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Introduction

Algebraic Geometry is one of the branches of algebra that deals with the study of geometric
shapes through familiar algebraic concepts and theories [1]. There were several approaches
to geometry, all of which are usually classified as algebraic geometry, at the end of the
nineteenth century. Lazare Carnot (1753-1823) attributed to algebraic geometry which is
about algebraic curves and their intersection with the sides of a triangle [2], but this concept

developed a lot in the second half of the nineteenth century.

Neutrosophy is a new branch of philosophy concerns with the indeterminacy in all areas of
life and science. It has become a useful tool in generalizing many classical systems such as

equations [30], number theory [3], and linear spaces [4,5], and ring of matrices [19-31].
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Recently, Abobala, and Hatip have presented the concept of one-dimensional AH-isometry
to study the correspondence between neutrosophic plane R(I) and the classical module

RXR .

In this work, we use the one-dimensional AH-isometry to turn the general case of algebraic
curves in real ring R(I) with one variable into two classical algebraic curves so we will go
from R(I) spaceinto R X R space, we study the properties of our algebraic curves then we

go back to R(I) space using AH-isometry.
Neutrosophic Functions on R(I).

Definition:

Let R(I)={a+bl;a,b€R} where [?=1 be the neutrosophic field of reals. The
one-dimensional isometry (AH-Isometry) is defined as follows: [49]
T:R(I) > R xR
T(a+bl) = (a,a+b)

Definition:

Let f:R(I) > R(U);f =f(X) and X =x +yl € R(I) the f is called a neutrosophic real
function with one neutrosophic variable.
Example:
Take f:R(I) > R(I);f(X) =X2+IX+ 2] = (x +yD?+1(x +yI) + 2I
=x2+1(y*+2xy+x+y+2)
Theorem:
Let f:R(I) » R(I) be a neutrosophic real function with one variable, X = x + yI € R(I)
then f can be turned into two classical real functions.
Computing Powers in R(I).
To compute such equation: (a + bI)°*% ;a,b,c,d € R we need the one-dimensional
isometry again:
T[(a+ bD ] = (a,a + b)&+D = (a, (a + b)+?),
Which means
(a+bD*Y =T71(ac (a + b)°+?),

=a+I[(a+ b)+4 — a‘].
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Theorem:
Let R(I) be the neutrosophic field of reals, we have:
1. sin(a + bl) = sina + I[sin(a + b) — sina |
2. cos(a+ bl) = cosa + I[cos(a + b) — cosa]
3. eXtly =¥ 4 [(eXtY —e¥)
Algebraic Curves In Neutrosophic Real Ring R(I):

Definition: Neutrosophic Strophoide.

Let Y = Y1 +y21,X = X1 + xZI,A =aq + azl € R(I), ag,az, xq,X2,yY1,y2 € R, then we

define a neutroophic strophoide as follows:

” , A+ X

This equation can be written as follows:

(a1 +a21) + (x1 +x21)
D?* = 2. ; 1>0
(1 +y2D" = (x1 + x21) (@, + agD) — (x, + %,1) a; +a;

Theorem :

Let Y = V1 +y2],X = X1 + XZI,A = aq + a21 € R(I), then if A= aq + azl is invertible, the

(ag+azD)+(xq+x,1)
“(ai+ayD)—(xq+x51)

neutrosophic strophoide (y; + y,1)? = (x; + x,1)? is equivalent to the

direct product of two classical strophoide.

(a1+ax)+(x1+x31)
“(ag+axD)—(x1+x51)

Proof. Consider the equation (y; + y,1)* = (x; + x,1)?

Now, we have:

(ag +x1) + (az + x)I
(ay — xq1) + (az — x)I

y12 + (2% + 271921 = [x1% + (%% + 2x01x,)1]

y1% + (2% + 2y1y,)1

(a; +xq1)

(a; — x1)

(a1 —x1)(az + x3) — (ag + x1)(az — x3)
(a1 —x)[(ag + az) — (x1 + x3)]

= [x,2 + (2 + 2x12)1].

Safwan Owera, Malath F Alaswad, A Study of Algebraic Curves in Neutrosophic Real Ring R(l) by Using the
One-Dimensional Geometric AH-Isometry



212

by computing its direct image with AH-isometry, we get:

Ti® + (v2° + 2y1y2)1)

(a; +x1)

(a1 —x1)

+ (aq —x1)(az + x3) — (ag +x1)(az — xz) )
(ay —x)[(ag + az) — (x1 + x3)]

=T(x 2+ (x% + 2x1x2)I)T<

012 y12 + ¥22 + 2y1y2)
(a; +x1) (a3 +x1)
(a; —x1)" (a3 — x1)
(a; —x1)(az +x) — (ag + x1)(a; — xz))

(a;s —x)[(a; + az) — (x1 + x3)]

= (xlz,xlz + sz + lexZ).<

Then.

(1% On +¥2)) = (112, (%1 + %))

<(a1 +x1) (a; +x[(a; + az) — (x1 +x2)] + (a1 — x1)(az + x3) — (a; + x1)(ay — xz))
\(a; —xp)’ (a1 —x)[(ag +az) — (x1 +x3)]

1% n +¥2)%)

= (xlzl (xl
)2) ((‘11 +x1) (a; +x)[(a; +az) — (g +x3) — (az — x5)] + (a; —x1)(az + xz))
227\ —xp)’ (a1 — x)[(ag + az) — (¢ + x3)]

1% 1 +¥2)3) = (012, (xg + x2)).

(a; +x1) (ap + x1)[(a1 —x)] + (a; — x;)(ay + xz))
(ag —x1)’ —x)[(a; + az) — (x4 + x3)]

1+x1)  (ag —x)(ag + % +az +x3) >
—x1) " (a; + x)[(ag + az) — (x4 + x7)]

1% On +¥2)?) = (1%, (%1 + %)) (
(1% On +¥2)2) = (1%, (x1 + x3)2). (

(ay +x1) (ag+az) + (x + xz))
(a1 —x1) (a1 + az) — (x1 +x7)

(ay +az) + (xg + xz))
(ay +az) — (x1 + x3)

(a1 +x1)
(a1 —x1)

1% n +y2)3) = <x12 , (1 + x3)?

So that we have:
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o +xq)
! (a; —x1)’
(ag + az) + (xq + x3)
(ag +az) — (xq1 + x3)

r1:y12:x a1>0

L (y1 +¥2)% = (1 + x3)? ;(ag +az) >0

Remark :

If a; + a,! isinvertible, we can write the equation of neutrosophic strophoide as follows:

(a1+axD)+(xq+x51)
“(ai+ayD)—(xq+x1)"

1 +52D% = (%1 + x31)?
Now, we should discuss the cases of non-invertible of a; + a,I.
a; + a,I is not invertible, then we have cases:

1- a; =0, a; + a; # 0, this means that the neutrosophic strophoide will be equivalent

to direct product of classical strophoide (y; + y,)? = (x; +

y1=1x

x )2 (ag+az)+(x1+x;)
2 y1=—ixg

TRTRECRTRY (a; + ay) > 0 with classical image two line {

2- a; #0, a; + a, = 0, this implies that the neutrosophic strophoide will be

2 (ag+xq)

equivalent to direct product of classical strophoide y;% = x, @) > 0 with
141

y1=1(x1+x3)

classical image two line { : .
& v =—i(x; +x3)

3- If a; =0, a; + a, = 0, this implies that the neutrosophic strophoide will be

. . oo . =ix . .
equivalent to direct product of classical image two line {yy 17 "™ with classical

1= 71X

y1=1(x +x3)

image two line { , .
& y1=—i(x; +x3)

Theorem:

Let I';,I', are two classical strophoide, then the direct product of I'j, T, is equivalent to
the neutrosophic strophoide T.
Proof.

Let I';,I', are two classical strophoide, where:

(a; +x1)

Fllylz = Xlz.m;al >0
(az +x;)

Fz:yzz = xzz_m;az >0
2 2

Now, we take the inverse image of the AH-isometry, we have:
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(a; — x1) " (az — x3)

a; +x1) (a; +x
T (3% y22) = T (x5, x,%). TE <( - L 2)>

Y12+ 2% =y = [ + (x® — %21 (@ + ;) + <(a2 ta) (et x1)> 1]

(ag — x1) (az —x3) (a; —xq)

Y12+ (2® =121

(ag +x1)

(a1 —x1)

+ ((az + x2)(a; —x1) — (az —x3)(a; + x1)) 1]

(a; —x1)(az — x3)

= [x1% + (x% = %211,

Y12 + (722 — 1)1 = [x,2 + (32 — x,2)1]. (a3 +x1) n ((az +x) (ag+ X1)) I]

(a1 —x1) (az —x3) B (a; —x1)

y12+ 22 = dI

(ag +x1)

(a1 —x1)

+ <(a2 +x3)  (ag +xq) + (a1 +x1) (a; + x1)>1]

(az—x) (a—x1) (a—x3) (az—x3)

= [x32 + (% — %D

12+ (% = I
(a; +x1)

(a1 —x1)

(a; +x3)  (a; +xp) (a; +x1)  (a; +x)
* <{(a2 — X3) B (a; — xz)} * {_ (a; —x1) * (a; — xz)}) 1]

= [x1% + (2% — ;. DI].

12+ 2% =y A1

_ (a1 +x1)
= [x% + (% — 0 DI]. @ —x)
{(az +x;) — (a1 +x1)  (ag +x)(az; —x2) — (a; + x1)(ag — xl)} ]
+ = I
(az — x3) (a1 —x1)(az — x3)
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12+ (2 =y A1

(ag +x1)

(a; —x1)

(a1 —x)[(az +x2) — (ag + x)] = (ag +x1)(az — x3) — (a3 + x1)(a; — x1) 1]
(aq —x1)(az — x3)

= [x% + (x% = %21,

+

y12+ 2% =311 = [x2 + (62 — xDI].

(a; +x1) (a3 —x[(az +x3) — (a; + x1)] — (a; + x1)[(az — x2) — (a; — x1)] | (a; +x1)
+ 1
(a; —x1) (a; —x1)(az — x3) (a; — x1)
(a; —x)[(az +x3) — (a; + x)] — (a; + x1)[(az — x3) — (a3 — x4)]
4 I
(a; —x1)(az — x3)
_(ag +x9) + [(az + x3) — (ag + x1)]]

(ag —xq) + [(az — x2) — (a3 — x;)]I

(ay + x1) + [(az + x3) — (ag + %)
(ay — x1) + [(az — x3) — (ag — x1)
a; + (a; — a))l + [xg + (xp — x1)1
a; + (az — a))l =[xy + (xp — x1)I

y12 + 2% =3 = [x2 + (62 — D]

i

I

Welet X = x; + (x; —x)L,Y =y; + (y; —y1)I,A = a; + (a; — a,), then we can prove that:

y12+ 2% =) = [x2 + (62 — D]

[N RS R R——Y i —

Y2 =92+ (3° —y1LX? = 2% + (% — x,%)
Then the equation (*) can be written as follows:

) , A+ X
I:Y =Xm ;A>0

This equation is a neutrosophic strophoide T'.

Example:

Let the equation by a neutrosophic strophoide:

(4 -2 + (x1 + x,1)
(4 -2 — (x1 + x,1)

T: (y1 + 202 = (%1 + x,1)?

Then, its equation be equivalent to direct product of two classical strophoide:

4+x1)

Ty =x,? (4—x
1

2+x1)

| P + 2= + 2(
22 (1 +2) (x1 + x2) 2—x,
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Example:

Let I';,I', are two classical strophoide, where:

2 %+x1
Lty =%\ 1
2 M
2+ x,
Ty y,% = x5° (2 —Xz)

Then by theorem 6.4 we have.

.Definition: Neutrosophic Cycloide.

Let Y=y1 +yZI,X=x1+x21,R=r1+r21,t=t1+t216

R(I), 11,13, t4,t3,X1,X2,¥1,¥2 € R, then we define a neutroophic Cycloide as follows:
X =R(1 -sint) ,Y = R(1 — cost)

This equation can be written as follows:

X1 + .X'ZI = (Tl + Tzl)(l — Sin(t1 + tzl)) Y1 + yzl = (Tl + 1"21)(1 — COS(tl + tzl))
Theorem:
Let Y=y +y:LX=x1+xLR=r+nr],t=t;+t,] €eR(I) , then if r +nrl is
invertible, the neutrosophic Cycloide X = R(1 — sint) ,Y = R(1 — cost) is equivalent to
the direct product of two classical Cycloide.

Proof. Consider the equation X = R(1 — sint) ,Y = R(1 — cost)

Now, we have:

X1 +x,0 = (1 +130) (1 — sin(ty) — I(sin(t; + t,) — sin(tl)))

V1 + Yol = (ry + 1) (1 —cos(ty) — I(cos(t1 +t,) — cos(tl)))

by computing its direct image with AH-isometry, we get:

T(xy +x,1) =T(ry + r,1).T(1 — sin(ty) — I[sin(t; + t,) — sin(ty)])
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(x1,x1 +x3) = (1,1 +13). (1 —sin(ty), 1 —sin(t; + tz))

(e, x1 +x3) = (r1(1 — sin(tl)), (ry + rz)(l —sin(t; + tz)))

Then.

{ X, = rl(l - sin(tl))
X1+ x, =0 + rz)(l —sin(t; + tz))

By a similar, we have.

{ Yy = r1(1 - cos(tl))
yi+y2 = (1 +12)(1 = cos(ty +t3))

So that we have:

{ I:xg =14(1—sin(ty)),y1 = r1(1— cos(ty))
Lixg + x5 = (1 + 12)(1 = sin(ty + t3)) ,¥1 + y2 = (r1 + 1) (1 — cos(ty + t5))
Remark:
If r, + r,1 is invertible, we can write the equation of neutrosophic cycloide as follows:
X =R(1 —sint) ,Y = R(1 — cost).
Now, we should discuss the cases of non-invertible of r; + r,1.
The r; + r,1 is not invertible, then we have two cases:
1- =0, 1y + 1, # 0, this means that the neutrosophic cycloide will be equivalent to
direct product of classical cycloide x; +x; = (r; + 12)(1 — sin(ty + ) ,y1 + ¥o =
(r + rz)(l —cos(t; + tz)) with the origin point (0,0).
2- 1 #0, r; + 1, = 0, this means that the neutrosophic cycloide will be equivalent to
direct product of classical cycloide x; = r1(1 - sin(tl)) VY1 = rl(l — cos(tl)) with
the origin point (0,0).
3- If 1 =0, r, + r, = 0, this implies that the neutrosophic cycloide will be equivalent

to the origin point (0,0).
Theorem:

Let I';,I', are two classical cycloide, then the direct product of I'y,T'; is equivalent to the

neutrosophic cycloide T

Safwan Owera, Malath F Alaswad, A Study of Algebraic Curves in Neutrosophic Real Ring R(l) by Using the
One-Dimensional Geometric AH-Isometry



218

Proof.

Let I';,I', are two classical cycloide, where:

{Fl:xl =1 (1 —sinty),y; = (1 — costy)
I'y:x, =1,(1 —sinty),y, = r,(1 — cost,)

Now, we take the inverse image of the AH-isometry, we have:

T~ (x1, %) = T4 (ry,12). T71((1 — sinty), (1 — sinty))

X1+ (g —x))I = [r; + (ry, —rI]. [1 — sint; + ((1 —sint,) — (1 — sintl))l]
X1+ (xg — x)I = [ry + (r; — I [1 — sint; + (1 — sint, — 1 + sinty)I]
X1+ (g —x))I = [ry + (ry, —rI). [1 — sinty — (sint, — sint,)I]

x1 + (xy — x)I = [y + (ry — 1IN [1 = (sint; + (sint, — sinty))]]
x1 + (g — x)I = [y + (ry — I [1 = (sinty + (sin(t, — ty + ;) — sinty))]I]

Welet X = x; + (x; —x1)LR =1y + (r; — )1, t = t; + (t; — t;)], then we can prove that:

sint = sin[t; + (t, — t))I] = sint; + (sin(t, — t; + t1) — sinty)I
Then, we have.
X = R.(1 —sint)
Now, by the same argument, we have.
Y =R.(1 — cost)
So.

I {X = R.(1 — sint)
(Y =R.(1 - cost)

This equation is a neutrosophic cycloid I
Example:

Let the equation by a neutrosophic cycloide:

{xl + x,1 = (3 —2I).[1 —sin(t; + t,1)]
y1 + ¥l = (3—2I).[1— cos(ty + t,1)]

Then, its equation be equivalent to direct product of two classical cycloide:
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{ I:xq =31 —sinty),y1 = 3(1 — costy)
lexl + Xy = 1- sin(t1 + tz) Y1+ Y2 = 1- COS(t1 + tz)

Example:

Let I'y, T, are two classical cycloide, where:
{F1:x1 = 2(1 —sint;) ,y, = 2(1 — cost,)
I',:x, =5(1 —sint,),y, = 5(1 — cost,)

{X =@2+3D(1 - sint)}
Y =2+ 31 — cost)

.Definition: Neutrosophic Cardioide.

Let p=p1+p21,0 = 01 + 0,1 € R(I), pq, p2,01, 0, € R, then we define a neutroophic

Cardoide as follows:
p=(1+ cos0)
This equation can be written as follows:

p1+ p2l = (1 + cosB,) + [cos(01 + 0;) — cosO4]1
Theorem:
Let =py +p21,0 =0, + 0,1 € R(I), then if 84 + 0,1 is invertible, the neutrosophic
Cardioide
p = (1 + cos0) is equivalent to the direct product of two classical Cardioide.
Proof. Consider the equation p = (1 + cosf)

Now, we have:

p1 + p2l = (1 + cosb,) + [cos(6, + 6;) — cosO,]]

by computing its direct image with AH-isometry, we get:
T(p, + p,I) = T((1 + cosb,) + [cos(6; + 6,) — cosb;]1)

(pl, p, + pz) = (1 + cos6,,1 + cos(6; + 92))

Then.

p, = 1+ cost,
p; +p, =1+ cos(6; +6,)
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So that we have:

{ Ii:p1 =1+ cosf4
FZ: P1 + P2 = 1+ COS(01 + 62)

Remark:

If 6; + 6,1 is invertible, we can write the equation of neutrosophic Cardioide as follows:
p = (1 + cosb).

Now, we should discuss the cases of non-invertible of 6; + 6,1.

The 6, + 0,1 is not invertible, then we have two cases:

1- 6, =0, 8, + 8, # 0, this means that the neutrosophic Cardioide will be equivalent
to direct product of classical Cardioide (pl + pz) =1+ cos(6, + 6,) with the
classical circle p, = 2.

2- 6, #0, 6; + 6, =0, this means that the neutrosophic Cardioide will be equivalent
to direct product of classical Cardioide p, =1 + cos(6;) with the classical circle
(py +p,) =2.

3- If 8, =0, 6; + 6, =0 this means that the neutrosophic Cardioide will be
equivalent to direct product of classical circle (p, + pz) = 2 with the classical circle
p, = 2.

Theorem:

Let I';,I'; are two classical Cardioide, then the direct product of I'j,I'; is equivalent to the
neutrosophic Cardioide I
Proof.

Let I';,I', are two classical Cardioide, where:

I'1:p; =1+ cosb,
[y:p, =1+ cost,
Now, we take the inverse image of the AH-isometry, we have:

T~ (pyp,) = TH(1 + cosfy, 1 + cosb,)

p, + (p2 - pl)l = [1 + cosb6; + (1 + cosf, — (1 + cos@l))l]
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p, + (p2 — pl)l = [1 + cos6; + (cosO, — cos6,)I]

p, + (p, = p )] =1+ [cos; + (cos(6; + [0, — 61]) — cos6,)]]

Welet p=p, + (p, —p,)],0 = 61 + (6, — 61)], then we can prove that:

cos6 = cos(0, + [0, — 6,]) = cosB; + (cos(6, + [0, — 6,]) — cosO,)]

Then, we have.
p, + (p, —p ) =1+ cos(6; + [0, — 611)
So.
I'p=1+cosO
This equation is a neutrosophic Cardioide T..
Example:

Let the equation by a neutrosophic Cardioide:

p1+p21=1+cos(g+%l)

Then, its equation be equivalent to direct product of two classical Cardioide:

Ii:pr =1+ cos (g)

Tyipr+py=1+ (7")
2:P1 T P2 = cos 12

Example:

Let I';,T', are two classical Cardioide, where:
I'y:p; =1+cos (%)
[y:ip, =1+ cos (%)

I {p=1+cos(%+%1)

Conclusions

In this paper we have studied some concepts of neutrosophic real analysis depending on

the one-dimensional AH-isometry. We have provided a strict definition of some algebraic

curves in neutrosophic real ring R(I), and we study the properties of this curves, and we
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proved some theorems for this curves, also, we find relationships between a classical

algerbraic curves and neutrosophic algebraic curves.
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