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Abstract: The theory of quadripartitioned single valued neutro-
sophic sets was proposed very recently as an extension to the ex-
isting theory of single valued neutrosophic sets. In this paper the 
notion of possibility fuzzy soft sets has been generalized into a new 
concept viz. interval-valued possibility quadripartitioned single val-

ued neutrosophic soft sets. Some basic set-theoretic operations have
been defined on them. Some distance, similarity, entropy and inclu-
sion measures for possibility quadripartitioned single valued neutro-
sophic sets have been proposed. An application in a decision making
problem has been shown.
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1 Introduction

The theory of soft sets (introduced by D. Molodstov, in 1999)
([10],[15]) provided a unique approach of dealing with uncer-
tainty with the implementation of an adequate parameterization
technique. In a very basic sense, given a crisp universe, a soft
set is a parameterized representation or parameter-wise classifi-
cation of the subsets of that universe of discourse with respect to
a given set of parameters. It was further shown that fuzzy sets
could be represented as a particular class of soft sets when the set
of parameters was considered to be [0, 1]. Since soft sets could
be implemented without the rigorous process of defining a suit-
able membership function, the theory of soft sets, which seemed
much easier to deal with, underwent rapid developments in fields
pertaining to analysis as well as applications (as can be seen from
the works of [1],[6],[7],[12],[14],[16],[17] etc.)

On the otherhand, hybridized structures, often designed and
obtained as a result of combining two or more existing struc-
tures, have most of the inherent properties of the combined struc-
tures and thus provide for a stronger tool in handling applica-
tion oriented problems. Likewise, the potential of the theory of
soft sets was enhanced to a greater extent with the introduction
of hybridized structures like those of the fuzzy soft sets [8], in-
tuitionistic fuzzy soft sets [9], generalized fuzzy soft sets [13],
neutrosophic soft sets [11], possibility fuzzy soft sets [2], possi-
bility intuitionistic fuzzy soft sets [3] etc. to name a few.

While in case of generalized fuzzy soft sets, corresponding to
each parameter a degree of possibility is assigned to the corre-
sponding fuzzy subset of the universe; possibility fuzzy sets, a
further modification of the generalized fuzzy soft sets, character-
ize each element of the universe with a possible degree of be-
longingness along with a degree of membership. Based on Bel-
nap’s four-valued logic [4] and Smarandache’s n-valued refined

neutrosophic set [18], the theory of quadripartitioned single val-
ued neutrosophic sets [5] was proposed as a generalization of
the existing theory of single valued neutrosophic sets [19]. In
this paper the concept of interval valued possibility quadriparti-
tioned single valued neutrosophic soft sets (IPQSVNSS, in short)
has been proposed. In the existing literature studies pertaining to
a possibility degree has been dealt with so far. Interval valued
possibility assigns a closed sub-interval of [0, 1] as the degree of
chance or possibility instead of a number in [0, 1] and thus it is
a generalization of the existing concept of a possibility degree.
The proposed structure can be viewed as a generalization of the
existing theories of possibility fuzzy soft sets and possibility in-
tuitionistic fuzzy soft sets.

The organization of the rest of the paper is as follows: a cou-
ple of preliminary results have been stated in Section 2, some 
basic set-theoretic operations on IPQSVNSS have been defined 
in Section 3, some uncertainty based measures viz. entropy, in-
clusion measure, distance measure and similarity measure, have 
been defined in Section 4  and their properties, applications and 
inter-relations have been studied. Section 5 concludes the paper.

2 Preliminaries
In this section some preliminary results have been outlined which
would be useful for the smooth reading of the work that follows.

2.1 An outline on soft sets and possibility intu-
itionistic fuzzy soft sets

Definition 1 [15]. Let X be an initial universe and E be a set of
parameters. Let P(X) denotes the power set of X and A ⊂ E.
A pair (F,A) is called a soft set iff F is a mapping of A into
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P(X).
The following results are due to [3].

Definition 2 [3]. Let U = {x1, x2, ..., xn} be the univer-
sal sets of elements and let E = {e1, e1, ..., em} be the universal
set of parameters. The pair (U,E) will be called a soft universe.
Let F : E → (I × I)

U × IU where (I × I)
U is the collection of

all intuitionistic fuzzy subsets of U and IU is the collection of
all fuzzy subsets of U . Let p be a mapping such that p : E → IU

and let Fp : E → (I × I)
U × IU be a function defined as

follows:
Fp(e) = (F (e)(x), p(e)(x)), where F (e)(x) =

(µe (x) , νe (x)) ∀xεU .
Then Fp is called a possibility intuitionistic fuzzy soft set (PIFSS
in short) over the soft universe (U,E). For each parameter ei,
Fp(ei) can be represented as:

Fp(ei) =
{(

x1

F (ei)(x1) , p(ei) (x1)
)
, ...,

(
xn

F (ei)(xn) , p(ei) (xn)
)}

Definition 3 [3]. Let Fp andGq be two PIFSS over (U,E). Then
the following operations were defined over PIFSS as follows:
Containment: Fp is said to be a possibility intuitionistic fuzzy
soft subset (PIFS subset) of Gq and one writes Fp ⊆ Gq if
(i) p(e) is a fuzzy subset of q(e), for all eεE,
(ii)F (e) is an intuitionistic fuzzy subset of G(e), for all eεE.
Equality: Fp andGq are said to be equal and one writes Fp = Gq
if Fp is a PIFS subset of Gq and Gq is a PIFS subset of Fp
Union: Fp∪̃Gq = Hr, Hr : E → (I × I)

U × IU is de-
fined by Hr (e) = (H (e) (x) , r (e) (x)), ∀eεE such that
H (e) = ∪Atan (F (e) , G (e)) and r (e) = s (p (e) , q (e)),
where ∪Atan is Atanassov union and s is a triangular conorm.
Intersection: Fp∩̃Gq = Hr, Hr : E → (I × I)

U × IU is
defined by Hr (e) = (H (e) (x) , r (e) (x)), ∀eεE such that
H (e) = ∩Atan (F (e) , G (e)) and r (e) = t (p (e) , q (e)),
where ∩Atan is Atanassov intersection and t is a triangular norm.

Definition 4 [3]. A PIFSS is said to be a possibility abso-
lute intuitionistic fuzzy soft set, denoted by A1, if A1 : E →
(I × I)

U × IU is such that A1 (e) = (F (e) (x) , P (e) (x)),
∀eεE where F (e) = (1, 0) and P (e) = 1, ∀eεE.

Definition 5 [3]. A PIFSS is said to be a possibility null intuition-
istic fuzzy soft set, denoted by φ0, if φ0 : E → (I × I)

U × IU
is such that φ0 = (F (e) (x) , p (e) (x)), ∀eεE where
F (e) = (0, 1) and p (e) = 0, ∀eεE.

2.2 An outline on quadripartitioned single valued
neutrosophic sets

Definition 6 [5]. Let X be a non-empty set. A quadripartitioned
neutrosophic set (QSVNS)A, overX characterizes each element
x in X by a truth-membership function TA, a contradiction-
membership function CA, an ignorance-membership function
UA and a falsity membership function FA such that for each
x εX , TA, CA, UA, FA ε [0, 1]

When X is discrete, A is represented as,
A =

∑n
i=1 〈TA(xi), CA(xi), UA(xi), FA(xi)〉 /xi, xiεX .

However, when the universe of discourse is continuous, A is
represented as,
A = 〈TA(x), CA(x), UA(x), FA(x)〉 /x, xεX

Definition 7 [5]. A QSVNS is said to be an absolute QSVNS,
denoted by A, iff its membership values are respectively defined
as TA(x) = 1, CA(x) = 1, UA(x) = 0 and FA(x) = 0,∀xεX .

Definition 8 [5]. A QSVNS is said to be a null QSVNS,
denoted by Θ, iff its membership values are respectively defined
as TΘ(x) = 0, CΘ(x) = 0, UΘ(x) = 1 and FΘ(x) = 1,∀xεX

Definition 9 [5]. Let A and B be two QSVNS over X .
Then the following operations can be defined:
Containment: A ⊆ B iff TA(x) ≤ TB(x), CA(x) ≤ CA(x),
UA(x) ≥ UA(x) and FA(x) ≥ FA(x), ∀xεX.
Complement:Ac =

∑n
i=1 〈FA(xi), UA(xi), CA(xi), TA(xi)〉 /xi,xi εX

i.e. TAc(xi) = FA(xi), CAc(xi) = UA(xi) , UAc(xi) = CA(xi)
and FAc(xi) = TA(xi), xi εX
Union: A ∪ B =

∑n
i=1 <

(TA(xi) ∨ TB(xi)) , (CA(xi) ∨ CB(xi)) , (UA(xi) ∧ UB(xi)) ,
(FA(x) ∧ FB(x)) > /xi,xi εX
Intersection: A ∩ B =

∑n
i=1 <

(TA(xi) ∧ TB(xi)) , (CA(xi) ∧ CB(xi)) , (UA(xi) ∨ UB(xi)) ,
(FA(xi) ∨ FB(xi)) > /xi,xi εX

Proposition 1[5]. Quadripartitioned single valued neutrosophic
sets satisfy the following properties under the aforementioned
set-theoretic operations:

1.(i) A ∪B = B ∪A
(ii) A ∩B = B ∩A
2.(i) A ∪ (B ∪ C) = (A ∪B) ∪ C
(ii) A ∩ (B ∩ C) = (A ∩B) ∩ C
3.(i) A ∪ (A ∩B) = A
(ii) A ∩ (A ∪B) = A
4.(i) (Ac)

c
= A

(ii) Ac = Θ
(iii) Θc = A
(iv) De-Morgan’s laws hold viz. (A ∪B)

c
= Ac ∩ Bc;

(A ∩B)
c

= Ac ∪B
5.(i) A ∪ A = A
(ii) A ∩ A = A
(iii) A ∪Θ = A
(iv) A ∩Θ = Θ
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3 Interval-valued possibility quadripar-
titioned single valued neutrosophic soft
sets and some of their properties

Definition 10. LetX be an initial crisp universe andE be a set of
parameters. Let I = [0, 1] , QSV NS(X) represents the collec-
tion of all quadripartitioned single valued neutrosophic sets over
X , Int([0, 1]) denotes the set of all closed subintervals of [0, 1]
and (Int([0, 1]))X denotes the collection of interval valued fuzzy
subsets over X . An interval-valued possibility quadripartitioned
single valued neutrosophic soft set (IPQSVNSS, in short) is a
mapping of the form Fρ : E → QSV NS(X) × (Int([0, 1]))X

and is defined as Fρ(e) = (Fe, ρe) , eεE, where, for each xεX ,
Fe (x) is the quadruple which represents the truth membership,
the contradiction-membership, the ignorance-membership and
the falsity membership of each element x of the universe of dis-
course X viz. Fe (x) = 〈teF (x) , ceF (x) , ueF (x) , feF (x)〉
,∀xεX and ρe (x) = [ρ−e (x) , ρ+

e (x)]εInt([0, 1]). If
X = {x1, x2, ..., xn} and E = {e1, e2, ..., em}, an interval-
valued possibility quadripartitioned single valued neutrosophic
soft set over the soft universe (X,E) is represented as,
Fρ(ei) = {

(
x1

Fei (x1) , ρei (x1)
)
,
(

x2

Fei (x2) , ρei (x2)
)
, ...,(

xn
Fei (xn) , ρei (xn)

)
} viz.

Fρ(ei) = {
(

x1

〈teiF (x1),c
ei
F (x1),u

ei
F (x1),f

ei
F (x1)〉 , [ρ

−
ei (x1) , ρ+

ei (x1)]

)
,

...,

(
xn

〈teiF (xn),c
ei
F (xn),u

ei
F (xn),f

ei
F (xn)〉 , [ρ

−
ei (xn) , ρ+

ei (xn)]

)
}, eiεE,

i = 1, 2, ...,m.

Example 1. Let X = {x1, x2, x3} and E = {e1, e2}.
Define an IPQSVNSS over the soft universe (X,E),
Fρ : E → QSV NS(X)× (Int([0, 1]))X as,

Fρ(e1) = {
(

x1

〈0.3,0.1,0.4,0.5〉 , [0.5, 0.6]
)
,(

x2

〈0.6,0.2,0.1,0.01〉 , [0.25, 0.3]
)
,
(

x3

〈0.7,0.3,0.4,0.6〉 , [0.6, 0.7]
)
}

Fρ(e2) = {
(

x1

〈0.7,0.3,0.5,0.2〉 , [0.1, 0.2]
)
,(

x2

〈0.1,0.2,0.6,0.7〉 , [0.45, 0.6]
)
,
(

x3

〈0.5,0.5,0.3,0.2〉 , [0.3, 0.4]
)
}

Another IPQSVNSS Gµ can be defined over (X,E) as

Gµ(e1) = {
(

x1

〈0.8,0.6,0.3,0.4〉 , [0.8, 0.85]
)
,(

x2

〈0.2,0.1,0.1,0.6〉 , [0.4, 0.5]
)
,
(

x3

〈0.5,0.5,0.3,0.4〉 , [0.4, 0.6]
)
}

Gµ(e2) = {
(

x1

〈0.2,0.6,0.3,0.7〉 , [0.6, 0.75]
)
,(

x2

〈0.4,0.2,0.2,0.7〉 , [0.8, 0.9]
)
,
(

x3

〈0.9,0.7,0.1,0.6〉 , [0.35, 0.5]
)
}

Definition 11. The absolute IPQSVNSS over (X,E) is denoted
by Ã1̄ such that for each eεE and ∀xεX , Ãe(x) = 〈1, 1, 0, 0〉
and 1̄e(x) = [1, 1]

Definition 12. The null IPQSVNSS over (X,E) is denoted by
θ̃0̄ such that for each eεE and ∀xεX , θ̃e(x) = 〈0, 0, 1, 1〉 and
0̄e(x) = [0, 0]

3.1 Operations over IPQSVNSS

Definition 13. Let Fρ and Gµ be two IPQSVNSS over the
common soft universe (X,E). Some elementary set-theoretic
operations on IPQSVNSS are defined as,
(i) Union: Fρ∪̃Gµ = Hη such that for each eεE and ∀xεX ,
He(x) = 〈teF (x) ∨ teG (x) , ceF (x) ∨ ceG (x) , ueF (x) ∧
ueG (x) , feF (x) ∧ feG (x)〉 and
ηe(x) = [sup (ρ−e (x) , µ−e (x)) , sup (ρ+

e (x) , µ+
e (x))].

(ii) Intersection: Fρ∩̃Gµ = Hη such that for each eεE and
∀xεX , He(x) = 〈teF (x) ∧ teG (x) , ceF (x) ∧ ceG (x) , ueF (x) ∨
ueG (x) , feF (x) ∨ feG (x)〉 and
ηe(x) = [inf (ρ−e (x) , µ−e (x)) , inf (ρ+

e (x) , µ+
e (x))].

(iii) Complement: (Fρ)
c

= F cρ such that for each eεE
and ∀xεX , F ce (x) = 〈feF (x), ueF (x), ceF (x), teF (x)〉 and
ρce (x) = [1− ρ+

e (x) , 1− ρ−e (x)]
(iv) Containment: Fρ⊆̃Gµ if for each eεE and ∀xεX , teF (x) ≤
teG (x) , ceF (x) ≤ ceG (x) , ueF (x) ≥ ueG (x) , feF (x) ≥ feG (x)
and ρ−e (x) ≤ µ−e (x) , ρ+

e (x) ≤ µ+
e (x).

Example 2. Consider the IPQSNSS Fρ and Gµ over the
same soft universe (X,E) defined in example 1. Then, F cρ is
obtained as,
F cρ (e1) = {

(
x1

〈0.5,0.4,0.1,0.3〉 , [0.4, 0.5]
)
,(

x2

〈0.01,0.1,0.2,0.6〉 , [0.7, 0.75]
)
,
(

x3

〈0.6,0.4,0.3,0.7〉 , [0.3, 0.4]
)
}

F cρ (e2) = {
(

x1

〈0.2,0.5,0.3,0.7〉 , [0.8, 0.9]
)
,(

x2

〈0.7,0.6,0.2,0.1〉 , [0.4, 0.55]
)
,
(

x3

〈0.2,0.3,0.5,0.5〉 , [0.6, 0.7]
)
}

Hη = Fρ∪̃Gµ is obtained as,

Hη(e1) = {
(

x1

〈0.8,0.6,0.3,0.4〉 , [0.8, 0.85]
)
,(

x2

〈0.6,0.2,0.1,0.01〉 , [0.4, 0.5]
)
,
(

x3

〈0.7,0.5,0.3,0.4〉 , [0.6, 0.7]
)
}

Hη(e2) = {
(

x1

〈0.7,0.6,0.3,0.2〉 , [0.6, 0.75]
)
,(

x2

〈0.4,0.2,0.2,0.7〉 , [0.8, 0.9]
)
,
(

x3

〈0.9,0.7,0.1,0.2〉 , [0.35, 0.5]
)
}

Also, the intersection Kδ = Fρ∩̃Gµ is defined as,

Kδ(e1) = {
(

x1

〈0.3,0.1,0.4,0.5〉 , [0.5, 0.6]
)
,(

x2

〈0.2,0.1,0.1,0.6〉 , [0.25, 0.3]
)
,
(

x3

〈0.5,0.3,0.4,0.6〉 , [0.4, 0.6]
)
}

Kδ(e2) = {
(

x1

〈0.2,0.3,0.5,0.7〉 , [0.1, 0.2]
)
,(

x2

〈0.1,0.2,0.6,0.7〉 , [0.45, 0.6]
)
,
(

x3

〈0.5,0.5,0.3,0.6〉 , [0.3, 0.4]
)
}

Proposition 2. For any Fρ, Gµ, HηεIPQSV NSS(X,E),
the following results hold:
1. (i) Fρ∪̃Gµ = Gµ∪̃Fρ
(ii) Fρ∩̃Gµ = Gµ∩̃Fρ
2. (i) Fρ∪̃ (Gµ∪̃Hη) = (Fρ∪̃Gµ) ∪̃Hη

(ii) Fρ∩̃ (Gµ∩̃Hη) = (Fρ∩̃Gµ) ∩̃Hη
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3. (i) Fρ∪̃θ̃0̄ = Fρ
(ii) Fρ∩̃θ̃0̄ = θ̃0̄

(iii) Fρ∪̃Ã1̄ = Ã1̄

(iv) Fρ∩̃Ã1̄ = Fρ
4. (i)

(
F cρ
)c

= Fρ

(ii) Ãc1̄ = θ̃0̄

(iii)
(
θ̃0̄

)c
= Ã1̄

5. (i) (Fρ∪̃Gµ)
c

= (Fρ)
c ∩̃ (Gµ)

c

(ii) (Fρ∩̃Gµ)
c

= (Fρ)
c ∪̃ (Gµ)

c

Proofs are straight-forward.

4 Some uncertainty-based measures on
IPQSVNSS

4.1 Entropy measure
Definition 14. Let IPQSV NSS(X,E) denotes the set of
all IPQSVNSS over the soft universe (X,E). A mapping
ε : IPQSV NSS(X,E) → [0, 1] is said to be a measure of
entropy if it satisfies the following properties:
(e1) ε

(
F cρ
)

= ε (Fρ)

(e2)ε (Fρ) ≤ ε (Gµ) whenever Fρ⊆̃Gµwith feF (x) ≥ feG(x) ≥
teG(x) ≥ teF (x), ueF (x) ≥ ueG(x) ≥ ceG(x) ≥ ceF (x) and
ρ−e (x) + ρ+

e (x) ≤ 1.
(e3) ε (Fρ) = 1 iff teF (x) = feF (x), ceF (x) = ueF (x) and
ρ−e (x) + ρ+

e (x) = 1, ∀xεX and ∀eεE.

Theorem 1. The mapping e : IPQSV NSS(X,E) → [0, 1]
defined as, ε (Fρ) = 1 − 1

||X||.||E||
∑
eεE

∑
xεX |teF (x) −

feF (x)|.|ceF (x) − ueF (x)|.|1 − {ρ+
e (x) + ρ−e (x)}| is an entropy

measure for IPQSVNSS.

Proof:

(i) ε
(
F cρ
)

= 1 − 1
||X||.||E||

∑
eεE

∑
xεX |feF (x) −

teF (x)|.|ueF (x)− ceF (x)|.|1− {(1− ρ−e (x)) + (1− ρ+
e (x))}|

= 1 − 1
||X||.||E||

∑
eεE

∑
xεX |teF (x) − feF (x)|.|ceF (x) −

ueF (x)|.|1− {ρ+
e (x) + ρ−e (x)}| = ε (Fρ).

(ii) Suppose that Fρ⊆̃Gµ and feG(x) ≥ teG(x),
ueG(x) ≥ ceG(x) , ρ−e (x) + ρ+

e (x) ≤ 1. Automatically,
µ−e (x) + µ+

e (x) ≤ 1. Thus, feF (x) ≥ feG(x), teG(x) ≥ teF (x),
ueF (x) ≥ ueG(x), ceG(x) ≥ ceF (x), µ−e (x) ≥ ρ−e (x) ,
µ+
e (x) ≥ ρ+

e (x), and feG(x) ≥ teG(x), ueG(x) ≥ ceG(x) ,
ρ−e (x) + ρ+

e (x) ≤ 1.
⇒ feF (x) ≥ feG(x) ≥ teG(x) ≥ teF (x), ueF (x) ≥ ueG(x) ≥
ceG(x) ≥ ceF (x) , µ−e (x) ≥ ρ−e (x) , µ+

e (x) ≥ ρ+
e (x) and

ρ−e (x) + ρ+
e (x) ≤ 1, µ−e (x) + µ+

e (x) ≤ 1.
From the above relations it follows that teG(x) − feG(x) ≥
teF (x)− feF (x) but teG(x)− feG(x) ≤ 0, teF (x)− feF (x) ≤ 0
⇒ |teG(x) − feG(x)| ≤ |teF (x) − feF (x)|. Similarly,

|ceG(x)−ueG(x)| ≤ |ceF (x)−ueF (x)| and |1−{µ+
e (x)+µ−e (x)}| ≤

|1− {ρ+
e (x) + ρ−e (x)}|, ∀xεX , ∀eεE. Then,

|teG(x)− feG(x)|.|ceG(x)− ueG(x)|.|1− {µ+
e (x) + µ−e (x)}|

≤ |teF (x)− feF (x)|.|ceF (x)− ueF (x)|.|1− {ρ+
e (x) + ρ−e (x)}|

⇒ 1 − 1
||X||.||E||

∑
eεE

∑
xεX |teF (x) − feF (x)|.|ceF (x) −

ueF (x)|.|1− {ρ+
e (x) + ρ−e (x)}|

≤ 1 − 1
||X||.||E||

∑
eεE

∑
xεX |teG(x) − feG(x)|.|ceG(x) −

ueG(x)|.|1− {µ+
e (x) + µ−e (x)}|

⇒ ε (Fρ) ≤ ε (Gµ)

(iii) ε (Fρ) = 1
⇔ 1 − 1

||X||.||E||
∑
eεE

∑
xεX |teF (x) − feF (x)|.|ceF (x) −

ueF (x)|.|1− {ρ+
e (x) + ρ−e (x)}| = 1

⇔ 1
||X||.||E||

∑
eεE

∑
xεX |teF (x)−feF (x)|.|ceF (x)−ueF (x)|.|1−

{ρ+
e (x) + ρ−e (x)}| = 0

⇔ |teF (x) − feF (x)| = 0, |ceF (x) − ueF (x)| = 0,
|1− {ρ+

e (x) + ρ−e (x)}| = 0, for each xεX and each eεE.
⇔ teF (x) = feF (x), ceG(x) = ueG(x), ρ+

e (x) + ρ−e (x) = 1, for
each xεX and each eεE.

Remark 1. In particular, from Theorem 1, it follows that,
ε
(
Ã1̄

)
= 0 and ε

(
θ̃0̄

)
= 0.

Proof is straight-forward.

4.1.1 An application of entropy measure in decision making
problem

The entropy measure not only provides an all over information
about the amount of uncertainty ingrained in a particular struc-
ture, it can also be implemented as an efficient tool in decision
making processes. Often while dealing with a selection process
subject to a predefined set of requisitions, the procedure involves
allocation of weights in order to signify the order of preference
of the criteria under consideration. In what follows next, the
entropy measure corresponding to an IPQSVNSS has been uti-
lized in defining weights corresponding to each of the elements
of the parameter set over which the IPQSVNSS has been defined.

The algorithm is defined as follows:

Step 1: Represent the data in hand in the form of an IPQSVNSS,
say Fρ.
Step 2: Calculate the entropy measure ε (Fρ), as defined in
Theorem A.
Step 3: For each αεE, assign weights ωF (α), given by the
formula,
ωF (α) =

ε(Fρ)
κF (α) , where κF (α) = 1− 1

||X||.||E||
∑
xεX |tαF (x)−

fαF (x)|.|cαF (x)− uαF (x)|.|1− {ρ+
α (x) + ρ−α (x)}|.

Step 4: Corresponding to each option xεX , calculate the net
score, defined as,
score(xi) =

∑
e ωF (α).[tαF (xi) + cαF (xi) + {1 − uαF (xi)} +

{1− fαF (xi)}].{ρ
+
α (xi)+ρ

−
α (xi)

2 }.
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Step 5: Arrange score(xi) in the decreasing order of values.
Step 6: Select maxi{score(xi)}. If maxi{score(xi)} =
score(xm), xmεX , then xm is the selected option.

Theorem 2. Corresponding to each parameter αεE,
ωF (α) =

ε(Fρ)
κF (α) is such that 0 ≤ ωF (α) ≤ 1.

Proof:

From the definition of κF (α) and ε (Fρ), it is clear that
ωF (α) ≥ 0.
Consider |tαF (x) − fαF (x)|.|cαF (x) − uαF (x)|.|1 − {ρ+

α (x) +
ρ−α (x)}|. It follows that,∑
αεE

∑
xεX |tαF (x) − fαF (x)|.|cαF (x) − uαF (x)|.|1 − {ρ+

α (x) +
ρ−α (x)}| ≥

∑
xεX |tαF (x) − fαF (x)|.|cαF (x) − uαF (x)|.|1 −

{ρ+
α (x) + ρ−α (x)}|, whenever ||X|| ≥ 1.

⇒ 1 − 1
||X||.||E||

∑
αεE

∑
xεX |tαF (x) − fαF (x)|.|cαF (x) −

uαF (x)|.|1−{ρ+
α (x) + ρ−α (x)}| ≤ 1− 1

||X||.||E||
∑
xεX |tαF (x)−

fαF (x)|.|cαF (x)− uαF (x)|.|1− {ρ+
α (x) + ρ−α (x)}|

⇒ ε (Fρ) ≤ κF (α)

⇒ ωF (α) =
ε(Fρ)
κF (α) ≤ 1, for each αεE.

Example 3. Suppose a person wishes to buy a phone and
the judging parameters he has set are a: appearance, c: cost, b:
battery performance, s: storage and l: longevity. Further suppose
that he has to choose between 3 available models, say x1, x2, x3

of the desired product. After a survey has been conducted by
the buyer both by word of mouth from the current users and
the salespersons, the resultant information is represented in the
form of an IPQSVNSS, say Fρ as follows, where it is assumed
that corresponding to an available option, a higher degree of
belongingness signifies a higher degree of agreement with the
concerned parameter:

Fρ(a) = {
(

x1

〈0.4,0.3,0.1,0.5〉 , [0.5, 0.6]
)
,(

x2

〈0.8,0.1,0.0,0.01〉 , [0.6, 0.7]
)
,
(

x3

〈0.6,0.3,0.2,0.5〉 , [0.45, 0.5]
)
}

Fρ(c) = {
(

x1

〈0.8,0.1,0.1,0.2〉 , [0.7, 0.75]
)
,(

x2

〈0.5,0.01,0.1,0.6〉 , [0.4, 0.55]
)
,
(

x3

〈0.7,0.2,0.1,0.1〉 , [0.6, 0.65]
)
}

Fρ(b) = {
(

x1

〈0.65,0.3,0.1,0.2〉 , [0.6, 0.65]
)
,(

x2

〈0.8,0.2,0.1,0.0〉 , [0.75, 0.8]
)
,
(

x3

〈0.4,0.5,0.3,0.6〉 , [0.7, 0.8]
)
}

Fρ(s) = {
(

x1

〈0.5,0.4,0.3,0.6〉 , [0.7, 0.8]
)
,(

x2

〈0.85,0.1,0.0,0.01〉 , [0.8, 0.85]
)
,
(

x3

〈0.8,0.2,0.1,0.02〉 , [0.85, 0.9]
)
}

Fρ(l) = {
(

x1

〈0.6,0.3,0.2,0.5〉 , [0.45, 0.55]
)
,(

x2

〈0.75,0.3,0.3,0.2〉 , [0.67, 0.75]
)
,
(

x3

〈0.75,0.3,0.2,0.2〉 , [0.7, 0.75]
)
}

Following steps 2-6, we have the following results:

(2) ε (Fρ) = 0.982
(3) ωF (a) = 0.984, ωF (c) = 0.983, ωF (b) = 0.988, ωF (s) =

0.99, ωF (l) = 0.984
(4) score(x1) = 7.193, score(x2) = 9.097, score(x3) = 8.554
(5) score(x2) > score(x3) > score(x1)
(6) x2 is the chosen model.

4.2 Inclusion measure
Definition 15. A mapping I : IPQSV NSS(X,E) ×
IPQSV NSS(X,E)→ [0, 1] is said to be an inclusion measure
for IPQSVNSS over the soft universe (X,E) if it satisfies the
following properties:
(I1) I

(
Ã1̄, θ̃0

)
= 0

(I2) I (Fρ, Gµ) = 1⇔ Fρ⊆̃Gµ
(I3) if Fρ⊆̃Gµ⊆̃Hη then I (Hη, Fρ) ≤ I (Gµ, Fρ) and
I (Hη, Fρ) ≤ I (Hη, Gµ)

Theorem 3. The mapping I : IPQSV NSS(X,E) → [0, 1]
defined as,
I (Fρ, Gµ) = 1 − 1

6||X||.||E||
∑
eεE

∑
xεX [|teF (x) −

min{teF (x), teG(x)}| + |ceF (x) − min{ceF (x), ceG(x)}| +
|max{ueF (x), ueG(x)} − ueF (x)| + |max{feF (x), feG(x)} −
feF (x)| + |ρ−e (x) − min{ρ−e (x), µ−e (x)}| + |ρ+

e (x) −
min{ρ+

e (x), µ+
e (x)}|], is an inclusion measure for IPQSVNSS.

Proof:

(i) Clearly, according to the definition of the proposed
measure, I

(
Ã1̄, θ̃0

)
= 0

(ii) From the definition of the proposed measure, it fol-
lows that,
I (Fρ, Gµ) = 1,
⇔

∑
eεE

∑
xεX [|teF (x) − min{teF (x), teG(x)}| +

|ceF (x) − min{ceF (x), ceG(x)}| + |max{ueF (x), ueG(x)} −
ueF (x)| + |max{feF (x), feG(x)} − feF (x)| + |ρ−e (x) −
min{ρ−e (x), µ−e (x)}| + |ρ+

e (x) − min{ρ+
e (x), µ+

e (x)}|] =
0,∀xεX,∀eεE.
⇔ |teF (x) − min{teF (x), teG(x)}| = 0, |ceF (x) −
min{ceF (x), ceG(x)}| = 0, |max{ueF (x), ueG(x)} − ueF (x)| = 0,
|max{feF (x), feG(x)} − feF (x)| = 0, |ρ−e (x) −
min{ρ−e (x), µ−e (x)}| = 0 and |ρ+

e (x)−min{ρ+
e (x), µ+

e (x)}| =
0,∀xεX,∀eεE.
Now, |teF (x)−min{teF (x), teG(x)}| = 0⇔ teF (x) ≤ teG(x).
Similarly, it can be shown that, ceF (x) ≤ ceG(x), ueF (x) ≥
ueG(x), feF (x) ≥ feG(x), ρ−e (x) ≤ µ−e (x) and ρ+

e (x) ≤
µ+
e (x),∀xεX,∀eεE which proves Fρ⊆̃Gµ.

(iii) Suppose, Fρ⊆̃Gµ⊆̃Hη . Thus we have, teF (x) ≤ teG(x) ≤
teH(x), ceF (x) ≤ ceG(x) ≤ ceH(x), ueF (x) ≥ ueG(x) ≥ ueH(x),
feF (x) ≥ feG(x) ≥ feH(x), ρ−e (x) ≤ µ−e (x) ≤ η−e (x) and
ρ+
e (x) ≤ µ+

e (x) ≤ η+
e (x) for all xεX and eεE.

⇒ I (Hη, Fρ) ≤ I (Gµ, Fρ).
In an exactly analogous manner, it can be shown that,
I (Hη, Fρ) ≤ I (Hη, Gµ). This completes the proof.
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Example 4. Consider IPQSVNSS Fρ, Gµ in Example 1,
then I (Fρ, Gµ) = 0.493.

4.3 Distance measure

Definition 16. A mapping d : IPQSV NSS(X,E) ×
IPQSV NSS(X,E)→ R+ is said to be a distance measure be-
tween IPQSVNSS if for any Fρ, Gµ, HηεIPQSV NSS(X,E)
it satisfies the following properties:
(d1) d (Fρ, Gµ) = d (Gµ, Fρ)
(d2) d (Fρ, Gµ) ≥ 0 and d (Fρ, Gµ) = 0⇔ Fρ = Gµ
(d3) d (Fρ, Hη) ≤ d (Fρ, Gµ) + d (Gµ, Hη)
In addition to the above conditions, if the mapping d satisfies the
condition
(d4) d (Fρ, Gµ) ≤ 1, ∀Fρ, GµεIPQSV NSS(X,E)
it is called a Normalized distance measure for IPQSVNSS.

Theorem 4. The mapping dh : IPQSV NSS(X,E) ×
IPQSV NSS(X,E)→ R+defined as,
dh (Fρ, Gµ) =

∑
eεE

∑
xεX(|teF (x) − teG(x)| + |ceF (x) −

ceG(x)| + |ueF (x) − ueG(x)| + |feF (x) − feG(x)| + |ρ−e (x) −
µ−e (x)|+|ρ+

e (x)−µ+
e (x)|) is a distance measure for IPQSVNSS.

It is known as the Hamming Distance.

Proofs are straight-forward.

Definition 17. The corresponding Normalized Hamming
distance for IPQSVNSS is defined as dNh (Fρ, Gµ) =

1
6||X||.||E||dh (Fρ, Gµ), where ||.|| denotes the cardinality
of a set.

Theorem 5. The mapping dE : IPQSV NSS(X,E) ×
IPQSV NSS(X,E)→ R+defined as,
dE (Fρ, Gµ) =

∑
eεE

∑
xεX{(teF (x) − teG(x))2 + (ceF (x) −

ceG(x))2 + (ueF (x)− ueG(x))2 + (feF (x)− feG(x))2 + (ρ−e (x)−
µ−e (x))2 + (ρ+

e (x) − µ+
e (x))2} 1

2 is a distance measure for
IPQSVNSS. It is known as the Euclidean Distance.

Proofs are straight-forward.

Definition 18. The corresponding Normalized Hamming
distance for IPQSVNSS is defined as dNE (Fρ, Gµ) =

1
6||X||.||E||dE (Fρ, Gµ).

Proposition 3. Fρ⊆̃Gµ⊆̃Hη iff
(i) dh (Fρ, Hη) = dh (Fρ, Gµ) + dh (Gµ, Hη)
(ii) dNh (Fρ, Hη) = dNh (Fρ, Gµ) + dNh (Gµ, Hη)

Proofs are straight-forward.

Example 5. Consider the IPQSVNSS given in Example 1.
The various distance measures between the sets are obtained
as, dh (Fρ, Gµ) = 5.29, dNh (Fρ, Gµ) = 0.882,dE (Fρ, Gµ) =

4.387, dEN (Fρ, Gµ) = 0.731

4.4 Similarity measure
Definition 19. A mapping s : IPQSV NSS(X,E) ×
IPQSV NSS(X,E) → R+ is said to be a quasi-
similarity measure between IPQSVNSS if for any
Fρ, Gµ, HηεIPQSV NSS(X,E) it satisfies the following
properties:
(s1) s (Fρ, Gµ) = s (Gµ, Fρ)
(s2) 0 ≤ s (Fρ, Gµ) ≤ 1 and s (Fρ, Gµ) = 1⇔ Fρ = Gµ
In addition, if it satisfies
(s3) if Fρ⊆̃Gµ⊆̃Hηthen s (Fρ, Hη) ≤ s (Fρ, Gµ) ∧ s (Gµ, Hη)
then it is known as a similarity measure between IPQSVNSS.

Various similarity measures for quadripartitioned single
valued neutrosophic sets were proposed in [5]. Undertaking a
similar line of approach, as in our previous work [5] we propose
a similarity measure for IPQSVNSS as follows:

Definition 20. Consider Fρ, GµεIPQSV NSS(X,E). Define
functions τF,Gi,e : X → [0, 1], i = 1, 2, .., 5 such that for each
xεX , eεE
τF,G1,e (x) = |teG(x)− teF (x)|
τF,G2,e (x) = |feF (x)− feG(x)|
τF,G3,e (x) = |ceG(x)− ceF (x)|
τF,G4,e (x) = |ueF (x)− ueG(x)|
τF,G5,e (x) = |ρ−e (x)− µ−e (x)|
τF,G6,e (x) = |ρ+

e (x)− µ+
e (x)|

Finally, define a mapping s : IPQSV NSS(X,E) ×
IPQSV NSS(X,E) → R+ as, s (Fρ, Gµ) = 1 −

1
6||X||.||E||

∑
eεE

∑
xεX

∑6
i=1 τ

F,G
i,e (x)

Theorem 6. The mapping s (Fρ, Gµ) defined above is a 
similarity measure.

Proof:

(i) It is easy to prove that s(Fρ, Gµ) = s(Gµ, Fρ).

(ii) We have, teF (x), ceF (x), ueF (x), feF (x)ε[0, 1] and
ρe(x), µe(x)εInt([0, 1]) for each xεX, eεE. Thus, τF,G1,e (x)
attains its maximum value if either one of teF (x) or teG(x) is equal
to 1 while the other is 0 and in that case the maximum value is 1.
Similarly, it attains a minimum value 0 if teF (x) = teG(x). So, it
follows that 0 ≤ τF,G1,e (x) ≤ 1, for each xεX . Similarly it can be
shown that τF,Gi,e (x), i = 2, ..., 6 lies within [0, 1] for each xεX .
So,
0 ≤

∑6
i=1 τ

F,G
i,e (x) ≤ 6

⇒ 0 ≤
∑
eεE

∑
xεX

∑n
i=1 τ

F,G
i,e (x) ≤ 6||X||.||E||

which implies 0 ≤ s(Fρ, Gµ) ≤ 1.
Now s(Fρ, Gµ) = 1 iff

∑n
i=1 τi,e(x) = 0 for each xεX, eεE

⇔ teF (x) = teG(x), ceF (x) = ceG(x), ueF (x) = ueG(x),
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feF (x) = feG(x) and ρ−e (x) = µ−e (x), ρ+
e (x) = µ+

e (x) , for all
xεX, eεE i.e.. iff Fρ, Gµ.

(iii) Suppose Fρ⊆̃Gµ⊆̃Hη . then, we have, teF (x) ≤ teG(x) ≤
teH(x), ceF (x) ≤ ceG(x) ≤ ceH(x), ueF (x) ≥ ueG(x) ≥ ueH(x),
feF (x) ≥ feG(x) ≥ feH(x), ρ−e (x) ≤ µ−e (x) ≤ η−e (x) and
ρ+
e (x) ≤ µ+

e (x) ≤ η+
e (x) for all xεX and eεE. Con-

sider τF,G1,e (x) and τF,G2,e (x). Since teF (x) ≤ teG(x) holds,
it follows that, |teG(x)− teF (x)| ≤ |teH(x)− teF (x)|⇒
τF,G1,e (x) ≤ τF,H1,e (x). Similarly it can be shown that
τF,Gi,e (x) ≤ τF,Hi,e (x), for i = 3, 5, 6 and all xεX . Next,
consider τF,G2,e (x).
Since, feF (x) ≥ feG(x) ≥ feH(x), it follows that
feF (x) − feG(x) ≤ feF (x) − feH(x) where feF (x) − feG(x) ≥ 0,
feF (x)−feH(x) ≥ 0. Thus, |feF (x)−feG(x)| ≤ |feF (x)−feH(x)|⇒
τF,G3,e (x) ≤ τF,H3,e (x).
Also, it can be shown that τF,G4,e (x) ≤ τF,H4,e (x) respectively for
each xεX .
Thus, we have,

∑
eεE

∑
xεX

∑n
i=1 τ

F,G
i,e (x) ≤∑

eεE

∑
xεX

∑n
i=1 τ

F,H
i,e (x)

⇒ 1 − 1
6||X||.||E||

∑
eεE

∑
xεX

∑n
i=1 τ

F,H
i,e (x) ≤

1− 1
6||X||.||E||

∑
eεE

∑
xεX

∑n
i=1 τ

F,G
i,e (x)

⇒ s (Fρ, Hη) ≤ s (Fρ, Gµ)
In an analogous manner, it can be shown that
s (Fρ, Hη) ≤ s (Gµ, Hη). Thus, we have, s (Fρ, Hη) ≤
s (Fρ, Gµ) ∧ s (Gµ, Hη)

Remark 2. s(Ã1̄, θ̃0̄) = 0.

Proof :

For each xεX and eεE,
τ
Ã1̄,θ̃0̄
1 (x) = |te

θ̃0̄
(x) − te

Ã1̄
(x)| = 1, τ

Ã1̄,θ̃0̄
2 (x) =

|fe
Ã1̄

(x)− fe
θ̃0̄

(x)| = 1

τ
Ã1̄,θ̃0̄
3 (x) = |ce

θ̃0̄
(x) − ce

Ã1̄
(x)| = 1, τ

Ã1̄,θ̃0̄
4 (x) =

|ue
Ã1̄

(x)− ue
θ̃0̄

(x)| = 1

τ
Ã1̄,θ̃0̄
5 (x) = |ρ−e (x) − µ−e (x)| = 1, τ

Ã1̄,θ̃0̄
6 (x) =

|ρ+
e (x)− µ+

e (x)| = 1

which yields
∑
eεE

∑
xεX

∑6
i=1 τ

Ã1̄,θ̃0̄
i (x) = 6||X||.||E||

⇒ s(Ã1̄, θ̃0̄) = 1 − 1
6||X||.||E||

∑
eεE

∑
xεX

∑6
i=1 τ

Ã1̄,θ̃0̄
i (x) =

0.

Definition 21. Suppose Fρ, GµεIPQSV NSS(X,E).
Consider functions τF,Gi,e : X → [0, 1], i =
1, 2, .., 5 as in Definition 1. Define a mapping sω :
IPQSV NSS(X,E) × IPQSV NSS(X,E) → R+ as,

sω (Fρ, Gµ) = 1 −
∑
eεE

∑
xεX

∑6
i=1 ω(e)τF,Gi,e (x)

6||X||.||E||
∑
eεE ω(e) , where ω(e) is

the weight allocated to the parameter eεE and ω(e)ε[0, 1], for
each eεE.

Theorem 7. sω (Fρ, Gµ) is a similarity measure.

Proof is similar to that of Theorem 6.

Remark 3. sω (Fρ, Gµ) is the weighted similarity measure
between any two IPQSVNSS Fρ and Gµ.

4.4.1 Allocation of entropy-based weights in calculating
weighted similarity

It was shown in Section 4.1.1 how entropy measure could be
implemented to allocate specific weights to the elements of the
parameter set. In this section, it is shown how the entropy-based
weights can be implemented in calculating weighted similarity.
Consider an IPQSVNSS Fρ defined over the soft universe
(X,E). Let ωF (e)ε[0, 1] be the weight allocated to an element
eεE, w.r.t. the IPQSVNSS Fρ.
Define ωF (α) as before, viz.
ωF (α) =

ε(Fρ)
κF (α) , where κF (α) = 1− 1

||X||.||E||
∑
xεX |tαF (x)−

fαF (x)|.|cαF (x)− uαF (x)|.|1− {ρ+
α (x) + ρ−α (x)}|

Consider any two IPQSVNSS Fρ, GµεIPQSV NSS(X). Fol-
lowing Definition C, the weighted similarity measure between
these two sets can be defined as
sω (Fρ, Gµ) = 1 −

∑
eεE ω(α){

∑
xεX

∑6
i=1 τ

F,G
i (x)}

6||X||.||E||
∑
eεE ω(α) , where

ω(α) = ωF (α)+ωG(α)
2 , and ωG(α) =

ε(Gµ)
κG(α) is the weight

allocated to the parameter αεE w.r.t. the IPQSVNSS Gµ.
From previous results clearly, ωF (α), ωG(α)ε[0, 1] ⇒
ω(α)ε[0, 1].

Example 6. Consider Fρ, GµεIPQSV NSS(X) as de-
fined in Example 1. Then s (Fρ, Gµ) = 0.738. Also, ωF (e1) =
0.983, ωG(e1) = 0.987, ωF (e2) = 0.993, ωG(e2) = 0.988,
which gives, ω(e1) = 0.985, ω(e2) = 0.991 which finally yields
sω (Fρ, Gµ) = 0.869.

5 Relation between the various uncer-
tainty based measures

Theorem 8. s1
d (Fρ, Gµ) = 1 − dNh (Fρ, Gµ) is a similarity

measure.

Proof:

(i) dNh (Fρ, Gµ) = dNh (Gµ, Fρ)⇒ s1
d (Fρ, Gµ) = s1

d (Gµ, Fρ)
(ii) 0 ≤ dNh (Fρ, Gµ) ≤ 1⇒ 0 ≤ s1

d (Fρ, Gµ) ≤ 1
Also, s1

d (Fρ, Gµ) = 1⇔ dNh (Fρ, Gµ) = 0⇔ Fρ = Gµ.
(iii) Whenever Fρ⊆̃Gµ⊆̃Hη , dNh (Fρ, Hη) = dNh (Fρ, Gµ) +
dNh (Gµ, Hη). Thus,
s1
d (Fρ, Gµ) − s1

d (Fρ, Hη) = 1 − dNh (Fρ, Gµ) − 1 +
dNh (Fρ, Hη) = dNh (Fρ, Hη) − dNh (Fρ, Gµ) = dNh (Gµ, Hη) ≥
0, from property of distance measure.
⇒ s1

d (Fρ, Hη) ≤ s1
d (Fρ, Gµ).

Similarly, it can be shown that, s1
d (Fρ, Hη) ≤ s1

d (Gµ, Hη).
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Hence, s1
d (Fρ, Hη) ≤ s1

d (Fρ, Gµ) ∧ s1
d (Gµ, Hη).

Remark 4. For any similarity measures (Fρ, Gµ) , 1−s (Fρ, Gµ)
may not be a distance measure.

Theorem 9.s2
d (Fρ, Gµ) = 1

1+dh(Fρ,Gµ) is a similarity measure.

Proof:

(i) dh (Fρ, Gµ) = dh (Gµ, Fρ)⇒ s2
d (Fρ, Gµ) = s2

d (Gµ, Fρ)
(ii) dh (Fρ, Gµ) ≥ 0 ⇒ 0 ≤ s2

d (Fρ, Gµ) ≤ 1. Also,
s2
d (Fρ, Gµ) = 1⇔ dh (Fρ, Gµ) = 0⇔ Fρ = Gµ.

(iii) dh (Fρ, Hη) = dh (Fρ, Gµ) + dh (Gµ, Hη) whenever
Fρ⊆̃Gµ⊆̃Hη .
⇒ dh (Fρ, Hη) ≥ dh (Fρ, Gµ) and dh (Fρ, Hη) ≥ dh (Gµ, Hη).
⇒ 1

1+dh(Fρ,Hη) ≤
1

1+dh(Fρ,Gµ) ⇒ s2
d (Gµ, Fρ) ≤ s2

d (Fρ, Gµ).
Similarly, it can be shown that, s2

d (Gµ, Fρ) ≤ s2
d (Gµ, Hη).

Corollary 1. s3
d (Fρ, Gµ) = 1

1+dNh (Fρ,Gµ)
is a similarity

measure.

Proofs follow in the exactly same way as the previous the-
orem.

Remark 5. For any similarity measure s (Fρ, Gµ) , 1
s(Fρ,Gµ) − 1

may not be a distance measure.

Theorem 10 Consider the similarity measure s (Fρ, Gµ).
s (Fρ, Fρ∩̃Gµ)is an inclusion measure.

Proof:

(i) Choose Fρ = Ã1̄ and Gµ = θ̃0̄. Then, s (Fρ, Fρ∩̃Gµ) =

s(Ã1̄, θ̃0̄) = 0, from previous result.
(ii) s (Fρ, Fρ∩̃Gµ) = 1⇔ Fρ = Fρ∩̃Gµ ⇔ Fρ⊆̃Gµ.
(iii) Let Fρ⊆̃Gµ⊆̃Hη . Then, s (Fρ, Hη) ≤ s (Fρ, Gµ) and
s (Fρ, Hη) ≤ s (Gµ, Hη) hold. Consider s (Fρ, Hη) ≤
s (Fρ, Gµ). From commutative property of similarity measure,
it follows that, s (Hη, Fρ) ≤ s (Gµ, Fρ) ⇒ s (Hη, Hη∩̃Fρ) ≤
s (Gµ, Gµ∩̃Fρ). Similarly, s (Hη, Hη∩̃Fρ) ≤ s (Fρ, Fρ∩̃Gµ).

Theorem 11.1− dh (Fρ, Fρ∩̃Gµ) is an inclusion measure.

Proof follows from the results of Theorem 8 and Theorem
10.

Theorem 12. 1
1+dh(Fρ,Fρ∩̃Gµ)

and 1
1+dNh (Fρ,Fρ∩̃Gµ)

are in-
clusion measures.

Proofs follow from Theorem 9,Corollary 1 and Theorem
10.

Theorem 13. Let e : IPQSV NSS(X,E) → [0, 1] be a
measure of entropy such that ε(Fρ) ≤ ε(Gµ) ⇒ Fρ⊆̃Gµ. Then

|ε(Fρ)− ε(Gµ)| is a distance measure.

Proof:

(i) |ε(Fρ)− ε(Gµ)| = |ε(Gµ)− ε(Fρ)|
(ii) |ε(Fρ) − ε(Gµ)| ≥ 0 and in particular, |ε(Fρ) − ε(Gµ)| =
0 ⇔ ε(Fρ) = ε(Gµ) ⇔ ε(Fρ) ≤ ε(Gµ) and
ε(Fρ) ≥ ε(Gµ)⇔ Fρ = Gµ
(iii) Triangle inequality follows from the fact that,
|ε(Fρ) − ε(Hη)| ≤ |ε(Fρ) − ε(Gµ)| + |ε(Gµ) − ε(Hη)|
for any Fρ, Gµ, HηεIPQSV NSS(X,E).

6 Conclusions and Discussions

In this paper, the concept of interval possibility quadripartitioned 
single valued neutrosophic sets has been proposed. In the present 
set-theoretic structure an interval valued gradation of possibil-
ity viz. the chance of occurrence of an element with respect to 
a certain criteria is assigned and depending on that possibility of 
occurrence the degree of belongingness, non-belongingness, con-
tradiction and ignorance are assigned thereafter. Thus, this struc-
ture comes as a generalization of the existing structures involv-
ing the theory of possibility namely, possibility fuzzy soft sets 
and possibility intuitionistic fuzzy soft sets. In the present work, 
the relationship between the various uncertainty based measures 
have been established. Applications have been shown where the 
entropy measure has been utilized to assign weights to the ele-
ments of the parameter set which were later implemented in a 
decision making problem and also in calculating a weighted sim-
ilarity measure. The proposed theory is expected to have wide 
applications in processes where parameter-based selection is in-
volved.
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