# A Limit Problem Involving the F.Smarandache Square Complementary 

LIU Miao-hua ${ }^{1}$, WANG Wei-qiong ${ }^{2}$<br>(1.College of Science, Air Force University of Engineering, Xi'an 710051, China; 2.College of Science, Chang'an University, Xi'an 710064, China )


#### Abstract

The main purpose of this paper is using the elementary method to study a limit problem involving the F.Smarandache square complementary number, and obtain its limit value.

Key words: mean value; asymptotic formula; limit 2000 MR Subject Classification: 11B83 CLC number: O156.4 Document code: A Article ID: 1002-0462 (2010) 02-0168-04


## §1. Introduction and Results

For any positive integer $n$, we call $S s c(n)$ as the square complementary of $n$ if $S s c(n)$ denotes the least positive integer such that $S s c(n) n$ is a perfect square. For example, $S s c(1)=1$, $S s c(2)=2, S s c(3)=3, S s c(4)=1, S s c(5)=5, S s c(6)=6, S s c(7)=7, S s c(8)=2$, $S s c(9)=1, S s c(10)=10, \cdots$. In reference [1] , Professor F.Smarandache asked us to study the properties of $S s c(n)$. About this problem, many people had studied it, and obtained many interesting results, see [2] and [3]. For example, Felice Russo ${ }^{[3]}$ studied the arithmetical properties of $S s c(n)$, and proved many conclusions. At the same time, he also presented 21 unsolved problems. Maohua $\mathrm{Le}^{[4]}$ solved the problems 5, 6 and 7. Maohua Le ${ }^{[6-7]}$ solved problems 13 and 17 respectively. But the problem 16 still have not been solved at present. That is, whether there exists a limit for

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=2}^{n} \frac{\ln (S s c(k))}{\ln k}
$$

[^0]In this paper, we use the elementary method to study this problem, and prove the following sharper conclusion:

Theorem Let $\operatorname{Ssc}(n)$ denotes the square complementary of $n$, for any positive integer $n>2$, we have the asymptotic formula

$$
\sum_{k=2}^{n} \frac{\ln (S s c(k))}{\ln k}=n+O\left(\frac{n \ln \ln n}{\ln n}\right)
$$

From this Theorem we may immediately get the following:
Corollary Let $S s c(n)$ denotes the square complementary of $n$, then we have the limit formula

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=2}^{n} \frac{\ln (S s c(k))}{\ln k}=1 .
$$

It is clear that this corollary solved problem 16 of [3].

## §2. Proof of the Theorem

In this section, we will complete the proof of the theorem. For any positive integer $n$, it is clear that there exist unique positive integers $l$ and $m$ such that $n=m^{2} l$, where $l$ is a square-free number. So we have $S s c(n)=S s c(l)=l$ and

$$
\begin{align*}
& \sum_{k=2}^{n} \frac{\ln (S s c(k))}{\ln k} \\
= & \sum_{m^{2} l \leq n} \frac{|\mu(l)| \ln l}{\ln \left(m^{2} l\right)} \\
= & \sum_{l \leq n}|\mu(l)| \ln l \sum_{m \leq \sqrt{\frac{n}{l}}}\left(\frac{1}{\ln l}-\frac{2 \ln m}{\ln l(2 \ln m+\ln l)}\right) \\
= & \sum_{l \leq n}|\mu(l)| \sum_{m \leq \sqrt{\frac{n}{l}}} 1-\sum_{l \leq n}|\mu(l)| \sum_{m \leq \sqrt{\frac{n}{l}}} \frac{2 \ln m}{2 \ln m+\ln l} \\
= & \sum_{m \leq \sqrt{n}} \sum_{l \leq \frac{n}{m^{2}}}|\mu(l)|-\sum_{l \leq n}|\mu(l)| \sum_{m \leq \sqrt{\frac{n}{l}}} \frac{2 \ln m}{2 \ln m+\ln l} . \tag{1.1}
\end{align*}
$$

Noting that

$$
\begin{aligned}
& \sum_{n \leq x} \frac{1}{n^{2}}=\zeta(2)+O\left(\frac{1}{x}\right) \\
& \sum_{n \leq x} \frac{\mu(n)}{n^{2}}=\frac{1}{\zeta(2)}+O\left(\frac{1}{x}\right) \\
& \sum_{n \leq x} \frac{1}{n^{\frac{1}{2}}}=2 \sqrt{x}+\zeta\left(\frac{1}{2}\right)+O\left(\frac{1}{\sqrt{x}}\right) .
\end{aligned}
$$

The first term on the right hand side of (1) is

$$
\begin{align*}
& \sum_{m \leq \sqrt{n}} \sum_{l \leq \frac{n}{m^{2}}}|\mu(l)| \\
= & \sum_{m^{2} l \leq n}|\mu(l)| \\
= & \sum_{m^{2} l \leq n} \sum_{d^{2} \mid l} \mu(d) \\
= & \sum_{m^{2} d^{2} t \leq n} \mu(d) \\
= & \sum_{d \leq \sqrt{n}} \mu(d) \sum_{m^{2} t \leq \frac{n}{d^{2}}} 1 \\
= & \sum_{d \leq \sqrt{n}} \mu(d) \sum_{m \leq \frac{\sqrt{n}}{d}} \sum_{t \leq \frac{n}{2^{2} d^{2}}} 1 \\
= & \sum_{d \leq \sqrt{n}} \mu(d) \sum_{m \leq \frac{\sqrt{n}}{d}}\left(\frac{n}{m^{2} d^{2}}+O(1)\right) \\
= & n \sum_{d \leq \sqrt{n}} \frac{\mu(d)}{d^{2}} \sum_{m \leq \frac{\sqrt{n}}{d}} \frac{1}{m^{2}}+O\left(\sqrt{n} \sum_{d \leq \sqrt{n}} \frac{|\mu(d)|}{d}\right) \\
= & n \sum_{d \leq \sqrt{n}} \frac{\mu(d)}{d^{2}}\left(\zeta(2)+O\left(\frac{d}{\sqrt{n}}\right)\right)+O\left(\sqrt{n} \sum_{d \leq \sqrt{n}} \frac{|\mu(d)|}{d}\right) \\
= & n \zeta(2) \cdot \frac{1}{\zeta(2)}+O\left(\sqrt{n} \sum_{d \leq \sqrt{n}} \frac{|\mu(d)|}{d}\right) \\
= & n+O(\sqrt{n} \ln n) . \tag{1.2}
\end{align*}
$$

The second term on the right hand side of (1) is

$$
\begin{align*}
& \sum_{l \leq n}|\mu(l)| \sum_{m \leq \sqrt{\frac{\pi}{l}}} \frac{2 \ln m}{2 \ln m+\ln l} \\
= & \sum_{l \leq \frac{n}{(\ln n)^{2}}}|\mu(l)| \sum_{m \leq \sqrt{\frac{n}{l}}} \frac{2 \ln m}{2 \ln m+\ln l}+\sum_{\frac{n}{(\ln n)^{2}}<l \leq n}|\mu(l)| \sum_{m \leq \sqrt{\frac{n}{l}}} \frac{2 \ln m}{2 \ln m+\ln l} \\
= & O\left(\sum_{l \leq \frac{n}{(\ln n)^{2}}}|\mu(l)| \sqrt{\frac{n}{l}}\right)+O\left(\sum_{\frac{n}{(\ln n)^{2}}<l \leq n}|\mu(l)| \ln \ln n\right. \\
\ln n & \sqrt{\frac{n}{l}} \\
= & O\left(\sqrt{n} \sum_{l \leq \frac{n}{\left(\frac{n}{l} n\right)^{2}}} \frac{1}{\sqrt{l}}\right)+O\left(\frac{\sqrt{n} \ln \ln n}{\ln n} \sum_{\frac{n}{(\ln n)^{2}}<l \leq n} \frac{1}{\sqrt{l}}\right)  \tag{1.3}\\
= & O\left(\frac{n \ln \ln n}{\ln n}\right) .
\end{align*}
$$

Combining (1), (2) and (3), we have

$$
\sum_{k=2}^{n} \frac{\ln (S s c(k))}{\ln k}=n+O\left(\frac{n \ln \ln n}{\ln n}\right)
$$

This completes the proof of theorem.

## [References]

[1] F Smarandache. Only Problems, not Solutions[M]. Chicago: Xiquan Publishing House, 1993, 25.
[2] LE Mao-hua. Some problems concerning the F.Smarandache square complementary function(I)[J]. Smarandache Notions Journal, 2004, 14: 220-221.
[3] FELICE Russo. An introduction to the Smarandache square complementary function[J]. Smarandache Notions(book series), 2002, 13: 160-173.
[4] LE Mao-hua. Some problems concerning the Smarandache square complementary function(II)[J]. Smarandache Notions Journal, 2004, 14: 330-332.
[5] TOM M. Apostol, Introduction to Analytic Number Theory[M]. New York: Springer-Verlag, 1976.
[6] LE Mao-hua. Some problems concerning the Smarandache square complementary function(III)[J]. Smarandache Notions Journal, 2004, 14: 333-334.
[7] LE Mao-hua. Some problems concerning the Smarandache square complementary function(IV)[J]. Smarandache Notions Journal, 2004, 14: 335-337.


[^0]:    Received date: 2006-09-28
    Foundation item: Supported by the NSF of China(10271093)
    Biography: LIU Miao-hua(1978-), female, native of Xianyang, Shaanxi, engages in analytic number theory.

