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Abstract This paper develops a method for solving the
multiple attribute decision-making problems with the sin-
gle-valued neutrosophic information or interval neutro-
sophic information. We first propose two discrimination
functions referred to as score function and accuracy func-
tion for ranking the neutrosophic numbers. An optimization
model to determine the attribute weights that are partly
known is established based on the maximizing deviation
method. For the special situations where the information
about attribute weights is completely unknown, we propose
another optimization model. A practical and useful formula
which can be used to determine the attribute weights is
obtained by solving a proposed nonlinear optimization
problem. To aggregate the neutrosophic information cor-
responding to each alternative, we utilize the neutrosophic
weighted averaging operators which are the single-valued
neutrosophic weighted averaging operator and the interval
neutrosophic weighted averaging operator. Thus, we can
determine the order of alternatives and choose the most
desirable one(s) based on the score function and accuracy
function. Finally, some illustrative examples are presented
to verify the proposed approach and to present its effec-
tiveness and practicality.
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1 Introduction

Zadeh [32] introduced the degree of membership/truth
(t) in 1965 and proposed the concept of fuzzy set. Ata-
nassov [1] introduced the degree of nonmember-
ship/falsehood (f) in 1986 and defined the intuitionistic
fuzzy set (to date, the intuitionistic fuzzy sets have been
widely applied in solving MCDM problems [13, 21-23]).
Using the degree of indeterminacy/neutrality (i) as inde-
pendent component in 1995, Smarandache initiated the
neutrosophic set theory. He has coined the words “neu-
trosophy” and neutrosophic. In 2013, he redefined the
neutrosophic set to n components: fi,1,..
Sisfoso e

But, a neutrosophic set will be difficult to apply in real
scientific and engineering fields. Therefore, Wang et al.
[19, 20] proposed the concepts of a single-valued neutro-
sophic set (SVNS) and an interval neutrosophic set (INS)
which are an instance of a neutrosophic set, and provided
set-theoretic operators and various properties of SVNSs
and INSs. Recently, the theory of neutrosophic set has
received more and more attentions [2-4, 6-8, 11, 12, 14,
15, 17, 26-31, 33, 34]. Zhang et al. [33] proposed some
neutrosophic aggregation operators, such as the interval
neutrosophic weighted averaging (INWA) operator and the
interval neutrosophic weighted geometric (INWG) opera-
tor, and applied the operators to solve the multiple attribute
group decision-making problems with interval neutro-
sophic information.
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For the above researches on the multiple attribute
decision-making (MADM) problems with interval neutro-
sophic information, we can suppose the attribute weights
are fully known. However, in real decision making,
because of time pressure, lack of knowledge or data and the
expert’s limited expertise about the problem domain, the
information about attribute weights is incompletely known
or completely unknown. So, the existing MADMs under
neutrosophic environment will be impractical for such
situations. Therefore, it is necessary to study this issue. In
this paper, our aim is to solve the MADM problems in
which the attribute values take the form of neutrosophic
information and attribute weights are incompletely known
or completely unknown based on the maximizing deviation
method. In Sect. 2, we summarize the some basic concepts
related to a neutrosophic set and its instances, single-valued
neutrosophic set and interval neutrosophic set. A score
function and an accuracy function are also proposed for
ranking neutrosophic numbers in this section. Section 3
introduces the neutrosophic MADM (NMADM) method
under neutrosophic environment, in which the information
about attribute weights is partly known and the attribute
values take the form of neutrosophic numbers. An opti-
mization model based on the maximizing deviation method
is established to determine the attribute weights. For the
special situations where the information about attribute
weights is completely unknown, we develop another opti-
mization model which provides a simple and exact for-
mula. To aggregate the neutrosophic information
corresponding to each alternative, we utilize the neutro-
sophic weighted averaging (NWA) operators which are the
single-valued neutrosophic weighted averaging (SVNWA)
operator and the interval neutrosophic weighted averaging
(INWA) operator. Thus, we can determine the order of
alternatives and choose the most desirable one(s) based on
the score function and accuracy function. In Sect. 4, some
illustrative examples are presented to verify the developed
approach and to demonstrate its practicality and effec-
tiveness. Section 5 concludes the paper and presents some
results.

2 Preliminaries
In the subsection, we give some concepts related to neu-

trosophic sets, single-valued neutrosophic sets and interval
neutrosophic sets.

2.1 Neutrosophic set

Definition 1 (Smarandache [16]) Let X be a universe of
discourse, then a neutrosophic set is defined as:
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A= {{x,Fa(x),Ta(x),14(x)) : x € X},

which is characterized by a truth-membership function
Ty : X — 107,17, an indeterminacy-membership function
Iy : X — 107,17 and a falsity-membership function
Fi:X—]07, 17

There is no restriction on the sum of T,(x), I4(x) and
F(x), s0 07 < sup Ty (x) + sup I4(x) + sup Fa(x) <3%.

In the following, we adopt the representations u,(x),
pa(x) and vs(x) instead of Ty(x), In(x) and Fa(x),
respectively.

Wang et al. [20] defined the single-valued neutrosophic
set which is an instance of neutrosophic set as follows:

2.2 Single-valued neutrosophic sets

Definition 2 (Wang et al. [20]) Let X be a universe of
discourse, then a single-valued neutrosophic set is defined
as:

A= {{x,ua(x), pa(x),va () : x € X}

where, us : X — [0,1], pa: X — [0,1] and v4 : X — [0, 1]
with 0 <us(x) +pa(x) +va(x) <3 for all x € X. The
intervals u4 (x), pa(x) and v4(x) denote the truth-member-
ship degree, the indeterminacy-membership degree and the
falsity-membership degree of x to A, respectively.

We will denote the set of all the SVNSs in X by Q. A
single-valued neutrosophic number (SVNN) is denoted by
a = (u,p,v) for convenience.

We give a score function and an accuracy function for
ranking SVNNs as follows;

Definition 3 Let a = (u,p,v) be a single-valued neutro-
sophic number. Then a score function S of the single-val-
ued neutrosophic number can be defined by

- l4+u—2p—v
S(a) = — =t (1)
where S(a) € [-1,1].

The score function S is reduced the score function
proposed by Li [S]if p=0and u +v<1.

Example 1 Let a; = (0.5,0.2,0.6) and a, = (0.6,0.4,
0.2) be two single-valued neutrosophic numbers for two
alternatives. Then, by applying Definition 3, we can obtain

_1+05-2x02-0.6

S(a@) ) —025
14+0.6-2x04-02
S(d@r) = — 2X — 0.30.

In this case, we can say that alternative a; is better than a;.

Definition 4 Let @ = (u,p,v) be a single-valued neutro-
sophic number, an accuracy function H of the single-val-
ued neutrosophic number can be defined by
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H(a) = u—p(1 —u) —v(1 —p) (2)

where H(a) € [-1,1].

When the value of H(a) increases, we say that the
degree of accuracy of the single-valued neutrosophic
number a increases.

Example 2 Let a;=(0.3,0.1,04) and a,=
(0.5,0.1,0.3) be two single-valued neutrosophic numbers
for two alternatives. Then, by applying Definition 4, we can
obtain H(a;) = —0.13 and H(a,) = 0.18.

In this case, we can say that alternative a, is better than
ag.

With respect to the score function S and the accuracy
function H, a method for comparing SVNNs can be defined
as follows;

Definition 5 Leta; = <u1 ,P1, V]> and a, = <u2,p2, V2> be
two single-valued neutrosophic values. Then we have

1. if S(a)[ S(a), then a. is greater than d,, denoted by
a, > a,

2. ifS(a;) =S(ax) and H(a,)[ H(a,) then a, is greater
than a,, denoted by a; > a,.

Example 3 Let a;=(0.6,02,02) and a,=
(0.5,0.1,0.3) be two single-valued neutrosophic numbers
for two alternatives. Then, by applying Definition 5, we can
obtain S(a;) =S(a) =0.5 and H(a,) =0.36, H(ay) =
0.18. Then it implies that a; > a,.

Based on the study given in Zhang et al. [33], we define
two weighted aggregation operators related to SVNSs as
follows;

Definition 6 Let a; = (u;,p;,v;)(j=1,2,...,n) be a

collection of single-valued neutrosophic numbers, and
SVNWA : 9, — Q, if

X
SVNWA, (ay, a, . ..,d,) = X jdj
j=1
! 3
SR S e
= 1- L—w ™ pi', vy

wherg, x ; is the weight of g (=12,...,n), x;€[0,1]
and 7:1 xj =1, then SVNWAiscalled single-valued
neutrosophic weighted average operator; especially, when
x;=1/n (j=1,2,...,n), then the SVNWA is called an
arithmetic average operator for SVNNS.

Similarly, we can define the single-valued neutrosophic
weighted geometric average (SVNWG) operator.

Definition 7 Let a; = (uj,p;,v;)(j=1,2,...,n) be a
collection of single-valued neutrosophic numbers, and
SVNWG : 9, — Q, if

Y:
SVNWGX (dlad27 ‘76’1) = ~;(j
=1
! 4
. Y 0 rx/ Y O ql ( )
_ 01— 1—-p; 71— 1 —v;

wherg, x ;. is the weight of g (j=1,2,...,n), x;€0,1]
and j'.‘:lx j=1, then SVNWGiscalled single-valued
neutrosophic weighted geometric average operator; espe-
cially, when x; =1/n (j=1,2,...,n), then SVNWG is
called a geometric average operator for SVNNs.

The aggregation results of the SVNWA and SVNWG
operators are still SVNSs.

Definition 8 (Majumdar and Samanta [9]) Let a; =
(u1,p1,v1) and a = (ua,pr,v2) be two single-valued
neutrosophic numbers. Then the normalized Hamming
distance measure between a; and a, is defined as:

L 1
d(ay, a) =§(|M1 — 2] + |p1 — p2| + 1 — v2). (5)

Wang et al. [19] extended the concept of single-valued
neutrosophic set to interval neutrosophic set (INS) which is a
further instance of the NSs. The fundamental characteristic
of the INS is that the values of its truth-membership function,
indeterminacy-membership function and falsity-membership
function are intervals rather than exact numbers.

2.3 Interval neutrosophic sets

Definition 9 (Wang et al. [19]) Let X be a universe of
discourse and Int[0,1] be the set of all closed subsets of
[0, 1]. Then an interval neutrosophic set is defined as:

A= {<x7 uA(x)va(x)va(x» HRS X}

where uy : X — Int[0,1], ps : X — Int[0,1] and v4 : X —
Int[0, 1] with O < sup us (x) + sup pa(x) + supva(x) <3 for
all x € X. The intervals u4(x),pa(x) and va(x) denote the
truth-membership degree, the indeterminacy-membership
degree and the falsity-membership degree of x to A,
respectively. 0
= uj(x),ug (x) , pa(x) =
pk(x),pY(x) and v(x) = vE(x),v{(x) , then
g m

A Al .. ‘I,‘tﬁ(x)aug(x) 1‘pﬁ(x)7p/g/(x) s Vﬁ(x)ﬂ)g(x)

For convelﬁ‘ence, if let us(x)

xeX

with the condition, 0 < sup uY{(x) + supp¥ (x) + supv{(x)
<3 for all x € X. Here, we only consider the sub-unitary
interval of [0, 1]. Therefore, an interval neutrosophic set is
clearly a neutrosophic set.

We will denote the set of all the INSs in X by F. An
interval neutrosophic number (INN) is denoted by b=
([w,ut],[p~,pt],[v",vt]) for convenience.

@ Springer
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We give the score function and accuracy function of an
INN as follows.

Definition 10 Let b = ([u—,u*],[p~,p*], [v",v*]) be an
interval neutrosophic number, a score function S of the
single-valued neutrosophic number can be defined by

24w Hut—=2p7 = 2pT —v —yT
S(6) = .

(6)

where S(b) € [~1,1].

Example 4 Let by = ([0.6,0.4],{0.3,0.1],[0.1,0.3]) and
b, = ([0.1,0.6],[0.2,0.3],[0.1,0.4]) be two interval neu-
trosophic numbers for two alternatives. Then, by Definition

) = 0.65 and S(b,) = 0.30.
In this case, we can say that alternative 51 is better than
bs.

10, we can obtain S(b,

Definition 11 Let b = ([u—,u*],[p~,p*],[v",v*]) be an
interval neutrosophic number, an accuracy function H of
the single-valued neutrosophic number can be defined by

L1
Hb = E(lf +ut —pt(1—u")—p (1 —u)
—vi(l=p)—v (1-p")
0.d
where H b € [—1,1].
The larger the value of H b is, the more the degree of

(7)

accuracy of the single-valued neutrosophic value b is.

The accuracy function H is reduced the accuracy
function proposed by Nayagam et al. [10] if p~,p™ =0
and u™ + v <1.

With respect to the score function S and the accuracy
function H, we define a method for comparing INNs as
follows;

D 0 D 0 N 1]
“1 Juy Tl’l PL s VLY
be two interval

Definition 12 Let b =
and b2 u23“2 ) p{ap;

neutrosophic numbers. Then we have

. 0 L O - -
1. ifS by [ S by ,then by is greater than b;, denoted by

{71 i 0O oo 00 _
2. it Sby =Sb, and H by [ H b, , then by is
greater than l;z, denoted by I;l - l;z.

+
,vz,vz

Next, we give two weighted aggregation operators related
to INSs.

Dh i
Definition 13 (Zhang et al. [33]) Let b; = u;,u ,
h ih i
pj_’pf ) v‘/_?VjJr >(j:1727"‘7
interval neutrosophic values, and INWA : F, — F, if

n) be a collection of
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. - - 0
INWA, by,bs, .. ..b, )
X yo oo O, wO O
= ijj: 1— l—ujf ,1— l—lxl;r
uj:I j:I n j:I #'
¥0 0,%0 07 vo G, %0 07
R ; Vi 4 ;
j=1 j=1 j=1 j=1
(8)
wherg, x; is the weight of b (j=1,2,....n), x; €[0,1]

n
j:]xj_ 1’

then INWA iscalled interval neutro-
sophic weighted average operator; especially, when x ; =
1/n(j=1,2,...,n), then the INWA is called an arithmetic

average operator for INNs.

and

Bﬁﬁnition 14 (Zhang et al. [33]) Let b =

ih ih iE

wo,u, pihpf s v,y (j=1,2,...,n) be a col-
lection of interval neutrosophic numbers, and
INWG : F,, — F, if
n #
o . .0 ¥ Y Ly 'y
INWGy bi,by,..sby = b)) = u, uf ,
" Jj=1 j=1 # j=1
y U Lk, Y k;
1 - l—p7 ,1- 1—pf )
" j=1 ’:', #1
y U L, Yy U O,
1 — l—v7 1— 1—- v;r B
Jj=1 Jj=1
9)
€ [0,1]

wherg, xj is the weight of b; (j =1,2,...,n), x
and j 1 xj =1, then INWGiscalled 1nterval neutro-
sophic weighted geometric average operator; especially,
whenx; =1/n (j=1,2,...,n), then the INWG is called a
geometric average operator for INNs.

The aggregation results of the INWA and INWG
operators are still INSs.

N L0
Deﬁnltlon 15 (YeD527]) Let by = [1,141 DDPI Pl

+
vl,v1 ) and by = Uy, Uy pz,p2 , vy,v3  be two
interval neutrosophic numbers. Then the normalized

Hamming distance measure between 151 and 152 is defined
as:

dbl’bzr_lma’ — Uy E" 671 _szFHVI _VzF
BN P

From the above analysis, we develop a method based on
the maximizing deviation for the neutrosophic multiple
attribute decision-making problems in which attribute
values for alternatives are the single-valued neutrosophic
value and the interval neutrosophic value.
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3 Maximizing deviation method for neutrosophic
information

Suppose that A = {A},A,,...,A,} is the set of alternatives
and C = {Cy,C,...,C,} is a set of criterions or attributes.
The attribute weights are partly known or completely

T be the weight vector
7:1 X;= l, Xj Z 0

unknown. Let x = (X 1,X2,...,X,
of attributes, such that

(j=1,2,...,n) and x refers to the weight of attribute C;.
D ={d\,dy,...,d;} denotes the set of decision makers
(DMs), and k = {k;, ko, .. kt} den(pes the weight vector
of DMs, ktﬁ [O,j], k=1,2,..,t,  _ /k = 1. Assume

that A®) = agjk) is the decision matrix provided by

mxn
the DM d; € D, al(]@ is a neutrosophic value forr alternative

A; associated with the atribute C;. If A® = 4if) =
’_‘ ’_‘ mxn
(k) (k) (k)

.’ pi Vv

i Py s Vij , it is a single-valued neutrosophic

(k)

mxn

decision matrix, where u;" indicates the degree that the

alternative A; satisfies the attribute C; and pl(j)

degree that the alternative A; is indeterminacy on the

attribute Cj, whereas v<]>

indicates the

indicates the degree that the
attribute A; does not satisfy the attribute C; given by the

decision maker dy. We have the conditions u() e [0.1],
pi) €10,1], and Vi € [0,1), 0<uff +p<>+v<><3f0r

i=1,2,...,m and j=1,2,...,n. Similarly, if A% =

min 00 0
0,0 U 0p 0 T 0y 0 oy
ﬂaij mxn - Tuij ’ u[j ) P,;,' ) p[j )
0 G O Cw

Vo , Vi

B , it is an interval neutrosophic

D By 0 Ot

decision matrix, where u;; y U

ij
indicates the

%egree that the altﬁrnatlve A; satisfies the attribute C; and
0 Oy O

P s p;j indicates the degree that the alternative

ﬁ,- is indeterminﬁcy on the attribute C;, whereas
s e (O
Vi s v; indicates the degree that the attribute A;

does not satisfy the attribute C; given by the decision

maker dy Here, we have the condition
0 Oy 0 Oy 0 Oy
0<sup u; +sup p; +sup v; <3 for i=

1,2,....mandj=1,2,...,n

Obtaining an overall preference value by synthesizing
the performance values of all alternatives of each expert is
an important step in decision process.

In this paper, we will utilize the SVNWA and INWA
operators as the main aggregation operators for two dif-
ferent methods, respectively.

DeﬁnitiorE 16 Suppose that AK) =
P, WY
matrix and 7; = (Fjy, P, ..., Fiy) is the vector of attribute
values corresponding to the alternative A;, i = 1,2,...,m.
Then the overall preference value of alternative A; for DM
dy can be expressed as, i = 1,2,...,m,

U uxn )

is a single-valued neutrosophic decision

[() (k) ()D
ri = valjvlj

= SVNWA (i, Fio, - - - Tin)
y: O '

L, ¥ o Y .

k) * (k)" (k)"

1 - U; y P Vi (10)
j=1 j=1 j=1

where X = (X1,X2,..., x,,)T denotes the weight vector of

attributes.
o o
Definition 17 Suppose  that A% = a<k) =
00 O 0 0ty "
0 Ny O e 0 Ny O e at Oy
Uy 5 Uy ) I P,, Vi s
0 Cg -
vii ] is an interval neutrosophic decision matrix

y
mxn

and Z; = (Zi1,Zi2, - - -» Zin) is the vector of attribute values
corresponding to the alternative A;, i = 1,2,...,m. Then
the overall preference value of alternative A; for DM d; can

be expressed as, i = 1,2,...,m,
h (k) +(k)i h (k) +(’<)i h (k) +(k)iD
G= oy My Py Py Vi Vi
:INWAX (2i172i27"'72i)1) #
Yy U L, wvU 4,
= 11— - - W
" . =1 . 47 . #1
¥ Dx ¥ +(k )jx' ¥ (k) % o +(k)Dx’
P,j ’ p[j ) VL] ) Vij )
j=1 Jj=1 j=1 j=1
(11)
where X = (x1,X2,...,x,) be the weight vector of

attributes.

Because many practical group decision-making prob-
lems are complex and uncertain, and human thinking is
inherently subjective, the information about attribute
weights is usually incomplete. Generally speaking, the
incomplete attribute weight information can be expressed
as the following relationships among the weights, for

i#j:
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Form 1: A weak ranking: x; > X j;

Form 2: A strict ranking: x; — x;>a;(a;[ 0);
Form 3: A ranking of differences: x; —
G#k#D

Form 4: A ranking with multiples: x; >a;x; (0<a; <1)
Form 5: An interval form: a;<x,;<a;+¢, (0<a;
<a;+e¢<1).

Xj2>2Xp— X

Wang [18] developed the maximizing deviation method for
handling the multiple attribute decision-making problems
characterized by numerical information. In decision-mak-
ing problem, it is essential to rank them by comparing
alternatives. The larger the ranking value 7; (or Z;) is, the
better corresponding alternative A; is. If an attribute is
creating little differences on all alternatives, it implies that
such an attribute has a small important in decision process.
Contrary, if an attribute has very clear differences in terms
of the performance values of each alternative, we say that
such an attribute should be in the foreground in selecting
the best alternative. That is, if one attribute has a similar
effect among alternatives, it should be assigned with a
small weight; otherwise, the attribute which makes larger
deviations should be assigned a bigger weight; especially,
if all alternatives have a very similar performance value in
term of a given attribute, then such an attribute will not
have much effect on ranking the alternatives. In other
words, such an attribute should be assigned with a very
small weight. Also, Wang [18] put forward that zero should
be assigned with the corresponding to attribute.

To determine the differences among the performance
values of all alternatives, we adopt the deviation method.
For the DM d and the attribute C;, the deviation of alter-
native A; to all the other alternatives can be expressed as
follows:

®) (o (k) (k) i=12,..
Hij (X) Y:ld aj > dy Xjs j=12,...n
Let
X X Xn
(k) _ (k) (k) (k)
()= HP(x)= d aja; x;,
i=1 i=1 s=1
j=12,...,n

Then H}k) (x) gives the deviation value of all alternatives

to other alternatives for the attribute A; and the DM d,.
Using the single-valued neutrosophic sets and the

interval neutrosophic sets, we can select a weight vector x

for maximize operator of all deviation values with respect
to all the attributes and all the DMs.

3.1 Maximizing deviation method for single-valued
neutrosophic sets

In the subsection, we construct a nonlinear programming
model with single-valued neutrosophic information, as
follows:

8 il J
P PP
SmaxHx)= Kk d ag(),ag) X
k=1 j=li=1s=1
M, pl (12)
< subjecttox; >0, x;=1, j=12,...,n
j=1

where k; is the weight of DM d;, and
U
dopad =1 BB, B BB

By solving the model (M-1), we get the optimal solution
x = (x l,xz,...,xn)T, which can be used as the weight
vector of attributes.

If the attribute weights are completely unknown, we can
establish another programming model:

8 X X X
%maXH(X):k kkl - Dd‘rj MAJH'LdU pSJH‘Lb’U S/'

/ltlv—l

(M-2)

% P ool
7 sub]ecttoszo,v lxj:l,J:LZ,...,n
j=

To solve this model, we construct the Lagrange function:

X X X X
L(x,p) = kk% ij&h:i - uﬁ+ @if' —PsyE
|

k=1 j=1 i=1 s=1
X

where p is the Lagrange multiplier.
Then we compute the partial derivatives of L as follows:

S o X Xn)@
%J
<

SJEF au — Vsji px; = Or

From Eq. (13), we get a simple and exact formula for
determining the attribute weights as follows:

@ Springer
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By normalizing X; (f =1,2,...,n) be a unit, we have
P,
X;= P - 117] 117] :51 us/B-F’—??l_/— PyB'VL V,/’_‘ s' D
Jj=1 k lkk i:l 5= 1 *‘u Mst'F Pij — Psj ij — Vsj
(15)

3.2 Maximizing deviation method for interval
neutrosophic sets

Similar to the previous method, we also construct a non-
linear programming model with interval neutrosophic
information, as follows:

8 0 O
P PPPP
SmaxH(x)= Kk d a,(-;{),ag.{) Xj

k=1 j=li=ls=1 = =
7 subjecttox; >0, x;=1, j=12,...,n

j=1

where k; is the weight of DM d, and

By - -
N O N O

Solving the model (M-3), we get the optimal solution

=
e

lj7 ?]

X = (xl,xz,...,x,,)T, which can be used as the weight
vector of attributes.

If the attribute weights are completely unknown, we can
establish another programming model:

8 12X X Xn 0 0

% max H(x ) = kk Xj Dypy
(M-4) k:1pz 6/ 1 i=1 s=1

,§ subjecttox ; >0 x =1,j=1,2,..,n

e
g g

gy
To solve this model, we construct the Lagrange

function:

Xt 12X X X 0 0
L(X 7p) = kkg X Dupv

k=1 j=1 =1 5=y

Xa
P 2
+E xj—1, (16)

here p Eiieg_agrangg n@ltlpher E; gu[n = [y —ug ﬁ-k
Py - j

i

iy
Then we compute the partial derivatives of L as follows:

8

OL Xt Xn X1 0 0
§ Kk Dupv +pxj:O
OX/ k=1 i=1 s=1 (17)
oo X
§ — = x:—1=0
op . J

A E)”;,,_pv e

From Eq. (17), we get a 51mp1e and exact formula for

determining the attribute weights as follows:
PP LD |

P

3 R (19)
_S}@ S B gt
lg —u EF @u —pv 7+ -

5
A

Using by MATLAB software with optimization toolbox
or Lindo/Lingo software package, the solution of afore-
mentioned maximization problem could be easily solved
by a few simple calculations.

With respect to the aforementioned models, we establish
a practical and suitable method for solving the NMADM
problems. In our methods, the attribute weights are partly
known or completely unknown, and the attribute values are
the single-valued neutrosophic information or interval
neutrosophic information. The methods are described by
the following steps:

Method (1): maximizing deviation method for single-

valued neutrosophic sets
o o

Let AW = af)

Step 1 be a single-valued neutro-

mxn
(k)

where a;’ =

matrix, i

sophic decision

(jk),pl(jk), l(jk)
the decision maker d;, for the alternative A; with
respect to the attribute C; and 7=
(Fit, T2, - - -, Tin) be the vector of attribute values
corresponding to the alternative A;.
If the attribute weights are partly known, then we
solve the model (M-1) to obtain the attribute
weights. If the information about the attribute
weights is completely unknown, then we use the
model (M-2).
Step 3 (i) Utilize the  weight
(xl,xz,...,x,,)T of attributes and by Eq. (10),

is an attribute value, given by

Step 2

vector X =

@ Springer
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and obtain the matrix of overall single-valued
neutrosophic preference values 7; corresponding
to the alternative A;(i = 1,2,...,m)

(i) By using the SVNWA operator again and
weights of decision makers, compute the collec-
tive overall single-valued neutrosophic prefer-
ence values 7; of alternative A;(i = 1,2,...,m)
Calculate the scores S(7;) of the collective overall
single-valued neutrosophic preference values
Fi(i=1,2,...,m) to rank all the alternatives
A;(i=1,2,...,m) and then to select the best
one(s).

If there is no difference between two scores S(7)
and S 7; , then we need to calculate the accuracy

Step 4

degrees H(7;) and H 7; of the collective overall
single-valued neutrosophic preference values 7;
and 7;, respectively, and then rank the alterna-
tives A; and A; con%sp?nding to the accuracy
degrees H(F;) and H 7; (i,j =1,2,...,m).
Rank all the alternatives A;(i = 1,2,...,m) and
select the best one(s) in accordance with S(7;)
and H(7;).

Step 6 End.

Step 5

Method (2): maximizing deviation method for interval
neutrosophic sets
o O
Let A® = a(-k)

L
mxn

Step 1 be an interval neutrosophic

. Ch . ol
. . . _ +
decision matrix, where a[(»j) = uij< ), uij( ) ,

P e M w e
Py Py vy V)
given by the decision maker dy, for the alterna-
tive A; with respect to the attribute C; and z; =
(Zit,Zn, - - -, Zin) be the vector of attribute values
corresponding to the alternative A;.

If the attribute weights are partly known, then we
solve the model (M-3) to obtain the attribute
weights. If the information about the attribute
weights is completely unknown, then we solve
the model (M-4).

(i) Utilize the weight vector x = (x1,X2,...,
X n)T of attributes and by Eq. (11), and obtain the
matrix of overall interval neutrosophic prefer-
ence values z; corresponding to the alternative
A,(l = 1,2, . .,m)

(i) By using the INWA operator again and
weights of decision makers, compute the collec-
tive overall interval neutrosophic preference
values z; of alternative A;(i = 1,2,...,m).
Calculate the scores S(Z;) of the overall interval
neutrosophic preference value Z;(i = 1,2,...,m)
to rank all the alternatives A;(i = 1,2,...,m) and

is an attribute value,

Step 2

Step 3

Step 4

@ Springer

then to select the best one(s).

If there is no difference between two scores S(z)
and S z; , then we neﬁdﬂo calculate the accuracy
degrees H(Z;) and H Z; of the collective overall
interval neutrosophic preference values z; and z;,
respectively, and then rank the alternatives A; and
Ajin agcrojdance with the accuracy degrees H(Z;)
and H z; (i,j=1,2,...,m).

Step 5 Rank all the alternatives A;(i = 1,2,...,m) and
select the best one(s) in accordance with S(Z;)
and H(Z;).

Step 6  End.

4 Numerical examples

Example 5 Let us consider decision-making problem
adapted from Xu and Xia [25]. An automotive company
is desired to select the most appropriate supplier for one
of the key elements in its manufacturing process. After
pre-evaluation, five suppliers have remained as alterna-
tives for further evaluation. In order to evaluate alterna-
tive suppliers, a committee composed of three decision
makers has been formed. The committee selects four
attributes to evaluate the alternatives: (1) product quality
Ci, (2) relationship closeness C,, (3) delivery perfor-
mance C3 and (4) price C,. Decision makers (without loss
of generality), whose weight vector is
k= (ki,ko, ks, ks) = (3,3,4.1), use the single-valued
neutrosophic values to evaluate the four possible alter-
natives A;(i = 1,2,3,4) under the above four attributes
and construct tlE: siagle-valued neutrosophic decision

matrices A% = aﬁﬁ k=(1,2,3,4), as listed in
Tables 1, 2, 3 and 4.

Table 1 Decision matrices A(') given by DM-1

C, G (6] C,
A (04,02,03) (0.4,02,03) (02,02,0.5) (0.7,0.2,03)
Ay (0.6,0.1,02) (0.6,0.1,02) (05,02,03) (0.5,0.1,0.2)
A (03,02,03) (0.5,02,0.3) (0.1,0.5,02) (0.1,0.4,0.5)
As (07,02,0.1) (0.6,0.1,02) (0.4,03,0.2) (0.4,05,0.1)

Table 2 Decision matrices A given by DM-2

C (@) C3 Cy
A;  (0.1,0.3,0.5) (0.5,0.1,0.5) (0.3,0.1,0.6) (0.4,0.1,0.4)
A, (0.2,0.5,04) (0.3,0.4,03) (0.2,0.3,0.1) (0.2,0.3,0.5)
A;  (0.5,0.2,0.6) (0.2,0.4,0.3) (0.5,0.2,0.5) (0.1,0.5,0.3)
A, (0.2,04,02) (0.1,0.1,0.3) (0.1,0.5,04) (0.5,0.3,0.1)
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Table 3 Decision matrices A®) given by DM-3

C, G G Cy
Ay (0.3,0.2,0.1) (0.3,0.1,0.3) (0.1,0.4,0.5) (0.2,0.3,0.5)
A, (0.6,0.1,04) (0.6,0.4,0.2) (0.5,0.4,0.1) (0.5,0.2,0.4)
A;  (0.3,03,0.6) (0.4,0.2,04) (0.2,0.3,0.2) (0.3,0.5,0.1)
As  (0.3,0.6,0.1) (0.5,0.3,0.2) (0.3,0.3,0.6) (0.4,0.3,0.2)
Table 4 Decision matrices A given by DM-4

C, G G Cy
A;  (0.2,02,03) (0.3,0.2,0.3) (0.2,0.3,0.5) (0.4,0.2,0.5)
A, (04,0.1,0.2) (0.6,0.3,0.5) (0.1,0.2,0.2) (0.5,0.1,0.2)
A;  (0.3,05,0.1) (0.2,0.2,0.3) (0.5,04,0.3) (0.5,0.3,0.2)
A4 (0.3,0.1,0.1) (0.2,0.1,0.4) (0.2,0.3,0.2) (0.3,0.1,0.6)

Then, we use the approach developed to obtain the most

Step 4

Step 5

Case 2

73 = (0.2931,0.3285,0.2763), 74
0.2583, 0.2169).

Calculate the scores S(7;) the collective overall
single-valued neutrosophic preference values
r(i=1,2,3,4).

S(r1) = 0.2848, S(7,)

= 0.4074, S(7) = 0.1798, S(74) = 0.3265.
Rank all the alternatives A;(i =1,2,3,4) in
accordance with the scores S(7)(i =1,2,3,4)
of the collective overall single-valued neutro-
sophic preference values 7;(i = 1,2,3,4): Ay >~
A4 = Ay = Az and thus A, is the most desirable
alternative

= (0.3868,

If the attribute weights are completely unknown,

we propose another approach to determine the most
desirable alternative(s).

) i Step 1 See (Step 1).
desirable alternative(s). Step 2 Utilize the Eq. (15) to obtain the weight vector of
Case 1 Assume that the attribute weights are partly att.ributes: X = (0-223830-174& 0.3427,0.2587).
known and the weight information is given as follows: Step 3 Utilize the weight vector X =
( )

0.18 <31 £0.20,015 <x» £0.25,0.30 < x5 £0.35,030 x4 <040,

x;>0, Lix;=1, j=12734

o o0

Step I  Obtain the decision matrix Al — al(;c) (0.2238,0.1748,0.3427,0.2587) and by

Step 2

Step 3

mxn

given by the DM d; and all the components

o

;i are single-valued neutrosophic values (See
Tables 1, 2, 3 and 4).
Utilize the model (M-1) to establish the follow-
idng nonlinear programming model:
max H(x ) = l.Oq;( 1+0.83x5 4+ 1.63x3 + 1.23x 4
subjecttox; >0, 7, x;=1, j=1,2,...,n
Solving this model, we obtain the weight vector
of attributes x = (0.18,0.15,0.35,0.32).
By the weight vector x = (0.18,0.15,0.35,0.32)
and by Eq. (10), we obtain the overall single-
valued neutrosophic preference values 7; of the
alternatives A;(i =1,2,3,4), as shown in
Table 5.
By using the SVNWA operator again (here, take
k= (4,1,1,1) as the DM’s weight vector), we
get the collective overall single-valued neutro-
sophic preference values 7; of alternatives A;,
71 = (0.3630,0.1957,0.4018), 7~ = (0.4511,
0.2013,0.2335),

Step 4

Step 5

Eq. (10), we obtain the overall single-valued
neutrosophic preference values 7; of the alterna-
tives A;(i = 1,2,3,4), as shown in Table 6.

By using the SVNWA operator again (here, take
k= (3.,4,5.3) as the DM’s weight vector), we
get the collective overall single-valued neutro-
sophic preference values 7; of alternatives A;,
71 = (0.3614,0.1956,0.3909), 7,
(0.4541,0.2027,0.2336),

73 = (0.2961,0.3188,0.2821), 74

= (0.3902,0.2537,0.2137).

Calculate the scores S(7;) of the collective overall
single-valued neutrosophic preference values
F(i=1,2,3,4).

S(71) = 0.2895, S(7,)

= 0.4075, S(7) = 0.1881, S(74) = 0.3345

Rank all the alternatives A;(i =1,2,3,4) in
accordance with the scores S(77)(i =1,2,3,4)
the collective overall single-valued neutrosophic
preference values r(i=1,2,3,4):
A, = A4 = Ay > Aj, and thus, the most desirable
alternative is A,
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Table 5 Matrix of the overall preference values with respect to party known attributes weights

d

dy

d3

dy

SR

o

(0.4684,0.2000, 0.3587)
(0.5355,0.1274,0.2305)
(0.2124,0.3440, 0.3065)
(0.5016,0.2785,0.1414)

(0.3371,0.1218,0.4962)
(0.2158,0.3434,0.2532)
(0.3524,0.2975,0.4064)
(0.2699,0.3204,0.2170)

(0.2023,0.2616,0.3466)
(0.5355,0.2497,0.2219)
(0.2833,0.3324,0.2166)
(0.3665,0.3399,0.2593)

(0.4142,0.2305, 0.4224)
(0.4634,0.1502, 0.2294)
(0.3171,0.3422,0.2162)
(0.3866,0.1468, 0.2784)

Table 6 Matrix of the overall preference values with respect to completely unknown attributes weights

d

dy

d;

dy

0.4465,0.2000,0.3573
0.5425,0.1268,0.2298
0.2323,0.3275,0.2979
0.5213,0.2580,0.1431

/_\/_\/_\A
—_ = ==

(0.3291,0.1278,0.5023)
(0.2184,0.3536, 0.506)

(0.3680,0.2861,0.4173)
(0.2470,0.3145,0.2275)

(0.2201,0.2495,0.3189
(0.5425,0.2451,0.2203
(0.2867,0.3189,0.2412
(0.3658,0.3503,0.2495

NN NN

(0.4329,0.2298,0.4078
(0.4571,0.1536,0.2347
(0.2907,0.3457,0.2112
(0.3951,0.1457,0.2568

N NN N2

Table 7 Decision matrices A()) given by DM-1

CI C2 C3 C4
Ay ([04,0.5],]0.2,0.3],(0.3,0.5])  (]0.3,0.4],[0.3,0.6],[0.2,0.4 ([0.2,0.5],0.2,0.6],[0.3,0.5))  ([0.5,0.6],[0.3,0.5],]0.2,0.5])
A, ([0.6,0.7],[0.1,0.2],(0.2,0.3])  (]0.1,0.3],[0.1,0.4],[0.2,0.5 ([0.4,0.5],0.2,0.5],[0.3,0.7))  ([0.2,0.4],[0.1,0.4],]0.3,0.3])
A ([0.3,0.4],]0.2,0.3],(0.3,04])  (]0.3,0.6],[0.2,0.3],[0.2,0.5 ([0.2,0.7],0.2,0.4],[0.3,0.6])  ([0.2,0.6],[0.4,0.7],0.2,0.7])
Ay ([0.2,0.6],[0.1,0.1],(0.1,02])  ([0.2,0.5],0.4,0.5],[0.1,0.6 (10.3,0.5],]0.1,0.3],[0.2,0.2))  ([0.4,0.4],[0.1,0.6],[0.1,0.5])

Example 6 Let us consider decision-making problem
adapted from Wei et al. [24]. Suppose an organization
plans to implement ERP system. The first step is to form a
project team that consists of CIO and two senior repre-
sentatives from user departments. By collecting all possible
information about ERP vendors and systems, project team
chooses four potential ERP systems A; (i = 1,2,3,4) as
candidates. The company employs some external profes-
sional organizations (or experts) to aid this decision mak-
ing. The project team selects four attributes to evaluate the
alternatives: (1) function and technology Ci, (2) strategic
fitness C,, (3) vendor’s ability C3 and (4) vendor’s repu-
tation Cy4. Decision makers (without loss of generality),
take weight vector k = (ki, ko, k3) = (3,4,1) and use the
interval neutrosophic values to evaluate the four possible
alternatives A;(i = 1,2,3,4) under the above four attri-
butes and construct tHe interval neutrosophic decision

matrices A® = a k=(1,2,3), as listed in

Tables 7, 8 and 9.

mxn

Then, we use the approach developed to obtain the most
desirable alternative(s).
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Case 1 Assume that the attribute weights are partly
known and the weight information is given as follows:

] |
0.16<%1<0.18,0.20<x,<0.25,0.20<x3<0.30,0.35<x 4 <0.40

x;>0, 1 ix;=1, j=1234

o d

Obtain the decision matrix A% = aff)
mxn

given by the DM d; and all the components

o

;j ~are interval
Tables 7, 8 and 9).
Utilize the model (M-3) to establish the follow-
Elg nonlinear programming model:

max H(x ) = 0.719( 1 +0.69x 5 +0.81x3 + 1.01x 4

subjecttox; >0, ', x;=1, j=12,...,n
Solving this model, we obtain the weight vector
of attributes x = (0.16,0.20,0.24,0.40).
By the weight vector x = (0.16,0.20,0.24,
0.40) and by Eq. (11), we obtain the overall
interval neutrosophic preference values z; of the
alternatives A;(i =1,2,3,4), as shown in
Table 10.

By using the INWA operator again (here, take

Step 1

neutrosophic values (See

Step 2

Step 3
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Table 8 Decision matrices A?) given by DM-2

Cy C C; Cy
A ([04,0.6],[0.1,0.3],(0.2,04])  ([0.3,0.5],[0.1,0.4],[0.3,0.4])  ([0.4,0.5],[0.2,0.4],[0.1,0.3])  ([0.3,0.6],[0.3,0.6],[0.3,0.6])
Ay ([03,0.5,[0.1,02],02,0.3))  ([03,0.4],0.2,0.2],[0.1,03))  ([0.2,0.7],[0.3,0.5],(0.3,0.6])  ([0.2,0.5],[0.2,0.7],[0.1,0.2])
Ay ([0.5,0.6],[0.2,03],03,0.4)  ([0.1,0.4],0.1,0.3],[03,05))  ([0.5,0.5],[0.4,0.6],(0.3,0.4])  ([0.1,0.2],[0.1,0.4],[0.5,0.6])
Ar ([03,0.4],[0.1,02],[0.1,03])  ([0.3,0.3],[0.1,0.5],0.2,0.4])  ([0.2,0.3],[0.4,0.5],[0.5,0.6])  ([0.3,0.3],[0.2,0.3],[0.1,0.4])

Table 9 Decision matrices A®) given by DM-3

C C G Cy
A ([0.1,0.3],[0.2,03],0.4,0.5)  ([03,0.3],0.1,0.3],[0.3,04])  ([0.2,0.6],[0.3,0.5],(0.3,0.5])  (0.4,0.6],[0.3,0.4],[0.2,0.3])
A, ([03,0.6],(0.3,05,[03,0.5)  ([03,0.4],[0.3,0.4],[0.3,05))  ([0.3,0.5],[0.2,0.4],0.1,0.5])  ([0.1,0.2],[0.3,0.5],[0.3,0.4])
As  (04,05],(0.2,0.4],02,04])  ([0.2,0.3],[0.1,0.1],(0.3,04])  ([0.1,0.4],[0.2,0.6],[0.3,0.6])  ([0.4,0.5],]0.2,0.6],[0.1,0.3])
As ([02,0.4],[0.3,0.4],(0.1,03])  ([0.1,04],[0.2,0.5],[0.1,0.5])  ([0.3,0.6],[0.2,0.4],(0.2,0.2])  ([0.2,0.4],[0.3,0.3],[0.2,0.6])

Table 10 Matrix of the overall preference values with respect to party known attributes weights

d] d2

ds

Z ([0.383,0.525],[0.255,0.499], [0.235, 0.487)

2 ( [

% ([0.237,0.601],[0.263,0.451],[0.235,0.576]
(10.309,0.481],[0.131,0.367], [0.118,0.359)]

] ) ([0.341,0.558],[0.183,0.449], [0.215,0.439]) (] ]
0.315,0.469], [0.118,0.377], [0.259,0.407])  ([0.237,0.541],[0.197,0.411],[0.145,0.301]) (] ]

] ) ([0.288,0.396],[0.155,0.397], [0.368,0.491])  ([0.299,0.441], [0.174,0.392], [0.181,0.392]

] ) ([0.277,0.317],[0.184,0.352],[0.169,0.421]) (] ]

0.292,0.510], [0.225,0.380], [0.267,0.389])
0.225,0.296], [0.272, 0.478], [0.230, 0.457))
[ )
[ )

0.209,0.455],[0.250,0.372],[0.155,0.397]

k=(3,1,4) as the DM’s weight vector), we
get the collective overall interval neutrosophic
preference values z; of alternatives A;,

Z1 = ([0.3401,0.5318],

[0.2196,0.4406], [0.2388, 0.4345]),

7 = ([0.2606,0.4720],

[0.1854,0.4207],[0.2059, 0.3831]),

7y = ([0.2754,0.4874],

[0.1930,0.4134], [0.2506, 0.4816]),

zy = ([0.2654,0.4218],

[0.1829,0.4469], [0.1462, 0.3922]).

Step 4  Compute the scores S(Z;) of the collective overall
interval neutrosophic preference values Z;(i =
1,2,3,4).

S(z1) =0.2194, S(z,) = 0.2328, S(z3) =
0.2044, S(z4) = 0.2222.
Step 5 Rank all the alternatives A;(i =1,2,3,4) in

accordance with the scores S(z;)(i = 1,2,3,4)
of the collective overall interval valued prefer-

ence values Zz(i=1,2,3,4): Ay > Aq >
A1 > Aj, and thus, A, is the most desirable
alternative

Case 2 If the attribute weights are completely unknown,
we proposed another approach to determine the most
desirable alternative(s).

Step 1
Step 2

Step 3

Step 4

Step 5

See Step (1).

Utilize the Eq. (19) to obtain the weight vector of
attributes: x = 0.2224,0.2155,0.2518,0.3103).
Utilize the weight vector X =
0.2224,0.2155,0.2518,0.3103) and by Eq. (11),
we obtain the overall interval neutrosophic
preference values Z; of the alternatives
Ai(i =1,2,3,4) (see Table 11).

By using the INWA operator again (here, take
k = (3,1,1) as the DM’s weight vector), we get
the collective overall interval neutrosophic pref-
erence values z; of alternatives A;,

Z; = ([0.3308,0.5203], [0.2080, 0.4260], [0.2425,
0.4344]),

Z, = ([0.2795,0.4892], [0.1832,0.4008], [0.2067,
0.3938]),

7 = ([0.2861,0.4915], [0.1922,0.3941], [0.2555,
0.4745]),

Z4 = ([0.2590,0.4303], [0.1808,0.4389], [0.1454,
0.3747)).

Compute the scores S(Z;) of the overall interval
neutrosophic preference values Z;(i = 1,2,3,4).
S(z1) = 0.2265,5(z2) = 0.2503, 5(z3)

= 0.2187,5(Z) = 0.2324.

Rank all the alternatives A;(i =1,2,3,4) in
accordance with the scores S(z;)(i =1,2,3,4)
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Table 11 Matrices of the overall preference values with respect to completely unknown attributes weights

d dy

1 ([0.369,0.514], [0.247,0.485], [0.242, 0.476]

% ([0.345,0.492],[0.119,0.362], [0.251,0.414]
(0.245,0.592], [0.248,0.419), |
(0.292,0.496], [0.134,0.325], [0.119, 0.336]

Ny Ay
¥

R

M

3

IS

) ([0.349,0.556], [0.167,0.425], [0.207, 0.421])
) ([0.245,0.542],[0.189,0.371],[0.153,0.314])
.[0.242,0.552])  ([0.318,0.427],[0.165,0.390], [0.351,0.475])
) ([0.276,0.323],[0.175,0.348], [0.174,0.415))

[0.270,0.488], [0.216, 0.373], [0.282, 0.406))
[0.243,0.427], [0.270, 0.476], [0.227, 0.466))
0.293,0.437],[0.172,0.372], [0.194, 0.405])
[0.206,0.458], [0.248,0.383], [0.147,0.375])

of the overall interval neutrosophic preference
values z;(i = 1,2,3,4): Ay = Ay = Ay > A3, and
thus, the most desirable alternative is A,.

From the examples, we can see that the proposed neu-
trosophic decision-making methods are more suitable for
real scientific and engineering applications because they
can handle not only incomplete information but also the
indeterminate information and inconsistent information
existing in real situations. Therefore, the technique pro-
posed in this paper extends the existing decision-making
methods and provides a new way for decision makers.

By a comparative study with existing methods, we can
represent the useable and feasibility of the developed group
decision-making method. Here, we discuss some methods
used to determine the final ranking order of all the alter-
natives with the single-valued neutrosophic information,
which are based on the cosine similarity measure and the
correlation coefficient [26], the weighted cross-entropy
[28], the aggregation operators [31] and the outranking
approach [11, 34]. In these methods, the weights of deci-
sion makers and attribute weights are completely known
and the decision process is carried out in the opinion of
only a decision maker. In fact, in many MAGDM with
neutrosophic information, because of time pressure, lack of
knowledge or data and the decision makers’ limited
expertise about the problem domain, the information about
the weights of decision makers and attributes are incom-
pletely known or completely unknown. Our method has a
group decision-making approach and utilizes the maxi-
mizing deviation method to determine the weight values
that are incompletely known or completely unknown of
decision makers and attributes, respectively, which is more
flexible and reasonable, while the Ye [26, 28, 31] ’s
method, Peng et al. [11] and Zhang et al.’s [34] methods
ask the decision makers to provide the weight values of
decision makers and attributes in advance, which is sub-
jective and sometime cannot yield the persuasive results.

With respect to above analyses, a single-valued neu-
trosophic set and an interval neutrosophic set is a special
case of a neutrosophic set, and a neutrosophic set is a set
where each element of the universe has the degrees of
truth, indeterminacy and falsity, which lie within ]0~, 17,
the non-standard unit interval. In particular, the uncertainty
presented here, i.e., the indeterminacy factor, is
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independent of truth and falsity values, whereas the
incorporated uncertainty is dependent on the degree of
belongingness and non-belongingness of intuitionistic
fuzzy sets. Therefore, this leads to the theory that intu-
itionistic fuzzy sets are a special case of single-valued
neutrosophic sets. Moreover, SNSs can solve some prob-
lems that are beyond the scope of fuzzy sets and intu-
itionistic fuzzy sets. Therefore, the proposed MAGDM
approach under single-valued neutrosophic environment
can be used also to solve MADM problems with fuzzy
information and intuitionistic information. Thus, the com-
parison shows that our method has its great superiority in
handling the ambiguity and uncertainty inherent in
MAGDM problems with neutrosophic information.

5 Conclusions

DMs have a major role to provide the information about
alternatives in decision-making process. Because of time
pressure, lack of knowledge or data and the expert’s lim-
ited expertise about the problem domain, the information
about attribute weights given by DMs is partly known or
completely unknown. Recently, some authors proposed
many of methods to overcome the limitations. In this paper,
we first defined two discrimination functions such that
score function and accuracy function used to rank the
neutrosophic numbers. Considering by the idea that the
attribute with a larger deviation value among alternatives
should be assigned with a larger weight, we then estab-
lished a method called the maximizing deviation method to
compute the optimal weights of attributes under neutro-
sophic environment, in which the attribute values are
characterized in terms of neutrosophic values. When
aggregating the neutrosophic information corresponding to
each alternative, we utilize the neutrosophic weighted
averaging (NWA) operators, the single-valued neutro-
sophic weighted averaging (SVNWA) operator and the
interval neutrosophic weighted averaging (INWA) opera-
tor. Thus, one can easily determines the order of alterna-
tives and can chooses the most desirable one(s) based on
the proposed score function and accuracy function. Finally,
an application of developed approach is given to explain its
effectiveness and  practicality. Our method s
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straightforward and has no loss of information. In the
future, we shall continue working in application of the
neutrosophic multiple attribute decision making.
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