On the Solutions of an Equation Involving the Smarandache Power Function $S P(n)$

PAN Xiao-wei
(Department of Common Course, Xi'an Medical University, Xi'an 710021, China; Department of Mathematics, Northwest University, Xi'an 710069, China)

Abstract

For any positive integer n, the famous Smarandache power function $S P(n)$ is defined as the smallest positive integer m such that $n \mid m^{m}$, where m and n have the same prime divisors. The main purpose of this paper is using the elementary methods to study the positive integer solutions of an equation involving the Smarandache power function $S P(n)$ and obtain some interesting results. At the same time, we give an open problem about the related equation.

Key words: Smarandache power function; equation; positive integer solutions
2000 MR Subject Classification: 11B83
CLC number: O156.4 Document code: A
Article ID: 1002-0462 (2008) 03-0437-05

§1. Introduction and Results

For any positive integer n, we define the Smarandache power function $S P(n)$ as the smallest positive integer m such that $n \mid m^{m}$, where n and m have the same prime divisors. That is,

$$
S P(n)=\min \left\{m: n \mid m^{m}, m \in \mathrm{~N}, \prod_{p \mid n} p=\prod_{p \mid m} p\right\}
$$

If n runs through all natural numbers, then we can get the Smarandache power function sequence $\{S P(n)\}: 1,2,3,2,5,6,7,4,3,10,11,6,13,14,15,4,17,6,19,10, \cdots$.

In reference ${ }^{[1]}$, professor Smarandache asked us to study the properties of the sequence $\{S P(n)\}$. From the definition of $S P(n)$ we can easily get the following conclusions:

Received date: 2007-05-10
Foundation item: Supported by the Natural Science Foundation of China(10671155)
Biography: PAN Xiao-wei(1982-), female, native of Xi'an, Shannxi, Ph.D., engages in analytic number theory.

If $n=p^{\alpha}$, where p be a prime, then we have

$$
S P(n)= \begin{cases}p, & \text { if } 1 \leq \alpha \leq p \\ p^{2}, & \text { if } p+1 \leq \alpha \leq 2 p^{2} \\ p^{3}, & \text { if } 2 p^{2}+1 \leq \alpha \leq 3 p^{3} \\ \cdots & \\ p^{\alpha}, & \text { if }(\alpha-1) p^{\alpha}+1 \leq \alpha \leq \alpha p^{\alpha} .\end{cases}
$$

Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ denotes the factorization of n into prime powers.
If $\alpha_{i} \leq p_{i}$ for all $\alpha_{i}(i=1,2, \cdots, r)$, then we have $S P(n)=U(n)$, where $U(n)=\prod_{p \mid n} p$, \prod denotes the product over all different prime divisors of n. It is clear that $S P(n)$ is not a $p \mid n$ multiplicative function. For example, $S P(8)=4, S P(3)=3, S P(24)=6 \neq S P(3) \times S P(8)$. But for almost m and n with $(m, n)=1$, we have $S P(m n)=S P(m) \cdot S P(n)$. In reference ${ }^{[2]}$, doctor XU Zhe-feng had studied the mean value properties of $S P(n)$, and obtained some sharper asymptotic formulas, one of them as follows:

$$
\sum_{n \leq x} S P(n)=\frac{1}{2} x^{2} \prod_{p}\left(1-\frac{1}{p(p+1)}\right)+O\left(x^{\frac{3}{2}+\epsilon}\right)
$$

where ϵ denotes any fixed positive number, and \prod_{p} denotes the product over all primes.
In this paper, we shall use the elementary methods to study the positive integer solutions of an equation involving the Smarandache power function $S P(n)$, and prove the following conclusion:

Theorem For any positive integer m and $k>1$, the equation

$$
\begin{equation*}
S P\left(n_{1}\right)+S P\left(n_{2}\right)+\cdots+S P\left(n_{k}\right)=m \cdot S P\left(n_{1}+n_{2}+\cdots+n_{k}\right) \tag{1.1}
\end{equation*}
$$

has infinite positive integer solutions $\left(n_{1}, n_{2}, \cdots, n_{k}\right)$.

§2. Proof of the Theorem

In this section, we shall complete the proof of our theorem. First we need the following two important Lemmas.

Lemma 1 There exists an absolutely constant $c_{1}>0$ such that every odd number $N \geq c_{1}$ can be represented as a sum of three odd primes.

This Lemma is called the famous Three Primes Theorem. Its proof can be found in reference [3] and [4].

Lemma 1 can also be extended as follows: There exists an absolutely constant $c_{1}>0$ such that every odd number $N_{k} \geq c_{1}$ can be represented as a sum of $2 k+1$ odd primes.

Lemma 2 There exists an absolutely constant $c_{1}>0$ such that every large even integer $N \geq c_{1}$ can be represented a sum of a prime and an almost prime having at most two prime factors.

This is the famous Chen's Theorem. Its proof can also be found in reference ${ }^{[3]}$.
Now we use these two Lemmas to prove our Theorem. If m and k are odd numbers, then $k \geq 3$. Let $m=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{s}^{\alpha_{s}}$ be the factorization of m into prime powers, then for prime P large enough, from Lemma 1 we know that there exist primes $q_{1}, q_{2}, \cdots, q_{s}$ satisfying the equation:

$$
\begin{equation*}
p_{1}^{\alpha_{1}+1} p_{2}^{\alpha_{2}+1} \cdots p_{s}^{\alpha_{s}+1} P=q_{1}+q_{2}+\cdots+q_{k} . \tag{2.1}
\end{equation*}
$$

Then taking $n_{i}=q_{i}(i=1,2, \cdots, k)$ in equation (1), from the properties of $S P(n)$ and equation (2) we may immediately deduce that

$$
\begin{aligned}
& S P\left(q_{1}\right)+S P\left(q_{2}\right)+\cdots+S P\left(q_{k}\right) \\
= & q_{1}+q_{2}+\cdots+q_{k}=p_{1}^{\alpha_{1}+1} p_{2}^{\alpha_{2}+1} \cdots p_{s}^{\alpha_{s}+1} P \\
= & p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{s}^{\alpha_{s}} \cdot p_{1} p_{2} \cdots p_{s} P=m \cdot p_{1} p_{2} \cdots p_{s} P \\
= & m \cdot S P\left(p_{1}^{\alpha_{1}+1} p_{2}^{\alpha_{2}+1} \cdots p_{s}^{\alpha_{s}+1} P\right) \\
= & m \cdot S P\left(q_{1}+q_{2}+\cdots+q_{k}\right) .
\end{aligned}
$$

That is to say, our theorem is correct if m and k are odd numbers.
If m be an odd number and k be an even number, then we discuss it in two cases:
Case (a) $\quad k=2$. We still let $m=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ be the factorization of m into prime powers, then for prime P large enough, from Lemma 2 we know that

$$
2 p_{1}^{\alpha_{1}+1} p_{2}^{\alpha_{2}+1} \cdots p_{s}^{\alpha_{s}+1} P=q_{1}+q_{2}
$$

or

$$
2 p_{1}^{\alpha_{1}+1} p_{2}^{\alpha_{2}+1} \cdots p_{s}^{\alpha_{s}+1} P=q_{1}+\overline{q_{2}} \overline{q_{3}} .
$$

where $q_{1}, \overline{q_{2}}$ and $\overline{q_{3}}$ are primes. In any case, we still have

$$
\begin{aligned}
& S P\left(q_{1}\right)+S P\left(q_{2}\right)=q_{1}+q_{2} \\
= & 2 p_{1}^{\alpha_{1}+1} p_{2}^{\alpha_{2}+1} \cdots p_{s}^{\alpha_{s}+1} P \\
= & m \cdot 2 p_{1} p_{2} \cdots p_{s} P \\
= & m \cdot S P\left(2 p_{1} p_{2} \cdots p_{s} P\right) \\
= & m \cdot S P\left(2 p_{1}^{\alpha_{1}+1} p_{2}^{\alpha_{2}+1} \cdots p_{s}^{\alpha_{s}+1} P\right) \\
= & m \cdot S P\left(q_{1}+q_{2}\right)
\end{aligned}
$$

or

$$
\begin{aligned}
& S P\left(q_{1}\right)+S P\left(\overline{q_{2}} \overline{q_{3}}\right)=q_{1}+\overline{q_{2}} \overline{q_{3}} \\
= & 2 p_{1}^{\alpha_{1}+1} p_{2}^{\alpha_{2}+1} \cdots p_{s}^{\alpha_{s}+1} P
\end{aligned}
$$

$$
\begin{aligned}
& =m \cdot 2 p_{1} p_{2} \cdots p_{s} P \\
& =m \cdot S P\left(2 p_{1} p_{2} \cdots p_{s} P\right) \\
& =m \cdot S P\left(2 p_{1}^{\alpha_{1}+1} p_{2}^{\alpha_{2}+1} \cdots p_{s}^{\alpha_{s}+1} P\right) \\
& =m \cdot S P\left(q_{1}+\overline{q_{2}} \overline{q_{3}}\right) .
\end{aligned}
$$

Case (b) $\quad k=2 k_{1}, k_{1} \geq 2$. This time from Lemma 1 we have

$$
p_{1}^{\alpha_{1}+1} p_{2}^{\alpha_{2}+1} \cdots p_{k}^{\alpha_{k}+1} P=q_{1}+q_{2}+\cdots+q_{k-1}+2 .
$$

Using the same method of the above we can prove that the theorem is also correct, see reference [5].

Next, we'll discuss the equation (1) in which m be an even number. We still let $m=$ $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ be the factorization of m into prime powers, and discuss the equation (1) in the following three cases:
(I) If $k=2$, then from Lemma 2 we know that, $p_{1}^{\alpha_{1}+1} p_{2}^{\alpha_{2}+1} \cdots p_{k}^{\alpha_{k}+1} P$ is a sum of a prime and an almost prime having at most two prime factors. That is,

$$
p_{1}^{\alpha_{1}+1} p_{2}^{\alpha_{2}+1} \cdots p_{k}^{\alpha_{k}+1} P=p_{1}^{\prime}+q_{1}^{\prime}
$$

or

$$
p_{1}^{\alpha_{1}+1} p_{2}^{\alpha_{2}+1} \cdots p_{k}^{\alpha_{k}+1} P=p_{1}^{\prime}+\overline{q_{1}^{\prime}} \bar{q}_{2}^{\prime},
$$

where P be a prime large enough, and $p_{1}^{\prime}, \bar{q}_{i}^{\prime}(i=1,2)$ are primes. Using the same method of the above we also get that the left hand side of the equation (1) is equal to its right hand side.
(II) If $k=2 k_{1}\left(k_{1}>1\right)$, then we have

$$
p_{1}^{\alpha_{1}+1} p_{2}^{\alpha_{2}+1} \cdots p_{k}^{\alpha_{k}+1} P=q_{1}+q_{2}+\cdots+q_{k-1}+3
$$

where P denotes a prime large enough, $q_{i}(i=1,2, \cdots, k-1)$ are primes.
Hence,

$$
p_{1}^{\alpha_{1}+1} p_{2}^{\alpha_{2}+1} \cdots p_{k}^{\alpha_{k}+1} P-3=q_{1}+q_{2}+\cdots+q_{k-1}
$$

which satisfy Lemma 1 , so (1) is also holds.
(III) If $k=2 k_{1}+1\left(k_{1}>1\right)$, then we have

$$
p_{1}^{\alpha_{1}+1} p_{2}^{\alpha_{2}+1} \cdots p_{k}^{\alpha_{k}+1} P=q_{1}+q_{2}+\cdots+q_{k-1}+2
$$

and

$$
p_{1}^{\alpha_{1}+1} p_{2}^{\alpha_{2}+1} \cdots p_{k}^{\alpha_{k}+1} P-2=q_{1}+q_{2}+\cdots+q_{k-1} .
$$

Since $k-1$ is an even number, so this case is the same as in (II). Thus (1) is also holds.
Since P is a prime large enough, hence for any $m \in Z^{+}$, and $k>1$, the equation (1) has infinite positive integer solutions $\left(n_{1}, n_{2}, \cdots, n_{k}\right)$. This completes the proof of our Theorem.

§3. An Open Problem

If we put the number m in the right hand side of the equation (1), how about the positive integer solutions of the equation:

$$
\begin{equation*}
m \cdot\left(S P\left(n_{1}\right)+S P\left(n_{2}\right)+\cdots+S P\left(n_{k}\right)\right)=S P\left(n_{1}+n_{2}+\cdots+n_{k}\right) . \tag{3.1}
\end{equation*}
$$

This is an open problem.
We guess that (3) also has infinite positive integer solutions $\left(n_{1}, n_{2}, \cdots, n_{k}\right)$.

[References]

[1] SMARANDACHE F. Collected Papers[M]. Bucharest: Tempus Publ Hse, 1998.
[2] XU Zhe-feng. On the mean value of the Smarandache power function[J]. Acta Mathematica Sinica(Chinese series), 2006, 49(1): 77-80.
[3] PAN Cheng-dong, PAN Cheng-biao. Goldbach Conjecture[M]. Beijing: Science Press, 1981, 128-132, 225238.
[4] PAN Cheng-dong, PAN Cheng-biao. The Elementary Number Theory[M]. Beijing: Beijing University Press, 2003.
[5] TOM M. Apostol. Introduction to Analytic Number Theory[M]. New York: Springer-Verlag, 1976.

