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Preface 
 
 
 
 
This book consists of a selection of papers most of which were produced  
during the period 1999-2002. They have been inspired by questions raised in 
recent articles in current Mathematics journals and in Florentin Smarandache’s 
wellknown publication Only Problems, Not Solutions. 
 
All topics are independent of one another and can be read separately. Findings 
are illustrated with diagrams and tables. The latter have been kept to a 
minimum as it is often not the numbers but the general behaviour and pattern 
of numbers that matters. One of the facinations with number problems is that 
they are often easy to formulate but hard to solve – if ever, and if  one finds a 
solution, new questions present themselves and one may end up having more 
new questions than questions answered. 
 
In many practical as well as theoretical processes we repeat the same action on 
an object again and again to obtain a final result or sustain a certain state. An 
interesting case is  when we do not know what the result will be after a large 
number of repetitive actions - iterations. In this book a number of problems are 
about iterations. In many cases computer simulation is followed by analysis 
leading to conclusions or conjectures. The process of iterations has also been 
dealt with in the authors first book Surfing on the Ocean of Numbers with 
some applications in the second book Computer Analysis of Number 
Sequences. 
 
A  brief summary will now be given about the contents of each chapter of the 
book: 
 
Chapter 1:  This is in response  to the question: Which is the smallest integer 
that can be expressed as a sum of consecutive integers in a given number of 
ways? The examination of this question leads to a few interesting conclusions. 
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Chapter II deals with interesting alterating iterations of the Smarandache 
function and the Euler φ-function (the number of natural numbers less than n 
and having no divisor in common with n) An important question concerning 
the Smarandache function is resolved and an important link to the famous 
Fermat numbers is established. This work has been reviewed in Zentralblatt für 
Mathematik, Germany. 
 
Chapter III is of a similar nature to that of chapter II. It deals with the 
alternating iteration of the  Smarandache function and the sum of divisors 
function (σ-function). Some light is thrown on loops and invariants resulting 
from this iteration. Interesting results are found but the results produce new 
and very intriguing questions. 
 
Chapter IV. An interesting iteration question was posed in the book Unsolved 
Questions in Number Theory (first edition) by R.K. Guy. Why does the 
repetitive application of the recursion formula xn=(1 +x0+x1+ …xn-1)/n with 
x0=1 produce natural numbers for n=1,2, … 42 but not for n= 43. An 
explanation to this was given by the author and published in Fibonacci 
Quarterly in 1990 and was later referred to in the second edition of R.K. Guy’s 
book. In of this book  I show an iteration sequence which produces integers for 
the first 600 iterations but not for the 601st which produces a decimal fraction. 
This is the only article which is based on work prior to 1999. 
 
Chapter V. In the previous chapters iterations have lead to loops or invariants. 
The Smarandache partial perfect additive sequence has a very simple 
definition: a1=a2=1, a2k+1=ak+1-1, a2k+2=ak+1+1. It does not form loops and it 
does not have a terminating value. It has an amusing oscillating behavior 
which is illustrated on the cover of this book. 
 
Chapter VI. The classical definition of continued fractions was transformed to 
one involving Smarandache sequences by Jose Castillo.  In this article proof is 
given for the fact that Smarandache general continued fractions built with 
positive integer Smarandache sequences having only a finite number of terms 
equal to 1 is convergent. This study, like several others from my earlier books, 
has been reviewed in the Zentralblatt für Mathematik, Germany. 
 
Chapter VII. A k-k additive relationship involves the Smarandache function  
S(n) which is defined as the smallest integer such that S(n)! is divisible by n. A 
sequence of function values S(n), S(n+1)+ … +S(n+2k-1) satisfies a k-k 
additive relationship if S(n)+S(n+1)+ …+S(n+k-1)=S(n+k)+S(n+k+1)+  
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…+S(n+2k-1). The analysis of these types of relations leads to the conclusion  
that there are infinitely many 2-2 additive relations and that k-k relations exist 
for large values of k. Only the first two solutions contain composite numbers. 
An interesting observation is the great involvement of prime twins in the 2-2 
relations. 
 
Chapter VIII.  An analysis of the number of relations of the type S(n)-
S(n+1)=S(n+2)-S(n+3) for n<108 where S(n) is the Smarandache function 
leads to the plausible conclusion that there are infinitely many of those. Like in 
the case of additive relationships there is a great involvement of prime twins 
and composite number solutions are rare – only 6 were found. 
 
Chapter IX. Concatenation is a sophisticated word for putting two words 
together to form one. The words book and mark are concatenated to form the 
word bookmark. Identical words like “abcd” are concatenated to form infinite 
chains like  “abcdabcdabcdabcdabcd…”. This is partitioned in various way, for 
example like this 

abcdabcdabcdabcdabcd… 
and the properties of the extracted worddabcdabcda is then studied. The 
analysis of concatenations is applied to number sequences and many 
interesting properties are found. In particular a number of questions raised on 
the Smarandache deconstructive sequence are resolved. 
 
Chapter X.  In the study of a number sequence it was found that the terms 
often had a factor 333667. We are here dealing with a sequence whos terms 
grow to thousands  of digits. No explanation was attempted in the article were 
this was found. This intriguing fact and several others are dealt with in this 
study, where, in a way, the concatenation process is reversed and divisibilty 
properties studied. The most preoccupying questions in relation to divisibility 
have always focussed on primality. In the articles in this book other divisibilty 
properties are often brought into focus. 
 
Finally I express my sincere thanks to Dr. Minh Perez for his support for this 
book. Last but not least I thank my dear wife Anne-Marie for her patience with 
me when I am in my world of numbers. 
 
March 2003 
Henry Ibstedt 
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I.   An Integer as a Sum of Consecutive Integers 
 
 
Abstract: This is a simple study of expressions of positive integers as sums of 
consecutive integers. In the first part proof is given for the fact that N can be 
expressed in exactly d(L)-1 ways as a sum of consecutive integers, L is the 
largest odd factor of N and d(L) is  the number of divisors of L. In the second 
part answer is given to the question: Which is the smallest integer that can be 
expressed as a sum of consecutive integers in n ways. 

 
1. Introduction  
There is a remarkable similarity between the four definitions given below. The 
first is the well known Smarandache Function. The second  function was 
defined by K. Kashihara and was elaborated on in his book Comments and 
Topics on Smarandache Notions and Problems [1]. This function and the 
Smarandache Ceil Function were also examined in the author’s book Surfing 
on the Ocean of Numbers [2]. These three functions have in common that they 
aim to answer the question which is the smallest positive integer N which 
possesses a certain property pertaining to a given integer n. It is possible to 
pose a large number of questions of this nature. 
 
1) The Smarandache Function S(n): 

S(n)=N where N is the smallest positive integer which divides n!. 
 
2)    The Pseudo-Smarandache Function Z(n): 

Z(n)=N where N is the smallest  positive integer such that 1+2+…+N is 
divisible by n. 

 
3) The Smarandache Ceil Function of order k, Sk(n): 

Sk(n)=N where N is he smallest positive integer for which n divides Nk. 
 

4) The n-way consecutive integer representation  R(n): 
R(n)=N where N is the smallest positive integer which can be represented 
as a  sum of consecutive integer is n ways. 
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There may be many positive integers which can be represented as a sum of 
positive integers in n distinct ways - but which is the smallest of them?  This 
article gives the answer to this question. In the study of R(n) it is found that the 
arithmetic function d(n), the number of divisors of n,  plays an important role. 
 
 
2. Questions and Conclusions 
 
Question 1: In how many ways n can a given positive integer N be expressed 
as the sum of consecutive positive integers? 
 
Let the first term in a sequence of consecutive integers be Q and the number 
terms in the sequence be M. We have N=Q+(Q+1)+ … +(Q+M-1) where M>1. 
 

(1) 
2

)1MQ2(MN −+
=        

or 

(2) 
2

1M
M
NQ −

−=               

 
For a given positive integer N the number of sequences  n is equal to the 
number of positive integer solutions to (2) in respect of Q. Let us write N=L⋅2s 
and M=m⋅2k where L and m are odd integers. Furthermore  we express L as a 
product of any of its factors L=m1m2. We will now consider the following 
cases:  
 

1.  s=0, k=0 
2.  s=0, k≠0 
3.  s≠0, k=0 
4.  s≠0, k≠0 

 
Case 1. s=0, k=0. 
 
Equation (2) takes the form 
 

(3) 
2

1m
m
mm

Q 21 −
−=       

Obviously we must have m≠1 and m≠L (=N).  
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For m=m1 we have Q>0 when m2-(m1-1)/2>0 or m1<2m2+1. Since m1 and m2 
are odd, the latter inequality is equivalent to m1<2m2  or, since m2=N/m1, 

N2m1 < . 
We conclude that a factor m  (≠1 and ≠N) of  N (odd) for which 

N2m < gives a solution for Q when M=m is inserted in equation (2). 
 
Case 2. s=0, k≠0. 
 
Since N is odd we see form (2) that we must have k=1. With M=2m equation 
(2) takes the form  
 

(4) 
2

1m2
m2
mm

Q 21 −
−=       

 
For m=1 (M=2) we find Q=(N-1)2 which corresponds to the obvious solution 

.N
2

1N
2

1N
=

+
+

−  

 
Since we can have no solution for m=N we now consider m=m2 (≠1, ≠N). We 
find Q=(m1-2m2+1)/2. Q>0 when m1>2m2-1 or, since m1 and m2 are odd, 
m1>2m2 Since m1m2=N, m2=N/m1 we find N2m > . 
 
We conclude that a factor m  (≠1 and ≠N) of  N (odd) for which 
m N> 2 gives a solution for Q when M=2m is inserted in equation (2). 
 
The number of divisors of N is known as the function d(N). Since all factors of 
N except 1 and N provide solutions to (2) while M=2, which is not a factor of 
N, also provides a solution  (2) we find that the number of solutions n to (2) 
when N is odd is 
 
(5) n=d(N)-1                  
 
Case 3. s≠0, k=0. 
 
Equation (2) takes the form 
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(6) )1m2
m
mm

(
2
1Q 1s21 +−= +      

   
Q≥1 requires m2<L⋅2s+1. We distinguish three cases: 
 
Case 3.2. k=0, m=m1.  Q≥1 for  m1<m22s+1 with a solution for Q          
    when M=m1.              
Case 3.3. k=0, m=m1m2. Q≥1 for L<2s+1  with  a solution for Q  
    when M=L. 
 
Case 4. s≠0, k≠0. 
 
Equation (2) takes the form 
 

(7) )12m2
m
mm

(
2
1Q k1ks21 +⋅−= +−      

 
Q is an integer if and only if m divides L and 2s-k+1=1. The latter gives k=s+1. 
Q≥1 gives 
  

(8) 12m)1
m
mm

(
2
1Q s21 ≥⋅−+=            

  
 Again we distinguish three cases: 
 
Case 4.1. k=s+1, m=1. Q≥1 for L>2s+1 with a solution for Q when  
    M=2s+1. 
Case 4.2. k=s+1, m=m2 Q≥1 for m1>m22s+1 with a solution for Q  
    when M=m22s+1. 
Case 4.3. k=s+1, m=L Q≥1 for 1-L⋅2s≥1. No solution 

  
Since all factors of  L except 1  provide solutions to (2) we find that the 
number of solutions n to (2) when N is even is 
 
(9) n=d(L)-1              
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Conclusions: 
 
• The number of sequences of consecutive positive integers by which a 

positive integer N=L⋅2s ,where L≡1 (mod 2), can be represented  is 
n=d(L)-1. 

• N=L no matter how large we make s. 
• When L<2s the values of M which produce integer values of Q are odd, 

i.e. N can in this case only be represented by sequences of consecutive 
integers with an odd number of terms. 

• There are solutions for all positive integers L except for L=1, which 
means that N=2s are the only positive integers which cannot be expressed 
as the sum of consecutive integers. 

• N=P⋅2s has only one representation which has a different number of terms 
(<p) for different s until 2s+1>P when the number of terms will be p and 
remain constant for all larger s. 

 
A few examples are given in table 1. 
 
Table 1. The number of sequences for L=105 is 7 and is independent of s 

in N=L⋅2s. 
 
 N= 

105 
s=0 N= 

210 
s=1 N= 

3360 
s=5 
L> 
2s+1 

N= 
6720 

s=6 
L< 
2s+1 

 Q M Q M Q M Q M 
 34 3 69 3 1119 3 2239 3 
 19 5 40 5 670 5 1342 5 
 12 7 27 7 477 7 957 7 
 1 14 7 15 217 15 441 15 
 6 10 1 20 150 21 310 21 
 15 6 12 12 79 35 175 35 
 52 2 51 4 21 64 12 105 
 
Question 2: Which is the smallest positive integer N which can be represented 
as a sum of consecutive positive integers in n different ways.  
 
We can now construct the smallest positive integer R(n)=N which can be 
represented in n ways as the sum of consecutive integers. As we have already 
seen this smallest integer is necessarily odd and satisfies n=d(N)-1. 
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With the representation N p p p j
j= 1 2

1 2α α α... we have 

 d(N)=(α1+1)(α2+1)…(αj+1) 
or 
(10) n+1=(α1+1)(α2+1)…(αj+1)     
     
The first step is therefore to factorize n+1 and arrange the factors (α1+1), 
(α2+1) … (αj+1) in descending order. Let us first assume that α1>α2> … >αj 
then, remembering that N must be odd, the smallest N with the largest number 
of divisors is 
 R(n)= j321

jp...753N αααα=  
where the primes are assigned to the exponents in ascending order starting 
with p1=3. Every factor in (10) corresponds to a different prime even if there 
are factors which are equal. 
 
 Example:  n  = 269 
   n+1= 2⋅33⋅5 = 5 ⋅3 ⋅3 ⋅3 ⋅2 
   R(n)= 34⋅52⋅72⋅112⋅13=156080925 
 
When n is even it is seen from (10) that α1, α2, … αj must all be even. In other 
words the smallest positive integer which can be represented as a sum of 
consecutive integers in a given number of ways must be a square. It is 
therefore not surprising that even values of n in general generate larger 
smallest N than odd values of n. For example, the smallest integer that can be 
represented as a sum of integers in 100 ways is N=3100, which is a 48-digit 
integer, while the smallest integer that can be expressed as a sum of integer in 
99 ways is only  a 7-digit integer, namely 3898125. 
 
 
Conclusions: 
 
• 3 is always a factor of the smallest integer that can be represented as a 

sum of consecutive integers in n ways. 
• The smallest positive integer which can be represented as a sum of 

consecutive integers in given even number of ways must be a square. 
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Table 2. The smallest integer R(n) which can be represented in n ways as 
a sum of consecutive positive integers. 

 
 n R(n) R(n) in factor 

form 
 1 3 3 
 2 9 32 
 3 15 3⋅5 
 4 81 34 
 5 45 32⋅5 
 6 729 36 
 7 105 3⋅5⋅7 
 8 225 3252 
 9 405 345 
 10 59049 310 
 11 315 325⋅7 
 12 531441 312 

 
 

References: 
 
1. K. Kashihara, Comments and Topics on Smarandache Notions and 

Problems, Erhus University Press. 
2. Henry Ibstedt, Surfing on the Ocean of Numbers, Erhus University Press, 

1997. 
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II.   Alternating Iterations of the Euler φ-Function and the 
Pseudo-Smarandache Function  

 
 
Abstract: This study originates from questions posed on alternating iterations 
involving the Pseudo-Smarandache function Z(n) and the Euler function φ(n). 
An important part of the study  is a formal proof of the fact that Z(n)<n for all 
n≠2k (k≥0). Interesting questions have been resolved through the surprising 
involvement of Fermat numbers. 

 
1. The behaviour of the Pseudo-Smarandache function 
 
Definition of the Smarandache pseudo function Z(n): Z(n) is the smallest 
positive integer m such that 1+2+…+m is divisible by n. 
 
Adding up the arithmetical series results  in an alternative and more useful 
formulation: For a given integer n , Z(n) equals the smallest positive integer m 
such that m(m+1)/2n is an integer. Some properties and values of this function 
are given in [1], which also contains an effective computer algorithm for 
calculation of Z(n). The following properties are evident from the definition: 
 

1.  Z(1)=1 
2.  Z(2)=3 
3.  For any odd prime p, Z(pk)=pk-1 for k≥1 
4.  For n=2k, k≥1, Z(2k)=2k+1-1 

 
We note that Z(n)=n for n=1 and that Z(n)>n for n=2k when k≥1. Are there 
other values of n for which Z(n)≥n? No, there are none, but to my knowledge 
no proof has been given. Before presenting the proof it might be useful to see 
some elementary results and calculations on Z(n). Explicit calculations of 
Z(3⋅2k) and Z(5⋅2k) have been carried out by Charles Ashbacher [2]. For k>0: 
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











≡−
≡−
≡
≡

=⋅

+

+

+

+

)4(mod3kif12
)4(mod2kif12
)4(mod1kif2
)4(mod0kif2

)25(Z

1k

2k

1k

2k

k  

 
A specific remark was made in each case that  Z(n)<n.  
 
In this study we will prove that Z(n)<n for all n≠2k, k≥0, but before doing so 
we will continue to study Z(a⋅2k), a odd and k>0. In particular we will carry 
out 
a specific calculation for n=7⋅2k. 

We look for the smallest integer m for which 1k27
)1m(m

+⋅

+  is integer. We 

distinguish two cases:  
  
Case 1: Case 2: 
m=7x m=2k+1y 
m+1=2k+1y m+1=7x 
Eliminating m results in  
2k+1y-1=7x 2k+1y+1=7x 
2k+1y≡1 (mod 7) 2k+1y≡-1 (mod 7) 
Since 23≡1 (mod 3) we have  
If k≡-1 (mod 3) then  
y≡1 (mod 7) ; m=2k+1-1 y≡8 mod 7); m=2k+1⋅8=2k+4 
If k≡0 (mod 3) then  
2y≡1 (mod 7), y=4; m=2k+1⋅4-1=2k+3-
1 

y≡3 (mod 7); m=3⋅2k+1 

If k≡1 (mod 3) then  
4y≡1 (mod 7), y=2; m=2k+1⋅2-1=2k+2-
1 

y≡5 (mod 7); m=5⋅2k+1 

 
By choosing the smallest m in each case we find: 
 










≡−
≡⋅

−≡−
=⋅

+

+

+

)3(mod1kif12
)3(mod0kif23
)3(mod1kif12

)27(Z
2k

1k

1k

k  

Again we note that Z(n)<n. 
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In a study of alternating iterations [3] it is stated that apart from when n=2k 
(k≥0) Z(n) is at most n. If it ever happened that Z(n)=n for n>1 then the 
iterations of Z(n) would arrive at an invariant, i.e. Z(…Z(n)…)=n. This can not 
happen, therefore it is important to prove the following theorem. 
 
Theorem: Z(n)<n for all n≠2k, k≥0.  
 
Proof: Write n in the form n=a⋅2k, where a is odd and k>0. Consider the 
following four cases: 
 

1.  a⋅2k+1m 
2.  a⋅2k+1(m+1) 
3.  am and 2k+1(m+1) 
4.  2k+1m and a(m+1) 

 
If a is composite we could list  more cases but this is not important as we will 
achieve our goal by finding m so that Z(n)≤m<n (where we will have Z(n)=m 
in case a is prime) 
 
Cases 1 and 2: 
Case 1 is excluded in favor of case 2 which would give m= a⋅2k+1-1>n. We will 
see that also case 2 can be excluded in favor of cases 3 and 4. 
Cases 3 and 4: In case 3 we write m=ax. We then require 2k+1(ax+1), which 
means that we are looking for solutions to the congruence 
 
(1) ax ≡ -1 (mod 2k+1)     
     
In case 4 we write m+1=ax and require 2k+1(ax-1). This corresponds to the 
congruence 
 
(2) ax ≡ 1 (mod 2k+1)       
 
If x=x1 is a solution to one of the congruencies  in the interval 2k <x< 2k+1 then 
2k+1-x1 is a solution to the other congruence which lies in the interval 0 <x< 2k. 
So we have m=ax or m=ax-1 with 0<x<2k , i.e. m<n exists so that m(m+1)/2 is 
divisible by n when a>1 in  n=a⋅2k. If a is a prime number then we also have 
Z(n)=m<n. If a=a1⋅a2 then Z(n) ≤m which is a fortiori less than n.  
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Let’s illustrate the last statement by a numerical example. Take n=70 =5⋅7⋅2. 
An effective algorithm for calculation of Z(n) [1] gives Z(70)=20. Solving our 
two congruencies results in: 
 35x≡-1 (mod 4) Solution x=1 for which m=35 
 35x≡1  (mod 4) Solution x=3 for which m=104 
From these solutions we chose m=35 which is less than n=70. However, here 
we arrive at an even smaller solution Z(70)=20 because we do not need to 
require both a1 and a2 to divide one or the other of m and m+1.  
 
 
II. Iterating the Pseudo-Smarandache Function 
 
The theorem proved in the previous section assures that an iteration of the 
pseudo-Smarandache function does not result in an invariant, i.e. Z(n)≠n is 
true for n≠1. On iteration the function will leap to a higher value only when 
n=2k. It can only go into a loop (or cycle) if after one or more iterations it 
returns to 2k. Up to n=228 this does not happen and a statistical view on the 
results displayed in diagram 1 makes it reasonable to conjecture that it never 
happens. Each row in diagram 1 corresponds to a sequence of iterations 
starting on n=2k finishing on the final value 2. The largest number of iterations 
required for this was 24 and occurred for n=214 which also had the largest 
numbers of leaps form 2j to 2j+1-1. Leaps are represented by ↑ in diagram 1. 
For n=211 and 212 the iterations are monotonously decreasing. 
 
III. Iterating the Euler φ Function 

 
The function φ(n) is defined for n>1 as the number of positive integers less 
than and prime to n. The analytical expression is given by 
  
 )

p
11(n)n(

np
∏ −=φ  

For n expressed in the form n p p pr
r= ⋅ ⋅1 2

1 2α α α... it is often useful to express 
φ(n) in the form 
 )1p(p...)1p(p)1p(p)n( r

1
r2

1
21

1
1

r21 −⋅⋅−−=φ −α−α−α  
 
It is obvious from the definition that φ(n)<n for all n>1. Applying the φ 
function to φ(n) we will have φ(φ(n))< φ(n). After a number of such iterations 
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k/j 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 

2                           ↑ 
3                          ↑ ↑ 
4                         ↑  ↑ 
5                        ↑  ↑ ↑ 
6                       ↑   ↑ ↑ 
7                      ↑     ↑ 
8                     ↑     ↑ ↑ 
9                    ↑       ↑ 
10                   ↑     ↑  ↑ ↑ 
11                  ↑          
12                 ↑           
13                ↑          ↑ ↑ 
14               ↑    ↑     ↑  ↑ ↑ 
15              ↑             ↑ 
16             ↑              ↑ 
17            ↑        ↑       ↑ 
18           ↑                ↑ 
19          ↑                ↑ ↑ 
20         ↑                 ↑ ↑ 
21        ↑                  ↑ ↑ 
22       ↑                    ↑ 
23      ↑                    ↑ ↑ 
24     ↑                      ↑ 
25    ↑                       ↑ 
26   ↑                      ↑  ↑ 
27  ↑                        ↑ ↑ 
28 ↑                       ↑  ↑ ↑ 

 
Diagram 1. 

 
the end result will of course be 1. It is what this chain of iterations looks like 
which is interesting and which will be studied here. For convenience  we will 
write φ2(n) for φ(φ(n)). φk(n) stands for the kth iteration. To begin with we will 
look at the iteration of a few prime powers. 
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φ(2α)=2α-1,  φk(2α)=2α-k, …. φα(2α)=1. 
 
φ(3α)=3α-1⋅2,  φ2(3α)=3α-2⋅2, …. φk(3α)=3α-k⋅2 for k≤α. 
 
In particular φα(3α)=2. 

 
Proceeding in the same way we will write down φk(pα),  φα(pα) and first first 
occurrence of an iteration result which consists purely of a power of 2. 
 
φk(5α)=5α-k⋅2k+1, k≤α     φα(5α)=2α+1. 
 
φk(7α)=7α-k⋅3⋅2k, k≤α     φα(7α)=3⋅2α  φα+1(7α)=2α. 
 
φk(11α)=11α-k⋅5⋅22k-1, k≤α     φα(11α)=5⋅22α-1  φα+1(11α)=22α. 
 
φk(13α)=13α-k⋅3⋅22k, k≤α     φα(13α)=3⋅22α  φα+1(13α)=22α. 
 
φk(17α)=17α-k⋅23k+1, k≤α     φα(17α)=23α+1.   
 
φk(19α)=19α-k⋅3k+1⋅2k, k≤α  φα(19α)=3α+1⋅2α  φ2α+1(19α)=2α. 
 
φk(23α)=23α-k⋅11⋅5⋅23k-4, k≤α φα(23α)=11⋅5⋅23α-4 φα+2(23α)=23α-1. 
 
The characteristic tail of descending powers of 2 applies also to the iterations 
of composite integers and  plays an important role in the alternating  Z-φ 
iterations which will be subject of the next section. 
 
 
IV. The alternating iteration of the Euler φ function followed by the 
Smarandache Z function.  
 
Charles Ashbacher [3] found that the alternating iteration Z(…(φ(Z(φ(n)))…) 
ends in 2-cycles of which he found the following four1: 

                                                 
1 It should be noted that 2, 8, 128 and 32768 can be obtained as iteration 
results only through iterations of the type φ(…(Z(φ(n)))…) whereas the 
“complete” iterations Z(…(φ(Z(φ(n)))…) lead to the invariants 3, 15, 255, 
65535. Consequently we note that for example Z(φ(8))=7 not 15, i.e. 8 does 
not belong to its own cycle. 
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 2-cycle First Instance  
 2 - 3 3=22-1  
 8 - 15 15=24-1  
 128 - 255 255=28-1  
 32768 - 65535 65535=216-1  
 
The following questions were posed: 
1) Does the Z-φ sequence always reduce to a 2-cycle of the form 

122
rr 212 −↔−  for r≥1? 

2) Does any additional patterns always appear first for n
r

= −2 12 ? 
 
Theorem: The alternating iteration Z(…(φ(Z(φ(n)))…) ultimately leads to one 
of the following five 2-cycles: 2 -3, 8 - 15, 128 - 255, 32768 - 65535, 
2147483648 - 4294967295. 
Proof: 
Since φ(n)<n for all n>1 and Z(n)<n for all n≠2k (k≥0) any cycle must have a 
number of the form 2k at the lower end and Z(2k)=2k+1-1 at the upper end of the 
cycle. In order to have a 2-cycle we must find a solution to the equation 
 
 φ(2k+1-1)=2k 
 
If 2k+1-1 were a prime φ(2k+1-1) would be 2k+1-2 which solves the equation only 
when k=1. A necessary condition is therefore that 2k+1-1 is composite, 
2k+1-1=f1⋅f2⋅…⋅fi⋅…⋅fr and that the factors are such that φ(fi)= 2ui  for 1≤i≤r. But 
this means that each factor fi must be a prime number of the form 2 1ui + . 
This leads us to consider 

q(r)= (2-1)(2+1)(22+1)(24+1)(28+1) …. )12(
1r2 +

−
 

or  
q(r)=  )12(

r2 −  

Numbers of the form Fr= 2 12 r

+ are known as Fermat numbers. The first five 
of these are prime numbers 
 F0=3, F1=5, F2=17, F3=257, F4=65537 
while F5=641⋅6700417 as well as F6 , F7 , F8 , F9 , F10 and F11 are all known to 
be composite. 
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Table 1. Iteration of p6. A horizontal line marks  where the rest of the iterated values 

consist of descending powers of 2 
 

# p=2 p=3 p=5 p=7 p=11 p=13 p=17 p=19 p=23 

1 32 486 12500 100842 1610510 4455516 22717712 44569782 141599546 

2 16 162 5000 28812 585640 1370928 10690688 14074668 61565020 

3 8 54 2000 8232 212960 421824 5030912 4444632 21413920 

4 4 18 800 2352 77440 129792 2367488 1403568 7448320 

5 2 6 320 672 28160 39936 1114112 443232 2590720 

6  2 128 192 10240 12288 524288 139968 901120 

7   64 64 4096 4096 262144 46656 327680 

8   32 32 2048 2048 131072 15552 131072 

9   16 16 1024 1024 65536 5184 65536 

10   8 8 512 512 32768 1728 32768 

11   4 4 256 256 16384 576 16384 

12   2 2 128 128 8192 192 8192 

13     64 64 4096 64 4096 

14     32 32 2048 32 2048 

15     16 16 1024 16 1024 

16     8 8 512 8 512 

17     4 4 256 4 256 

18     2 2 128 2 128 

19       64  64 

20       32  32 

21       16  16 

22       8  8 

23       4  4 

24       2  2 

 
From this we see that  

(3) φ ( )2 12 r

− =φ(q(r))=φ(F0)φ(F1)⋅…⋅φ(Fr-1)=2⋅22⋅…⋅
1r22

−
= 

122...2221 r1r32
22 −+++++ =

−
  

 
for r=1, 2, 3, 4 5 but breaks down for r=6 (because F5 is composite) and 
consequently also for r>6. 
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Evaluating (3) for r=1,2,3,4,5 gives the complete table of expressions for the 
five 2-cycles. 
 
Cycle 
# 

2-cycle Equiv.expression 

1 2 ↔  3 2 ↔  22-1 
2 8 ↔ 15 23 ↔ 24-1 
3 128 ↔ 255 27 ↔ 28-1 
4 32768 ↔ 65535 215 ↔ 216-1 
5 2147483648 ↔ 4294967295 231 ↔ 232-1 

  
The answers to the two questions are implicit in the above theorem. 
 
1) The Z-φ sequence always reduces to a 2-cycle of the form 

122
rr 212 −↔−  for r≥1. 

2)  Only five patterns exist and they always appear first for n
r

= −2 12 , 
r=1,2,3,4,5. 

 
A statistical survey of the frequency of the different 2-cycles, displayed in 
table 2, indicates that the lower cycles are favored when the initiating numbers 
grow larger. Cycle #4 could have appeared in the third interval but as can be 
seen it is generally scarcely represented. Prohibitive computer execution times 
made it impossible to systematically  examine an interval were cycle #5 
members can be assumed to exist. However, apart from the “founding 
member” 2147483648 ↔  4294967295 a few individual members were 
calculated by solving the equation: 
 Z(φ(n)=232-1 
 
The result is shown in table 3. 
 

Table 2. The distribution of cycles for a few intervals of  length 1000. 
 

Interval Cycle #1 Cycle #2 Cycle #3 Cycle #4 
3 ≤ n ≤ 1002 572 358 70 - 

10001 ≤ n ≤ 11000 651 159 190 - 
100001 ≤ n ≤ 101000 759 100 141 0 

1000001 ≤ n ≤ 1001000  822 75 86 17 
10000001 ≤ n ≤ 100001000 831 42 64 63 

100000001 ≤ n ≤1000001000 812 52 43 93 
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Table 3. A few members of the cycle #5 family. 
 

n φ(n) Z(φ(n)) φ(Z(φ(n))) 

38655885321 25770196992 4294967295 2147483648 

107377459225 85900656640 4294967295 2147483648 

966397133025 515403939840 4294967295 2147483648 

1241283428641 1168248930304 4294967295 2147483648 

11171550857769 7009493581824 4294967295 2147483648 

31032085716025 23364978606080 4294967295 2147483648 

279288771444225 140189871636480 4294967295 2147483648 

283686952174081 282578800082944 4294967295 2147483648 

2553182569566729 1695472800497664 4294967295 2147483648 

7092173804352025 5651576001658880 4294967295 2147483648 

63829564239168225 33909456009953280 4294967295 2147483648 

81985529178309409 76861433622560768 4294967295 2147483648 

2049638229457735225 1537228672451215360 4294967295 2147483648 
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26 
 

 
 

 

 
 

 III.   Alternating Iterations of the Sum of Divisors Function 
and the Pseudo-Smarandache Function  

 
 

Abstract: This study is an extension of work done by Charles Ashbacher[3]. 
Iteration results have been re-defined in terms of invariants and loops. Further 
empirical studies and analysis of  results have helped throw light on a few 
intriguing questions. 
 
1. Introduction 
 
The following definition forms the basis of Ashbacher’s study: For n>1, the 
Zσ sequence is the alternating iteration of the Sum of Divisors Function σ 
followed by the Pseudo-Smarandache function Z. 
 
The Zσ sequence originated by n creates a cycle. Ashbacher identified four 2 
cycles and one 12 cycle. These are listed in table 1. 
 

Table 1.  Iteration cycles C1 - C5. 
 

n Ck Cycle 
2 C1 3 ↔ 2 

3≤n≤15 C2 24 ↔ 15 
n=16 C3 31→32→63→104→64→127→126→312→143→168→48→124  

17≤n≤19 C2 24 ↔ 15 
n=20 C3 42 ↔ 20 
n=21 C3 31→32→63→104→64→127→126→312→143→168→48→124  

22≤n≤24 C2 24 ↔ 15 
n=25 C3 31→32→63→104→64→127→126→312→143→168→48→124  
n=26 C3 42 ↔ 20 

…   
n=381 C5 1023 ↔ 1536 

 
The search for new cycles was continued up to n=552,000. No new ones were 
found. This lead Ashbacher to pose the following questions 
 
1) Is there another cycle generated by the Zσ sequence? 



  

 

27 
 

 
 

 

2) Is there an infinite number of numbers n that generate the two cycle 4
 42 ↔ 20? 
3) Are there any other numbers n that generate the two cycle 2 ↔ 3? 
4) Is there a pattern to the first appearance of a new cycle? 
 
Ashbacher concludes his article by stating that these problems have only been 
touched upon and encourages others to further explore these problems. 
 
2.     An extended study of the Zσ iteration 
 
It is  amazing that hundred thousands of integers subject to a fairly simple 
iteration process all end up with final results that can be described by  a few  
small integers. This merits a closer analysis. In an earlier study of iterations [2] 
the author classified iteration results in terms of invariants, loops and 
divergents. Applying the iteration to a member of a loop produces another 
member of the same loop. The cycles described in the previous section are not 
loops. The members of a cycle are not generated by the same process, half of 
them are generated by Z(σ(Z(…σ(n)…))) while the other half is generated by 
(σ(Z(…σ(n)…)), i.e. we are considering two different operators. This leads to 
a situation were the iteration process applied to a member of a cycle may 
generate a member of another cycle as described in table 2. 
 

Table 2. A Zσ iteration applied to an element belonging to one cycle may 
generate an element belonging to another cycle . 

 
 C1  C2  C3        C4      C5  

n 2 3 15 24 20 42 31 32 63 104 64 127 126 312 143 168 48 124 1023 1536 

σ(n) 3 4 24 60 42 96 32 63 104 210 127 128 312 840 168 480 124 224 1536 4092 

Z(σ(n)) 2 7 15 15 20 63 63 27 64 20 126 255 143 224 48 255 31 63 1023 495 

σ(Z(σ(n)))  8      40    …  504  …    936 

Z(σ(Z(σ(n))))  15      15    15  63  15    143 

…                     

Generates  C1 C2 C2 C2 C3 C4 C4 C2 C4 C3 C4 C2 C4 C4 C4 C2 C4 C4 C5 C4 

*=Shift to 
other cycle 

 *    *  *  *  *    *    * 

 
This situation makes it impossible to establish a one-to-one correspondence 
between  a number n to which the sequence of iterations is applied and the 
cycle that it will generate. Henceforth the iteration function will be Z(σ(n)) 
which will be denoted Zσ(n) while results included in the above cycles  
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originating from σ(Z(…σ(n)…)) will be considered as intermediate elements. 
This leads to an unambiguous situation which is shown in table 3. 
 
 
 Table3. The Zσ iteration process described in terms 

of invariants, loops and intermediate elements. 
 

 I1 I2 I3   Loop    I4 

n 2 15 20 31 63 64 126 143 48 1023 

Z(σ(n)) 2 15 20 63 64 126 143 48 31 1023 
           

Intermediate 
element 

3 24 42 32 104 127 312 168 124 1536 

 
We have four invariants I1, I2, I3 and I4 and one loop L with six elements. No 
other invariants or loops exist for n≤106. Each number n≤106 corresponds to 
one of the invariants or the loop. The distribution of  results of the Zσ iteration 
has been examined by intervals of size 50000 as shown in table 4. The stability 
of this distribution is amazing. It deserves a closer look and will help bringing 
us closer to answers to the four questions posed by Ashbacher.   
 
Question number 3: Are there any other numbers n that generate the two cycle 
2 ↔ 3? In the framework set for this study this question will reformulated to: 
Are there any other numbers than n=2 that belongs to the invariant 2? 
 
Theorem: n=2 is the only element for which Z(σ(n))=2. 
Proof: 
Z(x)=2 has only one solution which is x=3.  Z(σ(n))=2 can therefore only 
occur when σ(n)=3 which has the unique solution n=2. 
� 
  
Question number 2: Is there an infinite number of numbers n that generate the 
two cycle 42 ↔ 20? 
 
Conjecture: There are infinitely many numbers n which generate the invariant 
20 (I3). 
 
Support: Although the statistics shown in table 4 only skims the surface of the 
“ocean of numbers” the number of numbers generating this invariant is as  
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stable as for the other invariants and the loop. To this is added the fact that any 
number >106 will either generate a new invariant or loop (highly unlikely) or 
“catch on to” one of the already existing end results where I4 will get its share 
as the iteration “filters through” from 106 until it gets locked onto one of the 
established invariants or the loop. 
� 

Table 4. Zσ iteration iteration results. 
 

Interval I2 I3 Loop I4 
3-50000 18824 236 29757 1181 

50001-100000 18255 57 30219 1469 
100001-150000 17985 49 30307 1659 
150001-200000 18129 27 30090 1754 
200001-150000 18109 38 30102 1751 
250001-300000 18319 33 29730 1918 
300001-350000 18207 24 29834 1935 
350001-400000 18378 18 29622 1982 
400001-450000 18279 21 29645 2055 
450001-550000 18182 24 29716 2078 
500001-550000 18593 18 29227 2162 
550001-600000 18159 19 29651 2171 
600001-650000 18596 25 29216 2163 
650001-700000 18424 26 29396 2154 
700001-750000 18401 20 29409 2170 
750001-800000 18391 31 29423 2155 
800001-850000 18348 22 29419 2211 
850001-900000 18326 15 29338 2321 
900001-950000 18271 24 29444 2261 
950001-1000000 18517 31 29257 2195 

Average 18335 38 29640 1987 
 
 
Question number 1: Is there another cycle generated by the Zσ  sequence? 
 
Discussion: 
The search up to n=106 revealed no new invariants or loops. If another 
invariant or loop exists it must be initiated by  n>106. 
 
Let N be the value of n up to which the search has been completed. For n=N+1 
there are three possibilities: 



  

 

30 
 

 
 

 

Possibility 1. 
Z(σ(n))≤N. In this case continued iteration repeats iterations which have 
already been done in the complete search up to n=N. No new loops or 
invariants will be found. 
 
Possibility 2. 
Z(σ(n))=n. If this happens then n=N+1 is a new invariant. A necessary 
condition for an invariant is therefore that 

(1) q
)n(2
)1n(n

=
σ

+ , where q is positive integer.      

If  in addition no m<n exists so that 

(2) 1q
)n(2

)1m(m
=

σ
+ ,  q1 integer, then n is invariant.     

There are 111 potential invariant candidates for n up to 3⋅108 satisfying the 
necessary condition (1). Only  four of them n = 2, 15, 20 and 1023 satisfied 
condition (2). It seems that for a given solution to (1) there is always, for 
n>N>1023, a solution to (2) with m<n. This is plausible since we know [4] that 
σ(n)=O(n1+δ) for every positive δ which means that σ(n) is small compared to 
n(n+1)≈n2 for large n. 
 
Example: The largest n<3⋅108 for which (1) is satisfied is n=292,409,999 with 
σ(292,409,999)=341145000 and  292409999 ⋅292410000/(2⋅341145000)= 
125318571. But m=61370000<n exists for which 
61370000⋅61370001/(2⋅341145000) =5520053, an integer, which means that n 
is not invariant. 
 
Possibility 3. 
Z(σ(n))>N. This could lead to a new loop or invariant. Let’s suppose that a 
new loop of length k≥2 is created. All elements of this loop must be greater 
than N otherwise the iteration sequence will fall below N and end up on a 
previously known invariant or loop. A necessary condition for a loop is 
therefore that  
(3)  Z(σ(n))>n and Z(σ(Z(σ(n))))≥n.      
Denoting the kth iteration (Zσ)k(n) we must finally have  
(4) (Zσ)k(n)= (Zσ)j(n) for  some k≠j, interpreting  (Zσ)0(n)=n  
There isn’t much hope for all this to happen since, for large n, already 
Z(σ(n))>n is a scarce event and becomes scarcer as we increase n. A study of 
the number of incidents where (Zσ)3(n)>n for n<800,000 was made. There are  
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only 86 of them, of these 65 occurred for n<100,000. From n=510,322 to 
n=800,000 there was not a single incident. 
 
Question number 4: No particular patterns were found. 
 
3. Epilog 
 
In empirical studies of numbers the search for patterns and general behaviors is 
an interesting and important part. In this iteration study it is amazing that all 
these numbers, where not even the sky is the limit2, after a few iterations filter 
down to end up on one of three invariants or a single loop. The other amazing 
thing is the relative stability of distribution between the three invariants and 
the loop  with increasing n (see table 4) . When (Zσ)k(n) drops below n it 
catches on to an integer which has already been iterated and which has 
therefore already been classified to belong to one of the four terminal events. 
This in my mind explains the relative stability. In general the end result is 
obtained after only a few iterations. It is interesting to see that σ(n) often 
assumes the same value for values of n which are fairly close together. Here is 
an example: σ(n)=3024 for n=1020, 1056, 1120, 1230, 1284, 1326, 1420, 
1430, 1484, 1504, 1506, 1564, 1670, 1724, 1826, 1846, 1886, 2067, 2091, 
2255, 2431, 2515, 2761, 2839, 2911, 3023. I may not have brought this subject 
much further but I hope to have contributed some light reading in the area of 
recreational mathematics.  
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IV.   Some Sequences of Large Integers 
 

Abstract: In Unsolved Problems in Number Theory [1] the question why 
iteration of the sequence n/)x...xx1(x m

1n
m
1

m
0n −++++= , n=1,2,.. 42 times 

resulted in integers but the 43rd iteration breaks the integer sequence. This and 
similar sequences are studied. . A method is designed to examine how far the 
terms are integers.  For one similar sequence the chain of integers is broken for 
n=601. This mysterious behaviour has been explained by the author [2] and  
referenced in the second edition of Unsolved Problems ..[3]. The present 
article is a revision and expansion of an earlier study. 
 
1. Introduction 
 
One of the many interesting problems posed in the book Unsolved Problems in 
Number Theory [1] concerns the sequence 

 n/)x...xx1(x m
1n

m
1

m
0n −++++=  n=1,2,… 

or 

 .Nm,x),1nx(xnx 0
m

1n1nn ε−+= −−  
 
It was introduced by Fritz Göbel and has been studied by Lenstra [1] for m=1 
and x1=2 (x0=1). Lenstra states that xn is an integer for all n≤42, but x43 is not. 
For m=2 and x1=2, David Boyd and Alf van der Poorten state that for n≤88 the 
only possible denominators in xn are products of powers of 2, 3, 5 and 7. Why 
do these denominators cause a problem? Is it possible to find even longer 
sequences of integers by choosing different values for x1 and m?  
The terms in these sequences grow fast. For m=1, x1=2 the first ten terms are: 
 
2, 3, 5, 10, 28, 154, 3520, 15518880, 267593772160, 160642690122633501504. 

 
If the number of digits in xn is denoted N(n), then n(11)=43, N(12)=85, 
N(13)=168, N(14)=334, N(15)=667, N(16)=1332 and N(17)=2661. The last 
integer in this sequence, x42 has approximately 89288343500 digits. 
 
The purpose of this study is to find a method of determining the number of 
integers in the sequence and apply the method for the parameters 1≤m≤10 and  
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2≤x1≤11. In particular, the problem of Boyd and van der Poorten will be 
solved. Some explanations will begiven to why some of these sequences are so 
long. It will be observed and explained why the integer sequences are in 
general longer for even than for odd values of m. 
 
2. Method.   
 
For given values of x1 and m consider the equation 
(1) )1kx(xkx m

1k1kk −+= −−  
where the prime factorization of k is given by 

(2) ∏
=

=
l

1i

n
i

ipk .  

Let us assume that xk-1 is an integer and expand xk-1 and 1kxm
1k −+−  in a 

number system with )nt(,pG ii
t
ii

i >=  as base. 

(3a) )Ga0(Gax ij
j

j
ij1k <≤= ∑−  

and 
(3b) )Gb0(Gb1kx ij

j

j
ij

m
1k <≤=−+ ∑− . 

Since xk-1≠0, it is always possible to choose tI so that a0≠0. With this tI we have 
 
(4)  ).G(modbaGba)1kx(x i00

,j

j
ij

m
1k1k ≡=−+ ∑ +

−−
l

l
l  

The congruence 

(5) )G(modbakx i00k ≡  

 
is soluble iff  (k, Gi)|a0b0 , or, in this case, iff  00

n
i ba|p i . But, if 00

n
i ba|p i , then 

by (4) we also have 

 
 ).1kx(x|p m

1k1k
n
i

i −+−−  
 
Furthermore, if (5) is soluble for all expansions originating from (2), then it 
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follows that 
 )1kx(x|k m

1k1k −+−−  
 
and, consequently, that xk is an integer. The solution xk (mod Gi) to 

)G(modbakx i00k ≡ is equal to the first term in the expansion of xk using the 
equivalent of (3a). The previous procedure is repeated using (3b), (4) and (5) 
to examine if xk+1 (mod Gi) is an integer. 
 
From the computational point of view, the testing is done up to a certain pre-
set limit k=kmax for consecutive primes p=2, 3, 5, 7, … to p≤kmax. One of three 
things will happen: 
1. All congruences are soluble modulus Gi for k≤kmax for all pi≤kmax. 
 
2. a0b0=0 for a certain set of values k≤kmax , pi≤kmax. 
 
3. The congruence )G(modbakx i00k ≡ is soluble for all k < n <kmax, 

but not soluble for k=n and p=pi. 
 
In cases 1 and 2 increase kmax , respectively ti in it

ii pG = (if computer facilities 
permit) and recalculate. In case3, xn is not an integer, viz. n has been found so 
that xk is an integer for k<n but not for k=n. 
 
3. Results 
 
The results from using this method in the 100 cases 1 ≤m ≤10, 2 ≤x1 ≤ 11 are 
shown in Table 1. In particular, it shows that the integer sequence holds up to 
n=88 for m=2, x1=2 which corresponds to the problem of Boyd and van der 
Poorten. The longest sequence of integers was found for x1=11, m=2. For these 
parameters, the 600 first terms are integers, but x601 is not. In the 100 cases 
studied, only 32 different primes occur in the terminating values n. In 7 cases,  
the integer sequences are broken by values of n which are not primes. In 6 of 
these, the value of n is 2 times a prime which had terminated other sequences. 
For x1=3, m=10, the sequence is terminated by n=2⋅132. The prime 239 is 
involved in terminating 10 of the 100 sequences studied. It occurs 3 times for 
m=6 and 7 times for m=10. It is seen from the table that integer sequences are 
in general longer for even than for odd values of m. 
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Table 1. xn is the first noninteger term in the sequence defined by 

)1nx(xnx m
1n1nn −+= −− . The table gives n for parameters x1 and m. 

m x1=2 x1=3 x1=4 x1=5 x1=6 x1=7 x1=8 x1=9 x1=10 x1=11 
1 43 7 17 34 17 17 51 17 7 34 
2 89 89 89 89 31 151 79 89 79 601 
3 97 17 23 97 149 13 13 83 23 13 
4 214 43 139 107 269 107 214 139 251 107 
5 19 83 13 19 13 37 13 37 347 19 
6 239 191 359 419 127 127 239 191 239 461 
7 37 7 23 37 23 37 17 23 7 37 
8 79 127 158 79 103 103 163 103 163 79 
9 83 31 41 83 71 83 71 23 41 31 

10 239 338 139 137 239 239 239 239 239 389 
 
4. A Model to Explain Some Features of the Sequence 
 
The congruence 
 
 }2p,...,1,0,1{)k(),p(mod)k()k(x −−εαα≡  
 
studied in a number system with sufficiently large base pt, is of particular 
interest when looking at the integer properties of the sequence. Five cases will 
be studied. They are: 

1. α(k) does not belong to cases 2, 3, 4 or 5 below 
2. α(k) = -1, p ≠ 2 
3. α(k) = 0 

 4. α(k) = 1 
 5. α(k) = α(k +1) and/or α(k) = α(k –1), α(k) ≠ -1, 0, 1 
 
These cases are mutually exclusive; however, in case 5 there may be more than 
one sequence of the described type for a given p, for example, for m=10, x1=7 
and p=11, we have α(k) = 7 for k = 1, 2, … ,10 and α(k) = 4 for k = 11, 12, … 
, 15. Therefore, when running through the values of k for a given p, it is 
possible to classify  α(k) into states corresponding to case 5. In this model, 
α(1) appears as a result of creation rather than transition from one state to 
another but, formally, it will be considered as resulting from transition from a 
state 0 (k = 0) to the state corresponding to α(1). 
 
The study of transitions from one state to another in the above model is useful 
in the explaining why there are such long sequences of integers and why they  
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are in general longer for even than for odd m. Table 2 shows the number of 
transitions of each kind in the 100 cases studied. Let ar be the number of 
transitions from state r to state s: 
 
 .B/A100Q,aB,aA sss

s
rss

r
rsr === ∑∑  

 
(Note that r and s refer to states not rows and columns in table 2.) The 
transitions for odd and even values of m are treated separately. It is seen that 
transitions from states 4, 5 and 2 (for even m) are rare. Only between 5% and 
14% of all succh states ”created” are ”destroyed” while the corresponding 
percentage for other transitions range between 85% and 99%. It is the fact that 
transitions from certain states are rare, which makes some of these integer 
sequences so long. That transitions from state 2 are rare for even m (11%) and 
frequent for odd m (99%) make the integer sequences in general longer for 
even than for odd m. In all the many transitions observed, it was noted that 
certain types (underscored in table 2) only occurred for values of k divisible by 
p, while other types never occurred for k divisible by p. Transitions from state 
3 all occur for k divisible by p but , unlike the other transitions which occur for 
k divisible by p, they have a high frquency. Some of the observations made on 
the model are explained in the remainder of this paper. 
 

Table 2. The number of transitions of each type for odd and even m 
(2m = 2 does not divide m) 

From To state 1 To state 2 To state 3 To state 4 To state 5 Ar 
state 2m 2|m 2m 2|m 2m 2|m 2m 2|m 2m 2|m 2m 2|m 

0 457 1847 38 40 60 60 55 55 32 69 652 2071 
1   220 701 252 791 247 642 75 307 794 2241 
2 181 55   71 21 39 7 2 0 293 83 
3 202 634 36 30   111 80 9 16 358 760 
4 20 35 2 6 39 12    3 61 56 
5 2 2 1 2 0 3 0 2 2 11 5 20 
Bs 872 2573 297 779 422 887 452 786 120 406 2163 5431 

Qs% 92 95 99 11 85 86 14 8 5 5   
 

Transitions from state 4 and, for even m only, from state 2 
 
It is evident from )1kx(xkx m

1k1kk −+= −− that, if xk-1 ≡ ±1 (mod p) and (k, p)=1, 
then xk = ±1 (mod p). Assume that we arrive at xk-1 ≡ ±1 (mod p) for k < p-m 
and m < p. We can then write 
(5) xp-m-1≡ ±1+αp (mod p2),  0≤α<p 
and 
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).evenm()p(modpm1)p1(x 2mm
1mp α±≡α+±≡−−  

Equations (6) and (7) give 
 )p(mod)mp(x)mp( 2

mp −±≡− −  
or, since (p-m,p)=1, 
 .1pkmpfor)p(mod1xor)p(mod1x 2

k
2

mp −≤≤−±≡±≡−  
For k=p, we have 

pxp≡±1(1+p-1)  (mod p2) 
or, after division by p throughout 
 xp≡±1 (mod p). 
It is now easy to see that xk≡1 (mod p) continues to hold also for k>p. The 
integer sequence may, however, bebroken for k=p2. 
 
Transitions from state 3 
 
Let us now assume that xj≡0 (mod p) for some j<p. If (j+1,p)=1, it follows that 
xj+1≡0 (mod p) or, generally, xk≡0 (mod p) for j≤k≤p-1. For k=p-1, we can 
write xp-1≡pa (mod p2), 0≤a<p-1. We then have 
 pxp≡pa(pmam+p-1) (mod p2), 
from which follows xp≡-a (mod p), viz. xp is an integer; however if a=0, the 
state is changed. 
 
Transitions from states of type 5 
 
When, for some j<p-1, it happens that )p(mod1xm

j ≡ , it is easily seen that 
xk≡xj (mod p) for j≤k<p. This implies 
 )p(mod)1p1(xpx jp −+≡ , 
from which it is seen that xp may not be congruent to xj (mod p) but also that 
xp is an integer. 
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V.   The Smarandache Partial Perfect Additive Sequence 
 

 
Abstract:  The sequence defined through a2k+1=ak+1-1, a2k+2=ak+1+1 for k≥1 
with a1=a2=1 is studied in detail. It is proved that the sequence is neither 
convergent nor periodic - questions which have recently been posed. It is 
shown that the sequence has an amusing oscillating behavior and that there are 
terms that approach ± ∞  for a certain type of large indices. 

 
1.  Definition 
 
Definition of Smarandache perfect fp sequence: If fp is a p-ary relation on{a1, 
a2, a3, ….} and fp(ai, ai+1, ai+2, … ai+p-1)= fp(aj, aj+1, aj+2, … aj+p-1) for all ai, aj and 
all p>1, then {an} is called a Smarandache perfect fp sequence. 
 
If the defining relation is not satisfied for all ai,aj or all p then {an} may qualify 
as a Smarandache partial perfect fp sequence. 
 
2. Analysis and Results  
 
The purpose of this note is to answer some questions posed in an article in the 
Smarandache Notions Journal, vol. 11 [1] on a particular Smarandache partial 
perfect sequence defined in the following way: 

a1=a2=1 
(1) a2k+1=ak+1-1, k≥1              
(2) a2k+2=ak+1+1, k≥1                
 
Adding both sides of the defining equations results in a2k+2+a2k+1=2ak+1 which 
gives 

(3) ∑∑ =
=

n

i
i

n2

1i
i a2a                 

 
Let n be of the form n=k⋅2m. The summation formula now takes the form 
 

(4) ∑∑ =
⋅

=

k

i
i

m
2k

1i
i a2a

m
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From this we note the special cases 4a
4

1i
i =∑

=

, 8a
8

1i
i =∑

=

, …. m
2

1i
i 2a

m

=∑
=

. 

The author of the article under reference poses the questions: 
 

Is there a general expression of an as a function of n? 
Is the sequence periodical, or convergent or bounded? 

 
The first 25 terms of this sequence are3: 
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
ak 1 1 0 2 -1 1 1 3 -2 0 0 2 0 2 2 4 -3 -1 -1 1 -1 1 1 3 -1 
 
It may not be possible to find a general expression for an in terms of n. For 
computational purposes, however, it is helpful to unify the two defining 
equations by introducing the δ-function defined as follows: 

(5) 




≡
≡−

=δ
)2(mod1nif1
)2(mod0nif1

)n(  

The definition of the sequence now takes the form: 
a1=a2=1 

(6) )n(aa
2/)

2
)n(1n(n δ−= δ+

+
           

A translation of this algorithm to computer language was used to calculated the 
first 3000 terms of this sequence. A feeling for how this sequence behaves may 
be best conveyed by table 1 of the first 136 terms, where the switching 
between positive, negative and zero terms have been made explicit. 
 
Before looking at some parts of this calculation let us make a few 
observations. Although we do not have a general formula for an we may 
extract very interesting information in particular cases. Successive application 
of (2) to a case where the index is a power of 2 results in: 
(7) a a a a m mm m m2 2 2 21 21 2 1= + = + = = + − =− − ...     
This simple consideration immediately gives the answer to the main question: 
 

The sequence is neither periodic nor convergent. 
 

                                                 
3 The sequence as quoted in the article under reference is erroneous as from the 
thirteenth term. 
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We will now consider the difference an-an-1 which is calculated using (1) and 
(2). It is necessary to distinguish between n even and n odd. 
1. n=2k, k≥2. 
 
(8) a2k-a2k-1=2 (exception: a2-a1=0)              
 
2. n=k⋅2m+1 where k is odd.   

                                                                                                               

(9)  =−−=−−−=− +⋅+⋅⋅+⋅ −− m2aa...1a1aaa k1k2k12k2k12k 1m1mmm   
 

=




>−
=−

1kifm22
1kifm21

 

 
In particular  a2k+1-a2k= 0 if k≥3 is odd. 
 

Table 1.  The first terms of the sequence 
n an, an+1, … n an, an+1, … 
1 1, 1 50 0, 0 
3 0 52 2 
4 2 53 0 
5 -1 54 2, 2, 4 
6 1, 1, 3 57 0 
9 -2 58 2, 2, 4, 2, 4, 4, 6 
10 0, 0 65 -5, -3, -3, -1, -3, -1, -1 
12 2 72 1 
13 0 73 -3, -1,-1 
14 2, 2, 4 76 1 
17 -3, -1, -1 77 -1 
20 1 78 1, 1, 3 
21 -1 81 -3, -1, -1 
22 1, 1, 3 84 1 
25 -1 85 -1 
26 1, 1, 3, 1, 3, 3, 5 86 1, 1, 3 
33 -4, -2, -2 89 -1 
36 0 90 1, 1, 3, 1, 3, 3, 5 
37 -2 97 -3, -1, -1 
38 0, 0 100 1 
40 2 101 -1 
41 -2 102 1, 1, 3 
42 0, 0 105 -1 
44 2 106 1, 1, 3, 1, 3, 3, 5 
45 0 113 -1 
46 2, 2, 4 114 1, 1, 3, 1, 3, 3, 5, 1, 3, 3, 5, 3, 5, 5, 7 
49 -2 129 -6, -4, -4, -2, -4, -2, -2 
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The big drop. The sequence shows an interesting behaviour around the index 
2m. We have seen that a mm2 = . The next term in the sequence calculated  

from (9) is m+1-2⋅m=-m+1. This makes for the spectacular behaviour shown 
in diagrams 1 and 2. The sequence gradually struggles to get to a peak for 
n=2m where it drops to a low and starts working its way up again. There is a 
great similarity between the oscillating behaviour shown in the two diagrams. 
In diagram 3 this behaviour is illustrated as it occurs between two successive 
peaks. 
 

-8

-6

-4

-2

0

2

4

6

8

10

24
1

24
3

24
5

24
7

24
9

25
1

25
3

25
5

25
7

25
9

26
1

26
3

26
5

26
7

26
9

27
1

Diagram 1. an as a function of n around n=28 illustrating the ”big drop” 
 
 
When using the defining equations (1) and (2) to calculate elements of the 
sequence it is necessary to have in memory the values of the elements as far 
back as half the current index. We are now in a  position to generate preceding 
and proceeding  elements to a given element by using formulas based on (8) 
and (9). 
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Diagram 2. an as a function of n around n=210 illustrating the ”big drop” 
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Diagram 3. The oscillating behaviour of the sequence between the peaks for n=27 and 
n=28. 
 
 
The forward formulas: 
          an-1+2   when n=2k, k>1                           
(10) an=   an-1+1-2m when n=2m+1                      
         an-1+2-2m when n=k⋅2m+1, k>1 
 
 
Since we know that a mm2 =  it will also prove useful to calculate an from an+1. 
The reverse formulas: 

 an+1-2   when n=2k-1, k>1                           
(11) an= an+1-1+2m when n=2m                      
  an+1-2+2m when n=k⋅2m, k>1 
 
Finally let’s use these formulas to calculate some terms forwards and 
backwards from one known value say a4096=12 (4096=212). It is seen that an 
starts from 0 at n=4001, makes its big drop to -11 for n=4096 and remains 
negative until n=4001. For an even power of 2 the mounting sequence only has  
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even values and the descending sequence only odd values. For odd powers of 2 
it is the other way round. 
 

Table 2. Values of an around n=2
12=4096. 

Decending 
4095 …4 …3 …2 …1 ..80 …9 …8 …7 …6 …5 …4 …3 …2 …1 70 …9 … 4001 

10 10 8 10 8 8 6 10 8 8 6 8 6 6 4 10 8 … 0 
Ascending 

4096 …7 …8 …9 .10
0 

…1 …2 …3 …4 …5 …6 …7 …8 …9 ..10 …1 …2 … 4160 

12 -11 -9 -9 -7 -9 -7 -7 -5 -9 -7 -7 -5 -7 -5 -5 -3 … 1 
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 VI.   Smarandache Continued Fractions 
 
 

Abstract: The theory of general continued fractions is developed to the extent 
required in order to calculate  Smarandache continued fractions to a given 
number of decimal places. Proof is given for the fact that Smarandache general 
continued fractions built with positive integer Smarandache sequences having 
only a finite number of terms equal to 1 is convergent. A few numerical results 
are given. 
 
 
1. Introduction 
 
The definitions of  Smarandache continued fractions were given by Jose 
Castillo in the Smarandache Notions Journal, Vol. 9, No 1-2 [1]. 
 
A Smarandache Simple Continued Fraction is a fraction of the form: 
 

 a
a

a
a

a

( )
( )

( )
( )

(5)

1 1

2 1

3 1

4 1

+
+

+
+

+ ⋅⋅⋅

 

 
where a(n), for n≥1, is a Smarandache type Sequence, Sub-Sequence or 
Function. 
 
 Particular attention is given to the Smarandache General Continued Fraction 
defined as 
 

 a b

a b

a b

a b
a

( ) ( )

( ) ( )

( ) ( )

( ) ( )
(5)

1 1

2 2

3 3

4 4

+
+

+
+

+ ⋅⋅⋅
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where a(n) and b(n), for n≥1, are Smarandache type Sequences, Sub-
Sequences or Functions. 
  
As a particular case the following example is quoted 
 

 1 1

12 21

123 321

1234 4321
12345

+
+

+
+

+ ⋅⋅⋅

 

 
Here 1, 12, 123, 1234, 12345, … is the Smarandache Consecutive Sequences 
and 1, 21, 321, 4321, 54321, … is the Smarandache Reverse Sequence. 
 
The interest in Castillo’s article is focused on the calculation of such fractions 
and their possible convergens when the number of terms approaches infinity. 
The theory of simple continued fractions is well known and given in most 
standard textbooks in Number Theory. A very comprehensive theory of 
continued fractions, including general continued fractions is found in Die 
Lehre von den Kettenbrüchen [2]. The symbols used to express facts about 
continued fractions vary a great deal. The symbols which will be used in this 
article correspond to those used in Hardy and Wright An Introduction to the 
Theory of Numbers [3]. However, only simple continued fractions are treated 
in the text of Hardy and Wright. Following more or less the same lines the 
theory of general continued fractions will be developed in the next section as 
far as needed to provide the necessary tools for calculating Smarandache 
general continued fractions. 
 
 
 
2. General Continued Fractions 
 
The definition given below is an extension of the definition of a simple 
continued fraction where r1=r2= … =rn=1. The theory developed here will 
apply to simple continued fractions as well by replacing rk (k=1, 2, … ) in 
formulas by 1 and simply ignoring the reference to rk when not relevant. 
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Definition: 
 
We define a finite general continued fraction through 
 

(1)   C q
r

q
r

q
r

q
r

q

q
r

q
r

q
r

q
r

q
r
qn

n

n
= +

+
+

+
+

= +
+ + + +0

1

1
2

2
3

3
4

4

0
1

1

2

2

3

3

3

4

...

...    

 
where {q0, q1, q2, …. qn} and {r1, r2, r3… rn} are  integers which we will 
assume to be positive. 
 
 
The formula (1) will usually be expressed in the form 
 
(2) Cn=[q0,q1,q2,q3, …qn,r1,r2,r3 …rn]  
                          
For a simple continued fraction we would write 
 
(2’) Cn=[q0,q1,q2,q3, …qn]                           
 
If we break off the calculation for m≤n we will write 
 
(3) Cm=[q0,q1,q2,q3, …qm,r1,r2,r3 …rm]                          
  
Equation (3) defines a sequence of finite general continued fractions for m=1, 
m=2, m=3, … . Each member of this sequence is called a convergent to the 
continued fraction. 
 
Working out the general continued fraction in stages, we shall obviously 
obtain  expressions for its convergents as  quotients of two sums, each sum 
comprising various products formed with q0, q1, q2, …qm and  r1, r2, …rm. 
 
If m=1, we obtain the first convergent 

(4)     C1=[q0,q1,r1]= q
r
q

q q r
q0

1

1

0 1 1

1
+ =

+
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For m=2 we have 
(5)        

C q q q r r q
q r

q q r
q q q q r q r

q q r2 0 1 2 1 2 0
2 1

1 2 2

0 1 2 0 2 2 1

1 2 2
= = +

+
=

+ +
+

[ , , , , ]          

In the intermediate step the value of q
r
q1

2

2
+ from the previous calculation has 

been quoted, putting q1, q2 and r2 in place of q0,, q1 and r1. We can express this 
by 
 
(6) C2=[q0,[q1,q2,r2],r1]                           
 
Proceeding in the same way we obtain for m=3 

 

(7)  C3=[ , , , , , , ]
( )

q q q q r r r q
q q r r

q q q q r q r0 1 2 3 1 2 3 0
2 3 3 1

1 2 3 1 3 3 2
= +

+
+ +

=  

q q q q q q r q q r q q r r r
q q q q r q r

0 1 2 3 0 1 3 0 3 2 2 3 1 1 3

1 2 3 1 3 3 2

+ + + +
+ +

           

 
or generally 
 
(8) Cm=[q0,q1,…qm-2,[qm-1,qm,rm],r1,r2,…rm-1]             
 
which we can extend to 
 
(9) Cn=[q0,q1,…qm-2,[qm-1,qm,…qn,rm,…rn],r2,r2,…rm-1]                        
 
Theorem 1: 
Let Am and Bm be defined through 
 
 A0=q0, A1=q0q1+r1, Am=qmAm-1+rmAm-2   (2≤m≤n) 
         
(10) B0=1, B1=q1,  Bm=qmBm-1+rmBm-2   (2≤m≤n)              
 

then Cm=[q0,q1,…qm,r1,…rm] = 
A
B

m

m
, i.e. 

A
B

m

m
 is the mth convergent to the 

general continued fraction. 
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Proof: 

The theorem is true for m=0 and m=1as is seen from [q0]= 
q A

B
0 0

01 =  and 

[q0,q1,r1]= q q r
q

A
B

0 1 1

1

1

1

+
= . Let us suppose that it is true for a given m<n. We 

will induce that it is true for m+1. 
 
[q0,q1,…qm+1,r1,…rm+1] = [q0,q1,…qm-1,[qm,qm+1,rm+1],r1,…rm] 
    

   = [ , , ]
[ , , ]
q q r A r A
q q r B r B

m m m m m m

m m m m m m

+ + − −

+ + − −

+
+

1 1 1 2

1 1 1 2
 

   =
( )

( )

q r
q

A r A

q r
q

B r B

m
m

m
m m m

m
m

m
m m m

+ +

+ +

+

+
− −

+

+
− −

1

1
1 2

1

1
1 2

 

   = q q A r A r A
q q B r B r B

m m m m m m m

m m m m m m m

+ − − + −

+ − − + −

+ +
+ +

1 1 2 1 1

1 1 2 1 1

( )
( )

 

   = q A r A
q B r B

A
B

m m m m

m m m m

m

m

+ − + −

+ − + −

+

+

+
+

=1 1 1 1

1 1 1 1

1

1
 

� 
  
The recurrence relations (10) provide the basis for an effective computer 
algorithm for successive calculation of the convergents Cm. 
 
Theorem 2: 

(11) AmBm-1-BmAm-1=(-1)m-1 rk
k

m

=
∏

1
                        

Proof: For m=1 we have A1B0-B1A0=q0q1+r1-q0q1=r1. 
 
 AmBm-1-BmAm-1=( qmAm-1+rmAm-2)Bm-1-( qmBm-1+rmBm-2)Am-1= 
 -rm(Am-1Bm-2-Bm-1Am-2) 
 
By repeating this calculation with m-1, m-2, …, 2 in place of m, we arrive at 

 AmBm-1-BmAm-1= …= (A1B0-B1A0)(-1)m-1 rkk

m

=
∏

2
 =(-1)m-1 rk

k

m

=
∏

1
 

� 
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Theorem 3: 

(12) AmBm-2-BmAm-2=(-1)mqm rkk

m

=

−
∏

1

1
                        

 
Proof: 
This theorem follows from theorem 3 by inserting expressions for Am and Bm 

 

 AmBm-2-BmAm-2=( qmAm-1+rmAm-2)Bm-2-( qmBm-1+rmBm-2)Am-2= 

 qm(Am-1Bm-2-Bm-1Am-2)=(-1)mqm rk
k

m

=

−
∏

1

1
 

� 

Using the symbol Cm=
A
B

m

m
 we can now express important properties of the 

number sequence Cm, m=1, 2, … , n. In particular we will be interested in what 
happens to Cn as n approaches infinity.  
 
From (11) we have 

(13) C C
A
B

A
B

r

B Bn n
n

n

n

n

n
k

k

n

n n
− = − =

−
−

−

−

−

=

−

∏

1
1

1

1

1

1

1( )
    

  
while (12) gives 

(14) C C
A
B

A
B

q r

B Bn n
n

n

n

n

n
n kk

n

n n
− = − =

−
−

−

−

−

=

−

−

∏

2
2

2

1
1

1

2

1( )
                         

                            
We will now consider infinite positive integer sequences {q0, q1, q2, ….} and 
{r1, r2, …}  where only a finite number of terms are equal to 1. This is 
generally the case for Smarandache sequences. We will therefore prove the 
following important theorem. 
 
Theorem 4: 
A general continued fraction for which the sequences q0, q1, q2, …. and r1, r2, 
…. are positive integer sequences with at most a finite number of terms equal 
to 1 is convergent. 
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Proof: 
We will first show that the product Bn-1Bn , which is a sum of terms formed by 
various products of elements from {q1, q2, … qn, r1, r2, … rn-1}, has one term 

which is a multiple of rkk

n

=
∑

2
. Looking at the process by which we calculated 

C1, C2, and C3, equations 4, 5 and 7, we see how terms with the largest number 
of factors rk evolve in numerators and denominators of Ck. This is made 
explicit in figure 1. 
 
  C1 C2 C3 C4 C5 C6 C7 C8 
 Am r1 q0r2 r1r3 q0r2r4 r1r3r5 q0r2r4r6 r1r3r5r7 q0r2r4r6r8 
  Bm - r2 q1r3 r2r4 q1r3r5 r2r4r6 q1r3r5r7 r2r4r6r8 
 
Figure 1. The terms with the largest number  of r-factors in numerators Am and 
denominators Bm . 
 
As is seen from figure 1 two consecutive denominators BnBn-1 will have a term 
with r2r3 …rn as factor. This means that the numerator of (13) will not cause 
Cn-Cn-1 to diverge. On the other hand Bn-1Bn contains the term (q1q2 …qn-1)2qn 

which approaches ∞ as n→∞. It follows  that 
n
Cn Cn

→∞
− − =lim ( )1 0 . 

From (14) we see that 
 
1.  If n is odd, say n=2k+1, than C2k+1 <C2k-1 forming a monotonously 

decreasing number sequence which is bounded below (positive terms). It 
therefore has limit. 
lim
k kC C

→∞
+ =2 1 1 . 

2.  If n is even, n=2k, than C2k >C2k-2 forming a monotonously increasing 
number sequence. This sequence has an upper bound because 
C2k<C2k+1 → → ∞C as k1 . It therefore has limit. 
lim
k kC C

→∞
=2 2 . 

3.  Since 
n
Cn Cn

→∞
− − =lim ( )1 0   we conclude that C1=C2. Consequently 

lim
n nC

→∞
=C exists. 

� 
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3. Calculations 
 
A UBASIC program has been developed to implement the theory of 
Smarandache general continued fractions. The same program can be used for 
classical continued fractions since these correspond to the special case of a 
general continued fraction where r1=r2= … =rn=1. 
 
The complete program used in the calculations is given below. The program 
applies equally well to simple continued fractions by setting all element of the 
array R equals to 1. 
 
  10   point 10 
  20   dim Q(25),R(25),A25),B25) 
  30   input "Number of decimal places of accuracy: ";D 
  40   input "Number of input terms for R (one more for Q) ";N% 
  50   cls 
  60   for I%=0 to N%:read Q(I%):next 
  70   data      ‘The relevant data q0, q1, … 
  80   for I%=1 to N%:read R(I%):next 
  90   data      ‘The relevant data for r1, r2, … 
  100  print tab(10);"Smarandache Generalized Continued Fraction" 
  110  print tab(10);"Sequence Q:"; 
  120  for I%=0 to 6:print Q(I%);:next:print "   ETC" 
  130  print tab(10);"Sequence R:"; 
  140   for I%=1 to 6:print R(I%);:next:print "   ETC" 
  150   print tab(10);"Number of decimal places of accuracy: ";D 
  160   A(0)=Q(0):B(0)=1    ‘Initiating  recur. algorithm 
  170   A(1)=Q(0)*Q(1)+R(1):B(1)=Q(1) 
  180   Delta=1:M=1     ‘M=loop counter 
  190   while abs(Delta)>10^(-D)    ‘Convergens check 
  200   inc M 
  210   A(M)=Q(M)*A(M-1)+R(M)*A(M-2)   ‘Recurrence 
  220   B(M)=Q(M)*B(M-1)+R(M)*B(M-2) 
  230   Delta=A(M)/B(M)-A(M-1)/B(M-1)   ‘Cm-Cm-1 
  240   wend 
  250   print tab(10);"An/Bn=";:print using(2,20),A(M)/B(M) ‘Cn in decimalform 
  260   print tab(10);"An/Bn=";:print A(M);"/";B(M)  ‘Cn in fractional form 
  270   print tab(10);"Delta=";:print using(2,20),Delta;  ‘Delta=Last difference 
  280   print " for n=";M    ‘n=number of iterations 
  290   print 
  300   end 
 
To illustrate the behaviour of the convergents Cn have been  calculated for 
q1=q2= …= qn=1 and r1=r2= …= rn=10. The iteration of Cn is stopped when 
∆n= |Cn-Cn-1 |<0.01. Table 1 shows the result which is illustrated in figure 2. 
The factor (-1)n-1 in (13) produces an oscillating behaviour with diminishing 
amplitude approaching lim

n nC
→∞

=C. 
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Table 1. Value of convergents Cn for  qε{1,1,…} and rε{10,10,…} 

 
n 1 2 3 4 5 6 7 8 9 

Cn 11 1.91 6.24 2.6 4.84 3.07 4.26 3.35 3.99 
Table 1. ctd 

n 10 11 12 13 14 15 16 17 18 
Cn 3.51 3.85 3.6 3.78 3.65 3.74 3.67 3.72 3.69 

Table 1. ctd 
n 19 20 21 22 

Cn 3.71 3.69 3.71 3.70 

 
 

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 2. Cn as a function of  n 
 

A number of sequences, given below, will be substituted into the recurrence 
relations (10) and the convergence estimate (13). 
 
S1={1, 1, 1, ……} 
S2={1, 2, 1, 2, 1, 2, ……} 
S3={3, 3, 3, 3, 3, 3, ……} 
Smarandache Consecutive Sequence S 4. 
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S4={1, 12, 123, 1234, 12345, 123456, …..} 
Smarandache Reverse Sequence S5. 
S5={1, 21, 321, 4321, 54321, 654321, …..} 
CS1={1,1,2,8,9,10,512,513,514,520,521,522,729,730,731,737,738, … 
NCS1={1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,… 
 
The Smarandache CS1 sequence definition: CS1(n) is the smallest number, 
strictly greater than the previous one (for n≥3), which is the cubes sum of one 
or more previous distinct terms of the sequence. 
The Smarandache NCS1 sequence definition: NCS1(n) is the smallest number, 
strictly greater than the previous one, which is NOT the cubes sum of one or 
more previous distinct terms of the sequence. 
These sequences have been randomly chosen form a large number of 
Smarandache sequences [5].  
 
As expected the last fraction  in table 2 converges much slower than the 
previous one. These general continued fractions are, of course, very artificial 
as are the sequences on which they are based. As is often the case in empirical 
number theory it is not the individual figures or numbers which are of interest 
but the general behaviour of numbers and sequences under certain operations. 
In the next section we will carry out some experiments with simple continued 
fractions. 
 
4. Experiments with Simple Continued Fractions 
 
The theory of simple continued fractions is covered in standard textbooks. 
Without proof we will therefore make use of some of this theory to make some 
more calculations. We will first make use of the fact that 
 

There is a one to one correspondence between irrational numbers 
and infinite simple continued fractions. 
 

The approximations given in table 2 expressed as simple continued fractions 
would therefore show how these are related to the corresponding general 
continued fractions. 
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Table 2. Calculation of general continued fractions 
Q R n ∆n Cn (dec.form) Cn (fraction) 

S1 S1 18 -9⋅10-8 1.6180339 
 

4181
6765  

S2 S1 13 8⋅10-8 1.3660254 
5822
7953  

S2 S3 22 -9⋅10-8 1.8228756 
769472267

1402652240  

S4 S1 2 -7⋅10-6 1.04761 
6742
7063  

  3 5⋅10-12 1.04761198457 
29132203
30519245  

  4 -2⋅10-20 1.047611984579
4017019 9051582490405

7081657835914  

S4 S5 2 -1⋅10-3 1.082 
499
540  

  4 -7⋅10-10 1.082166760 
7619638429
8245719435  

  6 -1⋅10-19 1.082166760514
16702768 963328840283871304330

444589150004189396866  

S5 S1 2 -7⋅10-6 1.04761 
6742
7063  

  3 5⋅10-12 1.04761198457 
29132203
30519245  

  4 -2⋅10-20 1.047611984579
40170194 9051582490405

7081657835914  

S5 S4 2 -8⋅10-5 1.0475 
2251
2358  

  3 7⋅10-9 1.04753443 
2431858
2547455  

  5 1⋅10-20 1.047534436632
36268392 11555615762461041

32092226036376380  

CS1 NCS
1 

6 -1⋅10-7 1.540889 
893153

1376250  

  7 3⋅10-12 1.54088941088 
916399373

1412070090  

  9 -1⋅10-20 1.540889410887
88795255 997432449545935

261903774479394  

NCS
1 

CS1 16 -5⋅10-5 0.6419 
061008468766935832
660175395627913126  
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Table 3. Some general continued fractions converted to simple continued 
fractions 

 
Q R Cn (dec.form) Cn (Simple continued 

fraction sequence) 
S4 S5 1.08216676051416702768 

(corresponding to 6 
terms) 

1,12,5,1,6,1,1,1,48,7,2,1,2
0,2,1,5,1,2,1,1,9,1,1,10,1,
1,7,1,3,1,7, 
2,1,3,31,1,2,6,38,2 
(39 terms) 

S5 S4 1.04753443663236268392 
(corresponding to 5 
terms)  

1,21,26,1,3,26,10,4,4,19,1,
2,2,1,8,8,1,2,3,1, 
10,1,2,1,2,3,1,4,1,8 (29 
terms) 

CS1 NCS1 1.54088941088788795255 
(corresponding to 9 
terms) 

1,1,15,1,1,1,1,2,4,17,1,1,3
,13,4,2,2,2,5,1,6,2, 
2,9,2,15,1,51 
(28 terms) 

 
These sequences show no special regularities. As can be seen from table 3 the 
number of terms required to reach 20 decimals is much larger than for the 
corresponding general continued fractions.  
 
A number of  Smarandache periodic sequences were explored in the author’s 
book Computer Analysis of Number Sequences [6]. An interesting property of 
simple continued fractions is that 
 

A periodic continued fraction is a quadratic surd, i.e. an irrational 
root of a quadratic equation with integral coefficients. 

 
In terms of  An and Bn, which for simple continued fractions are defined 
through 
 
 A0=q0, A1=q0q1+1, An=qnAn-1+An-2    
        
   
(15) B0=1, B1=q1,  Bn=qnBn-1+Bn-2                      
 
the quadratic surd is found from the quadratic equation 
 
(16) Bnx2+(Bn-1-An)x-An-1=0                       
 
where n is the index of the last term in the periodic sequence. The relevant 
quadratic surd is 
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(17) 
n

n1n1nn
2

1n
2
n1nn

B2
BA4BA2BABA

x −−−− −−++−
=                       

 
An example has been chosen from each of the following types of Smarandache 
periodic sequences: 
 
1. The Smarandache two-digit periodic sequence: 
 
Definition: Let Nk be an integer of at most two digits. Nk’ is defined through 

the reverse of Nk if Nk is a two digit integer 
    Nk’ =  

Nk⋅10 if Nk is a one digit integer 
Nk+1 is then determined by 
     Nk+1=Nk-Nk’ 
The sequence is initiated by an arbitrary two digit integer N1 with unequal 
digits. 
 
One such sequence is Q={9, 81, 63, 27, 45}. The corresponding quadratic 
equation is 
 6210109x2-55829745x-1242703=0 
 
2. The Smarandache Multiplication Periodic Sequence: 
 
Definition: Let c>1 be a fixed integer and N0 and arbitrary positive integer. 
Nk+1 is derived from Nk  by multiplying each digit x of  Nk  by c retaining only 
the last digit of the product cx to become the corresponding digit of  Nk+1. 
 
For c=3 we have the sequence Q={1, 3, 9, 7} with the corresponding quadratic 
equation 
 199x2-235x-37=0 
 
3. The Smarandache Mixed Composition Periodic Sequence: 
 
 Definition. Let N0 be a two-digit integer a1⋅10+a0. If  a1+a0<10 then b1= a1+a0  
otherwise b1= a1+a0+1. b0=|a1-a0| . We define N1=b1⋅10+b0. Nk+1 is derived 
from Nk in the same way. 
 
One of these sequences is Q={18, 97, 72, 95, 54, 91} with the quadratic 
equation 
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 3262583515x2-58724288064x-645584400=0 
and the relevant quadratic surd 

 x =
+58724288064 3456967100707577532096

6525167030
 

 
The above experiments were carried out with UBASIC programs. An 
interesting aspect of this was to check the correctness by converting the 
quadratic surd back to the periodic sequence. 
 
There are many interesting calculations to carry out in this area. However, this 
study will finish by this equality between a general continued fraction 
convergent and a simple continued fraction convergent. 
 

[1,12,123,1234,12345,123456,1234567,1,21,321,4321,54321,654321]= 
[1,12,5,1,6,1,1,1,48,7,2,1,20,2,1,5,1,2,1,1,9,1, 

1,10,1,1,7,1,3,1,7,2,1,3,31,1,2,6,38,2] 
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VII.    Smarandache k-k Additive Relationships 
 
 

Abstract: An empirical study of Smarandache k-k additive relationships and 
related data is tabulated and analyzed. It leads to the conclusion that the 
number of Smarandache 2-2 additive relations is infinite. It is also shown that 
Smarandache k-k relations exist for large values of k. 

 
1. Introduction 
 
We recall the definition of the Smarandache function S(n): 
Definition: S(n) is the smallest integer such that S(n)! is divisible by n. 
 
The sequence of function values starts: 
n: 1 2 3 4 5 6 7 8 9 10 … 
S(n): 0 2 3 4 5 3 7 4 6 5 … 
 
A table of values of S(n) up to n=4800 is found in Vol. 2-3 of the 
Smarandache Function Journal [1]. 
 
2. Smarandache k-k  Additive Relationships 
 
Definition: A sequence of function values S(n), S(n+1)+ … +S(n+2k-1) 
satisfies a k-k additive relationship if 

S(n)+S(n+1)+ …+S(n+k-1)=S(n+k)+S(n+k+1)+ …+S(n+2k-1) 
or 

∑∑
−

=

−

=

+=+
1k2

kj

1k

0j

)jn(S)jn(S  

 
A general definition of  Smarandache p-q  relationships is given by M. Bencze 
in Vol. 11 of the Smarandache Notions Journal [2]. Bencze gives the following  
examples of Smarandache 2-2 additive relationships: 
S(n)+S(n+1)=S(n+2)+S(n+3) 
S(6)+S(7)=S(8)+S(9), 3+7=4+6; 
S(7)+S(8)=S(9)+S(10), 7+4=6+5; 
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S(28)+S(29)=S(30)+S(31), 7+29=5+31. 
He asks for others and  questions whether there is a finite or infinite number of 
them. Actually the fourth one is quite far off: 
S(114)+S(115)=S(116)+S(117), 19+23=29+13; 
The fifth one is even further away: 
S(1720)+S(1721)=S(1722)+S(1723), 43+1721=41+1723. 
It is interesting to note that this solution is composed to two pairs of prime 
twins (1721,1723) and (43,41), - one ascending and one descending pair. This 
is also the case with the third solution found by Bencze.  
One example of a Smarandache 3-3 additive relationship is given in the above 
mentioned article: 
S(5)+S(6)+S(7)=S(8)+S(9)+S(10), 5+3+7=4+6+5. 
Also in this case the next solution is far away: 
S(5182)+S(5183)+S(5184)= S(5185)+S(5186)+S(5187), 2591+73+9= 61+ 
2593+19. 
To throw some light on these types of relationships an online program for 
calculation of S(n) [3] was used to tabulate Smarandache k-k additive 
relationships. Initially the following search limits were set: n≤107; 2≤k≤26. For 
k=2 the search was extended to n≤108. The number of solutions m found in 
each case is given in table 1 and is displayed graphically in diagram 1 for 
3≤k≤26. Numerical results for k≤6 are presented in tables 4 –8, limited 
because of space requirements. 
 

Table 1. The number m of Smarandache k-k additive solutions for n<107. 
 

k 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

m 158 43 20 8 8 11 5 8 6 5 2 5 7 2 4 8 1 3 4 1 4 6 2 3 2 

 
The first surprising observation - at least to the author of these lines - is that 
the number of solutions does not drop off radically as we increase k. In fact 
there are as many 23-23 additive relationships as there are have 10-10 additive 
relationships and more than the number of 8-8 relations in the search area 
n<107. The explanation obviously lies in the distribution of the Smarandache 
function values, which up n=32000 is displayed in numerical form on page 56 
of the Smarandache Function Journal, vol. 2-3 [1]. This study has been 
extended to n≤107. The result is shown in table 2 and graphically displayed in 
diagram 2 where the number of values z of S(n) in the intervals 
500000y+1≤S(n)≤500000(y+1) is represented for each interval 
500000x+1≤n≤500000(x+1) for y=0,1,2,…,18 and x=0,1,2,…,18.The fact  
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Diagram 1. The number m of Smarandache k-k additive relationships for n<107 for 
3≤k≤26. 

 
that S(p)=p for p prime manifests itself in the line of isolated bars sticking up 
along the diagonal of the base of the diagram. The next line, which has a 
gradient = 0.5 ,corresponds to the fact that S(2p)=p. Of course, also the blank 
squares in the base of the diagram would be filled for n sufficiently large. For 
the most part, however, the values of S(n) are small compared to n. This 
corresponds to the large wall running at the back of the diagram. A certain 
value of S(n) may be repeated a great many times in a given interval. For 
n<107 82% of all values of n correspond to values of S(n) which are smaller 
than 500000.  It is the occurrence of a great number of values of S(n) which 
are small compared to n that facilitates the occurrence of  equal sums of 
function values when sequences of consecutive values of n are considered. If 
this argument is as important as I think it is then chances are good that it might 
be possible to find, say, a Smarandache 50-50 additive relationship. I tried it - 
there are five of them, see table 9. 
Of the 158 solutions to the 2-2 additive relationships for n<107 22 are 
composed of pairs of prime twins. The first of these are marked by * in table 3. 
Of course there must be one ascending and one descending pair, as in 

9369317+199=9369319+197 
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A closer look at the 2-2 additive relationships reveals that only the first two 
contain composite numbers. 
 
Question 1: For a given prime twin pair (p,p+2) what are the chances that p+1 
has a prime factor 2q ≠  such that q+2 is a factor of p-1 or q-2 a factor of p+3? 
Question 2: What percentage of such prime twin pairs satisfy the Smarandache 
2-2 additive relationship? 
Question 3: Are all the Smarandache 2-2 additive relationships for n>7 entirely 
composed of primes? 
 
To elucidate these questions a bit further this empirical study was extended in 
the following directions. 
 
1.  All Smarandache 2-2 additive relations up to 108 were calculated. There 

are 481 of which 65 are formed by pairs of prime twins. 
2.  All Smarandache function values involved in these 2-2 additive 

relationships for 7<n≤108  were prime tested. They are all primes. 
3.  An analysis of how many of the Smarandache function values for n<108 

are primes, even composite numbers or odd composite numbers 
respectively was carried out. 

 
The results of this extended search are summarized by intervals in table 3 from 
which we can make the following observations. The number of composite 
values of S(n), even as well as odd, are relatively few and decreasing. In the 
last interval (table 3) there are only 1996 odd composite values. Even so we 
know that there are infinitely many composite values of S(n), examples 
S(p2)=2p, S(p3)=3p for infinitely may primes p. Nevertheless the scarcity of 
composite values of S(n) explains why all the 2-2 additive relations examined 
for n>7 are composite. 
The number of 2-2 additive relations is of the order of 0.1 % of the number of 
prime twins. The 2-2 additive relations formed by pairs of prime twins is about 
13.5% of the prime twins in the respective intervals. 
Although one has to remember that we are still only “surfing on the ocean of 
numbers” the following conjecture seems safe to make: 



 63 

y/x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Sum 

19                   31089 31089

18                  31370  31370

17                 31342   31342

16                31516    31516

15               31613     31613

14              31891      31891

13             31908       31908

12            32049        32049

11           32287         32287

10          32565         16271 65130

9         32802        16437 16365  65604

8        32996       16567 16429    65992

7       33334      16761 16573     11153 88971

6      33744     16921 16823    11328 11250 11166  101232

5     34139    17148 16991   11470 11350 11319  8588 8560 8497 136556

4    34778   17453 17325  11641 11604 11533 8730 8723 8683 15614 7014 6931 12788 185531

3   35657  17971 17686 12033 11852 20793 8950 16060 16066 13102 13119 18125 11059 15515 15488 13592 270551

2  36960 18700 30791 21798 28891 22955 28086 23553 27681 23970 27206 24323 26992 24500 26864 24601 26650 24762 495999

1 499999 463040 445643 434431 426092 419679 414225 409741 405704 402172 399158 396323 393706 391352 389193 387190 385253 383470 381848 8208367

 
Table 2. The number of values z of S(n) in the intervals 500000y+1≤S(n)≤500000(y+1)  is represented for  

each interval 500000x+1≤n≤500000(x+1) for y=0,1,2,…,18  and x=0,1,2,…,18. 
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Diagram 2. The distribution of S(n) for n<107. 
 
Conjecture: The number of Smarandache 2-2 additive relationships is infinite. 
 
What about k>2? Do k-k additive relations exist for all k? If not - which is the 
largest possible value of k? When they exist, is the number of them infinite or 
not? 
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Table 3. Comparison between 2-2 additive relations and other relevant data. 
 

# of → 
Interval  

prime twins k-k  relations formed by 
twin pairs 

S.function 
primes 

S.function 
even values 

S.function 
comp values 

n ≤ 107  58980 158 22 9932747 59037 8215 

107 2 107< ≤ ⋅n  48427 59 9 9957779 38023 4198 

2 107 3 107⋅ < ≤ ⋅n  45485 37 4 9963674 32922 3404 

3 107 4 107⋅ < ≤ ⋅n  43861 42 4 9967080 29960 2960 

4 107 5 107⋅ < ≤ ⋅n  42348 40 5 9969366 27962 2672 

5 10 6 107 7⋅ < ≤ ⋅n  41547 30 2 9971043 26473 2484 

6 10 7 107 7⋅ < ≤ ⋅n  40908 28 4 9972374 25303 2323 

7 10 8 107 7⋅ < ≤ ⋅n  39984 41 7 9973482 24327 2191 

8 10 9 107 7⋅ < ≤ ⋅n  39640 20 4 9974414 23521 2065 

9 10 107 8⋅ < ≤n  39222 26 4 9975179 22825 1996 
Total 440402 481 65 99657140 310355 32508 

 
Table 4.The 20 first Smarandache function: 2-2 additive 

quadruplets 

 
# n S(n) S(n+1) S(n+2) S(n+3)  
1 6 3 7 4 6  
2 7 7 4 6 5  
3 28 7 29 5 31 * 
4 114 19 23 29 13  
5 1720 43 1721 41 1723 * 
6 3538 61 3539 59 3541 * 
7 4313 227 719 863 83  
8 8474 223 113 163 173  
9 10300 103 10301 101 10303 * 
10 13052 251 229 107 373  
11 15417 571 593 907 257  
12 15688 53 541 523 71  
13 19902 107 1531 311 1327  
14 22194 137 193 179 151  
15 22503 577 97 643 31  
16 24822 197 241 107 331  
17 26413 433 281 587 127  
18 56349 2087 23 1523 587  
19 70964 157 83 137 103  
20 75601 173 367 79 461  
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Table 5. The 20 first Smarandache function: 3-3 additive sextets 
 

# n S(n) S(n+1) S(n+2) S(n+3) S(n+4) S(n+5) 

1 5 5 3 7 4 6 5 

2 5182 2591 73 9 61 2593 19 

3 9855 73 11 9857 53 9859 29 

4 10428 79 10429 149 61 163 10433 

5 28373 1669 4729 227 3547 1051 2027 

6 32589 71 3259 109 97 2963 379 

7 83323 859 563 101 683 809 31 

8 106488 29 1283 463 461 337 977 

9 113409 12601 1031 127 727 4931 8101 

10 146572 36643 20939 479 41 9161 48859 

11 257474 347 3433 1091 263 3301 1307 

12 294742 569 1223 12281 233 8669 5171 

13 448137 101 224069 448139 97 448141 224071 

14 453250 37 14621 353 1613 13331 67 

15 465447 1373 797 6947 107 59 8951 

16 831096 97 4643 21871 617 8311 17683 

17 1164960 809 1021 1669 673 1283 1543 

18 1279039 1279039 571 691 347 1279043 911 

19 1348296 56179 2447 499 49937 139 9049 

20 1428620 1171 2393 2389 1607 3307 1039 

 
Table 6.The 9 first Smarandache function: 4-4 additive octets  

 
# n S(n) S(n+1) S(n+2) S(n+3) S(n+4) S(n+5) S(n+6) S(n+7) 

1 23 23 4 10 13 9 7 29 5 

2 643 643 23 43 19 647 9 59 13 

3 10409 1487 347 359 137 89 127 2083 31 

4 44418 673 1033 2221 67 167 1433 617 1777 

5 163329 54443 16333 23333 349 701 81667 10889 1201 

6 279577 279577 10753 2273 1997 3539 2741 279583 8737 

7 323294 1483 3079 10103 1913 5987 10429 61 101 

8 368680 709 2903 1429 1699 1511 2731 2221 277 

9 857434 8089 769 71453 353 11587 2887 233 65957 
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Table 7. The 5 first Smarandache function: 5-5 additive relationships 
 
# n S(n+1) S(n+1) S(n) S(n+1) S(n+2) S(n+3) S(n+4) S(n+5) S(n+6) S(n+7) 

1 13 13 7 5 6 17 6 19 5 7 11 

2 570 19 571 13 191 41 23 8 577 34 193 

3 1230 41 1231 11 137 617 19 103 1237 619 59 

4 392152 49019 392153 9337 733 79 43573 15083 392159 43 463 

5 1984525 487 992263 2371 47 1091 797 701 53 2441 992267 

 
Table 8. Smarandache function: 6-6 additive relationships for n<107 

 
# n S(n) S(n+1) S(n+2) S(n+3) S(n+4) S(n+5) S(n+6) S(n+7) S(n+8) S(n+9) S(n+10) S(n+11) 

1 14 7 5 6 17 6 19 5 7 11 23 4 10 

2 158 79 53 8 23 9 163 41 11 83 167 7 26 

3 20873 20873 71 167 307 6959 73 20879 29 157 197 6961 227 

4 21633 7211 373 4327 601 281 349 7213 541 67 3607 941 773 

5 103515 103 3697 1697 71 7963 647 3137 271 643 8627 101 1399 

6 132899 10223 443 383 863 14767 449 1399 1303 4583 223 6329 13291 

7 368177 661 61363 353 449 3719 9689 1301 46 73637 34 107 1109 

8 5559373 5559373 1447 593 15107 3253 643 3323 1193 10837 293 5559383 5387 

 
Table 9. Examples of Smarandache function 50-50 additive relations 

 
 n= 1876  16539 n= 58631 n= 109606 n= 2385965 

S(n)/S(n+51) 67 107 149 313 58631 101 7829 1523 1087 7823 
… 48 others …           

S(n+49)/S(n+100) 11 79 29 59 163 839 241 593 727 757 
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VIII.   Smarandache 2-2 subtractive relationships 
 

Abstract: An analysis of the number of relations of the type S(n)-
S(n+1)=S(n+2)-S(n+3) for n<108 where S(n) is the Smarandache function 
leads to the plausible conclusion that there are infinitely many of those. 
 
1. Calculations and Results 
 
A Smarandache 2-2 subtractive relationship is defined by 
 S(n)-S(n+1)=S(n+2)-S(n+3) 
where S(n) denotes the Smarandache function. In an article by Bencze [1] 
three 2-2 subtractive relationships are given 
 S(1)-S(2)=S(3)-S(4),  1-2=3-4 
 S(2)-S(3)=S(4)-S(5),  2-3=4-5 
 S(49)-S(50)=S(51)-S(52),   14-10=17-13 
The first of these solutions must be rejected since S(1)=0 not 1. The question 
raised in the article is “How many quadruplets verify a Smarandache 2-2 
subtractive relationship?” 
 
As in the case of Smarandache 2-2 additive relationships a search was carried 
for n≤108. In all 442 solutions were found. The first 12 of these are shown in 
table 1. 

Table 1. The 12  first 2-2 subtractive relations. 
 

# n S(n) S(n+1) S(n+3) S(n+4) 
1 2 2 3 4 5 
2 40 5 41 7 43 
3 49 14 10 17 13 
4 107 107 9 109 11 
5 2315 463 193 331 61 
6 3913 43 103 29 89 
7 4157 4157 11 4159 13 
8 4170 139 97 149 107 
9 11344 709 2269 61 1621 
10 11604 967 211 829 73 
11 11968 17 11969 19 11971 
12 13244 43 883 179 1019 
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As in the case of  2-2 additive relations there is a great number of solutions 
formed by pairs of prime twins. There are in all 51 subtractive relations 
formed by pairs of prime twins for n<108. 
 

Table 2. The 15 first subtractive relations formed by pairs of prime twins. 
 

# n S(n) S(n+1) S(n+3) S(n+4) 
1 40 5 41 7 43 
2 4157 4157 11 4159 13 
3 11968 17 11969 19 11971 
4 19180 137 19181 139 19183 
5 666647 666647 197 666649 199 
6 895157 895157 137 895159 139 
7 1695789 347 101 349 103 
8 1995526 71 1995527 73 1995529 
9 2007880 101 2007881 103 2007883 
10 2272547 2272547 149 2272549 151 
11 3198730 1787 3198731 1789 3198733 
12 3483088 227 3483089 229 3483091 
13 3546268 431 3546269 433 3546271 
14 4194917 4194917 197 4194919 199 
15 4503640 179 4503641 181 4503643 

 
In the case of 2-2 additive relations only 2 solutions contained composite 
numbers and these were the first two. This was explained in terms of the 
distribution Smarandache functions values. For the same reason 2-2 
subtractive relations containing composite numbers are also scarce, but there 
are 6 of them for n<108. These are shown in table 3. 
 
It is interesting to note that solutions #3, #5 and #6 have in common with the 
solutions formed by pairs of prime twins that they are formed by pairs of 
numbers whose difference is 2. Finally table 4 shows a tabular comparison 
between the solutions to the 2-2 additive and 2-2 subtractive solutions for 
n<108. The great similarity between these results leads the conclusion: If the 
conjecture that there are infinitely many 2-2 additive relations is valid then we 
also have the following conjecture: 
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Table 3.  All 2-2 subtractive relations <108 containing composite numbers. 
 

# n S(n) S(n+1) S(n+3) S(n+4) 
1 2 2 3 4 5 
2 49 14 10 17 13 
3 107 107 9 109 11 
4 530452 202 166 419 383 
5 41839378 111 41839379 113 41839381 
6 48506848 57 48506849 59 48506851 

 
 

Table 4. Comparison between 2-2 additive and 2-2 subtractive relations. 
 
 Number of 2-2 additive 

solutions 
Number of 2-2 subtractive 

solutions 
Total number of solutions 
 

481 442 

Number formed by pairs of 
prime twins 

65 51 

Number containing 
composite numbers  

2 6 

 
Conjecture: There are infinitely many Smarandache 2-2 subtractive 
relationships. 
 
The tables in this presentation have been abbreviated. For more extensive results see 2]. 
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IX.   Concatenation Problems 

 
 
Abstract: This study  has been inspired by questions asked by Charles 
Ashbacher in the Journal of Recreational Mathematics, vol. 29.2. It concerns 
the Smarandache Deconstructive Sequence. This sequence is a special case of 
a more general concatenation and sequencing procedure which is the subject of 
this study. Answers are given to the above questions. The properties of this 
kind of sequences are studied with particular emphasis on the divisibility of 
their terms by primes. 

 
 
1. Introduction 
 
In this article the concatenation of a and b is expressed by a_b or simply ab 
when there can be no misunderstanding. Multiple concatenations like 
abcabcabc will be expressed by 3(abc). 
We consider n different elements (or n objects) arranged (concatenated) one 
after the other in the following way to form: 

A=a1a2 … an. 
Infinitely many objects A, which will be referred to as cycles,  are 
concatenated to form the chain: 

B= a1a2 … an a1a2 … an a1a2 … an… 
B contains identical elements which are at equidistant positions in the chain. 
Let’s write B as 
 B=b1b2b3, … bk…..  where bk=aj when j≡k (mod n), 1≤j≤n. 
An infinite sequence C1, C2, C3, … Ck, …. is formed by sequentially selecting 
1, 2, 3, …k, … elements from the chain B:  
 C1=b1=a1 

 C2=b2b3=a2a3 

 C3=b4b5b6=a4a5a6 (if n≤6, if n=5 we would have C3=a4a5a1) 
The number of elements from the chain B used to form first k-1 terms of the 
sequence C is 1+2+3+ … +k-1=(k-1)k/2. Hence 
  

2
)1k(k2

2
k)1k(1

2
k)1k(k bbbC +

+
−

+
−= L   
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However, what is interesting to see is how Ck is expressed in terms of a1,…,an. 
For sufficiently large values of k Ck will be composed of three parts: 
 
The first part F(k)=au…an 
The middle part  M(k)=AA…A The number of concatenated As depends on k. 
The last part L(k)=a1a2…aw 
Hence 
 
(1) Ck=F(k)M(k)L(k).                
        
The number of elements used to form C1, C2, … Ck-1 is (k-1)k/2. Since the 
number of elements in A is finite there will be infinitely many terms Ck which 
have the same first element au. u can be determined from 

)n(modu1
2

k)1k(
≡+

− . There can be at most n2 different combinations to form 

F(k) and L(k). Let Cj and Ci be two different terms for which F(i)=F(j) and 
L(i)=L(j). They will then be separated by a number m of complete cycles of 
length n, i.e. 

 mn
2

i)1i(
2

j)1j(
=

−
−

−   

Let’s write j=i+p and see if p exists so that there is a solution for p which is 
independent of i. 
 
 (i+p-1)(i+p)-(i-1)i=2mn 
 i2+2ip+p2-i-p-i2+i=2mn 
 2ip+p2-p=2mn 
 p2+p(2i-1)=2mn 

If n is odd we will put p=n to obtain n+2i-1=2m, or 
2

1i2nm −+
= . If n is even 

we  put p=2n to obtain m=2n+2i-1. From this we see that the terms Ck have a 
peculiar periodic behaviour. The periodicity is p=n for odd n and p=2n for 
even n. Let’s illustrate this for n=4 and n=5 for which the periodicity will be 
p=8 and p=5 respectively. It is seen from table 1 that the periodicity starts for 
i=3. 
 
Numerals are chosen as elements to illustrate the case n=5. Let’s write 
i=s+k+pj , where s is the index of the term preceding the first periodical term, 
k=1,2,…,p is the index of members of the period and j is the number of the 
period (for convenience the first period is numbered 0). The first part of  Ci is 
denoted B(k) and the last part E(k). Ci is now given by the expression below  
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where q is the number of cycles concatenated between the first part B(k) and 
the last part E(k). 
 
(2) Ci=B(k)_qA_E(k),  where k is determined from i-s≡k (mod p) 
         

Table 1. n=4. A=abcd. B= abcdabcdabcdabcdabcd…… 
 

i CI Period # F(i) M(i) L(i) 
1 a  a   
2 bc  bc   
3 dab 1 d  ab 
4 cdab 1 cd  ab 
5 cdabc 1 cd  abc 
6 dabcda 1 d abcd a 
7 bcdabcd 1 bcd abcd  
8 abcdabcd 1  2(abcd)  
9 abcdabcda 1  2(abcd) a 

10 bcdabcdabc 1 bcd abcd abc 
11 dabcdabcdab 2 d 2(abcd) ab 
12 cdabcdabcdab 2 cd 2(abcd) ab 
13 cdabcdabcdabc 2 cd 2(abcd) abc 
14 dabcdabcdabcda 2 d 3(abcd)  a 
15 bcdabcdabcdabcd 2 bcd 3(abcd)  
16 abcdabcdabcdabcd 2  4(abcd)  
17 abcdabcdabcdabcda 2  4(abcd) a 
18 bcdabcdabcdabcdabc 2 bcd 3(abcd) abc 
19 dabcdabcdabcdabcdab 3 d 4(abcd) ab 
20 cdabcdabcdabcdabcdab 3 cd 4(abcd) ab 

 
Table 2. n=5. A=12345. B= 123451234512345……… 

 
I CI k q F(i)/B(k) M(I) L(i)/E(k) 
1 1   1   
s=2 23   23   
 j=0      
3 451 1 0 45  1 
4 2345 2 0 2345   
5 12345 3 1  12345  
6 123451 4 1  12345 1 
7 2345123 5 0 2345  123 
 j=1      
3+5j 45123451 1 j 45 12345 1 
4+5j 234512345 2 j 2345 12345  
5+5j 1234512345 3 j+1  2(12345)  
6+5j 12345123451 4 j+1  2(12345) 1 
7+5j 234512345123 5 j 2345 12345 123 
 j=2      
3+5j 4512345123451 1 j 45 2(12345) 1 
4+5j 23451234512345 2 j 2345 2(12345)  
…       
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2. The Smarandache Deconstructive Sequence 
 
The Smarandache Deconstructive Sequence of integers [1] is constructed by 
sequentially repeating the digits 1-9 in the following way: 
 
 1,23,456,7891,23456,789123,4567891,23456789,123456789,123456
7891, … 
 
The sequence was studied in a booklet by Kashihara [2] and a number of 
questions on this sequence were posed by Ashbacher [3]. In thinking about 
these questions two observations lead to this study. 
 
1. Why did Smarandache exclude 0 from the integers used to create the 

sequence? After all 0 is indispensable in all arithmetics most of which can 
be done using 0 and 1 only. 

2. The process used to create the Deconstructive Sequence is a process 
which applies to any set of objects as has been shown in the introduction. 

 
The periodicity and the general expression for terms in the “generalized 
deconstructive sequence” shown in the introduction may be the most important 
results of this study. These results will now be used to examine the questions 
raised by Ashbacher. It is worth noting that these divisibility questions are 
dealt with in base 10 although only the nine digits 1,2,3,4,5,6,7,8,9 are used to 
express numbers. In the last part of this article questions on divisibility will be 
posed for a deconstructive sequence generated from A=”0123456789”. 
 
For i>5 (s=5) any term Ci in the sequence is composed by concatenating a first 
part B(k), a number q of cycles A=”123456789” and a last part E(k), where 
i=5+k+9j, k=1,2,…9, j≥0, as expressed in (2) and q=j or j+1 as shown in table 3. 
 
Members of the Smarandache Deconstructive Sequence are now interpreted as 
decimal integers. The factorization of B(k) and  E(k) is shown in table 3. The 
last two columns of this table will be useful later in this article. 
 
Together with the factorization of the cycle A=123456789=32⋅3607⋅3803 it is 
now possible to study some divisibility properties of the sequence. We will 
first find expressions for Ci for each of the 9 values of k. In cases where E(k) 
exists let’s introduce u=1+[log10E(k)]. We also define the function δ(j) so that 
δ(j)=0 for j=0 and δ(j)=1 for j>0. It is possible to construct one algorithm to 
cover all the nine cases but more functions like δ(j) would have to be  
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introduced to distinguish between the numerical values of the strings “” (empty 
string) and “0” which are both evaluated as 0 in computer applications. In 
order to avoid this four formulas are used 
  

Table 3. Factorization of Smarandache Deconstructive Sequence 
 
i k B(k) q E(k) Digit sum 3|Ci ? 
6+9j 1 789=3⋅263 j 123=3⋅41 30+j⋅45 3 
7+9j 2 456789=3⋅43⋅3541 j 1 40+j⋅45 No 
8+9j 3 23456789 j  44+j⋅45 No 
9+9j 4  j+1  (j+1)⋅45 9⋅3z * 
10+9j 5  j+1 1 1+(j+1)⋅45 No 
11+9j 6 23456789 j 123=341 50+j⋅45 No 
12+9j 7 456789=3⋅43⋅3541 j 123456=26⋅3⋅643 60+j⋅45 3 
13+9j 8 789=3⋅263 j+1 1 25+(j+1)⋅45 No 
14+9j 9 23456789 j 123456=26⋅3⋅643 65+j⋅45 No 
*) where z depends on j. 
 
For k=1, 2, 6, 7 and 9: 

(3) C5+k+9j=E(k)+δ(j)⋅A⋅10u⋅∑
−

=

1j

0r

r910 +B(k)⋅109j+u                      

For k=3: 

(4) C5+k+9j=δ(j)⋅A⋅∑
−

=

1j

0r

r910 +B(k)⋅109j                          

For k=4: 

(5) C5+k+9j=A⋅∑
=

j

0r

r910                           

For k=5 and 8: 

(6) C5+k+9j=E(k)+A⋅10u⋅∑
=

j

0r

r910 +B(k)⋅109(j+1)+u            

 
Before dealing with the questions posed by Ashbacher we recall the familiar 
rules: An even number is divisible by 2; a number whose last two digit form a 
number which is divisible by 4 is divisible by 4. In general we have the 
following: 
 
Theorem. Let N be an n-digit integer such that N>2α then N is divisible by 2α 
if and only if the number formed by the α last digits of N is divisible by 2α. 
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Proof. To begin with we note that 
 
 If x divides a and x divides b then x divides (a+b) 

If x divides one but not the other of a and b then x does not divide 
(a+b) 
If x does not divides neither a nor b then x may or may  not divide 
(a+b) 

 
Let’s write the n-digit number in the form a⋅10α+b. We then see from the 
following that a⋅10α  is divisible by 2α. 
 
 10≡0 (mod 2) 
 100 ≡0 (mod 4) 
 1000= 23⋅53≡0 (mod 23) 
 … 
 10α≡0 (mod 2α) 

and then 
 a⋅10α≡0 (mod 2α) independent of a. 
 
Now let b be the number formed by the α last digits of  N we then see from the 
introductory remark that N is divisibe by 2α if and only if the number formed 
by the α last digits is divisibele by 2α. 
 
Question 1. Does every even element of the Smarandache Deconstructive 
Sequence contain at least three instances of the prime 2 as a factor? 
 
Question 2. If we form a sequence from the elements of the Smarandache 
Deconstructive Sequence that end in a 6, do the powers of 2 that divide them 
form a montonically increasing sequence? 
 
These two questions are related and are dealt with together.  From the previous 
analysis we know that all even elements of the Smarandache Deconstructive 
Sequence end in a 6. For i≤ 5 they are: 
 C3=456=57⋅23 
 C5=23456=733⋅25  
For i>5 they are of the forms: 
 C12+9j and C14+9j which both end in …789123456. 
Examining the numbers formed by the 6, 7 and 8 last digits for divisibility by 
26, 27 and 28 respectively we have: 
 123456=26⋅3⋅643 
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 9123456=27⋅149.4673 
 89123456 is not divisible by 28 
From this we conclude that all even Smarandache Deconstructive Sequence 
elements for i≥12 are divisible by 27 and that no elements in the sequence are 
divisible by higher powers of 2 than 7.  
 
Answer to Qn 1. Yes 
Answer to Qn 2. The sequence is monotonically increasing for i≤12. For i≥12 
the powers of 2 that divide even elements remain constant=27. 
 
Question 3. Let x be the largest integer such that 3x|i and y the largest integer 
such that 3y|Ci. Is it true that x is always equal to y? 
 
From table 3 we se that the only elements Ci of the Smarandache 
Deconstructive Sequence which are divisible by powers of 3 correspond to 
i=6+9j, 9+9j, or 12+9j. Furthermore, we see that i=6+9j and C6+9j are divisible 
by 3 no more no less. The same is true for i=12+9j and C12+9j. So the statement 
holds in these cases. 
From the conguences 
 9+9j≡0 (mod 3x) for the index of the element 
and 
 45(1+j)≡0 (mod 3y) for the corresponding element 
we conclude that x=y.  

Answer to Qn 3: The statement is true. It is interesting to note that, for example 
the 729 digit number C729 is divisible by 729. 
 
Question 4. Are there other patterns of divisibility in this sequence? 
 
A search for other patterns would continue by examining divisibility by the 
next lower primes 5, 7, 11, … It is obvious from table 3 and the periodicity of 
the sequence that there are no elements divisible by 5. The algorithms will 
prove very useful. For each value of k the value of Ci depends on j only. The 
divisibilty by a prime p is therefore determined by finding out for which values 

of j and k the congruence Ci≡0 (mod p) holds. We evaluate ∑
−

=

1j

0r

r910 =
110
110

9

j9

−

−  

and introduce G=109-1. We note that G=34⋅37⋅333667. From formulas (3) to 
(6) we now obtain: 
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For k=1,2,6,7 and 9: 
 
(3´) Ci⋅G=10u⋅(δ(j)⋅A+B(k)⋅G)⋅109j+E(k)⋅G-10u⋅δ(j)⋅A                      
For k=3: 
(4´) Ci⋅G=((δ(j)⋅A+B(k)⋅G)⋅109j-δ(j)⋅A                          
For k=4: 
(5´) Ci⋅G=A⋅109j-A             
 For k=5 and 8: 
(6´) Ci⋅G=10u+9(A+B(k)⋅G)⋅109j+E(k)⋅G-10u⋅A                        
 
The divisibility of Ci by a prime p other tha n 3, 37 and 333667 is therefore 
determined by solutions for j to the congruences CiG≡0 (mod p) which are of 
the form  
 
(7) a⋅(109)j+b≡0 (mod p)                          

 
Table 4 shows the results from computer implementation of the congruences. 
The appearance of elements divisible by a prime p is periodic, the periodicity 
is given by j=j1+m⋅d, m=1, 2, 3, … .  The first element divisible by p appears 
for i1 corresponding to j1. In general the terms Ci divisible by p are  

)mdj(9k5 1
C +++  where d is specific to the prime p and m=1, 2, 3,… .We note 
from table 4 that d is either equal to p-1 or a divisor of p-1 except for the case 
p=37 which as we have noted is a factor of A.  Indeed this periodicity follows 
from Euler’s extension of Fermat’s little theorem because if we write (mod p): 
 
 a⋅(109)j+b= a⋅(109)j

1
+md+b≡ a⋅(109)j

1+b for d=p-1 or a divisor of p-1. 
 
Finally we note that the periodicity for p=37 is d=37. 
 
Question: Table 4 indicates some interesting patterns. For instance, the primes 
19, 43 and 53 only divides elements corresponding to k=1, 4 or 7 for j<150 
which was set as an upper limit for this study. Similarly, the primes 7,11, 41, 
73, 79 and 91 only divides elements corresponding to  k=4. Is 5 the only prime 
that cannot divide an element of the Smarandache Deconstructive Sequence? 
 

Table 4. Smarandache Deconstructive Sequence elements divisible by p: 
 

p=7 k 4  p=11 k 4 
d=2 i1 18  d=2 i1 18 

 j1 1   j1 1 
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p=13 k 4 8 9 
d=2 i1 18 22 14 
 j1 1 1 0 
 
p=17 k 1 2 3 4 5 6 7 8 9 
d=16 i1 6 43 44 144 100 101 138 49 95 
 j1 0 4 4 15 10 10 14 4 9 

 
p=19 k 1 4 7 
d=2 i1 15 18 21 
 j1 1 1 1 

 
p=23 k 1 2 3 4 5 6 7 8 9 
d=22 i1 186 196 80 198 118 200 12 184 14 
 j1 20 21 8 21 12 21 0 19 0 

 
p=29 k 1 2 3 4 5 6 7 8 9 
d=28 i1 24 115 197 252 55 137 228 139 113 
 j1 2 12 21 27 5 14 24 14 11 

 
p=31 k 3 4 5 
d=5 i1 26 45 19 
 j1 2 4 1 

 
p=37 k 1 2 3 4 5 6 7 8 9 
d=37 i1 222 124 98 333 235 209 111 13 320 

 j1 24 13 10 36 25 22 11 0 34 
 

p=41 k 4  P=43 1 4 7 
d=5 i1 45  d=7 33 63 30 

 j1 4   3 6 2 
 

p=47 k 1 2 3 4 5 6 7 8 9 
d=46 i1 150 250 368 414 46 164 264 400 14 

 j1 16 27 40 45 4 17 28 43 0 
 

p=53 k 1 4 7 
d=13 i1 24 117 12 

 j1 2 12 9 
 

p=59 k 1 3 5 6 7 8 9 
d=58 i1 267 413 109 11 255 256 266 

 j1 29 45 11 0 27 27 28 
 

p=61 k 2 4 6  p=67 k 4 8 9 
d=20 i1 79 180 101  d=11 i1 99 67 32 

 j1 8 19 10   j1 10 6 2 
 

p=71 k 1 3 4 5 7 
d=35 i1 114 53 315 262 201 

 j1 12 5 34 28 21 
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p=73 k 4  p=79 k 4 
d=8 i1 72  d=13 i1 117 

 j1 7   j1 12 
 

p=83 k 1 2 4 6 7 8 9 
d=41 i1 348 133 369 236 21 112 257 

 j1 38 14 40 25 1 11 27 
 

p=89 k 2 4 6 
d=44 i1 97 396 299 

 j1 10 43 32 
 

p=97 k 1 2 3 4 5 6 7 8 9 
d=32 i1 87 115 107 288 181 173 201 202 86 

 j1 9 12 11 31 19 18 21 21 8 
 
 
3. A Deconstructive Sequence generated by the cycle A=0123456789. 
 
Instead of sequentially repeating the digits 1-9 as in the case of the 
Smarandache Deconstructive Sequence we will use the digits 0-9 to form the 
corresponding sequence: 
 
0,12,345,6789,01234,567890,1234567,89012345,678901234,678901234,5678
9012345,678901234567, … 
 
In this case the cycle has n=10 elements. As we have seen in the introduction 
the sequence then has a period =2n=20. The periodicity starts for i=8. Table 5 
shows how for i>7  any term Ci in the sequence is composed by concatenating 
a first part B(k), a number q of cycles A=”0123456789” and a last part E(k), 
where i=7+k+20j, k=1,2,…20, j≥0, as expressed in (2) and q=2j, 2j+1 or 2j+2. 
In the analysis of the sequence it is important to distinguish between the cases 
where E(k)=0, k=6,11,14,19 and cases where E(k) does not exist, i.e. 
k=8,12,13,14. In order to cope with this problem we introduce a function u(k) 
which will at the same time replace the functions δ(j) and u=1+[log10E(k)] 
used previously.  u(k) is defined as shown in table 5. It is now possible to 
express Ci  in a single formula 
 

(8)  Ci= )k(uj2)k(q10
1j2)k(q

0r

r10
j20k7 10))10()k(B)10(A()k(EC ⋅⋅+⋅+= +

−+

=
++ ∑                  

  
The formula for Ci was implemented modulus prime numbers less then 100. 
The result is shown in table 6 for p≤41. Again we note that the divisibility by a  
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prime p is periodic with a period d which is equal to p-1 or a divisor of p-1, 
except of  p=11 and p=41 which are factors of 1010-1.  The cases p=3 and 5 
have very simple answers and are not included in table 6. 
 

Table 5. n=10, A=0123456789 
 

i k B(k) q E(k) u(k) 
8+20j 1 89 2j 012345=3⋅5⋅823 6 
9+20j 2 6789=3⋅31⋅73 2j 01234=2⋅617 5 
10+20j 3 56789=109⋅521 2j 01234=2⋅617 5 
11+20j 4 56789=109⋅521 2j 012345=3⋅5⋅823 6 
12+20j 5 6789=3⋅31⋅73 2j 01234567=127⋅9721 8 
13+20j 6 89 2j+1 0 1 
14+20j 7 123456789=32⋅3607⋅3803 2j 01234=2⋅617 5 
15+20j 8 56789=109⋅521 2j+1  0 
16+20j 9  2j+1 012345=3⋅5⋅823 6 
17+20j 10 6789=3⋅31⋅73 2j+1 012=22⋅3 3 
18+20j 11 3456789=3⋅7⋅97⋅1697 2j+1 0 1 
19+20j 12 123456789=32⋅3607⋅3803 2j+1  0 
20+20j 13  2j+2  0 
21+20j 14  2j+2 0 1 
22+20j 15 123456789=32⋅3607⋅3803 2j+1 012=22⋅3 3 
23+20j 16 3456789=3⋅7⋅97⋅1697 2j+1 012345=3⋅5⋅823 6 
24+20j 17 6789=3⋅31⋅73 2j+2  0 
25+ 20j 18  2j+2 01234=2⋅617 5 
26+20j 19 56789=109⋅521 2j+2 0 1 
27+20j 20 123456789=32⋅3607⋅3803 2j+1 01234567=127⋅9721 8 
 

Table 6. Divisibility of the 10-cycle destructive sequence by primes 7≤p≤41 
 

p=7 k 3 6 7 8 11 12 13 14 15 18 19 20 
d=3 i1 30 13 14 15 38 59 60 61 22 45 46 47 
 j1 1 0 0 0 1 2 2 2 0 1 1 1 
 
 
p=11 k 1 2 3 4 5 6 7 8 9 10 

=11 i1 88 9 110 211 132 133 74 35 176 137 
 j1 4 0 5 10 6 6 3 1 8 6 
 k 11 12 13 14 15 16 17 18 19 20 
 i1 18 219 220 221 202 83 44 185 146 87 
 j1 0 10 10 10 9 3 1 8 6 3 

 
p=13 k 2 3 4 12 13 14 
d=3 i1 49 30 11 59 60 61 

 j1 2 1 0 2 2 2 
 

 
p=17 k 1 5 10 12 13 14 16 
d=4 i1 48 32 37 79 80 81 43 

 j1 2 1 1 3 3 3 1 
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p=19 k 1 2 3 4 5 10 12 13 14 16 
d=9 i1 128 149 90 31 52 117 179 180 181 63 

 j1 6 7 4 1 2 5 8 8 8 2 
 

 
p=23 k 1 2 3 4 5 10 12 13 14 16 
d=11 i1 168 149 110 71 52 217 219 220 221 223 

 j1 8 7 5 3 2 10 10 10 10 10 
 

p=29 k 2 4 10 12 13 14 16 
d=7 i1 129 11 97 139 140 141 43 

 j1 6 0 4 6 6 6 1 
 

p=31 k 3 9 12 13 14 17 
d=3 i1 30 56 59 60 61 64 

 j1 1 2 2 2 2 2 
 
p=37 k 2 3 4 12 13 14 
d=3 i1 9 30 51 59 60 61 

 j1 0 1 2 2 2 2 
 
p=41 k 1 2 3 4 5 6 7 8 9 10 
d=41 i1 788 589 410 231 32 353 614 615 436 117 

 j1 39 29 20 11 1 17 30 30 21 5 
 k 11 12 13 14 15 16 17 18 19 20 
 i1 678 819 820 821 142 703 384 205 206 467 
 j1 33 40 40 40 6 34 10 9 9 22 
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X.   On a Deconcatenation Problem 
 
 
Abstract: In a recent study of the Primality of the Smarandache Symmetric 
Sequences Sabin and Tatiana Tabirca [1] observed a very high frequency of 
the prime factor 333667 in the factorization of the terms of the second order 
sequence. The question if this primfactor occurs periodically was raised. The 
odd behaviour of this and a few other primefactors of this sequence will be 
explained and details of the periodic occurance of this and of several other 
prime factors will be given. 
 
1. Definition 
 
The nth term of the Smarandache symmetric sequence of the second order is 
defined by S(n)=123…n_n…321 which is to be understood as a concatenation4 
of the first n natural numbers concatenated with a concatenation in reverse 
order of the n first natural numbers. 
 
2. Factorization and Patterns of Divisibility 

 
The first five terms of the sequence are: 11, 1221, 123321, 12344321, 
1234554321.  
The number of digits D(n) of S(n) is growing rapidly. It can be found from the 
formula: 

(1) 
9

)110(2)1n(k2)n(D
k −

−+=  for n in the interval 10k-1≤n<10k-1         

In order to study the repeated occurrance of certain primes S(n) was calculated 
and partially factorized. The result is shown for n≤100 in table 1.  
 

                                                 
4 In this article the concatenation of a and b is written a_b. Multiplication ab is often made explicit 
by writing a.b. When there is no reason for misunderstanding the signs “_” and “.” are omitted. 
Several tables contain prime factorizations. Prime factors are given in ascending order, 
multiplication is expressed by “.” and the last factor is followed by “..” if the factorization is 
incomplete or by Fxxx indicating the number of digits of the last factor. To avoid typing errors all 
tables are electronically transferred from the calculation program, which is DOS-based to the 
wordprocessor. All editing has been done either with a spreadsheet program or directly with the 
text editor. Full page tables have been placed at the end of the article. A non-proportional font has 
been used to illustrate the placement of digits when this has been found useful. 
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Table 1. Prime factors of S(n) which are less than 108 

 
n Prime factors of S(n) n Prime factors of S(n) 

1 11 51 3.37.1847.F180 
2 3.11.37 52 F190 
3 3.11.37.101 53 33.11.43.26539.17341993.F178 
4 11.41.101.271 54 33.37.41.151.271.347.463.9091.333667.F174 
5 3.7.11.13.37.41.271 55 67.F200 
6 3.7.11.13.37.239.4649 56 3.11.F204 
7 11.73.101.137.239.4649 57 3.31.37.F206 
8 32.11.37.73.101.137.333667 58 227.9007.20903089.F200 
9 32.11.37.41.271.9091.333667 59 3.41.97.271.9091.F207 
10 F22 60 3.37.3368803.F213 
11 3.43.97.548687.F16 61 91719497.F218 
12 3.11.31.37.61.92869187.F15 62 32.1693.F225 
13 109.3391.3631.F24 63 32.37.305603.333667.9136499.F213 
14 3.41.271.9091.290971.F24 64 11.41.271.9091.F229 
15 3.37.661.F37 65 3.839.F238 
16 F46 66 3.37.43.F242 
17 3.F49 67 112.109.467.3023.4755497.F233 
18 32.37.1301.333667.6038161.87958883.F28 68 3.97.5843.F247 
19 41.271.9091.F50 69 3.37.41.271.787.9091.716549.19208653.F232 
20 3.11.97.128819.F53 70 F262 
21 3.37.983.F61 71 3.F265 
22 67.773.F65 72 32.31.37.61.163.333667.77696693.F248 
23 3.11.7691.F68 73 379.323201.F266 
24 3.37.41.43.271.9091.165857.F61 74 3.412.432.179.271.9091.8912921.F255 
25 227.2287.33871.611999.F66 75 3.11.37.443.F276 
26 33.163.5711.68432503.F70 76 1109.F283 
27 33.31.37.333667.481549.F74 77 3.10034243.F282 
28 146273.608521.F83 78 3.11.37.71.41549.F284 
29 3.41.271.9091.F89 79 41.271.9091.F290 
30 3.37.5167.F96 80 3.F300 
31 113.4673.F99 81 35.37.333667.4274969.F289 
32 3.43.1021.F104 82 F310 
33 3.37.881.F109 83 3.20399.5433473.F302 
34 11.41.271.9091.F109 84 3.372.41.271.9091.F306 
35 32.3209.F117 85 1783.627041.F313 
36 32.37.333667.68697367.F110 86 3.11.F324 
37 F130 87 3.31.37.43.F324 
38 3.1913.12007.58417.597269.63800419.F107 88 67.257.46229.F325 
39 3.37.41.271.347.9091.23473.F121 89 32.11.41.271.9091.653659.76310887.F314 
40 F142 90 32.37.244861.333667.F328 
41 3.156841.F140 91 173.F343 
42 3.11.31.37.61.20070529.F136 92 3.F349 
43 71.5087.F148 93 3.37.1637.F348 
44 32.41.271.9091.1553479.F142 94 41.271.9091.10671481.F343 
45 32.11.37.43.333667.F151 95 3.43.2833.F356 
46 F166 96 3.37.683.F361 
47 3.F169 97 11.26974499.F361 
48 3.37.173.60373.F165 98 32.1299169.F367 
49 41.271.929.9091.34613.F162 99 32.37.41.271.2767.9091.263273.333667.481417. 

F347 
50 3.167.1789.9923.F172 100 43.47.53.83.683.3533.4919.F367 
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The computer file containing table 1 is analysed in various ways. Of the 
664579 primes which are smaller than 107 only 192 occur in the prime 
factoriztions of S(n) for 1≤n≤200. Of these 192 primes  37 occur more than 
once. The record holder is 333667, the 28693th prime, which occurs 45 times 
for 1≤n≤200 while its neighbours 333647 and 333673 do not even occur once.  
 
 

Table 2. Frequency f of most frequent primes 
 

p 3 333667 37 41 271 9091 11 43 73 53 97 31 47 
f 132 45 41 41 41 29 25 24 14 8 7 6 6 
 
Obviously there is something to be  explained here. The distribution of the 
primes 11, 37, 41, 43, 271, 9091 and 333667 is shown in table 3. It is seen that 
the occurance patterns are different in the intervals 1≤n≤9, 10≤n≤99 and 
100≤n≤200. Indeed the last interval is part of the interval 100≤n≤999. It would 
have been very interesting to include part of the interval 1000≤n≤9999 but as 
we can see from (1) already S(1000) has 5784 digits.  
 
From the patterns in table 3 we can formulate the occurance of these primes in 
the intervals 1≤n≤9, 10≤n≤99 and 100≤n≤200, where the formulas for the last 
interval are indicative. We note, for  example, that 11 is not a factor of any 
term in the interval 100≤n≤999. This indicates that the divisibility patterns for 
the interval 1000≤n≤9999 and further intervals is a completely open question.  
There are other primes which also occur periodically but less frequent.  
 
The frequency of the most frequently occurring primes is shown below in the 
form p|S(n0+d⋅k), where d is the period and k indicates how far the periodicity 
is valid. In most cases it is not known – this is indicated by ?. As is seen the 
periodicity property may or may not change when n passes from 10α to 10α+1 . 
 
Table 4 shows an analysis of the patterns of occurance of the primes in table 1 
by interval. Note that we only have observations up to n=200. Nevertheless the 
interval 100≤n≤999 is used. This will be justified in the further analysis 
 
We note that no terms are divisible by 11 for n>100 in the interval 100≤n≤200 
and that no term is divisible by 43 in the interval 1≤n≤9. Another remarkable 
observation is that the sequence shows exactly the same behaviour for the 
primes 41 and 271 in the intervals included in the study. Will they show the 
same behaviour when n≥1000? 
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Table 3. p|S(n0+d⋅k) for k= … 
 

p n0 d k 
11 0 1 1,2,…,9 
11 9 11 0,1, … ,8 
11 12 11 0,1, … ,7 
31 12 15 0,1, … ,6 
37 2 3 0,5,8 
37 3 3 0,2, … ,32 
37 99 37 0,2, …, ? 
37 122 37 0,2,…,? 
41 4 1 0,1 
41 9 5 0,1, … ,? 
43 11 21 0,1,2,3,4 
43 24 21 0,1,2,3 
47 100 46 0,1, … ,? 
47 105 46 0,1, … ,? 
53 100 13 0,1, … .? 
271 4 1 0,1 
271 9 5 0,1, … ,? 

9091 9 5 0,1, … ,19 
9091 99 10 0,1, … ,? 

333667 8 1 0,1 
333667 9 9 0,1, … ,9 
333667 99 3 0,1, …,? 

 
Table 4. Divisibility patterns 

 
Interval p n Range for j 

1≤n≤9 11 All values of n  
10≤n≤99  12+11j j=0,1, … ,7 

  20+11j j=0,1, … ,7 
100≤n≤999  None  

1≤n≤9 37 2+3j j=0,1,2 
  3+3j j=0,1,2 

10≤n≤99  12+3j j=0,1,…,28,29 
100≤n≤999  122+37j j=0,1,…,23 

  136+37j j=0,1,…,23 
1≤n≤9 41 4+5j j=0,1 

  5  
10≤n≤999  14+5j j=0,1,…,197 

1≤n≤9 43 None  
10≤n≤99  11+21j j=0,1,3,4 

  24+21j j=0,1,2,3 
100≤n≤999  100  

  107+7j j=0,1,…,127 
1≤n≤9 271 4+5j j=0,1 

  5  
10≤n≤999  14+5j j=0,1,…,197 
1≤n≤999 9091 9+5j j=0,1,…,98 

1≤n≤9 333667 8,9  
10≤n≤99  18+9j j=0,1,…,9 

100≤n≤999  102+3j j=0,1,…,299 
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3. Explanations 
 
Consider  

S(n)=12…n_n…21.  
Let p be a divisor of S(n). We will construct a number 
 
(2) N=12…n_0..0_n…21              
 
so that p also divides N. What will be the number of zeros? Before discussing 
this let’s consider the case p=3. 
 
Case 1. p=3. 
 
In the case p=3 we use the familiar rule that a number is divisible by 3 if and 
only if its digit sum is divisible by 3. In this case we can insert as many zeros 
as we like in (2) since this does not change the sum of digits. We also note that 
any integer formed by concatenation of three consecutive integers is divisible 
by 3, cf a_a+1_a+2, digit sum 3a+3. 
It follows that also a_a+1_a+2_a+2_a+1_a is divisible by 3. For a=n+1 we 
insert this instead of the appropriate number of zeros in (2). This means that if 
S(n)≡0 (mod 3) then S(n+3)≡0 (mod 3). We have seen that S(2)≡0 (mod 3) and 
S(3)≡0 (mod 3). By induction it follows that S(2+3j)≡0 (mod 3) for j=1,2,… 
and S(3j)≡0 (mod 3) for j=1,2,… . 
 
We now return to the general case. S(n) is deconcatenated into two numbers 
12…n and n… 21 from which we form the numbers 

[ ]Blog1 1010n...12A +⋅=  and B=n…21 
We note that this is a different way of writing S(n) since indeed A+B=S(n) and 
that A+B≡0 (mod p). We now form M=A⋅10s+B where we want to determine s 
so that M≡0 (mod p). We write M in the form M=A(10s-1)+A+B where A+B 
can be ignored mod p. We exclude the possibility A≡0 (mod p) which is not 
interesting. This leaves us with the congruence 
 M≡A(10s-1)≡0 (mod p) 
or 
 10s-1≡0 (mod p) 
We are particularly interested in solutions for which  

{ }333667,9091,271,43,41,37,11p ∈  
By the nature of the problem these solutions are periodic. Only the two first 
values of s are given for each prime. 
 



  

 88 

Table 5. 10s-1≡0 (mod p) 
 
p 3 11 37 41 43 271 9091 333667 
s 1,2 2,4 3,6 5,10 21,42 5,10 10,20 9,18  
 
We note that the result is independent of  n. This means that we can use n as a 
parameter when searching for a sequence  

C=n+1_n+2_…n+k_n+k_…n+2_n+1 
such that this is also divisible by p and hence can be inserted in place of the 
zeros to form S(n+k) which then fills the condition S(n+k)≡0 (mod p). Here k 
is a multiple of s or s/2 in case s is even. This explains the results which we 
have already obtained in a different way  as part of the factorization of S(n) for 
n≤200, see tables 3 and 4. It remains to explain the periodicity which as we 
have seen is different in different intervals 10u≤n≤10u-1. 
 
This may be best done by using concrete examples. Let us use the sequences 
starting with n=12 for p=37, n=12 and n=20 for p=11 and n=102 for 
p=333667. At the same time we will illustrate what we have done above. 
 
Case 2:  n=12, p=37. Period=3. Interval: 10≤n≤99. 
 
S(n)=  123456789101112____________121110987654321 
N=     123456789101112000000000000121110987654321 
C=                    131415151413 
S(n+k)=123456789101112131415151413121110987654321 

 
Let’s look at C which carries the explanation to the periodicity. 
We write C in the form 
 C=101010101010+30405050403 

We know that C≡0 (mod 37). What about 101010101010? Let’s 
write 
 
101010101010=10+103+105+…+1011=(1012-1)/9≡0 (mod 37) 
 
This congruence mod 37 has already been established in table 5. 
It follows that also 
 30405050403≡0 (mod 37) 
and that 
 x⋅(101010101010)≡0 (mod 37)  for x = any integer 
Combining these observations we se that 
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232425252423, 333435353433, … 939495959493≡0 (mod 37) 
 
Hence the periodicity is explained. 
 
Case 3a: n=12, p=11. Period=11. Interval: 10≤n≤99. 
 
S(12)=12_.._12____________________________________________12_.._21  
S(23)=12_.._121314151617181920212223232221201918171615141312_.._21  
C=            13141516171819202122232322212019181716151413= 
C1=           10101010101010101010101010101010101010101010+ 
C2=            3040506070809101112131312111009080706050403 
 
From this we form 
 
2⋅C1+C2=23242526272829303132333332313029282726252423 
 
which is NOT what we wanted, but C1≡0 (mod11) and also C1/10≡0 (mod 
11). Hence we form 
 
2⋅C1+C1/10+C2=24252627282930313233343433323130292827262524 
 
which is exactly the C-term required to form the next term S(34) of the 
sequence. For the next term S(45) the C-term is formed by 3⋅C1+2⋅C1/10+C2 
The process is repeated adding C1+C1/10 to proceed from a C-term to the next 
until the last term <100, i.e. S(89) is reached. 
 
Case 3b: n=20, p=11. Period=11. Interval: 10≤n≤99. 
 
This case does not differ much from the case n=12. We have 
 
S(20)=12_.._20____________________________________________20_.._21  
S(31)=12_.._202122232425262728293031313029282726252423222120_.._21  
C=            21222324252627282930313130292827262524232221= 
C1=           10101010101010101010101010101010101010101010+ 
C2=            1020304050607080910111110090807060504030201 
 
The C-term for S(42) is 
 
3⋅C1+C1/10+C2=32333435363738394041424241403938373635343332 
 
In general C=x⋅C1+(x-1)⋅C1/10+C2 for x=3,4,5, ..,8. For x=8 the last term 
S(97) of this sequence is reached. 
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Case 4: n=102, p=333667. Period=3. Interval: 100≤n≤999. 
 
S(102)=12_.._101102__________________102101_.._21  
S(105)=12_.._101102103104105105104103102101_.._21 
C=                 103104105105104103             ≡0 (mod 333667) 
C1=                100100100100100100             ≡0 (mod 333667) 
C2=                  3004005005004003             ≡0 (mod 333667) 
 
Removing 1 or 2 zeros at the end of C1 does not affect the congruence 
modulus 333667, we have: 
 
C1’=                10010010010010010      ≡0 (mod 333667) 
C1’’=                1001001001001001      ≡0 (mod 333667) 
 
We now form the combinations: 

x⋅C1+y⋅C1’+z⋅C1’’+C2≡0 (mod 333667) 
 

This, in my mind, is quite remarkable: All 18-digit integers formed by the 
concatenation of three consecutive 3-digit integers followed by a concatenation 
of the same integers in decending order are diivisible by 333667, example 
376377378378377376≡0 (mod 333667). As far as the C-terms are concerned 
all S(n) in the range 100≤n≤999 could be divisible by 333667, but they are not. 
Why? It is because S(100) and S(101) are not divisible by 333667. 
Consequently n=100+3k and 101+3k can not  be used for insertion of  an 
appropriate C-value as we did in the case of S(102). This completes the 
explanation of the remarkable fact that every third term S(102+3j) in the range 
100≤n≤999 is divisible by 333667. 
 
These three cases have shown what causes the periodicity of the divisibility of 
the Smarandache symmetric sequence of the second order by primes. The 
mechanism is the same for the other periodic sequences. 
 
 
4. Beyond 1000 
 
 We have seen that numbers of the type: 
 10101010…10, 100100100…100, 10001000…1000, etc  
play an important role. Such numbers have been factorized and the occurrence 
of our favorite primes 11, 37, …,333667 have been listed in table 6. In this 
table a number like 100100100100 has been abbreviated 4(100) or q(E), where 
q and E are listed in separate columns. 
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Table 6. Prime factors of q(E) and occurrence of selected primes 

 
q E Prime factors <350000 Selected primes 

2 10 2.5.101  
3  2.3.5.7.13.37 37 
4  2.5.73.101.137  
5  2.5.41.271.9091 41,271,9091 
6  2.3.5.7.13.37.101.9901 37,9091 
7  2.5.239.4649.  
8  2.5.17.73.101.137.  
9  2.32.5.7.13.19.37.52579.333667 333667 

10  2.5.41.101.271.3541.9091.27961 41,271,9091 
11  2.5.11.23.4093.8779.21649. 11 
12  2.3.5.7.13.37.73.101.137.9901. 37 
13  2.5.53.79.859.  
14  2.5.29.101.239.281.4649.  
15  2.3.5.7.13.31.37.41.211.241.271.2161.9091. 37,41,271,9091 
16  2.5.17.73.101.137.353.449.641.1409.69857.  
2 102 22.52.7.11.13 11 
3  22.3.52.333667 333667 
4  22.52.7.11.13.101.9901 11 
5  22.52.31.41.271. 41,271 
6  22.3.52.7.11.13.19.52579.333667 11,333667 
7  22.52.43.239.1933.4649. 43 
8  22.52.7.11.13.73.101.137.9901. 11,73 
9  22.32.52.757.333667. 333667 

10  22.52.7.11.13.31.41.211.241.271.2161.9091. 11,41,271,9091 
11  22.52.67.21649.  
12  22.3.52.7.11.13.19.101.9901.52579.333667. 11,333667 
2 103 23.53.73.137  
3  23.3.53.7.13.37.9901 37 
4  23.53.17.73.137.  
5  23.53.41.271.3541.9091.27961 41,271,9091 
6  23.3.53.7.13.37.73.137.9901. 37  
7  23.53.29.239.281.4649.  
8  23.53.17.73.137.353.449.641.1409.69857.  
9  23.32.53.7.13.19.37.9901.52579.333667. 37,333667 

10  23.3.53.41.73.137.271.3541.9091.27961. 41,271,9091 
11  23.53.11.23.89.4093.8779.21649. 11 
2 104 24.54.11.9091 11,9091 
3  24.3.54.31.37. 37 
4  24.54.11.101.3541.9091.27961 11,9091 
5  24.54.21401.25601.  
6  24.3.54.7.11.13.31.37.211.241.2161.9091. 11,37,9091 
7  24.54.71.239.4649.123551.  
8  24.54.11.73.101.137.3541.9091.27961. 11,9091 
9  24.3.54.31.37.238681.333667. 37,333667 
2 105 25.55.101.9901  
3  25.3.55.19.52579.333667 333667 
4  25.55.73.101.137.9901..  
5  25.55.31.41.211.241.271.2161.9091.. 41,271,9091 
6  25.3.55.19.101.9901.52579.333667.. 333667 
7  25.55.7.43.127.239.1933.2689.4649.. 43 
8  25.55.17.73.101.137.9901..  
9  25.32.55.19.757.52579.333667.. 333667 
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Question 1. Does the sequence of terms S(n) divisible by 333667 continue 
beyond 1000? 
 
Although S(n) was partially factorized only up n=200 we have been able to 
draw conclusions on divisibility up n=1000. The last term that we have found 
divisible by 333667 is S(999). Two conditions must be met for there to be a 
sequence of terms divisible by p=333667 in the interval 1000≤n≤9999. 
 
Condition 1.  There must exist a number 10001000…1000 divisible by 333667 
to ensure the periodicity as we have seen in our case studies. 
In table 7 we find q=9, E=1000. This means that the periodicity will be 9 – if it 
exists, i.e. condition 1 is met. 
 
Condition 2.  There must exist a term S(n) with n≥1000 divisible by 333667 
which will constitute the first term of the sequence. 
The last term for n<1000 which is divisible by 333667 is S(999) from which 
we build 
 S(108)=12…999_1000_…_1008_1008_…1000_999-…21 
where we deconcatenate 100010011002…10081008…10011000 which is 
divisible by 333667 and provides the C-term (as introduced in the case studies) 
needed to generate the sequence, i.e. condition 2 is met. 
 
We conclude that S(1008+9j)≡0 (mod 333667) for j=0,1,2, … 999. The last 
term in this sequence is S(9999). From table 7 we see that there could be a 
sequence with the period 9 in the interval 10000≤n≤99999 and a sequence with 
period 3 in the interval 100000≤n≤999999. It is not difficult to verify that the 
above conditions are filled also in these intervals. This means that we have: 
 
S(1008+9j)≡0 (mod 333667)  for j=01,2,…,999, i.e. 103≤n≤104-1 
S(10008+9j)≡0 (mod 333667)  for j=01,2,…,9999, i.e. 104≤n≤105-1 
S(100002+3j)≡0 (mod 333667)  for j=01,2,…,99999, i.e. 105≤n≤106-1 
 
It is one of the fascinations with large numbers to find such properties. This 
extraordinary property of the prime 333667 in relation to the Smarandache 
symmetric sequence probably holds for n>106. It easy to loose contact with 
reality when plying with numbers like this. We have S(999999)≡0 (mod 
333667). What does this number S(999999) look like? Applying (1) we find 
that the number of digits D(999999) of S(999999) is 
 D(999999)=2⋅6⋅106-2⋅(106-)/9=11777778 
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Let’s write this number with 80 digits per line, 60 lines per page, using both 
sides of the paper. We will need 1226 sheets of paper – more that 2 reams!   
 
Question 2. Why is there no sequence of  S(n) divisible by 11 in the interval 
100≤n≤999? 
 
Condition1. We must have a sequence of the form 100100.. divisible by 11 to 
ensure the periodicity. As we can see from table 7 the sequence 100100 fills 
the condition and we would have a periodicity equal to 2 if the next condition 
is met. 
 
Condition 2.  There must exist a term S(n) with n≥100 divisible by 11 which 
would constitute the first term of the sequence. This time let’s use a nice 
property of the prime 11: 
 10s≡(-1)s (mod 11) 
Let’s deconcatenate the number a_b corresponding to the concatenation of the 
numbers a and b: We have: 
                                                         

[ ] [ ]
[ ]




++
++−

=+⋅= +

evenisblog1ifba
oddisblog1ifba

b10ab_a
10

10blog1 10  

 
 
Let’s first consider a deconcatenated middle part of  S(n) where the 
concatenation is done with three-digit integers. For convienience I have chosen 
a concrete example – the generalization should pose no problem 
 
273274275275274273≡2-7+3-2+7-4+2-7+5-2+7-5+2-7+4-2+7-3≡0 (mod 11) 
+-+-+-+-+-+-+-+-+- 
 
It is easy to see that this property holds independent of the length of the 
sequence above and whether it start on + or -. It is also easy to understand that 
equivalent results are obtained for other primes  although factors other than +1 
and –1 will enter into the picture. 
 
We now return to the question of finding the first term of the sequence. We 
must start from n=97 since S(97) it the last term for which we know that 
S(n)≡0 (mod 11). We form: 
9899100101…n_n…1011009998≡2 (mod 11) independent of n<1000. 
+-+-+-+-+-… _ …-+-+-+-+-+- 
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This means that S(n)≡2 (mod 11) for 100≤n≤999 and explains why there is no 
sequence divisible by 11 in this interval. 
 
Question 3. Will there be a sequence divisible by 11 in the interval 
1000≤n≤9999? 
 
Condition 1. A sequence 10001000…1000 divisible by 11 exists and would 
provide a period of 11, se table 6. 
 
Condition 2.  We need to find one value n ≥1000 for which S(n)≡0 (mod 11). 
We have seen that S(999)≡2 (mod 11). We now look at the sequences 
following S(999). Since S(999)≡2 (mod 9) we need to insert a sequence 
10001001..m_m…10011000≡9 (mod 11) so that S(m)≡0 (mod 11). 
Unfortunately m does not exist as we will see below 
 
10001000≡2 (mod 11) 
+-+-+-+- 
1   1 
1000100110011000≡2. (mod 11) 
+-+-+-+-+-+-+-+- 
1   1   1   1 
       1   1 
100010011002100210011000≡0 (mod 11) 
+-+-+-+-+-+-+-+-+-+-+-+- 
1   1   1   1   1   1 
       1   2   2   1 
10001001100210031003100210011000≡-4≡7 (mod 11) 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
1   1   1   1   1   1   1   1    
       1   2   3   3   2   1 
 
Continuing this way we find that the residues form the period 
2,2,0,7,1,4,5,4,1,7,0. We needed a residue to be 9 in order to build sequences 
divisible by 9. We conclude that S(n) is not divisible by 11 in the interval 
1000≤n≤9999. 
 
Trying to do the above analysis with the computer programs used in the early 
part of this study causes overflow because the large integers involved. 
However, changing the approach and performing calculations modulus 11 
posed no problems. The above method was preferred for clarity of 
presentation. 
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5. Epilog 
 
There are many other questions which may be interesting to look into. This is 
left to the reader. The author’s main interest in this has been to develop means 
by which it is possible to identify some properties of large numbers other than 
the so frequently asked question as to whether a big number is a prime or not. 
There are two important ways to generate large numbers which I found  
particularly interesting – iteration and concatenation. In this article the author 
has drawn on work done previously, references below.  In both these areas 
very large numbers may be generated for which it may be impossible to find 
any practical use – the methods are often more important than the results. 
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The author treats various topics in ten chapters which can be read 
independently: 

 
- Which is the smallest integer that can be expressed as a sum of 

consecutive integers in a given number of ways? 
 
- Alternating iterations of the Smarandache function and the Euler ϕ-

function respectively the sum of divisors function. Some light is thrown on 
loops and invariants resulting from these iterations. An important question 
is resolved with the amazing involvement of the famous Fermat numbers. 

 
 
- One of the problems in R.K. Guy’s book ”Unsolved questions in Number 

Theory” is explained. An interesting sequence where the first 600 terms 
are integers but not the 601st is shown. 

 
- A particularly interesting subject is the Smarandache partial perfect 

additive sequence, it has a simple definition and a strange behaviour. 
 
 
- Smarandache general continued fractions are treated in great detail and 

proof is given for the convergence under specified conditions. 
 
- Smarandache k-k additive relationships as well as subtractive relationships 

are treated with some observations on the occurrence of prime twins. 
 
 
- A substantial part is devoted to concatenation and deconcatenation 

problems. Some divisibilty properties of very large numbers is studied. In 
particular some questions raised on the Smarandache deconstructive 
sequence are resolved. 
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