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Abstract

In this paper, we propose a framework called Semantic Web Services (SWS) agent
for providing high QoS Semantic Web services. The SWS agent is based on the
neutrosophic logic. The neutrosophic logic was recently proposed by Smarandache
to model and reason with fuzzy, incomplete and inconsistent information. The SWS
agent can solve two challenges facing practicability of current Web services tech-
nology. One is how to locate the services Registries having requested Web services
efficiently; another is how to retrieve the requested services from these Registries
with high QoS. We use neutrosophic neural networks with Genetic Algorithms (GA)
to do the simulation. Simulation results show that the SWS agent is extensible and
scalable to handle uncertain QoS metrics effectively.
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1 Introduction

The concept of fuzzy sets was introduced by Zadeh in 1965 [1]. Since then
fuzzy sets and fuzzy logic have been applied to many real applications to han-
dle uncertainty. The traditional fuzzy set uses one real value p4(z) € [0, 1]
to represent the grade of membersip of fuzzy set A defined on universe X.
The corresponding fuzzy logic associates each proposition p with a real value
wu(p) € [0,1] which represents the degree of truth. Sometimes p4(x) itself is
uncertain and hard to be defined by a crisp value. So the concept of inter-
val valued fuzzy sets was proposed [2] to capture the uncertainty of grade of
membership. The traditional fuzzy logic can be easily extended to the interval
valued fuzzy logic. There are related works such as type-2 fuzzy sets and type-
2 fuzzy logic [3-5]. The family of fuzzy sets and fuzzy logic can only handle
“complete” information that is if a grade of truth-membership is 4 then a
grade of falsity-membership is 1 — 4 (z) by default. In some applications such
as expert systems, decision making systems and information fusion systems,
the information is both uncertain and incomplete. Traditional fuzzy sets and
fuzzy logic cannot handle such situation. In 1986, Atanassov introduced the
intuitionistic fuzzy set [6] which is a generalization of a fuzzy set. The intu-
itionistic fuzzy sets consider both truth-membership and falsity-membership.
The corresponding intuitionistic fuzzy logic [7] associates each proposition p
with two real values p(p)-truth degree and v(p)-falsity degree, respectively,
where u(p),v(p) € [0,1], u(p) + v(p) < 1. So intuitionistic fuzzy sets and
intuitionistic fuzzy logic can handle uncertain and incomplete information.

However, inconsistent information exists in a lot of real situations such as those
mentioned above. It is obvious that the intuitionistic fuzzy logic cannot reason
with inconsistency because it requires u(p) + v(p) < 1. In 1995, Smarandache
introduced the concept of neutrosophic sets and neutrosophic logic which can
model and reason with fuzzy, incomplete and inconsistent information at the
same time. A special case of the neutrosophic sets and neutrosophic logic is
studied in [8,9].
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In this paper, we propose a framework called Semantic Web services (SWS)
agent based on neutrosophic logic to provide high QoS Semantic Web services
based on specific domain ontology such as gnome. The SWS agent can solve
two challenges existing for automatic discovery and invocation of Web ser-
vices. One is how to locate the services Registries advertising requested Web
services efficiently; another is how to retrieve the requested services from these
Registries with the highest quality of service (QoS). The Semantic Web ser-
vices technologies can be exploited to solve the first challenge. For the second
challenge, we believe the QoS of Semantic Web services should cover both
functional and non-functional properties. Here we must be aware that on the
one hand, the degree of capability matching [10-13] and non-functional prop-
erties are all fuzzy, incomplete and even inconsistent; and on the other hand,
different application domains have different requirements on non-functional
properties. It is not flexible to use classical mathematical modelling methods
to evaluate the whole QoS of Semantic Web services.

The paper is organized as follows. In section 2, we present the necessary back-
ground knowledge of neutrosophic logic and QoS model. Section 3 provides
details of design of architecture of the SWS agent. Section 4 gives the design
of neutrosophic neural network with GA and simulation result. In section 5,
we present the related work. And finally, in section 6, we conclude this paper
and give the future research direction.

2 Background

This section details the background material related to this research. We give
a brief review of neutrosophic logic and QoS model.

2.1 Neutrosophic Propositional Logic

In this section, we introduce the elements of the neutrosophic propositional
logic based on the definition of neutrosophic sets [14] by using the notation
from the theory of classical propositional logic.

2.1.1 Syntazx of Neutrosophic Propositional Logic

Here we give the formalization of syntax of the neutrosophic propositional
logic.

Definition 1 An alphabet of the neutrosophic propositional logic consists of
three classes of symbols:



(1) A set of neutrosophic propositional variables, denoted by lower-case let-
ters, sometimes indexed;

(2) Five connectives A, V, =, —, <> which are called conjunction, disjunction,
negation, implication, and bizmplication symbols respectively;

(8) The parentheses ( and ).

|

The alphabet of the neutrosophic propositional logic has combinations ob-
tained by assembling connectives and neutrosophic propositional variables in
strings. The purpose of the construction rules is to have the specification of
distinguished combinations, called formulas.

Definition 2 The set of formulas (well-formed formulas) of the neutrosophic
propositional logic is defined as follows.

(1) Every interval neutrosophic propositional variable is a formula;
(2) If p is a formula, then so is (—p);
(8) If p and q are formulas, then so are
(a) (pAq),
(b) (pVa),
(c) (p—q), and
(d) (p < q).
(4) No sequence of symbols is a formula which is not required to be by 1, 2,
and 3.

|

To avoid having formulas cluttered with parentheses, we adopt the following
precedence hierarchy, with the highest precedence at the top:

™

N,V
—, 5

Here is an example of the neutrosophic propositional logic formula:
“p1 Ap2V (pr — p3) = p2 A D3

Definition 3 The language of interval neutrosophic propositional calculus
given by an alphabet consists of the set of all formulas constructed from the
symbols of the alphabet. O



2.1.2 Semantics of Neutrosophic Propositional Logic

The study of neutrosophic propositional logic comprises, among others, a syn-
tax, which has the distinction of well-formed formulas, and a semantics, the
purpose of which is the assignment of a meaning to well-formed formulas.

To each neutrosophic proposition p, we associate it with an ordered triple

components (¢(p),i(p), f(p)), where ¢(p),i(p), f(p) € [0,1]. ¢(p),i(p), f(p) is
called truth-degree, indeterminacy-degree and falsity-degree of p, respectively.

Let this assignment be provided by an interpretation function or interpretation
N L defined over a set of propositions P in such a way that

NL(p) = (t(p),i(p), f(p))-

Hence, the function NL gives the truth, indeterminacy and falsity degrees of
all propositions in P. We assume that the interpretation function NL assigns
to the logical truth 7 : NL(T) = (1,1,0), and to F' : NL(F) = (0,0, 1).

An interpretation which makes a formula true is a model of the formula.

The semantics of four neutrosophic propositional connectives is given in Table
1. Note that p <> ¢ if and only if p — ¢ and ¢ — p.

Table 1
Semantics of Four Connectives in Neutrosophic Propositional Logic
Connectives | Semantics
NL(-p) (f(p),1 —1(p),t(p))
NL(pAq) | (max(t(p),t(q)), max(i(p),i(g)), min(f(p), f(q)))
NL(pVq) | (max(t(p),t(q)), max(i(p),i(g)), min(f(p), f(q)))
NL(p —¢q) | (min(1,1—%(p) + t(g)), min(1,1 — i(p) + i(q)), max(0, f(q) — f(p)))

2.2 Neutrosophic Predicate Logic

In this section, we will extend our consideration to the full language of first
order neutrosophic predicate logic. First we give the formalization of syntax
of first order neutrosophic predicate logic as in classical first-order predicate
logic.



2.2.1 Syntazx of Neutrosophic Predicate Logic

Definition 4 An alphabet of the first order neutrosophic predicate logic con-
sists of seven classes of symbols:

(1) variables, denoted by lower-case letters, sometimes indezed;

(2) constants, denoted by lower-case letters;

(8) function symbols, denoted by lower-case letters, sometimes indezxed;

(4) predicate symbols, denoted by lower-case letters, sometimes indexed;

(5) Five connectives A,V,—, —, <> which are called the conjunction, disjunc-
tion, negation, implication, and biimplication symbols respectively;

(6) Two quantifiers, the universal quantifier V (for all ) and the existential
quantifier 3 (there exists);

(7) The parentheses ( and ).

|

To avoid having formulas cluttered with brackets, we adopt the following pre-
cede nce hierarchy, with the highest precedence at the top:

Next we turn to the definition of the first order neutrosophic language given
by an alphabet.

Definition 5 A term is defined as follows:

(1) A wvariable is a term.

(2) A constant is a term.

(8) If f is ann-ary function symbol and ty, ..., t, are terms, then f(t1,..., fn)
1S a term.

Definition 6 A (well-formed )formula is defined inductively as follows:

(1) Ifp is ann-ary predicate symbol and ty, ..., t, are terms, then p(t1,...,t,)
is a formula (called an atomic formula or, more simply, an atom ).

(2) If F and G are formulas, then so are (—F),(F AG),(FVG),(F — Q)
and (F < G).

(8) If F is a formula and z is a variable, then (YxF) and (3zF) are formulas.
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Definition 7 The first order neutrosophic language given by an alphabet con-

sists of the set of all formulas constructed from the symbols of the alphabet .
O

Definition 8 The scope of Vx (resp. 3x) in Vo F (resp. 3xF ) is F. A bound
occurrence of a variable in a formula s an occurrence immediately following a
quantifier or an occurrence within the scope of a quantifier, which has the same
variable tmmediately after the quantifier. Any other occurrence of a variable
1s free. O

2.2.2 Semantics of Neutrosophic Predicate Logic

In this section, we study the semantics of neutrosophic predicate logic, the pur-
pose of which is the assignment of a meaning to well-formed formulas. In the
neutrosophic propositional logic, an interpretation is an assignment of truth
values (ordered triple component) to propositions. In the first order neutro-
sophic predicate logic, since there are variables involved, we have to do more
than that. To define an interpretation for a well-formed formula in this logic,
we have to specify two things, the domain and an assignment to constants and
predicate symbols occurring in the formula. The following is the formal defini-
tion of an interpretation of a formula in the first order neutrosophic predicate
logic.

Definition 9 An interpretation function (or interpretation) of a formula F in
the first order neutrosophic predicate logic consists of a nonempty domain D,
and an assignment of “values” to each constant and predicate symbol occurring
in F' as follows:

(1) To each constant, we assign an element in D.

(2) To each n-ary function symbol, we assign a mapping from D™ to D. (Note
that D™ = {(x1,...,z,)|x1 € D,...,z, € D}).

(8) Predicate symbols get their meaning through evaluation functions E which
assign to each variable © an element E(x) € D. To each n-ary predicate
symbol p, there is a function NP(p): D™ — N. So NP(p(zy,...,x,)) =
NP(p)(E(x1),...,E(z,)).

|

That is, NP(p)(ai, . ..,a,) = (t(p(ai,...,a,)),i(p(a1,ldots, a,)), f(p(a,- .., an)),
where t(p(ai, ..., an)),i(p(a,---,aq)), f(p(ai,...,a,)) € [0,1]. They are called
truth-degree, indeterminacy-degree and falsity-d egree of p(as, ..., a,) respec-
tively. We assume that the interpretation f unction NP assigns to the logical
truth 7 : NP(T) = (1,1,0) , and to F': NP(F) =(0,0,1).



The semantics of four neutrosophic predicate connectives and two quantifiers is
given in Table 2. For simplification of notation, we use p to denote p(as, - - ., a;).
Note th at p < ¢ if and only if p — ¢ and ¢ — p.

Table 2

Semantics of Four Connectives and Two Quantifiers in Neutrosopphic Predicate
Logic

Connectives | Semantics
NP(-p) (f(p),1 —i(p), t(p))
NP(pAg) | (min(i(p),t(q)), min(i(p),i(q)), max(f(p), f(¢)))
NP(pVq) | (max(t(p),t(q)), max(i(p),i(q)), min(f(p), f(9)))

P(p—q) | (min(1,1 —1i(p) + t(g)), min(1, 1 —i(p) + i(q)), max(0, f(q) — £(p)))
NP(VzF) | (min#(F(E(z))), mini(F(E(z))), max f(F(E(z)))), E(z) € D
NP@EzF) | (maxt(F(E(z))), maxi(F(E(z))), min f(F(E(z)))), E(z) € D

2.8 QoS Model

Different applications generally have different requirements of QoS dimen-
sions. [15,16] investigated the features with which successful companies assert
themselves in the competitive world markets. Their result showed that success
is based on three essential dimensions: time, cost and quality. [17] associates
eight dimensions with quality, including performance and reliability.

In order to be more precise, we give our definitions of the three dimensions. (1)
For a Semantic Web services, the capability can be defined as the degree that
functional properties a Semantic Web service providde match with the func-
tional properties a Semantic Web service requestor requires; (2) The response
time of a Semantic Web service represents the time that elapses between ser-
vice requests arrival and the completion of that service request. Response time
is the sum of waiting time and actual processing time; (3) The trustworthi-
ness of bioinformatics Semantic Web services should capture the consistency,
reliability, competence and honesty of the service.

3 Architecture of neutrosophic logic based SWS agent

The neutrosophic logic based SWS agent can provide high QoS SWS based
on specifi ¢ ontology. The extensible SWS agent uses centalized client/server
architecture internally. But itself can also be and should be implemented as
a Semantic Web service based on specific service ontology. The neutrosophic



logic based SWS agent comprises of six components: (a)Registries Crawler;
(b)SWS Repository; (c)Inquiry Server; (d)Publish Server; (e)Agent Commu-
nication Server; (f)Intelligent Inference Engine. The high level architecture of
the neutrosophic logic based SWS agent is shown in Figure 1.

Registry 1 Registry 2 wowewwwwweess | Registry 3
E Registries I' _——a
1 Inquiry Crawler ' s
g - Server # | | Agent
User Agent >|
SWS P Communication
/ Repository [ Server | ——1
Publish
. P erver Intelligent ( SWS
Inference Agent
User Engine !_
- - -

Fig. 1. Architecture of the neutrosophic logic based SWS agent

The Intelligent Inference Engine (IIE) is the core of the neutrosophic logic
bas ed SWS agent. The neutrosophic logic based SWS agent is extensible
because IIE uses neutrosoph ic logic inference system to calculate the QoS
of the Semantic Web services with multidimensional QoS metrics . IIE gets
the degree of capability matching and non-functional properties’ values from
OWL-S Matching Engine and return back the whole QoS to OWL-S Matchin
g Engine. In the next section, we show the design of the ITE using neutrosophic
logic, neural networks and genetic algorithm.

3.1 Design of Intelligent Inference Engine

This section shows one implementation of IIE based on neutrosophic logic,
neural network and genetic algorithm. A schematic diagram of the four-layered
neutrosophic neural network is shown in Figure 3. Nodes in layer one are input
nodes representing input linguistic variables. Nodes in layer two are member-
ship nodes. Membership nodes are truth-membership node, indeterminacy-
membership node and falsity-membership node, which are responsible for
mapping an input linguistic variable into three possibility distributions for
that variable. The rule nodes reside in layer three. The last layer contains the
output variable nodes [18].

As we mentioned before, the metrics of QoS of Semantic Web services are
multidimensional. For illustration of specific ontology based Semantic Web

S — |



Layer 4
(output layer)

Layer 3
(rule layer)

Layer 2
(membership layer)

Layer 1
(input layer)

Fig. 2. Schematic diagram of Neutrosophic Neural Network

services for bioinformatics, we decide to use capability, response time and
trustworthiness as our inputs and whole QoS as output. The neutrosophic
logic system is based on TSK model.

3.2 Input neutrosophic sets

Let x represent capability, y represent response time and z represent trustwor-
thiness. We scale the capability, response time and trustworthiness to [0,10]
respectively. The graphical representation of membership functions of x, y,
and z are shown in Figure 4.

3.8 Neutrosophic rule bases

Here, we design the neutrosophic rule base based on the TSK model. A neu-
trosophic rule is shown below:

IF xis I and yis I and z is Is THEN O is a;1 *x + a;2 * Yy + a;3 * Z + a; 4.

where, I, I and I3 are in low, middle, and high respectively and i in [1,27].
There are totally 27 neutrosophic rules. The a;; are consequent parameters
which will be obtained by training phase of neutrosophic neural network usng
genetic algorithm.

10



Truth-membership Function

A
middle
1.0 low high
>
0 2 4 6 8 10 X, Y, Z
Indeterminacy-membership Function
A
low middle high
0.4
|-
>
0 2 4 6 8 10 XY, Z
Falsity-membership Function
A
1.0
low high
middle
>
0 2 4 6 8 10 XY,z

Fig. 3. Membership functions of inputs

3.4 Design of deneutrosophication

Suppose, for certain inputs x, y and z, there are m fired neutrosophic rules.
To calculate the firing strength of jth rule, we use the formula:

Wi = Wi * Wi« W, (1)

where
Wi = (0.5xt,(z) +0.35 % (1 — fz(z)) + 0.025 * i, (z) + 0.05),
Wi = (0.5 xty,(y) +0.35 x (1 — f,(y)) + 0.025 % i,y (y) + 0.05),
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W7 = (0.5xt,(2) +0.35 % (1 — f,(2)) + 0.025 * 4,(z) + 0.05),
where tg, f2, %z, ty, fy, y, L2 f2, 0z, are the truth-membership, falsity-membership,
indeterminacy-membership of neutrosophic inputs z, y, z, respectively.

So the crisp output is:

OZZWj*(aj,l*$+%',2*Z/+aj,3*2+aj,4)/(ZIWj) (2)
]:

7j=1
3.5 Genetic algorithms

GA is a model of machine learning which derives its behavior form a metaphor
of the processes of evolution in nature. This is done by creation within a
machine of a population of individuals represented by chromosomes. Here we
use real-coded scheme. Given the range of parameters (coefficients of linear
equations in TSK model), the system uses the derivate-free random search-GA
to learn to find the near optimal solution by the fitness function through the
training data.

(1) Chromosome: The genes of each chromosome are 108 real numbers (there
are 108 parameters in the fuzzy fule base) which are initially generated
randomly in the given range. So each chromosome is a vector of 108 real
numbers.

(2) Fitness function: The fitness function is defined as

(3) Elitism: The tournament selection is used in the elitism process.

(4) Crossover: The system will randomly select two parents among the pop-
ulation, then randomly select the number of cross points, and simply
exchange the corresponding genes among these two parents to generate
a new generation.

(5) Mutation: For each individual in the population, the system will ran-
domly select genes in the chromosome and replace them with randomly
generated real numbers in the given range.

3.6 Simulations

There are two phases for applying a fuzzy neural network: training and pre-
dicting. In the training phase, we use 150 data entries as training data set.
Each entry consists of three inputs and one expected output. We tune the
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Table 3
Prediction Result of Neutrosophic Neural Network

Input x | Input y | Input z | Desired output | Real output o
1 0 1 0 0.51
1 5 1 1.71
1 4 7 2 2.59
3 2 9 3 3.52
3 6 7 4 3.81
3 10 7 5 4.92
9 8 9 6 5.43
7 10 7 7 5.90
7 10 9 8 6.45
9 10 9 9 7.36

performance of the system by adjusting the size of population, the number of
generation and probability of crossover and mutation. Table 1 gives the part
of prediction results with serveral parameters for output o.

In Table 1, No. of generation = 10000, No. of population = 100, probability of
crossover = 0.7, probability of mutation = 0.3. The maximum error of predic-
tion result is 1.64. The total prediction error for 150 entries is 19functions and
choosing reasonable training data set which is based on specific application
domain can reduce the prediction error a lot. Here the example is just for
illustration.

4 Conclusion and future work

In this paper, we discuss the design of Intelligent Inference Engine of exten-
sible neutrosophic logic based SWS agent. The neutrosophic logic based SWS
agent supports both the keyword based discovery and capability based discov-
ery of the Semantic Web services. The primary motivation of our work is to
solve two challenges facing current Web services advertising and discoverying
techniques. One is how to locate the Registry hosting required Web service de-
scription; another is how to find the required Web service with highest QoS in
the located Registry. The neutrosophic logic based SWS agent solves these two
problems efficiently and effectively. The neutrosophic logic based SWS agent
is built upon the Semantic Web, Web services and neutrosophic logic. The
neutrosophic logic based SWS agent could be used in WWW, P2P and Grid
infrastructure. The neutrosophic logic based SWS agent is flexible and extensi-

13



ble. In the future, we plan to extend the architecture of the neutrosophic logic
based SWS agent to compute the whole QoS workflow of Semantic Web ser-
vices to facilitate the composition and monitoring of complex Semantic Web
services and apply it to Semantic Web-based bioinformatics applications.
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