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Abstract. This paper proposes a generalized distance 

measure and its similarity measures between single val-

ued neutrosophic multisets (SVNMs). Then, the similari-

ty measures are applied to a medical diagnosis problem 

with incomplete, indeterminate and inconsistent infor-

mation. This diagnosis method can deal with the diagno-

sis problem with indeterminate and inconsistent infor-

mation which cannot be handled by the diagnosis method 

based on intuitionistic fuzzy multisets (IFMs). 
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1 Introduction 

The vagueness or uncertainty representation of imper-
fect knowledge becomes a crucial issue in the areas of 

computer science and artificial intelligence. To deal with 
the uncertainty, the fuzzy set proposed by Zadeh [1] allows 
the uncertainty of a set with a membership degree between 
0 and 1. Then, Atanassov [2] introduced an intuitionistic 
Fuzzy set (IFS) as a generalization of the Fuzzy set. The 
IFS represents the uncertainty with respect to both mem-

bership and non-membership. However, it can only handle 
incomplete information but not the indeterminate and in-
consistent information which exists commonly in real situ-
ations. Therefore, Smarandache [3] proposed a neutrosoph-
ic set. It can independently express truth-membership de-
gree, indeterminacy-membership degree, and false-

membership degree and deal with incomplete, indetermi-
nate, and inconsistent information. After that, Wang et al 
[4] introduced a single valued neutrosophic set (SVNS), 
which is a subclass of the neutrosophic set. SVNS is a gen-
eralization of the concepts of the classic set, fuzzy set, and 
IFS. The SVNS should be used for better representation as 

it is a more natural and justified estimation [4]. All the fac-
tors described by the SVNS are very suitable for human 
thinking due to the imperfection of knowledge that human 
receives or observes from the external world. For example, 
for a given proposition “Movie X would be hit”, in this sit-
uation human brain certainly cannot generate precise an-

swers in terms of yes or no, as indeterminacy is the sector 
of unawareness of a proposition’s value between truth and 
falsehood. Obviously, the neutrosophic components are 
best fit in the representation of indeterminacy and incon-
sistent information. Recently, Ye [5-7] proposed some sim-
ilarity measures of SVNSs and applied them to decision 

making and clustering analysis. 
Based on multiset theory, Yager [8] introduced a fuzzy 

multiset concept, which allows the repeated occurrences of 
any element. Thus, the fuzzy multiset can occur more than 
once with the possibility of the same or different member-

ship values. Then, Shinoj and Sunil [9] extended the fuzzy 
multiset to the intuitionistic fuzzy multiset (IFM) and pre-
sented some basic operations and a distance measure for 
IFMs, and then applied the distance measure to medical di-
agnosis problem. Rajarajeswari and Uma [10] put forward 
the Hamming distance-based similarity measure for IFMs 

and its application in medical diagnosis. Recently, Ye et al. 
[11] presented a single valued neutrosophic multiset 
(SVNM) as a generalization of IFM and the Dice similarity 
measure between SVNMs, and then applied it to medical 
diagnosis. Based on SVNMs, this paper further develops a 
generalized distance measure and the distance-based simi-

larity measures between SVNMs, and then applies the sim-
ilarity measures to medical diagnosis. To do so, the rest of 
the article is organized as follows. Section 2 introduces 
some concepts and basic operations of SVNSs and 
SVNMSs. Sections 3 presents a generalized distance and 
its similarity measures between SVNMs and investigates 

their properties. In Section 4, the similarity measures are 
applied to medicine diagnosis. Conclusions and further re-
search are contained in Section 5. 

2 Preliminaries 

2.1 Some concepts of SVNSs 

Smarandache [3] originally presented the concept of a 

neutrosophic set. A neutrosophic set A in a universal set X 

is characterized by a truth-membership function TA(x), an 

indeterminacy-membership function IA(x), and a falsity-

membership function FA(x). The functions TA(x), IA(x), 

FA(x) in X are real standard or nonstandard subsets of ]−0,

1+[, i.e., TA(x): X  ]−0, 1+[, IA(x): X  ]−0, 1+[, and FA(x):
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X  ]−0, 1+[. Then, the sum of TA(x), IA(x) and FA(x) is no

restriction, i.e. −0 ≤ sup TA(x) + sup IA(x) + sup FA(x) ≤ 3+.

However, Smarandache [3] introduced the 

neutrosophic set from philosophical point of view. 

Therefore, it is difficult to apply the neutrosophic set to 

practical problems. To easily apply in science and 

engineering areas, Wang et al. [4] introduced the concept 

of SVNs, which is a subclass of the neutrosophic set and 

gave the following definition. 

Definition 1 [4]. Let X be a universal set. A SVNs A in X 

is characterized by a truth-membership function TA(x), an 

indeterminacy-membership function IA(x), and a falsity-

membership function FA(x). Then, a SVNS A can be 

denoted by the following form: 

AAA
, 

where TA(x), IA(x), FA(x)  [0, 1] for each x in X. Therefore, 

the sum of TA(x), IA(x) and FA(x) satisfies the condition 0 ≤ 

TA(x) + IA(x) + FA(x) ≤ 3. 

AAA
For two SVNs A   x,T (x),I (x),F (x) | x X

 and  XxxFxIxTxB BBB  |)(),(),(, , there are the

following relations [4]: 

(1) Complement: 

 XxxTxIxFxA AAA

c  |)(),(1),(, ; 

(2) Inclusion: 

A ⊆ B if and only if TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x)

≥ FB(x) for any x in X; 

(3) Equality: 

A = B if and only if A ⊆ B and B ⊆ A; 

(4) Union: 

 XxxFxFxIxIxTxTx

BA

BABABA 



|)()(),()(),()(,


; 

(5) Intersection: 

 XxxFxFxIxIxTxTx

BA

BABABA  |)()(),()(),()(,


; 

(6) Addition: 
















 Xx
xFxFxIxI

xTxTxTxTx
BA

BABA

BABA
|

)()(),()(

),()()()(, ; 

(7) Multiplication: 

















 Xx

xFxFxFxF

xIxIxIxIxTxTx
BA

BABA

BABABA
|

)()()()(

),()()()(),()(,
. 

2.2 Some concepts of SVNMs 

As a generalization of the concept of IFM, a concept of 

SVNM and some basic operational relations for SVNMs 

[11] are introduced below. 

Definition 2 [11]. Let X be a nonempty set with generic 

elements in X denoted by x. A single valued neutrosophic 

multiset (SVNM) A drawn from X is characterized by three 

functions: count truth-membership of CTA, count 

indeterminacy-membership of CIA, and count falsity-

membership of CFA such that CTA(x): X  Q, CIA(x): X  

Q, CFA(x): X  Q for x  X, where Q is the set of all real 

number multisets in the real unit interval [0, 1]. Then, a 

SVNM A is denoted by 



















 Xx

xFxFxF

xIxIxI

xTxTxTx

A

q

AAA

q

AAA

q

AAA

|

))(),(),((

)),(),...,(),((

)),(),...,(),((,

21

21

21

, 

where the truth-membership sequence 

))(),...,(),(( 21 xTxTxT q

AAA
, the indeterminacy-membership 

sequence ))(),...,(),(( 21 xIxIxI q

AAA
, and the falsity-

membership sequence ))(),...,(),(( 21 xFxFxF q

AAA
 may be in 

decreasing or increasing order, and the sum of )(xT i

A
, 

)(xI i

A
, )(xF i

A
  [0, 1] satisfies the condition 0 ≤ )(xT i

A
+ 

)(xI i

A  + )(xF i

A
 ≤ 3 for x  X and i = 1, 2, …, q. 

For convenience, a SVNM A can be denoted by the 

following simplified form: 

 qiXxxFxIxTxA i

A

i

A

i

A ,...,2,1,|)(),(),(,  . 

Definition 3 [11]. The length of an element x in a SVNM 

is defined as the cardinality of CTA(x) or CIA(x), or CFA(x) 

and is denoted by L(x: A). Then L(x: A) = |CTA(x)| = 

|CIA(x)| = |CFA(x)|. 

Definition 4 [11]. Let A and B be two SVNMs in X, then 

the length of an element x in A and B is denoted by lx = 

L(x: A, B) = max{L(x: A), L(x: B)}. 

Example 1. Consider two SVNMs in the set X = {x, y, z}: 

A = {<x, (0.3, 0.2), (0.4, 0.3), (0.6, 0.8)>, <y, (0.5, 0.4, 

0.3), (0.1, 0.2, 0.3), (0.3, 0.4, 0.5)>}, 

B = {<x, (0.3), (0.4), (0.6) >, <z, (0.5, 0.4, 0.3, 0.2), 

(0.0, 0.1, 0.2, 0.3), (0.2, 0.3, 0.4, 0.5)>}. 

Thus, there are L(x: A) = 2, L(y: A) = 3, L(z: A) = 0; 

L(x: B) = 1, L(y: B) = 0, L(z: B) = 4, lx = L(x: A, B) = 2, ly = 

L(y: A, B) = 3, and lz = L(z: A, B) = 4. 

For convenient operation between SVNMs A and B in 

X, one can make L(x: A) = L(x: B) by appending sufficient 
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minimal number for the truth-membership value and 

sufficient maximum number for the indeterminacy-

membership and falsity-membership values. 

Definition 5 [11]. Let A = {x, )(),(),( xFxIxT i

A

i

A

i

A | x  

X, i = 1, 2, …, q} and B = {x, )(),(),( xFxIxT i

B

i

B

i

B | x  

X, i = 1, 2, …, q} be any two SVNMs in X. Then, there are 

the following relations: 

(1) Inclusion: A ⊆ B if and only if )(xT i

A  ≤ )(xT i

B , 

)(xI i

A  ≥ )(xI i

B , )(xF i

A  ≥ )(xF i

B  for i = 1, 2, …, q 

and x  X; 

(2) Equality: A = B if and only if A ⊆ B and B ⊆ A; 

(3) Complement: 

  qiXxxTxIxFxA i

A

i

A

i

A

c ,...,2,1,|)(,)(1),(,  ; 

(4) Union: 



























 qiXx

xFxF

xIxI

xTxTx

BA

i

B

i

A

i

B

i

A

i

B

i

A

,...,2,1,|

)()(

),()(

),()(,

 ; 

(5) Intersection: 



























 qiXx

xFxF

xIxI

xTxTx

BA

i

B

i

A

i

B

i

A

i

B

i

A

,...,2,1,|

)()(

),()(

),()(,

 . 

For convenience, we can use a = (T1, T2, …, Tq), (I1, I2, 

…, Iq), (F1, F2, …, Fq) to represent an element in a SVNM 

A and call it a single valued neutrosophic multiset value 

(SVNMV). 

Definition 6. Let a1 =  ),...,,( 1

2

1

1

1

qTTT , ),...,,( 1

2

1

1

1

qIII , 

),...,,( 1

2

1

1

1

qFFF  and a2 =  ),...,,( 2

2

2

1

2

qTTT , ),...,,( 2

2

2

1

2

qIII ,  

),...,,( 2

2

2

1

2

qFFF  be two SVNMVs and   0, then the 

operational rules of SVNMVs are defined as follows: 

(1) 

),...,,(

),,...,,(

),...,

,

,(

21

2

2

2

1

1

2

1

1

21

2

2

2

1

1

2

1

1

2121

2

2

2

1

2

2

2

1

1

2

1

1

1

2

1

1

21
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qq

qqqq

FFFFFF

IIIIII

TTTT

TTTT

TTTT

aa 





 ; 

(2)

)...,

,,(

),...,

,,(

),,...,,(

2121

2

2

2

1

2

2

2

1

1

2

1

1

1

2

1

1

2121

2

2

2

1

2

2

2

1

1

2

1

1

1

2

1

1

21
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2

2

1

1

2

1

1

21

qqqq

qqqq

qq

FFFF

FFFFFFFF

IIII

IIIIIIII

TTTTTT

aa









 ; 

(3) 
      

             




q

iii

q

iii

q

FFFIII

TTT
a

,...,,,,...,,

,11,...,11,11

2121

1

2

1

1

1
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 ; 

(4) 

      
      
      
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q

q

q

iii

FFF

III

TTT

a

1

2

1

1

1

1

2

1

1

1

21

1

11,...,11,11

,11,...,11,11

,,...,,



 . 

3 Distance and similarity measures of SVNMs 

The distance measure and similarity measure are 

usually used in real science and engineering applications. 

Therefore, the section proposes a generalized distance 

measure between SVNMs and the distance-based 

similarity measures between SVNMs. However, the 

distance and similarity measures in SVNSs are considered 

for truth-membership, indeterminacy-membership, and 

falsity-membership functions only once, while the distance 

and similarity measures in SVNMs should be considered 

more than once because their functions are multi-values.  

Definition 7. Let A = {xj, )(),(),( j

i

Aj

i

Aj

i

A xFxIxT | xj  X, 

i = 1, 2, …, q} and B = {xj, )(),(),( j

i

Bj

i

Bj

i

B xFxIxT | xj  

X, i = 1, 2, …, q} be any two SVNMs in X = {x1, x2, …, 

xn}. Then, we define the following generalized distance 

measure between A and B: 

p

n

j

l

i
p

j

i

Aj

i

A

p

j

i

Bj

i

A

p

j

i

Bj

i

A

j

p

j

xFxF

xIxI

xTxT

ln
BAD

/1

1 1

)()(

)()(

)()(

3

11
),(















































  
 

, (1) 

where lj = L(xj: A, B) = max{L(xj: A), L(xj: B)} for j = 1, 2, 

…, n. If p = 1, 2, Eq. (1) reduces to the Hamming distance 

and the Euclidean distance, which are usually applied to 

real science and engineering areas. 

Then, the defined distance measure has the following 

Proposition 1: 

Proposition 1. For two SVNMs A and B in X = {x1, x2, …, 

xn}, the generalized distance measure Dp(A, B) should 

satisfy the following properties (D1-D4): 
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(D1) 0  Dp(A, B)  1; 

(D2) Dp(A, B) = 0 if and only if A = B; 

(D3) Dp(A, B) = Dp(B, A); 

(D4) If C is a SVNM in X and A  B  C, then Dp(A, 

C)  Dp(A, B) + Dp(B, C) for p >0.

Proofs: 

(D1) Proof is straightforward. 

(D2) If A = B,  then there are )( j

i

A xT  = )( j

i

B xT , )( j

i

A xI  = 

)( j

i

B xI , )( j

i

A xF  = )( j

i

B xF  for i = 1, 2, …, lj, j = 1, 2, 

…, n, and xj  X. Hence 0)()( 
p

j

i

Bj

i

A xTxT , 

0)()( 
p

j

i

Bj

i

A xIxI , and 0)()( 
p

j

i

Bj

i

A xFxF . 

Thus Dp(A, B) = 0. When Dp(A, B) = 0, there 

are 0)()( 
p

j

i

Bj

i

A xTxT , 0)()( 
p

j

i

Bj

i

A xIxI , 

and 0)()( 
p

j

i

Bj

i

A xFxF . Then, one can obtain 

)( j

i

A xT  = )( j

i

B xT , )( j

i

A xI  = )( j

i

B xI , )( j

i

A xF  = 

)( j

i

B xF  for i = 1, 2, …, lj, j = 1, 2, …, n, and xj  X. 

Hence A = B. 

(D3) Proof is straightforward. 

(D4) Since )()( j

i

cj

i

A xTxT  = )()( j

i

Bj

i

A xTxT  + 

)()( j

i

cj

i

B xTxT  , It is obvious that 

)()()()()()( j

i
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i
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i
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i
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i
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i
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i
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i
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i
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i
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i
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For p >0, we have 

p

j

i

Cj

i
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Considering the above inequalities and Eq. (1), one can 

obtain that Dp(A, C)  Dp(A, B) + Dp(B, C) for p >0. 

Therefore, the proofs of these properties are completed. 

 

Based on the relationship between the distance measure 

and the similarity measure, we can introduce two distance-

based similarity measures between A and B: 
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According to Proposition 1 for the defined distance 

measure and the relationship between the distance measure 

and the similarity measure, it is easy to obtain the 

following Proposition 2 for the distance-based similarity 

measures. 

Proposition 2. For two SVNMs A and B in X = {x1, x2, …, 

xn}, the distance-based similarity measure Sk(A, B) (k =1, 

2) should satisfy the following properties (S1-S4):

(S1) 0  Sk(A, B)  1; 

(S2) Sk(A, B) = 1 if and only if A = B; 

(S3) Sk(A, B) = Sk(B, A); 

(S4) If C is a SVNM in X and A  B  C, , then Sk(A, 

C)  Sk(A, B) and Sk(A, C)  Sk(B, C).

By the similar proofs of Proposition 1 and the 

relationship between the distance and the similarity 

measure, Proofs are straightforward. 

Example 2: Let A and B be two SVNMs in X = {x1, x2}, 

which are given as follows: 

A = {<x1, (0.7, 0.8), (0.1, 0.2), (0.2, 0.3)>, <x2, (0.5, 

0.6), (0.2, 0.3), (0.4, 0.5)>}, 

B = {<x1, (0.5, 0.6), (0.1, 0.2), (0.4, 0.5)>, <x2, (0.6, 

0.7), (0.1, 0.2), (0.7, 0.8)>}. 

The calculational process of the similarity measures 

between A and B is shown as follows: 
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(1) Using Hamming distance (p = 1): 

By using Eq. (1) we obtain: 

D1(A, B) = [(|0.7 – 0.5|+|0.1 – 0.1| + |0.2 – 0.4| + |0.8 –

0.6| + |0.2 – 0.2| + |0.3 – 0.5|)/6 + (|0.5 – 0.6| + |0.2 – 0.1| 

+|0.4 – 0.7| + |0.6 – 0.7| + |0.3 – 0.2| + |0.5 – 0.8|)/6]/2 = 

0.15. 

Then, by applying Eqs. (2) and (3) we have the 

following result: 

S1(A, B) = 1 – D1(A, B) = 1 – 0.15 = 0.85 and S2(A, B) 

= [1 – D1(A, B)]/[ 1+ D1(A, B)] = 0.7391. 

(2) Using the Euclidean distance (p = 2): 

By using Eq. (1) we can obtain the following result: 

D2(A, B) = {[(|0.7 – 0.5|2 + |0.1 – 0.1|2 + |0.2 – 0.4|2 +

|0.8 – 0.6|2 + |0.2 – 0.2|2 +| 0.3 – 0.5|2)/6 + (|0.5 – 0.6|2 + |0.2 

– 0.1|2 + |0.4 – 0.7|2 + |0.6 – 0.7|2 + |0.3 – 0.2|2 + |0.5 –

0.8|2)/6]/2}1/2 = 0.178. 

Then, by applying Eqs. (2) and (3) we have the 

following result: 

S1(A, B) = 1 – D2(A, B) = 1 – 0.178 = 0.822 and S2(A, 

B) = [1 – D2(A, B)]/[ 1 + D2(A, B)] = 0.6979.

4 Medical diagnosis using the similarity measure 

Due to more and more complexity of real medical 

diagnosis, a lot of information available to physicians from 

modern medical technologies is often incomplete, 

indeterminate and inconsistent information. Then, the 

SVNS proposed by Wang et al. [4] can be better to express 

this kind of information, but fuzzy sets and intuitionistic 

fuzzy sets cannot handle indeterminate and inconsistent 

information. However, by only taking one time inspection, 

we wonder whether we can obtain a conclusion from a 

particular person with a particular decease or not. 

Sometimes he/she may also show the symptoms of 

different diseases. Then, how can we give a proper 

conclusion? One solution is to examine the patient at 

different time intervals (e.g. two or three times a day). 

Thus, we present SVNMs as a better tool for reasoning 

such a situation. The details of a typical example (adapted 

from [9]) are given below. 

Let P = {P1, P2, P3, P4} be a set of four patients, D = 

{D1, D2, D3, D4} = {Viral fever, Tuberculosis, Typhoid, 

Throat disease} be a set of diseases, and S = {S1, S2, S3, S4, 

S5} = {Temperature, Cough, Throat pain, Headache, Body 

pain} be a set of symptoms. Table 1 shows the 

characteristics between symptoms and the considered 

diseases represented by the form of single valued 

neutrosophic values (SVNVs).  

In the medical diagnosis, if we have to take three 

different samples in three different times in a day (e.g., 

morning, noon and night), we can construct Table 2, in 

which the characteristics between patients and the 

indicated symptoms are represented by SVNMVs. 

Then, by using Eqs. (1) and (2) and taking p = 2, we 

can obtain the similarity measure between each patient Pi (i 

= 1, 2, 3, 4) and the considered disease Dj (j = 1, 2, 3, 4), 

which are shown in Table 3. 

Similarly, by using Eqs. (1) and (3) and taking p = 2, 

we can obtain the similarity measure between each patient 

Pi (i = 1, 2, 3, 4) and the considered disease Dj (j = 1, 2, 3, 

4), which are shown in Table 4. 

In Tables 3 and 4, the largest similarity measure 

indicates the proper diagnosis. Patient P1 suffers from viral 

fever, Patient P2 suffers from tuberculosis, Patient P3 

suffers from typhoid, and Patient P4 also suffers from 

typhoid. 

Table 1 Characteristics between symptoms and the considered diseases represented by SVNVs 

Temperature (S1) Cough (S2) Throat pain (S3) Headache (S4) Body pain (S5) 

Viral fever (D1) <0.8, 0.1, 0.1> <0.2, 0.7, 0.1> <0.3, 0.5, 0.2> (0.5, 0.3, 0.2) <0.5, 0.4, 0.1> 

Tuberculosis (D2) <0.2, 0.7, 0.1> <0.9, 0.0, 0.1> <0.7, 0.2, 0.1> (0.6, 0.3, 0.1) <0.7, 0.2, 0.1> 

Typhoid (D3) <0.5, 0.3, 0.2> <0.3, 0.5, 0.2> <0.2, 0.7, 0.1> (0.2, 0.6, 0.2) <0.4, 0.4, 0.2> 

Throat disease(D4) <0.1, 0.7, 0.2> <0.3, 0.6, 0.1> <0.8, 0.1, 0.1> (0.1, 0.8, 0.1) <0.1, 0.8, 0.1> 

Table 2 Characteristics between patients and the indicated symptoms represented by SVNMVs 

Temperature (S1) Cough (S2) Throat pain (S3) Headache (S4) Body pain (S5) 

P1 

<(0.8, 0.6, 0.5), 

(0.3, 0.2, 0.1), 

(0.4, 0.2, 0.1)> 

<(0.5, 0.4, 0.3), 

(0.4, 0.4, 0.3), 

(0.6, 0.3, 0.4)> 

<(0.2, 0.1, 0.0), 

(0.3, 0.2, 0.2), 

(0.8, 0.7, 0.7)> 

<(0.7, 0.6, 0.5), 

(0.3, 0.2, 0.1), 

(0.4, 0.3, 0.2)> 

<(0.4, 0.3, 0.2), 

(0.6, 0.5, 0.5), 

(0.6, 0.4, 0.4)> 

P2 

<(0.5, 0.4, 0.3), 

(0.3, 0.3, 0.2), 

(0.5, 0.4, 0.4)> 

<(0.9, 0.8, 0.7), 

(0.2, 0.1, 0.1), 

(0.2, 0.2, 0.1)> 

<(0.6, 0.5, 0.4), 

(0.3, 0.2, 0.2), 

(0.4, 0.3, 0.3)> 

<(0.6, 0.4, 0.3), 

(0.3, 0.1, 0.1), 

(0.7, 0.7, 0.3)> 

<(0.8, 0.7, 0.5), 

(0.4, 0.3, 0.1), 

(0.3, 0.2, 0.1)> 

P3 

<(0.2, 0.1, 0.1), 

(0.3, 0.2, 0.2), 

(0.8, 0.7, 0.6)> 

<(0.3, 0.2, 0.2), 

(0.4, 0.2, 0.2), 

(0.7, 0.6, 0.5)> 

<(0.8, 0.8, 0.7), 

(0.2, 0.2, 0.2), 

(0.1, 0.1, 0.0)> 

<(0.3, 0.2, 0.2), 

(0.3, 0.3, 0.3), 

(0.7, 0.6, 0.6) 

<(0.4, 0.4, 0.3), 

(0.4, 0.3, 0.2), 

(0.7, 0.7, 0.5)> 

P4 

<(0.5, 0.5, 0.4), 

(0.3, 0.2, 0.2), 

(0.4, 0.4, 0.3)> 

<(0.4, 0.3, 0.1), 

(0.4, 0.3, 0.2), 

(0.7, 0.5, 0.3)> 

<(0.2, 0.1, 0.0), 

(0.4, 0.3, 0.3), 

(0.7, 0.7, 0.6)> 

<(0.6, 0.5, 0.3), 

(0.2, 0.2, 0.1), 

(0.6, 0.4, 0.3)> 

<(0.5, 0.4, 0.4), 

(0.3, 0.3, 0.2), 

(0.6, 0.5, 0.4)> 
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Table 3 Similarity measure values of S1(Pi, Dj) 

Viral 

fever (D1) 

Tuberculosis 

(D2) 
Typhoid 

(D3) 

Throat 

disease(D4) 

P1 0.7358 0.6101 0.7079 0.5815 

P2 0.6884 0.7582 0.6934 0.5964 

P3 0.6159 0.6141 0.6620 0.6294 

P4 0.7199 0.6167 0.7215 0.5672 

Table 4 Similarity measure values of S2(Pi, Dj) 

Viral 

fever (D1) 

Tuberculosis 

(D2) 
Typhoid 

(D3) 

Throat 

disease(D4) 
P1 0.5821 0.4390 0.5478 0.4100 

P2 0.5248 0.6106 0.5307 0.4249 

P3 0.4450 0.4431 0.4948 0.4592 

P4 0.5624 0.4459 0.5643 0.3958 

6 Conclusion 

This paper proposed the generalized distance and its 

two similarity measures. Then, the two similarity measures 

of SVNMs were applied to medical diagnosis to 

demonstrate the effectiveness of the developed measure 

methods. The medical diagnosis shows that the new 

measures perform well in the case of truth-membership, 

indeterminacy-membership, and falsity-membership 

functions and the example depicts that the proposed 

measure is effective with the three representatives of 

SVNMV – truth-membership, indeterminacy-membership 

and falsity-membership values. Therefore, the measures of 

SVNMs make them possible to handle the diagnosis 

problems with indeterminate and inconsistent information, 

which cannot be handled by the measures of IFMs because 

IFMs cannot express and deal with the indeterminate and 

inconsistent information.  

In further work, it is necessary and meaningful to 

extend SVNMs to propose interval neutrosophic multisets 

and their operations and measures and to investigate their 

applications such as decision making, pattern recognition, 

and medical diagnosis. 
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