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Abstract—Neutrosophic set is a power general formal 

framework, which generalizes the concept of the classic 

set, fuzzy set, interval valued fuzzy set, intuitionistic fuzzy 

set, and interval intuitionistic fuzzy set from philosophical 

point of view. In Geographical Information Systems (GIS) 

there is a need to model spatial regions with 

indeterminate boundary and under indeterminacy. In this 

paper, we first gives fundamental concepts and properties 

of a neutrosophic spatial region.  

 

Index Terms—Neutrosophic Sets, Neutrosophic 

Topology, Geographical Information Systems, 

Neutrosophic Spatial Region. 

 

I.  INTRODUCTION 

Since the world is full of indeterminacy, the 

neutrosophics found their place into contemporary 

research. The paper will discuss several possible 

contributions to the GIS field including remote sensing, 

object reconstruction from airborne laser scanner, real 

time tracking, routing applications and modeling 

cognitive agents. In this paper, a simple neutrosophic 

region and fundamental concepts for uncertainty and 

indeterminacy modeling of spatial relationships are 

analyzed from the viewpoint of neutrosophic (NS) logic. 

This paper gives fundamental concepts and properties of 

a neutrosophic spatial region. 

 

II.  RELATED WORK 

Algebraic topological models for spatial objects were 

introduced in (White 1979). Thirteen topological 

relations between two temporal intervals were identified 

by J.F.Allen [6]. After the 4-intersection model proposed 

by M.J Egenhofer [16], M.J. Egenhofer and 

R.D.Franzosa [17], the 9-intersection approach 

introduced by M.J Egenhofer and J. R. Herring [18] was 

proposed as a formalism for topological relations. This 

approach is based on point-set topological concepts. In 

the 9-intersection method, a spatial object A is 

decomposed into three parts: an interior denoted by Ao, 

an exterior denoted by AE, and a boundary denoted by 

∂A. There are nine intersections between six parts of two 

objects. The other significant approach known as RCC 

(Region-Connection Calculus) has been provided by 

Cohn et al. D.A. Randell, Z. Cui [25]; M.N.Gotts, 

J.M.Gooday et al. [21]; A.G.Cohn, B.Bennet et al. [12]. 

During recent years, the topological relations have been 

extended into fuzzy domains. An example of a fuzzy 

object was provided by P. Fisher [19]. A number of 

papers of M. Schneider [27, 28, 29, 30] was presented to 

model fuzzy set in GIS community and to design a 

system of fuzzy spatial data types including operations 

and predicates. M. Molenaar [24] extended the formal 

model into fuzzy domain and based on this model T. 

Cheng [8] proposed a process-oriented spatio-temporal 

data model. The intersection model is extended to vague 

regions by three main approaches: the work of E. 

Clementini and Di Felice [9, 11] on regions with ―broad 

boundary‖, the work of F. B Zhan [34] who developed a 

method for approximately analyzing binary topological 

relations between geographic regions with indeterminate 

boundaries based on fuzzy sets, and X. Tang and W. 

Kainz [32] that provided a 3*3, a 4*4, and a 5*5 

intersection matrix based on different topological parts of 

two fuzzy regions. The extension of the RCC schemes to 

accommodate vague region has been ad-dressed by 

F.Lehmann and A.G Cohn [23], and by A.G.Cohn and 

M.N .Gotts [13]. In this direction J.G. Stell and M.F 

Worboys [31] have used Heyting structures. The notion 

of intuitionistic ets (IFS) was introduced by K. Atanassov. 

[1, 2, 3] as generalization of fuzzy sets. The notion of 

neutrosophic sets (NS) was introduced by F. 
Smarandache [45, 46, 47] as generalization of 

intuitionistic fuzzy sets. In other research, A. A Salama 

[36] introduced the concept of neutrosophic topology. A. 

A. Salama, et,al [42] proposed a new mathematical model 

called "Neutrosophic crisp Sets and Neutrosophic crisp 

Topological Spaces. 

 

III.  PRELIMINARIES

mailto:drsalama44@gmail.com
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First we present the fundamental concepts and 

definitions given by Salama and Smarandache. We 

recollect some relevant basic preliminaries, and in 

particular, the work of Smarandache in [7, 8], Atanassov 

in [1, 2, 3] and Salama [9]. Smarandache introduced the 

neutrosophic components T, I, F which represent the 

membership, indeterminacy, and non-membership values 

respectively, where   1,0 is nonstandard unit interval. 

Definition 3.1[47] 

Let T, I, F be real standard or nonstandard subsets of 

  1,0 , with 

 

Sup_T=t_sup, inf_T=t_inf 

Sup_I=i_sup, inf_I=i_inf 

Sup_F=f_sup, inf_F=f_inf 

n-sup=t_sup+i_sup+f_sup 

n-inf=t_inf+i_inf+f_inf, 

 

T, I, F are called neutrosophic components 

We shall now consider some possible definitions for 

basic concepts of the neutrosophic set and its operations 

due to Salama et al [ ]. 

Definition 3.2 

Let X be a non-empty fixed set. A neutrosophic set 

( NS  for short) A is an object having the form

      , , , :
A A A

A x x x x x X     where    xx AA  ,  and 

 A
x  which represent the degree of member ship 

function (namely  xA ), the degree of indeterminacy 

(namely  xA ), and the degree of non-member ship 

(namely  A
x ) respectively of each element Xx  to 

the set A. 

Remark 3.1 

A neutrosophic       , , , :
A A A

A x x x x x X       

can be identified to an ordered triple  AAA  ,,  in 

0,1  
   on X. 

Remark 3.2 

For the sake of simplicity, we shall use the symbol 

, , ,
A A A

A x      for the NS       , , , :
A A A

A x x x x x X       

Example 3.1 

Every IFS A a non-empty set X is obviously on NS  

having the form          , ,1 , :
A A A A

A x x x x x x X          

Since our main purpose is to construct the tools for 

developing neutrosophic set and neutrosophic topology, 

we must introduce the NSS  0
N  and 1

N  in X  as 

follows: 

0
N  may be defined as four types: 

 1
0 Type 1.  0 ,0,0,1 :

N
x x X 

 

 2
0  Type 2.  0 ,0,1,1 :

N
x x X   

 3
0  Type 3.  0 ,0,1,0 :

N
x x X   

 4
0  Type 4.  0 ,0,0,0 :

N
x x X   

 

1
N  may be defined as four types: 

 1
1  Type 1.  1 ,1,0,0 :

N
x x X   

 2
1  Type 2.  1 ,1,0,1 :

N
x x X   

 3
1  Type 3  1 ,1,1,0 :

N
x x X   

 4
1  Type 4.  1 ,1,1,1 :

N
x x X 

 

Definition 3.3 

Let , ,
A A A

A     a NS  on X , then the 

complement of the set A   C A , for short   maybe 

defined as three kinds of complements 

 

 1
C        ,1 ,1 :

A A
C A x x x x X     , 

 2
C        , , , :

A A A
C A x x x x X     

 3
C        , ,1 , :

A A A
C A x x x x X      

 

One can define several relations and operations 

between NSS  follows: 

Definition 3.4 

Let X be a non-empty set, and NSS  A and B in the 

form      , , ,
A A A

A x x x x   ,      , , ,
B B B

B x x x x   , 

then we may consider two possible definitions for subsets 

 A B  

 A B  may be defined as two types: 

 

(1) Type 1:      ,
A B A

A B x x x        and 

   A B
x x   x X   

(2) Type 2:        ,
A B A B

A B x x x x        

and    A B
x x   

 

Proposition 3.1 

For any neutrosophic set A  the following are holds 

 

(1) 0 , 0 0
N N N

A   

(2) 1 , 1 1
N N N

A    

 

Definition 3.5 

Let X be a non-empty set, and  

 

     , , ,
A A A

A x x x x    , 

     , , ,
B B B

B x x x x     are NSS . Then 

 

(1) A B  may be defined as three types:
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 1
I  Type1:        , . , . ,

A B A B
A B x x x x x   

   .
A B

x x    

 2
I  Type 2:        , , ,

A B A B
A B x x x x x     

   A B
x x    

 3
I  Type 3:        , , ,

A B A B
A B x x x x x     

   A B
x x    

 

(2) A B  may be defined as two types : 

 1
U  Type1:        , , ,

A B A B
A B x x x x x     

   A B
x x    

 2
U  Type 2: 

       , , ,
A B A B

A B x x x x x     

   A B
x x    

 
(3)      , , ,1

A A A
A x x x x      

     ,1 , ,
A A A

A x x x x        

Definition 3.6 

Let  :Aj j J  be a arbitrary family of NSS  in X , 

then 

 

(1) Aj  may be defined as two types : 

(i) Type 1:      , , ,
Aj Aj Aj

j J j J
Aj x x x x  

 
     

(ii) Type 2:      , , ,
Aj Aj Aj

Aj x x x x       

 

(2) Aj  maybe defined as two types: 

(i) Type1: , , ,Aj x     

(ii) Type2: , , ,Aj x     

 

Definition 3.7 

Let A  and B  are neutrosophic sets then 

A B  may be defined as 

     , , ,
A B A B A B

A B x x x x         

Proposition 3.2 

For all ,A B two neutrosophic sets then the following are 

true 

 

(1)      C A B C A C B  

(2)      C A B C A C B . 

 

Salama et al. extended the concepts of fuzzy topological 

space [4], and intuitionistic fuzzy topological space [5, 7] 

to the case of neutrosophic sets. 

Definition 3.8 

A neutrosophic topology ( NT for short) and a non 

empty set X  is a family   of neutrosophic subsets in 

X  satisfying the following axioms 

 1
NT  ,1

N N
O  , 

 2
NT  1 2

G G   for any 1 2
,G G  , 

 3
NT   :

i i
G G i J      

 

In this case the pair  ,X  is called a neutrosophic 

topological space ( NTS  for short) and any neutrosophic 

set in   is known as neutrosophic open set ( NOS  for 

short) in X . The elements of   are called open 

neutrosophic sets, A neutrosophic set F is closed if and 

only if it C (F) is neutrosophic open.  

Example 3.2 

Any fuzzy topological space  0
,X   in the sense of 

Chang is obviously a NTS in the form  0:
A

A     

wherever we identify a fuzzy set in X  whose members 

ship function is A
  with its counterpart. 

Remark 3.3 

Neutrosophic topological spaces are very natural 

generalizations of fuzzy topological spaces allow more 

general functions to be members of fuzzy topology. 

Example 3.3 

Let  xX   and 

 

 ,0.5,0.5,0.4 :A x x X   

 ,0.4,0.6,0.8 :B x x X   

 ,0.5,0.6,0.4 :D x x X   

 ,0.4,0.5,0.8 :C x x X   

 

Then the family  ,1 , , , ,
n n

O A B C D   of Ss  in X

is neutrosophic topology on X . 

Example 3.4 

Let  0,X  be a fuzzy topological space in changes 

sense such that 0 is not indiscrete suppose now that 

   JjV jNN  : 1,00  then we can construct two 

NTSS  on X  as follows 

 

a)     :0),(,, 1,00 JjxVx jNN   . 

b)    JjVxVx jjNN  :1),(,0, ,1,0 0  . 

 

Proposition 3.3 

Let  ,X   be an NTS  on X , then we can also 

construct several NTSS  on X  in the following way: 

 

a)  ,:] [ 1,   GGo
 

b)  .:2,   GGo
 

 

Definition 3.9
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Let    21 ,,,  XX  be two neutrosophic topological 

spaces on X . Then 1  is said be contained in 2  (in 

symbols
21   ) if 

2G  for each
1G . In this 

case, we also say that 1   is coarser than 2 . 

Proposition 3.4 

Let Jjj :   be a family of NTSS  on X . Then 

j
 is a neutrosophic topology on X . Furthermore, 

j  is the coarsest NT  on X  containing all. 
j , s 

Definition 3.10 

The complement of A  (C (A) for short) of .NOS A  

is called a neutrosophic closed set ( NCS for short) in X . 

  Now, we define neutrosophic closure and interior 

operations in neutrosophic topological spaces: 

Definition 3.11 

Let  ,X  be NTS  and      , , ,
A A A

A x x x x     be 

a NS  in X . 

Then the neutrosophic closure and neutrosophic interior 

of Aare defined by  

 

 KA and Xin  NCSan   is  :)(  KKANCl  

 AG and Xin   NOSan   is  :)(  GGANInt . 

 

It can be also shown that )(ANCl  is NCS and 

)(ANInt  is a NOS  in X  

 

a) Ais in X  if and only if )(ANCl . 

b) A is NCS in X  if and only if AANInt )( . 

 

Proposition 3.5 

For any neutrosophic set A  in  ,x   we have 

 

(a) ,))(()( ANInt c
ANCl c   

(b) .))(()( ANCL c
ANInt c   

 

Proposition 3.6 

Let  ,X  be a NTS and B ,A  be two neutrosophic 

sets in X . Then the following properties hold: 

 

(a) ,)( AANInt   

(b) ),(ANClA  

(c) ),()( BNIntANIntBA   

(d) ),()( BNClANClBA   

(e) 
)())((

),())((

ANCLANCLNCL

ANIntANIntNInt



  

(f) 
)()()(

),()()(

BNIntANIntBANInt

BNClANClBANCl






 

 

(g) ,1)1( NNNInt   

(h) ,)( NN OONCl   

 

IV.  SOME NEUTROSOPHIC TOPOLOGICAL NOTIONS OF 

NEUTROSOPHIC REGION 

In this section, we add some further definitions and 

propositions for a neutrosophic topological region. 

Corollary4.1 

Let  )(),(),( AA xxxA A  and  )(),(),( B xxxB BB 

are two neutrosophic sets on a neutrosophic topological 

space  ,X  then the following are holds 

 

i) ),int()int()int( BANBNAN   

ii) ),int()()( BANBNclANcl   

iii) ),()int( ANclAAN   

iv)   ),()int( cc ANclAN     )int()( cc ANANcl  . 

Definition 4.1 

We define a neutrosophic boundary (NB) of a 

neutrosophic set  )(),(),( AA xxxA A  by: 

)()( cANclANclA  . 

The following theorem shows the intersection methods 

no longer guarantees a unique solution. 

Corollary 4.2: 

NOANA  )int(  iff )int(AN  is crisp (i.e., 

NOAN )int(  or NAN 1)int(  ). 

Proof obvious 

Definition 4.2 

Let  )(),(),( AA xxxA A  be a neutrosophic sets on 

a neutrosophic topological space  ,X . Suppose that the 

family of neutrosophic open sets contained in A is indexed 

by the family Iixxx
iG  :)(),(),(

ii GG   and the family 

of neutrosophic open subsets containing A are indexed the 

family Jjxxx
jK  :)(),(),(

jj KK  .Then two 

neutrosophic interior, closure and boundaries are defined 

as following 

 

a) ]  [)int( AN  may be defined as two types 

i) Type 1. ]  [)int( AN

      )(1 min ,)(max ,)(max
ii GG xxx

iG  

ii) Type 2. ]  [)int( AN

      )(1 min ,)(min ,)(max
ii GG xxx

iG  

 

b)   )int( AN  may be defined as two types  

i) Type 1.   )int( AN =

      )( min ,)(max ,)(1max
ii GG xxx

iG
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ii. Type 2.   )int( AN

      )( min ,)(min ,)(1max
ii GG xxx

iG  

 

c) ]  [)(ANcl  may be defined as two types 

i) Type 1. ]  [)(ANcl =

      )(1 max ,)(min ,)(max
jj KK xxx

jK  

ii) Type 2. ]  [)(ANcl =

      )(1 max ,)(max ,)(max
jj KK xxx

jK  

 

d)   )(ANcl  may be defined as two types 

i) Type 1.   )(ANcl =

      )( max ,)(min ,)(1min
ii GK xxx

iG  

ii) Type 2   )(ANcl =

      )( max ,)(max ,)(1min
ii GK xxx

iG . 

 

e) Neutrosophic boundaries defined as  

i) )()( ]  []  []  [
cANclANclA   

ii) )()(         cANclANclA  

 

Proposition 4.1 

a)  )int()int( ]  [ ANAN   )int( AN , 

b) )()( ]  [ ANclANcl    )(ANcl  

c)   )int(  ],  [)int( }  ],  {[ ANAN  and 

  )(  ],  [)( }  ],  {[ ANclANcl   

 

Proof 

We shall only prove (c), and the others are obvious.  

)int( ]   [ AN       )(max1  ,)(max ,)(max
ii GG xxx

iG

or =       )(max1  ,)(min ,)(max
ii GG xxx

iG  

Based on knowing that   )1min()(max1 
ii GG x   then 

)int( ]   [ AN       )(1min  ,)(max ,)(max
ii GG xxx

iG

or       )(1min  ,)(min ,)(max
ii GG xxx

iG =

)int( ]   [ AN  

In a similar way the others can prove. 

Proposition 4.2 

a)       ],  [}  ],  {[ )int()int( ANAN  

b)         ],  [   ],  [}  ],  {[ )()( ANclANcl  

Proof 

Obvious 

Definition 4.3 

Let  )(),(),( AA xxxA A  be a neutrosophic sets on 

a neutrosophic topological space  ,X . We define 

neutrosophic exterior of A as follows: C
N

NE AA 1  

Definition 4.4 

Let  )(),(),( AA xxxA A  be a neutrosophic open 

sets and  )(),(),( BB xxxB B  be a neutrosophic set 

on a neutrosophic topological space  ,X  then  

 

a) A is called neutrosophic regular open iff 

)).(int( ANclNA  

b) If )(XNCSB then B is called neutrosophic regular 

closed iff )).int(( ANNclA   

 

Now, we shall obtain a formal model for simple spatial 

neutrosophic region based on neutrosophic 

connectedness. 

Definition 4.5 

Let  )(),(),( AA xxxA A  be a neutrosophic sets on 

a neutrosophic topological space  ,X . Then A is called 

a simple neutrosophic region in connected NTS, such that  

 

i) ),(ANcl ,)( ]  [ANcl  and 
  )(ANcl are neutrosophic 

regular closed. 

ii) ),int( AN ,)int( ]  [AN and 
  )int(AN are neutrosophic 

regular open  

iii) ),(A ,)( ]  [A and    )(A are neutrosophic connected. 

 

Having ),(ANcl ,)( ]  [ANcl    )(ANcl , ),int( AN ,)int( ]  [AN  

  )int( AN are ),(A ,)( ]  [A and    )(A for two 

neutrosophic regions, we enable to find relationships 

between two neutrosophic regions 

 

V.  CONCLUSION 

Neutrosophic logic is well equipped to deal with 

missing data. By employing NSs in spatial data models, 

we can express a hesitation concerning the object of 

interest. This article has gone a step forward in 

developing methods that can be used to define 

neutrosophic spatial regions and their relationships. The 

main contributions of the paper can be described as the 

following: Possible applications have been listed after the 

definition of NS. Links to other models have been shown. 

We are defining some new operators to describe objects, 

describing a simple neutrosophic region. This paper has 

demonstrated that spatial object may profitably be 

addressed in terms of neutrosophic logic. Implementation 

of the named applications is necessary as a proof of 

concept.  
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