
Classification of Incomplete Patterns

Based on the Fusion of Belief Functions

Zhun-ga Liu∗, Quan Pan∗, Jean Dezert†, Arnaud Martin‡ and GrégoireMercier§

∗Northwestern Polytechnical University, Xi’an, China.

Email: liuzhunga@nwpu.edu.cn, quanpan@nwpu.edu.cn
†ONERA - The French Aerospace Lab, F-91761 Palaiseau, France.

Email: jean.dezert@onera.fr
‡IRISA, University of Rennes 1, 22300 Lannion, France.

Email: Arnaud.Martin@univ-rennes1.fr
§Telecom Bretagne, CNRS UMR 6285 Lab-STICC/CID, 29200 Brest, France.

Email: Gregoire.Mercier@telecom-bretagne.eu

Abstract—The influence of the missing values in the classifi-
cation of incomplete pattern mainly depends on the context. In
this paper, we present a fast classification method for incomplete
pattern based on the fusion of belief functions where the missing
values are selectively (adaptively) estimated. At first, it is assumed
that the missing information is not crucial for the classification,
and the object (incomplete pattern) is classified based only on the
available attribute values. However, if the object cannot be clearly
classified, it implies that the missing values play an important
role to obtain an accurate classification. In this case, the missing
values will be imputed based on the K-nearest neighbor (K-
NN) and self-organizing map (SOM) techniques, and the edited
pattern with the imputation is then classified. The (original or
edited) pattern is respectively classified according to each training
class, and the classification results represented by basic belief
assignments (BBA’s) are fused with proper combination rules for
making the credal classification. The object is allowed to belong
with different masses of belief to the specific classes and meta-
classes (i.e. disjunctions of several single classes). This credal
classification captures well the uncertainty and imprecision of
classification, and reduces effectively the rate of misclassifications
thanks to the introduction of meta-classes. The effectiveness of
the proposed method with respect to other classical methods is
demonstrated based on several experiments using artificial and
real data sets.

Keywords: information fusion, combination rule, belief func-

tions, classification, incomplete pattern.

I. INTRODUCTION

In many practical classification problems, some attributes

of object can be missing for various reasons (e.g. the failure

of the sensors, etc). So it is crucial to develop efficient

techniques to classify as best as possible the objects with

missing attribute values (incomplete pattern), and the search

for a solution of this problem remains an important research

topic in the community [1], [2]. Many classification approaches

have been proposed to deal with the incomplete patterns [1].

The simplest method consists in removing (ignoring) directly

the patterns with missing values, and the classifier is designed

only for the complete patterns. This method is acceptable

when the incomplete data set is only a very small subset

(e.g. less than 5%) of the whole data set. A widely adopted

method is to fill the missing values with proper estimations

[3], and then to classify the the edited patterns. There have

been different works devoted to the imputation (estimation) of

missing data. For example, the imputation can be done either

by the statistical methods, e.g. mean imputation [4], regress

imputation [2], etc, or by machine learning methods, e.g.

K-nearest neighbors (K-NN) imputation [5], Fuzzy c-means

(FCM) imputation [6], [7], etc. Some model-based techniques

have also been developed for dealing with incomplete patterns

[8]. The probability density function (PDF) of the training

data (complete and incomplete cases) is estimated at first,

and then the object is classified using bayesian reasoning.

Other classifiers [9] have also been proposed to directly handle

incomplete pattern without imputing the missing values. All

these methods attempt to classify the object into a partic-

ular class with maximal probability or likelihood measure.

However, the estimation of missing values is in general quite

uncertain, and the different imputations of missing values can

yield very different classification results, which prevent us to

correctly commit the object into a particular class.

Belief function theory (BFT), also called Dempster-Shafer

theory (DST) [10] and its extension [11], [12] offer a mathe-

matical framework for modeling uncertainty and imprecise in-

formation [13]. BFT has already been applied successfully for

object classification [14], [15], [17]–[19], clustering [20]–[23]

and multi-source information fusion [24], etc. Some classifiers

for the complete pattern based on DST have been developed by

Denœux and his collaborators to come up with the evidential

K-nearest neighbors [14], evidential neural network [19], etc.

The extra ignorance element represented by the disjunction

of all the elements in the whole frame of discernment is

introduced in these classifiers to capture the totally ignorant

information. However, the partial imprecision, which is very

important in the classification, is not well characterized. That is

why we have proposed new credal classifiers in [15]–[17], [22].

Our new classifiers take into account all the possible meta-

classes (i.e. the particular disjunctions of several singleton

classes) to model the partial imprecise information thanks to

belief functions. The credal classification allows the objects

to belong (with different masses of belief) not only to the
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singleton classes, but also to any set of classes corresponding

to the meta-classes.

In our recent research works, a prototype-based credal clas-

sification (PCC) [25] method for the incomplete patterns has

been introduced to well capture the imprecision of classifica-

tion caused by the missing values. The object hard to correctly

classify are committed to a suitable meta-class by PCC, which

captures well the imprecision of classification caused by the

missing values and also reduces the misclassification errors.

In PCC, the missing values in all the incomplete patterns are

imputed using the prototype of each class, and the edited

pattern with each imputation is respectively classified by a

standard classifier (used for the classification of complete

pattern). With PCC, one obtains c pieces of classification

results for one incomplete pattern in a c class problem, and

the global fusion of the c results is used for the credal

classification. Unfortunately, PCC classifier is computationally

greedy and time-consuming, and the method of imputation of

the missing values based on the prototype of each class is

not so precise and accurate. That is why we propose a new

innovative and more effective method for credal classification

of incomplete pattern with adaptive imputation of missing

values, and this method can be called Credal Classification

with Adaptive Imputation (CCAI) for short.

The pattern to classify usually consists of multiple at-

tributes. Sometimes, the class of the pattern can be precisely

determined using only a part (a subset) of the available

attributes, which means that the other attributes are redundant

and in fact unnecessary for the classification. In the classifica-

tion of incomplete pattern with missing values, one can attempt

at first to classify the object only using the known attributes

value. If a specific classification result is obtained, it very likely

means that the missing values are not very necessary for the

classification, and we directly take the decision on the class of

the object based on this result. However, if we the object cannot

be clearly classified with the available information, it means

that the missing information included in the missing attribute

values is probably very crucial for making the classification.

In this case, we propose a sophisticated classification strategy

for the edited pattern with proper imputation of missing

values obtained using K-NN and self-organizing map (SOM)

techniques [26].

The information fusion technique is adopted in the clas-

sification of original incomplete pattern (without imputation

of missing values) or the edited pattern (with imputation of

missing values) to obtain the good results. One can respectively

get the simple classification result represented by a simple

basic belief assignment (BBA) according to each training class.

The global fusion (ensemble) of these multiple BBA’s with a

proper combination rule, i.e. Dempster-Shafer (DS) rule or a

new rule inspired by Dubois Prade (DP) rule depending on the

actual case, is then used to determine the class of the object.

This paper is organized as follows. The basics of belief

function theory is briefly recalled in section II. The new credal

classification method for incomplete patterns is presented in

the section III, and the proposed method is then tested and

evaluated in section IV compared with several other classical

methods. It is concluded in the final.

II. BASIS OF BELIEF FUNCTION THEORY

The Belief Function Theory (BFT) is also known as

Dempster-Shafer Theory (DST), or the Mathematical Theory

of Evidence [10]–[12]. Let us consider a frame of discernment

consisting of c exclusive and exhaustive hypotheses (classes)

denoted by Ω = {ωi, i = 1, 2, . . . , c}. The power-set of Ω de-

noted 2Ω is the set of all the subsets of Ω, empty set included.

In the classification problem, the singleton element (e.g. ωi)

represents a specific class. In this work, the disjunction (union)

of several singleton elements is called a meta-class which

characterizes the partial ignorance of classification. In BFT,

the basic belief assignment (BBA) is a function m(.) from 2Ω

to [0, 1] satisfying m(∅) = 0 and the normalization condition
∑

A∈2Ω
m(A) = 1. The subsets A of Ω such that m(A) > 0 are

called the focal elements of the belief mass m(.).
The credal classification (or partitioning) [20], [21] is de-

fined as n-tuple M = (m1, · · · ,mn) of BBA’s, where mi is

the basic belief assignment of the object xi ∈ X , i = 1, . . . , n
associated with the different elements in the power-set 2Θ.

The credal classification can well model the imprecise and

uncertain information thanks to the introduction of meta-class.

For combining multiple sources of evidence represented by

a set of BBA’s, the well-known Dempster’s rule [10] is still

widely used. We denote it by DS (standing for Dempster-

Shafer) because Dempster’s rule has been widely promoted

by Shafer in [10]. The combination of two BBA’s m1(.) and

m2(.) over 2Ω is done with DS rule of combination defined

by mDS(∅) = 0 and for A 6= ∅, B, C ∈ 2Ω by

mDS(A) =

∑

B∩C=A

m1(B)m2(C)

1−
∑

B∩C=∅

m1(B)m2(C)
(1)

DS rule is commutative and associative, and makes a com-

promise between the specificity and complexity for the com-

bination of BBA’s. However, DS rule produces unreasonable

results in high conflicting cases, and as well as in some special

low conflicting cases [27]. Many alternative rules have been

proposed to overcome the limitations of DS rule, e.g. Dubois-

Prade (DP) rule [28] and Proportional Conflict Redistributions

(PCR) rules [29]. Our method is inspired by DP rule [28]

defined by mDP (∅) = 0 and for A 6= ∅, B, C ∈ 2Θ by

mDP (A) =
∑

B∩C=A

m1(B)m2(C) +
∑

B∩C=∅
B∪C=A

m1(B)m2(C)

(2)

In DP rule, the partial conflicting beliefs are all transferred

to the union of the elements (i.e. meta-class) involved in the

partial conflict.

III. CREDAL CLASSIFICATION OF INCOMPLETE PATTERN

Our new method consists of two main steps. In the first step,

the object (incomplete pattern) is directly classified according
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to the known attribute values only, and the missing values

are ignored. If one can get a specific classification result, the

classification procedure is done because the available attribute

information is sufficient for making the classification. But if the

class of the object cannot be clearly identified in the first step, it

means that the unavailable information included in the missing

values is likely crucial for the classification. In this case, one

has to enter in the second step of the method to classify

the object with a proper imputation of missing values. In

the classification procedure, the original or edited pattern will

be respectively classified according to each class of training

data. The global fusion of these classification results, which

can be considered as multiple sources of evidence represented

by BBA’s, is then used for the credal classification of the

object. The new method is referred as Credal Classification

with Adaptive Imputation of missing values denoted by CCAI

for conciseness.

A. Step 1: Direct classification of incomplete pattern

Let us consider a set of test patterns (samples) X =
{x1, . . . ,xn} to be classified based on a set of labeled training

patterns Y = {y1, . . . ,ys} over the frame of discernment

Ω = {ω1, . . . , ωc}. In this work, we focus on the classification

of incomplete pattern in which some attribute values are ab-

sent. So we consider all the test patterns (e.g. xi, i = 1, . . . , n)

with several missing values. The training data set Y may also

have incomplete patterns in some applications. However, if the

incomplete patterns take a very small amount say less than 5%

in the training data set, they can be ignored in the classification.

If the percentage of incomplete patterns is big, the missing

values must usually be estimated at first, and the classifier

will be trained using the edited (complete) patterns. In the real

applications, one can also just choose the complete labeled

patterns to include in the training data set when the training

information is sufficient. So for simplicity and convenience,

we consider that the labeled samples (e.g. yj , j = 1, . . . , s) of

the training set Y are all complete patterns in the sequel.

In the first step of classification, the incomplete pattern say

xi will be respectively classified according to each training

class by a normal classifier (for dealing with the complete

pattern) at first, and all the missing values are ignored here.

In this work, we adopt a very simple classification method for

the convenience of computation, and xi is directly classified

based on the distance to the prototype of each class.

The prototype of each class {o1, . . . ,oc} corresponding

to {ω1, . . . , ωc} is given by the arithmetic average vector of

the training patterns in the same class. Mathematically, the

prototype is computed for g = 1, . . . , c by

og =
1

Ng

∑

yj∈ωg

yj (3)

where Ng is the number of the training samples in the class

ωg.

In a c-class problem, one can get c pieces of simple classi-

fication result for xi according to each class of training data,

and each result is represented by a simple BBA’s including

two focal elements, i.e. the singleton class and the ignorant

class (Ω) to characterize the full ignorance. The belief of

xi belonging to class wg is computed based on the distance

between xi and the corresponding prototype og . Mahalanobis

distance is adopted here to deal with the anisotropic class,

and the missing values are ignored in the calculation of this

distance. The other mass of belief is assigned to the ignorant

class Ω. Therefore, the BBA’s construction is done by
{

m
og

i (wg) = e−ηdig

m
og

i (Ω) = 1− e−ηdig
(4)

with

dig =

√

√

√

√

1

p

p
∑

j=1

(

xij − ogj
δgj

)2

(5)

and

δgj =

√

1

Ng

∑

yi∈ωg

(yij − ogj)
2

(6)

where xij is value of xi in j-th dimension, and yij is value

of yi in j-th dimension. p is the number of available attribute

values in the object xi. The coefficient 1/p is necessary to

normalize the distance value because each test sample can

have a different number of missing values. δgj is the average

distance of all training samples in class ωg to the prototype

og in j-th dimension. Ng is the number of training samples in

ωg. η is a tuning parameter, and the bigger η generally yields

smaller mass of belief on the specific class wg .

Obviously, the smaller distance measure, the bigger mass

of belief on the singleton class. This particular structure of

BBA’s indicates that we can just confirm the degree of the

object xi associated with the specific class wg only according

to training data in wg . The other mass of belief reflects the

level of belief one has on full ignorance, and it is committed

to the ignorant class Ω. Similarly, one calculates c independent

BBA’s m
og

i (wg), g = 1, . . . , c based on the different training

classes.

Before combining these c BBA’s, we examine whether

a specific classification result can be derived from these c
BBA’s. This is done as follows: if it holds that mo1st

i (w1st) =
argmaxg(m

og

i (wg)), then the object will be considered to

belong very likely to the class w1st, which obtains the biggest

mass of belief in the c BBA’s. The class with the second biggest

mass of belief is denoted w2nd.

The distinguishability degree χi ∈ (0, 1] of an object xi

associated with different classes is defined by:

χi =
mo2nd

i (w2nd)

momax

i (wmax)
(7)

Let ǫ be a chosen small positive distinguishability threshold

value in (0, 1]. If the condition χi ≤ ǫ is satisfied, it means

that all the classes involved in the computation of χi can

be clearly distinguished of xi. In this case, it is very likely

to obtain a specific classification result from the fusion of

the c BBA’s. The condition χi ≤ ǫ also indicates that the

available attribute information is sufficient for making the
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classification of the object, and the imputation of the missing

values is not necessary. If χi ≤ ǫ condition holds, he c
BBA’s are directly combined with DS rule (1) to obtain

the final classification results of the object because DS rule

usually produces specific combination result with acceptable

computation burden in the low conflicting case. In such case,

the meta-class is not included in the fusion result, because

these different classes are considered distinguishable based on

the condition of distinguishability. Moreover, the mass of belief

of the full ignorance class Ω, which represents the noisy data

(outliers), can be proportionally redistributed to other singleton

classes for more specific results if one knows a priori that the

noisy data is not involved.

If the distinguishability condition χi ≤ ǫ is not satisfied, it

means that the classes w1st and w2nd cannot be clearly dis-

tinguished for the object with respect to the chosen threshold

value ǫ, indicating that missing attribute values play almost

surely a crucial role in the classification. In this case, the

missing values must be properly imputed to recover the un-

available attribute information before entering the classification

procedure. This is the Step 2 of our method which is explained

in the next subsection.

B. Step 2: Classification of incomplete pattern with imputation

of missing values

1) Multiple estimation of missing values: In the estimation

of the missing attribute values, there exist various methods.

Particularly, the K-NN imputation method generally provides

good performance. However, the main drawback of KNN

method is its big computational burden, since one needs to

calculate the distances of the object with all the training sam-

ples. Inspired by [30], we propose to use the Self Organized

Map (SOM) technique [26], [30] to reduce the computational

complexity. SOM can be applied in each class of training data,

and then M × N weighting vectors will be obtained after

the optimization procedure. These optimized weighting vectors

allow to characterize well the topological features of the whole

class, and they will be used to represent the corresponding data

class. The number of the weighting vectors is usually small

(e.g. 5 × 6). So the K nearest neighbors of the test pattern

associated with these weighting vectors in the SOM can be

easily found with low computational complexity1. The selected

weighting vector no. k in the class wg , g = 1, . . . , c is denoted

σ
wg

k , for k = 1, . . . , K .

In each class, the K selected close weighting vectors

provide different contributions (weights) in the estimation of

missing values. The weight p
wg

ik of each vector is defined based

on the distance between the object xi and weighting vector

σ
wg

k as follows

p
wg

ik = e(−λd
wg

ik
) (8)

1The training of SOM using the labeled patterns becomes time consuming
when the number of labeled patterns is big, but fortunately it can be done off-
line. In our experiments, the running time performance shown in the results
does not include the computational time spent for the off-line procedures.

with

λ =
cNM(cNM − 1)

2
∑

i,j

d(σi, σj)
(9)

where d
wg

ik is the Euclidean distance between xi and the

neighbor o
wg

k ignoring the missing values, and 1
λ

is the average

distance between each pair of weighting vectors produced by

SOM in all the classes; c is the number of classes; M × N
is the number of weighting vectors obtained by SOM in each

class; and d(σi, σj) is the Euclidean distance between any two

weighting vectors σi and σj .

The weighted mean value ŷ
wg

i of the selected K weighting

vectors in class training class wg will be used for the imputa-

tion of missing values. It is calculated by

ŷ
wg

i = (

K
∑

k=1

p
wg

ik σ
wg

k )/(

K
∑

k=1

p
wg

ik ) (10)

The missing values in xi will be filled by the values of

ŷ
wg

i in the same dimensions. By doing this, we get the edited

pattern x
wg

i according to the training class wg . Then x
wg

i will

be simply classified only based on the training data in wg as

similarly done in the direct classification of incomplete pattern

using eq. (4) of Step 1 for convenience2.

The classification of xi with the estimation of missing

values is also respectively done based on the other training

classes according to this procedure. For a c-class problem,

there are c training classes, and therefore one can get c pieces

of classification results with respect to one object.

2) Ensemble classifier for credal classification: These c
pieces of results obtained by each class of training data in

a c-class problem are considered with different weights, since

the estimations of the missing values according to different

classes have different reliabilities. The weighting factor of the

classification result associated with the class wg can be defined

by the sum of the weights of the K selected SOM weighting

vectors for the contributions to the missing values imputation

in wg , which is given by

ρ
wg

i =

K
∑

k=1

p
wg

ik (11)

The result with the biggest weighting factor ρwmax

i is

considered as the most reliable, because one assumes that

the object must belong to one of the labeled classes (i.e.

wg , g = 1, . . . , c). So the biggest weighting factor will be

normalized as one. The other relative weighting factors are

defined by:

α̂
wg

i =
ρ
wg

i

ρwmax

i

(12)

If the condition3 α̂
wg

i < ǫ is satisfied, the corresponding

estimation of the missing values and the classification result

2Of course, some other sophisticated classifiers can also be applied here
according to the selection of user, but the choice of classifier is not the main
purpose of this work.

3The threshold ǫ is the same as in section III-A, because it is also used to
measure the distinguishability degree here.
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are not very reliable. Very likely, the object does not belong to

this class. It is implicitly assumed that the object can belong to

only one class in reality. If this result whose relative weighting

factor is very small (w.r.t. ǫ) is still considered useful, it will be

(more or less) harmful for the final classification of the object.

So if the condition α̂
wg

i < ǫ holds, then the relative weighting

factor is set to zero. More precisely, we will take

α
wg

i =

{

0, if α̂
wg

i < ǫ
ρ
wg

i

ρ
wmax
i

, otherwise.
(13)

After the estimation of weighting (discounting) factors α
wg

i ,

the c classification results (the BBA’s m
og

i (.)) are classically

discounted [10] by
{

m̂
og

i (wg) = α
wg

i m
og

i (wg)

m̂
og

i (Ω) = 1− α
wg

i + α
wg

i m
og

i (Ω)
(14)

These discounted BBA’s will be globally combined to get

the credal classification result. If α
wg

i = 0, one gets m̂
og

i (Ω) =
1, and this fully ignorant (vacuous) BBA plays a neutral role

in the global fusion process for the final classification of the

object.

Although we have done our best to estimate the missing

values, the estimation can be quite imprecise when the es-

timations are obtained from different class with the similar

weighting factors, and the different estimations probably lead

to distinct classification results. In such case, we prefer to

cautiously keep (rather to ignore) the uncertainty, and maintain

the uncertainty in the classification result. Such uncertainty

can be well reflected by the conflict of these classification

results represented by the BBA’s. DS rule is not suitable here,

because all the conflicting beliefs are distributed to other focal

elements. A particular combination rule inspired by DP rule is

introduced here to fuse these BBA’s according to the current

context. In our new rule, the partial conflicting beliefs are

prudently transferred to the proper meta-class to reveal the

imprecision degree of the classification caused by the missing

values. This new rule of combination is defined by:














mi(wg) = m̂
og

i (wg)
∏

j 6=g

m̂
oj

i (Ω)

mi(A) =
∏

⋃

j

wj=A

m̂
oj

i (wj)
∏

k 6=j

m̂ok

i (Ω) (15)

The global fusion formula (15) consists of two parts. In

the first part, we use the conjunctive combination to commit

the mass of belief to the specific (singleton) class, whereas

the disjunctive combination is used to transfer the conflicting

beliefs to the proper meta-class in the second part.

The test pattern can be classified according to the fusion

results, and the object is considered belonging to the class

(singleton class or meta-class) with the maximum mass of

belief. This is called hard credal classification. If one object

is classified to a particular class, it means that this object has

been correctly classified with the proper imputation of missing

values. If one object is committed to a meta-class (e.g. A∪B),

it means that we just know that this object belongs to one of

the specific classes (e.g. A or B) included in the meta-class,

but we cannot specify which one. This case can happen when

the missing values are essential for the accurate classification

of this object, but the missing values cannot be estimated very

well according to the context, and different estimations will

induce the classification of the object into distinct classes (e.g.

A or B).

With traditional classifiers, the missing values in each

object are usually estimated before making the classification.

In our CCAI approach, many objects can be directly classified

based on the distances to each class prototype, and the

imputation of missing values is ignored according to the

context. So the computation complexity of CCAI is generally

relatively low with respect to other methods like KNNI, PCC,

etc.

Guideline for tuning of the parameters ǫ and η: η in eq.

(4) is associated with the calculation of mass of belief on the

specific class, and the bigger η value will lead to smaller mass

of belief committed to the specific class. We advise to take

η ∈ [0.5, 0.8], and the value η = 0.7 can be taken as the

default value. The parameter ǫ is the threshold for changing

the classification strategy. It is also used in Eq. (13) for the

calculation of the discounting factor. The bigger ǫ will makes

fewer objects committed to the meta-classes (corresponding to

the low imprecision of classification), but it increases the risk

of misclassification error. ǫ should be tuned according to the

compromise one can accept between the misclassification error

and imprecision.

IV. EXPERIMENTS

Two experiments with artificial and real data sets have

been used to test the performance of this new CCAI method

compared with the K-NN imputation (KNNI) method [5], FCM

imputation (FCMI) method [6], [7] and our previous credal

classification PCC method [25]. The evidential neural network

classifier (ENN) [19] is adopted here to classify the edited

pattern with the estimated values in PCC, KNNI and FCMI,

since ENN produce generally good results in the classification.

The parameters of ENN can be automatically optimized as

explained in [19]. In the applications of PCC, the tuning

parameter ǫ can be tuned according to the imprecision rate

one can accept. In CCAI, a small number of the nodes in the

2-dimensional grid of SOM is given by M ×N = 3× 4, and

we take the value of K = N = 4 in K-NN for the imputation

of missing values. This seems to provide good performance

in the sequel experiments. In order to show the ability of

CCAI and PCC to deal with the meta-classes, the hard credal

classification is applied, and the class of each object is decided

according to the criterion of the maximal mass of belief.

In our simulations, the misclassification is declared

(counted) for one object truly originated from wi if it is

classified into A with wi ∩A = ∅. If wi ∩A 6= ∅ and A 6= wi

then it will be considered as an imprecise classification. The

error rate denoted by Re is calculated by Re = Ne/T , where

Ne is number of misclassification errors, and T is the number
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of objects under test. The imprecision rate denoted by Rij is

calculated by Rij = Nij/T , where Nij is number of objects

committed to the meta-classes with the cardinality value j.

In our experiments, the classification of object is generally

uncertain (imprecise) among a very small number (e.g. 2) of

classes, and we only take Ri2 here since there is no object

committed to the meta-class including three or more specific

classes.

A. Experiment 1 (artificial data set)

In the first experiment, we show the interest of credal

classification based on belief functions with respect to the

traditional classification working with probability framework.

A 3-class data set Ω = {ω1, ω2, ω3} obtained from three 2-

D uniform distributions is considered here. Each class has

200 training samples and 200 test samples, and there are 600

training samples and 600 test samples in total as shown in

Fig.1.
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Figure 1. Training data and test data.

The uniform distributions of the three classes are character-

ized by the following interval bounds:

x-label interval y-label interval

w1 (5, 65) (5, 25)

w2 (95, 155) (5, 25)

w3 (50, 110) (50, 70)

The values in the second dimension corresponding to y-

coordinate of test samples are all missing. So test samples

are classified according to the only one available value in

the first dimension corresponding to x-coordinate. A particular

value of K = 9 is selected in the classifier K-NN imputation

method4. The classification results of the test objects by

different methods are given in Fig. 2 (a)–(c). For notation

conciseness, we have denoted wte , wtest, wtr , wtraining

and wi,...,k , wi ∪ . . . ∪ wk. The error rate (in %) and

imprecision rate (in %) are specified in the caption of each

subfigure.

4In fact, the choice of K ranking from 7 to 15 does not affect seriously the
results.
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(a). Classification result by FCMI
(Re = 14.67, time = 0.0469s).
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(b). Classification result by KNNI
(Re = 14.17, time = 7.9531s).
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(c). Classification result by CCAI
(Re = 5.83, Ri2 = 16.83, time = 0.0469s).

Figure 2. Classification results of a 3-class artificial data set by different
methods.

Because the y value in the test sample is missing, the class

w3 appears partially overlapped with the classes w1 and w2 on

their margins according to the value of x-coordinate as shown

in Fig. 1. The missing value of the samples in the overlapped

parts can be filled by quite different estimations obtained

from different classes with the almost same reliabilities. For

example, the estimation of the missing values of the objects

in the right margin of w1 and the left margin of w3 can be

obtained according to the training class w1 or w3. The edited

pattern with the estimation from w1 will be classified into
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class w1, whereas it will be committed to class w3 if the

estimation is drawn from w3. It is similar to the test samples

in the left margin of w2 and the right margin of w3. This

indicates that the missing value play a crucial rule in the

classification of these objects, but unfortunately the estimation

of these involved missing values are quite uncertain according

to context. So these objects are prudently classified into the

proper meta-class (e.g. w1 ∪ w3 and w2 ∪ w3) by CCAI. The

CCAI results indicate that these objects belong to one of the

specific classes included in the meta-classes, but these specific

classes cannot be clearly distinguished by the object based

only on the available values. If one wants to get more precise

and accurate classification results, one needs to request for

additional resources for gathering more useful information.

The other objects in the left margin of w1, right margin of

w2 and middle of w3 can be correctly classified based on the

only known value in x-coordinate, and it is not necessary to

estimate the missing value for the classification of these objects

in CCAI. However, all the test samples are classified into

specific classes by the traditional methods KNNI and FCMI,

and this causes many errors due to the limitation of probability

framework. Thus, CCAI produces less error rate than KNNI

and FCMI thanks to the use of meta-classes. Meanwhile, the

computational time of CCAI is similar to that of FCMI, and is

much shorter than KNNI because of the introduction of SOM

technique in the estimation of missing values. It shows that

the computational complexity of CCAI is relatively low. This

simple example shows the interest and the potential of the

credal classification obtained with CCAI method.

B. Experiment 2 (real data set)

Four well known real data sets (Breast cancer, Iris, Seeds

and Wine data sets) available from UCI Machine Learning

Repository [32] are used in this experiment to evaluate the

performance of CCAI with respect to KNNI, FCMI and

PCC. ENN is also used here as standard classifier. The basic

information of these four real data sets is given in Table I.

The cross validation is performed on all the data sets, and

we use the simplest 2-fold cross validation5 here, since it has

the advantage that the training and test sets are both large, and

each sample is used for both training and testing on each fold.

Each test sample has n missing (unknown) values, and they are

missing completely at random in every dimension. The average

error rate Re and imprecision rate Ri (for PCC and CCAI) of

the different methods are given in Table II. Particularly, the

reported classification result of KNNI is the average with K
value ranging from 5 to 15.

One can see that the credal classification of PCC and

CCAI always produce the lower error rate than the traditional

FCMI and KNNI methods, since some objects that cannot be

5More precisely, the samples in each class are randomly assigned to two
sets S1 and S2 having equal size. Then we train on S1 and test on S2, and
reciprocally.

Table I
BASIC INFORMATION OF THE USED DATA SETS.

name classes attributes instances

Breast (B) 2 9 699

Iris (I) 3 4 150

Seeds (S) 3 7 210

Wine (W) 3 13 178

Table II
CLASSIFICATION RESULTS FOR DIFFERENT REAL DATA SETS (IN %).

data n FCMI KNNI PCC CCAI

Re Re {Re,Ri2} {Re,Ri2}
B 3 3.81 3.95 {3.81, 2.34} {3.66, 0}
B 6 7.32 8.20 {5.42,1.32} {4.83, 1.61}
B 7 11.42 11.54 {10.10, 2.64} {9.00, 0.66}
I 1 7.33 4.89 {5.33, 2.67} {4.00, 1.33}
I 2 14.11 11.33 {8.67,4.00} {8.00, 4.67}
I 3 17.33 18.44 {12.67, 9.33} {11.33, 12}
S 2 15.24 11.19 {9.52, 4.76 } {9.52, 0}
S 4 17.14 11.98 {10.48, 4.29} {10.00, 0.48}
S 6 20.95 25.71 {16.19, 14.76} {16.19, 13.81}
W 3 26.97 26.97 {26.97, 1.69} {6.74, 1.12}
W 7 33.24 30.43 {29.78, 2.25} {7.30, 3.93}
W 11 33.43 30.90 {30.34, 2.81} {12.36, 3.93}

correctly classified using only the available attribute values

have been properly committed to the meta-classes, which can

well reveal the imprecision of classification. In CCAI, some

objects with the imputation of missing values are still classified

into the meta-class. It indicates that these missing values play

a crucial role in the classification, but the estimation of these

missing values is no very good. In other words, the missing

values can be filled with the similar reliabilities by different

estimated data, which lead to distinct classification results. So

we have to cautiously assign them to the meta-class to reduce

the risk of misclassification. Compared with our previous

method PCC, this new method CCAI generally provide better

performance with lower error rate and imprecision rate, and

it is mainly because more accurate estimation method (i.e.

SOM +KNN ) for missing values is adopted in CCAI. This

third experiment using real data sets for different applications

shows the effectiveness and interest of this new CCAI method

with respect to other methods.

V. CONCLUSION

A fast credal classification method with adaptive imputation

of missing values (called CCAI) for dealing with incomplete

pattern has been presented. In step 1 of CCAI method, some

objects (incomplete pattern) are directly classified ignoring

the missing values if the specific classification result can

be obtained, which effectively reduces the computation

complexity because it avoids the imputation of the missing

values. However, if the available information is not sufficient

to achieve a specific classification of the object, we estimate

(recover) the missing values before entering the classification
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procedure in the second step. The SOM and K-NN approaches

are applied to make the estimation of missing attributes with

a good compromise between the estimation accuracy

and computation burden. Information fusion technique is

employed to combine the multiple simple classification results

respectively obtained from each training class for the final

credal classification of object. The credal classification in this

work allows the object to belong to different singleton classes

and meta-class with different masses of belief. Once the

object is committed to a meta-class (e.g. A∪B), it means that

the missing values cannot be accurately recovered according

to the context, and the estimation is not very good. Different

estimations will lead the object to distinct classes (e.g. A
or B) involved in the meta-class. So some other sources

of information will be required to achieve more precise

classification of the object if necessary. Two experiments

have been applied to test the performance of CCAI method

with artificial and real data sets. The results show that the

credal classification is able to well capture the imprecision

of classification and effectively reduces the misclassification

errors as well.
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