(8) = 4, Sdf(9) = 9, Sdf(10) = 10, Sdf(11) = 11,
Sdf(12) = 6, Sdf(13) = 13, Sdf(14) = 14, Sdf(15) = 5, Sdf(16) = 6, Sdf(17) = 17, Sdf(18) =
12, Sdf(19) = 19, Sdf(20) = 10, · · · . In reference [1] and [2], Professor F. Smarandache asked
us to study the properties of Sdf(n). About this problem, some authors had studied it, and
obtained some interesting results, see references [3-7]. For example, Maohua Le [4] discussed
various problems and conjectures about Sdf(n), and obtained some useful results, one of them
as follows: if 2|n and n = 2αn1, where α, n1 are positive integers with 2 - n1, then

Sdf(n) ≤ max{Sdf(2α), 2Sdf(n1)}.

Fuling Zhang and Jianghua Li [5] proved that for any real number x ≥ 1, we have the
asymptotic formula

∑

n≤x

Sdf(n) =
x lnx

ln lnx
+ O

(
x lnx

(ln lnx)2

)
.
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Jianping Wang [6] proved that for any real number x ≥ 1 and any fixed positive integer k,
we have the asymptotic formula

∑

n≤x

(Sdf(n)− S(n))2 =
ζ(3)
24

x3

lnx
+

k∑

i=2

ci · x3

lni x
+ O

(
x3

lnk+1 x

)
,

where ζ(s) is the Riemann zeta-function, and ci are constants.
Bin Cheng [7] studied the solvability of the equation

Sdf(n) = ϕ(n),

and give its all positive integer solutions.
In this paper, we use the elementary method to study the solvability of the equation

Sdf(n) + ϕ(n) = n, and give its all positive integer solutions. That is, we will prove the
following:

Theorem. For any positive integer n, the equation

Sdf(n) + ϕ(n) = n

has and only has 4 positive integer solutions, they are n = 8, 18, 27, 125.

§2. Some preliminary lemmas

In this section, we shall give several simple lemmas which are necessary in the proof of our
theorem. They are stated as follows:

Lemma 1. For n ≥ 1, let n = pα1
1 pα2

2 · · · pαk

k denotes the factorization of n into prime
powers, where p1, p2, · · · , pk are distinct primes and α1, α2, · · · , αk are positive integers, then
we have

ϕ(n) = n
∏

p|n

(
1− 1

p

)
= pα1−1

1 pα2−1
2 · · · pαk−1

k (p1 − 1)(p2 − 1) · · · (pk − 1).

Proof. See reference [8].
Lemma 2. If n is a square-free number, then we have

Sdf(n) =





max{p1, p2, · · · , pk}, if n = p1p2 · · · pk and 2 - n.

2 ·max{p1, p2, · · · , pk}, if n = 2p1p2 · · · pk.

Lemma 3. For any positive integer n, Sdf(n) ≤ n.
Proofs of Lemma 2 and Lemma 3 can be found in reference [9].
Lemma 4. If m is any positive integer and p is any odd prime, then we have

Sdf(pm) = (2m− 1)p, for p ≥ (2m− 1).

Proof. See reference [10].
Lemma 5. If 2 - n and n = pα1

1 pα2
2 · · · pαk

k is the factorization of n into prime powers, then

Sdf(n) = max{Sdf(pα1
1 ), Sdf(pα2

2 ), · · · , Sdf(pαk

k )}.
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Lemma 6. If 2 | n and n = 2αn1, where α, n are positive integers with 2 - n1, then

Sdf(n) ≤ max{Sdf(2α), 2Sdf(n1)}.

Proofs of Lemma 5 and Lemma 6 can be found in reference [4].

§3. Proof of the theorem

In this section, we will complete the proof of our Theorem. In fact from the definition of
the function Sdf(n) we can easily deduce that Sdf(1) = 1, Sdf(2) = 2, Sdf(3) = 3, Sdf(4) =
4, Sdf(5) = 5, Sdf(6) = 6, Sdf(7) = 7, so for any positive integer 1 ≤ n ≤ 7, the equation
Sdf(n) + ϕ(n) = n does not hold. Now we suppose that n ≥ 8, we consider the following cases:

I. If n be an odd integer, let n = pα1
1 pα2

2 · · · pαk

k is the factorization of n into prime power,
where p1 < p2 < · · · < pk, pi (1 ≤ i ≤ k) is an odd prime, αi ≥ 0 (1 ≤ i ≤ k).

1. If k = 1, then n = pα.
1) If α = 1, then n = p.
At this time, from the definition of Smarandache double factorial function Sdf(n) we know

Sdf(p) = p. From Lemma 1, we get ϕ(p) = p− 1. Then

Sdf(p) + ϕ(p) = 2p− 1 > p.

That is, Sdf(n) + ϕ(n) > n for all n in this case.
2) If α = 2, then n = p2.
At this time, from Lemma 4 and Lemma 1, we have Sdf(p2) = 3p (p is an odd prime) and

ϕ(p2) = p(p− 1). Then
Sdf(p2) + ϕ(p2) = p2 + 2p > p2.

Hence Sdf(n) + ϕ(n) > n in this case.
3) If α = 3, then n = p3.
i) If p = 3, then n = 33. According to the definition of Smarandache double factorial

function Sdf(n) we can easily deduce that

Sdf(33) + ϕ(33) = 9 + 32 × 2 = 27 = 33.

So n = 27 is a positive integer solution of the equation Sdf(n) + ϕ(n) = n.
ii) If p = 5, then n = 53. Hence

Sdf(53) + ϕ(53) = 25 + 52 × 4 = 125 = 53.

So n = 125 is a positive integer solution of the equation Sdf(n) + ϕ(n) = n.
iii) If p ≥ 7, then n = p3. From Lemma 4 and Lemma 1, we have Sdf(p3) = 5p, and

ϕ(p3) = p2(p− 1). Then
Sdf(p3) + ϕ(p3) = p(p2 − p + 5).

In fact we know p2−p+5 < p2 when p ≥ 7. so p(p2−p+5) < p3. That is, Sdf(p3)+ϕ(p3) < p3.
4) If α ≥ 4, then n = pα.
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From n−ϕ(n) = pα− pα−1(p− 1) = pα−1, we know if it holds Sdf(n) + ϕ(n) = n, it must
hold Sdf(pα) = pα−1 = min {m : m ∈ N, pα | m!!}. Now we will prove that Sdf(pα) 6= pα−1.
It’s obvious that p, p2, · · · , pα−1 are all included in pα−1!!. So if pα−1!! = pm · n1, we can
deduce that m ≥ α(α−1)

2 . But when α ≥ 4, we have α < α(α−1)
2 , so Sdf(pα) < pα−1, that is,

Sdf(pα) < pα − ϕ(pα). We know Sdf(n) + ϕ(n) < n for all n in this case.
2. If k ≥ 2, then n = pα1

1 pα2
2 · · · pαk

k .
On one hand, from Lemma 5, we have Sdf(n) = Sdf(pα1

1 pα2
2 · · · pαk

k ) = max{Sdf(pα1
1 ),

Sdf(pα2
2 ), · · · , Sdf(pαk

k )}. Without loss of generality we assume that max{Sdf(pα1
1 ), Sdf(pα2

2 ),
· · · , Sdf(pαk

k )} = Sdf(pαk

k ), then we have Sdf(pα1
1 pα2

2 · · · pαk

k ) = Sdf(pαk

k ) ≤ pαk

k . On the other
hand, we have ϕ(n) = ϕ(pα1

1 pα2
2 · · · pαk

k ) = pα1−1
1 pα2−1

2 · · · pαk−1
k (p1 − 1)(p2 − 1) · · · (pk − 1).

1) If Sdf(n) = pαk

k , we have n− Sdf(n) = pαk

k (pα1
1 pα2

2 · · · pαk−1
k−1 − 1).

From

pα1
1 pα2

2 · · · pαk−1
k−1 − 1 > pα1−1

1 pα2−1
2 · · · pαk−1−1

k−1 (p1 − 1)(p2 − 1) · · · (pk−1 − 1)

and
pαk

k > pαk−1
k (pk − 1),

we have n− Sdf(n) > ϕ(n). That is, Sdf(n) + ϕ(n) < n.
2) If Sdf(n) < pαk

k , it’s obvious that Sdf(n) + ϕ(n) < n.

II. If n be an even integer, let n = 2αpα1
1 pα2

2 · · · pαk

k .
1. If α = 1, then n = 2pα1

1 pα2
2 · · · pαk

k .
1) If k = 1, then n = 2pα.
i) If α = 1, then n = 2p.
From the definition of Sdf(n) we get Sdf(2p) = 2p. So Sdf(n) + ϕ(n) > n for all n in this

case.
ii) If α = 2, then n = 2p2.
In fact, from Lemma 6 and Lemma 4, we get

Sdf(n) = Sdf(2p2) ≤ max{Sdf(2), 2Sdf(p2)} = 2Sdf(p2) ≤ 6p.

At the same time, noting that n−ϕ(n) = 2p2−p(p−1) = p(p+1). We know 6p < p(p+1)
when p ≥ 7. So when p ≥ 7, Sdf(2p2) + ϕ(2p2) < 2p2. For p = 3 and 5, we have:

ii)
′
When p = 3, Sdf(2×32) = 12, ϕ(2×32) = 6. So Sdf(2×32)+ϕ(2×32) = 18 = 2×32.

Hence n = 18 is a solution of Sdf(n) + ϕ(n) = n.
ii)

′′
When p = 5, Sdf(2× 52) = 20, ϕ(2× 52) = 20, and Sdf(2× 52) + ϕ(2× 52) < 2× 52.

So n = 2× 52 is not a solution of the equation.
iii) If α = 3, then n = 2p3.
iii)

′
When p = 3, We have Sdf(2× 33) = 18 = 2× 33, so Sdf(2× 33) + ϕ(2× 33) > 2× 33.

iii)
′′

When p ≥ 5, from Lemma 6 and Lemma 4, we have

Sdf(2× p3) ≤ max{Sdf(2), 2Sdf(p3)} = 2Sdf(p3) = 10p.

Noting that, 2p3 − ϕ(2p3) = 2p3 − p2(p − 1) = p2(p + 1). We know p2(p + 1) > 10p. So
Sdf(n) < n− ϕ(n), that is, Sdf(n) + ϕ(n) < n.
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iv) If α ≥ 4, then n = 2pα.
It’s easy to show that n − ϕ(n) = 2pα − pα−1(p − 1) = pα−1(p + 1). In fact if it holds

Sdf(n)+ϕ(n) = n, it must hold Sdf(2pα) = pα−1(p+1), but it’s not true. Because it’s obvious
that p, p2, · · · , pα−1 are all included in pα−1(p+1)!!, so if pα−1(p+1)!! = pm ·n1, we can deduce
that m ≥ α(α−1)

2 . But when α ≥ 4, we have α < α(α−1)
2 , so Sdf(2pα) < pα−1(p + 1), that is,

Sdf(2pα) < 2pα − ϕ(2pα).
2) If k ≥ 2, then n = 2pα1

1 pα2
2 · · · pαk

k .
Firstly, from Lemma 6 we have

Sdf(n) = Sdf(2pα1
1 pα2

2 · · · pαk

k )

≤ max{Sdf(2), 2Sdf(pα1
1 pα2

2 · · · pαk

k )}
= 2Sdf(pα1

1 pα2
2 · · · pαk

k )

= 2max{Sdf(pα1
1 ), Sdf(pα2

2 ), · · · , Sdf(pαk

k )}.
For convenience we assume that max{Sdf(pα1

1 ), Sdf(pα2
2 ), · · · , Sdf(pαk

k )} = Sdf(pαk

k ). So

Sdf(n) ≤ 2Sdf(pαk

k ) ≤ 2pαk

k .

And from Lemma 1, we have

ϕ(n) = pα1−1
1 pα2−1

2 · · · pαk−1
k (p1 − 1)(p2 − 1) · · · (pk − 1).

i) If Sdf(n) = 2pαk

k , then n− Sdf(n) = 2pαk

k (pα1
1 pα2

2 · · · pαk−1
k−1 − 1).

From

pα1
1 pα2

2 · · · pαk−1
k−1 − 1 > pα1−1

1 pα2−1
2 · · · pαk−1−1

k−1 (p1 − 1)(p2 − 1) · · · (pk−1 − 1), (1)

and
2pαk

k > pαk−1
k (pk − 1), (2)

we get n− Sdf(n) > ϕ(n). That is, Sdf(n) + ϕ(n) < n.
ii) If Sdf(n) < 2pαk

k , it’s obvious that Sdf(n) + ϕ(n) < n.
2. If α ≥ 2, then n = 2αpα1

1 pα2
2 · · · pαk

k .
1) If αi = 0(1 ≤ i ≤ k), then n = 2α.
i) When α = 3, Sdf(23) + ϕ(23) = 4 + 4 = 8, so n = 8 is a solution of the equation.
ii) When α ≥ 4, n − ϕ(n) = 2α−1. In fact Sdf(2α) 6= 2α−1. Because 2, 22, · · · , 2α−1 are

all included in 2α−1!!, so if 2α−1!! = 2m · n1, we can deduce that m ≥ α(α−1)
2 . But when

α ≥ 4, we have α < α(α−1)
2 , so Sdf(2α) < 2α−1. Hence Sdf(2α) < 2α − ϕ(2α), that is,

Sdf(2α) + ϕ(2α) < 2α.
2) If k ≥ 2, then n = 2αpα1

1 pα2
2 · · · pαk

k .
For convenience we assume that max{Sdf(pα1

1 ), Sdf(pα2
2 ), · · · , Sdf(pαk

k )} = Sdf(pαk

k ). So
from above Lemmas, we get

Sdf(n) = Sdf(2αpα1
1 pα2

2 · · · pαk

k )

≤ max{Sdf(2α), 2Sdf(pα1
1 pα2

2 · · · pαk

k )}
= max{Sdf(2α), 2Sdf(pαk

k )}
≤ 2αpαk

k .
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Now note that ϕ(n) = 2α−1pα1−1
1 pα2−1

2 · · · pαk−1
k (p1−1)(p2−1) · · · (pk−1) and n−Sdf(n) =

2αpαk

k (pα1
1 pα2

2 · · · pαk−1
k−1 − 1), using the same method in (1) and (2), we can easily deduce that

n − Sdf(n) > ϕ(n). It’s clearly that there is no solutions satisfied Sdf(n) + ϕ(n) = n in this
case.

Now combining the above cases we may immediately get all positive solutions of the equa-
tion Sdf(n) + ϕ(n) = n, they are n = 8, 18, 27, 125.

This completes the proof of Theorem.
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§1. Introduction

Smarandache notions on all algebraic and mathematical structures are interesting to the
world of mathematics and researchers. The Smarandache notions in groups and the concept
of Smaranadache Semigroups, which are a class of very innovative and conceptually a creative
structure, have been introduced in the context of groups and a complete possible study has
been taken in [11]. Padilla Raul intoduced the notion of Smarandache Semigroups in the year
1998 in the paper Smarandache Algebraic Structures [6].

In [5], the concept of regularity was first initiatied by J. V. Neumann for elements of
rings. In general theory of semigroups, the regular semigroups were first studied by Thierrin
[7] under the name demi-groupes inversifs. The completely regular semigroups were introduced
by Clifford [2].

The notions of regular element, completely reagular element of a semigroup are very much
useful to characterize Smarandache Semigroups. In this paper we present characterizations of
Smarandache Semigroups. Besides, some more theorems on Smarandache Semigroups, examples
are provided for justification. In Section 2 we give some basic definitions from the theory of
semigroups (See [3]) and definition of Smarandache Semigroup (See [11]). In Section 3 we
present our main characterization of Smarandache Semigroups and examples for justification.

§2. Preliminaries

Definition 2.1.[3] A semigroup is a nonempty set S in which for every ordered pair of
elements x, y ∈ S, there is defined a new element called their product xy ∈ S, where for all
x, y, z ∈ S we have (xy)z = x(yz).

Definition 2.2.[3] An element b of the semigroup S is called a right divisor of the element
a of the semigroup if there exists in S an element x such that xb = a. b is called the left divisor
of a if there exists in S an element y such that by = a.
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If b is a right divisor of a, we say that a is divisible on the right by b. If b is a left divisor
of a, we say that a is divible on the left by b.

Definition 2.3.[3] An element b of a semigroup S is called a right unit of the element a of
the same semigroup, if ab = a.

Left unit is defined analogously. An element that is both a right and a left unit of some
elemet is called two-sided unit of that element.

An element I which is its own two-sided unit is called an Idempotent : I2 = I.
Definition 2.4.[3] An element a of a semigroup S is said to be regular, if we can find in S

an element x such that axa = a.
A semigroup consisting entirely of regular elements is said to be Regular semigroup.
Definition 2.5.[3] An element a is said to be completely regular if we can find in S an

element x such that axa = a; ax = xa.
A semigroup consisting entirely of completely regular elements is said to be completely

regular.
Definition 2.6.[3] An element e of a semigroup S which is a left unit of the element a ∈ S

is called a Regualar left unit if it is divisible on the left by a.
e is called a regular right unit of a if it is a right unit of a and is divisible on the right by

a.
e is called a regular two-sided unit of a if e is a two-sided unit of a and is divisible both on

the left and on the right by a.

In [3], the following observations are known:
2.6.1. Concepts of regularity and complete regularity coincide for commutaive semigroup.
2.6.2. If e ∈ S is a regular left unit of a ∈ S there must exist an x ∈ S such that ea = a,

ax = e. The condition that e should be a right regular unit is ae = a, xa = e.
2.6.3. Every idempotent is completely regular. It is its own regular two-sided unit.
2.6.4. A regular left unit of an arbitrary element is always an idempotent.
2.6.5. No element in a semigroup S may have two regular two-sided units.
2.6.6. If an element has regular two-sided unit then it is completely regular.

§3. Proofs of the theorems

In this section we give characterizations of Smarandache Semigroups by proving the fol-
lowing theorems.

Theorem 3.1. A semigroup S is a Smarandache Semigroup if and only if S contains
idempotents.

Proof. Let S be a Smarandache Semigroup then there is a proper subset G ⊂ S such that
G is a group under the operation defined on S. The identity element e of G is its own two-sided
unit i.e., e2 = e, in S. Hence, S contains idempotent.

Conversely, assume that the semigroup S contains idempotents. Let I be an arbitrary
idempotent of the semigroup S. Write GI for the set of all completely regular elements of S for
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which I is a regular two-sided unit. In view of (2.6.3), GI is a nonempty subset of S as GI

contains I.
Now we show that GI is a group under the operation on S. Let g1, g2 be any two elements

in GI . Since I is a regular two-sided unit of g1 and g2 we have for some u1, u2, v1, v2 in S.
I = g1u1, I = g2u2, I = v1g1, I = v2g2 from this we have

(g1g2)(u2u1) = g1(g2u2)u1 = g1Iu1 = g1u1 = I,

next,
(v2v1)(g1g2) = v2(v1g1)g2 = v2Ig2 = v2g2 = I.

Since, I is a two-sided unit of the element g1g2, I is a regular two-sided unit of g1g2. In
view of (2.6.6), we have g1g2 ∈ GI . Therefore GI is a semigroup with unit I. Since I is clearly
a two-sided unit for Iu1I and

I = II = g1u1I = g1(Iu1I),

I = v1g1 = v1IIg1 = v1g1u1Ig1 = Iu1Ig1,

it follows that I is a regular two-sided unit of the element Iu1I. In view of (2.6.6), Iu1I ∈ GI

and further, Iu1I is a two- sided inverse of g1 with respect to I. From this we get the fact that
every element in GI has a two-sided inverse in GI as g1 is an arbitrary element of GI with unit
I. So, the proper subset GI ⊂ S is a group and hence S is a Smarandache Semigroup.

Theorem 3.2. A semigroup S is a Smarandache semigroup if and only if S contains
completely regular elements.

Proof.Suppose that the semigroup S is a Smarandache semigroup then there is a proper
subset G ⊂ S which is group under the operation defined on S. Clearly, the identity element
e ∈ G, which is a regular two-sided unit of any arbitrary element of the semigroup, is completely
regular.

On the other hand if the semigroup S contains a completely regular element, say a, then
a has an idempotent element I as its regular two-sided unit. In view of the Theorem 3.1, the
proper subset GI ⊂ S is a group. Hence, S is a Smarandache Semigroup.

Theorem 3.3. Let S be a Smarandache Semigroup. The set C of all completely regular
elements of S can be expressed as the union of non-intersecting groups.

Proof. Let S be a Smarandache Semigroup, C be the set of all completely regular elements
of S and H be the set of Idempotent elements of S.

In view of Theorem 3.1 and Theorem 3.2, C 6= φ and H 6= φ. Let c ∈ C then C has an
idempotent I as its regualr two-sided unit. In view of Theorem 3.1 c ∈ GI which is always a
group. In view of (2.6.5), no element may have two regular two-sided units. It follows that the
groups GI , I ∈ H are all mutually disjoint. Therefore, C = ∪I∈HGI .

§4. Examples

In this section we give examples for justification.
Example 4.1. Let S = {e, a, b, c} be a semigroup under the operation defined by the

following table.
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e a b c

e e a b c

a a e b c

b b b c b

c c c b c

Table 1

Clearly, the operation is commutative. Inview of (2.6.1), the completely regular elements
of S are e, a, b, c as eee = e, aaa = a, bbb = b, ccc = c. Moreover the idempotent elements are
e, c.

Now Ge= { e, a } as e is regular two-sided unit of e, a and Gc= { c, b } as c is regular
two-sided uniit of c, b. Using the Table 1, we can easily see that Ge and Gc are groups. Further,
Ge ∩Gc = φ. Let C = {e, a, b, c}, we can easily see that C = Ge ∪Gc.

Example 4.2. Let S = {1, 2, 3, 4, 5, 6} be a semigroup under the operation defined by
xy = the great common divisor of x, y for all x, y ∈ S. The composition table is as follows:

1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 2 1 2 1 2

3 1 1 3 1 1 3

4 1 2 1 4 1 2

5 1 1 1 1 5 1

6 1 2 3 2 1 6

Table 2

We can easily see that S is a commutative semigroup. The completely regular elements
in S are 1, 2, 3, 4, 5, 6 as 111 = 1, 222 = 2, 333 = 3, 444 = 4, 555 = 5 and 666 = 6. Write
C = {1, 2, 3, 4, 5, 6} for the set of all completely regular elements of S and H = {1, 2, 3, 4, 5, 6}
for the set of all idempotent elements of S. Now, G1 = {1} as 1 is the only regular two-sided
element of 1. Obviously, we have G2 = {2}, G3 = {3}, G4 = {4}, G5 = {5}, G6 = {6}. Further
G1, G2, G3, G4, G5, G6 are groups and they are mutually disjoint also C = G1 ∪G2 ∪G3 ∪G4 ∪
G5 ∪G6.
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Abstract In order to obtain a lower bound of Merrifield-Simmons index of the tree-type

hexagonal systems, the zig-zag tree-type hexagonal systems are taken into consideration. In

this paper, some results with respect to Merrifield-Simmons index of zig-zag tree-type hexag-

onal systems are shown. Using these results, hexagonal chains and hexagonal spiders with the

lower bound of Merrifield-Simmons index are also determined.

Keywords Merrifield-Simmons index, zig-zag tree-type hexagonal system, hexagonal spider.

§1. Introduction

A hexagonal system is a 2−connected plane graph whose every interior face is bounded by
a regular hexagon. Hexagonal systems are of great importance for theoretical chemistry because
they are the natural graph representations of benzenoid hydrocarbons [2]. A hexagonal system
is a tree-type one if it has no inner vertex. The zig-zag tree-type hexagonal systems are the
graph representations of an important subclass of benzenoid molecules. A considerable amount
of research in mathematical chemistry has been devoted to hexagonal systems [2-16].

In order to describe our results, we need some graph-theoretic notations and terminologies.
Our standard reference for any graph theoretical terminology is [1].

Let G = (V, E) be a graph with vertex set V (G) and edge set E(G). Let e and u be an
edge and a vertex of G, respectively. We will denote by G−e or G−u the graph obtained from
G by removing e or u, respectively. Denote by Nu the set {v ∈ V (G) : uv ∈ E(G)} ∪ {u}. Let
H be a subset of V (G). The subgraph of G induced by H is denoted by G[H], and G[V \H] is
denoted by G−H. Undefined concepts and notations of graph theory are referred to [11-16].

Two vertices of a graph G are said to be independent if they are not adjacent. A subset I

of V (G) is called an independent set of G if any two vertices of I are independent. Denote i(G)
the number of independent sets of G. In chemical terminology, i(G) is called the Merrifield-
Simmons index. Clearly, the Merrifield-Simmons index of a graph is larger than that of its
proper subgraphs.

We denote by Ψn the set of the hexagonal chains with n hexagons. Let Bn ∈ Ψn. We
denote by V3 = V3(Bn) the set of the vertices with degree 3 in Bn. Thus, the subgraph Bn[V3]
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is a acyclic graph. If the subgraph Bn[V3] is a matching with n− 1 edges, then Bn is called a
linear chain and denoted by Ln. If the subgraph Bn[V3] is a path, then Bn is called a zig− zag

chain and denoted by Zn. If the subgraph Bn[V3] is a comb, then Bn is called a helicene chain
and denoted by Hn (see [11]).

Denote by Tn the tree-type hexagonal systems containing n hexagons. Let T =
⋃∞

1 Tn,
and T ∈ T. Let H be a hexagon of T . Obviously, H has at most three adjacent hexagons in T ;
if H has exactly three adjacent hexagons in T , then H is called a full-hexagon of T ; if H has
two adjacent hexagons in T , and, moreover, if its two vertices with degree two are adjacent,
then call H a turn-hexagon of T ; and if H has at most one adjacent hexagon in T , then H is
called an end-hexagon of T . It is easy to see that the number of the end-hexagons of a tree-type
hexagonal system of n ≥ 2 hexagons is more two than the number of its full-hexagons. Let
T ∈ T and let B = H1H2 . . . Hk, k ≥ 2 be a hexagonal chain of T . If the end-hexagon H1

of B is also an end-hexagon of T , the other end-hexagon Hk is a full-hexagon of T , and for
2 ≤ i ≤ k − 1, Hi is not a full-hexagon of T , then B is called a branch of T (see [16]). If any
branch of T is a zig-zag chain, then T is called zig-zag tree-type hexagonal system. Both a
zig-zag hexagonal chain and zig-zag hexagonal spider are zig-zag tree-type hexagonal systems
with no full-hexagon and only one full-hexagon, respectively.

§2. Some useful results

Among tree-type hexagonal systems with extremal properties on topological indices, Ln

and Zn play important roles. We list some of them about the Merrifield-Simmons index as
follows.

Theorem 2.1.[6] For any n ≥ 1 and any Bn ∈ Ψn, if Bn is neither Ln nor Zn, then

i(Zn) < i(Bn) < i(Ln).

Theorem 2.2.[6] For any n ≥ 1 and any T ∈ Tn, if T is not Ln, then

i(T ) < i(Ln).

Among many properties of i(G), we mention the following results which will be used later.
Lemma 2.1.[1] Let G be a graph consisting of two components G1 and G2, then

i(G) = i(G1)i(G2).

Lemma 2.2.[1] Let G be a graph and any u ∈ V (G), then

i(G) = i(G− u) + i(G−Nu).

Lemma 2.3.[1] Let G be a graph. For each uv ∈ E(G). Then

i(G)− i(G− u)− i(G− u− v) ≤ 0.

Moreover, the equality holds only if v is the unique neighbor of u.
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Let A and B be any graphs and C be a hexagon. Let G = A@x
yC. Let r and s be two

adjacent vertices of B of at least degree two. Denote by GηB the graph obtained from G and
B by identifying the edge ab with rs; by GβB the graph obtained from G and B by identifying
the edge bc with rs; by GζB the graph obtained from G and B by identifying the edge cd with
rs (see [11]).

Lemma 2.4.[11] Let A,B, G = A@x
yC, GηB and GζB, if i(A− x) < i(A− y), then

i(GζB) < i(GηB).

Lemma 2.5.[11] Let A,B, G = A@x
yC, GηB,GβB and GζB, then

(a) i(GηB) < i(GβB),
(b) i(GζB) < i(GβB).
We add some notations which are convenient to express useful results. For a given zig-zag

chain Zk, denote by x
′
k, xk, yk, y

′
k the four clockwise successful vertices with degree two in one

of end-hexagons (see Fig. 2.1 ).

x
′
k xk

yk

y
′
k

x
′
k−1

xk−1

yk−1y
′
k−1

p p p pp p

Fig. 2.1 Zk and Zk−1

Lemma 2.6. Suppose G is a zig-zag chain with k hexagons. Then



i(Zk)

i(Zk − xk − yk)

i(Zk − xk − x
′
k − yk)

i(Zk − xk − yk − y
′
k)

i(Zk − y
′
k)

i(Zk − yk)

i(Zk − yk − y
′
k)




=




3 2 2 1

1 1 1 1

1 1 0 0

1 0 1 0

3 0 2 0

2 2 1 1

2 0 1 0







i(Zk−1)

i(Zk−1 − y
′
k−1)

i(Zk−1 − yk−1)

i(Zk−1 − yk−1 − y
′
k−1)




. (1)

By applying Lemma 2.1 and Lemma 2.2, it is easy to obtain the result.
Lemma 2.7. Keep the notations as in Lemma 2.6 and suppose Zk is a zig-zag chain with

k(k ≥ 3) hexagons. Then
(a) i(Zk − xk − yk) > i(P5)i(Zk−2) + i(P3)i(Zk−2 − y

′
k−2),

(b) i(Zk − xk − yk − y
′
k) < i(P4)i(Zk−2) + i(P3)i(Zk−2 − y

′
k−2),

(c) i(Zk − xk − x
′
k − yk) < i(P5)i(Zk−2 − yk−2) + i(P3)i(Zk−2 − yk−2 − y

′
k−2).

Where Pm(m = 3, 4, 5) is the path with m vertices.
Proof. (a) Set f1(k) = i(Zk), f2(k) = i(Zk − xk − yk), f3(k) = i(Zk − xk − yk − y

′
k),

f4(k) = i(Zk−xk−x
′
k−yk), f5(k) = i(Zk−y

′
k), f6(k) = i(Zk−yk) and f7(k) = i(Zk−yk−y

′
k).
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Applying Lemma 2.6 to Zk − xk − yk, Zk−2 and Zk−2 − y
′
k−2, we get

i(Zk − xk − yk) = f2(k)

= f1(k − 1) + f5(k − 1) + f6(k − 1) + f7(k − 1)

= 10f1(k − 2) + 4f5(k − 2) + 6f6(k − 2) + 2f7(k − 2)

and
i(P5)i(Zk−2) + i(P3)i(Zk−2 − y

′
k−2) = 13f1(k − 2) + 5f5(k − 2).

Since f1(k − 2) = f6(k − 2) + f3(k − 2) for k ≥ 3, then

∆1 = i(Zk − xk − yk)− [i(P5)i(Zk−2) + i(P3)i(Zk−2 − y
′
k−2)]

= −3f1(k − 2)− f5(k − 2) + 6f6(k − 2) + 2f7(k − 2)

= 3f6(k − 2)− 3f3(k − 2)− f5(k − 2) + 2f7(k − 2).

Since Zk−xk−yk−y
′
k is the proper subgraph of Zk−yk, then i(Zk−yk) > i(Zk−xk−yk−y

′
k).

By Lemma 2.2, we have 2f7(k − 2) > f5(k − 2). Therefore ∆1 > 0.

(b) Similar to the proof of (a), by Lemma 2.6, we obtain

i(Zk − xk − yk − y
′
k) = f3(k)

= f1(k − 1) + f6(k − 1)

= 5f1(k − 2) + 4f5(k − 2) + 3f6(k − 2) + 2f7(k − 2),

and
i(P4)i(Zk−2) + i(P3)i(Zk−2) = 8f1(k − 2) + 5f5(k − 2).

Thus

∆2 = i(P4)i(Zk−2) + i(P3)i(Zk−2)− i(Zk − xk − yk − y
′
k)

= 3f1(k − 2) + f5(k − 2)− 3f6(k − 2)− 2f7(k − 2).

According to Lemma 2.2, we have f1(k − 2) = f6(k − 2) + f3(k − 2). So

∆2 = 3f1(k − 2) + f5(k − 2)− 3f6(k − 2)− 2f7(k − 2)

= [2f3(k − 2)− f7(k − 2)] + [f5(k − 2)− f7(k − 2)] + f3(k − 2).

Note that Zk − yk − y
′
k is the proper subgraph of Zk − y

′
k, then i(Zk − y

′
k) > i(Zk − yk − y

′
k).

By Lemma 2.2, we have 2f3(k − 2) > f7(k − 2). Therefore ∆2 > 0.

(c) Similar to the proof of (a), (b), by Lemma 2.6, we have

i(Zk − xk − yk − x
′
k) = f4(k)

= f1(k − 1) + f5(k − 1)
= 6f1(k − 2) + 2f5(k − 2) + 4f6(k − 2) + f7(k − 2),
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and

i(P5)i(Zk−2 − yk−2) + i(P3)i(Zk−2 − yk−2 − y
′
k−2) = 13f6(k − 2) + 5f7(k − 2).

Then

∆3 = i(P5)i(Zk−2 − yk−2) + i(P3)i(Zk−2 − yk−2 − y
′
k−2)− i(Zk − xk − yk − x

′
k)

= −6f1(k − 2)− 2f5(k − 2) + 9f6(k − 2) + 4f7(k − 2)
= 3f6(k − 2)− 6f3(k − 2)− 2f5(k − 2) + 4f7(k − 2)
= 2f1(k − 3) + 6f5(k − 3)− 3f6(k − 3) + 3f7(k − 3).

Since Zk−3 − yk−3 is the proper subgraph of Zk−3, then i(Zk−3) > i(Zk−3 − yk−3). By Lemma
2.2, we obtain 2f5(k−3) > f6(k−3). Therefore ∆3 > 0 and the proof of Lemma 2.7 is complete.

§3. Preliminary results

Suppose T1, T2 ∈ T, and pi, qi are two adjacent vertices with degree two in Ti, i = 1, 2.
Denote by T1(p1, q1) ⊗ T2(p2, q2) the tree-type hexagonal system obtained from T1 and T2 by
identifying p1 with p2, and q1 with q2, respectively.

In the present section, for a given T ∈ T, we always assume that s, t are two adjacent
vertices with degree two in T . For a given linear zig-zag chain Zk, denote by x

′
k, xk, yk, y

′
k the

four clockwise successful vertices with degree two in one of end-hexagons (see Fig. 3.1.).

p pp

p pp

T

s t

Hk

Hk−1

p pp Hk

T

T
x
′
k

xk

y
′
k yk

p pp Hk

T

xk

yk

R

-

W

Fig.3.1.

Theorem 3.1. Keep the notations as Lemma 2.7. For any T ∈ T and k ≥ 3 (see Fig.
3.1). Then



48 Shengzhang Ren, Jianwei He and Suiyi Yang

(a) i(T (s, t)⊗ Zk(xk, yk)) > i(T (s, t)⊗ Zk(x
′
k−1, xk−1)),

(b) i(T (s, t)⊗ Zk(x
′
k, xk)) > i(T (s, t)⊗ Zk(x

′
k−1, xk−1)),

(c) i(T (s, t)⊗ Zk(yk, y
′
k)) > i(T (s, t)⊗ Zk(x

′
k−1, xk−1)).

Proof. (a) By Lemma 2.1 and Lemma2.2, we get

i(T (s, t)⊗ Zk(xk, yk)) = i(T − s− t)i(Zk − xk − yk) + i(T −Nt)i(Zk − xk − yk − y
′
k)

+i(T −Ns)i(Zk − xk − yk − x
′
k)

= i(T − s− t)f2(k) + i(T −Nt)f3(k) + i(T −Ns)f4(k),

and

i(T (s, t)⊗ Zk(x
′
k−1, xk−1)) = i(T − s− t)[13i(Zk−2) + 5i(Zk−2 − y

′
k−2)]

+i(T −Nt)[8i(Zk−2) + 5i(Zk−2 − y
′
k−2)]

+i(T −Ns)[13i(Zk−2 − yk−2) + 5i(Zk−2 − yk−2 − y
′
k−2)]

= i(T − s− t)[13f1(k − 2) + 5f5(k − 2)]

+i(T −Nt)[8f1(k − 2) + 5f5(k − 2)]

+i(T −Ns)[13f6(k − 2) + 5f7(k − 2)].

Then

∆4 = i(T (s, t)⊗ Zk(xk, yk))− i(T (s, t)⊗ Zk(x
′
k−1, xk−1))

= i(T − s− t){f2(k)− [13f1(k − 2) + 5f5(k − 2)]}
+i(T −Nt){f3(k)− [8f1(k − 2) + 5f5(k − 2)]}
+i(T −Ns){f4(k)− [13f6(k − 2) + 5f7(k − 2)]}.

From Lemma 2.7, we have f2(k) > 13f1(k−2)+5f5(k−2), f3(k) < 8f1(k−2)+5f5(k−2)
and f4(k) < 13f6(k − 2) + 5f7(k − 2). If i(T −Nt) ≤ i(T −Ns), then

∆4 > i(T −Ns)[f2(k) + f3(k) + f4(k)− 21f1(k − 2)− 10f5(k − 2)− 13f6(k − 2)− 5f7(k − 2)].

Otherwise

∆4 > i(T −Nt)[f2(k) + f3(k) + f4(k)− 21f1(k − 2)− 10f5(k − 2)− 13f6(k − 2)− 5f7(k − 2)].

Since f2(k)+ f3(k)+ f4(k)− 21f1(k− 2)− 10f5(k− 2)− 13f6(k− 2)− 5f7(k− 2) = 0, therefore
∆4 > 0 and similar to the proof of (a) and Lemma 2.7, we obtain

(b) i(T (s, t)⊗ Zk(x
′
k, xk)) > i(T (s, t)⊗ Zk(x

′
k−1, xk−1)),

(c) i(T (s, t)⊗Zk(yk, y
′
k)) > i(T (s, t)⊗Zk(x

′
k−1, xk−1)). The proof of Theorem 3.1 is com-

plete.
Corollary 3.1. For any k ≥ 3, then
(a) i(Ln(s, t)⊗ Zk(xk, yk)) > i(Ln(s, t)⊗ Zk(x

′
k−1, xk−1)),

(b) i(Ln(s, t)⊗ Zk(x
′
k, xk)) > i(Ln(s, t)⊗ Zk(x

′
k−1, xk−1)),

(c) i(Ln(s, t)⊗ Zk(yk, y
′
k)) > i(Ln(s, t)⊗ Zk(x

′
k−1, xk−1)).
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§4. Zig-zag tree-type hexagonal systems

A graph G is called a zig-zag tree-type hexagonal system if it is a tree-type hexagonal
system and any branch of which is zig-zag chain.

We shall use Z∗n to denote the set of all zig-zag tree-type hexagonal systems with n hexagons.
For a given graph Z∗ ∈ Z∗n, we denote by Z⊥ the graph obtained from Z∗ whose every branch
is transformed by transformation I (see Fig. 4.1).

A graph G is called a spider if it is a tree and contains only one vertex of degree greater
than 2. For positive integer n1, n2, n3, we use S(n1, n2, n3) to denote a hexagonal spider with
three legs of lengths n1, n2 and n3, respectively (see [11]).

If a hexagonal spider S(n1, n2, n3) whose 3 legs are linear chains, then such a graph is
called a linear hexagonal spider and denoted by L(n1, n2, n3) ( see [11]).

Similarly if each leg of S(n1, n2, n3) combining with the central hexagon is a zig-zag chain,
then such graph is called a zig-zag hexagonal spider and denoted by Z(n1, n2, n3) (see [11]).
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T1

Hk

Hk−1 ppp
T2

H

H1

H2or

Fig. 4.1

Transformation I. Let Zk = H1H2 · · ·Hk and Zk

⊗
H be a branch of T (see Fig. 4.1.).

Firstly, the graph T
′

can be obtained from T − Zk and Zk by identifying the edge u1v1 of
Hk−1 with the edge s1t1 of H. Secondly, the graph T

′′
can be got from T

′ − Zk−2 and Zk−2

by identifying the edge u2v2 of Hk−3 with the edge s2t2 of Hk−1. Finally, by repeating this
operation, the graph T

′′′
can be obtained. If T = Zn, only let H = H1.

Theorem 4.1. For any Z∗ ∈ Z∗n and any n ≥ 4. Then

i(Z⊥) ≤ i(Z∗).

Moreover, the equality holds if and only if Z⊥ ∼= Z∗.
Proof. Note that the graph Z⊥ is obtained from Z∗ whose every branch is transformed

by transformation I, and by Theorem 3.1, we get i(Z⊥) ≤ i(Z∗). Moreover, the equality holds
if and only if Z⊥ ∼= Z∗.

By repeating to apply transformation I on a hexagonal spider S(n1, n2, n3) and Zn, and
according to Theorem 3.1, we will also obtain a good lower bound of Merrifield-Simmons index
of Zn and Z(n1, n2, n3) as follows.

Theorem 4.2. For any Z∗(n1, n2, n3) ∈ Z(n1, n2, n3) with n hexagons and any n ≥ 4.
Then

i(Z⊥(n1, n2, n3)) ≤ i(Z∗(n1, n2, n3)) < i(L(n1, n2, n3)).

Moreover, the equality holds if and only if Z⊥(n1, n2, n3)) ∼= Z∗(n1, n2, n3)).
Theorem 4.3. For any Z∗ ∈ Zn and n ≥ 4. Then

i(Z⊥) < i(Z∗) < i(Ln).
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Abstract For any positive integer n, the Smarandache reciprocal function Sc(n) is defined

as the largest positive integer m such that y | n! for all integers 1 6 y 6 m, and m + 1 - n!.

And for any positive integer n and m, the Pseudo-Smarandache dual function Z∗(n) is defined

as the largest positive integer m such that m(m+1)
2

| n. In this paper, we use the elementary

methods to study the solvability of the equation Sc(n) = Z∗(n) + n, and give its all positive

integer solutions.

Keywords Smarandache reciprocal function, Pseudo-Smarandache dual function, equation,

solution.

§1. Introduction and results

In reference [1], A. Murthy introduced function Sc(n), which is called the Smarandache
reciprocal function. It is defined as the largest positive integer m such that y | n! for all integers
1 6 y 6 m, and m + 1 - n!. That is,

Sc(n) = max {m : m ∈ N, y | n! for all integers 1 6 y 6 m, and m + 1 - n!} .

For example, the first few values of Sc(n) are: Sc(1) = 1, Sc(2) = 2, Sc(3) = 3, Sc(4) =
4, Sc(5) = 6, Sc(6) = 6, Sc(7) = 10, Sc(8) = 10, Sc(9) = 10, Sc(10) = 10, Sc(11) =
12, Sc(12) = 12, Sc(13) = 16, Sc(14) = 16, Sc(15) = 16, Sc(16) = 16, Sc(17) = 18, Sc(18) =
18, · · · .

Some authors had studied the elementary properties of Sc(n), and obtained many inter-
esting conclusions. For example:

If Sc(n) = x and n 6= 3, then x + 1 is the smallest prime greater than n.
On the other hand, for any positive integer n, the Pseudo-Smarandache dual function,

denoted by Z∗(n), is defined as the largest positive integer m such that m(m+1)
2 | n. That is,

Z∗(n) = max
{

m : m ∈ N,
m(m + 1)

2
| n

}
,

where N denotes the set of all positive integers.
From the definition of Z∗(n), we find that the first few values of Z∗(n) are:
Z∗(1) = 1, Z∗(2) = 1, Z∗(3) = 2, Z∗(4) = 1, Z∗(5) = 1, Z∗(6) = 3, Z∗(7) = 1, Z∗(8) =

1, Z∗(9) = 2, · · · .

About this function, some authors had studied its properties, and obtained a series of
interesting results, see references [2-5]. Such as:
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For any prime p ≥ 3, and k ∈ N ,

Z∗(pk) =





2,

1,

if p = 3,

if p 6= 3.

For any prime p, q ≥ 3 satisfying p = 2q − 1, Z∗(pq) = p.
For all integers a, b ≥ 1, Z∗(ab) ≥ max {Z∗(a), Z∗(b)}.
For any integer s ≥ 1 and any prime p, Z∗(3s · p) ≥ 2.
In reference [4], Professor Zhang Wenpeng and Li Ling proposed the equation Sc(n) =

Z∗(n) + n, and give the following:
Conjecture. For any positive integer n, the equation

Sc(n) = Z∗(n) + n. (1)

holds if and only if n = p2α+1, where p (> 5) and p2α+1 + 2 are primes, α ∈ N .
A.A.K Majumdar studied this problem, and found several counter-examples to the conjec-

ture. For example,

Sc(35) = 36 = Z∗(35) + 35, Sc(65) = 66 = Z∗(65) + 65, Sc(77) = 78 = Z∗(77) + 77.

The main purpose of this paper is to study the solvability of the equation (1), and find its
all positive integer solutions.

That is, we shall prove the following:
Theorem. The equation (1) has infinite solutions, they are:
1. n = p2α+1, where p (> 5) and p2α+1 + 2 are primes, α ∈ N .
2. n = pα1

1 pα2
2 · · · pαr

r = uiviti, where p1, p2, · · · , pr are distinct odd primes ≥ 5, r is a
positive integer ≥ 2, and (ui, vi) = (vi, ti) = (ti, ui) = 1, i ∈ N satisfying the following
conditions:

(a). For any u′i | ui, v′i | vi, v′i 6= 2u′i ± 1.

(b). For n =
h∏

i=1

(6ai − 1)αi ·
r∏

j=h+1

(6aj + 1)αj , if
h∑

i=1

αi = k is an odd integer, and n + 2

is a prime.

§2. Some useful lemmas

Lemma 1. For any prime p, q ≥ 3 satisfying p = 2q + 1 , then Z∗(pq) = p− 1.
Proof. p(p−1)

2 = pq, so Z∗(pq) = p− 1.
Lemma 2. If n = 3s · t, for any positive integer s and composite integer t, Z∗(n) ≥ 2.
Lemma 3. n = pα1

1 pα2
2 · · · pαr

r = uiviti, where p1, p2, · · · , pr are distinct odd primes ≥ 5,
r is a positive integer ≥ 2, and (ui, vi) = (vi, ti) = (ti, ui) = 1, i ∈ N .

If u′i | ui, v′i | vi, v′i = 2u′i − 1, then Z∗(n) = max {v′i} = v′1.
Proof. Let Z∗(n) = m, we have,

m(m + 1)
2

| uiviti,
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and it is clear that,
v′1(v

′
1 + 1)
2

= u′1v
′
1 | uiviti.

Then m = v′1.
Lemma 4. n = pα1

1 pα2
2 · · · pαr

r = uiviti, where p1, p2, · · · , pr are distinct odd primes ≥ 5,
r is a positive integer ≥ 2, and (ui, vi) = (vi, ti) = (ti, ui) = 1, i ∈ N .

If u′i | ui, v′i | vi, v′i = 2u′i + 1, then Z∗(n) = max {v′i − 1} = v′1 − 1.
Lemma 5. If n = pα1

1 pα2
2 · · · pαr

r = uiviti, where p1, p2, · · · , pr are distinct odd primes
≥ 5, r is a positive integer ≥ 2, and (ui, vi) = (vi, ti) = (ti, ui) = 1, i ∈ N . If u′i | ui, v′i | vi,
v′i 6= 2u′i ± 1, then Z∗(n) = 1.

§3. Proof of the theorem

In this section, we shall use the elementary methods to complete the proof of our theorem.
Now we suppose that n = 2k · s, where s is an odd integer, we discuss the solutions in the

following several cases:
(a). If n is an even integer, then k 6= 0.

It is clear that n = 2, 4, 6, 8, · · · are not the solutions of the equation (1).
(i) Let t = 1, then n = 2k.
From the property of Z∗(n), we can get Z∗(2k) = 1. If Sc(2k) = Z∗(2k)+2k = 2k +1, then

2k + 2 must be a prime. In fact, 2 | (2k + 2). Hence, there are no solutions.
(ii) Let t = pα, then n = 2k · pα, p is an odd prime while α is a positive integer. Let

Z∗(n) = m, we have m(m+1)
2 | 2k · pα, that is m(m + 1) | 2k+1 · pα.

Obviously, (m, m + 1) = 1, (2k+1, pα) = 1. So m must divides either 2k+1 or pα, while
m + 1 must divides another.

A. If m | 2k+1, m + 1 | pα, then m ≥ 2, m + 1 ≥ 3. Let (m + 1, pα) = d, obviously,
d = m + 1 ≥ 3. Then we can get d | (m + 1 + n).

B. If m | pα, m + 1 | 2k+1, then m ≥ 3, m + 1 ≥ 4. Let (m + 1, 2k+1) = d, obviously,
d = m + 1 ≥ 4. Then we can get 2 | (m + 1 + n).

Therefore, there are no solutions.
(iii) Let t be a composite integer, t = pα1

1 pα2
2 · · · pαr

r , where p1, p2, · · · , pr are distinct odd
primes, and α1, α2, · · · , αr ∈ N , r ≥ 2. Let Z∗(n) = m, we have

m(m + 1)
2

| 2k · t,

that is m(m + 1) | 2k+1 · t.
It is clear that (m + 1, 2k · t) ≥ 2, then (m + 1 + n, m + 1) = d ≥ 2. So m + 1 + n can not

be a prime.
From the cases (i)-(iii), we know that the equation (1) has no even positive integer solutions.

(b). If n is an odd integer, we get k = 0 and n = s.
It is clear that n = 5 is a solution of the equation (1). We also obtained n = 377 =

13 · 29, n = 437 = 19 · 23, n = 1445 = 5 · 172, n = 1859 = 11 · 132, n = 2387 = 7 · 11 · 31, · · ·
satisfying the equation (1).
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(i) Let n = 1, then Sc(1) = 1, Z∗(1) = 1. Obviously, Sc(1) 6= Z∗(1) + 1, so n = 1 is not a
solution of the equation (1).

(ii) Let n = 3α, where α is a positive integer. Hence, Z∗(3α) = 2.
If Sc(3α) = Z∗(3α)+3α = 3α +2, then 3α +3 must be a prime. In fact, 3α +3 ≡ 0( mod 3),

here we obtain contradiction, so n = 3α can not satisfy the equation (1).
(iii) Let n = 3α · t, t = pα1

1 pα2
2 · · · pαr

r , where p1, p2, · · · , pr are distinct odd primes ≥ 5,
r is a positive integer. Let Z∗(n) = m, we can get m(m+1)

2 | 3α · t, that is m(m + 1) | 2 · 3α · t.
From the property of Z∗(n), we have m ≥ 2, that is m + 1 ≥ 3. So (m + 1 + n, n) = d ≥ 3,
and m + 1 + n can not be a prime.

Therefore, there are no solutions in this case.
(iv) Let n = pr, where p is an odd prime ≥ 5, r is a positive integer. Now we discuss in

the following cases:
A. If r = 1, then n = p. Hence, Z∗(n) = 1. If p + 2 is a prime, then Sc(p) = p + 1. Both

p and p + 2 are primes holds if and only if 4[p − 1)! + 1] + p ≡ 0( mod p(p + 2)). In this case,
n = p satisfy the equation (1).

B. If r = 2α, where α is a positive integer, we can get Z∗(p2α) = 1.
It is clear that 3 - pα. For pα − 1, pα, pα + 1 are three continuously integers, then 3 must

divides one of the three forms. So (pα − 1)(pα + 1) must be divided by 3. That is

(pα − 1)(pα + 1) ≡ 0( mod 3).

That is equivalent to p2α ≡ 1( mod 3), then we can get p2α + 2 ≡ 0( mod 3).
It means that if Sc(n) = n + 1, n + 2 can not be a prime.
C. If r = 2α + 1, then Z∗(p2α+1) = 1. According to case A, we can get

p2α+1 ≡ p( mod 3).

Then p2α+1 + 2 ≡ p + 2( mod 3).
If p + 2 ≡ 0( mod 3), that is p ≡ 1( mod 3), then we can get p2α+1 + 2 ≡ 0( mod 3).
When p2α+1 + 2 is a prime, p2α+1 can be the solution.
(v) Let n = pα1

1 pα2
2 · · · pαr

r = uiviti, where p1, p2, · · · , pr are distinct odd primes, r is a
positive integer ≥ 2, and (ui, vi) = (vi, ti) = (ti, ui) = 1, i ∈ N .

If there exists a equality v′i = 2u′i ± 1, where u′i | ui, v′i | vi.
Let Z∗(n) = m, we have m(m+1)

2 | n, that is m(m + 1) | 2n.
If Sc(n) = Z∗(n) + n = m + n, then m + 1 + n must be a prime. According to Lemma 3

and 4, we can easily get that m + 1 + n can not be a prime.
So in this case, the equation (1) has no solutions.
(vi) Let n = pα1

1 pα2
2 · · · pαr

r = uiviti, where p1, p2, · · · , pr are distinct odd primes ≥ 5, r is
a positive integer ≥ 2, and (ui, vi) = (vi, ti) = (ti, ui) = 1, i ∈ N . For any u′i | ui, v′i | vi,
v′i 6= 2u′i ± 1. Then we can get Z∗(n) = 1.

If Z∗(n) + n + 1 = n + 2 be a prime, n can be the solution of the equation (1).
Now we discuss the solutions in the following several parts:
A. For any prime pi ≥ 5, pi = 6a+1 or pi = 6a−1, every odd integers ≥ 5 can be expressed

as 6a− 1, 6a + 1 or 6a + 3. Obviously, 3 | (6a + 3), so (6a + 3) can not be a prime.
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B. Mark n =
h∏

i=1

(6ai − 1)αi ·
r∏

j=h+1

(6aj + 1)αj , and
h∑

i=1

αi = k, where h ≤ r.

If k is an odd integer, we can get

h∏

i=1

(6ai − 1)αi ·
r∏

j=h+1

(6aj + 1)αj ≡ −1( mod 3).

So n + 2 ≡ 1( mod 3). n is the solution if n + 2 be a prime.
If k is an even integer, we can get n + 2 ≡ 0( mod 3). Hence, for any integer n, n + 2 can

not be a prime. In this case, the equation (1) has no solutions.
Thus, the theorem is established.
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Abstract For any positive integer n, the famous Smarandache 3n-digital sequence {a(n)}
is defined as a(n) = g1g2 such that g1 = n, g2 = 3n. That is, the numbers that can be

partitioned into two groups such that the second one is three times bigger than the first. The

main purpose of this paper is using the elementary method to study the properties of the

Smarandache 3n-digital sequence, and solved a related conjecture.

Keywords Smarandache 3n-digital sequence, elementary method, conjecture.

§1. Introduction and results

For any positive integer n, the famous Smarandache 3n-digital sequence a(n) is defined as
follows： a(n) = g1g2, where g1 = n, g2 = 3n. That is, the numbers that can be partitioned into
two groups such that the second one is three times bigger than the first. For example，a(1) =
13, a(2) = 26, a(3) = 39, a(4) = 412, a(5) = 515, · · · . In reference [1], Professor F. Smarandache
asked us to study the properties of the sequence {a(n)}. About this problem, professor Zhang
proposed the following:

Conjecture. There does not exist any complete square number in the Smarandache 3n-
digital sequence a(n). That is, the equation

an = m2 (1)

has no positive integer solution.
In reference [2], Jin Zhang studied this problem, and proved the following conclusions:
Proposition 1. If positive integer n is a square-free number (That is, for any prime p, if

p | n, then p2 † n), then a(n) is not a complete square number.
Proposition 2. If positive integer n is a complete square number, then a(n) is not a

complete square number.

In this paper, we using the elementary methods and the properties of the prime distribution
to study the Smarandache 3n-digital sequence a(n), and partly solved the zhang’s conjecture
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as following:

Theorem 1. Equation (1) has solutions, and part of the solutions can be expressed as
follows:

n =
n 2

1 · (10p (p−1) i+k0 + 3)
p2

,

where p2 | (10p (p−1) i+k0 + 3),
√

30 p
30 < n1 <

√
3 p
3 , i = 0, 1, 2, · · · .

Theorem 2. For any positive integer k ≥ 1, there are infinite complete square numbers
in the Smarandache kn-digital sequence {ak(n)}. That is, the part of solutions of equation
ak(n) = m2 can be expressed as

n =
n 2

1 · (10p (p−1) i+k0 + k)
p2

,

where p2 | (10p (p−1) i+k0 + k),
√

10 k p
10 k < n1 <

√
k p
k , i = 0, 1, 2, · · · .

From above theorems, we can immediately obtain the following:

Corollary 1. Let b be a positive integer, if b2 | (10k0 +3), then the solution of the equation
(1) can be expressed as the following form

n =
n 2

1 · (10k0 + 3)
b2

,

where
√

30 b
30 < n1 <

√
3 b
3 .

Corollary 2. Let b be an positive integer, if b2 | (10k0 + k), then the solution of the
equation (1) can be expressed as the following form

n =
n 2

1 · (10k0 + k)
b2

,

where
√

10k b
10k < n1 <

√
k b
k .

§2. Some useful lemmas

To complete the proof of the theorems, we need the following several lemmas:
Lemma 1. Let p be a prime, if p2 | (10k0 +3), then p2 | (10p (p−1) i+k0 +3), i = 0, 1, 2, · · · .
Proof. It is clear that if p | (10k +3), (p 6= 2, 5), then (10, p2) = 1. From Euler Theorem,

we have 10φ(p2) ≡ 1(mod p2). Note that p2 | (10k0 + 3), we have

10p (p−1)i+k0 ≡ −3(mod p2), where i = 0, 1, 2, · · · ,

so

p2 | (10p (p−1)i+k0 + 3), where i = 0, 1, 2, · · · .
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This completes the proof of Lemma 1.

Lemma 2. Let p be a prime, if p2 - (10p−1 − 1), then there exists a minimum positive
integer p δ such that 10p δ ≡ 1(mod p2).

Proof. let δ = min{ d : 10 d ≡ 1(mod p), d | ( p − 1 ) }. Since p2 - (10p−1 − 1), then
p2 - (10δ − 1) and

1 + 10δ + 102δ + · · ·+ 10(p−1)δ ≡ p ≡ 0(mod p),

(10δ − 1) (10(p−1)δ + 10(p−2)δ + · · ·+ 10δ + 1) ≡ 10p δ − 1 ≡ 0(mod p2).

If there exists another positive integer u such that p2 | (10u − 1) and u < p δ, then
δ < u < p δ. It is obvious that δ | u. Let u = k δ(1 < k < p), since 1+10δ+102δ+· · ·+10(k−1)δ ≡
k 6≡ 0(mod p), then p - (1 + 10δ + 102δ + · · · + 10(k−1)δ), and p2 - (10δ − 1), so we have
p2 - (10δ−1)(1+10δ+102δ+· · ·+10(k−1)δ), that is p2 - (10k δ−1), which obtains a contradiction.

This completes the proof of Lemma 2.

Lemma 3. There exists a prime p and a positive integer k0 such that p2 | (10k0 + 3).
Proof. For any positive integer k, we divided k into three sets as follows

A = {k | 10k + 3 = pα1
1 pα2

2 · · · pαr
r , there exist at least a αi ≥ 2, 1 ≤ i ≤ r},

B = {k | 10k + 3 = p1p2 · · · pr, there exist at least a pi, 1 ≤ i ≤ r, satisfies p2
i -

(10p−1 − 1)},
C = {k | 10k + 3 = p1p2 · · · pr, for any pi, 1 ≤ i ≤ r, satisfies p2

i | (10p−1 − 1)}.
We discuss it in following cases
Case 1. If k ∈ A, there exists a positive integer αi ≥ 2 (1 ≤ i ≤ r) then p2

i | (10k + 3).
This completes the Lemma 3.

Case 2. If k ∈ B, there exists at least one prime p among p1, p2, . . . , pr, which satisfies
p2 - (10p−1 − 1). It is obvious that p | (10k + 3) and (p, 10) = 1. From Lemma 2, we have
p2 - (10δ − 1) and

10δ i+k1 ≡ −3(mod p), where i = 0, 1, 2, · · · , k1 ≡ k(mod δ).

For any i = 0, 1, 2, · · · , p− 1, 10δ i+k1+3
p traverse complete residue system mod p.

Otherwise, suppose that there exists i, j, such that 10δ i+k1+3
p ≡ 10δ j+k1+3

p (mod p), where
0 ≤ i < j < p − 1, then p2 | 10δ i+k1(10δ(j−i) − 1), so we have p2 | (10δ(j−i) − 1). That is,
10δ(j−i) ≡ 1(mod p2), 1 ≤ j − i ≤ p − 1. From Lemma 2, we have p δ is the smallest integer
such that 10p δ ≡ 1(mod p2) and we have p δ | δ(j − i), that is p | (j − i), which obtains a
contradiction.

So, we obtains a i0(0 ≤ i0 < p−1) such that 10δ i0+k1+3
p ≡ 0(mod p), that is p2 | (10δ i0+k1 +

3) and if k0 = δ i0 + k1, then
p2 | (10k0 + 3). (2)

Case 3. For any prime p among p1, p2, . . . , pr, if k ∈ C and p2 | (10p−1 − 1), then
10(p−1)j+k + 3 ≡ 10k + 3(mod p2) (j = 0, 1, · · · ). That is, p2 - (10(p−1)j+k + 3), j = 0, 1, · · · .

Combing (1), (2) and (3), we can easily have

A 6= Ø or B 6= Ø.
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Otherwise, k ∈ C and 10k + 3 = p1p2 · · · pr. For any pi (1 ≤ i ≤ r), p2
i | (10pi−1 − 1).

Which is impossible.
For example, if k = 34, then 49 | (1034 + 3), k ∈ A. If k = 1, then k ∈ B, and this

completes the proof of Lemma 3.

§3. Proof of the theorems

In this section, we will complete the proof of the theorem. Firstly, we prove Theorem 1.
Let n be k digit positive integer, from the definition of {an}, we have

an = g1g2 = n · (10k+1 + 3) (3)

or
an = g1g2 = n · (10k+2 + 3). (4)

Combining Proposition 1 and Proposition 2, we easily get the following results:
If 10k+1 +3 or 10k+2 +3 is a square-free number, then an is not a complete square number.

Hence, if an is a complete square number, then 10k+1 + 3 or 10k+2 + 3 must be contain square
element. Now, we construct the solution of equation (1) by the square number of 10k+1 + 3 or
10k+2 + 3 .

From Lemma 1 and Lemma 3, there exists prime p and positive integer k0 such that

p2 | (10p (p−1) i+k0 + 3), where i = 0, 1, 2, . . . .

If

g1 = n = n 2
1 ·

10p (p−1) i+k0 + 3
p2

, (5)

1
10 <

3 n 2
1

p2 < 1 (That is
√

30 p
30 < n1 <

√
3 p
3 ), then the number g2 = 3n = 3 n 2

1
p2 · (10p (p−1) i+k0 +3)

contains p (p− 1) i + k0 digits, then we obtain

an = g1g2

= n 2
1 ·

10p (p−1) i+k0 + 3
p2

· (10p (p−1) i+k0 + 3)

= n 2
1 · p2 · (10p (p−1) i+k0 + 3

p2
)2.

If

m = n1 · 10p (p−1) i+k0 + 3
p

,where i = 0, 1, 2, . . . ,

√
30 p

30
< n1 <

√
3 p

3
, (6)

then (6) is the solution of the formula (1), and this completes the proof of Theorem 1. we can
also prove Theorem 2 using the same method of Theorem 1.
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Abstract The relation L̃U on any semigroup S provides a generalization of Green’s relation

L. A semigroup S is called U -rpp semigroup if each L̃U -class of S contains at lest projection

e from U , where U is a non-empty subset of E(S). The aim of this paper is to study a class

of U -rpp semigroups, namely, left U -rpp semigroups. After giving some characterizations of

left U -rpp semigroups, we establish a structure of this kind of semigroups.

Keywords Left U -rpp semigroups, right zero bands, U -left cancellative semigroups.

§1. Introduction

Suppose that S is a semigroup and E(S) is the set of all idempotents of S. We now consider
a non-empty subset U ⊆ E(S), namely, the set of projections of S. Then a relation L̃U on S is
defined as aL̃Ub if and only if a and b have the same set of right identities in U , that is, for all
u ∈ U , au = a if and only if bu = b.

It can be easily verified that L ⊆ L∗ ⊆L̃U on a semigroup S.

We say that a semigroup S is called U -rpp semigroup if each L̃U -class of S contains at
least one projection of S and L̃U is a right congruence on S, denoted by (S,U).

Clearly, regular semigroups and rpp semigroups are all U -rpp semigroups.

We call a U -rpp semigroup (S,U) a left U -rpp semigroup if U is a subsemigroup and
xey = exy for any e ∈ U and for all x, y ∈ S1 with y 6= 1.

In fact, left U -rpp semigroups are U -rpp semigroups whose projections are left central. A
rpp semigroup with left central idempotents have been studied by Ren-Shum in [2]. It was
proved in [2] that the a rpp semigroup S with left central idempotents is isomorphic to a strong
semilattice of left cancellative right stripes. In this paper, we will prove that a semigroup S is a
left U -rpp semigroup if and only if S is a semilattice of a direct product of a U -left cancellative
monoid and a right zero band; if and only if S is a strong semilattice of a direct product of a
U -left cancellative monoid and a right zero band.

For any notation and terminologies not given in this paper, the reader is referred to [4], [5]
and [6].

1The research of the first author is supported by the National Natural Science Foundation of China (10971160)

and the Natural Science Foundation of Shaanxi Province (SJ08A06).
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§2. Preliminaries

Throughout this paper, (S,U) is a U -semiabundant semigroup. As usual, we denote the
L̃U -class of S containing the element a by L̃U

a .

The following lemmas give some basic properties of relation L̃U on (S,U).

Lemma 2.1. Let a ∈ (S,U) and e ∈ U . Then aL̃Ue if and only if ae = a and for all
f ∈ U , af = a implies ef = e.

It follows immediately from definition the following results.

Lemma 2.2. If (S,U) is a U -rpp semigroup and e, f are elements of U , then eL̃Uf if and
only if eLf .

Lemma 2.3. If (S,U) is a left U -rpp semigroup, then every L̃U -class of S contains a
unique projection.

Proof. Let (S,U) be a left U -rpp semigroup. Then for any a ∈ (S,U) there exists
e ∈ U∩L̃U

a such that a = ae. Hence, we have that ea = eae = aee = ae = a. If f ∈ U∩L̃U
a , then

it is clear that (e, f) ∈ L̃U . By Lemma 2.2, it follows that (e, f) ∈ L so that f = fe = ef = e.

We now use a∗ to denote the unique projection of L̃a containing element a. It is clear that
a∗a = a = aa∗ on a left U -rpp semigroup (S,U). Moreover, it can easily verified that the set of
projections U of a left U -rpp semigroup (S,U) forms a right normal band.

Lemma 2.4. Let (S,U) be a left U-rpp semigroup. Then L̃U is a congruence on (S,U).

Proof. Since L̃U is a right congruence, we only need to show that L̃U is a left congruence.
Suppose that (a, b) ∈ L̃U for any a, b ∈ S. Clearly, a∗ = b∗ by Lemma 2.3. To prove that
(ca, cb) ∈ L̃U for any c ∈ (S,U), we suppose that cae = ca for any e ∈ U .

Clearly, (c, c∗) ∈ L̃U . Then, (ca, c∗a) ∈ L̃U because L̃U is a right congruence. By Definition
of L̃U , c∗ae = c∗a and so c∗aa∗e = c∗aa∗. By our hypothesis, ac∗a∗e = ac∗a∗.

Since (a, b) ∈ L̃U and L̃U is a right congruence, it follows that (ac∗a∗, bc∗a∗) ∈ L̃U so
that bc∗a∗e = bc∗a∗. Using the fact that a∗ = b∗, we deduce that bc∗b∗e = bc∗b∗. Hence,
c∗bb∗e = c∗bb∗, that is, c∗be = c∗b. It is clear from (cb, c∗b) ∈ L̃U that cbe = cb. Similarly, we
can show that cbe = cb implies that cae = ca. This shows that (ca, cb) ∈ L̃U so that L̃U is a
left congruence on (S,U). Consequently, L̃U is a congruence on (S,U).

Lemma 2.5. If (S,U) is a left U-rpp semigroup, then (ab)∗ = a∗b∗ for all a, b ∈ (S,U).

Proof. Suppose that a, b are two any elements of (S,U). It is clear that aL̃Ua∗ and bL̃Ub∗.
Since L̃U is a congruence on (S,U), it follows from Lemma 2.4 that (ab, a∗b∗) ∈ L̃U . Hence,
(ab)∗ = a∗b∗ by Lemma 2.3.

Theorem 2.6. Suppose that (S,U) is a left U -rpp semigroup. Define a relation σ on
(S,U) by aσb if and only if a∗b∗ = b∗ and b∗a∗ = a∗ for all a, b ∈ (S,U). Then σ is a semilattice
congruence on (S,U).

Proof. It is clear that σ is reflexive and symmetric.
To see that σ is transitive, we let aσb and bσc. Clearly, a∗b∗ = b∗, b∗a∗ = a∗ and b∗c∗ =

c∗, c∗b∗ = b∗. Thus, we have that

a∗c∗ = a∗(b∗c∗) = (a∗b∗)c∗ = b∗c∗ = c∗,
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and

c∗a∗ = c∗(b∗a∗) = (c∗b∗)a∗ = b∗a∗ = a∗.

Hence aσc, that is, σ is transitive. Thus σ is an equivalence relation.
Next we prove that σ is right compatible. Let aσb for any a, b ∈ (S,U). Then for any

c ∈ (S,U),

(ac)∗(bc)∗ = a∗c∗b∗c∗ = c∗(a∗b∗)c∗ = c∗b∗c∗ = b∗c∗c∗ = b∗c∗ = (bc)∗,

and
(bc)∗(ac)∗ = b∗c∗a∗c∗ = c∗(b∗a∗)c∗ = c∗a∗c∗ = a∗c∗c∗ = a∗c∗ = (ac)∗.

By the definition of σ, it follows that acσbc. Similarly, we can prove that caσcb so that σ is a
congruence on (S,U). Finally, we prove that σ is a semilattice congruence on (S,U). For this
purpose, we let a, b ∈ (S,U). It follows that (ba)∗(ab)∗ = b∗a∗a∗b∗ = b∗a∗b∗ = a∗b∗ = (ab)∗

and (ab)∗(ba)∗ = a∗b∗b∗a∗ = a∗b∗a∗ = b∗a∗ = (ba)∗. Hence, abσba. It is easy to see that a2σa.
Thus, σ is indeed a semilattice congruence on (S,U).

Finally, we need the following definition in section 3.
Definition 2.7. A left U -rpp semigroup (S,U) is said to be U -left cancellative if for all

a, b ∈ (S,U) and for all e ∈ U , bae = ba implies ae = a.
It is easy to see that left cancellative semigroups are U -left cancellative semigroups.

§3. Structure theorem

In this section, we will establish a structure theorem for left U -rpp semigroups.
Theorem 3.1. The following statements are equivalent on a semigroup S:
(i) (S,U) is a left U -rpp semigroup.
(ii) (S,U) is a semilattice of semigroup Sα which is a direct product of a U -left cancellative

monoid Mα and a right zero band Λα. Moreover, U =
⋃

α∈Y {(1α, i) : 1α is the identity of Mα, i ∈
Λα}.

(iii) (S,U) is a strong semilattice of semigroup Sα which is a direct product Mα × Λα,
where Mα is a U -left cancellative monoid and Λα is a right zero band and U =

⋃
α∈Y {(1α, i) :

1α is the identity of Mα, i ∈ Λα}.
Proof. (i) =⇒ (ii) Let (S,U) be a left U -rpp semigroup. Then by Theorem 2.6 there

exists a semilattice Y such that (S,U) =
⋃

α∈Y Sα, where Sα is a σ-class of (S,U).
First we show that every Sα can be expressed as a direct product of a U -left cancellative

monoid and a right zero band. For each α ∈ Y , let Λα = Sα∩U . Suppose that a ∈ Sα. Clearly,
aσa∗ so that a∗ ∈ Λα. It is easy to see that eσf for any e, f ∈ Λα. Thus ef = f and fe = e.
This implies that Λα is a right zero band.

Let Mα = Sαeα for some projection eα ∈ U ∩ Sα and a, b ∈ Mα. Hence a = xeα and
b = yeα for some x, y ∈ Sα. Since σ is a semilattice congruence, it is clear that xy ∈ Sα.
Consequently, ab = xeαyeα = xye2

α = xyeα which implies ab ∈ Sαeα = Mα. Hence, Mα is a
monoid with the identity eα.
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Suppose now that bae = ba for any a, b ∈ Mα and for any projection e ∈ U ∩Mα. Clearly,
a = xeα and b = yeα for some x, y ∈ Sα. Hence, we have that yeαxeαe = yxeαe = yxe = yxeα

so that (yxe)∗ = (yxeα)∗. It is easy to see that xσx∗. Hence, y∗x∗e = y∗x∗eα so that x∗e = x∗eα

since x∗σy∗. It follows that xx∗e = xx∗eα, that is, ae = aeα = a. This shows that Mα is a
U -left cancellative monoid.

Define ϕ : Mα × Λα −→ Sα by ϕ(x, f) = xf for any x ∈ Mα and any f ∈ Λα. Now
we can claim that ϕ is an isomorphism. For any (x, f), (y, g) ∈ Mα × Λα, it follows that
ϕ(x, f)ϕ(y, g) = xfyg = xyfg = xyg = ϕ[(x, f)(y, g)] which implies that ϕ is a homomorphism.

Suppose that ϕ(x, f) = ϕ(y, g) for (x, f), (y, g) ∈ Mα × Λα.Then xf = yg and so xfeα =
ygeα where eα ∈ Sα. Noticing that Λα is a right zero band, we immediately deduce that
xeα = yeα, that is, x = y which gives that xf = xg. By Lemma 2.5, we can deduce that
x∗f = x∗g with x∗ ∈ Λα. Since Λα is a right zero band, it then follows that f = g. Thus,
(x, f) = (y, g). This shows that ϕ is injective.

To see that ϕ is surjective, we just take any a ∈ Sα. Clearly, ϕ(aeα, a∗) = aeαa∗ = aa∗ = a.
This shows that ϕ is surjective. Hence Sα ' Mα × Λα.

Since (S,U) is a a left U -rpp semigroup, it is clear that efg = feg for all e, f, g ∈ U . This
shows that U is a right normal band.

(ii) =⇒ (iii) Suppose that (S,U) is a semilattice of Sα = Mα×Λα such that Mα is a U -left
cancellative monoid and Λα is a right zero band. Let U =

⋃
α∈Y {(1α, i) : 1α is the identity of Mα,

i ∈ Λα}. Take eβ = (1β , j) such that α > β. Then for each a in Sα the product eβa is
in Sβ = Mβ × Λβ and so write eβa = (x, i) for some x ∈ Mβ and some i ∈ Λβ . Define
ϕα,β : Sα −→ Sβ by aϕα,β = eβa. It is clear that ϕα,α is the identity mapping on Sα. Let
g = (1β , i) ∈ Mβ × Λβ , where 1β is the identity of Mβ . Then we have

eβag = (x, i)(1β , i) = (x, i) = eβa,

and
g = (1β , i) = (1β , j)(1β , i) = eβg.

Similarly, let b = (y, l) ∈ Mα×Λα and h = (1α, l). Then hb = b. Using the right normality
of U , we obtain that

eβaeβb = eβageβhb = eβaeβghb = eβaghb = eβab,

which implies that
aϕα,βbϕα,β = (ab)ϕα,β .

Hence, ϕα,β is a homomorphism.
Next, suppose that a = (x, i) ∈ Sα, h = (1α, i) ∈ Sα and α > β > γ. Then we have ha = a.

Because U is a right normal band, it follows that

eγeβh = eβeγh = eβeγ · eγh = eγh.

Thus, aϕα,βϕβ,γ = eγ(eβa) = eγeβha = eγha = eγa = aϕα,γ .
This shows that ϕα,βϕβ,γ = ϕα,γ .
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Finally, noticing that, for any a in Sα and b in Sβ , we deduce that ab = eαβ(ab) ∈ Sαβ .
Clearly, eαβa ∈ Sαβ . Then there exists f2 = f ∈ U ∩ Sαβ such that eαβaf = eαβa. Similarly,
there exists e2

β = eβ ∈ U ∩ Sβ such that eβb = b for any b ∈ Sβ . By the right normality of U

again, we have

eαβaeαβb = eαβafeαβeβb = eαβaeαβfeβb = eαβafeβb = eαβab.

This shows that ab = aϕα,αβbϕβ,αβ . Hence S is indeed a strong semilattice of the semigroups
Sα = Mα × Λα, denoted by (S,U) = [Y ;Sα;ϕα,β ].

(iii) =⇒ (i) Let (S,U) = [Y ;Sα;ϕα,β ] be a strong semilattice of semigroup Sα = Mα×Λα

and the set of projections U =
⋃

α∈Y {(1α, i)| 1α is the identity of Mα, i ∈ Λα}. Let e ∈
Sα ∩ U, f ∈ Sβ ∩ U , eϕα,αβ = (1αβ , i), fϕβ,αβ = (1αβ , j). Then ef = (eϕα,αβ)(fϕβ,αβ) =
(1αβ , i)(1αβ , j) = (1αβ , j) ∈ U. It follows that U is a band.

Now we claim that for any a, b ∈ S1, b 6= 1 and e ∈ U, aeb = eab hold. Suppose that
a, b ∈ S1,b 6= 1 and e ∈ U . Then there exist α, β, γ ∈ Y such that a ∈ S1

α, b ∈ S1
β and

e ∈ U ∩ Sγ . Write δ = αβγ, aϕα,δ = (x, i), bϕβ,δ = (y, j) and eϕγ,δ = (1δ, k), we have

aeb = (aϕα,δ)(eϕγ,δ)(bϕβ,δ) = (x, i)(1δ, k)(y, j) = (xy, j).

Similarly, eab = (xy, j). Thus, eab = aeb.

To see that each L̃U -class of (S,U) contains at least one projection, we first let a = (x, i) ∈
Sα and e = (1α, i) ∈ Sα ∩ U . Clearly, ea = ae = (x, i) = a. For any f ∈ Sβ ∩ U , let
fϕβ,αβ = (1αβ , j). Suppose that af = a. Then we have αβ = α and

af = (aϕα,αβ)(fϕβ,αβ) = (x, i)(1αβ , j) = (x, j) = a = (x, i),

Hence i = j and ef = (eϕα,αβ)(fϕβ,αβ) = (1α, i)(1αβ , j) = (1α, j) = (1α, i) = e. It follows that
(a, e) ∈ L̃U .

Suppose that (a, e) ∈ L̃U , (a, f) ∈ L̃U , e ∈ Sα ∩ U, f ∈ Sβ ∩ U , then we have (e, f) ∈ L̃U .
Hence e = ef = efe = fee = fe = f . It follows that every L̃U -class of (S,U) contains a unique
projection. We use a∗ to denote the unique projection of L̃a ∩ U . It is easy to observe that
aa∗ = a.

Let a ∈ Sα, b ∈ Sβ , c ∈ Sγ , e ∈ Sα ∩ U . Write δ = αβγ, aϕα,δ = (x, i), bϕβ,δ =
(y, j), cϕγ,δ = (z, k), b∗ϕβ,δ = (m,n) and eϕγ,δ = (1δ, t). Suppose that (a, b) ∈ L̃U . Then ae =
a if and only if be = b. Suppose that ace = ac, that is, aa∗ce = aa∗c. Using the fact that a∗ = b∗

, we deduce that ab∗ce = ab∗c. Hence (aϕα,δ)(b∗ϕβ,δ)(cϕγ,δ)(eϕα,δ) = (aϕα,δ)(b∗ϕβ,δ)(cϕγ,δ),
that is, (x, i)(m,n)(z, k)(1δ, t) = (x, i)(m,n)(z, k) and (xmz1δ, t) = (xmz, k). Then we have
mz1δ = mz by Mα is a U -left cancellative monoid and t = k. Hence bce = bb∗ce =
(bϕβ,δ)(b∗ϕβ,δ)(cϕγ,δ)(eϕα,δ) = (ymz1δ, t) = (ymz, k) = (bϕβ,δ)(b∗ϕβ,δ)(cϕγ,δ) = bb∗c = bc.

Similarly, bce = bc implies that ace = ac. Thus, we have already proved that (ac, bc) ∈ L̃U .
This shows that L̃U is a right congruence on S. In fact we have proved that (S,U) is a left
U -rpp semigroup.
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Abstract For any positive integer n, the Smarandache 5n-digital sequence is defined as

{an} = {15, 210, 315, 420, 525, 630, 735, 840, 945, 1050, · · · }. That is, for any element an in

{an}, it can be partitioned into two groups such that the second is five times bigger than the

first. The main purpose of this paper is using the elementary method to study the properties

of the Smarandache 5n-digital sequence, and obtained some usefull conclusions.

Keywords The Smarandache 5n-digital sequence, elementary method, conjecture infinite

series, convergence.

§1. Introduction and results

For any positive integer n, the Smarandache 5n-digital sequence is defined as {an} =
{15, 210, 315, 420, 525, 630, 735, 840, 945, 1050, · · · }. That is, for any element an in {an}, it can
be partitioned into two parts such that the second is five times bigger than the first. This
sequence was first proposed by professor F. Smarandache, he also asked us to study the proper-
ties of 5n-digital sequence. About this problem, it seems that none had studied it yet, at least
we have not seen any related papers before. Recently, Professor Zhang Wenpeng proposed the
following:

Conjecture. There does not exist any complete square number in the Smarandache 5n-
digital sequence {an}. That is, the equation an = m2 has no positive integer solution.

I think that this conjecture is interesting, because if it is true, then we shall obtain a deeply
properties of the Smarandache 5n-digital sequence. In this paper, we are using the elementary
method to prove that the Zhang’s conjecture is correct for some special positive integers. At
the same time, we also study the convergent properties of one kind infinite series involving the
Smarandache 5n-digital sequence, and give a sharper asymptotic formula for

∑

n≤N

n

an
. That is,

we shall prove the following conclusions:
Theorem 1. If positive integer n is a square-free number (That is, for any prime p, if

p | n, then p2 - n), then an is not a complete square number.
Theorem 2. If positive integer n is a complete square number, then an is not a complete

square number.

Theorem 3. Let z be a real number. If z >
1
2
, then the infinite series

f(z) =
+∞∑
n=1

1
az

n

(1)
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is convergent; If z ≤ 1
2
, then the infinite series (1) is divergent.

Theorem 4. For any real number N > 1, we have the asymptotic formula
∑

n≤N

n

an
=

9
50
· lnN

ln 10
+ O (1) .

§2. Proof of the theorems

In this section, we shall use the elementary method to complete the proof of our theorems.
First we prove Theorem 1. For any square-free number n, let 5n = bk(n)bk(n)−1 · · · b2b1, where
1 ≤ bk(n) ≤ 9, 0 ≤ bi ≤ 9, i = 1, 2, · · · , k(n) − 1. Then from the definition of an we know
that an = n · (10k(n) + 5). If n is a square-free number, and there exists a positive integer m

such that

an = n · (10k(n) + 5) = m2. (2)

Then from (2) and the definition of square-free number we know that n | m. Let m = u · n,
then (2) become

10k(n) + 5 = u2 · n. (3)

In formula (3), we know that:
(a). If u = 1, then (3) is impossible. Since 10k(n) + 5 > 99 · · · · · · 9︸ ︷︷ ︸

k(n)

≥ bk(n)bk(n)−1 · · · b2b1 =

5n > n.
(b). If u = 2, then (3) does not hold. In fact, if (2) holds, then 10k(n) + 5 = 4 · n, since

10k(n) +5 is an odd number, but 4 ·n is an even number, this contradicts with 10k(n) +5 = 4 ·n.
(c). If u = 3, then (3) is impossible. In this case, we have the congruence 10k(n) + 5 ≡ 6(

mod 9), but u2 · n = 32 · n ≡ 0( mod 9), so (3) is not possible.
(d). If u = 4, then 10k(n) + 5 is an odd number, but u2 · n = 42 · n is an even number, so

(3) does not hold.
(e). If u = 5, then we have the congruence 10k(n) +5 ≡ 5( mod 25), but u2 ·n = 52 ·n ≡ 0(

mod 25), so (3) is impossible.
(f). If u = 6, then 10k(n) + 5 is an odd number, and u2 · n = 62 · n is an even number, so

(3) is not correct.
(g). If u = 7, then we have:
(i) If 3†n, then we have 10k(n) + 5 ≡ 0( mod 3), but u2 · n = 72 · n ≡ 0( mod 3) doesn’t

hold, so (3) is not correct.
(ii) If 3|n, let’s n = 3a, where a is an even integer. It’s clear that (3) doesn’t hold, since

10k(n) + 5 is an odd number, while u2 · n = 72 · n = 49 · n = 49 · 3a is an even number.
(iii) If 3|n, let’s n = 3a, where a is an odd integer. From the definition of square-free

number, we know that 32†n and (3, a) = 1, then (3) become u2 · n = 72 · n = 72 · 3a =
10k(n) + 5 = 9 · 111 · · · 1︸ ︷︷ ︸

k(n)

+6, that is 72 · a− 2 = 3 · 111 · · · 1︸ ︷︷ ︸
k(n)

.

If a = 3b + 1, then 72 · a− 2 = 72 · (3b + 1)− 2 = 72 · 3b + 47 6= 3 · 111 · · · 1︸ ︷︷ ︸
k(n)

.
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If a = 3b + 2, then 72 · a− 2 = 72 · (3b + 2)− 2 = 72 · 3b + 96 = 3 · (72b + 32) 6= 3 · 111 · · · 1︸ ︷︷ ︸
k(n)

,

so formula (3) is impossible.

(h). If u ≥ 8, then note that 5n = bk(n)bk(n)−1 · · · b2b1 ≥ 10k(n)−1, we have the inequality

u2 · n ≥ 82 · n = 64n = 10 · 6n + 4n ≥ 10 · 6n + 5 > 10 · 5n + 5 > 10k(n) + 5,

so formula (3) does not hold.

From above discussion, we know that there does not exist any positive integer u such that
formula (3) hold. This proves Theorem 1.

Now we prove Theorem 2. Let n = u2 be a complete square number, if there exists a
positive integer m such that

n · (10k(n) + 5) = u2 · (10k(n) + 5) = m2, (4)

then from (4) we deduce that u | m, let m = u · r, then formula (4) become

10k(n) + 5 = r2. (5)

It is clear that (5) is not possible, since 10k(n) + 5 = 5 · (2 · 10k(n)−1 + 1) and 5†2 · 10k(n)−1 + 1,
this contradicts with 10k(n) + 5 = r2. This proves Theorem 2.

Now we prove Theorem 3. For any element an in {an}, let 5n = bk(n)bk(n)−1 · · · b2b1, where
1 ≤ bk(n) ≤ 9, 0 ≤ bi ≤ 9, i = 1, 2, · · · , k(n)−1. Then from the definition of the Smarandache
5n-digital sequence we have:

an = n · 10k(n) + 5 · n = n ·
(
10k(n) + 5

)
. (6)

On the other hand, note that for any positive integer n, if

200 · · · 00︸ ︷︷ ︸
u

≤ n ≤ 199 · · · 99︸ ︷︷ ︸
u+1

,

then 5n = bu+1bu · · · b2b1, where 1 ≤ bu+1 ≤ 9, 0 ≤ bi ≤ 9, i = 1, 2, · · · , u, so k(n) = u + 1.
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Therefore we have:

f(z) =
+∞∑
n=1

1
az

n

=
+∞∑
n=1

1
nz · (10k(n) + 5

)

=
∑

i=1

1
1z · (10 + 5)z

+
∑

2≤i≤19

1
iz · (102 + 5)z

+
∑

20≤i≤199

1
iz · (103 + 5)z

+
∑

200≤i≤1999

1
iz · (104 + 5)z

+ · · ·

≤
+∞∑

k=1

18 · 10k−2

10z·(k−2) · 10zk

= 18 ·
+∞∑

k=0

10k−1

10z·(k−1) · 10z(k+1)

≤ 18 ·
+∞∑

k=0

10k

10z·(k−1) · 10z(k+1)

= 18 ·
+∞∑

k=0

1
10k·(2z−1)

. (7)

Now if z >
1
2
, then from (7) and the properties of the geometric progression we know that f(z)

is convergent. If z ≤ 1
2
, then from (7) we also have:

f(z) =
+∞∑
n=1

1
az

n

=
+∞∑
n=1

1
nz · (10k(n) + 5

)

=
∑

i=1

1
1z · (10 + 5)z

+
∑

2≤i≤19

1
iz · (102 + 5)z

+
∑

20≤i≤199

1
iz · (103 + 5)z

+
∑

200≤i≤1999

1
iz · (104 + 5)z

+ · · ·

≥
+∞∑

k=1

18 · 10k−2

10z·(k−1) · 10z(k+1)

= 18 ·
+∞∑

k=0

10k−1

10zk · 10z(k+2)

= 18 ·
+∞∑

k=0

1
102zk+2z−k+1

. (8)

Then from the properties of the geometric progression and (8) we know that the series f(z) is

divergent if z ≤ 1
2
. This proves Theorem 3.

Now we prove Theorem 4. For any positive integer N , there exist a positive integer M such
that

200 · · · 00︸ ︷︷ ︸
M

≤ N ≤ 199 · · · 99︸ ︷︷ ︸
M+1

.
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Note that for any positive integer n, if

200 · · · 00︸ ︷︷ ︸
u

≤ n ≤ 199 · · · 99︸ ︷︷ ︸
u+1

,

then 5n = bu+1bu · · · b2b1, where 1 ≤ bu+1 ≤ 9, 0 ≤ bi ≤ 9,i = 1, 2, · · · , u, so k(n) = u + 1.
Therefore we have

∑

n≤N

n

an
=

∑

n≤N

1
10k(n) + 5

=
1

10 + 5
+

∑

2≤n≤19

1
102 + 5

+
∑

20≤n≤199

1
103 + 5

+ · · ·

+
∑

20 · · · 00︸ ︷︷ ︸
M−1

≤n≤19 · · · 99︸ ︷︷ ︸
M

1
10M + 5

+
∑

20 · · · 00︸ ︷︷ ︸
M

≤n≤N

1
10M+1 + 5

=
1

10 + 5
+

18
102 + 5

+
180

103 + 5
+ · · ·+ 18 · 10M−2

10M + 5
+

N − 10M

5 + 1
10M+1 + 5

=
9
50

(
10 + 5− 5

10 + 5
+

102 + 5− 5
102 + 5

+
103 + 5− 5

103 + 5
+ · · ·+ 10M + 5− 5

10M + 5

)

+
N − 10M

5 + 1
10M+1 + 5

− 4
75

=
9
50

[
M −

(
5

10 + 5
+

5
102 + 5

+
5

103 + 5
+ · · ·+ 5

10M + 5

)]

+
N − 10M

5 + 1
10M+1 + 5

− 4
75

=
9
50
·M − 9

10
·

M∑

i=1

1
10i + 5

+
N − 10M

5 + 1
10M+1 + 5

− 4
75

.

Considering M , by the inequality

200 · · · 00︸ ︷︷ ︸
M

≤ N ≤ 199 · · · 99︸ ︷︷ ︸
M+1

,

we have

10M < 5N ≤ 10M+1 − 5,

M ln 10 ≤ ln 5N ≤ (M + 1) ln 10 + ln
(

1− 5
10M+1

)
,

ln 5N

ln 10
− ln(1− 5

10M+1 )
ln 10

− 1 ≤ M ≤ ln 5N

ln 10
.

Note that as N → +∞, ln(1− 5
10M+1

) = O

(
1

10M

)
, then

ln 5N

ln 10
− 1−O

(
1

10M

)
≤ M ≤ ln 5N

ln 10
.
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Combining this we may immediately deduce the congruence

∑

n≤N

n

an
=

9
50
· lnN

ln 10
+ O (1) .

This completes the proof of Theorem 4.
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Abstract Suppose that S is a locally inverse semigroup with an inverse transversal S◦. We

can construct an amenable partial order on S by a McAlister cone of S◦. Conversely, every

amenable partial order on S can be constructed in this way. We show that the amenable

partial order constructed by the set E(S◦) of all idempotents of S◦ is the natural partial order

on S.

Keywords Locally inverse semigroup, amenable partial order, inverse transversal.

§1. Introduction and preliminary

A semigroup S is said to be a partially ordered semigroup, or to be partially ordered, if it
admits a compatible ordering ≤; That is, ≤ is a partial order on S such that

(∀ a, b ∈ S, x ∈ S1) a ≤ b =⇒ xa ≤ xb and ax ≤ bx.

Let S be a regular semigroup with set E(S) of idempotent elements. As usual, ¹ denotes
the natural partial order on S. That is, for any a, b ∈ S,

a ¹ b if and only if a = eb = bf for some e, f ∈ E(S).

By Corollary II. 4.2 in [1], the natural partial order ¹ on S is compatible with the multiplication
if and only if S is a locally inverse semigroup. Thus, a locally inverse semigroup equipped with
the natural partial order is a partially ordered semigroup. Particularly, an inverse semigroup is
a partially ordered semigroup under the natural partial order.

McAlister introduced and studied amenable partially ordered inverse semigroup in [3].
Definition 1.1.[3] Let (S, ·, ≤) be a partially ordered inverse semigroup. The partial order

≤ is said to be a left(right) amenable partial order if it coincides with ¹ on idempotents and
for each a, b ∈ S, a ≤ b implies a−1a ¹ b−1b (aa−1 ¹ bb−1). If ≤ is both a left amenable partial
order and a right amenable partial order on S, then ≤ is called an amenable partial order and
S is called an amenable partially ordered inverse semigroup.

Blyth and Almeida Santos generalized (left) amenable partial orders on inverse semigroup
to regular semigroup with an inverse transversal in [4]. Let S be a regular semigroup, for any

1This work is supported by the Science Foundation of Northwest University (NC0925).
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a ∈ S, V (a) denotes the all inverses of a. An inverse transversal of a regular semigroup S is an
inverse subsemigroup S◦ with the property that |S◦⋂

V (a)| = 1 for every a in S. The unique
inverse of a in S◦

⋂
V (a) is written as a◦ and (a◦)◦ as a◦◦. The set of idempotents in S◦ is

denoted by E(S◦) . We recall the following definition.
Definition 1.2.[4] Let (S, ·, ≤) be a partially ordered regular semigroup with an inverse

transversal S◦. If ≤ coincides with ¹ on idempotents and the partial order ≤ has the following
property

(∀a, b ∈ S) a ≤ b =⇒ a◦a ¹ b◦b,

then ≤ is said to be a left amenable partial order on S. Dually, if a ≤ b implies aa◦ ¹ bb◦, then
≤ is called a right amenable partial order on S. If ≤ is both a left amenable partial order and
a right amenable partial order on S, then ≤ is called an amenable partial order and S is called
an amenable partially ordered regular semigroup with inverse transversal S◦.

Suppose that S is a locally inverse semigroup with an inverse transversal S◦. Blyth and
Almeida Santos gave a complete description of all amenable partial orders on S and showed
the natural partial order on S is the smallest amenable partial order in [5]. They also proved
that every amenable partial orders on S◦ extends to a unique amenable partial order on S.
In this paper, we will give a new characterization of the amenable partial orders on S. We
can construct an amenable partial order on S by a McAlister cone of S◦. Conversely, every
amenable partial order on S can be constructed in this way, which simplify Blyth and Almeida
Santos’s work in [5]. It is easily seen that the set E(S◦) of all idempotent elements of S◦ is the
smallest McAlister cone of S◦. We will show that the amenable partial order constructed by
E(S◦) is equal to the natural partial order on S and so the natural partial order on S is the
smallest amenable partial order.

§2. Constructing amenable partial orders

Suppose that (S, ·) is a regular semigroup with an inverse transversal S◦. For any a, b ∈ S,
Blyth and Almeida Santos say in [5] that S satisfies the following formulars

(ab)◦ = (a◦ab)a◦ = b◦(ab◦b)◦ = b◦(a◦abb◦)◦, (a◦b)◦ = b◦a◦◦, (ab◦)◦ = b◦◦a◦. (1)

According to Blyth and Almeida Santos in [5], if S is locally inverse, then

(∀a, b, c ∈ S) a◦bc◦ = a◦b◦◦c◦. (2)

Suppose that S is a regular semigroup with an inverse transversal S◦. Blyth and Almeida
Santos stated in [4] and [5] that the two subsets of E(S)

Λ = {x◦x|x ∈ S} and I = {xx◦|x ∈ S}

are respectively right regular subband and left regular subband of E(S). Hence, we immediately
have the following lemma.

Lemma 2.1. Let S be a locally inverse semigroup with an inverse transversal S◦. Then
Λ is a right normal subband of E(S) and I is a left normal subband of E(S).
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Let S be a locally inverse semigroup with an inverse transversal S◦. The two subsets of S

are

L = {xx◦x◦◦|x ∈ S}, R = {x◦◦x◦x|x ∈ S},

Blyth and Almeida Santos in [5] established the following fundamental statements:
(α) L is a left normal orthodox subsemigroup of S and I = {xx◦|x ∈ S} is the set of all

idempotents of L;
(β) R is a right normal orthodox subsemigroup of S and Λ = {x◦x|x ∈ S} is the set of all

idempotents of R;
(γ) L

⋂
R = S◦, Λ

⋂
I = E(S◦).

Consider the following two sets

Λ∗ = {x ∈ S|(∀l ∈ Λ) lxl = xl}, I∗ = {x ∈ S|(∀r ∈ I) rxr = rx},

Blyth and Almeida Santos proved that Λ∗ is a subsemigrup of S containing Λ and I∗ is a
subsemigroup of S containing I (see Theorem 3 in [5]), and after that they introduced the
concepts of R-cone and L-cone of S, which generalized the notion of McAlister cone in an
inverse semigroup. If a full subsemigroup Q of Λ∗ with the properties that Q

⋂
Q◦ = E(S◦)

and xQx◦ ⊆ Q for all x ∈ R, then Q is called a R-cone of S. Dually, they considered the
subsemigroup of I∗ and gave the notion of L-cone. They proved in [5] that an amenable partial
order on S can be constructed by a R-cone P and a L-cone Q, conversely, every amenable
partial order on S can be obtained in this way (see Theorems 8 and 10 in [5]). If P is a R-cone
and Q is a L-cone, they also proved that P

⋂
Q is a McAlister cone of S◦ (see Theorem 17 in

[5]). We will recall the concept of McAlister cone of S◦ in the following.
Suppose that S is a locally inverse semigroup with an inverse transversal S◦. Consider the

set

E(S◦)ζ = {x ∈ S|(∀e ∈ E(S◦)) ex = xe},

which is the centralizer of E(S◦) in S. Blyth and Almeida Santos showed that E(S◦)ζ is a
subsemigroup of S◦ (see Theorem 16 in [5]). Now, we have

Definition 2.2.[5] Suppose that S is a locally inverse semigroup with an inverse transversal
S◦. A subset Q of S◦ is said to be a McAlister cone of S◦ if

(i) Q is a subsemigroup of E(S◦)ζ;

(ii) Q
⋂

Q◦ = E(S◦) (Q◦ = {a◦| a ∈ Q});

(iii) (∀x ∈ S) x◦Qx◦◦ ⊆ Q.

If S is a locally inverse semigroup with an inverse transversal S◦, then it is easy to see that
E(S◦) is a McAlister cone of S◦. The following result will show that an amenable partial order
on S also can be constructed by a McAlister cone of S◦.

Theorem 2.3. Suppose that S is a locally inverse semigroup with an inverse transversal
S◦. Let C be a McAlister cone of S◦. Then the relation ≤C defined on S by

x ≤C y ⇐⇒ xx◦ ¹ yy◦, x◦x ¹ y◦y, x◦y◦◦, y◦◦x◦ ∈ C (∗)
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is an amenable partial order on S.
Proof. It is easily seen that ≤C is reflexive. If x ≤C y and y ≤C x, then xx◦ = yy◦, x◦x =

y◦y, x◦y◦◦, y◦x◦◦ ∈ C. Thus y◦x◦◦ = (x◦y◦◦)◦ ∈ C
⋂

C◦ = E(S◦) since C is a McAlister
cone. It follows from xx◦ = yy◦ and (1) that x◦◦x◦ = (xx◦)◦ = (yy◦)◦ = y◦◦y◦ and so
y◦ = y◦y◦◦y◦ = y◦x◦◦x◦, which gives y◦ ¹ x◦. Likewise, x◦ ¹ y◦ and so x◦ = y◦, furthermore,
we have x◦◦ = y◦◦. Hence, x = xx◦ · x◦◦ · x◦x = yy◦ · y◦◦ · y◦y = y, thus ≤C is anti-symmetric.
If x ≤C y and y ≤C z, then x◦x ¹ y◦y ¹ z◦z, xx◦ ¹ yy◦ ¹ zz◦ and x◦y◦◦, y◦z◦◦ ∈ C. We
obtain from xx◦ ¹ yy◦ that xx◦yy◦ = xx◦. It follows from Definition 2.2 that x◦y◦◦y◦z◦◦ ∈ C.
We thus have

x◦y◦◦y◦z◦◦ = x◦xx◦y◦◦y◦z◦◦

= x◦(xx◦yy◦)z◦◦ (by (2))

= x◦z◦◦.

Consequently x◦z◦◦ ∈ C, similarly, we have z◦◦x◦ ∈ C and so x ≤C z. Thereby, ≤C is transitive
and ≤C is a partial order on S.

Suppose that x ≤C y. For any z ∈ S, we have

(zx)◦(zy)◦◦ = x◦(zxx◦)◦(zy)◦◦ (by, (1))

= x◦(zyy◦xx◦)◦(zy)◦◦

= x◦x◦◦x◦y◦◦(zy)◦(zy)◦◦

= x◦y◦◦(zy)◦(zy)◦◦

∈ CE(S◦)

⊆ C (E(S◦) ⊆ C)

and
(zy)◦◦(zx)◦ = (zy)◦◦x◦(zxx◦)◦ (by, (1))

= (zyy◦y)◦◦x◦(zxx◦yy◦)◦

= (zyy◦)◦◦y◦◦x◦(zyy◦xx◦)◦

= (zyy◦)◦◦y◦◦x◦(zyy◦x◦◦x◦)◦ (by (2))

= (zyy◦)◦◦y◦◦x◦x◦◦x◦(zyy◦)◦ (by (1))

= (zyy◦)◦◦y◦◦x◦(zyy◦)◦

∈ C, (y◦◦x◦ ∈ C)

i.e., (zx)◦(zy)◦◦, (zy)◦◦(zx)◦ ∈ C. It follows by Theorem 8 in [5] that zx(zx)◦ ¹ zy(zy)◦ and
(zx)◦zx ¹ (zy)◦zy. Thus we have zx ≤C zy, therefore ≤C is compatible on the left. Dually, we
have that ≤C is also compatible on the right and so (S, ·, ≤C) is a partially ordered semigroup.

In the following, we will show that the partial order ≤C coincides with the natural partial
order on E(S). Suppose that e, f ∈ E(S) and e ≤C f . Then e◦e ¹ f◦f, ee◦ ¹ ff◦. It follows
from Theorem 2 in [5] that e ¹ f . Conversely, if e ¹ f , then e◦e ¹ f◦f, ee◦ ¹ ff◦ and
e◦f ∈ Λ, fe◦ ∈ I . Furthermore, we have (e◦f)◦◦ = f◦◦e◦ ∈ E(S◦) ⊆ C, likewise, e◦f◦◦ ∈ C.
Thus e ≤C f , and consequently ≤C coincides with ¹ on idempotents. This shows that ≤C is
an amenable partial order on S.
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Assume that S is a locally inverse semigroup with an inverse transversal S◦ and ≤ is a
partial order on S. We denote by ≤S◦ the restriction of ≤ on S◦. Then the following lemma is
clear.

Lemma 2.4. Suppose that S is a locally inverse semigroup with an inverse transversal
S◦. If ≤ is an amenable partial order on S, then ≤S◦ is an amenable partial order on S◦.

Lemma 2.5. Suppose that S is a locally inverse semigroup with an inverse transversal
S◦. If the partial order ≤ is an amenable partial order on S, then

(∀a, b ∈ S) a ≤ b =⇒ a◦◦ ≤S◦ b◦◦.

Proof. Suppose that a ≤ b, then aa◦ ¹ bb◦ and a◦a ¹ b◦b, From (1) and (2) we have
(aa◦bb◦)◦ = (aa◦b◦◦b◦)◦ = b◦◦b◦a◦◦a◦ = (aa◦)◦ = a◦◦a◦. This shows that a◦◦a◦ ¹ b◦◦b◦.
Likewise, a◦a◦◦ ¹ b◦b◦◦. Since ≤ is an amenable partial order, a◦◦a◦ ≤ b◦◦b◦ and a◦a◦◦ ≤ b◦b◦◦,
and consequently a◦◦ = a◦◦a◦aa◦a◦◦ ≤ b◦◦b◦bb◦b◦◦ = b◦◦. It follows from a◦◦, b◦◦ ∈ S◦ that
a◦◦ ≤S◦ b◦◦, as required.

Proposition 2.6. Suppose that S is a locally inverse semigroup with an inverse transversal
S◦. If the partial order ≤ is an amenable partial order on S, then there exists a McAlister cone
C of S◦ such that ≤C=≤.

Proof. Assume that ≤ is an amenable partial order on S, we denote by ≤S◦ the restriction
of ≤ on S◦. It follows by Lemma 2.5 that ≤S◦ is an amenable partial order on S◦. Let

C = {x|x ∈ S◦, x◦x ≤S◦ x, xx◦ ≤S◦ x},
it easy to see that E(S◦) ⊆ C. By Lemma 2.1 (iii) in [3] and its dual, we have C is the subset
of E(S◦)ζ. Now let x, y ∈ C. Then

(xy)◦xy = y◦x◦xy (x, y ∈ S◦)

= y◦yy◦x◦xy

≤S◦ yy◦x◦xy

= x◦xyy◦y (E(S◦) is a semilattice)

= x◦xy

≤S◦ xy.

Likewise, xy(xy)◦ ≤S◦ xy and so xy ∈ C. This shows that C is a subsemigroup of E(S◦)ζ.
Suppose that x, x◦ ∈ C. Then x◦x ≤S◦ x, x◦◦x◦ ≤S◦ x◦. From x ∈ S◦ we obtain x◦◦ = x,

thus xx◦ ≤S◦ x◦, post-multiplying this by x, we have x ≤S◦ x◦x whence x = x◦x ∈ E(S◦),
hence, C

⋂
C◦ ⊆ E(S◦). On the other hand, it is clear that E(S◦) ⊆ C

⋂
C◦. Consequently

E(S◦) = C
⋂

C◦.
For any x ∈ S, a ∈ C, we have

(x◦ax◦◦)◦(x◦ax◦◦) = x◦a◦x◦◦x◦ax◦◦ (by (1))

= x◦a◦x◦◦x◦ax◦◦x◦ · x◦◦

= x◦a◦ax◦◦x◦ · x◦◦ (a ∈ C ⊆ E(S◦)ζ)

= x◦a◦ax◦◦

≤S◦ x◦ax◦◦. (a◦a ≤S◦ a)
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Dually, we obtain (x◦ax◦◦)(x◦ax◦◦)◦ ≤S◦ x◦ax◦◦. Thus x◦ax◦◦ ∈ C and so x◦Cx◦◦ ⊆ C. It
follows from Definition 2.2 that C is a McAlister cone of S◦.

Consider the corresponding partial order ≤C given by

x ≤C y ⇐⇒ xx◦ ¹ yy◦, x◦x ¹ y◦y, x◦y◦◦, y◦◦x◦ ∈ C.

We can obtain from Theorem 2.3 that ≤C is an amenable partial order on S.
In the following, we will show that ≤C=≤.
Suppose that x ≤C y. Then xx◦ ¹ yy◦ and x◦y◦◦ ∈ C, hence,

x◦◦x◦ = (xx◦)◦◦ (by (1))

= (xx◦yy◦)◦◦

= (xx◦y◦◦y◦)◦◦ (by (2))

= x◦◦x◦y◦◦y◦ (by (1))

= y◦◦y◦x◦◦x◦y◦◦y◦

= y◦◦(x◦y◦◦)◦(x◦y◦◦)y◦

≤S◦ y◦◦(x◦y◦◦)y◦

= y◦◦x◦y◦◦y◦

= y◦◦x◦x◦◦x◦y◦◦y◦

= y◦◦x◦(x◦◦x◦y◦◦y◦)

= y◦◦x◦x◦◦x◦

= y◦◦x◦.

Since ≤ is an amenable partial order, x = xx◦x◦◦x◦x ≤ xx◦y◦◦x◦x ≤ yy◦y◦◦y◦y = y. Thus
≤C⊆≤.

Suppose that a, b ∈ S and a ≤ b. It follows from a ≤ b that aa◦ ¹ bb◦ and a◦a ¹ b◦b,
furthermore, b◦b◦◦a◦ = a◦. By Lemma 2.5, we have a◦◦ ≤S◦ b◦◦. Hence, (a◦b)◦(a◦b)◦◦ =
b◦a◦◦a◦b◦◦ ≤S◦ b◦b◦◦a◦b◦◦ = a◦b◦◦ = (a◦b)◦◦, i.e., (a◦b)◦(a◦b)◦◦ ≤S◦ (a◦b)◦◦. Similarly, we
have (a◦b)◦◦(a◦b)◦ ≤S◦ (a◦b)◦◦. Thus a◦b◦◦ = (a◦b)◦◦ ∈ C. Dually, we can get b◦◦a◦ ∈ C. It
follows from definition of ≤C that a ≤C b, which implies ≤⊆≤C and so ≤C=≤.

It is easy to see that E(S◦) is the smallest McAlister cone of S◦, by Proposition 2.6 and
Theorem 11 in [5], we have the following result.

Theorem 2.7. Suppose that S is a locally inverse semigroup with an inverse transversal
S◦. Then ≤E(S◦) defined by (∗) is the smallest amenable partial order on S and ≤E(S◦)=¹.
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Cevians Theorem (II)
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Abstract In this paper, we use the Ceva’s Theorem and Menelaus’ Theorem to study Smaran-

dache’s Cevians Theorem (II), and give the generalization of Smarandanche’s Cevians Theo-

rem (II) in quadrilateral and pentagon.

Keywords Ceva’s Theorem, Menelaus’ Theorem, quadrilateral, pentagon.

§1. Introduction and results

Dr. M. Khoshnevisan presented the Smarandache’s Cevians Theorem (II) in the geometry
of triangle, which stated as follows:

In a triangle 4ABC (see Fig. 1) we draw the Cevians AA1, BB1, CC1 that intersect in P .
Then

PA

PA1
× PB

PB1
× PC

PC1
=

AB

A1B
× BC

B1C
× CA

C1A
,

A

B CA1

B1C1 P

(Fig. 1)

Where the lines and following are all directive.

In this paper, we shall generalize this theorem for quadrilateral and pentagon. That is, we
shall prove the following:

Theorem 1. Taking a point of P optional in quadrilateral ABCD (see Fig. 2), draw the
AP, BP, CP, DP that intersect the opposite sides with A1, B1, C1, D1. Then

PA

PA1
× PB

PB1
× PC

PC1
× PD

PD1
=

AD

A1D
× DC

D1C
× CD

C1D
× BC

B1C
.
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A B

C

D1P

A1B1
D

C1

(Fig. 2)

Theorem 2. The Smarandache’s Cevians Theorem (II) can’t be generalized to pentagon.

§2. Some lemmas

To complete the proof of the theorems, we need the following several lemmas.
Lemma 1. (Ceva’s Theorem) In the triangle 4ABC (see Fig. 3), we draw the

AA1, BB1, CC1 that intersect in P , then

AC1

C1B
× BA1

A1C
× CB1

B1A
= 1.

A

B CA1

B1C1 P

(Fig. 3)

Proof. In the triangle4ABA1, cut by transversal CPC1, we apply the Menelaus’ Theorem

BC

CA1
× A1P

PA
× AC1

C1B
= 1.

In the triangle 4AA1C, cut by transversal BPB1, we apply again the Menelaus’ Theorem

CB

BA1
× A1P

PA
× AB1

B1C
= 1.

Divide the two above-mentioned formulas and we obtain

AC1

C1B
× BA1

A1C
× CB1

B1A
= 1.

Lemma 2. (The generalization of Ceva’s Theorem ) In any polygon A1A2 · · ·An

(see Fig. 4), if we have Ceva’s point on n − 1 edge, then we can determine one and only one
Ceva’s point on the edge of n. Thus,

A1P1

P1A2
× A2P2

P2A3
× . . .× An−1Pn−1

Pn−1An
× AnPn

PnA1
= (−1)n.
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p p p
p p p

p p

A1

A3

A4

An−1

An

Q2

Pn

Pn−1

P1

Qn−3
Q1

A2

P2

P3

(Fig. 4)

Proof. In the triangle 4A1A2A3, we apply the Ceva’s Theorem

A1P1

P1A2
× A2P2

P2A3
× A3Q1

Q1A1
= 1.

In the triangle 4A1A3A4, we apply the Ceva’s Theorem

A1Q1

Q1A3
× A3P3

P3A4
× A4Q2

Q2A1
= 1.

. . .

In the triangle 4A1An−1An, we apply again the Ceva’s Theorem

A1Qn−3

Qn−3An−1
× An−1Pn−1

Pn−1An
× AnPn

PnA1
= 1.

Multiplying the above-mentioned formulas we have

A1P1

P1A2
× A2P2

P2A3
× · · · × An−1Pn−1

Pn−1An
× AnPn

PnA1
= (−1)n.

Lemma 3. (Menelaus’ Theorem) In the triangle 4ABC (see Fig. 5), if a straight line
intersect with AB,BC, CA or their extension at F, D,E, then

AF

FB
× BD

DC
× CE

EA
= 1.

A

B C D

F

P E

(Fig. 5)
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Proof. Taking CP//DF , intersect AB at P , BD
DC = FB

PF , CE
EA = PF

AF , then

AF

FB
× BD

DC
× CE

EA
=

AF

FB
× FB

PF
× PF

AF
= 1.

Lemma 4. (The generalization of Menelaus’ Theorem ) In a polygon A1A2 · · ·An,
the linear L intersect with A1A2, A2A3, · · · , AnA1 at P1, P2, · · · , Pn, then

A1P1

P1A2
× A2P2

P2A3
× . . .× An−1Pn−1

Pn−1An
× AnPn

PnA1
= 1.

Proof. Apply the mathematical induction. If n = 3, then it is the Menelaus’ Theorem.
Suppose the theorem holds for n = k. That is,

A1P1

P1A2
× A2P2

P2A3
× . . .× Ak−1Pk−1

Pk−1Ak
× AkPk

PkA1
= 1.

Then for n = k + 1, apply the Menelaus’ Theorem in the triangle 4A1AkAk+1 we have

A1Pk

PkAk
× AkPk

PkAk+1
× Ak+1Pk+1

Pk+1A1
= 1.

Multiplying the above formulas and we obtain

A1P1

P1A2
× A2P2

P2A3
× . . .× Ak−1Pk−1

Pk−1Ak
× AkPk

PkAk+1
× Ak+1Pk+1

Pk+1A1
= 1.

This shows that the theorem holds for n = k + 1. Now the Lemma 4 follows from the
induction.

§3. Proof of the theorems

In this section, we prove Theorem 1 and Theorem 2. First we prove Theorem 1. Apply
the Menelaus’ Theorem in the triangle 4ADA1, we have

DC

CA1
× A1P

PA
× AC1

C1D
= 1.

In the triangle 4BCB1,
CD

DB1
× B1P

PB
× BD1

D1C
= 1.

In the triangle 4CDC1,
DA

AC1
× C1P

PC
× CA1

A1D
= 1.

In the triangle 4CDD1,
CB

BD1
× D1P

PD
× DB1

B1C
= 1.

Multiplying the above formulas we have

PA

PA1
× PB

PB1
× PC

PC1
× PD

PD1
=

AD

A1D
× DC

D1C
× CD

C1D
× BC

B1C
.

This proves Theorem 1.
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Now we prove Theorem 2. It is clear that in the pentagon (see Fig. 6)
A B

C

D

E

B1

A1

C1

P

E1

D1

(Fig. 6)

the conclusions are not correct. Otherwise, we have

PA

PA1
× PB

PB1
× PC

PC1
× PD

PD1
× PE

PE1
=

AE

A1E
× ED

E1D
× DE

D1E
× ED

E1D
× CD

C1D
.

Connect AC, according to the conclusion in the quadrilateral, we have

PA

PA1
× PC

PC1
× PD

PD1
× PE

PE1
=

AE

A1E
× DE

D1E
× ED

E1D
× CD

C1D
.

Because ED
E1D is fixed, but as the movement of B, PB

PB1
is changing, so the conclusion is not

correct. So the Smarandache’s Cevians Theorem (II) can’t be generalized to pentagon.

References

[1] Huang Huayu, About Several Extended Theorem Related to Ceva Theorem, China
Academic Journal Electronic Publising House, 2000.

[2] Xu Dao, Generalization of Ceva Theorem, Journal of Zhaotong Teacher’s College (Nat-
ural Science Edition), 9(1990), No. 9, 66.

[3] Zhang Qinshan, Generalization of Menelaus’ Theorem, Journal of Northern Sichuan
Education College, 2(2001), No. 1, 38-39.

[4] Xu Dao, The extension of Ceva Theorem, Journal of Fuzhou Teachers College, 9(1997),
No. 1, 45-47.

[5] Chen Bin, An Improvement on the Menelaus’s Theorem and Ceva Theorem, Journal of
Zhaotong Teacher’s College, 2(2002), No. 2, 23-26.
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Abstract The concept of translational hull of semigroups was first introduced by Petrich in

[8]. The translational hull of an inverse semigroup was studied by Ault in [4]. Fountain and

Lawson studied the translational hull of adequate semigroups. And later on, the translational

hull of strongly right or left adequate semigroups were further investigated by Ren and Shum.

In this paper, we concentrate on the translational hull of strongly right Ehresmann semigroups.

It is proved that the translational hull of a strongly right Ehresmann semigroup is still of the

same type. Our results extends the previous results of strongly right adequate semigroups.

Keywords Translational hulls, strongly right U -ample semigroups, strongly right Ehresm-

ann semigroups.

§1. Introduction

Recall that a mapping λ from a semigroup S into itself is called a left translation of S if
λ(ab) = (λa)b for all a, b in S. Similarly, a mapping ρ from S into itself is a right translation
of S if (ab)ρ = a(bρ) for all a, b in S. A left translation λ and a right translation ρ of S are said
to be linked if a(λb) = (aρ)b for all a, b in S. In this case, we call the pair (λ, ρ) a bitranslation
of S. The set Λ(S) of all left translations and the set P (S) of all right translations of S form
semigroups under the composition of mappings. The translational hull of S is the subsemigroup
Ω(S) of Λ(S)×P (S) which consist of all bitranslations (λ, ρ). The concept of translational hull
of semigroups and rings was first introduced in 1970 by Petrich in [8]. The translational hull of
an inverse semigroup was first studied by Ault in [4], and the translational hull of an adequate
semigroup was further studied by Fountain and Lawson in [1]. And later on, Ren and Shum
investigated in 2006 the translational hull of a strongly right or left adequate semigroup in [11].
The translational hull of semigroup plays an important role in the theory of semigroups.

Let E(S) be the set of all idempotents of a semigroup S and U ⊆ E(S) be a non-empty
subset, namely, the set of projections of S. The generalized Green relation L̃U was first defined
by Lawson in [9]. For any elements a, b in S, (a, b) ∈ L̃U is defined if and only if a and b have

1The research of the first author is supported by the National Natural Science Foundation of China (10971160)

and the Natural Science Foundation of Shaanxi Province (SJ08A06).
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the same set of right identities in U , that is to say, Ur
a = Ur

b ,where

Ur
a = {u ∈ U | au = a }.

It is easy to check that L ⊆ L∗ ⊆ L̃U .

We now call a semigroup S a U-rpp semigroup if every L̃U -class of S contains a projection
of S and L̃U is a right congruence, denoted by (S,U). A U-rpp semigroup (S,U) is called a
right Ehresmann semigroup if the projections of (S,U) commute. A U-rpp semigroup (S,U) is
called strongly U-rpp semigroup if for any a ∈ (S,U), there is a unique projection e ∈ U such
that aL̃Ue and a = ea. Thus, we naturally call a right Ehresmann semigroup (S,U) a strongly
right Ehresmann semigroup if (S,U) is a strongly U-rpp semigroup.

In this paper, we will show that the translational hull of an strongly right (left) Ehresmann
semigroup is still of the same type.

For any notation and terminologies not given in this paper, the reader is referred to [4], [5]
and [6].

§2. Preliminaries

We first give some basic results and notation from [7].
Lemma 2.1. Let a, b be elements of a semigroup (S,U). Then the following statements

on (S,U) are equivalent:
(i) (a, b) ∈ L̃U .
(ii) Ur

a = Ur
b , where Ur

a = {u ∈ U | au = a }.
Lemma 2.2. If a ∈ (S,U) and e ∈ U , then the following statements hold on (S,U):
(i) (e, a) ∈ L̃U .
(ii) ae = a and for all f ∈ U, af = a implies ef = e.

Lemma 2.3. If (S,U) is a strongly right Ehresmann semigroup, then each L̃U -class of
(S,U) contains a unique projection in U.

Proof. Suppose that a ∈ (S,U) and e ∈ L̃U
a ∩U. Let f ∈ L̃U

a ∩U, since (S,U) is a strongly
right Ehresmann semigroup, we have e = ef = fe = f. This show that each L̃U -class of (S,U)
contains a unique projection in U.

Suppose that (S,U) is a strongly right Ehresmann semigroup and a ∈ (S,U). Then, by
Lemma 2.3, we denote the unique projection in L̃U -class containing a of (S,U) by a∗.

Now we have directly from definition the following lemma.
Lemma 2.4. Let a, b be elements of a strongly right Ehresmann semigroup (S,U). Then

the following conditions hold in (S,U) :
(i) aL̃Ub if and only if a∗ = b∗.
(ii) (ab)∗ = (a∗b)∗.
(iii) aa∗ = a = a∗a.
(iv) (ae)∗ = a∗e.
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Lemma 2.5. Let (S,U) be a strongly right Ehresmann semigroup, the following statements
are equivalent:

(i) (S,U) is strongly right U -ample.
(ii) ea = a(ea)∗, for every a ∈ (S,U) and every projection e ∈ U.

We call a U-rpp semigroup (S,U) a projection balanced semigroup if for any a ∈ (S,U),
there exist projections e and f in (S,U) such that a = ea = af . It is clear that from Lemma
2.4, a strongly right Ehresmann semigroup is a projection balanced semigroup.

Lemma 2.6. Suppose that (S,U) is a projection balanced semigroup (S,U).
(i) If λ and λ′ are two left translations of (S,U), then λ = λ′ if and only if λe = λ′e for all

e ∈ U .
(ii) If ρ and ρ′ are two right translations of (S,U), then ρ = ρ′ if and only if eρ = eρ′ for

all e ∈ U .
Proof. We only need to prove (i) since the proof of (ii) can be obtained similarly. The

necessity part of (i) is clear. For the sufficiency part of (i), let a be an element of (S,U) and
e be a projection such that ea = a. Then

λa = λ(ea) = (λe)a = (λ′e)a = λ′(ea) = λ′a.

Hence λ = λ′. Thus the proof is completed.
Lemma 2.7. Let (S,U) be a strongly right Ehresmann semigroup. If (λ, ρ), (λ′, ρ′) ∈

Ω(S,U), then the following are equivalent:
(i) (λ, ρ) = (λ′, ρ′).
(ii) λ = λ′.
(iii) ρ = ρ′.
Proof. It is clear that (i) implies (ii) and (i) implies (iii). In fact, we only need to show

that (iii) implies (i). Suppose that ρ = ρ′. Then by our hypothesis, for any e ∈ U there exists
a projection f such that

λe = f(λe) = (fρ)e = (fρ′)e = f(λ′e).

And there exists a projection f ′ such that

λ′e = f ′(λ′e) = (f ′ρ′)e = (f ′ρ)e = f ′(λe).

Thus, we have that λeLλ′e. Since (S,U) is a projection balanced semigroup, we can easily
obtain that there exists g ∈ U such that f(λ′e) = (λ′e)g. Hence, λe = (λ′e)g. Thus, λe =
(λ′e)g · g = (λe) · g. From L ⊆ L̃U , it follows that λ′e = (λ′e) · g so that λe = λ′e. By Lemma
2.6, we obtain that λ = λ′ and of course, (λ, ρ) = (λ′, ρ′).

§3. Strongly right Ehresmann semigroups

In this section, we assume always that (S,U) is a strongly right Ehresmann semigroup with
the set of projections U.
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Let (λ, ρ) ∈ Ω(S,U) which is the translational hull of (S,U). First we define two mappings
λ∗, ρ∗ from (S,U) into itself by the rule that for any a ∈ (S,U),

λ∗a = (λa∗)∗a,

aρ∗ = a(λa∗)∗.

Lemma 3.1. Let (S,U) be a strongly right Ehresmann semigroup with semilattice U of
projections. Then for any e ∈ U ,

(i) λ∗e = eρ∗;
(ii) λ∗e = (λe)∗;
(iii) λ∗aL̃Uλa.
Proof. (i) Since all projections commute, it follows immediately that for any e ∈ U ,

λ∗e = (λe)∗e = e(λe)∗ = eρ∗.

(ii) By the definition of λ∗, we have that λ∗e = (λe)∗e. Since λeL̃U (λe)∗ and L̃U is a right
congruence on (S,U), it follows that λe · eL̃U (λe)∗e, that is , λeL̃U (λe)∗e. By Lemma 2.3, each
L̃U -class contains a unique projection so that (λe)∗ = (λe)∗e. Hence, λ∗e = (λe)∗e = (λe)∗.

(iii) Clearly, λa∗L̃U (λa∗)∗. Since L̃U is a right congruence, we immediately obtain that

λa = λa∗aL̃U (λa∗)∗a = λ∗a.

Lemma 3.2. The pair (λ∗, ρ∗) is a member of the translational hull Ω(S,U) of (S,U).
Proof. First we show that λ∗ is a left translation. Let a, b be elements of (S,U). Then

by Lemma 3.1,

λ∗(ab) = (λ(ab)∗)∗ab = λ∗(ab)∗ · (ab)

= λ∗(ab)∗ · a∗ · ab = a∗ · λ∗(ab)∗ · ab

= a∗ · (ab)∗ρ∗ · ab = (a∗ · (ab)∗)ρ∗ · ab

= ((ab)∗a∗)ρ∗ · ab = (ab)∗(a∗ρ∗) · ab

= (a∗ρ∗)(ab)∗ · (ab) = λ∗a∗ · ab

= (λa∗)∗a · b = (λ∗a)b.

We next show that ρ∗ is a right translation. Noting that (ab)b∗ = ab, we have that
(ab)∗b∗ = (ab)∗ so that b∗(ab)∗ = (ab)∗. Then by Lemma 3.1 and Lemma 2.4, we have

(ab)ρ∗ = ab(λ(ab)∗)∗ = ab(λb∗(ab)∗)∗

= (ab)((λb∗)∗(ab)∗) = ab(ab)∗(λb∗)∗

= ab(λb∗)∗ = a(b(λb∗)∗)

= a(bρ∗).

This shows that ρ∗ is a right translation.
Finally, we prove that (λ∗, ρ∗) is a linked pair. It is clear that
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a(λ∗b) = a(λ∗b∗)b = aa∗(λ∗b∗) · b
= aa∗(b∗ρ∗)b = a(a∗b∗)ρ∗) · b
= a(b∗a∗)ρ∗ · b = a · b∗(a∗ρ∗)b
= a · (a∗ρ∗)b∗ · b = (aa∗)ρ∗b

= (aρ∗)b.

This shows that the pair (λ∗, ρ∗) is linked and so is in Ω(S,U).
Now we take the set Ψ(S,U) as follows:

Ψ(S,U) = { (λ, ρ) ∈ E(Ω(S,U)) : λU ∪ Uρ ⊆ U }.

Then, we have the following result.
Lemma 3.3. The elements of Ψ(S,U) are all idempotent.
Proof. Let (λ, ρ) ∈ Ψ(S,U) and e ∈ U . Then

λ2e = λ((λe)e) = λ(e(λe)) = (λe)(λe) = λe.

It follows by Lemma 2.6 that λ2 = λ. Again by Lemma 2.7, we have that (λ, ρ)2 = (λ2, ρ2) =
(λ, ρ).

Lemma 3.4. The elements of Ψ(S,U) commute with each other.
Proof. Let (λ, ρ), (λ′, ρ′) ∈ Ψ(S,U). Then, by the definition of Ψ(S,U), we have that

λU ∪ Uρ ⊆ U and λ′U ∪ Uρ′ ⊆ U. Thus, for any projection e ∈ U, we have

λλ′e = λλ′(ee) = λ((λ′e)e) = λ(e(λ′e)) = (λe)(λ′e) = (λ′e)(λe) = λ′λe.

By Lemma 2.6, it is clear that λλ′ = λ′λ. Similarly, we have that ρρ′ = ρ′ρ. Hence, (λ, ρ)(λ′, ρ′) =
(λ′, ρ′)(λ, ρ), as required.

Lemma 3.5. (λ∗, ρ∗) is an elements in Ψ(S,U).
Proof. Suppose that e ∈ U. By Lemma 3.1, it is obvious that λ∗e and eρ∗ are all elements

of U . Thus, (λ∗, ρ∗) ∈ Ψ(S,U).
It is natural to take Ū = Ψ(S,U) as the set of projections of the translational hull Ω(S,U).

Thus, we will prove that (Ω(S,U), Ū) is a strongly right Ehresmann semigroup with the set of
projections Ū .

To do this, we need the following crucial Lemma.

Lemma 3.6. Any element (λ, ρ) of Ω(S,U) is L̃Ū -related to (λ∗, ρ∗).
Proof. Firstly we show that (λ, ρ)(λ∗, ρ∗) = (λ, ρ). Assume that e is any projection from

U. Then, by Lemma 3.1, we have that

λλ∗e = λ(eρ∗) = λ(e2ρ∗) = λ(e · (eρ∗)) = λe(eρ∗) = λe(λe)∗ = λe.

Using Lemma 2.6, we obtain λλ∗ = λ. Thus, it follows by Lemma 2.7 that (λ, ρ)(λ∗, ρ∗) = (λ, ρ).
To prove that (λ, ρ)L̃Ū (λ∗, ρ∗), we still need show from Lemma 2.2 that for any (λ′, ρ′) ∈
Ū , (λ, ρ)(λ′, ρ′) = (λ, ρ) implies (λ∗, ρ∗)(λ′, ρ′) = (λ∗, ρ∗). Since (S,U) is a strongly right Ehres-
mann semigroup and by Lemma 3.1, we have that λeL̃U (λe)∗ = λ∗e for any e ∈ U. Suppose
that (λ, ρ)(λ′, ρ′) = (λ, ρ) for any (λ′, ρ′) ∈ Ū . Then for any projection e ∈ U, we have
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(λe)(λ′e) = λ(e(λ′e)) = λ((λ′e)e) = λλ′(ee) = λλ′e = λe.

This implies that λ∗eλ′e = λ∗e. On the other hand, we have that

λ∗eλ′e = λ∗(e(λ′e)) = λ∗((λ′e)e) = λ∗(λ′e) = λ∗λ′e.

Hence, λ∗λ′e = λ∗e. It follows by Lemma 2.6 that λ∗λ′ = λ∗. Thus, we have proved that
(λ∗, ρ∗)(λ′, ρ′) = (λ∗, ρ∗). This completes the proof that (λ, ρ) and (λ∗, ρ∗) are L̃Ū - related.

Lemma 3.7. L̃Ū on Ω(S,U) is a right congruence.
Proof. It is clear that the relation L̃Ū on Ω(S,U) is an equivalence. We next show that

it is right compatible. Suppose that (λ1, ρ1), (λ2, ρ2), (λ3, ρ3) ∈ Ω(S,U) and (λ1, ρ1)L̃Ū (λ2, ρ2).
Then by Lemma 3.6, we have (λ∗1, ρ

∗
1)L̃Ū (λ∗2, ρ

∗
2). This leads to (λ∗1, ρ

∗
1)L(λ∗2, ρ

∗
2) on Ω(S,U).

Since L is a right congruence on Ω(S,U), it follows that (λ∗1, ρ
∗
1)(λ3, ρ3)L(λ∗2, ρ

∗
2)(λ3, ρ3), that is,

(λ∗1λ3, ρ
∗
1ρ3)L̃Ū (λ∗2λ3, ρ

∗
2ρ3). Hence for any e ∈ U , by Lemma 3.1 (iii), we have that (λ1λ3)∗eL̃U

λ1λ3eL̃Uλ∗1λ3eL̃U (λ∗1λ3)∗e, that is, (λ1λ3)∗eL̃U (λ∗1λ3)∗e. Since (S,U) is a strongly right Ehres-
mann semigroup, it follows from Lemma 2.3 and Lemma 3.1 that (λ1λ3)∗e = (λ∗1λ3)∗e. By
Lemma 2.6, we have (λ1λ3)∗ = (λ∗1λ3)∗. Notice that

λ1λ3L̃Ū (λ1λ3)∗ = (λ∗1λ3)∗L̃Ūλ∗1λ3.

By Lemma 2.7 and the fact that (λ1λ3)∗ = (λ∗1λ3)∗, we have (ρ1ρ3)∗ = (ρ∗1ρ3)∗. Dually,
ρ1ρ3L̃Ūρ∗1ρ3. Hence, (λ1, ρ1)(λ3, ρ3)L̃Ū (λ∗1, ρ

∗
1)(λ3, ρ3).

Similarly, we can easily obtain that (λ2, ρ2)(λ3, ρ3)L̃Ū (λ∗2, ρ
∗
2)(λ3, ρ3). Thus we deduce that

(λ1, ρ1)(λ3, ρ3)L̃Ū (λ2, ρ2)(λ3, ρ3) on Ω(S,U) so that L̃Ū is indeed a right congruence.
Summarizing above these observations, we can prove the following main theorem.

Theorem 3.8. The translational hull of a strongly right Ehresmann semigroup is still a
strongly right Ehresmann semigroup.

Proof. By using the above Lemmas, we can easily verify that Ω(S,U) is a right Ehresmann
semigroup. To prove this theorem, we only need to prove that for any (λ, ρ) ∈ Ω(S,U) there
exist a unique projection (λ∗, ρ∗) such that (λ, ρ)L̃Ū (λ∗, ρ∗) and (λ∗, ρ∗)(λ, ρ) = (λ, ρ). Since
(S,U) is a strongly right Ehresmann semigroup, we have

λ∗λe = (λ(λe)∗)∗(λe) = (λλ∗e)∗(λe) = (λe)∗(λe) = λe,

by Lemma 2.7 and so (λ∗, ρ∗)(λ, ρ) = (λ, ρ). This shows that Ω(S,U) is a strongly right Ehres-
mann semigroup. The proof is hence completed.

§4. Strongly right U-ample semigroups

We say that a strongly right Ehresmann semigroup (S,U) in which ea = a(ea)∗ for every
element a and every projection e of (S,U) is a strongly right U -ample semigroup.

As a direct consequence of Theorem 3.8, we deduce the following theorem.
Theorem 4.1. The translational hull of a strongly right U -ample semigroup is still a

strongly right U -ample semigroup.
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Proof. Let (S,U) be a strongly right U -ample semigroup. By Theorem 3.8, we know that
Ω(S,U) is strongly right Ehresmann. Also from the proof of this theorem we have

Ū = Ψ(S,U) = { (λ, ρ) ∈ E(Ω(S,U)) : λU ∪ Uρ ⊆ U }.

Now let (λ1, ρ1) ∈ Ū and let (λ, ρ) ∈ Ω(S,U), e ∈ U(S). By our definition, we only need to
show that (λ1, ρ1)(λ, ρ) = (λ, ρ)((λ1, ρ1)(λ, ρ))∗ for every element (λ, ρ) and every projection
(λ1, ρ1) ∈ Ū .

We now show that λ1λ = λ(λ1λ)∗ and ρ1ρ = ρ(ρ1ρ)∗. In fact, λ1λe = λ1((λe)∗(λe)) =
(λ1(λe)∗)(λe).

Since (λ1, ρ1) ∈ Ū , λ1(λe)∗ is a projection in (S,U). For (S,U) is strongly right U -ample,
we have

λ1λe = (λ1(λe)∗)(λe) = (λe)((λ1(λe)∗)(λe))∗ = λe(λ1λe)∗.

And we also have

λe(λ1λe)∗ = λ(e(λ1λe)∗) = λ((λ1λe)∗e) = λ(((λ1λe)∗e)e) = λ((λ1λ)∗e) = λ(λ1λ)∗e.

Then we obtain that λ1λ = λ(λ1λ)∗. Hence,

(λ1, ρ1)(λ, ρ) = (λ, ρ)((λ1, ρ1)(λ, ρ))∗.

This shows that Ω(S,U) is a strongly right U -ample semigroup so that we have proved the
theorem.
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§1. Introduction

In this paper [1], Vasantha Kandasamy introduced the concept of Smarandache non-
associative rings, which we shortly denote as SNA-rings. This concept derived from the general
definition of a Smarandache Structure (i.e., a set A embedded with a weak structure W such
that a proper subset B in A is embedded with a stronger structure S) and were firstly studied
in the Smarandache algebraic literature. The only non-associative structure found in Smaran-
dache algebraic notions are Smarandache groupiods and Smarandache loops introduced in [2]
and [3], which are algebraic structures with only a single binary operation defined on them
that is non-associative. But SNA-rings are non-associative structures on which are defined two
binary operations one associative and other being non-associative and addition distributes over
multiplication both from the right and left. By [1], it is well know that the loop ring is always
a SNA-ring, and the groupiod ring is also a SAN-ring when it satisfies some conditions. Those
results motivate us to find the smallest non-associative ring (By smallest we mean the number
of elements in them that is order is the least that is we can not find any other non-associative
ring of lesser order than that). In this note, we shall give some interesting results about the
mentioned problems in [1].

§2. Preliminaries

Definition 2.1. A set S together with a (binary) operation is a groupoid. A groupoid
(S, ∗) satisfying the associative law

1This work is supported by the N. S. F. (10271093, 60472068) and P. N. S. F. of China.
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(x ∗ y) ∗ z = x ∗ (y ∗ z) (x, y, z ∈ S)

is a semigroup.
Definition 2.2. A ring (R, +, ∗) is said to be a non-associative ring if (R, +) is an additive

abelian group, (R, ∗) is a non-associative semigroup (that is the binary operation ∗ on R is non-
associative )such that the distributive laws

(x + y) ∗ z = x ∗ z + y ∗ z , x ∗ (y + z) = x ∗ y + x ∗ z,

for all x, y, z ∈ R.
Definition 2.3. Let (R, +, ∗) be a non-associative ring. R is said to be a SNA-ring if R

contains a proper subset P is an associative ring under the operations of R.
Definition 2.4. A non-associative ring (R, +, ∗) is said to be a Moufang ring if the

Moufang identity

(x ∗ y) ∗ (z ∗ x) = (x ∗ (y ∗ z)) ∗ x

is satisfied for all x, y, z ∈ R.

Definition 2.5. Let (R, +, ∗) be a non-associative ring. R is said to be a Bol ring if R

satisfies the Bol identity

((x ∗ y) ∗ z) ∗ y = x ∗ ((y ∗ z) ∗ y), for all x, y, z ∈ R.

In view of these we have the following interesting results.
Theorem 2.6. If R is a Moufang ring and R is also a SNA-ring then R is a SNA Moufang

ring.
Theorem 2.7. Let R be a non-associative ring, which is a Bol ring. If R is a SNA-ring,

then R is a SNA Bol ring.

§3. Main results

Theorem 3.1. A non-associative ring of order 2 is not exist.
Proof. Suppose that R = {0, 1} and (R, +, ∗) is a non-associative rings, in which (R, +)

is an additive abelian group given by the following table:

+ 0 1

0 1 1

1 1 1

Obviously, this form is single for an additive abelian group of order 2. Then by the law of
addition distributive over multiplication both from the right and left we have :

1 ∗ (1 + 1) = 1 ∗ 0

1 ∗ 1 + 1 ∗ 1 = 0

}
⇒ 1 ∗ 0 = 0,

and
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(1 + 1) ∗ 1 = 0 ∗ 1

1 ∗ 1 + 1 ∗ 1 = 0

}
⇒ 0 ∗ 1 = 0,

and
0 ∗ (1 + 1) = 0 ∗ 0

0 ∗ 1 + 0 ∗ 1 = 0

}
⇒ 0 ∗ 0 = 0,

and
1 ∗ (1 + 0) = 1 ∗ 1

1 ∗ 1 + 1 ∗ 0 = 1 ∗ 1

}
⇒ 1 ∗ 1 = 0 or 1.

we immediately have (R, ∗) by the following table:

∗ 0 1

0 0 0

1 0 0

∗ 0 1

0 0 0

1 0 1

It is easy to see that (R, ∗) is a semigroup satisfied the associative law. It is contradictive
with R is a non-associative ring. Thus, we can not find a non-associative ring of order 2. This
completes the proof of Theorem 3.1.

Theorem 3.2. The smallest non-associative ring is of order 3 given by the following
example.

Example 1. (A,+, ∗) be a non-associative ring of 3 given by the following table:

2

+ 0 a b

0 0 a b

a a 0 a

b b a 0

∗ 0 a 0

0 0 0 0

a 0 0 0

b 0 a 0

It easy to see that (A,+) is an additive group, in which

(b ∗ b) ∗ a = 0 ∗ a = 0 6= b ∗ (b ∗ a) = b ∗ a = a,

and so (A, ∗) is a non-associative semigroup. From Definition 2.1 and Theorem 3.1 we have
Theorem 3.2.

Example 2. (B,+, ∗) be a non-associative ring given of 4 by the following table:

+ 0 a b c

0 0 a b c

a a 0 a a

b b a 0 b

c c 0 b 0

∗ 0 a b c

0 0 0 0 0

a 0 a 0 0

b 0 c 0 0

c 0 0 0 0

Similarly, we can obtain that (B,+, ∗) is a non-associative ring since
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(b ∗ a) ∗ a = c ∗ a = 0 6= b ∗ (a ∗ a) = b ∗ a = c,

Hence, (B, ∗) is a non-associative semigroup.
It is very natural to consider whether the smallest non-associative ring is a SNA-ring. we

find a proper subset C = {0, a} of (A, +, ∗) in Example 1, which is a associative ring given by
the following table:

+ 0 a

0 0 a

a a 0

∗ 0 a

0 0 0

a 0 0

Thus, it follows from Definition 2.2 that (A,+, ∗) is a SNA-ring, furthermore, we have the
following theorem.

Theorem 3.3. The smallest non-associative ring is a SNA-ring.
Corollary 3.4. The least order of SNA-ring is 3.
Theorem 3.5. (A,+, ∗) in Example 1 is the smallest SNA Moufang ring.
Proof. It is easily seen that (A, ∗) satisfies the Bol identity

((x ∗ y) ∗ z) ∗ y = x ∗ ((y ∗ z) ∗ y), for all x, y, z ∈ R.

From Theorem 2.6 and Theorem 3.3 we have (A, +, ∗) is the smallest SNA Moufang ring.
Similarly, we can obtain the following result.
Theorem 3.6. (A,+, ∗) in Example 1 is the smallest SNA Bol ring.

The authors wish to express their most sincere appreciation to the referee for his very
helpful and detailed comments.
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Abstract For any positive integer n, the Pseudo-Smarandache dual function Z∗(n) denotes

the maximum positive integer m such that m(m+1)
2
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and analytic methods to study the solvability of the equation Z∗(n) = SL(n), and give its all
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§1. Introduction and results

For any positive integer n, the Pseudo-Smarandache dual function, denoted by Z∗(n), is
defined as the maximum positive integer m such that m(m+1)

2 divide n. That is,

Z∗(n) = max
{

m : m ∈ Z+,
m(m + 1)

2
| n

}
.

This function was introduced by J.Sandor in [1], where he studied the elementary properties
of Z∗(n), and obtained a series of interesting results. They are stated as follows:

Lemma 1. Let q be a prime such that p = 2q − 1 is a prime too. Then

Z∗(pq) = p.

Lemma 2. Z∗(
k(k+1)

2 ) = k, for any integer k ≥ 1.
Lemma 3. For any integer a, b ≥ 1, Z∗(ab) ≥ max{Z∗(a), Z∗(b)}.
Lemma 4. Let p be a prime, then for any integer k ≥ 1,

Z∗(pk) =





2, if p = 3;

1, if p 6= 3.

Lemma 5. Any solution of the equation Z(n) = Z∗(n) is of the form n = k(k+1)
2 , where

k ≥ 1 is an integer.
In reference [2], A.A.K. Majumdar studied the explicit expressions of Z∗(2pk), Z∗(3pk),

Z∗(4pk) and Z∗(5pk), where p is an odd prime.
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On the other hand, for any positive integer n, the Smarandache LCM dual function
SL(n) is defined as follows, SL(1) = 1, and if n > 1, SL(n) = min{pα1

1 , pα2
2 , · · · , pαk

k }, if
n = pα1

1 pα2
2 · · · pαk

k is the prime power factorization of n. About this function, some authors
had studied the solvability of the equation

∑

d|n
SL(n) = n, and founded all its positive integer

solutions (See reference [3]).
In this paper, we use the elementary methods to study the solvability of the equation

Z∗(n) = SL(n), (1)

and give its all positive integer solutions. That is, we shall prove the following:
Theorem. The solutions of the equation (1) can be expressed as:

1. Let n be an even integer, then n = 2spkt, where p (p ≥ 3 and (p, t) = 1) is a prime, s, t

and k are positive integers satisfying the following conditions:
(a). If pk > 2s, then pαt = 2s + 1, where α is a positive integer and 1 ≤ α ≤ k.
(b). If pk < 2s, then pk = 2β+1t− 1, where β is a positive integer and 1 ≤ β ≤ s− 1.
2. Let n be an odd integer, then n = 1 or n = pαt, where α and t are positive integers and

(pα + 1) | 2t, pα = 2u− 1, where u is a positive integer and u | t, let t = a · b · c, a 6= 2b− 1 or
a < pα.

§3. Proof of the theorem

In this section, we shall prove our theorems directly.
a. For any even integer n, we discuss the solutions in following several cases:
(i) Let n = 2s, where s is a positive integer, then from the definition of SL(n), we have

SL(n) = 2s. According to Lemma 4, we have Z∗(2s) = 1. It means that the equation (1) has
no positive solution when n = 2s.

(ii) Let n = 2spk, where p is an odd prime, s and k are positive integer.
(A) If 2s > pk, then SL(n) = pk. Suppose pb is a divisor of pk, where 1 ≤ b ≤ k, we discuss

pb as follows:
If pb = 2a+1 + 1, where 1 ≤ a < s− 1, then Z∗(n) = 2a+1 6= pk = SL(n).
If pb = 2a+1 − 1, where 1 ≤ a ≤ s − 1, then Z∗(n) = 2a+1 − 1 = pb. Let b = k, then

Z∗(n) = SL(n). Otherwise Z∗(n) = 1 6= SL(n).
(B) If 2s < pk, then SL(n) = 2s. We discuss pb as follows:
If pb = 2a+1 + 1, where 1 ≤ a ≤ s, then Z∗(n) = pb − 1 = 2a+1. Let a + 1 = s, then

Z∗(n) = 2s = SL(n).
If pb = 2a+1 − 1, where 1 ≤ a ≤ s, then Z∗(n) = pb = 2a+1 − 1 6= SL(n) = 2s. Otherwise

Z∗(n) = 1 6= SL(n).
(iii) Let n = 2spkt, where p is an odd prime, s, t and k are positive integer.
(A) If 2s > pk, where 1 ≤ b ≤ k, then SL(n) = pk. We discuss pb as follows:
If pb = 2a+1t + 1, where 1 ≤ a < s− 1, then Z∗(n) = pb − 1 = 2a+1t 6= pk = SL(n).
If pb = 2a+1t− 1, where 1 ≤ a ≤ s− 1, then Z∗(n) = 2a+1t− 1 = pb = SL(n) while b = k.
If pbt = 2a+1 + 1, where 1 ≤ a ≤ s, then Z∗(n) = pbt − 1 = 2a+1 6= pk = SL(n) for any

positive integer b and t.
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If pbt = 2a+1− 1, where 1 ≤ a ≤ s, then Z∗(n) = 2a+1− 1 = pbt = SL(n), while b = k and
t = 1. Otherwise Z∗(n) = 1 6= SL(n).

(B) If 2s < pk, then SL(n) = 2s. We discuss pb as follows:
If pb = 2a+1t + 1, where 1 ≤ a ≤ s, then Z∗(n) = pb − 1 = 2a+1t = 2s = SL(n), while

a + 1 = s and t = 1.
If pb = 2a+1t− 1, where 1 ≤ a ≤ s, then Z∗(n) = 2a+1t− 1 = pb 6= SL(n).
If pbt = 2a+1 + 1, where 1 ≤ a ≤ s, then Z∗(n) = pbt − 1 = 2a+1 = 2s = SL(n) while

a + 1 = s.
If pbt = 2a+1−1, where 1 ≤ a ≤ s, then Z∗(n) = pbt 6= 2s = SL(n) for any positive integer

b and t. Otherwise Z∗(n) = 1 6= SL(n).
(b). For any odd integer n, let n = pαt, pα < t, (pα, t) = 1 where p is an odd prime, α

and t are positive integer. Let SL(n) = pα. n is a solution of the equation (1) if and only if
Z∗(n) = pα.

From the definition of Z∗(n), we have pα(pα+1)
2 | pαt, that is (pα + 1) | 2t.

(i) If pα = 2u− 1, where u is a positive integer and u | t, then (pα + 1) | 2t.
Let t = a · b · c, if a = 2b− 1 and a > pα, then Z∗(n) = a 6= SL(n).
If a 6= 2b− 1 or a < pα, then SL(n) = pα = Z∗(n).
(ii) If pα 6= 2u− 1, then Z∗(n) 6= pα, therefore there is no solutions in this case.
This complete the proof of our theorem.
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Abstract For any positive integer n, the Smarandache Superior Prime Part Pp(n) is the

smallest prime number greater than or equal to n. For any positive integer n ≥ 2, the

Smarandache Inferior Prime Part pp(n) is the largest prime number less than or equal to

n. The main purpose of this paper is using the elementary and analytic methods to study

the asymptotic properties of (Sn(n)− In(n)) ,
Kn(n)

Ln(n)
, (Kn(n)− Ln(n)), and give several in-

teresting asymptotic formula for them, where Sn(n) =
1

n

n∑
i=1

Pp(n), In(n) =
1

n

n∑
i=1

pp(n) and

Kn(n) =

(
n∑

i=1

Pp(n)

) 1
n

, Ln(n) =

(
n∑

i=1

pp(n)

) 1
n

.

Keywords Smarandache superior prime part sequence, Smarandache inferior prime part

sequence, mean value, asymptotic formula.

§1. Introduction and results

For any positive integer n ≥ 1, the Smarandache Superior Prime Part Pp(n) is the small-
est prime number greater than or equal to n, that Pp(n) = min{n|n ≥ p, p is a prime}.
For example, the first few values of Pp(n) are Pp(1) = 2, Pp(2) = 2, Pp(3) = 3, Pp(4) =
5, Pp(5) = 5, Pp(6) = 7, Pp(7) = 7, Pp(8) = 11, Pp(9) = 11, Pp(10) = 11, Pp(11) = 11, Pp(12) =
13, Pp(13) = 13, Pp(14) = 17, Pp(15) = 17, · · · .

For any positive integer n ≥ 2, the Smarandache Inferior Prime Part pp(n) is the largest
prime number less than or equal to n, that pp(n) = max{n|n ≤ p, p is a prime}. For example,
the first few values of pp(n) are pp(2) = 2, pp(3) = 3, pp(4) = 3, pp(5) = 5, pp(6) = 5, pp(7) =
7, pp(8) = 7, pp(9) = 7, pp(10) = 7, pp(11) = 11, pp(12) = 11, pp(13) = 13, pp(14) = 13, pp(15) =
13, · · · .

By the definition of these two series known for any prime q, we have Pp(q) = pp(q) = q.
On the sequence {Pp(q)} and {pp(q)} of the nature of the study is very significant, because the
Smarandache prime series and prime number distribution issues are closely linked.

Now we define

Sn(n) = [Pp(1) + Pp(2) + Pp(3) + · · ·+ Pp(n)] /n =
1
n

n∑

i=1

Pp(n),
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In(n) = [pp(1) + pp(2) + pp(3) + · · ·+ pp(n)] /n =
1
n

n∑

i=1

pp(n),

Kn(n) = n

√
Pp(1) + Pp(2) + Pp(3) + · · ·+ Pp(n) =

(
n∑

i=1

Pp(n)

) 1
n

,

Ln(n) = n

√
pp(1) + pp(2) + pp(3) + · · ·+ pp(n) =

(
n∑

i=1

pp(n)

) 1
n

.

In the book “Only problems, Not solutions” (See reference [1], Problems 39), Professor
F. Smarandache ask us to study the properties of the sequences {Pp(n)} and {pp(n)}. About
these problems, Scholar Yan Xiaoxia had studied it before and obtained interesting results (see
reference [5]):

Sn(n)
In(n)

= 1 + O
(
n

1
3

)
, and lim

n→∞
Sn(n)
In(n)

= 1.

In this paper, we use the elementary and analytic methods to study the asymptotic prop-

erties of (Sn(n)− In(n)) ,
Kn(n)
Ln(n)

, (Kn(n)− Ln(n)), and give a shaper asymptotic formula for

it. That is, we shall prove the following conclusion:
Theorem 1. For ally positive integer n ≥ 1, we have the asymptotic formula

Sn(n)− In(n) = O
(
n

5
18

)
, lim
n→∞

Sn(n)− In(n)
n

5
18

= D, lim
n→∞

(Sn(n)− In(n))
1
n = 1,

where D is computable constant.
Theorem 2. For ally positive integer n ≥ 1, we have the asymptotic formula

K3(n)
L3(n)

= 1 + O
(
n

1
3

)
, lim
n→∞

K3(n)
L3(n)

= 1, lim
n→∞

(K3(n)− L3(n)) = 0.

§2. Some lemmas

In order to complete the proof of the theorem, we need the following several lemmas.
First we have
Lemma 1. For any real number x > 1, we have the asymptotic formula

∑

pn+1≤x

(pn+1 − pn)2 ¿ x
23
18+ε,

where pn denotes the n-th prime, ε denotes any fixed positive number.
Proof. This is a famous result due to D. R. Heath Brown [3] and [4].
Lemma 2. Let x be a positive real number which is large enough, then there must exist

a prime P between x and x + x
2
3 .

Proof. For any real number x which is large enough, let Pn denotes the largest prime with
Pn ≤ x. Then from Lemma 1, we may immediately deduce that

(Pn+1 − Pn)2 ¿ x
23
18+ε,
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or
Pn+1 − Pn ¿ x

2
3 .

So there must exist a prime P between x and x + x
2
3 .

This proves Lemma 2.
Lemma 3. For any real number x > 1, we have the asymptotic formulas

∑

n≤x

Pp(n) =
x2

2
+ O

(
x

5
3

)
,

and ∑

n≤x

pp(n) =
x2

2
+ O

(
x

5
3

)
.

Proof. We only prove first asymptotic formula, similarly we can deduce the second one.
Let Pk denotes the k-th prime. Then from the definition of Pp(n), we know that for any

fixed prime Pr, there exist Pr+1 − Pr positive integer n such that Pp(n) = Pr.
So we have

∑

n≤x

Pp(n) =
∑

Pn+1≤x

(Pn+1 − Pn) · Pn

=
1
2

∑

Pn+1≤x

(P 2
n+1 − P 2

n)− 1
2

∑

Pn+1≤x

(Pn+1 − Pn)2

=
1
2
P 2(x)− 2− 1

2

∑

Pn+1≤x

(Pn+1 − Pn)2, (1)

where P (x) denotes the largest prime such that P (x) ≤ x.
From Lemma 2, we know that

P (x) = x + x
2
3 + O (1) . (2)

Now from (1), (2) and Lemma 1, we may immediately deduce that
∑

n≤x

Pp(n) =
1
2
x2 + x

5
3 + x

4
3 + O (1) + O

(
x

23
18+ε

)

=
1
2
x2 + O

(
x

5
3

)
.

This proves the first asymptotic formula of Lemma 3.
The second asymptotic formula follows from Lemma 1, Lemma 2 and the identity

∑

n≤x

pp(n) =
∑

Pn+1≤x

(Pn+1 − Pn) · Pn

=
1
2

∑

Pn+1≤x

(P 2
n+1 − P 2

n)− 1
2

∑

Pn+1≤x

(Pn+1 − Pn)2

=
1
2
P 2(x)− 1

2

∑

Pn+1≤x

(Pn+1 − Pn)2

=
1
2
x2 + x

5
3 + x

4
3 + O (1) + O

(
x

23
18+ε

)

=
1
2
x2 + O

(
x

5
3

)
.



On the mean value of Smarandache prime part Pp(n) and pp(n) 103

§3. Proofs of the theorem

In this section, we shall complete the proof of Theorem 1 and Theorem 2.
Proof of Theorem 1. In fact, for any positive integer n > 1, from Lemma 3 and the

definition of Sn(n) and In(n), let n = x, we have

Sn(n) =
1
n


∑

n≤x

Pp(n)




=
1
n

(
1
2
x2 + x

5
3 + x

4
3 + O (1) + O

(
x

23
18+ε

))

=
1
2
n + n

2
3 + n

1
3 + O

(
n

5
18+ε

)
,

In(n) =
1
n


∑

n≤x

pp(n)




=
1
n

(
1
2
x2 + x

5
3 + x

4
3 + O (1) + O

(
x

23
18+ε

))

=
1
2
n + n

2
3 + n

1
3 + O

(
n

5
18+ε

)
,

Sn(n)− In(n) = O
(
n

5
18 ε1

)
.

We may immediately deduce that

lim
n→∞

Sn(n)− In(n)
n

5
18

= D, lim
n→∞

(Sn(n)− In(n))
1
n = 1,

where D is computable constant.
This completes the proof of Theorem 1.
Proof of Theorem 2. For any positive integer n > 1, from Lemma 3 and the definition

of Kn(n) and Ln(n) we have

Kn(n) = n

√
Pp(1) + Pp(2) + Pp(3) + · · ·+ Pp(n) =

(
1
2
x2 + O

(
x

5
3

)) 1
n

, (3)

Ln(n) = n

√
pp(1) + pp(2) + pp(3) + · · ·+ pp(n) =

(
1
2
x2 + O

(
x

5
3

)) 1
n

. (4)

Combining (3) and (4), we have

Kn(n)
Ln(n)

=




1
2x2 + O

(
x

5
3

)

1
2x2 + O

(
x

5
3

)



1
n

=
(
1 + O

(
x−

1
3

)) 1
n

= 1 + O
(
x−

1
3

)
.

Therefore lim
n→∞

Kn(n)
Ln(n)

= 1.

In addition, now note that lim
n→∞

Kn(n) = 1, lim
n→∞

Ln(n) = 1, we have

lim
n→∞

(Kn(n)− Ln(n)) = 0.

This completes the proof of Theorem 2.
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Abstract Ito [18] provide representations of strongly connected automata by group-matrix

type automata. This shows the close connection between strongly connected automata and

its automorphism groups. In this paper we study cyclic commutative asynchronous automata.

Some properties on endomorphism monoids of cyclic commutative asynchronous automata are

given. Also, the representations of this kind of automata are provided by S-automata.

Keywords Endomorphism monoid, commute asynchronous automata, representation, semi-

lattice-type automata.

§1. Introduction and preliminaries

Automata considered in this paper will be always automata without outputs. That is to
say, an automaton A = (A,X, δ) consists of the following data:

(1) A is a finite nonempty set, called a state set;
(2) X is a finite nonempty set, called an alphabet;
(3) δ is a function, called a state transition function from A×X into A.
Let X∗ denote the free monoid generated by X. An element of X∗ is called a word over X

and ε is called the empty word. The state transition function can be extended to the function
from A×X∗ to A by

(1) δ(a, ε) = a for any a ∈ A;
(2) δ(a, xu) = δ(δ(a, x), u) for any a ∈ A, x ∈ X and u ∈ X∗.
Let A = (A,X, δ) and B = (B,X, γ) be automata and let ρ be a mapping from A into

B. If ρ(δ(a, x)) = γ(ρ(a), x) holds for any a ∈ A and x ∈ X, then ρ is called a homomorphism
from A into B. If a homomorphism ρ is bijective, then ρ is called an isomorphism. If there
exists an isomorphism from A onto B, then Aand B are said to be isomorphic to each other
and denoted by A ∼= B. Moreover, a homomorphism (an isomorphism) from A onto A is
called an endomorphism ( an automorphism) of A. It is clear that E(A)(G(A)) of all endo-
morphisms (automorphisms) of A forms a monoid (group) on the usually composition, called
the endomorphism monoid (automorphism group) of A.

The study of endomorphism monoids and automorphism groups of automata was started
by [7] and [23] and followed by [8], [24], [1], [22], [4], [3], [2], [21] and [20].

1This work is supported by the Science Foundation of Northwest University (NC0925).
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An automaton A = (A,X, δ) is a strongly connected automaton if for any pair of states
a, b ∈ A there exist an element u ∈ X∗ such that δ(a, u) = b. Fleck [7] proved that if A =
(A,X, δ) is a strongly connected automaton, then E(A) = G(A) and | G(A) | divides | A |
(for more results on automorphism group of strongly connected automata refer to [7] and [8]).
Following Fleck’s work, Ito [15] introduced and studied so called group-matrix type automata of
order n on a group G. It is showed that for a strongly connected automata A = (A,X, δ), there
exists a group-matrix type automaton A′ = (Ĝ(A)n, X, δΨ) of order n on automorphism group
G(A) such that A′ ∼= A (refer to [15-18] or [19], for more details). This give representation of
strongly connected automata by group-matrix type automata.

As a counterpart, we want to study the automata whose endomorphism monoid are semilat-
tices and to give representation of this kind of automata by so-called semilattice type automata.
We focus on cyclic commutative asynchronous automata and their endomorphism monoids.

An automaton A = (A,X, δ) is said to be commutative if δ(a, uv) = δ(a, vu) for any
a ∈ A and any u, v ∈ X∗. An automaton A = (A,X, δ) is an asynchronous automaton if
δ(a, xx) = δ(a, x) for any a ∈ A and any x ∈ X∗. A commutative asynchronous automaton
means a commutative and asynchronous automaton. For more information on commutative
automata and asynchronous automata, refer to [12-15].

Let A = (A,X, δ) be an automaton. A state g in A is called a generator of A (see, [20])
if for any a ∈ A, there exists x ∈ X∗ such that δ(g, x) = a. The set of all generators of A is
denoted by Gen(A). An automaton is said to be cyclic if Gen(A) 6= ∅. A cyclic commutative
asynchronous automaton means a cyclic and commutative asynchronous automaton. The class
of all cyclic commutative asynchronous automata is denoted by CCAA.

In Section 2 we study the generator of automata in CCAA. We conclude that an automaton
in CCAA has unique generator. In Section 3 we study endomorphism monoids of automata in
CCAA. In Section 4 we give a representation of an automata in CCAA by S-automata.

For undefined notions and notations concerning automata we refer to [9] and [19].

§2. Generator of automata in CCAA

Recall the following notations. For w ∈ X∗, write | w | for the length of w and Con(w) for
the content of w. Also, | w |x denote the number of occurrences of x in w (refer to [9]). In this
section we will study commutative asynchronous automata.

Lemma 2.1. Let A = (A,X, δ) be a commutative asynchronous automaton and let a, b

be a pair of states in A. If there exist a word w ∈ X∗ such that δ(a,w) = b, then δ(a, x) = b

for any x ∈ Con(w) and so δ(b, w) = b.

Proof. Let A = (A,X, δ) be a commutative asynchronous automaton and let a, b be a
pair of states in A. Suppose that there exists a word w ∈ X∗ such that δ(a,w) = b. Without



A representation of cyclic commutative asynchronous automata 107

lose of generality, assume that w = x1x2x3. Then we have

b = δ(a,w) = δ(a, x1x2x3)

= δ(a, x1x3x2) (since A is commutative)

= δ(δ(a, x1x3), x2)

= δ(δ(a, x1x3), x2
2) (since A is asynchronous)

= δ(δ(a, x1x2x3), x2)

= δ(b, x2).

This implies that δ(b, x2) = b. Similarly, we can show that δ(b, x1) = δ(b, x3) = b. That is to
say, δ(a, x) = b for any x ∈ Con(w). Hence, it immediately follows that δ(b, w) = b.

Lemma 2.2. Let A = (A,X, δ) be a commutative asynchronous automaton and let a, b

be a pair of states in A. If δ(a, u) = b and δ(b, v) = a for some u, v ∈ X∗, then a = b.
Proof. Let A = (A,X, δ) be a commutative asynchronous automaton and let a, b be a

pair of states in A. Suppose that δ(a, u) = b and δ(b, v) = a for some u, v ∈ X∗. Then it
immediately follows from Lemma 1 that δ(a, v) = a. Hence, we have

a = δ(b, v) = δ(δ(a, u), v) = δ(a, uv) = δ(a, vu) = δ(δ(a, v), u) = δ(a, u) = b.

This shows that a = b.
The above Lemma 2 shows that a commutative asynchronous automaton (A,X, δ) must

not be a strongly connected automaton, except for |A| = 1.
For an automaton A = (A,X, δ) in CCAA, It is true that A have unique generator. In

fact, if g, h be generators of A, then there exist u, u ∈ X∗ such that δ(g, u) = h and δ(h, v) = g.
Thus it follows from Lemma 2 that g = h. We have shown

Proposition 2.3. Let A = (A,X, δ) be an automaton in CCAA. Then A have unique
generator.

§3. The endomorphism monoids of automata in CCAA
The following give some properties of an endomorphism of automaton A in CCAA.
Given A ∈ CCAA. In order to give the characterizations of the endomorphism monoid of

automaton A, the characteristic monoid C(A) of automaton A is needed (see, [6]). Let x̄ denote
the set {y ∈ X∗|(∀a ∈ A)δ(a, x) = δ(a, y)} for any x ∈ X∗ and C(A) the set {x̄ | x ∈ X∗}.
Then C(A) is a monoid under the operation defined by x̄ȳ = xy. It is called the characteristic
monoid C(A) of automaton A.

Lemma 3.1.[6] If A = (A,X, δ) ∈ CCAA, then
(i) E(A) ∼= C(A);
(ii) | E(A) |=| A |.
Let A = (A,X, δ) be a commutative asynchronous automaton. For any u ∈ X∗, define

mapping λu from A into A as follows:

λu(a) =





a if u = ε,

δ(a, x) if u ∈ A+(= A∗ \ {ε}).
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By Λ(X∗), we denote the set {λu | u ∈ X∗}.
Proposition 3.2. If A = (A,X, δ) ∈ CCAA, then
(i) Λ(X∗) is a commutative idempotent monoid under the usual composition;
(ii) E(A) = Λ(X∗);
(iii) (E(A),¹) is a complete lattice, where ¹ is the natural partial order on the endomor-

phism monoid E(A).
Proof. To prove part (i), notice that for any λu, λv ∈ Λ(X∗) and any a ∈ A, we have

λu ◦ λv(a) = δ(a, vu) = δ(a, uv) = λv ◦ λu(a) = λuv.

Also, it is easy to verify that λu(λvλw) = (λuλv)λw and λuλε = λu hold for any u, v, w ∈ X∗.
Then Λ(X∗) form a monoid under the usual composition and λε is the identity. Now, we prove
that λu

2 = λu. Since A is an asynchronous automaton, λu
2(a) = δ(a, uu) = δ(a, u) = λu(a)

hold for any a ∈ A. Then Λ(X∗) is a commutative idempotent monoid.
To prove part (ii), notice that it is a rutin matter to verify that C(A) ∼= Λ(X∗). From

Lemma 3 (i) it follows E(A) ∼= Λ(X∗). Now, it is enough to show that Λ(X∗) ⊆ E(A). For
any λu ∈ Λ(X∗), x ∈ X and any a ∈ A, we have

λu(δ(a, x)) = δ(δ(a, x), u) = δ(a, xu) = δ(a, ux) = δ(δ(a, u), x) = δ(λu(a)).

that is to say, λu ∈ E(A) and hence Λ(X∗) ⊆ E(A). Therefore, E(A) = Λ(X∗).
To show part (iii), we know form part (i) and (ii) that E(A) is a commutative monoid

of idempotents. Then (E(A),¹) is a meet semilattice, where ¹ is the natural partial order
defined in [10], as follows:

(∀ρ, σ ∈ E(A))ρ ¹ σ ⇐⇒ ρ ◦ σ = σ ◦ ρ = ρ.

Then, we prove that (E(A),¹) is a lattice. Since the identity mapping λε ∈ E(A) and
λε ◦ ρ = ρ ◦ λε = ρ , then ρ ¹ λε for any ρ ∈ E(A). Therefore, λε be the top element [5] in the
meet semilattice (E(A),¹). Also, we have following truthes: For any ρ, σ ∈ E(A) the greatest
lower bond of ρ and σ is ρ ◦ σ; E(A) is finite. By Theorem 2.16 in [5], (E(A),¹) is a complete
lattice.

§4. S-automata

In order to provide a representation of automata in CCAA, we introduce S-automaton.
Definition 4.1. Let (S,≤) be a finite meet semilattice. An automaton S = (S,X, δϕ) is

called a S-automaton, if the following conditions are satisfied
(1) S is the set of states;
(2) X is a set of inputs;
(3) δϕ is a state transition function which is defined by δϕ(s, x) = s ∧ ϕ(x), where s ∈ S,

x ∈ X and ϕ is a mapping from X into S.
Since X+ is the free semigroup on X, the mapping ϕ in the above definition can be extend

to a homomorphism from semigroup X+ into semigroup (S,∧) as follows:

(∀x ∈ X, ∀u ∈ X+)ϕ(xu) = ϕ(x) ∧ ϕ(u).
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It is easy to verify that a S-automaton is a commutative asynchronous automaton.
Let A = (A,X, δ) be an automaton in CCAA and g be the unique generator of A. From

Proposition 2 (ii), Λ(X∗) = E(A). Define a mapping ϕ from X∗ into Λ(X∗):

(∀u ∈ X∗)ϕ(u) = λu.

We can easily verify that ϕ is a homomorphism from the free monoid X∗ into E(A). Further-
more, let S = E(A). By Definition 1, (E(A), X, δϕ) is a S-automaton.

Define a mapping θ form A onto E(A):

(∀a ∈ A)θ(a) = λu, where δ(g, u) = a.

From Lemma 1, we know that for any a ∈ A there exists only one word u ∈ X∗ such that
δ(g, u) = a. So, θ is well defined. Also, it is easy to verify that θ is bijective.

Now, we will prove that θ is a homomorphism from A into ((E(A), X, δϕ) for any a ∈ A

and any x ∈ X, i.e., θ(δ(a, x)) = δϕ(θ(a), x). Suppose now a ∈ A and δ(g, u) = a for some
u ∈ X∗. On one hand, for any b ∈ A we have

(θ(δ(a, x)))(b) = (θ(δ(δ(g, u), x)))(b) = (θ(δ(g, ux)))(b) = λux(b);

On the other hand,

(δϕ(θ(a), x))(b) = (δϕ(λu, x))(b) = (λu ∧ ϕ(x))(b)

= (λu ∧ λx)(b) = (λu ◦ λx)(b)

= λux(b).

This implies that θ(δ(a, x)) = δϕ(θ(a), x) and hence θ is a homomorphism. Therefore, A ∼=
(Ω(A), X, δϕ).

Thus, we have proved
Theorem 4.2. Let A = (A,X, δ) be an automaton in CCAA and let S be a semilattice

such that S = E(A). Then A is isomorphic to some S-automaton.
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Partial Lagrangian and conservation laws for
the perturbed Boussinesq partial differential

equation 1

Huan He and Qiuhong Zhao

Department of Mathematics, Northwest University, Xi’an,
Shaanxi, P.R.China

Abstract In this paper, the partial Lagrangian approach is developed to construct conserva-

tion laws for some perturbed partial differential equations. Using that approach, approximate

conservation laws for the perturbed Boussinesq equation.

Keywords Perturbed partial differential equation, partial Lagrangian, conservation law.

§1. Introduction

There are a number of equations with relatively small parameters or perturbed equations
arising from mathematics, physics and other applied fields. To solve such problem approxi-
mately or to construct an approximation of it gave rise to the perturbation method as well as
approximate symmetry method. The two methods have grown up together, whose combination
greatly extends the scope and depth of both methods in themselves. This includes their effective
use in constructing approximate symmetries and approximate conservation laws for perturbed
partial differential equations (PDEs).

On the study of perturbed PDEs, in [1], approximate conservation laws were introduced via
the approximate Noether symmetries associated with a Lagrangian of the perturbed equation.
The relationship between symmetries and conservation laws was elaborated in [2]. In [3]-[4],
it was shown that approximate Lie-Bäcklund symmetries and approximate conserved vectors
can be utilized to construct approximate Lagrangians, and thereupon approximate Noether
symmetries and new associated conservation laws for perturbed equations can be constructed
by using the Lagrangians. In [5], a basis of approximate conservation laws for perturbed PDEs
was discussed. In [6], how to construct conservation laws of Euler-Lagrange-type equations
via Noether-type symmetry operators associated with partial Lagrangians was shown. In [7],
Johnpillai et al found an effective way to construct approximate conservation laws of per-
turbed equations via approximate Nother-type symmetry operators associated with partial
Lagrangians. Recently, we gave an exact definition of partial Lagrangian and partial Euler-
Lagrange-type equation in [8] to clarify Definition 6 in [7] which is actually the approximate

1This work is supported by the National Natural Science Foundation of China (10671156) and the Natural

Science Foundation of Shaanxi Province of China (SJ08A05).
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Lagrangian, and applied the approach of approximate Noether-type symmetry operators asso-
ciated with partial Lagrangians to the nonlinear wave equation with damping and obtained its
approximate conserved vectors and approximate conservation laws in general form.

In this paper, we intend to discuss the approximate conservation laws for the perturbed
Boussinesq equation with weak damping in terms of our new definition of partial Lagrangian
and partial Euler-Lagrange-type equation.

One form of the perturbed Boussinesq equation takes [9]

utt + (u2)xx + uxxxx = ε(α(u)un
x + β(u)),

where u = u(x, t), α(u) and β(u) are arbitrary functions, n is any positive integer, ε is a small
parameter. Specially, when ε = 0, it degenerates into the Boussinesq equation

utt + (u2)xx + uxxxx = 0.

§2. Approximate conversation laws for the perturbed Boussi-

nesq equation

In the following, as applications of the theory presented in [8], we characterize approximate
conserved vectors and conservation laws of the perturbed Boussinesq equation with weak damp-
ing via approximate Noether-type symmetry operators associated with partial Lagrangians.

utt + (u2)xx + uxxxx = ε(α(u)un
x + β(u)). (1)

We distinguish the following cases according to the choice of n.

Case 1. n = 1. Eq. (1) becomes

utt + (u2)xx + uxxxx = ε(α(u)ux + β(u)). (2)

Eq. (2) admits a partial Lagrangian L = −1
2
u2

t −
1
2
u2

x − uu2
x +

1
2
u2

xx. Thus the partial Euler-
Lagrange-type equation is

δL

δu
= ε(α(u)ux + β(u))− u2

x.

Using Eq. in [8], for i = 1, 2, k = 1, we have

(X0 + εX1)L + Di(ξi
0 + εξi

1)L

= [(η0 − ξj
0uj) + ε(η1 − ξj

1uj)][ε(α(u)ux + β(u))− u2
x] + Di(Bi

0 + εBi
1), (3)

where

X0 + εX1 = (ξ1
0 + εξ1

1)
∂

∂t
+ (ξ2

0 + εξ2
1)

∂

∂x
+ (η0 + εη1)

∂

∂u
+ ζ0

∂

∂ut
+ ζ1

∂

∂ux
+ ζ11

∂

∂uxx
, (4)
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and

ζ0 = η0t + η0uut − (ξ1
0t + ξ1

0uut)ut − (ξ2
0t + ξ2

0uut)ux − ε[η1t + η1uut

−(ξ1
1t + ξ1

1uut)ut − (ξ2
1t + ξ2

1uux)ux − ξ1
1utt − ξ2

1utx] + ε(ξ1
1utt + ξ2

1utx), (5)

ζ1 = η0x + η0uux − (ξ1
0x + ξ1

0uux)ut − (ξ2
0x + ξ2

0uux)ux − ε[η1x + η1uux

−(ξ1
1x + ξ1

1uux)ut − (ξ2
1x + ξ2

1uux)ux − ξ1
1utx − ξ2

1uxx] + ε(ξ1
1uxt + ξ2

1uxx), (6)

ζ11 = η0xx + η0xuux + (η0xu + η0uuux)ux + η0uuxx − [ξ1
0xx + ξ1

0xuux

+(ξ1
0xu + ξ1

0uuux)ux + ξ1
0uuxx]ut − 2(ξ1

0x + ξ1
0uux)uxt − [ξ2

0xx + ξ2
0xuux

+(ξ2
0xu + ξ2

0uuux)ux + ξ2
0uuxx]ux − 2(ξ2

0x + ξ2
0uux)uxx + ε(ξ1

1uxxt + ξ2
1uxxx)

+ε{η1xx + η1xuux + (η1xu + η1uuux)ux + η1uuxx − [ξ1
1xx + ξ1

1xuux

+(ξ1
1xu + ξ1

1uuux)ux + ξ1
1uuxx]ut − 2(ξ1

1x + ξ1
1uux)utx − ξ1

1uxxt − [ξ2
1xx + ξ2

1xuux

+(ξ2
1xu + ξ2

1uuux)ux + ξ2
1uuxx]ux − 2(ξ2

1x + ξ2
1uux)uxx − ξ2

1uxxx}. (7)

Now Eq. (3) turns to be

−η0u
2
x − εη1u

2
x − ζ0ut + (1 + 2u)ζ1ux + ζ11uxx

+L[ξ1
0t + ξ1

0uut + ε(ξ1
1t + ξ1

1uut)] + L[ξ2
0t + ξ2

0uux + ε(ξ2
1x + ξ2

1uux)]

= [η0 − ξ1
0ut − ξ2

0ux + ε(η1 − ξ1
1ut − ξ2

1ux)][ε(α(u)ux + β(u))− u2
x]

+ε(B1
1t + B1

1uut) + ε(B2
1x + B2

1uux) + B1
0t + B1

0uut + B2
0x + B2

0uux. (8)

Substituting expressions of L, ζ0, ζ1 and ζ11 into Eq. (8) and setting ε2 = 0, then equating the
coefficients of zeroth- and first-order of ε including the coefficients of different orders of partial
derivatives of u in that to zero, after simplification, we have the following system of determining
equations:

ξ1
0 = ξ2

0 = η0u = η0xx = 0, −η0t −B1
0u = 0,

−B1
0t −B2

0x = 0, −(1 + 2u)η0x −B2
0u = 0,

ξ1
1 = ξ2

1 = η1u = η1xx = 0, −η1t −B1
1u = 0,

−B1
1t −B2

1x − β(u)η0 = 0, −(1 + 2u)η1x −B2
1u − α(u)η0 = 0. (9)

Solving system (9) results in:
Case 1.1. β

′′
(u) 6= 0. We have

ξ1
0 = ξ2

0 = ξ1
1 = ξ2

1 = η0 = 0, η1 = (c1t + c2)x + c3t + c4, B1
0 = g3(t, x),

B2
0 = g2(t, x), B1

1 = −(c1x + c3)u + g1(t, x), B2
1 = −u(1 + u)(c1t + c2) + g4(t, x).

Thus, an approximate Noether-type symmetry operator for Eq. (2) reads:

X = X0 + εX1 = ε [(c1t + c2)x + c3t + c4]
∂

∂u
.

The corresponding approximate conserved vector is obtained by Eq.

T i = Bi − Lξi −W δL

δui
−

∑

s≥1

Di1···is(W)
δL

δuii1···is

+ O(εk+1), i = 1, . . . , n. (10)



114 Huan He and Qiuhong Zhao

in [8] as

T 1 = {−(c1x + c3)u + [(c1t + c2)x + c3t + c4]ut + g1(t, x)}ε + g3(t, x),

T 2 = {(ux + 2uux + uxxx)[(c1t + c2)x + c3t + c4]− (u2 + u + uxx)(c1t + c2)

+g4(t, x)}ε + g2(t, x),

and the approximate conservation law for Eq. (2) is

(DtT 1 + DxT 2)|Eq.(2) = [α(u)ux + β(u)][(c1t + c2)x + c3t + c4]ε2 = O(ε2).

Where ci (i ∈ Z) are arbitrary constants and the functions gi ≡ gi(t, x) (i ∈ Z) satisfy the
PDEs: g4,x + g1,t = 0, g2,x + g3,t = 0.

Case 1.2. β
′′
(u) = 0.

Case 1.2.1. β
′
(u) 6= 0, α

′
(u) = 0. We have

ξ1
0 = ξ2

0 = ξ1
1 = ξ2

1 = 0, η0 = (c6t + c1)x + c4t + c5, β(u) = c1u + c2, α(u) = c3,

η1 =
1
6

[c1(c6x + c4)− c3c6] t3 +
1
2

[c1(c7x + c5)− c3c7] t2 + (c8x + c10)t + c9x + c11,

B1
0 = −(c6x + c4)u + h3(t, x), B2

0 = −u(1 + u)(c6t + c7) + h2(t, x),

B1
1 = −

{
1
2
[c1(c6x + c4)− c3c6]t2 + c1(c7x + c5)t + c8x + c10

}
u + h1(t, x),

B2
1 = −u(1 + u)

(
1
6
c1c6t

3 +
1
2
c1c7t

2 + c8t + c9

)
− c3[(c6x + c4)t + c7x + c5]u + h4(t, x).

Thus, we obtain the following approximate Noether-type symmetry operator for Eq. (2)

X = [(c6t + c1)x + c4t + c5]
∂

∂u

+ε

{
1
6
[c1(c6x + c4)− c3c6]t3 +

1
2
[c1(c7x + c5)− c3c7]t2 + (c8x + c10)t + c9x + c11

}
∂

∂u
,

and the following approximate conserved vector

T 1 =
{[

1
2
(c3c6 − c1c4)t2 + (c3c7 − c1c5)t−

(
1
2
c1t(c6t + c7) + c8

)
x− c10

]
u

+
[
1
6
(c1c4 − c3c6)t3 +

1
2
(c1c5 − c3c7)t2 +

(
1
6
c1c6t

3 +
1
2
c1c7t

2 + c8t + c9

)
x

+c10t + c11]ut + h1(t, x)} ε− (c6x + c4)u + [(c6t + c7)x + c4t + c5]ut + h3(t, x),

T 2 =
{[

1
6
(c6(c1x− c3) + c1c4)t3 +

1
2
(c7(c1x− c3) + c1c5)t2 + (c8x + c10)t

+c9x + c11] (ux + 2uux + uxxx)−
(

1
6
c1c6t

3 +
1
2
c1c7t

2 + c8t + c9

)

×(u2 + u + uxx) −c3[(c6t + c7)x + c4t + c5]u + h4(t, x)} ε

+[(c6t + c7)x + c4t + c5](ux + 2uux + uxxx)− (c6t + c7)(u2 + u + uxx) + h2(t, x).

Eq. (2) is reduced to

utt + (u2)xx + uxxxx = ε(c3ux + c1u + c2), (11)
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then the approximate conservation law for Eq. (11) reads

(DtT 1 + DxT 2)|Eq.(11)

=
{

1
6
[c1(c6x + c4)− c3c6]t3 +

1
2
[c1(c7x + c5)− c3c7]t2 + (c8x + c10)t + c9x + c11

}

×(c3ux + c1u + c2)ε2 = O(ε2).

Where ci (i ∈ Z) are arbitrary constants and functions hi ≡ hi(t, x) (i ∈ Z) satisfy the PDEs:
h2,x + h3,t = 0, h1,t + h4,x + c2[(c6t + c7)x + c4t + c5] = 0.

Case 1.2.2. β
′
(u) 6= 0, α

′
(u) 6= 0. We have

ξ1
0 = ξ2

0 = ξ1
1 = ξ2

1 = 0, η0 = c3t + c4, B1
0 = −c3u + f3(t, x),

η1 =
1
6
c1c3t

3 +
1
2
c1c4t

2 + (c5x + c7)t + c6x + c8, B2
0 = f2(t, x),

B1
1 = −

(
1
2
c1c3t

2 + c1c4t + c5x + c7

)
u + f1(t, x),

B2
1 = −(c5t + c6)(u + u2)− (c3t + c4)

∫ u

α(z)dz + f4(t, x).

Thus, we obtain the following approximate Noether-type symmetry operator for Eq. (2):

X = (c3t + c4)
∂

∂u
+ ε

[
1
6
c1c3t

3 +
1
2
c1c4t

2 + (c5x + c7)t + c6x + c8

]
∂

∂u
.

The approximate conserved vector corresponding to the operator X is

T 1 =
[(

1
6
c1c3t

3 + (c5x + c7)t + c6x + c8

)
ut −

(
1
2
c1c3t

2 + c1c4t + c7

)
u + f1(t, x)

]
ε

+(c3t + c4)ut − c3u + f3(t, x),

T 2 =
[(

1
6
c1c3t

3 +
1
2
c1c4t

2 + (c5x + c7)t + c6x + c8

)
(ux + 2uux + uxxx)

−(c5t + c6)(u2 + u + uxx)− (c3t + c4)
∫ u

α(z)dz + f4(t, x)
]

ε

+(c3t + c4)(ux + 2uux + uxxx) + f2(t, x).

Then Eq. (2) becomes

utt + (u2)xx + uxxxx = ε(α(u)ux + c1u + c2), (12)

and the approximate conservation law for Eq. (12) reads

(DtT 1 + DxT 2)|Eq.(12)

=
[
1
6
c1c3t

3 +
1
2
c1c4t

2 + (c5x + c7)t + c6x + c8

]
(α(u)ux + c1u + c2)ε2 = O(ε2).

Where ci(i ∈ Z) are arbitrary constants and fi ≡ fi(t, x) (i ∈ Z) are functions satisfying

f2,x + f3,t = 0, f1,t + f4,x + c2(c3t + c4) = 0.
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Case 2. n > 1. Eq. (1) has a partial Lagrangian L = −1
2
u2

t −
1
2
u2

x − uu2
x +

1
2
u2

xx. The
partial Euler-Lagrange-type equation is

δL

δu
= ε(α(u)un

x + β(u))− u2
x.

Using Eq. in [8], for i = 1, 2, k = 1, we have

(X0 + εX1)L + Di(ξi
0 + εξi

1)L

= [(η0 − ξj
0uj) + ε(η1 − ξj

1uj)][ε(α(u)un
x + β(u))− u2

x] + Di(Bi
0 + εBi

1), (13)

where X0 + εX1, ζ0, ζ1 and ζ11 are defined by formulae (4)-(7) respectively.
Substitution of the known expressions into Eq. (13) and expansion of it, then the vanishing

of the coefficients of zeroth- and first-order of ε as well as the coefficients of different orders of
partial derivatives of u in that to zero, after simplification, we arrive at the following system of
determining equations:

ξ1
0 = ξ2

0 = η0u = η0xx = ξ1
1 = ξ2

1 = η1u = η1xx = 0,

−η0α(u) = 0, −η0t −B1
0u = 0, −B1

0t −B2
0x = 0,

−(1 + 2u)η0x −B2
0u = 0, −η1t −B1

1u = 0,

−(1 + 2u)η1x −B2
1u = 0, −B1

1t − β(u)η0 −B2
1x = 0. (14)

To solve system (14), we distinguish the following two cases.
Case 2.1. α(u) 6= 0. We get the following solution to system (14):

ξ1
0 = ξ2

0 = ξ1
1 = ξ2

1 = η0 = 0, η1 = (c1t + c2)x + c3t + c4, B1
0 = g4(t, x),

B2
0 = g2(t, x), B1

1 = −(c1x + c3)u + g3(t, x), B2
1 = −u(1 + u)(c1t + c2) + g1(t, x).

Thus, we have the following approximate Noether-type symmetry operator of Eq. (1)

X = ε[(c1t + c2)x + c3t + c4]
∂

∂u
.

The approximate conserved vector corresponding to the operator X by formulae (10) is

T 1 = {−(c1x + c3)u + [(c1x + c3)t + c2t + c4]ut + g3(t, x)}ε + g4(t, x),

T 2 = {[(c1x + c3)t + c2x + c4](ux + 2uux + uxxx)− (c1t + c2)(u2 + u + uxx)

+g1(t, x)}ε + g2(t, x),

and the approximate conservation law for Eq. (1) reads

(DtT 1 + DxT 2)|Eq.(1)

= [(c1x + c3)t + c2x + c4][α(u)un
x + β(u)]ε2 = O(ε2).

Where ci (i ∈ Z) are arbitrary constants and gi ≡ gi(t, x) (i ∈ Z) are functions satisfying

g2,x + g4,t = 0, g1,x + g3,t = 0.
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Case 2.2. α(u) = 0. We have the following solution to system (14):

β(u) = c1u + c2, α(u) = 0, ξ1
0 = ξ2

0 = ξ1
1 = ξ2

1 = 0, η0 = (c5x + c3)t + c6x + c4,

η1 =
1
6
c1(c5x + c3)t3 +

1
2
c1(c6x + c4)t2 + (c9x + c7)t + c10x + c8,

B1
0 = −(c5x + c3)u + f4(t, x), B2

0 = −u(1 + u)(c5t + c6) + f2(t, x),

B1
1 = −

[
1
2
c1(c5x + c3)t2 + c1(c6x + c4)t + c9x + c7

]
u + f3(t, x),

B2
1 = −u(1 + u)

(
1
6
c1c5t

3 +
1
2
c1c6t

2 + c9t + c10

)
+ f1(t, x).

Thus, an approximate Noether-type symmetry operator for Eq. (1) yields:

X = [(c5x + c3)t + c6x + c4]
∂

∂u
+ ε

[
1
6
c1(c5x + c3)t3

+
1
2
c1(c6x + c4)t2 + (c9x + c7)t + c10x + c8

]
∂

∂u
.

The approximate conserved vector of Eq. (1) is given by

T 1 =
{[

1
6
c1(c5x + c3)t3 +

1
2
c1(c6x + c4)t2 + (c9x + c7)t + c10x + c8

]
ut

−
[
1
2
c1(c5x + c3)t2 + c1(c6x + c4)t + c9x + c7

]
u + f3(t, x)

}
ε

+[(c5x + c3)t + c6x + c4]ut − (c5x + c3)u + f4(t, x),

T 2 =
{[

1
6
c1(c5x + c3)t3 +

1
2
c1(c6x + c4)t2 + (c9x + c7)t + c10x + c8

]
(ux + 2uux + uxxx)

−
(

1
6
c1c5t

3 +
1
2
c1c6t

2 + c9t + c10

)
(u2 + u + uxx) + f1(t, x)

}
ε

+[(c5x + c3)t + c6x + c4](ux + 2uux + uxxx)− (c5t + c6)(u2 + u + uxx) + f2(t, x).

Then Eq. (1) becomes

utt + 2u2
x + 2uuxx + uxxxx = ε(c1u + c2), (15)

and the approximate conservation law for Eq. (15) is

(DtT 1 + DxT 2)|Eq.(15)

= (c1u + c2)
[
1
6
c1(c5x + c3)t3 +

1
2
c1(c6x + c4)t2 + (c9x + c7)t + c10x + c8

]
ε2

= O(ε2).

Where ci (i ∈ Z) are arbitrary constants and fi ≡ fi(t, x) (i ∈ Z) are functions satisfying

f2,x + f4,t = 0, f1,x + f3,t + c2[(c5x + c3)t + c6x + c4] = 0.
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§3. Concluding remarks

In terms of our exact definition on the concepts of partial Lagrangian and partial Euler-
Lagrange-type equation, the approximate conservation laws for the perturbed Boussinesq equa-
tionwith weak damping have been derived via the partial Lagrangian approach.

It comes to light that as the order of the perturbed PDE increases its corresponding
partial Lagrangian gets more complicated, so only first-order Lagrangian was involved in other
literature up to date. A partial Lagrangian for one perturbed PDE may not exist or exist
but is not unique. How to determine it and forge links between them? The construction of
conservation laws for higher-order perturbed PDEs remains also a problem to be explored.
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Some formulate for the Fibonacci
and Lucas numbers

Jiayuan Hu

Department of Mathematics, Northwest University, Xi’an, Shaanxi, P.R.China

Abstract This paper mainly study some identities involving Fibonacci and Lucas num-

bers of interest. By using the properties of Chebyshev polynomials and combining

the elementary and combinatorial method, we establish identities that

d−1∑
j=0

Fn+jFm+jx
j ,

d−1∑
j=0

Ln+jLm+jx
j ,

d−1∑
j=0

Fn1+jFn2+jFn3+j , and

d−1∑
j=0

Ln1+jLn2+jLn3+j . These identities are ex-

tensions of

d−1∑
j=0

Fn+jFm+j and

d−1∑
j=0

Ln+jLm+j which have been proved by Brian Curtin before.

Keywords Fibonacci numbers, Lucas numbers, Chebyshev polynomials.

§1. Introduction

Let n ∈ N , the Fibonacci sequence {Fn} and the Lucas sequence {Ln} have attracted
the attention of professional as well as amateur mathematicians, and play an important role
in many fields of mathematics. Also there exist many identities involving these sequences of
interest. See reference [1] for a good summary. Now we turn to the Chebyshev polynomials of
the first and second kind Tn(x) and Un(x)(n = 0, 1, · · · ) which are given by

Tn(x) =
1
2

[
(x +

√
x2 − 1)n + (x−

√
x2 − 1)n

]
, |x| < 1; (1)

Un(x) =
1

2
√

x2 − 1

[
(x +

√
x2 − 1)n+1 − (x−

√
x2 − 1)n+1

]
, |x| < 1. (2)

In 2007, Ma and Zhang [3] showed two nice connections between the Cheyshev polynomials
and Fibonacci sequence and Lucas sequence, respectively. That is, let i be the square root of
−1, m and n be any positive integers, then we have the identities

Tn

(
i

2

)
=

in

2
Ln, and Un

(
i

2

)
= inFn+1. (3)

Inspired by the work of professor Zhang Wenpeng, in this paper, we establish some com-
binational identities involving the Fibonacci and Lucas numbers, which continue the work of
Brian Curtin [4] in a different way.
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§2. Preparations for the proofs of the theorems

Firstly we note that there are following nice connections between Fibonacci and Lucas
numbers (see [1]).





Ln+m = Fm−1Ln + FmLn+1,

Ln−m = (−1)m(Fm+1Ln − FmLn+1);
(4)





FmLn + FnLm = 2Fn+m,

FnLm − FmLn = 2(−1)mFn−m;
(5)





LnLm = Ln+m + (−1)mLn−m,

5FnFm = Ln+m − (−1)mLn−m.
(6)

On the other hand, as to the two kinds of Chebyshev polynomials, we introduce a group
of formulas which are useful later, when we deal with the main results in this paper.

Lemma 2.1. For all positive integers n and m,

Tn+m(x) = Tn(x)Um(x)− Tn−1(x)Um−1(x); (7)

Un+m(x) = Un(x)Tm(x) + Tn+1(x)Um−1(x). (8)

Proof. To make the situation quite clear, we denote A = x+
√

x2 − 1, and B = x−√x2 − 1.
Hence from (1.1) and (1.2), the terms on the right-hand side of the identity (2.4) can be written

Tn(x)Um(x)− Tn−1(x)Um−1(x)

=
1

4
√

x2 − 1

[
(An + Bn)(Am+1 −Bm+1)− (An−1 + Bn−1)(Am −Bm)

]

=
1

4
√

x2 − 1

[
An+m(A− 1

A
)−Bn+m(B − 1

B
)
]

=
1

4
√

x2 − 1
(An+m + Bn+m)(A−B)

=
1
2
(An+m + Bn+m) = Tn+m(x).

This proves identity (2.4). In fact, the equation (2.5) is also easily to be proved in the same
way. Moreover, from lemma we will say more. Let x = i

2 , then using identities (1.3), (2.4) and
(2.5), we can have





in+m

2 Ln+m = in+m

2 Fm−1Ln − in+m−2

2 FmLn+1;

in+m−1Fn+m = in+m−1

2 FmLn + in+m−1

2 FnLm.
(9)

That is 



Ln+m = Fm−1Ln + FmLn+1;

2Fn+m = FmLn + FnLm.
(10)

These formulas have been mentioned above, as a problem to be proved in reference [1], but the
method used here is different and more simple.
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§3. Some summations for Fibonacci and Lucas numbers

In this section, we will introduce you some summation involving Fibonacci and Lucas
numbers.

Theorem 3.1. For positive integers d,m, n, and real numbers x 6= −1,

d−1∑

j=0

Fn+jFm+jx
j =

xd

5(x2 − 3x + 1)
(xLn+m+2d−2 − Ln+m+2d − xLn+m−2 + Ln+m)

− (−1)m 1− (−1)d

5(x + 1)
Ln−m; (11)

d−1∑

j=0

Ln+jLm+jx
j =

xd

x2 − 3x + 1
(xLn+m+2d−2 − Ln+m+2d − xLn+m−2 + Ln+m)

+ (−1)m 1− (−1)d

x + 1
Ln−m. (12)

Proof. According to the identity (1.5), we set P (x, y) =
d−1∑

j=0

(−x)jUn+j−1(y)Um+j−1(y),

for real numbers x and complex numbers y. So that if y = i
2 , we can obtain

d−1∑

j=0

Fn+jFm+jx
j =

1
im+n

P

(
x,

i

2

)
. (13)

Now we use (2.5) to write

P (x, y) = −
d−1∑

j=0

(−x)j (Un−1(y)Tj(y) + Tn(y)Uj−1(y)) (Um−1(y)Tj(y) + Tm(y)Uj−1(y))

= −Un−1(y)Um−1(y)M1(x, y)− (Un−1(y)Tm(y) + Um−1(y)Tn(y))M2(x, y)

−Tn(y)Tm(y)M3(x, y),

where M1(x, y) =
d−1∑

j=0

(−x)jT 2
j (y), M2(x, y) =

d−1∑

j=0

(−x)jTj(y)Uj−1(y), and M3(x, y)

=
d−1∑

j=0

(−x)jU2
j−1(y). Because of formulas (1.3)

P

(
x,

i

2

)
= im+nFnFmM1

(
x,

i

2

)
− in+m

2
(FnLm + LnFm)M2

(
x,

i

2

)
− in+m

4
LmLnM3

(
x,

i

2

)
.

Then combining (3.3)

d−1∑

j=0

Fn+jFm+jx
j = FnFmM1

(
x,

i

2

)
− 1

2i
(FnLm + LnFm)M2

(
x,

i

2

)
− 1

4
LmLnM3

(
x,

i

2

)
. (14)
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From above, it suffice to compute M1

(
x, i

2

)
, M2

(
x, i

2

)
, and M3

(
x, i

2

)
, respectively. However

by using (1.1) and if x 6= −1,

M1

(
x,

i

2

)
=

1
4

d−1∑

j=0

(−x)j(A2j + 2 + B2j)

=
1
4

[
(−x)dA2d − 1
−xA2 − 1

+ 2
(−x)d − 1
−x− 1

+
(−x)dB2d − 1
−xB2 − 1

]

=
1
4

[
(−x)d+1A2d−2 − (−x)dA2d + xB2 + (−x)d+1B2d−2 − (−x)dB2d + xA2 + 2

(xA2 + 1)(xB2 + 1)

+2
1− (−x)d

x + 1

]

=
(−x)d+1T2d−2(y)− (−x)dT2d(y)

2(xA2 + 1)(xB2 + 1)
+

x(A2 + B2) + 2
4(xA2 + 1)(xB2 + 1)

+
1− (−x)d

2(x + 1)
.

Then let y = i
2 , we obtain

M1

(
x,

i

2

)
=

xd

4(x2 − 3x + 1)
(xL2d−2 − L2d) +

2− 3x

4(x2 − 3x + 1)
+

1− (−x)d

2(x + 1)
.

In the same way, it is easy to derive

M2

(
x,

i

2

)
=

−ixd

2(x2 − 3x + 1)
(xF2d−2 − F2d)− xi

2(x2 − 3x + 1)
;

M3

(
x,

i

2

)
=

−xd

5(x2 − 3x + 1)
(xL2d−2 − L2d) +

3x− 2
5(x2 − 3x + 1)

+ 2
1− (−x)d

5(x + 1)
.

Then take them into (3.4), we have

d−1∑

j=0

Fn+jFm+jx
j

=
xd+1

20(x2 − 3x + 1)
[5FnFmL2d−2 + 5(FnLm + LnFm)F2d−2 + LnLmL2d−2]

− xd

20(x2 − 3x + 1)
[5FnFmL2d + 5(FnLm + LnFm)F2d + LnLmL2d]

+
x

20(x2 − 3x + 1)
[−15FnFm + 5FnLm + 5LnFm − 3LnLm]

+
1

20(x2 − 3x + 1)
[10FnFm + 2LnLm] +

1− (−x)d

10(x + 1)
(5FnFm − LnLm).

Observing the relationships between Fibonacci and Lucas numbers such as identities (2.1),
(2.2), and (2.3), it follows that

d−1∑

j=0

Fn+jFm+jx
j =

xd

5(x2 − 3x + 1)
(xLn+m+2d−2 − Ln+m+2d − xLn+m−2 + Ln+m)

−(−1)m 1− (−1)d

5(x + 1)
Ln−m.
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We concentrate now on the proofs of formula (3.2). At this time, it is only need to let

P (x, y) =
d−1∑

j=0

(−x)jTn+j(y)Tm+j(y), so that
d−1∑

j=0

Ln+jLm+jx
j =

4
in+m

P

(
x,

i

2

)
. Similarly, we

use (2.4) to write

P (x, y) =
d−1∑

j=0

(−x)j (Tn(y)Uj(y)− Tn−1(y)Uj−1(y)) (Tm−1(y)Uj(y)− Tm−1(y)Uj−1(y))

= Tn(y)Tm(y)M1(x, y)− (Tn(y)Tm−1(y) + Tn−1(y)Tm(y))M2(x, y)

−Tn−1(y)Tm−1(y)M3(x, y),

where M1(x, y) =
d−1∑

j=0

(−x)jU2
j (y), M2(x, y) =

d−1∑

j=0

(−x)jUj(y)Uj−1(y), and M3(x, y)

=
d−1∑

j=0

(−x)jU2
j−1(y). Hence

d−1∑

j=0

Ln+jLm+jx
j = LnLmM1

(
x,

i

2

)
− 1

i
(LnLm−1 + Ln−1Lm)M2

(
x,

i

2

)

−Lm−1Ln−1M3

(
x,

i

2

)
. (15)

After computing M1

(
x, i

2

)
, M2

(
x, i

2

)
, and M3

(
x, i

2

)
, respectively, we have if x 6= −1

M1

(
x,

i

2

)
=

xd

5(x2 − 3x + 1)
(xL2d − L2d+2)− 2x− 3

5(x2 − 3x + 1)
+ 2

1− (−x)d

5(x + 1)
;

M2

(
x,

i

2

)
=

−ixd

5(x2 − 3x + 1)
(xL2d−1 − L2d+1)− i(x + 1)

5(x2 − 3x + 1)
+ i

1− (−x)d

5(x + 1)
;

M3

(
x,

i

2

)
=

xd

5(x2 − 3x + 1)
(xL2d − xL2d−2) +

3x− 2
5(x2 − 3x + 1)

+ 2
1− (−x)d

5(x + 1)
.

Then take them into (3.5), we derive

d−1∑

j=0

Ln+jLm+jx
j =

xd

x2 − 3x + 1
(xLn+m+2d−2 − Ln+m+2d − xLn+m−2 + Ln+m)

+(−1)m 1− (−1)d

x + 1
Ln−m.

§4. Further study

However, we can say something more. In reference [4], Brian Curtin has given that

d−1∑

j=0

Fn+jFm+j =





FdFn+m+d−1, if d is even,

1
5 (LdLn+m+d−1 − (−1)nLm−n), if d is odd.

And
d−1∑

j=0

Ln+jLm+j =





5FdFn+m+d−1, if d is even,

LdLn+m+d−1 + (−1)nLm−n, if d is odd.
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By comparing these results with those in Corollary 3.2, we can easily derive an interest result:

Ln+2d−1 − Ln−1 =





5FdFn+d−1, if 2 | d,

LdLn+d−1, if 2 - d.
(16)

Clearly, from these formulas many more relationships emerge by specialization. In partic-
ular, if we let x = 1, identities (3.1) and (3.2) will produce the following identities which has
been proved by Brian Curtin in reference [4], and his results are just one of the corollaries of
Theorem 3.1. That is

Corollary 3.2. For positive integers d, m, and n,

d−1∑

j=0

Fn+jFm+j =





1
5 (Ln+m+2d−1 − Ln+m−1), if 2 | d,

1
5 (Ln+m+2d−1 − Ln+m−1 − (−1)mLn−m), if 2 - d;

(17)

d−1∑

j=0

Ln+jLm+j =





Ln+m+2d−1 − Ln+m−1, if 2 | d,

Ln+m+2d−1 − Ln+m−1 + (−1)mLn−m, if 2 - d.
(18)

Here we should note that in the proof of Theorem 3.1, we hypothesize x 6= −1, and if let
x = −1, we can derive the Corollary 3.3 similarly.

Corollary 3.3. For positive integers d, m, and n,

d−1∑

j=0

(−1)jFn+jFm+j =





1
5 (Fn+m−1 − Fn+m+2d−1), if 2 | d,

1
5 (Fn+m+2d−1 − Fn+m−1 − (−1)mdLn−m), if 2 - d;

(19)

d−1∑

j=0

(−1)jLn+jLm+j =





Fn+m−1 − Fn+m+2d−1, if 2 | d,

Fn+m+2d−1 − Fn+m−1 + (−1)mdLn−m, if 2 - d.
(20)

What’s more, similar methods can be applied when
d−1∑

j=0

Fn+jFm+jx
j , and

d−1∑

j=0

Ln+jLm+jx
j

are replaced by
d−1∑

k=0

Fm+kFn+kFe+k, and
d−1∑

j=0

Ln+jLm+jLe+j . As I know, this problem hasn’t

been studied before. Next we will show the processes of the proofs in detail, and the results are
given as follows:
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Theorem 3.4. For positive integers n1, n2, n3 and d,

5
d−1∑

j=0

Fn1+jFn2+jFn3+j =
1
2
Ln1+n2+n3F3d − 1

2
Fn1+n2+n3−1 +

(−1)d
3∑

i=0

(−1)niFn1+n2+n3+d−ni−2

−
3∑

i=0

(−1)niFn1+n2+n3−ni−2; (21)

d−1∑

j=0

Ln1+jLn2+jLn3+j =
1
2
Ln1+n2+n3+3d−1 − 1

2
Ln1+n2+n3−1

−(−1)d
3∑

i=0

(−1)niLn1+n2+n3+d−ni−2

−
3∑

i=0

(−1)niLn1+n2+n3−ni−2; (22)

Proof. To make the processes more clear, we use n, m and e instead of n1, n2 and n3.

This time we let P (x) =
d−1∑

k=0

ik+3Um+k−1(x)Un+k−1(x)Ue+k−1(x). It follows from (1.3) that

d−1∑

j=0

Fn+jFm+jFe+j =
1

im+n+e
P

(
i

2

)
. (23)

On the other hand,

P (x) =
d−1∑

k=0

ik+3Um+k−1(x)Un+k−1(x)Ue+k−1(x)

=
d−1∑

k=0

ik+3 [Un−1(x)Tk(x)− Tn(x)Uk−1(x)] [Um−1(x)Tk(x)− Tm(x)Uk−1(x)]

[Ue−1(x)Tk(x)− Te(x)Uk−1(x)]

= i3Un−1Um−1Ue−1M1(x) + i3 [Um−1(x)Un−1(x)Te(x) + Um−1(x)Tn(x)Ue−1(x)

+Tm(x)Un−1(x)Ue−1(x)]M2(x) + i3[Tm(x)Un−1(x)Te(x) + Um−1(x)Tn(x)Te(x)

+Tm(x)Tn(x)Ue−1(x)]M3(x) + i3Tm(x)Tn(x)Te(x)M4(x).

where M1(x) =
d−1∑

k=0

ikT 3
k (x), M2(x) =

d−1∑

k=0

ikT 2
k (x)Uk−1(x), M3(x) =

d−1∑

k=0

ikTk(x)U2
k−1(x), and
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M4(x) =
d−1∑

k=0

ikU3
k−1(x). Therefore let x = i

2 and combining identity (3.12), we derive

d−1∑

j=0

Fn+jFm+jFe+j = FnFmFeM1

(
i

2

)
+

i

2
(FnFmLe + FnLmFe + LnFmFe)M2

(
i

2

)

−1
4

(FnLmLe + LnLmFe + LnFmLe)M3

(
i

3

)
− i

8
LnLmLeM4

(
i

3

)

= aM1

(
i

2

)
+

ib

2
M2

(
i

2

)
− c

4
M3

(
i

2

)
− id

8
M4

(
i

2

)
,

where a = FnFmFe, b = FnFmLe + FnLmFe + LnFmFe, c = FnLmLe + LnLmFe + LnFmLe,
and d = LnLmLe. By computing Mi(x), (i = 1, 2, 3, 4), we obtain

M1(x) =
1
16

L3d−1 − 3
8
i2dLd−2 +

19
16

; M2(x) =
1
8i

F3d−1 − 1
4i

i2dFd−2 − 3
8i

;

M3(x) = − 1
20

L3d−1 − 1
10

i2dLd−2 +
1
4
; M4(x) = − 1

10i
F3d−1 − 3

5i
i2dFd−2 +

i

2
.

Take this group of values into identity above, we have

d−1∑

j=0

Fn+jFm+jFe+j =
1
80

(5a + c)L3d−1 +
1
80

(5b + d)F3d−1 +
i2d

40
(−15a + c)Ld−2

+
i2d

40
(−5b + 3d)Fd−2 +

1
16

(19a− 3b− c + d).

Compute that

5a + c = 5FnFmFe + FnLmLe + LnLmFe + LnFmLe

= (5FnFm + LnLm)Le + 5(FnLm + LnFm)Fe

= 2Ln+mLe + 10Fn+mFe = 4Ln+m+e,

and

5b + d = 5FnFmLe + 5FnLmFe + 5LnFmFe + LnLmLe

= (5FnFm + LnLm)Le + 5(FnLm + LnFm)Fe

= 2Ln+mLe + 10Fn+mFe = 4Ln+m+e.

The processes to compute −15a + c, −5b + 3d, and 19a− 3b− c + d are omitted here, and the
final results are as follows:

−15a + c = 4(−1)eFn+m−e + 4(−1)mFn+e−m + 4(−1)nFe+m−n;

−5b + 3d = 4(−1)eLn+m−e + 4(−1)mLn+e−m + 4(−1)nLe+m−n.

And let C be the constant numbers C = 1
16 (19a− 3b− c + d), we have

C = − 1
10

Fn+m+e−1 − (−1)e

5
Fn+m−e−2 − (−1)n

5
Fe+m−n−2 − (−1)m

5
Fe+n−m−2.
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Thus

d−1∑

j=0

Fn+jFm+jFe+j

=
1
20

(Ln+m+eL3d−1 + Ln+m+eF3d−1) +
i2d

10
((−1)eFn+m−eLd−2

+(−1)eLn+m−eFd−2 + (−1)mFn+e−mLd−2 + (−1)mLn+e−mFd−2

+(−1)nFe+m−nLd−2 + (−1)nLe+m−nFd−2 + C)

=
1
10

Ln+m+eF3d +
i2d

5
((−1)eFn+m+d−e−2 + (−1)mFn+e+d−m−2

+(−1)nFe+m+d−n−2) + C.

Formula (3.11), as a matter of fact, is easily to be proved in precisely same way. So that
we will not show the processes of proof any more. Hence, we have finished the proofs of the
theorems in this paper by now.
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§1. Introduction

For any positive integer n, the famous Catalan numbers bn are defined as follows:

bn =

(
2n
n

)

n + 1
, n = 0, 1, 2, 3. · · · .

For example, the first several Catalan numbers are: b0=1, b1=1, b2=2, b3=5, b4=14, b5=42,
b6=132,· · · . This sequence has some wide applications in combinational mathematics and
graph theory. It had been studied by our qing mathematician Antu Ming. There are still many
people have studied its properties at present, some related papers see references [1] and [2].

In this paper, we shall study the calculating problem of the summation

∑
a1+a2+···+ak=n

ba1ba2 · · · bak
, (1)

where
∑

a1+a2+···+ak

denotes the summation over all k-tuples with no-negative integer coordinates

(a1, a2, · · · , ak) such that a1 + a2 + · · ·+ ak = n.
We shall use the elementary method to give an exact calculating formula for (1). That is,

we shall prove the following conclusions:
Theorem 1. For any positive integers n and k with 2 ≤ k ≤ n, we have the identity

∑
a1+a2+···+ak=n

ba1ba2 · · · bak
=

k∑
m=0

(−1)m+k+n

(
k

m

)
2n ·m!!

(n + k)!(m− 2k − 2n)!!
.

1This work is supported by the N. S. F. (11071194) of P.R.China.
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Theorem 2. For any positive integers n and k with 2 ≤ k ≤ n, the summation
∑

a1+a2+···+ak=n

ba1ba2 · · · bak

can be expressed by the linear combination of bn+1, bn+2 · · · . Especially, for k = 2, 3, 4, 5, 6, 7,
we have the identities

∑
a1+a2=n

ba1ba2 = bn+1.

∑
a1+a2+a3=n

ba1ba2ba3 = bn+2 − bn+1.

∑
a1+a2+a3+a4=n

ba1ba2ba3ba4 = bn+3 − 2bn+2.

∑
a1+a2+a3+a4+a5=n

ba1ba2ba3ba4ba5 = bn+4 + bn+2 − 3bn+3.

∑
a1+a2+a3+a4+a5+a6=n

ba1ba2ba3ba4ba5ba6 = bn+5 + 3bn+3 − 4bn+4.

∑
a1+a2+a3+a4+a5+a6+a7=n

ba1ba2ba3ba4ba5ba6ba7 = bn+6 + 6bn+4 − bn+3 − 5bn+5.

§2. Proof of the theorems

In this section, we shall use the elementary methods and the properties of the Catalan
numbers to prove our Theorems directly. First we prove Theorem 1. From the properties of
the Catalan numbers we know that

2(1−√1− x) = x
∞∑

n=0

bnxn

4n
. (2)

Then from the properties of the power series we have

(
2(1−√1− x)

)k
= xk

( ∞∑
n=0

bnxn

4n

)k

= xk
∞∑

n=0

( ∑
a1+a2+···+ak=n

ba1ba2 · · · bak

)
xn

4n
. (3)

On the other hand, note that the power series expansion of (1− x)
m
2

(1− x)
m
2 =

∞∑
n=0

(−1)n ·m!!
2n · n! · (m− 2n)!!

xn. (4)

Applying (4) we have

(
2(1−√1− x)

)k
= 2k ·

k∑
m=0

(
k
m

)
(−1)m(1− x)

m
2

= 2k + 2k ·
k∑

m=1

(
k
m

)
(−1)m

∞∑
n=0

(−1)n ·m!!
2n · n! · (m− 2n)!!

xn

= 2k + 2k ·
∞∑

n=0

(−1)n

2n · n!

(
k∑

m=1

(
k

m

)
(−1)m m!!

(m− 2n)!!

)
xn. (5)



130 Panhong Fan

Then comparing the coefficients of xn+k in (3) and (5) we may immediately deduce the identity

∑
a1+a2+···+ak=n

ba1ba2 · · · bak
=

k∑
m=1

(−1)m+n+k

(
k

m

)
m!! · 2n

(k + n)!(m− 2k − 2n)!!
.

This proves Theorem 1.

Now we prove Theorem 2. According to (2), we can deduce the identities

(1− x)
1
2 = 1− 1

2

∞∑
n=0

bnxn+1

4n
, (6)

(1− x)
3
2 = 1− 3

2
x +

1
2

∞∑
n=0

(
bn

4n
− bn+1

4n+1

)
xn+2, (7)

(1− x)
5
2 = 1− 5

2
x +

15
8

x2 +
1
2

∞∑
n=0

(
2
bn+1

4n+1
− bn

4n
− bn+2

4n+2

)
xn+3, (8)

and

(1− x)
7
2 = 1− 7

2
x +

35
8

x2 − 35
16

x3 +
1
2

∞∑
n=0

(
3
bn+2

4n+2
− 3

bn+1

4n+1
− bn+3

4n+3
+

bn

4n

)
xn+4. (9)

Taking k = 2 in (3), we have

4(1−√1− x)2 = 4
2∑

m=0

(
2
m

)
(−√1− x)m = x2

∞∑
n=0

1
4n

( ∑
a1+a2=n

ba1ba2

)
xn. (10)

From (6) and (10) we have
∑

a1+a2=n

ba1ba2 = bn+1.

Taking k = 3 in (3), and applying (7) we have
∑

a1+a2+a3=n

ba1ba2ba3 = bn+2 − bn+1.

Similarly, we can also deduce the identities
∑

a1+a2+a3+a4=n

ba1ba2ba3ba4 = bn+3 − 2bn+2,

∑
a1+a2+a3+a4+a5=n

ba1ba2ba3ba4ba5 = bn+4 + bn+2 − 3bn+3,

∑
a1+a2+a3+a4+a5+a6=n

ba1ba2ba3ba4ba5ba6 = bn+5 + 3bn+3 − 4bn+4,

∑
a1+a2+a3+a4+a5+a6+a7=n

ba1ba2ba3ba4ba5ba6ba7 = bn+6 + 6bn+4 − bn+3 − 5bn+5.

This completes the proof of Theorem 2.
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Abstract In order to obtain a larger bound of Hosoya index of the tree-type hexagonal

systems, the zig-zag tree-type hexagonal systems are taken into consideration. In this paper,

some results with respect to Hosoya index of the zig-zag tree-type hexagonal systems are

shown. Using the results, hexagonal chains and hexagonal spiders with the larger bound of

Hosoya index are determined.
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§1. Introduction

A hexagonal system is a 2−connected plane graph whose every interior face is bounded
by a regular hexagon. Hexagonal systems are of great importance for theoretical chemistry
because they are the natural graph representations of benzenoid hydrocarbons [2]. A hexagonal
system is a tree-type one if it has no inner vertex. The zig-zag tree-type hexagonal systems
are the graph representations of an important subclass of benzenoid molecules. A considerable
amount of research in mathematical chemistry has been devoted to hexagonal systems [2−16].

In order to describe our results, we need some graph-theoretic notations and terminologies.
Our standard reference for any graph theoretical terminology is [1].

Let G = (V, E) be a graph with vertex set V (G) and edge set E(G). Let e and u be an
edge and a vertex of G, respectively. We will denote by G−e or G−u the graph obtained from
G by removing e or u, respectively. Denote by Nu the set {v ∈ V (G) : uv ∈ E(G)} ∪ {u}. Let
H be a subset of V (G). The subgraph of G induced by H is denoted by G[H], and G[V \H] is
denoted by G−H. Undefined concepts and notations of graph theory are referred to [11− 16].

Two edges of a graph G are said to be independent if they are not adjacent. A subset M

of E(G) is called a matching set of G if any two vertices of M are independent. Denote m(G)
the number of matchings sets of G. In chemical terminology, m(G) is called the Hosoya index.
Clearly, the Hosoya index of a graph is larger than that of its proper subgraphs.

We denote by Ψn the set of the hexagonal chains with n hexagons. Let Bn ∈ Ψn. We
denote by V3 = V3(Bn) the set of the vertices with degree 3 in Bn. Thus, the subgraph Bn[V3]
is a acyclic graph. If the subgraph Bn[V3] is a matching with n− 1 edges, then Bn is called a

1This work is supported by the Shaanxi Provincial Education Department Foundation (08JK433).
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linear chain and denoted by Ln. If the subgraph Bn[V3] is a path, then Bn is called a zig-zag
chain and denoted by Zn. If the subgraph Bn[V3] is a comb, then Bn is called a helicene chain
and denoted by Hn (see [11]).

Denote by Tn the tree-type hexagonal systems containing n hexagons. Let T =
⋃∞

1 Tn,
and T ∈ T. Let H be a hexagon of T . Obviously, H has at most three adjacent hexagons in T ;
if H has exactly three adjacent hexagons in T , then H is called a full-hexagon of T ; if H has
two adjacent hexagons in T , and, moreover, if its two vertices with degree two are adjacent,
then call H a turn-hexagon of T ; and if H has at most one adjacent hexagon in T , then H is
called an end-hexagon of T . It is easy to see that the number of the end-hexagons of a tree-type
hexagonal system of n ≥ 2 hexagons is more two than the number of its full-hexagons. Let
T ∈ T and let B = H1H2 . . . Hk, k ≥ 2 be a hexagonal chain of T . If the end-hexagon H1

of B is also an end-hexagon of T , the other end-hexagon Hk is a full-hexagon of T , and for
2 ≤ i ≤ k − 1, Hi is not a full-hexagon of T , then B is called a branch of T (see [16]). If any
branch of T is a zig-zag chain, then T is called zig-zag tree-type hexagonal system. Both a
zig-zag hexagonal chain and zig-zag hexagonal spider are zig-zag tree-type hexagonal systems
with no full-hexagon and only one full-hexagon, respectively.

§2. Some useful results

Among tree-type hexagonal systems with extremal properties on topological indices, Ln

and Zn play important roles. We list some of them about the Hosoya index as follows.
Theorem 2.1.[6] For any n ≥ 1 and any Bn ∈ Ψn, if Bn is neither Ln nor Zn, then

m(Ln) < m(Bn) < m(Zn).

Theorem 2.2.[16] For any n ≥ 1 and any T ∈ Tn, if T is not Ln, then

m(T ) > m(Ln).

Among many properties of m(G), we mention the following results which will be used later.
Lemma 2.1.[1] Let G be a graph consisting of two components G1 and G2, then

m(G) = m(G1)m(G2).

Lemma 2.2.[1] Let G be a graph and any uv ∈ E(G), then

m(G) = m(G− uv) + m(G− u− v).

Lemma 2.3.[1] Let G be a graph. For each uv ∈ E(G), then

m(G)−m(G− u)−m(G− u− v) ≥ 0.

Moreover, the equality holds only if v is the unique neighbor of u.
Let A and B be any graphs and C be a hexagon. Let G = A@x

yC. Let r and s be two
adjacent vertices of B of at least degree two. Denote by GηB the graph obtained from G and
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B by identifying the edge ab with rs; by GβB the graph from G and B by identifying the edge
bc with rs; by GζB the graph from G and B by identifying the edge cd with rs (see [11]).

Lemma 2.4.[11] Let A,B, G = A@x
yC, GηB and GζB, if m(A− x) > m(A− y), then

m(GζB) > m(GηB).

Lemma 2.5.[11] Let A,B, G = A@x
yC, GηB,GβB and GζB, then

(a) m(GηB) > m(GβB),
(b) m(GζB) > m(GβB).
We add some notations which are convenient to express useful results. For a given zig-zag

chain Zk, denote by x
′
k, xk, yk, y

′
k the four clockwise successful vertices with degree two in one

of end-hexagons (see Fig. 2.1.).

x
′
k xk

yk

y
′
k

x
′
k−1

xk−1

yk−1y
′
k−1

p p p pp p

Fig. 2.1. Zk and Zk−1.

Lemma 2.6. Suppose G is a zig-zag chain with k hexagons. Then




m(Zk)

m(Zk − x
′
k)

m(Zk − xk)

m(Zk − xk − yk)

m(Zk − yk − y
′
k)

m(Zk − xk − y
′
k − yk)

m(Zk − xk − yk − x
′
k)




=




5 3 3 2

3 2 0 0

2 1 2 1

2 1 0 0

2 0 1 0

1 0 1 0

1 1 0 0







m(Zk−1)

m(Zk−1 − xk−1)

m(Zk−1 − x
′
k−1)

m(Zk−1 − xk−1 − x
′
k−1)




.

By applying Lemma 2.1 and Lemma 2.2, it is easy to obtain the result.
Lemma 2.7. Keep the notations as in Lemma 2.6, and suppose Zk is a zig-zag chain with

k(k ≥ 3) hexagons. Then
(a) m(Zk − x

′
k − xk) < m(C6)m(Zk−2) + m(P5)m(Zk−2 − xk−2),

(b) m(Zk − x
′
k − xk − yk) > m(P5)m(Zk−2) + m(P4)m(Zk−2 − xk−2),

(c) 2m(Zk−1−yk−1)+m(Zk−1−yk−1−y
′
k−1) < m(C6)m(Zk−2−x

′
k−2)+m(P5)m(Zk−2−

xk−2 − x
′
k−2),

(d) m(Zk−1 − yk−1) + m(Zk−1 − yk−1 − y
′
k−1) + m(Zk − x

′
k − xk) < m(C6)m(Zk−2) +

m(P5)m(Zk−2 − xk−2) + m(P5)m(Zk−2 − x
′
k−2) + m(P4)m(Zk−2 − xk−2 − x

′
k−2).

Where Cm and Pm (m = 3, 4, 5, 6) are the circle and the path with m vertices, respectively.
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Proof. (a) Set f1(k) = m(Zk), f2(k) = m(Zk − x
′
k), f3(k) = m(Zk − xk), f4(k) =

m(Zk − xk − x
′
k), f5(k) = m(Zk − y

′
k), f6(k) = m(Zk − yk), f7(k) = m(Zk − yk − y

′
k),

f8(k) = m(Zk − xk − yk − y
′
k) and f9(k) = m(Zk − xk − yk − x

′
k).

Applying Lemma 2.6 to Zk − x
′
k − xk, Zk−2 and Zk−2 − xk−2, we get

m(Zk − x
′
k − xk) = f4(k)

= 2f1(k − 1) + f3(k − 1)

= 12f1(k − 2) + 8f2(k − 2) + 7f3(k − 2) + 5f4(k − 2),

and
m(C6)m(Zk−2) + m(P5)m(Zk−2 − xk−2) = 18f1(k − 2) + 8f3(k − 2).

For k ≥ 3, we have

∆1 = m(C6)m(Zk−2) + m(P5)m(Zk−2 − xk−2)−m(Zk − x
′
k − xk)

= 6f1(k − 2)− 8f2(k − 2) + f3(k − 2)− 5f4(k − 2).

By Lemma 2.1, we obtain m(Zk−2) = m(Zk−2−x
′
k−2−xk−2)+m(Zk−2−x

′
k−2xk−2), and

m(Zk−2 − x
′
k−2xk−2) = m(Zk−2 − x

′
k−2) + m(Zk−2 − x

′
k−2 − yk−3). Thus

∆1 = 6f1(k − 2)− 8f2(k − 2) + f3(k − 2)− 5f4(k − 2)

= f3(k − 2) + f4(k − 2) + 4m(Zk−2 − x
′
k−2 − yk−3)− 2m(Zk−2 − x

′
k−2 − yk−3 − y

′
k−3).

Since Zk−2 − x
′
k−2 − yk−3 − y

′
k−3 is the proper subgraph of Zk−2 − x

′
k−2 − yk−3, then

m(Zk−2 − x
′
k−2 − yk−3) > m(Zk−2 − x

′
k−2 − yk−3 − y

′
k−3). Therefore ∆1 > 0.

(b) Similar to the proof of (a), by Lemma 2.6, we obtain

m(Zk − x
′
k − xk − yk) = f9(k)

= f1(k − 1) + f3(k − 1),

and applying Lemma 2.6 to Zk−1 and Zk−1 − xk−1, we have

f1(k − 1) + f3(k − 1) = 7f1(k − 2) + 5f2(k − 2) + 4f3(k − 2) + 3f4(k − 2),

and
m(P5)m(Zk−2) + m(P4)m(Zk−2 − xk−2) = 8f1(k − 2) + 5f3(k − 2).

Thus

∆2 = m(P5)m(Zk−2) + m(P4)m(Zk−2)−m(Zk − x
′
k − xk − yk)

= f1(k − 2)− 5f2(k − 2) + f3(k − 2)− 3f4(k − 2).

Note that

m(Zk−2) = m(Zk−2 − x
′
k−2xk−2) + m(Zk−2 − x

′
k−2 − xk−2),

and
m(Zk−2 − x

′
k−2xk−2) = m(Zk−2 − x

′
k−2) + m(Zk−2 − x

′
k−2 − yk−3),
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we get

∆2 = f1(k − 2)− 5f2(k − 2) + f3(k − 2)− 3f4(k − 2)

= m(Zk−2 − x
′
k−2 − yk−3) + m(Zk−2 − x

′
k−2 − xk−2 − yk−3)− 4f2(k − 2)− 4f4(k − 2).

Since Zk−2−x
′
k−2−yk−3 and Zk−2−x

′
k−2−xk−2−yk−3 are proper subgraphs of Zk−2−x

′
k−2,

then m(Zk−2−x
′
k−2−yk−3) < m(Zk−2−x

′
k−2), and m(Zk−2−x

′
k−2−xk−2−yk−3) < m(Zk−2−

x
′
k−2). Therefore ∆2 < 0.

(c) Similar to the proof of (a), (b), by Lemma 2.6, we get

m(C6)m(Zk−2 − x
′
k−2) + m(P5)m(Zk−2 − x

′
k−2 − xk−2) = 18f2(k − 2) + 8f4(k − 2),

and

2m(Zk−1 − yk−2) + m(Zk−1 − y
′
k−1 − yk−1) = 6f1(k − 2) + 3f2(k − 2) + 4f3(k − 2)

+2f4(k − 2).

Then

∆3 = m(C6)m(Zk−2 − x
′
k−2) + m(P5)m(Zk−2 − x

′
k−2 − xk−2)− 2m(Zk−1 − yk−2)

−m(Zk−1 − y
′
k−1 − yk−1)

= −6f1(k − 2) + 15f2(k − 2)− 4f3(k − 2) + 6f4(k − 2).

Note that m(Zk−2) = m(Zk−2 − x
′
k−2xk−2) + m(Zk−2 − x

′
k−2 − xk−2), and m(Zk−2 −

x
′
k−2xk−2) = m(Zk−2 − x

′
k−2) + m(Zk−2 − x

′
k−2 − yk−3), thus

∆3 = −6f1(k − 2) + 15f2(k − 2)− 4f3(k − 2) + 6f4(k − 2)

= 9m(Zk−2 − x
′
k−2yk−3)−m(Zk−2 − x

′
k−2 − xk−2 − yk−3)

−4m(Zk−2 − x
′
k−2 − xk−2 − xk−3yk−3)− 4m(Zk−2 − x

′
k−2 − xk−2 − xk−3 − yk−3).

Since Zk−2 − x
′
k−2 − xk−2 − yk−3, Zk−2 − x

′
k−2 − xk−2 − yk−3 and Zk−2 − x

′
k−2 − xk−2 −

xk−3yk−3 are proper subgraphs of Zk−2 − x
′
k−2yk−3, then

m(Zk−2 − x
′
k−2 − xk−2 − yk−3) < m(Zk−2 − x

′
k−2yk−3),

m(Zk−2 − x
′
k−2 − xk−2 − yk−3) < m(Zk−2 − x

′
k−2yk−3),

and
m(Zk−2 − x

′
k−2 − xk−2 − xk−3yk−3) < m(Zk−2 − x

′
k−2yk−3).

Therefore ∆3 > 0.

(d) Similar to the proof of (c), we obtain

∆4 = m(C6)m(Zk−2) + m(P5)m(Zk−2 − xk−2) + m(P5)m(Zk−2 − x
′
k−2)

+m(P4)m(Zk−2 − xk−2 − x
′
k−2)−m(Zk−1 − yk−1)−m(Zk−1 − yk−1 − y

′
k−1)

−m(Zk − x
′
k − xk) > 0.

The proof of Lemma 2.7 is complete.
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§3. Preliminary results and proofs

Suppose T1, T2 ∈ T, and pi, qi are two adjacent vertices with degree two in Ti, i = 1, 2.
Denote by T1(p1, q1) ⊗ T2(p2, q2) the tree-type hexagonal system obtained from T1 and T2 by
identifying p1 with p2, and q1 with q2, respectively.

In the present section, for a given T ∈ T, we always assume that s, t are two adjacent
vertices with degree two in T . For a given linear zig-zag chain Zk, denote by x

′
k, xk, yk, y

′
k the

four clockwise successful vertices with degree two in one of end-hexagons (see Fig. 3.1.).

p pp
p pp

T

s t
Hk Hk−1

p pp Hk

T

T
x
′
k

xk

y
′
k yk

R

:

Fig. 3.1. T (s, t)⊗ Zk(x
′
k, xk), T (s, t)⊗ Zk(yk, y

′
k) and T (s, t)⊗ Zk(x

′
k−1, xk−1).

Theorem 3.1. Keep the notations as Lemma 2.7. For any T ∈ T and k ≥ 3 (see Fig.
3.1.). Then

(a) m(T (s, t)⊗ Zk(x
′
k, xk)) < m(T (s, t)⊗ Zk(x

′
k−1, xk−1)),

(b) m(T (s, t)⊗ Zk(yk, y
′
k)) < m(T (s, t)⊗ Zk(x

′
k−1, xk−1)).

Proof. (a) By Lemma 2.1 and Lemma2.2, we get

m(T (s, t)⊗ Zk(x
′
k−1, xk−1))

= m(T − st)[18f1(k − 2) + 8f3(k − 2)] + m(T − t)[8f1(k − 2) + 5f3(k − 2)]

+m(T − s)[18f2(k − 2) + 8f4(k − 2)] + m(T − t− s)[18f1(k − 2) + 8f3(k − 2)

+8f2(k − 2) + 5f4(k − 2)],

and

m(T (s, t)⊗ Zk(x
′
k, xk))

= m(T − st)f4(k − 2) + m(T − t)f9(k − 2) + m(T − s)[2f6(k − 1) + f7(k − 1)]

+m(T − t− s)[f6(k − 1) + f7(k − 1) + f4(k)].
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Thus

∆5 = m(T (s, t)⊗ Zk(x
′
k−1, xk−1))−m(T (s, t)⊗ Zk(x

′
k, xk))

= ∆1m(T − st) + ∆2m(T − t) + ∆3m(T − s) + ∆4m(T − s− t).

According to Lemma 2.7 and Lemma 2.1, we obtain ∆i > 0(i = 1, 3, 4), ∆2 < 0 and
m(T − t) = m(T − t− s) + m(T − t− s−Ns). So

∆5 > (∆1 + 2∆2 + ∆3 + ∆4)m(T − t− s).

Similar to the proof of lemma 2.7, we get ∆1 + 2∆2 + ∆3 + ∆4 > 0, therefore ∆5 > 0.

Similar to the proof of Lemma 2.7 and Theorem 3.1 (a), we obtain m(T (s, t)⊗Zk(yk, y
′
k)) <

m(T (s, t)⊗ Zk(x
′
k−1, xk−1)) and the proof of Theorem 3.1 is complete.

Corollary 3.1. For any k ≥ 3 and n > 0. Then
(a) m(Ln(s, t)⊗ Zk(x

′
k, xk)) < m(Ln(s, t)⊗ Zk(x

′
k−1, xk−1)),

(b) m(Ln(s, t)⊗ Zk(yk, y
′
k)) < m(Ln(s, t)⊗ Zk(x

′
k−1, xk−1)).

§4. Zig-zag tree-type hexagonal systems

A graph G is called a zig-zag tree-type hexagonal system if it is a tree-type hexagonal
system and any branch of which is zig-zag chain.

We shall use Z∗n to denote the set of all zig-zag tree-type hexagonal systems with n hexagons.
For a given graph Z∗ ∈ Z∗n, we denote Z⊥ the graph obtain from Z∗ whose every branch is
transformed by transformation I (see Fig. 4.1).

A graph G is called a spider if it is a tree and contains only one vertex of degree greater
than 2. For positive integer n1, n2, n3, we use S(n1, n2, n3) to denote a hexagonal spider with
three legs of lengths n1, n2 and n3, respectively (see [11]).

If a hexagonal spider S(n1, n2, n3) whose 3 legs are linear chains, then such a graph is
called a linear hexagonal spider and denoted by L(n1, n2, n3) ( see [11]).

Similarly if each leg of S(n1, n2, n3) combining with the central hexagon is a zig-zag chain,
then such graph is called a zig-zag hexagonal spider and denoted by Z(n1, n2, n3) (see [11]).
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Fig. 4.1. Transformation I.

Transformation I. Let Zk = H1H2 · · ·Hk and Zk

⊗
H be a branch of T (see Fig. 4.1.).

Firstly, the graph T
′

can be obtained from T − Zk and Zk by identifying the edge u1v1 of
Hk−1 with the edge s1t1 of H. Secondly, the graph T

′′
can be got from T

′ − Zk−2 and Zk−2

by identifying the edge u2v2 of Hk−3 with the edge s2t2 of Hk−1. Finally, by repeating this
operation, the graph T

′′′
can be obtained. If T = Zn, only let H = H1.

Theorem 4.1. For any Z∗ ∈ Z∗n and any n ≥ 4. Then

m(Z⊥) ≥ m(Z∗).

Moreover, the equality holds if and only if Z⊥ ∼= Z∗.
Proof. If Z⊥ is not Z∗, note that the graph Z⊥ is obtained from Z∗ whose every branch

is transformed by transformation I, and by Theorem 3.1, we get m(Z⊥) > m(Z∗). Moreover,
the equality holds if and only if Z⊥ ∼= Z∗, and the proof of Theorem 4.1 is complete.

By repeating to apply transformation I on a hexagonal spider S(n1, n2, n3) and Zn, and
according to Theorem 3.1, we also obtain a good larger bound of Hosoya index of Zn and
Z(n1, n2, n3) as follows.

Theorem 4.2. For any Z∗(n1, n2, n3) ∈ Z(n1, n2, n3) with n hexagons and any n ≥ 4,
then

m(Z⊥(n1, n2, n3)) ≥ m(Z∗(n1, n2, n3)) > m(L(n1, n2, n3)).

Moreover, the equality holds if and only if Z⊥(n1, n2, n3) ∼= Z∗(n1, n2, n3) ∼= Z(2, 2, 2).
Theorem 4.3. For any Z∗ ∈ Zn and n ≥ 4. Then

m(Z⊥) > m(Z∗) > m(Ln).



140 Qiuhong Zhao, Shengzhang Ren and Ruiqing Du

References

[1] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Macmillan, London and
Elsevier, New York, 1976.

[2] I. Gutman and S. J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons,
Springer, Berlin, 1989.

[3] A. A. Dobrynin, I. Gutman, The average Wiener index of hexagonal chains, Comput.
Chem., 23(1999), No. 6, 571-576.
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[8] H. Hosoya, N. Trinajstić (Ed.), Mathematics and Computational concepts in Chemistry,

Horwood, Chichester, 1986, p. 110.
[9] R. E. Merrifield, H. E. Simmons, Topological Methods in Chemistry, Wiley, New York,

1989.
[10] W. C. Shiu, P. C. B. Lam, L. Z. Zhang, Extremal k∗−cycle resonant hexagonal chains,

J. Math. Chem., 33(2003), 17-28.
[11] W. C. Shiu, Extremal Hosoya index and Merrifield-Simmons index of hexagonal spi-

ders, Discrete Applied Mathematics, 156(2008), 2978-2985.
[12] L. Z. Zhang, The proof of Gutman’s conjectures concerning extremal hexagonal chains,

J. Systems Sci. Math. Sci., 18(1998), No. 4, 460-465.
[13] L. Z. Zhang, F. Tian, Extremal hexagonal chains concerning largest eigenvalue, Sci.

China Ser. A, 44(2001), 1089-1097.
[14] F. J. Zhang, Z. M. Li, L. S. Wang, Hexagonal chains with minimal total π−electron

energy, Chem. Phys. Lett., 337(2001), 125-130.
[15] F. J. Zhang, Z. M. Li, L. S. Wang, Hexagonal chains with maximal total π-electron

energy, Chem. Phys. Lett., 337(2001), 131-137.
[16] L. Z. Zhang, F. Tian, Extremal catacondensed benzenoids, J. Math. Chem., 34(2003),

111-122.



This book contains 22 papers, most of which were written by 
participants to the Sixth International Conference on Number 
Theory and Smarandache Notions held in Tianshui Normal 
University, China, in April, 2010. In this Conference, several 
professors gave a talk on Smarandache Notions and many 
participants lectured on them both extensively and intensively.  
    All these papers are original and have been refereed. The 
themes of these papers range from the mean value or hybrid mean 
value of  Smarandache type functions, the mean value of some 
famous number theroretic functions acting on the Smarandache 
sequences,  and the solvability of the Smarandache equations. 
                                            (The Editor) 
 
 
 
 
 
 
 

List of the Contributors 
Li Xiaoyan        Wu Xin        T. G.  Jaiyeola       Gu Jiangmin  
Yang Wenqi   Yuan Xia       A. K. S. C. S. Rao     Ren Shengzhang 
He Jianwei        Yang Suiyi      Yang Ming          Ren Xueming     
Feng Na          Lu Xiaoping     Shao Yong          Zhai Liangliang  
Huan Le          Wang Juan     Pan Xiujuan         Xiao Mingdong      
Huang Wei        Tian Jing       He Huan            Zhao Qiuhong      
Hu Jiayuan       Fan Panhong    Du Ruiqing 






