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Correlation coefficients of single valued neutrosophic
refined soft sets and their applications in clustering
analysis
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Abstract Neutrosophic set theory was introduced by Smarandache [33] based
on neutrosophy which is a branch of philosophy. The concept of single valued
neutrosophic refined set was defined by Ye [46] as an extension of single val-
ued neutrosophic sets introduced by Wang [39]. In this study, the concept of
single valued neutrosophic refined soft set is defined as an extension of single
valued neutrosophic refined set. Also set theoretic operations between two sin-
gle valued neutrosophic refined soft sets are defined and some basic properties
of these operations are investigated. Furthermore, two methods to calculate
correlation coefficient between two single valued neutrosophic refined soft sets
are proposed and based on method given by Xu et al. in [48], an application
of one of proposed methods is given in clustering analysis

Keywords Soft set · neutrosophic soft set · single valued neutrosophic refined
set · single valued neutrosophic refined soft set · correlation coefficient ·
clustering analysis.

1 Introduction

To cope with uncertainty and inconsistency has been very important mat-
ter for researchers that study on mathematical modeling. Researchers have
proposed many approximations to make mathematical model some problems
containing uncertainty and inconsistency data. Some of well-known approxi-
mations are fuzzy set theory proposed by Zadeh [40] and intuitionistic fuzzy
set theory introduced by Atanassov [2]. A fuzzy set is identified by mem-
bership function and an intuitionistic fuzzy set is identified by membership
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2 Faruk Karaaslan

and non-membership functions. But fuzzy sets and intuitionistic fuzzy sets
don’t handle the indeterminant and inconsistent information. Therefore, neu-
trosophic set theory was introduced by Smarandache [33] as a generalization
of fuzzy sets and intuitionistic fuzzy sets based on Neutrosophy which is a
branch of philosophy. In 2005, Smarandache [34] shown that neutrosophic set
is a generalization of paraconsistent set and intuitionistic fuzzy set. Wang
[38] defined the concept of interval neutrosophic set (INS) and gave set the-
oretic operations of INSs. Zhang et al. [41] presented an application of INS
in multicriteria decision making problems. Broumi and Smarandache [7] gave
some new operations on interval valued neutrosophic sets. Intuitionistic neu-
trosophic sets and their set theoretical operations such as complement, union
and intersection were defined by Bhowmik and Pal [4]. They also defined to
deal with the engineering problem relations of four special type of intuition-
istic neutrosophic sets and gave some properties of these relations. In 2010,
concept of single-valued neutrosophic set and its set operations were defined
by Wang et al. [39]. Ansari et al. [1] gave an application of neutrosophic set
theory to medical AI. Ye [47] proposed concept of trapezoidal neutrosophic
set by combining trapezoidal fuzzy set with single valued neutrosophic set. He
also presented some operational rules related to this new sets and proposed
score and accuracy function for trapezoidal neutrosophic numbers.

In classical set theory, if there are repeated elements in a set, each of
repeated elements is represented a representative element. Therefore, elements
of a classical set are different from each other. However, in some situations, we
need a structure containing repeated elements. For instance, while search in
a dad name-number of children-occupation relational basis. To express these
cases, we use a structure called bags defined by Yager [44]. In 1998, Baowen
[3] defined fuzzy bags and their operations based on Peizhuang’s theory of
set-valued statistics [29] and Yager’s bags theory [44]. Concept of intuitionistic
fuzzy bags (multi set) and its operations were defined by Shinoj and Sunil [36],
and they gave an application in medical diagnosis under intuitionistic fuzzy
multi environment. Rajarajeswari and Uma [31] introduced the Normalized
Hamming Similarity measure for intuitionistic fuzzy multi sets based on the
geometrical elucidation of intuitionistic fuzzy sets and gave an application in
medical diagnosis.

To model problems containing uncertainty, notion of soft set was first pro-
posed by Molodtsov [23] as a new mathematical tool which is an alternative
approach to fuzzy set and intuitionistic fuzzy set. Maji et al. [24,25] defined
some new operations of soft sets and gave an application for decision making
problem. Then, studies on soft sets have progressed increasingly. For exam-
ples; Çağman and Enginoğlu [13] redefined soft sets operations and improved
a new decision making method called uni-int decision making method. Qin et
al. [30] gave some algorithms which require relatively fewer calculations com-
pared with the existing decision making algorithms, Zhi et al. [42] presented a
decision making approach for incomplete soft sets. Neutrosophic set and soft
set were combined by Maji [26] in 2013. He also gave an application to decision
making problem under neutrosophic soft environment. Broumi [5] was defined
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Correlation coefficients of SVNRS-sets 3

concept of generalized neutrosophic sets by combining Molodtsov’s [23] soft
set definition and Salama’s [32] neutrosophic set definition. Şahin and Küçük
[37] proposed generalized neutrosophic soft set based on Maji’s neutrosophic
soft set definition. Intuitionistic neutrosophic soft set and its operations were
defined by Broumi and Smarandache [6]. Interval-valued neutrosophic soft set
was defined by Deli [15] and it was generalized by Broumi et al. [8]. Then,
Broumi et al. [9] extended definition of interval valued intuitionistic fuzzy soft
relation to interval valued neutrosophic soft sets and also they defined neutro-
sophic parameterized soft sets and investigated their set theoretical properties
in [10]. In 2014, Karaaslan [21] redefined operations of neutrosophic soft sets
and gave applications in decision making problem and group decision mak-
ing problem. In 2015, Maji [27] proposed concept of weighted neutrosophic
soft set as a hybridization of neutrosophic sets with soft sets corresponding to
weighted parameters and gave an application in multicriteria decision making
problem.

In 2013, Smarandache [35] refined the neutrosophic set to n components:
t1, t2, tj ; i1, i2ik; f1, f2, fl, with j + k + l = n > 3. Single valued neutrosophic
multiset (refined) (SVNM) was proposed by Ye and Ye [45] as a generalization
of single valued neutrosophic sets. They also proposed Dice similarity measure
and weighed Dice similarity measure of SVNMs and investigated their proper-
ties. Neutrosophic soft multi set theory was introduced by Deli et al. [16] and
its an application was made to decision making.

Chiang and Lin [14] considered the fuzzy correlation under fuzzy environ-
ment and Mitchell [28] proposed a procedure to compute correlation coefficient
between two intuitionistic fuzzy sets. Bustince and Burillo [12] studied on cor-
relation coefficient of interval-valued intuitionistic fuzzy sets and introduced
two decomposition theorems of the correlation of interval valued intuitionistic
fuzzy sets. Hung and Wu [20] extended the ”centroid” method to interval-
valued intuitionistic fuzzy sets and gave a formula to compute the correlation
coefficient between interval-valued intuitionistic fuzzy sets. Hanafy et al. [17]
suggested a procedure to compute correlation coefficient of generalized intu-
itionistic fuzzy sets by means of ”centroid and extended the centroid method
to interval-valued generalized intuitionistic fuzzy sets. Also, they discussed and
derived formula for correlation coefficient between two neutrosophic sets based
on centroid method [18] and derived formula for correlation coefficient between
neutrosophic sets in probability space [19]. Karaaslan [22] proposed a method
to compute correlation coefficient between two possibility neutrosophic soft
sets. Chen et al. [43] gave a formula to compute correlation coefficient of hesi-
tant fuzzy sets and applied the formula to clustering analysis. Ye [46] improved
to compute correlation coefficients of single valued neutrosophic sets and in-
terval valued neutrosophic sets based on existing correlation coefficient and
clustering analysis methods not being defined phenomenon or not consistent
result in some cases. Broumi and Deli [11] developed a method to compute
correlation between two neutrosophic refined (multi) sets as an extension of
correlation measure of neutrosophic set and intuitionistic fuzzy multi sets.
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4 Faruk Karaaslan

In this study, a new structure called single valued neutrosophic refined soft
set (SVNRS-set) which is a generalization of the single valued neutrosophic
refined sets is defined, and some properties of SVNRS-sets in term of set the-
oretical operations are obtained based on Ye’s [45] definitions and operations.
SV NRS−set is an important structure to model some multicriteria decision
making problems. Also two formulas are given to compute correlation coef-
ficient between two SVNRS-sets and a clustering method is developed based
on the proposed formulas. In the last section of the paper an example is pre-
sented to show calculation of proposed correlation coefficient and operation of
clustering method.

2 Preliminary

In this section, a brief overview of the concepts of soft set, single valued neutro-
sophic set and single valued neutrosophic refined (multi) set are presented and
their set theoretical operations required in subsequent sections are recalled.

Throughout paper, X denotes initial universe, E is a set of parameters and
Ip = {1, 2, ...p} is an index set.

Definition 1 [23] Let E be parameter set and ∅ 6= A ⊆ E. A pair (f,A) is
called a soft set over X , where f is a mapping given by f : A → P(X).

Definition 2 [39] Let X be an initial universe. A single-valued neutrosophic
set (SV NS) A ⊆ X is characterized by a truth membership function tA(x), an
indeterminacy membership function iA(x), and a falsity membership function
fA(x) with tA(x), iA(x), fA(x) ∈ [0, 1] for all x ∈ X .

It should be noted that for SV NS A, the relation

0 ≤ tA(x) + iA(x) + fA(x) ≤ 3 for all x ∈ X

holds good. When X is discrete a SV NS A can be written as

A =
∑

x

〈tA(x), iA(x), fA(x)〉 /x, for all x ∈ X.

SV NS has the following pattern: A={〈x, tA(x), iA(x), fA(x)〉 : x ∈ X}.

Thus, finite SV NS A can be presented as follows:
A = {〈x1, tA(x1), iA(x1), fA(x1)〉, . . . , 〈xM , tA(xM ), iA(xM ), fA(xM )〉} for allx ∈
X . The following definitions are given in [39] for SV NSs A and B as follows:

1. A ⊆ B if and only if tA(x) ≤ tB(x), iA(x) ≥ iB(x), fA(x) ≥ fB(x) for any
x ∈ X .

2. A = B if and only if A ⊆ B and B ⊆ A for all x ∈ X .
3. Ac={〈x, fA(x), 1 − iA(x), tA(x)〉 : x ∈ X}.
4. A ∪B= {〈x, (tA(x) ∨ tB(x)), (iA(x) ∧ iB(x)), (fA(x) ∧ fB(x))〉 : x ∈ X}
5. A ∩B= {〈x, (tA(x) ∧ tB(x)), (iA(x) ∨ iB(x)), (fA(x) ∨ fB(x))〉 : x ∈ X}.
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Correlation coefficients of SVNRS-sets 5

Definition 3 [45] Let X be a nonempty set with generic elements in X de-
noted by x. A single valued neutrosophic refined set (SVNR-set) f is defined
as follows:

A =
{〈

x, (t1A(x), t
2
A(x), ..., t

p
A(x)), (i

1
A(x), i

2
A(x), ..., i

p
A(x)),

(f1
A(x), f

2
A(x), ..., f

p
A(x))

〉

: x ∈ X
}

.

Here, t1A, t
2
A, ..., t

p
A : X → [0, 1], i1A, i

2
A, ..., i

p
A : X → [0, 1] and f1

A, f
2
A, ..., f

p
A :

X → [0, 1] such that 0 ≤ tiA(x) + iiA(x) + f i
A(x) ≤ 3 for all x ∈ X and i ∈ Ip.

(t1A(x), t
2
A(x), ..., t

k
A(x)), (i

1
A(x), i

2
A(x), ..., i

l
A(x)) and (f1

A(x), f
2
A(x), ..., f

m
A (x))

are the truth-membership sequence, indeterminacy-membership sequence and
falsity-membership sequence of the element x. These sequences may be in
decreasing or increasing order.

A SV NR-set A drawn from X is characterized by the tree functions:
count truth-membership of CTA, count indeterminacy-membership of CIA,
and count falsity-membership of CFA such that CTA(x) : X → R, CIA(x) :
X → R and CFA(x) : X → R for x ∈ X , where R is the set of all real number
refined set in real unit [0, 1].

For convenience, a SV NR-set A can be denoted by the simplified for:

A =
{

〈

x, tiA(x), i
i
A(x), f

i
A(x)

〉

: x ∈ X, i ∈ Ip

}

Set of all single valued neutrosophic refined sets over X will be denoted by
SV NRX .

Definition 4 [45] The length of an element x in SV NR-set A is defined as
cardinality of CTA(x) or CIA(x), or CFA(x) and denoted by L(x : A). Then
L(x : A) = |CTA(x)| = |CIA(x)| = |CFA(x)|.

Definition 5 [45] Let A =
{

〈

x, tiA(x), i
i
A(x), f

i
A(x)

〉

: x ∈ X, i ∈ Ip

}

and

B =
{

〈

x, tiB(x), i
i
B(x), f

i
B(x)

〉

: x ∈ X, i ∈ Ip

}

be two SVNR-sets over X .

Then,

1. A is said to be SVNR-subset of B is denoted by A ⊆ B if tiA(x) ≤ tiB(x),
iiA(x) ≥ iiB(x), f

i
A(x) ≥ f i

B(x) for all i ∈ Ip and x ∈ X .
2. A = B if and only if A ⊆ B and B ⊆ A;
3. The complement of A denoted by Ac and is define as follows:

A =
{

〈

x, f i
A(x), 1 − iiA(x), t

i
A(x)

〉

: x ∈ X, i ∈ Ip

}

.

Definition 6 Let A =
{

〈

x, tiA(x), i
i
A(x), f

i
A(x)

〉

: x ∈ X, i ∈ Ip

}

be a SVNR-

set in X . Then,

1. A is said to be a null SVNR-set, if tiA(x) = 0, iiA(x) = 1 and f i
A(x) = 1 for

all i ∈ Ip and x ∈ X , and denoted by Φ̂.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6 Faruk Karaaslan

2. A is said to be a universal SVNR-set, if tiA(x) = 1, iiA(x) = 0 and f i
A(x) = 0

for all i ∈ Ip and x ∈ X , and denoted by X̂ .

Definition 7 [45] Let A =
{

〈

x, tiA(x), i
i
A(x), f

i
A(x)

〉

: x ∈ X, i ∈ Ip

}

and

B =
{

〈

x, tiB(x), i
i
B(x), f

i
B(x)

〉

: x ∈ X, i ∈ Ip

}

be two SVNR-sets in X . Then,

1. Union:

A ∪B =
{

〈

x, tiA(x) ∨ tiB(x), i
i
A(x) ∧ iiB(x), f

i
A(x) ∧ f i

B(x)
〉

: x ∈ X, i ∈ Ip

}

2. Intersection:

A ∩B =
{

〈

x, tiA(x) ∧ tiB(x), i
i
A(x) ∨ iiB(x), f

i
A(x) ∨ f i

B(x)
〉

: x ∈ X, i ∈ Ip

}

3 Single valued neutrosophic refined soft sets

In this section, the concept of single valued neutrosophic refined soft set and
set theoretical operations between single valued neutrosophic refined soft sets
are defined. Also some properties of the defined operations are investigated.

Definition 8 Let X be an initial universe and E be a parameter set. A single
valued neutrosophic refined soft set (SVNRS-set) f̃ is defined by a function as
follows:

f̃ : E → SV NRX .

Here SVNRS-set f̃ as a family of SVNR-sets on X can be written as follows:

f̃ =
{

(

e,
{

〈x, tif(e)(x), i
i
f(e)(x), f

i
f(e)(x)〉 : x ∈ X, i ∈ Ip

}

) : e ∈ E
}

.

Note that f̃(e) =
{

〈x, (t1
f(e)(x), t

2
f(e)(x), ..., t

p

f(e)(x)), (i
1
f(e)(x), i

2
f(e)(x), ..., i

p

f(e)(x)),

(f1
f(e)(x), f

2
f(e)(x), ..., f

p

f(e)(x))〉 : x ∈ X, i ∈ Ip
}

.

From now on set of all SV NRS−sets on initial universe X and parameter set
E will be denoted by SV NRSE

X .

Example 1 Let X = {x1, x2, x3, x4} be the set of houses and E = {e1, e2, e3}
be a set of qualities where e1 = cheap, e2 = big and e3 = repearing. Then,
SVNRS-set f̃ can be considered as follows:
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f̃ =











































































(

e1{〈x1, (0.4, 0.3, 0.2, 0.1), (0.6, 0.4, 0.1, 0.0), (0.8, 0.5, 0.5, 0.3)〉, 〈x2, (0.3, 0.1, 0.1, 0.0),

(0.5, 0.5, 0.4, 0.1), (0.6, 0.5, 0.2, 0.1)〉, 〈x3, (0.9, 0.3, 0.1, 0.1), (0.7, 0.3, 0.3, 0.1),

(0.7, 0.5, 0.2, 0.0)〉, 〈x4, (0.6, 0.5, 0.1, 0.0), (0.9, 0.8, 0.7, 0.6), (0.2, 0.1, 0.0, 0.0)〉}

)

,
(

e2{〈x1, (0.4, 0.3, 0, 3, 0.1), (0.6, 0.6, 0.4, 0.4), (0.8, 0.8, 0.6, 0.6)〉, 〈x2, (0.9, 0.5, 0.5, 0.3),

(0.9, 0.7, 0.7, 0.6), (0.8, 0.2, 0.2, 0.1)〉, 〈x3, (0.6, 0.5, 0.1, 0.0), (0.3, 0.2, 0.1, 0.0),

(0.9, 0.5, 0.5, 0.0)〉, 〈x4, (0.7, 0.6, 0.6, 0.5), (0.9, 0.4, 0.3, 0.2), (0.7, 0.3, 0.3, 0.0)〉}

)

,
(

e3{〈x1, (0.9, 0.7, 0.7, 0.1), (0.8, 0.7, 0.7, 0.2), (0.1, 0.0, 0.0, 0.0)〉, 〈x2, (0.6, 0.6, 0.6, 0.6),

(0.8, 0.2, 0.2, 0.1), (0.5, 0.1, 0.1, 0.0)〉, 〈x3, (0.6, 0.3, 0.2, 0.0), (0.8, 0.8, 0.7, 0.4),

(0.8, 0.8, 0.3, 0.0)〉, 〈x4, (0.4, 0.3, 0.1, 0.1), (0.5, 0.4, 0.4, 0.2), (0.7, 0.5, 0.0, 0.0)〉}

)

,











































































.

Definition 9 Let f̃ =
{

(

e,
{

〈x, ti
f(e)(x), i

i
f(e)(x), f

i
f(e)(x)〉 : x ∈ X, i ∈ Ip

}

) :

e ∈ E
}

and g̃ =
{

(

e,
{

〈x, ti
g(e)(x), i

i
g(e)(x), f

i
g(e)(x)〉 : x ∈ X, i ∈ Ip

}

) : e ∈ E
}

be two SV NRS−sets. Then,

1. f̃ is said to be SVNRS-subset of g̃ and denoted by f̃⊆̂g, if ti
f(e)(x) ≤

ti
g(e)(x), i

i
f(e)(x) ≥ ii

g(e)(x), f
i
f(e)(x) ≥ f i

g(e)(x) for all i ∈ Ip, x ∈ X and
e ∈ E.

2. f̃ = g̃ if and only if f̃⊆̂g̃ and g̃⊆̂f̃ ;
3. The complement of f̃ , denoted by f̃ c, is defined as follows:

f̃ c =
{

(e, f c(e)) : e ∈ E
}

.

Here f c(e) is a SVNR-set over X , for each e ∈ E.

Definition 10 Let f̃ =
{

(

e,
{

〈x, tif(e)(x), i
i
f(e)(x), f

i
f(e)(x)〉 : x ∈ X, i ∈ Ip

}

) :

e ∈ E
}

be a SV NRS−set. Then,

1. f̃ is said to be a null SVNRS-set, if f̃(e) = Φ̂ for all e ∈ E, and denoted
by Φ̃.

2. f̃ is said to be a universal SVNRS-set, if f̃(e) = X̂ for all e ∈ E, and
denoted by X̃ .

Definition 11 Let f̃ =
{

(

e,
{

〈x, ti
f(e)(x), i

i
f(e)(x), f

i
f(e)(x)〉 : x ∈ X, i ∈ Ip

}

) :

e ∈ E
}

and g̃ =
{

(

e,
{

〈x, (tig(e)(x)), (i
i
g(e)(x)), (f

i
g(e)(x))〉 : x ∈ X, i ∈ Ip

}

) :

e ∈ E
}

be two SV NRS−set. Then,

1. Union:

f̃ ∪̂g̃ =
{

(e, f̃(e) ∪ g̃(e)) : e ∈ E
}

.

2. Intersection:

f̃ ∩̂g̃ =
{

(e, f̃(e) ∩ g̃(e)) : e ∈ E
}

.
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8 Faruk Karaaslan

Example 2 Consider SV NRS−sets f̃ and g̃ in which their tabular represen-
tations are given below:

f̃ e1 e2 e3

x1

(〈0.5, 0.5, 0.3, 0.2〉,
〈0.6, 0.4, 0.2, 0.1〉,
〈0.7, 0.5, 0.5, 0.3〉)

(〈0.4, 0.4, 0.0, 0.0〉,
〈0.6, 0.5, 0.3, 0.1〉,
〈0.7, 0.4, 0.1, 0.0〉)

(〈0.3, 0.2, 0.1, 0.1〉,
〈0.7, 0.5, 0.1, 0.1〉,
〈0.9, 0.9, 0.8, 0.3〉)

x2

(〈0.8, 0.5, 0.4, 0.1〉,
〈0.7, 0.7, 0.5, 0.5〉,
〈0.5, 0.4, 0.3, 0.2〉)

(〈0.6, 0.5, 0.3, 0.1〉,
〈0.5, 0.5, 0.5, 0.5〉,
〈0.5, 0.3, 0.3, 0.2〉)

(〈0.6, 0.4, 0.4, 0.1〉,
〈0.7, 0.7, 0.5, 0.5〉,
〈0.9, 0.1, 0.0, 0.0〉)

x3

(〈0.8, 0.5, 0.4, 0.3〉,
〈0.9, 0.8, 0.7, 0.5〉,
〈0.8, 0.7, 0.7, 0.4〉)

(〈1.0, 0.9, 0.9, 0.8〉,
〈0.3, 0.2, 0.1, 0.1〉,
〈0.9, 0.5, 0.1, 0.0〉)

(〈0.8, 0.6, 0.4, 0.2〉,
〈0.8, 0.5, 0.5, 0.4〉,
〈0.8, 0.5, 0.4, 0.3〉)

x4

(〈0.7, 0.6, 0.5, 0.3〉,
〈0.9, 0.6, 0.5, 0.4〉,
〈0.8, 0.8, 0.7, 0.7〉)

(〈0.7, 0.5, 0.3, 0.3〉,
〈0.9, 0.6, 0.5, 0.3〉,
〈0.8, 0.7, 0.3, 0.1〉)

(〈0.6, 0.5, 0.0, 0.0〉,
〈0.5, 0.4, 0.4, 0.1〉,
〈0.7, 0.7, 0.7, 0.5〉)

g̃ e1 e2 e3

x1

(〈0.6, 0.5, 0.1, 0.0〉,
〈0.7, 0.5, 0.3, 0.2〉,
〈0.9, 0.8, 0.6, 0.3〉)

(〈0.5, 0.4, 0.4, 0.2〉,
〈0.3, 0.1, 0.1, 0.0〉,
〈0.7, 0.7, 0.2, 0.1〉)

(〈0.6, 0.4, 0.3, 0.1〉,
〈0.9, 0.9, 0.5, 0.1〉,
〈0.6, 0.5, 0.1, 0.0〉)

x2

(〈0.7, 0.2, 0.1, 0.1〉,
〈0.9, 0.0, 0.0, 0.0〉,
〈0.8, 0.7, 0.5, 0.2〉)

(〈1.0, 0.5, 0.5, 0.3〉,
〈0.6, 0.4, 0.1, 0.1〉,
〈0.9, 0.7, 0.7, 0.0〉)

(〈0.9, 0.8, 0.6, 0.5〉,
〈0.8, 0.7, 0.3, 0.1〉,
〈0.5, 0.5, 0.5, 0.2〉)

x3

(〈0.9, 0.8, 0.5, 0.5〉,
〈0.5, 0.4, 0.1, 0.1〉,
〈0.1, 0.1, 0.0, 0.0〉)

(〈0.9, 0.8, 0.8, 0.3〉,
〈0.9, 0.3, 0.3, 0.2〉,
〈0.3, 0.2, 0.2, 0.1〉)

(〈1.0, 0.3, 0.3, 0.0〉,
〈0.7, 0.4, 0.2, 0.2〉,
〈0.7, 0.6, 0.5, 0.2〉)

x4

(〈1.0, 1.0, 0.7, 0.3〉,
〈0.7, 0.5, 0.1, 0.1〉,
〈0.9, 0.4, 0.2, 0.1〉)

(〈0.6, 0.5, 0.5, 0.2〉,
〈0.2, 0.2, 0.1, 0.1〉,
〈0.8, 0.4, 0.3, 0.1〉)

(〈0.5, 0.5, 0.4, 0.4〉,
〈0.9, 0.9, 0.5, 0.3〉,
〈0.6, 0.4, 0.4, 0.3〉)

.

Then,

f̃ ∪̂g̃ e1 e2 e3

x1

(〈0.6, 0.5, 0.3, 0.2〉,
〈0.6, 0.4, 0.2, 0.1〉,
〈0.7, 0.5, 0.5, 0.3〉)

(〈0.5, 0.4, 0.4, 0.2〉,
〈0.3, 0.1, 0.1, 0.0〉,
〈0.7, 0.4, 0.1, 0.0〉)

(〈0.7, 0.7, 0.3, 0.3〉,
〈0.7, 0.6, 0.5, 0.1〉,
〈0.6, 0.5, 0.1, 0.0〉)

x2

(〈0.8, 0.5, 0.4, 0.1〉,
〈0.7, 0.0, 0.0, 0.0〉,
〈0.5, 0.4, 0.3, 0.2〉)

(〈1.0, 0.5, 0.5, 0.3〉,
〈0.5, 0.4, 0.1, 0.1〉,
〈0.5, 0.5, 0.3, 0.0〉)

(〈0.9, 0.8, 0.6, 0.5〉,
〈0.7, 0.7, 0.3, 0.1〉,
〈0.5, 0.1, 0.0, 0.0〉)

x3

(〈0.9, 0.8, 0.5, 0.5〉,
〈0.5, 0.4, 0.1, 0.1〉,
〈0.1, 0.1, 0.0, 0.0〉)

(〈1.0, 0.9, 0.9, 0.8〉,
〈0.3, 0.2, 0.1, 0.1〉,
〈0.3, 0.2, 0.1, 0.0〉)

(〈0.1, 0.6, 0.4, 0.2〉,
〈0.7, 0.4, 0.2, 0.2〉,
〈0.7, 0.5, 0.4, 0.2〉)

x4

(〈1.0, 1.0, 0.7, 0.3〉,
〈0.7, 0.5, 0.1, 0.1〉,
〈0.8, 0.4, 0.2, 0.1〉)

(〈0.7, 0.5, 0.3, 0.3〉,
〈0.2, 0.2, 0.1, 0.1〉,
〈0.8, 0.4, 0.3, 0.1〉)

(〈0.6, 0.5, 0.4, 0.4〉,
〈0.5, 0.4, 0.4, 0.1〉,
〈0.6, 0.4, 0.4, 0.3〉)
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and

f̃ ∩̂g̃ e1 e2 e3

x1

(〈0.5, 0.5, 0.1, 0.0〉,
〈0.7, 0.5, 0.3, 0.2〉,
〈0.9, 0.8, 0.6, 0.3〉)

(〈0.4, 0.4, 0.0, 0.0〉,
〈0.6, 0.5, 0.3, 0.1〉,
〈0.7, 0.7, 0.2, 0.1〉)

(〈0.3, 0.3, 0.3, 0.1〉,
〈0.9, 0.9, 0.6, 0.7〉,
〈0.9, 0.9, 0.8, 0.3〉)

x2

(〈0.7, 0.2, 0.1, 0.1〉,
〈0.9, 0.7, 0.5, 0.5〉,
〈0.8, 0.7, 0.5, 0.2〉)

(〈0.6, 0.5, 0.3, 0.1〉,
〈0.6, 0.5, 0.5, 0.5〉,
〈0.9, 0.7, 0.7, 0.2〉)

(〈0.6, 0.4, 0.4, 0.1〉,
〈0.8, 0.7, 0.5, 0.5〉,
〈0.9, 0.5, 0.5, 0.2〉)

x3

(〈0.8, 0.5, 0.4, 0.3〉,
〈0.9, 0.8, 0.7, 0.5〉,
〈0.8, 0.7, 0.7, 0.4〉)

(〈0.9, 0.8, 0.8, 0.3〉,
〈0.9, 0.3, 0.3, 0.2〉,
〈0.9, 0.5, 0.2, 0.1〉)

(〈0.8, 0.3, 0.3, 0.0〉,
〈0.8, 0.5, 0.5, 0.4〉,
〈0.8, 0.6, 0.5, 0.3〉)

x4

(〈0.7, 0.6, 0.5, 0.3〉,
〈0.9, 0.6, 0.5, 0.4〉,
〈0.9, 0.8, 0.7, 0.7〉)

(〈0.6, 0.5, 0.3, 0.2〉,
〈0.9, 0.6, 0.5, 0.3〉,
〈0.8, 0.7, 0.3, 0.1〉)

(〈0.5, 0.5, 0.0, 0.0〉,
〈0.9, 0.9, 0.5, 0.3〉,
〈0.7, 0.7, 0.7, 0.5〉)

Proposition 1 Let f̃ , g̃, h̃ ∈ SV NRSE
X. Then,

(1) Φ̃⊆̂f̃
(2) f̃⊆̂X̃
(3) f̃⊆̂f̃
(4) f̃⊆̂g̃ and g̃⊆̂h̃ ⇒ f̃⊆̂h̃

Proof The proof is obvious from Definition 9.

Proposition 2 Let f̃ ∈ SV NRSE
X . Then,

(1) Φ̃c̃ = X̃
(2) X̃c = Φ̃
(3) (f̃ c)c = f̃ .

Proof The proof is clear from Definition 10.

Proposition 3 Let f̃ , g̃, h̃ ∈ SV NRSE
X. Then,

(1) f̃ ∩̂f̃ = f and f̃ ∪̂f̃ = f̃
(2) f̃ ∩̂g̃ = g̃∩̂f̃ and f̃ ∪̂g̃ = g̃∪̂f̃
(3) f̃ ∩̂Φ̃ = Φ̃ and f̃ ∩̂X̃ = f̃
(4) f̃ ∪̂Φ̃ = f̃ and f̃ ∪̂X̃ = X̃
(5) f̃ ∩̂(g̃∩̂h̃) = (f̃ ∩̂g̃)∩̂h̃ and f̃ ∪̂(g̃∪̂h̃) = (f̃ ∪̂g̃)∪̂h̃
(6) f̃ ∩̂(g̃∪̂h̃) = (f̃ ∩̂g̃)∪̂(f̃ ∩̂h̃) and f̃ ∪̂(g̃∩̂h̃) = (f̃ ∪̂g̃)∩̂(f̃ ∪̂h̃).

Proof The proof is obtained from Definition 11.

Theorem 1 Let f̃ , g̃ ∈ SV NRSE
X . Then, De Morgan’s law is valid.

(1) (f̃ ∪̂g̃)c = f̃ c∩̂g̃c

(2) (f̃ ∪̂g̃)c = f̃ c∩̂g̃c

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



10 Faruk Karaaslan

4 Correlation coefficient of single valued neutrosophic refined soft

sets

In this section, two types of correlation coefficients between two SVNRS-sets
are defined and some properties of them are given.

Definition 12 Let f̃ =
{

(

e,
{

〈x, ti
f(e)(x), i

i
f(e)(x), f

i
f(e)(x)〉 : x ∈ X, i ∈ Ip

}

) :

e ∈ E
}

and g̃ =
{

(

e,
{

〈x, (tig(e)(x)), (i
i
g(e)(x)), (f

i
g(e)(x))〉 : x ∈ X, i ∈ Ip

}

) :

e ∈ E
}

be two SV NRS−sets. Then, for any ek ∈ E, k ∈ Im, correlation of

truth sequence (indeterminacy sequence, falsity sequence) of SV NRS-sets f̃
and g̃, is defined as follows:

CΛ(f̃ , g̃)(ek) =
1

p2

n
∑

j=1

[(

p
∑

r=1

Λr
f(ek)

(xj)−
1

n

n
∑

s=1

p
∑

r=1

Λr
f(ek)

(xs)
)

×
(

p
∑

r=1

Λr
g(ek)

(xj)−
1

n

n
∑

s=1

p
∑

r=1

Λr
g(ek)

(xs)
)]

. (1)

Here, Λ ∈ {t = truth, i = indeterminacy, f = falsity}, ek ∈ E and |X | = n.

Definition 13 Let f̃ =
{

(

e,
{

〈x, ti
f(e)(x), i

i
f(e)(x), f

i
f(e)(x)〉 : x ∈ X, i ∈ Ip

}

) :

e ∈ E
}

and g̃ =
{

(

e,
{

〈x, (tig(e)(x)), (i
i
g(e)(x)), (f

i
g(e)(x))〉 : x ∈ X, i ∈ Ip

}

) :

e ∈ E
}

be two SV NRS−sets. Then, correlation coefficient with respect to

component Λ ∈ {t, i, f} is defined as follows:

ρ
(1)
Λ (f̃ , g̃)(ek) =

CΛ(f̃ , g̃)(ek)

[CΛ(f̃ , f̃)(ek)]
1
2 [CΛ(g̃, g̃)(ek)]

1
2

. (2)

Definition 14 Correlation coefficient between two SV NRS−sets f̃ and g̃ is
defined as follows:

ρSVNRS1(f̃ , g̃) =
1

3

∑

∀Λ∈{t,i,j}

1

|E|

∑

ek∈E

ρΛ(f̃ , g̃)(ek). (3)

Note that correlation coefficient between two SV NRS-sets gets values in
[−1, 1].

Theorem 2 Let f̃ , g̃ ∈ SV NRSE
X. Then, correlation coefficient ρSVNRS(f̃ , g̃)

satisfies following properties:

1. ρSVNRS1(f̃ , g̃) = ρSVNRS1(g̃, f̃)
2. If f̃ = g̃ then ρSVNRS1(f̃ , g̃) = 1
3. |ρSVNRS1(f̃ , g̃)| ≤ 1.
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Proof 1. Since

CΛ(f̃ , g̃)(ek) =
1

p2

n
∑

j=1

[(

n
∑

r=1

Λr
f(ek)

(xj)−
1

n

n
∑

s=1

p
∑

r=1

Λr
f(ek)

(xs)
)

×
(

n
∑

r=1

Λr
g(ek)

(xj)−
1

n

n
∑

s=1

p
∑

r=1

Λr
g(ek)

(xs)
)]

=
1

p2

n
∑

j=1

[(

n
∑

r=1

Λr
g(ek)

(xj)−
1

n

n
∑

s=1

p
∑

r=1

Λr
g(ek)

(xs)
)

×
(

n
∑

r=1

Λr
f(ek)

(xj)−
1

n

n
∑

s=1

p
∑

r=1

Λr
f(ek)

(xs)
)]

= CΛ(g̃, f̃)(ek)

for all ek ∈ E and Λ ∈ {t, i, f}, then

ρ
(1)
Λ (f̃ , g̃)(ek) =

CΛ(g̃, f̃)(ek)

[CΛ(g̃, g̃)(ek)]
1
2 [CΛ(f̃ , f̃)(ek)]

1
2

and so

ρSVNRS1(f̃ , g̃) = ρSVNRS1(g̃, f̃)

2. It is clear that ρ
(1)
Λ (f̃ , f̃)(ek) =

CΛ(f̃ ,f̃)(ek)

[CΛ(f̃ ,f̃)(ek)]
1
2 [CΛ(f̃ ,f̃)(ek)]

1
2
= 1, for all ek ∈

E. Therefore,

ρSVNRS1(f̃ , f̃) =
1

3

∑

∀Λ∈{t,i,f}

1

|E|

∑

ek∈E

ρ
(1)
Λ (f̃ , f̃)(ek)

=
1

3

∑

∀Λ∈{t,i,f}

1

|E|

(

ρ
(1)
Λ (f̃ , f̃)(e1) + ρ

(1)
Λ (f̃ , f̃)(e2) + ...+ ρ

(1)
Λ (f̃ , f̃)(e|E|)

)

=
(

ρ
(1)
t (f̃ , f̃)(e1) + ρ

(1)
t (f̃ , f̃)(e2) + ...+ ρ

(1)
t (f̃ , f̃)(e|E|)

)

+
(

ρ
(1)
i (f̃ , f̃)(e1) + ρ

(1)
i (f̃ , f̃)(e2) + ...+ ρ

(1)
i (f̃ , f̃)(e|E|)

)

+
(

ρ
(1)
f (f̃ , f̃)(e1) + ρ

(1)
f (f̃ , f̃)(e2) + ...+ ρ

(1)
f (f̃ , f̃)(e|E|)

)

=
1

3|E|
3|E| = 1

3. Let us adopt the following notations;

p
∑

r=1

Λr
f(ek)

(xj) = x̃j ,

1

n

n
∑

s=1

p
∑

r=1

Λr
f(ek)

(xs) = f
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12 Faruk Karaaslan

p
∑

r=1

Λr
g(ek)

(xj) = ỹj ,

1

n

n
∑

s=1

p
∑

r=1

Λr
g(ek)

(xs) = g,

(CΛ(f̃ , g̃)(ek))
2 = (

1

p2
)2
([

(x̃1 − f)(ỹ1 − g)

]

+

[

(x̃2 − f)(ỹ2 − g)

]

+ ...+

[

(x̃n − f)(ỹn − g)

])2

≤ (
1

p4
)

(

(x̃1 − f)2 + (x̃2 − f)2 + ...+ (x̃n − f)2
)(

(ỹ1 − g)2 + (ỹ2 − g)2 + ...+ (ỹn − g)2
)

|(CΛ(f̃ , g̃)(ek))| ≤ [CΛ(f̃ , f̃)(ek)]
1
2 [CΛ(g̃, g̃)(ek)]

1
2 .

Then,

−[CΛ(f̃ , f̃)(ek)]
1
2 [CΛ(g̃, g̃)(ek)]

1
2 ≤ (CΛ(f̃ , g̃)(ek)) ≤ [CΛ(f̃ , f̃)(ek)]

1
2 [CΛ(g̃, g̃)(ek)]

1
2

and

−1 ≤
(CΛ(f̃ , g̃)(ek))

[CΛ(f̃ , f̃)(ek)]
1
2 [CΛ(g̃, g̃)(ek)]

1
2

≤ 1

Thus,

−1 ≤ ρ
(1)
Λ (f̃ , g̃)(ek) ≤ 1

for all ek ∈ E and Λ ∈ {t, i, f} and

|ρSV NRS1(f̃ , g̃)| ≤ 1.

Corollary 1 Let f̃ =
{

(

e,
{

〈x, ti
f(e)(x), i

i
f(e)(x), f

i
f(e)(x)〉 : x ∈ X, i ∈ Ip

}

) :

e ∈ E
}

and g̃ =
{

(

e,
{

〈x, (ti
g(e)(x)), (i

i
g(e)(x)), (f

i
g(e)(x))〉 : x ∈ X, i ∈ Ip

}

) :

e ∈ E
}

1. If, for any Λ1 ∈ {t, i, f}, Λ1 sequences of f̃ and g̃ is equal and Λ2f(ek)(x) =
1− Λ2g(ek)(x), for all Λ2 ∈ {t, i, f} − {Λ1}, ek ∈ E and x ∈ X, then

ρSV NRS1(f̃ , g̃) = −1.

2. If, for any Λ1, Λ2 ∈ {t, i, f}, Λ1 and Λ2 sequences of f̃ and g̃ is equal and
Λ3f(ek)(x) = 1 − Λ3g(ek)(x), for all Λ3 ∈ {t, i, f} − {Λ1, Λ2}, ek ∈ E and
x ∈ X, then

ρSV NRS1(f̃ , g̃) = 1.

Example 3 Consider SVNRS-sets f̃ and g̃ as in Example 2. Correlation coeffi-
cient between SVNSR-sets f̃ and g̃ can be calculated as follows: For parameter
e1 and Λ = t:
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Correlation coefficients of SVNRS-sets 13

ρ
(1)
t

(f̃, g̃)(e1) =
(−0.088)(−0.200) + (−0.013)(−0.225) + (0.038)(0.175) + (0.062)(0.250)

√

((−0.088)2 + (−0.013)2 + (0.038)2 + (0.062)2)((−0.200)2 + (−0.225)2 + (0.175)2 + (0.250)2)

= 0.865

and for parameter e2, e3 and Λ = t:

ρ
(1)
t (f̃ , g̃)(e2) = 0.880 and ρ

(1)
t (f̃ , g̃)(e3) = −0.443.

Then,

1

|E|

∑

ek∈E

ρ
(1)
t (f̃ , g̃)(ek) =

1

3
(0.865 + 0.880 + (−0.443)) = 0.434.

Similarly,

1

|E|

∑

ek∈E

ρ
(1)
i (f̃ , g̃)(ek) =

1

3
((−0.782) + (−0.664) + (−0.818)) = −0.755

1

|E|

∑

ek∈E

ρ
(1)
f (f̃ , g̃)(ek) =

1

3
((−0.567) + (−0.056) + (−0.510)) = −0.378

and so

ρSVNRS1(f̃ , g̃) =
1

3

∑

∀Λ∈{t,i,f}

1

|E|

∑

ek∈E

ρ
(1)
Λ (f̃ , g̃)(ek)

=
1

3
(0.434 + (−0.755) + (−0.378)) = −0.233.

This value shows that SVNRS-sets f̃ and g̃ have a bad negatively correlated.

In some practical applications, the parameters ek ∈ E (k ∈ Ik) may have dif-
ferent weights in the studied universe. Let wf̃ = (wf (e1), wf (e2), ..., wf (en))

T

and wg̃ = (wg(e1), wg(e2), ..., wg(en))
T be the weight vectors of parameters

in SV NRS-sets f̃ and g̃, respectively. Here, wf (ek) ≥ 0, wg(ek) ≥ 0 and
∑

ek∈E wf (ek) = 1,
∑

ek∈E wg(ek) = 1 for all ek ∈ E (k ∈ Im). Then the
correlation coefficient formula can be extended as follows:

ρwSVNRS1
(f̃ , g̃) =

1

3

∑

∀Λ∈{t,i,f}

1

|E|

∑

ek∈E

w(ek)(f̃ ,g̃)ρ
(1)
Λ (f̃ , g̃)(ek) (4)

here

w(f̃ ,g̃)(ek) = 1−
|wf (ek)− wg(ek)|

max{wf (ek), wg(ek)}
. (5)

Note that if wf (ek) = wg(ek) for all ek ∈ E, then Eq.(4) reduce to Eq. (3).

Example of weighted correlation coefficient ρ(1) will be given in application
section.
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14 Faruk Karaaslan

Theorem 3 Properties listed in Theorem 4 valid for weighted correlation co-
efficient of two SV NRS−sets f̃ and g̃.

Proof The proof can be made similar way to proof of Theorem 4.

Now second type of correlation coefficient of SV NRS-sets will be given.

Definition 15 Let f̃ , g̃ ∈ SV NRSE
X . Then, correlation coefficient of SV NRS−sets

f̃ and g̃ is defined as follows:

ρSV NRS2(f̃ , g̃) =
1

3

∑

∀Λ∈{t,i,f}

1

|E|

∑

ek∈E

ρ
(2)
Λ (f̃ , g̃)(ek) (6)

here

ρ
(2)
Λ (f̃ , g̃)(ek) =

CΛ(f̃ , g̃)(ek)

max
{

[CΛ(f̃ , f̃)(ek)], [CΛ(g̃, g̃)(ek)]
} (7)

such that Λ ∈ {t = truth, i = indeterminacy, f = falsity}.

Theorem 4 Let f̃ , g̃ ∈ SV NRSE
X. Then, correlation coefficient ρSV NRS2(f̃ , g̃)

satisfies the following properties:

1. ρSVNRS2(f̃ , g̃) = ρSVNRS2(g̃, f̃)
2. If f̃ = g̃ then ρSVNRS2(f̃ , g̃) = 1
3. |ρSVNRS2(f̃ , g̃)| ≤ 1

Proof 1. The proof is trivial.
2. The proof is clear.
3. Let us adopt the following notations;

p
∑

r=1

Λr
f(ek)

(xj) = x̃j ,

1

n

n
∑

s=1

p
∑

r=1

Λr
f(ek)

(xs) = f

p
∑

r=1

Λr
g(ek)

(xj) = ỹj ,

1

n

n
∑

s=1

p
∑

r=1

Λr
g(ek)

(xs) = g,

(ρ(2)(f̃ , g̃))2 =

(

∑n
j=1

1
p2

(

x̃j − f
)(

ỹj − g
))2

(

max
{

(
∑n

j=1
1
p2

(

x̃j − f
)2)

,
(
∑n

j=1
1
p2

(

ỹj − g
)2)

})2
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Correlation coefficients of SVNRS-sets 15

≤

(

∑n
j=1

1
p2 (x̃j − f)2

)(

∑n
j=1

1
p2 (ỹj − g)2

)

(

max
{

(
∑n

j=1
1
p2

(

x̃j − f
)2)

,
(
∑n

j=1
1
p2

(

ỹj − g
)2)

})2

≤

(√

∑n
j=1

1
p2 (x̃j − f)2

)(√

∑n
j=1

1
p2 (ỹj − g)2

)

max
{

(
∑n

j=1
1
p2

(

x̃j − f
)2)

,
(
∑n

j=1
1
p2

(

ỹj − g
)2)

}

Lets take
∑n

j=1
1
p2 (x̃j − f)2 = a and

∑n
j=1

1
p2 (ỹj − g)2 = b. If a ≥ b, then

√
a
√
b

a
=

√

b
a
≤ 1. If a ≤ b, then

√
a
√
b

b
=

√

a
b
≤ 1. Thus, |(ρ(2)(f̃ , g̃))| ≤ 1

and |ρSVNRS2(f̃ , g̃)| ≤ 1.

Example 4 Consider SVNRS-sets f̃ and g̃ given in Example 2. Then, correla-
tion coefficient between SVNSR-sets f̃ and g̃ can be computed as follows: For
parameter e1 and Λ = t;

ρ
(2)
t

(f̃, g̃)(e1) =
(−0.088)(−0.200) + (−0.013)(−0.225) + (0.038)(0.175) + (0.062)(0.250)

max

{

((−0.088)2 + (−0.013)2 + (0.038)2 + (0.062)2), ((−0.200)2 + (−0.225)2 + (0.175)2 + (0.250)2)

}

= 0.231,

and for parameter e2, e3 and Λ = t;

ρ
(2)
t (f̃ , g̃)(e2) = 0.422 and ρ

(2)
t (f̃ , g̃)(e3) = −0.310.

Then,

1

|E|

∑

ek∈E

ρ
(2)
t (f̃ , g̃)(ek) =

1

3
(0.231 + 0.422 + (−0.310)) = 0.114.

Similarly,

1

|E|

∑

ek∈E

ρ
(2)
i (f̃ , g̃)(ek) =

1

3
((−0.405) + (−0.532) + (−0.716)) = −0.551,

1

|E|

∑

ek∈E

ρ
(2)
f (f̃ , g̃)(ek) =

1

3
((−0.378) + (−0.026) + (−0.202)) = −0.202

and so

ρSVNRS2(f̃ , g̃) =
1

3

∑

∀Λ∈{t,i,f}

1

|E|

∑

ek∈E

ρ
(2)
Λ (f̃ , g̃)(ek)

=
1

3
(0.114 + (−0.551) + (−0.202)) = −0.213.

This value shows that SVNRS-sets f̃ and g̃ have a bad negatively correlated.
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16 Faruk Karaaslan

If parameters in f̃ and g̃ have weights, then weighted correlation coefficient
between f̃ and g̃ can be written as follows:

ρwSV NRS2
(f̃ , g̃) =

1

3

∑

∀Λ∈{t,i,f}

1

|E|

∑

ek∈E

w(ek)(f̃ ,g̃)ρ
(2)
Λ (f̃ , g̃)(ek). (8)

5 Clustering algorithm for SVNRS-sets

In this section, an algorithm to make clustering under single valued neutro-
sophic refined soft environment based on intuitionistic fuzzy clustering algo-
rithm in [48], and correlation coefficient formulas proposed for SVNRS-sets
are developed.

Definition 16 Let f̃j (j ∈ In) be n SV NRS−sets, then R = (εij)n×n be a

correlation matrix, where εij = ρSVNRS(f̃i, f̃j) is the correlation coefficient of

two SV NRS−sets f̃i and f̃j, which satisfies the following conditions:

1. −1 ≤ εij ≤ 1 for all i, j ∈ In;
2. εii = 1, i ∈ In;
3. εij = εji for all i, j ∈ In.

Note that here item (1) is more general than item (1) of Definitions 3 and 10
in [48] and [43], respectively.

Now some definitions and theorems will be present in [48].

Definition 17 [48] Let R = (εij)n×n be a correlation matrix, if R2 = R◦R =
(ε̂ij)n×n, then R2 is called a composition matrix of R, where

ε̂ij = maxk

{

min{εik, εkj}
}

for all i, j ∈ In.

Theorem 5 [48] Let R = (εij)n×n be a correlation matrix. Then the compo-
sition matrix R2 = R ◦R = (ε̂ij)n×n, is also a correlation matrix.

Theorem 6 [48] Let R = (εij)n×n be a correlation matrix, then for any

nonnegative integer k, the composition matrix R2k+1

derived from R2k+1

=

R2k ◦R2k is also a correlation matrix.

Definition 18 [48] Let R = (εij)n×n be a correlation matrix, if R2 ⊆ R, i.e.

maxk

{

min{εik, εkj}
}

≤ εij for all i, j ∈ In.

then R is called an equivalent correlation matrix.

Theorem 7 [48] Let R = (εij)n×n denote a correlation matrix, then after
having a finite times of compositions:

R → R2 → R4 → ... → R2k → ...,

there exists a positive integer k such that R2k = R2(k+1)

, and R2k is also an
equivalence correlation matrix.
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Correlation coefficients of SVNRS-sets 17

Definition 19 [48] Let R = (εij)n×n be a correlation matrix, then we call
Rγ = (γεij)n×n, where

γεij =

{

0, if εij < γ
1, if εij ≥ γ

i, j ∈ In (9)

and γ is the confidence level with γ ∈ [0, 1].

Here, since −1 ≤ εij ≤ 1, for all i, j ∈ In; in Definition 19 confidence level
γ can be taken as −1 ≤ γ ≤ 1.

Algorithm-SVNRS-sets

Let E = {e1, e2, ..., em} be a parameter set, X = {x1, x2, ..., xk} be an initial
universe and

{

f̃1, f̃2, ..., f̃n
}

⊆ SV NRSE
X . Let wf1 , wf2 , ..., wfn be the weight

vectors of the each SV NRS−set, respectively. Here wf1 = (wf1 (e1), wf1(e2), ...,
wf1(em)) and

∑m
i=1 wfj (ei) = 1 and wfj (ei) ≥ 0, j ∈ Im.

Step 1: Find correlation coefficient related to the parameters of SV NRS−sets
f̃i and f̃j , for all i, j ∈ In using Eq. 5.

w(ek) =











w(f̃1,f̃1)
(ek) w(f̃1,f̃2)

(ek) . . . w(f̃1,f̃n)
(ek)

w(f̃2,f̃1)
(ek) w(f̃2,f̃2)

(ek) . . . w(f̃2,f̃n)
(ek)

...
...

. . .
...

w(f̃n,f̃1)
(ek) w(f̃n,f̃2)

(ek) . . . w(f̃n,f̃n)
(ek)











Step 2: Construct correlation matrix R = (εij)n×n using Eq. 4, where εij =

ρwSVNRS1
(f̃i, f̃j).

Step 3: Check whether correlation matrix R satisfies R2 ⊆ R, where R2 =
R ◦ R = (ε̂ij)n×n, ε̂ij = maxk{min{εik, εkj}} for all i, j ∈ In. If R does

not satisfy condition R2 ⊆ R, then the equivalent correlation matrix R2k

will be formed :

R → R2 → R4 → ... → R2k , ..., until R2k = R2(k+1)

.

Step 4: Construct a γ−cutting matrix Rγ = (γεij)n×n as in Definition 19 to
classify the SV NRS−sets. Let Riγ and Rjγ

be ith and jth column(or row)

matrices of Rγ , respectively. If Riγ = Rjγ
, then SV NRS−sets f̃i and f̃j

are same characteristic. Therefore, all of SV NRS−sets f̃j can be classified
by using this principle, for all j ∈ In.
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18 Faruk Karaaslan

6 Applied example

In this section, an application of clustering algorithm defined in section 5 is
given.

Example 5 Assume that an investment company want to make classification
for its investment experts. Therefore, human resource experts of company
investigate the evaluations of investment experts about some firms according to
previously obtained parameters. Under parameter set E = {e1 = risk analy−
sis, e2 = growth analysis}, evaluations of investment experts f̃1, f̃2, ..., f̃6 on
firms x1, x2, x3, x4 and weight of parameters for each investment expert are
given in Table 1-6 as tabular representation SVNRS-sets:

e1, 0.6 e2, 0.4

f̃1

〈x1, (0.5, 0.1), (0.4, 0.2), (0.6, 0.5)〉
〈x2, (0.7, 0.3), (0.6, 0.2), (0.8, 0.1)〉
〈x3, (0.9, 0.2), (0.4, 0.3), (0.6, 0.2)〉
〈x4, (0.2, 0.1), (0.5, 0.3), (0.7, 0.6)〉

〈x1, (0.4, 0.4), (0.7, 0.4), (0.2, 0.1)〉
〈x2, (0.5, 0.3), (0.6, 0.4), (0.9, 0.7)〉
〈x3, (0.6, 0.2), (0.4, 0.4), (0.5, 0.1)〉
〈x4, (0.3, 0.1), (0.2, 0.1), (0.7, 0.2)〉

Table 1

e1, 0.4 e2, 0.6

f̃2

〈x1, (0.4, 0.3), (0.7, 0.1), (0.2, 0.2)〉
〈x2, (0.6, 0.3), (0.5, 0.1), (0.7, 0.2)〉
〈x3, (0.4, 0.1), (0.7, 0.2), (0.6, 0.4)〉
〈x4, (0.5, 0.4), (0.7, 0.3), (0.4, 0.2)〉

〈x1, (0.3, 0.1), (0.4, 0.2), (0.6, 0.1)〉
〈x2, (0.5, 0.3), (0.4, 0.1), (0.7, 0.2)〉
〈x3, (0.1, 0.1), (0.2, 0.1), (0.4, 0.1)〉
〈x4, (0.7, 0.3), (0.6, 0.5), (0.9, 0.7)〉

Table 2

e1, 0.8 e2, 0.2

f̃3

〈x1, (0.3, 0.1), (0.4, 0.4), (0.7, 0.6)〉
〈x2, (0.5, 0.3), (0.7, 0.7), (0.5, 0.4)〉
〈x3, (0.1, 0.0), (0.6, 0.5), (0.4, 0.1)〉
〈x4, (0.9, 0.8), (0.5, 0.5), (0.4, 0.4)〉

〈x1, (0.7, 0.5), (0.4, 0.3), (0.8, 0.2)〉
〈x2, (0.8, 0.4), (0.6, 0.5), (0.3, 0.1)〉
〈x3, (0.9, 0.5), (0.7, 0.7), (0.8, 0.6)〉
〈x4, (0.3, 0.3), (1.0, 0.8), (0.2, 0.1)〉

Table 3

e1, 0.5 e2, 0.5

f̃4

〈x1, (1.0, 0.3), (1.0, 0.5), (0.5, 0.1)〉
〈x2, (0.3, 0.1), (0.7, 0.4), (0.2, 0.1)〉
〈x3, (0.4, 0.2), (0.6, 0.5), (0.9, 0.9)〉
〈x4, (0.5, 0.3), (0.7, 0.6), (0.2, 0.1)〉

〈x1, (0.4, 0.4), (0.5, 0.3), (0.7, 0.4)〉
〈x2, (0.8, 0.5), (0.3, 0.1), (0.8, 0.2)〉
〈x3, (0.6, 0.1), (0.2, 0.1), (0.5, 0.4)〉
〈x4, (0.9, 0.2), (0.8, 0.6), (0.7, 0.5)〉

Table 4

e1, 0.3 e2, 0.7

f̃5

〈x1, (0.3, 0.1), (0.4, 0.2), (0.7, 0.5)〉
〈x2, (0.8, 0.3), (0.7, 0.1), (0.7, 0.7)〉
〈x3, (0.6, 0.1), (0.5, 0.4), (0.8, 0.0)〉
〈x4, (0.9, 0.9), (0.8, 0.8), (0.7, 0.5)〉

〈x1, (0.6, 0.4), (0.8, 0.5), (0.9, 0.2)〉
〈x2, (0.8, 0.7), (0.9, 0.5), (0.1, 0.1)〉
〈x3, (0.2, 0.2), (0.3, 0.3), (0.4, 0.4)〉
〈x4, (0.6, 0.1), (0.7, 0.6), (0.8, 0.7)〉
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Table 5

e1, 0.7 e2, 0.3

f̃6

〈x1, (0.4, 0.2), (0.5, 0.4), (0.3, 0.1)〉
〈x2, (0.6, 0.3), (0.6, 0.6), (0.5, 0.5)〉
〈x3, (0.8, 0.3), (0.5, 0.4), (0.4, 0.3)〉
〈x4, (0.7, 0.4), (0.9, 0.8), (0.8, 0.7)〉

〈x1, (0.5, 0.5), (0.9, 0.6), (0.3, 0.2)〉
〈x2, (0.9, 0.5), (0.5, 0.2), (0.2, 0.2)〉
〈x3, (0.8, 0.7), (0.5, 0.3), (0.5, 0.3)〉
〈x4, (0.3, 0.2), (0.9, 0.7), (0.4, 0.3)〉

Table 6

Step 1: Using Eq. 5, correlation coefficient between parameters of SV NRS−sets
f̃i and f̃j (i, j ∈ I6) are obtained as follows:

w(e1) =

















1, 000 0, 667 0, 750 0, 883 0, 500 0, 857
0, 667 1, 000 0, 500 0, 750 0, 750 0, 571
0, 750 0, 500 1, 000 0, 625 0, 375 0, 875
0, 834 0, 750 0, 625 1, 000 0, 600 0, 714
0, 500 0, 750 0, 375 0, 600 1, 000 0, 429
0, 857 0, 571 0, 875 0, 714 0, 429 1, 000

















w(e2) =

















1, 000 0, 667 0, 500 0, 800 0, 571 0, 750
0, 667 1, 000 0, 333 0, 833 0, 857 0, 500
0, 500 0, 333 1, 000 0, 400 0, 286 0, 667
0, 800 0, 833 0, 400 1, 000 0, 714 0, 600
0, 571 0, 857 0, 286 0, 714 1, 000 0, 429
0, 750 0, 500 0, 667 0, 600 0, 429 1, 000

















.

Step 2: Correlation coefficient of the SV NRS−sets f̃j (j ∈ I6) by using Eq.

(4) and correlation coefficient of parameters for each (f̃i, f̃j) (i, j ∈ I6) given
in Step 1 are obtained as follows:

R =

















1, 000 −0, 279 −0, 007 −0, 408 0, 033 0, 195
−0, 279 1, 000 −0, 116 0, 450 0, 127 0, 060
−0, 007 −0, 116 1, 000 −0, 163 0, 064 0, 178
−0, 408 0, 450 −0, 163 1, 000 0, 109 −0, 081
0, 033 0, 127 0, 064 0, 109 1, 000 0, 182
0, 195 0, 060 0, 178 −0, 081 0, 182 1, 000

















.

Step 3: R2 can be obtained as follow

R2 = R ◦R =

















1, 000 0, 060 0, 178 0, 033 0, 182 0, 195
0, 060 1, 000 0, 064 0, 450 0, 127 0, 127
0, 178 0, 064 1, 000 0, 064 0, 178 0, 178
0, 033 0, 450 0, 064 1, 000 0, 127 0, 109
0, 182 0, 127 0, 064 0, 127 1, 000 0, 182
0, 195 0, 127 0, 178 0, 109 0, 182 1, 000

















.

Here, note that R2 6⊆ R. The correlation matrix R is not an equivalent
matrix. Therefore, we further calculate:
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R4 = R2 ◦R2 =

















1, 000 0, 127 0, 178 0, 127 0, 182 0, 195
0, 127 1, 000 0, 127 0, 450 0, 127 0, 127
0, 178 0, 127 1, 000 0, 127 0, 178 0, 178
0, 127 0, 450 0, 109 1, 000 0, 127 0, 127
0, 182 0, 127 0, 178 0, 127 1, 000 0, 182
0, 195 0, 127 0, 178 0, 127 0, 182 1, 000

















,

R8 = R4 ◦R4 =

















1, 000 0, 127 0, 178 0, 127 0, 182 0, 195
0, 127 1, 000 0, 127 0, 450 0, 127 0, 127
0, 178 0, 127 1, 000 0, 127 0, 178 0, 178
0, 127 0, 450 0, 127 1, 000 0, 127 0, 127
0, 182 0, 127 0, 178 0, 127 1, 000 0, 182
0, 195 0, 127 0, 178 0, 127 0, 182 1, 000

















,

and

R16 = R8 ◦R8 =

















1, 000 0, 127 0, 178 0, 127 0, 182 0, 195
0, 127 1, 000 0, 127 0, 450 0, 127 0, 127
0, 178 0, 127 1, 000 0, 127 0, 178 0, 178
0, 127 0, 450 0, 127 1, 000 0, 127 0, 127
0, 182 0, 127 0, 178 0, 127 1, 000 0, 182
0, 195 0, 127 0, 178 0, 127 0, 182 1, 000

















= R8.

Thus, R8 is an equivalent correlation matrix.
Step 4: Using Eq.(9) to form a γ−cutting matrix Rγ = (γεij)n×n based on

which, all possible classifications of the experts f̃j (j ∈ I6) obtained as
follow:
(1) If 0 < γ ≤ 0.127, then f̃i (i ∈ I6) are of the same characteristic(or
same type):

{f̃1, f̃2, f̃3, f̃4, f̃5, f̃6}

(2) If 0.127 < γ ≤ 0.178, then f̃i (i ∈ I6) are classified in two characteris-
tic:

{f̃1, f̃3, f̃5, f̃6}, {f̃2, f̃4}.

(3) If 0.178 < γ ≤ 0.182, then f̃i (i ∈ I6) are classified in three character-
istic:

{f̃1, f̃5, f̃6}, {f̃2, f̃4}, {f̃3}.

(4) If 0.182 < γ ≤ 0.195, then f̃i (i ∈ I6) are classified in four character-
istic:

{f̃1, f̃6}, {f̃2, f̃4}, {f̃3}, {f̃5}.

(5) If 0.195 < γ ≤ 0.450, then f̃i (i ∈ I6) are classified in five characteris-
tic:

{f̃1}, {f̃2, f4}, {f̃3}, {f̃5}, {f̃6}.

(6) If 0.450 < γ ≤ 1.00, then f̃i (i ∈ I6) are classified in six characteristic:

{f̃1}, {f̃2}, {f̃3}, {f̃4}, {f̃5}, {f̃6}.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Correlation coefficients of SVNRS-sets 21

7 Conclusion

In this paper, the concept of single valued neutrosophic refined soft set and
its set theoretical operations such as union, intersection and complement are
defined and some of their basic properties are proved. Then, two formulas
to compute correlation coefficient between two single valued neutrosophic re-
fined soft sets are developed. Furthermore, the developed method is applied to
clustering analysis based on clustering algorithm proposed by Xu et al. [48].
However, I hope that the main thrust of proposed formula will be in the field
of equipment evaluation, data mining and investment decision making.
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