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Lithofacies Classification from Well Log Data using
Neural Networks, Interval Neutrosophic Sets and
Quantification of Uncertainty
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Abstract— This paper proposes a novel approach to the question
of lithofacies classification based on an assessment of the uncertainty
in the classification results. The proposed approach has multiple
neural networks (NN), and interval neutrosophic sets (INS) are used
to classify the input well log data into outputs of multiple classes
of lithofacies. A pair of n-class neura networks are used to predict
n-degree of truth memberships and n-degree of false memberships.
Indeterminacy memberships or uncertainties in the predictions are
estimated using a multidimensional interpolation method. These three
memberships form the INS used to support the confidence in results
of multiclass classification. Based on the experimental data, our
approach improves the classification performance as compared to an
existing technique applied only to the truth membership. In addition,
our approach has the capability to provide a measure of uncertainty
in the problem of multiclass classification.

Keywords—Moulticlass classification, feed-forward backpropaga-
tion neural network, interval neutrosophic sets, uncertainty.

I. INTRODUCTION

ITH the ever increasing demands and escalating oil

prices, exploration for fossil fuel is an ongoing ac-
tivity running at a feverish pace. One of the key issues in
reservoir evaluation using well log data is the prediction of
petrophysical properties such as porosity and permeability. Of
al petrophysical properties, permeability is one of the more
important properties in reservoir engineering. Over the life of
the reservoir, many crucial decisions depend on the ability to
accurately estimate the formation permeability. Permeability is
widely used to determine the well production rate of the hydro-
carbon, such as qil or gas. There are many techniques available
in petroleum engineering to better estimate the permesability.
One of the successful methods is to pre-identify the flow units
before estimating the permeability under each flow unit. Thus,
the job of identifying lithofacies is a very crucia stage. This
is to determine how to characterize the well into different
flow units before estimating the permeability. Lithofacies such
as sandstone, mudstone etc will affect the nature of the
permeability, and thus directly related to the estimation of per-
mesbility. Beside the well log data, lithofacies are determined
by expert geologist who has examined the actual rock samples
known as “core data’. The expert geologist will normally put
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the core data into different classes. Although the core data is
the most accurate way to separate the well into different flow
unit, but core data are very expensive and difficult to obtain,
Normally, the geologist will establish an interpretation model
based on the available core and well log data, and use the
established model to characterize those depths or wells around
the region which are uncored. Thus, this is normally treated
conventionally as a classification problem. However, due to the
many environmental issues and measurement difficulties, this
isnormally avery complex task which has many uncertainties.

Normally, data collected from real world phenomena always
contain imperfection. There are different aspects of imper-
fection defined by different researchers. Smets [1] considered
imperfection in three aspects. imprecision, inconsistency, and
uncertainty. He suggested that imprecision occurs if several
worlds are compatible with the available information whereas
inconsistency happens when there is no world agreeable to
the information. Examples of imprecision are vagueness, am-
biguity, incompletion, error, and inaccuracy whereas examples
of inconsistency are confliction, incoherence, and confusion.
Uncertainty occurs when there is a lack of information about
the world for deciding if the statement is true or false.
These three aspects are related to one another. For instance,
imprecision in the data is a major cause of uncertainty [1].

In geographic environment, Duckham [2] suggested that
uncertainty arises because geographic information is always
imperfect. He proposed three types of imperfection, which
are imprecision, inaccuracy and vagueness. |mprecision occurs
when data is incomplete or lack of detail. Inaccuracy happens
when errors exist in the observation. Vagueness deals with the
concept of boundaries which cannot be defined precisely.

Fisher [3] separated uncertainty into three types. error,
vagueness, and ambiguity. Error can result from severa
sources such as measurement, data entry, or processing. It can
also occur from the lack of knowledge about data or lack of
ability in measurement. Vagueness refers to the indeterminate
boundary. Ambiguity occurs when the decision deals with
doubt.

Imperfection can be categorized into various taxonomies
according to different views of researchers. From these tax-
onomies, the causes of uncertainty are revealed in various
aspects. In this paper, we deal with lithofacies classification
from well log data collected from real and practical data in
the oil and gas industry. Hence, the data set always contain
imperfection. In the past, there are several techniques applied
to reservoir evaluation from well log data [4], [5], [6], [7].
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However, there are little researches focus on uncertainty for
reservoir evaluation. In this experiment, two causes of uncer-
tainty are explored. Error and vagueness are quantified in order
to enhance the classification of well log data into multiple
classes of lithofacies. We apply multiclass neural networks [8]
and interval neutrosophic sets [9] for the classification.

In general, there are two approaches used for multiclass
neural network classification. First, multiple binary neural
networks are trained, and outputs obtained from these net-
works are classified into multiple classes. The flexibility of
this approach is that individual network can be modeled
with different architectures which is suitable for different
classes. However, each neural network is trained based on
loca knowledge which may produce overlaps or gaps in
the classification boundary zone [8]. The second approach
is the use of a single neural network with multiple outputs.
The network architecture used for this approach is usualy
more complex than those used in the first approach, but the
classification boundaries are sharp [8]. We apply the second
approach in is paper.

There are various techniques used to generate codewords
for a single neural network with multiple outputs [10], [11],
[12]. The codeword designed for each class is a binary string
of length n. One of the models using a simple codeword is
One-Against-All neural networks (OAA). In this technique,
the length of the codeword is equal to the number of classes.
The k-th bit in the codeword of the k-th classis equal to 1, and
the rest is equal to 0. In the testing phase, a sample is assigned
to the k-th class if the k-th bit in the predicted binary string
has the highest confidence value. We apply OAA technique in
this experiment.

Extending the work from our previous papers [13], [14], we
have applied interval neutrosophic sets to represent uncertainty
in the binary classification and they are also applied in this
paper. The membership of an element to the interval neutro-
sophic set is expressed by three values: truth membership,
indeterminacy membership, and false membership. The three
memberships can be any real sub-unitary subsets and can
represent imprecise, incomplete, inconsistent, and uncertain
information [15]. For example, let A be an interval neutro-
sophic set, then (80, {25, 35}, 15) belongs to A means that
z isin A to a degree of 80%, x is uncertain to a degree of
25% or 35%, and z is not in A to a degree of 15%. This
paper follows the definition of interval neutrosophic sets that
is defined in [9]. Let X be a space of points (objects). An
interval neutrosophic set in X is defined as:

A={x(Ts(x),1a(z), Fa(z))|lz € X A
Ta:X —[0,1] A @
Ip: X — 0,1 A
Fa: X —[0,1]}

where
T4 is the truth membership function,
14 is the indeterminacy membership function,
F4 is the false membership function.

In this experiment, two multiclass neural networks with
multiple outputs are trained with the same input feature vectors
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Fig. 1 The proposed multiclass neural network model
based on interval neutrosophic sets

but disagree in the target outputs. The first network predicts the
degrees of truth membership and the second network predicts
the degrees of false membership. The false membership is
assumed to be the complement of the truth membership.
However, both predicted memberships may not be one hundred
percent complement to each other. Vagueness may occur in
the boundary between these two memberships. Furthermore,
errors in the prediction are also quantified in this experiment.
A multidimensiona interpolation method is used to estimate
these errors. This paper represents error in the form of inde-
terminacy membership. Together the truth, indeterminacy, and
false memberships form an interval neutrosophic set. The three
memberships are used to classify well log data into multiple
lithofacies. In addition, vagueness and error are combined to
support the confidence in the classification as well.

The rest of this paper is organized as follows. Section 1l
explains the proposed method for multiclass classification
using neural networks, interval neutrosophic sets, and a mul-
tidimensional interpolation. Section |1l describes the data set
and results of our experiment. Conclusions and future work
are presented in Section 1V.

1. ASSESSMENT OF UNCERTAINTY USING MULTICLASS
NEURAL NETWORKS AND INTERVAL NEUTROSOPHIC SETS

In this paper, interval neutrosophic sets and neural networks
with multiple outputs are used for multiclass classification. In
addition, a multidimensional interpolation technique is used to
quantify errors in the classification as well. Fig.1 shows our
proposed model. Truth Multiclass NN and Falsity Multiclass
NN are feed-forward backpropagation neural networks with
multiple outputs. Both networks have the same architectures
and properties. The only difference is that the truth network
is trained to predict degrees of truth membership, but falsity
network istrained to predict degrees of false membership using
the complement of target codewords used in the truth network.
Both networks apply one-against-all technique in which the
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length of the codeword is equal to the number of classes. If
the codeword used to train the truth network for the k-th class
has a bit at the position k-th equal to 1, and the rest is equal
to 0 then the codeword used to train the falsity network for
the k-th class at the k-th bit is equal to 0 and the rest is equal
to 1.

In the testing phase, our proposed networks predict n-
pairs of truth and false membership values for each input
pattern of n-class data set. Errors occurred in the prediction
of each pair of truth and false memberships are also estimated
and represented as indeterminacy memberships. In order to
estimate errors in the prediction of truth memberships, errors
obtained from the truth network during training are plotted
in the multidimensional feature space of the training input
patterns. After that, a multidimensional interpolation technique
is applied to estimate errors of the unknown input patterns.
Estimated errors in the prediction of false memberships are
also calculated in the same way as the estimated errors for the
truth memberships.

Therefore, the result obtained from each pair of truth and
false memberships contains a triplet (¢, {e?,e/}, f) where
t is the truth membership, {et,e/} is the indeterminacy
membership containing estimated errors for truth and false
memberships, and f is the false membership. Furthermore,
vagueness occurred in the boundary between truth and false
memberships is also quantified in order to support confidence
in the classification. In this paper, vagueness is calculated as
the difference between truth and false membership values. If
the difference between these two values is high then the degree
of vagueness is low. If the difference is low then the degree
of vagueness is high. Hence, vagueness for each output can
be computed as 1 — |t — f|.

Let A; beaninterval neutrosophic set of the j-th output. A;
can be defined as A; = {x(Ta, (), 14;(x), Fa,(x))} where
Ty, is the truth membership function of the j-th output, I,
is the indeterminacy membership function of the j-th output,
and Fy; is the false membership function of the j-th output.
Let ef(x;) be an estimated error in the prediction of the truth
membership at cell z; of the j-th output. Let e/ (z;) be an
estimated error in the prediction of the false membership at
cell x; of the j-th output. Both estimated errors constitute the
indeterminacy membership.

The weights for the truth and false memberships are calcu-
lated as the complement of errors estimated for the truth and
false membership, respectively. These weights are considered
as the degrees of certainty in the prediction. In this paper,
the certainty in the prediction of the false membership is
considered to be equal to the certainty in the prediction of the
non-false membership, which is the complement of the false
membership value. Let w(z;) and w/ (x;) be the weights of
the truth and false membership values at cell z; of the j-th
output. The result O;(x;) of the dynamic combination among
the truth, indeterminacy, and false memberships at cell x; of
the j-th output can be calculated using equations below.

Oj(w) = (wh(xs) x T, (1)) + (w] (w:) x (1= Fa, (z:))) (2)

Wt () = Lo (@) 3
= W e ) + (1 — el (1)

S
w!(z;) = Lo () ()

(1= e (@) + (1= €] (7))

For each input pattern of n-class data set, each result
O;(x;),j =1,2,...,n obtained from the dynamic combination
a cell x; is used to create each bit in a binary string. If the k-
th output has the highest result then the k-th bit in the binary
string is set to a value 1, and the rest is set to a value 0.
The input pattern is assigned to the k-th class if the binary
string has the k-th bit equal to 1. In this paper, the average
of al errors and vagueness obtained from the prediction of all
multiple outputs for each input pattern at cell x; is used to
support the confidence in the multiclass classification as well.

I1l. EXPERIMENTS
A. Data Set

The data set used in this study is taken from areal reservoir.
There are four wells available in this reservoir. The actua
well locations lie approximately on a straight line with the
following order: Well 3, Well 1, Well 2 and Well 4. The
well logs used in this experiment are gamma ray (GR), deep
resistivity (RDEV), shallow resistivity (RMEV), flushed zone
resistivity (RXO), bulk density (RHOB), neutron porosity
(NPHI), photoelectric factor (PEF), and sonic travel time (DT).
These congtitute the eight inputs to the neura networks. There
are eleven lithofacies available in this reservoir and they form
the outputs. The log data are recorded from different wells at
various depths. All variables are normalized within the range
of [0,1]. In order to classify well log data into the eleven
output classes, data obtained from all four wells are used
in this experiment. For blind testing purpose and testing the
applicability of our approach in “cross-well” prediction, we
use 269 data obtained from wells 1, 3, and 4 for training and
105 data from well 2 are used for testing.

B. Experimental Methodology and Results

In this experiment, two feed-forward backpropagation neu-
ral networks with multiple outputs are trained using one-
against-all technique in order to predict degrees of truth mem-
berships and degrees of fase memberships. Both networks
contain eight input nodes, eleven output nodes, and one hidden
layer constituting of sixteen neurons. The same parameter
values are applied to the two networks and both networks are
initialized with the same random weights. The only difference
is that the target codewords for the falsity network are equal
to the complement of the target codewords used to train the
truth network.

After eleven pairs of truth and false membership values are
predicted for each unknown well log input pattern, vague-
ness and errors are estimated for each pair. Vagueness can
be computed using the difference between truth and false
membership values: 1 — |t — f]|. In order to estimate errors
in the prediction of truth membership, errors obtained from
training the truth network are plotted in the well log input
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Fig. 2 Classification accuracy for the test data set obtained by applying
the existing model using only the truth memberships and the proposed
model using the three memberships

feature space. After that, a multidimensional interpolation is
used to estimate error for the unknown or test input pattern.
Error estimation in the prediction of false membershipsis also
calculated using the same technique as the error estimation for
the truth memberships.

After errors for truth and false memberships are estimated,
indeterminacy memberships are formed. The three member-
ships for each output are then combined using equation 2.
The result obtained from the combination for each output is
used to create each bit in a binary string. The bit in a binary
string is set to a value 1 if the output correspond to this bit
has the highest result while the remaining bits are set to 0.
The well log input pattern is assigned to the k-th class if the
binary string has the k-th bit equal to 1. In order to support the
confidence in the classification, uncertainty in the classification
for each input pattern is determined. In this experiment, we
found that applying both causes of uncertainty gives a better
uncertainty indication than using only one cause of uncertainty.
Consequently, we apply the average of vagueness and errors
obtained from eleven pairs of outputs to determine the level of
uncertainty in multiclass classification for each input pattern.

Twenty pairs of feed-forward backpropagation neural net-
works with multiple outputs are trained with twenty different
randomized training sets. Fig. 2 shows classification accuracy
for the test data set obtained from twenty pairs of networks.
In this paper, we do not consider the optimization of the
prediction. Instead our purpose is to test a new approach that
provides an estimate of the uncertainty of the classification.
The results obtained from our proposed model are compared
to the results obtained from the existing one-against-all (OAA)
neural network model that applies to only the truth member-
ships for the multiclass classification. This figure shows that
eighteen results produced from our technique outperform the
results produced from the existing technique. The maximum
of the total correct cell obtained from our approach is 79.05
whereas the maximum of the total correct cell obtained from
the existing technique is 68.57. Moreover, the average of the

TABLE |
SAMPLE OUTPUTS FROM THE TRADITIONAL CLASSIFICATIONS BASED ON
TRUTH MEMBERSHIP VALUES (T) COMPARING TO THE OUTPUTS AND
THEIR UNCERTAINTIES FROM OUR PROPOSED MODEL (TIF) FOR THE TEST
SET OF WELL LOG DATA

Actua  Predicted Predicted Uncertainty = Uncertainty

class class class vaue level
M (TR (TIF) (TIF)

5 2 2 0.1809 High
2 10 8 0.1518 High

8 8 3 0.1344 High
4 8 2 0.1259 High
5 4 5 0.1139 Med
4 2 4 0.0808 Med

1 10 1 0.0749 Med

2 3 2 0.0626 Low

6 6 6 0.0299 Low

2 2 2 0.0156 Low

total correct cell obtained from our technique is 62.33 whereas
the average of the total correct cell obtained from the existing
technique is 55.52.

Furthermore, our approach has an ability to represent un-
certainty in multiclass classification. The results obtained from
model 11 (Fig. 2) are shown in Table . Thistable shows 10 out
of 105 samples of individual predicted output resulted from the
traditional approach comparing to individual predicted output
and their uncertainties resulted from our proposed model for
the test set of well log data. Uncertainty attached to each
predicted output can be used to support the confidence in
the multiclass classification. The highest uncertainty value
obtained from this experiment is 0.1809, the lowest uncertainty
value is 0.0156, and the average of these uncertainties is
0.0874. We categorized uncertainty values obtained from this
experiment into nine groups. These groups are separated into
three levels: High, Med, and Low. Table Il shows levels of
uncertainty together with the total number of correct and in-
correct outputs. We found that eight of the top ten samples that
have high uncertainty values are incorrectly classified. This
result shows that uncertainty value computed from vagueness
and error can be used to enhance the decision making for
the multiclass classification. For example, the actual class of
the output in the first row of table | is 5, but the predicted
outputs obtained from our proposed model and the traditional
model are classified as 2, which are wrong. The traditional
model cannot explain anything about uncertainty occurred in
the classification. However, our proposed model can represent
uncertainty in this classification with a value 0.1809, which is
High. Hence, the decision makers can classify the unknown
patterns by using uncertainty value to support their confidence
in the classification.

From the results obtained from model 11, we aso found
that all incorrect outputs are in the transition zone between
two classes. From the previous paragraph, we aso know that
most outputs that have high uncertainty level are misclassified.
Hence, misclassified outputs with high uncertainty level are
in the transition zone. The decision makers can apply these
knowledge to improve the lithofacies classification. First, all
predicted outputs are ordered by depth. Second, each output
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TABLE 1l
TOTAL NUMBER OF CORRECT AND INCORRECT OUTPUTS PREDICTED
FROM THE PROPOSED MODEL FOR THE TEST SET OF WELL LOG DATA

Uncertainty Total number of  Total number of  Uncertainty

value correct cell incorrect cell level
0.1625 - 0.1809 0 1 High
0.1442 - 0.1624 1 1 High
0.1258 - 0.1441 1 6 High
0.1074 - 0.1257 15 5 Med
0.0890 - 0.1073 15 3 Med
0.0707 - 0.0889 21 4 Med
0.0523 - 0.0706 16 2 Low
0.0339 - 0.0522 8 0 Low
0.0156 - 0.0338 6 0 Low

TABLE 1l

SAMPLES OF UPDATED OUTPUTS FROM OUR PROPOSED MODEL FOR THE
TEST SET OF WELL LOG DATA

Actual  Predicted Uncertainty Uncertainty predicted
Depth class class value level class

(update)
0.6359 4 4v 0.0970 Low 4
0.6388 2 4 x 0.1089 Med 4 x
0.6403 4 4v 0.0808 Low 4v
0.6519 4 2 x 0.1260 High 4 v
0.6533 10 8 X 0.1368 High 8 x
0.6577 8 8 v 0.0585 Low 8 v
0.6606 4 8 x 0.1335 High 8 x
0.6621 2 8 X 0.1518 High 2V
0.6664 1 2 x 0.1086 Med 2 x
0.6737 2 2V 0.0626 Low 2V
0.7260 2 2V 0.0718 Low 2v
0.7304 2 2V 0.0863 Low 2v

that has high uncertainty level isrevisited. For each output with
high uncertainty level, uncertainties belonging to its neighbour
outputs are compared. The neighbour with alower uncertainty
value is considered. Fina, the output is reclassified to the
same category as the one belonging to the neighbour that
has a lowest uncertainty value. Table Il shows 12 out of
105 samples of individual predicted output ordered by depth.
For example, the output in the fourth row of this table was
classified into class 2, and its uncertainty level is high. Hence,
this output have to be revisited again. The uncertainty values
of its neighbours are compared. We found that the upper
neighbour has alower uncertainty value. Therefore, this output
is reclassified from class 2 into class 4. From this experiment,
we found that the maximum of the total correct cell obtained
from our approach is increased from 79.05 to 80.

IV. CONCLUSION AND FUTURE WORKS

This paper represents a novel approach for lithofacies clas-
sification from well log data. Interval neutrosophic sets and
multiclass neural networks are integrated in order to express
uncertainty in the classification. The truth and false member-
ships are predicted using two one-against-all neural networks
whereas the indeterminacy memberships are estimated from
errors occurred in the predictions using a multidimensional
interpolation method. In addition, vagueness occurred in the
classification is also computed. We found that assessment of
two causes of uncertainty which are error and vagueness can
be used to support confidence in multiclass classification. The

experimental results indicate that our proposed model im-
proves the classification performance compared to atraditional
approach applying only single one-against-all neural network
applied only to the truth membership values. In the future,
we will extend our model to incorporate ensemble neural
networks.
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