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Abstract 

As a combination of the hesitant fuzzy set (HFS) and the single valued neutrosophic set (SVNS), the 

single valued neutrosophic hesitant fuzzy set (SVNHFS) is an important concept to handle uncertain 

and vague information existing in real-life, which consists of three membership functions including 

hesitancy, as the truth-hesitancy membership function, the indeterminacy-hesitancy membership 

function and the falsity-hesitancy membership function, and encompass the fuzzy set (FS), 

intuitionistic fuzzy set (IFS), hesitant fuzzy set (HFS), dual hesitant fuzzy set (DHFS) and single-

valued neutrosophic set (SVNS). Correlation and correlation coefficient have been applied widely in 

many research domains and practical fields. This paper, motivated by the idea of correlation 

coefficients derived for HFSs, IFSs, DHFSs and SVNSs, focuses on the correlation and correlation 

coefficient of SVNHFSs and investigates their some basic properties in detail. By using the weighted 

correlation coefficient information between each alternative and the optimal alternative, a decision 

making method are established to handling the single valued neutrosophic hesitant fuzzy information. 

Finally, an effective example is used to demonstrate the validity and applicability of the proposed 

approach in decision making, and the relationship between the each existing method and the 

developed method is given as a comparison study. 
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1. Introduction 

In 1965, Zadeh [1] initiated the approach of fuzzy sets (FS) and applied it in multi attribute decision making 

(MADM). The extensions of FS have been developed by some researchers, including the interval-valued fuzzy 

set (IVFS) proposed by Turksen [2], intuitionistic fuzzy set (IFS) pioneered by Atanassov [3], interval-valued 

intuitionistic fuzzy set (IVIFS) pointed out by Atanassov and Gargov [4], type-2 fuzzy set (TP-2 FS) pioneered 

by Dubois and Prade [5] and fuzzy multiset (FMS) introduced by Yager [6]. However, in realistic situations, 

due to time pressure, complexity of the problem, lack of information processing capabilities, poor knowledge 

of the public domain and information, decision makers cannot provide exact evaluation of decision-parameters 

involved in MADM problems. In such situation, preference information provided by the experts or decision 

makers may be incomplete or imprecise in nature. To deal with these cases, the hesitant fuzzy set (HFS) was 

defined by Torra [7] and Torra and Narukawa [8], whose the membership value of each element in a HFS 

includes a set of possible values between zero and one. On the other hand, as a generalization of HFSs, the 

dual hesitant fuzzy set (DHFS) was defined by Zhu et al. [9] and discussed the some related properties of 

DHFSs. Thus, the theory of DHFS allows the extension of FS, IFS, HFS, and FMS in view of logic. 

The neutrosophic set (NS) proposed firstly by Smarandache [10,11] generalizes an IFS  from philosophical 

point of view. NSs are characterized by truth, indeterminacy, and falsity membership functions which are 

independent in nature. In MADM context, the ratings of the alternatives provided by the decision maker can 

be expressed with NSs. These NSs can handle indeterminate and inconsistent information quite well, whereas 

IFSs and FSs can only handle incomplete or partial information. However, it is almost impossible the NSs to 

apply in concrete areas such as real engineering and scientific. Wang et al. [12] initiated the theory of  single 

valued neutrosophic set (SVNS) and provided some definitions relating to set theoretic operators. Recently, 

many other research topics have also been discussed with the help of SVNSs [13–26].  

Currently, based on the integration of SVNSs and HFSs, Ye [27] introduced the single valued neutrosophic 

hesitant fuzzy set (SVNHFS) which includes FSs, IFSs, HFSs, FMSs, DHFSs and SVNSs, and discussed the 

some properties of SVNHFSs. SVNHFSs are characterized by truth-hesitancy, indeterminacy-hesitancy, and 

falsity-hesitancy membership functions which are independent in nature. Therefore, it is not only more general 

than aforementioned set but only more suitable for handle the MADM problems due to considering much more 

information provided by decision makers. Also, it can provide richer expressions than a neutrosophic term a 

hesitant term, and can better address the vague and imprecise information, the form only permitting 

consecutive values cannot reflect common hesitance and divergence of decision makers. 

 Further, the concept of correlation is an important concept used to handling the uncertainty information and 

have been extensively applied in some practical decision-making problems related to pattern recognition, 

decision making, supply chain management, market prediction and machine learning and so on. For example, 

Chen et al. [28] derived a sequence of the correlation coefficients for HFSs and used them to two real world 
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examples by combining the clustering analysis and hesitant fuzzy information. Xu and Xia [29] extended the 

correlation measures to HFSs and derived some new definition measures of HFSs. Xu [30] discussed the 

correlation measures of IFSs. Then, Wang et al. [31] introduced some correlation measures of DHFSs and 

applied them in MADM problems. Recently, Ye [20] derived a correlation coefficient of SVNSs and used it 

to solve a MADM problem under single valued neutrosophic environment. The correlation measures given in 

aforementioned studies, however, cannot be utilized to handle the single valued neutrosophic hesitant fuzzy 

information. Thus, we need to propose some new measures for SVNHFSs. Therefore, this paper mainly focuses 

on how to propose new definitions regarding the correlation of SVNHFSs, as a new extension of existing 

measures. The rest of this paper is represented as below. Section 2 give some concepts concerning the HFSs, 

DHFSs, NSs, SVNSs and SVNHFSs, and present correlation coefficients of HFSs and DHFSs. In Section 3, 

the concepts of informational energy, correlation and correlation coefficient of SVNHFSs are proposed based 

on an extension of the concepts provided for HFSs and DHFSs. Section 4 establishes a MADM using the 

proposed weighted correlation coefficient of SVNHFSs. In Section 5, a numerical example related the selection 

of desirable alternative is presented to illustrate the validity and efficiency of the derived correlation 

coefficients of SVNHFSs in decision making. Section 6 gives a comparison study between the developed 

method and the existing methods. Finally, some final results and further work are continued with a discussion 

given in Section 7. 

2. Preliminaries 

2.1 Neutrosophic set 

Definition 1. (Smarandache [10]) Let 𝑋 be a universe of discourse, then a neutrosophic set is defined as: 

𝐴 = {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉: 𝑥 ∈ 𝑋},                                                              (1) 

which is characterized by a truth-membership function 𝑇𝐴: 𝑋 → ]0−, 1+[ , an indeterminacy-membership 

function 𝐼𝐴: 𝑋 → ]0−, 1+[and a falsity-membership function 𝐹𝐴: 𝑋 → ]0−, 1+[. 

There is not restriction on the sum of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 𝐹𝐴(𝑥), so 0− ≤ sup𝑇𝐴(𝑥) + sup 𝐼𝐴(𝑥) + sup𝐹𝐴(𝑥) ≤

3+.  

Wang et al. [12] defined the single valued neutrosophic set which is an instance of neutrosophic set. 

2.2. Single valued neutrosophic sets 

Definition 2. (Wang et al. [12]) Let 𝑋 be a universe of discourse, then a single valued neutrosophic set is 

defined as: 

𝐴 = {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉: 𝑥 ∈ 𝑋},                                                    (2) 

where 𝑇𝐴: 𝑋 → [0,1], 𝐼𝐴: 𝑋 → [0,1] and 𝐹𝐴: 𝑋 → [0,1] with 0 ≤ 𝑇(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3 for all 𝑥 ∈ 𝑋. The 

values 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 𝐹𝐴(𝑥) denote the truth-membership degree, the indeterminacy-membership degree 

and the falsity membership degree of 𝑥 to 𝐴, respectively. 
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2.3. Hesitant fuzzy sets 

Definition 3.  (Torra [7]) Let 𝑋 be a fixed set; a hesitant fuzzy set (HFS) 𝑀 on 𝑋 is defined as 

𝑀 = {〈𝑥𝑖, ℎ𝑀(𝑥𝑖)〉: 𝑥𝑖 ∈ 𝑋},                                                          (3) 

where ℎ𝑀(𝑥𝑖) is a set of some different values in [0,1], denoted by ℎ𝑀(𝑥𝑖) = {𝛾𝑀1(𝑥𝑖), 𝛾𝑀2(𝑥𝑖), … , 𝛾𝑀𝑙ℎ
(𝑥𝑖)}, 

representing the possible membership degrees of the element 𝑥𝑖 ∈ 𝑋 to 𝑀. For convenience, the ℎ𝑀(𝑥𝑖) is 

named a hesitant fuzzy element (HFE), denoted by ℎ = {𝛾𝑀1, 𝛾𝑀2, … , 𝛾𝑀𝑙ℎ}, where 𝑙ℎ is the number of values 

in ℎ𝑀(𝑥𝑖). 

2.4. Dual Hesitant fuzzy sets 

Definition 4. (Zhu [9]) Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a fixed set then a dual hesitant fuzzy set (DHFS) 𝐷 on 𝑋 is 

described as; 

𝐷 = {〈𝑥𝑖, ℎ𝐷(𝑥𝑖), 𝑔𝐷(𝑥𝑖)〉: 𝑥𝑖 ∈ 𝑋} 

in which ℎ𝐷(𝑥)  and 𝑔𝐷(𝑥)  are  two sets of some different values in [0,1] , representing the possible 

membership degrees and nonmembership degrees of the element 𝑥𝑖 ∈ 𝑋 to 𝐷, respectively, with the conditions 

0 ≤ 𝛾, 𝜂 ≤ 1 and 0 ≤ 𝛾+ + 𝜂+ ≤ 1, where 𝛾 ∈ ℎ𝐷(𝑥𝑖), 𝜂 ∈ 𝑔𝐷(𝑥𝑖), 𝛾+ ∈ ℎ𝐷
+(𝑥𝑖) = ⋃ max{𝛾}𝛾∈ℎ𝐷(𝑥𝑖) , and 

𝜂+ ∈ 𝑔𝐷
+(𝑥𝑖) = ⋃ max{𝜂}𝜂∈𝑔𝐷(𝑥𝑖)  for 𝑥 ∈ 𝑋. For convenience, the 𝑑(𝑥𝑖) =  〈ℎ𝐷(𝑥𝑖), 𝑔𝐷(𝑥𝑖)〉 is named a dual 

hesitant fuzzy element (DHFE), denoted by 𝑑 = {ℎ, 𝑔}  such that ℎ = {𝛾𝐷1, 𝛾𝐷2, … , 𝛾𝐷𝑙ℎ}  and 𝑔 =

{𝜂𝐷1, 𝜂𝐷2, … , 𝜂𝐷𝑙𝑔}, where 𝑙ℎ and 𝑙𝑔 are the number of values in ℎ𝐷(𝑥𝑖) and 𝑔𝐷(𝑥𝑖), respectively. 

2.5. Single-valued neutrosophic hesitant sets 

Ye [26] proposed the following single-valued neutrosophic sets as a generalization of HFs, DHFSs and SVNSs. 

Definition 5. Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a fixed set, then a single-valued neutrosophic hesitant fuzzy set 

(SVNHFS) 𝑁 on 𝑋 is described as; 

𝑁 = {〈𝑥𝑖, (ℎ𝑁(𝑥𝑖), 𝚤𝑁(𝑥𝑖), 𝑔𝑁(𝑥𝑖))〉: 𝑥𝑖 ∈ 𝑋}                                                          (4) 

in which ℎ𝑁(𝑥𝑖), 𝚤𝑁(𝑥𝑖),  and 𝑔𝑁(𝑥𝑖)  are  three sets of some different values in [0,1]  with ℎ𝑁(𝑥𝑖) =

{𝛾𝑁1(𝑥𝑖), 𝛾𝑁2(𝑥𝑖),… , 𝛾𝑁𝑙ℎ
(𝑥𝑖)} , ℎ𝑁(𝑥𝑖) = {𝜂𝑁1(𝑥𝑖), 𝜂𝑁2(𝑥𝑖),… , 𝜂𝑁𝑙𝚤

(𝑥𝑖)}  and ℎ𝑁(𝑥𝑖) =

{𝜂𝑁1(𝑥𝑖), 𝜂𝑁2(𝑥𝑖), … , 𝜂𝑙𝑔
(𝑥𝑖)}, representing the possible truth-hesitant membership degree, indeterminacy- 

hesitant membership degree, and falsity- hesitant membership degree of the element 𝑥𝑖 ∈ 𝑋 to 𝑁, respectively, 

with the conditions 0 ≤ 𝛾, 𝛿, 𝜂 ≤ 1 and 0 ≤ 𝛾+ + 𝛿+ + 𝜂+ ≤ 3, where 𝛾 ∈ ℎ𝑁(𝑥𝑖), 𝛿 ∈ 𝚤𝑁(𝑥𝑖), 𝜂 ∈ 𝑔𝑁(𝑥𝑖), 

𝛾+ ∈ ℎ𝑁
+(𝑥𝑖) = ⋃ max{𝛾}𝛾∈ℎ𝑁(𝑥𝑖) , 𝛿+ ∈ 𝚤𝑁

+(𝑥𝑖) = ⋃ max{𝛿}𝛿∈𝚤𝑁(𝑥𝑖) , and 𝜂+ ∈ 𝑔𝑁
+(𝑥𝑖) = ⋃ max{𝜂}𝜂∈𝑔𝑁(𝑥𝑖)  

for 𝑥𝑖 ∈ 𝑋. 
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For convenience, the 𝑛(𝑥𝑖) = 〈ℎ𝑁(𝑥𝑖), 𝚤𝑁(𝑥𝑖), 𝑔𝑁(𝑥)〉 is named a single-valued neutrosophic hesitant element 

(SVNHFE), denoted by 𝑛 = { ℎ, 𝚤, 𝑔}  such that ℎ = {𝛾𝑁1, 𝛾𝑁2, … , 𝛾𝑁𝑙ℎ} , 𝚤 = {𝜂𝑁1, 𝜂𝑁2, … , 𝜂𝑁𝑙𝚤}  and 𝑔 =

{𝜂𝑁1, 𝜂𝑁2, … , 𝜂𝑙𝑔}, where 𝑙ℎ,𝑙𝚤 and 𝑙𝑔 are the number of values in ℎ𝑁(𝑥𝑖), 𝚤𝑁(𝑥𝑖) and 𝑔𝑁(𝑥𝑖), respectively. 

From Definition 5, we can see that a SVNHFS is an effective and flexible model to determine values for each 

element in the domain, and can deal with three kinds of hesitancy in this case. 

3. Correlation coefficient of single valued neutrosophic hesitant fuzzy sets 

3.1. Correlation coefficient of hesitant fuzzy sets 

The values of a hesitant fuzzy element are usually given a disorder, so we need to arrange them in a decreasing 

order. For a hesitant fuzzy element ℎ, let 𝜎: (1, 2, . . . , 𝑛) → (1, 2, . . . , 𝑛) be a permutation satisfying ℎ𝜎(𝑗) ≥

ℎ𝜎(𝑗+1) for 𝑗 =  1,2, . . . , 𝑛, and ℎ𝜎(𝑗) be the 𝑗th largest value in ℎ. Sometimes the cardinality of two HFEs are 

different. In such cases, as to Chen et al. [28]’s methodology, we need to make the lengths of the two HFEs 

be the same. There are many different regulations to extend the shorter HFE to the same length as the longer 

one. The most representative regulations are the pessimistic principle and the optimistic principle. For two 

HFEs ℎ𝐴  and ℎ𝐵 , let 𝑙 = max{𝑙ℎ𝐴
, 𝑙ℎ𝐵

} , where 𝑙ℎ𝐴
 and 𝑙ℎ𝐵

 are the number of values in ℎ𝐴  and ℎ𝐵 , 

respectively. When 𝑙ℎ𝐴
≠ 𝑙ℎ𝐵

, one can extend the short HFE by adding some values in it until it has the same 

length with the other. In terms of the pessimistic principle, the short HFE is extended by adding the minimum 

value in it until it has the same length with the other HFE; while as to the optimistic principle, the maximum 

value of the short HFE should be added till the HFE has the same length as the longer one. In Chen et al. [28]’s 

definition, they used the former case and thus the correlation coefficient between two HFSs was defined as: 

Definition 6. Let 𝐴 be a hesitant fuzzy set on a universe of discourse 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} denoted by 𝐴 =

{〈𝑥𝑖, ℎ𝐴(𝑥𝑖)〉: 𝑥𝑖 ∈ 𝑋}. Then, the informational energy of 𝐴 is defined as 

𝐸𝐻𝐹𝑆(𝐴) = ∑(
1

𝑙𝑖
∑𝛾𝐴𝜎(𝑗)

2 (𝑥𝑖)

𝑙𝑖

𝑗=1

)

𝑛

𝑖=1

                                                            (5) 

where 𝑙𝑖 = 𝑙(ℎ𝐴(𝑥𝑖)) is the number of values in ℎ𝐴(𝑥𝑖), and 𝛾𝐴𝜎(𝑗)(𝑥𝑖) the 𝑗th value in ℎ𝐴(𝑥𝑖), 𝑥𝑖 ∈ 𝑋. 

Definition 7. Let 𝐴 and 𝐵 be two hesitant fuzzy sets on a universe of discourse 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} denoted 

by 𝐴 = {〈𝑥𝑖, ℎ𝐴(𝑥𝑖)〉: 𝑥𝑖 ∈ 𝑋} and 𝐵 = {〈𝑥𝑖, ℎ𝐵(𝑥𝑖)〉: 𝑥𝑖 ∈ 𝑋}, respectively. Then, the correlation between 𝐴 

and 𝐵 is defined by 

𝐶𝐻𝐹𝑆(𝐴, 𝐵) = ∑(
1

𝑙𝑖
∑𝛾𝐴𝜎(𝑗)(𝑥𝑖)𝛾𝐵𝜎(𝑗)(𝑥𝑖)

𝑙𝑖

𝑗=1

)

𝑛

𝑖=1

                                              (6) 
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Definition 8. Let 𝐴 and 𝐵 be two hesitant fuzzy sets on a universe of discourse 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}, then the 

correlation coefficient between 𝐴 and 𝐵 is defined by 

𝜌𝐻𝐹𝑆(𝐴, 𝐵) =
𝐶𝐻𝐹𝑆(𝐴, 𝐵)

√𝐶𝐻𝐹𝑆(𝐴, 𝐴)√𝐶𝐻𝐹𝑆(𝐵, 𝐵)
=

∑ (
1
𝑙𝑖

∑ 𝛾𝐴𝜎(𝑗)(𝑥𝑖)𝛾𝐵𝜎(𝑗)(𝑥𝑖)
𝑙𝑖
𝑗=1 )𝑛

𝑖=1

√∑ (
1
𝑙𝑖

∑ 𝛾𝐴𝜎(𝑗)
2𝑙𝑖

𝑗=1
(𝑥𝑖))

𝑛
𝑖=1 √∑ (

1
𝑙𝑖

∑ 𝛾𝐵𝜎(𝑗)
2𝑙𝑖

𝑗=1
(𝑥𝑖))

𝑛
𝑖=1

      (7) 

Let 𝐴 and 𝐵 be any two DHFSs, the correlation coefficient defined by Equation (7) should satisfy the following 

properties: 

(1) 𝜌𝐻𝐹𝑆(𝐴, 𝐵) = 𝜌𝐻𝐹𝑆(𝐵, 𝐴); 

(2) 0 ≤ 𝜌𝐻𝐹𝑆(𝐴, 𝐵) ≤ 1; 

(3) 𝜌𝐻𝐹𝑆(𝐴, 𝐵) = 1, if 𝐴 = 𝐵. 

3.2. Correlation coefficient of dual hesitant fuzzy sets 

Let us consider the two DHFSs 𝐴 = {〈𝑥𝑖, ℎ𝐴(𝑥𝑖), 𝑔𝐴(𝑥𝑖)〉: 𝑥𝑖 ∈ 𝑋} and 𝐵 = {〈𝑥𝑖, ℎ𝐵(𝑥𝑖), 𝑔𝐵(𝑥𝑖)〉: 𝑥𝑖 ∈ 𝑋}with 

ℎ𝐴 = {𝛾𝐴1, 𝛾𝐴2, … , 𝛾𝐴𝑘𝑖
} , 𝑔𝐴 = {𝜂𝐴1, 𝜂𝐴2, … , 𝜂𝐴𝑙𝑖}  and ℎ𝐵 = {𝛾𝐵1, 𝛾𝐵2, … , 𝛾𝐵𝑘𝑖

} , 𝑔𝐵 = {𝜂𝐵1, 𝜂𝐵2, … , 𝜂𝐵𝑙𝑖} , 

where 𝑘𝑖 = 𝑘(ℎ𝐴(𝑥𝑖)) and 𝑙𝑖 = 𝑙(𝑔𝐴(𝑥𝑖)) are the number of values in ℎ𝐴(𝑥𝑖) and 𝑔𝐴(𝑥𝑖), and 𝛾𝐴𝜎(𝑠)(𝑥𝑖) and 

𝜂𝐴𝜎(𝑡)(𝑥𝑖) are the 𝑠th and 𝑡th values  in ℎ𝐴(𝑥𝑖) and 𝑔𝐴(𝑥𝑖), respectively. 

Wang et al. [31] proposed some definitions related to correlation of dual hesitant fuzzy sets as follows: 

Definition 9. Let 𝐴 be a DHFS on a universe of discourse 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} then, the informational energy 

of 𝐴 is defined as 

𝐸𝐷𝐻𝐹𝑆(𝐴) = ∑(
1

𝑘𝑖
∑𝛾𝐴𝜎(𝑠)

2 (𝑥𝑖)

𝑘𝑖

𝑠=1

+
1

𝑙𝑖
∑𝜂𝐴𝜎(𝑡)

2 (𝑥𝑖)

𝑙𝑖

𝑡=1

)

𝑛

𝑖=1

                                        (8) 

Definition 10. Let 𝐴 and 𝐵 be two DHFSs on a universe of discourse 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}, then the correlation 

between 𝐴 and 𝐵 is defined by 

𝐶𝐷𝐻𝐹𝑆(𝐴, 𝐵) = ∑(
1

𝑘𝑖
∑𝛾𝐴𝜎(𝑠)(𝑥𝑖)𝛾𝐵𝜎(𝑠)(𝑥𝑖)

𝑘𝑖

𝑠=1

+
1

𝑙𝑖
∑𝜂𝐴𝜎(𝑡)(𝑥𝑖)𝜂𝐵𝜎(𝑡)(𝑥𝑖)

𝑙𝑖

𝑡=1

)

𝑛

𝑖=1

.                (9) 

Let 𝐴 and 𝐵 be any two DHFSs, the correlation defined by Eq. (9) should satisfy the following properties: 

(1) 𝐶𝐷𝐻𝐹𝑆(𝐴, 𝐴) = 𝐸𝐷𝐻𝐹𝑆(𝐴); 

(2) 𝐶𝐷𝐻𝐹𝑆(𝐴, 𝐵) = 𝐶𝐷𝐻𝐹𝑆(𝐵, 𝐴). 

Definition 11. Let 𝐴 and 𝐵 be two DHFSs on a universe of discourse 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}, then the correlation 

coefficient between 𝐴 and 𝐵 is defined by 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



7 

 

𝜌𝐷𝐻𝐹𝑆(𝐴, 𝐵) =
𝐶𝐷𝐻𝐹𝑆(𝐴, 𝐵)

√𝐶𝐷𝐻𝐹𝑆(𝐴, 𝐴)√𝐶𝐷𝐻𝐹𝑆(𝐵, 𝐵)
 

=
∑ (

1
𝑘𝑖

∑ 𝛾𝐴𝜎(𝑠)(𝑥𝑖)𝛾𝐵𝜎(𝑠)(𝑥𝑖)
𝑘𝑖
𝑠=1 +

1
𝑙𝑖

∑ 𝜂𝐴𝜎(𝑡)(𝑥𝑖)𝜂𝐵𝜎(𝑡)(𝑥𝑖)
𝑙𝑖
𝑡=1 )𝑛

𝑖=1

√∑ (
1
𝑘𝑖

∑ 𝛾𝐴𝜎(𝑠)
2𝑘𝑖

𝑠=1 (𝑥𝑖) +
1
𝑙𝑖

∑ 𝛾𝐴𝜎(𝑡)
2𝑙𝑖

𝑡=1 (𝑥𝑖))
𝑛
𝑖=1 × √∑ (

1
𝑘𝑖

∑ 𝜂𝐵𝜎(𝑠)
2𝑘𝑖

𝑠=1 (𝑥𝑖) +
1
𝑙𝑖

∑ 𝜂𝐵𝜎(𝑡)
2𝑙𝑖

𝑡=1 (𝑥𝑖))
𝑛
𝑖=1

 

(10) 

Theorem 1. Let A and B be any two DHFSs, the correlation coefficient defined by Eq. (10) should satisfy the 

following properties: 

(1) 𝜌𝐷𝐻𝐹𝑆(𝐴, 𝐵) = 𝜌𝐷𝐻𝐹𝑆(𝐵, 𝐴); 

(2) 0 ≤ 𝜌𝐷𝐻𝐹𝑆(𝐴, 𝐵) ≤ 1; 

(3) 𝜌𝐷𝐻𝐹𝑆(𝐴, 𝐵) = 1, if 𝐴 = 𝐵. 

In next section, we will propose a new correlation coefficient along with some related concepts for SVNHFSs. 

3.3. Correlation coefficient of single valued neutrosophic hesitant fuzzy sets 

Similar to HFS, in most of the cases, the number of values in different SVNHFEs might be different, 

i.e.,  𝑙ℎ𝐴
(𝑥𝑖) ≠  𝑙ℎ𝐵

(𝑥𝑖) , 𝑙𝚤𝐴(𝑥𝑖) ≠  𝑙𝚤𝐵(𝑥𝑖)  and 𝑙𝑔𝐴
(𝑥𝑖) ≠  𝑙𝑔𝐵

(𝑥𝑖) . Let 𝑘𝑖(𝑥𝑖) = max{𝑙ℎ𝐴
(𝑥𝑖), 𝑙ℎ𝐵

(𝑥𝑖)} , 

𝑝𝑖(𝑥𝑖) = max{𝑙𝚤𝐴(𝑥𝑖), 𝑙𝚤𝐵(𝑥𝑖)} and 𝑙𝑖(𝑥𝑖) = max{𝑙𝑔𝐴
(𝑥𝑖), 𝑙𝑔𝐵

(𝑥𝑖)} for each 𝑥𝑖 ∈ 𝑋. To operate correctly, we 

should extend the shorter one until both of them have the same length when we compare them. The selection 

of this operation mainly depends on the decision makers’ risk preferences. Pessimists expect unfavorable 

outcomes and may add the minimum of the truth-membership degree and maximum value of indeterminacy-

membership degree and falsity-membership degree. Optimists anticipate desirable outcomes and may add the 

maximum of the truth-membership degree and minimum value of indeterminacy-membership degree and 

falsity-membership degree That is, according to the pessimistic principle, if 𝑙ℎ𝐴
(𝑥𝑖) < 𝑙ℎ𝐵

(𝑥𝑖), then the least 

value of ℎ𝐴(𝑥𝑖) or ℎ𝐵(𝑥𝑖) will be added to ℎ𝐴(𝑥𝑖). Moreover, if 𝑙𝚤𝐴(𝑥𝑖) <  𝑙𝚤𝐵(𝑥𝑖), then the largest value of 

𝑙𝚤𝐴(𝑥𝑖) or 𝑙𝚤𝐵(𝑥𝑖) will be inserted in 𝚤𝐴(𝑥𝑖) for 𝑥𝑖 ∈ 𝑋. Similarity, if 𝑙𝑔𝐴
(𝑥𝑖) <  𝑙𝑔𝐵

(𝑥𝑖), then the largest value 

of 𝑙𝑔𝐴
(𝑥𝑖) or 𝑙𝑔𝐵

(𝑥𝑖) will be inserted in 𝑔𝐴(𝑥𝑖) for 𝑥𝑖 ∈ 𝑋. 

By motived the definitions of Chen et al. [28] and Wang et al. [31], we extend the concepts of informational 

energy, correlation and correlation coefficients to SVNHFSs, and obtain the following definitions. 

Let us consider the two SVNHFSs 𝐴 = {〈𝑥𝑖, ℎ𝐴(𝑥𝑖), 𝚤𝐴(𝑥𝑖), 𝑔𝐴(𝑥𝑖)〉: 𝑥𝑖 ∈ 𝑋}  and 𝐵 =

{〈𝑥𝑖, ℎ𝐵(𝑥𝑖), 𝚤𝐵(𝑥𝑖), 𝑔𝐵(𝑥𝑖)〉: 𝑥𝑖 ∈ 𝑋} with ℎ𝐴 = {𝛾𝐴1, 𝛾𝐴2, … , 𝛾𝐴𝑘𝑖
} ,  𝚤𝐴 = {𝛿𝐴1, 𝛿𝐴2, … , 𝛿𝐴𝑝𝑖

} , and 𝑔𝐴 =

{𝜂𝐴1, 𝜂𝐴2, … , 𝜂𝐴𝑙𝑖} , and ℎ𝐵 = {𝛾𝐵1, 𝛾𝐵2, … , 𝛾𝐵𝑘𝑖
} ,  𝚤𝐵 = {𝛿𝐵1, 𝛿𝐵2, … , 𝛿𝐵𝑝𝑖

} , and 𝑔𝐵 = {𝜂𝐵1, 𝜂𝐵2, … , 𝜂𝐵𝑙𝑖} , 

where 𝑘𝑖 = 𝑙(ℎ𝐴(𝑥𝑖)), 𝑝𝑖 = 𝑙(𝚤𝐴(𝑥𝑖))  and 𝑙𝑖 = 𝑙(𝑔𝐴(𝑥𝑖)) are the number of values in ℎ𝐴(𝑥𝑖),  𝚤𝐴(𝑥𝑖) and 
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𝑔𝐴(𝑥𝑖) , and 𝛾𝐴𝜎(𝑠)(𝑥𝑖) ,  𝛿𝐴𝜎(𝑧)(𝑥𝑖)  and 𝜂𝐴𝜎(𝑡)(𝑥𝑖)  are the 𝑠 th, 𝑧 th and 𝑡 th values  in ℎ𝐴(𝑥𝑖) , 𝚤𝐴(𝑥𝑖)  and 

𝑔𝐴(𝑥𝑖), respectively, 𝑥𝑖 ∈ 𝑋. 

Definition 12. Let 𝐴 be a SVNHFS on a universe of discourse 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}. Then, the informational 

energy of 𝐴 is defined as 

𝐸𝑆𝑉𝑁𝐻𝐹𝑆(𝐴) = ∑(
1

𝑘𝑖
∑𝛾𝐴𝜎(𝑠)

2

𝑘𝑖

𝑠=1

(𝑥𝑖) +
1

𝑝𝑖
∑ 𝛿𝐴𝜎(𝑧)

2

𝑝𝑖

𝑧=1

(𝑥𝑖) +
1

𝑙𝑖
∑𝜂𝐴𝜎(𝑡)

2

𝑙𝑖

𝑡=1

(𝑥𝑖))

𝑛

𝑖=1

                   (11) 

Definition 13. Let 𝐴  and 𝐵  be two SVNHFSs on a universe of discourse 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}. Then, the 

correlation between 𝐴 and 𝐵 is defined by 

𝐶𝑆𝑉𝑁𝐻𝐹𝑆(𝐴, 𝐵) = ∑(
1

𝑘𝑖
∑𝛾𝐴𝜎(𝑠)(𝑥𝑖)𝛾𝐵𝜎(𝑠)(𝑥𝑖)

𝑘𝑖

𝑠=1

+
1

𝑝𝑖
∑ 𝛿𝐴𝜎(𝑧)(𝑥𝑖)𝛿𝐵𝜎(𝑧)(𝑥𝑖)

𝑝𝑖

𝑧=1

𝑛

𝑖=1

+
1

𝑙𝑖
∑𝜂𝐴𝜎(𝑡)

𝑙𝑖

𝑡=1

(𝑥𝑖)𝜂𝐵𝜎(𝑡)(𝑥𝑖)).   (12) 

Assume that A and B are any two SVNHFSs, then we have the following properties: 

1) 𝐶𝑆𝑉𝑁𝐻𝐹𝑆(𝐴, 𝐴) = 𝐸𝑆𝑉𝑁𝐻𝐹𝑆(𝐴); 

2) 𝐶𝑆𝑉𝑁𝐻𝐹𝑆(𝐴, 𝐵) = 𝐶𝑆𝑉𝑁𝐻𝐹𝑆(𝐵, 𝐴). 

Definition 14. Let 𝐴  and 𝐵  be two SVNHFSs on a universe of discourse 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}. Then, the 

correlation coefficient between 𝐴 and 𝐵 is defined by 

𝜌𝑆𝑉𝑁𝐻𝐹𝑆(𝐴, 𝐵) = [
𝐶𝑆𝑉𝑁𝐻𝐹𝑆(𝐴, 𝐵)

√𝐶𝑆𝑉𝑁𝐻𝐹𝑆(𝐴, 𝐴)√𝐶𝑆𝑉𝑁𝐻𝐹𝑆(𝐵, 𝐵)
] 

=

[
 
 
 
 
 
 
 
 
 
 
 

∑

(

  
 

1
𝑘𝑖

∑ 𝛾𝐴𝜎(𝑠)(𝑥𝑖)𝛾𝐵𝜎(𝑠)(𝑥𝑖)
𝑘𝑖
𝑠=1

+
1
𝑝𝑖

∑ 𝛿𝐴𝜎(𝑧)(𝑥𝑖)𝛿𝐵𝜎(𝑧)(𝑥𝑖)
𝑝𝑖
𝑧=1

+
1
𝑙𝑖

∑ 𝜂𝐴𝜎(𝑡)
𝑙𝑖
𝑡=1 (𝑥𝑖)𝜂𝐵𝜎(𝑡)(𝑥𝑖) )

  
 

𝑛
𝑖=1

√∑ (
1
𝑘𝑖

∑ 𝛾𝐴𝜎(𝑠)
2𝑘𝑖

𝑠=1 (𝑥𝑖) +
1
𝑝𝑖

∑ 𝛿𝐴𝜎(𝑧)
2𝑝𝑖

𝑧=1 (𝑥𝑖) +
1
𝑙𝑖

∑ 𝜂𝐴𝜎(𝑡)
2𝑙𝑖

𝑡=1 (𝑥𝑖))
𝑛
𝑖=1

× √∑ (
1
𝑘𝑖

∑ 𝛾𝐵𝜎(𝑠)
2𝑘𝑖

𝑠=1 (𝑥𝑖) +
1
𝑝𝑖

∑ 𝛿𝐵𝜎(𝑧)
2𝑝𝑖

𝑧=1 (𝑥𝑖) +
1
𝑙𝑖

∑ 𝜂𝐵𝜎(𝑡)
2𝑙𝑖

𝑡=1 (𝑥𝑖))
𝑛
𝑖=1

]
 
 
 
 
 
 
 
 
 
 
 

. 

(13) 

Theorem 2. For two SVNHFSs 𝐴 and 𝐵, the correlation coefficient defined by Eq. (13) should satisfy the 

following properties: 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



9 

 

(1) 0 ≤ 𝜌𝑆𝑉𝐻𝐻𝐹𝑆(𝐴, 𝐵) ≤ 1; 

(2) 𝜌𝑆𝑉𝐻𝐻𝐹𝑆(𝐴, 𝐵) = 𝜌𝑆𝑉𝐻𝐻𝐹𝑆(𝐵, 𝐴); 

(3) 𝜌𝑆𝑉𝐻𝐻𝐹𝑆(𝐴, 𝐵) = 1, if 𝐴 = 𝐵. 

Proof:  

(1) The inequality 0 ≤ 𝜌𝑆𝑉𝐻𝐻𝐹𝑆(𝐴, 𝐵) is clear. Now, let us prove that 𝜌𝑆𝑉𝐻𝐻𝐹𝑆(𝐴, 𝐵) ≤ 1; 

𝐶𝑆𝑉𝑁𝐻𝐹𝑆(𝐴, 𝐵) = ∑(
1

𝑘𝑖
∑𝛾𝐴𝜎(𝑠)(𝑥𝑖)𝛾𝐵𝜎(𝑠)(𝑥𝑖)

𝑘𝑖

𝑠=1

+
1

𝑝𝑖
∑𝛿𝐴𝜎(𝑧)(𝑥𝑖)𝛿𝐵𝜎(𝑧)(𝑥𝑖)

𝑝𝑖

𝑧=1

𝑛

𝑖=1

+
1

𝑙𝑖
∑𝜂𝐴𝜎(𝑡)

𝑙𝑖

𝑡=1

(𝑥𝑖)𝜂𝐵𝜎(𝑡)(𝑥𝑖)) 

=
1

𝑘1
∑𝛾𝐴𝜎(𝑠)(𝑥1)𝛾𝐵𝜎(𝑠)(𝑥1)

𝑘1

𝑠=1

+
1

𝑘2
∑𝛾𝐴𝜎(𝑠)(𝑥2)𝛾𝐵𝜎(𝑠)(𝑥2)

𝑘2

𝑠=1

+ ⋯+
1

𝑘𝑛
∑𝛾𝐴𝜎(𝑠)(𝑥𝑛)𝛾𝐵𝜎(𝑠)(𝑥𝑛)

𝑘𝑛

𝑠=1

 

+
1

𝑝1
∑𝛿𝐴𝜎(𝑧)

𝑝1

𝑧=1

(𝑥1)𝛿𝐵𝜎(𝑧)(𝑥1) +
1

𝑝2
∑𝛿𝐴𝜎(𝑧)

𝑝2

𝑧=1

(𝑥2)𝛿𝐵𝜎(𝑧)(𝑥2) + ⋯+
1

𝑝𝑛
∑𝛿𝐴𝜎(𝑧)

𝑝𝑛

𝑧=1

(𝑥𝑛)𝛿𝐵𝜎(𝑧)(𝑥𝑛) 

+
1

𝑙1
∑𝜂𝐴𝜎(𝑡)(𝑥1)𝜂𝐵𝜎(𝑡)(𝑥1) +

1

𝑙2
∑𝜂𝐴𝜎(𝑡)(𝑥2)𝜂𝐵𝜎(𝑡)(𝑥2)

𝑙2

𝑡=1

+ ⋯+
1

𝑙𝑛
∑𝜂𝐴𝜎(𝑡)(𝑥𝑛)𝜂𝐵𝜎(𝑡)(𝑥𝑛)

𝑙𝑛

𝑡=1

𝑙1

𝑡=1

 

= ∑
𝛾𝐴𝜎(𝑠)(𝑥1)

√𝑘1

∙
𝛾𝐵𝜎(𝑠)(𝑥1)

√𝑘1

𝑘1

𝑠=1

+ ∑
𝛾𝐴𝜎(𝑠)(𝑥2)

√𝑘2

∙
𝛾𝐵𝜎(𝑠)(𝑥2)

√𝑘2

𝑘2

𝑠=1

+ ⋯+ ∑
𝛾𝐴𝜎(𝑠)(𝑥𝑛)

√𝑘𝑛

∙
𝛾𝐵𝜎(𝑠)(𝑥𝑛)

√𝑘𝑛

𝑘𝑛

𝑠=1

 

+ ∑
𝛿𝐴𝜎(𝑧)(𝑥1)

√𝑝1

∙
𝛿𝐵𝜎(𝑧)(𝑥1)

√𝑝1

𝑝1

𝑧=1

+ ∑
𝛿𝐴𝜎(𝑧)(𝑥2)

√𝑝2

∙
𝛿𝐵𝜎(𝑧)(𝑥2)

√𝑝2

𝑝2

𝑧=1

+ ⋯+ ∑
𝛿𝐴𝜎(𝑧)(𝑥𝑛)

√𝑝𝑛

∙
𝛿𝜎𝜑(𝑧)(𝑥𝑛)

√𝑝𝑛

𝑝𝑛

𝑧=1

 

+∑
𝜂𝐴𝜎(𝑡)(𝑥1)

√𝑙1
∙
𝜂𝐵𝜎(𝑡)(𝑥1)

√𝑙1

𝑙1

𝑡=1

+ ∑
𝜂𝐴𝜎(𝑡)(𝑥2)

√𝑙2
∙
𝜂𝐵𝜎(𝑡)(𝑥2)

√𝑙2

𝑙2

𝑡=1

+ ⋯+ ∑
𝜂𝐴𝜎(𝑡)(𝑥𝑛)

√𝑙𝑛
∙
𝜂𝐵𝜎(𝑡)(𝑥𝑛)

√𝑙𝑛

𝑙𝑛

𝑡=1

 

According to the Cauchy–Schwarz inequality: 

(𝑥1𝑦1 + 𝑥2𝑦2 + ⋯+ 𝑥𝑛𝑦𝑛)2 ≤ (𝑥1
2 + 𝑥2

2 + ⋯+ 𝑥𝑛
2) ∙ (𝑦1

2 + 𝑦2
2 + ⋯+ 𝑦𝑛

2), 

where (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝ𝑛 and (𝑦1, 𝑦2, … , 𝑦𝑛) ∈ ℝ𝑛, we get: 

(𝐶𝑆𝑉𝑁𝐻𝐹𝑆(𝐴, 𝐵))
2

≤ 

[
1

𝑘1
∑𝛾𝐴𝜎(𝑠)

2

𝑘𝑖

𝑠=1

(𝑥1) +
1

𝑘2
∑𝛾𝐴𝜎(𝑠)

2

𝑘2

𝑠=1

(𝑥2) + ⋯+
1

𝑘𝑛
∑𝛾𝐴𝜎(𝑠)

2

𝑘𝑛

𝑠=1

(𝑥𝑛) 

+
1

𝑝1
∑ 𝛿𝐴𝜎(𝑧)

2

𝑝1

𝑧=1

(𝑥1) +
1

𝑝2
∑𝛿𝐴𝜎(𝑧)

2

𝑝2

𝑧=1

(𝑥2) + ⋯+
1

𝑝𝑛
∑𝛿𝐴𝜎(𝑧)

2

𝑝𝑛

𝑧=1

(𝑥𝑛) 
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+
1

𝑙1
∑𝜂𝐴𝜎(𝑡)

2

𝑙1

𝑡=1

(𝑥1) +
1

𝑙2
∑𝜂𝐴𝜎(𝑡)

2

𝑙2

𝑡=1

(𝑥2) + ⋯+
1

𝑙𝑛
∑𝜂𝐴𝜎(𝑡)

2

𝑙𝑛

𝑡=1

(𝑥𝑛)] 

× [
1

𝑘1
∑𝛾𝐵𝜎(𝑠)

2

𝑘𝑖

𝑠=1

(𝑥1) +
1

𝑘2
∑𝛾𝐵𝜎(𝑠)

2

𝑘2

𝑠=1

(𝑥2) + ⋯+
1

𝑘𝑛
∑𝛿𝐵𝜎(𝑠)

2

𝑘𝑛

𝑠=1

(𝑥𝑛) 

+
1

𝑝1
∑ 𝛿𝐵𝜎(𝑧)

2

𝑝1

𝑧=1

(𝑥1) +
1

𝑝2
∑𝛿𝐵𝜎(𝑧)

2

𝑝2

𝑧=1

(𝑥2) + ⋯+
1

𝑝𝑛
∑𝛿𝐵𝜎(𝑧)

2

𝑝𝑛

𝑧=1

(𝑥𝑛) 

+
1

𝑙1
∑𝜂𝐵𝜎(𝑡)

2

𝑙1

𝑡=1

(𝑥1) +
1

𝑙2
∑𝜂𝐵𝜎(𝑡)

2

𝑙2

𝑡=1

(𝑥2) + ⋯+
1

𝑙𝑛
∑𝜂𝐵𝜎(𝑡)

2

𝑙𝑛

𝑡=1

(𝑥𝑛)] 

= ∑(
1

𝑘𝑖
∑𝛾𝐴𝜎(𝑠)

2 (𝑥𝑖)

𝑘𝑖

𝑠=1

+
1

𝑝𝑖
∑𝛿𝐴𝜎(𝑧)

2 (𝑥𝑖)

𝑝𝑖

𝑧=1

+
1

𝑙𝑖
∑𝜂𝐴𝜎(𝑡)

2

𝑙𝑖

𝑡=1

(𝑥𝑖))

𝑛

𝑖=1

 

× ∑(
1

𝑘𝑖
∑𝛾𝐵𝜎(𝑠)

2 (𝑥𝑖)

𝑘𝑖

𝑠=1

+
1

𝑝𝑖
∑𝛿𝐵𝜎(𝑡)

2 (𝑥𝑖)

𝑝𝑖

𝑧=1

+
1

𝑙𝑖
∑𝜂𝐵𝜎(𝑧)

2

𝑙𝑖

𝑡=1

(𝑥𝑖))

𝑛

𝑖=1

 

= 𝐶𝑆𝑉𝑁𝐻𝐹𝑆(𝐴, 𝐴) ∙ 𝐶𝑆𝑉𝑁𝐻𝐹𝑆(𝐵, 𝐵). 

Therefore, 𝐶𝑆𝑉𝑁𝐻𝐹𝑆(𝐴, 𝐵) ≤ √(𝐶𝑆𝑉𝑁𝐻𝐹𝑆(𝐴, 𝐴)) ∙ √𝐶𝑆𝑉𝑁𝐻𝐹𝑆(𝐵, 𝐵). Thus, 0 ≤ 𝜌𝑆𝑉𝐻𝐻𝐹𝑆(𝐴, 𝐵) ≤ 1; 

(2) It is straightforward. 

(3) 𝐴 = 𝐵 ⇒ 𝛾𝐴𝜎(𝑠)(𝑥𝑖) = 𝛾𝐵𝜎(𝑠)(𝑥𝑖), 𝛿𝐴𝜎(𝑧)(𝑥𝑖) = 𝛿𝐵𝜎(𝑧)(𝑥𝑖) 𝑎𝑛𝑑 𝜂𝐴𝜎(𝑡)(𝑥𝑖) = 𝜂𝐵𝜎(𝑡)(𝑥𝑖), 𝑥𝑖 ∈ 𝑋 ⇒

𝜌𝑆𝑉𝐻𝐻𝐹𝑆(𝐴, 𝐵) = 1. 

However, the differences of importance are considered in the elements in the universe. Therefore, we need to 

take the weights of the elements 𝑥𝑖(𝑖 = 1,2, . . . , 𝑛) into account. In the following, we develop the weighted 

correlation coefficient between SVNHFSs. 

Let 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑛)𝑇 be the weighting vector of 𝑥𝑖(𝑖 = 1,2, . . . , 𝑛) with 𝑤𝑖 ≥ 0 and ∑ 𝑤𝑖 = 1𝑛
𝑖=1 . As a 

generalization of Eq. (13), the weighted correlation coefficient is defined as follows: 

𝜌𝑆𝑉𝑁𝐻𝐹𝑆𝑤
(𝐴, 𝐵) =

[
 
 
 

𝐶𝑆𝑉𝑁𝐻𝐹𝑆𝑤
(𝐴, 𝐵)

√𝐶𝑆𝑉𝑁𝐻𝐹𝑆𝑤
(𝐴, 𝐴)√𝐶𝑆𝑉𝑁𝐻𝐹𝑆𝑤

(𝐵, 𝐵)
]
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=

[
 
 
 
 
 
 
 
 
 
 
 

∑ 𝑤𝑖

(

 
 
 

1
𝑘𝑖

∑ 𝛾𝐴𝜎(𝑠)(𝑥𝑖)𝛾𝐵𝜎(𝑠)(𝑥𝑖)
𝑘𝑖
𝑠=1

+
1
𝑝𝑖

∑ 𝛿𝐴𝜎(𝑧)(𝑥𝑖)𝛿𝐵𝜎(𝑧)(𝑥𝑖)
𝑝𝑖
𝑧=1

+
1
𝑙𝑖

∑ 𝜂𝐴𝜎(𝑡)
𝑙𝑖
𝑡=1 (𝑥𝑖)𝜂𝐵𝜎(𝑡)(𝑥𝑖) )

 
 
 

𝑛
𝑖=1

√∑ 𝑤𝑖 (
1
𝑘𝑖

∑ 𝛾𝐴𝜎(𝑠)
2𝑘𝑖

𝑠=1 (𝑥𝑖) +
1
𝑝𝑖

∑ 𝛿𝐴𝜎(𝑧)
2𝑝𝑖

𝑧=1 (𝑥𝑖) +
1
𝑙𝑖

∑ 𝜂𝐴𝜎(𝑡)
2𝑙𝑖

𝑡=1 (𝑥𝑖))
𝑛
𝑖=1

× √∑ 𝑤𝑖 (
1
𝑘𝑖

∑ 𝛾𝐵𝜎(𝑠)
2𝑘𝑖

𝑠=1 (𝑥𝑖) +
1
𝑝𝑖

∑ 𝛿𝐵𝜎(𝑧)
2𝑝𝑖

𝑧=1 (𝑥𝑖) +
1
𝑙𝑖

∑ 𝜂𝐵𝜎(𝑡)
2𝑙𝑖

𝑡=1 (𝑥𝑖))
𝑛
𝑖=1

]
 
 
 
 
 
 
 
 
 
 
 

. 

(14) 

Specially, when 𝑤𝑖 = 1 𝑛⁄  (𝑖 = 1,2, . . . , 𝑛) Eq. (14) reduce to Eq. (13).  

Moreover, for two SVNHFSs 𝐴 and 𝐵, the weighted correlation coefficient defined by Eq. (14) should satisfy 

the following properties: 

(1) 0 ≤ 𝜌𝑆𝑉𝑁𝐻𝐹𝑆𝑤
(𝐴, 𝐵) ≤ 1; 

(2) 𝜌𝑆𝑉𝑁𝐻𝐹𝑆𝑤
(𝐴, 𝐵) = 𝜌𝑆𝑉𝑁𝐻𝐹𝑆𝑤

(𝐵, 𝐴); 

(3) 𝜌𝑆𝑉𝑁𝐻𝐹𝑆𝑤
(𝐴, 𝐵) = 1, if 𝐴 = 𝐵. 

 

4. Decision-making method based on the single-valued neutrosophic hesitant fuzzy information 

In this section, we use the developed correlation coefficient to find the best alternative in MADM with 

SVNHFSs. 

For the MADM problem, let 𝐴 = {𝛼1, 𝛼2, … , 𝛼𝑚} be a discrete set of alternatives, 𝐺 = {𝛽1, 𝛽2, … , 𝛽𝑛} be a set 

of attributes for a MADM with SVNHFSs. The decision maker provides his decision as a SVNHFN 𝑛𝑖𝑗 =

{ℎ𝑖𝑗, 𝚤𝑖𝑗 , 𝑔𝑖𝑗} (𝑗 = 1,2,… , 𝑛; 𝑖 = 1,2,… ,𝑚) for the alternative 𝛼𝑖(𝑖 = 1,2,… ,𝑚) under the attribute 𝛽𝑗 (𝑗 =

1,2,… , 𝑛) . Suppose that 𝑁 = [𝑛𝑖𝑗]𝑚×𝑛
 is the decision matrix, where 𝑛𝑖𝑗  is expressed by single-valued 

neutrosophic hesitant fuzzy element. 

In MADM process, we can utilize the concept of ideal point to determine the best alternative in the decision 

set. Although the ideal alternative does not exist in real world, it does provide a useful theoretical construct 

against which to evaluate alternatives. Therefore, we propose each ideal SVNHFN in the ideal alternative 𝑛𝑗
∗ =

{ℎ𝑗
∗, 𝚤𝑗

∗, 𝑔𝑗
∗} = {{1}, {0}, {0}} (𝑗 = 1,2, … , 𝑛) in the ideal alternative 𝛼∗ = {〈𝛽𝑗, 𝑛𝑗

∗〉: 𝛽𝑗 ∈ 𝐺}. 

The procedure for the selection of best alternative is described as follows: 

Step1. Compute the 𝜌𝑆𝑉𝑁𝐻𝐹𝑆𝑤
(𝛼∗, 𝛼𝑖) between an alternative 𝛼𝑖(𝑖 =  1,2, . . . , 𝑚)  and the ideal 

alternative 𝛼∗ by using Eq.(14). 

Step 2. Rank all of the alternative with respect to the values of the 𝜌𝑆𝑉𝑁𝐻𝐹𝑆𝑤
(𝛼∗, 𝛼𝑖)(𝑖 =  1,2, . . . , 𝑚). 
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Step 3. Choose the best alternative with respect to the maximum value of the 𝜌𝑆𝑉𝑁𝐻𝐹𝑆𝑤
(𝛼∗, 𝛼𝑖)(𝑖 =

 1,2, . . . , 𝑚). 

Step4. End. 

5. Numerical example 

Here, we take the example, from Ye [20, 27], to illustrate the utility of the proposed weighted correlation 

coefficient. 

Example 11. Suppose that an investment company that wants to invest a sum of money in the best option. 

There is a panel with four possible alternatives in which to invest the money: (1) 𝛼1 is a car company, (2) 𝛼2 

is a food company, (3) 𝛼3 is a computer company, and (4) 𝛼4 is an arms company. The investment company 

must make a decision according to the three attributes: (1) 𝛽1 is the risk analysis; (2) 𝛽2 is the growth analysis, 

and (3) 𝛽3 is the environmental impact analysis. Suppose that 𝑤 = (0.35, 0.25, 0.40) is the attribute weight 

vector. The four possible alternatives 𝛼𝑖 (𝑖 = 1,2,3,4) are to be evaluated using the single valued neutrosophic 

hesitant fuzzy information by decision maker under three attributes 𝛽𝑗 (𝑗 = 1,2,3), and the decision matrix 𝑁 

is presented as follows: 

Table 1: Decision matrix 𝑁 

𝑁

= (

{ { 0.3, 0.4, 0.5 } , { 0.1 } , { 0.3, 0.4 } } { { 0.5, 0.6 } , { 0.2, 0.3 } , { 0.3,0.4 } } { { 0.2, 0.3 } , { 0.1, 0.2 } , { 0.5, 0.6 } }

{ { 0.6, 0.7 } , { 0.1, 0.2 } , { 0.2, 0.3 } } { { 0.6, 0.7 } , { 0.1 } , { 0.3 } } { { 0.6, 0.7 } , { 0.1, 0.2 } , { 0.1, 0.2 } }

{ { 0.5, 0.6 } , { 0.4 } , { 0.2, 0.3 } } { { 0.6 } , { 0.3 } , { 0.4 } } { { 0.5, 0.6 } , { 0.1 } , { 0.3 } }

{ { 0.7, 0.8 } , { 0.1 } , { 0.1, 0.2 } } { { 0.6, 0.7 } , { 0.1 } , { 0.2 } } { { 0.3, 0.5 } , { 0.2 } , { 0.1, 0.2, 0.3 } }

) 

To get the best alternative(s), the following steps are involved: 

Step 1. Using Eq. (14), the 𝜌𝑆𝑉𝑁𝐻𝐹𝑆𝑤
(𝛼𝑖, 𝛼

∗) (𝑖 = 1,2,3,4) between the alternative 𝛼𝑖 and the ideal alternative 

𝛼∗ were been calculated as follows: 

𝜌𝑆𝑉𝑁𝐻𝐹𝑆𝑤
(𝛼1, 𝛼

∗) = 0.6124, 𝜌𝑆𝑉𝑁𝐻𝐹𝑆𝑤
(𝛼2, 𝛼

∗) = 0.9210, 

𝜌𝑆𝑉𝑁𝐻𝐹𝑆𝑤
(𝛼3, 𝛼

∗) = 0.7986, 𝜌𝑆𝑉𝑁𝐻𝐹𝑆𝑤
(𝛼4, 𝛼

∗) = 0.8905. 

Step 2. The ranking order of alternatives according to the 𝜌𝑆𝑉𝑁𝐻𝐹𝑆𝑤
(𝛼𝑖, 𝛼

∗) (𝑖 = 1,2,3,4) was been obtained 

as: 𝛼2 ≻ 𝛼4 ≻ 𝛼3 ≻ 𝛼1, which have the same ranking result of Ye’s [27]. 

Step 3. With respect to the increasing value among the 𝜌𝑆𝑉𝑁𝐻𝐹𝑆𝑤
(𝛼𝑖, 𝛼

∗) (𝑖 = 1,2,3,4), the alternative 𝛼2 was 

been selected as the best alternative. 

Example 1 clearly demonstrate that the developed method in this paper provides an effective and applicable 

way to solve MADM problems with single-valued neutrosophic hesitant fuzzy information. Since the 

SVNHFS is a further generalization of FS, IFS, HFS, FMS, DHFS and SVNS, the correlation coefficients of 

aforementioned sets are special cases of the correlation coefficient of SVNHFSs developed in this paper. That 
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is, the proposed method can be used for not only the correlation coefficient with single valued neutrosophic 

hesitant fuzzy information but also the hesitant fuzzy information, intuitionistic fuzzy information and dual 

hesitant fuzzy information and single valued neutrosophic information, whereas the methods given in Xu and 

Xia [29], Xu [30] ,Wang et al. [31] and Ye [20] are only suitable for the problem with HFSs, IFSs, DHFSs and 

SVNSs, respectively. 

6.  A comparison analysis and discussion 

In order to verify the validity of the developed method, we consider the method based on the cosine measure 

proposed by Ye [27], which is the first method developed to find the best alternative under single valued 

neutrosophic hesitant fuzzy environment; to rank this example, we can get the ranking as 𝛼2 ≻ 𝛼4 ≻ 𝛼3 ≻ 𝛼1. 

Obviously, these two methods have the same ranking result. 

With regard to the four methods in [29,30,31, 20], the weighted correlation coefficient between each alternative 

and the optimal alternative was computed and used to determine the final ranking sequence of all the 

alternatives, in which attribute values according to alternatives are evaluated by using hesitant information, 

intuitionistic fuzzy information, dual hesitant fuzzy information and single valued neutrosophic information, 

respectively. However, in our method, the uncertainty or vagueness presented, i.e. the indeterminacy case is 

handled independently from truth-hesitancy membership and falsity-hesitancy membership factors, whereas 

the incorporated uncertainty is based on the hesitant degree of membership of HFSs and the hesitant degrees 

of membership and non- membership of DHFs (or IFSs). On the other hand, our method is more general than 

Ye [20]’s method, because his method does not take into account the hesitant cases of truth, indeterminacy 

and falsity memberships. Therefore, this leads to the theory that the MADMs obtained by using HFSs, IFSs, 

DHFSs and SVNSs are a special case of the method using SVNHFSs. That is, the method developed in here 

can avoid losing and distorting the preference information provided which makes the final results better 

correspond with real life decision-making problems.  

7. Conclusions 

The SVNHFS is a generalized form that allows extension of FSs, IFSs, HFSs, FMSs, DHFSs and SVNSs, in 

which its truth-hesitancy membership value, indeterminacy-hesitancy membership value and falsity-hesitancy 

membership value are characterized by three sets of possible values. Therefore, it is a more flexible and more 

efficient set than aforementioned sets, considering more comprehensive information provided by experts in 

decision process. In this study, we defined first the informational energy of a SVNHFS and then proposed the 

concepts of correlation, and correlation coefficient of SVNHFSs, as a new generalization of FSs, IFSs, HFSs, 

FMSs, DHFSs and SVNSs. Further, the correlation coefficient are then applied to a MADM under single 

valued neutrosophic hesitant fuzzy environment. In order to determine the ranking sequence of all alternatives 

and choose the best alternative, the weighted correlation coefficient between each alternative and the optimal 
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alternative has been utilized. Finally, a numerical and practical example have been given to support the findings 

and illustrate the validation and efficiency of the proposed correlation coefficient between SVNHFSs. The 

approach proposed in this paper has much application potential in dealing with MADM problems using single 

valued neutrosophic hesitant fuzzy information, and also can be effectively used in the real applications of 

decision making, pattern recognition, supply management, data mining and etc. in the future research. 
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