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PREFACE 
 

 

Zadeh introduced the degree of membership/truth (t) in 

1965 and defined the fuzzy set. Atanassov introduced the degree 

of non membership/falsehood (f) in 1986 and defined the 

intuitionistic fuzzy set. Smarandache introduced the degree of 

indeterminacy/neutrality (i) as independent component in 1995 

(published in 1998) and defined the neutrosophic set on three 

components (t,i,f) = (truth, indeterminacy, falsehood).  

 

The words “neutrosophy” and “neutrosophic” were 

coined/invented by F. Smarandache in his 1998 book. 

Etymologically, “neutro-sophy” (noun) 

[French neutre <Latin neuter, neutral, and Greek sophia, 

skill/wisdom] means knowledge of neutral thought. While 

“neutrosophic” (adjective), means having the nature of, or 

having the characteristic of Neutrosophy. 

 

Neutrosophic Logic is a general framework for unification 

of many existing logics, such as fuzzy logic (especially 

intuitionistic fuzzy logic), paraconsistent logic, intuitionistic 

logic, etc.  The main idea of NL is to characterize each logical 

statement in a 3D-Neutrosophic Space, where each dimension 

of the space represents respectively the truth (T), the falsehood 

(F), and the indeterminacy (I) of the statement under 

consideration, where T, I, F are standard or non-standard real 

subsets of ]
-
0, 1

+
[ with not necessarily any connection between 

them. For software engineering proposals the classical unit 

interval [0, 1] may be used. T, I, F are independent components, 

leaving room for incomplete information (when their superior 

sum < 1), paraconsistent and contradictory information (when 

the superior sum > 1), or complete information (sum of 

components = 1).  

For software engineering proposals the classical unit 

interval [0, 1] is used. For single valued neutrosophic logic, the 

sum of the components is: 
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0 ≤ t+i+f ≤ 3 when all three components are independent;  

0 ≤ t+i+f ≤ 2 when two components are dependent, while the 

third one is independent from them;  

0 ≤ t+i+f ≤ 1 when all three components are dependent. 

 

When three or two of the components T, I, F are 

independent, one leaves room for incomplete information (sum 

< 1), paraconsistent and contradictory information (sum > 1), or 

complete information (sum = 1). If all three components T, I, F 

are dependent, then similarly one leaves room for incomplete 

information (sum < 1), or complete information (sum = 1).  

 

In 2013 Smarandache refined the neutrosophic set to n 

components: T1, T2, ...; I1, I2, ...; F1, F2, ... 

See http://fs.gallup.unm.edu/n-ValuedNeutrosophicLogic-

PiP.pdf . 

 

Neutrosophy <philosophy> (From Latin "neuter" - neutral, 

Greek "sophia" - skill/wisdom) A branch of philosophy, 

introduced by Florentin Smarandache in 1980, which studies the 

origin, nature, and scope of neutralities, as well as their 

interactions with different ideational spectra. 

 

Neutrosophy considers a proposition, theory, event, 

concept, or entity, "A" in relation to its opposite, "Anti-A" and 

that which is not A, "Non-A", and that which is neither "A" nor 

"Anti-A", denoted by "Neut-A". 

 

Neutrosophy is the basis of neutrosophic 

logic, neutrosophic probability, neutrosophic set, and 

neutrosophic statistics. {From: The Free Online Dictionary of 

Computing, is edited by Denis Howe from England. 

Neutrosophy is an extension of the Dialectics.} 

 

The most important books and papers in the development of 

neutrosophics 
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1995-1998 - Introduction of neutrosophic set/ logic/ probability/ 

statistics; generalization of dialectics to neutrosophy; 

http://fs.gallup.unm.edu/eBook-neutrosophics4.pdf (4th edition) 

  

2003 – Introduction of neutrosophic numbers (a+bI, where I = 

indeterminacy). 

2003 – Introduction of I-neutrosophic algebraic structures. 

2003 – introduction to neutrosophic cognitive maps. 

http://fs.gallup.unm.edu/NCMs.pdf 

  

2005 - Introduction of interval neutrosophic set/logic. 

http://fs.gallup.unm.edu/INSL.pdf 

  

2009 – Introduction of N-norm and N-conorm 

http://fs.gallup.unm.edu/N-normN-conorm.pdf 

  

2013 - Development of neutrosophic probability (chance that an 

event occurs, indeterminate chance of occurrence, chance that 

the event does not occur) 

http://fs.gallup.unm.edu/NeutrosophicMeasureIntegralProbabilit

y.pdf 

  

2013 - Refinement of components (T1, T2, ...; I1, I2, ...; F1, F2, ...) 

http://fs.gallup.unm.edu/n-ValuedNeutrosophicLogic.pdf 

  

2014 – Introduction of the law of included multiple middle 

(<A>; <neut1A>, <neut2A>, …; <antiA>) 

http://fs.gallup.unm.edu/LawIncludedMultiple-Middle.pdf 

  

2014 - Development of neutrosophic statistics (indeterminacy is 

introduced into classical statistics with respect to the 

sample/population, or with respect to the individuals that only 

partially  belong to a sample/population) 

http://fs.gallup.unm.edu/NeutrosophicStatistics.pdf 

  

2015 - Introduction of neutrosophic precalculus and 

neutrosophic calculus 

http://fs.gallup.unm.edu/NeutrosophicPrecalculusCalculus.pdf 
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2015 – Refined neutrosophic numbers (a+ b1I1 + b2I2 + … + 

bnIn), where I1, I2, …, In are subindeterminacies of 

indeterminacy I; 

2015 – Neutrosophic graphs; 

2015 - Thesis-Antithesis-Neutrothesis, and Neutrosynthesis, 

Neutrosophic Axiomatic System, neutrosophic dynamic 

systems, symbolic neutrosophic logic, (t, i, f)-Neutrosophic 

Structures, I-Neutrosophic Structures,  Refined Literal 

Indeterminacy, Multiplication Law of Subindeterminacies:   

http://fs.gallup.unm.edu/SymbolicNeutrosophicTheory.pdf 

 

2015 – Introduction of the subindeterminacies of the form 

 0
0

n k
I = , for k ∈ {0, 1, 2, …, n-1}, into the ring of modulo 

integers Zn, are called natural neutrosophic zeros 

http://fs.gallup.unm.edu/MODNeutrosophicNumbers.pdf 

 

In this book authors for the first time introduce new 

mathematical models analogous to FCMs and NCMs.  We in 

this book have constructed 12 types of MOD Cognitive Maps 

models using Zn or 〈Zn ∪ g〉 or  〈Zn ∪ I〉 or C(Zn) or 〈Zn ∪ h〉 or 

〈Zn ∪ k〉 which will be known us MOD Cognitive Maps model or 

MOD dual number Cognitive Maps model or MOD neutrosophic 

Cognitive Maps model or MOD finite complex number 

Cognitive Maps model or MOD special dual like number 

Cognitive Maps model or MOD special quasi dual number 

Cognitive Maps model respectively.  

 

Apart from this we have defined MOD natural neutrosophic 

Cognitive Maps model, MOD natural neutrosophic-neutrosophic 

Cognitive Maps model, MOD natural neutrosophic dual number 

Cognitive Maps model, MOD natural neutrosophic special dual 

like number Cognitive Maps model, MOD natural neutrosophic 

special quasi dual number model and MOD natural neutrosophic 

finite complex number Cognitive Maps model using I

nZ , 〈Zn ∪ 

I〉I,  〈Zn ∪ g〉I,  〈Zn ∪ h〉I, 〈Zn ∪ k〉I or C
I
(Zn) respectively. 
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These model certainly are more appropriate than the 

existing ones. 

 

Finally we construct MOD interval Cognitive Maps model 

and describes it. The final chapter suggests a collection of 

problems for the interested reader.  
 

We wish to acknowledge Dr. K Kandasamy for his 

sustained support and encouragement in the writing of this 

book.  

W.B.VASANTHA KANDASAMY 

ILANTHENRAL K 

FLORENTIN SMARANDACHE 

 



 
 
 
  
Chapter One 
 
 

 
 
INTRODUCTION  
 

In this chapter we mainly give the out line of the work given 

in this book. Further we indicate the references where one can 

get a proper background for understanding the later chapters of 

this book. 

  

Fuzzy Cognitive Maps (FCMs) model have been developed 

defined and described by Kosko [2-5]. However NCMs 

analogous to FCMs have been introduced in [25]. 

 

Here we build MOD Cognitive Maps models using MOD 

integers. For MOD structures please refer [57-66]. 

 

Here we use these natural neutrosophic number n

tI  to build 

MOD natural neutrosophic Cognitive Maps model. Only based 

on this study all the following models were introduced. 

 

Here MOD Cognitive Maps model, MOD finite complex 

modulo integer Cognitive Maps model, MOD neutrosophic 

Cognitive Maps model, MOD dual number Cognitive Maps 

model (MOD) special dual like number Cognitive Maps model 

and MOD special quasi dual number Cognitive Maps model are 

defined,  described and developed for the first time in this book. 

 

Secondly we see in case of NCMs or for that matter MOD 

Neutrosophic Cognitive Maps we have I
2
 = I that is we have an 
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indeterminate which is an idempotent under product and 

addition of n times I is nI.  But here we make use of new classes 

of natural neutrosophic numbers which are such that they are 

idempotents under sum and under product they can be 

nilpotents or idempotents or zero divisors. For instance consider 

Z6 the  MOD integer. I

6Z  is the collection of all natural 

neutrosophic numbers got by exerting the operation of division 

‘/’ in Z6. The MOD natural neutrosophic numbers in Z6 are 6

0I , 
6

2I , 6

3I  and 6

4I [64]. 

 

Clearly 6 6 6

3 3 3I I I× = , 6 6 6

4 4 4I I I× = , 6 6 6

3 2 0I I I× =  thus we see the  

natural neutrosophic numbers are neutrosophic idempotents,  

neutrosophic zero divisors. We have a natural neutrosophic zero 

also denoted in Z6 by 6

0I  in Zn by n

0I . 

 

Consider I

8Z  we see 8

4I  is a natural neutrosophic nilpotent 

clearly 8 8 8

4 4 4I I I+ = . Thus I

8Z  is a semiring we call I

8Z  as a strict 

semiring which may be considered also as a misnomer. 

 

Now instead of using I we can use n

tI  where t is a zero 

divisor or idempotent or nilpotent element in Zn. 

 

When we use 〈Zn ∪ g〉 or 〈Zn ∪ h〉 or 〈Zn ∪ k〉 or 〈Zn ∪ I〉 or 

C(Zn) then we get more number of MOD natural neutrosophic 

numbers. For instance in 〈Z5 ∪ g〉I we have 5

gI , 5

2gI , 5

3gI , 5

4gI  are 

all natural neutrosophic dual  numbers all of them are natural  

neutrosophic nilpotents and zero divisors. Similar type of 

analysis in case of 〈Zn ∪ I〉, 〈Zn ∪ k〉 and 〈Zn ∪ h〉 can be done. 

We have built MOD natural neutrosophic Cognitive Maps 

models using 〈Zn ∪ I〉I, 〈Zn ∪ g〉 and so on. 

 

Thus these 12 new types of MOD Cognitive Maps models  

will surely be a boon to any researcher.  



 
 
 
  
Chapter Two 
 
 

 
 
MOD COGNITIVE MAPS MODELS  
 

 

 

 

 In this chapter  for the first time authors introduce the new 

type of model analogous to FCMs model using MOD integers Zn; 

2 ≤ n < ∞. 

  

Here one is made to think why should we use of only 0 and 

1 alone as in case of FCMs model. After all what we want is a 

resultant after a finite number of iterations or working.  

 

We achieve this by working with modulo integers Zn. Here 

the concepts are given at the initial state 1 or 0 that is on and off 

state respectively but the resultant can take any value in Zn.  

 

That value will signify the impact of that concept or node 

on the other concepts or nodes and its importance or otherwise 

using face value ordering in Zn.  

 

We will define this methodically. Before we proceed to 

define the model we just describe and develop the notion of 

matrix with entries from Zn; 2 ≤ n < ∞ which we shortly call as 

MOD matrices. 
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 In this chapter we develop only MOD square matrices as the 

new model analogous to FCMs model functions only on square 

matrices. 

 

DEFINITION 2.1:  Let Zn be the MOD integers {0, 1, 2, …,  

n–1; (2 ≤ n < ∞)}. 

 

 Let M = (mij)m × m be the m × m square matrix with entries 

from Zn (2 ≤ m < ∞, m a positive integer). 

 

 M is defined as the MOD m × m square matrix with entries 

from Zn.  

 

We will illustrate this situation by some examples. 

 

Example 2.1: Let  

 

M = 

3 0 4 2

5 1 0 3

1 2 2 5

4 0 1 0

 
 
 
 
 
 

 

 

be the MOD 4 × 4 square matrix with entries from Z6. 

 

Example 2.2: Let  

 

 

P = 

7 3 6 4 5 1

0 2 1 10 2 0

6 10 0 7 0 8

3 0 5 0 8 0

1 9 0 2 0 9

0 7 6 4 3 3

 
 
 
 
 
 
 
 
  

 

 

 

be the MOD 6 × 6 matrix with entries from Z11. 
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We can have finitely many such matrices with entries from 

Z11. 

 

We define only one type of operation using them. 

 

We will illustrate this by some examples. 

 

Let X = {(a1, …, an) / ai ∈ Zm; 1 ≤ i ≤ n} be the row matrix 

with entries from Zm. 

 

Elements of X are defined as MOD row matrices with entries 

from Zm. 

 

Example 2.3: Let   

 

M = 

3 2 0 4 5

0 1 2 0 6

2 0 1 5 0

6 5 0 1 2

4 3 6 0 1

 
 
 
 
 
 
  

 

 

be the MOD square matrix with entries from Z7. 

 

Let x = (1, 0, 0, 0, 0) be the MOD row matrix with entries 

from Z7. 

 

xM = (3, 2, 0, 4, 5) = y1;   y1M = (4, 1, 2, 2, 5) = y2; 

y2M = (6, 6, 6, 0, 0) = y3;  y3M = (2, 4, 4, 5, 3) = y4; 

y4M = (1, 0, 2, 5, 5) = y5;  y5M = (1, 0, 4, 5, 6) = y6; 

y6M = (6, 3, 5, 1, 0) = y7;  y7M = (6, 6, 4, 1, 1) = y8. 

 

Certainly after finite number of iterations we will arrive at a 

MOD fixed point or a MOD limit cycle [   ]. 

 

It is to be noted if we start with 1 any of the coordinates of x 

till the end we maintain it as non zero. 
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 If it becomes zero at some stage we replace that coordinate 

by 1. 

 

Let x = (0, 0, 0, 0, 1) be a state vector.  

 

We find the effect of x on M. 

 

xM = (4, 3, 6, 0, 1) = y1;   y1M = (1, 0, 4, 4, 4) = y2; 

y2M = (2, 7, 0, 0, 3) = y3;  y3M = (4, 6, 4, 1, 6) = y4; 

y4M = (1, 2, 3, 2, 1) = y5;  y5M = (4, 3, 6, 0, 1) = y6; 

y6M = (0, 0, 4, 4, 4) = y7;  y7M = (6, 4, 0, 3, 5) = y8 

 

and so on. 

 

 However after a finite number of iterations we are sure to 

arrive at a realized MOD fixed point or a realized MOD limit 

cycle. 

 

Example 2.4: Let  

M = 

0 1 2

1 0 0

0 0 1

 
 
 
  

 

 

be the MOD matrix with entries from Z3. 

 

 Let x = (1, 0, 0) be the MOD row vector. 

 

xM = (1, 1, 2) = y1;   y1M = (1, 1, 1) = y2; 

y2M = (1, 1, 0) = y3;   y3M = (1, 1, 2) = y4; 

 

y4M = (1, 1, 2) = y5 (=y4). 

 

Thus the MOD resultant is a realized fixed point. 

 

Let x = (0, 1, 0) be the MOD row vector. 

 

To find the effect of x on M. 
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xM = (1, 1, 0) = y1;    y1M = (1, 1, 2) = y2; 

y2M = (1, 1, 1) = y3;    y3M = (1, 1, 0) = y4; 

y4M = (1, 1, 2) = y5 (=y4). 

 

So the resultant is a realized limit cycle. 

 

Let x = (0, 0, 1) be the MOD row vector. 

 

The effect of x on M is as follows. 

 

xM = (0, 0, 1) = y1. 

  

Thus the resultant is a special classical fixed point. 

 

 Let x = (1, 1, 0) be the MOD row vector.  

 

The effect of x on M. 

 

 

xM = (1, 1, 2) = y1;    y1M = (1, 1, 1) = y2; 

y2M = (1, 1, 0) = y3 (= x). 

 

Thus the resultant is a limit cycle. 

 

Let x = (1, 0, 1) be the initial state vector. 

 

To find the effect of x on M. 

 

xM = (1, 1, 1) = y1;   y1M = (1, 1, 1) = y2 (=y1). 

 

This is a realized fixed point and both iterations have to be 

updated to keep the on state on the vectors in x = (1, 0, 1). 

 

Let x = (0, 1, 1) be the initial state vector. 

 

xM = (1, 1, 1) = y1; 

y1M = (1, 1, 1) = y2 (=y1) is a  realized fixed point. 
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 Finally if x = (1, 1, 1) then xM = (1, 1, 1) after updating, so 

x = (1, 1, 1) can be considered as the classical fixed point. 

 

Only this sort of operation is performed at each stage and 

this is the only  operation which is meaningful for us to 

implement on the model. 

 

We see the resultant is a classical fixed point or a realized 

fixed point or a realized limit cycle. 

 

Further while working with the special type of 

multiplication we take care to see that at each time the on state 

of the vector in the initial state vector is always maintained to be 

in the on state. 

 

Example 2.5: Let  

 

B = 
0 4

2 3

 
 
 

 

 

be the MOD matrix with entries from Z5.  

 

Let x = (1, 0) be the initial state vector. The effect of x on 

B;  

 

xB = (1, 4) = y1;   y1B= (3, 1) = y2; 

y2B = (2, 0) = y3;   y3B = (1, 3) = y4; 

y4B = (1, 3) = y5 (=y4). 

 

Thus the resultant is a realized fixed point. 

 

Let x1 = (0, 1) be the initial state vector. 

 

To find the effect of x on B. 

 

x1B = (2, 3) = y1;   y1B = (1, 2) = y2; 

y2B = (4, 1) = y3;   y3B = (2, 4) = y4; 

y4B = (3, 1) = y5 ;   y5B = (2, 1) = y6; 

y6B = (2, 1) = y7 (=y6). 
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Thus the resultant is a realized fixed point. 

 

Let x2 = (1, 1); to find the effect of x on B. 

 

x2B = (2, 2) = y1;   y1B = (4, 4) = y2; 

y2B = (3, 3) = y3;   y3B = (1, 1) = y4 (=x2). 

 

Thus the resultant is a realized fixed point. 

 

Clearly x + x1 = (1, 0) + (0, 1) = (1, 1) = x2. 

 

The resultant of x is (1, 3)   I 

The resultant of x1 is (2, 1)  II 

The resultant of x2 is (1, 1)  III 

 

But the resultant sum of x and x1 is (3, 4) which is not III. 

 

So (x + x1) B ≠ xB + x1B in general. 

 

Example 2.6: Let  

 

W = 

1 0 2 4 0

6 0 1 0 2

0 1 0 3 0

7 0 2 0 1

0 1 0 2 0

 
 
 
 
 
 
  

 

 

be the MOD 5 × 5 matrix with entries from Z8. 

 

Let x = (1, 0, 0, 0, 0) be the initial state vector 

 

 xW = (1, 0, 2, 4, 0) = y1;  y1W = (5, 2, 2, 6, 4) = y2; 

y2W = (3, 6, 0, 2, 2) = y3;  y3W = (5, 2, 0, 0, 6) = y4; 

y4W = (1, 6, 4, 0, 4) = y5;  y5W = (5, 0, 0, 0, 4) = y6; 

y6W = (5, 4, 2, 4, 0) = y7;  y7W = (1, 2, 6, 2, 4) = y8; 

y8W = (3, 2, 6, 6, 6)  = y9;  y9W = (1, 4, 4, 2, 2) = y10; 

y11W = (2, 4, 2, 2, 0) = y12;  y12W = (1, 2, 4, 6, 2) = y13; 

y13W = (7, 6, 0, 4, 2) = y14;  y14W = (7, 2, 4, 0, 0) = y15; 
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 y15W = (3, 4, 0, 0, 4) = y16;  y16W = (3, 4, 2, 4, 0) = y17; 

y17W = (7, 2, 2, 2, 4) = y18;  y18W = (1, 6, 4, 2, 6) = y19; 

y19W = (3, 2, 4, 4, 6) = y20; 

 

and so on and we are sure to arrive at a realized fixed point or a 

realized limit point. 

 

Let x = (0, 0, 0, 0, 1) be the initial state vector.  

 

To find the effect of x on  W. 

 

xW = (0, 1, 0, 2, 1) = y1;  y1W = (4, 1, 5, 2, 4) = y2; 

y2W = (0, 1, 5, 7, 4) = y3;  y3W = (7, 1, 7, 7, 1) = y4; 

y4W = (6, 0, 5, 3, 1) = y5 and so on. 

 

However after a finite number of iterations we will arrive at 

a realized fixed point or a realized limit cycle. 

 

Example 2.7: Let  

 

S = 

0 1 0 0 2

0 0 1 0 0

4 2 0 1 1

0 0 1 0 5

1 0 0 3 0

 
 
 
 
 
 
  

 

 

be the MOD 5 × 5 matrix with entries from Z5. 

 

Let x = (1, 0, 0, 0, 0) be the given state vector. 

 

To find the effect of x on  S. 

 

xS  → (1, 1, 0, 0, 2) = y1;  y1S → (2, 1, 1, 0, 2) = y2; 

y2S → (1, 4, 1, 1, 5) = y3;  y3S → (1, 3, 5, 4, 2) = y4; 

y4S = (4, 5, 1, 5, 3) = y5;   y5S = (1, 0, 4, 4, 4) = y6; 

y6S = (2, 3, 4, 4, 2) = y7;   y7S = (1, 4, 1, 4, 4) = y8; 

y8S = (2, 3, 2, 1, 4) = y9;   y9S = (1, 0, 4, 2, 5) = y10; 

y10S = (3, 3, 0, 1, 4) = y11;  y11S = (4, 3, 4, 0, 5) = y12; 



MOD Cognitive Maps Models 19 

 

 

 

 

 

y12S = (3, 0, 3, 1, 0) = y13;  y13S = (1, 3, 1, 3, 2) = y14  

 

and  so on and we will arrive at a realized fixed point or a 

realized limit cycle. 

 

Let a = (0, 0, 1, 0, 0) be the initial state vector, to find the 

effect of a on S. 

 

aS → (4, 2, 1, 1, 1 ) = y1;  y1S = (5, 0, 3, 2, 2) = y2; 

y2S = (2, 5, 4, 3, 3) = y3;   y3S = (5, 4, 2, 1, 5) = y4; 

y4S = (1, 3, 5, 5, 6)  = y5;  y5S = (1, 5, 2, 2, 2) = y6; 

y6S = (4, 5, 1, 2, 2) = y7;   y7S = (0, 0, 1, 1, 1) = y8; 

y8S = (5, 2, 1, 4, 0) = y9;   y9S = (4, 1, 1, 1, 1) = y10; 

y10S = (5, 0, 2, 4, 2) = y11;  y11S = (4, 3, 4, 2, 2) = y12; 

y12S = (0, 0, 5, 4, 4) = y13;  y13S = (0, 4, 4, 5, 1) = y14; 

y14S = (5, 2, 3, 1, 5) = y15;  y15S = (5, 5, 3, 0, 0) = y16; 

y16S = (0, 5, 5, 3, 1) = y17;  y17S = (3, 4, 2, 2, 2) = y18; 

y18S = (4, 1, 1, 0, 0) = y19;  y19S = (4, 0, 1, 1, 3) = y20; 

y20S = (1, 0, 1, 4, 2) = y21;  y21S = (0, 3, 4, 1, 5) = y22; 

 

and so on. 

 

Certainly after a finite number of iterations we are sure to 

arrive at a realized fixed point or a realized limit cycle. 

 

Let b = (0, 1, 0, 0, 0) be the initial state vector.  

 

To find the effect of b on S. 

 

bS → (0, 1, 1, 0, 0) = y1;  y1S = (4, 2, 1, 1,1 ) = y2; 

y2S = (5, 1, 3, 4, 2) = y3;   y3S = (2, 5, 5, 3, 3) = y4; 

y4S = (5, 1, 2, 2, 0) = y5;   y5S = (2, 3, 3, 2, 4) = y6; 

y6S = (4, 2, 5, 3, 5) = y7;   y7S = (1, 2, 5, 2, 4) = y8; 

y8S = (0, 5, 4, 5, 5) = y9;   y9S = (3, 2, 4, 1, 5) = y10; 

y10S = (3, 5, 3, 1, 3) = y11;  y11S = (3, 3, 0, 0, 2) = y12; 

y12S = (2, 3, 3, 0, 0) = y13;  y13S = (0, 2, 3, 3, 1) = y14; 

y14S = (1, 1, 5, 0, 0) = y15;  y15S = (2, 5, 1, 5, 1) = y16; 

y16S = (4, 4, 4, 4, 0) = y17;  y17S = (4, 1, 2, 4, 2) = y18; 

and so on. 
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However we will arrive at a realized fixed point or a 

realized limit cycle. 

 

Now we proceed onto study one more example before 

obtain results related with them. 

 

Example 2.8:  Let  

 

B = 

0 1 0

2 0 1

0 0 2

 
 
 
  

 

 

be the MOD 3 × 3 matrix with entries from Z3  

 

Let x = (1, 0, 0) be the initial state vector.  

 

To find the effect of x on B . 

 

xB → (1, 1, 0) = y1;    y1B = (2, 1, 1 ) = y2; 

y2B = (2, 2, 0) = y3;    y3B = (1, 2, 2) = y4; 

y4B = (1, 1, 0) = y5 (= y1). 

 

Thus the resultant is a realized fixed point given by (1, 1, 0).  

 

Consider x1 = (0, 1, 0) to be a initial state vector. 

 

To find the resultant of x1 on B. 

 

x1B = (2, 1, 1) = y1;    y1B = (2, 2, 0) = y2; 

y2B = (1, 1, 2) = y3;    y3B = (2, 1, 2) = y4; 

y4B = (2, 2, 2) = y5;    y5B = (1, 2, 0) = y6; 

y6B = (1, 1, 2) = y7 (= y3). 

 

Thus the resultant is a realized limit cycle (1, 1, 2). 

 

Let x2 = (0, 0, 1)  be the  given initial state vector.  

To find the effect of x2 on B. 
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x2B = (0, 0, 2) = y1;    y1B = (0, 0, 1) = y2 (=x2) ; 

 

thus the resultant realized limit cycle given by (0, 0, 2). 

 

Let x3 = (1, 1, 0) be the given initial state vector. 

 

Effect of x3 on B. 

 

x3B = (2, 1, 1) = y1;    y1B = (2, 2, 0) = y2; 

y2B = (1, 2, 2) = y3;    y3B = (1, 1, 0) = y4 (=x3). 

 

Thus the resultant is a realized limit cycle given by (1, 2, 2). 

 

Now x + x1 = (1, 1, 0). 

Resultant of x is (1, 1, 0) ;  resultant of x1 is (1, 1, 2). 

Sum of the resultant is (2, 2, 2) 

 

However resultant of x + x1 = (1, 1, 0) is (1, 2, 2). 

 

Thus (x +x1) B ≠ xB + x1B in general. 

 

In view of this we have the following theorem. 

 

THEOREM 2.1: Let M (mij)n×n be the n × n matrix with entries 

from Zm, (1 ≤ i, j ≤ n); (2 ≤ n < ∞). 

 

If x1 and x2 are initial state vectors; then (x1 + x2) m ≠  

x1M + x2M in general. 

 

Proof is direct and hence left as an exercise to the reader. 

 

Next we proceed onto describe the MOD directed graphs 

where the edge weights are from Zn.  

 

Example 2.9: Let G be the MOD directed graph given by the 

following figure. 

 

 



22 MOD  Cognitive Maps Models and MOD Natural … 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 2.1 

 

The directed graph G has the following adjacency matrix M. 

 

M = 

1 2 3 4 5

1

2

3

4

5

      v   v  v   v  v

v 0 4 0 0 0

v 0 0 0 1 0

v 3 2 0 0 0

v 0 0 0 0 2

v 4 0 0 0 0

 
 
 
 
 
 
  

. 

 

Clearly M is a 5 × 5 MOD matrix with entries from Z5. 

 

Example 2.10: Let 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 

 

v3 

v2 

v5 

v1 

2 

4 

G =   
1 

v4 

4 

2 

3 

v4 

v3 v5 

v6 
v2 

v1 

v7 
5 

3 
1 

2 

3 8 

9 

6 

2 

4 4 
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be the MOD directed graph with entries from Z10. 

 

The MOD matrix B associated with Figure 2.2 is as follows. 

 

B  = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

      v   v   v   v   v   v  v

v 0 0 0 2 4 6 0

v 3 0 0 0 0 8 0

v 3 0 0 0 5 0 0

v 0 0 1 0 0 0 0

v 0 0 0 0 0 0 2

v 0 0 0 0 9 0 0

v 0 0 0 0 0 4 0

 
 
 
 
 
 
 
 
 
 
   

 

Thus for any given MOD graph we can always have a MOD 

matrix associated with it. 

 

Example 2.11: Let G be the MOD graph with edge weights from 

Z12 given in Figure 2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 

 

The MOD matrix M associated with G is as follows. 

 

v1 

9 

3 

v6 

v3 

v2 

v4 

v5 

5 

7 

5 

8 
6 

2 

1 6 
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M = 

1 2 3 4 5 6

1

2

3

4

5

6

v v v v v v

v 0 1 0 2 0 0

v 0 0 6 0 0 6

v 0 8 0 0 5 5

v 0 0 0 0 7 0

v 0 0 0 3 0 0

v 0 0 0 9 0 0

 
 
 
 
 
 
 
 
  

.

 
 

 

M is a MOD 6 × 6 matrix with entries from Z12. 

 

Now we proceed onto define, describe and develop the 

notion of MOD Cognitive Maps (MOD-CMs) model. 

 

DEFINITION 2.2: Let C1, C2, …, Cm be m concepts / nodes. Let 

G be the MOD directed graph associated with these concepts 

with edge weights eij ∈ Zn.   

 

Let E be the MOD matrix defined by E = (eij) where eij is the 

weight of the directed edge CiCj. E is called the adjacency MOD 

matrix of the MOD Cognitive Maps, where a MOD Cognitive 

Map is a MOD directed graph with concepts like policies, events 

etc., as nodes and causalities with weights from Zn as edges.  

 

It represents the weighted causal relationship between 

concepts. 

 

DEFINITION 2.3: Let C1, C2, …, Cm be the nodes of a MOD CM. 

A = (a1, …, am) where ai ∈ {0, 1}. A is called the initial or 

instantaneous state vector and it denotes the on-off state 

position of the node at an instant. 

 

ai = 0 if ai is off 

and  ai = 1 if ai is on 

i = 1, 2, …, m. 
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DEFINITION 2.4: Let C1, C2, …, Cm be the nodes of a MODCM. 

Let 1 2

������
C C , …, 

i j
C C
������

 be the weighted edges of  the MODCMs  

(i ≠ j) with weights from Zn. Then the weighted edges form a 

directed cycle. A MODCMs is said to be MOD cyclic if it possess 

a directed MOD cycle.  

 

A MODCM is said to be MOD acyclic if it does not possess 

any directed cycle. A MODCM with MOD cycles is said to have 

feedback, when there is a feedback in a MODCM that is when 

the causal relations flow through a MOD cycle in a 

revolutionary way, the MODCM is called a MOD dynamical 

system. 

 

DEFINITION 2.5:. Let 1 2

������
C C , 2 3C C

������
, …, 1m n

C C
−

��������
 be a MOD cycle 

when Ci is switched on and if the causality flows through the 

edges of a MOD cycle and if it again causes Ci we say the MOD 

dynamical system goes round and round. This is true for any 

node Ci; i = 1, 2, …, m.   

 

The equilibrium state of the MOD dynamical system is called 

the MOD hidden pattern. 

 

If the equilibrium state of a dynamical system is a unique 

MOD resultant vector then it is defined as the MOD fixed point. 

By MOD resultant we mean 

 

R = {(a1, a2, …, am) / ai ∈ Zn; 1 ≤ i ≤ m}. 

 

Thus the major difference between the FCM and MODCM is 

that in the FCM, the resultant takes its value from  

 

A = {(a1, …, am) / ai ∈ {0, 1}, 1≤ i ≤ m} but in case of 

MODCMs the MOD resultant takes its value from  

 

R = {(a1, …, am) / ai ∈ Zn; 1 ≤ i ≤ m}. 

 

This is one of the striking difference between the two 

models. 
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This will be represented by an example before we proceed 

onto describe MOD limit cycle of a MODCMs model. 

 

Example 2.12: Let C1, C2, C3, C4, C5 be the nodes of a MODCM 

dynamical system; M whose edge weights are taken from Z3.  

 

The MOD directed graph G associated with the MODCM is 

as follows. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 

 

The MOD adjacency matrix (adjacency MOD matrix) M 

associated with G is as follows. 

 

M = 

1 2 3 4 5

1

2

3

4

5

C C C C C

C 0 1 0 0 0

C 0 0 0 0 2

C 0 0 0 2 0

C 0 0 0 0 0

C 0 0 1 0 0

 
 
 
 
 
 
  

. 

 

The MOD resultant vectors of the MOD dynamical system E 

is 

 

R =  {(a1, a2, a3, a4, a5) / ai ∈ Z3; 1 ≤ i  ≤ 5}. 

 

C1 C2 

C4 C3 

C5 

2 

2 

1 

1 
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Let x = (1, 0, 0, 0, 0) be the initial or instantaneous MOD 

vector. 

 

The effect of x on the MOD dynamical system M is as 

follows;  

 

xM → (1 1 0 0 0) = y1;   y1M → (1 1 0 0 2) = y2; 

y2M → (1, 1, 2, 0, 2) = y3;  y3M → (1, 1, 2, 1, 2) = y4; 

y4M → (1, 1, 2, 1, 2) = y5 (=y4). 

 

Thus the MOD resultant is a MOD fixed point given  by  

(1, 1, 2, 1, 2). 

 

(→ denotes at each stage the MOD resultant is updated while 

updating the vector we only replace 0 by 1). 

 

Next consider x1 = (0, 0, 0, 0, 1) be the initial state MOD 

vector. 

 

The effect of x1 on M is as follows. 

 

x1M → (0, 0, 1, 0, 1) = y1;  y1M → (0, 0, 1, 2, 1) = y2; 

y2M → (0, 0, 1, 2, 1) = y3 (=y2). 

 

Thus the MOD resultant in this case is also a MOD fixed 

point. 

 

Let x2 = (0, 1, 0, 0, 0) be the initial state vector.  

 

To find the effect of x2 on M, 

 

x2M → (0, 1, 0, 0, 2) = y1;  y1M → (0, 1, 2, 0, 2) = y2; 

y2M → (0, 1, 2, 1, 2) = y3;  y3M → (0, 1, 2, 1, 2) = y4  

             (=y3). 

 

Thus the resultant in this case also is a MOD fixed point.  

 

Let x3 = (0, 0, 1, 0, 0) be the initial state vector.  
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 To find the effect of x3 on M. 

 

x3M → (0, 0, 1, 2, 0) = y1; 

y1M → (0, 0, 1, 2, 0) = y2 (= y1). 

 

The resultant is a MOD fixed point. 

 

Consider  

x1 + x2 = (0, 0, 0, 0, 1) + (0, 1, 0, 0, 0) = (0, 1, 0, 0, 1) = x5 

 

x5M → (0, 1, 1, 0, 2) = y1;  y1M → (0, 1, 2, 2, 2) = y2; 

y2M → (0, 1, 2, 1, 2) = y3;   

y3M → (0, 1, 2, 2, 2) = y4 (=y2). 

 

Thus the MOD resultant is a MOD limit cycle. 

 

Now the resultant of x1 is a fixed point (0, 0, 1, 2, 1). 

 

The resultant of x2 is a fixed point (0, 1, 2, 1, 2). 

 

Sum of the resultant of x1 and x2 is  

(0, 0, 1, 2, 1) + (0, 1, 2, 1, 2) = (0 1 0 0 0); not in keeping 

with any of the basic properties or laws.   

 

For the MOD resultant of the initial state vector  

x1 + x2 = (0, 1, 0, 0, 1) = x5 is a limit cycle.  

 

Hence our claim. 

We now define the notion of MOD limit cycle. 

 

DEFINITION 2.6:. If the MODCM settles down with a state vector 

repeating in the form 

 

x1 → x2 → … → xI → x1 

 

then the MOD equilibrium is a MOD limit cycle. 

 

We saw in the examples the MOD resultant gave a MOD limit 

cycle. 
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Now we give one more example before we proceed onto 

define other related properties. 

 

Example 2.13: Let C1, C2, C3, C4, C5, C6, C7 be the 7 nodes / 

concepts and G be the MOD directed graph using these nodes C1, 

C2, …, C7 with weights from Z4. 

 

The MOD directed graph is given in the following figure. 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 

 

The MOD adjacency matrix B associated with G is as 

follows: 

 

B = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

C C C C C C C

C 0 3 0 0 0 0 1

C 0 0 0 0 0 2 0

C 0 1 0 0 0 0 0

C 0 0 0 0 0 0 0

C 2 0 0 0 0 0 0

C 0 0 0 0 2 0 0

C 0 0 0 2 0 0 0

 
 
 
 
 
 
 
 
 
 
 

. 

 

 

Let x = (1, 0, 0, 0, 0, 0, 0) be the initial state vector. 

 

 To find the effect of x1 on B. 

C1 C2 
3 

C5 

C7 

C4 

C6 

C3 2 

2 

2 

1 

1 

2 
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x1B → (1, 3, 0, 0, 0, 0, 1) = y1; 

y1B → (1, 3, 0, 2, 0, 2, 1) = y2; 

y2B → (1, 3, 0, 2, 0, 2, 1) = y3 (=y2). 

 

Thus the MOD resultant of x1 is a MOD fixed point. 

 

Consider x2 = (0, 1, 0, 0, 0, 0, 0) to be the initial state 

vector. 

 

To find the effect of x2  on B. 

 

x2B → (0, 1, 0, 0, 0, 2, 0) = y1 

y1B → (0, 1, 0, 0, 0, 2, 0) = y2 (=y1). 

 

Thus the MOD resultant of x2 is a MOD fixed point. 

 

Let x3 = (0, 0, 1, 0, 0, 0, 0) be the initial MOD state  vector.  

 

The effect of x3 on B is as follows. 

 

x3B → (0, 1, 1, 0, 0, 0, 0) = y1; 

y1B → (0, 1, 1, 0, 0, 2, 0) = y2; 

y2B → (0, 1, 1, 0, 0, 2, 0) = y3 (=y2). 

 

Thus the MOD resultant of x3 is also a MOD fixed point. 

 

Consider x4 = (0, 0, 0, 1, 0, 0, 0) be the initial state vector.  

 

To find the effect of x4 on B. 

 

x4B → (0, 0, 0, 1, 0, 0, 0) = x4; 

 

So x4 is a classical MOD fixed point of a special kind. 

 

Let x5 = (0, 0, 0, 0, 1, 0, 0) be the initial state vector. 

 

To find the effect of x5 on B. 

 



MOD Cognitive Maps Models 31 

 

 

 

 

 

x5B → (2, 0, 0, 0, 1, 0, 0) = y1; 

y1B → (2, 2, 0, 0, 1, 0, 2) = y2; 

y2B → (2, 2, 0, 0, 1, 0, 2) = y3 (= y2). 

 

Thus the MOD resultant is also a MOD fixed point. 

 

Consider x6 = (0, 0, 0, 0, 0, 1, 0) to be the initial state 

vector.  

 

To find the effect of x6 on B. 

 

x6B → (0, 0, 0, 0, 2, 1, 0) = y1; 

y1B → (0, 0, 0, 0, 2, 1, 0) = y2 = (y1). 

 

Thus the MOD resultant the MOD fixed point. 

 

Consider x7 = (0, 0, 0, 0, 0, 0, 1) be the initial state vector. 

 

To find the effect of x7 on B. 

 

x7B → (0, 0, 0, 2, 0, 0, 1) = y1; 

y2B → (0, 0, 0, 2, 0, 0, 1) = y2 (=y1). 

 

Thus the MOD resultant is a MOD fixed  point. 

 

It is important to keep on record these  examples are just 

only illustrated not related with any real world problem. 

 

Let x = (1, 0, 0, 0, 0, 0, 1) be the initial state vector. 

 

To find the effect of x on B. 

 

xB → (1, 3, 0, 2, 0, 0, 1) = y1;  

y1B → (1, 3, 0, 2, 0, 2, 1) = y2; 

y2B → (1, 3, 0, 2, 0, 2, 1) = y3 (=y2). 

 

Thus the MOD resultant is a MOD fixed point. 
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 We see the classical way of defining the mode of combining 

a finite number of MODCMs to get the joint effect of all 

MODCMs is not very feasible for some entries say  

mij + mks = 0 (mod n).  

 

So to over come this problem we make the following 

stipulations which is first illustrated by some examples and then 

by proper definition. 

 

Example 2.14: Let C1, C2, C3 and C4 be four nodes associated 

with some problem. 

 

Let three experts give the MOD directed graphs by taking 

edge weights from Z4. 

 

The MOD directed graphs given by them are as follows. The 

MOD directed graph given by the first expert; 
 

 

 

 

 

 G1 

 

 

 

Figure 2.6 

 

The MOD directed graph given by the second expert using 

edge weight from Z7 is as follows. 

 

 

 

 

 

 

 

 

 

Figure 2.7 

3 

C1 C2

C3 

4 

C4
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5 

G2 3 
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C1 C2 

C3
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C4
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The MOD directed graph given by the third expert using the 

nodes C1, C2, C3, C4 and edge weights from Z7 is as follows. 

 

 

 

 

 

 

 

 

 

Figure 2.8 

 

The corresponding MOD connection matrices associated 

with G1, G2 and G3 be M1, M2 and M3 respectively which is as 

follows. 

M1 = 

1 2 3 4

1

2

3

4

C C C C

C 0 3 0 0

C 0 0 5 2

C 0 0 0 6

C 0 0 0 0

 
 
 
 
 
 

. 

 

 

M2 = 

1 2 3 4

1

2

3

4

C C C C

C 0 4 3 0

C 0 0 2 0

C 0 0 0 0

C 0 3 5 0

 
 
 
 
 
 

 and 

 

 

M3 = 

1 2 3 4

1

2

3

4

C C C C

C 0 0 0 3

C 2 0 0 2

C 0 4 0 6

C 0 3 5 0

 
 
 
 
 
 

. 

3 

C1 C2

C3 

2 

C4

4 

G3 4 
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We now find M1 + M2 + M3 

 

 

= 

0 3 0 0

0 0 5 2

0 0 0 6

0 0 0 0

 
 
 
 
 
 

 + 

0 4 3 0

0 0 2 0

0 0 0 0

0 3 5 0

 
 
 
 
 
 

 + 

0 0 4 3

2 0 0 0

0 4 0 0

0 0 0 0

 
 
 
 
 
 

 

 

 

= 

1 2 3 4

1

2

3

4

C C C C

C 0 0 0 3

C 2 0 0 2

C 0 4 0 6

C 0 3 5 0

 
 
 
 
 
 

. 

 

However as 3 + 4 ≡ 0 (mod 7) and 6 = 2 ≡ 0 (mod 7) two of 

the effects has cancelled out.  

 

This fact is misleading so we feel that the combined MOD 

dynamical system may not represent, the real situation of the 

problem or the experts opinion as this cancellation is wrong.  

 

Further we cannot as in case of FCMs or NCMs go for 

simple ones where the edge weights are restrained to {0, 1} or 

{0, 1, I} respectively.  

 

We define the new notion of special combination of 

MODCMs in the following. 

 

DEFINITION 2.7:  Let s number of experts work with m nodes 

C1, C2, …, Cm and use for the MOD directed graphs G1, …, Gs 

weights from Zn.  Let M1, …, Ms be the collection of the MOD 

connection matrices associated with G1, G2, …, Gn respectively. 

 

Let Mt  = ( t

ijm ); 1 ≤ t ≤ s . 
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Let N1  = M1 + M2  = ( 1

ijm ) + ( 2

ijm ) 

 

= ( 1

ijm + 2

ijm ) is taken as 

1 2

2

ij ijm m +

  
 

 if n is even and 

1 2 1

2

ij ijm m+ +

 if n is odd only, when ever 1

ijm  + 2

ijm  ≡ 0 (mod n) 

( 1

ijm ≠ 0 and 2

ijm ≠ 0). 

 

Now add N1 + M3 use the same procedure as that used for 

M1 and M2. 

 

Repeat till all the s of the MOD matrices are used.  

 

This will not cancel out however; how best it is suited is to 

be researched. 

 

This final Ns-1 MOD matrix will be defined as the special 

combined MOD CM matrix or combined MODCM special 

dynamical system. 

 

We will illustrate this situation by an example. 

 

Example 2.15: Let 5 experts work on a problem using the nodes 

C1, C2,  …, C6 and the MOD directed graphs taking edge weights 

from Z5. Let the corresponding MOD matrices of the five experts 

be M1, M2, M3, M4 and M5 alone is given in the following: 

 

M1 be the MOD matrix given by expert one. 
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M1 = 

1 2 3 4 5 6

1

2

3

4

5

6

C C C C C C

C 0 3 0 0 2 1

C 0 0 4 0 0 0

C 0 0 0 3 0 0

C 0 0 0 0 0 0

C 3 0 0 0 0 0

C 0 2 0 0 0 0

 
 
 
 
 
 
 
 
  

. 

 

 

M2 be the MOD matrix given by the second expert 

 

 

M2 = 

1 2 3 4 5 6

1

2

3

4

5

6

C C C C C C

C 0 2 0 0 4 0

C 0 0 1 0 0 1

C 0 0 0 2 0 0

C 0 1 0 0 0 0

C 3 0 0 0 0 0

C 0 4 0 0 0 0

 
 
 
 
 
 
 
 
  

. 

 

 

Let M3 be the MOD matrix given  by the third expert 

 

 

M3 = 

1 2 3 4 5 6

1

2

3

4

5

6

C C C C C C

C 0 1 0 0 1 2

C 0 0 1 0 0 4

C 0 0 0 1 0 0

C 0 0 0 0 2 0

C 0 0 0 0 0 4

C 0 2 3 0 0 0

 
 
 
 
 
 
 
 
  

. 
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Let M4 be the MOD matrix given by the fourth expert. 

 

 

M4 = 

1 2 3 4 5 6

1

2

3

4

5

6

C C C C C C

C 0 3 0 0 2 0

C 0 0 2 0 0 3

C 0 0 0 3 0 0

C 0 4 0 0 0 0

C 2 0 0 0 0 1

C 1 3 0 0 0 0

 
 
 
 
 
 
 
 
  

. 

 

Let M5 be the MOD matrix given by the fifth expert 

 

 

M5 = 

1 2 3 4 5 6

1

2

3

4

5

6

C C C C C C

C 0 4 0 0 0 2

C 0 0 4 0 0 2

C 0 0 0 2 0 0

C 0 4 0 0 0 2

C 0 0 0 0 0 3

C 0 4 0 0 0 0

 
 
 
 
 
 
 
 
  

. 

 

 

We find N1 = M1 + M2 

 

 

= 

0 3 0 0 2 1

0 0 4 0 0 0

0 0 0 3 0 0

0 0 0 0 0 0

3 0 0 0 0 0

0 2 0 0 0 0

 
 
 
 
 
 
 
 
  

 + 

0 2 0 0 4 0

0 0 1 0 0 1

0 0 0 2 0 0

0 1 0 0 0 0

3 0 0 0 0 0

0 4 0 0 0 0

 
 
 
 
 
 
 
 
  
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= 

0 3 0 0 1 1

0 0 3 0 0 1

0 0 0 3 0 0

0 1 0 0 0 0

3 0 0 0 0 0

0 3 0 0 0 0

 
 
 
 
 
 
 
 
    

 

 

using 

1 2

ij ij1 m m

2

+ +

 if 1 2

ij ijm m+  = 0 (mod 5). 

 

Next we find N1 + M3 = N2. 

 

 

 

N1 + M3 = N2 = 

0 3 0 0 1 1

0 0 3 0 0 1

0 0 0 3 0 0

0 1 0 0 0 0

3 0 0 0 0 0

0 3 0 0 0 0

 
 
 
 
 
 
 
 
  

 + 

0 1 0 0 1 2

0 0 1 0 0 4

0 0 0 1 0 0

0 0 0 0 2 0

0 0 0 0 0 4

0 2 3 0 0 0

 
 
 
 
 
 
 
 
  

  

 

 

 

     = 

0 4 0 0 2 3

0 0 4 0 0 3

0 0 0 4 0 0

0 1 0 0 2 0

3 0 0 0 0 4

0 3 3 0 0 0

 
 
 
 
 
 
 
 
  

 . 

 

 

Now we find N3 = N2 + M4 . 
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= 

0 4 0 0 2 3

0 0 4 0 0 3

0 0 0 4 0 0

0 1 0 0 2 0

3 0 0 0 0 4

0 3 3 0 0 0

 
 
 
 
 
 
 
 
  

 + 

0 3 0 0 2 0

0 0 2 0 0 3

0 0 0 3 0 0

0 4 0 0 0 0

2 0 0 0 0 1

1 3 0 0 0 0

 
 
 
 
 
 
 
 
    

 

 

= 

0 2 0 0 4 3

0 0 1 0 0 1

0 0 0 2 0 0

0 3 0 0 2 0

3 0 0 0 0 3

1 1 3 0 0 0

 
 
 
 
 
 
 
 
  

 = N3.
 

 

 

Next we find N4 = N3 + M5  

 

= 

0 2 0 0 4 3

0 0 1 0 0 1

0 0 0 2 0 0

0 3 0 0 2 0

3 0 0 0 0 3

1 1 3 0 0 0

 
 
 
 
 
 
 
 
  

 + 

0 4 0 0 0 2

0 0 4 0 0 2

0 0 0 2 0 0

0 4 0 0 0 2

0 0 0 0 0 3

0 4 0 0 0 0

 
 
 
 
 
 
 
 
  

 

 

 

= 

0 1 0 0 4 3

0 0 3 0 0 3

0 0 0 4 0 0

0 2 0 0 2 2

3 0 0 0 0 1

1 3 3 0 0 0

 
 
 
 
 
 
 
 
  

.
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Thus N4 is the special combined MOD matrix operator or the 

MOD special combined dynamical system.  

 

We will test the effects of initial state vectors using M1, M2, 

M3, M4, M5 and N4.   

 

Let x = (1, 0, 0, 0, 0, 0) be the initial state vector. 

 

We find the effect of x on M1, M2, M3, M4, M5 and N4. 

 

xM1 → (1, 3, 0, 0, 2, 1) = y1;   

y1M1 = (1, 0, 2, 0, 2, 1) = y2; 

y2M1 = (1, 2, 0, 1, 2, 1) = y3; 

y3M1 = (1, 0, 3, 0, 2, 1) = y4; 

y4M1 = (1, 0, 0, 4, 2, 1) = y5; 

y5M1 = (1, 0, 0, 0, 2, 1) = y6; 

y6M1 = (1, 0, 0, 0, 2, 1) = y7 (=y6). 

 

Effect of x on M1 is a MOD fixed point given  by  

(1, 0, 0, 0, 2)     ----   I 

 

Next we find the effect of x on M. 

 

xM2 → (1, 2, 0, 0, 4, 0) = y1; 

y1M2 = (2, 2, 2, 0, 4, 2) = y2; 

y2M2 = (2, 2, 2, 4, 3, 2) = y3; 

y3M2 = (4, 1, 2, 4, 3, 2) = y4; 

y4M2 = (4, 0, 1, 4, 1, 1) = y5; 

y5M2 = (3, 1, 0, 2, 1, 0) = y6; 

y6M2 = (3, 3, 1, 0, 2, 1) = y7; 

y7M2 = (1, 0, 3, 2, 2, 3) = y8; 

y8M2 = (1, 1, 0, 1, 4, 0) = y9; 

y9M2 = (2, 3, 1, 0, 4, 1) = y10; 

y10M2 = (2, 3, 3, 2, 3, 3) = y11; 

y11M2 = (4, 3, 3, 1, 3, 3) = y12; 

y12M2 = (4, 1, 3, 1, 1, 3) = y13; 

y13M2 = (3, 1, 1, 1, 1, 1) = y14; 

y14M2 = (3, 1, 1, 2, 2, 1) = y15; 
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y15M2 = (1, 2, 1, 2, 2, 1) = y16; 

y16M2 = (1, 3, 2, 2, 4, 2) = y17; 

y17M2 = (2, 2, 3, 4, 4, 3) = y18; 

y18M2 = (2, 0, 2, 1, 3, 2) = y19; 

y19M2 = (4, 3, 0, 4, 3, 0) = y20; 

y20M2 = (4, 2, 3, 0, 1, 3) = y21; 

y21M2 = (3, 0, 2, 1, 1, 2) = y22; 

y22M2 = (3, 0, 0, 4, 2, 0) = y23; 

y23M2 = (1, 0, 0, 0, 2, 0) = y24; 

y24M2 = (1, 2, 0, 0, 4, 0) = y25 (=y1). 

 

Thus the resultant is a MOD limit cycle given by  

(1, 2, 0, 0, 4, 0)   ----   II 

 

Let us now find the effect of x = (1, 0, 0, 0, 0, 0) on the 

MOD matrix M3. 

 

xM3 → (1, 1, 0, 0, 1, 2) = y1; 

y1M3  → (1, 0, 2, 0, 1, 0) = y2; 

y2M3 → (1, 1, 0, 2, 1, 1) = y3; 

y3M3 → (1, 3, 4, 0, 0, 0) = y4; 

y4M3 → (1, 1, 3, 4, 1, 4) = y5; 

y5M3 → (1, 4, 3, 3, 4, 0) = y6; 

y6M3 → (1, 1, 4, 3, 2, 4) = y7; 

y7M3 → (1, 4, 3, 4, 2, 4) = y8; 

y8M3 → (1, 4, 1, 3, 4, 1) = y9; 

y9M3 → (1, 3, 2, 1, 2, 2) = y10; 

y10M3 → (1, 0, 4, 2, 3, 2) = y11; 

y11M3 → (1, 0, 1, 4, 0, 4) = y12; 

y12M3 → (1, 4, 2, 1, 4, 2) = y13; 

y13M3 → (1, 0, 0, 2, 3, 4) = y14; 

y14M3 → (1, 4, 2, 0, 0, 4) = y15; 

y15M3 → (1, 4, 1, 2, 1, 3) = y16; 

y16M3 → (1, 2, 3, 1, 0, 2) = y17; 

y17M3 → (1, 0, 3, 3, 3, 0) = y18; 

y18M3 → (1, 1, 0, 3, 2, 4) = y19; 

y19M3 → (1, 4, 3, 0, 2, 4) = y20; 

y20M3 → (1, 4, 1, 3, 1, 1) = y21; 
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 y21M3 → (1, 3, 2, 1, 2, 2) = y22 (=y10). 

 

Thus the MOD resultant x on the MOD operator M is a MOD 

realized limit cycle given by (1, 3, 2, 1, 2, 2) ---  III 

 

Now consider the effect of x = (1, 0, 0, 0, 0, 0) on M4;  

 

xM4 → (1, 3, 0, 0, 2, 0) = y1; 

y1M4 = (4, 3, 1, 0, 2, 1) = y2; 

y2M4 = (1, 0, 1, 3, 3, 1) = y3; 

y3M4 = (1, 3, 0, 3, 2, 3) = y4; 

y4M4 = (2, 4, 1, 0, 2, 1) = y5; 

y5M4 = (1, 4, 3, 3, 4, 4) = y6; 

y6M4 = (2, 2, 3, 4, 2, 1) = y7; 

y7M4 = (1, 0, 4, 4, 4, 0) = y8; 

y8M4 = (3, 4, 0, 2, 2, 4) = y9; 

y9M4 = (3, 4, 3, 0, 4, 4) = y10; 

y10M4 = (2, 1, 3, 4, 1, 1) = y11; 

y11M4 = (3, 1, 2, 4, 4, 4) = y12; 

y12M4 = (2, 2, 2, 1, 1, 2) = y13; 

y13M4 = (4, 1, 4, 1, 4, 2) = y14; 

y14M4 = (1, 2, 2, 2, 3, 2) = y15; 

y15M4 = (3, 2, 4, 1, 2, 4) = y16; 

y16M4 = (3, 4, 4, 2, 1, 3) = y17; 

y17M4 = (1, 1, 3, 2, 1, 3) = y18; 

y18M4 = (1, 1, 2, 4, 2, 4) = y19; 

y19M4 = (3, 1, 2, 1, 2, 0) = y20; 

y20M4 = (4, 3, 2, 1, 1, 0) = y21; 

y21M4 = (2, 1, 1, 1, 3, 0) = y22; 

y22M4 = (1, 0, 2, 3, 4, 1) = y23; 

y23M4 = (4, 3, 0, 1, 2, 4) = y24; 

y24M4 = (3, 3, 1, 0, 3, 1) = y25; 

y25M4 = (2, 2, 1, 3, 1, 2) = y26; 

y26M4 = (4, 2, 4, 3, 4, 2) = y27; 

y27M4 = (1, 0, 4, 2, 3, 0) = y28; 

y28M4 = (1, 1, 0, 2, 2, 3) = y29; 

y29M4 = (2, 0, 2, 0, 2, 0) = y30; 

y30M4 = (4, 1, 0, 1, 4, 2) = y31; 

y31M4 = (1, 2, 2, 0, 3, 2) = y32; 
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y32M4 = (3, 4, 4, 4, 2, 4) = y33; 

y33M4 = (3, 0, 3, 2, 1, 4) = y34; 

y34M4 = (1, 4, 0, 4, 1, 1) = y35; 

y35M4 = (3, 2, 3, 0, 2, 3) = y36; 

y36M4 = (2, 3, 4, 4, 1, 3) = y37; 

y37M4 = (1, 1, 1, 2, 4, 0) = y38; 

y38M4 = (3, 1, 2, 3, 2, 2) = y39; 

y39M4 = (1, 2, 2, 1, 1, 0) = y40; 

y40M4 = (2, 2, 4, 1, 2, 2) = y41; 

y41M4 = (1, 1, 4, 2, 4, 3) = y42; 

y42M4 = (1, 0, 2, 2, 2, 2) = y43; 

y43M4 = (1, 2, 0, 1, 2, 2) = y44; 

y44M4 = (1, 3, 4, 0, 2, 3) = y45; 

y45M4 = (2, 2, 1, 2, 2, 1) = y46; 

y46M4 = (1, 2, 4, 3, 4, 3) = y47; 

y47M4 = (1, 4, 4, 2, 2, 0) = y48; 

y48M4 = (1, 4, 3, 2, 2, 4) = y49; 

y49M4 = (2, 2, 2, 4, 3, 0) = y50; 

y50M4 = (1, 2, 4, 1, 4, 4) = y51; 

y51M4 = (2, 4, 4, 2, 2, 0) = y52; 

y52M4 = (4, 4, 3, 2, 4, 4) = y53; 

y53M4 = (2, 2, 3, 4, 3, 1) = y54; 

y54M4 = (2, 0, 4, 4, 4, 4) = y55; 

y55M4 = (2, 4, 0, 2, 4, 4) = y56; 

y56M4 = (2, 1, 3, 0, 4, 1) = y57; 

y57M4 = (4, 4, 2, 4, 4, 2) = y58; 

y58M4 = (1, 4, 3, 1, 3, 1) = y59; 

y59M4 = (2, 0, 3, 4, 2, 0) = y60; 

y60M4 = (4, 2, 0, 4, 4, 2) = y61; 

y61M4 = (1, 4, 4, 0, 3, 0) = y62; 

y62M4 = (1, 3, 3, 2, 2, 0) = y63; 

y63M4 = (4, 1, 1, 4, 2, 1) = y64; 

y64M4 = (1, 1, 2, 3, 3, 0) = y65; 

y65M4 = (1, 0, 2, 1, 2, 1) = y66; 

y66M4 = (1, 0, 0, 1, 2, 2) = y67; 

y67M4 = (1, 3, 0, 0, 2, 2) = y68; 

y68M4 = (1, 4, 1, 0, 2, 1) = y69; 

y69M4 = (1, 1, 3, 3, 2, 0) = y70; 

y70M4 = (4, 0, 2, 4, 2, 0) = y71; 



44 MOD  Cognitive Maps Models and MOD Natural … 

 

 

 y71M4 = (4, 3, 0, 1, 3, 2) = y72; 

y72M4 = (3, 2, 1, 0, 3, 2) = y73; 

y73M4 = (3, 0, 4, 3, 1, 4) = y74; 

y74M4 = (1, 3, 0, 2, 1, 1) = y75; 

y75M4 = (3, 4, 1, 0, 2, 0) = y76 

and so on.   

 

We are guaranteed of getting at a realized fixed point or a 

realized limit cycle.  But we see this can go on to a large 

number of iterations. 

 

Next we find the effect of x = (1, 0, 0, 0, 0, 0) on M5. 
 

xM5 = (1, 4, 0, 0, 0, 2) = y1; 

y1M5 → (1, 2, 1, 0, 0, 0) = y2; 

y2M5 → (1, 4, 3, 2, 0, 3) = y3; 

y3M5 → (1, 4, 1, 1, 0, 4) = y4; 

y4M5 → (1, 4, 1, 2, 0, 2) = y5; 

y5M4 → (1, 0, 1, 2, 0, 4) = y6; 

y6M4 → (1, 3, 0, 2, 0, 4) = y7; 

y7M4 → (1, 3, 2, 0, 0, 2) = y8; 

y8M4 → (1, 2, 2, 4, 0, 3) = y9; 

y9M4 → (1, 2, 3, 4, 0, 4) = y10; 

y10M4 → (1, 1, 3, 1, 0, 1) = y11; 

y11M4 → (1, 2, 4, 1, 0, 1) = y12; 

y12M4 → (1, 2, 3, 3, 0, 3) = y13; 

y13M4 → (1, 3, 3, 1, 0, 2) = y14; 

y14M4 → (1, 1, 2, 1, 0, 0) = y15; 

y15M4 → (1, 3, 4, 4, 0, 3) = y16; 

y16M4 → (1, 2, 2, 2, 0, 1) = y17; 

y17M4 → (1, 1, 3, 4, 0, 0) = y18; 

y18M4 → (1, 0, 4, 1, 0, 2) = y19; 

y19M4 → (1, 1, 0, 3, 0, 4) = y20; 

y20M4 → (1, 1, 4, 0, 0, 4) = y21; 

y21M4 → (1, 0, 4, 3, 0, 4) = y22; 

y22M4 → (1, 2, 0, 3, 0, 3) = y23; 

y23M4 → (1, 3, 3, 0, 0, 2) = y24; 

y24M4 → (1, 2, 2, 1, 0, 3) = y25; 
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y25M4 → (1, 0, 3, 4, 0, 3) = y26; 

y26M4 → (1, 2, 0, 1, 0, 0) = y27; 

y27M4 → (1, 3, 3, 0, 0, 3) = y28; 

y28M4 → (1, 1, 2, 1, 0, 3) = y29; 

y29M4 → (1, 0, 4, 4, 0, 1) = y30; 

y30M4 → (1, 4, 0, 3, 0, 3) = y31; 

y31M4 → (1, 3, 1, 0, 0, 1) = y32; 

y32M4 → (1, 1, 2, 4, 0, 2) = y33; 

y33M4 → (1, 3, 4, 4, 0, 2) = y34; 

y34M4 → (1, 3, 2, 3, 0, 1) = y35; 

y35M4 → (1, 0, 2, 4, 0, 4) = y36; 

y36M4 → (1, 1, 0, 4, 0, 0) = y37; 

y37M4 → (1, 0, 4, 0, 0, 2) = y38; 

y38M4 → (1, 2, 0, 3, 0, 2) = y39; 

y39M4 → (1, 4, 3, 0, 0, 2) = y40; 

y40M4 → (1, 2, 3, 1, 0, 0) = y41; 

y41M4 → (1, 1, 3, 1, 0, 3) = y42; 

y42M4 → (1, 0, 4, 1, 0, 1) = y43;  

y43M4 → (1, 2, 0, 3, 0, 4) = y44; 

 

and so on. 

 

We find effect of x on N4. 

 

xN4 → (1, 1, 0, 0, 4, 3) = y1; 

y1N4 = (1, 0, 0, 0, 4, 0) = y2; 

y2N4 = (2, 1, 0, 0, 4, 2) = y3; 

y3N4 = (4, 3, 4, 0, 3, 3) = y4; 

y4N4 = (2, 3, 3, 1, 1, 4) = y5; 

y5N4 = (2, 1, 1, 2, 0, 3) = y6; 

y6N4 = (3, 0, 2, 4, 2, 3) = y7 and so on. 

 

Now interested reader can compare the resultants of each of 

the models using Kosko distance [67].   

 

Also one can take the combined value of the resultants 

using the procedure used in finding the combined MODCMs 
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 dynamical system (or MOD connection matrices of the 

MODCMs). 

 

However it is an interesting work to write programs for 

MODCMs resultants.  

 

Next we proceed onto describe the notion of a special type 

of combined MODCM analogous to that in FCMs given in [ ]. 

 

We will describe this by the following example. 

 

Example 2.16:  Let C1, C2, C3, C4, C5, C6, C7, C8 and C9 be the 

attributes related with the problem. Let four experts work on 

this problem. MODCMs model using the edge weights from Z6.   

 

Let the first expert work on the problem using the nodes C1, 

C2, C5 and C6.  The directed MOD graph G1 given  by him is as 

follows. 

 

 

 

 

 

 

 

 

Figure 2.9 

 

 

Let the MOD connection matrix M associated with G1 is as 

follows. 

 

M1 = 

1 2 5 6

1

2

5

6

C C C C

C 0 0 0 3

C 4 0 1 0

C 0 0 0 5

C 0 2 0 0

 
 
 
 
 
 

. 

 

3 

C1 C2

C5 

4 

C6

1 

G1  

5 

2 
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The second expert wishes to work with the nodes C1, C4, C7, 

C8 and C9.  

 

The MOD directed graph G2 given by the second expert is as 

follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 

 

The MOD connection matrix M2 associated with the MOD 

directed graph G2 is given in the following: 

 

 

M2 = 

1 4 7 8 9

1

4

7

8

9

C C C C C

C 0 3 0 0 0

C 0 0 0 0 0

C 2 0 0 0 0

C 0 3 0 0 4

C 1 0 2 0 0

 
 
 
 
 
 
  

 . 

 

 

The third expert wishes to work with the nodes C2, C3, C5, 

C4 and C8.  

 

The MOD directed graph G3 given by the third expert is as 

follows. 

 

G2 = 
3 

C1 C4

C8 

3 

1 

4 

2 

C9

C7

2 
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Figure 2.11 

 

The MOD connection matrix M3 associated withG3 is as 

follows. 

M3 = 

2 3 4 5 8

2

3

4

5

8

C C C C C

C 0 0 0 3 0

C 0 0 5 0 0

C 2 0 0 0 1

C 0 1 0 0 0

C 0 2 0 0 0

 
 
 
 
 
 
  

. 

 

Now we finally give the MOD connection matrix and the 

MOD directed graph G4 given by the fourth expert. 

 

 

 

 

 

 

 

 

 

 

Figure 2.12 

 

The MOD connection matrix M4 associated with G4 is as 

follows. 

5 

C2 

C5 

4 

1 

G3 = 
2 

C4

C8

1 

3 

C3

2 

C3 

C9 C4 

C7 

G4= 

3 

2 

2 
1 

2 

1 
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M4 = 

3 4 7 9

3

4

7

9

C C C C

C 0 2 3 0

C 0 0 1 1

C 2 0 0 0

C 0 2 0 0

 
 
 
 
 
 

 . 

 

 

 

Now using the four experts opinion we get the MOD 

combined special connection matrix M and the MOD combined 

special directed graph associated with M in the following. 

 

 

 

 

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

C C C C C C C C C

C 0 0 0 3 0 3 0 0 0

C 4 0 4 0 3 0 0 0 0

C 0 0 0 3 0 0 3 0 0

C 0 2 0 0 0 0 1 1 1

C 0 0 1 0 0 5 0 0 0

C 0 2 0 0 0 0 0 0 0

C 2 0 2 0 0 0 0 0 0

C 0 0 2 0 0 0 2 0 0

C 1 0 0 2 0 0 2 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 . 

 

 

 

The MOD directed graph associated  with M is as follows. 
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Figure 2.13 

 

Here we believe any model technically defining and 

abstractly describing is not easy to understand by most of the 

researchers who are not mathematicians.  

 

So we in almost all cases have tried to give examples or 

illustrative models which can be easily understood by socio 

scientists and other non mathematicians. 

 

Thus we have two types of combined MODCMs, one type is 

that all the experts agree to work with all the m attributes C1, C2, 

…, Cm and they use for their MOD directed graphs only 

weighted elements of the graph from Zn.  

 

Then the first type of combined MODCMs model has the 

associated connection MOD matrix which is given by the method 

explained. It will be a MOD m × m matrix with entries from Zn. 

 

C1 

C9 

C2 C3 

C7 

C6 
C4 

C8 

C5 

4 4 

3 
2 

3 

2 

2 

2 

2 

3 5 

2 1 

1 

2 

3 

2 

2 

1 
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If there are some s experts who work with the problem but 

all of them do not work with all the attributes C1, C2, …, Cm but 

work with some subset of the attributes taken C1, C2, …, Cm 

only. Further all of them agree to work with the edge weights of 

the MOD directed only Zn.  

 

Thus if G1, G2, …, Gs are the MOD directed graphs given by 

them then we find the related MOD connection matrices and 

combine them in the special way as explained in the example 

2.15 and obtain special combined MOD CM dynamical system. 

 

Hence both the ways are distinct as the very method of 

approach of the experts who work with the problem are 

different. Thus the interested reader can construct both types of 

MOD CMs model and analyse the problem. 

 

Next we proceed onto describe the merits or advantages of 

using MODCMs in place of FCMs and NCMs. 

 

The first and foremost advantage is in the resultant we get 

the values of the MOD resultant vectors to be (a1, …, am) where 

ai ∈ Zm by which it gives not only the on-off state in case of 

FCMs but give a value of the state from Zn when any of the Ci 

state is just on.  

 

So this is significantly important as the value in Zn is big 

then it is a most MOD influential node for the particular Ci.   

 

As Ci’s changes the MOD influential node also changes in 

general, 

 

We will first describe this situation by an example or two. 

 

Example 2.17: Let us consider the MODCM’s connection matrix 

M which serves as the MOD dynamical system for a particular 

problem with entries from Z10. 
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M = 

1 2 3 4 5 6

1

2

3

4

5

6

C C C C C C

C 0 2 0 0 0 6

C 0 0 4 0 0 0

C 5 0 0 7 0 0

C 0 0 0 0 5 0

C 0 0 6 0 0 8

C 0 5 0 0 0 0

 
 
 
 
 
 
 
 
  

 

 

be the MODCMs dynamical system. 

 

We find the MOD resultant of x1 = (1, 0, 0, 0, 0, 0) on M 

 

x1M → (1, 2, 0, 0, 0, 6) = y1; 

y1M → (1, 2, 8, 0, 0, 6) = y2; 

y2M → (1, 2, 8, 6, 0, 6) = y3; 

y3M → (1, 2, 8, 6, 0, 6) = y4; (=y3). 

 

Thus the resultant is a MOD fixed point. The effect of C1 

which was in the on state remains the same. However C3 

happens to get the maximum values C4 and C6 happens to get 

the next great value as 6. C2 gets the value to be 2.  C5 has no 

influence on C1 directly or indirectly. 

 

Let x2 be the MOD initial state vector.  

 

To find the MOD resultant of x2 = (0, 1, 0, 0, 0, 0) on M. 

 

x2M → (0, 1, 4, 0, 0, 0) = y1; 

y1M → (0, 1, 4, 8, 0, 0) = y2; 

y2M → (0, 1, 4, 8, 0, 0) = y3 (=y2). 

 

Thus the MOD resultant is a fixed point given by  

(0, 1, 4, 8, 0, 0).  

 

We see the node C2 has the maximum influence on node C4 

and C3 has also some medium effect over C2.  
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However the nodes C1, C5 and C6 are unaffected by C2.  

 

Consider the initial state vector x3 = (0, 0, 1, 0, 0, 0) 

 

To find the effect of x3 on M; 

 

x3M → (5, 0, 1, 7, 0, 0) = y1; 

y1M → (5, 0, 1, 7, 5, 0) = y2; 

y2M → (5, 0, 1, 7, 5, 0) = y3 (= y2). 

 

Thus the on state of C3 has the maximum influences on C4 

followed by C1, C5 for C1 and C5 both has value 5.   

 

However on state of C3 node has no effect on C2 and C6. 

 

Now we find the effect of  

x4 = (0, 0, 0, 1, 0, 0) on M. 

 

x4M → (0, 0, 0, 1, 5, 0) = y1 

y1M → (0, 0, 0, 1, 5, 0) = y3 (=y1). 

 

We see the on state of node C4 has maximum and only 

influence on C5 and nothing more all other states are unaffected 

by the on state of the node C4. 

 

Consider x5 = (0, 0, 0, 0, 1, 0) to be the initial state vector. 

 

Effect of x5 on M is 

 

x5M → (0, 0, 6, 0, 1, 8) = y1; 

y1M → (0, 0, 6, 2, 1, 8) = y2; 

y2M → (0, 0, 6, 2, 1, 8) = y3 (=y2). 

 

The MOD resultant is a fixed point given  by  

(0, 0, 6, 2, 1, 8). 

 

Clearly C5 has the maximum effect of node C6 as its value 8 

following by the node C3 whose value is 6 and the least affected 
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 node is C4 whose value is 2 and the unaffected nodes are C1 and 

C2. 

 

Finally let us study the effect of x6 = (0, 0, 0, 0, 0, 1) on M. 

 

x6M → (0, 5, 0, 0, 0, 1) = y1; 

y1M → (0, 5, 0, 0, 0, 1) = y2 (=y1). 

 

Thus the MOD resultant is a MOD fixed point. 

 

The on state of node C6 influences only the node C2 and all 

other nodes are left unaffected. 

 

Thus by this MOD CM model from the MOD resultant we 

can get the nodes which are maximum influenced by the on 

state of the nodes in the initial state vector x. 

 

Let a = (1, 0, 1, 0, 0, 0) be the initial state vector in which 

the nodes C1 and C3 alone are in the on state we study the effect. 

 

aM → (5, 2, 1, 7, 0, 6) = y1; 

y1M → (5, 0, 1, 7, 5, 0) = y2; 

y2M → (5, 0, 1, 7, 5, 0) = y3 (=y2). 

 

Thus the MOD resultant is a MOD fixed point. 

 

The on state of node C1 and C3 makes C4 the maximal 

influential nodes with value 7 however C5 is also influenced 

with its value 5. The node C3 influences C1 and C1 also is 

influenced to get a value 5. 

 

But C2 and C6 remain unaffected by C1
 
and

 
C3. 

 

Here, we also study other possibilities of the on state of 

nodes and its influence on other. This method gives the 

influence exercised on other nodes for one is not also interested 

to find the impact that is the on state of a node that makes other 

nodes to on state but the amount of influence it exerts on the 

other state.  
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FCMs cannot cater to this sort of influence, only MODCMs 

models can give that sort of influence. 

 

We also wish to study the following set up analogous to 

NCMs [ ]. In case of NCMs we see we can have in the resultant 

only values 0, 1 and I. 

 

However if one of the concept is partly real and partly 

neutrosophic we will not be in a position to describe the 

situation.  

 

Maximum adjustments, we can make is 1 + I which implies 

50% real and 50% neutrosophic however in truth such is a very 

rare occurrence.  

 

In no situation one has the 50 – 50 possibility. In order to 

over come all these short comings we define MOD Neutrosophic 

Cognitive Maps (MODNCMs) model using mod neutrosophic 

number {〈Zn ∪ I〉} = {a + bI / a, b ∈ Zn, I
2
 = I}.  

 

So in the resultant nodes can take real, pure neutrosophic 

and a + bI where a may not be equal to b or 0.  

 

This is possible only in MODNCMs.  

 

We now proceed onto define the notion of MODNCMs. 

 

 

DEFINITION 2.8: Let  

 

M = 

11 1

21 2

1

n

n

n nn

a a

a a

a a

 
 
 
 
 
 

…

…

� �

…

 

 

where aij ∈ 〈Zm ∪ I〉 = {a + bI / a, b ∈ Zm; I
2
 = I}; 1 ≤ i ≤ n be 

the MOD neutrosophic n × n square matrix with entries from 〈Zm 

∪ I〉. 



56 MOD  Cognitive Maps Models and MOD Natural … 

 

 

  

We will illustrate this situation by some examples. 

 

Example 2.18: Let  

 

M = 

3 2I I 0

4I 0 3I

5I 2 3 7 I

+ 
 
 
 + + 

 

 

be the MOD 3 × 3 neutrosophic matrix with entries from   

〈Z8 ∪ I〉 = {a + bI / a, b ∈ Z8, I
2
 = I. 

 

Example 2.19: Let  

 

W =  

8 4I 6I 0 3I

0 7 I 5 6I

3 7I 0 4 9I 0

6 2 8I 0 6 8I

+ 
 

+ 
 + +

 
+ + 

 

 

be the MOD 4 × 4 square neutrosophic matrix with entries from 

〈Z10 ∪ I〉 = {a + bI / a, b ∈ Z10, I
2
 = I}. 

 

Example 2.20: Let  

 

S = 

0 2I 1 3 5I 0

6 0 4 2I 0 7 3I

5 I 7I 0 8 I 0

0 6 5I 8I 0 3 I

4 I 5I 0 6I 7

+ 
 

+ + 
 + +

 
+ + 

 + 

 

 

be the MOD 5 × 5 square neutrosophic matrix with entries from 

〈Z9 ∪ I〉 = {a + bI / a, b ∈ Z9, I
2
 = I}. 

 

Throughout this book we perform only a special type of 

operations on these MOD square neutrosophic matrices. 
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X = {(a1, …, an) / ai ∈ {0, 1, I}; 1 ≤ i ≤ n} denotes the 

collection of MOD row vectors also known as MOD initial state 

vectors.  

 

Any way the vector can be mentioned and by all means by 

the context the situation would be clear. 

 

We will just illustrate how this special type of operation is 

performed on MOD square neutrosophic matrices. 

 

Example 2.21: Let  

 

W = 

6 I 0 2I 5 0 1

0 I 0 2I 1 3I

4I 1 0 5 6I 2 0

0 3 4I 0 2 4I

5 0 3I 0 0

+ + 
 

+ 
 + +

 
+ 

    
 

Be the MOD 5 × 5 square neutrosophic matrix with entries 

from  〈Z7 ∪ I〉. 
 

 Let X ={(a1, a2, a3, a4, a5) / ai ∈ {0, I, 1}; 1 ≤ i ≤ 5}. 

 

Let x = (1, 0, 0, 0, 0) ∈ X. 

 

To find the effect of x on W; 

 

xW = (6+I, 0, 2I+5, 0, 1) = y1 

y1W = (5+6I, 0, 6+4I, I + 3, 6 + I) = y2 

y2W = (3+2I, 2+5I, 6+2I, 4, 5+I) = y3; 

 

y3W can be found.  

 

We will certainly after a finite number of iterations arrive  

at a MOD fixed point or a MOD limit cycle. Clearly the elements 

are mixed neutrosophic. 
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Let x = (0, 0, 0, 0, 1) be the MOD initial state vector from X. 

 

The effect of x on W is as follows. 

 

xW → (5, 0, 3I, 0, 1) = y1; 

y1W = (6I, 0, 4, 3I, 5) = y2; 

y2W = (4 + 6I, 0, I + 6, 2I + 1, 4I) = y3; 

y3W = (2 + 4I, 3 + 4I, 1 + 4I, I, 4 + 4I) = y4; 

y4W = (4I + 5, 0, 1 + 4I, 2, 5I + 5) = y5; 

y5W = (5I, 6 + I, 3 + 3I, 6 + 3I, 5 + 5I) = y6; 

y6W = (4I, 4 + 3I, 1 + 3I, 4 + 6I, 6 +I) = y7; 

 

and so on. 

 

However we are guaranteed that after a finite number of 

iterations certainly we will arrive at a MOD fixed point or a MOD 

limit cycle. 

 

Example 2.22: Let  

 

M = 

0 2I 1 3

2 0 1 I

3 I I 0

+ 
 

+ 
 + 

 

 

be the MOD 3 × 3 neutrosophic square matrix with entries from  

〈Z4 ∪ I〉. 
 

Let X = {(a1, a2, a3) / ai ∈ {0, 1, I}; 1 ≤ i ≤ 3} be the MOD 

initial state vector. 

 

x  = (1, 0, 0) ∈ X. To find the effect of x on M. 

 

xM → (1, 2I + 1, 3) = y1; 

y1M = (3I + 3, 1 + I, I) = y2; 

y2M = (2 + 2I, 3, 2) = y3; 
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y3M = (2I, 2, 1 + I) = y4; 

y4M = (3 + I, 0, 2) = y5; 

y5M = (2 + 2I, 3 + 3I, 1 + I) = y6; 

y6M = (1 + 3I, 2, 1 + 3I) = y7; 

y7M = (3 + I, 1 + 3I, 1 + 3I) = y8; 

y8M = (1 + 3I, 3 + I, 2I + 2) = y9; 

y9M = (0, 1 + 3I, 2 + 2I) = y10; 

y10M = (1, 0, 1 + 3I) = y11; 

y11M = (3 + I, 2I + 1, 3) = y12; 

y12M = (3 +3I, 3, 2) = y13; 

y13M = (2I, 3 + I, 0) = y14; 

y14M = (2 + 2I, 2I, 3 + I) = y15; 

y15M = (1 + 3I, 2+2I, 2 + 2I) = y16; 

y16M = (2+2I, 1 + 3I, 1 + 3I) = y17; 

y17M = (1+3I, 2 + 2I, 3 + I) = y18; 

y18M = (1 + 3I, 1 + 3I, 1 + 3I) = y19; 

y19M = (1+3I, 3I+1, 0) = y20; 

y20M = (2I + 2, 1 + 3I, 0) = y21; 

y21M = (2 + 2I, 2 + 2I, 3 + I) = y22; 

y22M = (1 + 3I, 2 + 2I, 0) = y23; 

y23M = (1, 1 + 3I, 1 + 3I) = y24 (=y11). 

 

The MOD resultant is a limit cycle. 

 

This is got after 23 iterations. 

 

Consider x2 = (0, 1, 0) ∈ X.   

 

To find the effect of x2 on M. 

 

x2M → (2, 1, 1 + I) = y1; 

y1M = (1 + I, 2 + 2I, 3 + I) = y2; 

y2M = (1 + 3I, 1 + I, 1 + I) = y3; 

y3M = (1 + 3I, 1 + I, 0) = y4; 

y4M = (2 + 2I, 1 + 3I, 0) = y5; 

y5M = (2 + 2I, 2 + 2I, 3 + I) = y6; 

y6M = (1 + 3I, 2 + 2I, 0) = y7; 

y7M = (0, 1 + 3I, 1 + 3I) = y8; 
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 y8M = (3I + 1, 1, 1 + 3I) = y9; 

y9M = (1 + I, 3I + 1, 2I) = y10; 

y10M = (2I +2, 1 + 3I, 2I) = y11; 

y11M = (2 + 2I, 2, 3 + I) = y12; 

y12M = (1 + 3I, 2 + 2I, 0) = y13 (=y7). 

 

 

Thus the MOD resultant is a MOD limit cycle. 

 

Let x3 = (0, 0, 1) ∈ X.   

 

To find the effect of x3 on M. 

 

x3M → (3 + I, I, 1) = y1; 

y1M = (3 + 3I, 3 + 2I, 1 + I) = y2; 

y2M = (1 + I, 3 + I, 1) = y3; 

y3M = (1+3I, 1 + 2I, 2) = y4; 

y4M = (2I, 1 + I, 2I) = y5; 

y5M = (2 + 2I, 0, 1 + I) = y6; 

y6M = (3 + I, 2, 2 + 2I) = y7; 

y7M = (2 + 2I, 3 + I, 3 + I) = y8; 

y8M = (3 + I, 2 + 2I, 1 + 3I) = y9; 

y9M = (3 + I, 3 + I, 3 + I) = y10; 

y10M = (3 + 3I, 3 + 2I, 2I) = y11; 

 

and so on.   

 

 

Certainly after a finite number of iterations we will arrive at 

a MOD fixed point or MOD limit cycle. 

 

Now having seen how only a special type of operation is 

needed in  our study we proceed onto describe by examples the 

notion of MOD directed neutrosophic graphs. 
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Example 2.23: 
 

 

 

 

 

 

 

 

 

Figure 2.14 

 

 

be the MOD directed graph G with edge weights  from  

〈Z5 ∪ I〉 = {a + bI / a, b ∈ Z5, I
2
 = I}. 

 

The MOD connection matrix M associated with G is as 

follows. 

 

M = 

1 2 3 4 5

1

2

3

4

5

C C C C C

C 0 3 4 1 0 0

C 0 0 0 2 0

C 0 1 0 0 2 3I

C 0 0 0 0 0

C 0 4 4I 0 0 0

+ 
 
 
 +

 
 
 + 

 . 

 

It is pertinent to keep on record that we are not using the 

dotted lines to show the edges are pure neutrosophic or mixed 

neutrosophic as the edge weights themselves will denote that we 

give yet another example of the MOD neutrosophic directed 

graph. 

 

Example 2.24: Let G1 be the MOD neutrosophic directed graph 

given by the following figure whose edge weights are taken 

from 〈Z12 ∪ I〉 = {a + bI / a, b ∈ Z12, I
2
 = I}. 

 

 

G =       4+I 

C1 

C3 C4 

C5 

C2 
3 

1 
2+3I 

2 

4+4I 
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Figure 2.15 

 

The MOD connection matrix associated with the MOD 

neutrosophic graph is as follows. 

 

M1=

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

C C C C C C C C C

C 0 2 10 3I 0 0 0 4 11I 0 0

C 2I 0 0 0 0 0 0 0 0

C 0 0 0 0 0 0 0 0 0

C 0 0 0 0 0 0 0 0 0

C 5I 3I 0 2 0 0 0 0 2I 3

C 0 0 0 3I 0 0 0 2 0

C 0 0 0 0 0 0 0 0 0

C 0 0 0 0 0 0 3I 4 0 0

C 0 0 0 3I 2 0 7 7I 0 10I 6 0

+ + 
 
 
 
 
 
 +

 
 
 
 

+ 
 

+ + + 

. 

 

 

This is the way the MOD neutrosophic connection matrix M1 

is constructed using the MOD neutrosophic directed graph G1. 

 

2 

C4 

C5 C9 

C6 

3I+2 

7+7I 

4+11I 
C7 

C8 

C1 

C3 

3I+4I 

2 

10I+6 

3I 

2I+3 

5I 
C2 

10+3I 

2 

2I 

3I 
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Next we proceed onto describe the MOD Neutrosophic 

Cognitive Maps (MODNCMs) model.  Suppose there are  

n-nodes say C1, C2, …, Cn associated with a problem P.  

 

The expert wishes to take the edge weights from 〈Zm ∪ I〉 = 

{a + bI / a, b ∈ Zm, I
2
 = I} as the expert feels that some of the 

edges can be real or pure neutrosophic or mixed neutrosophic.  

 

Let X = {(x1, x2, …, xn) / xi ∈ {0, 1, I}; 1 ≤ i ≤ n} be the 

collection of all MOD instantaneous / initial state vectors. 

 

The expert gives the MOD directed neutrosophic graph G 

with edge weights from 〈Zm ∪ I〉.  
 

Let M be the MOD connection neutrosophic matrix 

associated with MOD directed  neutrosophic graph G.  

 

M serves as the MOD neutrosophic cognitive maps model 

dynamical system, analogous to the MOD cognitive maps model 

dynamical system defined earlier in this chapter. 

 

For more about the related concepts refer [ ].   

 

We will illustrate this situation by an example or two. 

 

Example 2.25: Let P be a problem and C1, C2, C3, C4 and C5 be 

the five nodes associated with the problem.  

 

The expert wishes to work with edge weights from  

〈Z3 ∪ I〉 = {a + bI / a, b ∈ Z3; I
2
 = I}.  

 

Let G be the MOD neutrosophic directed graph with edge 

weights from 〈Z3 ∪ I〉 given in the following figure. 

 

 

 

C1 C2 

2+2I C5 

2I 

I 

1+I 

1 
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Figure 2.16 

 

 

Let M be the MOD connection matrix associated with the 

MOD neutrosophic directed graph G. 

 

M = 

1 2 3 4 5

1

2

3

4

5

C C C C C

C 0 1 I 1 0 0

C 0 0 0 0 2I

C 0 0 0 2 0

C 0 2 2I 0 0 I

C 0 0 0 0 0

+ 
 
 
 
 

+ 
  

.

 
 

Let X = {(a1, a2, a3, a4, a5) / ai ∈ {0, 1, I}; 1 ≤ i ≤ 5} be the 

collection of MOD neutrosophic initial state vectors of the MOD 

dynamical neutrosophic system M. 

 

 Let x1 = (1, 0, 0, 0, 0) ∈ X. 

 

To find the effect of x on M; 

 

x1M → (1, 1 + I, 1, 0, 0) = y1; 

y1M → (1, 1 + I, 1, 2, I) = y2; 

y2M → (1, 2 + 2I, 1, 2, 0) = y3; 

y3M → (1, 2 + 2I, 1, 2, 0) = y4 (= y3). 

 

Thus the MOD resultant is a fixed point. 
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Clearly the on state of the mode C1 makes on only the three 

nodes C2, C3 and C4. It has no effect on C5.  

 

However C3 just become on but C2 get the greatest mixed 

neutrosophic value or the neutrosophic value to be 2 + 2I. The 

node C4 gets the greatest real value. 

 

Thus by this new MOD neutrosophic cognitive maps model 

we see the nodes on or off state alone is not given but also the 

status of the node due to influence of the on state of the node in 

the initial state vector is also given. 

 

By this method we can get the following C3 and C4 nodes 

are real  but C4 get the maximum real value and C2 node gets the 

maximum neutrosophic value viz. 2 + 2I. 

 

Let x2 = (0, 1, 0, 0, 0) ∈ X be the MOD initial state vector.  

 

The effect of x2 on M is as follows. 

 

x2M → (0, 1, 0, 0, 2I) = y1; 

y1M → (0, 1, 0, 0, 2I) = y2(=y1). 

 

The MOD resultant is a fixed point and the on state of the 

node C2 has no influence on the nodes C1, C3 and C4, however it 

makes the node C5 pure neutrosophic with maximum value 2I. 

 

Let x3 = (0, 0, 1, 0, 0) ∈ X be the given initial state vector. 

To find the effect of x3 on M. 

 

x3M → (0, 0, 1, 2, 0) = y1; 

y1M → (0, 1 + I, 1, 2, 0) = y2; 

y2M → (0, 1 + I, 1, 2, 0) = y3 (=y2). 

 

Thus the resultant is a MOD fixed point. 

 

Clearly on state of the node C3 has no effect on C1 and C5, 

but has greatest real effect on  C4 for the node C4 value given by 
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 the fixed point is 2 and node C2 takes the value 1+ I for it is 

50% real and 50% neutrosophic when the node C3 is the on 

state.  

 

Consider the initial state vector x4 = (0, 0, 0, 1, 0) ∈ X.  

 

We find the effect of x4 on M. 

 

x4M → (0, 2 + 2I, 0, 1, I) = y1; 

y1M → (0, 2 + 2I, 0, 1, 0) = y2; 

y2M → (0, 2 + 2I, 0, 1, 0) = y3 (=y2). 

 

Thus the resultant is a MOD fixed point given by  

(0, 2 + 2I, 0, 1, 0). 

 

We see when x4 is in on state it has no effect or any impact 

on the nodes C1, C3 and C5. It has impact only on the node C2 

and its value is 2 + 2I that is the greatest neutrosophic value in 

〈Z3 ∪ I〉.  
 

Finally we study the on state of the node C5. 

 

Let x5 = (0, 0, 0, 0, 1) ∈ X. 

 

The effect of x5 on M is as follows. 

 

x5M → (0, 0, 0, 0, 1) is the MOD classical fixed point which 

is the resultant the on state of the node C5 has no impact on any 

other nodes of the dynamical system. 

 

Let a1 = (I, 0, 0, 0, 0) ∈ X be the initial state vector. 

 

The effect of a on M is as follows. 

 

a1M → (I, 2I, I, 0, 0) = y1; 

y1M → (I, I, I, 2I, I) = y2; 

y2M → (I, I, I, 2I, I) = y3 (=y2). 
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Thus the resultant is a MOD fixed point all coordinates come 

to pure neutrosophic state.  

 

That is if C1 is taken to be in the indeterminate state then C2, 

C3, C4 and C5 also come only to indeterminate state with C4 

taking the maximum indeterminate value.  

 

None of the coordinates take real values.  

 

In case of indeterminate state all other state becomes 

indeterminate. 

 

Let a2 = (0, I, 0, 0, 0) ∈ X; be the initial state vector.  

 

To find the effect of a2 on M. 

 

a2M → (0, I, 0, 0, 2I) = y1; 

y1M → (0, I, 0, 0, 2I) = y2 (=y1). 

 

Thus the MOD resultant is a fixed point which makes only 

the node C5 to on state. C5 is also a maximum pure neutrosophic 

value. 

 

Let a3 = (0, 0, I, 0, 0) ∈ X be the initial state vector. 

 

To find the effect of a3 on M; 

 

a3M → (0, 0, I, 2I, 0) = y1;   

y1M → (0, 2I, I, 2I, 2I) = y2; 

y2M → (0, 2I, I, 2I, 0) = y3; 

y3M → (0, 2I, I, 2I, 0) = y4. 

 

Thus the resultant is a MOD fixed point.   

 

The indeterminate state of the node C3 makes the nodes C2 

and C4 to be maximum pure neutrosophic as they take the value 

2I and this C3 has no effect on C1 and C5. 

 

Let a4 = (0, 0, 0, I, 0) ∈ X; to find the effect of a4 on M. 
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a4M → (0, I, 0, I, I) = y1; 

y1M → (0, I, 0, I, I) = y2 (=y1). 

  

Thus the MOD resultant is a MOD fixed point.  

 

The on state of C4 as I has no effect on C3 and C1 however 

the nodes C2 and C5 have the pure neutrosophic state given by I. 

 

Let a5 = (0, 0, 0, 0, I) ∈ X be the initial state vector. 

 

Effect of a5 on M gives a5M → (0, 0, 0, 0, I). 

 

Thus the MOD resultant is a MOD special classical fixed 

point.   

 

The on state of C5 has no effect on any of the nodes C1, C2, 

C3 and C4. 

 

Example 2.26: Let P1 be a problem at hand and let C1, C2, C3, 

C4 be the four nodes associated with the problem.  

 

The edge weight of the MOD directed neutrosophic graph 

are taken from 〈Z6 ∪ I〉 = {a + bI / a, b ∈ Z6, I
2
 = I}. 

 

Let G1 be the MOD neutrosophic directed graph given by the 

expert which is as follows. 

 

 

 

 

 

 

 

 

 

 

Figure 2.17 
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 The MOD neutrosophic connection matrix N associated 

with the MOD neutrosophic directed graph G1 is as follows. 

 

N = 

1 2 3 4

1

2

3

4

C C C C

C 0 2I 2 3I I

C 0 0 0 I

C 0 0 0 3I

C 0 2 0 0

+ 
 
 
 
 
 

 

 

Let x1 = (1, 0, 0, 0) be the MOD initial state vector from  

X = {(a1, a2, a3, a4) / ai ∈ {0, 1, I}, 1≤ i ≤ 4}.  

 

The effect of x1 on N 

 

 x1N → (1, 2I, 2 + 3I, I) = y1; 

y1N → (1, 4I, 2 + 3I, 0) = y2; 

y2N → (1, 2I, 2 + 3I, I) = y3 (=y1). 

 

Thus the MOD resultant is a MOD limit cycle. The on state of 

C1 makes all the other nodes C2, C3 and C4 to on state C2 and C2 

are pure neutrosophic values whereas C3 is a mixed 

neutrosophic value 2 + 3I.  

 

Let x2 = (0, 1, 0, 0) ∈ X. 

 

To find the effect of x2 on the MOD neutrosophic dynamical 

system N. 

 

x2N → (0, 1, 0, 1) = y1;   y1N = (0, 2, 0, 1) = y2; 

y2N = (0, 2, 0, 2) = y3;   y3N = (0, 4, 0, 4) = y4; 

y4 N3 → (0, 2, 0, 2). 

 

Thus the MOD resultant in y5 (=y3) this case is a MOD limit 

cycle. On state of C2 only makes on the node C4 to a value 1.  

 

All the other nodes remain in the off state. 
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 Let x3 = (0, 0, 1, 0) ∈ X. 

 

To find the effect of x3 on N 

 

x3N → (0, 0, 1, 3I) = y1; 

y1N → (0, 0, 1, 3I) = y2 (=y1). 

 

Thus the MOD resultant of x3 is a MOD fixed point. The on 

state of the node C3 has no effect on x1 and x2 it has effect on C4 

and C4 takes the pure neutrosophic value 3I. 

 

Let x4 = (0, 0, 0, 1) ∈ x. 

 

x4N → (0, 2, 0, 1) = y1;   y1N → (0, 2, 0, 2) = y2; 

y2N → (0, 4, 0, 2) = y3;   y3N → (0, 4, 0, 4) = y4; 

y4N → (0, 2, 0, 4) = y5 

y5N → (0, 2, 0, 2) = y6 (=y2). 

 

Thus the MOD resultant is a MOD limit cycle. The on state of 

the node C4 makes only the node C2 to on state and all other 

nodes remain only in the off state. 

 

Further we can find all properties related with MOD 

Neutrosophic Cognitive Maps model as in case of MOD 

cognitive maps model with some appropriate changes.  

 

This task is left as an exercise to the reader. 

 

Next we will describe MOD complex cognitive maps model.  

 

It may so happen that an expert / researcher may have to 

work with a problem which may have imaginary values 

associated with it in such cases this model can be adopted.  

 

Infact the nodes can also be complex or mixed complex 

value. 

 

However the MOD initial state vector  
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X = ({a1, a2, …, am) / ai ∈ {0, 1, iF}; 
2

Fi = n – 1; 1 ≤ i ≤ m}. 

To this end we first define describe and develop the notion of 

MOD directed complex graph. 

 

DEFINITION 2.9: Let G be a directed graph with edge weights 

from C(Zn) = {a + biF / a, b ∈ Zm; 
2

F
i  = m – 1}. Then G is 

defined as the MOD directed  finite complex integer graph. 

 

We will illustrate this situation by some examples. 

 

Example 2.27: Let G1 be the MOD directed finite complex 

number graph with edge weights from C(Z5) given in the 

following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18 

 

The MOD connection complex matrix or adjacency complex 

matrix, M1 associated with the MOD-directed complex graph G1 

is as follows. 

 

 

 

2+3iF 

C2 

C3 

C4 

C6 

C5 

C7 

4iF 

4iF+1 

2iF 

3+iF 

3 

2 

iF 

1 
3 

C1 
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M1 = 

1 2 3 4 5 6 7

1 F

2 F

3

4 F F

5 F

6 F

7

C C C C C C C

C 0 2 3 i 0 0 0 0

C 0 0 0 4i 0 0 0

C 0 0 0 3 0 0 0

C 0 0 0 0 2 3i 1 4i 0

C 0 i 0 0 0 0 I

C 0 0 2i 0 3 0 0

C 0 0 0 0 0 0 0

+ 
 
 
 
 

+ + 
 
 
 
 
 

 . 

 

 

We will call any matrix with entries from C(Zn) as MOD 

complex matrix. 

 

Example 2.28: Let G2 be the MOD directed finite complex 

modulo integer graph given by the following figure with entries 

from C(Z10). 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19 
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6+iF 
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Example 2.29:  Let G3 be the MOD directed finite complex 

modulo integer graph with entries from C(Z7) given by the 

following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.20 

 

Now in the following we give a few examples of MOD finite 

complex modulo integer square matrices with entries from 

C(Zn).  

 

We define and describe only a special type of operation on 

them.  

 

Infact for more about these refer [ ]. 

 

Example 2.30: Let  

 

M1 = 
F

F

F F

3i 1 0

0 2 4i 3

4 i 0 2 3i

 
 

+ 
 + + 

 

 

be the MOD 3 × 3 finite complex modulo integer matrix with 

entries from C(Z5).  

v5 

3+4iF 

v3 

4+3iF 

2+iF 

G  = v4 

4 

v1 v2 

6+2iF 

3 

2 4iF 
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 Let X = {(a1, a2, a3) / ai ∈ {0, 1, iF); 1 ≤ i ≤ 3} be the 

collection of MOD finite complex modulo integer special 

vectors. 

 

We define special type of operation using elements of × and 

M1 which is described in the following. 

 

Let x = (1, 0, 0) ∈ X.   

To find the effect of x on M1; 

 

xM1 → (3iF, 1, 0) = y1;   y1M1 = (1, 2 + 2iF, 3) = y2; 

y2M1 = (iF + 2, 4 + 2iF, 2) = y3; 

y3M1 = (iF, 2 + iF, 1 + 2iF) = y4; 

y4M1 = (4+4iF, iF, 2) = y5; 

y5M1 = (4iF, iF,  4 + 4iF) = y6; 

y6M1 = (1, 1+iF, 1 + 3iF) = y7; 

y7M1 = (1 + iF, 4 + iF, 1 + 2iF) = y8; 

y8M1 = (4+2iF, 4iF, 3) = y9; 

y9M1 = (1, 3, 1 + iF) = y10; 

y10M1 = (3 + 3iF, 2 + 2iF, 3) = y11; 

 

and so on. 

 

However we are sure after a finite number of iterations we 

will arrive at a MOD fixed point or a MOD limit cycle. 

 

Let x2 = (0, 1, 0) ∈ X; to find the effect of x2 on M1. 

 

x2M1 = (0, 2 + 4iF, 3) = y1; 

y1M1 = (2 + 3iF, 3+ iF, 2 + iF) = y2; 

y2M1 = (3 + 2iF, 4 + 2iF, iF) = y3; 

y3M1 = (3iF + 3, 3 + 2iF, 4 + 3iF) = y4; 

y4M1 = (4, 1 + 4iF, 3 + 4iF) = y5; 

y5M1 = (3 + iF, 2iF, 2 + 4iF) = y6; 

 

and so on. 

 

We are sure after a finite number of steps we will arrive at a 

MOD fixed point or a limit cycle. 
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Let x3 = (0, 0, 1) ∈ X.  

 

To find the effect of x3 on M1; 

 

x3M1 = (4 + iF, 0, 2 + 3iF) = y1; 

y1M1 = (2 + iF, 4 + iF, 2iF) = y2; 

y2M1 = (2 + 4iF, 1 + 4iF, 1 + 2iF) = y3; 

y3M1 = (2 + 4iF, 1 + 2iF, 4 + 4iF) = y4; 

y4M1 = (iF, 1 + 2iF, 4 + 1iF) = y5; 

y5M1 = (2 + 3iF, 4 + 4iF, 3) = y6; 

y6M1 = (4iF + 3, 4 + 3iF, 3+iF) = y7; 

y7M1 and so on.   

 

We are sure to arrive at a MOD fixed point or a MOD limit 

cycle. 

 

Example 2.31: Let M2 be the MOD complex finite modulo 

integer matrix with entries from C(Z4). 

 

M2 = 

F

F F

F

F

F F

0 2 i 0 0 0

3i 0 1 0 1 i

0 2 0 i 0

1 0 2 i 0 5

0 i 0 1 i 0

+ 
 

+ 
 
 

+ 
 + 

. 

 

Let X = {(a1, a2, a3, a4, a5) / ai ∈{0, 1, iF}; 1 ≤ i ≤ 5} be the 

special MOD row vectors. 

 

Let  x1 = (1, 0, 0, 0, 0) ∈ X; to find the effect of x1 on M2; 

 

x1M2 → (1, 2 + iF, 0, 0 ,0) = y1; 

y1M2 = (2iF + 1, 2 + iF, 2 + iF, 0, 1 + 3iF) = y2; 

y2M2 = (2 + iF, 1,  2 + iF, iF + 3, 1 + 3iF) = y3; 

y3M2 = (3, 2 + 3iF, 1 + iF, 1 + 2iF, 2) = y4; 

y4M2 = (3iF, 3iF, 2, 1 + 3iF, 3iF) = y5; 

y5M1 = (3iF, 2 + 2iF, 3,  1 + iF, 2 + 2iF) and so on. 
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 Certainly after a finite number of iterations we will arrive at 

a MOD fixed point or a MOD limit cycle. 

 

Let x4 = (0, 0, 0, 1, 0)  ∈ X. 

 

To find the effect of x4 on M2; 

 

x4M2 → (1, 0, 2 + iF, 1, 3) = y1; 

y1M2 = (1, 2 + 2iF, 2 + iF, 2iF + 3, 3) = y2; 

y2M2 = (1, 2 + 2iF, 3iF, 2 + iF, 1 + 2iF) ; and so on.   

 

After a finite number of iterations we arrive at a MOD fixed 

point or a MOD fixed cycle. 

 

Now we proceed onto describe a few MOD directed complex 

finite modulo integer graphs and then related MOD complex 

finite modulo integer matrix. 

 

Example 2.32: Let H be the MOD directed complex number 

graph with edge weights from C(Z10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.21 

 

v1 

v7 

v5 

v4 

v3 

v2 

v8 v6 

2 
4+5iF 

3iF 

2 

4 

2iF + 3 

3+8iF 

5 

4 

8+3iF 
iF 

H = 



MOD Cognitive Maps Models 77 

 

 

 

 

 

Let P be the MOD matrix associated with the MOD directed 

complex modulo integer graph. 

 

 

P = 

1 2 3 4 5 6 7 8

1 F F

2

3 F F

4 F F

5

6

7

8

v v v v v v v v

v 0 0 0 0 3i 0 2 8 3i

v 0 0 0 4 0 0 0 0

v 0 0 0 i 2 0 4 5i 0

v 0 0 0 0 0 2i 3 0 3 8i

v 0 0 0 0 0 0 0

v 0 0 0 0 4 0 5

v 0 0 0 0 0 0 0 0

v 0 0 0 0 0 0 0 0

+ 
 
 
 +

 
+ + 

 
 
 
 
 
  

. 

 

 

Having seen the notion of MOD directed finite complex 

modulo integer graphs and MOD finite complex modulo integer 

square matrices, we proceed on to describe the MOD finite 

complex modulo integer cognitive maps model or in short MOD 

Complex Cognitive Maps (MODCCM) model. 

 

Let P be a problem in hand C1, C2, …, Ct be the t nodes / 

attributes associated with the problem P.   

 

Suppose an expert wishes to work with this problem and 

takes for values of directed edges from C(Zn) = {a + biF / a,  b ∈ 

Zn; 
2

Fi = (n – 1)}.  

 

That is this system works with MOD complex integer t × t 

matrix with entries from C(Zn).  

 

Clearly the model given by him is a MOD complex cognitive 

maps model. 

 

We will illustrate this by an example or two. 
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 Example 2.33: Let P be a problem which has C1, C2, C3, C4, C5, 

C6 to be 6 nodes. The expert gives the MOD directed graph G 

with edge weights from C(Z5) which is as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.22 

 

The MOD connection matrix M associated with graph G is 

as follows. 

 

M = 

1 2 3 4 5 6

1 F

2 F

3 F

4 F

5 F

6

C C C C C C

C 0 1 i 2 0 0 0

C 0 0 0 0 2 i 0

C 0 0 0 1 2i 0 0

C 1 0 0 0 2i 0

C 0 0 0 0 0 i

C 0 0 0 0 0 0

+ 
 

+ 
 +

 
 
 
 
  

. 

 

 

Let X = {(a1, a2, a3, a4, a5, a6) / ai ∈ {0, 1, iF}; 1 ≤ i ≤ 6} be 

the MOD initial special state vector associated with the MOD 

complex matrix M which serves as the MODCCMs dynamical 

system. 

C1 C2 

C4 

C3 

C5 

C6 

2iF 

iF 

= G 

1+iF 
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2+iF 

1 

1+2iF 
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Let x1 = (1, 0, 0, 0, 0, 0) ∈ X. 

 

To find the effect of x1 on M; 

 

x1M → (1, 1 + iF, 2, 0, 0, 0) = y1; 

y1M → (1, 1 + iF, 2, 2 + iF, 1, 0) = y2; 

y2M = (2 + iF, 1 + iF, 2, 2 + iF, 2 + iF, iF) = y3; 

y3M = (2 + iF, 1, 1 + 2iF, 2 + iF, 2 + iF, 2iF + 2) = y4; 

y4M = (2 + iF, 1, 1 + 2iF, iF, 2iF, 2iF + 2) = y5 and so on. 

 

We will certainly arrive at a MOD fixed point or MOD limit 

cycle. 

 

Let a = (0, 0, 0, 0, 1, 0) ∈ X. 

 

To find the effect of a on M. 

 

aM → (0, 0, 0, 0, 1, iF) = y1; 

y1M → (0, 0, 0, 0, 1, iF) = y2 (=y1). 

 

Thus the resultant is a MOD fixed point given by  

(0, 0, 0, 0, 1, iF). 

 

   Let b = (0, 0, 0, 0, 0, 1) ∈ X. 

 

To find the effect of b on M. 

 

bM → (0, 0, 0, 0, 0, 1). 

 

Thus the resultant is a MOD is a special classical fixed point. 

 

Let c = (0, 0, 0, 1, 0, 0) ∈ X. 

 

To find the effect of c on M. 

 

cM → (1, 0, 0, 1, 2iF, 0) = y1; 

y1M  → (1, 1 + iF, 2, 1, 2iF, 1) = y2; 

y2M = (1, 1 + iF, 2, 2 + iF, 1 + 2iF, 1) = y3; 

y3M = (2 + iF, 1 + iF, 2,  2 + iF, iF, 1 + iF) = y4 
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 and so on. 

 

Certainly after a finite number of iterations we will arrive at 

a MOD fixed point or a MOD limit cycle. 

 

Let us consider x3 = (0, 0, 1, 0, 0, 0) be the initial state 

vector.  

 

To find the effect of x3 on M. 

 

x3M → (0, 0, 1, 1 + 2iF, 0, 0) = y1; 

y1M → (1 + 2iF, 0, 1, 1 + 2iF, 2iF + 2, 0) = y2; 

y2M → (1 + 2iF, 0, 2 + iF, 1 + 2iF, 2iF + 2, 2iF + 1) = y3; 

y3M = (2 + iF, 0, 1 + 2iF, 2iF, 2iF + 2, 2iF + 1) = y4; 

y4M = (2iF, 1, 1 + 2iF, iF, 2, 2iF + 1) = y5; 

y5M = (iF, 2iF + 1, iF, iF, 2, 1 + iF) = y6; 

y6M = (iF, iF + 2, 2iF, iF + 1, iF, 2iF) = y7; 

y7M = (1 + iF, iF+ 2, 2iF, 2 + 2iF, iF + 1, 2) and so on. 

 

We will yet on more example in which we show that the 

nodes can be or 1 or pure complex or mixed complex of the 

form a + biF, a ≠ 0, b ≠ 0 depending on the on state of the node 

of the MOD finite complex cognitive maps model. 

 

Example 2.34: Let P be the problem for which the following 

MOD directed finite complex number graph G with edge weights 

from C(Z6) is given in the following 

 

 

 

 

  

 

 

 

 

 

Figure 2.23 
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Let S be the MOD connection complex integer matrix 

associated with the MOD finite complex number directed graph 

which serves as the MOD complex cognitive maps model 

dynamical system. 

 

Let X = {(a1, a2, …, a6) / ai ∈ {0, 1, iF}, 1 ≤ i ≤ 6} be the 

special MOD initial complex vectors associated with the MOD 

CC maps model. 

 

S = 

1 2 3 4 5 6

1 F

2

3

4

5 F F

6

C C C C C C

C 0 2i 0 0 0 0

C 0 0 0 0 1 0

C 0 0 0 0 0 0

C 1 0 0 0 0 0

C 0 0 0 2 2i 0 2 4i

C 0 0 4 0 0 0

 
 
 
 
 
 
 + +

 
  

. 

 

 

Let x1 = (1, 0, 0, 0, 0, 0) ∈ X. 

 

The effect of x1 on S. 

 

x1S → (1, 2iF, 0, 0, 0, 0) = y1; 

y1S → (1, 2iF, 0, 0, 2iF, 0) = y2; 

y2S → (1, 2iF, 0, 4iF + 2, 2iF, 4iF + 4) = y3; 

y3S → (1, 2iF, 4 + 4iF, 4iF+ 4, 2iF, 4) = y4; 

y4S → (1, 2iF, 4, 4iF + 2, 2iF, 4iF + 4) = y5; 

y5S → (1, 2iF, 4 + 4iF, 4iF + 2, 2iF, 4iF + 4) = y7 (=y6). 

 

We see the on state of the node C1 makes all the other nodes 

to on state. 

 

The node C2 is purely complex.  Node C3 is mixed complex 

so is C4. The node C5 is pure complex.   

 

The node C6 is again a mixed complex number.  
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 Thus we see on state of a node can give different types of 

states on other nodes however in FCMs its effect can give only 

on or off state of the other nodes whereas in case of NCMs the 

effect can be on or off or I the indeterminate state. 

 

Let x2 = (0, 1, 0, 0, 0, 0) ∈ X, to find the effect of x2 on S. 

 

x2S → (0, 1, 0, 0, 1, 0) = y1; 

y1S → (0, 1, 0, 2 + 2iF, 1, 4iF + 2) = y2; 

y2S → (0, 1, 2 + 4iF, 2 + 2iF, 1, 2 + 4iF) = y3; 

y3S → (0, 1, 2 + 4iF, 2 + 2iF, 1, 2 + 4iF) = y4 (=y3). 

 

Thus the MOD resultant is a MOD fixed point.   

 

The on state of C2 makes on the nodes C3, C4, C5 and C6.  

 

However C1 remains unaffected by the on state of C2. The 

nodes C4 and C3 becomes mixed a complex number states. The 

node C5 just has become on.   

 

The node C6 has become a mixed complex number state. 

Thus this is the main importance of the MODCCMs model. 

 

All other properties like combined and special combined 

MODCCMs model can be derived. This is considered as a matter 

of routine so left as an exercise to the reader. 

 

Now we can work with MOD dual  number Cognitive Maps 

model using the MOD dual number  

〈Zn ∪ g〉 = {a + bg / a, b ∈ Zn, g
2
 = 0}. 

 

Let P be a problem at times one may have to work with dual 

numbers. Then can we have some way to achieve this. The 

answer is yes. The MOD dual number Cognitive Maps model 

can serve the purpose.  

 

In order to have this model we need to have the notion of 

MOD directed dual number graph and MOD dual number 

matrices.  



MOD Cognitive Maps Models 83 

 

 

 

 

 

 

We will describe them with examples. 

 

Example 2.35: Let G be the directed graph with dual weights 

from 〈Z4 ∪ g〉 = {a + bg / a, b ∈ Z4; g
2 
= 0}. 

 

 

 
 

 

 

 

 

 

 

 

Figure 2.24 

 

This graph will  be known as the MOD dual number directed 

graph. 

 

Example 2.36: Let G1 be the directed dual number graph with 

edge weights from 〈Z7 ∪ g〉 = {a + bg / a, b ∈ Z7, g
2
 = 0} given 

by the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.25 
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Now we define the notion of MOD dual number directed 

graph or MOD directed dual number graph. 

 

DEFINITION 2.10: Let G be a directed graph with vertices v1, 

…, vn and if the edge weights are taken from 〈Zm ∪ g〉 = {a + bg 

/ a, b ∈ Zm, g
2
 = 0} then we define G to be the MOD dual number 

directed graph or MOD directed dual number graph. 

 

 

 

 

 

 

 

 

 

 

 

            Figure 2.26 

 

where a, b, c, d, a, b1, 1 ∈ Zm \ {0} (2 ≤ n < ∞). 

 

We first describe MOD dual number square matrices. 

 

Example 2.37: Let  

 

9 2g 0 3 4g

0 5 2g 0 9g 3
M

3g 0 2 g 0

1 3 5g 1 2 9g

+ 
 

+ + =

 +

 
+ + 

 

 

be a 4 × 4 square matrix with entries from  

〈Z10 ∪ g〉 = {a + bg / a, b ∈ Z10, g
2
 = 0}. 

 

M is a MOD 4 × 4 square dual number matrix with entries 

from 〈Z10 ∪ g〉. 
 

v1 

v3 

v2 

a1 
v5 

bg 

a + bg 

vn 

vn–1 v4 

1 

c+dg 
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Example 2.38: Let  

 

P =  

10 2g 0 5g 4 3g 3 0

0 5g 5 0 2 9g 1 4g

4g 0 8g 1 0 6g 7g 1

0 9g 9 0 3 4g 0 2

10g 0 7 6g 1 0

0 4g 1 g 0 1 5g 2g 2

+ + 
 

+ + 
 + +

 
+ + 

 
 

+ + +  

 

 

be the MOD dual number square matrix with entries from  

〈Z11 ∪ g〉 = {a + bg / a, b ∈ Z11, g
2
 = 0}. 

 

DEFINITION 2.11:  Let S = (sij) be a n × n matrix with entries 

from 〈Zm ∪ g〉 = {a + bg / a, b ∈ Zm, g
2
 = 0}.  S is defined as the 

MOD dual number square matrix or MOD square dual number 

matrix. 

 

We have given examples of them.  

 

Now we proceed onto describe a MOD dual number directed 

graph and the adjacency matrix associated with them. 

 

Example 2.39: Let G1 be the MOD directed dual number graph 

with entries from 〈Z7 ∪ g〉 = {a + bg / a, b ∈ Z7, g
2
 = 0} given 

by the following figure. 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.27 
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 Let M be the connection MOD dual number matrix 

associated with M. 

 

M = 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

v v v v v v v v

v 0 3g 2 0 2g 4g 0 0 0

v 0 0 0 0 0 0 0 0

v 0 0 0 0 0 0 0 2 2g

v 0 0 0 0 2g 2 0 0 0

v 0 0 0 0 0 0 g 1 0

v 0 0 5g 1 0 0 0 2g 0

v 0 0 0 0 0 0 0 0

v 0 0 0 0 0 0 1 0

+ 
 
 
 +

 
+ 

 +

 
+ 

 
 
  

.

 
 

 

This MOD dual number square matrix has all its diagonal 

entries to be zero. 

 

Example 2.40: Let G2 be the MOD directed dual number with 

entries from 〈Z16 ∪ g〉 = {a + bg / a,b ∈ Z16; g
2
 = 0}. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.28 
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Let N be the MOD square dual number matrix given in the 

following 

 

N = 

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

v v v v v v v v v v

v 0 2 4g 0 0 0 3g 0 0 0 0

v 0 0 0 0 0 0 0 0 0 0

v 0 0 0 5 0 0 0 0 0 0

v 0 0 0 0 10 11g 0 0 0 0 0

v 0 0 0 0 0 0 14 0 0 0

v 0 0 0 0 0 0 0 0 0 0

v 0 0 0 0 0 0 0 0 0 0

v 0 0 0 0 0 0 0 0 0 0

v 0 0 0 0 0 0 0 15g 1 0 0

v 0 0 9 2g 0 0 0 0 0 0 0

+ 
 
 
 
 

+ 
 
 
 
 
 
 
 

+ 
 + 

. 

 

 

Now we describe only a special type of operation defined 

on them MOD dual number square matrices. 

 

Example 2.41: Let  

 

M =

0 2g 3g 1 0

4 g 0 0 2g 4

0 6g 1 6 0 2 g

2 3g 0 g 1 3 0

0 4 0 2g 1 0

 
 

+ 
 + +

 
+ + 

 + 

 

 

be the MOD 5 × 5 dual number square matrix with entries from  

   〈Z7 ∪ g〉 = {a + bg / a, b ∈ Z7, g
2
 = 0}. 

 

X = {(a1, a2, a3, a4, a5) / ai ∈ {0, 1, g} 1 ≤ i ≤ 5} be the MOD 

special initial state vector. 

 

Let x = (1, 0, 0, 0, 0) ∈ X. 
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To find the effect of x on M. 

 

xM → (1, 2g, 3g, 1, 0) = y1; 

 

→ symbol denotes the resultant state vector has be updated. 

 

y1M = (2 + 4g, 5g, g + 1, 4, 0) = y2; 

y2M = (1 + 4g, 4g + 1, 3 + 2g, 4g, 2 + 2g) = y3; 

y3M = (4g + 4, 2g + 4, 4, 3 + 3g, 3 + 2g) = y4; 

 

and so on.  

 

Certainly after a finite number of iterations, we will arrive 

at a MOD fixed point o r a MOD limit cycle. 

 

Let x3 = (0, 0, g, 0, 0) ∈ X. 

 

 

The effect of  x3 on M, 

 

x3M = (0, g, 6g, 0, 2g) = y1;  

y1M = (4g, 0, g, 2g, 2g) = y2; 

y2M = (4g, 2g, g, 5g, 2g) = y3; 

y3M = (5g, 2g, 6g, 0, 3g) = y4; 

y4M = (g, 4g, g, g, 6g) = y5; 

y5M → (4g, 4g, g, 3g, 4g) = y6; 

y6M = (g, 3g, 2g, 3g, 4g) = y7; 

y7M = (4g, 4g, g, 3g, 2g) = y8; 

y8M = (g, 2g, 2g, 6g, 4g) = y9; 

y9M = (6g, 4g, 4g, 5g, 5g) = y10; 

y10M = (5g, 3g, 2g, 5g, 3g) = y11; 

y11M = (g, 0, 5g, 6g, 2g) = y12; 

y12M = (3g, 4g, 3g, 0, 6g) = y13; 

y13M = (2g, 6g, 4g, 2g, g) and so on. 

 

 

However we are sure after a finite numbers of iterations we 

will arrive at a MOD fixed point or a MOD limit cycle. 
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Example 2.42: Let  

 

M =

3g 1 2g 0

g 0 2 2g

0 1 0

+ 
 

+ 
  

 

 

be the MOD square dual number matrix with entries from  

〈Z4 ∪ g〉 = {a + bg / a, b ∈ Z4; g
2
 = 0}. 

 

X = {(a1, a2, a3) / ai ∈ {0, 1, g}, 1 ≤ i ≤ 3} be the MOD 

special dual number initial state vectors related with the MOD 

square matrix M. 

 

Let x = (1, 0, 0) ∈ X.  

 

The effect of x on M. 

 

xM = (3g + 1, 2g, 0) = y1;  y1M = (2g + 1, 2g, 0) = y2; 

y2M = (1 + g, 2g, 0) = y3;  y3M = (1, 2g, 0) = y4; 

y4M = (3g + 1, 2g, 0) = y5 (=y1). 

 

Thus the MOD resultant is a MOD limit cycle given by  

(2g + 1, 2g, 0). 

 

Let x = (g, 0, 0) ∈ X.  

 

To find the effect of x on M. 

 

xM = (g, 0, 0) = y1 (=x). 

 

Thus the MOD resultant is a MOD classical fixed point.  

 

Next we consider the effect of x1 = (0, 1, 0) ∈ X. 

 

x1M → (g, 1, 2 + 2g) = y1; 

y1M = (2g, 2 + 2g, 2 + 2g) = y2; 

y2M = (0, 2 + 2g, 0) = y3; 

y3M → (2g, 1, 0) = y4; 
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 y4M → (3g, 1, 2 + 2g) = y5; 

y5M = (0, 2 + 2g, 2 + 2g) = y6; 

y6M = (2g, 2 + 2g, 0) = y7; 

y7M → (0, 1, 0) = y8 (=x1). 

 

Thus the MOD resultant is a MOD limit cycle leading to the 

MOD classical limit point x1 = (0, 1, 0). 

 

Consider a = (0, g, 0) ∈ X. 

 

To find the effect of a on M 

 

aM → (0, g, 2g) = y1;   y1M = (0, 2g, 0) = y2; 

y2M → (0, g, 0) = y3 (=a). 

 

Thus the MOD resultant is a MOD limit cycle which is again 

a MOD classical limit cycle. 

 

Let x3 = (0, 0, 1) ∈ X. 

 

To find the effect of x3 on M.  

 

x3M → (0, 1, 1) = y1 

 

y1M = (g, 1, 2 + 2g) = y2; y2M = (2g, 2 + 2g, 2 + 2g) = y3; 

y3M → (0, 2 + 2g, 1) = y4; y4M → (2g, 1, 1) = y5; 

y5M = (3g, 1, 2) = y6;  y6M = (0, 2, 2 + 2g) = y7; 

y7M → (2g, 2 + 2g, 1) = y8; y8M → (0, 1, 1) = y9 = y1. 

 

Thus the MOD resultant is a MOD limit cycle which is not 

MOD classical limit cycle. 

 

Let b = (0, 0, g) ∈ X. 

 

To find the effect of b on M. 

 

bM → (0, g, g) = y1;   y1M = (0, g, 2g) = y2; 

y2M = (0, 2g, 2g) = y3;   y3M → (0, 2g, 1) = y4; 
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y4M → (0, 1, 1) = y5;   y5M = (g, 1, 2 + 2g) = y6; 

y6M = (2g, 2 + 2g, 2 + 2g) = y7; 

y7M = (0, 2 + 2g, 1) = y8;  y8M = (2g, 1, 1) = y9; 

y9M = (3g, 1, 2 + 2g) = y10;   

y10M = (0, 2 + 2g, 2 + 2g) = y11; 

y11M → (2g, 2 + 2g, 1) = y12; 

y12M → (2g, 1, 1) = y12 (=y9). 

 

Thus the MOD resultant is a MOD limit cycle. 

 

Now we in the following first describe the MOD dual  

number cognitive maps model. 

 

Suppose there is a problem in which the researcher / expert 

wishes to work with dual set up that is there are nodes and 

edges which deploys the property of dual numbers then this new 

MOD dual number Cognitive Maps (MODDNCMs) model or 

equivalently we can have MOD Dual Number Cognitive Maps 

model. 

 

Let P be a problem with C1, C2, …, Cn be the n distinct 

nodes / concepts associated with P. 

 

Suppose the edge weights are taken from   

〈Zm ∪ g〉 = {a + bg / a, b ∈ Zm, g
2
 = 0}.   

 

Let G be the MOD directed graph given by the expert with 

edge weights from  〈Zm ∪ g〉. 
 

Let M be the MOD connection n × n dual  number matrix 

associated with G. 

 

Then we can have two types of MOD special initial state 

vector X = {(a1, …, an) / a1 = {0, 1}, 1 ≤ i ≤ n} or  

 

Xs = {(a1, …, an) / ai ∈ {0, 1, g}; 1 ≤ i ≤ n} the MOD dual 

number special initial state vectors. 

 

Study can be carried out for both. 
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However in  both cases we agree upon to state MOD 

resultant can for a particular time give the nodes the mixed dual 

number MOD values or pure number or pure dual number and so 

on.   

 

We will explain this by an example or two in the following. 

 

Example 2.43: Let P, be a problem with C1, C2, …, C6 the 

associated nodes / concepts.   

 

Suppose the expert wishes to work using the MOD DN CM 

model taking edge weights of the MOD directed dual graph G 

from  〈Z3 ∪ g〉 = {bg + a / a, b ∈ Z3, g
2
 = 0}. 

 

Let M1 be the MOD 6 × 6 dual number connection matrix 

which acts as the MOD dual number dynamical system. 

 

The MOD directed dual number graph G1 is as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

Figure 2.29 
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Let M1 be the MOD dual number square matrix associated 

with G1, which serves as the dynamical system for MODDN 

CMs model. 

 

M1 = 

1 2 3 4 5 6

1

2

3

4

5

6

C C C C C C

C 0 g 1 0 0 0 0

C 0 0 0 0 0 1

C g 0 0 0 0 2g 1

C 0 2 0 0 0 0

C 0 0 0 0 0 0

C 0 0 0 0 2g 0

+ 
 
 
 +

 
 
 
 
  

. 

 

Let X = {(a1, …, a6) / ai ∈ {0, 1}; 1 ≤ i ≤ 6} and  

 

Xs = {(a1, a2, …, a6) / ai ∈ {0, 1, g}; 1 ≤ i ≤ 6} be the MOD 

initial state vector of both types associated with M1. 

 

 Let x1 = (1, 0, 0, 0, 0, 0) ∈ X. 

 

To find the effect of x on M1; 

 

x1M1 → (1, g + 1, 0, 0, 0, 0) = y1; 

y1M1 → (1, g + 1, 0, 0, 0, g + 1) = y2; 

y2M → (1, g + 1, 0, 0, 2g, g + 1) = y3; 

y3M → (1, g + 1, 0, 0, 2g, 1 + g) = y4 (=y3). 

 

Thus the MOD resultant is a MOD fixed point given by  

(1, g +1, 0, 0, 2g, 1 + g). 

 

Let x2 = (0, 1, 0, 0, 0, 0) ∈ X. 

 

To find the effect of x2 on M1 

 

x2M1 → (0, 1, 0, 0, 0, 1)  = y1; 

y1M1 → (0, 1, 0, 0, 2g, 1) = y2; 

y2M1 → (0, 1, 0, 0, 2g, 1) = y3 (=y2). 
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Thus the MOD resultant is again a MOD fixed point given  

by (0, 1, 0, 0, 2g, 1). 

 

Let x3 = (0, 0, 1, 0, 0, 0) ∈ X;  

 

To find the effect of x3 on M1; 

 

x3M1 → (g, 0, 1, 0, 0, 2g + 1) = y1 (say); 

y1M1 → (g, 0, 1, 0, 2g, 2g + 1) = y2; 

y2M1 → (g, 0, 1, 0, 2g, 2g + 1) = y3 (=y2). 

 

Thus the MOD resultant is again MOD fixed point given by  

   (g, 0, 1, 0, 2g, 2g + 1). 

 

Let x4 = (0, 0, 0, 1, 0, 0) be the initial state vector. 

 

The effect of x4 on M1 is as follows. 

 

x4M1 → (0, 2, 0, 1, 0, 0) = y1; 

y1M1 → (0, 2, 0, 1, 0, 2) = y2; 

y2M1 → (0, 2, 0, 1, g, 2) = y3; 

y3M1 → (0, 2, 0, 0, g, 2) = y4 (=y3). 

 

Thus the MOD resultant of x4 is (0, 2, 0, 0, g, 2). 

 

Let x5 = (0, 0, 0, 0, 1, 0) ∈ X. 

 

To find the effect of x5 on M1; 

 

x5M1 → (0, 0, 0, 0, 1, 0) = y1 (=x5). 

 

Thus the MOD resultant is a MOD special classical fixed 

point given by x5 = (0, 0, 0, 0, 1, 0) which is also the MOD 

classical fixed point. 

 

Let x6 = (0, 0, 0, 0, 0, 1) ∈ X; to find the effect of x6 on M1; 

 

x6M1 → (0, 0, 0, 0, 2g, 1) = y1; 
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y1M1 → (0, 0, 0, 0, 2g, 1) = y2. 

 

Thus the MOD resultant is a MOD fixed point given by  

(0, 0, 0, 0, 2g, 1). 

 

Let x1 = (g, 0, 0, 0, 0, 0) ∈ XS. 

 

To find the effect of x1 on M1; 

 

x1M1 → (g, g, 0, 0, 0, 0) = y1; 

y1M1 → (g, g, 0, 0, 0, g) = y2; 

y2M1 → (g, g, 0, 0, 0, g) = y3 (= y2). 

 

Thus the MOD resultant is a MOD fixed point. 

 

Let x2 = (0, g, 0, 0, 0, 0) ∈ XS. 

 

To find the effect of x2 on M1; 

 

x2M1 → (0, g, 0, 0, 0, g) = y1; 

y1M1 → (0, g, 0, 0, 0, g) = y2 (=y1). 

 

Thus the MOD resultant is a MOD fixed point. 

 

Let x3 = (0, 0, g, 0, 0, 0) ∈ XS. 

 

To find the effect of x3 on M1; 

 

x3M1 → (0, 0, g, 0, 0, g) = y1; 

y1M1 → (0, 0, g, 0, 0, g) = y2 (=y1). 

 

Thus the MOD resultant is a MOD fixed point given by  

(0, 0, g, 0, 0, g). 

 

Let x4 = (0, 0, 0, g, 0, 0) ∈ XS. 

 

To find the effect of x4 on M1; 
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 x4M1 → (0, 2g, 0, g, 0, 0) = y1; 

y1M1 → (0, 2g, 0, g, 0, 0) = y2 (=y1). 

 

Thus the MOD resultant is a MOD fixed point given  by  

(0, 2g, 0, g, 0, 0). 

 

Let x5 = (0, 0, 0, 0, g, 0) ∈ XS. 

 

x5M1 → (0, 0, 0, 0, g, 0) = y1 (=x5). 

 

Thus the MOD resultant is a MOD special classical fixed 

point. 

 

Let x6 = (0, 0, 0, 0, 0, g) ∈ XS. 

 

To find the effect of x6 on M1. 

 

x6M → (0, 0, 0, 0, 0, g) = y1 (=x6). 

 

Thus the MOD resultant is a MOD classical fixed point. Next 

we give one more example. 

 

Example 2.44: Let P2 be a problem which is associated with the 

nodes / concepts C1, C2, C3 and C4 the expert wishes to adopt 

the MOD dual number cognitive maps model with edge weights 

from 〈Z4 ∪g〉 = {a + bg / a, b ∈ Z4, g
2
 = 0}. 

 

Let G2 be the MOD directed dual number graph given  by 

him 

  

  

 

 

 

 

 

 

 

Figure 2.30 

3 
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Let M2 be the  MOD dual number connection matrix 

associated with the MOD dual number graph G2. 

 

M2 = 

1 2 3 4

1

2

3

4

C C C C

C 0 2g 0 0

C 0 0 g 1 3

C 0 0 0 2g

C 0 0 0 0

 
 

+ 
 
 
 

 . 

 

Let X = {(a1, a2, a3, a4) / ai ∈ {0, 1}; 1 ≤ i ≤ 4} and  

 

XS = {(a1, a2, a3, a4) / ai ∈ {0, 1, g} 1 ≤ i ≤ 4} be the MOD 

dual number initial state vectors and MOD special dual number 

initial state vectors respectively. 

 

Let x1 = (1, 0, 0, 0) ∈ X, the effect of x1 on M2 is as follows. 

 

x1M2 → (1, 2g, 0, 0) = y1; 

y1M2 → (1, 2g, 2g, 2g) = y2; 

y2M2 → (1, 2g, 2g, 2g) = y3 = (=y2). 

 

Thus the MOD resultant is a MOD fixed point given by  

(1, 2g, 2g, 2g). 

 

We see if C1 is on then all the other three coordinates C2, C3 

and C4 are pure dual  number.  

 

That the on state of C1 makes all other nodes to pure dual 

number states. 

 

Let x2 = (0, 1, 0, 0) ∈ X; the effect of x2 on M2; 

 

x2M2 → (0, 1, g + 1, 3) = y1; 

y1M2 → (0, 1, g + 1, 2g + 3) = y2; 

y2M2 → (0, 1, g + 1, 2g + 3) = y3 (=y5). 
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 Thus the MOD resultant is a MOD fixed point given by  

(0, 1, g + 1, 2g + 3) 

 

That is the on state of C2 has no effect on C1, but both C3 

and C4 get the mixed dual number states as g + 1 and 2g + 3 

respectively.  

 

Let x3 = (0, 0, 1, 0) ∈ X.  

 

To find the effect of x3 on M2. 

 

x3M2 → (0, 0, 1, 2g) = y1 

y1M2 → (0, 0, 1, 2g) = y2 (=y1). 

 

Thus the MOD resultant is a MOD fixed point given by  

(0, 0, 1, 2g). 

 

We see the on state of C3 make on only the node C4 and  C4 

get the pure dual number value 2g. 

 

However C1 and C2 are unaffected by the on state of the 

node C3. 

 

Let x4 = (0, 0, 0, 1) ∈ X. 

 

The effect of x4 on M2; x4M2 → (0, 0, 0, 1) = y1 (=x4). 

 

Thus the MOD resultant is the MOD special classical fixed 

point given by (0, 0, 0, 1). 

 

Thus on state of the node C4 keeps all other nodes C1, C2 

and C3 to off state or has no effect on them. 

 

Let a1 = (g, 0, 0, 0) ∈ ×s; to find the effect of a1 on M2. 

 

a1M2 → (g, 0, 0, 0) = y1 (=a1). 

 

Thus the MOD resultant is a MOD special classical fixed 

point (g, 0, 0, 0).  



MOD Cognitive Maps Models 99 

 

 

 

 

 

 

 

The dual state of C1 has no effect on C2, C3 and C4. 

 

Let a2 = (0, g, 0, 0) ∈ Xs. 

 

The effect of a2 on M2; 

 

a2M2 → (0, g, g, 3g) = y1 

y1M2 → (0, g, g, 3g) = y2 (=y1). 

 

Thus the MOD resultant of the a2 is MOD fixed point given  

by (0, g, g, 3g) where the dual state of C2 has no effect on C1 

however both C3 and C4 comes to dual state. 

 

Let a3 = (0, 0, g, 0) ∈ XS. 

 

The effect of a3 on M2. 

 

a3M2 → (0, 0, g, 0) = y1 (=a3). 

 

Thus the dual state of node C3 has no effect on other nodes.  

 

In fact the MOD resultant is a MOD classical fixed point 

given  by (0, 0, g, 0) = a3. 

 

Let a4 = (0, 0, 0, g) ∈ XS. 

 

The effect of a4 on M2 is  

 

a4M2 → (0, 0, 0, g) = y1 (=a4). 

 

Thus the MOD resultant in case of a4 is also a MOD special 

classical fixed point given by (0, 0, 0, g) = a4. 

 

Let b1 = (1, 0, g, 0)  ∈ XS.  

 

To find the effect of b1 on M2; 
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b1M2 → (1, 2g, g, 0) = y1; 

y1M2 → (1, 2g, 2g, 2g) = y2; 

y2M2 → (1, 2g, 2g, 2g) = y3 (=y2). 

 

Thus the MOD resultant of b1 is a MOD fixed point given by 

(1, 2g, 2g, 2g). 

 

We see on state of C1 and dual stage of C3 makes on the 

nodes C2 and C4 however they get only the state to be pure dual 

numbers. 

 

Next we proceed onto describe MOD Special Dual Like 

Number Cognitive Maps (MOD SDL NCMs) model.  

 

For this we first need the notion of MOD special dual like 

number directed graph and MOD special dual like number 

matrix. 

 

We will illustrate these situations only by examples as the 

definition of them is considered as a matter of routine. 

 

Let G be a directed graph with edge weights from  

〈Zn ∪ h〉 = {a + bh / a,  b ∈ Zn, h
2
 = h}; the special dual like 

numbers. 

 

We call a directed graph with edge weights from the special 

dual like number 〈Zn ∪ h〉 = {a + bh / a, b ∈ Zn, h
2
 = h} as the 

MOD directed special dual like number graphs.  

 

We will give examples of MOD directed special dual like 

number graphs. 

 

Example 2.45: Let G1 be the MOD directed special dual like 

number graph with edge weights from  

 

〈Z6 ∪ h〉 = {a + bh / a, b ∈ Z6, h
2
 = h}. 
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Figure 2.31 

 

Example 2.46: Let G2 be the MOD directed special dual like 

number graph with edge weights from  

〈Z7 ∪ h〉 = {a + bh / a, b ∈ Z7, h
2
 = y}. 

 

 

G2= 

 

 

 

 

 

 

 

 

 

 
Figure 2.32 
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Next we proceed on to give examples of MOD special dual 

like number square matrices. 

 

Example 2.47: Let  

 

M = 

3h 0 2h 4

0 4h 2 3

2h 1 0 5h

+ 
 

+ 
 + 

 

 

be the MOD special dual like number 3 × 3 matrix with entries 

from 〈Z6 ∪ h〉 = {a + bh / a, b ∈ Z6, h
2
 = h}. 

 

Example 2.48:  Let 〈Z12 ∪ h〉 = {a + bh / a, b ∈ Z12, h
2
 = h} = P. 

 

 

L = 

5h 10 1 2h 11 0 2h 2

6 0 6h 4h 8 0

11h 7h 1 0 6 5h 8

10h 9 0 7h 10 0 6h 3

0 2h 0 5h 0

+ + + 
 

+ 
 + +

 
+ + + 

  

 

 

be the MOD special dual like number matrix with entries from P. 

 

Example 2.49: Let  

 

W = 

0 2h 1 0 5h 3

7 0 2 5h 0

0 4h 0 5

6h 1 0 7h 0

+ + 
 

+ 
 
 

+ 

 

 

be the MOD special dual  like number matrix with entries from 

〈Z8 ∪ h〉 = {a + b ∈ Z8, h
2
 = h}. 

 

 

Let M = (mij) be a n × n matrix with entries from  
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〈Zm ∪ h〉 = {a + bh / a, b ∈ Zm, h
2
 = h}.   

 

M is defined as the MOD special dual like number square 

matrix.  

 

We have already given examples of them. 

 

Let X = {(a1, a2, …, an) / ai ∈ {0,1}, 1 ≤ i ≤ n}, X is defined 

as the MOD initial state vectors associated with M. 

 

Xs = {(a1, a2, …, an) / ai ∈ {0, h, 1}; 1 ≤ i ≤ n} is defined as 

the MOD  special initial state special dual like number vectors. 

 

Here we describe only the special type of operations using 

the MOD special dual like number square matrices and the MOD 

special state vectors X and Xs. 

 

Example 2.50: Let  

 

M =

0 3h 4h 2

1 0 2h 3

0 h 2 0

+ 
 

+ 
 + 

 

 

be the MOD special dual like number matrix with entries from  

    〈Z5 ∪ h〉 = {a + bh / a, b ∈ Z5, h
2
 = h}. 

 

Let X = {(a1, a2, a3) / ai ∈ {0, 1}, 1 ≤ i ≤ 3} and  

 

Xs = {(a1, a2, a3) / ai ∈ {0, 1, h}; 1 ≤ i ≤ 3} be the MOD 

initial state vectors MOD special initial state vectors 

respectively. 

 

Let x1 = (1, 0, 0) ∈X.  

 

To find the effect of x1 on M. 

 

x1M → (1, 3h, 4h +2) = y1; 

y1M = (3h, 2h + 4, 4h + 2) = y2; 
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 y2M = (2h + 4, 3h + 2, h + 2) = y3; 

y3M = (3h + 2, 3h + 2, 2h + 4) = y4; 

y4M = (3h + 2, 3, 0) = y5; 

y5M = (3, 0, 2h + 3) = y6; 

y6M = (1, 3h + 1, 2h + 1) = y7; 

y7M = (3h + 1, 2, h) = y8; 

y8M = (2, 0, h + 3) = y9 and so on. 

 

However after a finite set of iterations we will arrive at a 

MOD fixed point or a MOD limit cycle. 

 

Let x2 = (0, 1, 0) ∈ X. 

 

To find the effect of x2 on M. 

 

x2M → (1, 1, 2h + 3) = y1;  y1M = (1, 1, h) = y2; 

y2M = (1, h, h) = y3;    y3M = (1, h, h) = y4 (=y3). 

 

 

Thus the MOD resultant is a MOD fixed point given by  

(1, h, h). 

 

Let x3 = (0, 0, 1) ∈ X. 

 

To find the effect of x3 on M 

 

x3M → (0, h + 2, 1) = y1; 

y1M = (h + 2, h + 2, 4h + 1) = y2; 

y2M = (h + 2, 3h + 2, 3h) = y3; 

y3M = (3h+2, 3h, 3h) = y4; 

y4M = (3h, 4h, h + 4) = y5; 

y5M = (4h, 4h + 3, 3h) = y6; 

y6M = (4h + 3, h, 4) = y7; 

y7M = (h, 3, h + 1) = y8; 

y8M = (3, 2h + 2, 2h + 4) ;  

 

and so on.   
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Certainly after a finite number of iterations we will arrive at 

a MOD fixed point or a MOD limit cycle. 

 

Let a1 = (h, 0, 0) ∈ XS; to find the effect of a1 on M. 

 

a1M → (h, 3h, h) = y1;   y1M = (3h, h, h) = y2; 

y2M = (h, 2h, 3h) = y3;   y3M = (2h, 2h, h) = y4; 

y4M = (2h, 4h, 2h) = y5;   y5M = (4h, 2h, 2h) = y6; 

y6M = (2h, 3h, 4h) = y7;   y7M = (3h, 3h, 2h) = y8; 

y8M = (3h, 0, 3h) = y9;   y9M = (h, 3h, 3h) = y10; 

y10M = (3h, 2h, h) = y11;   y11M = (2h, 2h, 3h) = y12; 

y12M = (2h, 0, 2h) = y13;   y13M = (h, 2h, 2h) = y14 ; 

y14M = (2h, 4h, h) = y15;   y15M = (4h, 4h, 2h) = y16. 

 

However after a finite number of iterations we will arrive at 

a MOD fixed point or  a MOD limit cycle. 

 

Let a2 = (0, h, 0) ∈ Xs.  

 

To find the effect of a2 on M. 

 

a2M → (h, h, 0) = y1;   y1M = (h, 3h, h) = y2; 

y2M = (3h, h, h) = y3;   y3M = (h, 2h, 3h) = y4; 

y4M = (2h, 2h, h) = y5;   y5M = (2h, 4h, 2h) = y6; 

y6M = (4h, 2h, 2h) = y7;   y7M = (2h, 3h, 4h) = y8; 

y8M = (3h, 3h, 2h) = y9;   y9M = (3h, h, 3h) = y10; 

y10M = (h, 3h, 3h) = y11;   y11M = (3h, 2h, h) = y12; 

y12M = (2h, 2h, 3h) = y13;  y13M = (2h, h, 2h) = y14; 

y14M = (h, 2h, 2h) = y15;   y15M = (2h, 4h, h) = y16; 

y16M = (4h, 4h, 2h) = y17;  y17M = (4h, 4h, 4h) = y18; 

y18M = (4h, 4h, 4h) = y19 (=y18). 

 

Thus the MOD resultant is a MOD fixed point given by  

(4h, 4h, 4h).  

 

All nodes come to on state.  
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 When the initial on state node is a special dual like number 

all the other states which come to on state are also special dual  

like number. 

 

Let a3 = (0, 0, h) ∈ Xs. 

 

To effect of a3 on M is as follows. 

 

a3M → (0, 3h, h) = y1;   y1M → (3h, 3h, h) = y2; 

y2M → (3h, 2h, 3h) = y3;  y3M → (2h, 3h, 3h) = y4; 

y4M = (3h, 0, 2h) = y5;   y5M = (0, 0, 3h) = y6; 

y6M = (0, 4h, h) = y7;   y7M → (4h, 3h,  h) = y8; 

y8M = (3h, 0, 4h) = y9;   y9M = (0, h, 3h) = y10; 

y10M = (h, 4h, h) = y11 

 

and so on. 
 

However we are sure to get the MOD resultant after a finite 

number of iteration. 

 

By this new MODSDLNCM model we are in a position to 

get the state in the resultant vector to be real, or pure special 

dual like number and special dual like number. 

 

Next we proceed onto build the new notion of MOD directed 

special quasi dual number graphs, MOD special quasi dual 

number matrices and using these two notions the MOD Special 

Quasi Dual Number Cognitive Maps (MOD SQDNCMs) model 

in the following.  

 

First we describe the MOD special quasi dual number 

directed graphs. 

 

Example 2.51: Let G1 be the directed graph with edge weights 

from the special quasi dual numbers  

 

〈Z9 ∪ k〉 = {a+bk / k
2
 = 8k, a, b  ∈ Z9} given in the 

following figure. 

 

v2 v1 

8k+4 

3k 

1 4k 

2+k 
v6 

2 



MOD Cognitive Maps Models 107 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.33 

 

 

Example 2.52: Let G2 be the directed graph with edge weights 

from 〈Z11 ∪ k〉 = {a + bk / a, b ∈ Z11, k
2
 = 10k} which is given 

in the following. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.34 
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Now we define the notion of MOD Special Quasi Dual 

Number directed graph. 

 

Let G be any directed graph if the edge weights are taken 

from 〈Zn ∪ k〉 = {a + bk / a, b ∈ Zn, k
2
 = (n – 1) k} then we 

define G to be a MOD special quasi dual number directed graph.  

 

We have given examples of them. 

 

Now we proceed onto describe the MOD special quasi dual 

number square matrices by some examples. 

 

 

Example 2.53: Let  

 

M = 

3k 0 4k 2

0 5k 1 0

4 2k 5

+ 
 

+ 
  

 

 

be a matrix with entries from  

 

〈Z6 ∪ k〉 = {a + bk / a, b ∈ Z6, k
2
  = 5k}.  

 

We call M as the MOD special quasi dual number matrix. 

 

 

Example 2.54: Let  

 

 

W = 

0 5k 2 3 4k

5 0 1 k 0

3k 1 2 0 4

0 7k 2 5k 0

+ 
 

+ 
 +

 
+ 

 

 

be a matrix with entries from  
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〈Z8 ∪ k〉 = {a +  bk / a, b ∈ Z8, k
2
 = 7k}. 

 

We call W as the MOD special quasi dual  number matrix. 

 

Thus if M = (mij) is a n × n square matrix with entries from  

  〈Zm ∪ k〉 = {a + bk / a, b ∈ Zm, k
2
 = (m – 1)k}.  

 

Then we define M to be the MOD special quasi dual number 

square matrix. 

 

We would be using these two notions to built the MOD 

Special Quasi Dual Number Cognitive Maps model. 

 

 

Example 2.55: Let P be a problem C1, C2, C3, C4, C5 be 5 of the 

concepts / nodes associated with the problem.  

 

The experts has given the directed graph with edge weights 

from 〈Z4 ∪ k〉 = {a + bk / a, b ∈ Z4, k
2
 = 3k}.  

 

That is the directed graph given by him is the MOD special 

quasi dual number directed graph G1 which is as follows. 

 

 

 

 

 

 

 

 

 

 

Figure 2.35 

 

The MOD connection special quasi dual number matrix M1 

associated with G1 is as follows. 

 

 

 

C1 
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C5 
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M1 = 

1 2 3 4 5

1

2

3

4

5

C C C C C

C 0 2k 0 3k 1 0

C 0 0 3 0 0

C 0 0 0 0 1

C 0 0 2k 3 0 0

C 0 3k 1 0 0 0

+ 
 
 
 
 

+ 
 + 

. 

 

Now let X = {(a1, a2, …, a5) / ai ∈ {0, 1}, 1 ≤ i ≤ 5} and  

 

XS = {(a1, a2, …, a5) / ai ∈ {0, 1, k}, 1 ≤ i ≤ 5}  

 

be the MOD initial state vector and MOD special initial state 

vector. 

 

Let x1 = (1, 0, 0, 0, 0) ∈ X. 

 

To find the effect of x1 on M1; 

 

x1M1 → (1, 2k, 0, 3k + 1, 0) = y1; 

y1M1 → (1, 2k, 3k + 3, 3k + 1, 0) = y2; 

y2M1 → (1, 2k, 3k + 1, 3k + 1, 3k + 2) = y3; 

y3M1 → (1, k + 3, 3k + 3, 3k + 1, 3k + 1) = y4; 

y4M1 → (1, 3k + 1, 0, 3k + 1, 3k + 3) = y5; 

y5M1 → (1, 3, 2k + 2, 3k + 1, 0) = y6; 

y6M1 → (1, 2k, k, 3k + 1, 2k + 2) = y7; 

y7M1 → (1, 2, 3k + 3, 3k + 1, k) = y8; 

y8M1 → (1, 0, k + 1, 3k + 1, 3k + 3) = y9; 

y9M1 → (1, k + 3, k + 3, 3k + 1, k + 1) 

 

and so on. 

 

Certainly after a finite number of iterations.  

 

We will arrive at a MOD fixed point or a MOD limit cycle. 

 

Let x2 = (0, 1, 0, 0, 0) ∈ X. 
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To find the effect of x2 on M1; 

 

x2M1 → (0, 1, 3, 0, 0) = y1; 

y1M1 → (0, 1, 3, 0, 3) = y2; 

y2M1 → (0, 3 + k, 3, 0, 3) = y3; 

y3M1 → (0, 1 + 3k, 1 + 3k, 0, 3) = y4; 

y4M1 → (0, 3 + k, 3 + k, 0, 1 + 3k) = y5; 

y5M1 = (0, 1, 1 + 3k, 0, 3 + k) = y6; 

y6M1 = (0, 3k + 3, 3, 0, 1 + 3k) = y7; 

y7M1 = (0, 1, 1 + k, 0, 3k + 3) = y8; 

y8M1 = (0, 2k + 3, 3, 0, 1 + k) = y9; 

y9M1 = (0, 1, 2k + 3, 0, 3) = y10; 

y10M1 = (0, k + 3, 3, 0, 2k+3) = y11; 

y11M1 = (0, k + 3, 3k + 1, 0, 3) = y12; 

y12M1 = (0, 3 + k, 1 + 3k, 0, 3k + 1) = y13; 

y13M1 = (0, 1, 1 + 3k, 0, 1 + 3k) = y14; 

y14M1 = (0, 1, 3 + k, 0, 1 + 3k) = y15; 

 

and so on.  

 

We are sure after a finite number of iterations we will arrive 

at a MOD fixed point or  a MOD limit cycle. 

 

 

Let x5 = (0, 0, 0, 0, 1) ∈ X. 

 

To find the effect of x5 on M1; 

 

x5M1 → (0, 3k + 1, 0, 0, 1) = y1; 

y1M1 → (0, 3k + 1, 3 + k, 0, 1) = y2; 

y2M1 → (0, 3k + 1, 3k + 1, 0, 3 + k) ; 

 

and so on. 

 

Certainly after a finite set of iterations we arrive at a 

resultant.  
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 We will arrive at a MOD fixed point or a MOD limit cycle. 

 

Let a1 = (k, 0, 0, 0, 0) ∈ Xs.  

 

To find the effect of a1 on M1; 

 

a1M1 → (k, 2k, 0, 2k, 0) = y1; 

y1M1 → (k, 2k, 0, 2k, 0) = y2 (y1). 

 

Thus the MOD resultant is a MOD fixed point. 

 

Let b1 = (0, 0, k, 0, 1) ∈ xs. 

 

To find the effect of b1 on M1; 

 

b1M1 → (0, 3k + 1, k, 0, k) = y1; 

y1M1 → (0, 2k, 3 + 3k, 0, k) = y2; 

y2M1 → (0, 2k, 2k, 0, 3 + 3k) = y3; 

y3M1 = (0, 3 + 3k, 2k, 0, 2k) = y4; 

y4M1 = (0, 0, 1 + k, 0, 2k) = y5; 

y5M1 = (0, 0, k, 0, 1 + k) = y6; 

y6M1 → (0, k + 1, k, 0, k) = y7; 

y7M1 = (0, 0, 3k + 3, 0, k) = y8; 

y8M1 = (0, 0, k, 0, 3k+3) = y9; 

y9M1 = (0, k + 3, k, 0, k) = y10; 

y10M1 = (0, 0, 1 + 3k, 0, k) = y11; 

y12M1 = (0, 0, 3k, 0, 1 + 3k) = y13; 

y13M1 = (0, 0, k+1, 0, k) = y14 

 

and so on however we after a finite number of iterations will 

arrive a MOD fixed point or a MOD limit cycle. 

 

Thus we can work with MOD SQDNCMs model and arrive 

at several interesting results.   

 

However we will give one more example of this situation. 
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Example 2.56: Let P be the problem at hand and an expert 

works with the nodes C1, C2, C3, C4 using the edge weights of 

the directed graphs from  

 

〈Z3 ∪ k 〉 = {a + bk / k
2
 = 2k, a, b ∈ Z3}.  

 

Let G2 be the MOD special quasi dual number directed graph 

which is as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.36 

 

 

Let M2 be the MOD connection matrix associated with G2. 

 

 

M2 = 

1 2 3 4

1

2

3

4

C C C C

C 0 1 2k 1 0

C 0 0 0 0

C 0 0 0 0

C k 1 0 k 0

+ 
 
 
 
 

+ 

. 

 

 

Let X = {(a1, a2, a3, a4) / ai ∈ {0, 1}; 1 ≤ i ≤ 4} be the MOD 

initial state vectors. 

 

C1 

C2 

C3 

C4 

k 

2k+1 

k+1 
1 
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Let Xs = {(a1, a2, a3, a4) / ai ∈ {0, 1, k}; 1 ≤ i ≤ 4} be the 

MOD special quasi dual number initial state vectors. 

 

Let x = (1, 0, 0, 0) ∈ X. 

 

To find the effect of x on M2; 

 

xM2 → (1, 1, 2k + 1, 0) = y1; 

y1M2 → (1, 1, 2k + 1, 0) = y2 (=y1). 

 

Thus the MOD resultant is a MOD fixed point given by  

(1, 1, 2k + 1, 0) where the on state of C1 has no effect of C4 and 

makes on C2 and gives the value 2k + 1 for the node C3. 

 

Let x1 = (k, 0, 0, 0) ∈ Xs. 

 

To find the effect of x1 on M2; 

 

x1M1 → (k, k, 2k, 0) = y1; 

y1M2 → (k, k, 2k, 0) = y2 (=y1). 

 

Thus the MOD resultant is a MOD fixed point given by  

(k, k, 2k, 0). 

 

Clearly when the node C1 is the special quasi dual number k 

then it has no effect of C4 but C3 and C2 get only the values 

which are again special quasi dual numbers. 

 

Let a = (0, 1, 0, 0) ∈ X. 

 

To find the effect of a on M2. 

 

aM2 → (0, 1, 0, 0) = a. 

 

Thus the MOD resultant is a MOD special classical fixed 

point. 
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Consider a1 = (0, k, 0, 0) ∈ Xs. 

 

To effect of a1 on M2 

 

a1M2 → (0, k, 0, 0) = a1; 

 

which is again a MOD classical special fixed point. 

 

Let b = (0, 0, 0, 1) ∈ X. 

 

The effect of b on M2. 

 

bM2 → (k + 1, 0, k, 1) = y1; 

y1M2 → (k + 1, k + 1, 2k + 1, 1) = y2; 

y2M2 → (k + 1, k + 1, 2k + 1, 1) = y3 (=y2). 

 

Thus the MOD resultant is a MOD fixed point given by  

(k + 1, k + 1, 2k + 1, 1). 

 

The on state of the node C4 makes on the nodes C1, C2 and 

C3 all of them are not real but special quasi dual number only. 

 

The interested reader can work with more examples. 

 

The author wish to mention the following fact. 

 

The new MOD Cognitive Maps model will be a boon to 

any socio scientist, engineers, a scientist, and so on. 
 

For these days with advancement of computers and other 

related technological development a state of the node need not 

be always on or off as defined and developed by the FCM or 

NCMs. 

 

The state can be a real value some integers or can be a dual 

number a + bg, g
2
 = 0, or a special dual like number a + bh,  
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 h
2
 = h or can be a special quasi dual  number a + bk,  

k
2
 = (n – 1)k where in all these cases a, b ∈ Zn. 

 

Apart from this the edges values also can be a + biF, a, b  ∈ 

Zn, 
2

Fi  = n – 1 that the MOD finite complex numbers or MOD 

finite neutrosophic number  

 

 a + bI, I
2
 = I and a, b ∈ Zn (2 ≤ n < ∞).   

 

So these newly built models will be special boon to all 

researchers in all emerging fields. 

 

Infact these new MOD models can be realized as a special 

type of generalization of FCMs and NCMs. 

  



 
 
 
 
 

 

 

 
Chapter Three 
 
 

 
 
MOD-NATURAL NEUTROSOPHIC 

COGNITIVE MAPS (MOD NCMS) MODEL 

AND MOD INTERVAL COGNITIVE MAPS 

MODEL  
 
 
 

 

In this chapter we for the first time define the notion of MOD 

natural  Neutrosophic Cognitive Maps model.  

 

In chapter two MOD cognitive maps of different types were 

analysed, defined and described.  

 

Here we proceed onto describe with examples and then the 

routine definition is made. 

 

 Recall I

nZ  = {Zn, 
n n

0 tI , I / t is a zero divisor or a unit or an 

idempotent or a nilpotent in Zn} + and × operations are defined 

on them I

nZ  [60]. 
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Example 3.1:  Let { I

3Z , +, ×} = {0, 1, 2, 3

0I ,  1 + 3

0I , 2 + 3

0I } be 

the MOD natural neutrosophic semiring of order 6. 

 

Example 3.2: Let 〈 I

6Z , +, ×〉, = {Z6, a + 6

0I , a + 6

2I , 6

3I  + a, a + 
6

4I , a + 6

0I  + 6

2I , a + 6

0I  + 6

3I , a + 6

0I  + 6

4I , a + 6

2I  +  6

3I , a + 6

2I  + 
6

4I , a + 6

3I  + 6

4I , a + 6

0I  + 6

2I  + 6

3I , a + 6

0I  + 6

2I  + 6

4I , a + 6

0I  + 6

3I  

+ 6

4I , a + 6

2I  + 6

4I  + 6

3I , a + 6

0I  + 6

3I  + 6

2I  + 6

4I , a  ∈ Z6; +, ×} be a 

semiring of finite order.  

 

 Now we will be building MOD natural neutrosophic 

Cognitive Maps model first we will describe this tools essential 

for it by some illustrations. 

 

Example 3.3: Let  

 

M = 

4 4

2 0

4 4

2 0

4 4

0 2

4 4

0 2

0 3 I I 2

I 0 2 I 0

0 3 0 I I

I 0 I 0

 +

 
+ 

 +

 
  

 

 

be the MOD natural neutrosophic matrix with entries from I

4Z . 

 

Example 3.4: Let  

 

 

N = 

6 6 6

0 3 2

6 6

4 2

6 6 6 6

3 2 4 4

6

0

6 6 6 6

4 3 0 2

3 I 0 4 I I 0 3

0 5 I 0 I 0

2 I 0 I I 0 I

0 5 0 3 I 1

1 I 3 I I I 0

 + + +

 
+ 

 + +

 
+ 

 
+ + 

 

 

be the MOD natural neutrosophic square matrix with entries 

from I

6Z  = 〈0, 1, 2, …, 5, 6

0I , 6

2I , 6

4I , 6

3I 〉 under + and  ×. 
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Example 3.5: Let  

 

S = 

8 8 8 8 8 8

2 2 4 0 6 4

8 8 8 8

2 6 4 2

8 8 8

4 2 4

8 8 8 8 8

4 0 0 4 0

8 8 8

0 2 4

8 8 8 8 8 8

2 4 0 0 4 2

2 I 0 I I I I I 0 6

0 I I 0 3 I I

1 I 0 5 I I 0 7

4 I I I I I 0

0 0 6 I I 0 0 I 4

I I I 5 7 I I I 0

 + + + +

 
+ 

 + +

 
+ 

 
+ + +

 
+ + +  

 

 

be the MOD natural neutrosophic 6 × 6 matrix with entries from 

〈 I

8Z , +, ×〉.  We now define MOD natural neutrosophic matrix. 

 

 Let M = (mij) be a n × n matrix with entries from I

mZ ; the 

MOD natural neutrosophic matrix. We have seen examples of 

them. 

 

 We will illustrate the notion of MOD natural neutrosophic 

directed graphs. 

 

Example 3.6: Let G be a directed graph with edge weights from 
I

9Z . G is the MOD natural neutrosophic directed graph which is 

as follows. 

 

 

 

 

 

 

 

 

 

 
     

 

               

 

Figure 3.1 

5 
7 

v1 v2 
9

3I +4 

8+
9

6I v4 

9

0I  

v7 v6 7 

3+
9 9

3 0I I+  

v3 

v5 
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Example 3.7: Let G1 be the MOD directed natural neutrosophic 

integer graph with edge weights from I

10Z . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 

 

Example 3.8: Let G2 be the directed graph with edge weights 

from I

12Z , The MOD directed natural neutrosophic graph G2 is as 

follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 

 

 Now we define the MOD natural neutrosophic directed graph 

G to be a directed graph whose edge weights are from 

10 10

6 8I I+ +4 

v3 
v4 

v7 
v8 v9 

7 

v6 

10 10

6 54 I I+ +

v2 
10

0I v5 

10 10

4 6

10

5

I I

5 I

+

+ +

 

10

3I 4+  

v1 

10

5I

3 

12 12

4 33 I I+ +  

12

9I  

5+ 12 12

9 6I I+  
12 12

9 103 I I+ +  

12

36 I+  

v1 

5 
6 

v3 

v3 v6 

v4 

3 

v2 

v4 

11+ 12 12 12 12 12

9 2 10 6 8I I I I I+ + + +  
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 I

nZ ; 2 ≤ n < ∞. 

 

We have already seen examples of them.  

 

Next we proceed onto describe the notion of MOD natural 

Neutrosophic Cognitive Naps (MOD NCMs) model. 

 

Example 3.9: Let P be a problem at hand. Suppose C1, C2, …, 

C6 be the nodes  with which the expert works and uses the edge 

weights of the directed graph G from the set I

4Z . The MOD 

natural neutrosophic graph is as follows. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 

 

 

The MOD natural neutrosophic connection matrix M 

associated with the graph G is as follows. 

 

 

M = 

1 2 3 4 5 6

4
1 2

4
2 0

4 4
3 0 2

4

5

4
6 0

C C C C C C

C 0 I 0 0 0 0

C 0 0 0 0 I 2 0

C I I 0 0 0 0 0

C 0 0 3 0 0 0

C 0 0 0 0 0 1

C 0 I 0 0 0 0

 
 

+ 
 +

 
 
 
 
  

 . 

 

4 4

0 2I I+  

4

2I

C3

C1

C5

C4

3 

C2

4

0I 2+  

4

0I  

C6

1 
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Example 3.10: Let P1 be the problem with which is associated 

the nodes C1, C2, …, C7, C8, using edge weights from I

6Z . Let H 

be the MOD natural neutrosophic directed graph given by the 

except which is as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 

 

Let M1 be the MOD natural neutrosophic connection matrix 

associated with H. 

 

 

M1 = 

1 2 3 4 5 6 7 8

6
1 3

6 6
2 2 4

2
3 6

4

6
5 2

6
6 4

6
7 0

8

C C C C C C C C

C 0 4 2 I 0 0 0 0 0

C 0 0 0 0 0 0 5 I I 0

C 0 0 0 0 0 3 I 0 0

C 0 0 0 0 0 0 0 0
.

C 0 0 0 0 0 0 0 I

C 0 0 0 0 5 0 0 I

C 0 0 0 2 0 0 0 I

C 0 0 0 0 0 0 0 0

 +

 
+ + 

 +

 
 
 
 
 
 
 
  

 

6

0I  

4 
C1 C2 

6

4I  

6 6

2 4I I 5+ +  

C3

C8

C6 

C5 

C7

6

32 I+  

6

23 I+  

5 

2 

C4

6

2I
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Now we proceed onto describe the special operations we 

need on these M [  ].  

 

First we will illustrate this yet by an example. 

 

Example 3.11: Let P be a problem and let C1, C2, C3 and  C4 be 

the nodes associated with the problem P.  

 

Let G be the MOD natural neutrosophic direct graph given 

by the expert with edge weights from 
I

6Z   in the following. 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 

 

Let M be the MOD natural neutrosophic connection matrix 

associated with G. 

 

M = 

1 2 3 4

6
1 3

2

6 6
3 2 4

6
4 4

C C C C

C 0 3 I 0 0

C 0 0 0 1

C I I 3 0 0 0

C 0 0 I 0

 +

 
 
 + +

 
  

 . 

 

Let X = {(a1, a2, a3, a4) | ai ∈ {0, 1}; 1 ≤ i ≤ 4} and  

 

Xs = {(a1, a2, a3, a4) | ai ∈ {0, 1, 6

0I , 6

2I , 6

2I , 6

4I }, 1 ≤ i ≤ 4} be 

the MOD initial state vector and MOD special initial state vector 

associated with the MOD N Cognitive Maps model. 

 

1 

C1 C2 

C3

6

33 I+  

C4

6 3

2 4I I 3+ +  

6

4I  
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 Let x1 = (1, 0, 0, 0) ∈ X; to find the effect of x1 on M. 

 

x1M → (1, 3 + 6

3I , 0, 0) = y1 

y1M →  (1, 3 + 6

3I , 0, 3 + 6

3I ,) = y2 

y2M → (1, 3 + 6

3I ,  6 6

4 0I I+ , 3 + 6

3I ) = y3 

y3M = ( 6 6 5

2 0 4I I I+ + , 3 + 6

3I , 6 6

4 0I I+ , 3 + 6

3I ) = y4 

y4M = ( 6 6 6

2 0 4I I I+ + , 6 6 6

2 0 4I I I+ + , 6 6

4 0I I+ , 3+ 6

3I ) = y5 

y5M = ( 6 6 6

2 3 4I I I+ + , 6 6 6

2 0 4I I I+ + , 6 6

4 0I I ,+
6 6 6

2 0 4I I I+ + ) = y6 

y6M = ( 6 6 6

2 3 4I I I+ + , 6 6 6

2 0 4I I I+ + , 6 6

4 0I I+ , 6 6 6

2 0 4I I I+ + ) = y7 

y7M = ( 6 6 6

2 3 4I I I+ + , 6 6 6

2 0 4I I I+ + , 6 6

4 0I I+ , 6 6 6

2 0 4I I I+ + ) = y8  

(= y7). 

 

Thus the MOD resultant is a MOD fixed point. 

 

 In this way we can always find the MOD resultant to be a 

MOD fixed point or the MOD limit cycle. 

 

 Now we just describe the working and terminology of the 

MOD natural neutrosophic cognitive maps model used in this 

book. 

 

 Suppose we have a problem P in hand. The expert wishes to 

work using fuzzy cognitive  maps model but has the edge 

weights from I

nZ , (2 ≤ n < ∞).  

 

Let C1, C2, …, Cm be the nodes with which the expert 

works.  

 

Let G be the MOD natural neutrosophic directed graph G 

with edge weights from I

nZ . 

 

 Let M be the MOD natural neutrosophic connection matrix 

associated with G. 

 

Let X = {(a1, a2, …, am) | ai ∈ {0, 1); 1 ≤ i ≤ m} be the MOD 

initial state of vectors. 
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Xs = {(a1, a2, …, am) | ai ∈ {0, 1, n

tI ; t = 0 and all zero 

divisors, idempotents and nilpotents of Zn, 1 ≤ i ≤ m} be the 

MOD initial special state vector associated M. 

 

Suppose x = (a1, …, am) ∈ X; the effect x on M. 

 

xM → y1; y1M → y2 and so on we will arrive after a finite 

number of steps the MOD fixed point or MOD limit cycle.  

 

Suppose y is the end result we call y as the MOD hidden 

pattern of the MOD NCMs dynamical system. 

 

Suppose xs ∈ Xs in a way we arrive at ys the MOD fixed 

point or the MOD limit cycle as the MOD hidden pattern. 

 

Next we see whether X is on or Xs is on we arrive at a MOD 

resultant and the nodes of this MOD NCMs model can be real, 0 

or 1 or natural neutrosophic or mixed natural neutrosophic. 

 

This is the main specialty between NCMs and FCMs and 

MOD  NCMs model.  

 

Only in this case we see the nodes can take any of the 

values 0, 1, n

tI ; t is a zero divisor or nilpotent or an idempotent 

Zn. 

 

We will illustrate this situation by an example. 

 

 

Example 3.12: Let P be a problem in hand.  

 

Suppose C1, C2, C3, C4 be the nodes associated with the 

problem.  

 

Let G be the MOD natural neutrosophic directed graph given 

by the following figure with edge weight from I

4Z . 
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Figure 3.7 

 

 Let M be the MOD connection matrix with entries from I

4Z  

 

M = 

1 2 3 4

4 4
1 0 2

2

4
3 2

4

C C C C

C 0 I 0 2 I

C 0 0 0 2
.

C 0 2 I 0 0

C 0 0 0 0

 +

 
 
 +

 
  

 

 

Let X = {(a1, a2, a3, a4) | ai ∈ {0, 1}; 1 ≤ i ≤ 4} and  

 

Xs = {(a1, a2, a3, a4) | ai ∈ {0, 1, 4

0I , 4

2I }; 1 ≤ i ≤ 4} be the 

MOD initial state vectors and MOD special initial state vectors 

respectively. 

 

Let x1 = (1, 0, 0, 0) ∈ X; to find the effect of x1 on M. 

 

x1M → (1, 4

0I , 0, 2 + 4

2I ) = y1 

y1M → (1, 4

0I , 0, 2 + 4 4

2 0I I+ ) = y2 

y2M → (1, 4 4

0 2I I+ , 0, 2 + 4 4

2 0I I+ ) = y3 

y3M → (1, 4

0I + 4

2I , 0, 2 + 4

2I + 4

0I ) = y4 (= y3). 

 

Thus the MOD resultant is MOD fixed point. 

 

Let x2 = (0, 1, 0, 0) ∈ X the effect of x2 on M is as follows. 

 

x2M2 → (0, 1, 0, 2) = y1 

2 

C1 C2 

C3

4

0I

C4

4

2I

4

22 I+  

4

22 I+
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y1M2 → (0, 1, 0, 2) = y2 (= y1). 

 

Thus the MOD resultant is a MOD fixed point given by  

(0, 1, 0, 2). 

 

Let x3 = (0, 0, 1, 0) ∈ X; the effects of x3 on M. 

 

x3M → (0, 2 + 4

2I , 1, 0) = y1 

y1M → (0, 2 + 4

2I , 1, 4

2I ) = y2 

y2M → (0, 2 + 4

2I , 1, 4

2I ) = y3 (=y2). 

 

Thus the MOD resultant is a MOD fixed point given by  

(0, 2 + 4

2I , 1 , 4

2I ). 

 

Let x4 = (0, 0, 0, 1) ∈ X; to find the effect of x4 on M 

 

x4M → (0, 0, 0, 1) = x4 is the MOD classical special fixed 

point. 

 

Let x5 = ( 4

0I , 0, 0, 0) ∈ Xs. To find the effect of x5 on M. 

 

x5M → ( 4

0I , 4

0I , 0, 4

0I ) = y1 

y1M → ( 4

0I , 4

0I , 0, 4

0I ) = y2(=y1). 

 

Thus the resultant is a MOD fixed point ( 4

0I , 4

0I , 0, 4

0I )  --- I 

 

The nodes C2 and C4 are just the natural neutrosophic zero 

where as the on state of C1 has no effect on C3. 

 

Let x6 = ( 4

2I ,0, 0, 0) ∈ Xs. 

 

The effect of x6 on M; 

 

x6M → ( 4

2I , 4

0I , 0, 4 4

2 0I I+ ) = y1 

y1M → ( 4

2I , 4

0I , 0, 4 4

2 0I I+ ) = y2 (= y1). 
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Thus the MOD resultant is a MOD fixed point given by 

( 4

2I , 4

0I , 0, 4 4

2 0I I+ )   

 

We see this is different from I. 

 

Let x7 = (0, 1, 4

0I ,0) ∈ Xs. 

 

To find the effect of x7 on M. 

 

x7M → (0, 4

0I , 4

0I , 2) = y1 

y1M → (0, 4

0I , 4

0I , 4

0I ) = y2 

y2M → (0, 4

0I , 4

0I , 4

0I ) = y3 (= y2). 

 

Thus the MOD resultant is a MOD fixed point. 

 

Interested reader can work in this direction. 

 

Once again while working with combined MOD NCMs 

model we need to make some simple modifications. 

 

However, we wish to give two special MOD NCMs model 

examples in which one takes all edge weights for the MOD 

natural neutrosophic directed graph only from Zn another takes 

values only from I

nZ \ Zn. 

 

Example 3.13: Let P be a problem in hand and C1, C2, …, C6 be 

the nodes associated with the problem.  

 

Suppose the edge weights are taken from Z8 ⊆ I

8Z  for the 

MOD  directed graph G is as follows. 

 

 

 

 



MOD Natural Neutrosophic Cognitive Maps… 129 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 

 

Let M the MOD natural neutrosophic connection matrix 

associated with G. 

 

M = 

1 2 3 4 5 6

1

2

3

4

5

6

C C C C C C

C 0 4 0 3 0 0

C 0 0 0 0 0 0

C 0 0 0 0 5 0

C 0 0 0 0 0 0

C 0 2 0 0 0 0

C 0 0 1 7 0 0

 
 
 
 
 
 
 
 
  

. 

 

Let X = {(a1, a2, …, a6} | ai ∈ {0, 1}; 1 ≤ i ≤ 6 and 

 

Xs = {(a1, a2, …, a6) | ai ∈ {0, 1, 8

0I , 8

2I , 8

4I , 8

6I }; 1 ≤ i ≤ 6} 

be the MOD initial state vector and the MOD initial special state 

vector associated with the MOD N Cognitive Maps model. 

 

Let x1 = (1, 0, 0, 0, 0, 0) ∈ X to find the effect of x1 on M  

 

x1M → (1, 4, 0, 3, 0, 0) = y1 

y1M → (1, 4, 0, 3, 0, 0) = y2 (= y1). 

 

C1 C2 

C5

C4 

C6

C3 

3 

4 

2 

5 

1 7 
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Thus the MOD resultant is a  MOD fixed point given  by  

(1, 4, 0, 3, 0, 0). 

 

We see the MOD resultant is real if the MOD NCMs matrix 

which represents the MOD NCMs dynamical matrix M has only 

real entries. 

 

Let x2 = (0, 1, 0, 0, 0, 0) ∈ X, to find the effect of x2 on M 

 

x2M → (0, 1, 0, 0, 0, 0) = y1 (=x2).  

 

Thus the MOD resultant is a MOD special classical fixed 

point. 

 

Let x6 = (0, 0, 0, 0, 0, 1) ∈ X; to find the effect of x6 on M 

 

x6M → (0, 0, 1, 7, 0, 1) = y1 

y1M → (0, 0, 1, 7, 5, 1) = y2 

y2M → (0, 2, 1, 7, 5, 1) = y3 

y3M → (0, 2, 1, 7, 5, 1) = y4 (=y3). 

 

The MOD resultant is not the MOD special classical fixed 

point only a MOD fixed point given by (0, 2, 1, 7, 5, 1) which is 

real. 

 

Let a1 = ( 8

2I , 0, 0, 0, 0, 0) ∈ Xs to find the effect of a1 on M. 

 

a1M → ( 8

2I , 8

2I , 0, 8

2I , 0, 0) = y1 

y1M → ( 8

2I , 8

2I , 0, 8

2I , 0, 0) = y2 (= y1).  

 

This is the MOD resultant is the MOD fixed point given by 

( 8

2I , 8

2I , 0, 8

2I , 0, 0) which is pure natural neutrosophic.  

 

That is if the MOD initial state vector is from Xs \ X then the 

MOD resultant is pure natural neutrosophic only. 

 

Let a1 = (0, 1, 0, 0, 8

6I , 0) ∈ Xs; to find the effect of a1 on M. 
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a1M  → (0, 8

6I , 0, 0, 8

6I , 0) = y1 

y1M → (0, 8

6I , 0, 0, 8

6I , 0) = y (=y1). 

 

Thus the MOD resultant in this case is also a MOD fixed 

point in which all the nodes are pure natural neutrosophic only. 

 

Let a2 = (0, 8

4I , 0, 0, 0, 1) ∈ Xs, to find the effect of a2 on M. 

 

a2M → (0, 8

4I , 1, 7, 0, 1) = y1 

y1M → (0, 8

4I , 1, 7, 0, 1) = y2 (= y1). 

 

Thus the MOD resultant is a MOD fixed point given by  

(0, 8

4I , 1, 7, 0, 1) which is such that some nodes are pure natural 

neutrosophic and some are real however the MOD special initial 

state vector has both real and natural neutrosophic coordinates 

to be in the on state.  

 

In view of this we have the following theorem. 

 

THEOREM 3.1: Let P be a problem; C1, …, Cm be the nodes 

associated with P. 

 

Let M be the MOD NCMs model associated with P with 

entries from Zn ⊆ I

nZ . 

 

Let X = {(a1, …, an) / ai ∈ {0, 1}, 1 ≤ i ≤ m} and  

 

Xs = {(a1, a2, …, an) / ai ∈ {0, 1, n

tI  where t is a zero divisor 

or nilpotent or idempotent or 0 of Zn}. 1 ≤ i ≤ m} be the MOD 

initial state vectors and MOD special initial state vector 

respectively associated with this MOD NCMs model M. 

 

i)    If x ∈ X, the MOD resultant of  x on M is always MOD 

fixed point or a MOD limit cycle which has the node 

values from Zn. 
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ii) If x1 ∈ Xs \ X the MOD resultant of x1 on M has the 

nodes to be pure natural neutrosophic only. 

iii) If x2 ∈ Xs (some nodes are pure natural neutrosophic 

and some or 1) then the MOD resultant of x2 on M can 

be such that the nodes associated with them can be 

pure natural neutrosophic and real or pure natural 

neutrosophic but it cannot be all real. 

 

Proof is direct and hence left as an exercise to the reader. 

 

 Next we proceed onto give examples of MOD NCM model 

which has all the edge weights associated with the directed 

graphs to be pure neutrosophic. 

 

Example 3.14: Let P be a problem in hand and C1, C2, C3, C4, 

C5 be the nodes associated with P. The expert wishes to work 

with MOD NCMs model using entries from I

10Z .  

 

Let G  be the MOD direct graph given by the expert is as 

follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 

 

Let M1 be the MOD  n connection matrix associated with G. 

C1 C2

C3

C4

C5

10 10

0 4I I+  10

6I  

10

8I  

10

5I  

10

2I  
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M1 = 

1 2 3 4 5

10
1 5

10
2 2

10
3 8

10 10 10
4 6 0 4

5

C C C C C

C 0 I 0 0 0

C 0 0 0 I 0

C 0 0 0 I 0

C 0 0 I 0 I I

C 0 0 0 0 0

 
 
 
 
 

+ 
 
 

 . 

 

 

Let X = {(a1, a2, a3, a4, a5) / ai ∈ {0, 1}, 1 ≤ i ≤ 5} and  

 

Xs = {(a1, a2, a3, a4, a5) / ai ∈ {0, 1, 10

2I , 10

4I , 10

0I , 10

6I , 10

8I , 
10

5I }, 1 ≤ i ≤ 5} be the MOD initial state vectors and MOD special 

initial state vectors respectively associated with M1. 

 

Let x1 = (1, 0, 0, 0, 0) ∈ X; to find the effect of x1 on M1. 

x1M1 → (1, 10

5I , 0, 0, 0) = y1 

y1M1  → (1, 10

5I , 0, 10

0I , 0) = y2 

y2M1 → (1, 10

5I , 10

0I , 10

0I , 10

0I ) = y3 

y3M1 → (1, 10

5I , 10

0I , 10

0I , 10

0I ) = y4 (=y3). 

 

Thus the MOD resultant is a MOD fixed point given by  

(1, 10

5I , 10

0I , 10

0I , 10

0I ), that is the on state of C1 makes on all the 

four nodes C2, C3, C4 and C5 and node C2 is a natural 

neutrosophic number 10

5I  and other three are just natural 

neutrosophic zeros 10

0I . 

 

Let x2 = (0, 1, 0, 0, 0) ∈ X; the effect of x2 on M1 

 

x2M1 → (0, 1, 0, 10

2I , 0) = y1 

y1M1 → (0, 1, 10

2I , 10

2I , 10

0I  + 10

8I ) = y2 

y2M1 → (0, 1, 10

2I , 10

2I + 10

6I , 10

2I  + 10

8I ) = y3 
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y3M1 → (0, 1, 10

2I  + 10

6I , 10

2I  + 10 10

6 8I I+ , 10

0I + 10

8I  + 10

4I ) = y4 

and so on. 

 

Certainly after a finite number of iterations we will arrive a 

MOD fixed or a MOD limit cycle.  

 

Further all the nodes which come to on state will be pure 

natural neutrosophic however the on state of the that node may 

be 1 in the MOD resultant. 

 

Let x5 = (0, 0, 0, 0, 1) ∈ Xs to find the effect of x5 on M1 is 

as follows. 

 

x5M1 → (0, 0, 0, 0, 1) = x5. 

 

Thus the MOD resultant is a MOD special classical fixed 

point. 

 

Let x4 = (0, 0, 0, 1, 0) ∈ X, the effect of x4 on M1 is as 

follows. 

 

x4M1 → (0, 0, 10

6I , 1, 10

0I + 10

4I ) = y1 

y1M1 → (0, 0, 10

6I , 10

8I , 10

0I + 10

4I ) = y2 

y2M1 → (0, 0, 10

8I , 10

8I , 10

0I + 10

2I ) = y3 

y3M1 → (0, 0, 10

8I , 10

4I , 10

0I + 10

6I ) = y4 

y4M1 → (0, 0, 10

4I , 10

4I , 10

0I + 10

4I ) = y5 

y5M1 → (0, 0, 10

4I , 10

2I , 10

0I + 10

6I ) = y6 

y6M1 → (0, 0, 10

2I , 10

2I , 10

0I + 10

8I ) = y7 

y7M1 → (0, 0, 10

2I , 10

6I , 10

0I + 10

6I ) = y8 

y8M1 → (0, 0, 10

6I , 10

6I , 10

0I + 10

4I ) and so on. 

 

 

We will arrive at a MOD resultant after a finite  number of 

iterations which may be a MOD fixed point or a MOD limit cycle.  
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But whatever be the case the on state of the node has no 

effect on nodes C2 and C1 only the node C3 and C6 come to on 

state with pure natural neutrosophic values. 

 

Let a1 = ( 10

6I , 0, 0, 0, 0) ∈ Xs, to find the effect of a1 on M1 

 

a1M1 → ( 10

6I , 10

0I , 0, 0, 0) = y1 

y1M1 → ( 10

6I , 10

0I , 0, 10

0I , 0) = y2 

y2M1 → ( 10

6I , 10

0I , 10

0I , 10

0I , 10

0I ) = y3 

y3M1 → ( 10

6I , 10

0I , 10

0I , 10

0I , 10

0I ) = y4 (=y3). 

 

Thus the MOD resultant is a MOD mid point and on state of 

the node with natural neutrosophic number 10

6I  makes on all the 

other nodes to on state with the natural neutrosophic zero value. 

 

Let b1 = (1, 0, 10

4I , 0, 0) ∈ Xs. 

 

To find the effect of b1 on M1 

 

b1M1 → (1, 10

5I , 10

4I , 10

2I , 0) = y1 

y1M1 → (1, 10

5I , 10

2I , 10

0I + 10

2I , 10 10

0 8I I+ ) = y2 

y2M → (1, 10

5I , 10

0I + 10

2I , 10 10

0 6I I+ , 10 10

0 8I I+ ) = y3 

y3M → (1, 10

5I , 10 10

0 6I I+ , 10 10

0 6I I+ , 10 10

0 4I I+ ) = y4 

y4M → (1, 10

5I , 10 10

0 6I I+ , 10 10

0 8I I+ , 10 10

0 4I I+ ) and so on. 

 

All nodes come to on state C1 remains in the same state as 

1, however all other states are MOD natural neutrosophic 

numbers. 

 

Example 3.15:  Let P be a problem in hand. C1, C2, C3 and C4 

are the nodes. The expert works, with the MOD N C Maps model 

entries from I

12Z .   

 

The directed graph G2 given by him is as follows. 
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 G2= 

 

 

 

 

 

 

 

 

Figure 3.10 

 

Let M2 be the MOD connection matrix associated with G2. 

 

M2 = 

1 2 3 4

12 12 12
1 0 6 4

12 12
2 3 9

12
3 10

12 12
4 6 2

C C C C

C 0 I I I 0 0

C 0 0 0 I I

C I 0 0 0

C I I 0 0 0

 + +

 
+ 

 
 

+  

. 

 

 

 

Let X = {(a1, a2, a3, a4)  | ai ∈ {0, 1}; 1 ≤ i ≤ 4} and  

 

Xs = {(a1, a2, a3, a4) | ai ∈ {0, 1, 12

0I , 12

2I , 12

4I , 12

6I , 12

8I , 12

10I , 
12

3I , 12

9I }; 1 ≤ i ≤ 4} be the MOD initial state vector and MOD 

special natural neutrosophic initial state vectors respectively 

associated with M2. 

  

Clearly X ⊆ Xs. 

 

Let x1 = (1, 0, 0, 0) ∈ X, to find the effect of x1 on M2 

 

x1 M2 → (1, 12 12 12

0 6 4I I I+ + , 0, 0) = y1 

C2 

12 12 12

0 6 4I I I+ +  

12 12

3 9I I+  

C4

C1

C3 12 12

6 2I I+  

12

10I
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y1M2 → (1, 12 12 12

0 6 4I I I+ + , 0, 12 12 12

0 6 8I I I+ + ) = y2 

y2M2 → ( 12 12

0 4I I+ , 12 12 12

0 6 4I I I+ + , 0, 12 12

0 6I I+ ) = y3 

y3M2 → ( 12

0I , 12 12

0 4I I+ , 0, 12 12

0 6I I+ ) = y4 

y4M2 → ( 12

0I , 12 12

0 4I I+ , 0, 12

0I ) = y5 

y5M2 → ( 12

0I , 12 12

0 4I I+ , 0, 12

0I ) = y6 (=y5). 

 

Thus the MOD resultant is a MOD fixed point, all the nodes 

which has come to on state has become natural neutrosophic 

zero or a natural neutrosophic number. However C3 remain 

unaffected by the on state of C1. 

 

Interested  author can with different real world models.  

 

We prove the following theorem. 

 

THEOREM 3.2: Let P be a problem C1, C2, …, Cn be the nodes 

associated with the problem.  M be the n × n MOD natural 

neutrosophic matrix with entries from I

mZ \ Zm  serves as the 

dynamical system of the MOD natural neutrosophic-

neutrosophic Cognitive Maps model. 

 

Let X = {(a1, a2, …, an) / ai ∈ {0, 1}, 1 ≤ i ≤ n} and  

 

Xs = {(a1, a2, …, an) / ai ∈ {0, 1, n

tI , t a zero divisor or 

idempotent or a  nilpotent element of Zm}; 1 ≤ i ≤ n} be the MOD 

initial state vectors and MOD special natural neutrosophic 

initial state vectors. 

 

i) If x ∈ X then the MOD resultant of x on M is always a 

MOD fixed point or a MOD limit cycle with entries from 
I

mZ  \ Zm or 1 where 1 is the initial state vector in x. 

ii) If xs ∈ Xs \ X then the MOD resultant of xs on M is always 

a vector whose entries are from Xs \ {1}. 

 

Proof is direct and hence left as an exercise to the reader. 
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 Working for more results in this direction is left as an 

exercise to the reader as it is considered as a matter of routine. 

 

 Next we proceed onto define describe and develop the 

notion of MOD natural neutrosophic complex Cognitive Maps 

model.  

 

C
I
(Zn) = {a + biF / a, b ∈ Zn, 

2

Fi = (n – 1)} ∪ { C

tI  where t is a 

zero divisor or unit or nilpotent of C(Zn)}. 

 

We first define MOD natural neutrosophic complex number 

directed graphs. 

 

Example 3.16: Let G be a directed graph with edge weight from 

C
I
(Z4) given by the following figure.  

 

G is defined as the MOD natural neutrosophic complex 

directed graph. 

 

 

  

  

 

 

 

 

 

 

 

Figure 3.11 

 

 

Example 3.17: Let G, be the MOD natural neutrosophic number 

complex directed graph given in Figure 3.12 with edge weights 

from C
I
(Z6). 

 

F

C

2 2iI
+

 

F

C

2i1 I+  

2 

C

2G 3 I= +  

v1 v2 

3 

2+2iF v6 

2iF 

v5 

v3 v4 
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Figure 3.12 

 

 Now we proceed onto describe the notion of MOD natural  

neutrosophic complex finite number directed graph in the 

following. 

 

 Let C
I
(Zn) be the MOD finite complex number natural 

neutrosophic elements as they are got using modulo integers we 

choose to call them as MOD finite complex natural neutrosophic 

number elements instead of finite complex natural neutrosophic 

numbers in [ ]. 

 

 Let G be the directed graph of the edge weights are taken 

from C
I
(Zn) then we define G to be the MOD finite complex 

natural neutrosophic directed graph. 

2+5iF 

2+4iF 

3iF+5 

v3 v4 

5 

v1 

3+4iF 

v2 

3 

v5 

4iF 

4 

v8 

2 

v10 
3+3iF 

v6 

5iF 

3iF 

4 

v9 

v7 
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 We have already given examples of them. 

 

 Now we proceed onto describe by examples MOD finite 

complex natural neutrosophic number square matrices. 

 

Example 3.18: Let  

 

M = 

F

F F F

F F

F F

C

F F 3 F

C

2i

F F F

0 i 2 3i 0 4 2i

2 0 4 i 3 0 i

0 4 i 0 0 2 i 0

i 0 4i 3 I 0 2 3i

0 I 2 0 4 0

2 4i 0 0 4 i 0 3 i

+ 
 

+ 
 + +

 
+ + 

 
 

+ + +  

 

 

be the MOD finite complex natural neutrosophic number square 

matrix with entries from C
I
(Z6). 

 

Example 3.19: Let  

 

M = 

F F

F

C C

4i 2i

C C C

0 2 4

C

6

C

6 6i

0 4 I 1 3 I

I 0 I I 0

2 5 0 3 I

0 4 I 3 0
+

 + +

 
+ 

 
+

 
+  

 

 

be the MOD natural neutrosophic finite complex number square 

matrix with entries from C
I
(Z8). 

 

 Thus if M = (mij) is a n × n square matrix with entries from 

C
I
(Zm) then we define M to be a MOD natural neutrosophic finite 

complex number square matrix. 

 

We have already gives examples of them we need to define 

only a new type of special operations using them. 

 

Let X = {(a1, a2, …, an) / ai ∈ {0, 1}, 1 ≤ i ≤ n} and  
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Xs= {(a1, a2, …, an) | ai ∈ {0, 1, C

tI , where t is a zero divisor 

or nilpotent or an idempotent in C
I
(Zm)}, 1 ≤ i ≤ n} be the MOD 

initial state vectors and MOD special finite complex natural 

neutrosophic integer initial state vectors respectively associated 

with the MOD natural neutrosophic finite complex number 

matrix M. 

 

The special operations will be illustrated by the following 

example. 

 

Example 3.20: Let  

 

M = 
F

F

C

F 0

C C

2 2i

C C

2 4i 4

F

F

0 3 4 2i 0 I

I 0 i 1 2 0

0 3 I 0 I 2

1 0 1 0 i

0 4 i 0 0 0

+

 +

 
+ 

 
+

 
 
 

+ 

 

 

be the MOD natural neutrosophic finite complex number matrix 

with entries from C
I
(Z6). 

 

Let X = {(a1, a2, a3, a4, a5) / ai ∈ {0, 1}; 1 ≤ i ≤ 5} be the 

initial state of vector and  

 

Xs = {(a1, a2, …, a5) / ai ∈ {0, 1, C

tI  where t is a zero divisor 

or idempotent or nilpotent element of C
I
(Z6)}; 1 ≤ i ≤ 5} be the 

MOD special natural neutrosophic complex number initial state 

vectors related with the MOD matrix M. 

 

Let x = (1, 0, 0, 0, 0) ∈ X; to find the effect of x on M. 

 

xM → (1, 3, 4 + 2iF, 0, C

0I ) = y1 

y1M → ( C

2I , 3 + C

0I  + 
F

C

2 4iI
+

, 1 + 2iF + 
F

C

2iI , C

4I , C

0I + 2 + 4iF)  

             = y2 
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y2M → ( C

0I  + C

2I  + C

4I , 
F

C

4 4iI
+

 + 
F

C

2iI + 
F

C

2 4iI
+

 + 3, 

3+ C

2I + C C

0 4I I+ +
F

C

2iI +
F

C

2 4iI
+

,  C

0I  + C

4I  + 
F

C

2iI , C

0I  + 2 + 4iF + 
F

C

2iI + 

C

4I ) = y3  and so on however after a finite number of iterations 

we are sure to arrive at a MOD fixed point or a MOD limit cycle. 

 

Let x2 = (0, 1, 0, 0, 0) ∈ X, to find the effect of x2 on M. 

 

 x2M → ( C

2I , 1, 1 + 
F

C

2iI , 2, 0) = y1 

 

y1M = (2 + C

2I , 3 + 
F

C

2iI , C

2I +
F

C

4 4iI
+

, 3 + C

2I  + 
F

C

2iI , 2 + C

4I +  

F

C

2iI , 2 + 2iF + C

0I  + 
F

C

2iI ) = y2 and so on. 

 

Thus certainly after a finite number of iterations we arrive at 

a MOD fixed point or a MOD limit cycle. 

 

Let a1 = ( C

0I , 0, 0, 1, 0) ∈ Xs; to find the effect of a1 on M. 

 

 

a1M → ( C

0I + 1, C

0I , 1 + C

0I , 1, C

0I  +iF) = y1 

y1M → ( C

0I  + 1, C

0I  + 
F

C

2 4iI
+

, 5 + 2iF + C

0I , C

0I  + C

4I , 2 + iF +   

            C

0I ) = y2 

y2M → ( C

0I  + C

4I , C

0I  + 
F

C

2 4iI
+

, 4 + 2iF + C

0I  + C

4I  + 

F

C

4 4iI
+

+
F

C

2 4iI
+

, C

0I  + C

4I  + 
F

C

2 4iI
+

  + 2iF, 4 + C

0I  + 4iF  + C

4I ) = y3 and 

so on. 

 

We are sure after a finite number of iterations we will arrive 

at a MOD fixed point or a MOD limit cycle.  

 

Interested reader can construct more examples of such 

models. 
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Example 3.21: Let  

 

M = 

F

C

F 5i

C

0

F

0 2i I 0 0

0 0 1 I 0

0 0 0 1 4

2 0 0 0 i

1 0 1 0 0

 
 
 
 
 
 
 
 

 

 

be the MOD natural  neutrosophic finite complex number matrix 

with entries from C
I
(Z10). 

 

Let X = {(a1, a2, …, a5) / ai ∈ {0, 1}, 1 ≤ i ≤ 5} and 

 

  XS = {(a1, a2, …, a5) / ai ∈ {0, 1, C

0I , C

2I , C

4I , C

6I , C

8I , 
F

C

2iI , 

F

C

4iI , C

5I , 
F

C

5iI , …, 
F

C

2 8iI
+

, …, 
F

C

8 8iI
+

},  1 ≤ i  ≤ 5} be the initial 

state vector MOD special initial state of vectors associates with 

M. 

 

Let x1 = (1, 0, 0, 0, 0) ∈ X; the effect of x1 on M. 

 

x1M → (1, 2iF, 
F

C

5iI , 0, 0) = y1 

y1M → (1, 2iF, 
F

C

5iI + 2iF, 
F

C

5iI , 0) = y2 

y2M → (
F

C

5iI , 2iF, 
F

C

5iI + 2iF, 
C

0I  +
F

C

5iI  + 2iF, 
F

C

5iI ) and so 

on.  

 

After a finite number of iteration we will arrive at a MOD 

fixed point or MOD limit cycle. 

 

Let x2 = (0, 1, 0, 0, 0) ∈ X. 

 

 x2M → (0, 1, 1, C

0I , 0) = y1 

y1M → ( C

0I , 1, 1, C

0I , 4 + C

0I ) = y2 

y2M → (4 + C

0I , C

0I , C

0I  + 5, 1 + C

0I , 4 + C

0I ) = y3 
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y3M = (6 + C

0I , 8iF + C

0I ,  
F

C

5iI  + C

0I  + 4, C

0I  + 5, 4 + iF + C

0I )  

             = y4 

Thus the MOD resultant will be arrived after a finite number 

of iterations which may be a MOD fixed point or a MOD limit 

cycle. 

 

Let a3 = ( C

5I , 0, 0, 0, 0) ∈ X5. 

 

The effect of a3 on M 

a3M → ( C

5I , C

5I ,
F

C

5iI , 0, 0) = y1 

y1M → ( C

5I , C

5I ,
F

C

5iI + C

5I , C

0I +
F

C

5iI , 
F

C

5iI ) = y2 

y2M → ( C

0I  + 
F

C

5iI , C

5I , 
F

C

5iI + C

5I , C

0I  + 
F

C

5iI + C

5I , C

0I  + 
F

C

5iI +  

         C

5I ) = y3 and so on. 

 

Certainly after a finite number of iteration we will arrive at 

a MOD fixed point or a MOD limit cycle. 

 

Let p1 = (1, 0, 0, 0, C

2I ) ∈ Xs, to find the effect of p1 on M. 

p1M → ( C

2I , 2iF, 
F

C

5iI + C

2I , 0, C

2I ) = y1 

y1M → ( C

2I , C

2I , C

0I  + 2iF + C

2I , C

0I + 
F

C

5iI + C

2I , C

2I  + 
F

C

5iI ) = y2 

and so on. 

 

Certainly after a finite number of iterations we will arrive at 

a MOD  fixed point or a MOD limit cycle. 

 

Interested reader can construct more such model for real 

world problem and analyse them. 

 

Example 3.22: Let  

 

M = 

F

C C

2 2i0 I 0 1 I

0 0 1 2

1 0 0 1

3 0 2 0

 +

 
 
 
 
  
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be the MOD natural neutrosophic finite complex modulo integer 

matrix with entries from C
I
(Z4). 

 

Let  X = {(a1, a2, a3, a4) | ai ∈ {0, 1}, 1 ≤ i ≤ 4} be the initial 

state vector. 

Let x = (1, 0, 0, 0) ∈ X, for find the effect of x on M. 

 

xM → (1, C

2I , 0, 
F

C

2iI + 1) = y1 

y1M → (3 + 
F

C

2iI , C

2I , C

2I  + 2 + 
F

C

2iI , 1 + 
F

C

2iI  + C

2I ) = y2 

y2M → (1 + C

2I  + 
F

C

2iI , C

0I + C

2I , 2 + C

2I  + 
F

C

2iI , 1 + 
F

C

2iI + C

2I )  

             = y3 

y3M → (1 + C

2I + 
F

C

2iI , C

2I  + C

0I , C

0I  + C

2I  + 2 +
F

C

2iI , 3 + C

2I  +  

        
F

C

2iI + C

0I ) = y4 and so on. 

 

Certainly after a finite number of iterations we will arrive at 

a MOD fixed point or MOD limit cycle. 

 

Let x2 = (0, 1, 0, 0) ∈ X; to find the effect of x2 on M. 

 

x2M → (0, 1, 1, 2) = y1 

y1M → (3, 1, 1, 3) = y2 

y2M = (2, C

2I , 3, 2 + 
F

C

2iI ) = y3 

y3M = (1 + 
F

C

2iI , C

2I , C

2I  + 
F

C

2iI , 2 + C

2I  + 
F

C

2iI ) = y4 and so on. 

 

We will after a finite number of iterations arrive at a MOD 

fixed point or a MOD limit cycle. 

 

Let x = (0, 0, 1, 1) ∈ X. To find the effect of x on M. 

 

xM = (0, 0, 2, 1) = y1 

y1M = (1, 0, 2, 2)  = y2 

y2M = (0, 0, 1, 3 + 
F

C

2iI + 0) = y3 

y3M = (2 + 
F

C

2iI , 0, 2 + 
F

C

2iI , 1) = y4 

y4M = (1 + 
F

C

2iI , C

2I  + C

0I , 2, 
F

C

2iI + C

0I ) = y5 and so on. 
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We see that the MOD resultant is a MOD fixed point or a 

MOD limit cycle but the on state will give the resultant nodes to 

be 1 or 0 or real or complex or mixed complex number or  

natural complex neutrosophic. 

 

We see the on state of a node Ci can make other nodes 

complex or just 1 or just 0 and so on.  

 

This is one of the main advantages of using these new MOD 

natural  neutrosophic complex cognitive maps model very 

distinct from FCMs and NCMs which is commonly used by 

researchers.  

 

Second is these models can be very powerful for the human 

mind usually thinks at times a nodes as not a completely real 

quantity or a completely complex quantity or a completely a 

natural  neutrosophic quantity but a mixture of all also.  

 

Hence this model works more like  our brains functioning. 

 

Next we proceed onto describe the notion of MOD natural 

neutrosophic dual number cognitive maps model.  

 

For to introduce this new model we have to first describe 

MOD dual number directed graphs and MOD natural 

neutrosophic dual number square matrices and special 

operations on them. 

 

Example 3.23: Let G be the MOD natural neutrosophic dual 

number directed graph with edge weights from  

 

 

〈Z5 ∪ g〉I = {a + bg, g

gI , g

2gI , g

0I , g

gI  + g

0I , g

gI  + 2, 1 + g

gI , …}. 
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Figure 3.13 

 
Example 3.24: Let H be the MOD natural neutrosophic dual 

number directed graph with edge weights from 〈Z6 ∪ g〉I given 

in Figure 3.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 

g

gI 1+  

g

0I  

g

0I 2+

 

1+ g

2gI  

1 

v1 

v4 

v6 

v7 

v3 

v2 

v5 

2 

2 

g

2g 2I
+

 

v6 

v2 v1 

v4 
v5 

v8 

v7 

v9 

v10 

v11 

4g 

v3 
2 

5g+1 

4g 

g

3gI  

4 

g

gI  

3g 

g

2 4gI
+

 

3 

4+2g 

v12 
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Now  we define the MOD natural neutrosophic dual number 

directed graph in the following. 

 

 Let G be the directed graph with edge weights from  

〈Zn ∪ g〉I; then we define G to be a MOD natural neutrosophic 

dual number directed graph.  

 

We have given examples of them. 

 

 Next we describe MOD natural neutrosophic dual number 

matrix by some examples. 

 

Example 3.25: Let  

 

M = 

g g

2g 4g

g

4g 2

g g g

2g 4 0

3g 2 0 I I 4 2

0 0 6g 0 2g 4

4 2 I 0 7g 0

0 I I 2g I 1

1 0 2 0 0

+

 + +

 
+ 

 +

 
+ 

 
 

 

 

be the MOD natural neutrosophic dual number 5 × 5 matrix with 

entries from 〈Z8 ∪ g〉I. 

 

Example 3.26: Let  

 

P = g

0

g g

g 6g

0 2g 4 5

6g 0 I

I 6 I 0

 +

 
 
 + 

 

 

be the MOD natural neutrosophic dual number square matrix 

with entries from 〈Z7 ∪ g〉I. 

 

 Now having seen examples of MOD natural neutrosophic 

dual number square matrix we will define them in the following. 
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 Let M = (mij) be a n × n matrix with entries from 〈Zm ∪ g〉I  

then we define M to be a MOD natural neutrosophic dual number 

square matrix. 

 

 Now we define special type of operations on them. 

 

Let X = {(a1, …, an) / ai ∈ {0, 1}; 1 ≤ i ≤ n} be the set of 

MOD initial state vectors and  

 

Xs = {(a1, a2, …, an) / ai  ∈ {0, 1, g

tI / t is a nilpotent or 

idempotent or a zero divisors in 〈Z7 ∪ g〉I}; 1 ≤ i ≤ n} be the set 

of MOD special natural neutrosophic dual number state vectors. 

 

We find xM; x ∈ X or Xs and update at each stage since the 

collection 〈Zm ∪ g〉I is finite we will arrive at a MOD fixed point 

or a MOD limit cycle after a finite number of iterations. 

 

We will illustrate this situation by some examples. 

 

Example 3.27: Let  

 

M = 

g

2

g

3g

0 3 g I 0

I 0 0 0

0 0 0 1

g 0 1 g 0

 +

 
 
 
 

+  

 

 

be the MOD natural neutrosophic dual number matrix with 

entries from 〈Z4 ∪ g〉I. 

   

Let X = {(a1, a2, a3, a4) / ai ∈ {0, 1}; 1 ≤ i ≤ 4} and  

 

Xs = {(a1, a2, a3, a4) / ai ∈ {0, 1, g

tI ; t is a zero divisors or 

nilpotents or idempotents from 〈Z4 ∪ g〉I}; 1 ≤ i ≤ 4} be the MOD 

initial state vector and MOD special initial state vector 

respectively. 

 

Let x = (1, 0, 0, 0) ∈ X; the effect of x on M, 
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xM → (1, 3 + g, g

2I , 0) = y1 

y1M → ( g

3gI , 3 + g, g

2I , g

2I ) = y2 

y2M → ( g

3gI + g

2I , g

3gI , g

2gI , g

2I ) = y3 

y3M → ( g g

0 2I I+ , g

3gI + g

2I , g g

2g 2gI , I ) = y4 

y4M → ( g g

0 2gI I+ , g g

0 2I I+ , g g

0 2gI I+ , g

2gI ) = y5 

y5M → ( g g

0 2gI I+ , g g

0 2gI I+ , g g

0 2gI I+ , g g

0 2gI I+ ) = y6 

y6M → ( g g

0 2gI I+ , g g

0 2gI I+ , g g

0 2gI I+ , g g

0 2gI I+ ) = y7 (= y6). 

 

The MOD resultant is a MOD fixed point given  by  

( g g

0 2gI I+ , g g

0 2gI I+ , g g

0 2gI I+ , g g

0 2gI I+ ). 

 

We see the on state of the node C1 makes all the nodes to on 

natural neutrosophic state g g

0 2gI I+  including C1.  

 

So every node has the same effect when the node C1 is on 

with initial value 1. 

 

Let x4 = (0, 0, 0, 1) ∈ X. To find the effect of x4 on M. 

 

x4M → (g, 0, 1 + g, 1) = y1 

y1M = (g, 3g, g

2I + 1 + g, 1 + g) = y2 

y2M = ( g

3gI g+ , 3g, g

2I + 1 + 2g, g

2gI + 1 + g) = y3 

y3M = ( g g

3g 2I I+ + g + g

2gI , g

3gI + 3g, g

2gI + g

2I + 1 + 2g,  

       g

2I + 1 + 2g) = y4 and so on. 

 

We see on state of C4 has after four iterations made on all 

the other nodes and they get different values.  

 

However it is left as an exercise for the reader to find the 

MOD resultant of x4 on M. 

 

This is the way the special operations are performed on M. 
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We give yet one more example  before we define and 

describe the MOD natural neutrosophic dual number Cognitive 

Maps model (MOD NCMs model). 

 

Example 3.28: Let  

 

M = 

g

g

0 g 0 0 0

0 0 1 0 0

2 0 0 0 0

0 0 3 0 0

0 0 0 I 0

 
 
 
 
 
 
 
 

 

 

be the MOD natural neutrosophic dual number square matrix 

with entries from 〈Z6 ∪ g〉I. 

 

Let X = {(a1, a2, a3, a4, a5) | ai ∈ {0, 1}, 1 ≤ i ≤ 5} and  

 

Xs = {(a1, a2, …, a5) | ai ∈ {0, 1, g

tI ; t a zero divisor or 

nilpotent or idempotent in 〈Z6 ∪ g〉I; 1 ≤ i ≤ 5}, with usual 

notations. 

 

x1 = (1, 0, 0, 0, 0) ∈ X, the effect of x on M ; 

 

x1M → (1, g, 0, 0, 0) = y1 

y1M → (1, g, g, 0, 0) = y2 

y2M → (2g, g, g, 0, 0) = y3 

y3M = (2g, 0, g, 0, 0) = y4 

y4M = (2t, 0, 0, 0, 0) = y5 

y5M → (1, 0, 0, 0, 0) = y6 (=x1). 

 

Thus the MOD resultant of x1 is a MOD limit cycle leading to 

the same x1.  

 

Let x2= (0, 1, 0, 0, 0) ∈ X. To effect of x2 on M. 

 

x2M = (0, 1, 1, 0, 0) = y1 

y1M → (2, 1, 1, 0, 0) = y2 
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y2M → (2, 2g, 1, 0, 0) = y3 

y3M = (2g, 2g, 2g, 0, 0) = y4 

y4M = (4g, 2g, 2g, 0, 0) = y5 

y5M → (4g, 1, 2g, 0, 0) = y6 

y6M = (4g, 1, 1, 0, 0) = y7 

y7M → (2, 1, 1, 0, 0) = y8 (=y2). 

 

Thus the MOD resultant is a MOD limit cycle given  by  

(2, 1, 1, 0, 0) the on state of C2 makes on the nodes C1 and C3 

taking values 2 and 1 respectively.  

 

However the nodes C4 and C5 remain in the zero state. 

 

Let x5 = (0, 0, 0, 0, 1) ∈ X; to find the effect of x5 on M. 

 

x5M → (0, 0, 0, g

gI , 1) = y1 

y1M → (0, 0, g

gI , g

gI , 1) = y2 

y2M → ( g

gI , g

gI , g

gI , g

gI , 1) = y3 

y3M → ( g

gI , g

gI , g

gI , g

gI , 1) = y4 (= y3). 

 

Thus the MOD resultant is a MOD fixed point given by 

( g

gI , g

gI , g

gI , g

gI , 1).  That is on state of the node C5 with 1 has 

impact on all the nodes.  

 

All the nodes C1, C2, C3 and C4 take equal values g

gI  the 

natural neutrosophic number.  

 

So the real state of C5 has only same or equal natural 

neutrosophic state on all other nodes of the system. 

 

Let a4 = (0, 0, 0, g

2g 4I
+

, 0) ∈ ×s.  

To find the effect of a4 on M , 

 

a4M → (0, 0, g

2g 4I
+

, g

2g 4I
+

, 0) = y1 

y1M → ( g

2g 4I
+

, 0, g

2g 4I
+

, g

2g 4I
+

, 0) = y2 
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y2M → ( g

2g 4I
+

, g

2g 4I
+

, g

2g 4I
+

, g

2g 4I
+

, 0) = y3 

y3M → ( g

2g 4I
+

, g

2g 4I
+

, g

2g 4I
+

, g

2g 4I
+

, 0) = y4 (=y3). 

 

Thus the on state of C4 with node value g

2g 4I
+

makes on the 

other nodes C1, C2, and C3 to take the same value as g

2g 4I
+

 and 

the node C5 has no effect as its value is 0.  

 

 So the natural neutrosophic dual number value of C4 makes 

the nodes C1, C2 and C3 also to take the same value. 

 

 Thus we see each on state of the node has a varied effect on 

other nodes seen from this example. 

 

 Interested can work with any of the nodes on state using 

initial state vectors from X or Xs. 

 

 Now we proceed onto describe the new MOD neutral 

neutrosophic dual number Cognitive Maps (MOD NCMs) model. 

 

Let P be the problem in hand with C1, C2, …, Cn n-nodes 

associated with P. Let G be directed graph given by the expert 

who uses the edge weights from 〈Zm ∪ g〉I. So G is the MOD 

natural neutrosophic dual number directed graph.  

 

Let M = (mij) be the n × n connection matrix associated with 

G. m is defined as the MOD natural neutrosophic dual number 

cognitive maps model’s dynamical system M functions in a 

similar way as that of FCMs or NCM with only difference being 

that the initial state vectors can be natural neutrosophic numbers 

also. 

 

We will illustrate this model with one more example. It is 

pertinent to keep on record that this model also functions like 

MOD natural  neutrosophic numbers Cognitive Maps model or 

MOD natural neutrosophic finite complex numbers Cognitive 

Maps model. 
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Example 3.29: Let P be a problem in hand. C1, C2, …, C5 be the 

nodes associated with the problem P.  

 

The expert uses for the directed graph G with edge weights 

from  〈Z10 ∪ g〉I.  

 

The graph G is a MOD natural neutrosophic dual number 

directed graph given in the following. 

 

 
g

gI  

 

 

 

 

 

 

 

Figure 3.15 

 

 Let M be the MOD natural neutrosophic dual number 

connection matrix associated with G the MOD natural 

neutrosophic directed graph G. 

 

 

M = 

1 2 3 4 5 6

1

g

2 5g 5g

3

4

5

6

C C C C C C

C 0 2g 0 0 0 0

C 0 0 I 0 0 0

C 0 0 0 0 0 0

C 0 0 0 0 0 0

C 0 0 0 4 g 0 0

C 0 0 0 0 3 0

+

 
 
 
 
 
 
 +

 
  

. 

 

 

Let X = {(a1, a2, …, a6) | ai ∈ {0, 1}; 1 ≤ i ≤ 6} be the MOD 

initial state vector. 

 

g

5 5gI
+

 

C1

2g 

C3

C2

C5 

C4

C6 

4+g 

3 
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Xs = {(a1, a2, …, a6) / ai ∈ {0, 1, g

tI ; t a nilpotent, 

idempotent, or zero divisor in 〈Z10 ∪ g〉I; 1 ≤ i ≤ 6} be the MOD 

special initial state vectors associated with M. 

 

Let x1 = (1, 0, 0, 0, 0, 0) ∈ X, to find the effect of x1 on M. 

 

x1M →  (1, 2g, 0, 0, 0, 0) = y1 

y1M →  (1, 2g, g

5 5gI
+

, 0, 0, 0) = y2 

y2M → (1, 2g, g

5 5gI
+

, 0, 0, 0) = y3 (= y2). 

 

Thus the MOD resultant is a MOD fixed point given by  

(1, 2g, g

5 5gI
+

, 0, 0, 0). Thus we see the on state of the node C1 

has no effect on the nodes C4, C5 and C6.   

 

However for the node C2 we get the value 2g the pure dual 

number and C3 node get the natural neutrosophic dual  number 
g

5 5gI
+

. 

 

Let x2 = (0, 1, 0, 0, 0, 0) ∈ X; to find the effect of x2 on M; 

 

x2M →  (0, 1, g

5 5gI
+

, 0, 0, 0) = y1 

y1m → (0, 1, g

5 5gI
+

, 0, 0, 0) = y2 (= y1). 

 

Thus we see the on state of the node C2 has no effect on the 

nodes C1, C4, C5 and C6; however the node C3 comes to on state 

with the value g

5 5gI
+

a natural neutrosophic dual number. 

 

Let x3 = (0, 0, 1, 0, 0, 0) ∈ X. 

 

To find the effect of x3 on M;  

 

x3M → (0, 0, 1, 0, 0, 0) = y1 (= x3). 
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Thus the MOD resultant is a MOD special classical fixed 

point given by (0, 0, 1, 0, 0, 0) and has no effect on all the other 

nodes. 

 

Let x4 = (0, 0, 0, 1, 0, 0) ∈ X; to find the effect of x4 on M, 

 

x4M → (0, 0, 0, 1, 0, 0) = y1 (=x4). 

 

Thus the MOD resultant again is a MOD special classical 

fixed point (0, 0, 0, 1, 0, 0) has no effect on other nodes. 

 

It is to be noted that the nodes C3 and C4 behave in the same 

way their on states gives the MOD resultant as a MOD special 

classical fixed point. 

 

Let x5 = (0, 0, 0, 0, 1, 0) ∈ X; to find the effect of x5 on M. 

 

x5M → (0, 0, 0, 4 + g, 1, 0) = y1 

y1M → (0, 0, 0, 4 + g, 1, 0) = y2 (=y1). 

 

Thus the MOD resultant of x5 is a MOD fixed point given by 

(0, 0, 0, 4 + g, 1, 0). 

 

We see the nodes C1, C2, C3 and C5 remain in the off state 

where as the node C4 gets the value 4 + g a mixed dual number. 

However the on state of the node C4 has no effect on any of the 

nodes. 

 

Let x6 = (0, 0, 0, 0, 0, 1) ∈ X; to find the effect of x6 on M. 

 

x6M → (0, 0, 0, 0, 3, 1) = y1 

y1M → (0, 0, 0, 2 + 3g, 3, 1) = y2 

y2M → (0, 0, 0, 2 + 3g, 3, 1) = y3 (= y2) 

 

Thus the MOD resultant is a MOD fixed point. The on state of 

the node C6 has no impact of the nodes C1, C2 and C3.  

 

However the nodes C4 and C5 come to on state.  
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The node C4 takes the mixed dual number value 2 + 3g and 

the node C5 is real with the node value 3. 

 

Consider 

 

a1 = ( g

3gI , 0, 0, 0, 0, 0) ∈ Xs, to find the effect of a1 on M. 

a1M → ( g

3gI , g

3gI , 0, 0, 0, 0) = y1 

y1M → ( g

3gI , g

3gI , g

5gI , 0,  0, 0) = y2 

y2M → ( g

3gI , g

3gI , g

5gI , 0, 0, 0) = y3 (=y2). 

 

Thus the MOD resultant is a MOD fixed point given by  

    ( g

3gI , g

3gI , g

5gI , 0, 0, 0). 

 

The nodes C4, C5 and C6 takes values 0 where as the other 

two nodes C2 and C3 get the natural  neutrosophic dual number. 

 

a2 = (0, g

2gI , 0, 0, 0, 0) ∈ Xs. 

 

To find the effect of a2 on M; 

 

a2M → (0, g

2gI , g

0I , 0, 0, 0) = y1 

y1M → (0, g

2gI , g

0I , 0, 0, 0) = y2(=y1). 

 

Thus the MOD resultant is a MOD fixed point given by  

(0, g

2gI , g

0I , 0, 0, 0). 

 

That is the natural neutrosophic dual number state of C2 has 

no effect on C1, C4, C5 and C6 but make the node C3 into the 

zero natural neutrosophic dual number. 

 

Let x5 = (0, 0, 0, 0, g

8g 2I
+

 , 0) ∈ Xs to find the effect of x5 on 

M. 

 

x5M → (0, 0, 0, 6 + 4g + g

8g 2I
+

, g

8g 2I
+

, 0) = y1 
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y1M → (0, 0, 0, 4 + 2g + g

8g 2I
+

, g

8g 2I
+

+ 4, 0) = y2 

y2M → (0, 0, 0, 6 + 2g + g

8g 2I
+

, g

8g 2I
+

 + 4, 0) = y3 

y3M → (0, 0, 0, 4 + 4g, + g

8g 2I
+

, g

8g 2I
+

 + 4, 0) = y4 

y4M → (0, 0 , 0, 6 + g

8g 2I
+

, 4 + g

8g 2I
+

, 0) = y5 

y5M → (0, 0, 0, 4 + 6 g + g

8g 2I
+

, 4 + g

8g 2I
+

, 0) = y6 

y6M → (0, 0, 0, 4 + g

8g 2I
+

+ 2g, g

8g 2I
+

 + 4, 0) = y7 (= y2). 

 

Thus the MOD resultant is a MOD limit cycle given by  

(0, 0, 0, 4 + 2g + g

8g 2I
+

+ 4, 0). 

 

Thus the on state of node C5 with value 4 + g

8g 2I
+

 has no 

effect on the nodes C1, C2, C3 and C6 however the node C4 takes 

the value 4 + 2g + g

8g 2I
+

.  

 

Interested reader can work with the on state of other nodes. 

 

We now proceed onto study MOD natural neutrosophic 

special dual like cognitive maps models.  

 

We will first illustrate by examples the MOD natural 

neutrosophic special dual like number directed graphs. 

 

Example 3.30: Let G be a directed graph with edge weights 

from 〈Z5 ∪ h〉I given by the following figure. 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 
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 G is a MOD natural neutrosophic special dual like number 

directed graph. 

 

Example 3.31: Let H be the MOD natural neutrosophic special 

dual like number directed graph with entries 〈Z9 ∪ h〉I given in 

Figure 3.17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3.17 

 

Thus in a directed graph G if the edge weights are taken by 

〈Zn ∪ h〉I where h
2
 = h is the collection of MOD natural 

neutrosophic special dual like numbers then we define G to be a 

MOD natural neutrosophic special dual like numbers directed 

graph.  

 

We have already given examples of them. 

 

Example 3.32: Let G be the MOD natural neutrosophic special 

dual like number directed graph with edge weights from   

〈Z10 ∪ h〉I given by the following figure. 

 

 

v3 

v6 

v9 

v2 

2 
5

h h

0 3 3hI I
+

+  

h

3I  

v5 

h h

0 3 3hI I
+

+  
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v7 

8 
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4h
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3h+3 
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Figure 3.18 

 

The adjacency or connection matrix M associated with G is 

given in the following. 

 

 

M =

1 2 3 4 5 6 7

1

2

h

3 8h 5

4

h h

5 5 2h

6

h

7 0

v v v v v v v

v 0 3 0 0 0 0 0

v 0 0 2h g 0 0 0 0

v 0 0 0 2 I 0 0 0

v 0 0 0 0 0 0 0 .

v 5h 0 3 I 0 0 4 8h I 0

v 0 0 0 0 0 0 7

v 0 0 0 3h I 0 0 0

+

 
 

+ 
 +

 
 
 + + +

 
 
 

+ 

  

 

 

M is defined as the MOD natural neutrosophic special dual 

like number square matrix. 

 

We will give some more examples of MOD natural 

neutrosophic special dual like number square matrices. 

 

h

8h 52 I
+

+  

h

5I 3+  

v3 
v1 

2h+8 

5h 

v5 
3 

v2 

v6 v7 

v4 

h

03h I+  
h

2h4 8h I+ +  

7 



MOD Natural Neutrosophic Cognitive Maps… 161 

 

 

 

 

 

 

 
Example 3.33: Let  

 

S = 

h h

3h 0

h h

6h 1 2h

h h

0 4h

0 I I 2 1

3 0 2h 0

I 2h 0 4h I

0 I I 2 0

+

 +

 
 
 +

 
+  

 

 

be the MOD natural neutrosophic special dual like number 

square matrix with entries from  〈Z8 ∪ h〉I. 
 

Example 3.34: Let  

 

P = 

h

6h

h

0

h h

0 2h

h h h

4h 10 10h

0 2h 0 1 I 2

5 0 6h 0 1 I

0 I I 0 3h 0 2h

1 0 7 0 6h 1 0

I I 2 0 I 0 3

0 0 3 0 1 0

 
 
 
 +

 
+ 

 
+

 
  

 

 

be the MOD natural neutrosophic special dual like number 

square matrix with entries from 〈Z12 ∪ h〉I. 
 

Example 3.35: Let  

 

M = 

h h

3h 0

h

6h

h h

0 3h

h h

7h 0

0 I I 3 2h

3h 0 2 I 0

4 I h 0 I

I I 3 4h 0

 +

 
+ 

 +

 
+  

 

 

be the MOD natural neutrosophic special dual like number 

square matrix with entries from  〈Z9 ∪ h〉I. 
 

 Now we define the MOD natural neutrosophic special dual 

like number square matrix. 
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 Let M = (mij) be a n × n square matrix where the entries mij 

are from 〈Zm ∪ h〉I.   

 

We call or define M to be a MOD natural neutrosophic 

special dual like number square matrix. 

 

 We have seen examples of them.  

 

Now we proceed onto describe a special type of operations 

on them which are essential to construct MOD natural 

neutrosophic special dual like number cognitive maps model. 

 

 Let X = {(a1, a2,  …, an) | ai ∈ {0, 1}; 1 ≤ i ≤ n} and  

 

Xs = {(a1, a2, …, an) | ai ∈ {0, 1, h

tI where t is a zero divisor 

or idempotent or nilpotent element of 〈Zm ∪ h〉I}, 1 ≤ i ≤ n} be 

the MOD initial state vectors or MOD special initial state vectors 

associated with a n × n MOD natural neutrosophic special dual 

like number matrix. 

 

We will illustrate these operations by some examples. 

 

Example 3.36: Let  

 

S = 

h

2

h h

0 9h

h

7h

h h

8h 4 4

h

6

h h h

3h 4 6

0 I 3h 0 4 0 7h

2h 0 I I 0 8 0

0 3 0 3 I 0 9 h

1 h 11 3 I 0 6h I 0

0 0 0 7 I 0 4

8h 6h I 7h I 0 7 I 3

+

 +

 
+ 

 + +

 
+ + + 

 
+

 
+ + +  

 

 

be the MOD natural neutrosophic special dual like number 6 × 6 

square matrix with entries from  〈Z12 ∪ h〉I,  the MOD natural 

neutrosophic special dual like number set. 
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 Let X = {(a1, a2, …, a6) | ai ∈ {0, 1), 1 ≤ i ≤ 6} be the MOD 

initial state vectors associated with S. 

 

Xs = {(a1, a2, …, a6) | ai ∈ {0, 1, h

tI }, where t is the nilpotent 

element or idempotent element or a zero divisor in  〈Z12 ∪ h〉I}; 

1 ≤ i ≤ 6} be the MOD special initial state vector associated with 

S. 

 

 Let x1 = (1, 0, 0, 0, 0, 0) ∈ X, the effect of x1 on S is as 

follows. 

 

x1S → (1, h

2I +3h, 0, 4, 0, 7h) = y1 

y1S → (4 + h

2I , h

2I , h + 8 + h

2I  + h

3hI , h

0I + h

6hI + h

9hI +  

  h

8h 4I
+

+ h

4I +h, 4, h + h

2I + h

4I , 4h + h

6I ) = y2 and so on. 

 

We can find after a finite number of iterations the MOD 

resultant to be a MOD fixed point or a MOD limit cycle. 

 

Let x2 = (0, 1, 0, 0, 0, 0) ∈ X; to find the effect of x2 on S. 

 

x2S → (2h, 0, h

0I + h

9hI , 0, 8, 0) = y1 

 

y1S = (0, 6h + h

2I + h

0I + h

9hI , 0, 8 + 8h + h

0I  + h

9hI + h

3hI + h

6I ,  

        0, 8 + 2h + h

0I  + h

9hI ) = y2 

 

y2S = (8 + 4h + h

2I  + h

0I  + h

9hI + h

6I + h

3hI , 4 + 8h + h

0I  + h

6I  + 
h

9hI + h

3hI , h

0I + h

6I + h

3hI + h

9hI + h

4I  + h

8h 4I
+

 + 10h, 0, 8 + 2h + h

0I + 
h

2I + h

9hI + h

3hI + h

6I + h

4I , 6h + h

6I + h

0I + h

9hI + h

6I ) = y3 and so on. 

 

Thus we see after a finite number of iterations we will 

arrive at a MOD resultant which may be a MOD fixed point or a 

MOD limit cycle. 

 

Let x3 = (0, 0, 1, 0, 0, 0) ∈ X, to find the effect of x3 on S. 

 

x3S → (0, 3, 1, 3 + h

7hI , 0, 9 + h) = y1 
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y1S → (2h + 3 + h

7hI , 3h + h

7hI  + h

3hI , 9 + 10h + h

0I + h

9hI  + 
h

7hI + h

4I + h

8h 4I
+

, 3 + h

7hI , 3 + h + h

4I  + h

7hI  + h

4hI , 4h + h

6I ) = y2 

and so on. 

 

After a finite number of iterations we are sure to arrive at a 

MOD resultant which may be a MOD fixed point or a MOD limit 

cycle. 

 

Let x5 = (0, 0, 0, 0, 1, 0) ∈ X to find the effect of x5 on S. 

 

x5S → (0, 0, 0, 7 + h

6I , 1, 4) = y1 

y1S → (8h + 7 + h

6I , 15 + 7h + h

6I + h

3hI , 9 + h

6I + h

8h 4I
+

+ 4h +  

     h

4I , 7 + h

6I , 6 + h

6I + h

4I , 4 + h

6I ) = y2 

 

Interested reader can find the MOD resultant of x5 which 

after a finite number of iterations will arrive at a MOD fixed 

point or  a MOD limit cycle. 

 

Example 3.37: Let  

 

P = h

2h

0 2 1

I 0 0

0 h 0

 
 
 
  

 

 

be the MOD natural neutrosophic special dual like number 

matrix with entries from  〈Z3 ∪ h〉I. 

 

 Let X = {(a1, a2, a3) | ai ∈ {0, 1}; 1 ≤ i ≤ 3} and  

 

Xs = {(a1, a2, a3) / ai ∈ {0, 1, h

0I , h

hI , h

2hI }; 1 ≤ i ≤ 3} be the 

MOD initial state vector and MOD special initial state vector 

respectively. 

 

x1 = (1, 0, 0) ∈ X, to find the effect of x1 on P; 
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x1P → (1, 2, 1) = y1 

y1P = ( h

2hI , 2 + h, 1) = y2 

y2P = ( h

2hI , h

2hI  + h, h

2hI ) = y3 

y3P = ( h

2hI , h

2hI , h

2hI ) = y4 

y4P = ( h

2hI , h

2hI , h

2hI ) = y5 (=y4). 

 

Thus the MOD resultant is a MOD fixed point given by 

( h

2hI , h

2hI , h

2hI ) so all the nodes come to state and all of them are 

same a natural neutrosophic value h

2hI . 

 

 Let x2 = (0, 1, 0) ∈ X, to find the effect of x2 on P is as 

follows. 

 

   x2P → ( h

2hI , 1, 0) = y1 

y1P → ( h

2hI , h

2hI , h

2hI ) = y2 

y2P → ( h

2hI , h

2hI , h

2hI ) = y3 (= y2). 

 

Thus the MOD resultant is a MOD fixed point given by  

    ( h

2hI , h

2hI , h

2hI ). 

 

Interested reader can work with such models. 

 

Next we  proceed onto build the MOD natural neutrosophic 

special quasi dual number cognitive maps model using the MOD 

natural neutrosophic special quasi numbers set  

 

〈Zn ∪ k〉I = {Zn, k
2
 = k, h

tI , t a zero divisor or idempotent or 

nilpotent elements of  〈Zn ∪ k〉}. 

 

We will illustrate this situation by some examples. 

 

Example 3.38:  Let G be a director graph where edge weight are 

from the 〈Z6 ∪ k〉I given in the following figure. 
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Figure 3.19 

 

Example 3.39: Let H be the MOD natural neutrosophic special 

quasi dual number directed graph with entries from 〈Z7 ∪ k〉I. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20 

 

 Thus we define a MOD natural neutrosophic special quasi 

dual number directed graph in the following. 

 

Let G be a directed graph with edge weights from 〈Zn ∪ k〉I.   

k

3k3 2k I+ +  

v1 5k v2

v5v4
k

2k 33 5k I
+

+ +  

k

0I  

v3

k k

3 2k3 I I+ +

2 

v6 v7

k

0I k+

v1
v2 v6 

k

kI 3+

k

3k3k I+
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We define G to be a MOD natural neutrosophic special quasi 

dual number directed graph as its edge weights are from 〈Zn ∪ 

k〉I 

 

We now proceed onto describe the notion of MOD natural 

neutrosophic special quasi dual number square matrices by 

examples. 

 

Example 3.40: Let  

 

 

S = 

k k

3 4k 0

k k

4k 2k

k k k

5 5 5k

k

8k

k k k

0 4 2k

k k

8 4

k k

4 0

0 I 2 3k 0 1 I 8k 4

I 0 0 4 I 0 0 0

0 4 7k k I 0 I 7 I 1

8 4k 0 0 2 I 0 0 0

0 9k I 0 1 I I k

9 I 0 0 1 I 0 0 0

0 3k 2 I 3 0 I 9k 0

+
 + +

 
+ 

 + + +

 
+ + 

 
+

 
+ + 

 
+ + 

 

 

be the MOD natural neutrosophic special quasi dual number 

square matrix with entries from 〈Z10 ∪ k〉I 

 

Example 3.41:  Let  

 

M = 

k

2k

k

0

k k

2 0

0 2k 0 I 4

4 I 0 1 0

0 3 I 0 I

1 0 2 0

 +

 
+ 

 +

 
  

 

 

be the MOD natural neutrosophic special quasi dual  number 

matrix with entries from 〈Z5 ∪ k〉I.  

 

So we define  a MOD square matrix with entries 〈Zn ∪ k〉I to 

be a MOD natural neutrosophic special quasi dual number square 

matrix. 
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We describe special operations using them in the following 

by examples. 

 

Example 3.42: Let  

 

M = 

k

0

k

4

0 3k 1 I 0

1 0 0 2

0 0 0 1

I 0 1 0

 +

 
 
 
 
  

 

 

be the MOD natural neutrosophic special quasi dual number 

matrix with entries from 〈Z6 ∪ k〉I. 

 

 Let X = {(a1, a2, a3, a4) | ai ∈ {0, 1}, 1 ≤ i ≤ 4} be the MOD 

initial state vectors.  

 

We define only special type of  operations using them. 

 

Let x1 = (1, 0, 0, 0) ∈X, the effect o f x on M is analysed in 

the following. 

 

x1M → (1, 3k + 1, k

0I , 0) = y1 

y1M → (3k+1, 3k+1, k

0I , 2 + k

0I ) = y2 

y2M → (3k+1 + k

4I + k

0I , 3k+1, k

0I , 2 + k

0I ) = y3 

y3M → (3k+1 + k

4I + k

0I , k

4I + k

0I + 1 + 3k, k

0I +2, 2 + k

0I ) and 

so on. 

 

Thus after a finite number of iterations one is sure to get at a 

MOD resultant which is a MOD fixed point or a MOD limit cycle. 

 

Let x2 = (0, 1, 0, 0) ∈ X, to find the effect of x2 on M. 

x2M → (1, 1, 0, 2) = y1 

y1M → (1 + k

4I , 3k + 1, 2 + k

0I , 2) = y2 

y2M → (3k+1 + k

4I , 3k+1 + k

4I , k

0I +2, 4 + k

0I ) = y3 and so on. 
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After a finite number of iterations we get the MOD resultant 

to be a MOD fixed point or a MOD limit cycle. 

 

Let x3 = (0, 0, 1, 0) ∈ X, to find the effect of x3 on M. 

 

x3M → (0, 0, 1, 1) = y1 

y1M = ( k

4I , 0, 1, 1) = y2 

y2M = ( k

4I , k

4I , 1 + k

4I , 1) = y3 

y2M = ( k

4I , k

4I , k

4I  + 1, 1 + k

4I ) = y4 

y4M = ( k

4I , k

4I , k

4I  + 1, k

4I + 1) = y5 (= y4). 

 

Thus the MOD resultant is a MOD fixed point given by  

( k

4I , k

4I , 1 + k

4I ¸1 + k

4I ). 

 

Now we define for any n × n MOD natural neutrosophic 

special quasi dual number matrix M with entries from 〈Zm ∪ k〉I 

 

 X = {(a1, a2, …, an) / ai ∈ {0, 1}, 1 ≤ i ≤ n} and  

 

Xs = {(a1, a2, …, an) / ai ∈ {0, 1, k

tI  where t is a nilpotent 

element or idempotent element or a zero divisor in 〈Zm ∪ k〉};  

1 ≤ i ≤ n} be the MOD initial state vector or MOD special initial 

state vector associated with the matrix M. 

 

We shall describe special operations related with them by 

some examples. 

 

Example 3.43: Let  

 

M = 
k

3k

0 3 0

0 0 I

2k 1 0

 
 
 
  

 

 

be the MOD natural neutrosophic special dual quasi dual number 

matrix with entries from 〈Z4 ∪ k〉I. 

Let X = {(a1, a2, a3) / ai ∈ {0, 1}; 1 ≤ i ≤ 3} and  
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Xs = {(a1, a2, a3) / ai ∈ {0, 1, k

tI  where t is a nilpotent or 

zero divisor or idempotent in  〈Z4 ∪ k〉}; 1 ≤ i ≤ 3} be the MOD 

initial state vectors and MOD special initial state vectors 

associated with M. 

 

Let x1 = (1, 0, 0) ∈ X; to find the effect of x1 on M. 

x1M → (1, 3, 0) = y1 

y1M → (1, 3, k

3kI ) = y2 

y2M = ( k

3kI , 3 + k

3kI , k

3kI ) = y3 

y3M = ( k

3kI , k

3kI , k

3kI ) = y4 

y4M = ( k

3kI , k

3kI , k

3kI ) = y5 (=y4). 

 

Thus the MOD resultant is MOD fixed points given by  

     ( k

3kI , k

3kI , k

3kI ).  

 

When the C1 is on with 1 in the MOD resultant all the nodes 

C1, C2 and C3 take the same node value k

3kI  that is they are 

natural neutrosophic. 

 

Let x2 = (0, 1, 0) ∈ X, to find the effect of x2 on M. 

 

x2M → (0, 1, k

3kI ) = y1 

y1m = ( k

3kI , k

3kI , k

3kI ) = y2 

y2M = ( k

3kI ¸ k

3kI , k

3kI ) = y3 (=y2). 

 

Thus the MOD resultant is a MOD fixed point given by  

    ( k

3kI , k

3kI , k

3kI ). 

 

Hence when node C2 is on with value 1 the MOD resultant 

makes all nodes take the same value k

3kI , a natural  neutrosophic 

value. 

 

Let b1 = ( k

2I , 0, 0) ∈ Xs; to find the effect of b1 on M. 
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b1M → ( k

2I , k

2I , 0) = y1 

y1M → ( k

2I , k

2I , k

2kI ) = y2 

y2M → ( k

2kI , k

2kI + k

2I , k

2kI ) =  y3 

y2M → ( k

2I , k

2I  + k

2kI , k

2kI ) = y4 (=y3). 

 

Thus the MOD resultant is a MOD fixed point given by 

( k

2I , k

2I  + k

2kI , k

2I ). 

 

Interested reader can work any of the MOD initial state 

vectors from X or Xs. 

 

Now we proceed onto briefly describe the MOD natural 

neutrosophic special quasi dual number cognitive maps model. 

 

Let P be a problem at hand in which an expert is interested.  

 

Let C1, C2, …, Cn be the nodes / concepts associated with P.  

 

Let G be the MOD directed natural neutrosophic special 

quasi dual number graph given by the expert with edge weights 

from 〈Zm ∪ k〉I. 

 

Let M be the MOD natural neutrosophic special quasi dual 

number connection matrix associated with the MOD directed 

graph G. 

 

Let X = {(a1, a2, …, an) / ai ∈ {0, 1}; 1 ≤ i ≤ n} be the MOD 

initial state vector and  

 

Xs = {(a1, a2, …, an) / ai ∈ {0, 1, k

tI ; t a nilpotent element or 

idempotent or zero divisor in 〈Zm ∪ k〉I, 1 ≤ i ≤ n} be the MOD 

initial special state vector associated with M. 

 

We call M as the MOD natural neutrosophic special quasi 

dual number Cognitive Maps model dynamical system.  
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We can work with this in the usual way as other MOD 

models. 

 

Next we proceed onto study the notion of MOD natural 

neutrosophic-neutrosophic Cognitive Maps model built using  

〈Zn ∪ I〉I by some examples. 

 

 

Example 3.44: Let G be the directed graph with edge weights 

from 〈Z6 ∪ I〉I given by the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21 

 

 

We call this G as the MOD natural neutrosophic number 

neutrosophic directed graph. 

 

Example 3.45: Let G be the MOD natural neutrosophic number 

neutrosophic directed graph with edge weights from 〈Z3 ∪ I〉I 

given by the following figure. 
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v5 
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Figure 3.22 

 

 

Hence we define the MOD natural neutrosophic number 

neutrosophic directed graph G as follows. 

 

Let G be a directed graph with edge weights from 〈Zn ∪ I〉I; 

then we define G to be a MOD natural neutrosophic number 

neutrosophic directed graph.  

 

We have seen examples of them. 

 

Let us now give some examples of MOD natural 

neutrosophic number neutrosophic matrix. 
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v5 

2+I 

v8 

I I

0 2II I+  

1 

I

0I  

I

2II  

v1 

v3 
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Example 3.46: Let  

 

S = 

I I I

3I 0 I

I

5I

I I I

6I 4 3I 2I

I

2I

0 I 3 2I 0 I I

2 0 I 3 7I 0

0 5I I 0 I I 6

7I 0 6I I 0 7I 4

0 2I 0 6 I 0

+

 + +

 
+ 

 + +

 
+ + 

 
+ 

 

 

be the MOD natural neutrosophic number neutrosophic matrix 

with entries from  〈Z8 ∪ I〉I. 

 

Example 3.47:  Let  

 

M = I I I

0 I 6I

I

2I

0 3 6I 0

I 0 I I

0 2 I 0

+ 
 

+ 
 + 

 

 

be the MOD natural neutrosophic number neutrosophic square 

matrix. 

 

We will define special operations using the MOD natural 

neutrosophic number neutrosophic square matrix. 

 

In the first place a n × n matrix P = (pij) = pij ∈ 〈Zm ∪ I〉I is 

defined as the MOD natural neutrosophic element neutrosophic 

square matrix. 

 

We have already seen examples of them. 

 

Let X = {(a1, a2, …, an) / ai ∈ {0, I, 1}, 1 ≤ i ≤ n} is defined 

as the MOD initial state row vector associated with P. 

 

Let Xs = {(a1, a2, …, an) / ai ∈ {0, 1, I, I

tI  where t is a zero 

divisor or an idempotent or a nilpotent in 〈Zm ∪ I〉}} is defined 

as the MOD special initial state vectors associated with P. 
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We can define special type of operations using them which 

we describe by some examples. 

 

Example 3.48: Let  

 

M = 

I

2I0 3I 4 0 I 1 0

2I 0 1 0 0

0 0 0 I 3

1 2 0 0 0

0 0 0 0 0

 + +

 
 
 
 
 
 
 

 

 

be the MOD natural neutrosophic number neutrosophic matrix 

with entries from 〈Z6 ∪ I〉I.  

 

Let X = {(a1, a2, a3, a4, a5) / ai ∈ {0, 1, I}; 1 ≤ i ≤ 5} be the 

MOD initial state vectors associated with M. 

 

Xs = {(a1, a2, …, a5) / ai ∈ {I, 0, 1, I

tI , to a zero divisor or 

idempotent or nilpotent element of  〈Z6 ∪ I〉}; 1 ≤ i ≤ 5} be the 

MOD special initial state vectors associated with M.   

 

We  now describe the special type of operations on M using 

X and Xs. 

 

Let x1 = (1, 0, 0, 0, 0) ∈ X; to find the effect of x1 on M; 

 

x1M → (1, 3I + 4, 0, I

2II + 1, 0) = y1 

y1M → (2I + 1 + I

2II , 3I + I

2II , 3I + 4, I

2II + 1, 0) = y2 

y2M = (1 + I

2II , 2I + 2 + I

2II , 3I + 4, 2I + 1+ I

2II , 3I) = y3 

y3M = (4I + 1 + I

2II ¸ I

2II  + I, 3I + 4, I

2II  + 5I + 5, 3I) = y4 

 

and so on. 

 

After a finite number of iterations we will arrive at a MOD 

fixed point or MOD limit cycle. 
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Let x2 = (0, 1, 0, 0, 0) ∈ X, to find the effect of x2 on M. 

 

x2M → (2I, 1, 1, 0, 0) = y1 

y1M = (2I, 2I, 1, I

2II  + 3I, 3) = y2 

y2M = (1 + I

2II , 2I + I

2II , 2I, 3I + I

2II , 3) = y3 

y3M = (1 + I

2II , I + I

2II , 2I + I

2II , I

2II  + 3I, 0) = y4 

y4M = (5I + I

2II , I + I

2II , I + I

2II , 3I + I

2II , I

2II ) = y5 

y5M = (5I + I

2II , 5I + I

2II , I + I

2II , I

2II , 3I + I

2II ) = y6 

 

and so on.   

 

Certainly after a finite number of iterations we will arrive at 

a MOD fixed point or a MOD limit cycle. 

 

Let x3 = (0, 0, 1, 0, 0) ∈ X, to find the effect of x3 on M  

 

x3M → (0, 0, 1, I, 3) = y1 

y1M → (I, 2I, I, I, 3) = y2 

y2M = (5I, 3I, 2I, 2I + I

2II ,3I) = y3 

y3M = (2I + I

2II , I + I

2II , 3I, I + I

2II , 0) = y4 

y4M = (5I + I

2II , 4I + I

2II , I + I

2II , 5 + I

2II , 3I) = y5 and so on. 

 

Certainly after a finite number of iterations are will arrive at 

a MOD fixed point or a MOD limit cycle. 

 

Let x5 = (0, 0, 0, 0, 1) ∈ X, to find the effect of x5 on M. 

 

x5M → (0, 0, 0, 0, 1) = x5. 

 

Thus the MOD resultant is a MOD special classical fixed 

point. 

 

Interested reader can work with different set of state vectors 

from X or Xs. 
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Example 3.49: Let  

 

S = I

2

0 2I 2 0

I 0 2

0 3 0

+ 
 
 
  

 

 

be the MOD natural neutrosophic number neutrosophic matrix 

with entries from 〈Z4 ∪ I〉I. 

 

Let X = {(a1, a2, a3) | ai ∈ {0, 1, t}, 1 ≤ i ≤ 3} and  

 

Xs = {(a1, a2, a3) | ai ∈ {0, 1, I, I

0I , I

2I , I

2II , …, } 1 ≤ i ≤ 3}  

 

be the MOD initial state vectors and MOD special initial state 

vectors respectively. 

 

Let x1 = (1, 0, 0) ∈ X, to find the effect of x1 on S. 

 

x1S →  (1, 2I + 2, 0) = y1 

y1S →  ( 2

2I , 2I + 2, 0) = y2 

y2S = ( 2

2I , 2

2I , 0) = y3 

y3S = ( 2

2I , 2

2I , 2

2I ) = y4 

y4S = ( 2

2I , 2

2I , 2

2I ) = y5 (= y4). 

 

Thus the MOD resultant is a MOD fixed point. All nodes 

indeterminate nodes viz., I

2I and they are natural neutrosophic 

nilpotent element of order two. 

 

Let x2 = (0, 1, 0) ∈ X, the effect of x2 on S. 

 

x2S →  ( I

2I , 1, 2) = y1 

y1S →  ( I

2I , I

2I  + 2, 2) = y2 

y2S →  ( I

2I , I

2I  + 2, I

2I ) = y3 

y3S → ( I

2I ¸ I

2I , I

2I ) = y4 

y4S →  y5 (= y4). 
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Thus the MOD  resultant is a MOD fixed point and all nodes 

are natural neutrosophic nilpotent of order two. 

 

One can have several such examples and work for the MOD 

resultant. 

 

We now define the MOD natural neutrosophic-neutrosophic 

cognitive maps model. 

 

Let P be a problem in hand, C1, C2, …, Cn be n nodes / 

concepts associated with this problem. 

 

Suppose the expert wishes to work with elements from MOD 

natural neutrosophic-neutrosophic integers  〈Zm ∪ I〉I; that is the 

directed graph G given  by the expert has edge weights from 

〈Zm ∪ I〉I.   

 

Then the MOD connect matrix M associated with  G severs 

as the dynamical system for the MOD-natural neutrosophic- 

neutrosophic Cognitive Maps model.  

 

The functioning of it is akin to the MOD Cognitive Maps 

models dealt in this chapter as well as in chapter II of this book.  

 

We will illustrate this situation by some examples. 

 

 

Example 3.50:  Let P be a problem with associated nodes C1, 

C2, …, C6.  

 

Let G be the directed graph given by the expert with edge 

weights from  〈Z6 ∪ I〉I is given in the following 
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Figure 3.23 

 

 G is the MOD-natural neutrosophic-neutrosophic directed 

graph whose MOD-natural neutrosophic-neutrosophic 

connection matrix M serves as the MOD natural neutrosophic-

neutrosophic Cognitive Maps model dynamical system which is 

as follows. 

 

M = 

1 2 3 4 5 6

1

2

3

4

5

6

C C C C C C

C 0 2 0 0 0 0

C 0 0 0 0 0 0

C 0 0 0 0 0 0

C 1 0 0 0 3I 0

C 0 0 0 0 0 0

C 0 0 2 2I 0 0 0

 
 
 
 
 
 
 
 

+  

. 

 

Let X = {(a1, a2, …, a6) | ai ∈ {0, 1}; 1 ≤ i ≤ 6} be the MOD 

initial state vectors and  

 

Xs = {(a1, a2, …, a6) | ai ∈ {0, 1, I, I

tI ; t is a zero divisor or 

an idempotent or  nilpotent of 〈Z6 ∪ I〉}; 1 ≤ i ≤ 6} be the MOD 

special state vectors associated with the MOD-natural 

C1

2 

C4 

C2

C6

3I 

C5

1 
C3

2+2I 
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neutrosophic-neutrosophic cognitive maps model dynamical 

system M. 

 

Let x1 = (1, 0, 0, 0, 0, 0) ∈ X, to find the effect of x1 on M. 

 

x1M →  (1, 2, 0, 0, 0, 0) = y1 

y1M → (1, 2, 0, 0, 0, 0) = y2 (=y2). 

 

Thus the MOD resultant is a MOD fixed point given by  

(1, 2, 0, 0, 0, 0). The on state of C1 has no impact on C3, C4, C5 

and C6.  Only the node C2 comes to on state. 

 

Let x2 = (0, 0, 0, 1, 0, 0) ∈ X; to find the effect of x2 on M. 

 

x2M → (I, 0, 0, 1, 3I, 0) = y1 

y1M → (I, 2I, 0, 1, 3I, 0) = y2 (= y1). 

 

Thus the MOD resultant is a MOD fixed point given by  

(I, 2I, 0, 1, 3I, 0). 

 

On state of C4 has no effect on the nodes C3 and C6.  

 

However the nodes C1, C2 and C5 come to on state with 

neutrosophic value I, 2I and 3I respectively.  

 

Let a = (0, 0, I

2II , 0, 0, 0) ∈ Xs, to find the effect of a on M. 

 

aM →  (0, 0, I

2II , 0, 0, 0) = a. 

 

Thus the MOD resultant of a is a MOD special classical fixed 

point a itself. 

 

This is the way operations are performed on MOD natural 

neutrosophic-neutrosophic cognitive maps model. 

 

Interested reader can construct more such models. 
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Now we proceed onto define MOD interesting directed graph 

and MOD interval matrices.  

 

Using these two concepts we build the MOD interval 

cognitive maps model.  

 

We will describe them by their examples. 

 

 

Example 3.51: Let G be a directed graph with edge weights 

from [0, 5).  

 

We call G to be the MOD interval directed graph which is 

given in the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24 

 

 

 

Example 3.52:  Let G be the MOD interval directed graph with 

edge weights from [0, 20) given by the following figure. 

 

v1 v2 

0.3 

1.53 

v5 
v3 

v7 

4 

2 

3.12 

v6 

4 

v4 4.5 
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Figure 3.25 

 

Now just we recall by examples the MOD interval square 

matrices with entries from [0, n), 2 ≤ n < ∞. 

 

Example 3.53:  Let  

 

S = 

0.3 4.2 0

1.7 0 6.3

7.5 8.11 0

 
 
 
  

 

 

be a MOD interval matrix with entries from [0, 9). 

 

Example 3.54: Let  

 

P = 

3 0 0.1 0 4.1 0

0 0.7 0 6.1 0 0.2

1.1 0 1.5 0.3 4.2 0

0 4.2 0 2.4 0 6.1

2.4 0 3.2 0 3.1 0

0 1.3 0 5.1 0 4.1

 
 
 
 
 
 
 
 
  

 

v2 v4 

11.2 

10.2 

v7 

7.53 

v9 

v11 

0.32 

v10 

4.3 

16.3 

v8 v6 

0.03 

v5 

v1 

v3 

7.2 19 

5.3 
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be the MOD interval matrix with entries from the MOD interval 

[0, 7). 

 

We proceed only special type of operations on MOD interval 

matrices. 

 

We consider G a directed graph with edge weights from 

interval [0, n); then we define G to be a MOD interval directed 

graph. We have already seen examples of them. 

 

Let M = (mij) be a n × n matrix with entries from the 

interval [0, m); 2 ≤ m < ∞.  

 

We define M to be the MOD interval matrix. We have seen 

examples them. 

 

Let X = {(a1, a2, …, an) | ai ∈ {0, 1}; 1 ≤ i ≤ n} be the MOD 

interval initial state vector. We can perform operations using 

them.  

 

This will be explained by some examples. 

 

Example 3.55: Let  

 

H = 

0 3.1 0 1.3 0 1

1.2 0 1.2 0 2 0

0 1.1 0 1 0 2

1 0 1.3 0 0.5 0

0 1 0 2 0 1

1.2 0 1 0 2 0

 
 
 
 
 
 
 
 
  

 

 

 

 

MOD interval matrix with entries from [0, 4). 
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Let X = {(a1, a2, …, a6) | ai ∈ {1, 0}; 1 ≤ i ≤ 6} be the MOD 

interval initial state vector associated with H. 

 

Let x1 = (1, 0, 0, 0, 0, 0) ∈ X; to find the effect of x1 on H. 

 

x1H →  (1, 3.1, 0, 1.3, 0, 1) = y1 

 

y1H →  (1, 1, 0, 0, 0, 0) = y2 

 

The thresholding takes place in this form  

 

xi  = 1 if xi ≥ 2       

 

= 0 if xi < 2; 1 ≤ i ≤ 6. 

 

 

y2H = (1.2, 3.1, 1.2, 1.3, 2, 1) → (1, 1, 0, 0, 1, 0) = y3 

y3H = (1.2, 4.1, 1.2, 3.3, 2, 2) → (1, 1, 0, 1, 1, 1) = y4 

y4H = (3.2, 4.1, 3.5, 3.3, 4.5, 2) → (1, 1, 1, 1, 1,1) = y5 

y5H = (3.4, 5.2, 3.5, 4.3, 4.5, 4) → (1, 1, 1, 1, 1, 1) = y6  

             (=y5). 

 

Thus the MOD interval resultant is a MOD fixed point. 

 

We see certainly after a finite number of steps we arrive at a 

MOD fixed point or a MOD limit cycle. 

 

Let x2 = (0, 1, 0, 0, 0, 0) ∈ X, to find the effect of x2 on H. 

 

x2H = (1.2, 0, 1.2, 0, 2, 0) → (0, 1, 0, 0, 1, 0) = y1 

y1H = (1.2, 1, 1.2, 2, 2, 1) → (0, 1, 0, 1, 1, 0) = y2 

y2H = (2.2, 1, 2.5, 2, 2.5, 1) → (1, 1, 1, 1, 1, 0) = y3 

 

y3H = (2.2, 5.1, 2.5, 4.3, 2, 0) = (2.2, 1.1, 2.5, 0.3, 2, 0)  

        → (1, 1, 1, 0, 1, 0) = y4 
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y4H = (2.2, 1.2, 1.2, 0.3, 2, 0) → (1, 1, 0, 0, 1, 0) = y5 

y5H = (1.2, 0.1, 1.2, 3.3, 2, 2) → (0, 1, 0, 1, 1, 0) = y6  

             (=y2). 

 

Thus the MOD interval resultant is a MOD interval limit cycle 

given by (0, 1, 0, 1, 1, 0). 

 

That is the on state of C2 makes on the nodes C4 and  C5. 

 

Let x3 = (0, 0, 1, 0, 0, 0) ∈ X, to find the effect of x3 on H. 

 

x3H = (0, 1.1, 0, 1, 0, 2) → (0, 0, 1, 0, 0, 1) = y1. 

y1H = (1.2, 1.1, 1, 1, 2, 2) → (0, 0, 1, 0, 1, 1) = y2 

y2H = (1.2, 2.2, 1, 3, 2, 3) → (0, 1, 1, 1, 1, 1) = y3 

y3H = (3.4, 2.2, 3.5, 3, 0.5, 3) → (1, 1, 1, 1, 0, 1) = y4 

y4H = (3.4, 0.2, 3.5, 2.3, 0.5, 0) → (1, 0, 1, 1, 0, 0) = y5 

y5H = (1, 0.2, 1.3, 2.3, 0.5, 3) → (0, 0, 1, 1, 0, 1) = y6 

y6H = (2.2, 1.1, 2.3, 1, 2.5, 2) → (1, 0, 1, 0, 1, 1) = y7 

y7H = (1.2, 1.2, 1, 0.3, 2, 0) → (0, 0, 1, 0, 1, 0) = y8 

y8H = (0, 2.2, 0, 3, 0, 3) → (0, 1, 1, 1, 0, 1) = y9 

y9H = (3.4, 1.1, 3.5, 1, 0.5, 2) → (1, 0, 1, 0, 0, 1) = y10 

y10H = (1.2, 0.2, 1, 2.3, 2, 0) → (0, 0, 1, 1, 1, 0) = y11 

y11H = (1, 2.1, 1.3, 3, 0.5, 3) → (0, 1, 1, 1, 0, 1) = y12  

(= y9). 

 

 

 

Thus the MOD interval resultant is a MOD interval limit cycle 

given by (0, 1, 1, 1, 0, 1) that is on state of C3 makes on C2, C4 

and C6 and  has no effect on C1 and C5. 

 

 

Let x6 = (0, 0, 0, 0, 0, 1) ∈ X; to find the effect of x6 on H. 

 

x6H = (1.2, 0, 1, 0, 2, 0) → (0, 0, 0, 0, 1, 1) = y1 

y1H = (1.2, 1, 1, 2, 2, 1) → (0, 0, 0, 1, 1, 1) = y2 
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y2H = (2.2, 1, 2.3, 2, 2.5, 1) → (1, 0, 1, 1, 1, 1) = y3 

y3H = (2.2, 1.2, 2.3, 0.3, 2.5, 0) → (1, 0, 1, 0, 1, 1) = y4 

y4H = (1.2, 1.2, 1, 0.3, 2, 0) → (0, 0, 0, 0, 1, 1) = y5  

            (=y1). 

 

 

Thus the MOD interval resultant is a MOD interval limit cycle 

given by (0, 0, 0, 0, 1, 1).  

 

The on state of the node C6 has no impact on the nodes C1, 

C2, C3 and C4 only the node C5 comes to on state. 

 

Let x = (0, 1, 0, 0, 0, 1) ∈ X, to find the effect of x on H. 

 

 

xH = (2.4, 0, 2.2, 0, 0, 0) → (1, 0, 1, 0, 0, 1) = y1 

y1H = (1.2, 0.2, 1, 2.3, 2, 3) → (0, 1, 0, 1, 1, 1) = y2 

y2H = (3.4, 1, 3.5, 2, 0.5, 1) → (1, 1, 1, 1, 0, 1) = y3 

 

y3H = (3.4, 0.2, 3.5, 2.3, 0.5, 3) →  

(1, 1, 1, 1, 0, 1) = y4 (=y3). 

 

 

Thus the MOD interval resultant is a MOD interval fixed 

point given by (1, 1, 1, 1, 0, 1).  

 

That is on state of the nodes C2 and C6 makes on the nodes 

C1, C3 and C4, however  the node C5 remain unaffected. 

 

This is the way the MOD interval matrix operator special 

operations are carried out.  

 

We supply one more example of the same. 
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Example 3.56: Let  

 

 

M = 

0 2.1 0 1 0 2.2 0 1

0 0 1.2 0 1 0 2.1 0

1 0 0 1 0 0 0 1

0.4 0 0.6 0 0 0.7 0 0

0 1.2 0 0 1 0 0.1 0.2

0 0 0.1 0 0.3 0 0 0

1 0 0 1 0 1 0 1

0 0.1 0 0 1 0 1 0

 
 
 
 
 
 
 
 
 
 
 
  

 

 

be the MOD interval matrix with entries from [0, 3). 

 

 Let X = {(x1, x2, …, x8) / xi ∈ {0, 1}; 1 ≤ i ≤ 8} be the MOD 

initial state vectors associated with M. 

 

 x1 = (1, 0, 0, …, 0) ∈ X; to find the effect of x1 on M. 

 

 x1M = (0, 2.1, 0, 1, 0, 2.2, 0, 1) →  

(1, 1, 0, 0, 0, 1, 0, 0) = y1 

 

y1M = (0, 2.1, 1.3, 1, 1.3, 2.2, 0.1, 1) →  

(1, 1, 0, 0, 0, 1, 0, 0) = y2 (=y1). 

 

 

Thus the MOD interval resultant is a MOD interval fixed 

point given by (1, 1, 0, 0, 0, 1, 0, 0).  

 

The on state of C1 makes C2 and C6 to on state and all the 

other nodes C3, C4, C5, C7 and C8 are unaffected by the on state 

of node C1. 

 

Let x2 = (0, 1, 0, 0, 0, 0, 0, 0) ∈ X the effect of x2 on M is as 

follows. 
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x2M = (0, 0, 1.2, 0, 1, 0, 2.1, 0) →  

(0, 1, 0, 0, 0, 0, 1, 0) = y1 

 

y1M = (1, 0, 1.2, 2, 1, 1, 2.1, 1) →  

(0, 1, 0, 1, 0, 0, 1, 0) = y2 

 

y2M = (1.4, 0, 1.8, 1, 1, 1.7, 2.1, 1) →  

(0, 1, 1, 0, 0, 1, 1, 0) = y3 

 

y3M = (2, 0, 1.3, 2, 1.3, 1, 2.1, 2) →  

(1, 0, 0, 1, 0, 0, 1, 1) = y4 and so on. 

 

 

Certainly after a finite number of iterations we will arrive at 

a MOD interval fixed point or a MOD interval realized limit 

cycle. 

 

 

Let x8 = (0, 0, …, 0, 1) ∈ X; to find the effect of x8 on M. 

 

x8M = (0, 0.1, 0, 0, 1, 0, 1, 0) →  

(0, 0, 0, 0, 0, 0, 0, 1) = (x8). 

 

Thus the MOD interval resultant is a MOD interval special 

classical fixed point. 

 

Let a = (0, 0, 1, 0, 0, 0, 1, 0) ∈ X; to find the effect of a on 

M. 

 

aM = (2, 0, 0, 2, 0, 1, 0, 2) → (1, 0, 1, 1, 0, 0, 1, 1) = y1 

 

y1M = (2.4, 2.2, 0.6, 0, 1, 0.9, 1, 0) →  

(1, 1, 1, 0, 0, 0, 1, 0) = y2 

 

y2M = (2, 2.1, 1.2, 0, 1, 0.2, 2.1, 0) →  

(1, 1, 1, 0, 0, 0, 1, 0) = y3 (=y2). 
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Thus the resultant is a MOD interval fixed point.  

 

The on state of the node C3 and C7 has no impact on C4, C5, 

C6 and C8.  

 

Only the nodes C1 and C2 come to on state. 

 

Interested reader can work with any such MOD interval 

matrices with this special type of product of them. 

 

Now we technically define the MOD Interval Cognitive 

Maps (MOD ICMs) model. 

 

Let P be a problem in hand. 

 

Let C1, C2, …, Cn be the n-nodes / concepts which an 

experts wishes to work with. 

 

Let G be the MOD interval directed graph with edge weights 

from [0, m); 2 ≤ m < ∞. 

 

Let M be the MOD interval connection matrix associated 

with M which will serve as the dynamical system of MOD 

interval Cognitive Maps model; construct analogous to FCMs or 

NCMs. 

 

We will illustrate this situation by an example. 

 

Example 3.57: Let P be a problem in hand C1, C2, C3, C4 and C5 

be the 5 nodes associated with problem P.  

 

Edge weights are taken from the interval [0, 6).  

 

Let G be the MOD interval directed graph associated with 

this problem given by the following figure. 
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Figure 3.26 

 

 

 

Let M be the MOD interval connection matrix associated 

with G. 

 

 

M =

1 2 3 4 5

1

2

3

4

5

C C C C C

C 0 3.2 0 0 0

C 0 0 0.5 0 0

C 0 0 0 0 0

C 0 5.2 0 0 0

C 0 0 0 0.3 0

 
 
 
 
 
 
  

.

 
 

 

 

Let X = {(a1, a2, a3, a4, a5) | ai ∈ {0, 1}; 1 ≤ i ≤ 5} be the 

MOD interval initial state vector. 

 

 

C1

3.2 

C4

C2

C5 

0.5 

C3 

5.2 

0.3 
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Let x1 = (1, 0, 0, 0, 0) ∈ X; to find x1 on M. 

 

x1M = (0, 3.2, 0, 0, 0) → (1, 1, 0, 0, 0) = y1  

y1M = (0, 3.2, 0.5, 0, 0) → (1, 1, 0, 0, 0) = y2 

y2M = (0, 3.2, 0.5, 0, 0) → (1, 1, 0, 0, 0) = y3 (=y1) . 

 

 

Thus the MOD interval fixed point given by (1, 1, 0, 0, 0). 

So on state of C1 makes only C2 to on state all other nodes C3, 

C4 and C5 are unaffected by the on state of C1. 

 

Let x4 = (0, 0, 0, 1, 0) ∈ X to find the effect of x4 on M. 

 

x4M = (0, 5.2, 0, 0, 0) → (0, 1, 0, 1, 0) = y1 

y1M = (0, 5.2, 0.5, 0, 0) → (0, 1, 0, 1, 0) = y2 (=y1). 

 

Thus on state of C4 makes only C2 to on state and all other 

nodes are in the off state. 

 

Let x2 = (0, 1, 0, 0, 0) ∈ X; to find the effect of x2 on M 

 

x2M = (0, 0, 0.5, 0, 0) → (0, 1, 0, 0, 0) = x2. 

 

Thus the MOD interval resultant is the MOD interval special 

classical fixed point. 

 

Let x3 = (0, 0, 1, 0, 0) ∈ X, to find the effect of x3 on M. 

 

x3M = (0, 0, 0, 0, 0) → (0, 0, 1, 0, 0) = y1 (=x3) 

 

Thus the MOD interval resultant is a MOD interval special 

classical fixed point. 

 

Let x5 = (0, 0, 0, 0, 1)∈ X, to find the effect of x5 on M 
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x5M = (0, 0, 0, 0.3, 0) → (0, 0, 0, 0, 1) = y1 (= x5). 

 

Thus the MOD interval resultant is the MOD interval special 

classical fixed point. 

 

Let x = (1, 0, 0, 1, 0) ∈ X; to find the effect of x on M 

 

xM = (0, 2.4, 0, 0, 0) →(1, 1, 0, 1, 0) = y1 

y1M = (0, 2.4, 0.5, 0, 0) → (1, 1, 0, 1, 0) = y2 ( = y1). 

 

Thus the MOD interval resultant of x is the MOD interval 

fixed point given by (1, 1, 0, 1, 0).  

 

That is the on state of C1 and C4 makes the node C2 to the 

on state and C3 and C5 are left unaffected  by them. Interested 

reader can work with more such model. 

 

The main advantage of using this model is that the expert 

can give any of the value for the edge weights from the interval 

[0, n). 

 

However we are sure to find the resultant after a finite 

number of steps.  

 

So this new model will be helpful to researches who wishes 

to have different weights for the edge weights. 

 



 
 
 
 
 

 

 

 
Chapter Four 
 
 

 
 
SUGGESTED PROBLEMS  
 
 
 
 
 
 

In this chapter  we  suggest problems for the reader. Most of 

them are only simple exercise only a few of them are really 

difficult. 

 

 These problems will motivate the researcher in using these 

new mathematical models. 

 

1. Obtain all the special features enjoyed by MOD Cognitive 

Maps model. 

 

2. Find a suitable programme to find MOD fixed point and 

MOD limit cycle for any n × n MOD Cognitive Maps model 

matrix with entries from Zm. 
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3. Let M = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

C C C C C C C

C 0 3 2 5 0 0 4

C 0 0 3 0 2 1 0

C 4 0 0 2 4 0 1

C 3 6 2 0 0 6 4

C 0 0 0 4 0 3 0

C 2 0 1 0 1 0 3

C 4 1 0 2 0 5 0

  

 

 

be the MOD Cognitive Maps model with entries from Z7. 

 

i) Find the number of MOD fixed elements associated with 

M. 

ii) Find the number of MOD limit points associated with M. 

iii) If x and y are any two initial state MOD vectors when 

will the resultant xM and yM be such that  

 xM + yM = (x + y) M. 

iv) Find the maximum number of iterations needed to 

arrive at the MOD fixed point or a MOD limit cycle using 

this M. 

v) List all the special features of MOD Cognitive Maps 

model and compare it with Fuzzy Cognitive Maps and 

Neutrosophic Cognitive Maps models. 

 

 

4. Let                  N = 

0 2 0 1 5 5 4

0 0 4 0 0 2 0

0 3 0 0 1 0 1

4 0 2 0 0 6 0

9 2 0 8 0 8 6

0 0 7 0 2 0 0

1 3 0 6 0 1 5

 
 
 
 
 
 
 
 
 
 
− 

  

 

be the MOD connection matrix with entries from Z10.  
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 Study question (i) to (v) of problem (3) for this N. 

 

 

5. Let W = 

0 2 0 3 0 4 0 3 1 6

1 0 2 0 1 0 10 0 12 0

0 12 0 2 0 7 0 1 0 9

6 0 13 0 15 0 2 7 12 0

0 7 0 21 0 9 0 7 0 18

3 0 6 0 1 0 4 0 2 0

0 13 0 12 0 6 0 7 0 4

2 0 2 0 6 0 0 0 6 0

11 1 0 7 0 3 6 0 0 2

0 17 15 0 19 0 18 17 2 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 be the  

 

 

 MOD connection matrix with entries from Z23. 

 

 Study questions (i) to (v) of problem (3) for this W. 

 

6. Find all special features enjoyed by MOD finite complex 

number C(Zn) Cognitive Maps model.   

 

 (i) Compare this model with MOD Cognitive Maps models  

  using Zn. 

 

 (ii) Can we say when n is prime the MOD Cognitive Maps  

  Models are perfect? 

 

 

7. Let P be the problem where M be the MOD complex 

Cognitive Maps model associated with the problem with 

entries from C(Z12). 
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P = 

F

F F

F

F F

F

F F

F F F

F F F

F F

0 3 i 2 0 4 0

1 i 0 6 1 i 2 6

0 0 0 5 4 0

0 6 0 0 2 1

10 0 1 i 1 0 5

0 11 3i 0 0 1 5i 0

1 i 0 1 3 0 7

0 1 2 7i 0 1 2i

5 6i 0 3i 1 4i 0

0 7 8i 0 i 0 1 5i

6i 0 7 0 6i 0

+


+ +



 +


+ +


+


+


+

 + +




 

 

 

F

F

F

F

F

F F

F

F

5 0 8 9 0

0 2 0 0 1 5i

2 7 0 8 0

0 0 7 0 2i

11 0 11 i 1 0

0 3 0 4 2 i

0 0 1 1 6i 0

0 0 0 0 2

i 0 0 i 0

0 1 3i 0 2

2 i 0 0 3 0




+ 



+


+ 


+








+ 

.

 

    

i) Study questions (i) to (v) of problem (3) for this P. 

ii) Distinguish the MOD complex Cognitive Maps model 

from that of MOD Cognitive Maps model, FCMs model 

and NCM model. 

 

8. Let S be a problem which has the following MOD complex 

number matrix;  
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 S = 

F

F F

F

F F F

F

F F

0 2 i 3 0 1 4

i 0 2i 1 0 5

0 1 0 1 i 2 0

3 i 0 2 i 0 0 i

0 1 i 0 0 1

2 0 0 i 4 i 0

+ 
 
 
 +

 
+ + 

 
 

+  

 

 

with entries from C(Z6) acting as the associated MOD 

complex number  dynamical system of the problem. 

 

 Study questions (i) to (v) of problem (3) for this S. 

 

9. Let S1 be the MOD dual number dynamical system 

associated with the MOD dual  number Cognitive Maps 

model with entries from 〈Zn ∪ g〉. 
 

 

S1 = 

1 2 3 4 5 6

1

2

3

4

5

6

C C C C C C

C 0 2g 0 2 g 0 7g

C 2 0 g 3g 2 0

C 0 0 0 0 0 1 4g
.

C 0 1 0 0 1 0

C 5 2 7g 0 4 0 3

C 0 0 7g 0 4 3g 0

+ 
 
 
 +

 
 
 +

 
+  

 

 

 

 Study questions (i) to (v) of problem (3) for this S1 

 

10. Obtain all special features associated with MOD dual 

number Cognitive Maps model. 

 

11. What are the advantages of using MOD dual number 

Cognitive Maps model in the place of FCMs and NCMs? 
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 12. Compare FCMs model with MOD complex modulo integer 

Cognitive Maps model. 

 

13. Compare MOD complex modulo integer Cognitive Maps 

model with MOD dual number Cognitive Maps model built 

using C(Z15) and 〈Z15 ∪ g〉 respectively for a same problem. 

 

14. Give some real world applications of the MOD finite 

complex modulo integer Cognitive Maps model. 

 

15. Find the problems in which MOD dual  number Cognitive 

Maps model would be better than FCMs and NCMs. 

 

16. What are the advantages of using MOD special quasi dual 

number Cognitive Maps model? 

 

17. Compare MOD special quasi dual number Cognitive Maps 

model with FCMs and NCMs. 

 

18. Distinguish the MOD special quasi dual number Cognitive 

Maps model from the MOD complex modulo integer 

Cognitive Maps model. 

 

19. Let P be the MOD special quasi dual number connection 

matrix special associated with the MOD special quasi dual 

number Cognitive Maps model given below; 

 

 

 P = 

0 6 2k 0 4 0 5k

1 0 2k 0 1 0

k 0 0 1 k 0 2k 1

1 k 0 0 0 k 0

0 1 1 k k 0 0

0 0 0 0 1 k 0

+ 
 
 
 + +

 
+ 

 +

 
+  

  

 

is the dynamical system with entries from 〈Zn ∪ k〉; k2
 = 6k. 

 

a) Study questions (i) to (v) of problem (3) for this P. 
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b) Obtain any other special feature one can associate with 

this MOD special quasi dual number Cognitive Maps 

model. 

 

20. Let P be a MOD connection matrix of the MOD special dual 

like number Cognitive Maps model with entries from 〈Z4 ∪ 

h〉, h2
 = h given below; 

 

 

            P = 

0 1 2 h 3h 0

0 0 h 0 1 h 2

0 0 0 3h 1 0 0
.

2 0 1 h 0 0 h

0 2 3h 0 0 0 1 h

0 h 3h 0 2 0

 
 

+ 
 +

 
+ 

 + +

 
  

 

 

 

 Study questions (i) to (v) of problem (3) for this P. 

 

21. What are the advantages of using MOD special dual like 

number Cognitive Maps model? 

 

22. Compare MOD special quasi dual number Cognitive Maps 

model with MOD special dual like number Cognitive Maps 

model. 

 

23. Compare this new MOD NCMs model with FCMs and 

NCMs. 

 

24. Let S be the MOD neutrosophic Cognitive Maps model 

associated dynamical system; S takes its entries from  

〈Z9 ∪ I〉 and S is as follows. 
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   S = 

0 3 I 1 0 2 I 3I 3

1 0 0 2I 1 0 0

4 I 0 0 0 0 2 I

0 1 0 0 0 0 4I 3

0 0 5I 1 0 0 0

1 7I 0 0 I 0 0

0 0 2 I 1 0 0 0

+ + 
 
 
 +

 
+ 

 
 
 
 

+ 

 . 

  

Study questions (i) to (v) of problem (3) for this S. 

 

25. Compare a MOD neutrosophic Cognitive Maps model with 

NCMs model. 

 

26. Enumerate the advantages of using MOD neutrosophic 

Cognitive Maps model in the place of NCMs model. 

 

27. What are the special features associated with MOD directed 

graphs? 

 

28. Compare MOD directed graphs with usual directed graphs. 

 

29. Compare the MOD complex modulo integer directed graph 

with edge weights from C(Z12) with usual directed graphs. 

 

30. Compare the MOD complex modulo integer directed graph 

with MOD dual number directed graphs. 

 

31. Let G be the MOD dual number directed graph with edge 

weights from 〈Z5 ∪ g〉.  
 

Compare this graph G with the MOD directed graph built 

using Z5. 

 

32. What are the special features associated with MOD natural 

neutrosophic directed graphs G? 
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33. Can we claim it is advantageous to use MOD natural 

neutrosophic directed graphs in mathematical models? 

 

34. Let M be the connection matrix of a MOD natural 

neutrosophic model with entries from I

4Z  given in the 

following;  

 

M = 

4 4

2 0

0

4

4

2

4

0

4 4 4

2 0 2

0 2 I 0 I 1 0 0

2 0 1 0 2 0

0 0 0 3 0 I

1 I 0 0 1 0

0 0 I 0 0 3

I I 0 0 2 I 0

 + +

 
 
 
 
 
 
 

+  

. 

 

 

 

 i) Find all MOD natural neutrosophic special classical 

fixed points associated with M. 

 

 ii) How many of the MOD resultants associated with M are 

MOD natural neutrosophic fixed points? 

 

 iii) What is the highest number of iterations needed to 

arrive at a MOD fixed point? 

 

 iv) How many of the MOD resultants associated with M are 

MOD natural neutrosophic limit cycles? 

 

 v) What is the highest number of iterations needed to 

arrive at a MOD natural neutrosophic limit cycle? 

 

 vi) Enumerate all special features associated with this MOD 

natural neutrosophic Cognitive Maps models. 
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35. Let    P = 

4

00 I 0 0 0 2 1 0

0 0 1 0 5 0 0 0

0 0 0 3 0 0 0 0

4 0 1 0 0 1 0 1

0 3 0 2 0 0 6 0

1 0 4 0 6 0 0 3

0 2 0 1 0 0 0 0

1 0 1 0 0 1 0 0

 
 
 
 
 
 
 
 
 
 
 
  

  

 

be the MOD natural neutrosophic Cognitive Maps model 

connection matrix with entries from I

7Z .  

 

Study questions (i) to (vi) of problem (34) for this P. 

 

 

 

 

 

36. Let                T = 

10

5

10

0

0 3 1 I 0 0 0 1

0 0 0 0 3 0 0

0 1 0 I 0 6 2

4 0 0 0 0 0 3

0 0 1 0 0 0 0

1 0 0 2 6 0 0

0 0 0 0 0 0 0

 +

 
 
 
 
 
 
 
 
 
 

  

 

 

 

be the connection MOD matrix of a MOD natural 

neutrosophic Cognitive Maps model with entries from I

10Z . 

 

 Study questions (i) to (vi) of problem (34) for this T. 
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37. Let              W = 

0 1 2 0 0 5

0 0 0 2 1 0

4 0 0 0 0 1

0 0 0 0 2 0

0 5 1 0 0 2

0 0 0 6 0 0

 
 
 
 
 
 
 
 
  

  

 

 

be the MOD natural  neutrosophic connection matrix 

associated with a MOD natural neutrosophic Cognitive Maps 

model with entries from I

6Z . 

  

Let X = {(a1, a2, …, a6) / ai ∈ {0, 1}; 1 ≤ i ≤ 6} and  

 

XS = {(a1, a2, …, a6) / ai ∈ {0, 1, 6

0I , 6

2I , 6

4I , 6

3I }; 1 ≤ i ≤ 6} 

be the MOD natural neutrosophic initial state vectors and 

MOD natural neutrosophic special initial state vectors 

respectively associated with W. 

 

i) Study questions (i) to (vi) of problem (34) for this W. 

 

 

38. Compare MOD natural  neutrosophic Cognitive Maps model 

with NCMs model. 

 

39. Derive all special and distinct features enjoyed by MOD 

natural neutrosophic finite complete modulo integer 

Cognitive Maps model. 
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40. Let P = 
F

F F

C

2 2i

F

0 i 2 0 3i 1

1 0 0 0

0 0 0 I

i 0 0 0

0 2 0 0

+

+ + 
 
 
 
 
 
 
 

  

 

be MOD natural neutrosophic finite complete modulo integer 

connection matrix associated with a MOD natural 

neutrosophic finite complex modulo  integer Cognitive 

Maps model with entries from C
I
(Z24).  

 

i) Obtain the special and distinct features enjoyed by MOD 

natural neutrosophic finite complex modulo integer 

Cognitive Maps model. 

 

ii) Compare this model with MOD complex modulo integer 

Cognitive Maps model built using C(Z4). 

 

 

41. Let M = 

F

C

F 3i

F

F F

F

0 3 5i 0 0 I 0

0 0 1 0 0 5

2 0 0 3i 0 0

0 1 0 0 1 0

i 0 0 0 0 2i

0 0 1 i 0 0 0

 +

 
 
 
 
 
 
 
 + 

  

 

be the MOD natural neutrosophic finite complex modulo 

integer connection matrix associated with a MOD NCM 

model, with entries from C
I
(Z9). 

  

Study questions (i) to (vi) of problem (34) for this M. 

 

 

42. Let P be a MOD natural neutrosophic dual number Cognitive 

Maps model with entries from 〈Z3 ∪ g〉I. 
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 Derive all special features enjoyed by this P.  

 

 

 

43. Let S = 

g

20 2 0 4g 0 0 I

0 0 1 g 0 1 2g 0

1 0 0 1 0 0 0

3g 0 0 0 0 0 g

0 1 3g 0 0 0 4 g 0

0 0 g 0 5 g 0 0

0 0 0 0 0 0 0

 
 

+ 
 
 
 
 

+ +
 

+ 
 
 

  

 

be the MOD natural neutrosophic dual number Cognitive 

Maps model connection matrix with entries from 〈Z6 ∪ g〉I. 

  

 Study questions (i) to (vi) problem (34) for this S. 

 

 

44. Let W = 
g

4

0 g 0 0 1 g 0

0 0 1 5g 9g 0 0

3g 0 0 0 0 I

0 10 11g 0 0 0

1 g 0 0 0 0 0

0 0 0 1 5g 0 0

+ 
 

+ 
 
 
 
 +

 
+  

  be the   

 

 MOD natural neutrosophic dual  number connection matrix 

associated with the MOD natural neutrosophic dual  number 

Cognitive Maps model with entries from  〈Z12 ∪ g〉I. 

  

i) Study questions (i) to (vi) of problem (34) for this W. 

ii) Let x1 = ( g

6 6gI
+

, 0, 0, 0, 0, 0) be the initial state vector 

find the MOD resultant of x1 on  W. 

iii) Let x2 = (0, 0, 0, g, 0, 0) be the initial state vector find  

 the MOD resultant of x2. 
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 iv) Let x3 = (0, 0, 0, 0, 0, g

0I ) be the initial state vector find 

the MOD resultant of x3 on W. 

v) Let x4 = (0, 0, 1, 0, 0, 0) be the initial state vector find 

the MOD resultant of x4  on W. 

vi) Compare the MOD resultants given by the initial state  

vector x1, x2, x3 and x4 on W. 

 

45. Compare the MOD natural neutrosophic finite complex 

modulo integer Cognitive Maps model with MOD natural 

neutrosophic dual number Cognitive Maps model built 

using C
I
(Z18) and 〈Z18 ∪ g〉I respectively. 

 

46. Suppose B be the MOD natural neutrosophic special dual 

like number Cognitive Maps models dynamical system 

given in the following built using 〈Z15 ∪ h〉I; 

 

 

 B = 

h

5h 10

0 2h 0 4h 1 0 0 0 0

0 0 I 0 0 0 h 0

3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 4 0 0 0 0 0

1 h 0 0 0 0 0 0 0

0 6 h 0 10h 0 0 0 0

0 0 0 0 0 14 6h 0 0

+

+ 
 
 
 
 
 
 
 

+ 
 

+
 

+  

. 

 

 

 Study questions (i) to (vi) of problem (34) for this B. 

 

47. Derive all special features associated with MOD natural 

neutrosophic special dual like number Cognitive Maps 

model. 

 

48. Compare MOD natural neutrosophic special dual like 

number Cognitive Maps model with MOD special dual like 

number Cognitive Maps model. 
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49. What are the benefits of using MOD natural neutrosophic 

dual like number Cognitive Maps model in the place of 

FCMs or NCMs? 

 

 

50. Let  

W1 = 

h

2h0 h 1 0 0 0 I

0 0 0 0 0 1

3h 2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 2h

0 0 0 0 0 0

 +

 
 
 +

 
 
 
 
  

 

 

 

 be the MOD special dual like number Cognitive Maps 

models connection matrix with entries from 〈Z6 ∪ h〉I. 

  

i) Study questions (i) to (vi) of problem (34) for this W1 

 

ii) If x1 = ( h

3hI , 0, 0, 0, 0, 0) be the initial state vector find 

the MOD resultant of x1 on W1. 

 

iii) If y1 = (0, 0, 0, 3h, 0, 0) be the initial state vector find 

the MOD resultant of y1 on W1. 
 

iv) Let x3 = (0, 0, 0, h

2I , 1, 0) be the initial state vector find 

the MOD resultant of x3 on W1. 

 

51. Let V be the MOD natural neutrosophic special quasi dual 

number connection matrix associated with MOD NCMs 

model given in the following; with entries from 〈Z16 ∪ k〉I. 
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V = 

k

2

k

4k

0 k 0 0 I 0 0 0

0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 4k

0 0 0 0 0 0 0 0

I 0 0 0 2 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

 
 
 
 
 

+ 
 
 
 
 
 
  

 . 

 

 

i) Study questions (i) to (vi) problem (34) for this V. 

 

ii) If x1 = (3 + k

8kI  + k

2I , 0  0 0 , …, 0) be the initial state 

vector find the MOD resultant of x1 on V. 

 

iii) Let x = (0, 0, 0, 0, …, 0 2 k + 4) be the initial state 

vector find the MOD resultant of x on V. 

 

iv) Let x2 = (1, 0, …, 0) be the initial state vector find the 

MOD resultant of x2 on V. 

 

v) Compare the MOD resultants of x1 and x2 on V in 

questions (ii) and (iv). 

 

vi) Let x3 = (0, 0, …, 0, k

4kI ) be the initial state vector. Find 

the MOD resultant of x3 on V. 

 

vii) Compare the MOD resultant of x and x3 on V in 

questions (iii) and (vi) respectively. 

 

viii) Let y = (0, 1, …, k

4kI ) be the initial state vector. 

Find the MOD resultant of y on V. 

 

ix) Compare the MOD resultants of x2, x3 and y on  V in 

questions (iv), (vi) and (viii) respectively. 
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x) Obtain any other special or striking feature associated 

with V. 

 

52. Bring out all special features associated with MOD natural 

neutrosophic special quasi dual numbers cognitive maps 

model. 

 

53. Compare the model mentioned in problem (52) with that of 

FCMs and NCMs models. 

 

54. What are the main differences between MOD natural 

neutrosophic special dual like numbers model and MOD 

special quasi dual number model.  

 

Justify your claim. 

 

 

55. Let                         S = 

I

3

I

2

0 1 I 0 0 0

0 0 1 0 0

0 0 0 I 0

0 0 I 0 0

1 0 0 0 0

 +

 
 
 
 
 
 
 

  

 

be the MOD natural neutrosophic-neutrosophic square 

matrix which serves as the connection matrix or MOD 

dynamical system of the MOD natural neutrosophic-

neutrosophic Cognitive Maps model with entries from  

〈Z6 ∪ I〉I. 

  

i) Study questions (i) to (vi) of problem (34) for this S. 

 

ii) If x = (I, 0, 0, 0, 0) is the initial state vector, find the 

MOD resultant of x on S. 

 

iii) Let x1 = ( I

3II , 0, 0, 0, 0) be the MOD initial special state 

vector, find the MOD resultant of x1 on S. 
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 iv) Compare x and x1 of questions (ii) and (iii) by 

comparing the MOD resultants. 

 

v) Obtain any special feature associated with MOD natural 

neutrosophic-neutrosophic Cognitive Maps model. 

 

vi) Compare this MOD n.n. neutrosophic cognitive maps 

model with NCMs and MOD neutrosophic Cognitive 

Maps model. 

 

vii) Let y1 = (1, 0, 0, 0, 0) be the initial state vector, find the 

MOD resultant of y1 on S. 

 

viii) Compare the MOD resultants initial state vectors given 

in (ii), (iii) and (vii). 

 

ix) Let z = (0, 0, 0, 1, I

0I ) be the initial state vector, find  

 the MOD resultant of z on S. 

 

x)  Find all initial state vector xi’s such that the MOD  

resultants of their sum is the sum of the MOD resultants. 

 

56. Compare the MOD natural neutrosophic-neutrosophic 

Cognitive Maps model with MOD natural neutrosophic dual 

number Cognitive Maps model. 

 

57. Which of the MOD  Cognitive Maps model is powerful to 

study social problem? 

 

58. Which of the MOD natural neutrosophic Cognitive Maps 

model is best suited to study scientific or technological 

problems? 

 

59. What are the advantages and disadvantages of these MOD 

neutrosophic Cognitive Maps model? 

 

60. Can we say MOD neutrosophic Cognitive Maps model is 

more powerful than NCMs model? 
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61. Can we claim different types of indeterminate in MOD  

natural neutrosophic Cognitive Maps model is useful than 

NCMs models? 

 

62. Adopt MOD  natural neutrosophic complex modulo integer 

Cognitive Maps model is a social or scientific problem and 

show it gives better result than MOD finite complex 

Cognitive Maps model. 

 

63. Describe the MOD interval Cognitive Maps model. 

 

64. Compare the MOD interval Cognitive Maps model with MOD 

integers Cognitive Maps model. 

 

65. Apply the MOD interval cognitive maps model in some real 

world problem. 

 

 Let M = 

0 3.1 0.112 0 0 1

0 0 1.22 0.1 0.4 0

1.3 0 0 0 0 4.1

0 1.32 0.1 0 2 0

0 0 0 0 0 0.3

0 0 0 1 0 0

 
 
 
 
 
 
 
 
  

 be the MOD  

 

 

 interval Cognitive Maps model dynamical system. 

 

i) Study questions (i) to (v) of problem (3) for this M. 

ii) How many MOD interval initial state vectors lead to 

MOD interval special classical fixed points? 

iii) How many MOD interval initial state vectors yield the 

MOD interval resultant as MOD interval limit cycle? 

 

66. What are the advantages of using MOD interval Cognitive 

Maps model in the place of FCMs? 

 

67. Mention the application of MOD interval Cognitive Maps 

model. 
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68. Let P be a problem with C1, c2, C3, C4 as its nodes / 

concepts. The expert has worked the problem P using MOD 

interval Cognitive Maps model using the interval [0, 9).  

 

Let M1 be the MOD interval connection matrix which serves 

as the MOD dynamical system for this problem P. 

 

                   M1 = 

0 8.01 0.1 2

0 0 6.3 0

3.2 0 0 1

0 1 0 0

 
 
 
 
 
 

  

i) Study questions (i) to (iv) of problem (3) for this M1. 

 

ii) Let x1 = (1, 0, 0, 0) be the initial state vectors find the 

MOD interval resultant of x1 on M. 

 

iii) Let x3 = (0, 0, 1, 0) be the MOD interval initial state 

vector. Find the MOD interval resultant of x3 on M. 

 

iv) Let y = (1, 0, 1, 0) be the MOD interval initial state 

vector. Compare the sum of the MOD resultants of x1 

and x3 with that of the MOD resultant of y. 

 

v) Can we replace the X = {(a1, a2, a3, a4) / ai ∈ {0, 1}, 1 ≤ 

i ≤ 4} by Xm = {(a1, a2, a3, a4) / ai ∈ Z9, 1 ≤ i ≤ 4} and 

study the model? 

 

vi) Prove using Xm will also yield the MOD resultant after a 

finite number of iterations. 
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