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Fermentative production of chlortetracycline is a complex fed-batch bioprocess. It generally takes over 90 h for
cultivation and is often contaminated by undesired microorganisms. Once the fermentation system is contami-
nated to certain extent, the product quality and yield will be seriously affected, leading to a substantial economic
loss. Using information fusion based on the Dezer–Smarandache theory, self-recursive wavelet neural network
and unscented kalman filter, a novel method for online prediction of contamination is developed. All state vari-
ables of culture process involving easy-to-measure and difficult-to-measure variables commonly obtained with
soft-sensors present their contamination symptoms. By extracting and fusing latent information from the chang-
ing trend of each variable, integral and accurate prediction results for contamination can be achieved. Thismakes
preventive and correctivemeasures be taken promptly. The field experimental results show that themethod can
be used to detect the contamination in time, reducing production loss and enhancing economic efficiency.
© 2015 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.
1. Introduction

Chlortetracycline (CTC) is an important antibiotic and a secondary
metabolite of Streptomyces aureofaciens. It is characterized by bacterial
inhibition, promotion of animal growth, high availability in animal
feed, minimal residue in animal tissues, and low production cost. In
recent decades, CTC has been the most consumed antibiotic in animal
feed industry [1]. The most important considerations for biochemical
industry are high yield, quality, and profit. Therefore, research efforts
have often focused on in-depth physiological characteristics of cells to
optimize industrial production. However, the risk of bacterial contami-
nation is inevitable despite the maintenance of strict aseptic conditions
during the production process. The biochemical plantwe surveyed loses
nearly 20 million CNY annually due to contamination-related issues.
Therefore, the detection and prevention of bacterial contamination
have been an active research area for the last two decades.

Contamination is defined by themigration of an undesired microor-
ganismalongwith the desiredmicroorganism,which affects the normal
growth of the latter. These fast-growing, bacterial contaminants and
phages soon outnumber culture strains, producing large amounts of
byproducts, severely inhibiting the growth and metabolism of the
culture strain of interest. Furthermore, a large proportion of nutrients,
especially glucose, for supporting the growth and CTC production by
g Society of China, and Chemical Ind
the culture strain, are diverted to the contaminants. Additionally,
destruction of the culture strain will lead to disastrous consequences
for the CTC plant.

Thus, early and accurate prediction of contamination of culture
broth is of vital importance to biological fermentation and several
methods are available for detecting or evaluating the contamination in
laboratory or large-scale fermentation plant. These are broadly classi-
fied into physical and biological methods. The use of physical methods
such as light, radiometry, and chromatography facilitates the rapid,
precise, and non-invasive evaluation of broth [2–4]. However, their
disadvantages lie in the cost of equipment, which are very expensive
and require a high level of maintenance, and the tests are time-
consuming and do not allow online application. On the other hand, bio-
logical methods, which exploit the genetic, immunological, and morpho-
logical characteristics of microorganisms [5–7], afford high accuracy, but
the requirement of operator expertise and time-consuming procedures
for prediction present significant drawbacks. In contrast, the soft-sensor
predictionmethod that works on the principle of cause and effect reveals
the intrinsic biological relation between measured and unmeasured
states, and has been employed by several investigators [8,9]. This system
generates data-driven black-boxmodels on the basis of data from history
of fermentation batches and captures underlying changes in process state,
judging whether the broth is contaminated [10,11]. Several popular
approaches such as principle component analysis, partial least squares,
and clusteringhavebeenused as references in recent literature onprocess
monitoring for detecting and diagnosing errors in the culture process
[12–15]. Multisensor data fusion is widely applied in sensor networks,
ustry Press. All rights reserved.
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robotics, video and image processing, and intelligent system design,
combining information from several sources to form a unified picture.
It introduces a novel approach to information processing and our
work is an offshoot of this idea. Each variable state obtained from the
CTC fermentation process is considered as a frame of discernment,
namely source evidence, in which three elementary propositions are
defined, which constitute seven focal elements with union operators
[16–19]. Primitive contamination information is represented as a mass
function of seven focal elements for each source, explored from the latent
information, using the self-recursive wavelet neural network (SRWNN)
calculation [20]. Next, by virtue of the Dezer–Smarandache theory
(DSmT) methodology, all contamination information can be integrated
into a comprehensive decision that facilitates necessary preventive and
corrective measures.

In this work, we introduce the concept of DSmT, the principle of
SRWNN and kalman filter (UKF filter) algorithms [21]. Specific proce-
dure is presented to achieve online prediction of contamination in the
culture process. The proposed method can be employed in industrial
scale CTC plants.

2. Preliminaries

2.1. Dezert–Smarandache theory

The DSmT of plausible and paradoxical reasoning overcomes inher-
ent limitations of the classical Dempster–Shafer theory (DST), which is
based on the refutation of the principle of the third excluded middle,
and is the generalization that DST can formally combine different infor-
mation sources (rational, uncertain, or paradoxical). Owing to the vague,
relative, and imprecise nature of the hyper-powerset DΘ of the general
frame of discernment Θ, the DSmT can solve these complex fusion prob-
lems where the DST or other methods often fail, especially when con-
flicts between sources become strong and the refinement of the frame
of discernment Θ is inaccessible.

To understand the algorithm-based DSmT, three important concepts
are introduced briefly, namely, hyper-powerset DΘ, generalized basic
belief mass, and proportional conflict redistribution rule.

The cornerstone of theDSmT is the concept of hyper-powersetDΘ. In
order to fuse information, one defines the frame of discernment Θ,
representing a source set of n finite elements, Θ = {θ1, θ2, …, θn},
where θi represents a concrete hypothesis, which is impossible to be
defined and separated precisely. Here, DΘ is considered as the set of all
propositions from Θ with ∩ and ∪ operators, and these propositions
must satisfy the following three conditions: (i) ∅, θ1, θ2, …, θn ∈ DΘ,
(ii) if A, B ∈ DΘ, then A∩B ∈ DΘ and A∪B ∈ DΘ, and (iii) no other
elements belong to DΘ, except those obtained by using rule 1 or 2.

The second concept is of generalized basic belief mass. For every
evidential source Θ of the frame of discernment, mapping m(⋅):
DΘ → [0, 1] associated to it is defined, which satisfies the following
condition

m ∅ð Þ ¼ 0 and
X

A ∈ DΘ

m Að Þ ¼ 1: ð1Þ

Considering the inherent nature of element θi, it is possible that the
non-exclusive and non-refinement elements of Θ turn into a new, finer,
exclusive frame of discernment. Quantity m(A) represents the level of
trust for proposition ‘A’ and the support to ‘A’ directly. Mapping m(⋅)
is referred to as a generalized basic belief mass (gbbm).

The crux of the proposed method is the proportional conflict redis-
tribution (PCR) rule. PCR can be applied to DST and DSmT framework
dealing with the combination of belief functions and working for any
degree of conflict under static or dynamical fusion situations. PCR rule
redistributes the partial conflicting mass to the elements involved in
the partial conflict, considering the conjunctive normal form of the
partial conflict. PCR is considered as the most mathematically exact
redistribution of conflicting mass to non-empty sets following the
logic of the conjunctive rule. PCR redistributes the conflicting mass
only to the sets involved in the conflict and proportionally to their
masses placed in the conflict. The general PCR formula for s≥ 2 sources
is given by [16]. For mPCR(∅) = 0 and ∀ X ∈ G/{∅}

mPCR Xð Þ ¼ m12…s þ
X
2btbs

1≤r1;…; rt≤s
1≤r1br2b…brt−1b rt ¼ sð Þ

X
X j2 ;…;X jt ∈ G Xf g

j2;…; jtf g∈ Pt−1 1;…;nf gð Þ
c X∩X j2

∩…∩X js

� �
¼ ∅

i1;…; isf g∈ Ps 1;…; sf gð Þ

∏r1
k1¼1mik1

Xð Þ2
h i

�
h
∏t

kl¼rl−1þ1mikl
X jl

� �i

∏r1
k1¼1mik1

Xð Þ
h i

þ
Xt

l¼2
∏t

kl¼rl−1þ1mikl
X jl

� �h i

ð2Þ

where G corresponds to a constrained hyper-power setDΘ; i, j, k, r, s and
t are all integers;m12…s≡m∩(X) corresponds to the conjunctive consen-
sus on X between s sources, where all denominators are not equal to
zero; the set of all subsets of k elements from {1, 2,…, n} (permutations
of n elements taken by k) is denoted as Pk({1, …, n}) and the order of
elements does not count; c(X) is the canonical form (conjunctive normal
form) of X.

2.2. SRWNN model for gbbm

The SRWNNmodel, which combines the attractor dynamic property
of recurrent neural networks and good convergence performance of
wavelet neural networks, can deal with time-varying input or output
and shows good identification performance. In this section, taking the
fermentation process into account, we briefly describe the application
of SRWNN to achieve gbbm value for input variables of CTC fermenta-
tion process. Firstly, we assume that there are only three hypotheses
in terms of each state variable available from the culture process, that
is,Θ={θ1, θ2, θ3}, referred to as a frame of discernment. Next,we formu-
late hyper-powerset DΘ by building it from the elements of Θ with
operators ∪ and ∩. In order to decrease the complexity of calculation,
we assume that DΘ contains the following composite propositions:
X1 = θ1, X2 = θ2, X3 = θ3, X4 = θ1∪θ2, X5 = θ1∪θ3, X6 = θ2∪θ3, and
X7 = θ1∪θ2∪θ3. Meanwhile, the focal elements from DΘ satisfy the
following constraint condition: ∑

Xi ∈ DΘ
m Xið Þ ¼ 1, where the quantity

m(Xi) is a gbbm of Xi. Thus, the seven gbbm values, reduced for each
source of evidence, can be computed based on SRWNN structure and
least squared error-based learning algorithm. A schematic diagram of
the SRWNN structure is shown in Fig. 1, where N2 = wavelets. The
SRWNN structure consists of four layers: input layer, mother wavelet
layer with a self-feedback loop, wavelet layer, and output layer. The
details for formulation and calculation of SRWNN have been described
previously [20].

2.3. UKF algorithm for smoothing

The collected signals generated from CTC fermentation process are
susceptible to the environment for various reasons. Accurate and reliable
results of desired contamination information rely on removal of noise
from the sampled primitive signals.

Normally, the nonlinear discrete-time system considered is of
the form

x kþ 1ð Þ ¼ f x kð Þ½ � þw kð Þ
y kð Þ ¼ H x kð Þ½ � þ v kð Þ

�
ð3Þ

where k denotes discrete time, k ∈ N0 (N0 denotes the set of natural
numbers including zero), x(k)∈ Rn is the state vector, and y(k)∈ Rm

is the measurement vector; the nonlinear mapping f(⋅) and H(⋅) are
assumed to be continuously differentiable with respect to x(k); v(k)



Fig. 1. Structure of SRWNN.
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and w(k) are system state noise and output noise, respectively. Similar
to Eq. (3), the UKF algorithm is considered as the most suitable filter
algorithm for CTC fermentation process due to its ability to approximate
nonlinear process and measurement model. The rationale behind the
UKF algorithm, based on unscented transformation, is to use a minimal
set of sample points to capture the truemean and covariance of nonlin-
ear process, and then estimate the posterior mean and covariance with
errors introduced in the second or higher orders when the set of sample
points is run through the nonlinear system. The specific use of UKF algo-
rithm as a nonlinear filter has been reported previously [21].

3. Procedures

Development of an estimator system to detect contamination during
CTC fermentation is explained in this section. The available variables,
including online and offline, of the CTC fermentation process are as
follows: temperature (TM), dissolved oxygen (DO), agitator current
intensity (CI), ammonia accumulation (AA), glucose accumulation (GA),
liquid volume (LV), air flow accumulation (AF), carbon dioxide concen-
tration in exhaust (CO), fermentation time (Tf), amino nitrogen concen-
tration (AC), viscosity of culture broth (VS), titer of CTC (TI), and glucose
concentration (GC). The essence of the proposed method is to combine
all contamination information obtained from online sensors and soft-
sensors into an accurate decision. A schematic diagram for realizing
this method is illustrated in Fig. 2. The following sections describe in
detail the procedure to preprocess historical data, establish the SRWNN
model, detect unmeasured but important variables with a soft-sensor,
fuse all contamination information with DSmT, and take the required
decision.

3.1. Data preprocessing

The intensive, data-driven nature of the proposedmethod requires a
sufficient amount of data. The preliminarywork, which includes gather-
ing, arrangement, and normalization of data, is crucial for building a
robust and accuratemodel. Firstly, the selected batch datamust be com-
plete, without missing any key state variables, and the duration range
should cover the entire fermentation process, especially for the normal
process data set. To facilitate subsequent application, all batch data
sets are normalized to the 0–1 range and classified into three groups,
i.e., normal process data set, Bacillus infection data set, and phage infec-
tion data set (the first part of Fig. 2). Meanwhile, all data in the three
groups are filtered using the UKF algorithm. Finally, 150 batches of typ-
ical data set, which covered the whole year, are deliberately selected
from the preprocessed data set to constitute the training set of 120
batches and the test set of 30 batches.

3.2. Measuring difficult-to-measure variables with soft-sensor

Invariably, there are some key measurements and quantities
reflecting cellular metabolism, energy transaction, microbial growth,
product yield, and so on that cannot be simply measured online by an
instrument, due to the unavailability of the instrument, high cost of
hardware sensors and their maintenance, or the reliability of the
sensors. An alternative is to measure them by laboratory analysis, by
sampling the culture broth during the fermentation process. However,
this procedure is time-consuming and arduous, which in turn increases
the cost of production, high off-spec products, and risk to environment
safety. To solve the problem, the alternative is to use a soft-sensor that
can measure and predict important variables difficult to measure phys-
ically. Using these variables measured with soft-sensor, four evidence
sources, indirectly reflecting the contamination of CTC fermentation,
can be obtained. Based on the proposed method, four soft-sensor
units have been built to measure the viscosity of culture broth, titer
of CTC, amino nitrogen concentration, and glucose concentration. To
enhance the reliability of the soft-sensor, correction units have been
developed for the four variables, so that the model parameters showing
a difference between the value from laboratory analysis and that from
the soft-sensor can be corrected [22]. Fig. 3 depicts the working principle
of the four variables with soft-sensor, in which inputs of the model
include known, online, continuous variables. The results generated from
soft-sensors are real-time and change during the CTC fermentation
process.

3.3. Fusing information based on DSmT

Whether the CTC fermentation process is contaminated cannot be
read directly by measuring the culture broth online. However, some
information indicating that broth state may contain Bacillus or phages
can be obtained by comparing the current trend of process variables
with the normal control at the same time point. During the culture
process, different state variables have varying susceptibility or response
time for the same source of contamination and this is an inherent
feature of CTC fermentation characteristics. It is recommended to com-
bine all available information from state variables to capture accurate
and comprehensive information. In terms of fusing uncertain, imprecise,
and conflicting information, the DSmT methodology is more advanta-
geous than DST. For the convenience of combining contamination infor-
mation, each state variable is considered to have the same frame of
discernment, where three hypothesis elements exist within a frame. We
then define a mapping set associated with each source of evidence and
construct the gbbm as follows: m(θ1) is defined as the gbbm for non-
contamination, denoted by m(X1); m(θ2) is defined as the gbbm for
definite Bacillus contamination, denoted by m(X2); m(θ3) is defined as
the gbbm for definite phage infection, denoted by m(X3); m(θ1∪θ2) is
defined as the gbbm for probable Bacillus contamination, denoted by
m(X4); m(θ1∪θ3) is defined as the gbbm for probable phages infection,
denoted bym(X5);m(θ2∪θ3) is defined as the gbbm for probable Bacillus
contamination or phages infection, denoted by m(X6); andm(θ1∪θ2∪θ3)
is defined as the gbbm for probable Bacillus contamination and phage
infection, denoted by m(X7). Based on the SRWNN method, the model
structure relating each input process variable to the seven gbbms is
formulated. The overall procedure adapts a methodology of trial and
error, not stopping the tests and continually revising until the perfor-
mance requirement of the application is met (see the second part of
Fig. 2).

In terms of the CTC fermentation process, 12 process state variables
exist in all, which consists of the online and offline variables, each of
which is considered as a body of evidence for contamination. To find
some symptom of contamination from those process state quantities,
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it is necessary to combine information from these 12 diverse variables,
making afinal judgment or decision for thenext specific steps. The illustra-
tion of information fusion architecture is shown in the third part of Fig. 2.

Finally, the information for general basic beliefmass of every process
variable generated fromSRWNN is combined andnormalized. The input
value of PCR begins to be interpreted. A schematic diagram of the DSmT
neural network structure (DSmTNN), given in Fig. 4, has two evidence
sources, 14 inputs, and seven normalized outputs, and is composed of
four layers.

Layer 1 is the input layer: each input node corresponds to the gbbm
of a focal element of a single source. The input layer accepts the gbbm
values and transmits them to layer 2.

Layer 2 is the multiplication layer: each node performs multiplication
for the two incoming masses from layer 1. For instance, node k has
two input masses, m1

0(Xi) and m2
0(Xj), and it produces its output, Mk =

m1
0(Xi) ×m2

0(Xj), so the number of multiplications in layer 3 is i × j.
Layer 3 is the summation layer: it consists of seven sum nodes, each

adding its respective incoming mass from layer 2. Each node output
corresponds to the non-normalized combined mass as

m12 Xð Þ ¼
X

Xi∩X j¼X

αMk ð4Þ

where α = 1 if Xi∩Xj = X, else α = 0.
Soft Sensor
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Soft Sensor
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CO
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AC

Off-line GC

GC

Fig. 3. Topological structure of soft-sensor.
Layer 4 is the normalization layer: in DSmT, if Card(Θ) = ∣Θ∣ = 3,
then ∣DΘ∣ = 19. Obviously, this size is too big to establish a moderate
model structure and compute the fusion information accurately. To
simplify the model structure and decrease the operational burden, we
assume that all focal elements in this study are void except the seven
combination relationships between the three propositions in the
frame of discernment. Consequently, in the fourth layer, a normaliza-
tion method is used to bring the values that come from the summation
layer, lying outside the boundary, within the range of 0 to 1. The output
of the mth node is the following ratio, which denotes the normalized
combined mass

m1
12 Xið Þ ¼ m12 Xið Þ

X7
i¼1

m12 Xið Þ:
ð5Þ

Per part 4 of Fig. 2, performing the initial fusion of output informa-
tion from part 3 of Fig. 2 by means of DSmTNN results in a six-group
Fig. 4. Cascade DSmTNNmodel for information fusion.
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primary result: {VS, TI}, {AC, GC}, {DO, AA},{CI, TM}, {GA, AF}, and {CO,
LV}. Among these six data pairs, the latter two are obtained from soft-
sensor data, while the remaining four are real-time data pairs. Each pair
result would require further information fusion, in the form of two new
evidences. Thus the result is more accurate and reliable than the initial
outcome.

Sometimes, the primary result may present some conflict if it is
determined solely from the gbbm values. In view of this challenge, PCR
is considered the best combination rule to synthesize relative information,
which then transfers (total andpartial) conflictingmass tonon-empty sets
involved in the conflicts proportional to themass assigned to them by the
source. PCR includes five versions, PCR1 through PCR5, with increasing
complexity of rules and precision of redistributing conflicting masses.

The method to combine the primary fusion information using PCR5
is described in brief. First, the conjunctive rule as follows is applied:
{m12(X1), …, m12(X7)}.

m∩ Xð Þ ¼
X

Xi;X j∈Dθ

Xi∩X j ¼ X

m1 Xið Þm2 X j

� �
ð6Þ

Next, with the following PCR5 formula, the set of {mPCR5(X1), …,
mPCR5(X7)} may be obtained.

mPCR5 Xið Þ ¼ m12 Xið Þ þ
X

X j ∈ G 5 Xif g

m1 Xið Þ2m2 X j

� �

m1 Xið Þ þm2 X j

� �þ
m2 Xið Þ2m1 X j

� �

m2 Xið Þ þm1 X j

� �
2
4

3
5

ð7Þ

In the proposed method, applying the PCR5 rule repeatedly may
yield the combination information of both online and offline data.
Owing to the difference between the reliability of the two data types
by virtue of the nature of the CTC fermentation plant, the reliability
weightage should be added to the fusion information before making
the final decision. Therefore, the finial fusion result between the online
and offline data can be obtained as follows.

m Xð Þ ¼
X

Xi;X j ∈Dθ

Xi∩X j ¼ X

mon Xið Þ� �α moff Xið Þ
h iβ ð8Þ

where α and β are all statistical determinants, satisfying α + β = 1,
while in general α b β.

3.4. Making the final decision

Once the previous steps in the information combination procedure
are complete, obtaining six pairs of initial combination based on the
DSmTNN, four groups of secondary combination base using PCR5, and
a final weighted combination, an algorithm are chosen to make the
final decision in the form of probability. The Pignistic algorithm is
selected for this purpose, representing intuitive and operable properties
of probability as follows:

∀A∈DΘ
; P Af g ¼

X
X ∈ DΘ

A∩Bj j
Xj j m Xð Þ ð9Þ

where ∣X∣ is the cardinal of proposition X in the DSm model. With the
improvement via Eq. (10), each gbbm is calculated according to the
sequence {θ1, θ2, θ3} to obtain {P'{θ1}, P'{θ2}, P'{θ3}}.

P
0
θ1f g ¼ m θ1ð Þ þ 1=2m θ1∪θ2ð Þ þ 1=2m θ1∪θ3ð Þ þ 1=3m θ1∪θ2∪θ3ð Þ

P
0
θ2f g ¼ m θ2ð Þ þ 1=2m θ1∪θ2ð Þ þ 1=2m θ2∪θ3ð Þ þ 1=3m θ1∪θ2∪θ3ð Þ

P
0
θ3f g ¼ m θ3ð Þ þ 1=2m θ2∪θ3ð Þ þ 1=2m θ1∪θ3ð Þ þ 1=3m θ1∪θ2∪θ3ð Þ

8><
>:

ð10Þ
Then, the normalized set {P{θ1}, P{θ2}, P{θ3}} is computed as follows.

P θif g ¼ P
0
θif g

X3
i¼1

P
0
θif g

ð11Þ

From an application point of view, the set of {P{θ1}, P{θ2}, P{θ3}}
provides the contamination information of the CTC fermentation
process expressed as a probability, as described in part 5, Fig. 2. Thus,
if a key constraint or condition goes beyond the predefined limitation
of contamination, the system will warn the operator. Based on the
experienced worker's judgment using the information, preventive and
corrective measures can be taken in time.

3.5. Results and discussion

In the CTC fermentation process, several challenges, such as mechan-
ical failures, process disruption, operational or instrument errors, contrib-
ute to data records of contamination. A breach of aseptic conditions in any
part of the operation would expose the fermentation to a high risk of
infection by undesired microorganism. Before discussing the eventuality
of contamination, we first identify the issues that can result in infection
using a flowchart of CTC culture procedure, illustrated in Fig. 5. The
flowchart contains four phases including strain preparation, primary
seed amplification, secondary seed amplification, and final fermentation
process. During these steps, the likelihood of introducing harmful
microorganisms into production process involves both situations and
equipment, namely, leakage in the pipes carrying sterile air, agitator
malfunction, failure of gasket or o-ring valves, deviation from vessel
and media sterilization procedures, contamination during initial or
mid-cycle inoculations, contamination during tank-to-tank transfers,
contamination during offline collection of broth at the sampling port,
failure of exhaust outlet fan, and contamination of water, air, defoamer,
and so on. These causes of contamination in the CTC fermentation plant
have been determined based on the data obtained from actual plant
operations, but several other undetectable phenomenamay occur aswell.

The proposed scheme based on DSmTwas carried out experimentally
to predict contaminationoccurrence online andmake correctivemeasures
in a130m3 fermenter of theCTCplant.Wedivide the experimental results
into three types of situations as those of microbial infection. Figs. 6–8
present three curves for the normal state, denoted as ‘Normal’, Bacillus
infection, denoted as ‘Bacilli’, and phage infection, denoted as ‘Phage’,
where the horizontal axis denotes the duration of culture process while
the vertical axis denotes the probability percentage. In the following sec-
tion,wewill elaborate on the typical distribution for the three trajectories.

The normal fed-batch process plot shows that the culture process
is either contaminated or the extent of contamination within the
predefined, lowest threshold of detection. In Fig. 6, ‘Normal’ trajectory
is over 60% though it gets close to 50% at approximately 37 h, but lasts
for less than 3 h for a single batch. The other two representative trajecto-
ries fluctuate independently by approximately 20% from the beginning to
end. Thus the culture process can be considered as a normal batch only if
the percentage of the ‘Normal’ curve is larger than 50%.

Fig. 7 illustrates the probability variation of the three curves once
the fermentation process is contaminated, i.e., the broth is infected by
a Bacillus species, which is the most common and infectious contam-
inant of the CTC fermentation. Therefore, ‘Bacilli’ is considered as a
representative contaminant, outside of the phages.

In Fig. 7, the average probability of ‘Bacilli’ trajectory exceeds the low-
est threshold by approximately 40% at about 40 h, which is predefined as
the determination condition of contamination, while the trajectory of
‘Normal’ is less than 50% and that of ‘Phage’ is at 15%. This result indicates
that the overgrowth of Bacillus would threaten the fermentation strain
so that necessary measures should be taken to inhibit the growth of con-
taminant. If this process is unchecked, large amounts of glucose and other



Fig. 5. CTC fermentation process phages.
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Fig. 6. Probability variation of a normal batch.
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Fig. 7. Probability variation of a Bacillus-infected batch.
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nutrients in the fermenterwill be converted into lactic acid, acetic acid, or
other undesired products, resulting in the death of fermentation strain
due to unfavorable conditions and the CTC fermentation product could
be degraded by contaminant-derived enzymes. Discharging the broth
early is the only viable option to protect the system, which results in a
large amount of wastage and increases production cost. If such a
situation can be predicted by the proposed method, the following
measures can control the damage to some extent: (1) lower or raise the
temperature outside the range of 20 °C to 40 °C, (2) lower the pH outside
the range of 5 to 8, (3) decrease the feed rate, (4) reduce airflow to lower
the DO level, and (5) add specific antibiotics into fermenter. Advanced
and accurate prediction will make corrective action be taken in time
and better control of Bacillus contaminationwill be achieved. From previ-
ous statistics of recorded Bacillus infection, it is found that the beginning
of CTC fermentation is the most vulnerable stage for contamination.
Since CTC itself is an antibiotic, which can inhibit contaminant growth,
adding a moderate amount of CTC into the substrate is a preventive
measure against Bacillus contamination.
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Fig. 8. Probability variation of a phages-infected batch.



Table 2
Comparison between new and conventional method

Term Prediction time
for Bacillus/h

Prediction time
for phages/h

CTC yield/μg·ml−1 Discarded
batch/%

New method① 31.5 23.1 22,673 4.74
Con. method② 41.3 29.7 21,354 6.13

Note: all data are collected from two plants for five months in 2013.
① Newmethod is the proposed method in the context.
② Con. method is the conventional method in the context.
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Finally, infection of the CTC fermentation process by phages (bacte-
riophages) is illustrated in Fig. 8. A phage is a kind of virus that can infect
and replicate within bacteria and is widely distributed in areas populat-
ed by bacterial hosts. ‘Phage’ is also a general name for microbes and
viruses causing infection of bacteria, fungi, actinomycetes, spirochetes,
etc. If the culture process is infected by phages, common symptoms
include a slow or sluggish pace of growth with the fermentation time
and the final product is reduced to a great extent. Other indicators
include reduced carbon dioxide in the exhaust, gradually lighter sub-
strate, progressively increasing pH, dark color of broth instead of normal
yellowish-brown, and large amounts of residual glucose. Fig. 8 describes
a phage-infected batch,where probability of ‘Phage’ rapidly increases to
60% from approximately 15–26 h of the culture process. Similar to
identifying a Bacillus infection, the average probability of ‘Phage’ trajec-
tory exceeding by 30% is considered as infection by phages, where a 30%
probability is predefined as the lowest threshold and the trajectory of
‘Normal’ is also less than 60%.

Compared with a Bacillus infection, the control and preventive
measures for phage infection are much more challenging, once the
culture is infected by a virulent phage. Symptoms of a low-grade phage
infection are often invisible, but the concentration of glucose will begin
to rise with time keeping the feed rate constant, until a majority of cells
are lysedwithin hours of infection resulting in the fermentation stopping.
This phenomenon relies on several factors including the type of phages,
the stage of fermentation occurring infection, the quantum of phages in
contrast with that of its host, the substrate components, as well as the
physical and chemical environment in the fermenter. Thus infections
with the same phage may show diverse symptoms.

In actual operation, the tendency of phage infection can be estimated
through experience or with the aid of software, such as the proposed
method in this study. By analyzing previous records of phage infections,
we can draw the following conclusions: infections occurring in the seed
culture phase may spread to all production fermenters, infections in the
early phase of culture can make industry-scale fermentation process
difficult, but if the infection occurs towards the end of the culture
process, it generally does not exhibit any obvious symptoms. Methods
for preventing and attenuating the harm caused by phage infection
are still a subject for intensive research. Routine methods such as addi-
tion of chelating agents, non-ionic detergents, and antibioticsmay abate
phage propagation, but when an infection occurs in a fed-batch due to
poor equipment, the best choice is to stop the infected batch, discard
all contaminated material, and conduct a thorough cleaning and steril-
ization of equipment. Such actions must be undertaken even at the
expense of closure of the entire plant.

In some CTC fermentation plants, whether the culture process is
contaminated previously depends on the judgment, with the help
from two methods: microscopy and bacterial culture, both carried out
offline, which is not only time-consuming and laborious, but also
increases the risk of contamination accidents. The proposed method as
an alternative strategy can predict the real-time state of contamination
based on process data, thus overcoming the challenges of manual,
offline tests. The prediction performance for Bacillus and phage contam-
inants is listed in Table 1. We can see that the prediction performance
for phage infection is clearly superior to that for Bacillus infection. This
can be attributed to that phage infection itself displays characteristics
of destructive force: short latent period and large burst scale, so the
proposedmethod can easily capture themarked changes, while Bacillus
infection is characterized by mild reaction and a gradual process.
Table 1
Prediction performance for contamination

Term Accuracy rate/% False alarms/% Missing alarms/%

Bacillus 61 11 28
Phages 84 9 17

Note: all data are collected from two plants for five month in 2013.
Since the occurrence of contamination is impossible to eradicate
completely, one hopes to minimize the impact of contamination on
the yield and quality of products as well as the cost of production in
the CTC fermentation process as a more viable solution. The controlled
culture can be modified adequately based on the proposed method.
Using the results of prediction, several corrective measures are possible
depending on the time of infection. If the infection occurs at the begin-
ning, corrective measures may be taken to curb the extent of contamina-
tion, such as decreasing temperature, pH, feed rate, airflowrate or agitator
rate, adding a moderate amount of antibiotic or similar sterilizing agent
to the culture broth, or sterilizing the medium and re-inoculating the
current batch. If the infection occurs in the steady stage, the above-
mentioned measures as well as altering the culture environment and
adding an antibacterial agent can be attempted to keep the culture run-
ning, but the broth should be discharged earlier, once the abovemeasures
become invalid. If the infection occurs towards the end of the culture,
nothing can be done, but observe the trend of infection.

Compared to the performance of control, based on the conventional
justification for contamination, the proposedmethod shows an improved
prediction capability with enhanced economic benefit, by virtue of online
predictions. Table 2 shows the results of comparison between the pro-
posed and conventional methods, which are of average value.
Several aspects of the proposed method using information fusion
basedonDSmTknowledge still have scope for improvement, for example,
additional case records would increase the accuracy and stability of the
system.
4. Conclusions

Formulation of a mechanistic model for CTC fermentation is challeng-
ing, due to its intrinsic, nonlinear nature and time-dependent variability.
At the same time, limited online methods are available to monitor
contamination of culture process. Subsequently, infection control in CTC
fermentation is equally challenging as that in large-scale plants. With
the help of information fusion, based on DSmT, the tendency of contami-
nation during CTC fermentation process can be predicted accurately in
time, indirectly utilizing both measured and unmeasurable variables.
Applied to the actual plant, results show that the proposed method can
reduce the risk of infection, maintenance costs, as well as labor required,
while improving the yield, quality, and economic efficiency.
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