
Dempster-Shafer Evidence Theory and Study of
Some Key Problems

Ying-Jin Lu and Jun He

 
Abstract—As  one  of  the  most  important

mathematical  methods,  the  Dempster-Shafer  (D-S)
evidence theory has been widely used in date fusion, risk
assessment,  target  identification,  knowledge  reasoning,
and  other  fields.  This  paper  summarized  the
development  and  recent  studies  of  the  explanations  of
D-S  model,  evidence  combination  algorithms,  and  the
improvement  of  the  conflict  during  evidence
combination, and also compared all explanation models,
algorithms,  improvements,  and  their  applicable
conditions.  We  are  trying  to  provide  a  reference  for
future  research  and  applications  through  this
summarization.

Index  Terms—Combination  arithmetic,  conflict,
Dempster-Shafer  (D-S)  evidence  theory,  evidence
combination. 

1.   Introduction
The Dempster-Shafer (D-S) evidence theory is based on the

work  of  Dempster[1],[2]  during  the  1960s  and  successfully
extended by Shafer[3].  D-S evidence theory is  an uncertainty
reasoning method and it decomposes the entire problem into
several  subproblems,  sub  evidences,  and  then  uses  the
evidence  combination  rule  to  get  the  solution  of  the
problem.  Conventional  probability  theories  based  on  the
probability theory and mathematical statistics argue that the
probability  is  only  determined  by  the  frequency  of  the
incident  completely  (evidence),  but  not  related  to  people’s
preferences.  The  probability  is  purely  objective.  Bayes
subjective probability theory argues that the probability is a
measure of people’s preferences or subjective intention. But
Bayes  subjective  probability  theory  only  focuses  on
human’s  judgment  and  ignores  the  objective  evidence,  so
the  probability  is  purely  subjective.  D-S  evidence  theory
requests  emphasize  the  objectivity  of  evidence  and  the

people’s preferences both during probability inference.
Generally,  D-S  evidence  theory  differs  from  traditional

probability  theories  which  distinguish  ignorance  and
uncertainty  explicit  in  the  evidence  combination  process.
Furthermore,  D-S theory  allows assigning  a  probability  to  not
only  singletons  but  also  a  set  of  multiple  alternative
elements[4],[5].  These  unique  characteristics  make  D-S  theory
particularly  suit  for  designing  and  implementing  complex
systems[6]  and  it  has  been  widely  used  in  information  fusion,
target  identification,  fault  diagnosis,  and  other  fields  for  this
flexibility in evidence polymerization.

The theory of evidence is often interpreted as an extension
of  the  Bayesian  theory  of  probabilities;  however,  it  has  also
inspired several  models  of  reasoning under  uncertainty,  which
do  not  require  the  probabilistic  view.  In  this  section,  we
introduce some basic concepts of D-S evidence theory.

Let  Θ  be  a  finite  nonempty  set  called  the  frame  of
discernment, or simply the frame. Θ is composed of a series of
mutually  exclusive objects,  and all  the  objects  to  be identified
should be included, that is Θ={θ1, θ2, ···, θn}, where the object
θi  is  the  conclusion  the  system  should  make.  There  are  three
important functions in D-S theory: basic probability assignment
function  (BPA),  belief  function  (Bel),  and  likelihood  function
(Pl)[4]-[8].

Basic  probability  assignment  function:  Assuming  the
discriminate  framework  Θ  is  known,  how  to  determine  the
degree  of  an  uncertain  element  belongs  to  a  subset  of  Θ.  For
every  subset  of  Θ,  a  probability  can  be  assigned,  which  is
called  the  basic  probability  assignment.  The  definition  is  as
follows: ∑

A∈Θ
m(A) = 1, m

(
ϕ
)
= 0. (1)

The  set  ϕ  means  a  contradiction  which  cannot  be  true  in
any state, so assign m(ϕ) to be 0.

⊆ ⊆
⊆

Belief function: The belief function denotes the total degree
to  which  a  grade  of  the  information  is  supported  by  the
obtained  evidence.  For  grades  A  and  B  satisfying  B A,  A Θ,
and B Θ, define the following function:

Bel : 2Θ→ [0,1], Bel(A) =
∑
B∈A

m(B) (2)

where Bel is the belief function of Θ.
Likelihood  function:  The  likelihood  function  denotes  the
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degree to which the grading cannot be rejected by the obtained
evidence. Given a map Pl: 2Θ→[0, 1], it is defined as

Pl(A) = 1−Bel(Ā) =
n∑

A∩B,ϕ

m(B). (3)

⊆

According  to  (2),  it  is  easy  to  derive  that  the  quantity  of
plausibility of A is equal to the sum of the masses of B, whose
intersection with A is not empty, as shown in (4). For all A Θ,
Bel(A) forms a lower bound for A  that could possibly happen,
and Pl(A) forms an upper bound for A  to be happen, which is
given by (5).

Pl(A) =
∑

B|B∩A,ϕ

m(B) (4)

Bel(A) ≤ P(A) ≤ Pl(A). (5)

Given independent belief functions over the same frame of
discernment,  we  can  combine  the  belief  into  a  common
agreement concerning a subset of 2Θ and quantify the conflicts
using  Dempster’s  rule  of  combination[3].  Given  two  masses
m1  and m2,  this  combination  computes  a  joint  mass  for  the
two  pieces  of  evidence  under  the  same  frame  of
discernment. Dempster’s rule is calculated as follows:

m1,2 (A) =

 ∑
Y1∩Y2=A

m1 (Y1)m2 (Y2)

/K,

where

K = 1−
∑

Y1∩Y2=ϕ

m1 (Y1)m2 (Y2). (6)

The  K  represents  the  conflict  measure  of  the  two  belief
functions. Whenever two or more functions are combined, the
combination rule is associative and commutative.

D-S  evidence  theory  makes  off  “uncertainty”  and  “do
not  know”  accurately,  it  is  more  accord  with  our  daily
behavior, so D-S evidence theory is practicable in engineering.
It  has  been widely used in  date  fusion,  risk assessment,  target
identification, knowledge reasoning, and other fields. However,
several  key problems of the evidence theory have not reached
consensus,  which  restricts  its  further  application  and
development. In recent years, scholars have made a lot of work
on the explanation of D-S evidence theory, how to improve the
evidence synthesis rules, and how to avoid the paradox during
evidence  synthesis.  Although  some  scholars  have  reviewed
these  studies,  their  reviews  are  most  about  the  explanation  of
D-S  evidence  theory  and  how  to  improve  the  evidence
synthesis  rules,  not  including  the  conflict  comes  from  both
synthesis rules and the source of evidences. And in the process
of  evidence  synthesis,  focal  elements  explosion  often  brings
huge amount of calculation, but previous studies have not paid
attention  to  this  point.  In  this  paper,  we  are  trying  to  make  a
review  on  the  research  of  the  explanation  of  D-S  evidence
theory,  the  algorithms  of  evidence  combination,  and  the
conflict  during  evidence  combining  combined  with  the  recent

research.
2.   Explanation of D-S Evidence Theory

Ever  since  Shafer  put  forwards  the  framework  of  D-S
theory  in  [3],  many  scholars  have  tried  to  explain  the  basic
concepts  that  Shafer  ignored,  but  unfortunately,  no  one  is
acknowledged by all scholars. There are four main explanations
now:  upper  and  lower  probability  interpretation,  general
Bayesian,  random  decoder  model,  and  transferable  belief
model.

p∗ p∗

p∗ (A) ≥ p∗ (A) p∗ (A) = 1− p∗ Ā
p∗ (A) = p∗ (A) = p (A)

Upper and lower probability interpretation model[2]: Given a
probability space (Θ, ℓ, p), p is a probability measured on (Θ, ℓ),
and ℓ is a set of Θ. If we define  and  for extending p to 2Θ,
there  are  ,  ( ),  then  A  is  a
measurable  set  if  and  only  if  [9]-[11].  It  is
not  hard  to  see  that  the  concepts  are  exactly  similar  and  the
belief function and likelihood function are both defined on the
decision  space.  This  explanation  model  can  be  used  even  the
prior knowledge does not meet the probability of additive. But
the  shortage  is  that  upper  and  lower  probability  interpretation
model cannot explain the combinational rule of D-S theory, and
the lower probability function does not satisfy the definition of
the belief function.

General Bayesian model: When all focal elements meet the
independence  condition  of  Bayesian  theory,  the  D-S
combination formula is degraded as a Bayesian formula, that is
to say, the Bayesian formula is a special case of D-S synthetic
formula,  all  data  fusion  using  Bayesian  formula  can  be  used
instead  of  D-S  formula.  The  D-S  method  satisfies  the  weaker
probability requirement, so the fusion result is often superior to
Bayesian method.

Random  decoder  model:  In  order  to  explain  the  belief
function,  Shafer  and  Tversky[12]  proposed  a  random  decoder
model. In this model, all evidence corresponds with a preset Δ
and  probability  p,  if  we  judge  evidence  B  is  true,  we  need  to
preset  p(ci|B)=p(ci),  ci∈Δ.  The  unreasonable  assumption  that
the evidence do not change the probability distribution of Δ was
criticized by Levi[13]  and Smets and Kennes[14],[15].  The  random
decoder  divides  all  evidence  into  reliable  evidence  and
shaky  evidence  accordance  with  peoples’  intuition,  but  for
complex  situations,  the  decoder  is  not  intuitive[12]-[17].  The
above  three  kinds  of  models  are  based  on  the  probability
theory[18].

Transferable belief model: In order to solve the problem of
the preset of the random decoder model, Smet and Kennes[14],[15]

studied  the  reliability  updating  of  the  D-S  model,  and  put
forward  the  transferable  belief  model.  This  model  presets  the
evidence  is  insufficient.  The  transferable  belief  model
distinguishes  two  deferent  levels:  faith  level  and  decision-
making  level.  The  faith  level  is  used  for  acquisition,
assignment, and update of belief, belonging to static portions of
the  model.  The  decision-making  level  transfers  the  belief  into
decision probability and makes decision, belonging to dynamic
portions of the model. To measure the belief, Smets introduced
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an inadequate reasoning principle to make the belief distributed
on  no  imformation.  Set  the  probability  function  on  the  faith
level as betP, then

betP(x,m) =
∑
x∈A

m (A)
|A| . (7)

Then  the  belief  distribution  can  be  gotten  from  the  linear
system  of  equation.  The  transferable  belief  model  is
independent  of  probability  theory,  but  for  the  faith  that
comes  from  the  game,  this  model  inevitably  faces  the
prisoner’s dilemma[19].

In  addition,  Zadeh[20],  Dubois  and  Prade[21],  and  Pawlak[22]

are also committed to explain the evidence theory.
The above models explain D-S evidence theory from the

sources of evidence theory, the conditions of focal elements,
the  reliability  of  evidence,  and  reliability  updating.  These
models  focus  on  different  aspects,  making  their  applicable
scopes  different.  The  upper  and  lower  probability
interpretation  model  is  suitable  for  the  application  that  the
prior  knowledge  does  not  meet  the  probability  of  additive,
but  when  all  focal  elements  are  independent,  the  fusion
result  of D-S evidence theory is more superior than that of
Bayesian  method.  The  random  decoder  method  more  suits
for  the  environment  that  the  evidence  is  simple  and  the
reliability  can  be  clearly  distinguished.  The  transferable
belief  model  is  not  bound  by  the  probability  function,  but
the  faith  from  the  game  brings  prisoner’s  dilemma.  In  the
actual  application,  we  need  to  choose  the  most  suitable
model according to the practical problem.

3.   Algorithms of Evidence
Combination

The  most  intuitive  shortage  of  D-S  evidence  theory  is  the
tremendous  calculation  from  focal  elements.  In  general,  n
elements in framework Θ often bring 2n–1  focal  elements.  If
there  are  20  elements  in  framework  Θ,  there  are
1.048576×107  possible focal elements.  To solve this problem,
there  are  two main ways:  fast  algorithm of  a  special  evidence
structure  and  approximation  algorithm  of  decreasing  the
number of focal elements.

Barnett[23]  designed  a  fast  algorithm for  a  simple  evidence
structure  that  the  evidence  supports  a  hypothesis  or  not.  For
evidence  reasoning  problems  that  the  evidence  space  can  be
expressed as tree shape hierarchies (such as medical diagnosis),
Gordon  and  Shortliffe[24]  designed  another  fast  D-S  algorithm.
Pearl[25]  using  Bayesian  inference  in  the  hypothesis  space
simplified  the  calculation  process  and  the  amount  of
calculation. But Shafer[26] found in the highly conflict evidence,
the result of calculation error is large, so they improved the D-S
method  and  gave  a  precise  algorithm  under  the  hierarchy
condition. This kind of algorithm fully embodies the Dempster
synthesis rules, and the calculation result is relatively accurate,
but the application scope is narrow.

The  approximation  algorithm is  the  most  efficient  method
for  inducing  focal  elements.  Voorbraak[27]  found  using

Bayesian  approximation  to  replace  the  reliability  function
would  not  affect  the  result  of  the  synthesis  of  Dempster’s
rule,  and  proved  that  the  reliability  function  of  Bayesian
approximate  synthesis  is  equal  to  the  combination  of
Bayesian  reliability  function  approximation,  this  method
greatly  reduces  the  amount  of  calculation.  Consonant
approximation  was  proposed  by  Dubois  and  Prade[21].
Elements calculated by this method are nested and less than the
assumption  of  the  recognition  framework.  Consonant
approximation is good at evidence expression, but often brings
large  error,  so  it  is  not  suitable  for  practical  applications.
Tessem[28]  chose  the  focal  elements  of  big  masses  to
approximately  calculate  and  put  forward  the  (k,  l,  x)
approximation  method.  The  (k,  l,  x)  approximation  method  is
especially suitable for fast rule strength calculation, it not only
improves  the  speed  of  evidence  synthesis  but  also  basically
does  not  affect  the  decision  of  the  mass  functions.  Simard  et
al.[29] suggested the truncated D-S algorithm. It always keeps
the basic probability assignment of “do not know” not zero,
namely  not  depriving  existence  of  the  after  arrival  focal
elements, readjusts the m(Θ) after each synthetic value, and
retains  the  basic  probability  of  focal  elements  after  the
“trim”.  The  algorithm has  the  advantages  of  both  reducing
the  computation  and  ensuring  the  adaptability  of  the
algorithm;  the  biggest  shortage  is  that  the  evidence
synthesis  order  has  an  impact  on  the  result  of  the
calculation.

In  a  practical  application,  the  Bayesian  approximation
method  and  (k,  l,  x)  approximation  method,  in  essence,  are
the  conversion  of  BPAs  to  Bayesian  probability.  The
difference is how to transfer “not sure” and “do not know”
approximate  BPAs  into  “ok”  and  “know”  probabilities.  In
some sense,  the  Simard  approximate  algorithm is  closer  to
the “style” of the conventional D-S method.

Inspired  by  Pignistic  probabilities  convert,  Burger  and
Cuzzolin[30]  put  forward  two  kinds  of  k-additive  BPAs.  The
hierarchical  clustering method was put forward by Denoeux[31]

to  realize  the  approximation  of  inner  and  outer  BPAs.  The
hierarchical mass distribution method was proposed to achieve
the  BPA  approximation[32].  Han  et  al.[33]  used  the  distance  of
evidences  and  uncertainty  measurement  to  optimize  the  BPA
approximation.

The  fast  algorithm of  a  special  evidence  structure  and  the
method  of  inducing  focal  elements  have  different  application
environments, advantages, and disadvantages, the principles of
choosing a suitable algorithm in a data fusion system include 1)
the  number  of  focal  elements,  2)  the  distribution  of  mass
functions,  3)  how  many  mass  functions  to  synthesis,  4)  the
form  of  the  initial  reliability  function  (a  Bayesian  reliability
function, a belief function, or a simple support function), and 5)
the  method  used  for  the  express  of  evidence  or  automatic
decision-making.

4.   Conflict during Evidence Combining
The  D-S  evidence  theory  is  an  important  tool  for

108 JOURNAL OF ELECTRONIC SCIENCE AND TECHNOLOGY, VOL. 15, NO. 1, MARCH 2017



uncertainty  reasoning.  In  evidence  theory,  the  famous
commutative  and  associative  Dempster’s  rule  is  used  for
evidence combinations, when all the sources are considered
equally  reliable.  Although  Dempster’s  rule  of  combination
is  well-founded  theoretically,  its  lack  of  robustness  is
considered as a limitation by researchers in this field[34]. This
is  because  counterintuitive  results  are  obtained  in  some cases,
especially  when  there  is  a  high  conflict  among  bodies  of
evidence.

Suppose the discriminate framework Θ={A,  B,  C} and the
BPAs  of  the  two  evidence  are  m1(A)=0.99,  m1(B)=0.01,
m1(C)=0, m2(A)=0, m2(B)=0.01, and m2(C)=0.99.

From  Dempster  formula,  the  conflict  measures
K=m(ϕ)=0.0099+0.9801+0.0099=0.9999.

The fusion results are m12(A)=0, m12(B)=1, and m12(C)=0.
Although  the  support  degrees  to  B  of  m1  and  m2  are

comparatively  very  low,  but  the  fusion results  think B  is  true.
This  is  obviously  perverse.  Such  results  are  harmful  to
decision-making.

There  exist  two  major  viewpoints  on  the  so-called
counterintuitive  combination  results.  The  first  is  that  the
counterintuitive  results  are  due  to  Dempster’s  rule  of
combination,  especially  its  normalization  step.  Thus,  a
number  of  researchers  have  proposed  alternative
combination  rules[35]-[45]  that  use  various  strategies  to
redistribute the conflict and provide a fusion tool that produces
results  that  match  expectations,  such  as  Yager  rules,  Lefervre
method,  DP  rules,  Quan  Sun  allocation  method,  Shanying
Zhang allocation method, etc. The second viewpoint is that the
counterintuitive  results  are  due  to  the  evidence  that  is
combined,  i.e.,  the  data  model[46]-[54].  According  to  this
viewpoint,  there  are  no  counter-intuitive  behavior  results
from  the  use  of  Dempster’s  rule  of  combination,  and  the
mass  functions  should  be  regenerated  or  modified  before
combination  occurs,  such  as  discount  coefficient  method,
Murphy average method, Jousselme method, etc.

Alternative combination rules are designed for the conflicts
assigned on total evidence, and all conflicts will be allocated to
all  propositions  on  proportional.  Yager[35]  suggested  that  the
conflicts  are  the  root  cause  of  the  failure,  all  conflicting
evidence  is  unable  to  provide  effective  information,  so  he
assigned all conflicts to unknowns m(θ). The improved formula
can be  used in  high conflicting evidence combination,  but  the
irrational  distribution  will  lead  to  unreasonable  results  for
assigning  all  conflicting  evidence  to  the  unknown.  Lefevre  et
al.[36]  thought  conflicting  information  cannot  be  completely
abandoned.  We  should  extract  and  analyze  the  conflicts,  then
add the combination rules to get the new combination rule, and
finally  put  forward  the  unify  reliability  function  combination
method.  Dubois  and  Prade[37]  assigned  the  value  of  the  mass
function to all  conflicting focal elements,  but since there is no
distinguish  between  different  focal  elements,  the  composite
result  is  more  uncertain.  Smets[38]  believed  that  the
counterintuitive  combination  is  the  result  of  the  uncompleted
recognition  framework,  so  they  treated  an  empty  set  as  the
unknown elements  and  assigned  all  conflicts  unknown.  These

methods  change  the  close  of  evidence  theory  and  bring  more
problems.  Sun[39]  thought  all  evidence  credibility  is  congruent,
defined  the  validity  of  the  evidence  coefficient  through
calculating the average of two conflicts,  and gave all  conflicts
in proportion to each proposition.

In  addition,  Martin  and  Osswald[40],  Smarandache  and
Dezert[41], Deng et al.[42], and Zhang et al.[43] proposed improved
algorithms of evidence combination, but most of these methods
only meet the specific application background. All of them pay
too much attention to the allocate  space and proportion of  the
conflicts  but  neglect  the  cause  for  the  evidence  that  is
unreliable.

Some  methods  focusing  on  correcting  the  source  of
evidence  have  been  given.  Haenni[44]  suggested  that  the
combination rule of D-S theory has a solid mathematical basis
and is the promotion of Bayesian method. When the evidence
is  conflicting,  the  source  of  evidence  should  be  modified.  In
order  to  solve  this  problem,  Shafer[3]  put  forward  a  general
discount coefficient method, however, in practical applications,
the reliability of information is different, and the discount factor
will  also  change.  Murphy[45]  calculated  the  average  of  all
evidence credibility before evidence fusion, but he ignored the
credibility  of  the  evidence  and  the  correlation  between
evidence,  the  combination  results  are  not  ideal.  For  this
phenomenon,  Xu  et  al.[46]  introduced  an  effective  factor  to
measure  the  reliability  of  the  evidence  sources.  Liang  et  al.[47]

introduced  the  concept  of  experts,  but  these  values  need  to
obtain  a  priori  knowledge,  so  the  method  is  not  universal.  In
addition, Deng et al.[42] and Ding[48] also proposed the method of
correcting  source.  Evidence  source  revisions  speed  up  the
convergence  speed  of  the  evidence  synthesis  and  increase  the
synthesis  of  reliability,  but  are  easy  to  cause  the  losing  of
information.

As the  methods of  correcting synthesis  and modifying the
source  of  evidence  are  hard  to  get  general  and  reasonable
applications.  Recent  years  many  scholars[49]-[53]  began  to  put
forward a combination method of these two methods. They tried
to  take  advantage  of  both  so  to  obtain  a  more  reasonable
method.  But  most  of  these  synthesis  methods’  theoretical
basis  is  insecure,  which  only  can  be  applied  to  specific
examples, so it is very difficult to find a truly universal and
reasonable fusion method.

Although  both  types  of  viewpoints  are  rational,  we
prefer the idea that the unreliable source is the cause for the
counterintuitive  results.  One  necessary  condition  for  using
Dempster’s  rule  of  combination  is  that  all  the  sources  are
equally reliable. However, in many real applications, all the
sources  of  evidence  to  be  combined  may  not  have  equal
reliability. Therefore, we think that the correcting of evidence
sources  to  be  combined  should  be  modified  according  to  the
reliability of their sources, providing a correct assessment of the
given problem. The effects of the evidence from more reliable
sources  should  be  strengthened,  and  at  the  same  time,  the
effects  of  the  evidence  from  less  reliable  sources  should  be
weakened.
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5.   Relationship of D-S Evidence
Theory and Probability Theory

Form Section 1 we know, the D-S evidence theory comes
from  probability  and  has  a  very  close  relationship  with
probability theories. From Section 2, we know one of the four
main explanations of D-S evidence theory argues that when the
BPA  is  defined  on  a  single  subset,  the  BPA  is  degraded  into
probability, as shown in the following example, this is not true.

Suppose  Θ={θ1,  θ2,  θ3},  the  BPAs  are  m({θ1})=0.2,
m({θ2})=0.2, and m({θ3})=0.6.

The  probabilities  are  p({θ1})=0.2,  p({θ2})=0.2,  and
p({θ3})=0.6.

Now  we  consider  whether  p(·)=m(·),  by  the  additivity  of
probabilities p({θ1, θ2})=p({θ1})+p({θ2})=0.4.

And  for  the  countable  additivity  of  certain  probabilities:
p(Θ)=p({θ1})+ p({θ2})+ p({θ3})=1.

=0,
0,

All masses of the focal elements except θ1, θ2, and θ3 are 0.
So  we  have  m({θ1,  θ2}) m({θ1})+m({θ2})=0.4,  m({Θ})=

m({θ1})+m({θ2})+m({θ3})=1.
To  obtain  the  difference  more  intuitive,  the  difference

between p(·) and m(·) is shown in Table 1.

Form the Table 1, we know even the BPA is defined on a
single  subset,  the  BPA  is  not  satisfying  additivity  and
m({Θ})=1, so the BPA is not equivalent to the probability. The
BPA is similar to the probability only on formal. On the other
hand,  the D-S evidence theory can be viewed as an imprecise
probability  method  when  the  proposition  is  profiled  by  upper
and  lower  probabilities,  because  the  probability  interval  is
similar to the belief interval [Bel(A), Pl(A)].

From  Section  2,  we  know  some  researchers  argue  that
when the BPA is defined on a single subset, the Dempster’s
rule is equivalent to Bayes formula. We give an example to
compare Dempster’s rule and Bayes formula.

0.6 0.8
0.2

Set  framework  Θ={A, B},  P(A)= ,  P(E|A)= ,
P(E|B)= , from the Bayes formula, we get:

P(A|E) =
P(E|A)P(A)

P(E|A)P(A)+P(E|B)P(B)

=
0.8×0.6

0.8×0.6+0.2×0.4 = 0.86

P(B|E) =
P(E|B)P(B)

P(E|B)P(B)+P(E|A)P(A)

=
0.2×0.4

0.2×0.4+0.8×0.6 = 0.14.

If  we  transfer  above-mentioned  evidence  into  single-point
BPAs,  we  have  m1(A)=0.6,  m1(B)=0.4,  m2(A)=0.8,  and
m2(B)=0.2.

From  the  Dempster’s  rule,  we  have  m12(A)=0.86  and
m12(B)=0.14.

The  results  are  same,  but  it  is  unable  to  specify  that
Dempster’s  rule  is  equal  to  Bayes  formula.  First,  in
Dempster’s rule, all evidence is equal, our example viewed
the prior probability and likelihood function as two independent
evidence,  it  is  not  reasonable.  The  second  reason  is  that  the
example  is  based  on  a  strong  implicit  assumption  which  is
P(E|A)+P(E|B)=1. This assumption is not a necessary condition
in Bayes formula, but for BPAs, it is necessary.

In a word, the D-S evidence theory is an inexact promotion
of probability.

6.   Conclusions
Because  the  D-S  evidence  theory  has  the  following  three

requirements,  it  will  not  actually  achieve  expected  results:  1)
The  evidence  must  be  independent,  and  sometimes  it  is  not
easy  to  meet.  2)  There  needs  a  tremendous  computing
workload during evidence combination. 3) The counterintuitive
combination  results  in  evidence  combination.  In  recent  years,
scholars have made a lot of work on 2) and 3). But for 1), no
breakthrough appeared. From the developing of the current D-S
evidence  theory,  the  related  theories,  such  as  fuzzy  set
theory[54],[55],  random  set  theory,  rough  set  theory[22],  analytic
hierarchy process[56], and neural network analysis[57], are used to
explain and optimize the results of D-S evidence theory.

In  addition,  the  D-S  evidence  theory  is  a  form of  random
sets  theory,  but  the  random  sets  theory  lacks  statistical
techniques.  The  essence  of  BPAs  is  the  distribution  of
random  variables,  and  the  Dempster’s  rule  is  the  compute
rule  of  random  sets.  Both  of  these  are  dependent  on  the
study  of  random  sets  theory.  So  in  order  to  expand  the
application  of  D-S  theory,  the  best  way  is  enriching  the
study of random sets theory.

In terms of applications, the D-S evidence theory has been
used in intelligent identification systems[57], fault diagnosis[58]-[61],
human resource management[62], risk assessment[63],[64], decision-
making  evaluation[65],  etc.  With  the  research  deepening  and
some  key  problems’  solving,  its  applications  will  be  more
widely.
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