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1. Introduction. 

One first presents the evolution of sets from fuzzy set to neutrosophic set. Then one 

introduces the neutrosophic components T, I, F which represent the membership, indeterminacy, 

and non-membership values respectively, where  ]−0, 1+[  is the non-standard unit interval, and 

thus one defines the neutrosophic set. One gives examples from mathematics, physics, 

philosophy, and applications of the neutrosophic set. Afterwards, one introduces the 

neutrosophic set operations (complement, intersection, union, difference, Cartesian product, 

inclusion, and n-ary relationship), some generalizations and comments on them, and finally the 

distinctions between the neutrosophic set and the intuitionistic fuzzy set. 

 

2. Short History. 
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The fuzzy set (FS) was introduced by L. Zadeh [1] in 1965, where each element had a 

degree of membership (t). 

The intuitionistic fuzzy set (IFS) on a universe X was introduced by K. Atanassov [2] in 

1986 as a generalization of FS, where besides the degree of membership 𝜇𝐴(𝑥) ∈ [0,1] of each 

element 𝑥 ∈ 𝑋 to a set A there was considered a degree of non-membership 𝜈𝐴(𝑥) ∈ [0,1], but 

such that  

∀ 𝑥 ∈ 𝑋 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1.       (2.1) 

The neutrosophic set (NS) was introduced by F. Smarandache [3] who introduced the 

degree of indeterminacy (i) as indepedent component in his 1995 manuscris that was published 

in 1998. 

According to Deschrijver & Kerre (2003) the vague set defined by Gau and Buehrer 

(1993) was proven by Bustine & Burillo (1996) to be the same as IFS. 

Goguen (1967) defined the L-fuzzy Set in X as a mapping 𝑋 → 𝐿 such that (𝐿∗, ≤𝐿∗) is a 

complete lattice, where 𝐿∗ = {(𝑥1, 𝑥2) ∈ [0,1]
2, 𝑥1 + 𝑥2 ≤ 1}  and (𝑥1, 𝑥2) ≤𝐿∗ (𝑦1, 𝑦2) ⇔

𝑥1 ≤ 𝑦1 and 𝑥2 ≥ 𝑦2. The interval-valued fuzzy sets (IVFS) apparently first studied by Sambuc 

(1975), which were called by Deng (1989) grey sets, and IFS are specific kinds of L-fuzzy sets. 

According to Cornelis et al. (2003), Gehrke et al. (1996) stated that “Many people 

believe that assigning an exact number to an expert’s opinion is too restrictive, and the 

assignment of an interval of values is more realistic”, which is somehow similar with the 

imprecise probability theory where instead of a crisp probability one has an interval (upper and 

lower) probabilities as in Walley (1991). 

Atanassov (1999) defined the interval-valued intuitionistic fuzzy set (IVIFS) on a 

universe X as an object A such that: 

𝐴 = {(𝑥,𝑀𝐴(𝑋), 𝑁𝐴(𝑥)), 𝑥 ∈ 𝑋},      (2.2) 

with 𝑀𝐴: 𝑋 → 𝐼𝑛𝑡([0,1]) and 𝑁𝐴: 𝑋 → 𝐼𝑛𝑡([0,1]),    (2.3) 

and ∀ 𝑥 ∈ 𝑋 sup𝑀𝐴 (𝑥) + sup𝑁𝐴 (𝑥) ≤ 1.      (2.4) 

Belnap (1977) defined a four-valued logic, with truth (T), false (F), unknown (U), and 

contradiction (C). He used a billatice where the four components were inter-related. 
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In 1995, starting from philosophy (when I fretted to distinguish between absolute truth 

and relative truth or between absolute falsehood and relative falsehood in logics, and 

respectively between absolute membership and relative membership or absolute non-

membership and relative non-membership in set theory) I began to use the non-standard 

analysis. Also, inspired from the sport games (winning, defeating, or tie scores), from votes 

(pro, contra, null/black votes), from positive/negative/zero numbers, from yes/no/NA, from 

decision making and control theory (making a decision, not making, or hesitating), from 

accepted/rejected/pending, etc. and guided by the fact that the law of excluded middle did not 

work any longer in the modern logics, I combined the non-standard analysis with a tri-

component logic/set/probability theory and with philosophy (I was excited by paradoxism in 

science and arts and letters, as well as by paraconsistency and incompleteness in knowledge). 

How to deal with all of them at once, is it possible to unity them? 

I proposed the term "neutrosophic" because "neutrosophic" etymologically comes from 

"neutrosophy" [French neutre < Latin neuter, neutral, and Greek sophia, skill/wisdom] which 

means knowledge of neutral thought, and this third/neutral represents the main distinction 

between "fuzzy"/ "intuitionistic fuzzy" logic/set and „neutrosophic” logic/set, i.e. the included 

middle component (Lupasco-Nicolescu’s logic in philosophy), i.e. the 

neutral/indeterminate/unknown part (besides the "truth"/"membership" and "falsehood"/"non-

membership" components that both appear in fuzzy logic/set).  

See the Proceedings of the First International Conference on Neutrosophic Logic, The 

University of New Mexico, Gallup Campus, 1-3 December 2001, at: 

http://fs.gallup.unm.edu/FirstNeutConf.htm . 

 

3. Definition of Neutrosophic Set. 

Let T, I, F be real standard or non-standard subsets of ]−0, 1+[, 

with sup𝑇 =  𝑡_𝑠𝑢𝑝, inf 𝑇 = 𝑡_𝑖𝑛𝑓, 

sup 𝐼 = 𝑖_𝑠𝑢𝑝, inf 𝐼 = 𝑖_𝑖𝑛𝑓, 

sup 𝐹 = 𝑓_𝑠𝑢𝑝, inf 𝐹 = 𝑓_𝑖𝑛𝑓, 

and 𝑛_𝑠𝑢𝑝 = 𝑡_𝑠𝑢𝑝 + 𝑖_𝑠𝑢𝑝 + 𝑓_𝑠𝑢𝑝, 

http://fs.gallup.unm.edu/FirstNeutConf.htm
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𝑛_𝑖𝑛𝑓 = 𝑡_𝑖𝑛𝑓 + 𝑖_𝑖𝑛𝑓 + 𝑓_𝑖𝑛𝑓. 

T, I, F are called neutrosophic components. 

Let U be a universe of discourse, and M a set included in U. An element 𝑥 from U is 

noted with respect to the set M as 𝑥(𝑇, 𝐼, 𝐹) and belongs to M in the following way: it is 𝑡% 

true in the set, 𝑖% indeterminate (unknown if it is) in the set, and 𝑓% false, where 𝑡 varies in T, 

𝑖 varies in I, 𝑓 varies in F. 

For software engineering proposals the classical unit interval [0, 1] is used. 

For single valued neutrosophic logic (t, i ,f), the sum of the components is: 

0 ≤ t+i+f ≤ 3 when all three components are independent; 

0 ≤ t+i+f ≤ 2 when two components are dependent, while the third one is independent 

from them; 

0 ≤ t+i+f ≤ 1 when all three components are dependent. 

When three or two of the components t, i, f are independent, one leaves room for incomplete 

information (sum < 1), paraconsistent and contradictory information (sum > 1), or complete 

information (sum = 1).  

In general [3], the sum of two components x and y that vary in the unitary interval [0, 1] is:  

0 ≤  𝑥 + 𝑦 ≤  2 –  𝑑°(𝑥, 𝑦),                           

where 𝑑°(𝑥, 𝑦) is the degree of dependence between x and y.  

Therefore 2 –  𝑑°(𝑥, 𝑦) is the degree of independence between x and y.  

 

 

4. General Examples. 

Let A, B, and C be three neutrosophic sets. 

One can say, by language abuse, that any element neutrosophically belongs to any set, 

due to the percentages of truth/indeterminacy/falsity involved, which varies between 0 and 1, 

or even less than 0 or greater than 1. 

Thus: 𝑥(0.5,0.2,0.3) belongs to A (which means, with a probability of 50% 𝑥 is in A, 

with a probability of 30% 𝑥 is not in A, and the rest is undecidable); or 𝑦(0,0,1) belongs to A 

(which normally means 𝑦 is not for sure in A); or 𝑧(0,1,0) belongs to A (which means one does 

know absolutely nothing about 𝑧's affiliation with A); herein 0.5 + 0.2 + 0.3 = 1; thus A is a 
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NS and an IFS too. More general, 𝑦((0.20 − 0.30), (0.40 − 0.45) ∪ [0.50 −

0.51], {0.20, 0.24, 0.28}) belongs to the set B, which means: 

 with a probability in between 20-30% 𝑦  is in B (one cannot find an exact 

approximation because of various sources used); 

 with a probability of 20% or 24% or 28% 𝑦 is not in B; 

 the indeterminacy related to the appurtenance of 𝑦 to B is in between 40-45% or 

between 50-51% (limits included). 

The subsets representing the appurtenance, indeterminacy, and falsity may overlap, and 

𝑛_𝑠𝑢𝑝 = 0.30 + 0.51 + 0.28 > 1 in this case; then B is a NS but is not an IFS; we can call it 

paraconsistent set (from paraconsistent logic, which deals with paraconsistent information). 

Or, another example, say the element 𝑧(0.1, 0.3, 0.4) belongs to the set C, and here 

0.1 + 0.3 + 0.4 < 1; then B is a NS but is not an IFS; we can call it intuitionistic set (from 

intuitionistic logic, which deals with incomplete information). 

Remarkably, in the same NS one can have elements which have paraconsistent 

information (sum of components > 1), others incomplete information (sum of components <

1), others consistent information (in the case when the sum of components = 1), and others 

interval-valued components (with no restriction on their supremum or infimum sums). 

 

5. Physics Examples. 

a) For example the Schrödinger’s Cat Theory says that the quantum state of a photon 

can basically be in more than one place in the same time, which translated to the neutrosophic 

set means that an element (quantum state) belongs and does not belong to a set (one place) in 

the same time; or an element (quantum state) belongs to two different sets (two different places) 

in the same time. It is a question of “alternative worlds” theory, very well represented by the 

neutrosophic set theory. 

In Schrödinger’s Equation on the behavior of electromagnetic waves and “matter waves” 

in quantum theory, the wave function ψ which describes the superposition of possible states 

may be simulated by a neutrosophic function, i.e. a function whose values are not unique for 

each argument from the domain of definition (the vertical line test fails, intersecting the graph 

in more points). 
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Don’t we better describe, using the attribute “neutrosophic” than “fuzzy” 

or ”intuitionistic fuzzy” or any others, a quantum particle that neither exists nor non-exists? 

b) How to describe a particle 𝜁 in the infinite micro-universe that belongs to two distinct 

places 𝑃1 and  𝑃2 in the same time? 𝜁 ∈ 𝑃1 and 𝜁 ∉ 𝑃1 as a true contradiction, or 𝜁 ∈ 𝑃1 and 𝜁 ∈

¬𝑃1. 

 

6. Philosophical Examples. 

Or, how to calculate the truth-value of Zen (in Japanese) / Chan (in Chinese) doctrine 

philosophical proposition: the present is eternal and comprises in itself the past and the future? 

In Eastern Philosophy the contradictory utterances form the core of the Taoism and 

Zen/Chan (which emerged from Buddhism and Taoism) doctrines. 

How to judge the truth-value of a metaphor, or of an ambiguous statement, or of a social 

phenomenon which is positive from a standpoint and negative from another standpoint? 

There are many ways to construct them, in terms of the practical problem we need to 

simulate or approach. Below there are mentioned the easiest ones. 

7. Application. 

A cloud is a neutrosophic set, because its borders are ambiguous, and each element 

(water drop) belongs with a neutrosophic probability to the set (e.g. there are a kind of separated 

water drops, around a compact mass of water drops, that we don't know how to consider them: 

in or out of the cloud). 

Also, we are not sure where the cloud ends nor where it begins, neither if some elements 

are or are not in the set. That's why the percent of indeterminacy is required and the neutrosophic 

probability (using subsets - not numbers - as components) should be used for better modelling: 

it is a more organic, smooth, and especially accurate estimation. Indeterminacy is the zone of 

ignorance of a proposition’s value, between truth and falsehood. 

 

8. Operations with classical Sets. 
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We need to present these set operations in order to be able to introduce the neutrosophic 

connectors. Let 𝑆1  and 𝑆2  be two (unidimensional) real standard or non-standard subsets 

included in the non-standard interval ]−0,∞), and a ∈ R a real number, then one defines: 

 

8.1 Addition of classical Sets: 

𝑆1⊕𝑆2 = {𝑥|𝑥 = 𝑠1 + 𝑠2, where 𝑠1 ∈  𝑆1 and 𝑠2 ∈ 𝑆2}, 

with inf 𝑆1⊕𝑆2 = inf 𝑆1 + inf 𝑆2 , sup 𝑆1⊕𝑆2 = sup𝑆1 + sup𝑆2; 

and, as some particular cases, we have 

{𝑎} ⊕ 𝑆2 = {𝑥|𝑥 = 𝑎 + 𝑠2, where 𝑠2 ∈ 𝑆2}, 

with inf{𝑎}⊕ 𝑆2 = 𝑎 + inf 𝑆2 , sup{𝑎} ⊕ 𝑆2 = 𝑎 + sup 𝑆2. 

 

8.2 Subtraction of classical Sets: 

𝑆1⊖𝑆2 = {𝑥|𝑥 = 𝑠1 − 𝑠2, where 𝑠1 ∈  𝑆1 and 𝑠2 ∈ 𝑆2}, 

with inf 𝑆1⊖𝑆2 = inf 𝑆1 − inf 𝑆2 , sup 𝑆1⊖𝑆2 = sup𝑆1 − sup𝑆2; 

and, as some particular cases, we have 

{𝑎} ⊖ 𝑆2 = {𝑥|𝑥 = 𝑎 − 𝑠2, where 𝑠2 ∈ 𝑆2}, 

with inf{𝑎}⊖ 𝑆2 = 𝑎 − inf 𝑆2 , sup{𝑎} ⊖ 𝑆2 = 𝑎 − sup 𝑆2; 

also {1+} ⊖ 𝑆2 = {𝑥|𝑥 = 1
+ − 𝑠2, where 𝑠2 ∈ 𝑆2}, 

with inf {1+} ⊖ 𝑆2 = 1
+ − sup 𝑆2 , sup {1

+} ⊖ 𝑆2 = 100 − inf 𝑆2. 

 

8.3 Multiplication of classical Sets: 

𝑆1⊙𝑆2 = {𝑥|𝑥 = 𝑠1 ⋅ 𝑠2, where 𝑠1 ∈  𝑆1 and 𝑠2 ∈ 𝑆2}. 

with inf 𝑆1⊙𝑆2 = inf 𝑆1 ⋅ inf 𝑆2 , sup 𝑆1⊙𝑆2 = sup 𝑆1 ⋅ sup 𝑆2; 

and, as some particular cases, we have 

{𝑎} ⊙ 𝑆2 = {𝑥|𝑥 = 𝑎 ⋅ 𝑠2, where 𝑠2 ∈ 𝑆2}, 
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with inf{𝑎}⊙ 𝑆2 = 𝑎 ∗ inf 𝑆2 , sup{𝑎} ⊙ 𝑆2 = 𝑎 ⋅ sup 𝑆2; 

also {1+} ⊙ 𝑆2 = {𝑥|𝑥 = 1 ⋅ 𝑠2, where 𝑠2 ∈ 𝑆2}, 

with inf {1+} ⊙ 𝑆2 = 1
+ ⋅ inf 𝑆2 , sup {1

+} ⊙ 𝑆2 = 1
+ ⋅ sup 𝑆2. 

 

8.4 Division of a Classical Set by a Number: 

Let 𝑘 ∈ ℝ∗, then 𝑆1⊘𝑘 = {𝑥|𝑥 = 𝑠1/𝑘,where 𝑠1 ∈ 𝑆1}. 

 

9. Classical Logic and Set, Fuzzy Logic and Set, Intuitionistic Fuzzy Logic and 

Set, and Neutrosophic Logic and Set. 

 

In order to make distinction between classical (Boolean) logic/set, fuzzy logic/set, 

intuitionistic fuzzy logic/set, and neutrosophic logic/set, we denote their corresponding 

operators (negation/complement, conjunction/intersection, disjunction/union, implication, and 

equivalence), as it follows: 

a. For classical (Boolean) logic and set: 

¬      ∧       ∨      →      ↔ 
 

b. For fuzzy logic and set: 

¬
𝐹      

∧
𝐹
      
∨
𝐹
     
→
𝐹
       
↔
𝐹

 

 

c. For intuitionistic fuzzy logic and set: 

¬
𝐼𝐹      

∧
𝐼𝐹
      
∨
𝐼𝐹
      
→
𝐼𝐹
      
↔
𝐼𝐹

 

 

d. For neutrosophic logic and set: 

¬
𝑁      

∧
𝑁
      
∨
𝑁
       
→
𝑁
      
↔
𝑁

 

 

 

10. Neutrosophic Set Operations. 



9 
 

One notes, with respect to the sets A and B over the universe U, 𝑥 = 𝑥(𝑇1, 𝐼1, 𝐹1) ∈ 𝐴 

and 𝑥 = 𝑥(𝑇2, 𝐼2, 𝐹2) ∈ 𝐵, by mentioning 𝑥’s neutrosophic membership, indeterminacy, and 

non-membership respectively appurtenance. 

And, similarly, 𝑦 = 𝑦(𝑇′,  𝐼′,  𝐹′) ∈ 𝐵. 

If, after calculations, in the below operations one obtains values < 0 or > 1, then one 

replaces them with 0−
−  or 1+ respectively. 

 

10.1. Complement of A: 

There are defined in neutrosophic literature classes of neutrosophic negation operators 

as follows: if 𝐴(𝑡𝐴, 𝑖𝐴, 𝑓𝐴), then its negation is: 

or 
¬
𝑁𝐴(𝑓𝐴, 𝑖𝐴, 𝑡𝐴), 

or 
¬
𝑁𝐴(𝑓𝐴, 1 − 𝑖𝐴, 𝑡𝐴),  

or 
¬
𝑁𝐴(1 − 𝑡𝐴, 1 − 𝑖𝐴, 1 − 𝑓𝐴), 

or 
¬
𝑁𝐴(1 − 𝑡𝐴, 𝑖𝐴, 1 − 𝑓𝐴), 

etc. 

 

10.2. Intersection: 

Similarly, classes of neutrosophic conjunctive operators: 

if 𝐴(𝑡𝐴, 𝑖𝐴, 𝑓𝐴) and 𝐵(𝑡𝐵, 𝑖𝐵, 𝑓𝐵), then 

𝐴 𝑁
∧𝐵 = 〈𝑡𝐴 𝐹

∧  𝑡𝐵 , 𝑖𝐴 𝐹
∨  𝑖𝐵, 𝑓𝐴 𝐹

∨  𝑓𝐵〉, 

or 𝐴 𝑁
∧𝐵 = 〈𝑡𝐴 𝐹

∧  𝑡𝐵, 𝑖𝐴 𝐹
∧  𝑖𝐵, 𝑓𝐴 𝐹

∨  𝑓𝐵〉, 

or 𝐴 𝑁
∧𝐵 = 〈𝑡𝐴 𝐹

∧  𝑡𝐵, 𝑖𝐴 𝐹
∧  𝑖𝐵, 𝑓𝐴 𝐹

∧  𝑓𝐵〉, 

or 𝐴 𝑁
∧𝐵 = 〈𝑡𝐴 𝐹

∧  𝑡𝐵,
𝑖𝐴+𝑖𝐵

2
, 𝑓𝐴 𝐹

∨  𝑓𝐵〉, 
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or 𝐴 𝑁
∧𝐵 = 〈𝑡𝐴 𝐹

∧  𝑡𝐵, 1 −
𝑖𝐴+𝑖𝐵

2
, 𝑓𝐴 𝐹

∨  𝑓𝐵〉, 

or 𝐴 𝑁
∧𝐵 = 〈𝑡𝐴 𝐹

∧  𝑡𝐵, |𝑖𝐴 − 𝑖𝐵|, 𝑓𝐴 𝐹
∨  𝑓𝐵〉, etc. 

 

10.3. Union: 

And, analogously, classes of neutrosophic disjunctive operators were defined: 

𝐴 𝑁
∨𝐵 = 〈𝑡𝐴 𝐹

∨  𝑡𝐵 , 𝑖𝐴 𝐹
∧  𝑖𝐵, 𝑓𝐴 𝐹

∧  𝑓𝐵〉, 

or 𝐴 𝑁
∨𝐵 = 〈𝑡𝐴 𝐹

∨  𝑡𝐵, 𝑖𝐴 𝐹
∨  𝑖𝐵, 𝑓𝐴 𝐹

∧  𝑓𝐵〉, 

or 𝐴 𝑁
∨𝐵 = 〈𝑡𝐴 𝐹

∨  𝑡𝐵, 𝑖𝐴 𝐹
∨  𝑖𝐵, 𝑓𝐴 𝐹

∨  𝑓𝐵〉, 

or 𝐴 𝑁
∨𝐵 = 〈𝑡𝐴 𝐹

∨  𝑡𝐵,
𝑖𝐴+𝑖𝐵

2
, 𝑓𝐴 𝐹

∧  𝑓𝐵〉, 

or 𝐴 𝑁
∨𝐵 = 〈𝑡𝐴 𝐹

∨  𝑡𝐵, 1 −
𝑖𝐴+𝑖𝐵

2
 , 𝑓𝐴 𝐹

∧  𝑓𝐵〉, 

or 𝐴 𝑁
∨𝐵 = 〈𝑡𝐴 𝐹

∨  𝑡𝐵, |𝑖𝐴 − 𝑖𝐵| , 𝑓𝐴 𝐹
∨  𝑓𝐵〉, etc.  

 

10.4. Difference: 

Because 𝐴 ∖ 𝐵 = 𝐴 ∩ 𝐶(𝐵), the difference can be defined using any of the above neutrosophic 

intersection and neutrosophic negation operator. 

 

10.5. Cartesian Product: 

If 𝑥(𝑇1, 𝐼1, 𝐹1) ∈ 𝐴, 𝑦(𝑇′, 𝐼′, 𝐹′) ∈ 𝐵, 

then (𝑥(𝑇1, 𝐼1, 𝐹1), 𝑦(𝑇
′, 𝐼′, 𝐹′)) ∈ 𝐴 × 𝐵. 

 

10.6. A is a subset of B: 

If 𝑥(𝑇1, 𝐼1, 𝐹1) ∈ 𝐴 ⟹ 𝑥(𝑇2, 𝐼2, 𝐹2) ∈ 𝐵, 

where inf 𝑇1 ≤ inf 𝑇2 , sup 𝑇1≤ sup𝑇2, and inf 𝐹1 ≥ inf 𝐹2 , sup 𝐹1 ≥ sup𝐹2. 
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10.7. Neutrosophic n-ary Relation. 

Let 𝐴1, 𝐴2, … , 𝐴𝑛 be arbitrary non-empty sets. 

A Neutrosophic n-ary Relation 𝑅 on 𝐴1 × 𝐴2 ×…× 𝐴𝑛  is defined as a subset of the 

Cartesian product 𝐴1 × 𝐴2 × …× 𝐴𝑛, such that for each ordered n-tuple (𝑥1, 𝑥2, … , 𝑥𝑛)(𝑇, 𝐼, 𝐹), 

𝑇 represents the degree of validity, 𝐼 the degree of indeterminacy, and 𝐹 the degree of non-

validity respectively of the relation 𝑅. 

It is related to the definitions for the Intuitionistic Fuzzy Relation independently given 

by Atanassov (1984, 1989), Toader Buhaescu (1989), Darinka Stoyanova (1993), Humberto 

Bustince Sola and P. Burillo Lopez (1992-1995). 

 

10.8. The Neutrosophic Quantifiers. 

The Neutrosophic Existential Quantifier is in the following way:  

There exist x(tx, ix, fx) in A such that P(x)(tP, iP, fP) 

or 

( , , ) , ( )( , , )x x x P P Px t i f A P x t i f  ; 

which means that:  there exists an element  x which belongs to A in a neutrosophic degree (tx, 

ix, fx), such that the proposition P has the neutrosophic degree of truth (tP, iP, fP). 

The Neutrosophic Universal Quantifier is the following way:  

For any x(tx, ix, fx) in A one has P(x)(tP, iP, fP) 

or 

( , , ) , ( )( , , )x x x P P Px t i f A P x t i f  ; 

which means that:  for any element x that belongs to A in a neutrosophic degree (tx, ix, fx), one 

has the proposition P with the neutrosophic degree of truth (tP, iP, fP). 

 

10.9. Classes of Neutrosophic Implications. 

Whence, since (𝐴
𝑁
→𝐵)

𝑁
↔ ( 𝐴𝑁

¬   𝐵𝑁
∨ ), one also has Classes of Neutrosophic Implication 

Operators as ( 𝐴𝑁
¬   𝐵𝑁

∨ ), where the neutrosophic negation can be any of the above definitions, 

and the neutrosophic disjunction, similarly any of the above definitions. 

10.9.1. Fuzzy Operators. 
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Let 𝛼, 𝛽 ∈ [0, 1]. 

The fuzzy negation has been defined as 𝛼 = 1 − 𝛼𝐹
¬ , while the class of fuzzy 

conjunctions (or t-norm) may be: 

𝛼𝐹
∧𝛽 = min{𝛼, 𝛽}, 

or 𝛼𝐹
∧𝛽 = 𝛼 ∙ 𝛽, 

or 𝛼𝐹
∧𝛽 = max{0, 𝛼 + 𝛽 − 1}, etc. 

And the class of fuzzy disjunctions (or t-conorm) may be: 

𝛼𝐹
∨𝛽 = max{𝛼, 𝛽}, 

or 𝛼𝐹
∨𝛽 = 𝛼 + 𝛽 − 𝛼𝛽, 

or 𝛼𝐹
∨𝛽 = min{1, 𝛼 + 𝛽}, etc. 

Examples of fuzzy implications 𝑥
𝐹
→ 𝑦, for 𝑥, 𝑦 ∈ [0, 1], defined below: 

 Fodor (1993): 𝐼𝐹𝐷(𝑥, 𝑦) = {
1, if 𝑥 ≤ 𝑦

max(1 − 𝑥, 𝑦) , if 𝑥 > 𝑦
 

 Weber (1983): 𝐼𝑊𝐵(𝑥, 𝑦) = {
1, if 𝑥 < 𝑦 
𝑦, if 𝑥 = 1 

 

 Yager (1980): 𝐼𝑌𝐺(𝑥, 𝑦) = {
1, if 𝑥 = 0 and 𝑦 = 0
𝑦𝑥, if 𝑥 > 0 or 𝑦 > 0

 

 Goguen (1969): 𝐼𝐺𝐺(𝑥, 𝑦) = {
1, if 𝑥 ≤ 𝑦
𝑦

𝑥
, if 𝑥 > 𝑦

 

 Rescher (1969): 𝐼𝑅𝑆(𝑥, 𝑦) = {
1, if 𝑥 ≤ 𝑦
0, if 𝑥 > 𝑦

 

 Kleene-Dienes (1938): 𝐼𝐾𝐷(𝑥, 𝑦) = max(1 − 𝑥, 𝑦) 

 Reichenbach (1935): 𝐼𝑅𝐶(𝑥, 𝑦) = 1 − 𝑥 + 𝑥𝑦 

 Gödel (1932): 𝐼𝐺𝐷(𝑥, 𝑦) = {
1, if 𝑥 ≤ 𝑦
𝑦, if 𝑥 > 𝑦

 

 Lukasiewicz (1923): 𝐼𝐿𝐾(𝑥, 𝑦) = min(1, 1 − 𝑥 + 𝑦),  

according to Michal Baczyński and Balasubramaniam Jayaram (2008). 

10.9.2. Example of intuitionistic fuzzy implications 𝐴(𝑡𝐴, 𝑓𝐴)
𝐼𝐹
→ 𝐵(𝑡𝐵, 𝑓𝐵) is: 
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𝐼𝐼𝐹 = ([(1 − 𝑡𝐴)𝐹

𝑡𝐵] F

 [(1 − 𝑓𝐵)𝐹
∨𝑓𝐴], 𝑓𝐵𝐹

∧(1 − 𝑡𝐴)), 

according to Yunhua Xiao, Tianyu Xue, Zhan’ao Xue, and Huiru Cheng (2011). 

10.9.3. We now propose eight classes of neutrosophic implications: 

𝐴(𝑡𝐴, 𝑖𝐴, 𝑓𝐴)
𝑁
→𝐵(𝑡𝐵, 𝑖𝐵, 𝑓𝐵), 

in the following ways: 

1-2. 𝐼𝑁1 (𝑡𝐴
𝐹/𝐼𝐹
→  𝑡𝐵, 𝑖𝐴  𝑖𝐵𝐹

∧ , 𝑓𝐴  𝑓𝐵𝐹
∧ ) , where 𝑡𝐴

𝐹/𝐼𝐹
→  𝑡𝐵  is any of the above fuzzy 

implications of intuitionistic fuzzy implications, while  is𝐹
∧  any fuzzy conjunction; 

3-4. 𝐼𝑁2 (𝑡𝐴
𝐹/𝐼𝐹
→  𝑡𝐵, 𝑖𝐴  𝑖𝐵𝐹

∨ , 𝑓𝐴  𝑓𝐵𝐹
∧ ), where  is𝐹

∨  any fuzzy disjunction; 

5-6. 𝐼𝑁3 (𝑡𝐴
𝐹/𝐼𝐹
→  𝑡𝐵,

𝑖𝐴+𝑖𝐵

2
, 𝑓𝐴  𝑓𝐵𝐹

∧ ); 

7-8. 𝐼𝑁4 (𝑡𝐴
𝐹/𝐼𝐹
→  𝑡𝐵,

𝑖𝐴+𝑖𝐵

2
,
𝑓𝐴+𝑓𝐵

2
). 

Let’s see an example of neutrosophic implication. 

Let’s have two neutrosophic propositions 𝐴〈0.3, 0.4, 0.2〉 and 𝐵〈0.7, 0.1, 0.4〉. Then 𝐴

𝑁
→𝐵 has the neutrosophic truth value of 𝐴 𝐵𝑁

∨
𝑁
¬ , i.e.: 

〈0.2, 0.4, 0.3〉 〈0.7, 0.1, 0.4〉𝑁
∨ , 

or 〈max{0.2, 0.7},min{0.4, 0.1},min{0.3, 0.4}〉, 

0r 〈0.7, 0.1, 0.3〉, 

where we used the neutrosophic operators defined above: 

〈𝑡, 𝑖, 𝑓〉 = 〈𝑓, 𝑖, 𝑡〉𝑁
¬  for neutrosophic negation 

and 〈𝑡1, 𝑖1, 𝑓1〉 〈𝑡2, 𝑖2, 𝑓2〉𝑁
∨ = 〈max{𝑡1, 𝑡2},min{𝑖1, 𝑖2},min{𝑓1, 𝑓2}〉  for the neutrosophic 

disjunction. 

Using different versions of the neutrosophic negation operators and/or different versions 

of the neutrosophic disjunction operators, one obtains, in general, different results. Similarly as 

in fuzzy logic. 
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Another example for neutrosophic implication.  

Let 𝐴 have the neutrosophic truth value (𝑡𝐴, 𝑖𝐴, 𝑓𝐴), and 𝐵 have the neutrosophic truth 

value (𝑡𝐵, 𝑖𝐵, 𝑓𝐵), then: 

[𝐴
𝑁
→𝐵]

𝑁
↔ [( 𝐴𝑁

¬ ) 𝐵𝑁
∨ ], 

where  is𝑁
¬  any of the above neutrosophic negations, while  is𝑁

∨  any of the above neutrosophic 

disjunctions. 

* 

We consider that the most general definition of neutrosophic operators shall be the 

followings: 

𝐴(𝑡𝐴, 𝑖𝐴, 𝑓𝐴) 𝐵(𝑡𝐵, 𝑖𝐵, 𝑓𝐵) = 𝐴 𝐵𝑁
⊕

𝑁
⊕ 〈𝑢(𝑡𝐴, 𝑖𝐴, 𝑓𝐴, 𝑡𝐵, 𝑖𝐵, 𝑓𝐵), 𝑣(𝑡𝐴, 𝑖𝐴, 𝑓𝐴, 𝑡𝐵, 𝑖𝐵, 𝑓𝐵),

𝑤(𝑡𝐴, 𝑖𝐴, 𝑓𝐴, 𝑡𝐵, 𝑖𝐵, 𝑓𝐵)〉 

where  is𝑁
⊕

 any binary neutrosophic operator, and  

𝑢(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6), 𝑣(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6), 𝑤(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6): [0,1]
6 → [0,1]. 

Even more, the neutrosophic component functions 𝑢, 𝑣, 𝑤 may depend, on the top of 

these six variables, on hidden parameters as well, such as: ℎ1, ℎ2, … , ℎ𝑛. 

For a unary neutrosophic operator (for example, the neutrosophic negation), similarly: 

𝐴𝑁
⌝ (𝑡𝐴, 𝑖𝐴, 𝑓𝐴) = 〈𝑢

′(𝑡𝐴, 𝑖𝐴, 𝑓𝐴), 𝑣
′(𝑡𝐴, 𝑖𝐴, 𝑓𝐴), 𝑤

′(𝑡𝐴, 𝑖𝐴, 𝑓𝐴)〉 

where 𝑢′(𝑡𝐴, 𝑖𝐴, 𝑓𝐴), 𝑣
′(𝑡𝐴, 𝑖𝐴, 𝑓𝐴), 𝑤

′(𝑡𝐴, 𝑖𝐴, 𝑓𝐴): [0, 1]
3 → [0,1], 

and even more 𝑢′, 𝑣′, 𝑤′ may depend, on the top of these three variables, of hidden parameters 

as well, such as: ℎ1, ℎ2, … , ℎ𝑛. 

As an example, we have defined in F. Smarandache, V. Christianto, n-ary Fuzzy Logic 

and Neutrosophic Logic Operators, published in Studies in Logic Grammar and Rhetoric, 

Belarus, 17(30), pp. 1-16, 2009: 

𝐴(𝑡𝐴, 𝑖𝐴, 𝑓𝐴) 𝐵(𝑡𝐵, 𝑖𝐵, 𝑓𝐵)𝑁
∧ = 〈𝑡𝐴𝑡𝐵, 𝑖𝐴𝑖𝐵 + 𝑡𝐴𝑖𝐵 + 𝑡𝐵𝑖𝐴, 𝑡𝐴𝑓𝐵 + 𝑡𝐵𝑓𝐴 + 𝑖𝐴𝑓𝐵 + 𝑖𝐵𝑓𝐴〉 

these result from multiplying 

(𝑡𝐴 + 𝑖𝐴 + 𝑓𝐴) ⋅ (𝑡𝐵 + 𝑖𝐵 + 𝑓𝐵) 
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and ordering upon the below pesimistic order: 

truth  indeterminacy  falsity, 

meaning that to the truth only the terms of 𝑡’s goes, i.e. 𝑡𝐴𝑡𝐵, 

to indeterminacy only the terms of t’s and i’s go, i.e. 𝑖𝐴𝑖𝐵 + 𝑡𝐴𝑖𝐵 + 𝑡𝐵𝑖𝐴, 

and to falsity the other terms left, i.e. 𝑡𝐴𝑓𝐵 + 𝑡𝐵𝑓𝐴 + 𝑖𝐴𝑓𝐵 + 𝑖𝐵𝑓𝐴 + 𝑓𝐴𝑓𝐵. 

 

11. Generalizations and Comments. 

From the intuitionistic logic, paraconsistent logic, dialetheism, faillibilism, paradoxes, 

pseudoparadoxes, and tautologies we transfer the "adjectives" to the sets, i.e. to intuitionistic 

set (set incompletely known), paraconsistent set, dialetheist set, faillibilist set (each element has 

a percentage of indeterminacy), paradoxist set (an element may belong and may not belong in 

the same time to the set), pseudoparadoxist set, and tautologic set respectively. 

Hence, the neutrosophic set generalizes: 

 the intuitionistic set, which supports incomplete set theories (for 0 < 𝑛 < 1 and 

𝑖 = 0, 0 ≤  𝑡, 𝑖, 𝑓 ≤ 1) and incomplete known elements belonging to a set; 

 the fuzzy set (for n = 1 and i = 0, and 0 ≤ 𝑡, 𝑖, 𝑓 ≤ 1); 

 the intuitionistic fuzzy set (for 𝑡 + 𝑖 + 𝑓 = 1 and 0 ≤ 𝑖 < 1); 

 the classical set (for 𝑛 = 1 and 𝑖 = 0, with 𝑡, 𝑓 either 0 or 1); 

 the paraconsistent set (for 𝑛 > 1 and 𝑖 = 0, with both 𝑡, 𝑓 < 1); there is at least 

one element 𝑥(𝑇, 𝐼, 𝐹) of a paraconsistent set M which belongs at the same time 

to M and to its complement set C(M); 

 the faillibilist set (𝑖 > 0); 

 the dialethist set, which says that the intersection of some disjoint sets is not 

empty (for 𝑡 = 𝑓 = 1 and 𝑖 = 0; some paradoxist sets can be denoted this way 

too); every element 𝑥(𝑇, 𝐼, 𝐹) of a dialethist set M belongs at the same time to 

M and to its complement set C(M); 

 the paradoxist set, each element has a part of indeterminacy if it is or not in the 

set (𝑖 > 1); 

 the pseudoparadoxist set (0 < 𝑖 < 1, 𝑡 + 𝑓 > 1); 

 the tautological set (𝑖 < 0). 
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Compared with all other types of sets, in the neutrosophic set each element has three 

components which are subsets (not numbers as in fuzzy set) and considers a subset, similarly 

to intuitionistic fuzzy set, of "indeterminacy" - due to unexpected parameters hidden in some 

sets, and let the superior limits of the components to even boil over 1 (overflooded) and the 

inferior limits of the components to even freeze under 0 (underdried). 

For example: an element in some tautological sets may have 𝑡 > 1 , called 

"overincluded". Similarly, an element in a set may be "overindeterminate" (for 𝑖 > 1, in some 

paradoxist sets), "overexcluded" (for 𝑓 > 1, in some unconditionally false appurtenances); or 

"undertrue" (for 𝑡 < 0, in some unconditionally false appurtenances), "underindeterminate" 

(for 𝑖 < 0, in some unconditionally true or false appurtenances), "underfalse" (for 𝑓 < 0, in 

some unconditionally true appurtenances). 

This is because we should make a distinction between unconditionally true (𝑡 > 1, and 

𝑓 < 0 or 𝑖 < 0) and conditionally true appurtenances (𝑡 ≤ 1, and 𝑓 ≤ 1 or 𝑖 ≤ 1). 

In a rough set RS, an element on its boundary-line cannot be classified neither as a 

member of RS nor of its complement with certainty. In the neutrosophic set a such element may 

be characterized by 𝑥(𝑇, 𝐼, 𝐹), with corresponding set-values for 𝑇, 𝐼, 𝐹 ⊆ ]−0, 1+[. 

Compared to Belnap’s quadruplet logic, NS and NL do not use restrictions among the 

components – and that’s why the NS/NL have a more general form, while the middle 

component in NS and NL (the indeterminacy) can be split into more subcomponents if 

necessarily in various applications. 

 

12. Distinctions between Neutrosophic Set (NS) and Intuitionistic Fuzzy Set (IFS). 

1) Neutrosophic Set can distinguish between  

 absolute membership (i.e. membership in all possible worlds; we have extended 

Leibniz’s absolute truth to absolute membership), and  

 relative membership (membership in at least one world, but not in all), because 

NS (absolute membership element) = 1+  

while 

  NS (relative membership element) = 1.  
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This has application in philosophy (see the neutrosophy). That’s why the unitary 

standard interval [0, 1] used in IFS has been extended to the unitary non-standard interval 

]−0, 1+[ in NS.  

Similar distinctions for absolute or relative non-membership, and absolute or relative 

indeterminant appurtenance are allowed in NS. 

2) In NS, there is no restriction on T, I, F other than they are subsets of ]−0, 1+[, thus: 

0−
− ≤ inf T + inf I + inf F [sup T + sup I + sup F ≤ 3+. 

The inequalities (2.1) and (2.4) of IFS are relaxed in NS. 
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This non-restriction allows paraconsistent, dialetheist, and incomplete information to be 

characterized in NS {i.e. the sum of all three components if they are defined as points, or sum 

of superior limits of all three components if they are defined as subsets can be >1 (for 

paraconsistent information coming from different sources), or < 1 for incomplete 

information}, while that information cannot be described in IFS because in IFS the 

components T (membership), I (indeterminacy), F (non-membership) are restricted either to 

t+i+f=1 or to t
2

 + f
2 

≤ 1, if T, I, F are all reduced to the points t, i, f respectively, or to sup T + 

sup I + sup F = 1 if T, I, F are subsets of [0, 1].  Of course, there are cases when 

paraconsistent and incomplete informations can be normalized to 1, but this procedure is not 

always suitable. 

 

This most important distinction between IFS and NS is showed in the below Neutrosophic 

Cube A’B’C’D’E’F’G’H’ introduced by J. Dezert in 2002. 

Because in technical applications only the classical interval  0,1  is used as range for 

the neutrosophic parameters , ,t i f , we call the cube ABCDEDGH the technical neutrosophic 

cube and its extension ' ' ' ' ' ' ' 'A B C D E D G H  the neutrosophic cube (or absolute 

neutrosophic cube), used in the fields where we need to differentiate between absolute and 

relative (as in philosophy) notions. 

 

                      F’       E’(-0,-0,1+) 

                                          F                                  E(0,0,1)   

             G’                                           H’                                    

                 G     H 

 

                                                       i 

                                                 B(1,0,0)                           t       A(0,0,0)  

                                                        B’(1+,-0,-0)            f                      A’(-0,-0,-0) 

                                          C                                 D(0,1,0)                                         

 

                           C’           D’(-0,1+,-0) 
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 Let’s consider a 3D Cartesian system of coordinates, where t  is the truth axis with value 

range in 0,1     , f  is the false axis with value range in 0,1     , and similarly i   is the 

indeterminate axis with value range in 0,1    . 

 We now divide the technical neutrosophic cube ABCDEDGH  into three disjoint 

regions: 

a) The equilateral triangle BDE , whose sides are equal to 2 , which represents the 

geometrical locus of the points whose sum of the coordinates is 1. 

If a point Q  is situated on the sides of the triangle BDE  or inside of it, then 1Q Q Qt i f    as 

in Atanassov-intuitionistic fuzzy set  A IFS . 

b) The pyramid EABD  {situated in the right side of the EBD , including its faces 

ABD (base), EBA , and EDA  (lateral faces), but excluding its face BDE } is 

the locus of the points whose sum of coordinates is less than 1. 

If P EABD  then 1P P Pt i f    as in intuitionistic set (with incomplete information). 

c) In the left side of BDE  in the cube there is the solid EFGCDEBD  ( excluding 

BDE  ) which is the locus of points whose sum of their coordinates is greater than 

1 as in the paraconsistent set. 

If a point R EFGCDEBD , then 1R R Rt i f   . 

It is possible to get the sum of coordinates strictly less than 1 or strictly greater than 1. For 

example having three independent sources of information: 

- We have a source which is capable to find only the degree of membership of an element; 

but it is unable to find the degree of non-membership; 

- Another source which is capable to find only the degree of non-membership of an 

element; 

- Or a source which only computes the indeterminacy. 

Thus, when we put the results together of these sources, it is possible that their sum is not 

1, but smaller or greater.  

 

Also, in information fusion, when dealing with indeterminate models (i.e. elements of the 

fusion space which are indeterminate/unknown, such as intersections we don’t know if they 

are empty or not since we don’t have enough information, similarly for complements of 

indeterminate elements, etc.): if we compute the believe in that element (truth), the disbelieve 

in that element (falsehood), and the indeterminacy part of that element, then the sum of these 

three components is strictly less than 1 (the difference to 1 is the missing information). 

 

3) Relation (2.3) from interval-valued intuitionistic fuzzy set is relaxed in NS, i.e. the 

intervals do not necessarily belong to Int[0,1] but to [0,1], even more general to ]-0, 1+[. 

 

4) In NS the components T, I, F can also be non-standard subsets included in the unitary 
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nonstandard interval ]
-

0, 1
+

[, not only standard subsets included in the unitary standard 

interval      [0, 1] as in IFS.  

 

5) NS, like dialetheism, can describe paradoxist elements, NS(paradoxist element) = (1, I, 

1), while IFL cannot describe a paradox because the sum of components should be 1 in IFS.  

6) The connectors in IFS are defined with respect to T and F only, i.e. membership and 

nonmembership only (hence the Indeterminacy is what’s left from 1), while in NS they can be 

defined with respect to any of them (no restriction).  

But, for interval-valued intuitionistic fuzzy set one cannot find any left indeterminacy. 

7) Component “I”, indeterminacy, can be split into more subcomponents in order to better 

catch the vague information we work with, and such, for example, one can get more accurate 

answers to the Question-Answering Systems initiated by Zadeh (2003).   

{In Belnap’s four-valued logic (1977) indeterminacy is split into Uncertainty (U) and 

Contradiction (C), but they were interrelated.} 

Even more, one can split "I" into Contradiction, Uncertainty, and Unknown, and we get a 

five-valued logic. 

In a general Refined Neutrosophic Logic, T can be split into subcomponents T1, T2, ..., Tp, 

and I into I1, I2, ..., Ir, and F into F1, F2, ...,Fs, where p, r, s ≥ 1 and p + r + s = n ≥ 3.  Even 

more:  T, I, and/or F (or any of their subcomponents Tj , Ik, and/or Fl) can be countable or 

uncountable infinite sets.  

8) Indeterminacy is independent from membership/truth and non-membership/falsehood in 

NS/Nl, while in IFS/IFL it is not. 

In neutrosophics there are two types of indeterminacies: 

a) Numerical Indeterminacy (or Degree of Indeterminacy), which has the form (t, i, f)  

≠ (1, 0, 0), where t, i, f are numbers, intervals, or subsets included in the unit interval   

[0, 1], and it is the base for the (t, i, f)-Neutrosophic Structures.  

b) Non-numerical Indeterminacy (or Literal Indeterminacy), which is the letter “I” 

standing for unknown (non-determinate), such that I2 = I, and used in the composition 

of the neutrosophic number N = a + bI, where a and b are real or complex numbers, 

and a is the determinate part of number N, while bI is the indeterminate part of N. The 

neutrosophic numbers are the base for the I-Neutrosophic Structures. 

9) NS has a better and clear terminology (name) as "neutrosophic" (which means the 

neutral part: i.e. neither true/membership nor false/nonmembership), while IFS's name 

"intuitionistic" produces confusion with Intuitionistic Logic, which is something 

different (see the article by Didier Dubois et al., 2005).  

10)  The Neutrosophic Set was extended [Smarandache, 2007] to Neutrosophic Overset 

(when some neutrosophic component is > 1), and to Neutrosophic Underset (when some 

neutrosophic component is < 0), and to and to Neutrosophic Offset (when some neutrosophic 
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components are off the interval [0, 1], i.e. some neutrosophic component > 1 and some 

neutrosophic component < 0). 

This is no surprise with respect to the classical fuzzy set/logic, intuitionistic fuzzy set/logic, or 

classical and imprecise probability where the values are not allowed outside the interval [0, 

1], since our real-world has numerous examples and applications of over/under/off 

neutrosophic components. 

Example:  

In a given company a full-time employer works 40 hours per week. Let’s consider the last 

week period. 

Helen worked part-time, only 30 hours, and the other 10 hours she was absent without 

payment; hence, her membership degree was 30/40 = 0.75 < 1. 

John worked full-time, 40 hours, so he had the membership degree 40/40 = 1, with respect to 

this company.  

But George worked overtime 5 hours, so his membership degree was (40+5)/40 = 45/40 = 

1.125 > 1. Thus, we need to make distinction between employees who work overtime, and 

those who work full-time or part-time. That’s why we need to associate a degree of 

membership greater than 1 to the overtime workers. 

Now, another employee, Jane, was absent without pay for the whole week, so her degree of 

membership was 0/40 = 0. 

Yet, Richard, who was also hired as a full-time, not only didn’t come to work last week at all 

(0 worked hours), but he produced, by accidentally starting a devastating fire, much damage 

to the company, which was estimated at a value half of his salary (i.e. as he would have gotten 

for working 20 hours). Therefore, his membership degree has to be less that Jane’s (since Jane 

produced no damage). Whence, Richard’s degree of membership with respect to this company 

was - 20/40 = - 0.50 < 0. 

Therefore, the membership degrees > 1 and < 0 are real in our world, so we have to take them 

into consideration. 

Then, similarly, the Neutrosophic Logic/Measure/Probability/Statistics etc. were extended to 

respectively Neutrosophic Over/Under/Off Logic, Measure, Probability, Statistics etc. 

[Smarandache, 2007]. 

11) Neutrosophic Tripolar (and in general Multipolar) Set and Logic [Smarandache, 2007] 

of the form: 

( <T+
1, T

+
2, …, T+

n; T
0; T-

-n, …, T—
-2, T

-
-1 >, <I+

1, I
+

2, …, I+
n; I

0; I-
-n, …, I—

-2, I
-
-1 >,  

<F+
1, F

+
2, …, F+

n; F
0; F-

-n, …, F—
-2, F

-
-1 > ) 

where we have multiple positive/neutral/negative degrees of T, I, and F respectively. 
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12) The Neutrosophic Numbers have been introduced by W.B. Vasantha Kandasamy and F. 

Smarandache in 2003, which are numbers of the form N = a + bI, where a, b are real or 

complex numbers, while “I” is the indeterminacy part of the neutrosophic number N, such 

that I2 = I and αI+βI = (α+β)I. 

Of course, indeterminacy “I” is different from the imaginary unit i = 1 . 

In general one has In = I if n > 0, and it is undefined if n ≤ 0. 

Also, Neutrosophic Refined Numbers were introduced (Smarandache, 2015) as: 

a + b1I1 + b2I2 + … + bmIm, where a, b1, b2, …, bm are real or complex numbers, while the I1, 

I2, …, Im are types of indeterminacies, for m ≥ 1. 

The algebraic structures using neutrosophic numbers gave birth to the I-Neutrosophic 

Algebraic Structures [see for example “neutrosophic groups”, “neutrosophic rings”, 

“neutrosophic vector space”, “neutrosophic matrices, bimatrices, …, n-matrices”, etc.], 

introduced by W.B. Vasantha Kandasamy, F. Smarandache et al. since 2003. 

Example of Neutrosophic Matrix: 





















I56I41

I3/10

5I21

. 

Example of Neutrosophic Ring: ({a+bI, with a, b ϵ R}, +, ·), where of course (a+bI)+(c+dI) = 

(a+c)+(b+d)I, and (a+bI) · (c+dI) = (ac) + (ad+bc+bd)I. 

 

Also, to Refined I-Neutrosophic Algebraic Structures, which are structures using sets of 

refined neutrosophic numbers. 

 

13) Types of neutrosophic graphs (and trees): 

13.a-c) Indeterminacy “I” led to the definition of the Neutrosophic Graphs (graphs which 

have: either at least one indeterminate edge, or at least one indeterminate vertex, or both some 

indeterminate edge and some indeterminate vertex), and Neutrosophic Trees (trees which 

have: either at least one indeterminate edge, or at least one indeterminate vertex, or both some 

indeterminate edge and some indeterminate vertex), which have many applications in social 

sciences.  

Another type of neutrosophic graph is when at least one edge has a neutrosophic (t, i, f) truth-

value. 

As a consequence, the Neutrosophic Cognitive Maps (Vasantha & Smarandache, 2003) and 

Neutrosophic Relational Maps (Vasantha & Smarandache, 2004) are generalizations of fuzzy 

cognitive maps and respectively fuzzy relational maps, Neutrosophic Relational Equations 

(Vasantha & Smarandache, 2004), Neutrosophic Relational Data (Wang, Smarandache,  

Sunderraman, Rogatko - 2008), etc. 
A Neutrosophic Cognitive Map is a neutrosophic directed graph with concepts like policies, 

events etc. as vertices, and causalities or indeterminates as edges. It represents the causal 

relationship between concepts. 

 

An edge is said indeterminate if we don’t know if it is any relationship between the vertices it 

connects, or for a directed graph we don’t know if it is a directly or inversely proportional 

relationship. We may write for such edge that (t, i, f) = (0, 1, 0). 

A vertex is indeterminate if we don’t know what kind of vertex it is since we have incomplete 

information. We may write for such vertex that (t, i, f) = (0, 1, 0). 

 

Example of Neutrosophic Graph (edges V1V3, V1V5, V2V3 are indeterminate and they are 

drawn as dotted): 
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and its neutrosophic adjacency matrix is: 

 























0110I

10100

110II

00I01

I0I10

 

 

The edges mean: 0 = no connection between vertices, 1 = connection between vertices, I = 

indeterminate connection (not known if it is, or if it is not). 

 

Such notions are not used in the fuzzy theory. 

 

Example of Neutrosophic Cognitive Map (NCM), which is a generalization of the Fuzzy 

Cognitive Maps. 

 
Let’s have the following vertices: 

C1 - Child Labor 

C2 - Political Leaders 

C3 - Good Teachers 

C4 - Poverty 

C5 - Industrialists 

C6 - Public practicing/encouraging Child Labor 

C7 - Good Non-Governmental Organizations (NGOs) 
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The corresponding neutrosophic adjacency matrix related to this neutrosophic cognitive map 

is: 
 

 
 

The edges mean: 0 = no connection between vertices, 1 = directly proportional connection, -1 

= inversely proportionally connection, and I = indeterminate connection (not knowing what 

kind of relationship is between the vertices that the edge connects). 

 

13.d)  Another type of neutrosophic graphs (and trees) [Smarandache, 2015]: 

An edge of a graph, let's say from A to B (i.e. how A influences B), 

may have a neutrosophic value (t, i, f), 

where t means the positive influence of A on B, 

           i means the indeterminate influence of A on B, 

    and f means the negative influence of A on B.  

Then, if we have, let's say: A->B->C such that A->B has the neutrosophic value (t1, i1, f1) 

and B->C has the neutrosophic value (t2, i2, f2), then A->C has the neutrosophic value               

(t1, i1, f1)/\(t2, i2. f2), where /\ is the AND neutrosophic operator. 

13.e)  Also, again a different type of graph: we can consider a vertex A as: t% 

belonging/membership to the graph, i% indeterminate membership to the graph, and f% 

nonmembership 

to the graph. 

13.f)  Any of the previous types of graphs (or trees) put together. 
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13.g) Tripolar (and Multipolar) Graph, which is a graph whose vertexes or edges have the 

form (<T+, T0, T->, <I+, I0, I->, <F+, F0, F->) and respectively: (<T+
j, T

0, T-
j>, <I+

j, I
0, I-

j>, <F+
j, 

F0, F-
j>). 

 

14) The Neutrosophic Probability (NP), introduced in 1995, was extended and developed as 

a generalization of the classical and imprecise probabilities [Smarandache (2013)].  NP of an 

event E  is the chance that event E occurs, the chance that event E doesn’t occur, and the 

chance of indeterminacy (not knowing if the event E occurs or not). 

In classical probability nsup ≤ 1, while in neutrosophic probability nsup ≤  3+. 

In imprecise probability: the probability of an event is a subset T in [0, 1], not a number p in     

[0, 1], what’s left is supposed to be the opposite, subset F (also from the unit interval [0, 1]); 

there is no indeterminate subset I in imprecise probability. 

In neutrosophic probability one has, besides randomness, indeterminacy due to construction 

materials and shapes of the probability elements and space. 

In consequence, neutrosophic probability deals with two types of variables: random variables 

and indeterminacy variables, and two types of processes: stochastic process and respectively 

indeterminate process. 

 

15) And consequently the Neutrosophic Statistics, introduced in 1995 and developed in 

[Smarandache (2014)], which is the analysis of the neutrosophic events. 

Neutrosophic Statistics means statistical analysis of population or sample that has indeterminate 

(imprecise, ambiguous, vague, incomplete, unknown) data. For example, the population or 

sample size might not be exactly determinate because of some individuals that partially belong 

to the population or sample, and partially they do not belong, or individuals whose appurtenance 

is completely unknown. Also, there are population or sample individuals whose data could be 

indeterminate. It is possible to define the neutrosophic statistics in many ways, because there 

are various types of indeterminacies, depending on the problem to solve.  

Neutrosophic statistics deals with neutrosophic numbers, neutrosophic probability 

distribution, neutrosophic estimation, neutrosophic regression. 

The function that models the neutrosophic probability of a random variable x is called 

neutrosophic distribution: NP(x) = ( T(x), I(x), F(x) ), where T(x) represents the probability 

that value x occurs, F(x) represents the probability that value x does not occur, and I(x) 

represents the indeterminate / unknown probability of value x. 

16) Also, Neutrosophic Measure and Neutrosophic Integral were introduced [Smarandache 

(2013)]. 

17) Neutrosophy [Smarandache (1995)] opened a new field in philosophy. 

Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of 

neutralities, as well as their interactions with different ideational spectra. 

This theory considers every notion or idea <A> together with its opposite or negation <Anti-

A> and the spectrum of "neutralities" <Neut-A> (i.e. notions or ideas located between the two 



26 
 

extremes, supporting neither <A> nor <Anti-A>). The <Neut-A> and <Anti-A> ideas 

together are referred to as <Non-A>. 

According to this theory every idea <A> tends to be neutralized and balanced by <Anti-A> 

and <Non-A> ideas - as a state of equilibrium. 

In a classical way <A>, <Neut-A>, <Anti-A> are disjoint two by two. 

But, since in many cases the borders between notions are vague, imprecise, Sorites, it is 

possible that <A>, <Neut-A>, <Anti-A> (and <Non-A> of course) have common parts two by 

two as well. 

Neutrosophy is the base of neutrosophic logic, neutrosophic set, neutrosophic probability and 

statistics used in engineering applications (especially for software and information fusion), 

medicine, military, cybernetics, physics. 

We have extended dialectics (based on the opposites <A> and <antiA>) to neutrosophy 

(based on <A>, <antiA> and <neutA>. 

 

18) In consequence, we extended the thesis-antithesis-synthesis to thesis-antithesis-

neutrothesis-neutrosynthesis [Smarandache, 2015]. 

19) Neutrosophy extended the Lupasco-Nicolescu’s Law of Included Middle to the Law of 

Included Multiple-Middle [Smarandache, 2014] in accordance with the n-valued refined 

neutrosophic logic. 

20) Smarandache (2015) introduced the Neutrosophic Axiomatic System and Neutrosophic 

Deducibility. 

21) Then he introduced the (t, i, f)-Neutrosophic Structure (2015), which is a structure 

whose space, or at least one of its axioms (laws), has some indeterminacy of the form (t, i, f)  

≠ (1, 0, 0). 

 

Also, we defined the combined (t, i, f)-I-Neutrosophic Algebraic Structures, i.e. algebraic 

structures based on neutrosophic numbers of the form a + bI, but also having some 

indeterminacy [ of the form (t, i, f)  ≠ (1, 0, 0) ] related to the structure space (i.e. elements 

which only partially belong to the space, or elements we know nothing if they belong to the 

space or not) or indeterminacy     [ of the form (t, i, f)  ≠ (1, 0, 0) ] related to at least one 

axiom (or law) acting on the structure space) . 

Even more, we generalized them to Refined (t, i, f)- Refined I-Neutrosophic Algebraic 

Structures, or (tj, ik, fl)-is-Neutrosophic Algebraic Structures; where tj means that t has been 

refined to j subcomponents t1, t2, …, tj; similarly for ik, fl and respectively is.   
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22)  Smarandache – Ali introduced the Neutrosophic Triplet Structures. 

 

A Neutrosophic Triplet, is a triplet of the form:  

< a, neut(a), and anti(a) >, 

where neut(a) is the neutral of a, i.e. an element (different from the identity element of the 

operation *) such that a*neut(a) = neut(a)*a = a, 

while anti(a) is the opposite of a, i.e. an element such that a*anti(a) = anti(a)*a = neut(a). 

Neutrosophy means not only indeterminacy, but also neutral (i.e. neither true nor false). 

For example we can have neutrosophic triplet semigroups, neutrosophic triplet loops, etc. 

 

We went further and extended our neutrosophic triplet < a, neut(a), anti(a) > to a 

m-valued refined neutrosophic triplet, 

in a similar way as it was done for T1, T2, ...;  I1, I2, ...;  F1, F2, ... (i.e. the refinement of 

neutrosophic components). 

It will work in some cases, depending on the composition law *. It depends on each * how 

many neutrals and anti's there is for each element "a". 

   We may have an m-tuple with respect to the element “a” in the following way: 

( a;  neut1(a), neut2(a), ..., neutp(a);  anti1(a), anti2(a), ..., antip(a) ),  

where m = 1+2p,  

such that: 

- all neut1(a), neut2(a), ..., neutp(a) are distinct two by two, and each one is different from the 

unitary element with respect to the composition law *; 

- also 

a*neut1(a) = neut1(a)*a = a 

a*neut2(a) = neut2(a)*a = a 

........................................... 

a*neutp(a) = neutp(a)*a = a; 

- and 

a*anti1(a) = anti1(a)*a = neut1(a) 

a*anti2(a) = anti2(a)*a = neut2(a) 

.................................................... 

a*antip(a) = antip(a)*a = neutp(a); 

- where all anti1(a), anti2(a), ..., antip(a) are distinct two by two, and in case when there are 
duplicates, the duplicates are discarded. 
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