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Abstract. In this paper, we generalize the definition of 
Neutrosophic sets and present a method for extending 

crisp functions on Neutrosophic sets and study some prop-
erties of such extended functions. 

Keywords: Neutrosophic set, Multi-fuzzy set, Bridge function..

1 Introduction

L-fuzzy sets constitute a generalization of the notion of 
Zadeh's [26] fuzzy sets and were introduced by Goguen [8] 
in 1967, later Atanassov introduced the notion of the intui-
tionistic fuzzy sets [1] Gau and Buehrer [7] defined vague 
sets. Bustince and Burillo [2] showed that the notion of 
vague sets is the same as that of intuitionistic fuzzy sets. 
Deschrijver and Kerre [5] established the interrelationship 
between the theories of fuzzy sets, L-fuzzy sets, interval val-
ued fuzzy sets, intuitionistic fuzzy sets, intuitionistic L-
fuzzy sets, interval valued intuitionistic fuzzy sets, vague 
sets and gray sets [4]. 

The neutrosophic set (NS) was introduced by F. 
Smarandache [22] who introduced the degree of indetermi-
nacy (i) as independent component in his manuscripts that 
was published in 1998. 

Multi-fuzzy sets [12, 13, 16] was proposed in 2009 by 
Sabu Sebastian as an extension of fuzzy sets [8, 26] in terms 
of multi membership functions. In this paper we generalize 
the definition of neutrosophic sets and introduce extension 
of crisp functions on neutrosophic sets. 

2 Preliminaries

Definition 2.1. [26] Let X be a nonempty set.

A fuzzy set A of X is a mapping A : X → [0, 1],

that is,
A = {(x, µA(x)) : µA(x) is the grade of member-
ship of x in A, x ∈ X}. The set of all the fuzzy
sets on X is denoted by F(X).

Definition 2.2. [8] Let X be a nonempty

ordinary set, L a complete lattice. An L-fuzzy set

on X is a mapping A : X → L, that is the family

of all the L-fuzzy sets on X is just LX consisting of 
all the mappings from X to L.
Definition 2.3. [1] An Intuitionistic Fuzzy Set

on X is a set

A = {〈x, µA(x), νA(x)〉 : x ∈ X},
where µA(x) ∈ [0, 1] denotes the membership 
degree and νA(x) ∈ [0, 1] denotes the non-

membership degree of x in A and

µA(x) + νA(x) ≤ 1,∀x ∈ X.

Definition 2.4. [22]A Neutrosophic Set on X is a
set

A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ X},
where TA(x) ∈ [0, 1] denotes the truth 
membership degree, IA(x) ∈ [0, 1] denotes the 
indetermi-nancy membership degree and FA(x) ∈ 
[0, 1] denotes the falsity membership degree of x
in A respectively and

0 ≤ TA(x) + IA(x) + FA(x) ≤ 3, ∀x ∈ X.
For single valued neutrosophic logic (T, I, F ),

the sum of the components is: 0 ≤ T +I+F ≤ 3
when all three components are independent; 0 ≤ T
+ I + F ≤ 2 when two components are dependent,

while the third one is independent from them; 0 ≤
T + I + F ≤ 1 when all three components are

dependent.

Definition 2.5. [12, 13, 16]Let X be a nonempty

set, J be an indexing set and {Lj : j ∈ J} a family 
of partially ordered sets. A multi-fuzzy set A in
X is a set :

A = {〈x, (µj (x))j∈J 〉 : x ∈ X, µj ∈ Lj
X , j ∈ J}.
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The indexing set J may be uncountable. The
function µA = (µj )j∈J is called the membership

function of the multi-fuzzy set A and∏
j∈J Lj is called the value domain. 

If  J = {1, 2, ..., n} or the set of all natural numbers, 
then the membership function µA = 〈µ1, µ2, ...〉 is 
a sequence.

In particular, if the sequence of the membership 
function having precisely n-terms and Lj = [0, 
1], for J = {1, 2, ..., n}, then n is called the

dimension and MnFS(X) denotes the set of all 
multi-fuzzy sets in X.

Properties of multi-fuzzy sets, relations on

multi-fuzzy sets and multi-fuzzy extensions of

crisp functions are depend on the order relations

defined in the membership functions. Most of the

results in the initial papers [12, 13, 15, 16, 18] are

based on product order in the membership

functions. The paper [21] discussed other order

relations like dictionary order, reverse dictionary

order on their membership functions.

Let {Lj : j ∈ J} be a family of partially ordered 
sets, and
A = {〈x, (µj (x))j∈J 〉 : x ∈ X,
µj ∈ Lj

X , j ∈ J} and B = {〈x, (νj (x))j∈J 〉 : x ∈ 
X, νj ∈ Lj

X , j ∈ J} be multi-fuzzy sets in a 
nonempty set X. Note that, if the order relation

in their membership functions are either product

order, dictionary order or reverse dictionary

order[16, 21], then;

• A = B if and only if µj (x) = νj (x), ∀x ∈ X and 
for all j ∈ J
• A tB = {〈x, (µj(x) ∨j νj(x))j∈J〉 : x ∈ X} and

• A uB = {〈x, (µj(x) ∧j νj(x))j∈J〉 : x ∈ X},

where ∨j and ∧j are the supremum and infimum 
defined in Lj with partial order relation ≤j . Set 
inclusion defined as follows:

• In product order, A ⊂ B if and only if µj (x) < 
νj (x), ∀x ∈ X and for all j ∈ J.
• In dictionary order, A ⊂ B if and only if µ1(x) < 
ν1(x) or if µ1(x) = ν1(x) and 
µ2(x) < ν2(x),∀x ∈ X.

Definition 2.6. Let L be a lattice. A mapping ′ : 
L → L is called an order reversing involution [25],
if for all a, b ∈ L :

1. a ≤ b⇒ b′ ≤ a′;
2. (a′)′ = a.

Definition 2.7. [23] Let ′ : M → M and ′ : L → L 
be order reversing involutions. A mapping h : M
→ L is called an order homomorphism, if it

satisfies the conditions:

1. h(0M ) = 0L;

2. h(∨ai) = ∨h(ai);

3. h−1(b′) = (h−1(b))′,

where h−1 : L→M is defined by, for every b ∈ L,
h−1(b) = ∨{a ∈M : h(a) ≤ b}.

Generalized Zadeh extension of crisp functions

[24] have prime importance in the study of fuzzy

mappings. Sabu Sebastian [16, 13]generalized this

concept as multi-fuzzy extension of crisp

functions and it is useful to map a multi-fuzzy set

into another multi-fuzzy set. In the case of a crisp

function, there exists infinitely many multi-fuzzy

extensions, even though the domain and range of

multi-fuzzy extensions are same.

Definition 2.8. [16] Let f : X → Y and h :
∏
Mi →

∏
Lj be a functions. The multi-fuzzy

extension of f and the inverse of the extension are f :
∏
MX

i → Lj
Y and f−1 : Lj

Y →
∏ ∏ ∏

MX
i

defined by

f(A)(y) =
∨

y=f(x)

h(A(x)), A ∈
∏

Mi
X , y ∈ Y

and ∏
Lj
Y , x ∈ X;∏
Mi →

∏
Lj is called the bridge

f−1(B)(x) = h−1(B(f(x))), B ∈

where h−1 is the upper adjoint [23] of h. The function h :

function of the multi-fuzzy extension of f .
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Remark 2.9. In particular, the multi-fuzzy

extension of a crisp function f : X → Y based on

the bridge function h : Ik → In can be written as f : 
MkFS(X) → MnFS(Y ) and f−1 : MnFS(Y ) → 
MkFS(X), where

f(A)(y) = sup
y=f(x)

h(A(x)), A ∈MkFS(X), y ∈ Y

and

f−1(B)(x) = h−1(B(f(x))), B ∈ MnFS(Y ), x ∈ X. 

In the following section 
∏
Mi = 

∏ 
Lj = I3.

Remark 2.10. There exists infinitely many

bridge functions. Lattice homomorphism, order

homomorphism, lattice valued fuzzy lattices and

strong L-fuzzy lattices are examples of bridge

functions.

Definition 2.11. [10] A function t : [0, 1] × [0,

1]→ [0, 1] is a t-norm if ∀a, b, c ∈ [0, 1]:(1) t(a, 1)

= a;

(2) t(a, b) = t(b, a);

(3) t(a, t(b, c)) = t(t(a, b), c);

(4) b ≤ c implies t(a, b) ≤ t(a, c).

Similarly, a t-conorm (s-norm) is a commutative,

associative and non-decreasing mapping s :[0, 1]

× [0, 1] → [0, 1] that satisfies the boundary

condition:

s(a, 0) = a, for all a ∈ [0, 1].

Definition 2.12. [9] A function c : [0, 1] → [0, 1]

is called a complement (fuzzy) operation, if it

satisfies the following conditions:

(1) c(0) = 1 and c(1) = 0,

(2) for all a, b ∈ [0, 1], if a ≤ b, then c(a) ≥ c(b).

Definition 2.13. [9] A t-norm t and a t-conorm

s are dual with respect to a fuzzy complement

operation c if and only if
c(t(a, b)) = s(c(a), c(b))

and

c(s(a, b)) = t(c(a), c(b)),

for all a, b ∈ [0, 1].

Definition 2.14. [9] Let n be an integer greater

than or equal to 2. A function m : [0, 1]n → [0, 1] 
is said to be an aggregation operation for fuzzy

sets, if it satisfies the following conditions:

1. m is continuous;

2. m is monotonic increasing in all its arguments;

3. m(0, 0, ..., 0) = 0;

4. m(1, 1, ..., 1) = 1.

In this section, we generalize the definition of

neutrosophic sets on [0, 1]. Throughout the fol-

lowing sections Xis the universe of discourse and

A ∈ M3FS(X) means A is a multi-fuzzy sets of 
dimension 3 with value domain I3, where I3 = [0, 
1]× [0, 1] × [0, 1]. That is, A ∈ (I3)X .

3 Neutrosophic Sets

Definition 3.1. Let X be a nonempty crisp set

and 0 ≤ α ≤ 3. A multi-fuzzy set A ∈ M3FS(X)is 
called a neutrosophic set of order α, if

A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ X, 
0 ≤ TA(x) + IA(x) + FA(x) ≤ α}.

Definition 3.2. Let A, B be neutrosophic sets

in X of order 3 and let t, s, m, c be the t-norm, s-
norm, aggregation operation and complement

operation respectively. Then the union,

intersection and complement are given by

1. A
⋃

2. A
⋂B = {〈x, s(TA(x), TB(x)),m(IA(x), IB(x)), t(FA(x), FB(x))〉 : x ∈ X};

B = {〈x, t(TA(x), TB(x)),m(IA(x), IB(x)), s(FA(x), FB(x))〉 : x ∈ X};

3. Ac = {〈x, c(TA(x)), c(IA(x)), c(FA(x))〉 : x ∈ X}.
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4 Extension of crisp functions on neutrosophic 
set using order homomorphism as bridge 
function 

Theorem 4.1. If an order homomorphism h : I3 

→ I3 is the bridge function for the multi-fuzzy 
extension of a crisp function f : X → Y , then for

every k ∈ K neutrosophic sets Ak in X and Bk in Y 
of order 3;

1. A1 ⊆ A2 implies f(A1) ⊆ f(A2);

2. f(∪Ak) = ∪f(Ak);

3. f(∩Ak) ⊆ ∩f(Ak);

4. B1 ⊆ B2 implies f−1(B1) ⊆ f−1(B2);

5. f−1(∪Bk) = ∪f−1(Bk);

6. f−1(∩Bk) = ∩f−1(Bk);

7. (f−1(B))′ = f−1(B′);

8. A ⊆ f−1(f(A));

9. f(f−1(B)) ⊆ B.

Proof.

1. A1 ⊆ A2 implies A1(x) ≤ A2(x), ∀x ∈ X
and implies

h(A1(x)) ≤ h(A2(x)),∀x ∈ X.
Hence

∨{h(A1(x)) : x ∈ X, 

y = f(x)} ≤ ∨{h(A2(x)) : x ∈ X, 

y = f(x)} and f(A1)(y) ≤ f(A2)(y), 

∀y ∈ Y. That is, f(A1) ⊆ f(A2).

2. For every y ∈ Y,
f(∪Ak)(y) = ∨{h((∪Ak)(x)) : x ∈ X, 
y = f(x)}

= ∨{h(∨Ak(x)) : x ∈ X, y = f(x)}

= ∨{∨k∈Kh(Ak(x)) : x ∈ X, y = f(x)}

= ∨k∈K ∨ {h(Ak(x)) : x ∈ X, y = f(x)}

= ∨k∈Kf(Ak)(y),

thus f(∪Ak) = ∪f(Ak).

3. For every y ∈ Y,
f(∩Ak)(y) = ∨{h((∩Ak)(x)) : x ∈ X,
y = f(x)}

= ∨{h(∧k∈KAk(x)) : x ∈ X, y = f(x)}

≤ ∨{h(Ak(x)) : x ∈ X, y = f(x)},
for each k ∈ K. Hence

f(∩Ak)(y) ≤ ∧k∈K ∨ {h(Ak(x)) : x ∈ X, 
y = f(x)} = ∧k∈Kf(Ak)(y),

thus f(∩Ak) ⊆ ∩f(Ak).

4. B1 ⊆ B2 implies B1(y) ≤ B2(y), ∀y ∈ Y.
Hence

f−1(B1)(x) = h−1(B1(f(x))) ≤ h−1(B2(f(x))) =

 f−1(B2)(x), ∀x ∈ X. 

Therefore, f−1(B1) ⊆ f−1(B2).

5. For every x ∈ X, we have

f−1(∪Bk)(x) = h−1((∪Bk)(f(x))) = h−1(sup Bk(f(x)))

= sup
k∈K

h−1(Bk(f(x))) = sup
k∈K

k∈K

f−1(Bk)(x)

= (∪f−1(Bk))(x).

Hence f−1(∪Bk) = ∪f−1(Bk).

f−1(∩Bk)(x) = h−1((∩Bk)(f(x))) = h−1( inf Bk(f(x)))

= inf
k∈K

h−1(Bk(f(x))) = inf
k∈K

k∈K

f−1(Bk)(x)

= (∩f−1(Bk))(x).

6. For every x ∈ X, we have

Hence f−1(∩Bk) = ∩f−1(Bk).

7. For every x ∈ X,

f−1(B′)(x) = h−1(B′(f(x))) = h−1(B(f(x)))′ = 

(f−1(B))′(x), since f−1(B)(x) = h−1(B(f(x))). 

That is, f−1(B′) = (f−1(B))′.

8. For every x0 ∈ X,

A(x0) ≤ ∨{A(x) : x ∈ X, x ∈ f−1(f(x0)}

≤ h−1(h(∨{A(x) : x ∈ X, x ∈ f−1(f(x0)}))

= h−1(∨{h(A(x)) : x ∈ X, x ∈ f−1(f(x0))})

= h−1(f(A)(f(x0)))

= f−1(f(A))(x0).

9. For every y ∈ Y
f(f−1(B))(y) = sup

y=f(x)

= sup
y=f(x)

h(f−1(B)(x))

h(h−1(B(f(x))))
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Proposition 4.2. If an order homomorphism

h : I3 → I3 is the bridge function for the extension 
of a crisp function f : X → Y , then for any k ∈ K
neutrosophic sets Ak in X and B in Y :

1. f(0X) = 0Y ;

2. f(∪Ak) = ∪f(Ak); and

3. (f−1(B))′ = f−1(B′),

that is, the extension map f is an order
homomorphism.

= h(h−1(B(y)))

≤ B(y).

Hence f(f−1(B)) ⊆ B.
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