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Abstract. In this paper, we generalize the definition of
Neutrosophic sets and present a method for extending
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1 Introduction

L-fuzzy sets constitute a generalization of the notion of
Zadeh's [26] fuzzy sets and were introduced by Goguen [8]
in 1967, later Atanassov introduced the notion of the intui-
tionistic fuzzy sets [1] Gau and Buehrer [7] defined vague
sets. Bustince and Burillo [2] showed that the notion of
vague sets is the same as that of intuitionistic fuzzy sets.
Deschrijver and Kerre [5] established the interrelationship
between the theories of fuzzy sets, L-fuzzy sets, interval val-
ued fuzzy sets, intuitionistic fuzzy sets, intuitionistic L-
fuzzy sets, interval valued intuitionistic fuzzy sets, vague
sets and gray sets [4].

2 Preliminaries

Definition 2.1. [26] Let X be a nonempty set.
A fuzzy set A of X is amapping A : X — [0, 1],
that is,

A ={(z, pa(z)) : pa(zx) is the grade of member-

ship of z in A, x € X}. The set of all the fuzzy
sets on X is denoted by F(X).

Definition 2.2. [8] Let X be a nonempty
ordinary set, L a complete lattice. An L-fuzzy set
on X is a mapping A : X — L, that is the family
of all the L-fuzzy sets on X is just L* consisting of
all the mappings from X to L.

Definition 2.3. [1] An Intuitionistic Fuzzy Set
on X is aset

A ={(z,pa(z),va(z)) : x € X},
where pa(xz) € [0, 1] denotes the membership
degree and va(x) € [0, 1] denotes the non-

membership degree of x in A and
pa(x) +va(z) <1,Vzx € X.

crisp functions on Neutrosophic sets and study some prop-
erties of such extended functions.

The neutrosophic set (NS) was introduced by F.
Smarandache [22] who introduced the degree of indetermi-
nacy (i) as independent component in his manuscripts that
was published in 1998.

Multi-fuzzy sets [12, 13, 16] was proposed in 2009 by
Sabu Sebastian as an extension of fuzzy sets [8, 26] in terms
of multi membership functions. In this paper we generalize
the definition of neutrosophic sets and introduce extension
of crisp functions on neutrosophic sets.

Definition 2.4. [22]A Neutrosophic Set on X is a
set

A={(z,Ta(z), 14(x), Fa(z)) : x € X},
where Ty4(x) € [0, 1] denotes the truth
membership degree, I4(z) € [0, 1] denotes the
indetermi-nancy membership degree and Fy(z) €
[0, 1] denotes the falsity membership degree of x
in A respectively and

0 <Ty(x)+Ia(z)+ Fa(x) <3,V € X.

For single valued neutrosophic logic (7, I, F'),
the sum of the components is: 0 < T +I14+F < 3
when all three components are independent; 0 < T
+ I 4+ F'< 2 when two components are dependent,
while the third one is independent from them; 0 <
T+ I 4+ F <1 when all three components are
dependent.

Definition 2.5. [12, 13, 16]Let X be a nonempty
set, J be an indexing set and {L;: j € J} a family
of partially ordered sets. A multi-fuzzy set A in

Xisaset:

A = {(z,(pj(x))jes) x € X, p;j € L;(, jeJ}
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The indexing set J may be uncountable. The
function pa = () jesis called the membership

function of the multi-fuzzy set A and

I

e sLjis called the value domain.

If J={1, 2, ..., n} or the set of all natural numbers,
then the membership function pa = (i1, ua, ...) is
a sequence.

In particular, if the sequence of the membership
function having precisely n-terms and L; = [0,
1], for J = {1, 2, ..., n}, then n is called the
dimension and M"FS(X) denotes the set of all

multi-fuzzy sets in X.

Properties of multi-fuzzy sets, relations on
multi-fuzzy sets and multi-fuzzy extensions of
crisp functions are depend on the order relations
defined in the membership functions. Most of the
results in the initial papers [12, 13, 15, 16, 18] are
based on product order in the membership
functions. The paper [21] discussed other order
relations like dictionary order, reverse dictionary
order on their membership functions.

Let {L;: j € J} be a family of partially ordered
sets, and

A= {{z, (1 (2))jes) 1w €X,

i € LjX,jE J}and B = {(z, (vj (z))jecs) 1z €
X, v; € LjX , J € J} be multi-fuzzy sets in a
nonempty set X. Note that, if the order relation
in their membership functions are either product
order, dictionary order or reverse dictionary
order[16, 21], then;

e A =Bifandonlyif y;(z) =v;(z), Vo € X and
forallje J

o AUB = {{z, (4;(x) V; vj(2))jes) : @ € X} and
o ANB = {{z, ;@) Njvj(x))jes) : x € X},

where V;and Ajare the supremum and infimum
defined in L; with partial order relation <;. Set
inclusion defined as follows:

e In product order, A C B if and only if u; () <
vj(x), Vo € X and forall j € J.

e In dictionary order, A C Bif and only if u1(x) <
vi(x) or if py(x) = v1(z) and
ps(z) < wo(z),Vo € X.

Definition 2.6. Let L be a lattice. A mapping’:
L — L is called an order reversing involution [25],
if foralla,be L:

1. a<b=V <d;
2. () =a.

Definition 2.7. [23] Let': M — Mand’: L — L
be order reversing involutions. A mapping h : M
— L is called an order homomorphism, if it
satisfies the conditions:

1. h(0ar) = Op;
2. h(Va;) = Vh(a;);
3. () = (WD),
where h™! : L — M is defined by, for every b € L,
ht(b) = V{a € M : h(a) < b}.

Generalized Zadeh extension of crisp functions
[24] have prime importance in the study of fuzzy
mappings. Sabu Sebastian [16, 13]generalized this
concept as multi-fuzzy extension of crisp
functions and it is useful to map a multi-fuzzy set
into another multi-fuzzy set. In the case of a crisp
function, there exists infinitely many multi-fuzzy
extensions, even though the domain and range of

multi-fuzzy extensions are same.

Definition 2.8. [16] Let f : X — Y and h : [[M; — [[L; be a functions. The multi-fuzzy
extension of f and the inverse of the extension are f : [[ M;X — [] L}/ and f~1: ] L}/ — [TM*

defined by

FMy =\ hA@)

y=f(z)

and

FHB)(@) = 1 (B(f(x)

), Ac[[ MY, yey

), Be][L), =€ X;

where h~! is the upper adjoint [23] of h. The function h : [[M; — [] L; is called the bridge

function of the multi-fuzzy extension of f.
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Remark 2.9. In particular, the multi-fuzzy
extension of a crisp function f: X — Y based on
the bridge function h : I¥ — I" can be written as f
MXFS(X) — MPFS(Y) and f~': MPFS(Y) —
MXFS(X), where

f(A)(y) = il}g)h(fl(w))’ AeM'FS(X), yeY

and

FYB)(z) = h"Y(B(f(z))), B€ M"FS(Y), z € X.

In the following section [[M; =[] L;= I.
Remark 2.10. There exists infinitely many

bridge functions. Lattice homomorphism, order
homomorphism, lattice valued fuzzy lattices and

strong L-fuzzy lattices are examples of bridge

functions.

Definition 2.11. [10] A function ¢ : [0, 1] x [0,
1] = [0, 1] is a t-norm if Va, b, ¢ € [0, 1]:(1) ¢(a, 1)
=aq;

(2) t(a,b) =t(b,a);

(3) t(a,t(b,c)) = t(t(a,b),c);

(4) b < cimplies t(a,b) < t(a,c).

Similarly, a t-conorm (s-norm) is a commutative,
associative and non-decreasing mapping s :[0, 1]
x [0, 1] — [0, 1] that satisfies the boundary

condition:
s(a,0) = a, for all a € [0, 1].

Definition 2.12. [9] A function ¢ : [0, 1] — [0, 1]
is called a complement (fuzzy) operation, if it
satisfies the following conditions:

(1) ¢(0) =1 and ¢(1) =0,
(2) for all a,b € [0,1], if a < b, then c(a) > ¢(b).

Definition 2.13. [9] A t-norm ¢ and a t-conorm
s are dual with respect to a fuzzy complement
operation c if and only if

c(t(a, b)) = s(c(a), c(b))
and

c(s(a, b)) = t(c(a), c(b)),
for all a,b € [0,1].

Definition 2.14. [9] Let n be an integer greater
than or equal to 2. A function m : [0, 1]" — [0, 1]
is said to be an aggregation operation for fuzzy
sets, if it satisfies the following conditions:

1. m is continuous;
2. m is monotonic increasing in all its arguments;
3. m(0,0,...,0) = 0;
4. m(1,1,...,1) = 1.

3 Neutrosophic Sets

In this section, we generalize the definition of
neutrosophic sets on [0, 1]. Throughout the fol-
lowing sections Xis the universe of discourse and
A € M3FS(X) means A is a multi-fuzzy sets of
dimension 3 with value domain I?, where I° = [0,
1] x [0, 1] x [0, 1]. That is, A € (I*)X.

Definition 3.1. Let X be a nonempty crisp set
and 0 < a < 3. A multi-fuzzy set A € M3FS(X)is
called a neutrosophic set of order o, if

A = {(z, Ta(2), Ia(2), Fa(a)) 2 € X,
0 <Ty(z)+ La(z) + Fa(x) < a}.

Definition 3.2. Let A, B be neutrosophic sets
in X of order 3 and let ¢, s, m, ¢ be the t-norm, s-
norm, aggregation operation and complement
Then  the

intersection and complement are given by

operation  respectively. union,

L AUB = {(z,s(Ta(z), Tp(x)), m(Ia(x), Ip(x)), t(Fa(x), Fp(x))) : © € X};

2. AN B = {(z, t(Ta(x), Tp(x)), m(La(x), Ip(x)), s(Fa(x), Fp(x))) : € X};

3. A¢ = {{z,c(Ta(x)),c(Ia(x)), c(Fa(x))) : x € X}.
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4 Extension of crisp functions on neutrosophic
set using order homomorphism as bridge
function

Theorem 4.1. If an order homomorphism A : I3
— I? is the bridge function for the multi-fuzzy
extension of a crisp function f: X — Y, then for
every k € K neutrosophic sets Axin X and Byin Y
of order 3;

1. Al g AQ implies f(Al) g f(AQ),

2. f(UAg) = Uf(Ag);
3. f(NAg) € Nf(Ag);

4. By C By implies f~1(By) C f~Y(By);

f*l

5. f7Y(UBg) = Uf~1(By); o
6. f~HNBy) = Nf~H(B);
T (fUB) = fH(BY);
8. AC fH(f(A);
9. f(f71(B)) € B.
Proof.

1. A; C Agimplies A1(x) < Ag(z), Vo € X
and implies
h(A1(z)) < h(Az(z)),Vz € X.
Hence
V{h(A1(z)):x € X,
— f@)} < V{h(As(a)) 7 € X,

= f(z)} and f(A1)(y) < f(A2)(y),
Vy € Y. That is, f(Al) - f(AQ)

2. For every y €Y,
J(UAR)(y) = V{h((UAL) (7)) sz € X,
y = flz)}
= V{h(VAR(z)):z € X, y = f(x)}
= V{Viexh(Ax(z)) 1z € X, y = f(z)}
= Viex V{h(4x(2)) :z € X, y = f(x)}
= Viex f(Ax) (),
thus f(UAg) = Uf(Ag).
3. For every y €Y,
f(0AR)(y) = VIR((NAR)(2)) : x € X,
y = flx)}

(NBY(@) = h*

= V{h(ArexAr(2)) 1z € X, y= f(z)}

< V{h(Ag(2) :z € X, y = f(2)},
for each k € K. Hence
f(ﬂAk)(y) < Aker V {h(Ak(ac)) cx € X,
y= f(2)} = Neex f(AR) (),

thus f(NAx) € Nf(Ak).

4. B; C Byimplies Bi(y) < Ba(y),Vy € Y.
Hence

FHBY)(@) = (Bu(f(x))) < b
FY(By)(z), Vo € X.

By(f(x))) =

Therefore, f~1(By) C f1(Ba).

5. For every z € X, we have

(UB)(z) = h™'((UB)(f(2))) = hil(zg}g By (f(x)))
— sup ™ (By(f(2))) = sup £ (Bi) (2)
keK keK
= (Uf1(By)(x).
Hence f~1(UBy) = Uf~1(By).

6. For every z € X, we have
(NBy)(f(2))) = k™" (inf Bi(f(2))

= jnf A7 (By(f (@) = jinf f7(By)(x)

= (/7 (B)(@).
Hence f~1(NBy) = Nf~1(By).
7. For every x € X,
FHUB) (@) =1 (B(f(x)) = b H(B(f(z))) =
U=1(B)) (@), since f4(B)(x) = h™(B(f(x))).

That is, f~1(B') = (f(B))".
8. For every zp € X,

Alzo) < V{A(z):z € X, x € f(f(z0)}
W (h(V{A(2) sz € X, € f71(f(x0)}))
= T (V{h(A(@)) rw € X, z € fH(f(20)})
= h7H(f(A)(f(20)))
= [TH(f(A)) (o).
9. For every y € Y
FUTHBNY) = sup A(f7H(B)(2))
y=f(z)
= sup h(h'(B(f(2))))
y=f(z)
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= h(h™'(By)
< B(y).
Hence f(f~1(B)) C B.

Proposition 4.2. If an order homomorphism
h : I? — I3is the bridge function for the extension
of a crisp function f: X — Y, then for any k € K
neutrosophic sets A;yin X and BinY:

L. f(0x) = Oy;
2. f(UAg) = Uf(Ag); and

3. (f7HB)) = 1B,

that is, the extension map f is an order
homomorphism.
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