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Abstract

The objective of this paper is to introduce the concept of neutrosophic near-
rings. The concept of neutrosophic N -group of a neutrosophic nearring is intro-
duced. We studied neutrosophic subnearrings of neutrosophic nearrings and also
neutrosophic N -subgroups of neutrosophic N - groups. The notions of neutro-
sophic ideals in neutrosophic nearrings and neutrosophic N -groups are introduced
and their elementary properties are presented. In addition, we introduced the
concepts of neutrosophic homomorphisms of neutrosophic nearrings and neutro-
sophic N -homomorphisms of neutrosophic N -groups and also, we presented neu-
trosophic quotient nearrings and quotient N -groups.
AMS (2010): 03B60, 12K05, 16Y30.
Key words: Neutrosophy, neutrosophic nearring, neutrosophic N -group, neutro-
sophic subnearring, neutrosophic N -subgroup, neutrosophic ideal, neutrosophic ho-
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1 Introduction

Definition 1.1. Let (N,+, .) be a set with two binary operations + and .. N is called
a right nearring if the following conditions hold:

(1) (N,+) is a group, not necessarily abelian.

(2) (N, .) is a semigroup.

(3) For all x, y, z ∈ N , (x+ y)z = xz + yz.

A left nearring is similarly defined. If (N,+) is an abelian group, then (N,+, .)
is called an abelian nearring. Also, if (N, .) is commutative, then (N,+, .) is called a
commutative nearring.

(N,+, .) is a nearfield if (N \ {0}, .) is a group.
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Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope
of neutralities, as well as their interactions with different ideational spectra. Neutro-
sophic set and neutrosophic logic were introduced in 1995 by Smarandache as general-
izations of classical sets, conventional fuzzy set, intuitionistic fuzzy set, interval valued
fuzzy set and respectively fuzzy logic and intuitionistic fuzzy logic. In neutrosophic
logic, each proposition is approximated to have the percentage of truth in a subset (T ),
the percentage of indeterminacy in a subset (I), and the percentage of falsity in a sub-
set (F ), where T, I, F are standard or non-standard subsets of the non-standard unit
interval ]−0, 1+[, (see [8, 9, 10]). In technical applications, T, I and F are only standard
subsets of the standard unit interval [0, 1] with −0 ≤ sup(T ) + sup(I) + sup(F ) ≤ 3+

where sup(X) means the superior of the subset X.
Neutrosophic logic has wide applications in science, engineering, Information Tech-

nology, law, politics, economics, finance, econometrics, operations research, optimiza-
tion theory, game theory and simulation etc.

The notion of neutrosophic algebraic structures was introduced by Kandasamy and
Smarandache in 2006. The indeterminate element I was combined with the elements of
a given algebraic structure (X, ∗), and, the new algebraic structure (X(I), ∗) =< X, I >
generated by X and I is called a neutrosophic algebraic structure. Some of the neutro-
sophic algebraic structures developed by Kandasamy and Smarandache include neutro-
sophic groupoids, neutrosophic semigroups, neutrosophic groups, neutrosophic loops,
neutrosophic rings, neutrosophic fields, neutrosophic vector spaces, neutrosophic mod-
ules, neutrosophic bigroupoids, neutrosophic bisemigroups, neutrosophic bigroups, neu-
trosophic biloops, neutrosophic N-groups, neutrosophic N-semigroups, neutrosophic N-
loops and so on (see [17, 18]). Recently, Agboola and Davvaz introduced neutro-
sophic hypergroups, neutrosophic canonical hypergroups, neutrosophic hyperrings and
neutrosophic BCI/BCK-Algebras (see [4],[5],[6]). Many researchers have also developed
and studied several neutrosophic algebraic structures (see [12],[13] [14], [16]).

Let X be a nonempty set and let I be an indeterminate. The set

X(I) =< X, I >= {(x, yI) : x, y ∈ X} (1)

is called a neutrosophic set generated by X and I. If + and . are ordinary addition
and multiplication, I has the following properties:

(1) I + I + · · ·+ I = nI.

(2) I + (−I) = 0.

(3) I.I. · · · .I = In = I for all positive integer n.

(4) 0.I = 0.

(5) I−1 is undefined and therefore does not exist.

If ∗ : X(I) × X(I) → X(I) is a binary operation defined on X(I), then the couple
(X(I), ∗) is called a neutrosophic algebraic structure and it is named according the
axioms satisfied by ∗. If (X(I), ∗) and and (Y (I), ∗′) are two neutrosophic algebraic
structures, the mapping φ : (X(I), ∗) → (Y (I), ∗′) is called a neutrosophic homomor-
phism if the following conditions hold:
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(1) φ((w, xI) ∗ (y, zI)) = φ((w, xI)) ∗′ φ((y, zI)).

(2) φ(I) = I ∀(w, xI), (y, zI) ∈ X(I).

Definition 1.2. Let (G, ∗) be any group. The couple (G(I), ∗) is called a neutro-
sophic group generated by G and I. (G(I), ∗) is said to be commutative if for all
x, y ∈ G(I), we have x ∗ y = y ∗ x. (Z(I),+) and (R(I), .) are commutative neutro-
sophic groups.

It should be noted that generally, a neutrosophic group (G(I), ∗) is not a group. How-
ever, every additive neutrosophic group (G(I),+) is a group.

Definition 1.3. Let (R,+, .) be any ring. The triple (R(I),+, .) is called a neutro-
sophic ring generated by R and I. R(I) is said to be commutative if for all x, y ∈ R(I),
we have x.y = y.x. (Z(I),+, .) and (R(I),+, .) are commutative neutrosophic rings of
integers and real numbers respectively.

Generally, every neutrosophic ring (R(I),+, .) is a ring but not the converse.

Definition 1.4. Let (F,+, .) be any field. The triple (F (I),+, .) is called a neutro-
sophic field generated by F and I. (Q(I),+, .) and (R(I),+, .) are neutrosophic fields.

2 Main Results

Definition 2.1. Let (N,+, .) be any right nearring. The triple (N(I),+, .) is called a
right neutrosophic nearring. For all x = (a, bI), y = (c, dI) ∈ N(I) with a, b, c, d ∈ N ,
we define:

x+ y = (a, bI) + (c, dI) = (a+ c, (b+ d)I). (2)

−x = −(a, bI) = (−a,−bI). (3)

x.y = (a, bI).(c, dI) = (ac, (ad+ bc+ bd)I). (4)

The zero element in (N,+) is represented by (0, 0) in (N(I),+). Any element x ∈ N
is represented by (x, 0) in N(I). I in N(I) is sometimes represented by (0, I) in N(I).

Definition 2.2. Let (N(I),+, .) be a right neutrosophic nearring.

(1) N(I) is called abelian if

(a, bI) + (c, dI) = (c, dI) + (a, bI) ∀(a, bI), (c, dI) ∈ N(I).

(2) N(I) is called commutative if

(a, bI).(c, dI) = (c, dI).(a, bI) ∀(a, bI), (c, dI) ∈ N(I).

(3) N(I) is said to be distributive if N(I) = Nd(I) where

Nd(I) = {d ∈ N(I) : d(m+ n) = dm+ dn ∀m,n ∈ N(I)}.
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(4) N(I) is said to be zero-symmetric if N(I) = N0(I) where

N0(I) = {n ∈ N(I) : n0 = 0}.

The following should be noted:

(1) N(I) is abelian only if (N,+) is abelian.

(2) N(I) is commutative only if (N, .) is commutative.

(3) N(I) is distributive only if N is distributive.

(4) N(I) is zero-symmetric only if N is zero-symmetric.

Except otherwise stated, all nearrings in this paper will be right nearrings and all
neutrosophic nearrings will be right neutrosophic nearrings.

Example 1. Let (X(I),+) be a neutrosophic group and letMX(I) be a neutrosophic set
defined by

MX(I) = {φ : X(I)→ X(I)}.

For all φ, ψ ∈MX(I), define:

(φ+ ψ)((x, yI)) = φ((x, yI)) + ψ((x, yI))

φ ◦ ψ((x, yI)) = φ(ψ((x, yI)) ∀ (x, yI) ∈ X(I).

Then (MX(I),+, ◦) is a neutrosophic nearring.

Example 2. Let

N(I) = Z12(I)

= {(0, 0), (1, 0), . . . , (11, 0), (0, I), (0, 2I), . . . ,

(0, 11I), (1, I), (2, I), . . . , (11, 11I)}.

For all (x, yI) ∈ N(I) with x, y ∈ Z12, let x.y = x. Then (N(I),+, .) is a neutro-
sophic nearring.

Theorem 2.3. Let (N(I),+, .) be a neutrosophic nearring. Then N(I) is a nearring.

Theorem 2.4. Let {Ni(I)}ni=1 be a family of neutrosophic nearrings. Then Πn
i=1Ni(I)

is a neutrosophic nearring.

Definition 2.5. let (N,+, .) be any nearring and let (Γ(I),+) be any neutrosophic group.
Suppose that µ : N × Γ(I)→ Γ(I) is an action of N on Γ(I) defined by juxtaposition.
Γ(I) is called a neutrosophic N -group if for all m,n ∈ N , x ∈ Γ(I), the following
conditions hold:

(1) m.I = mI.

(2) (mn)x = m(nx).
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(3) (m+ n)x = mx+ nx.

Theorem 2.6. Every neutrosophic N -group is an N -group.

Proof. Suppose that Γ(I) is a neutrosophic N -group. Then (Γ(I),+) is a group. The
required result follows.

Definition 2.7. Let N(I) be a neutrosophic nearring and let A(I) be a nonempty
subset of N(I). A(I) is called a neutrosophic subnearring of N(I) if the following
conditions hold:

(1) A(I) is a neutrosophic subgroup of N(I) that is, xy ∈ A(I) for all x, y ∈ A(I).

(2) A(I) contains a proper subset which is a subnearring of N(I).

A(I) is called a pseudo neutrosophic subnearring of N(I) if it does not contain a proper
subset which is a subnearring of N(I).

Definition 2.8. Let Γ(I) be a neutrosophic N -group and let B(I) be a nonempty
subset of Γ(I). B(I) is called a neutrosophic N -subgroup of Γ(I) if the following
conditions hold:

(1) B(I) is a neutrosophic subgroup of Γ(I) that is, nx ∈ B(I) for all n ∈ N(I), x ∈
B(I).

(2) B(I) contains a proper subset which is an N -subgroup of Γ(I).

B(I) is called a pseudo neutrosophic N -subgroup of Γ(I) if it does not contain a proper
subset which is an N -subgroup of Γ(I).

Example 3. Let N(I) = Z(I) and let A(I) = 2Z(I). Then A(I) is a neutrosophic sub-
nearring of N(I).

Example 4. Let Γ(I) = R(I) and let B(I) = Q(I). Then B(I) is a neutrosophic N -
subgroup of Γ(I).

Definition 2.9. Let (N(I),+, .) be a neutrosophic nearring and let A(I) be a normal
neutrosophic subgroup of (N(I),+).

(1) A(I) is called a right neutrosophic ideal of N(I) if for all x ∈ A(I), m ∈ N(I),
we have xm ∈ A(I).

(2) A(I) is called a left neutrosophic ideal of N(I) if for all x ∈ A(I), m,n ∈ N(I),
we have m(n+ x)−mn ∈ A(I).

A(I) will be called a neutrosophic ideal of N(I) if it is both a left and right neutro-
sophic ideal of N(I).

Definition 2.10. Let (N(I),+, .) be a neutrosophic nearring, Γ(I) a neutrosophic N -
group and let B(I) be a normal neutrosophic N -subgroup of Γ(I). B(I) is called a
neutrosophic ideal of Γ(I) if for all x ∈ B(I), y ∈ Γ(I), m ∈ N(I), we have m(y+ x)−
my ∈ B(I).

5



Example 5. Let

N(I) =

{[
a b
c d

]
: a, b, c, d ∈ Z(I)

}
be a neutrosophic nearring,

Ar(I) =

{[
x y
0 0

]
: x, y ∈ Z(I)

}
,

Al(I) =

{[
x 0
y 0

]
: x, y ∈ Z(I)

}
.

Then Ar(I) is a right neutrosophic ideal of N(I) and Al(I) is a left neutrosophic ideal
of N(I).

Example 6. Let

N(I) =

{[
a b
c d

]
: a, b, c, d ∈ R(I)

}
be a neutrosophic nearring,

Γ(I) =

{[
w x
y z

]
: w, x, y, z ∈ Q(I)

}
a neutrosophic N -group and let

B(I) =

{[
p 0
q 0

]
: p, q ∈ Q(I)

}
.

Then B(I) is a neutrosophic ideal of Γ(I).

Theorem 2.11. Let N(I) be a neutrosophic nearring. If A(I) and B(I) are any two
neutrosophic ideals of N(I) and {Ai(I)}ni=1 is a family of neutrosophic ideals of N(I),
then:

(1) A(I) +B(I) = {a+ b : a ∈ A(I), b ∈ B(I)} is a neutrosophic ideal of N(I).

(2) A(I)B(I) = {
∑n

1 aibi : ai ∈ A(I), bi ∈ B(I)} is a neutrosophic ideal of N(I).

(3)
⋂n

1 Ai(I) is a neutrosophic ideal of N(I).

Theorem 2.12. Let N(I) be a distributive neutrosophic nearring and let X(I) be a
nonempty subset of N(I). Then

(O : X(I))r = {n ∈ N(I) : X(I)n = O}

is a neutrosophic right ideal of N(I).

Proof. Let a = (u, vI), b = (p, qI) ∈ (O : X(I))r with u, v, p, q ∈ N , let x = (y, zI) ∈
X(I) with y, z ∈ X and let n = (s, tI) ∈ N(I) with s, t ∈ N be arbitrary elements.
Then xa = (y, zI)(u, vI) = (0, 0) from which we obtain yu = 0 and yv + zu + zv = 0.
Also, xb = (y, zI)(p, qI) = (0, 0) which implies that yp = 0 and yq+ zp+ zq = 0. Now,

x(ab) = (y, zI)(up, (uq + vp+ vq)I)

= (y(up), (y(uq) + y(vp) + y(vq) + z(up) + z(uq) + z(vp) + z(vq))I)

= ((yu)p, ((yu)q + (yv)p+ (yv)q + (zu)p+ (zu)q + (zv)p+ (zv)q))I)

= ((yu)p, ((yu+ yv + zu+ zv)q + (yv + zu+ zv)p)I)

= (0p, (0q + 0p)I

= (0, 0).
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This shows that ab ∈ (O : X(I))r. Lastly,

x(an) = (y, zI)((u, vI)(s, tI))

= (y, zI)(us, (ut+ vs+ vt)I)

= (y(us), (y(ut+ vs+ vt) + z(us) + z(ut+ vs+ vt))I)

= ((yu)s, ((yu+ yv + zu+ zv)t+ (yv + zu+ zv)s)I)

= (0s, (0t+ 0s)I)

= (0, 0).

This shows that an ∈ (O : X(I))r and consequently, (O : X(I))r is a neutrosophic right
ideal of N(I).

Theorem 2.13. Let N(I) be a zero-symmetric distributive neutrosophic nearring and
let X(I) be a nonempty subset of N(I). Then

(O : X(I))l = {n ∈ N(I) : nX(I) = O}

is a neutrosophic left ideal of N(I).

Proof. Let a = (u, vI), b = (p, qI) ∈ (O : X(I))l with u, v, p, q ∈ N , let x = (y, zI) ∈
X(I) with y, z ∈ X and let m = (g, hI), n = (s, tI) ∈ N(I) with g, h, s, t ∈ N be
arbitrary elements . Then ax = (u, vI)(y, zI) = (0, 0) from which we obtain uy = 0
and uz + vy + vz = 0. Also, bx = (p, qI)(y, zI) = (0, 0) which implies that py = 0 and
pz + qy + qz = 0. Now,

(ab)x = (up, (uq + vp+ vq)I)(y, zI)

= ((up)y, ((u− p)z + (v − q)y + (v − q)z)I)

= ((up)y, ((up)z + (uq)y + (vp)y + +(vq)y + (uq)z + (vp)z + (vq)z)I)

= (u(py), (u(pz) + u(qy) + v(py) + v(qz) + u(qz) + v(pz) + v(qz))I)

= (u(py), (u(pz + qy + qz) + v(py + qy + pz + qz))I)

= (u0, (u0 + v0)I)

= (0, 0)

showing that ab ∈ (O : X(I))l. Also,

(m(n+ a)−mn)x = ((g, hI)((s, tI) + (u, vI))− (g, hI)(s, tI))(y, zI)

= ((g, hI)(s+ u, (t+ v)I)− (gs, (gt+ hs+ ht)I)(y, zI)

= ((g(s+ u), (g(t+ v) + h(s+ u) + h(t+ v))I)− (gs, (gt+ hs+ ht)I))(y, zI)

= (gs, (gv + hu+ hv)I)(y, zI)

= ((gu)y, ((gu)z + (gv)y + (hu)y + (hv)y + (gv)z + (hu)z + (hv)z)I)

= (g(uy), (g(uz + vy + vz) + h(uy + vy + uz + vz))I)

= (g0, (g0 + h0)I)

= (0, 0).

Thus m(n+ a)−mn ∈ (O : X(I))l and hence, (O : X(I))l is a neutrosophic left ideal
of N(I).
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Theorem 2.14. Let N(I) be a distributive neutrosophic nearring and let Γ(I) be a
neutrosophic N -group of N(I). If A(I) and B(I) are any two neutrosophic ideals of
Γ(I), then

(A(I) : B(I)) = {n ∈ N(I) : nB(I) ⊆ A(I)}

is a neutrosophic ideal of Γ(I).

Proof. Let a = (u, vI) ∈ (A(I) : B(I)), b = (e, fI) ∈ B(I)), x = (w, yI) ∈ Γ(I) and
m = (n, rI) ∈ N(I) be arbitrary elements. Then ab = a that is (u, vI)(e, fI) = (u, vI)
from which we obtain ue = u and uf + ve+ vf = v. Now,

(ma)b = ((n, rI)(u, vI))(e, fI)

= (nu, (nv + ru+ rv)I)(e, fI)

= ((nu)e, ((nu)f + (nv)e+ (ru)e+ (rv)e+ (nv)f + (ru)f + (rv)f)I)

= (n(ue), (n(uf) + n(ve) + r(ue) + r(ve) + n(vf) + r(uf) + r(vf))I)

= (nu, n(uf + ve+ vf) + r(u+ ve+ uf + vf)

= (nu, (nv + r(u+ v))I)

= (nu, (nv + ru+ rv)I)

= (n, rI)(u, vI)

= ma.

This shows that ma ∈ (A(I) : B(I)). Lastly,

(m(x+ a)−mx)b = [(n, rI)((w, yI) + (u, vI))− (n, rI)(w, yI)](e, fI)

= [(n, rI)((w + u, (y + v)I)− (nw, (ny + rw + ry)I)](e, fI)

= [(n(w + u), (n(y + v) + r(w + u) + r(y + v))I)− (nw, ny + rw + ry)I)](e, fI)

= ((nw + nu, (ny + nv + rw + ru+ ry + rv)I)− (nw, (ny + rw + ry)I)](e, fI)

= (nu, (nv + ru+ rv)I)(e, fI)

= ((nu)e, ((nu)f + (nv)e+ (ru)e+ (rv)e+ (nv)f + (ru)f + (rv)f)I)

= (n(ue), (n(uf) + n(ve) + r(ue) + r(ve) + n(vf) + r(uf) + r(vf))I)

= (nu, (n(uf + ve+ vf) + r(ue+ ve+ uf + vf))I)

= (nu, (nv + ru+ rv)I)

= (n, rI)(u, vI)

= ma.

This shows that m(x + a) − mx ∈ (A(I) : B(I)). Accordingly, (A(I) : B(I)) is a
neutrosophic ideal of Γ(I).

Theorem 2.15. Let N(I) be a zero-symmetric distributive neutrosophic nearring and
let Γ(I) be a neutrosophic N -group of N(I). If A(I) is a neutrosophic ideal of Γ(I),
then

(O : A(I)) = {n ∈ N(I) : nA(I) = O}

is a neutrosophic ideal of Γ(I).
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Proof. Let a = (u, vI), b = (p, qI) ∈ (O : A(I)), x = (w, yI) ∈ Γ(I), m = (n, rI) ∈
N(I) and c = (e, fI) ∈ A(I) be arbitrary elements. Then ac = 0 and bc = 0 that
is (u, vI)(e, fI) = (0, 0) and (p, qI)(e, fI) = (0, 0) from which we obtain ue = 0,
uf + ve+ vf = 0 and pe = 0, pf + qe+ qf = 0. Now,

(ab)c = ((u, vI)(p, qI))(e, fI)

= (up, (uq + vp+ vq)I)(e, fI)

= ((up)e, ((up)f + (uq)e+ (vp)e+ (vq)e+ (uq)f + (vp)f + (vq)f)I)

= ((u(pe), (u(pf) + u(qe) + v(pe) + v(qe) + u(qf) + v(pf) + v(qf))I)

= (u(pe), (u(pf + qe+ qf) + (pe+ qe+ pf + qf))I)

= (u0, (u0 + v0)I)

= (0, 0).

Therefore, ab ∈ (O : A(I)). Lastly,

(m(x+ a)−mx)c = [(n, rI)((w, yI) + (u, vI))− (n, rI)(w, yI))](e, fI)

= [(n, rI)((w + u, (y + v)I)− (nw, (ny + rw + ry)I)](e, fI)

= [(n(w + u), (n(y + v) + r(w + u) + r(y + v))I)− (nw, (ny + rw + ry)I)](e, fI)

= [(nw + nu, (ny + nv + rw + ru+ ry + rv)I)− (nw, (ny + rw + ry)I)](e, fI)

= [(nu, (nv + ru+ rv)I)](e, fI)

= (n(ue), (n(uf) + n(ve) + r(ue) + r(ve) + n(vf) + r(uf) + r(vf))I)

= (n(ue), (n(uf + ve+ vf) + r(ue+ ve+ uf + vf))I)

= (n0, (n0 + r0)I)

= (0, 0).

This shows that m(x + a) − mx ∈ (O : A(I)). Accordingly, (O : A(I)) is a neutro-
sophic ideal of Γ(I).

If N(I) is a neutrosophic nearring, let x ∈ N(I) and consider < x >l, < x >r the
subsets of N(I) given by

< x >l = {nx : n ∈ N(I)},
< x >r = {xn : n ∈ N(I)}.

Provided that N(I) is distributive, it can be shown that < x >l is a left neutro-
sophic ideal of N(I) generated by x and < x >r is a right neutrosophic ideal of N(I)
generated by x.

Definition 2.16. Let N(I) be a distributive neutrosophic nearring. Then:

(1) A(I) =< x >l is called a left neutrosophic principal ideal of N(I) generated by
x ∈ N(I).

(2) A(I) =< x >r is called a right neutrosophic principal ideal of N(I) generated by
x ∈ N(I).
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(3) A(I) =< x > is called a neutrosophic principal ideal of N(I) generated by x ∈
N(I) if it is both left and right neutrosophic principal ideals of N(I).

Example 7. LetN(I) = Z3(I) = {(0, 0), (1, 0), (2, 0), (0, I), (0, 2I), (1, I), (2, I), (1, 2I), (2, 2I)
be a neutrosophic neearing. ThenA(I) =< (0, I) >=< (0, 2I) >= {(0, 0), (0, I), (0, 2I)}
is a neutrosophic principal ideal of N(I).

Definition 2.17. Let N(I) be a neutrosophic nearring and let x ∈ N(I) be any element
of N(I).

(1) x is said to be idempotent if x2 = x.

(2) x is said to be nilpotent if there exists a positive integer n > 0 such that xn =
(0, 0).

(3) x 6= (0, 0) is called left zero divizor of (0, 0) 6= y = (c, dI) ∈ N(I) if xy = (0, 0).

(4) x 6= (0, 0) is called right zero divizor of (0, 0) 6= y = (c, dI) ∈ N(I) if yx = (0, 0).

(5) x 6= (0, 0) is called zero divizor of (0, 0) 6= y = (c, dI) ∈ N(I) if xy = yx = (0, 0).

Example 8. Let N(I) = Z4(I) = {(0, 0), (1, 0), (2, 0), (3, 0), (0, I), (0, 2I), (0, 3I), (1, I),
(2, I), (3, I), (1, 2I), (2, 2I), (3, 2I), (1, 3I), (2, 3I), (3, 3I)} be a neutrosophic neearing.
Then E(I) = {(2, 0), (0, 2I), (2, 2I), (2, 3I)} is a neutrosophic set of idempotents of
N(I). Also, A(I) = {(0, 0), (2, 0), (2, 2I)} is a neutrosophic set of nilpotents of N(I)
which is a neutrosophic ideal of N(I).

Theorem 2.18. Let F (I) be a neutrosophic nearfield. Then F (I) has nontrivial zero
divisors.

Proof. Suppose that F (I) is a neutrosophic nearfield and suppose that x = (0, αI) and
y = (β,−βI) are nonzero elements of F (I). Then

xy = (0, αI)(β,−βI)

= (0, (0 + αβ − αβ)I)

= (0, 0).

This shows that x and y are nontrivial zero divisors.

Corollary 2.19. A neutrosophic nearring N(I) is not an integral domain even if the
nearring N is an integral domain or a field.

Definition 2.20. Let N1(I) and N2(I) be two neutrosophic nearrings. φ : N1(I) →
N2(I) is called a neutrosophic nearring homomorphism if the following conditions hold:

(1) φ is a nearring homomorphism.

(2) φ(I) = I.

Kerφ = {x ∈ N1(I) : φ(x) = 0} and Imφ = {y ∈ N2(I) : y = φ(x), x ∈ N1(I)}.
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Example 9. Let N1(I) and N2(I) be two neutrosophic nearrings. Let π : N1(I) ×
N2(I) → N1(I) be a projection defined by π((a, bI), (c, dI)) = (a, bI) for all (a, bI) ∈
N1(I) and (c, dI) ∈ N2(I). Then π is a neutrosophic nearring homomorphism.

Definition 2.21. Let Γ1(I) and Γ2(I) be two neutrosophic N-groups. φ : Γ1(I) →
Γ2(I) is called a neutrosophic N-homomorphism if the following conditions hold:

(1) φ is an N-homomorphism.

(2) φ(I) = I.

Example 10. Let Γ(I) be a neutrosophic N-group and let φ : Γ(I)→ Γ(I) be a mapping
defined by φ((x, yI)) = (x, yI) for all (x, yI) ∈ Γ(I). Then φ is a neutrosophic N-
homomorphism.

Theorem 2.22. Let φ : M(I) → N(I) be a neutrosophic nearring homomorphism.
Then

(2) Kerφ is a subnearring of M .

(2) Kerφ is not a neutrosophic ideal of M(I).

(3) Imφ is a neutrosophic subnearring of N(I).

Proof. (1) Let (a, bI) ∈ M(I) be arbitrary where a, b ∈ M . Since φ(I) = I, it follows
that (a, bI) ∈ Kerφ if and only if b 6= 0 that is only elements of the form (a, 0) ∈ M
can be in the kernel of φ. Hence Kerφ is a subnearring of M .
(2) Since Kerφ is a subnearring of M and not a neutrosophic subnearring of M(I), it
follows that Kerφ cannot be a neutrosophic ideal of M(I).
(3) The same as the classical case.

Example 11. Consider Z2(I) = {(0, 0), (1, 0), (0, I), (1, I)} and let φ : Z2(I)×Z2(I)→
Z2(I) be a neutrosophic nearring homomorphism defined by φ((a, bI), (c, dI)) = (a, bI)
for all (a, bI), (c, dI) ∈ Z2(I). Then

Kerφ = {((0, 0), (0, 0)), ((0, 0), (1, 0)), ((0, 0), (0, I)), ((0, 0), (1, I))}.
Imφ = {(0, 0), (1, 0), (0, I), (1, I)} = Z2(I).

Theorem 2.23. Let M(I) and N(I) be neutrosophic distributive nearrings and let
φ : M(I) → N(I) be a neutrosophic nearring homomorphism. If A(I) is a neutro-
sophic ideal of M(I), then φ(A(I)) is a neutrosophic ideal of M(I).

Proof. Suppose that x, y ∈ φ(A(I)). Then there exist (a, bI), (c, dI) ∈ A(A) with
a, b, c, d ∈ A such that x = φ((a, bI)) and y = φ((c, dI)). Now,

xy = φ((a, bI))φ((c, dI))

= φ((a, bI)(c, dI))

= φ((ac, (ad+ bc+ bd)I)

∈ φ((A(I)).
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Next, Suppose that m,n ∈ N(I). Then there exist (e, fI), (g, hI) ∈ M(I) with
e, f, g, h ∈M such that m = φ((e, fI)) and n = φ((g, hI)). now,

xm = φ((a, bI))φ((e, fI))

= φ((a, bI)(e, fI))

= φ((ae, (af + be+ bf)I))

∈ φ(A(I)).

This shows that φ(A(I)) is neutrosophic right ideal of M(I). Lastly,

m(n+ x)−mn = φ((e, fI))[φ((g, hI)) + φ((a, bI))]− φ((e, fI))φ((g, hI))

= φ((e, fI)(g + a, (h+ b)I))− φ((e, fI)(g, hI))

= φ((e, fI)(g + a, (h+ b)I)− (e, fI)(g, hI))

= φ((e(g + a), (e(h+ b) + f(g + a) + f(h+ b))I)− (eg, (eh+ fg + fh)I))

= φ((eg + ea, (eh+ eb+ fg + fa+ fh+ fb)I)− (eg, (eh+ fg + fh)I))

= φ((ea, (eb+ fa+ fb)I)

= φ((e, fI)(a, bI))

∈ φ(A(I)).

This shows that φ(A(I)) is neutrosophic left ideal of M(I) and therefore, φ(A(I)) is an
ideal of M(I).

Lemma 2.24. Let N(I) be a neutrosophic nearring and let A(I) be a neutrosophic ideal
of N(I). Then

(1) A(I)A(I) = A(I).

(2) (a, bI) +A(I) = A(I) ∀ (a, bI) ∈ A(I).

If A(I) is a neutrosophic ideal of a neutrosophic nearring N(I), let N(I)/A(I) be a
neutrosophic set defined by

N(I)/A(I) = {(m,nI) +A(I) : (m,nI) ∈ N(I)}.

For all (m,nI)+A(I), (p, qI)+A(I) ∈ N(I)/A(I), we define addition and multiplication
in N(I)/A(I) as follows:

((m,nI) +A(I))⊕ ((p, qI) +A(I)) = (m+ p, (n+ q)I) +A(I),

((m,nI) +A(I))� ((p, qI) +A(I)) = (mp, (mq + np+ nq)I) +A(I).

It can be shown that⊕ and� are well-defined onN(I)/A(I) and the triple (N(I)/A(I),⊕,�)
is a neutrosophic nearring called neutrosophic quotient nearring or neutrosophic fac-
tored nearring. The zero element of (N(I)/A(I),⊕) is simply A(I).

Similarly, if Γ(I) is a neutrosophic N -group of N(I) and B(I) is a neutrosophic ideal
of Γ(I), we can define the neutrosophic quotient or factored N -group (Γ(I)/B(I),⊕,�).
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Example 12. Let N(I) = Z(I). For all (x, yI) ∈ N(I) with x, y ∈ Z, define x.y = x.
Then (N(I),+, .) is a neutrosophic nearring. Suppose that

A(I) = 3Z(I) = {(0, 0), (3, 0), (6, 0), . . . , (0, 3I), (0, 6I), . . . , (3, 3I), (3, 6I), (6, 3I), (6, 6I), . . .}.

Then A(I) is a neutrosophic ideal of N(I) and the neutrosophic quotient nearring
N(I)/A(I) is obtained as

N(I)/A(I) = {(0, 0) +A(I), (1, 0) +A(I), (2, 0) +A(I), (0, I) +A(I),

(0, 2I) +A(I), (1, I) +A(I), (1, 2I) +A(I), (2, I) +A(I), (2, 2I) +A(I)}

which is a neutrosophic nearring.

Theorem 2.25. Let A(I) be a neutrosophic ideal of a neutrosophic nearring N(I).
Then the mapping φ : N(I)→ N(I)/A(I) defined for all (x, yI) ∈ N(I) by φ((x, yI)) =
(x, yI)+A(I) is a nearring homomorphism and not a neutrosophic nearring homomor-
phism.

Proof. Let (w, xI), (y, zI) ∈ N(I) be arbitrary. It can be shown that φ((w, xI) +
(y, zI)) = φ((w, xI)) + φ((y, zI)) and φ((w, xI)(y, zI)) = φ((w, xI))φ((y, zI)). How-
ever, φ(0, I) = (0, I) +A(I) = A(I) 6= (0, I). The proof is complete.
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