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a  b  s  t  r  a  c  t

Objective:  In  pattern  recognition  and  medical  diagnosis,  similarity  measure  is an  important  mathematical
tool.  To  overcome  some  disadvantages  of  existing  cosine  similarity  measures  of  simplified  neutrosophic
sets  (SNSs)  in  vector  space,  this  paper  proposed  improved  cosine  similarity  measures  of  SNSs  based  on
cosine  function,  including  single  valued  neutrosophic  cosine  similarity  measures  and  interval  neutro-
sophic  cosine  similarity  measures.  Then,  weighted  cosine  similarity  measures  of  SNSs  were  introduced
by  taking  into  account  the  importance  of  each  element.  Further,  a medical  diagnosis  method  using the
improved  cosine  similarity  measures  was  proposed  to solve  medical  diagnosis  problems  with  simplified
neutrosophic  information.
Materials  and  methods:  The  improved  cosine  similarity  measures  between  SNSs  were  introduced  based  on
cosine  function.  Then,  we  compared  the  improved  cosine  similarity  measures  of SNSs  with  existing  cosine
similarity  measures  of  SNSs  by  numerical  examples  to demonstrate  their  effectiveness  and  rationality
for overcoming  some  shortcomings  of  existing  cosine  similarity  measures  of SNSs  in some  cases.  In  the
medical  diagnosis  method,  we  can  find  a  proper  diagnosis  by the  cosine  similarity  measures  between  the
symptoms  and considered  diseases  which  are  represented  by SNSs.  Then,  the  medical  diagnosis  method
based  on  the  improved  cosine  similarity  measures  was  applied  to two  medical  diagnosis  problems  to
show the  applications  and  effectiveness  of the  proposed  method.
Results:  Two  numerical  examples  all demonstrated  that  the  improved  cosine  similarity  measures  of SNSs
based on  the  cosine  function  can  overcome  the  shortcomings  of the  existing  cosine  similarity  meas-
ures  between  two vectors  in some  cases.  By  two  medical  diagnoses  problems,  the  medical  diagnoses
using  various  similarity  measures  of SNSs  indicated  the  identical  diagnosis  results  and  demonstrated  the
effectiveness  and rationality  of  the  diagnosis  method  proposed  in this paper.
Conclusions:  The  improved  cosine  measures  of  SNSs  based  on  cosine  function  can  overcome  some  draw-
backs of  existing  cosine  similarity  measures  of  SNSs  in vector  space,  and  then  their  diagnosis  method  is
very  suitable  for handling  the  medical  diagnosis  problems  with  simplified  neutrosophic  information  and
demonstrates  the effectiveness  and  rationality  of  medical  diagnoses.

© 2014  Elsevier  B.V.  All  rights  reserved.

. Introduction

Due to the increased volume of information available to physicians from modem medical technologies, medical diagnosis contains a
ot of incomplete, uncertainty, and inconsistent information, which is essential information about medical diagnosis problems. A symp-
om usually implies a lot of incomplete, uncertainty, and inconsistent information for a disease, which characterizes a relation between
ymptoms and diseases. Thus we work with the uncertainties and inconsistencies to lead us to proper decision making in medicine. In

ost of the medical diagnosis problems, there exist some patterns, and then the experts make a decision based on the similarity between

nknown sample and the basic diagnosis patterns. In some practical situations, there is the possibility of each element having different
ruth-membership, indeterminacy-membership, and falsity-membership functions. Therefore, Smarandache [1] originally proposed the
oncept of a neutrosophic set from philosophical point of view. A neutrosophic set A in a universal set X is characterized independently by
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 truth-membership function TA(x), an indeterminacy-membership function IA(x), and a falsity-membership function FA(x). The functions
A(x), IA(x), FA(x) in X are real standard or nonstandard subsets of]−0, 1+[, i.e., TA(x): X → ]−0, 1+[, IA(x): X → ]−0, 1+[, and FA(x): X → ]−0,
+[. However, the domain of definition and range of the functions TA(x), IA(x) and FA(x) in a neutrosophic set A is the non-standard unit

nterval]−0, 1+[, it is only used for philosophical applications, especially when a distinction is required between absolute and relative
ruth/falsity/indeterminacy. To easily use in technical applications of the neutrosophic set, the domain of definition and range of TA(x),
A(x) and FA(x) can be restrained to the normal standard real unit interval [0, 1]. As a simplified form of the neutrosophic set, a simpli-
ed neutrosophic set (SNS) in [2] is an appropriate choice as it easily expresses and deals with incomplete, uncertainty, and inconsistent

nformation in real science and engineering fields. SNSs include single valued neutrosophic sets (SVNSs) and interval neutrosophic sets
INSs) and a generalization of classic sets, fuzzy sets (FSs) [3], intuitionistic fuzzy sets (IFSs) [4] and interval-valued intuitionistic fuzzy
ets (IVIFSs) [5]. However, FSs, IFSs and IVIFSs cannot represent and handle uncertainty and inconsistent information [1]. Then, similarity
easure is not only an important mathematical tool in pattern recognition, medicine diagnosis, and decision making but also an important

esearch topic in the neutrosophic theory. Various similarity measures have been proposed by some researchers. Broumi and Smaran-
ache [6] defined the Hausdorff distance between neutrosophic sets and some similarity measures based on the distance, set theoretic
pproach, and matching function to calculate the similarity degree between neutrosophic sets. Majumdar and Samanta [7] introduced
everal similarity measures of SVNSs based on distances, a matching function, membership grades, and then proposed an entropy measure
or a SVNS. Ye [8] also presented the Hamming and Euclidean distances between INSs and their similarity measures and applied them to

ultiple attribute decision-making problems with interval neutrosophic information. Ye [9] further proposed the distance-based similarity
easure of SVNSs and applied it to group decision making problems with single valued neutrosophic information. Furthermore, Ye [2]

roposed three vector similarity measures for SNSs, including the Jaccard, Dice, and cosine similarity measures for SVNSs and INSs, and
pplied them to multicriteria decision-making problems with simplified neutrosophic information. Till now, existing similarity measures
or neutrosophic sets are scarcely applied to medical diagnosis problems. However, the cosine similarity measures defined in vector space
2,10] have some drawbacks in some situations. For instance, they may  produce no defined (unmeaningful) phenomena or some results
alculated by the cosine similarity measures are unreasonable in some real cases (details given in Section 3). Therefore, in the situations,
t is difficult to apply them to pattern recognition and medicine diagnosis. To overcome some drawbacks of existing cosine measures in
2], this paper aims to propose improved cosine similarity measures for SNSs and apply them to medical diagnosis. To do so, the rest of the
rticle is structured as follows. In Section 2, we briefly introduce some basic concepts of SNSs. Section 3 reviews existing cosine similarity
easures of SNSs in vector space and their drawbacks. Section 4 proposes improved cosine similarity measures of SNSs based on cosine

unction, including single valued neutrosophic cosine similarity measures and interval neutrosophic cosine similarity measures, and inves-
igates their properties. In Section 5, by two numerical examples we give the comparative analysis between the improved cosine similarity

easures and existing cosine similarity measures for SNSs to show the effectiveness and rationality of the improved cosine measures. In
ection 6, a medical diagnosis method is proposed based on the improved cosine similarity measures and is applied to medical diagnosis
roblems. Conclusions and further research are given in Section 7.

. Some basic concepts of SNSs

Smarandache [1] originally presented the concept of a neutrosophic set from philosophical point of view. In a neutrosophic set A in a
niversal set X, its characteristic functions are expressed by a truth-membership function TA(x), an indeterminacy-membership function

A(x), and a falsity-membership function FA(x), respectively. The functions TA(x), IA(x), FA(x) in X are real standard or nonstandard subsets
f]−0, 1+[, i.e., TA(x): X → ]−0, 1+[, IA(x): X → ]−0, 1+[, and FA(x): X → ]−0, 1+[. Then, the sum of TA(x), IA(x) and FA(x) is no restriction, i.e.,
0 ≤ sup TA(x) + sup IA(x) + sup FA(x) ≤ 3+.

To apply a neutrosophic set to science and engineering areas, Ye [2] introduced SNS, which is a subclass of the neutrosophic set, and
ave the following definition of a SNS.

efinition 1 ([2]). Let X be a space of points (objects), with a generic element in X denoted by x. A neutrosophic set A in X is characterized by
 truth-membership function TA(x), an indeterminacy-membership function IA(x), and a falsity-membership function FA(x). If the functions
A(x), IA(x) and FA(x) are singleton subintervals/subsets in the real standard [0, 1], such that TA(x): X → [0, 1], IA(x): X → [0, 1], and FA(x):

 → [0, 1]. Then, a simplification of the neutrosophic set A is denoted by

A = {〈x, TA(x), IA(x), FA(x)〉|x ∈ X},

hich is called a SNS. It is a subclass of the neutrosophic set and includes the concepts of INS and SVNS.

On the one hand, if we  only consider that the values of TA(x), IA(x) and FA(x) in a SNS A are single points in the real standard [0, 1] instead
f subintervals/subsets in the real standard [0, 1], the SNS A can be described by three real numbers in the real unit interval [0, 1]. Therefore,
he sum of TA(x), IA(x), FA(x) ∈ [0, 1] satisfies the condition 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3. In this case, the SNS A reduces to the SVNS A.

For two SVNSs A = {〈x, TA(x), IA(x), FA(x)〉| x ∈ X} and B = {〈x, TB(x), IB(x), FB(x)〉| x ∈ X}, there are the following relations [11]:

1) Complement: Ac = {〈 x, FA(x), 1 − IA(x), TA(x) 〉 |x ∈ X};
2) Inclusion: A ⊆ B if and only if T (x) ≤ T (x), I (x) ≥ I (x), F (x) ≥ F (x) for any x in X;
A B A B A B

3) Equality: A = B if and only if A ⊆ B and B ⊆ A.

On the other hand, if we only consider three membership degrees in a SNS A as the subunit interval of the real unit interval [0, 1], the
NS can be described by three interval numbers in the real unit interval [0, 1]. For each point x in X, we  have that TA(x) = [inf TA(x), sup
A(x)], IA(x) = [inf IA(x), sup IA(x)], FA(x) = [inf FA(x), sup FA(x)] ⊆ [0, 1], and 0 ≤ sup TA(x) + sup IA(x) + sup FA(x) ≤ 3 for any x ∈ X. In this case,
he SNS A reduces to the INS A.
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For two INSs A = {〈x, TA(x), IA(x), FA(x)〉| x ∈ X} and B = {〈x, TB(x), IB(x), FB(x)〉| x ∈ X}, there are the following relations [12]:

1) Complement: Ac = {〈 x, [inf FA(x), sup FA(x)], [1 − sup IA(x), 1 − inf IA(x)], [inf TA(x), sup TA(x) 〉 |x ∈ X};
2) Inclusion: A ⊆ B if and only if inf TA(x) ≤ inf TB(x), sup TA(x) ≤ sup TB(x), inf IA(x) ≥ inf IB(x), sup IA(x) ≥ sup IB(x), inf FA(x) ≥ inf FB(x), and

sup FA(x) ≥ sup FB(x), for any x in X;
3) Equality: A = B if and only if A ⊆ B and B ⊆ A.

Especially when the upper and lower ends of three interval numbers TA(x), IA(x), FA(x) in A are equal, the INS A degrades to the SVNS A.
herefore, the SVNS A is a special case of the INS A, and also both are the special cases of the SNS A.

. Existing cosine similarity measures of SNSs and their drawbacks

In this section, we introduce existing cosine similarity measures for SNSs in the literature [2] and review their drawbacks.
Then, similarity measures should satisfy axiomatic requirements in the following definition.

efinition 2. A real-valued function S: SNS(X) × SNS(X) → [0, 1] is called a similarity measure on SNS(X) if it satisfies the following
xiomatic requirements for A, B, C ∈ SNS(X):

(S1) 0 ≤ S(A, B) ≤ 1;
(S2) S(A, B) = 1 if and only if A = B;
(S3) S(A, B) = S(B, A);
(S4) If A ⊆ B ⊆ C, then S(A, C) ≤ S(A, B) and S(A, C) ≤ S(B, C).

.1. Existing cosine similarity measure for SVNSs and its drawbacks

In this section, we only use SVNSs in SNSs. Assume that there are two  SVNSs A = {〈xj, TA(xj), IA(xj), FA(xj)〉| xj ∈ X} and B = {〈xj, TB(xj), IB(xj),
B(xj)〉| xj ∈ X} in the universe of discourse X = {x1, x2, . . .,  xn}, where TA(xj), IA(xj), FA(xj) ∈ [0, 1] for any xj ∈ X in A and TB(xj), IB(xj), FB(xj) ∈ [0,
] for any xj ∈ X in B. Then, Ye [2] presented the cosine similarity measure of SVNSs in vector space as follows:

C1(A, B) = 1
n

n∑
j=1

TA(xj)TB(xj) + IA(xj)IB(xj) + FA(xj)FB(xj)√
T2

A (xj) + I2
A(xj) + F2

A (xj)
√

T2
B (xj) + I2

B (xj) + F2
B (xj)

. (1)

However, one can find some drawbacks of Eq. (1) as follows:

1) For two SVNSs A and B, if TA(xj) = IA(xj) = FA(xj) = 0 and/or TB(xj) = IB(xj) = FB(xj) = 0 for any xj in X (j = 1, 2, . . .,  n), Eq. (1) is undefined or
unmeaningful. In this case, one cannot utilize it to calculate the cosine similarity measure between A and B.

2) If TA(xj) = 2TB(xj), IA(xj) = 2IB(xj), and FA(xj) = 2FB(xj) or 2TA(xj) = TB(xj), 2IA(xj) = IB(xj), and 2FA(xj) = FB(xj) for any xj in X (j = 1, 2, . . .,  n). By
applying Eq. (1), we have

C1(A, B) = 1
n

n∑
j=1

2TA(xj)TB(xj) + 2IA(xj)IB(xj) + 2FA(xj)FB(xj)

2
√

T2
A (xj) + I2

A(xj) + F2
A (xj)

√
T2

B (xj) + I2
B (xj) + F2

B (xj)
= 1

n

n∑
j=1

T2
A (xj) + I2

A(xj) + F2
A (xj)

T2
A (xj) + I2

A(xj) + F2
A (xj)

= 1.

Since A /= B, the measure value of Eq. (1) is equal to 1. This means that it only satisfies the necessary condition of the property (S2) in
efinition 2, but not the sufficient condition.

Therefore, in this case, it is unreasonable to apply it to pattern recognition and medical diagnosis.

.2. Existing cosine similarity measure for INSs and its drawbacks

In this section, we only use INSs in SNSs. Assume that there are two  INSs A = {〈xj, TA(xj), IA(xj), FA(xj)〉| xj ∈ X} and B = {〈xj, TB(xj), IB(xj),
B(xj)〉| xj ∈ X} in the universe of discourse X = {x1, x2, . . .,  xn}, where TA(xj) = [inf TA(xj), sup TA(xj)], IA(xj) = [inf IA(xj), sup IA(xj)], FA(xj) = [inf
A(xj), sup FA(xj)] ⊆ [0, 1] for any xj ∈ X in A and TB(xj) = [inf TB(xj), sup TB(xj)], IA(xj) = [inf IB(xj), sup IB(xj)], FB(xj) = [inf FB(xj), sup FB(xj)] ⊆ [0,
] for any xj ∈ X in B. Then, Ye [2] presented the cosine similarity measure of INSs in vector space as follows:

(

C2(A, B) = 1

n

n∑
j=1

inf TA(xj) inf TB(xj) + inf IA(xj) inf IB(xj) + inf FA(xj) inf FB(xj)

+ sup TA(xj) sup TB(xj) + sup IA(xj) sup IB(xj) + sup FA(xj) sup FB(xj)
)

(√
[inf TA(xj)]

2 + [inf IA(xj)]
2 + [inf FA(xj)]

2 + [sup TA(xj)]
2 + [sup IA(xj)]

2 + [sup FA(xj)]
2

√
[inf TB(xj)]

2 + [inf IB(xj)]
2 + [inf FB(xj)]

2 + [sup TB(xj)]
2 + [sup IB(xj)]

2 + [sup FB(xj)]
2

)
. (2)
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Similarly, one can find some drawbacks of Eq. (2) as follows:

1) For two INSs A and B, if TA(xj) = IA(xj) = FA(xj) = [0, 0] and/or TB(xj) = IB(xj) = FB(xj) = [0, 0] for any xj in X (j = 1, 2, . . .,  n), Eq. (2) is undefined
or unmeaningful. In this case, one cannot calculate the cosine similarity measure between A and B.

2) If TA(xj) = [2inf TB(xj), 2sup TB(xj)], IA(xj) = [2inf IB(xj), 2sup IB(xj)], and FA(xj) = [2inf FB(xj), 2sup FB(xj)] or TB(xj) = [2inf TA(xj), 2sup TA(xj)],
IB(xj) = [2inf IA(xj), 2sup IA(xj)], and FB(xj) = [2inf FA(xj), 2sup FA(xj)] for any xj in X (j = 1, 2, . . .,  n). By using Eq. (2), we have

C2(A, B) = 1
n

n∑
j=1

2
(

inf TA(xj) inf TB(xj) + inf IA(xj) inf IB(xj) + inf FA(xj) inf FB(xj) + sup TA(xj) sup TB(xj)

+ sup IA(xj) sup IB(xj) + sup FA(xj) sup FB(xj)
)

(
2
√

[inf TA(xj)]
2 + [inf IA(xj)]

2 + [inf FA(xj)]
2 + [sup TA(xj)]

2 + [sup IA(xj)]
2 + [sup FA(xj)]

2

√
[inf TB(xj)]

2 + [inf IB(xj)]
2 + [inf FB(xj)]

2 + [sup TB(xj)]
2 + [sup IB(xj)]

2 + [sup FB(xj)]
2

)

= 1
n

n∑
j=1

(
[inf TA(xj)]

2 + [inf IA(xj)]
2 + [inf FA(xj)]

2 + [sup TA(xj)]
2 + [sup IA(xj)]

2 + [sup FA(xj)]
2)(

[inf TA(xj)]
2 + [inf IA(xj)]

2 + [inf FA(xj)]
2 + [sup TA(xj)]

2 + [sup IA(xj)]
2 + [sup FA(xj)]

2) = 1.

Since A /= B, the measure value of Eq. (2) is equal to 1. This means that it only satisfies the necessary condition of the property (S2) in
efinition 2, but not the sufficient condition.

Therefore, in this case, the cosine similarity measure of INSs is unreasonable in the application of pattern recognition and medical
iagnosis.

In order to overcome the above mentioned disadvantages, we shall improve cosine similarity measures of SNSs in the following section.

. Improved cosine similarity measures for SNSs

.1. Improved cosine similarity measures for SVNSs

Based on cosine function, we propose two improved cosine similarity measures between SVNSs and investigate their properties.
Let A = {〈xj, TA(xj), IA(xj), FA(xj)〉| xj ∈ X} and B = {〈xj, TB(xj), IB(xj), FB(xj)〉| xj ∈ X} be any two  SVNSs in X = {x1, x2, . . .,  xn}, where TA(xj), IA(xj),

A(xj) ∈ [0, 1] for any xj ∈ X in A and TB(xj), IB(xj), FB(xj) ∈ [0, 1] for any xj ∈ X in B. Then, based on cosine function, we propose two improved
osine similarity measures between A and B, respectively, as follows:

SC1(A, B) = 1
n

n∑
j=1

cos

[
�(|TA(xj) − TB(xj)| ∨ |IA(xj) − IB(xj)| ∨ |FA(xj) − FB(xj)|)

2

]
, (3)

SC2(A, B) = 1
n

n∑
j=1

cos

[
�(|TA(xj) − TB(xj)| + |IA(xj) − IB(xj)| + |FA(xj) − FB(xj)|)

6

]
, (4)

here the symbol “∨” is the maximum operation. Then, the two improved cosine similarity measures satisfy the axiomatic requirements
f similarity measures.

roposition 1. For two SVNSs A and B in X = {x1, x2, . . .,  xn}, the cosine similarity measure SCk(A, B) (k = 1, 2) should satisfy the following
roperties (S1–S4):

S1) 0 ≤ SCk(A, B) ≤ 1;
S2) SCk(A, B) = 1 if and only if A = B;
S3) SCk(A, B) = SCk(B, A);
S4) If C is a SVNS in X and A ⊆ B ⊆ C, then SCk(A, C) ≤ SCk(A, B) and SCk(A, C) ≤ SCk(B, C).

roof.

S1) Since the truth-membership degree, indeterminacy-membership degree, and falsity-membership degree in SVNS and the value of
the cosine function are within [0, 1], the similarity measure based on the cosine function also is within [0, 1]. Hence 0 ≤ SCk(A, B) ≤ 1
for k = 1, 2.

S2) For any two SVNSs A and B, if A = B, this implies TA(xj) = TB(xj), IA(xj) = IB(xj), FA(xj) = FB(xj) for j = 1, 2, . . .,  n and xj ∈ X. Hence∣ ∣ ∣ ∣ ∣ ∣
∣TA(xj) − TB(xj)∣ = 0, ∣IA(xj) − IB(xj)∣ = 0, and ∣FA(xj) − FB(xj)∣ = 0. Thus SCk(A, B) = 1 for k = 1, 2.If SCk(A, B) = 1 for k = 1, 2, this

implies
∣∣TA(xj) − TB(xj)

∣∣ = 0,
∣∣IA(xj) − IB(xj)

∣∣ = 0, and
∣∣FA(xj) − FB(xj)

∣∣ = 0 since cos(0) = 1. Then, these equalities indicate TA(xj) = TB(xj),
IA(xj) = IB(xj), FA(xj) = FB(xj) for j = 1, 2, . . .,  n and xj ∈ X. Hence A = B.

S3) Proof is straightforward.
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S4) If A ⊆ B ⊆ C, then there are TA(xj) ≤ TB(xj) ≤ TC(xj), IA(xj) ≥ IB(xj) ≥ IC(xj), and FA(xj) ≥ FB(xj) ≥ FC(xj) for j = 1, 2, . . .,  n and xj ∈ X. Then, we
have the following inequalities:

|TA(xj) − TB(xj)| ≤ |TA(xj) − TC (xj)|, |TB(xj) − TC (xj)| ≤ |TA(xj) − TC (xj)|,
|IA(xj) − IB(xj)| ≤ |IA(xj) − IC (xj)|, |IB(xj) − IC (xj)| ≤ |IA(xj) − IC (xj)|,
|FA(xj) − FB(xj)| ≤ |FA(xj) − FC (xj)|, |FB(xj) − FC (xj)| ≤ |FA(xj) − FC (xj)|

Hence, SCk(A, C) ≤ SCk(A, B) and SCk(A, C) ≤ SCk(B, C) for k = 1, 2 since the cosine function is a decreasing function within the interval [0,
/2].

Therefore, we complete the proofs of these properties. �

Usually, one takes the weight of each element xj for xj ∈ X into account and assumes that the weight of an element xj is wj (j = 1, 2, . . .,  n)
ith wj ∈ [0, 1] and

∑n
j=1wj = 1. Thus we can introduce the following weighted cosine similarity measures between SVNSs:

WSC1(A, B) =
n∑

j=1

wj cos

[
�(|TA(xj) − TB(xj)| ∨ |IA(xj) − IB(xj)| ∨ |FA(xj) − FB(xj)|)

2

]
, (5)

WSC2(A, B) =
n∑

j=1

wj cos

[
�(|TA(xj) − TB(xj)| + |IA(xj) − IB(xj)| + |FA(xj) − FB(xj)|)

6

]
, (6)

Especially when wj = 1/n  for j = 1, 2, . . .,  n, Eqs. (5) and (6) reduce to Eqs. (3) and (4).

.2. Improved cosine similarity measures for INSs

Similarly, we propose two improved cosine similarity measures between INSs and investigate their properties.
Let A = {〈xj, TA(xj), IA(xj), FA(xj)〉| xj ∈ X} and B = {〈xj, TB(xj), IB(xj), FB(xj)〉| xj ∈ X} be any two INSs in X = {x1, x2, . . .,  xn}, where TA(xj) = [inf

A(xj), sup TA(xj)], IA(xj) = [inf IA(xj), sup IA(xj)], FA(xj) = [inf FA(xj), sup FA(xj)] ⊆ [0,1] for any xj ∈ X in A and TB(xj) = [inf TB(xj), sup TB(xj)],
A(xj) = [inf IB(xj), sup IB(xj)], FB(xj) = [inf FB(xj), sup FB(xj)] ⊆ [0, 1] for any xj ∈ X in B. Then, based on the cosine function, we propose two
mproved cosine similarity measures between A and B, respectively, as follows:

SC3(A, B) = 1
n

n∑
j=1

cos
[

�

4

(
| inf TA(xj) − inf TB(xj)| ∨ | inf IA(xj) − inf IB(xj)| ∨ | inf FA(xj) − inf FB(xj)|

+| sup TA(xj) − sup TB(xj)| ∨ | sup IA(xj) − sup IB(xj)| ∨ | sup FA(xj) − sup FB(xj)|
)]

, (7)

SC4(A, B) = 1
n

n∑
j=1

cos
[

�

12

(∣∣inf TA(xj) − inf TB(xj)
∣∣ +

∣∣inf IA(xj) − inf IB(xj)
∣∣ +

∣∣inf FA(xj) − inf FB(xj)
∣∣

+
∣∣sup TA(xj) − sup TB(xj)

∣∣ +
∣∣sup IA(xj) − sup IB(xj)

∣∣ +
∣∣sup FA(xj) − sup FB(xj)

∣∣) ]
, (8)

here the symbol “∨” is the maximum operation. Then, the two improved cosine similarity measures of INSs satisfy the axiomatic
equirements in Definition 2.

roposition 2. For two INSs A and B in X = {x1, x2, . . .,  xn}, the cosine similarity measure SCk(A, B) (k = 3, 4) should satisfy the following
roperties (S1–S4):

S1) 0 ≤ SCk(A, B) ≤ 1;
S2) SCk(A, B) = 1 if and only if A = B;
S3) SCk(A, B) = SCk(B, A);
S4) If C is an INS in X and A ⊆ B ⊆ C, then SCk(A, C) ≤ SCk(A, B) and SCk(A, C) ≤ SCk(B, C).

roof.

S1) Since the truth-membership degree, indeterminacy-membership degree, and falsity-membership degree in an INS and the value of
the cosine function are within [0, 1], the similarity measure value based on the cosine function also is within [0, 1]. Thus 0 ≤ SCk(A,
B) ≤ 1 for k = 3, 4.
S2) For any two INSs A and B, if A = B, this implies TA(xj) = TB(xj), IA(xj) = IB(xj), FA(xj) = FB(xj) for j = 1, 2, . . .,  n and xj ∈ X.
Hence

∣∣inf TA(xj) − inf TB(xj)
∣∣ = 0,

∣∣inf IA(xj) − inf IB(xj)
∣∣ = 0,

∣∣inf FA(xj) − inf FB(xj)
∣∣ = 0,

∣∣sup TA(xj) − sup TB(xj)
∣∣ = 0,∣∣sup IA(xj) − sup IB(xj)

∣∣ = 0, and
∣∣sup FA(xj) − sup FB(xj)

∣∣ = 0. Thus SCk(A, B) = 1 for k = 3, 4.If SCk(A, B) = 1 for k = 3, 4,

this implies
∣∣inf TA(xj) − inf TB(xj)

∣∣ = 0,
∣∣inf IA(xj) − inf IB(xj)

∣∣ = 0,
∣∣inf FA(xj) − inf FB(xj)

∣∣ = 0,
∣∣sup TA(xj) − sup TB(xj)

∣∣ = 0,
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∣∣sup IA(xj) − sup IB(xj)
∣∣ = 0, and

∣∣sup FA(xj) − sup FB(xj)
∣∣ = 0 since cos(0) = 1. Then, these equalities indicate TA(xj) = TB(xj), IA(xj) = IB(xj),

FA(xj) = FB(xj) for j = 1, 2, . . .,  n and xj ∈ X. Hence A = B.
S3) Proof is straightforward.
S4) If A ⊆ B ⊆ C, then there are inf TA(xj) ≤ inf TB(xj) ≤ inf TC(xj), sup TA(xj) ≤ sup TB(xj) ≤ sup TC(xj), inf IA(xj) ≥ inf IB(xj) ≥ inf IC(xj),

sup IA(xj) ≥ sup IB(xj) ≥ sup IC(xj), inf FA(xj) ≥ inf FB(xj) ≥ inf FC(xj), and sup FA(xj) ≥ sup FB(xj) ≥ sup FC(xj) for j = 1, 2, . . .,  n and xj ∈ X.
Then, we have the following inequalities:

| inf TA(xj) − inf TB(xj)| ≤ | inf TA(xj) − inf TC (xj)|,
| inf TB(xj) − inf TC (xj)| ≤ | inf TA(xj) − inf TC (xj)|,
| sup TA(xj) − sup TB(xj)| ≤ | sup TA(xj) − sup TC (xj)|,
| sup TB(xj) − sup TC (xj)| ≤ | sup TA(xj) − sup TC (xj)|,
| inf IA(xj) − inf IB(xj)| ≤ | inf IA(xj) − inf IC (xj)|,
| inf IB(xj) − inf IC (xj)| ≤ | inf IA(xj) − inf IC (xj)|,
| sup IA(xj) − sup IB(xj)| ≤ | sup IA(xj) − sup IC (xj)|,
| sup IB(xj) − sup IC (xj)| ≤ | sup IA(xj) − sup IC (xj)|,
| inf FA(xj) − inf FB(xj)| ≤ | inf FA(xj) − inf FC (xj)|,
| inf FB(xj) − inf FC (xj)| ≤ | inf FA(xj) − inf FC (xj)|,
| sup FA(xj) − sup FB(xj)| ≤ | sup FA(xj) − sup FC (xj)|,
| sup FB(xj) − sup FC (xj)| ≤ | sup FA(xj) − sup FC (xj)|.

Since the cosine function is a decreasing function within the interval [0, �/2], hence SCk(A, C) ≤ SCk(A, B) and SCk(A, C) ≤ SCk(B, C) for
 = 3, 4.

Thus, we complete the proofs of these properties. �

When one takes the weight of each element xj for xj ∈ X into account and assumes that the weight of an element xj is wj (j = 1, 2, . . .,  n)
ith wj ∈ [0, 1] and

∑n
j=1wj = 1, we can introduce the following weighted cosine similarity measures between INSs A and B:

WSC3(A, B) =
n∑

j=1

wj cos
[

�

4

(
| inf TA(xj) − inf TB(xj)| ∨ | inf IA(xj) − inf IB(xj)| ∨ | inf FA(xj) − inf FB(xj)|

+| sup TA(xj) − sup TB(xj)| ∨ | sup IA(xj) − sup IB(xj)| ∨ | sup FA(xj) − sup FB(xj)|
)]

, (9)

WSC4(A, B) =
n∑

j=1

wj cos
[

�

12

(
| inf TA(xj) − inf TB(xj)| + | inf IA(xj) − inf IB(xj)| + | inf FA(xj) − inf FB(xj)|

+| sup TA(xj) − sup TB(xj)| + | sup IA(xj) − sup IB(xj)| + | sup FA(xj) − sup FB(xj)|
)]

. (10)

Especially when wj = 1/n  for j = 1, 2, . . .,  n, Eqs. (9) and (10) reduce to Eqs. (7) and (8). Then, when TA(xj) = inf TA(xj) = sup TA(xj, IA(xj) = inf
A(xj) = sup IA(xj), and FA(xj) = inf FA(xj) = sup FA(xj) for any xj ∈ X in A and TB(xj) = inf TB(xj) = sup TB(xj), IB(xj) = inf IB(xj) = sup IB(xj), FB(xj) = inf
B(xj) = sup FB(xj) for any xj ∈ X in B, the INSs A and B reduce to the SVNSs A and B, and then Eqs. (7)–(10) reduce to Eqs. (3)–(6), respectively.

. Comparative analyses of various cosine similarity measures

To compare the improved cosine measures with existing cosine measures [2] in simplified neutrosophic setting, we  provide two
umerical examples to demonstrate the effectiveness and rationality of the improved cosine similarity measures of SNSs.

xample 1. We  consider two SVNSs A and B in X = {x} and compare the improved cosine similarity measures with existing cosine similarity
easure in [2]. The comparison of pattern recognitions is indicated by the numerical example in Table 1. By applying Eqs. (1), (3) and (4),

hese similarity measure results are shown in Table 1.

xample 2. Let us consider two INSs A and B in X = {x} and compare the improved cosine similarity measures with existing cosine similarity
easure in [2]. The comparison of pattern recognitions is demonstrated by the numerical example in Table 2. By using Eqs. (2), (7) and (8),
hese similarity measure results are shown in Table 2.

The results of Tables 1 and 2 show that the existing cosine similarity measures in [2] not only cannot carry out the recognition between
ase 1 and Case 5 but also produces unreasonable phenomena for Case 5 and undefined (unmeaningful) phenomena for Case 4. This will get
he decision maker into trouble in practical applications. However, the improved cosine similarity measures SC1 and SC3 cannot also carry
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Table  1
Similarity measure values of Eqs. (1), (3) and (4).

Case 1 Case 2 Case 3 Case 4 Case 5

A 〈x, 0.2, 0.3, 0.4〉 〈x, 0.3, 0.2, 0.4〉 〈x, 1, 0, 0〉 〈x, 1, 0, 0〉 〈x, 0.4, 0.2, 0.6〉
B  〈x, 0.2, 0.3, 0.4〉 〈x, 0.4, 0.2, 0.3〉 〈x, 0, 1, 1〉 〈x, 0, 0, 0〉 〈x, 0.2, 0.1, 0.3〉
C1(A, B) [2] 1 0.9655 0 null 1
SC1(A, B) 1 0.9877 0 0 0.8910
SC2(A, B) 1 0.9945 0 0.8660 0.9511

Table 2
Similarity measure values of Eqs. (2), (7) and (8).

Case 1 Case 2 Case 3 Case 4 Case 5

A 〈x, [0.3, 0.5], [0.2, 0.4], [0, 0.1]〉 〈x, [0.3, 0.5], [0.2, 0.4], [0.4, 0.5]〉 〈x, [1, 1], [0, 0], [0, 0]〉  〈x, [1, 1], [0, 0], [0, 0]〉  〈x, [0.3, 0.4], [0.2, 0.3], [0.4, 0.5]〉
B  〈x, [0.3, 0.5], [0.2, 0.4], [0, 0.1]〉 〈x, [0.4, 0.5], [0.2, 0.4], [0.3, 0.5]〉 〈x, [0, 0], [1, 1], [1, 1]〉  〈x, [0, 0], [0, 0], [0, 0]〉  〈x, [0.6, 0.8], [0.4, 0.6], [0.8, 1]〉
C2(A, B) [2] 1 0.9895 0 null 1
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SC3(A, B) 1 0.9969 0 0 0.7604
SC4(A, B) 1 0.9986 0 0.8660 0.8526

ut the recognition between Case 3 and Case 4, but do not produce the undefined (unmeaningful) phenomena. Then, the improved cosine
imilarity measures SC2 and SC4 demonstrate stronger discrimination among them. Obviously, the improved cosine similarity measures
re superior to the existing cosine similarity measures in [2]. Furthermore, the cosine similarity measures SC2 and SC4 are superior to the
osine similarity measures SC1 and SC3, respectively.

The two examples all demonstrate that in some cases the improved cosine similarity measures of SNSs based on the cosine function
an overcome the disadvantages of the existing cosine similarity measures between two  vectors.

. Medical diagnoses using improved cosine similarity measures

Due to the increased volume of information available to physicians from modem medical technologies, medical diagnosis contains a
ot of incomplete, uncertainty, and inconsistent information. In some practical situations, there is the possibility of each element having
ifferent truth-membership, indeterminacy-membership, and falsity-membership degrees, by which an SNS is expressed. Hence, similarity
easures for SNSs are a suitable tool to deal with medical diagnosis problems with simplified neutrosophic information. Hereby, we apply

he improved cosine similarity measures of SNSs to medical diagnosis.
In medical diagnosis problems, we propose a medical diagnosis method below.
Let us consider a set of diagnoses Q = {Q1, Q2, . . .,  Qn}, and a set of symptoms S = {s1, s2, s3, . . .,  sm}. Assume that we take a sample from

 patient P with all the symptoms. Then, the characteristic information of Q, S and P is represented by the form of SNSs. To find a proper
iagnosis, we can calculate the cosine measure SCk(P, Qi) (k = 1, 2, 3, 4; i = 1, 2, . . .,  n). The proper diagnosis Qi* for the patient P is derived
y

i∗ = arg max
1≤i≤n

{SCk(P, Qi)}.

To illustrate the medical diagnostic process, we provide two  medical diagnosis examples to demonstrate the applications and effec-
iveness of the medical diagnosis method using the improved cosine similarity measures.

.1. Medical diagnosis under the single valued neutrosophic environment

xample 3. Let us consider the medical diagnosis problem adapted from [13]. Assume that a set of diagnoses is Q = {Q1 (viral fever), Q2
malaria), Q3 (typhoid), Q4 (gastritis), Q5 (stenocardia)}  and a set of symptoms is S = {s1 (fever), s2 (headache), s3 (stomach pain), s4 (cough),
5 (chest pain)}. Then characteristic values of the considered diseases are represented by the form of SVNSs, which are shown in Table 3.

In the medical diagnosis, assume that we take a sample from a patient P1 with all the symptoms, which is represented by the following
VNS information:

P1 (patient) = {〈s1, 0.8, 0.2, 0.1〉, 〈s2, 0.6, 0.3, 0.1〉, 〈s3, 0.2, 0.1, 0.8〉, 〈s4, 0.6, 0.5, 0.1〉, 〈s5, 0.1, 0.4, 0.6〉}.

For convenient comparison, we utilize the existing cosine measure [2] and the two improved cosine measures to handle the diagnosis

roblem. By applying Eqs. (1), (3) and (4), we can obtain the results of the three similarity measures between the patient P1 and the
onsidered disease Qi (i = 1, 2, 3, 4, 5), as shown in Table 4.

able 3
haracteristic values of the considered diseases represented by the form of SVNSs.

s1 (fever) s2 (headache) s3 (stomach pain) s4 (cough) s5 (chest pain)

Q1 (viral fever) 〈s1, 0.4, 0.6, 0.0〉 〈s2, 0.3, 0.2, 0.5〉 〈s3, 0.1, 0.3, 0.7〉 〈s4, 0.4, 0.3, 0.3〉 〈s5,  0.1, 0.2, 0.7〉
Q2 (malaria) 〈s1, 0.7, 0.3, 0.0〉 〈s2, 0.2, 0.2, 0.6〉 〈s3, 0.0, 0.1, 0.9〉 〈s4, 0.7, 0.3, 0.0〉 〈s5,  0.1, 0.1, 0.8〉
Q3 (typhoid) 〈s1, 0.3, 0.4, 0.3〉 〈s2, 0.6, 0.3, 0.1〉 〈s3, 0.2, 0.1, 0.7〉 〈s4, 0.2, 0.2, 0.6〉 〈s5,  0.1, 0.0, 0.9〉
Q4 (gastritis) 〈s1, 0.1, 0.2, 0.7〉 〈s2, 0.2, 0.4, 0.4〉 〈s3, 0.8, 0.2, 0.0〉 〈s4, 0.2, 0.1, 0.7〉 〈s5,  0.2, 0.1, 0.7〉
Q5 (stenocardia) 〈s1, 0.1, 0.1, 0.8〉 〈s2, 0.0, 0.2, 0.8〉 〈s3, 0.2, 0.0, 0.8〉 〈s4, 0.2, 0.0, 0.8〉 〈s5,  0.8, 0.1, 0.1〉
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Table 4
Various similarity measure values for SVNS information.

Viral fever (Q1) Malaria (Q2) Typhoid (Q3) Gastritis (Q4) Stenocardia (Q5)

C1(P1, Qi) [2] 0.8505 0.8661 0.8185 0.5148 0.4244
SC1(P1, Qi) 0.8942 0.8976 0.8422 0.6102 0.5607
SC2(P1, Qi) 0.9443 0.9571 0.9264 0.8214 0.7650

Table 5
Various similarity measure values for INS information.

Viral fever (Q1) Malaria (Q2) Typhoid (Q3) Gastritis (Q4) Stenocardia (Q5)

C (P , Q ) [2] 0.6775 0.5613 0.7741 0.7198 0.6872
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SC3(P2, Qi) 0.7283 0.6079 0.7915 0.7380 0.7157
SC4(P2, Qi) 0.8941 0.8459 0.9086 0.9056 0.8797

Since the largest similarity measure indicates the proper diagnosis, we  can see from Table 4 that the patient P1 suffers from malaria.
bviously, the medical diagnoses using various similarity measures of SVNSs indicate the same diagnosis results and demonstrate the
ffectiveness of these diagnoses. However, as mentioned above, since the improved cosine measures of SVNSs in this paper cannot produce
ndefined (unmeaningful) or unreasonable phenomena in some real cases, they can avoid some drawbacks of the existing cosine measure

n [2] in some cases. Hence, the improved cosine measures of SVNSs are superior to the existing cosine measure of SVNSs.
To compare the diagnosis results of cosine similarity measures between SVNSs and between IFSs, here we quote the results of the cosine

imilarity measure of IFSs in [13] as follows:
CIFS(P1, Q1) = 0.9046,  CIFS(P1, Q2) = 0.8602, CIFS(P1, Q3) = 0.8510, CIFS(P1, Q4) = 0.5033, and CIFS(P1, Q5) = 0.4542.
Obviously, the diagnosis result of the patient P1 is viral fever under the intuitionistic fuzzy environment, while the diagnosis result of

he patient P1 given in this paper is malaria under the single valued neutrosophic environment. Therefore, there are different diagnosis
esults under different environments. The reason is that the diagnosis method in [13] is on the basis of the cosine measure of IFSs,
hich only considers the truth-membership and falsity-membership degrees but not the indeterminate-membership degree; while the
iagnosis method in this paper is based on the improved cosine measures of SVNSs and contains more information (the truth-membership,
alsity-membership, and indeterminate-membership degrees). Therefore, different measure methods with different kinds of information
epresented by IFSs and SVNSs may  give different diagnosis results. Furthermore, the diagnosis method in [13] cannot handle the diagnosis
roblem with single valued neutrosophic information and may  produce an undefined (unmeaningful) or unreasonable phenomenon based
n the cosine similarity measure of IFSs in some real cases, while the diagnosis method in this paper can deal with the diagnosis problems
ith intuitionistic fuzzy information and simplified neutrosophic information and overcome the indicated drawbacks. Hence, the diagnosis
ethod based on the improved cosine measures of SVNSs is superior to the one of the cosine measure of IFSs [13].

.2. Medical diagnosis under the interval neutrosophic environment

However, by only taking one time inspection, we  wonder whether one can obtain a conclusion from a particular person with a particular
ecease or not. Hence, we have to examine the patient at different time intervals (e.g., two  or three times a day) and can obtain that data
ollected from multiple time inspections for the patient are interval values rather than single values. In this case, the improved cosine
easures of INSs are a better tool to find a proper disease diagnosis.

xample 4. Let us consider Example 3 again. Then, a patient P2 with all the symptoms can be represented by the following INS information:
P2 (patient) = {〈s1, [0.3, 0.5], [0.2, 0.3], [0.4, 0.5]〉, 〈s2, [0.7, 0.9], [0.1, 0.2], [0.1, 0.2]〉, 〈s3, [0.4, 0.6], [0.2, 0.3], [0.3, 0.4]〉, 〈s4, [0.3, 0.6], [0.1,

.3], [0.4, 0.7]〉, 〈s5, [0.5, 0.8], [0.1, 0.4], [0.1, 0.3]〉}.

Similarly, we utilize the existing cosine measure [2] and the two improved cosine measures of INSs to handle the diagnosis problem. By
pplying Eqs. (2), (7) and (8), we can obtain the results of various similarity measures between the patient P2 and the considered disease
i (i = 1, 2, 3, 4, 5), as shown in Table 5.

Therefore, we can see from Table 5 that the patient P2 suffers from typhoid. Then, the medical diagnoses using various similarity
easures of INSs indicate the same diagnosis results and demonstrate the effectiveness of these diagnoses. However, as aforementioned

dvantages of the improved cosine measures, the improved cosine measures between INSs can also overcome some drawbacks of the
xisting cosine measure of INSs in [2] in some cases and are superior to the cosine similarity measures of SVNSs because INSs are the
xtension of SVNSs and more suitable for expressing and handling medical diagnosis problems than SVNSs.

. Conclusions

This paper proposed the improved cosine similarity measures for SNSs based on cosine function, including single valued neutrosophic
osine similarity measures and interval neutrosophic cosine similarity measures. Then, the weighted cosine similarity measures of SNSs
re introduced by considering the importance of each element. Compared with existing cosine similarity measures under simplified
eutrosophic environment, the improved cosine measures of SNSs demonstrate their effectiveness and rationality and can overcome
ome drawbacks of existing cosine similarity measures of SNSs. Finally, two  medical diagnosis problems with simplified neutrosophic

nformation are provided to demonstrate the applications and effectiveness of the medical diagnosis method using the improved cosine
imilarity measures of SNSs.

In further work, it is necessary to apply the cosine similarity measures of SNSs to other areas such as decision making, image processing,
nd clustering analysis.
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