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element; Score function; Hesitant interval neutrosophic linguistic weighted average (HINLWA) 

operator; Hesitant interval neutrosophic linguistic weighted geometric (HINLWG) operator; 

Decision making  

 

 

1. Introduction 

The neutrosophic set proposed firstly by Smarandache [1] generalizes an intuitionistic fuzzy set 

and an interval-valued intuitionistic fuzzy set from philosophical point of view and its functions 

TA(x), IA(x) and FA(x) are real standard or nonstandard subsets of ]−0, 1+[, i.e., TA(x): X → ]−0, 1+[, 

IA(x): X → ]−0, 1+[, and FA(x): X → ]−0, 1+[. The neutrosophic set can be better to express incomplete, 

indeterminate and inconsistent information. However, the nonstandard interval ]−0, 1+[ is difficult to 

apply in real scientific and engineering areas. Hence, some researchers have introduced some 

subclasses of the neutrosophic set to easily apply in real scientific and engineering areas by 

constraining the nonstandard interval ]−0, 1+[ into the real standard interval [0, 1] for its functions 

TA(x), IA(x) and FA(x). Firstly, Wang et al. [2, 3] introduced the concepts of an interval neutrosophic 

set (INS) and a single-valued neutrosophic set (SVNS), which are the subclasses of a neutrosophic 

set, and provided the set-theoretic operators and various properties of SVNSs and INSs. Then, Ye [4] 

proposed a correlation coefficient of SVNSs and applied it to multiple attribute decision-making 

problems with single-valued neutrosophic information. Ye [5] presented a single-valued 

neutrosophic cross-entropy measure for single-valued neutrosophic multiple attribute 

decision-making problems. Liu and Wang [6] presented single-valued neutrosophic normalized 

weighted Bonferroni mean operators and applied them to decision making problems with 
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single-valued neutrosophic information. Further, Liu et al. [7] developed some generalized 

single-valued neutrosophic number Hamacher aggregation operators and their application to group 

decision making problems with single-valued neutrosophic information. On the other hand, Chi and 

Liu [8] extended a TOPSIS method to interval neutrosophic multiple attribute decision-making 

problems. Ye [9] introduced the distances-based similarity measures of INSs and their applications in 

multiple attribute decision-making under interval neutrosophic environment. Zhang et al. [10] put 

forward the score, accuracy, and certainty functions of an interval neutrosophic number (INN) and 

introduced the interval neutrosophic number weighted average (INNWA) operator and interval 

neutrosophic number weighted geometric (INNWG) operator for interval neutrosophic multiple 

attribute decision-making problems.  

Currently, based on the combination of interval neutrosophic sets and linguistic variables [11], 

Ye [12] defined the concept of interval neutrosophic linguistic sets (INLSs) and the score, accuracy 

and certainty functions of an interval neutrosophic linguistic number (INLN), and then developed an 

interval neutrosophic linguistic weighted average (INLWA) operator and an interval neutrosophic 

linguistic weighted geometric (INLWG) operator to handle multiple attribute decision-making 

problems with interval neutrosophic linguistic information. Since a single-valued neutrosophic 

linguistic set is a special case of an interval neutrosophic linguistic set, Ye [13] proposed an extended 

TOPSIS method for multiple attribute group decision-making problems with single-valued 

neutrosophic linguistic numbers. Furthermore, by the combination of SVNSs and hesitant fuzzy sets 

(HFSs) [14, 15], Ye [16] presented a single-valued neutrosophic hesitant fuzzy set (SVNHFS), a 

single-valued neutrosophic hesitant fuzzy weighted average (SVNHFWA) operator and a 

single-valued neutrosophic hesitant fuzzy weighted geometric (SVNHFWG) operator, then applied 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 4 

them to multiple attribute decision-making problems under a single-valued neutrosophic hesitant 

fuzzy environment. Then, Liu and Shi [17] further developed the generalized hybrid weighted 

average operator of interval neutrosophic hesitant set and its multiple attribute decision making 

method. 

An INLN introduced in [12] contains the linguistic variable represented by decision maker’s 

judgment to an evaluated object and the subjective evaluation value represented by an INN as the 

reliability of the given linguistic variable. However, in complex decision making problems, when 

decision makers give their assessments on attributes by the form of INLNs, they may also be hesitant 

among several possible INLNs. For example, for a predefined linguistic term set S = {s0, s1, s2, s3, s4, 

s5, s6} = {extremely low, very low, low, medium, high, very high, extremely high}, evaluating the 

“growth” of a company, we can utilize a hesitant interval neutrosophic linguistic element (HINLE) 

{s2, ([0.7,0.8], [0.0,0.1], [0.1, 0.2]), s3, ([0.6,0.7], [0.1, 0.2], [0.1, 0.2]), s4, ([0.5,0.6], [0.2, 0.3], 

[0.2, 0.3])} as its evaluation, where s2, s3 and s4 indicate that the “growth” of a company may be 

“low”, “medium” and “high”, and the INNs “([0.7,0.8], [0.0,0.1], [0.1, 0.2])”, “([0.6,0.7], [0.1, 0.2], 

[0.1, 0.2])” and “([0.5,0.6], [0.2, 0.3], [0.2, 0.3])” indicate that the “growth” of a company may 

contain truth degrees, indeterminacy degrees and falsity degrees belonging to s2, s3 and s4, 

respectively. In this case, the existing methods are not suitable for dealing with the decision making 

problems with hesitant interval neutrosophic linguistic information. Motivated by the concepts of 

INLSs and HFSs, the purposes of this paper are: (1) to propose the concepts of a hesitant interval 

neutrosophic linguistic set (HINLS) and the HINLE which is composed of a set of INLNs, (2) to 

define the operational laws of HINLEs and the score, accuracy and certainty functions for HINLEs, 

(3) to propose a hesitant interval neutrosophic linguistic weighted average (HINLWA) operator and a 
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hesitant interval neutrosophic linguistic weighted geometric (HINLWG) operator and to investigate 

their properties, and (4) to establish a decision-making method based on the HINLWA and HINLWG 

operators to handle multiple attribute decision-making problems with hesitant interval neutrosophic 

linguistic information. To do so, the rest of the paper is organized as follows. Section 2 briefly 

describes some concepts of INLSs and HFSs. In Section 3, we propose the concepts of HINLSs and 

HINLEs and define the operational laws of HINLEs and the score, accuracy and certainty functions 

for HINLEs. Section 4 develops the HINLWA and HINLWG operators and investigates their some 

properties. Section 5 establishes a multiple attribute decision-making approach based on the 

HINLWA and HINLWG operators and the score, accuracy and certainty functions. An illustrative 

example about investment alternatives is provided in Section 6. Section 7 gives conclusions and 

future research. 

 

2. Preliminaries of INLSs and HFSs 

In this section, some basic concepts related to INLSs and HFSs are briefly introduced to utilize 

the following analysis. 

Let S = {s0, s1, …, sl} be a finite ordered discrete linguistic term set with old cardinality, where si 

represents a possible value for a linguistic variable and l+1 is the cardinality of S. For example, when 

l = 6, we can give a linguistic term set S = {s0, s1, s2, s3, s4, s5, s6} = {extremely low, very low, low, 

medium, high, very high, extremely high}. 

In a linguistic term set S, any two linguistic variables si and sj must satisfy the following 

properties [18, 19]:  

(1) The set is ordered: si  sj if i  j, 
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 6 

(2) Negation operator is neg(si) = sl-i, 

(3) Maximum operator is max(si, sj) = si if i > j, 

(4) Minimum operator is min(si, sj) = sj if i > j. 

2.1. Interval neutrosophic linguistic sets 

Ye [12] presented the concept of an INLS and gave its definition. 

Definition 1 [12]. Let X be a finite universal set. An INLS in X is defined by 

   XxxFxIxTsxA AAAx  |)(),(),(,, )( , 

where s(x) S, TA(x) = [inf TA(x), sup TA(x)]  [0, 1], IA(x) = [inf IA(x), sup IA(x)]  [0, 1] and FA(x) = 

[inf FA(x), sup FA(x)]  [0, 1] represent the truth-membership degree, the indeterminacy-membership 

degree and the falsity-membership degree of the element x in X to the linguistic variable s(x), 

respectively, with the condition 0  sup TA(x) + sup IA(x) + sup FA(x)  3 for any xX. 

Then, the seven tuple s(x), ([inf TA(x), sup TA(x)], [inf IA(x), sup IA(x),], [inf FA(x), sup FA(x)]) 

in A is called an INLN. For convenience, an INLN can be represented as a = s(a), ([T
L(a), TU(a)], 

[IL(a), sup IU(a),], [FL(a), FU(a)]). 

Definition 2 [12]. Let  )](),([)],(),([)],(),([, 111111)(1 1
aFaFaIaIaTaTsa ULULUL

a  and 

 )](),([)],(),([)],(),([, 222222)(2 2
aFaFaIaIaTaTsa ULULUL

a  be two INLNs and   0, 

then the operational laws of INLNs are defined as follows: 

(1) 
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(2) 
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To rank INLNs, Ye [12] defined the score, accuracy and certainty functions of an INLN. 

Definition 3 [12]. Let a = s(a), ([T
L(a), TU(a)], [IL(a), IU(a),], [FL(a), FU(a)]) be an INLN. Then, 

the score, accuracy and certainty functions for the INLN a are defined, respectively, as follows: 

l

aaFaIaTaFaIaT
aE

UUULLL

6

)())()()()()()(4(
)(
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2
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)(


 .                        (3) 

Definition 4 [12]. Let a1 and a2 be two INLNs. Then, the ranking method can be defined as follows: 

(1) If E(a1) > E(a2), then a1  a2; 

(2) If E(a1) = E(a2) and H(a1) > H(a2), then a1  a2; 

(3) If E(a1) = E(a2), H(a1) = H(a2), and C(a1) > C(a2), then a1  a2; 

(4) If E(a1) = E(a2), H(a1) = H(a2), and C(a1) = C(a2), then a1 = a2. 

2. 2. Hesitant fuzzy sets 

Torra and Narukawa [14] and Torra [15] firstly proposed the concept of a HFS, which is defined 
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 8 

as follows. 

Definition 5 [14, 15]. Let X be a fixed set, a hesitant fuzzy set A on X is defined in terms of a 

function hA(x) that when applied to X returns a finite subset of [0, 1], which can be represented as the 

following mathematical symbol: 

 XxxhxA A  |)(, , 

where   )()(
)()(

xhx AA
AA

xxh





  is a set of some different values in [0, 1], denoting the possible 

membership degrees of the element x  X to A. For convenience, we call hA(x) a hesitant fuzzy 

element [20] denoted simply by h, which reads   h
h





  for   [0, 1]. 

According to the relationship between a hesitant fuzzy element and an intuitionistic fuzzy value, 

Xia and Xu [20] defined some operations on three hesitant fuzzy elements h, h1, h2 and a scale   0: 

(1)  


 
h

h


  , 

(2)  


 )1(1 
h

h  , 

(3)  2121
,

21
2211





 hh

hh  , 

(4)  21
,

21
2211


 hh

hh


  . 

Definition 6 [20]. For a hesitant element h,  


hh
hG




#
1)(  is called the score function of h, 

where #h is the number of the elements in h. For two hesitant elements h1 and h2, if G(h1) > G(h2), 

then h1 > h2; if G(h1) = G(h2), then h1 = h2. 

 

3. Hesitant interval neutrosophic linguistic set 

Based on the combination of an INLS and a HFS, this section proposes the concepts of a HINLS, 

a HINLE, which is a basic element in a HINLS, and the operational laws of HINLEs, as well as the 

appropriate score, accuracy and certainty functions to be suitable for a HINLE. 
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Definition 7. Let X be a nonempty set of the universe and S = {s0, s1, …, sl} be a finite ordered 

discrete linguistic set. Then, a HINLS in X can be expressed as the following mathematical symbol: 

 XxxnxN N  |)(~, , 

where  )()(~
)(~)( xaxn NxnxaN NN   is a set of INLNs, denoting the possible INLNs of the element 

x  X to the set N, and aN(x) = s(x), ([inf TN(x), sup TN(x)], [inf IN(x), sup IN(x),], [inf FN(x), sup 

FN(x)]) is an INLN. For convenience,  )()(~
)(~)( xaxn NxnxaN NN    in N is simply denoted by 

 an na ~
~

  , where n~  is called a HINLE and a = s(a), ([TL(a), TU(a)], [IL(a), IU(a),], [FL(a), 

FU(a)]) is called an INLN. Then, N is the set of all HINLEs. 

Definition 8. Let n~ ,
1

~n  and 
2

~n be any three HINLEs and   0, then the operational laws of 

HINLEs are defined as follows: 
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Definition 9. Let n~  be an HINLE. Then, the score, accuracy and certainty functions of the HINLE 

n~  are defined, respectively, as follows: 
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where n~#  is the number of INLNs in n~  and l+1 is the cardinality of the linguistic term set S. 

Definition 10. Let 1
~n  and 

2
~n be any two HINLEs. Then, the ranking method can be defined as 

follows: 

(1) If EH( 1
~n ) > EH(

2
~n ), then 1

~n   
2

~n ; 

(2) If EH( 1
~n ) = EH(

2
~n ) and HH( 1

~n ) > HH(
2

~n ), then 1
~n   

2
~n ; 

(3) If EH( 1
~n ) = EH(

2
~n ), HH( 1

~n ) = HH(
2

~n ), and CH( 1
~n ) > CH(

2
~n ), then 1

~n   
2

~n ; 

(4) If EH( 1
~n ) = EH( 2

~n ), HH( 1
~n ) = HH( 2

~n ), and CH( 1
~n ) = CH( 2

~n ), then 1
~n  = 2

~n . 

 

4. Hesitant interval neutrosophic linguistic weighted aggregation operators 

Based on the operational laws of HINLEs, we can propose two hesitant interval neutrosophic 

weighted aggregation operators to aggregate hesitant interval neutrosophic linguistic information, 

which are usually utilized in multiple attribute decision making. 

4.1 Hesitant interval neutrosophic linguistic weighted average operator 

Definition 11. Let jn~  (j = 1, 2, …, n) be a collection of HINLEs. The HINLWA operator is defined 

as 

  
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21
~~,,~,~                           (7) 

where W = (w1, w2, …, wn)T is the weight vector of jn~  (j =1, 2, …, n), wj  [0, 1] and 
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Theorem 1. Let jn~  (j = 1, 2, …, n) be a collection of HINLEs. Then by Eq. (7) and the operational 

laws of HINLEs, we can obtain the following result: 
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where W = (w1, w2, …, wn)T is the weight vector of jn~  (j = 1, 2, …, n), wj  [0, 1] and 
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Proof. The proof of Eq. (8) can be done by means of mathematical induction. 
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(2) When n = k, by applying Eq. (8), we obtain 
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(3) When n = k + 1, by applying Eqs. (9) and (10), we get 
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Therefore, from the above results, we have Eq. (8) for any n. This completes the proof.  

Especially, if W = (1/n, 1/n, …, 1/n)T, then the HINLWA operator reduces to a hesitant interval 

neutrosophic linguistic average operator for HINLEs. 

It is obvious that some desired properties of the HINLWA operator are given as follows: 

(1) Idempotency: Let jn~  (j = 1, 2, . . . , n) be a collection of HINLEs. If jn~  (j = 1, 2, . . . , n) is 
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equal and jn~  =    na a aFaIaTsn ~ )( )(),(),(,~


 
 for j = 1, 2, . . . , n and T(a), T(a), T(a)  

[0, 1], then there is   nnnnHINLWA n
~~,,~,~

21  . 

(2) Boundedness: Let jn~  (j = 1, 2, . . . , n) be a collection of HINLEs. If 
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where n~#  is the number of INLNs in  nnnnHINLWAn ~,,~,~~
21   and l+1 is the cardinality of the 

linguistic term set S. Therefore, according to Definition 10, there is 

   nnnnHINLWAFITs ~,,~,~,,, 21 


. 

Similarly, there is    
 FITsnnnHINLWA n ,,,~,,~,~

21 
 . 

Thus, there is      
  FITsnnnHINLWAFITs n ,,,~,,~,~,,, 21 

 . 

Hence, we complete the proofs of these properties.  

4.2 Hesitant interval neutrosophic linguistic weighted geometric operator 

Definition 12. Let jn~  (j = 1, 2, …, n) be a collection of HINLEs. Then the HINLWG operator is 

defined as 
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1
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~~,,,~                         (11) 
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where W = (w1, w2, …, wn)T is the weight vector of jn~  (j = 1, 2, …, n) , wj  [0,1] and 

 


n

j jw
1

1 .  

Theorem 2. Let jn~  (j = 1, 2, …, n) be a collection of HINLEs. by Eq. (11) and the operational laws 

of HINLEs, we have the following result: 
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

, (12) 

where W = (w1, w2, …, wn)T is the weight vector of jn~  (j = 1, 2, …, n) , wj  [0,1] and 

 


n

j jw
1

1 .  

The proof of Theorem 2 can be also given by the similar proof of Theorem 1 (omitted).  

Especially, if W = (1/n, 1/n, …, 1/n)T, then the HINLWG operator reduces to a hesitant interval 

neutrosophic linguistic geometric operator. 

It is obvious that some desired properties of the HINLWG operator are also given as follows: 

(1) Idempotency: Let jn~  (j = 1, 2, . . . , n) be a collection of HINLEs. If jn~  (j = 1, 2, . . . , n) is 

equal and jn~  =    na a aFaIaTsn ~ )( )(),(),(,~


 
 for j = 1, 2, . . . , n and T(a), T(a), T(a)  

[0, 1], then there is   nnnnHINLWG n
~~,,~,~

21  . 

(2) Boundedness: Let jn~  (j = 1, 2, . . . , n) be a collection of HINLEs. If 

 jjanj nass
j

~|min )(1   
,  jjanj nass

j

~|max )(1   
,  jjjnj naaTT ~|)(min 1  

 , 

 jjjnj naaTT ~|)(max1  

 ,  jjjnj naaII ~|)(min 1  

 ,  jjjnj naaII ~|)(max1  

 , 

 jjjnj naaFF ~|)(min 1  

 ,  jjjnj naaFF ~|)(max1  

  for j = 1, 2, . . . , n, then there is 

     
  FITsnnnHINLWGFITs n ,,,~,,~,~,,, 21 

 . 

Since the process to prove these properties is similar to the above proofs, it is not repeated here. 
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5. Decision-making method based on the HINLWA and HINLWG operators 

This section proposes a multiple attribute decision-making method based on the HINLWA and 

HINLWG operators and the score, accuracy and certainty functions of HINLEs under a hesitant 

interval neutrosophic linguistic environment. 

For a multiple attribute decision-making problem, let A = {A1, A2, …, Am} be a set of 

alternatives and let C = {C1, C2, …, Cn} be a set of attributes. Assume that the weight of the attribute 

Cj (j = 1, 2, …, n), entered by the decision-maker, is wj, wj  [0, 1] and  


n

j jw
1

1 . In the decision 

process, the evaluation information of the alternative Ai (i = 1, 2, …, m) on the attribute Cj (j = 1, 

2, …, n) is represented by a hesitant interval neutrosophic linguistic decision matrix denoted by 
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Then, the HINLWA operator or the HINLWG operator is utilized to establish a multiple attribute 

decision making method under a hesitant interval neutrosophic linguistic environment, which 

includes the following steps: 

Step 1: By applying Eq. (8) or Eq. (12), the individual overall HINLE in~  for Ai (i = 1, 2, …, m) is 

calculated by 
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Step 2: Calculate the values of the score function EH( in~ ) (i = 1, 2, …, m) (accuracy function HH( in~ ), 

certainty function CH( in~ )) by using Eq. (4) (Eqs. (5) and (6)). 

Step 3: Rank the alternatives according to the values of EH( in~ ) (HH( in~ ) and CH( in~ )) (i = 1, 2, …, 

m) and then the largest score value is the best one. 

Step 4: End. 

 

6. Illustrative example 

An illustrative example about investment alternatives adapted from Ye [12, 16] is used as the 

application of the proposed decision-making method under a hesitant interval neutrosophic linguistic 

environment. An investment company wants to invest a sum of money in the best option. To invest 

the money, there is a panel with four possible alternatives: A1 (a car company), A2 (a food company), 

A3 (a computer company) and A4 (an arms company). The investment company must take a decision 

according to the three attributes: C1 (the risk), C2 (the growth) and C3 (the environmental impact). 

The vector of the attribute weights is given as W = (0.35, 0.25, 0.4)T. Three decision makers are 

invited to evaluate the four possible alternatives of Ai (i = 1, 2, 3, 4) with respect to the three 

attributes of Cj (j = 1, 2, 3) by the form of HINLEs under the linguistic term set S = {s1 = extremely 

poor, s2 = very poor, s3 = poor, s4 = medium, s5 = good, s6 = very good, s7 = extremely good}. 
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For example, the HINLE of an alternative A1 with respect to an attribute C1 is given as {s4, ([0.5, 

0.6], [0.1, 0.2], [0.2,0.3]), s5, ([0.3, 0.4], [0.2, 0.3], [0.3, 0.4])} by the three decision makers, which 

indicates that the assessment of the alternative A1 with respect to the attribute C1 is about the 

linguistic value s4 with the satisfaction degree [0.5, 0.6], dissatisfaction degree [0.2, 0.3], and 

indeterminacy degree [0.1, 0.2] given by two experts of them and about the linguistic value s5 with 

the satisfaction degree [0.3, 0.4], dissatisfaction degree [0.3, 0.4] and indeterminacy degree [0.2, 0.3] 

given by one expert of them. Thus, when the four possible alternatives with respect to the above 

three attributes are evaluated by the three decision makers, the hesitant interval neutrosophic 

linguistic decision matrix is constructed as shown in Table 1. 

Table 1 Hesitant interval neutrosophic linguistic decision matrix D 

 C1 C2 C3 

A1 

{s4, ([0.5, 0.6], [0.1, 0.2], 

[0.2, 0.3]), s5, ([0.3, 0.4], 

[0.2, 0.3], [0.3, 0.4])} 

{s5, ([0.5, 0.6], [0.2, 0.3], 

[0.3, 0.4])} 

{s3, ([0.4, 0.5], [0.1, 0.2], 

[0.3, 0.5]), s4, ([0.2, 0.3], 

[0.1, 0.2], [0.5, 0.6])} 

A2 

{s4, ([0.7, 0.8], [0.1, 0.2], 

[0.2, 0.3]), s5, ([0.6, 0.7], 

[0.1, 0.2], [0.1, 0.3])} 

{s4, ([0.6, 0.7], [0, 0.1], [0.2, 

0.3])} 

{s3, ([0.7, 0.8], [0, 0.1], 

[0.1, 0.2]), s4, ([0.6, 0.7], 

[0.1,0.2], [0.1, 0.2]), s5, 

([0.5, 0.6], [0.1, 0.2], [0.2, 

0.3])} 

A3 

{s4, ([0.7, 0.9], [0.2, 0.4], 

[0.1, 0.2]), s5, ([0.5, 0.6], 

[0.3, 0.4], [0.2, 0.3])} 

{s4, ([0.5, 0.6], [0.2, 0.3], 

[0.3, 0.4]), s5, ([0.3, 0.5}, 

[0.1, 0.2], [0.4, 0.5]]} 

{s3, ([0.5, 0.6], [0.1, 0.3], 

[0.2, 0.3])} 
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A4 

{s3, ([0.7, 0.8], [0, 0.1], [0.1, 

0.2])} 

{s3, ([0.6, 0.7], [0.1, 0.2], 

[0.2, 0.3]), s4, ([0.5, 0.6], 

[0.1, 0.2], [0.3, 0.4]), s5, 

([0.4, 0.5], [0.2, 0.3], [0.1, 

0.2])} 

{s4, ([0.5, 0.6], [0.1, 0.2], 

[0.1, 0.2]), s5, ([0.3, 0.5], 

[0, 0.2], [0.1, 0.2])} 

Then, the developed approach is utilized to obtain the ranking order of the alternatives and the 

most desirable one(s), which can be described as the following steps: 

Step 1: Aggregate all HINLEs of ijn~  (i = 1, 2, 3, 4; j = 1, 2, 3) by using the HINLWA operator to 

derive the collective HINLE in~  (i = 1, 2, 3, 4) for an alternative Ai (i = 1, 2, 3, 4). Taking an 

alternative A1 for an example, we have 

   

   












































































































3

1

1

3

1

1

3

1

1

3

1

1

3

1

1

3

1

1

)(~,~,~

1312111

)(,)(

,)(,)(

,))(1(1,))(1(1

,

)~,~,~(~

3

1

1
131312121111

j

w

j

U

j

w

j

L

j

w

j

U

j

w

j

L

j

w

j

U

j

w

j

L

awnanana

jj

jj

jj

j

jj

aFaF

aIaI

aTaT

s

nnnHINLWAn




 

= {s3.85, ([0.4622, 0.5627], [0.1189, 0.2213], [0.2603, 0.3955]), s4.2, ([0.395, 0.496], 

[0.1516, 0.2551], [0.3000, 0.4373]), s4.25, ([0.3966, 0.4996], [0.1189, 0.2213], [0.3193, 0.4254]), 

s4.6, ([0.3212, 0.4234], [0.1516, 0.2551], [0.3680, 0.4704])}. 

Similarly, we can derive the following collective HINLFEs of in~  (i = 2, 3, 4): 

2
~n  = {s3.6, ([0.6776, 0.7787], [0, 0.1275], [0.1516, 0.2551]), s4, ([0.6383, 0.7397], [0, 

0.1682], [0.1516, 0.2551]), s4.4, ([0.6045, 0.7079], [0, 0.1682], [0.2000, 0.3000]), s3.95, ([0.6435, 

0.7449], [0, 0.1275], [0.1189, 0.2551]), s4.35, ([0.6000, 0.7000], [0, 0.1682], [0.1189, 0.2551]), 

s4.75, ([0.5627, 0.6634], [0, 0.1682], [0.1569, 0.3000])}; 
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3
~n  = {s3.6, ([0.5819, 0.7538], [0.1516, 0.3318], [0.1737, 0.2797]), s3.85, ([0.5452, 0.7396], 

[0.1275, 0.2998], [0.1866, 0.2958]), s3.95, ([0.5, 0.6], [0.1747, 0.3318], [0.2213, 0.3224]), s4.2, 

([0.4561, 0.5771], [0.1469, 0.2998], [0.2378, 0.3409])}; 

4
~n  = {s3.4, ([0.6045, 0.7079], [0, 0.1569], [0.1189, 0.2213]), s3.8, ([0.5476, 0.6807], [0, 

0.1569], [0.1189, 0.2213]), s3.65, ([0.5819, 0.6862], [0, 0.1569], [0.1316, 0.2378]), s4.05, ([0.5216, 

0.6569], [0, 0.1569], [0.1316, 0.2378]), s3.9, ([0.5624, 0.6682], [0, 0.1737], [0.1, 0.2]), s4.3, 

([0.4993, 0.6372], [0, 0.1737], [0.1, 0.2])}. 

Step 2: Calculate the score values of the collective HINLFE in~  (i = 1, 2, 3 4) by Eq. (4): 

EH( 1
~n ) = 0.4413, EH(

2
~n ) = 0.5519, EH( 3

~n ) = 0.4549, and EH(
4

~n ) = 0.5051. 

Step 3: Rank the alternatives in accordance with the score values: A2  A4  A3  A1. Therefore, the 

alternative A2 is the best choice according to the largest score value.  

On the other hand, if the HINLWG operator is utilized in the multiple attribute decision-making 

problem, the decision-making steps can be described as following: 

Step 1’: Aggregate all HINLEs of ijn~  (i = 1, 2, 3, 4; j = 1, 2, 3) by using the HINLWG operator to 

derive the collective HINLEs of in~  (i = 1, 2, 3, 4) for the alternative Ai (i = 1, 2, 3, 4): 

1
~n  = {s3.7697, ([0.4573, 0.5578], [0.1261, 0.2263], [0.2665, 0.4113]), s4.2295, ([0.3466, 0.4547], 

[0.1261, 0.2263], [0.3589, 0.4615]), s4.076, ([0.3824, 0.484], [0.1614, 0.2616], [0.3, 0.4422]), 

s4.5731, ([0.2898, 0.3946], [0.1614, 0.2616], [0.3881, 0.4898])}; 

2
~n  = {s3.5652, ([0.6735, 0.7737], [0.0362, 0.1363], [0.1614, 0.2616]), s4, ([0.6333, 0.7335], 

[0.076, 0.1761], [0.1614, 0.2616]), s4.3734, ([0.5887, 0.6896], [0.076, 0.1761], [0.2, 0.3]), s3.8548, 

([0.6382, 0.7384], [0.0362, 0.1363], [0.1261, 0.2616]), s4.3249, ([0.6, 0.7], [0.076, 0.1761], [0.1261, 

0.2616]), s4.7287, ([0.5578, 0.6581], [0.076, 0.1761], [0.1663, 0.3])}; 
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3
~n  = {s3.5652, ([0.5625, 0.6915], [0.1614, 0.3368], [0.1937, 0.2942]), s3.7697, ([0.4951, 0.6607], 

[0.1363, 0.3143], [0.2242, 0.3257]), s3.8548, ([0.5, 0.6], [0.1997, 0.3368], [0.2263, 0.3265]), s4.076, 

([0.4401, 0.5733], [0.1758, 0.3143], [0.2555, 0.3565])}; 

4
~n  = {s3.3659, ([0.5887, 0.6896], [0.0662, 0.1663], [0.1261, 0.2263]), s3.6801, ([0.4799, 0.6411], 

[0.026, 0.1663], [0.1261, 0.2263]), s3.6169, ([0.5625, 0.6636], [0.0662, 0.1663], [0.1548, 0.2555]), 

s3.9545, ([0.4585, 0.6169], [0.026, 0.1663], [0.1548, 0.2555]), s3.8244, ([0.532, 0.634], [0.0933, 

0.1937]. [0.1, 0.2]), s4.1814, ([0.4337, 0.5894], [0.0543, 0.1937], [0.1, 0.2])}. 

Step 2’: Calculate the score values of the collective HINLE in~  (i = 1, 2, 3, 4) for the alternative Ai 

(i = 1, 2, 3, 4) by Eq. (4) as follows: 

EH( 1
~n ) = 0.4231, EH(

2
~n ) = 0.5363, EH( 3

~n ) = 0.4325, and EH(
4

~n ) = 0.4774. 

Step 3’: Rank the alternatives in accordance with the score values: A2  A4  A3  A1. Therefore, the 

alternative A2 is also the best choice according to the largest score value.  

Obviously, above two kinds of ranking orders are identical and the same as the ones in Ye [12, 

16]. Although two kinds of ranking orders based on the HINLWA and HINLWG operators are 

identical, there are different focal points [16] between the HINLWA operator and the HINLWG 

operator. The HINLWA operator emphasizes the group’s major points, while the HINLWG operator 

emphasizes the individual major points. Then, decision makers may select one of them according to 

their preference or real requirements. 

Compared with the relative decision making methods based on INLSs and SVNHFSs, the 

decision making method in this paper uses HINLS information, while the decision making methods 

in [12, 16] use INLS information and SVNHFS information, respectively. Since HINLS is a further 

generalization of INLS and SVNHFS, HINLS information includes INLS information and SVNHFS 
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information, and also the INLWA and INLWG operators and the SVNHFWA and SVNHFWG 

operators are special cases of the HINLWA and HINLWG operators. Therefore, the decision-making 

method proposed in this paper can deal with not only hesitant interval neutrosophic linguistic 

decision-making problems but also single-valued neutrosophic hesitant fuzzy multiple attribute 

decision-making problems and interval neutrosophic linguistic multiple attribute decision-making 

problems. To some extent, the decision-making method in hesitant interval neutrosophic linguistic 

setting is more general and more feasible than existing decision-making methods in single-valued 

neutrosophic hesitant fuzzy setting and interval neutrosophic linguistic setting. 

 

7. Conclusion 

This paper introduced the concept of HINLSs based on the combination of both HFSs and 

INLSs as a further generalization of these fuzzy concepts and defined some operational laws of 

HINLEs and the score, accuracy and certainty functions of HINLEs. Then, we proposed the 

HINLWA and HINLWG operators to aggregate hesitant interval neutrosophic linguistic information 

and investigated their some properties. Furthermore, the HINLWA and HINLWG operators were 

applied to multiple attribute decision-making problems under a hesitant interval neutrosophic 

linguistic environment, in which attribute values with respect to alternatives are evaluated by the 

form of HINLEs and the attribute weights are known information. We utilized the score function 

(accuracy and certainty functions) to rank the alternatives and to determine the best one(s). Finally, 

an illustrative example was provided to demonstrate the application of the developed 

decision-making approach. The main advantage of the developed method is that it can describe the 

incomplete, indeterminate and inconsistent information by several INLNs in which linguistic 
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variables indicate whether an attribute is good or bad in qualitative and INNs are adopted to 

demonstrate the satisfaction degrees, dissatisfaction degrees and indeterminacy degrees to a 

linguistic variable in quantitative. Therefore, the proposed multiple attribute decision-making 

method under a hesitant interval neutrosophic linguistic environment is more suitable for real 

scientific and engineering applications. In the future, we shall further develop more aggregation 

operators for HINLEs and apply them to these areas such as group decision making, expert system, 

information fusion system, fault diagnoses, and medical diagnoses. 
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Table 1. Hesitant interval neutrosophic linguistic decision matrix D 

 C1 C2 C3 

A1 

{s4, ([0.5, 0.6], [0.1, 0.2], 

[0.2, 0.3]), s5, ([0.3, 0.4], 

[0.2, 0.3], [0.3, 0.4])} 

{s5, ([0.5, 0.6], [0.2, 0.3], 

[0.3, 0.4])} 

{s3, ([0.4, 0.5], [0.1, 0.2], 

[0.3, 0.5]), s4, ([0.2, 0.3], 

[0.1, 0.2], [0.5, 0.6])} 

A2 

{s4, ([0.7, 0.8], [0.1, 0.2], 

[0.2, 0.3]), s5, ([0.6, 0.7], 

[0.1, 0.2], [0.1, 0.3])} 

{s4, ([0.6, 0.7], [0, 0.1], [0.2, 

0.3])} 

{s3, ([0.7, 0.8], [0, 0.1], 

[0.1, 0.2]), s4, ([0.6, 0.7], 

[0.1,0.2], [0.1, 0.2]), s5, 

([0.5, 0.6], [0.1, 0.2], [0.2, 

0.3])} 

A3 

{s4, ([0.7, 0.9], [0.2, 0.4], 

[0.1, 0.2]), s5, ([0.5, 0.6], 

[0.3, 0.4], [0.2, 0.3])} 

{s4, ([0.5, 0.6], [0.2, 0.3], 

[0.3, 0.4]), s5, ([0.3, 0.5}, 

[0.1, 0.2], [0.4, 0.5]]} 

{s3, ([0.5, 0.6], [0.1, 0.3], 

[0.2, 0.3])} 

A4 
{s3, ([0.7, 0.8], [0, 0.1], [0.1, 

0.2])} 

{s3, ([0.6, 0.7], [0.1, 0.2], 

[0.2, 0.3]), s4, ([0.5, 0.6], 

[0.1, 0.2], [0.3, 0.4]), s5, 

([0.4, 0.5], [0.2, 0.3], [0.1, 

0.2])} 

{s4, ([0.5, 0.6], [0.1, 0.2], 

[0.1, 0.2]), s5, ([0.3, 0.5], 

[0, 0.2], [0.1, 0.2])} 
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