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 Abstract: In a recent study of the Primality of the Smarandache Symmetric 
Sequences Sabin and Tatiana Tabirca [1] observed a very high frequency of the 
prime factor 333667 in the factorization of the terms of the second order 
sequence. The question if this prime factor occurs peridically was raised. The odd 
behaviour of this and a few other primefactors of this sequence will be explained 
and details of the periodic occurence of this and of several other prime factors 
will be given. 

 

 
Definition: The nth term of the Smarandache symmetric sequence of the second order 
is defined by S(n)=123…n_n…321 which is to be understood as a concatenation1 of 
the first n natural numbers concatenated with a concatenation in reverse order of the n 
first natural numbers. 
 

Factorization and Patterns of Divisibility 
 

The first five terms of the sequence are: 11, 1221, 123321, 12344321, 1234554321.  
The number of digits D(n) of S(n) is growing rapidly. It can be found from the 
formula: 
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k −−+=  for n in the interval 10k-1≤n<10k-1   (1) 

In order to study the repeated occurrance of certain prime factors the table of S(n) for 
n≤100 produced in [1] has been extended to n≤200. Tabirca’s aim was to factorize the 
terms S(n) as far as possible which is more ambitious then the aim of the present 
calculation which is to find prime factors which are less than 108. The result is shown 
in table 1.  
 
The computer file containing table 1 is analysed in various ways. Of the 664579 
primes which are smaller than 107 only 192 occur in the prime factoriztions of S(n) 
for 1≤n≤200. Of these 192 primes  37 occur more than once. The record holder is 
333667, the 28693th prime, which occurs 45 times for 1≤n≤200 while its neighbours 
333647 and 333673 do not even occur once. Obviously there is something to be  
explained here. The frequency of the most frequently occurring primes is shown 
below.. 
 

Table 2. Most frequently occurring primes 
 

 p 3 33367 37 41 271 9091 11 43 73 53 97 31 47 
 Freq 132 45 41 41 41 29 25 24 14 8 7 6 6 

 

                                                           
1 In this article the concatenation of a and b is written a_b. Multiplication ab is often made explicit by 
writing a.b. When there is no reason for misunderstanding the signs “_” and “.” are omitted. Several 
tables contain prime factorizations. Prime factors are given in ascending order, multiplication is 
expressed by “.” and the last factor is followed by “..” if the factorization is incomplete or by Fxxx 
indicating the number of digits of the last factor. To avoid typing errors all tables are electronically 
transferred from the calculation program, which is DOS-based, to the wordprocessor. All editing has 
been done either with a spreadsheet program or directly with the text editor. Full page tables have been 
placed at the end of the article. A non-proportional font has been used to illustrate the placement of 
digits when this has been found useful. 



The distribution of the primes 11, 37, 41, 43, 271, 9091 and 333667 is shown in table 
3. It is seen that the occurance patterns are different in the intervals 1≤n≤9, 10≤n≤99 
and 100≤n≤200. Indeed the last interval is part of the interval 100≤n≤999. It would 
have been very interesting to include part of the interval 1000≤n≤9999 but as we can 
see from (1) already S(1000) has 5786 digits. Partition lines are drawn in the table to 
highlight the different intervals. The less frequent primes are listed in table 4 where 
primes occurring more than once are partitioned. 
 
From the patterns in table 3 we can formulate the occurance of these primes in the 
intervals 1≤n≤9, 10≤n≤99 and 100≤n≤200, where the formulas for the last interval are 
indicative. We note, for  example, that 11 is not a factor of any term in the interval 
100≤n≤999. This indicates that the divisibility patterns for the interval 1000≤n≤9999 
and further intervals is a completely open question.  
 
Table 5 shows an analysis of the patterns of occurance of the primes in table 1 by 
interval. Note that we only have observations up to n=200. Nevertheless the interval 
100≤n≤999 is used. This will be justified in the further analysis.   
 

Table 5. Divisibility patterns 

 
Interval p n Range for j 

1≤n≤… 3 2+3j j=0,1,… 

1≤n≤…  3j j=1,2,… 

1≤n≤9 11 All values of n  

10≤n≤99  12+11j j=0,1, … ,7 
  20+11j j=0,1, … ,7 

100≤n≤999  None  

1≤n≤9 37 2+3j j=0,1,2 
  3+3j j=0,1,2 

10≤n≤99  12+3j j=0,1,…,28,29 

100≤n≤999  122+37j j=0,1,…,23 
  136+37j j=0,1,…,23 

1≤n≤9 41 4+5j j=0,1 
  5  

10≤n≤999  14+5j j=0,1,…,197 

1≤n≤9 43 None  

10≤n≤99  11+21j j=0,1,3,4 
  24+21j j=0,1,2,3 

100≤n≤999  100  
  107+7j j=0,1,…,127 

1≤n≤9 271 4+5j j=0,1 
  5  

10≤n≤999  14+5j j=0,1,…,197 

1≤n≤999 9091 9+5j j=0,1,…,98 

1≤n≤9 333667 8,9  

10≤n≤99  18+9j j=0,1,…,9 

100≤n≤999  102+3j j=0,1,…,299 

 
We note that no terms are divisible by 11 for n>100 in the interval 100≤n≤200 and 
that no term is divisible by 43 in the interval 1≤n≤9. Another remarkable observation 
is that the sequence shows exactly the same behaviour for the primes 41 and 271 in 
the intervals included in the study. Will they show the same behaviour when n≥1000? 
 
 



Consider  
S(n)=12…n_n…21.  

Let p be a divisor of S(n). We will construct a number 
  N=12…n_0..0_n…21         (2) 
so that p also divides N. What will be the number of zeros? Before discussing this 
let’s consider the case p=3. 
 
Case 1. p=3. 
 
In the case p=3 we use the familiar rule that a number is divisible by 3 if and only if 
its digit sum is divisible by 3. In this case we can insert as many zeros as we like in 
(2) since this does not change the sum of digits. We also note that any integer formed 
by concatenation of three consecutive integers is divisible by 3, cf a_a+1_a+2, digit 
sum 3a+3. It follows that also a_a+1_a+2_a+2_a+1_a is divisible by 3. For a=n+1 we 
insert this instead of the appropriate number of zeros in (2). This means that if S(n)≡0 
(mod 3) then S(n+3)≡0 (mod 3). We have seen that S(2)≡0 (mod 3) and S(3)≡0 (mod 
3). By induction it follows that S(2+3j)≡0 (mod 3) for j=1,2,… and S(3j)≡0 (mod 3) 
for j=1,2,… . 
 
We now return to the general case. S(n) is deconcatenated into two numbers 12…n 
and n… 21 from which we form the numbers 

[ ]Blog1 1010n...12A +⋅=  and B=n…21 
We note that this is a different way of writing S(n) since indeed A+B=S(n) and that 
A+B≡0 (mod p). We now form M=A⋅10s+B where we want to determine s so that 
M≡0 (mod p). We write M in the form M=A(10s-1)+A+B where A+B can be ignored 
mod p. We exclude the possibility A≡0 (mod p) which is not interesting. This leaves 
us with the congruence 
 M≡A(10s-1)≡0 (mod p) 
or 
 10s-1≡0 (mod p) 
We are particularly interested in solutions for which  

{ }333667,9091,271,43,41,37,11p ∈  
By the nature of the problem these solutions are periodic. Only the two first values of 
s are given for each prime. 
 

Table 6. 10s-1≡0 (mod p) 
 
 p 3 11 37 41 43 271 9091 33367 
 s 1,2 2,4 3,6 5,10 21,42 5,10 10,20 9,18  

 
 
We note that the result is independent of  n. This means that we can use n as a 
parameter when searching for a sequence C=n+1_n+2_…n+k_n+k_…n+2_n+1 such 
that this is also divisible by p and hence can be inserted in place of the zeros to form 
S(n+k) which then fills the condition S(n+k)≡0 (mod p). Here k is a multiple of s or 
s/2 in case s is even. This explains the results which we have already obtained in a 
different way  as part of the factorization of S(n) for n≤200, see tables 3 and 5. It 
remains to explain the periodicity which as we have seen is different in different 
intervals 10u≤n≤10u-1. 
 



This may be best done by using concrete examples. Let us use the sequences starting 
with n=12 for p=37, n=12 and n=20 for p=11 and n=102 for p=333667. At the same 
time we will illustrate what we have done above. 
 

Case 2:  n=12, p=37. Period=3. Interval: 10≤n≤99. 
 

S(n)=  123456789101112____________121110987654321 
      N=     123456789101112000000000000121110987654321 
      C=                    131415151413 

S(n+k)=123456789101112131415151413121110987654321 
 

Let’s look at C which carries the explanation to the periodicity. We write C in the 
form 
 C=101010101010+30405050403 

We know that C≡0 (mod 37). What about 101010101010? Let’s write 
 101010101010=10+103+105+…+1011=(1012-1)/9≡0 (mod 37) 
This congruence mod 37 has already been established in table 6. It follows that also 
 30405050403≡0 (mod 37) 
and that 
 x⋅(101010101010)≡0 (mod 37)  for x = any integer 
Combining these observations we se that 
 232425252423, 333435353433, … 939495959493≡0 (mod 37) 
 

Hence the periodicity is explained. 
 
Case 3a: n=12, p=11. Period=11. Interval: 10≤n≤99. 
 
S(12)=12_.._12____________________________________________12_.._21  
S(23)=12_.._121314151617181920212223232221201918171615141312_.._21  
C=            13141516171819202122232322212019181716151413= 
C1=           10101010101010101010101010101010101010101010+ 
C2=            3040506070809101112131312111009080706050403 

From this we form 
2⋅C1+C2=       23242526272829303132333332313029282726252423 
which is NOT what we wanted, but C1≡0 (mod11) and also C1/10≡0 (mod 11). 
Hence we form 

2⋅C1+C1/10+C2=24252627282930313233343433323130292827262524 
which is exactly the C-term required to form the next term S(34) of the sequence. For 
the next term S(45) the C-term is formed by 3⋅C1+2⋅C1/10+C2 The process is 
repeated adding C1+C1/10 to proceed from a C-term to the next until the last term 
<100, i.e. S(89) is reached. 
 

Case 3b: n=20, p=11. Period=11. Interval: 10≤n≤99. 
 
This case does not differ much from the case n=12. We have 
S(20)=12_.._20____________________________________________20_.._21  
S(31)=12_.._202122232425262728293031313029282726252423222120_.._21  
C=            21222324252627282930313130292827262524232221= 
C1=           10101010101010101010101010101010101010101010+ 
C2=            1020304050607080910111110090807060504030201 

The C-term for S(42) is 
3⋅C1+C1/10+C2=32333435363738394041424241403938373635343332 
In general C=x⋅C1+(x-1)⋅C1/10+C2 for x=3,4,5, ..,8. For x=8 the last term S(97) of 
this sequence is reached. 



 
Case 4: n=102, p=333667. Period=3. Interval: 100≤n≤999. 
 
S(102)=12_.._101102__________________102101_.._21  
S(105)=12_.._101102103104105105104103102101_.._21 

C=                 103104105105104103              ≡0 (mod 333667) 
C1=                100100100100100100              ≡0 (mod 333667) 
C2=                  3004005005004003              ≡0 (mod 333667) 
Removing 1 or 2 zeros at the end of C1 does not affect the congruence modulus 
333667, we have: 
C1’=                10010010010010010              ≡0 (mod 333667) 
C1’’=                1001001001001001              ≡0 (mod 333667) 
We now form the combinations: 

x⋅C1+y⋅C1’+z⋅C1’’+C2≡0 (mod 333667) 
This, in my mind, is quite remarkable: All 18-digit integers formed by the 
concatenation of three consecutive 3-digit integers followed by a concatenation of the 
same integers in descending order are divisible by 333667, example 
376377378378377376≡0 (mod 333667). As far as the C-terms are concerned all S(n) 
in the range 100≤n≤999 could be divisible by 333667, but they are not. Why? It is 
because S(100) and S(101) are not divisible by 333667. Consequently n=100+3k and 
101+3k can not  be used for insertion of  an appropriate C-value as we did in the case 
of S(102). This completes the explanation of the remarkable fact that every third term 
S(102+3j) in the range 100≤n≤999 is divisible by 333667. 
 
These three cases have shown what causes the periodicity of the divisibility of the 
Smarandache symmetric sequence of the second order by primes. The mechanism is 
the same for the other periodic sequences. 
 

Beyond 1000 
 
 We have seen that numbers of the type: 
 10101010…10, 100100100…100, 10001000…1000, etc  

play an important role. Such numbers have been factorized and the occurrence of our 
favorite primes 11, 37, …, 333667 have been listed in table 7. In this table a number 
like 100100100100 has been abbreviated 4(100) or q(E), where q and E are listed in 
separate columns. 
 
Question 1. Does the sequence of terms S(n) divisible by 333667 continue beyond 
1000? 
 
Although S(n) was partially factorized only up n=200 we have been able to draw 
conclusions on divisibility up n=1000. The last term that we have found divisible by 
333667 is S(999). Two conditions must be met for there to be a sequence of terms 
divisible by p=333667 in the interval 1000≤n≤9999. 
 
Condition 1.  There must exist a number 10001000…1000 divisible by 333667 to 
ensure the periodicity as we have seen in our case studies. 
In table 7 we find q=9, E=1000. This means that the periodicity will be 9 – if it exists, 
i.e. condition 1 is met. 
 



Condition 2.  There must exist a term S(n) with n≥1000 divisible by 333667 which 
will constitute the first term of the sequence. 
The last term for n<1000 which is divisible by 333667 is S(999) from which we build 
 S(108)=12…999_1000_…_1008_1008_…1000_999-…21 

where we deconcatenate 100010011002…10081008…10011000 which is divisible by 
333667 and provides the C-term (as introduced in the case studies) needed to generate 
the sequence, i.e. condition 2 is met. 
 
We conclude that S(1008+9j)≡0 (mod 333667) for j=0,1,2, … 999. The last term in 
this sequence is S(9999). From table 7 we see that there could be a sequence with the 
period 9 in the interval 10000≤n≤99999 and a sequence with period 3 in the interval 
100000≤n≤999999. It is not difficult to verify that the above conditions are filled also 
in these intervals. This means that we have: 
 
 S(1008+9j)≡0 (mod 333667)   for j=01,2,…,999, i.e. 103≤n≤104-1 
 S(10008+9j)≡0 (mod 333667)  for j=01,2,…,9999, i.e. 104≤n≤105-1 
 S(100002+3j)≡0 (mod 333667)  for j=01,2,…,99999, i.e. 105≤n≤106-1 
 
It is one of the fascinations with large numbers to find such properties. This 
extraordinary property of the prime 333667 in relation to the Smarandache symmetric 
sequence probably holds for n>106. It easy to loose contact with reality when plying 
with numbers like this. We have S(999999)≡0 (mod 333667). What does this number 
S(999999) look like? Applying (1) we find that the number of digits D(999999) of 
S(999999) is 
 D(999999)=2⋅6⋅106-2⋅(106-)/9=11777778 
Let’s write this number with 80 digits per line, 60 lines per page, using both sides of 
the paper. We will need 1226 sheets of paper – more that 2 reams!   
 
Question 2. Why is there no sequence of  S(n) divisible by 11 in the interval 
100≤n≤999? 
 
Condition1. We must have a sequence of the form 100100.. divisible by 11 to ensure 
the periodicity. As we can see from table 7 the sequence 100100 fills the condition 
and we would have a periodicity equal to 2 if the next condition is met. 
 
 Condition 2.  There must exist a term S(n) with n≥100 divisible by 11 which would 
constitute the first term of the sequence. This time let’s use a nice property of the 
prime 11: 
 10s≡(-1)s (mod 11) 
Let’s deconcatenate the number a_b corresponding to the concatenation of the 
numbers a and b: We have: 
                                                   ⌠ -a+b if 1+[log10b] is odd 

 a_b= [ ] b10a blog1 10 +⋅ + =  

     a+b if 1+[log10b] is even 
 
Let’s first consider a deconcatenated middle part of  S(n) where the concatenation is 
done with three-digit integers. For convienience I have chosen a concrete example – 
the generalization should pose no problem 
 



 273274275275274273≡2-7+3-2+7-4+2-7+5-2+7-5+2-7+4-2+7-3≡0 (mod 11) 
 +-+-+-+-+-+-+-+-+- 

 
It is easy to see that this property holds independent of the length of the sequence 
above and whether it start on + or -. It is also easy to understand that equivalent 
results are obtained for other primes  although factors other than +1 and –1 will enter 
into the picture. 
 
We now return to the question of finding the first term of the sequence. We must start 
from n=97 since S(97) it the last term for which we know that S(n)≡0 (mod 11). We 
form: 
 9899100101…n_n…1011009998≡2 (mod 11) independent of n<1000. 
      +-+-+-+-+-… _ …-+-+-+-+-+- 
 

This means that S(n)≡2 (mod 11) for 100≤n≤999 and explains why there is no 
sequence divisible by 11 in this interval. 
 
Question 3. Will there be a sequence divisible by 11 in the interval 1000≤n≤9999? 
 
Condition 1. A sequence 10001000…1000 divisible by 11 exists and would provide a 
period of 11, se table 7. 
 
Condition 2.  We need to find one value n ≥1000 for which S(n)≡0 (mod 11). We 
have seen that S(999)≡2 (mod 11). We now look at the sequences following S(999). 
Since S(999)≡2 (mod 9) we need to insert a sequence 10001001..m_m…10011000≡9 
(mod 11) so that S(m)≡0 (mod 11). Unfortunately m does not exist as we will see 
below 
 
10001000≡2 (mod 11) 
+-+-+-+- 
1 1 
1000100110011000≡2. (mod 11) 
+-+-+-+-+-+-+-+- 
1   1   1   1 
       1   1 
100010011002100210011000≡0 (mod 11) 
+-+-+-+-+-+-+-+-+-+-+-+- 
1   1   1   1   1   1 
       1   2   2   1 
10001001100210031003100210011000≡-4≡7 (mod 11) 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
1   1   1   1   1   1   1   1    
       1   2   3   3   2   1 
 

Continuing this way we find that the residues form the period 2,2,0,7,1,4,5,4,1,7,0. 
We needed a residue to be 9 in order to build sequences divisible by 9. We conclude 
that S(n) is not divisible by 11 in the interval 1000≤n≤9999. 
 

Trying to do the above analysis with the computer programs used in the early part of 
this study causes overflow because the large integers involved. However, changing 
the approach and performing calculations modulus 11 posed no problems. The above 
method was preferred for clarity of presentation. 
 



Epilog 
 
There are many other questions that may be interesting to look into. This is left to the 
reader. The author’s main interest in this has been to develop means by which it is 
possible to identify some properties of large numbers other than the so frequently 
asked question as to whether a big number is a prime or not. There are two important 
ways to generate large numbers that I found particularly interesting – iteration and 
concatenation. In this article the author has drawn on work done previously, 
references below.  In both these areas very large numbers may be generated for which 
it may be impossible to find any practical use – the methods are often more important 
than the results. 
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Table 1. Prime factors of S(n) which are less than 108 

 
n Prime factors of S(n) n Prime factors of S(n) 

1 11 51 3.37.1847.F180 

2 3.11.37 52 F190 

3 3.11.37.101 53 33.11.43.26539.17341993.F178 

4 11.41.101.271 54 33.37.41.151.271.347.463.9091.333667.F174 

5 3.7.11.13.37.41.271 55 67.F200 

6 3.7.11.13.37.239.4649 56 3.11.F204 

7 11.73.101.137.239.4649 57 3.31.37.F206 

8 32.11.37.73.101.137.333667 58 227.9007.20903089.F200 

9 32.11.37.41.271.9091.333667 59 3.41.97.271.9091.F207 

10 F22 60 3.37.3368803.F213 

11 3.43.97.548687.F16 61 91719497.F218 

12 3.11.31.37.61.92869187.F15 62 32.1693.F225 

13 109.3391.3631.F24 63 32.37.305603.333667.9136499.F213 

14 3.41.271.9091.290971.F24 64 11.41.271.9091.F229 

15 3.37.661.F37 65 3.839.F238 

16 F46 66 3.37.43.F242 

17 3.F49 67 112.109.467.3023.4755497.F233 

18 32.37.1301.333667.6038161.87958883.
F28 

68 3.97.5843.F247 

19 41.271.9091.F50 69 3.37.41.271.787.9091.716549.19208653.F232 

20 3.11.97.128819.F53 70 F262 

21 3.37.983.F61 71 3.F265 

22 67.773.F65 72 32.31.37.61.163.333667.77696693.F248 

23 3.11.7691.F68 73 379.323201.F266 

24 3.37.41.43.271.9091.165857.F61 74 3.412.432.179.271.9091.8912921.F255 

25 227.2287.33871.611999.F66 75 3.11.37.443.F276 

26 33.163.5711.68432503.F70 76 1109.F283 

27 33.31.37.333667.481549.F74 77 3.10034243.F282 

28 146273.608521.F83 78 3.11.37.71.41549.F284 

29 3.41.271.9091.F89 79 41.271.9091.F290 

30 3.37.5167.F96 80 3.F300 

31 113.4673.F99 81 35.37.333667.4274969.F289 

32 3.43.1021.F104 82 F310 

33 3.37.881.F109 83 3.20399.5433473.F302 

34 11.41.271.9091.F109 84 3.372.41.271.9091.F306 

35 32.3209.F117 85 1783.627041.F313 

36 32.37.333667.68697367.F110 86 3.11.F324 

37 F130 87 3.31.37.43.F324 

38 3.1913.12007.58417.597269.63800419.
F107 

88 67.257.46229.F325 

39 3.37.41.271.347.9091.23473.F121 89 32.11.41.271.9091.653659.76310887.F314 

40 F142 90 32.37.244861.333667.F328 

41 3.156841.F140 91 173.F343 

42 3.11.31.37.61.20070529.F136 92 3.F349 

43 71.5087.F148 93 3.37.1637.F348 

44 32.41.271.9091.1553479.F142 94 41.271.9091.10671481.F343 

45 32.11.37.43.333667.F151 95 3.43.2833.F356 

46 F166 96 3.37.683.F361 

47 3.F169 97 11.26974499.F361 

48 3.37.173.60373.F165 98 32.1299169.F367 

49 41.271.929.9091.34613.F162 99 32.37.41.271.2767.9091.263273.333667.4814
17.F347 

50 3.167.1789.9923.F172 100 43.47.53.83.683.3533.4919.F367 



Table 1 continued 
 
n Prime factors of S(n) n Prime factors of S(n) 

101 3.F389 151 47.5783.405869.F679 

102 3.149.21613.106949.333667.F378 152 32.53.F693 

103 45823.F397 153 32.359.39623.333667.7192681.F681 

104 3.41.271.28813.F399 154 41.73.271.487.14843.F695 

105 3.47.333667.11046661.F399 155 3.14717.F709 

106 73.167.F416 156 3.43.601.1289.14153.333667.1479589.113370
23.F689 

107 33.43.1447.1741.28649.161039.F406 157 F726 

108 33.569.333667.F422 158 3.49055933.F723 

109 41.271.367.9091.F427 159 3.37.41.271.347.9091.333667.F719 

110 3.F443 160 97.179.1277.F736 

111 3.313.333667.F441 161 34.3251.75193.496283.F734 

112 F456 162 34.73.26881.28723.333667.3211357.F731 

113 3.53.71.2617.52081.F449 163 43.1663.F757 

114 3.41.43.73.271.333667.F454 164 3.41.271.136319.F758 

115 2309.F470 165 3.53.83.919.184859.333667.3014983.F749 

116 3.F479 166 1367.1454371.F770 

117 32.333667.4975757.F472 167 3.F785 

118 167.11243.13457.414367.F476 168 3.19913.333667.F781 

119 3.41.271.9091.132059.182657.F479 169 41.271.2273.9091.F786 

120 3.1511.7351.20431.167611.333667.572282
99.F473 

170 32.43.73.967.F796 

121 43.501233.F502 171 32.333667.F803 

122 3.37.73.2659.F508 172 643.96293.325681.7607669.F795 

123 3.112207.333667.F511 173 3.37.F820 

124 41.83.271.367.37441.F514 174 3.41.271.19423.333667.F813 

125 3.F533 175 3607.20131291.F823 

126 32.53.333667.395107.972347.F520 176 3.F839 

127 F546 177 3.43.173.333667.F836 

128 3.43.97.179.181.347.F540 178 53.73.11527.461317.F838 

129 3.41.271.9091.333667.F544 179 32.41.271.1033.9091.F846 

130 73.313.275083.F554 180 32.2861.26267.333667.1894601.F843 

131 3.263.12511.210491.95558129.F549 181 F870 

132 3.333667.F570 182 3.83.2417.F870 

133 F582 183 3.71.1097.333667.F871 

134 33.41.173.271.F580 184 41.43.271.F882 

135 33.43.59.333667.F583 185 3.317371.F888 

136 37.F598 186 3.73.333667.F892 

137 3.F605 187 F906 

138 3.73.28817.333667.F599 188 33.181.1129.5179.F901 

139 41.53.271.9091.19433.F604 189 33.41.271.9091.13627.333667.F898 

140 3.380623.F618 190 194087.F918 

141 3.83.257.1091.333667.29618101.F609 191 3.43.53.401.F923 

142 43.F634 192 3.47.97.333667.14445391.F919 

143 32.8922281.F634 193 59.F940 

144 32.41.59.271.1493.333667.F632 194 3.41.73.271.487.42643.F934 

145 977.22811.5199703.F640 195 3.179533.333667.F942 

146 3.47.73.F656 196 37.661.F955 

147 3.1483.2341.333667.F653 197 32.47.18427.6309143.32954969.F944 

148 71.14271083.47655077.F655 198 32.432.333667.F962 

149 3.41.43.271.9091.F667 199 41.271.9091.10151.719779.F960 

150 3.333667.F678 200 3.4409.F979 



 
 
Table 3. Smarandache Symmetric Sequence of Second Order: The most frequently 

occurring prime factors. 

 
# 11 diff # 37 diff # 41 diff # 43 diff # 271 diff # 9091 diff # 333667 diff 

1 11  2 37  4 41  11 43  4 271  9 9091  8 333667  

2 11 1 3 37 1 5 41 1 24 43 13 5 271 1 14 9091 5 9 333667 1 

3 11 1 5 37 2 9 41 4 32 43 8 9 271 4 19 9091 5 18 333667 9 

4 11 1 6 37 1 14 41 5 45 43 13 14 271 5 24 9091 5 27 333667 9 

5 11 1 8 37 2 19 41 5 53 43 8 19 271 5 29 9091 5 36 333667 9 

6 11 1 9 37 1 24 41 5 66 43 13 24 271 5 34 9091 5 45 333667 9 

7 11 1 12 37 3 29 41 5 74 43 8 29 271 5 39 9091 5 54 333667 9 

8 11 1 15 37 3 34 41 5 87 43 13 34 271 5 44 9091 5 63 333667 9 

9 11 1 18 37 3 39 41 5 95 43 8 39 271 5 49 9091 5 72 333667 9 

12 11 3 21 37 3 44 41 5 100 43 5 44 271 5 54 9091 5 81 333667 9 

20 11 8 24 37 3 49 41 5 107 43 7 49 271 5 59 9091 5 90 333667 9 

23 11 3 27 37 3 54 41 5 114 43 7 54 271 5 64 9091 5 99 333667 9 

31 11 8 30 37 3 59 41 5 121 43 7 59 271 5 69 9091 5 102 333667 3 

34 11 3 33 37 3 64 41 5 128 43 7 64 271 5 74 9091 5 105 333667 3 

42 11 8 36 37 3 69 41 5 135 43 7 69 271 5 79 9091 5 108 333667 3 

45 11 3 39 37 3 74 41 5 142 43 7 74 271 5 84 9091 5 111 333667 3 

53 11 8 42 37 3 79 41 5 149 43 7 79 271 5 89 9091 5 114 333667 3 

56 11 3 45 37 3 84 41 5 156 43 7 84 271 5 94 9091 5 117 333667 3 

64 11 8 48 37 3 89 41 5 163 43 7 89 271 5 99 9091 5 120 333667 3 

67 11 3 51 37 3 94 41 5 170 43 7 94 271 5 109 9091 10 123 333667 3 

75 11 8 54 37 3 99 41 5 177 43 7 99 271 5 119 9091 10 126 333667 3 

78 11 3 57 37 3 104 41 5 184 43 7 104 271 5 129 9091 10 129 333667 3 

86 11 8 60 37 3 109 41 5 191 43 7 109 271 5 139 9091 10 132 333667 3 

89 11 3 63 37 3 114 41 5 198 43 7 114 271 5 149 9091 10 135 333667 3 

97 11 8 66 37 3 119 41 5    119 271 5 159 9091 10 138 333667 3 

   69 37 3 124 41 5    124 271 5 169 9091 10 141 333667 3 

   72 37 3 129 41 5    129 271 5 179 9091 10 144 333667 3 

   75 37 3 134 41 5    134 271 5 189 9091 10 147 333667 3 

   78 37 3 139 41 5    139 271 5 199 9091 10 150 333667 3 

   81 37 3 144 41 5    144 271 5    153 333667 3 

   84 37 3 149 41 5    149 271 5    156 333667 3 

   87 37 3 154 41 5    154 271 5    159 333667 3 

   90 37 3 159 41 5    159 271 5    162 333667 3 

   93 37 3 164 41 5    164 271 5    165 333667 3 

   96 37 3 169 41 5    169 271 5    168 333667 3 

   99 37 3 174 41 5    174 271 5    171 333667 3 

   122 37 23 179 41 5    179 271 5    174 333667 3 

   136 37 14 184 41 5    184 271 5    177 333667 3 

   159 37 23 189 41 5    189 271 5    180 333667 3 

   173 37 14 194 41 5    194 271 5    183 333667 3 

   196 37 23 199 41 5    199 271 5    186 333667 3 

                  189 333667 3 

                  192 333667 3 

                  195 333667 3 

                  198 333667 3 

 



Table 4. Smarandache Symmetric Sequence of Second Order: Less frequently 
occurring prime factors. 

 
# p d # p d # p d # p d # p d # p d # p 

5 7  7 73  50 167  15 661  147 2341  154 14843  24 165857 

6 7 1 8 73 1 106 167 56 196 661  182 2417  197 18427  120 167611 

5 13  106 73 98 118 167 12 96 683  113 2617  174 19423  195 179533 

6 13 1 114 73 8 48 173  100 683  122 2659  139 19433  119 182657 

12 31  122 73 8 91 173 43 22 773  99 2767  168 19913  165 184859 

27 31 15 130 73 8 134 173 43 69 787  95 2833  83 20399  190 194087 

42 31 15 138 73 8 177 173 43 65 839  180 2861  120 20431  131 210491 

57 31 15 146 73 8 74 179  33 881  67 3023  102 21613  90 244861 

72 31 15 154 73 8 128 179 54 165 919  35 3209  145 22811  99 263273 

87 31 15 162 73 8 160 179 32 49 929  161 3251  39 23473  130 275083 

100 47  170 73 8 128 181  170 967  13 3391  180 26267  14 290971 

105 47 5 178 73 8 188 181  145 977  100 3533  53 26539  63 305603 

146 47 41 186 73 8 25 227  21 983  175 3607  162 26881  185 317371 

151 47 5 194 73 8 58 227  32 1021  13 3631  107 28649  73 323201 

192 47 41 100 83  6 239  179 1033  200 4409  162 28723  172 325681 

197 47 5 124 83 24 7 239  141 1091  6 4649  104 28813  140 380623 

100 53  141 83 17 88 257  183 1097  7 4649  138 28817  126 395107 

113 53 13 165 83 24 141 257  76 1109  31 4673  25 33871  151 405869 

126 53 13 182 83 17 131 263  188 1129  100 4919  49 34613  118 414367 

139 53 13 11 97  111 313  160 1277  43 5087  124 37441  178 461317 

152 53 13 20 97 9 130 313  156 1289  30 5167  153 39623  99 481417 

165 53 13 59 97 39 39 347  18 1301  188 5179  78 41549  27 481549 

178 53 13 68 97 9 54 347 15 166 1367  26 5711  194 42643  161 496283 

191 53 13 128 97 60 128 347 74 107 1447  151 5783  103 45823  121 501233 

135 59  160 97 32 159 347 31 147 1483  68 5843  88 46229  11 548687 

144 59 9 192 97 32 153 359  144 1493  120 7351  113 52081  38 597269 

193 59 49 3 101  109 367  120 1511  23 7691  38 58417  28 608521 

12 61  4 101 1 124 367  93 1637  58 9007  48 60373  25 611999 

42 61 30 7 101 3 73 379  163 1663  50 9923  161 75193  85 627041 

72 61 30 8 101 1 191 401  62 1693  199 10151  172 96293  89 653659 

22 67  13 109  75 443  107 1741  118 11243  102 106949  69 716549 

55 67 33 67 109  54 463  85 1783  178 11527  123 112207  199 719779 

88 67 33 7 137  67 467  50 1789  38 12007  20 128819  126 972347 

43 71  8 137  154 487  51 1847  131 12511  119 132059    

78 71 35 102 149  194 487  38 1913  118 13457  164 136319    

113 71 35 54 151  108 569  169 2273  189 13627  28 146273    

148 71 35 26 163  156 601  25 2287  156 14153  41 156841    

183 71 35 72 163  172 643  115 2309  155 14717  107 161039    

 



Table 7. Prime factors of q(E) and occurrence of selected primes 
q E  Prime factors <350000 Selected primes 

2 10  2.5.101  

3 10  2.3.5.7.13.37 37 

4 10  2.5.73.101.137  

5 10  2.5.41.271.9091 41,271,9091 

6 10  2.3.5.7.13.37.101.9901 37,9091 

7 10  2.5.239.4649.  

8 10  2.5.17.73.101.137.  

9 10  2.32.5.7.13.19.37.52579.333667 333667 

10 10  2.5.41.101.271.3541.9091.27961 41,271,9091 

11 10  2.5.11.23.4093.8779.21649. 11 

12 10  2.3.5.7.13.37.73.101.137.9901. 37 

13 10  2.5.53.79.859.  

14 10  2.5.29.101.239.281.4649.  

15 10  2.3.5.7.13.31.37.41.211.241.271.2161.9091. 37,41,271,9091 

16 10  2.5.17.73.101.137.353.449.641.1409.69857.  

2 100  22.52.7.11.13 11 

3 100  22.3.52.333667 333667 

4 100  22.52.7.11.13.101.9901 11 

5 100  22.52.31.41.271. 41,271 

6 100  22.3.52.7.11.13.19.52579.333667 11,333667 

7 100  22.52.43.239.1933.4649. 43 

8 100  22.52.7.11.13.73.101.137.9901. 11,73 

9 100  22.32.52.757.333667. 333667 

10 100  22.52.7.11.13.31.41.211.241.271.2161.9091. 11,41,271,9091 

11 100  22.52.67.21649.  

12 100  22.3.52.7.11.13.19.101.9901.52579.333667. 11,333667 

2 1000  23.53.73.137  

3 1000  23.3.53.7.13.37.9901 37 

4 1000  23.53.17.73.137.  

5 1000  23.53.41.271.3541.9091.27961 41,271,9091 

6 1000  23.3.53.7.13.37.73.137.9901. 37  

7 1000  23.53.29.239.281.4649.  

8 1000  23.53.17.73.137.353.449.641.1409.69857.  

9 1000  23.32.53.7.13.19.37.9901.52579.333667. 37,333667 

10 1000  23.3.53.41.73.137.271.3541.9091.27961. 41,271,9091 

11 1000  23.53.11.23.89.4093.8779.21649. 11 

2 10000  24.54.11.9091 11,9091 

3 10000  24.3.54.31.37. 37 

4 10000  24.54.11.101.3541.9091.27961 11,9091 

5 10000  24.54.21401.25601.  

6 10000  24.3.54.7.11.13.31.37.211.241.2161.9091. 11,37,9091 

7 10000  24.54.71.239.4649.123551.  

8 10000  24.54.11.73.101.137.3541.9091.27961. 11,9091 

9 10000  24.3.54.31.37.238681.333667. 37,333667 

2 100000  25.55.101.9901  

3 100000  25.3.55.19.52579.333667 333667 

4 100000  25.55.73.101.137.9901..  

5 100000  25.55.31.41.211.241.271.2161.9091.. 41,271,9091 

6 100000  25.3.55.19.101.9901.52579.333667.. 333667 

7 100000  25.55.7.43.127.239.1933.2689.4649.. 43 

8 100000  25.55.17.73.101.137.9901..  

9 100000  25.32.55.19.757.52579.333667.. 333667 


