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Abstract. This paper is devoted to propose triangular 
fuzzy number neutrosophic sets by combining triangular 
fuzzy numbers with single valued neutrosophic set and 
define some of its operational rules. Then, triangular 
fuzzy number neutrosophic weighted arithmetic averag-
ing operator and triangular fuzzy number neutrosophic 
weighted geometric averaging operator are defined to ag-
gregate triangular fuzzy number neutrosophic sets. We 
have also established some of their properties of the pro-

posed operators. The operators have been employed to 
multi attribute decision making problem to aggregate the 
triangular fuzzy neutrosophic numbers based rating val-
ues of each alternative over the attributes. The collective 
rating values of each alternative have been ordered with 
the help of score and accuracy values to find out the best 
alternative. Finally, an illustrative example has been pro-
vided to validate the proposed approach for multi attrib-
ute decision making problem. 

Keywords: Triangular fuzzy number neutrosophic set, Score and accuracy function, Triangular fuzzy number neutrosophic 
weighted arithmetic averaging operator, Triangular fuzzy number neutrosophic weighted geometric averaging operator, Multi-attribute 
decision making problem. 

1 Introduction 

Zadeh [1] has been credited with having pioneered the 
development of the concept of fuzzy set in 1965. It is gen-
erally agreed that a major breakthrough in the evolution of 
the modern concept of uncertainty was achieved in defin-
ing fuzzy set, even though some ideas presented in the pa-
per were envisioned in 1937 by Black [2]. In order to de-
fine fuzzy set, Zadeh [1] introduced the concept of mem-
bership function with a range covering the interval [0, 1] 
operating on the domain of all possible values. It should be 
noted that the concept of membership in a fuzzy set is not a 
matter of affirmation or denial, rather a matter of a degree. 
Zadeh’s original ideas blossomed into a comprehensive 
corpus of methods and tools for dealing with gradual 
membership and non-probabilistic uncertainty. In essence, 
the basic concept of fuzzy set is a generalization of classi-
cal set or crisp set [3, 4]. The field has experienced an 
enormous development, and Zadeh’s seminal concept of 
fuzzy set [1] has naturally evolved in different directions. 

Different sets have been derived in the literature such as L-
fuzzy sets [5], flou sets [6], interval-valued fuzzy sets [7-
10], intuitionistic fuzzy sets [11-13], two fold fuzzy sets 
[14], interval valued intuitionistic fuzzy set [15], intuition-
istic L-fuzzy sets [16], etc. Interval-valued fuzzy sets are a 
special case of L-fuzzy sets in the sense of Goguen [5] and 
a special case of type 2 fuzzy set. Mathematical equiva-
lence of intuitionistic fuzzy set (IFS) with interval-valued 
fuzzy sets was noticed by Atanassov [17], Atanassov and 
Gargov [15]. Wang and He [18] proved that the concepts 
of IFS [11-13] and intuitionistic L-fuzzy sets [5] and the 
concept of L-fuzzy sets [5] are equivalent. Kerre [19] pro-
vided a summary of the links that exist between fuzzy sets 
[1] and other mathematical models such as flou sets [6], 
two-fold fuzzy sets [14] and L-fuzzy sets [5]. Deschrijver 
and Kerre [20] established the relationships between IFS 
[11], L-fuzzy sets [5], interval-valued fuzzy sets [7], inter-
val-valued IFS [15]. Dubois et al. [21] criticized the term 
IFSs in the sense of [11-13], and termed it “to be unjusti-
fied, misleading, and possibly offensive to people in intui-
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tionistic mathematics and logic” as it clashes with the cor-
rect usage of intuitionistic fuzzy set proposed by Takeuti 
and Titani [22].  Dubois et al. [21] suggested changing the 
name of IFS as I-fuzzy set.  Smarandache incorporated the 
degree of indeterminacy as independent component in IFS 
and defined neutrosophic set [23-24] as the generalization 
of IFSs.  Georgiev [25] explored some properties of the 
neutrosophic logic and defined simplified neutrosophic set. 
A neutrosophic set is simplified [25] if its elements are 
comprised of singleton subsets of the real unit interval. 
Georgiev [25] concluded that the neutrosophic logic is not 
capable of maintaining modal operators, since there is no 
normalization rule for the components T, I and F. The au-
thor [25] claimed that the IFSs have the chance to become 
a consistent model of the modal logic, adopting all the nec-
essary properties [26].However certain type of uncertain 
information such as indeterminate, incomplete and incon-
sistent information cannot be dealt with fuzzy sets as well 
as IFSs. Smarandache [27-28] re-established neutrosophic 
set as the generalization of IFS, which plays a key role to 
handle uncertain, inconsistent and indeterminacy infor-
mation existing in real world. In this set [27-28] each ele-
ment of the universe is characterized by the truth degree, 
indeterminacy degree and falsity degree lying in the non-
standard unit interval. The neutrosophic set [27-28] 
emerged as one of the research focus in many branches 
such as image processing [29-31], artificial intelligence 
[32], applied physics [33-34], topology [35] and social sci-
ence [36]. Furthermore, single valued neutrosophic set[37], 
interval neutrosophic set[38],neutrosophic soft set[39], 
neutrosophic soft expert set [40], rough neutrosophic set 
[41], interval neutrosophic rough set, interval valued neu-
trosophic soft rough set [42], complex neutrosophic set[43], 
bipolar neutrosophic sets [44] and neutrosophic cube 
set[45] have been studied in the literature which are con-
nected with neutrosophic set. However, in this study, we 
have applied single valued neutrosophic set [37] (SVNS), a 
subclass of NS, in which each element of universe is char-
acterized by truth membership, indeterminacy membership 
and falsity membership degrees lying in the real unit inter-
val. Recently, SVNS has caught attention to the researcher 
on various topics such as similarity measure [46-50], med-
ical diagnosis [51] and multi criteria/ attribute decision 
making [52-58], etc 

Aggregation of SVNS information becomes an im-
portant research topic for multi attribute decision making 
in which the rating values of alternatives are expressed in 
terms of SVNSs. Aggregation operators of SVNSs, usually 
taking the forms of mathematical functions, are common 
techniques to fuse all the input individual data that are typ-
ically interpreted as the truth, indeterminacy and the falsity 
membership degree in SVNS into a single one. Ye [59] 

proposed weighted arithmetic average operator and 
weighted geometric average operator for simplified neutro-
sophic sets. Peng et al.[60] developed some aggregation 
operators to aggregate single valued neutrosophic infor-
mation, such as simplified neutrosophic number weighted 
averaging (SNNWA), simplified neutrosophic number 
weighted geometric (SNNWG), simplified neutrosophic 
number ordered weighted averaging (SNNOWA), simpli-
fied neutrosophic number ordered weighted geometric av-
eraging (SNNOWG), simplified neutrosophic number hy-
brid ordered weighted averaging operator(SNNHOWA), 
simplified neutrosophic number hybrid ordered weighted 
geometric operator (SNNHOWG), generalised simplified 
neutrosophic number weighted averaging opera-
tor(GSNNWA) and generalised simplified neutrosophic 
number weighted geometric operator(GSNNGA) operators. 
Peng et al. [60] applied these aggregation operators in mul-
ti criteria group decision making problem to get an overall 
evaluation value for selecting the best alternative. Liu et al. 
[61] defined some generalized neutrosophic Hamacher ag-
gregation operators and applied them to multi attribute 
group decision making problem. Liu and Wang [62] pro-
posed a single valued neutrosophic normalized weighted 
Bonferroni mean operator for multi attribute decision mak-
ing problem. 

Application of SVNS has been extensively studied in 
multi-attribute decision making problem. However, in un-
certain and complex situations, the truth membership, inde-
terminacy membership, and falsity membership degree of 
SVNS cannot be represented with exact real numbers or in-
terval numbers. Moreover, triangular fuzzy number can 
handle effectively fuzzy data rather than interval number. 
Therefore, combination of triangular fuzzy number with 
SVNS can be used as an effective tool for handling incom-
plete, indeterminacy, and uncertain information existing in 
decision making problems. Recently, Ye [63] defined trap-
ezoidal fuzzy neutrosophic set and developed trapezoidal 
fuzzy neutrosophic number weighted arithmetic averaging 
and trapezoidal fuzzy neutrosophic number weighted geo-
metric averaging operators to solve multi attribute decision 
making problem. 

Zhang and Liu [64] presented method for aggregating 
triangular fuzzy intuitionistic fuzzy information and its ap-
plication to decision making. However, their approach 
cannot deal the decision making problems which involve 
indeterminacy. So new approach is essentially needed 
which can deal indeterminacy. Literature review reflects 
that this is the first time that aggregation operator of trian-
gular fuzzy number neutrosophic values has been studied 
although this number can be used as an effective tool to 
deal with uncertain information. In this paper, we have first 
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presented triangular fuzzy number neutrosophic sets 
(TFNNS), score function and accuracy function of TFNNS. 
Then we have extended the aggregation method of triangu-
lar fuzzy intuitionistic fuzzy information [64] to triangular 
fuzzy number neutrosophic weighted arithmetic averaging 
(TFNNWA) operator and triangular fuzzy number neutro-
sophic weighted geometric averaging (TFNNWG) operator 
to aggregate TFNNSs. The proposed TFNNWA and 
TFNNWG operators are more flexible and powerful than 
their fuzzy and intuitionistic fuzzy counterpart as they are 
capable of dealing with uncertainty and indeterminacy. 

The objectives of the study include to: 
 propose triangular fuzzy number neutrosophic sets

(TFNNS), score function and accuracy function of
TFNNS.

 propose two aggregation operators, namely,
TFNNWA and TFNNWG.

 prove some properties of the proposed operators
namely, TFNNWA and TFNNWG.

 establish a multi attribute decision making (MADM)
approach based on TFNNWA and TFNNWG.

 provide an illustrative example of MADM problem.

The rest of the paper has been organized in the follow-
ing way. In Section 2, a brief overview of IFS, SVNS have 
been presented. In Section 3, we have defined TFNNS, 
score function and accuracy function of TFNNS, and some 
operational rules of TFNNS. Section 4 has been devoted to 
propose two aggregation operators, namely, TFNNWA and 
TFNNWG operators to aggregate TFNNSs. In Section 5, 
applications of two proposed operators have been present-
ed in multi attribute decision making problem. In Section 6, 
an illustrative example of MADM has been provided. Fi-
nally, conclusion and future direction of research have 
been presented in Section 7. 

2 Preliminaries 

In this section we recall some basic definitions of intuition-
istic fuzzy sets, triangular fuzzy number intuitionistic 
fuzzy set (TFNIFS), score function and accuracy function 
of TFNIFS. 

2.1 Intuitionistic fuzzy sets 

Definition1. (Intuitionistic fuzzy set [13]) An intuitionistic 
fuzzy set A in finite universe of discourse 

1 2{ , ,..., }nX x x x is given by 

 , (x), (x) |A AA x x X   ,  (1) 
where  : 0,1A X  and  : 0,1A X   with the 
condition 0 ( ) ( ) 1A Ax x    . The numbers (x)A  and 

(x)A denote, respectively, the degree of membership
degree and degree of non-membership of x  in .A In

addition (x) 1 (x) (x)A A A     is called a hesitancy 
degree of x X in .A  For convenience, 

 (x), (x)A AA   is considered as an intuitionistic fuzzy 
number (IFN). 

Definition 2. (Operations rules of IFNs [65-67]) 

Let  (x), (x)A AA     and  (x), (x)B BB    be two

IFNs, then the basic operations of IFNs are presented as 

follows: 

1.  (x) (x) (x) (x), (x) (x) ,A B A B A BA B         

 (2) 
2.  (x) (x), (x) (x) (x) (x) ,A B A B A BA B        

 (3) 
3.     1 1 (x) ,AA x

 
        for 0, 

 (4) 
4.     ,1 1 (x)AA x

         for 0. 

 (5) 

Definition 3. [68] Let X be a finite universe of discourse 
and [0,1]F  be the set of all triangular fuzzy numbers 
on  0,1 . A triangular fuzzy number intuitionistic fuzzy set
(TFNIFS) A  in X is represented by  

 , ( ), ( ) | ,A AA x x x x X  

where,  ( ) : 0,1A x X F   and  ( ) : 0,1A x X F  . 

The triangular fuzzy numbers 

 1 2 3( ) (x), (x), (x)
A A AA x    and

 1 2 3( ) (x), (x), (x)
A A AA x    , respectively, denote the 

membership degree and non-membership degree of 
x in A and for every x X : 

3 30 (x) (x) 1.A A     

For convenience, we consider (a, b,c), (e, f,g)A  as the 
trapezoidal fuzzy number intuitionistic fuzzy values 
(TFNIFV) where, 
 1 2 3(x), (x), (x)

A A A
   =  , ,a b c and  1 2 3(x), (x), (x)

A A A
   =

 , ,e f g .

Definition 4. [69-70] Let  1 1 1 1 1 1 1(a , b ,c ), (e , f ,g )A   and 

2 2 2 2 2 2 2(a , b ,c ), (e , f ,g )A  be two TFNIFVs, then the 
following operations are valid: 
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1. 
 

 

1 2 1 2 1 2 1 2 1 2 1 2
1 2

1 2 1 2 1 2

, , c ,
;

, ,

a a a a b b b b c c c
A A

e e f f g g

     
 

(6) 

2. 
 

 

1 2 1 2 1 2
1 2

1 2 1 2 1 2 1 2 1 2 1 2

, , ,
;

, ,

a a b b c c
A A

e e e e f f f f g g g g
 

     

(7) 
3.  1 1 1 1 1 1 11 (1 a ) ,1 (1 ) ,1 (1 ) ,(e , , )A b c f g            

for 0,  , and (8) 

4. 
 

1 1 1
1

1 1 1

( , , ),

1 (1 ) ,1 (1 ) ,1 (1 )

a b b
A

e f g

  



  


     
for 

0.  (9) 

Definition 5. [69-70]Let 1 1 1 1 1 1 1(a , b ,c ), (e , f ,g )A  be a 
TFNIFV, the score function 1(A )S  of 1A is defined as 
follows: 

   1 1 1 1 1 1 1
1(A ) 2 2
4

S a b c e f g        ,  1(A ) 1,1S  

(10) 

The score function (A )S  =1 for the TFNIFV 
(1,1,1), (0,0,0)A  and (A ) 1S     for the 

TFNIFV (0,0,0), (1,1,1)A  . 

Definition 6. [69-70] Let 1 1 1 1 1 1 1(a , b ,c ), (e , f ,g )A  be a 

TFNIFV, the accuracy function 1(A )H  is of 1A is defined 

as follows: 

   1 1 1 1 1 1 1
1(A ) 2 2
4

H a b c e f g        ,  1(A ) 0,1H  .

 (11) 

2.2 Single valued neutrosophic sets 

In this section, some basic definitions of single valued neu-
trosophic sets are reviewed. 

Definition 7. [37] Let X  be a space of points (objects) 
with a generic element in X denoted by .x A single valued 
neutrosophic set A in X is characterized by a truth 
membership function (x),AT  an indeterminacy 
membership function (x),AI  and a falsity membership 
function (x)AF  and is denoted by 

 , (x), (x), (x) | .
A A A

A x T I F x X 

Here (x)
A

T , (x)
A

I and (x)
A

F  are real subsets of [0, 1] that 
is (x) : X [0,1]

A
T   , (x) : X [0,1]

A
I   

and (x) : X [0,1]
A

F  . The sum of (x)
A

T , (x)
A

I and 
(x)

A
F lies in [0, 3] that is 
0 sup (x) sup (x) sup (x) 3.

A A A
T I F     

For convenience, SVNS A  can be denoted by 
(x), (x), (x)

A A A
A T I F  for all x in X . 

Definition 8. [37] Assume that 
(x), (x), (x)

A A A
A T I F and (x), (x), (x)

B B B
B T I F be 

two SVNSs in a universe of discourse X . Then the 
following operations are defined as follows: 

1. 
(x) (x) (x) (x),

;
(x) (x), (x) (x)

B BA A

B BA A

T T T T
A B

I I F F

 
   (12) 

2. 
(x) (x), (x) (x) (x) (x),

;
(x) (x) (x) (x)

B B BA A A

B BA A

T T I I I I
A B

F F F F

 
 

 

(13) 
3.      1 1 (x) , (x) , (x)

A A A
A T I F

  
     for 0, 

and (14) 
4.      (A) (x) ,1 1 (x) ,1 1 (x)

A A A
T I F

        for 

0.  (15) 

3 Triangular fuzzy number neutrosophic set 

SVNS can represent imprecise, incomplete and incon-
sistent type information existing in the real world problem. 
However, decision maker often expresses uncertain infor-
mation with truth, indeterminacy and falsity membership 
functions that are represented with uncertain numeric val-
ues instead of exact real number values. These uncertain 
numeric values of truth, indeterminacy and falsity mem-
bership functions of SVNSs can be represented in terms of 
triangular fuzzy numbers. 

In this section, we combine triangular fuzzy num-
bers (TFNs) with SVNSs to develop triangular fuzzy num-
ber neutrosophic set (TFNNS) in which, the truth, indeter-
minacy and falsity membership functions are expressed 
with triangular fuzzy numbers. 

Definition 9. Assume that X be the finite universe of 
discourse and F [0, 1] be the set of all triangular fuzzy 
numbers on  0,1 . A triangular fuzzy number neutrosophic 

set (TFNNS) A  in X is represented by 
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 , ( ), ( ), ( ) | ,
A A A

A x T x I x F x x X 

where,  ( ) : 0,1AT x X F  ,  ( ) : 0,1AI x X F , and 

 ( ) : 0,1 .AF x X F

The triangular fuzzy numbers 
 1 2 3( ) (x), (x), (x)

A A A A
T x T T T ,  1 2 3( ) (x), (x), (x)

A A A A
I x I I I , 

and ( )
A

F x   1 2 3( ), ( ), (x)
A A A

F x F x F , respectively, denote
the truth membership degree, indeterminacy degree, and 
falsity membership degree of x in A  and for every 
x X : 

3 3 30 (x) (x) (x) 3A A AT I F    .          (16) 
For notational convenience, we consider 

( , , ), ( , , ), ( , , )A a b c e f g r s t as a trapezoidal fuzzy 
number neutrosophic values (TFNNV) where, 
 1 2 3(x), (x), (x) ( , , )

A A A
T T T a b c ,

 1 2 3(x), (x), (x) ( , , )
A A A

I I I e f g , 

and  1 2 3(x), (x), (x)
A A A

F F F = ( , , )r s t . 

Definition 10. Let 1 1 1 1 1 1 1 1 1 1( , , ), ( , , ), ( , , )A a b c e f g r s t  and 

2 2 2 2 2 2 2 2 2 2( , , ), ( , , ), ( , , )A a b c e f g r s t be two TFNNVs in 
the set of real numbers. Then the following operations are 
defined as follows: 

1. 
 

   

1 2 1 2 1 2 1 2 1 2 1 2
1 2

1 2 1 2 1 2 1 2 1 2 1 2

, , ,
;

, , , , ,

a a a a b b b b c c c c
A A

e e f f g g r r s s t t

     
 

(17) 

2. 

 

 

 

1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

, , ,

, , , ;

, ,

a a b b c c

A A e e e e f f f f g g g g

r r r r s s s s t t t t

       

     

  (18) 

3. 
 

   

1 1 1

1 1 1 1 1 1

1 (1 a ) ,1 (1 ) ,1 (1 ) ,

, , , , ,

b c
A

e f g r s t

  

     


     
  for 

0   and  (19) 

4. 

 

 

 

1 1 1

1 1 1

1 1 1

, , ,

1 (1 ) ,1 (1 ) ,1 (1 ) ,

1 (1 ) ,1 (1 ) ,1 (1 )

a b c

A e f g

r s t

  

   

  

      

     

for

0  . (20) 

The operations defined in Definition 10 satisfy the 
following properties: 

1. 1 2 2 1 1 2 2 1, ;A A A A A A A A       

2.    1 2 1 2 1 2 1 2,A A A A A A A A


         for

0  , and

3.   1 2 1 2( )
1 1 2 1 1 2 1 1 1 1,A A A A A A

       
     for

1 2, 0   . 

3.1 Score and accuracy function of TFNNV 

In the following section, we define score function and ac-
curacy function of TFNNV from Definition 5, Definition 6. 

Definition 11.  Assume that 

1 1 1 1 1 1 1 1 1 1(a ,b ,c ), (e , f ,g ), (r ,s , t )A  be a TFNNVs in the 

set of real numbers, the score function 1( )S A  of 1A is 
defined as follows: 

  1 1 1 1 1 1
1

1 1 1

8 ( 2 ) ( 2 )1
( 2 )12

a b c e f g
S A

r s t

      
  

   
. (21) 

The value of score function of 
TFNNV (1,1,1), (0,0,0), (0,0,0)A   is (A )S  = 1 and 
value of accuracy function of 
TFNNV (0,0,0), (1,1,1), (1,1,1)A  is (A ) 1S    . 

Definition 12. Assume 
that 1 1 1 1 1 1 1 1 1 1(a ,b ,c ), (e , f ,g ), (r ,s , t )A  be a TFNNV in 

the set of real numbers, the accuracy function  1H A of 

1A is defined as follows: 

   1 1 1 1 1 1 1
1 (a 2b c ) (r 2s t )
4

H A       . (22) 

The accuracy function  1(A ) 1,1H   determines the 
difference between truth and falsity. Larger the difference 
reflects the more affirmative of the TFNNV. The accuracy 
function (A )H  = 1 for (1,1,1), (0,0,0), (0,0,0)A  and 

(A ) 1H     for the TFNNV (0,0,0), (1,1,1), (1,1,1)A  . 
Based on Definition 11 and Definition 12, we present the 
order relations between two TFNNVs. 

Definition 13. Assume that 

1 1 1 1 1 1 1 1 1 1(a ,b ,c ), (e , f ,g ), (r ,s , t )A  and 

2 2 2 2 2 2 2 2 2 2(a ,b ,c ), (e , f ,g ), (r ,s , t )A  be two TFNNVs in 
the set of real numbers. Suppose that (A )iS  and (A )iH  are 

the score and accuracy functions of TFNNS ( 1, 2)iA i  , 
then the following order relations are defined as follows: 
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1. If 1 2S( ) S( )A A , then 1A is greater than 2A that is 

1 2A A ;
2. If 1 2S( ) S( )A A and 1 2( ) ( )H A H A  then 1A is great-

er than 2A ,that is, 1 2A A ; 
3. If 1 2S( ) S( )A A , 1 2( ) ( )H A H A   then 1A is indiffer-

ent to 2A , i.e. 1 2A A . 

Example 1. Consider two TFNNVs in the set of real 
numbers:

1 (0.70,0.75,0.80),(0.15,0.20,0.25),(0.10,0.15,0.20) ,A 

2 (0.40,0.45,0.50),(0.40,0.45,0.50),(0.35,0.40,0.45) .A 

 Then from Eqs.(21) and (22), we obtain the following 
results: 
1. Score value of 1( ) (8 3 0.8 0.6) /12 0.80S A      , 

and 2( ) (8 1.8 1.8 1.6) /12 0.53S A      ; 

2. Accuracy value of 1H( ) (3 0.6) / 4 0.60A    , 

and 2( ) (1.8 1.6) / 4 0.05H A    . 

Therefore from Definition 13, we obtain 1̀ `2 .A A  

Example 2. Consider  two TFNNVs in the set of real 
numbers: 

1 (0.50,0.55,0.60),(0.25,0.30,0.35),(0.20,0.25,0.30)A 

2 (0.40,0.45,0.50),(0.40,0.45,0.50),(0.35,0.40,0.45) .A 

 Using Eqs. (21) and (22), we obtain the following results: 
1. Score value of 1( ) (8 2.2 1.2 1.0) /12 0.67S A      , 

and 2( ) (8 1.8 1.8 1.6) /12 0.53S A      ; 

2. Accuracy value of 1H( ) (2.2 1.2) / 4 0.25A    , 

and 2( ) (1.8 1.6) / 4 0.05H A    . 

Therefore from Definition 13, we have 1 2 .A A  

4 Aggregation of triangular fuzzy number neutro-
sophic sets 

In this section, we first recall some basic definitions of ag-
gregation operators for real numbers. 

Definition 14. [72] Assume that : (Re) Re,nW   and 
( 1,2,..., )ja j n be a collection of real numbers. The 

weighted averaging operator wWA is defined as 

 1 2
1

, ,...,
n

w n j j

j

WA a a a w a


  (23) 

 where Re is the set of real numbers, 1 2( , ,..., )T

nw w w w  is 
the weight vector of ( 1,2,..., )ja j n such 

that [0,1]jw  (j 1,2,...,n) and 
1

1.n

jj
w


  

Definition 15. [73] Assume that : (Re) Re,nW   and 
( 1,2,..., )ja j n  be a collection of real numbers. The 

weighted geometric operator WGw is defined as follows: 

 1 2
1

, ,..., j

n
w

w n j

j

WG a a a a


 ,    (24) 

where Re is the set of real numbers, 1 2( , ,..., )T

nw w w w  is 

the weight vector of ( 1,2,..., )ja j n with 

[0,1]jw  (j 1,2,...,n) and 
1

1n

jj
w


  

Based on Definition 14 and Definition 15, we propose the 
following two aggregation operators of TFNNSs to be used 
in decision making. 

4.1 Triangular fuzzy number neutrosophic arith-
metic averaging operator 

Definition 16. Assume 

that ( , , ),( , , ),( , , )j j j j j j j j j jA a b c e f g r s t (j 1,2,...,n)

be a collection TFNNVs in the set of real numbers and 
let : nTFNNWA   . The triangular fuzzy number 
neutrosophic weighted averaging (TFNNWA) operator 
denoted by 1 2(A ,A ,...,A )nTFNNWA  is defined as

1 2(A , A ,..., A )nTFNNWA

1 1 2 2w w w (w )
1

An n j j

n

j
A A A


    ,         (25) 

where [0,1]jw   is the weight vector of ( 1,2,..., )jA j n

such that
1

1.
n

j

j

w




In particular, if  1 ,1 ,...,1 T
w n n n then the 

1 2(A ,A ,...,A )nTFNNWA operator reduces to triangular 
fuzzy number neutrosophic averaging (TFNNA) operator: 

 1 2 1 2
1(A ,A ,...,A )n nTFNNA A A A
n

     (26) 

We can now establish the following theorem by using the 
basic operations of TFNNVs defined in Definition 10. 
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Theorem 1. 

Let (a ,b ,c ),(e ,f ,g ),(r ,s , t )j j j j j j j j j jA  (j 1,2,...,n)

be a collection TFNNVs in the set of real numbers. Then 
the aggregated value obtained by TFNNWA, is also a 
TFNNV, and  

1 2(A , A ,..., A )w nTFNNWA  

1 1 2 2 (w A
1

)n n j jw A w A w A

n

j
  


    

1 1 1

1 1 1 1 1 1

1 (1 a ) ,1 (1 ) ,1 (1 ) ,

,

, , , , ,

j j j

j j j j j j

n n n
w w w

j j j

j j j

n n n n n n
w w w w w w

j j j j j j

j j j j j j

b c

e f g r s t

  

     

 
      

 


   
   
   

  

     

   (27) 

where [0,1]jw   is the weight vector of TFNNV 

( 1,2,..., )jA j n such that
1

1.
n

j

j

w




Proof: We prove the theorem by mathematical induction. 

1. When 1n  , it is a trivial case

When 2n  ,  we have 
1 1 2 2(w )

2

1
Aj j w A w A

j
 




---------------------------------------------------------------------------------------------------------------------------------------------

2. 
     

     

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

1 (1 a ) ,1 (1 ) ,1 (1 ) , , , , , ,

1 (1 a ) ,1 (1 ) ,1 (1 ) , , , , , ,

w w w w w w w w w

w w w w w w w w w

b c e f g r s t

b c e f g r s t

      
 
        
 

       

       

       

   

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

1 (1 a ) 1 (1 a ) 1 (1 a ) . 1 (1 a ) ,

1 (1 ) 1 (1 ) 1 (1 ) . 1 (1 ) , ,

1 (1 ) 1 (1 ) 1 (1 ) . 1 (1 )

, , , , ,

w w w w

w w w w

w w w w

w w w w w w w w w w w w

b b b b

c c c c

e e f f g g r r s s t t

          
 
          
 
          
 

2 2 2

1 1 1

2 2 2 2 2 2

1 1 1 1 1 1

1 (1 a ) ,1 (1 ) ,1 (1 ) ,

, , , , ,

j j j

j j j j j j

w w w

j j j

j j j

w w w w w w

j j j j j j

j j j j j j

b b

e f g r s t

  

     

 
      

 


   
   
   

  

     

. (28) 

Thus the theorem is true for n = 2 
3. When n = k, we assume that Eq.(27) is also true.

Then,
1 2 1 1 1 1(A ,A ,...,A ) (w A )

1
k n n j jTFNNWA w A w A

k

w
j

A


     

= 1 1 1

1 1 1 1 1 1

1 (1 a ) ,1 (1 ) ,1 (1 ) ,

, , , , ,

j j j

j j j j j j

k k k
w w w

j j j

j j j

k k n k k k
w w w w w w

j j j j j j

j j j j j j

b b

e f g r s t

  

     

 
      

 

   
   
   

  

     

. (29) 

4. When n = k + 1, we have

1 2 1 1 1(A ,A ,...,A ) (w A ) (w A )
1

k j j k kTNF

k

A
j

NW    



26



Neutrosophic Sets and Systems, Vol. 12, 2016 

Pranab Biswas, Surapati Pramanik, and Bibhas C. Giri; Aggregation of triangular fuzzy neutrosophic  set information and 

its application to multi-attribute decision making 

1 1

1 1

1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 (1 a ) 1 (1 a ) 1 (1 a ) 1 (1 a ) ,

1 (1 ) 1 (1 ) 1 (1 ) 1 (1 ) ,

1 (1 ) 1 (1 ) 1 (1 ) 1 (1 )

j jk k

j jk k

j jk k

k k
w ww w

j k j k

j j

k k
w ww w

j k j k

j j

k k
w ww w

j k j k

j j

b b b b

c c c c

 

 

 

 

 

 

 

 

 

 
          

 
 
          

 
 

          

 

 

 

 

1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1

,

.e , . , .e , . , . , .j j j j j jk k k k k k

k k n k k k
w w w w w ww w w w w w

j k j k j k j k j k j k

j j j j j j

e f f g r r s s t t     

     

     





   
   
   
     

1 1 1

1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 (1 a ) ,1 (1 ) ,1 (1 ) ,

, , , , ,

j j j

j j j j j j

k k k
w w w

j j j

j j j

k k k k k k
w w w w w w

j j j j j j

j j j j j j

b b

e f g r s t

  

  

     

     

 
      

 


   
   
   

  

     

. (30) 

--------------------------------------------------------------------------------------------------------------------------------------------------

We observe that the theorem is true for n = k + 1. 

Therefore, by mathematical induction, we can say that Eq. 

(27) holds for all values of n. As the components of all 

three membership functions of jA belong to [0, 1], the

following relations are valid 

1

0 1 (1 ) 1,j

n
w

j

j

c


 
    
 


1

0 1j

n
w

j

j

g


 
  
 
 , 

1

0 1j

n
w

j

j

t


 
  
 
 . (31) 

It follows that the relation 

1 1 1

0 1 (1 ) 3j j j

n n n
w w w

j j j

j j j

c g t
  

 
      
 

   is also valid. 

This completes the proof of the Theorem 1. 
Now, we highlight some necessary properties of 
TFNNWA operator. 

Property 1.(Idempotency): If all (j 1,2,..., n)jA  are equal 

i.e. (a, b,c), (e, f,g), (r,s, t)jA A  , for all j  , 

then 1 2(A ,A ,...,A )kTFNNWA A . 

Proof: From Eq.(27), we have 

1 2(A , A ,..., A )nTFNNWA

(A,A,...,A) (
1

w A)jTFNNWA

n

j
    

=
1 1 1

1 1 1 1 1 1

1 (1 a) ,1 (1 ) ,1 (1 ) ,

, , , , ,

j j j

j j j j j j

n n n
w w w

j j j

n n n n n n
w w w w w w

j j j j j j

b c

e f g r s t

  

     

 
      

 

   
   
   

  

     

1 1 1

1 1 1

1 1 1

1 (1 a) ,1 (1 ) ,1 (1 ) ,

, , ,

, ,

n n n

j j jj j j

n n n

j j jj j j

n n n

j j jj j j

w w w

w w w

w w w

b c

e f g

e f g

  

  

  

   
      

 

   
  

 

   
 
 

(a,b,c), (e, f,g), (r,s, t) .A   

This completes the proof the Property 1. 

Property 2. (Boundedness)  

Let (a ,b ,c ),(e ,f ,g ),(r ,s , t )j j j j j j j j j jA  (j 1,2,...,n)

be a collection TFNNVs in the set of real numbers. 
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Assume

 
 

 

max( ),max( ),max( ) ,

min( ),min( ),min( ) ,

min( ),min( ),min( )

j j j
j j j

j j j
j j j

j j j
j j j

a b c

A e f g

r s t

   and 

 
 

 

min( ),min( ),min( ) ,

max( ),max( ),max( ) ,

max( ),max( ),max( )

j j j
j j j

j j j
j j j

j j j
j j j

a b c

A e f g

r s t

  for all 

1,2,..., .j n  
Then 1 2(A ,A ,...,A ) AnA TFNNWA   . 

    (32) 
Proof: We have 
min( ) max( ), min( ) max( ),j j j j j j

j jj j
c c c g g g   

min( ) max( )j j j
j j

t t t  for 1,2,...,j n .   (33) 

Then 

1 1

1

1 (1 min(c )) 1 (1 )

1 (1 max(c ))

j j

j

n n
w w

j j
j

j j

n
w

j
j

j

c
 



    

  

 



 

 

1

1

1

1 (1 min(c )) 1 (1 )

1 (1 max(c ))

n

jj
j

n

jj

nw
w

j j
j

j

w

j
j

c







     


  



= 
1

min( ) 1 (1 ) max( )j

n
w

j j j
j j

j

c c c


    . 

Again from Eq.(33), we have for j = 1, 2, …, n 

   
1 1 1

min( ) max( )
jj

j

wn n nw
w

j j
j j

j j j

g g g
  

   

=     11

1

min( ) max( )
nn

jj jj
j

wnw
w

j j
j j

j

g g g





 

=
1

min( ) max( )j

n
w

j j
j j

j

g e g


  ; 

and    
1 1 1

min( ) max( )
jj

j

wn n nw
w

j j
j j

j j j

t t t
  

    =

    11

1

min( ) max( )
nn

jj jj
j

wnw
w

j j
j j

j

t t t





 

=
1

min( ) max( )j

n
w

j j
j j

j

t t t


  . 

 Similarly, we have 

1

min( ) 1 (1 ) max( )j

n
w

j j j
j j

j

a a a


    , 

1

min( ) 1 (1 ) max( )j

n
w

j j j
j j

j

b b b


    ; 

1

min( ) 1 (1 ) max( )j

n
w

j j j
j j

j

e e e


    , 

1

min( ) 1 (1 ) max( )j

n
w

j j j
j j

j

f f f


    ; 

1

min( ) 1 (1 ) max( )j

n
w

j j j
j j

j

r r r


    , 

1

min( ) 1 (1 ) max( )j

n
w

j j j
j j

j

s s s


   

for 1,2,..., .j n  

Assume that 
1 2(A ,A ,...,A ) Aw nTFNNWA  = (a, b,c), (e, f,g), (r,s, t) , 

then the score function of A  

 
1( ) 8 ( 2 ) ( 2 ) ( 2 )

12
S A a b c e f g r s t         

 
 
 

8 max( ) max(2 ) max( )

1 min( ) 2min( ) min( )
12

min( ) 2min( ) min( )

j j j
j j j

j j j
j j j

j j j
j j j

a b c

e f g

r s t

   
 
 
    
 
 

   
 

, (34) 

 S A . 

 Similarly, the score function of A  

 
1( ) 8 ( 2 ) ( 2 ) ( 2 )

12
S A a b c e f g r s t          ;

 
 
 

8 min( ) min(2 ) min( )

1 max( ) max(2 ) max( )
12

max( ) max(2 ) max( )

j j j
j j j

j j j
j j j

j j j
j j j

a b c

e f g

r s t

   
 
 
    
 
 

   
 

 S A . 

Now, we consider the following cases: 
1. If (A) S(A )S  and (A) S(A )S  then we have 

1 2(A ,A ,...,A ) AnA TFNNWA   .    (35) 
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2. If (A) S(A )S  , then we can take 

 
1 8 ( 2 ) ( 2 ) ( 2 )

12
a b c e f g r s t        

 
 
 

8 max( ) 2max( ) max( )

1 min( ) 2min( ) min( )
12

min( ) 2min( ) min( )

j j j
j j j

j j j
j j j

j j j
j j j

a b c

e f g

r s t

   
 
 
    
 
 
   

 

. 

3. It follows that

(a 2b c)  =  max( ) 2max( ) max( )j j j
j j j

a b c  , 

( 2 )e f g  =  min( ) 2min( ) min( )j j j
j j j

e f g   and 

(r 2s t)  =  min( ) 2min( ) min( )j j j
j j j

r s t  . 

Therefore the accuracy function of A  

(A)H  =  
1 ( 2 ) ( 2 )
4

a b c r s t    

 
 

max( ) max(2 ) max( )1
4 min( ) min(2 ) min( )

j j j
j j j

j j j
j j j

a b c

r s t

  
 

  
   
 

. 

(A )H  ,  (36) 
From (36),we have 1 2(A ,A ,...,A ) AnTFNNWA     (37) 

Similarly, for (A) S(A )S  , the accuracy function of A  

(A)H  =  
1 ( 2 ) ( 2 )
4

a b c r s t    

 
 

min( ) min(2 ) min( )1
4 max( ) max(2 ) max( )

j j j
j j j

j j j
j j j

a b c

r s t

  
 

  
   
 

(A )H     (38) 
From (38), we have 1 2(A ,A ,...,A ) AnTNFNWA  .       (39) 
Combining Eqs. (35), (37) and (39), we obtain the follow-
ing result  

1 2(A ,A ,...,A ) AnA TFNNWA   (40) 

This proves the Property 2. 

Property 3. (Monotonicity) Suppose 

that 1 1 1 1 1 1 1 1 1 1( , , ),( , , ),( , , )j j j j j j j j j jA a b c e f g r s t  and 
2 2 2 2 2 2 2 2 2 2( , , ),( , , ),( , , )j j j j j j j j j jA a b c e f g r s t (j 1,2,...,n)  be 

a collection of two TFNNVs in the set of real numbers. 

If 1
jA ≼ 2

jA  for j 1,2,...,n then 
1 1 1
1 2(A ,A ,...,A )nTFNNWA ≼ 2 2 2

1 2(A ,A ,...,A )nTFNNWA .  (41) 
Proof: We first consider 1

jc , 1
jg , 1

jt of 1
jA and  

2
jc , 2

jg , 2
jt of 2

jA to prove the property 3. 

We can consider 1 2
j jc c , 1 2

j jg g and 1 2
j jt t  for 

1
jA ≼ 2

jA ( 1,2,...,j n ) . 
Then we have 

   1 21 1j jw w

j jc c   ,    1 2j jw w

j jg g ,    1 2 ;j jw w

j jt t

   1 2

1 1

1 1 1 1j j
n n

w w

j j

j j

c c
 

      ,    1 2j jw w

j jg g and 

   1 2j jw w

j jt t . 
Therefore, 

   1 2

1 1

1 1 1 1j j
n n

w w

j j

j j

c c
 

      ;    1 2

1 1

j j
n n

w w

j j

j j

g g
 

  , 

and    1 2

1 1

j j
n n

w w

j j

j j

t t
 

  . (42) 

Similarly, we can show 

   1 2

1 1

1 1 1 1j j
n n

w w

j j

j j

a a
 

      ;    1 2

1 1

j j
n n

w w

j j

j j

e e
 

  , 

and    1 2

1 1

j j
n n

w w

j j

j j

r r
 

  ; 

   1 2

1 1

1 1 1 1j j
n n

w w

j j

j j

b b
 

      ;    1 2

1 1

j j
n n

w w

j j

j j

f f
 

   , 

and    1 2

1 1

j j
n n

w w

j j

j j

s s
 

  . 

Assume that 
1 1 1 1

1 2(A ,A ,...,A )nA TFNNWA  

  = 1 1 1 1 1 1 1 1 1( , , ),( , , ),( , , )a b c e f g r s t  and 
2 2 2 2

1 2(A ,A ,...,A )nA TFNNWA  

= 2 2 2 2 2 2 2 2 2( , , ),( , , ),( , , )a b c e f g r s t , where 

 
1

1 1 j
n

w
s s

j

j

a a


   ,  
1

1 1 j
n

w
s s

j

j

b b


   , 

 
1

1 1 j
n

w
s s

j

j

c c


   ; 

 
1

j
n

w
s s

j

j

e e


 ,  
1

j
n

w
s s

j

j

f f


 ,  
1

j
n

w
s s

j

j

g g


 and 

 
1

j
n

w
s s

j

j

r r


 ,  
1

j
n

w
s s

j

j

s s


 ,  
1

j
n

w
s s

j

j

t t


 for s =1, 2. 

Now we consider the score function of 1A : 
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 
1 1 1 1 1 1

1
1 1 1

8 ( 2 ) ( 2 )1
12 ( 2 )

a b c e f g
S A

r s t

      
  

    

 2 2 2 2 2 2 2 2 2 21 8 ( 2 ) ( 2 ) ( 2 )
12

a b c e f g r s t S A            

Now we consider the following two cases: 
Case 1 . If    1 2S A S A  , from Definition-13, we have 

1 1 1
1 2(A ,A ,...,A )nTNFNWA 2 2 2

1 2(A , A ,..., A )nTNFNWA .  (43) 

Case 2 . If    1 2S A S A , then by Eq.(21) we can 

consider 
1 1 1 1 1 1

1 1 1

8 ( 2 ) ( 2 )1
12 ( 2 )

a b c e f g

r s t

      
 

    
 

=
2 2 2 2 2 2

2 2 2

8 ( 2 ) ( 2 )1 .
12 ( 2 )

a b c e f g

r s t

      
 

    

Thus for 1
jA ≼ 2

jA ( 1,2,..., )j n  i.e., for  1 2 ,j ja a 1 2
j jb b

1 2 ;j jc c 1 2
j je e 1 2 ,j jf f 1 2

j jg g  and 
1 2 ,j jr r 1 2

j js s  , 1 2
j jt t  we have 

1 2 ,a a 1 2 ,b b 1 2 ,c c 1 2 ,e e 1 2 ,f f 1 2 ,g g

1 2 ,r r
1 2s s and 1 2t t . 

Then, the accuracy function  of 1A yields 

1 1 1 1 1 1 11(A ) ( 2 ) ( 2 )
4

H a b c r s t       

= 2 2 2 2 2 21 ( 2 ) ( 2 )
4

a b c r s t      

 = 2(A )H .     (44) 
Thus from Definition-13, we have 

1 1 1
1 2(A ,A ,...,A )nTNFNWA  = 2 2 2

1 2(A ,A ,...,A )nTNFNWA .    (45)

Finally, from Eqs. (43) and (45), we have the following 
result  

1 1 1
1 2(A ,A ,...,A )nTFNNWA ≼ 2 2 2

1 2(A ,A ,...,A )nTFNNWA . 
 This completes the proof of Property 3.

Example3.We consider the following four  TFNNVs: 

1A = (0.80,0.85,0.90), (0.10,0.15,0.20),

(0.05,0.10,0.15) ; 2A = (0.70,0.75,0.80),

(0.15,0.20,0.25), (0.10,0.15,0.20) ;

3A = (0.40,0.45,0.50), (0.40,0.45,0.50),

(0.35,0.40,0.45) and 

4A = (0.70,0.75,0.80), (0.15,0.20,0.25),

(0.10,0.15,0.20) .  
Using  TFNNWA operator defined in Eq.(27), we can 
aggregate 1 2 3A , A , A , and 4A with weight vector 

(0.30,0.25,0.25,0.20)w   as: 

1 2 3 4(A ,A ,A ,A )A TFNNWA

   1 1 2 2 3 3 4 4w A w A w A w A   

------------------------------------------------------------------------------------------------------------------------------------- 

= 

 

 

 

0.30 0.25 0.25 0.20 0.30 0.25 0.25

0.30 0.25 0.25 0.20

0.30 0.25 0.25 0.20

1 (1 0.80) (1 0.70) (1 0.40) (1 0.70) , (0.10) (0.15) (0.40) (0.15

1 (1 0.85) (1 0.75) (1 0.45) (1 0.75) , ,

1 (1 0.90) (1 0.80) (1 0.50) (1 0.80)

     
 
     
 
     
 

 

 

 

0.20

0.30 0.25 0.25 0.20

0.30 0.25 0.25 0.20

) ,

(0.15) (0.20) (0.45) (0.20) , ,

(0.20) (0.25) (0.50) (0.25)

 
 
 
 
 
 

 

 

 

0.30 0.25 0.25 0.20

0.30 0.25 0.25 0.20

0.30 0.25 0.25 0.20

(0.05) (0.10) (0.35) (0.10) ,

(0.10) (0.15) (0.40) (0.15) ,

(0.15) (0.20) (0.45) (0.20)

 
 
 
 
 
 

  (46) 

=

      

      

   

1 0.617 0.740 0.880 0.786 , 1 0.566 0.707 0.861 0.756 , 1 0.501 0.669 0.841 0.725 ,

0.501 0.622 0.795 0.684 , 0.566 0.667 0.819 0.725 , 0.617 0.707 0.841 0.887 ,

0.407 0.562 0.769 0.631 , 0.501 0.622 0.795 0.684 , 0.

           

        

        566 0.669 0.819 0.725  
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     0.6842,0.7395,0.7956 , 0.1804,0.2605,0.3254 , 0.1110,0.1694,0.2249 . 

-------------------------------------------------------------------------------------------------------------------------------------------------

4.2 Triangular fuzzy number neutrosophic geo-
metric averaging operator 

Definition 17.  Suppose that 

that (a ,b ,c ),(e ,f ,g ),(r ,s , t )j j j j j j j j j jA  (j 1,2,...,n)

be a collection TFNNVs in the set of real numbers 
and : nTFNNWG   . The triangular fuzzy number 
neutrosophic weighted geometric (TFNNWG) operator 
denoted by 1 2(A ,A ,...,A )w nTFNNWG is defined as 
follows: 

1 2 ww w
1 2 1 2(A ,A ,...,A ) n

w n nTFNNWG A A A   

    w(A )
1

j

j

n

j



    (47) 

where [0,1]jw   is the exponential weight vector of 

(j 1,2,..., n)jA  such that
1

1.
n

j

j

w


  In particular, if 

 1 ,1 ,...,1 T
w n n n then the 

1 2(A ,A ,...,A )nTFNNWG operator reduces to triangular 
fuzzy neutrosophic geometric(TNFG)  operator: 

 
1

1 2 1 2(A ,A ,...,A ) n
w n nTFNNWG A A A    . (48) 

We now establish the following theorem with the basic 
operations of TFNNV defined in Definition 10. 

Theorem 2. Assume that 

(a ,b ,c ),(e ,f ,g ),(r ,s , t )j j j j j j j j j jA  (j 1,2,...,n)  be a 

collection TFNNVs in the set of real numbers. Then the 

aggregated value obtained from TFNNWG, is also a 

TFNNV, and then we have 

1 2(A ,A ,...,A )w nTFNNWG

1 2 ww w
1 2

n

nA A A   

 w(A )
1

j

j

n

j





1 1 1

1 1 1

1 1 1

, , ,

1 (1 ) ,1 (1 ) ,1 (1 ) ,

1 (1 ) ,1 (1 ) ,1 (1 )

j j j

j j j

j j j

n n n
w w w

j j j

j j j

n n n
w w w

j j j

j j j

n n n
w w w

j j j

j j j

a b c

e f g

r s t

  

  

  

 
 
 

 
       

 

 
      

 

  

  

  

(49) 

where [0,1]jw   is the weight vector of TFNNV 

(j 1,2,...,n)jA  such that
1

1.
n

j

j

w




Similar to arithmetic averaging operator, we can also prove 
the theorem by mathematical induction. 
1. When n = 1, the theorem is true.

2. When n = 2,  we have

  1 2
w

1 2

2

1
A j w w

j A A
j

 



     

     

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

, , , 1 (1 ) ,1 (1 ) ,1 (1 ) , 1 (1 ) ,1 (1 ) ,1 (1 )

, , , 1 (1 ) ,1 (1 ) ,1 (1 ) , 1 (1 ) ,1 (1 ) ,1 (1 )

w w w w w w w w w

w w w w w w w w w

a b c e f g r s t

a b c e f g r s t

            
 
              
 
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 

       

       

       

   

1 2 1 2

1 2 1 2 1 2 1 2 1 2

1 2 1 2

1 2

1 2 1 2

1 2 1 2 1 2 1 2 1 2

1 2 1 2

1 2 1

1 (1 ) 1 (1 ) 1 (1 ) . 1 (1 ) ,

, , , 1 (1 ) 1 (1 ) 1 (1 ) . 1 (1 ) ,

1 (1 ) 1 (1 ) 1 (1 ) . 1 (1 )

1 (1 ) 1 (1 ) 1 (1

w w w w

w w w w w w w w w w

w w w w

w w

e e e e

a a b b c c f f f f

c c c c

r r r

          
 
          
 
          
 


          

       

       

1 2

1 2 1 2

1 2 1 2

2

1 2 1 2

1 2 1 2

) . 1 (1 ) ,

1 (1 ) 1 (1 ) 1 (1 ) . 1 (1 ) ,

1 (1 ) 1 (1 ) 1 (1 ) . 1 (1 )

w w

w w w w

w w w w

r

s s s s

t t t t

  
 
          
 
          
 

2 2 2 2 2 2

1 1 1 1 1 1

2 2 2

1 1 1

, , , 1 (1 ) ,1 (1 ) ,1 (1 ) ,

1 (1 ) ,1 (1 ) ,1 (1 )

j j j j j j

j j j

w w w w w w

j j j j j j

j j j j j j

w w w

j j j

j j j

a b c e f g

e f g

     

  

   
        

   


 
      

 

     

  

(50) 

3. When n = k, we assume that Eq.(49) is true then,
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4. When n = k+1, we can consider the following expression:

   
1w

1 2 1 1(A ,A ,...,A )
1

A Aj kw

w k j k

k

j
TNFNWG



  



= 1 1 1
1 1 1

1 1 1

. , . , . ,j j jk k k

k k n
w w ww w w

j k j k j k

j j j

a a b b c c  

  

  

 
 
 
  

   

   

 

1 1

1 1

1

1 1
1 1

1 1
1 1

1
1 1

1 (1 ) 1 (1 ) 1 (1 ) . 1 (1 ) ,

1 (1 ) 1 (1 ) 1 (1 ) . 1 (1 ) ,

1 (1 ) 1 (1 ) 1 (1 )

j jk k

j jk k

j jk

k k
w ww w

j k j k

j j

k k
w ww w

j k j k

j j

k k
w ww

j k j

j j

e e e e

f f f f

g g g

 

 



 

 

 

 



 

   
            

   

   
            

   

 
        

 

 

 

   1
1. 1 (1 ) kw

kg 



 
 
 
 
 
 
 
  

    
  

, 

32



Neutrosophic Sets and Systems, Vol. 12, 2016 

Pranab Biswas, Surapati Pramanik, and Bibhas C. Giri; Aggregation of triangular fuzzy neutrosophic  set information and 

its application to multi-attribute decision making 

   

   

 

1 1

1 1

1

1 1
1 1

1 1
1 1

1
1 1

1 (1 ) 1 (1 ) 1 (1 ) . 1 (1 ) ,

1 (1 ) 1 (1 ) 1 (1 ) . 1 (1 ) ,

1 (1 ) 1 (1 ) 1 (1 )

j jk k

j jk k

j jk

k k
w ww w

j k j k

j j

k k
w ww w

j k j k

j j

k k
w ww

j k j

j j

r r r r

s s s s

t t t

 

 



 

 

 

 



 

   
            

   

   
            

   

 
        

 

 

 

   1
1. 1 (1 ) kw

kt




 
 
 
 
 
 
 
  

    
  

(52) 

=

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1

1 1 1

, , , 1 (1 ) ,1 (1 ) ,1 (1 ) ,

1 (1 ) ,1 (1 ) ,1 (1 )

j j j j j j

j j j

k k k k k k
w w w w w w

j j j j j j

j j j j j j

k k k
w w w

j j j

j j j

a b c e f g

r s t

     

     

  

  

   
        

   

 
      

 

     

  

         (53) 

--------------------------------------------------------------------------------------------------------------------------------------------- 

We observe that the theorem is also true for n = k+1. 

Therefore, by mathematical induction, Eq. (49) holds for 
all values of n. 
Since the components of all three membership functions of 

( 1,2,..., )jA j n  belong to [0, 1] the following relations are
valid 
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It follows that 

1 1 1

0 1 (1 ) 1 (1 ) 3.j j j

n n n
w w w

j j j

j j j

c g t
  

 
        
 
  

This completes the proof of Theorem 2. 
Now, we discuss some essential properties of TFNNWG 
operator for TFNNs. 

Property 4.(Idempotency): If all (j 1,2,..., n)jA  are equal 
that is (a, b,c), (e, f,g), (r,s, t)jA  , for all j  , 
then 1 2(A ,A ,...,A )w kTFNNWG A . 
Proof: From Eq.(49), we have 

1 2(A ,A ,...,A )w nTFNNWG

 
w

(A,A,...,A
1

) A j

g jT G

n

FNNW
j

 



=

1 1 1

1 1 1

1 1 1

, , ,

1 (1 ) ,1 (1 ) ,1 (1 ) ,

1 (1 ) ,1 (1 ) ,1 (1 )

j j j

j j j

j j j

n n n
w w w

j j j

n n n
w w w

j j j

n n n
w w w

j j j

a b c

e f g

r s t

  

  

  

 
 
 

 
      

 

 
      

 

  

  

  

1 1 1

1 1 1

1 1 1

, , ,

1 (1 ) ,1 (1 ) ,1 (1 ) ,

1 (1 ) ,1 (1 ) ,1 (1 )

n n n

j j jj j j

n n n

j j jj j j

n n n

j j jj j j

w w w

w w w

w w w

a b c

e f g

e f g

  

  

  

   
 
 

   
       

 

   
      

 

( , , ), ( , , ), ( , , ) .a b c e f g r s t A   
This completes the Property 4.         

Property 5. (Boundedness). 

Let (a ,b ,c ),(e ,f ,g ),(r ,s , t )j j j j j j j j j jA  (j 1,2,...,n)

be a collection TFNNs in the set of real numbers. Assume 
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for all 1,2,..., .j n  . Then 

1 2(A ,A ,...,A ) Aw nA TNFNWG   .    (55) 
Proof: The proof of the Property 5 is similar to Property 2. 

Property 6. (Monotonicity). 

Let 1 1 1 1 1 1 1 1 1 1(a ,b ,c ),(e ,f ,g ),(r ,s , t )j j j j j j j j j jA   and 
2 2 2 2 2 2 2 2 2 2(a ,b ,c ),(e ,f ,g ),(r ,s , t )j j j j j j j j j jA  (j 1,2,...,n)  be a 

collection of two TFNNVs in the set of real numbers. If 
1
jA ≼ 2

jA for j 1,2,...,n then 
1 1 1
1 2(A ,A ,...,A )w nTFNNWG ≼ 2 2 2

1 2(A ,A ,...,A )w nTFNNWG .
   (56) 

Proof: Property 6 can be proved by a similar argument of 
Property 3. Therefore, we do not discuss again to avoid 
repetition. 

Example 4. Assume that 
1A  = (0.80,0.85,0.90), (0.10,0.15,0.20),

(0.05,0.10,0.15) ; 2A  = (0.70,0.75,0.80),

(0.15,0.20,0.25), (0.10,0.15,0.20) ;

3A  = (0.40,0.45,0.50), (0.40,0.45,0.50),

(0.35,0.40,0.45) and 4A  = (0.70,0.75,0.80),

(0.15,0.20,0.25), (0.10,0.15,0.20) are four TFNNVs. 
Then using TFNNWG operator defined in Eq.(49), we can 
aggregate 1 2 3A , A , A , and 4A  with the considered weight 
vector (0.30,0.25,0.25,0.20)w   as: 
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     0.6332,0.6845,0.7370 , 0.2076,0.2587,0.3097 , 0.1565,0.2075,0.2587 . 

----------------------------------------------------------------------------------------------------------------------------------------------

5 Application of TFNNWA and TFNNWG opera-

tors to multi attribute decision making 

Consider a multi attribute decision making problem in 
which 1 2{ , ,..., }mY Y Y Y  be the set of n feasible 
alternatives and 1 2{ , ,..., }nC C C C be the set of attributes. 
Assume that 1 2(w ,w ,...,w )T

nw   be the weight vector of 
the attributes, where 

jw denotes the importance degree of 

the attribute
jC such that 0jw   and 

1
1n

jj
w


  for 

1,2,...,j n . 
The ratings of all alternatives (i 1,2,...,m)iY  with respect 
to the attributes (j 1,2,...,n)jC  have been presented in a 
TFNNV based decision matrix ( )ij m nU u  (see the Table 
1). Furthermore, in the decision matrix ( )ij m nU u  , the 

rating (a , , ),( , , ),( , , )ij ij ij ij ij ij ij ij ij iju b c e f g r s t represents a 
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TFNNV, where the fuzzy number (a , , )ij ij ijb c represents the 
degree that the alternative (i 1,2,...,m)iY  satisfies the 
attribute (j 1,2,...,n)jC  , the fuzzy number 
( , , )ij ij ije f g represents the degree that the alternative 

iY is 
uncertain about the attribute

jC and fuzzy number 
( , , )ij ij ijr s t indicates the degree that the alternative 

iY  does 
not satisfy the attribute

jC such that 

0 3ij ij ijc g t    , for i = 1, 2,…, m and j = 1, 2, …, n. 

Based on the TFNNWA and TFNNWG operators, we 
develop a practical approach for solving MADM problems, 
in which the ratings of the alternatives over the attributes 
are expressed with TFNNVs. The schematic diagram of the 
proposed approach for MADM is depicted in the Figure-1. 

----------------------------------------------------------------------------------------------------------------------------------- 

Table 1. Triangular fuzzy number neutrosophic value based decision matrix 
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Figure-1. Framework for the proposed MADM method 
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---------------------------------------------------------------------------------------------------------------------------------------------- 

Therefore, we design the proposed approach in the 
following steps: 
Step 1: First aggregate all rating values 

ijp  1,2,...,j n  

of the i -th row of the decision matrix ( )ij m np 
de-

fined in Table 1. 
Step 2: Determine the aggregation value iu corresponding 

to the alternative 
iY  obtained from TFNNWA operator: 

1 2

(a , b ,c), (e , f ,g ), (r ,s , t )
( , ,..., )

i i i i i i i i i

w i i in

u

TFNNWA p p p




   (57) 

or by the TFNNWG operator as 
(a , b ,c), (e , f ,g ), (r ,s , t )i i i i i i i i iu 

1 2( , ,..., )w i i inTFNNWG p p p    (58) 
Step 3: For each alternative ( 1, 2,..., ),iA i m  calculate the 
score values ( )iS u  and accuracy values ( )iA u  of the ag-
gregated rating values obtained by TFNNWA or 
TFNNWG operators that are in Eqs. (21) and (22). 

Step 4: Using Definition 11 to Definition 13, determine 
the ranking order of aggregated values obtained in Step 3. 
Step 5: Select the best alternative in accordance with the 
ranking order obtained in Step 4. 

6 An illustrative example of multi attribute deci-
sion making 

In this section, we consider an illustrative example of 
medical representative selection problem to demonstrate 
and applicability of the proposed approach to multi 
attribute decision making problem. 
Assume that a pharmacy company wants to recruit a medi-
cal representative. After initial scrutiny four candidates 

(i 1,2,3,4)iY   have been considered for further evaluation 
with respect to the five attributes (j 1,2,3,4,5)jC  namely, 

1. oral communication skill  1C ; 
2. past experience  2C ; 
3. general aptitude  3C ; 
4. willingness  4C and 
5. self confidence  5 .C

The ratings of the alternatives (i 1,2,3,4)iY  with respect 
to the attributes (j 1,2,3,4,5)jC  are expressed with 
TFNNVs shown in the decision matrix 4 5(p )ijP  (see Ta-
ble 2.). Assume w = (0.10, 0.25, 0.25, 0.15, 0.25)T be the 
relative weight vector of all attributes (j 1,2,3,4,5)jC  . 

---------------------------------------------------------------------------------------------------------------------------------------------- 

Table 2. Triangular fuzzy number neutrosophic value based rating values 

1C 2C 3C 4C 5C

1Y (0.80,0.85,0.90)
(0.10,0.15,0.20)
(0.05,0.10,0.15)

(0.50,0.55,0.60)
(0.25,0.30,0.35)
(0.20,0.25,0.30)

(0.70,0.75,0.80)
(0.15,0.20,0.25)
(0.10,0.15,0.20)

(0.80,0.85,0.90)
(0.10,0.15,0.20)
(0.05,0.10,0.15)

(0.70,0.75,0.80)
(0.15,0.20,0.25)
(0.10,0.15,0.20)

2Y (0.50,0.55,0.60)
(0.25,0.30,0.35)
(0.20,0.25,0.30)

(0.70,0.75,0.80)
(0.15,0.20,0.25)
(0.10,0.15,0.20)

(0.80,0.85,0.90)
(0.10,0.15,0.20)
(0.05,0.10,0.15)

(0.70,0.75,0.80)
(0.15,0.20,0.25)
(0.10,0.15,0.20)

(0.70,0.75,0.80)
(0.15,0.20,0.25)
(0.10,0.15,0.20)

3Y (0.40,0.45,0.50)
(0.40,0.45,0.50)
(0.35,0.40,0.45)

(0.50,0.55,0.60)
(0.25,0.30,0.35)
(0.20,0.25,0.30)

(0.40,0.45,0.50)
(0.40,0.45,0.50)
(0.35,0.40,0.45)

(0.40,0.45,0.50)
(0.40,0.45,0.50)
(0.35,0.40,0.45)

(0.50,0.55,0.60)
(0.25,0.30,0.35)
(0.20,0.25,0.30)

4Y (0.40,0.45,0.50)
(0.40,0.45,0.50)
(0.35,0.40,0.45)

(0.50,0.55,0.60)
(0.25,0.30,0.35)
(0.20,0.25,0.30)

(0.40,0.45,0.50)
(0.40,0.45,0.50)
(0.35,0.40,0.45)

(0.70,0.75,0.80)
(0.15,0.20,0.25)
(0.10,0.15,0.20)

(0.70,0.75,0.80)
(0.15,0.20,0.25)
(0.10,0.15,0.20)

-------------------------------------------------------------------------------------------------------------------------------------------- 

Here, we apply two proposed aggregation operators 
TFNNWA and TFNNWG to solve the medical 
representative selection problem by using the following 
steps. 

6.1 Utilization of TFNNWA operator: 

Step 1: Aggregate the rating values of the alternative Yi 
(i= 1, 2, 3, 4) defined in the i -th row of decision 
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matrix 4 5(p )ijP  (see Table 2.) with TFNNWA 
operator. 

Step 2: The aggregated rating values  
iu  corresponding to 

the alternative 
iY  are determined by Eq.(27) and the 

values are shown in Table 3. 
---------------------------------------------------------------------------------------------------------------------------------------------- 

Table 3. Aggregated TFNNV based ratings 
Aggregated ratings 

1u (0.6920,0.7451,0.8000),(0.1540,0.2026,0.2572), (0.1000,0.1540,0.2060)

2u (0.7147,0.7667,0.8197),(0.1426,0.1938,0.2445), (0.0901,0.1426,0.1938)

3u (0.4523,0.5025,0.5528),(0.3162,0.3674,0.4183), (0.2646,0.3162,0.3674)

4u (0.5655,0.6184,0.6722),(0.2402,0.2940,0.3466), (0.1844,0.2402,0.2940)

---------------------------------------------------------------------------------------------------------------------------------------------- 

Step 3:   The score and accuracy values of alternatives Yi 
(i= 1, 2, 3, 4) are determined by Eq.(21) and 
Eq.(22) in Table 4. 

Table 4. Score and accuracy values of aggregated rating values 
Alternative Score 

values ( )iS u

Accuracy 
values A(ui) 

1Y 0.7960 0.5921 

2Y 0.8103 0.6247 

3Y 0.6464 0.1864 

4Y 0.6951 0.3789 

Step 4: The order of the alternatives Yi (i= 1, 2, 3, 4) is 
determined according to the descending order of the score 
and accuracy values shown in Table 4. Thus the ranking 
order of the alternatives is presented as follows: 

2 1 4 3.Y Y Y Y  

Step 5: The ranking order in Step 4 reflects that, 2Y  is the 
best medical representative. 

6.2 Utilization of TFNNWG operator: 

Step 1: Using Eq.(49), we aggregate all the rating values 

of the alternative Yi (i= 1, 2, 3, 4)  for the i- throw of 

the decision matrix 4 5(p )ijP  (see Table 2.). 

Step 2: The aggregated rating values
iu  corresponding to 

the alternative 
iY  are shown in the Table 5. 

---------------------------------------------------------------------------------------------------------------------------------------------- 

Table 5. Aggregated TFNN based rating values 
Aggregated rating values 

1u (0.6654,0.7161,0.7667),(0.1643,0.2144,0.2646), (0.1142,0.1643,0.2144)

2u (0.6998,0.7502,0.8002),(0.1485,0.1986,0.2486), (0.0984,0.1485,0.1986)

3u (0.4472,0.4975,0.5477),(0.3292,0.3795,0.4299), (0.2789,0.3292,0.3795)

4u (0.5291,0.5804,0.6316),(0.2707,0.3214,0.3721), (0.2202,0.2707,0.3214)

----------------------------------------------------------------------------------------------------------------------------------------------
Step 3: The score and accuracy values of alternatives Yi 

(i= 1, 2, 3, 4) are determined by Eqs.(21) and (22) 
and the results are shown in the Table 6. 

Table 6. Score and accuracy values of rating values 
Alternative Score 

values ( )iS u

Accuracy 
values A(ui) 

1Y 0.7791 0.5518 

2Y 0.8010 0.6016 

3Y 0.5962 0.1683 

4Y 0.6627 0.3096 

Step 4:  The order of alternatives Yi (i = 1, 2, 3, 4) has 
been determined according to the descending order 
of score and accuracy values shown in Table 4. 
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Thus the ranking order of the alternative is present-
ed as follows: 

2 1 4 3.Y Y Y Y  

Step 5:  The ranking order in Step 4 reflects that 2Y  is the 
best medical representative. 

7 Conclusions 

MADM problems generally takes place in a complex 
environment and usually connected with imprecise data 
and uncertainty. The triangular neutrosophic fuzzy 
numbers are an effective tool for dealing with 
impreciseness and incompleteness of the decision maker’s 
assessments over alternative with respect to attributes.  We 
have first introduced TFNNs and defined some of its 
operational rules. Then we have proposed two aggregation 
operators called TFNNWAA and TFNNWGA operators 
and score function and applied them to solve multi 
attribute decision making problem under neutrosophic 
environment. Finally, the effectiveness and applicability of 
the proposed approach have been illustrated with medical 
representative selection problem. We hope that the 
proposed approach can be also applied in other decision 
making problems such as pattern recognition, personnel 
selection, medical diagnosis, etc. 
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