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Abstract. In this paper we extend soft neutrosophic rings 

and soft neutrosophic fields to soft neutrosophic birings, 

soft neutrosophic N-rings and soft neutrosophic bifields 

and soft neutrosophic N-fields. We also extend soft neu-

trosophic ideal theory to form soft neutrosophic biideal 

and soft neutrosophic N-ideals over a neutrosophic biring 

and soft neutrosophic  N-ring . We have given examples 

to illustrate the theory of soft neutrosophic birings, soft 

neutrosophic N-rings and soft neutrosophic fields and 

soft neutrosophic N-fields and display many properties of 

these. 
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1 Introduction 

     Neutrosophy is a new branch of philosophy which 

studies the origin and features of neutralities in the nature. 

Florentin Smarandache in 1980 firstly introduced the con-

cept of neutrosophic logic where each proposition in neu-

trosophic logic is approximated to have the percentage of 

truth in a subset T, the percentage of indeterminacy in a 

subset I, and the percentage of falsity in a subset F so that 

this neutrosophic logic is called an extension of fuzzy  log-

ic. In fact neutrosophic set is the generalization of classical 

sets, conventional fuzzy set, intuitionistic fuzzy set and in-

terval valued fuzzy set. This mathematical tool is used to 

handle problems like imprecise, indeterminacy and incon-

sistent data etc. By utilizing neutrosophic theory, Vasantha 

Kandasamy and Florentin Smarandache dig out neutro-

sophic algebraic structures.  Some of them are neutrosoph-

ic fields, neutrosophic vector spaces, neutrosophic groups, 

neutrosophic bigroups, neutrosophic N-groups, neutro-

sophic semigroups, neutrosophic bisemigroups, neutro-

sophic N-semigroup, neutrosophic loops, neutrosophic bi-

loops, neutrosophic N-loop, neutrosophip groupoids, and 

neutrosophic bigroupoids and so on. 

Molodtsov in  11  laid down the stone foundation of a

richer structure called soft set theory which is free from the 

parameterization inadequacy, syndrome of fuzzy se theory, 

rough set theory, probability theory and so on. In many ar-

eas it has been successfully applied such as smoothness of 

functions, game theory, operations research, Riemann inte-

gration, Perron integration, and probability. Recently soft 

set theory has attained much attention since its appearance 

and the work based on several operations of soft sets intro-

duced in   2,9,10 .  Some more exciting properties and

algebra may be found in 1 . Feng et al. introduced the soft

semirings 5 . By means of level soft sets an adjustable

approach to fuzzy soft sets based decision making can be 

seen in 6 . Some other new concept combined with fuzzy

sets and  rough sets was presented in 7,8 . AygÄunoglu

et al. introduced the Fuzzy soft groups 4 .

      Firstly, fundamental and basic concepts are given for 
neutrosophic birings, neutrosophic N-rings, neutrosohic bi-
fields and soft neutrosophic N-fields . In the next section 
we presents  the newly defined notions and results in soft 
neutrosophic birings, soft neutrosophic N-rings  and soft 
neutrosophic bifields and soft neutrosophic N-fields. Vari-
ous types of soft neutrosophic biideals and N-ideals of 
birings and N-rings  are defined and elaborated with the 
help of examples. 

2 Fundamental Concepts 

In this section, we give a brief description of neutrosophic 

birings, neutrosophic N-rings, neutrosophic bifields and 

neutrosophic N-fields respectively. 
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Definition 2.1. Let  ( (R), , )BN   be a non-empty set 

with two binary operations   and .  ( (R), , )BN   is 

said to be a neutrosophic biring if 1 2(Rs)BN R R 

where atleast one of  1(R , , )  or 2(R , , )  is a neutro-

sophic ring and other is just a ring. 1R  and 2R  are proper 

subsets of (R).BN

Definition 2.2: Let 1 2(R) (R , , ) (R , , )BN      be a 

neutrosophic biring. Then  (R)BN  is called a commuta-

tive neutrosophic biring if each 1(R , , )  and 2(R , , )

is a commutative neutrosophic ring. 

Definition 2.3: Let 1 2(R) (R , , ) (R , , )BN      be a 

neutrosophic biring. Then  (R)BN  is called a pseudo 

neutrosophic biring if each 1(R , , )  and 2(R , , )  is a 

pseudo neutrosophic ring. 

Definition 2.4 Let 1 2( (R) ; , )BN R R    be a neutro-

sophic biring. A proper subset  ( , , )T   is said to be a 

neutrosophic subbiring of (R)BN  if 

1)  1 2T T T   where 1 1T R T   and 

2 2T R T  and 

2) At least one of 1( , )T  or 2( , )T   is a neutrosophic 

ring. 

Definition 2.5: If both 1(R , )  and 2(R , )  in the above 

definition 2.1 are neutrosophic rings then we call  

( (R), , )BN   to be a strong neutrosophic biring. 

Definition 2.6 Let 1 2( (R) ; , )BN R R    be a neutro-

sophic biring and let ( , , )T   is a neutrosophic subbiring 

of (R)BN . Then ( , , )T   is called a neutrosophic biide-

al of ( )BN R  if 

1) 1 2T T T   where 1 1T R T   and 

2 2T R T  and 

2) At least one of 1( , , )T   or 2( , , )T   is a neutrosoph-

ic ideal. 

If both 1( , , )T   and 2( , , )T  in the above  definition are 

neutrosophic ideals, then we call ( , , )T   to be a strong 

neutrosophic biideal of ( )BN R . 

Definition 2.7:  Let 1 2 1 2{N(R), ,..., , , ,..., }N   be a 

non-empty set with two N -binary operations defined on 

it. We call ( )N R  a neutrosophic N -ring  ( N  a positive 

integer)  if the following conditions are satisfied. 

1) 1 2N(R) ... NR R R     where each iR  is a 

proper subset of N(R)  i.e. 
i jR R  or 

j iR R  if  

i j . 

2) (R , , )i i i  is either a neutrosophic ring or a ring for 

1,2,3,...,i N . 

Definition 2.8:  If all the N -rings (R , )i i  in definition 

2.7  are neutrosophic rings  (i.e. for  1,2,3,...,i N ) 

then we call N(R)  to be a neutrosophic strong N -ring. 

Definition 2.9: Let 

1 2 1 2 1 2N(R) {R .... R , , ,..., , , ,..., }N N NR      

 be a neutrosophic  N -ring. A proper subset 

1 2 1 2{P ....P , , ,..., }N NP P       of N(R)  is said to 

be a neutrosophic N -subring if 

, 1,2,...,i iP P R i N    are subrings of iR  in which 

atleast some of the subrings are neutrosophic subrings. 

Definition 2.10:  Let 

1 2 1 2 1 2N(R) {R .... R , , ,..., , , ,..., }N N NR      

 be a neutrosophic  N -ring. A proper subset 

1 2 1 2 1 2{P .... , , ,..., , , ,..., }N N NP P P        

where t tP P R   for  1,2,...,t N  is said to be a 

neutrosophic N -ideal of ( )N R  if the following condi-

tions are satisfied. 

1) Each it is a neutrosophic subring  of

, 1,2,...,tR t N . 

2) Each it is a two sided ideal of tR  for 1,2,...,t N . 

If (P , , )i i i  in the above  definition are neutrosophic ide-

als, then we call (P , , )i i i  to be a strong neutrosophic N-

ideal of ( )N R . 

Definition 2.11:  Let  ( (F), , )BN   be a non-empty set 

with two binary operations   and .  ( (F), , )BN   is 
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said to be a neutrosophic bifiel if 
1 2(F)BN F F 

where atleast one of  
1(F , , )  or 

2(F , , )  is a neutro-

sophic field and other is just a field. 1F  and 2F  are proper 

subsets of (F).BN  

If in the above definition both 1(F , , )  and 2(F , , )  are 

neutrosophic fields, then we call ( (F), , )BN   to be a 

neutrosophic strong bifield. 

Definition 2.12:  Let 1 2(F) (F , , )BN F    be a neu-

trosophic bifield. A proper subset  ( , , )T   is said to be a 

neutrosophic subbifield of (F)BN  if 

1.  1 2T T T   where 1 1T F T   and 

2 2T F T  and 

2. At least one of 1( , )T  or 2( , )T   is a neutrosoph-

ic field and the other is just a field. 

Definition 2.13:  Let 1 2 1 2{N(F), ,..., , , ,..., }N   be a 

non-empty set with two N -binary operations defined on 

it. We call ( )N R  a neutrosophic N -field  ( N  a positive 

integer)  if the following conditions are satisfied. 

1. 1 2N(F) ... NF F F     where each iF  is a 

proper subset of N(F)  i.e. 
i jR R  or 

j iR R  if  i j . 

2. (R , , )i i i  is either a neutrosophic field or just a 

field for 1,2,3,...,i N .

If in the above definition each (R , , )i i i  is a neutro-

sophic field, then we call ( )N R  to be a strong neutro-

sophic N-field. 

Definition 2.14: Let 

1 2 1 2 1 2N(F) {F .... , , ,..., , , ,..., }N N NF F      

 be a neutrosophic N -field. A proper subset 

1 2 1 2 1 2{T .... T , , ,..., , , ,..., }N N NT T        of 

(F)N  is said to be a neutrosophic N -subfield if each  

( , )i iT   is a neutrosophic subfield  of  (F , , )i i i  for 

1,2,...,i N  where i iT F T  . 

3 Soft Neutrosophic Birings 

Definition 3.1: Let ( (R), , )BN   be a neutrosophic   
biring and ( , )F A  be a soft set over ( (R), , ).BN   Then 

( , )F A  is called soft neutrosophic biring if and only if 
( )F a  is a neutrosophic subbiring of ( (R), , )BN  for 

all .a A  

Example 3.2: Let 1 2(R) (R , , ) (R , , )BN      be a 
neutrosophic biring, where  1(R , , ) ( , , )I      

and 2(R , , ) ( , , )    . Let 1 2 3 4{ , , , }A a a a a  be a 
set of parameters. Then clearly ( , )F A  is a soft 
neutrosophic  biring over ( )BN R , where 

 1 2( ) 2 , 3 ,F a I F a I     

   3 45 , 6 2F a I F a I      . 

Theorem 3.3: Let  ,F A   and  H,A   be two soft

neutrosophic  birings  over  ( )BN R . Then their intersec-

tion  , ,F A H A   is again a soft neutrosophic

biring over  ( )BN R  .

Proof.  The proof is straightforward. 

Theorem 3.4:  Let  ,F A   and  ,H B   be two  soft

neutrosophic birings over  ( )BN R .  If  A B ,

then  , ,F A H B   is a soft neutrosophic  biring

over ( )BN R .

Proof. This is straightforward. 

Remark 3.5: The extended union of two soft  neutrosophic 

birings  ,F A   and  ,K B   over  ( )BN R  is not a

soft neutrosophic ring over  ( )BN R .

We check this by the help of  Examples. 

Remark 3.6: The restricted union of two soft neutrosophic  

rings  ,F A   and  ,K B   over  R I  is not a

soft neutrosophic ring over  .R I

Theorem 3.7: The  OR   operation of two soft neutro-

sophic  rings over  R I  may not be a soft neutro-

sophic  ring over R I . 

 One can easily check these remarks with the help of Ex-

amples. 

Theorem 3.8:  The extended intersection of two  soft neu 

trosophic  birings over  ( )BN R  is soft neutrosophic
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biring over  ( )BN R .

Proof. The proof is straightforward. 

Theorem 3.9:  The restricted intersection of two soft  neu-

trosophic birings over  ( )BN R  is  soft neutrosophic

biring over  ( )BN R .

Theorem 3.10: The AND  operation of two  soft neutro-

sophic  birings over  ( )BN R   is  soft neutrosophic  biring

over  ( )BN R .

Definition 3.11:  Let ,F A  be a soft set over a neutro-

sophic biring over ( )BN R . Then ( , )F A  is called an

absolute soft neutrosophic biring if ( ) ( )F a BN R  for

all .a A

Definition 3.12:  Let ( , )F A  be a soft set over a neutro-

sophic ring ( )BN R . Then ( , )F A  is called soft neutro-

sophic biideal over ( )BN R  if and only if ( )F a  is a neu-

trosophic biideal of ( )BN R .

Theorem 3.1.3:  Every soft neutrosophic biideal ( , )F A
over a neutrosophic biring ( )BN R  is trivially a soft neu-

trosophic biring but the converse may not be true. 

Proposition 3.14: Let ( , )F A  and ( , )K B  be two soft

neutosophic biideals over a neutrosophic biring  

( )BN R . Then

1. Their extended union ( , ) ( , )EF A K B  is

again a soft neutrosophic biideal over ( )BN R .

2. Their extended intersection ( , ) ( , )EF A K B
is again a soft neutrosophic biideal over 

( )BN R .

3. Their restricted union ( , ) ( , )RF A K B  is

again a soft neutrosophic biideal over ( )BN R .

4. Their restricted intersection ( , ) ( , )RF A K B
is again a soft neutrosophic biideal over 

( )BN R .

5. Their OR  operation ( , ) ( , )F A K B  is again

a soft neutrosophic biideal over ( )BN R .

6. Their AND  operation ( , ) ( , )F A K B  is

again a soft neutrosophic biideal over ( )BN R .

Definition 3.15: Let ( , )F A  and ( , )K B  be two soft

neutrosophic birings over ( )BN R . Then ( , )K B  is

called soft neutrosophic subbiring of ( , )F A , if

1. B A , and

2. ( )K a  is a neutrosophic subbiring of ( )F a  for

all a A .

Theorem 3.16:  Every soft biring  over a biring  is a soft 

neutrosophic subbiring of a soft  

neutrosophic biring  over the corresponding neutrosophic 

biring  if B A .

Definition 3.16: Let ( , )F A  and ( , )K B  be two soft

neutrosophic birings over ( )BN R . Then ( , )K B  is

called a soft neutrosophic  biideal of ( , )F A , if

1. B A , and

2. ( )K a  is a neutrosophic biideal of ( )F a  for all

a A .

Proposition 3.17:  All soft neutrosophic biideals are trivi-

ally soft neutrosophic subbirings. 

4 Soft Neutrosophic N-Ring 

Definition 4.1: Let 1 2( (R), , ,..., )NN     be a 

neutrosophic  N-ring and ( , )F A  be a soft set over 
( )N R  Then ( , )F A  is called soft neutrosophic N-ring if 

and only if ( )F a  is a neutrosophic sub N-ring of  
( )N R for all .a A  

Example 4.2: Let 

1 2 3(R) (R , , ) (R , , ) (R , , )N        be 
aneutrosophic 3-ring, where  

1(R , , ) ( , , )I     , 2(R , , ) ( , , )     and 

3(R , , ) ( , , )    . Let 1 2 3 4{ , , , }A a a a a  be a set 
of parameters. Then clearly ( , )F A  is a soft neutrosophic  
N-ring over ( )N R , where 

 1 2( ) 2 , 3 ,F a I F a I       

   3 45 2 , 6 2F a I F a I       
. 
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Theorem 4.3:  Let  ,F A   and  H,A   be two soft

neutrosophic  N-rings  over  ( )N R . Then their intersec-

tion  , ,F A H A   is again a soft neutrosophic N-

ring over  ( )N R  .

Proof.  The proof is straightforward. 

Theorem 4.4:  Let  ,F A   and  ,H B   be two  soft

neutrosophic N-rings over  ( )N R .  If  A B ,

then  , ,F A H B   is a soft neutrosophic  N-ring

over ( )N R .

Proof. This is straightforward. 

Remark 4.5: The extended union of two soft  neutrosophic 

N-rings  ,F A   and  ,K B   over  ( )BN R  is not a

soft neutrosophic ring over  ( )N R .

We can check this by the help of  Examples. 

Remark 4.6: The restricted union of two soft neutrosophic  

N-rings  ,F A   and  ,K B   over  ( )N R  is not a

soft neutrosophic N-ring over  ( )BN R

Theorem 4.7: The  OR   operation of two soft neutro-

sophic  N-rings over  ( )N R  may not be a soft neutro-

sophic  N-ring over ( )N R .

 One can easily check these remarks with the help of Ex-

amples. 

Theorem 4.8: The extended intersection of two  soft neu-

trosophic  N-rings over  ( )N R  is soft neutrosophic  Nring

over  ( )N R .

Proof. The proof is straightforward. 

Theorem. The restricted intersection of two soft  neutro-

sophic N-rings over  ( )N R  is  soft neutrosophic  N-ring

over  (R)N .

Proof. It is obvious. 

Theorem 4.9: The AND  operation of two  soft neutro-

sophic  N-rings over  ( )N R   is  soft neutrosophic  N-ring

over  ( )N R .

Definition 4.10: Let ,F A  be a soft set over a neutro-

sophic N-ring over ( )N R . Then ( , )F A  is called an ab-

solute soft neutrosophic N-ring if ( ) ( )F a N R  for all

.a A

Definition 4.11:  Let ( , )F A  be a soft set over a neutro-

sophic N-ring ( )N R . Then ( , )F A  is called soft neutro-

sophic N-ideal over ( )N R  if and only if ( )F a  is a neu-

trosophic N-ideal of ( )N R .

Theorem 4.12:  Every soft neutrosophic N-ideal ( , )F A
over a neutrosophic N-ring ( )N R  is trivially a soft neu-

trosophic N-ring but the converse may not be true. 

Proposition 4.13:  Let ( , )F A  and ( , )K B  be two soft

neutosophic N-ideals over a neutrosophic N-ring ( )N R .

Then 

1. Their extended intersection ( , ) ( , )EF A K B

is again a soft neutrosophic N-ideal over ( )N R .

2. Their restricted intersection ( , ) ( , )RF A K B

is again a soft neutrosophic N-ideal over ( )N R .

3. Their AND  operation ( , ) ( , )F A K B  is

again a soft neutrosophic N-ideal over ( )N R .

Remark 4.14: Let ( , )F A  and ( , )K B  be two soft neu-

tosophic N-ideals over a neutrosophic N-ring ( )N R .

Then 

1. Their extended union ( , ) ( , )EF A K B  is not

a soft neutrosophic N-ideal over ( )N R .

2. Their restricted union ( , ) ( , )RF A K B  is not

a soft neutrosophic N-ideal over ( )N R .

3. Their OR  operation ( , ) ( , )F A K B  is not a

soft neutrosophic N-ideal over ( )N R .

One can easily see these by the help of examples. 

Definition. 4.15: Let ( , )F A  and ( , )K B  be two soft

neutrosophic N-rings over ( )N R . Then ( , )K B  is called

soft neutrosophic sub N-ring of ( , )F A , if

1. B A , and

2. ( )K a  is a neutrosophic sub N-ring of ( )F a  for
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all a A .

Theorem 4.16: Every soft N-ring  over a N-ring  is a soft 

neutrosophic sub N-ring of a soft  

neutrosophic N-ring  over the corresponding neutrosophic 

N-ring  if B A .

Proof. Straightforward. 

Definition 4.17: Let ( , )F A  and ( , )K B  be two soft

neutrosophic N-rings over ( )N R . Then ( , )K B  is called

a soft neutrosophic  N-ideal of ( , )F A , if

1. B A , and

2. ( )K a  is a neutrosophic N-ideal of ( )F a  for all

a A .

Proposition 4.18: All soft neutrosophic N-ideals are trivi-

ally soft neutrosophic sub N-rings. 

5 Soft Neutrosophic Bifield 

Defintion 5.1: Let ( )BN K  be a neutrosophic bifield and

let ( , )F A  be a soft set over ( )BN K . Then ( , )F A  is

said to be soft neutrosophic bifield if and only if ( )F a  is a

neutrosophic subbifield of ( )BN K  for all a A .

Example 5.2:  Let ( )BN K I  be a

neutrosophic bifield of complex numbers. Let 

1 2{ , }A a a  be a set of parameters and let ( , )F A  be

a soft set of ( )BN K . Then (F,A)  is a soft neutrosophic

bifield over ( )BN K , where

1 2( ) , ( )F a I F a I . 

Where I  and I  are the neutosophic 

fields of real numbers and rational numbers. 

Proposition 5.3:  Every soft neutrosophic bifield is trivial-

ly a soft neutrosophic biring. 

Proof. The proof is trivial. 

Definition 5.4: Let ( , )F A  be a soft neutrosophic bifield 
over a neutrosophic bifield ( )BN K . Then ( , )F A  is  
called an absolute soft neutrosophic bifield if  

( ) ( )F a BN K , for all a A . 

Soft Neutrosophic N-field 

Defintion 5.4:  Let ( )N K  be a neutrosophic N-field and

let ( , )F A  be a soft set over ( )N K . Then ( , )F A  is

said to be soft neutrosophic N-field if and only if ( )F a  is

a neutrosophic sub N-field of ( )N K  for all a A .

Proposition 5.5: Every soft neutrosophic N-field is trivial-

ly a soft neutrosophic N-ring. 

Proof. The proof is trivial. 

Definition 5.6: Let ( , )F A  be a soft neutrosophic N-field 
over a neutrosophic N-field ( )N K . Then ( , )F A  is  
called an absolute soft neutrosophic N-field if  

( ) ( )F a N K , for all a A . 

Conclusion 

In this paper we extend neutrosophicb rings, neutrosophic 

N-rings, Neutrosophic bifields and neutrosophic N-fields 

to soft neutrosophic  birings, soft neutrosophic N-rings and 

soft neutrosophic bifields and soft  neutrosophic N-fields 

respectively. The neutrosophic ideal theory  is extend to 

soft neutrosophic biideal and soft neutrosophic N-ideal. 

Some new types of  soft neutrosophic ideals are discovered 

which is strongly neutrosophic or purely neutrosophic. Re-

lated examples are given to illustrate soft neutrosophic 

biring, soft neutrosophic N-ring, soft neutrosophic bifield 

and soft neutrosophic N-field and many theorems and 

properties are discussed. 
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