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Abstract

This paper presents an integrated image fusion and match score fusion of multispectral face images. The fusion of visible and long wave
infrared face images is performed using 2v-granular SVM which uses multiple SVMs to learn both the local and global properties of the
multispectral face images at different granularity levels and resolution. The 2v-GSVM performs accurate classification which is subsequently
used to dynamically compute the weights of visible and infrared images for generating a fused face image. 2D log polar Gabor transform and
local binary pattern feature extraction algorithms are applied to the fused face image to extract global and local facial features, respectively.
The corresponding match scores are fused using Dezert Smarandache theory of fusion which is based on plausible and paradoxical reasoning.
The efficacy of the proposed algorithm is validated using the Notre Dame and Equinox databases and is compared with existing statistical,

learning, and evidence theory based fusion algorithms.
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1. Introduction

Current face recognition systems capture faces of cooper-
ative individuals in a controlled environment as part of the
face recognition process. It is therefore possible to control the
lighting, pose, background, and quality of images. Under these
conditions, the performance of face recognition algorithms is
greatly enhanced. However, there is still a need for more robust
and efficient face recognition algorithms to address challenges
such as changes in illumination, variations in pose and expres-
sion, variations in facial features due to aging, and altered ap-
pearances due to disguise [1].

Face recognition algorithms generally use visible spectrum
images for recognition because they provide clear representa-
tion of facial features and face texture to differentiate between
two individuals. However, visible spectrum images also pos-
sess several other properties which affect the performance of
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recognition algorithms. For example, changes in lighting affect
the representation of visible spectrum images and can influ-
ence feature extraction. Other variations in face images such as
facial hairs, wrinkles, and expression are also evident in vis-
ible spectrum images and these variations increase the false
rejection rate of face recognition algorithms. To address the
challenges posed by visible spectrum images, researchers have
used infrared images for face recognition [2-5]. Among all the
infrared spectrum images, long wave infrared (LWIR) images
possess several properties that are complementary to visible
images. LWIR or thermal images are captured in the range of
8-12 pm. These images represent the heat pattern of the object
and are invariant to illumination and expression. Face images
captured in LWIR spectrum have less intra-class variation and
help to reduce the false rejection rate of recognition algorithms.
These properties of LWIR and visible images can be combined
to improve the performance of face recognition algorithms.

In literature, researchers have compared the performance
of visible and thermal face recognition using several face
recognition algorithms. These results show that for variation
in expression and illumination, thermal images provide better
recognition performance compared to visible images [2,6,7].
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Further, several fusion algorithms have been proposed to fuse
the information extracted from visible and LWIR face im-
ages at image level [8-11], feature level [10—12], match score
level [12], and decision level [12]. Information fusion of mul-
tispectral images provides better performance compared to ei-
ther visible or infrared spectrum images. However, research in
multispectral information fusion is relatively new and intel-
ligent techniques such as granular computing, support vec-
tor machine (SVM), and theory of evidence are not explored.
These intelligent techniques can enhance the recognition perfor-
mance by providing better generalization capabilities to handle
imprecise information.

In this paper, we propose algorithms to fuse LWIR and vis-
ible face images at image level and match score level. We first
propose the formulation of 2v-granular SVM (2v-GSVM) for
pattern classification which is used in the proposed image fu-
sion algorithm. The proposed image fusion algorithm learns the
properties of the multispectral face images at different resolu-
tion and granularity levels to determine optimal information and
combines them to generate a fused image. We then apply 2D log
polar Gabor [13] and local binary pattern [14] face recognition
algorithms to extract global and local features from the fused
image. The match scores obtained by matching these features
are fused using the proposed Dezert Smarandache (DSm) fu-
sion algorithm [15,16]. The proposed DSm match score fusion
algorithm is based on evidence theory which performs fusion
depending on the evidence and belief of the match scores. On
the Notre Dame [17,18] and Equinox [19] face databases, this
integrated hierarchical scheme yields verification accuracy of
more than 99.5%.

We have organized the proposed algorithms in four sections.
Section 2 describes the proposed formulation of 2v-GSVM.
In Section 3, we describe the proposed visible and infrared
face image fusion algorithm which dynamically and locally
computes the weights using 2v-GSVM to generate the fused
face image. We then describe the overview of DSm theory and
the proposed DSm match score fusion algorithm in Section 4.
Finally in Section 5, we combine the two levels of fusion to
present the integrated multilevel image fusion and match score
fusion algorithm. Section 6 describes the databases and existing
algorithms used for validation of the proposed algorithms. The
experimental results are summarized in Section 7.

2. 2v-granular support vector machine

SVM is widely used in classification problems because it is
designed to circumvent the overfitting problem [20-22] and is
generalized to optimally perform classification on new train-
ing data. In literature, different variants of SVM have been
proposed such as SVM, v-SVM, and dual v-SVM (2v-SVM).
These variants are designed to improve the classification ac-
curacy and address other challenges such as reduction in time
complexity and classification with disparate number of train-
ing samples per class. In our previous research [12], we used
2v-SVM for feature fusion, match score fusion, and expert fu-
sion. We observed that 2v-SVM provides better classification
accuracy compared to classical SVM and is computationally

more efficient. Recently, Tang et al. [23-26] applied the concept
of granular computing [27-30] to SVM and proposed GSVM
which is more adaptive to the data distribution in comparison
to SVM. Tang et al. have also shown that for several classifi-
cation applications, GSVM outperforms SVM both in terms of
classification accuracy and computational time. In this paper,
we extend the formulation to 2v-GSVM which embodies the
properties of both GSVM and 2v-SVM. We first describe the
formulation of 2v-SVM [22] followed by the granular model-
ing of 2v-SVM.

Let {x;, y;} be a set of N data vectors with x; € fRd, Vi €
(+1,—1),andi=1, ..., N.X; is the ith data vector that belongs
to the binary class y;. According to Chew et al. [22] the objective
of training 2v-SVM is to find the hyperplane that separates two
classes with the widest margins, i.e.,

wo(x)+b=0, (D
subject to

Yiwepx;) +b)=(p — ),  p,h; =20 (2
to minimize,

1

5||w||2—Zci<vp—wi>, 3)

where p is the position of the margin and v is the error param-
eter. ¢(x) is the mapping function used to map the data space
to the feature space and provide generalization for the decision
function that may not be a linear function of the training data.
Ci(vp — ;) is the cost of errors, w is the normal vector, b is
the bias, and ; is the slack variable for classification errors.
Slack variables are introduced to handle classes which cannot
be separated by a hyperplane. Let v4 and v_ be the error pa-
rameters for training the positive and negative classes, respec-
tively. Using these, the error parameter, v, is calculated as

2V+V_

V= , O<vi<land O<v_<1. @
Ve + Vo
Error penalty C; is defined as

C,-={C+ if y; =+1,

C_ if yi=—1, )

where

-1
Ci= [n+ <1 + :iﬂ , (6)
\J -1
C_= |:n_ (1 + —‘)} (7
V4

and n4 and n_ are the number of training points for the posi-
tive and negative classes, respectively. Further, the Wolfe dual
formulation of 2v-SVM can be written as

L:Z%i—
i

where i, j € 1,..., N, o;, o are the Lagrange multipliers and
K(-) is the kernel function. Finally, iterative decomposition

1
Ezdidjyiyj'lf(xi,xj) , (3
ij
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training based optimization algorithm [22] is used to train the
2v-GSVM.

In this paper, we extend the formulation of 2v-SVM by
using the granular computing approach similar to Ref. [25].
Granular computing is a knowledge-oriented divide and con-
quer approach to problem solving Refs. [27-30]. In granu-
lar computing, information is divided into subproblems called
granules and these subproblems are solved individually at dif-
ferent granularity levels. Using this concept, 2v-GSVM is for-
mulated as follows.

Let the complete feature space be divided into k subspaces
with one 2v-SVM operating on each subspace. The ith 2v-SVM
is represented by 2vSVM;, where i = 1, 2, ..., k. From each
of the subspace, we obtain the corresponding L; using Eq. (8).
We then compute the compound margin width W by using all
the L; values:

k
t.
W= ?Z(ZVSVM[ — L;) — Lo/, )

i=1

where #; is the number of training data in the ith subspace and
t = Zle t;. 2vSVM; :— L; represents the SVM operating
on the ith subspace. 2v-SVM learning yields L; at local level,
and L is obtained by learning another 2v-SVM on the com-
plete feature space at global level. This equation provides the
margin width associated to a hyperplane. There are different
methods to divide the feature space and hence different hyper-
planes associated with each of the granule generation method
can be obtained. We compute the classification accuracy of all
the hyperplanes on the training data and then select the hyper-
plane that optimally classifies the training data. In contrast to a
single SVM that deals with large parameter space and results
in large training time, 2v-GSVM uses multiple SVMs to learn
both the local and global properties of the training data at dif-
ferent granularity levels. This 2v-GSVM is then used for fusing
multispectral face images.

3. Multispectral face image fusion using 2v-GSVM

In multispectral face recognition, visible images provide the
reflectance property and LWIR images provide the thermal
property. In 2v-GSVM based image fusion, we combine these
properties to generate a fused image which possess both the
properties and can be used to improve the recognition per-
formance. Although there are several multispectral face im-
age fusion algorithms in literature, they have some limitations
which affect the face recognition performance. Genetic algo-
rithm based fusion proposed by Bebis et al. [31] suffers from
making a good choice of fitness function. Fusion algorithm
proposed by Kong et al. [4] suffers from the empirical con-
stant weights which are assigned to the wavelet coefficients of
visible and LWIR images. In real world applications, weights
should be dynamically and locally assigned for optimal mul-
tispectral information fusion. In this section, we propose the
multispectral face image fusion algorithm which dynamically
and locally computes the weights for fusion using 2v-GSVM.
Fig. 1 illustrates the steps involved in the proposed image

fusion algorithm. The algorithm is divided into two steps: im-
age registration and image fusion.

3.1. Mutual information based multispectral face image fusion

Visible and infrared images captured at different time in-
stances can have variations due to camera angle, expression,
and geometric deformations. To optimally fuse two multispec-
tral images, we first need to minimize the linear and non-linear
differences between the two images. In this section, we pro-
pose the use of mutual information based registration algorithm
for registering visible and thermal face images. Mutual infor-
mation is a concept from information theory in which statis-
tical dependence is measured between two random variables.
Researchers in medical imaging have used mutual information
based registration algorithms to effectively fuse images from
different modalities such as CT and MRI [32,33]. Registration
of multispectral face images is described as follows.

Let V and I be the input visible and infrared face images for
registration. Mutual information between the two face images
can be represented as

MV, )=H(V)+HU)—-H,I), (10)

H (-) is the entropy of the image and H(V, I) is the joint en-
tropy. Registering V with respect to / requires maximization
of mutual information between / and V, thus maximizing the
entropy H(V) and H(I), and minimizing the joint entropy
H(V, I). Mutual information based registration algorithms are
sensitive to changes that occur in the distributions as a result of
difference in overlap regions. To address this issue, Studholme
et al. [34] proposed normalized mutual information which can
be represented as

NMV,I) = w 11

HV,I)

The registration is performed on a transformation space, 7, such
that

a b 0
T = |:c d 0}, (12)
e [ 1

where a, b, ¢, d are the shear, scale, and rotation parameters,
and e, f are the translation parameters. Using the normalized
mutual information, we define a search strategy to find the
transformation parameters, 7*, by exploring the search space,
T:

T" =arg r?zgl}x{NM(I, T(V))}. (13)

Multispectral face images V and [ are thus registered using
the transformation parameters 7*. This registration algorithm
is linear in nature. To accommodate the non-linear variation in
face images, we apply multiresolution image pyramid scheme
in which we first build Gaussian pyramid of both visible and
thermal face images. Registration parameters are estimated at
the coarsest level and used to warp the face image in the next
level of the pyramid. The process is iteratively repeated through
each level of the pyramid and a final transformed visible face
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3-Level 2v-GSVM [
DWT
Visible —*|Fused DWT
Face Image __,| Coefficients
33_\2/\? 2v-GSVM | — Face Image
LWIR
Face Image

Fig. 1. Schematic diagram of the proposed 2v-GSVM image fusion algorithm.

Visible LWIR Registered Visible
Face Image Face Image Face Image

Fig. 2. Example of visible and infrared image registration on the Notre Dame
face database [18]. Visible image is registered with respect to the LWIR
image. Size of detected visible face image is 855 x 1024 and infrared face
image is 115 x 156.

image is obtained at the finest pyramid level. In this manner,
we handle the large global variations at the coarsest resolu-
tion level and local non-linear variations at the finest resolution
level. Fig. 2 shows examples of the registration algorithm in
which visible face image is registered with respect to LWIR
face image.

3.2. Proposed 2v-GSVM image fusion algorithm

In the proposed face image fusion algorithm, registered
visible and infrared face images are fused using 2v-GSVM
and discrete wavelet transform (DWT) [35]. The fusion al-
gorithm uses the activity level, a, of face images which is
defined as

where V is the visible face image, and X and Y are the rows
and columns of the face image, respectively. The proposed fu-
sion algorithm is divided into two parts: (1) training and (2)
classification and fusion.

Training 2v-GSVM: We learn the 2v-GSVM for image fusion
by using the activity levels of labeled visible and infrared train-
ing face images. The training algorithm is described as follows:

Step 1: Visible and infrared training face images are decom-
posed using DWT to obtain three-level approximation, hori-
zontal, vertical, and diagonal subbands.

Step 2: Let Vir;, Viw;, VaL;, and VHH; be the subbands
of visible face image where j =1, 2, 3 represents the decompo-
sition levels. Similarly, let Iz, IL#;, InL;, and Iz p; be the
subbands of infrared face image corresponding to each decom-
position level, j. Each subband of both visible and infrared face
images is divided into windows of size 8 x 8 and the activity
level of each window is computed using Eq. (14).

Step 3: The activity levels of all labeled training face images
are used as input to 2v-GSVM. In training, two 2v-GSVMs are
learned, one for visible face images and another for infrared
face images.

Step 4: 2v-GSVM trained for visible images classifies the
activity levels of visible spectrum face images as Good or +1
and Bad or —1. Similarly, 2v-GSVM trained for infrared face
images classifies the activity levels of infrared face images into
Good or Bad class.

Classification and fusion: We classify the properties of vis-
ible and infrared face images using trained 2v-GSVMs. This
classification is used to dynamically compute the weights of
visible and infrared face images in multispectral image fusion.

Step 1: Visible and infrared face images of an individual
are provided as input. Similar to Steps 1 and 2 of the training
algorithm, both the input face images are decomposed into

X—-1Y-1 Y—1X-1

1
a= |35 [ 2D AVGE N =VEj=DF+ 3 AVGEH=VGE =1 )P |, (14)

i=0 j=1 j=0 i=1
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three-level DWT and activity levels of 8 x 8 windows are com-
puted. Let ay and a; be the activity levels computed from vis-
ible and infrared face images, respectively.

Step 2: 2v-GSVM classifier is used to classify the activity
levels of different subbands of visible face images as Good or
Bad. A binary decision matrix, dy, is generated which contains
value 1 if the activity level is Good and O if the activity level
is Bad.

Step 3: Similar to Step 2, activity levels of infrared face image
are classified and a binary decision matrix, dy, is generated.

Step 4: Weight matrices wy and w; are computed using
binary decision matrices (dy and d;) and the following three
conditions:

(1) Ifdy(i) =dj@@) =1, then wy(i) =w;(i) =0.5.
) If dy(i) =1 and d;(i) =0, then wy (i) > w; (i) and

|av(i) + 2a] (l) - almediarl |
ay (i) +a(i)

wy (i) = 15)

16
ay (i) +ar(i) (10

wr(i) =
(3) Ifdy(i) =0and d;(i) =1, then wy (i) < w; (i) and

|anedian —ay (l)|

wy (i) = . . an
ay (i) +a (@)
. |a1 (l) + zav (l) B ane ian|
wr(i) = - —median (18)
ay (i) +ar (i)
where i is the window count, and ay, .. and ay, ..., are the

median values of ay and a; matrices, respectively. Further,
in all three cases, wy (i) + w; (i) = 1.

In condition 1, the activity levels of both visible and infrared
image windows are classified as Good and hence equal weights
are assigned. Condition 2 states that if the activity level of
window corresponding to visible face image is classified as
Good and the activity level of the window corresponding to
infrared face image is classified as Bad, then higher weight
is assigned to the visible face image window. In condition 3,
higher weight is assigned to the infrared face image window
because 2v-GSVM classifies the activity level of visible face
image window as Bad and the activity level of infrared face
image window as Good.

Step 5: Visible and infrared face images are then fused using

Flg s (1) = 0v (i) Vi, s (1) + 01 (0) 1 g, (D), 19)

where F; is the fused subband, j represents the approximate,
vertical, horizontal, and diagonal subbands, subscript 8 x 8
denotes that the fusion is performed at window level of size
8 x 8, and i represents the window count.

Step 6: Finally, inverse DWT is applied on fused subbands
to generate the fused multispectral face image, F. Fig. 3 shows
an example of visible, infrared, and fused face images of an
individual.

LWIR
Face Image

Fused
Face Image

Registered Visible
Face Image

Fig. 3. Sample result of the proposed image fusion algorithm.

4. Match score fusion using DSm theory

In multimodal biometrics, researchers have proposed sev-
eral match score fusion algorithms such as AND/OR rule [36],
Sum rule [36], and SVM fusion [37]. Another mathematical
paradigm of information fusion is based on the theory of
evidence. Dempster Shafer theory (DST) [38] based fusion
algorithm is one example of this paradigm in which uncertain
and fuzzy information are efficiently fused. In multimodal
biometrics, it has been shown that DST based fusion algo-
rithms perform better compared to existing fusion algorithms
[39]. However, DST has some limitations as reported by Zadeh
[40-42], Dubois and Prade [43], and Voorbraak [44]. Re-
searchers have shown that results for DST are not trustworthy
when conflict between different sources is large. Other limi-
tations related to Dempster rule of combination are reported
in Ref. [15]. Recently, DSm theory based fusion algorithm
[15,16] has been proposed to circumvent the limitations of
other evidence theory based fusion algorithms. DSm theory is
a powerful mathematical model for information fusion which
includes both Bayes theory and DST as special cases. In this
section, we first present a brief overview of DSm theory and
hybrid DSm rule of combination [16] followed by the proposed
match score fusion algorithm.

4.1. Overview of DSm theory

DSm theory is a powerful tool for representing and fusing un-
certain or conflicting knowledge. It can solve complex static or
dynamic fusion problems using plausible and paradoxical rea-
soning [15,16]. Since identity verification is a two class prob-
lem with the classes being genuine and impostor, we explain
DSm theory for a two class problem.

Let @ ={0, 0>} be the frame of discernment which consists
of a finite set of exhaustive and mutually exclusive hypothesis.
Hyperpower set of the frame of discernment is defined as DO =
{@, 01, 02,01 U 0O, 0; N O}. A mapping m(-) on O is defined
as m(-) = D€ — [0, 1], such that

Z m(A) =1, (20)

AeD®

m(A) is called the generalized basic belief assignment (gbba)
of A and m (@) = 0. Further, a generalized belief function Bel
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is a mapping function Bel : D® — [0, 1] such that

Bel(A) = Z m(X). (21)
XCA,XeD®
More specifically,
e,p°
Bel(A), ;" [Eyl(wo € A) = x. (22)

This equation denotes the degree of belief x of the classifier y
at time 7 when wg belongs to A and A € D®. Belief is based
on evidential corpus Ey ; held by y at time . To simplify, gen-
eralized belief function can also be written as Bel(A). Further,
generalized belief function, Bel, uniquely corresponds to gbba
m and vice versa.

For fusing two information sources, X and Y, the DSm rule
of combination [16] is defined as

mpy)(A) = Y (A)[S1(A) + $2(A) + S3(A)], (23)

where M (O) is the model over which DSm theory operates and
W (A) is the characteristic non-emptiness function of A which
is 1 if A¢@ and O otherwise. S;(A), S2(A), and S3(A) are
defined as

Sid= )

(X,YeD?®, XNY=A)

m(X)mo(Y),

$2(A) = > my (X)ma(Y),
(X, Ye®, [v=A]V[(ve®)A(A=I)])
S3(A) = > mi (X) my(Y), (24)

(X,YeD®, XUY=A, XNY e®)

where /; is total ignorance and is the union of all 6; (i =1, 2),
ie, I; =0, U 6. ® ={D, ¢} is the set of all elements of
D® which are empty under the constraints of some specific
problem, and ¢ is the empty set. v=wu(X) Uu(Y), where u(X)
is the union of all singletons 0; that compose X and Y. Here,
S1(A) corresponds to the classical DSm rule on the free DSm
model [15], S2(A) represents the mass of all relatively and
absolutely empty sets which is transferred to the total or relative
ignorance, and S3(A) transfers the sum of relative empty sets
to the non-empty sets. An excellent description of DSm theory
is presented in Ref. [16].

Probability based approaches have limitations because they
deal with basic probability assignment m(-) € [0, 1] and
m(01)+m(0;) =1. Further, DST deals with basic belief assign-
ment m(-) € [0, 1] such that m(01)+m(02)+m (01 U0)=1.1In
contrast, DSm theory is more generalized and deals with belief
functions associated with the generalized belief assignment
such that m(0;) + m(02) +m (0, U 0) + m(0; N O,) = 1.

4.2. Proposed multimodal match score fusion algorithm

In this section, we propose a novel match score fusion al-
gorithm using DSm theory. Fig. 4 shows the steps involved in
the proposed match score fusion algorithm for a single image.
Two match scores are computed by matching the global fea-
tures and local features extracted from probe and gallery face

images. These two match scores are fused using DSm theory.
We first define:

e Frame of discernment: @ = {Ogenuine, Gimpostor}-
e Dedekind lattice: D@ = {ngnuinea Himpostors ngnuine )
gimpostora ggenuine N 0impostor}~

Let s; and s, be the two match scores computed from two face
recognition algorithms. Let us assume that the distribution of
match scores to an element of D@ is a Gaussian distribution

( ) 1 1 {Si — W }2 25)
Siy Wi, Oji) = ———exp| —= ,
PRS- Hij» i a,'.,'\/ﬁ P 2 gij

where y;; and g;; are the mean and standard deviation of the

ith classifier corresponding to the jth element of D®. We use
this Gaussian distribution to compute the gbba,

m;(-) = D@\{ngnuine U gimpostar} — [0, 1].

Since in biometrics, a match score can only belong to genuine
(Qgenuine)’ impostor (Himposror), or conflicting region ((ggenuinem
Gimpostor)9 we set m; (ngnuine U Himpostor) =0.001 and compute
the remaining gbbas as follows:

P(Si,llij,o'ij)ﬁij
DO|-1 ’
Z‘j=l‘ p(si, 1ij. 0ij) i

mi(j) = (26)

where f3;; is the prior of classifier i corresponding to the jth
element of D@\{Ogenuine U ()impostor}- We have used ﬁij as the
verification accuracy computed on the training database and its
value lies in the range of (0, 1). Gbbas of the two classifiers
m1(-) and m3(-) are computed and fused using

M fused =M1 @G ma, 27

where @ represents the hybrid DSm rule of combination defined
in Eq. (23), Section 4.1. Finally, threshold 7 is used to classify
the decision as accept or reject:

accept
reject

if m fused =T,

otherwise. (28)

Decision = {

To extend this algorithm to multispectral face images, we sep-
arately apply the feature extraction algorithms to the visible
face image and the infrared face image. As shown in Fig. 5,
we extract the global facial features using 2D log polar Gabor
transform [13] and the local facial features using local binary
pattern [14], and then match these features to compute the cor-
responding match scores. The two match scores for the visible
face image are fused using the proposed DSm fusion algorithm.
Similarly, the two match scores for the infrared face image
are also fused to generate the fused match score. Finally, the
fused match scores of the visible face image and the infrared
face image are combined to compute a composite match score
for multispectral face images. A decision of accept or reject is
made using the composite match score.
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2D log Polar Generalized
Gabor Feature > Match Score » Basic Belief
Extraction Assignment
—>» DSm Match Accept/
]_' Score Fusion Reject
Local Binary Generalized
Pattern Feature » Match Score »  Basic Belief
Extraction Assignment

Face Image

Fig. 4. Block diagram of the proposed DSm match score fusion algorithm in which match scores obtained from two classifiers are fused.

2D log Polar
Gabor Feature
Extraction

Match Score

A4

Local Binary
Pattern Feature
Extraction

A4

Match Score

—>» DSm Match
—» Score Fusion

Visible
Face Image

il 2D log Polar

——»| Gabor Feature
Extraction

v

Match Score

DSm Match
Score Fusion Accept/
and Reject
Classification

Local Binary
—» Pattern Feature
Extraction

A4

Match Score

—> DSm Match
—» Score Fusion

LWIR
Face Image

Fig. 5. Steps involved in the proposed DSm match score fusion algorithm. In this case, match scores obtained by applying the two classifiers on multispectral

face images are fused.

5. Integration of image fusion and match score fusion

The proposed image and match score level fusion algorithms
are integrated to further improve the verification performance.
Fig. 6 shows the block diagram of the integrated multilevel fu-
sion algorithm. Visible and infrared face images are first fused
using the proposed 2v-GSVM image fusion algorithm described
in Section 3. 2D log polar Gabor transform [13] and local bi-
nary pattern [14] feature extraction algorithms are then applied
on the fused multispectral face image to extract global and lo-
cal facial features. Match scores computed by matching these
features are fused using the proposed DSm match score fusion
algorithm described in Section 4.

6. Databases and existing algorithms used for validation

To validate the proposed fusion algorithms, we used the
Notre Dame [17,18] and Equinox/NIST [19] multispectral
face databases. In addition, we used 2D log polar Gabor trans-
form [13] and local binary pattern algorithms [14] for face

verification. For comparing the performance of the proposed
algorithms, we used several existing image fusion and match
score fusion algorithms. In this section, we briefly describe the
details of the databases and algorithms used in our experiments.

6.1. Databases used for validation

e Notre Dame face database: Notre Dame face database
[17,18] contains LWIR and visible images from 159 classes
with variations in expression, lighting, and time lapse. We
have chosen three visible and LWIR face image with neu-
tral expression for training database, one neutral visible and
LWIR image for gallery database, and the remaining images
comprise the probe data set. Table 1 shows the details of
training, gallery, and probe images used in the experiments.

e Equinox face database: Equinox face database [19] contains
LWIR, medium wave infrared, short wave infrared, and vis-
ible face images pertaining to 95 individuals. LWIR images
are captured at 8—12 um, medium wave infrared images at
3-5 um, and short wave infrared images at 0.9-1.7 um. The



R. Singh et al. / Pattern Recognition 41 (2008) 880-893 887

2v- GSVM
Fusion
2D log Polar Generalized
Gabor Feature » Basic Belief
Matching Assignment DSm Match
Visible Score Fusion Accept/
Face Image and Reject
i Local Binary Generalized Classification
tPattern Feature » Basic Belief
Matching Assignment
2v- GSVM
> Fusion Face Image
LWIR
Face Image
Fusion of Multispectral Images Fusion of Match Scores
Fig. 6. Steps involved in the proposed multilevel image fusion and match score fusion algorithm.
Table 1 extracted to generate a feature vector [14]. Matching of two

Number of visible and infrared image pairs in the training, gallery, and probe
databases

Face database =~ Number of visible and infrared image pairs in

Training database Gallery database Probe database

Notre Dame 477 159 1815
Equinox 285 95 18 715

images are captured under different illumination conditions
and contain variations in expression and glasses. In our re-
search, we have used only LWIR images and visible images.
The number of LWIR and visible images per class vary from
43 to 516. We chose three visible and LWIR images with neu-
tral expression and without glasses for training, one LWIR
and visible image with neutral expression, uniform illumi-
nation, and no glasses for gallery, and the remaining images
as probe.

6.2. Face recognition algorithms

We first detect the face region from input images. Visible
face images are detected using the triangle based face detec-
tion algorithm [45] whereas a thresholding based face detection
algorithm [4] is applied to detect LWIR face images. Global
and local facial features are extracted from these detected face
images using the face recognition algorithms described below.

e 2D log polar Gabor transform: In the 2D log polar Gabor
transform based face recognition algorithm, the face image
is transformed into polar coordinates and textural features
are extracted using the 2D log polar Gabor transform [13].
These features are matched using the Hamming distance to
generate match scores.

e Local binary pattern: In this algorithm, a face image is di-
vided into several regions and weighted LBP features are

LBP feature vectors is performed using weighted Chi square
distance measure algorithm.

6.3. Existing fusion algorithms

To compare the performance of the proposed 2v-GSVM
based image fusion algorithm, we chose image fusion algo-
rithms proposed by Kong et al. [4] and Singh et al. [10]. Both
the algorithms use DWT to fuse infrared and visible face im-
ages. To compare the performance of the proposed DSm based
match score fusion algorithm, we chose four existing fusion al-
gorithms, Product rule [36], Sum rule [36], SVM fusion [37],
and DST fusion [39]. Product rule and Sum rule are based on
statistical rules, SVM fusion algorithm is a learning based algo-
rithm, and DST fusion algorithm is based on evidence theory.

7. Experimental validation of the proposed algorithms

In this section, we perform the experiments to validate the
proposed image fusion and match score fusion algorithms.
Using the training images, we train both 2v-GSVM image fu-
sion algorithm and DSm match score fusion algorithm. For
2v-GSVM learning and classification, we used the radial basis
function (RBF) kernel with RBF parameter as 4. The perfor-
mance is evaluated in terms of verification accuracy at 0.01%
false accept rate (FAR). The experimental validation is divided
into four parts:

(1) Validation of the proposed 2v-GSVM image fusion
algorithm.

(2) Validation of the proposed DSm match score fusion
algorithm.

(3) Validation of the integrated multilevel image fusion and
match score fusion algorithm.
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Table 2

Verification performance of the proposed 2v-GSVM and existing image fusion algorithms at 0.01% FAR
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Face database

Recognition algorithm

Verification accuracy (%)

Visible image

LWIR image

Kong image fusion [4]

Singh image fusion [10]

Proposed image fusion

Notre Dame

Equinox

2D log polar Gabor
Local binary pattern
2D log polar Gabor
Local binary pattern

89.36
88.20
78.91
76.80

88.09
87.44
82.75
81.52

86.74
85.87
80.83
80.69

91.88
91.79
90.06
89.93

95.85
94.80
94.98
94.71

(4) Statistical evaluation of the proposed fusion algorithms
using half total error rate (HTER).

7.1. Validation of the proposed 2v-GSVM image fusion
algorithm

The performance of the proposed image fusion algorithm is
evaluated using the Notre Dame and Equinox face databases.
We compared the performance with two existing multispec-
tral face image fusion algorithms referred to as Kong image
fusion [4] and Singh image fusion [10]. For evaluation, we
separately computed the verification accuracies of visible face
image and LWIR face image using both 2D log polar Ga-
bor and local binary pattern face verification algorithms. The
third and fourth columns of Table 2 summarize the verification
performance of visible face image and LWIR face image, re-
spectively, using both the verification algorithms. These results
establish the baseline for evaluating and comparing the per-
formance of fusion algorithms. We then compute the verifica-
tion accuracies with the proposed 2v-GSVM multispectral face
image fusion algorithm and existing image fusion algorithms.
The results summarized in Table 2 show that the proposed im-
age fusion algorithm outperforms both the existing fusion algo-
rithms by at least 3.9% for the Notre Dame database and 4.9%
for the Equinox database. ROC plots in Figs. 7 and 8 show
the results for the Notre Dame and Equinox face databases,
respectively.

The proposed 2v-GSVM image fusion algorithm performs
correct classification of multispectral face information at dif-
ferent levels of granularity which is subsequently used for
computing the dynamic weights of visible and LWIR face im-
ages. This granular learning results in better generalization and
fusion of high entropy visible and LWIR face features. Fur-
ther, as shown in Fig. 9, fused face images generated from the
proposed image fusion algorithm provide more invariance to
illumination compared to the visible images. The fused images
also provide more distinguishing information compared to the
LWIR face images. These properties of the proposed 2v-GSVM
image fusion algorithm lead to improved face verification
performance.

7.2. Validation of the proposed DSm match score fusion
algorithm

To validate the performance of the proposed DSm match
score fusion algorithm, we compute the composite match score

O]
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Fig. 7. ROC plots of the proposed 2v-GSVM and existing image fusion
algorithms on the Notre Dame face database. Results are computed using (a)
2D log polar Gabor (b) local binary pattern based verification algorithms.

as described in Section 4. First the match score is obtained
from the visible and the LWIR face images. Note that these
images are not fused. However, as shown in Fig. 5, the fusion
occurs at match score level. Next, the fused match scores ob-
tained from each image are combined using the proposed DSm
algorithm to generate the composite match score. The verifi-
cation accuracies are summarized in Table 3 and Fig. 10. On
both the databases, the proposed DSm match score fusion algo-
rithm yields more than 98% accuracy. On the Notre Dame face
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Fig. 8. ROC plots of the proposed 2v-GSVM and existing image fusion
algorithms on the Equinox face database. Results are computed using (a) 2D
log polar Gabor (b) local binary pattern based verification algorithms.

database, the proposed algorithm provides at least 1.24% bet-
ter performance compared to the second best DST based match
score fusion algorithm [39]. On the Equinox database, the pro-
posed algorithm provides 1.57% and 3.03% better verification
performance compared to DST and SVM fusion algorithms,
respectively.

The performance of existing match score fusion algorithms
decreases when two face recognition classifiers yield conflicting
decisions. For example the classifier using global features may
make a decision to accept and the classifier using local features
may make a decision to reject. In such cases, the proposed DSm
match score fusion algorithm operates on the intersection region
(Ogenuine N Oimpostor) to make an optimal decision using the
prior information of classifiers. Existing statistical and learning
based fusion algorithms including DST fusion algorithm do
not account for the conflicting region. Hence, the plausible and
paradoxical reasoning technique of DSm theory provides better
verification performance.

Visible
Image

LWIR
Image

Fused
Image

Fig. 9. Results of the proposed 2v-GSVM image fusion algorithm on the
Equinox face database [19].

7.3. Validation of integrated multilevel image and match
score fusion algorithm

In previous experiments, we have established that image
fusion using 2v-GSVM improves the verification performance.
Also at match score level, the fusion using DSm theory im-
proves the verification accuracy even when the multispectral
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Table 3

Verification performance of the proposed DSm and existing match score fusion algorithms at 0.01% FAR

Face database Verification accuracy (%)

Product rule fusion [36] Sum rule fusion [36]

SVM fusion [37] DST fusion [39] Proposed DSm fusion

Notre Dame 95.07 97.12
Equinox 93.20 94.33

97.46 97.58 98.82
95.05 96.51 98.08

Q

5 . . . . .

*x -«% - Product

False Rejection Rate (%)

0 1 2 3 4 5 6
False Accept Rate (%)

7 i T T T T

X - %+ Product
3 ——Sum ]
*ex - - SVM
L —DST
——DSm

False Rejection Rate (%)

False Accept Rate (%)

Fig. 10. ROC plots of the proposed DSm match score fusion and existing
match score fusion algorithms on the (a) Notre Dame face database [18] (b)
Equinox face database [19].

images are not fused. In this section, we integrate both im-
age fusion and match score fusion algorithms as described in
Section 5 to evaluate the face verification performance. The
validation results of the integrated multilevel fusion algorithm
are summarized in Table 4. The integrated fusion algorithm
yields 99.91% verification accuracy on the Notre Dame face
database and 99.54% on the Equinox face database. The
results also show that the integration of fusion algorithms

further improves the verification performance by at least 1.08%
compared to only image fusion or only match score fusion.
High verification accuracies (> 99.5%) on the Notre Dame and
Equinox face databases show the robustness of the proposed
integrated fusion algorithm to the variations in illumination,
expression, and occlusion due to glasses. The computational
time of the proposed integrated image and match score fusion
algorithms including image registration, feature extraction and
matching is 4.3 s on a P-1V, 3.2 GHz computer under MATLAB
environment.

7.4. Statistical evaluation of proposed image fusion and
match score fusion algorithms

The performance of a biometric system greatly depends on
the database size and the images present in the database [46].
It cannot be represented completely by ROC plots and verifi-
cation accuracy. To systematically evaluate the performance,
Bengio and Mariethoz [47] have proposed statistical test us-
ing HTER and confidence intervals [47]. In this section, we
perform statistical evaluation of the proposed image fusion
and match score fusion algorithms using HTER. HTER is
defined as,

FAR + FRR
5 .

HTER = 29)
Confidence intervals are computed around HTER as HTER=+o -
Zyp. o and  Zyp are computed using Egs. (30)
and (31) [47]

FRR(1 — FRR)
4-NG

; (30)

\/ FAR(1 — FAR)
4. NI

1.960 for 95% ClI, (€28)

1.645 for 90% CI,
Ly = !
2.576 for 99% ClI,

NG is the total number of genuine scores and NI is the total
number of impostor scores.

Table 5 summarizes the results of this statistical evalua-
tion using false accept and false reject rates. We have com-
puted these statistical values at 0.01% FAR. This statistical
test shows that on a database similar to the Notre Dame with
any number of classes, HTER of the proposed integrated fu-
sion algorithm will lie between 0.05 £ 0.06 with 95% confi-
dence. Similar results have been obtained with the Equinox face
database.
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Table 4

Verification performance of the proposed integration of image fusion and match score fusion algorithms at 0.01% FAR

Face database Verification accuracy (%)

Proposed 2v-GSVM image fusion

2D log polar Gabor Local binary pattern

Proposed DSm match score fusion

Integrated image and match score fusion

Notre Dame 95.85 94.80 98.82
Equinox 94.98 94.71 98.08
Table 5

Confidence interval around HTER of the proposed 2v-GSVM image fusion, DSm match score fusion, and integrated multilevel fusion algorithms

Face database Fusion algorithms HTER (%) Confidence interval (%) around HTER for
90% 95% 99%
Notre Dame Image fusion with 2D log polar Gabor 2.08 0.68 0.81 1.07
Image fusion with local binary pattern 2.61 0.76 0.91 1.19
Match score fusion 0.59 0.37 0.44 0.58
Integrated image fusion and match score fusion 0.05 0.10 0.12 0.16
Equinox Image fusion with 2D log polar Gabor 2.52 0.26 0.31 0.41
Image fusion with local binary pattern 2.65 0.27 0.32 0.42
Match score fusion 0.97 0.17 0.20 0.26
Integrated image fusion and match score fusion 0.24 0.08 0.10 0.13
8. Conclusion Acknowledgment

Visible and long wave infrared images provide comple-
mentary properties which can be combined to improve the
performance of face recognition. In this paper, we proposed
image fusion and match score fusion algorithms to fuse in-
formation obtained from multispectral face images. We first
apply mutual information based registration algorithm to reg-
ister multispectral face images and then fuse the images using
the proposed 2v-granular support vector machine. The fused
image contains the properties of both visible and long wave
infrared images and can efficiently be used for face recogni-
tion. We next proposed the DSm match score fusion algorithm
to fuse match scores generated from multiple classifiers. These
match scores can be generated by applying multiple classifiers
on one image or by applying classifiers on multispectral face
images. The proposed match score fusion algorithm is based
on the theory of evidence and performs efficiently even when
visible and long wave infrared images provide conflicting
decisions. The proposed image fusion and match score fusion
algorithms are then integrated to further improve the face
recognition performance. We validated the performance of the
proposed image fusion algorithm, match score fusion algo-
rithm, and the integrated image fusion and match score fusion
algorithms using the Notre Dame and Equinox face databases.
Experimental results show that the proposed image fusion and
match score fusion algorithms outperform existing fusion algo-
rithms. Results and statistical evaluation further show that the
proposed integrated image and match score fusion algorithm
yield best performance among all the proposed and existing
fusion algorithms.

The authors would like to thank CVRL University of
Notre Dame and Equinox Corporation for providing the face
databases used in this research.
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