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Abstract. The notion of neutrosophic soft group is intro-
duced, together with several related properties. Its struc-
tural characteristics are investigated with suitable exam-
ples.  
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neutrosophic soft subgroup is defined and illustrated by 
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1 Introduction

The concept of Neutrosophic Set (NS), firstly intro-
duced by Smarandache [1], is a generalisation of classical 
sets, fuzzy set [2], intuitionistic fuzzy set [3] etc. Research-
ers in economics, sociology, medical science and many 
other several fields deal daily with the complexities of mod-
elling uncertain data. Classical methods are not always suc-
cessful because the uncertainty appearing in these domains 
may be of various types. While probability theory, theory of 
fuzzy set, intuitionistic fuzzy set and other mathematical 
tools are well known and often useful approaches to de-
scribe uncertainty, each of these theories has its different 
difficulties, as pointed out by Molodtsov [4]. 

In 1999, Molodtsov [4] introduced a new concept of soft 
set theory, which is free from the parameterization inade-
quacy syndrome of different theories dealing with uncer-
tainty. This makes the theory very convenient and easy to 
apply in practice. The classical group theory was extended 
over fuzzy set, intuitionistic fuzzy set and soft set by Rosen-
feld [5], Sharma [6], Aktas et.al. [7], and many others. Con-
sequently, several authors applied the theory of fuzzy soft 
sets, intuitionistic fuzzy soft sets to different algebraic struc-
tures, e.g. Maji et. al. [8, 9, 10], Dinda and Samanta [11], 
Ghosh et. al. [12], Mondal  [13], Chetia and Das [14], Basu 
et. al. [15], Augunoglu and Aygun [16], Yaqoob et. al [17], 
Varol et. al. [18], Zhang [19]. 

Later, Maji [20] has introduced a combined concept, the 
Neutrosophic Soft Set (NSS). Using this concept, several 
mathematicians have produced their research works in dif-
ferent mathematical structures, e.g. Sahin et. al [21], Broumi 
[22], Bera and Mahapatra [23], Maji [24], Broumi and 
Smarandache [25]. Later, the concept has been redefined by 
Deli and Broumi [26]. 

This paper presents the notion of neutrosophic soft 
groups along with an investigation of some related proper-
ties and theorems. Section 2 gives some useful definitions. 
In Section 3, neutrosophic soft group is defined, along with 
some properties. Section 4 deals with the Cartesian product 

of neutrosophic soft groups. Finally, the concept of neutro-
sophic soft subgroup is studied, with suitable examples, in 
Section 5. 

2 Preliminaries

We recall basic definitions related to fuzzy set, soft set, 
and neutrosophic soft. 

2.1 Definition: [27]

A binary operation  ∗  : [0, 1] × [0, 1]  → [0, 1]  is 
continuous t - norm if it satisfies the following conditions: 

(i) ∗ is commutative and associative. 
(ii) ∗ is continuous, 
(iii) 𝑎 ∗  1 =  1 ∗  𝑎 =  𝑎, ∀𝑎 ∈  [0, 1], 
(iv) 𝑎 ∗  𝑏 ≤  𝑐 ∗  𝑑  if 𝑎 ≤  𝑐, 𝑏 ≤  𝑑 ,   

with   𝑎, 𝑏, 𝑐, 𝑑 ∈  [0, 1]. 
A few examples of continuous t-norm are  𝑎 ∗  𝑏 =

 𝑎𝑏, 𝑎 ∗  𝑏 =  𝑚𝑖𝑛 (𝑎, 𝑏), 𝑎 ∗  𝑏 =  𝑚𝑎𝑥 (𝑎 +  𝑏 –  1, 0).

2.2 Definition: [27]

A binary operation  ⋄ ∶  [0, 1]× [0, 1] →  [0, 1]  is 
continuous t - conorm (s - norm) if it satisfies the following 
conditions: 

(i) ⋄ is commutative and associative, 
(ii) ⋄ is continuous, 
(iii) 𝑎 ⋄  0 =  0 ⋄  𝑎 =  𝑎, ∀𝑎 ∈ [0, 1], 
(iv) 𝑎 ⋄  𝑏 ≤  𝑐 ⋄  𝑑  if  𝑎 ≤  𝑐, 𝑏 ≤  𝑑,      

with  𝑎, 𝑏, 𝑐, 𝑑 ∈  [0, 1].
A few examples of continuous s-norm are  𝑎 ⋄  𝑏 =

 𝑎 +  𝑏 –  𝑎𝑏,  𝑎 ⋄  𝑏 = max(𝑎, 𝑏) ,   𝑎 ⋄  𝑏 = min(𝑎 +
𝑏, 1). ∀ 𝑎 ∈  [0, 1],  if 𝑎 ∗  𝑎 =  𝑎  and  𝑎 ⋄  𝑎 =  𝑎, then 

∗  is called an idempotent t-norm and ⋄  is called an 
idempotent s-norm.   

2.3 Definition: [1]

A neutrosophic set (NS) on the universe of discourse 𝑈 
is defined  as :  𝐴 =  {𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)  > : 𝑥 ∈  𝑈} ,
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where   𝑇, 𝐼, 𝐹 ∶  𝑈 ⟶  ] –0,1+ [   and 
–0 ≤  𝑇𝐴(𝑥)  +  𝐼𝐴(𝑥)  + 𝐹𝐴(𝑥)  ≤ 3+.

From a philosophical point of view, the  neutrosophic 
set (NS) takes its values from real standard or nonstandard 
subsets of ] –0,1+ [ . But in real life application, in scientific 
and engineering problems, it is difficult to use NS with 
values from real standard or nonstandard subset of  ] –0,1+ [. 
Hence, we consider the NS which takes the values from the 
subset of [0,1]. 

2.4 Definition: [4]

Let 𝑈  be an initial universe set and 𝐸  be a set of 
parameters. Let 𝑃(𝑈)  denote the power set of 𝑈. Then for 
𝐴 ⊆  𝐸,  a pair (𝐹, 𝐴)  is called a soft set over 𝑈 , where 
𝐹: 𝐴  →  𝑃(𝑈) is a mapping. 

2.5 Definition: [20]

Let 𝑈  be an initial universe set and 𝐸  be a set of 
parameters. Let 𝑃(𝑈) denote the set of all NSs of 𝑈. Then 
for 𝐴 ⊆  𝐸, a pair (𝐹, 𝐴) is called an NSS over 𝑈, where 
𝐹: 𝐴 →  𝑃(𝑈) is   a mapping. 

This concept has been modified by Deli and Broumi 
[26] as given below. 

2.6 Definition: [26]

Let 𝑈  be an initial universe set and 𝐸  be a set of 
parameters. Let 𝑃(𝑈) denote the set of all NSs of 𝑈. Then, 
a neutrosophic soft set  𝑁 over 𝑈 is a set defined by a set 
valued function 𝑓𝑁 representing a mapping  𝑓𝑁 : 𝐸 → 𝑃(𝑈)
where  𝑓𝑁   is called approximate function of the neutro-
sophic soft set 𝑁. In other words, the neutrosophic soft set 
is a parameterized family of some elements of the set 𝑃(𝑈) 
and therefore it can be written as a set of ordered pairs,  𝑁 
=  {(𝑒, {< 𝑥 , 𝑇𝑓𝑁(𝑒)(𝑥) ,  𝐼𝑓𝑁(𝑒)(𝑥) ,  𝐹𝑓𝑁(𝑒)(𝑥)  > ∶ 𝑥 ∈

𝑈 }) ∶  𝑒 ∈  𝐸}   where 𝑇𝑓𝑁(𝑒)(𝑥) , 𝐼𝑓𝑁(𝑒)(𝑥),  𝐹𝑓𝑁(𝑒)(𝑥)  ∈

[0,1] , respectively, called the truth-membership, indeter-
minacy-membership, falsity-membership function of 
𝑓𝑁(𝑒) .   Since supremum of each 𝑇, 𝐼, 𝐹 is 1  so the
inequality   0 ≤ 𝑇𝑓𝑁(𝑒)(𝑥) + 𝐼𝑓𝑁(𝑒)(𝑥) + 𝐹𝑓𝑁(𝑒)(𝑥) ≤  3  is
obvious. 

2.6.1 Example 

Let,   𝑈 =  {ℎ1, ℎ2, ℎ3} be a set of houses and   𝐸 =
{𝑒1(𝑏𝑒𝑎𝑢𝑡𝑖𝑓𝑢𝑙), 𝑒2(𝑤𝑜𝑜𝑑𝑒𝑛),   𝑒3(𝑐𝑜𝑠𝑡𝑙𝑦) }   be a set of
parameters with respect to which the nature of houses is 
described.  Let 

𝑓𝑁(𝑒1) = {<ℎ1, (0.5, 0.6, 0.3)>, <ℎ2, (0.4, 0.7, 0.6)>,
<ℎ3, (0.6, 0.2, 0.3)>};

𝑓𝑁(𝑒2)= {<ℎ1, (0.6, 0.3, 0.5) >, < ℎ2, (0.7, 0.4, 0.3) >,<
ℎ3, (0.8, 0.1, 0.2) >};

𝑓𝑁(𝑒3) = {<ℎ1, (0.7, 0.4, 0.3) >, < ℎ2, (0.6, 0.7, 0.2)
>,< ℎ3, (0.7, 0.2, 0.5) >};

Then, 𝑁 = {[𝑒1, 𝑓𝑁(𝑒1)], [𝑒2, 𝑓𝑁(𝑒2)], [𝑒3, 𝑓𝑁(𝑒3)]}  is
an NSS over (𝑈, 𝐸).         

The tabular representation of the NSS 𝑁 is as: 

  𝑓𝑁(𝑒1)   𝑓𝑁(𝑒2) 𝑓𝑁(𝑒3)

ℎ1  

ℎ2 

ℎ3  

(0.5,0.6,0.3)    (0.6,0.3,0.5)     (0.7,0.4,0.3) 

(0.4,0.7,0.6)    (0.7,0.4,0.3)     (0.6,0.7,0.2) 

(0.6,0.2,0.3)    (0.8,0.1,0.2)     (0.7,0.2,0.5) 

Table 1: Tabular form of NSS  N. 

2.6.2 Definition: [26]

The complement of a neutrosophic soft set 𝑁 is denoted 
by 𝑁𝑐 and  is defined as:

𝑁𝑐 =  {(𝑒, {< 𝑥,  𝐹𝑓𝑁(𝑒)(𝑥), 1 − 𝐼𝑓𝑁(𝑒)(𝑥),
𝑇𝑓𝑁(𝑒)(𝑥) >∶  𝑥 ∈ 𝑈}) ∶  𝑒 ∈ 𝐸}

2.6.3 Definition: [26]

Let 𝑁1 and 𝑁2  be two NSSs over the common universe
(𝑈, 𝐸). Then 𝑁1 is said to be the neutrosophic soft subset of
𝑁2  if

𝑇𝑓𝑁1(𝑒)(𝑥) ≤ 𝑇𝑓𝑁2(𝑒)(𝑥),  𝐼𝑓𝑁1(𝑒)(𝑥) ≥ 𝐼𝑓𝑁2(𝑒)(𝑥),
𝐹𝑓𝑁1(𝑒)(𝑥) ≥ 𝐹𝑓𝑁2(𝑒)(𝑥);  ∀𝑒 ∈  𝐸  and  𝑥 ∈  𝑈.

We write 𝑁1 ⊆ 𝑁2 and then 𝑁2 is the neutrosophic soft
superset of 𝑁1.

2.6.4 Definition: [26]

1. Let 𝑁1  and 𝑁2  be two NSSs over the common
universe (𝑈, 𝐸). Then their union is denoted by 𝑁1 ∪ 𝑁2 =
𝑁3 and is defined as :

𝑁3 =  {(𝑒, {<  𝑥, 𝑇𝑓𝑁3
(𝑒)(𝑥), 𝐼𝑓𝑁3

(𝑒)(𝑥), 𝐹𝑓𝑁3
(𝑒)(𝑥) >∶

 𝑥 ∈  𝑈 }) ∶  𝑒 ∈  𝐸 },
where   

𝑇𝑓𝑁3
(𝑒)(𝑥) = 𝑇𝑓𝑁1

(𝑒)(𝑥) ⋄  𝑇𝑓𝑁2
(𝑒)(𝑥),

𝐼𝑓𝑁3(𝑒)(𝑥) = 𝐼𝑓𝑁1(𝑒)(𝑥) ∗  𝐼𝑓𝑁2(𝑒)(𝑥),

𝐹𝑓𝑁3(𝑒)(𝑥) = 𝐹𝑓𝑁1(𝑒)(𝑥) ∗  𝐹𝑓𝑁2(𝑒)(𝑥);

2. Let 𝑁1  and 𝑁2  be two NSSs over the common
universe (𝑈, 𝐸). Then their intersection is denoted by 𝑁1 ∩
𝑁2 = 𝑁4 and it  is defined as:

𝑁4 =  {(𝑒, {<  𝑥, 𝑇𝑓𝑁4
(𝑒)(𝑥), 𝐼𝑓𝑁4

(𝑒)(𝑥),
𝐹𝑓𝑁4

(𝑒)(𝑥) >∶  𝑥 ∈  𝑈 }) ∶  𝑒 ∈  𝐸 }

where 
𝑇𝑓𝑁4(𝑒)(𝑥) = 𝑇𝑓𝑁1(𝑒)(𝑥) ∗  𝑇𝑓𝑁2

(𝑒)(𝑥),

𝐼𝑓𝑁4(𝑒)(𝑥) = 𝐼𝑓𝑁1(𝑒)(𝑥) ⋄  𝐼𝑓𝑁2(𝑒)(𝑥),

𝐹𝑓𝑁4(𝑒)(𝑥) =  𝐹𝑓𝑁1(𝑒)(𝑥) ⋄  𝐹𝑓𝑁2(𝑒)(𝑥);

2.7 Definition: [8]

Let (𝐹, 𝐴) be a soft set over the group 𝐺. Then (𝐹, 𝐴) is 
called a soft group over 𝐺  if  𝐹(𝑎)  is a subgroup of  𝐺,  
∀𝑎 ∈  𝐴.

119
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3 Neutrosophic soft groups

In this section, we define the neutrosophic soft group 
and some basic properties related to it. Unless otherwise 
stated, 𝐸  is treated as the parametric set throughout this 
paper and  𝑒 ∈ 𝐸, an arbitrary parameter. 

3.1 Definition: 

A neutrosophic set  𝐴 =  {<  𝑥, 𝑇𝐴(𝑥),   𝐼𝐴(𝑥),
𝐹𝐴(𝑥)  >∶  𝑥 ∈  𝐺}  over a group (𝐺,∘)  is called a

neutrosophic subgroup of (𝐺,∘) if 
(𝑖)   𝑇𝐴(𝑥 ∘ 𝑦)   ≥  𝑇𝐴(𝑥)  ∗  𝑇𝐴(𝑦),

𝐼𝐴(𝑥 ∘ 𝑦)   ≤   𝐼𝐴(𝑥)   ⋄   𝐼𝐴(𝑦),
 𝐹𝐴(𝑥 ∘ 𝑦)  ≤   𝐹𝐴(𝑥)  ⋄  𝐹𝐴(𝑦);

   for  𝑥, 𝑦 ∈  𝐺. 
(𝑖𝑖) 𝑇𝐴(𝑥−1)  ≥  𝑇𝐴(𝑥),    𝐼𝐴(𝑥−1)  ≤  𝐼𝐴(𝑥),
𝐹𝐴(𝑥−1)  ≤  𝐹𝐴(𝑥),        for    𝑥 ∈  𝐺.
An NSS  𝑁 over a group (𝐺,∘) is called a neutrosophic 

soft group if  𝑓𝑁(𝑒) is a neutrosophic subgroup of (𝐺,∘) for
each 𝑒 ∈  𝐸. 

3.1.1 Example: 

1. Let us consider the Klein's -4 group 𝑉 =  {𝑒, 𝑎, 𝑏, 𝑐}
and 𝐸 =  {𝛼, 𝛽, 𝛾, 𝛿} be the set of parameters. We define  
𝑓𝑁(𝛼), 𝑓𝑁(𝛽),  𝑓𝑁(𝛾),  𝑓𝑁(𝛿)  as given by the following ta-
ble: 

Table 2: Tabular form of neutrosophic soft group N. 

Corresponding  t-norm (∗) and s-norm (⋄) are defined as  
𝑎 ∗  𝑏 =  𝑚𝑎𝑥 ( 𝑎 + 𝑏 − 1,   0) ,  𝑎 ⋄  𝑏 =  𝑚𝑖𝑛 (𝑎 +
𝑏, 1).  Then, 𝑁 forms a neutrosophic soft group over (𝑉, 𝐸). 

2. Let 𝐸 =  ℕ  ( the set of natural no.), be the parametric
set and 𝐺 =  (ℤ, +) be the group of all integers. Define a 
mapping 𝑓𝑀 : ℕ →  𝑁𝑆(ℤ) where, for any 𝑛 ∈ ℕ and 𝑥 ∈ ℤ,

𝑇𝑓𝑀(𝑛)(𝑥) = {
0   if 𝑥 is odd
1

𝑛
 if 𝑥 is even

𝐼𝑓𝑀(𝑛)(𝑥) = {
1

2𝑛
 if 𝑥 is odd

0  if 𝑥 is even

𝐹𝑓𝑀(𝑛)(𝑥) = {
1 −

1

𝑛
   if 𝑥 is odd

0      if 𝑥 is even
Corresponding t-norm (∗) and s-norm (⋄) are defined as   

𝑎 ∗  𝑏 =  𝑚𝑖𝑛 (𝑎, 𝑏), 𝑎 ⋄   𝑏 =  𝑚𝑎𝑥 (𝑎, 𝑏). 
Then, 𝑀  forms a neutrosophic soft set as well as 

neutrosophic  soft group over [(ℤ, +), ℕ]. 

3.2 Proposition: 

An NSS 𝑁 over the group (𝐺,∘) is called a neutrosophic 
soft group iff followings hold on the assumption that truth 
membership (𝑇),  indeterministic membership (𝐼)  and 
falsity membership (𝐹)  functions of an NSS obey the 
idempotent  t-norm and idempotent  s-norm disciplines. 

𝑇𝑓𝑁(𝑒)(𝑥 ∘ 𝑦−1)  ≥  𝑇𝑓𝑁(𝑒)(𝑥) ∗  𝑇𝑓𝑁(𝑒)(𝑦),

𝐼𝑓𝑁(𝑒)(𝑥 ∘ 𝑦−1)  ≤  𝐼𝑓𝑁(𝑒)(𝑥) ⋄  𝐼𝑓𝑁(𝑒)(𝑦),

𝐹𝑓𝑁(𝑒)(𝑥 ∘ 𝑦−1)  ≤  𝐹𝑓𝑁(𝑒)(𝑥) ⋄  𝐹𝑓𝑁(𝑒)(𝑦);

∀ 𝑥, 𝑦 ∈ 𝐺;    ∀𝑒 ∈  𝐸;

Proof: 

Firstly, suppose 𝑁 is an NSS group over (𝐺,∘).
Then, 
𝑇𝑓𝑁(𝑒)(𝑥 ∘ 𝑦−1)  ≥  𝑇𝑓𝑁(𝑒)(𝑥)  ∗ 𝑇𝑓𝑁(𝑒)(𝑦−1)

≥   𝑇𝑓𝑁(𝑒)(𝑥) ∗  𝑇𝑓𝑁(𝑒)(𝑦),

𝐼𝑓𝑁(𝑒)(𝑥 ∘ 𝑦−1)  ≤  𝐼𝑓𝑁(𝑒)(𝑥) ⋄  𝐼𝑓𝑁(𝑒)(𝑦−1)

≤  𝐼𝑓𝑁(𝑒)(𝑥) ⋄  𝐼𝑓𝑁(𝑒)(𝑦),

𝐹𝑓𝑁(𝑒)(𝑥 ∘ 𝑦−1)  ≤  𝐹𝑓𝑁(𝑒)(𝑥) ⋄  𝐹𝑓𝑁(𝑒)(𝑦−1)

≤  𝐹𝑓𝑁(𝑒)(𝑥) ⋄  𝐹𝑓𝑁(𝑒)(𝑦);

Conversely, for the identity element 𝑒𝐺 in 𝐺;

𝑇𝑓𝑁(𝑒)(𝑒𝐺) =   𝑇𝑓𝑁(𝑒)(𝑥 ∘ 𝑥−1)

≥  𝑇𝑓𝑁(𝑒)(𝑥)  ∗  𝑇𝑓𝑁(𝑒)(𝑥)

=   𝑇𝑓𝑁(𝑒)(𝑥),

𝐼𝑓𝑁(𝑒)(𝑒𝐺) =   𝐼𝑓𝑁(𝑒)(𝑥 ∘ 𝑥−1)

≤  𝐼𝑓𝑁(𝑒)(𝑥)  ⋄  𝐼𝑓𝑁(𝑒)(𝑥)

=   𝐼𝑓𝑁(𝑒)(𝑥),

𝐹𝑓𝑁(𝑒)(𝑒𝐺) =   𝐹𝑓𝑁(𝑒)(𝑥 ∘ 𝑥−1)

≤  𝐹𝑓𝑁(𝑒)(𝑥)  ⋄  𝐹𝑓𝑁(𝑒)(𝑥)

= 𝐹𝑓𝑁(𝑒)(𝑥);

Now, 
𝑇𝑓𝑁(𝑒)(𝑥−1)  =  𝑇𝑓𝑁(𝑒)(𝑒𝐺 ∘ 𝑥−1)

≥  𝑇𝑓𝑁(𝑒)(𝑒𝐺)  ∗  𝑇𝑓𝑁(𝑒)(𝑥−1)

≥ 𝑇𝑓𝑁(𝑒)(𝑥)  ∗  𝑇𝑓𝑁(𝑒)(𝑥)

= 𝑇𝑓𝑁(𝑒)(𝑥),

𝐼𝑓𝑁(𝑒)(𝑥−1)  =  𝐼𝑓𝑁(𝑒)(𝑒𝐺 ∘ 𝑥−1)

≤  𝐼𝑓𝑁(𝑒)(𝑒𝐺)  ⋄  𝐼𝑓𝑁(𝑒)(𝑥−1)

≤   𝐼𝑓𝑁(𝑒)(𝑥)  ⋄  𝐼𝑓𝑁(𝑒)(𝑥)

= 𝐼𝑓𝑁(𝑒)(𝑥),

 𝑓𝑁(𝛼) 𝑓𝑁(𝛽)
 𝑓𝑁(𝛾) 𝑓𝑁(𝛿)

𝑒 

𝑎 

𝑏 

𝑐

(0.65, 0.34, 0.14)   (0.88, 0.12,0.72)  
(0.72, 0.21, 0.16)           (0.69, 0.31, 0.32) 

(0.71, 0.22, 0.78)           (0.71, 0.19, 0.44)  
(0.84, 0.16, 0.25)           (0.62, 0.32, 0.42) 

(0.75, 0.25, 0.52)           (0.83, 0.11, 0.28) 
(0.69, 0.31, 0.39)           (0.58, 0.41, 0.66) 

(0.67, 0.32, 0.29)          (0.75, 0.21, 0.19) 
 (0.79, 0.19, 0.41)          (0.71, 0.27, 0.53) 
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𝐹𝑓𝑁(𝑒)(𝑥−1)  =  𝐹𝑓𝑁(𝑒)(𝑒𝐺 ∘ 𝑥−1)

≤  𝐹𝑓𝑁(𝑒)(𝑒𝐺)  ⋄  𝐼𝑓𝑁(𝑒)(𝑥−1)

≤ 𝐹𝑓𝑁(𝑒)(𝑥)  ⋄  𝐹𝑓𝑁(𝑒)(𝑥)

= 𝐹𝑓𝑁(𝑒)(𝑥);

Next, 
𝑇𝑓𝑁(𝑒)(𝑥 ∘ 𝑦)   =  𝑇𝑓𝑁(𝑒)(𝑥 ∘ (𝑦−1)−1)

≥  𝑇𝑓𝑁(𝑒)(𝑥)  ∗  𝑇𝑓𝑁(𝑒)(𝑦−1)

≥ 𝑇𝑓𝑁(𝑒)(𝑥)  ∗  𝑇𝑓𝑁(𝑒)(𝑦),

𝐼𝑓𝑁(𝑒)(𝑥 ∘ 𝑦)   =  𝐼𝑓𝑁(𝑒)(𝑥 ∘ (𝑦−1)−1)

≤  𝐼𝑓𝑁(𝑒)(𝑥)  ⋄  𝐼𝑓𝑁(𝑒)(𝑦−1)

≤ 𝐼𝑓𝑁(𝑒)(𝑥)  ⋄  𝐼𝑓𝑁(𝑒)(𝑦),

𝐹𝑓𝑁(𝑒)(𝑥 ∘ 𝑦)   =  𝐹𝑓𝑁(𝑒)(𝑥 ∘ (𝑦−1)−1)

≤  𝐹𝑓𝑁(𝑒)(𝑥)  ⋄  𝐹𝑓𝑁(𝑒)(𝑦−1)

≤ 𝐹𝑓𝑁(𝑒)(𝑥)  ⋄  𝐹𝑓𝑁(𝑒)(𝑦).

This completes the proof. 

3.2.1 Proposition: 

Let  𝑁  be a neutrosophic soft group  over the group 
(𝐺,∘). Then for 𝑥 ∈ 𝐺, followings hold. 

(𝑖)   𝑇𝑓𝑁(𝑒)(𝑥−1)  =  𝑇𝑓𝑁(𝑒)(𝑥) ,  𝐼𝑓𝑁(𝑒)(𝑥−1)  =

𝐼𝑓𝑁(𝑒)(𝑥),    𝐹𝑓𝑁(𝑒)(𝑥−1) = 𝐹𝑓𝑁(𝑒)(𝑥) ;

(𝑖𝑖)   𝑇𝑓𝑁(𝑒)(𝑒𝐺)  ≥  𝑇𝑓𝑁(𝑒)(𝑥)  ,  𝐼𝑓𝑁(𝑒)(𝑒𝐺)  ≤

𝐼𝑓𝑁(𝑒)(𝑥) ,  𝐹𝑓𝑁(𝑒)(𝑒𝐺) ≤ 𝐹𝑓𝑁(𝑒)(𝑥) ;
if 𝑇  follows the idempotent t-norm and 𝐼, 𝐹  follow  the 
idempotent  s-norm disciplines,  respectively. (𝑒𝐺 being the
identity element of 𝐺.) 

Proof: 

(𝑖)  𝑇𝑓𝑁(𝑒)(𝑥) = 𝑇𝑓𝑁(𝑒)(𝑥−1)−1 ≥  𝑇𝑓𝑁(𝑒)(𝑥−1)

𝐼𝑓𝑁(𝑒)(𝑥)  =  𝐼𝑓𝑁(𝑒)(𝑥−1)−1  ≤  𝐼𝑓𝑁(𝑒)(𝑥−1)

𝐹𝑓𝑁(𝑒)(𝑥) = 𝐹𝑓𝑁(𝑒)(𝑥−1)−1 ≤  𝐹𝑓𝑁(𝑒)(𝑥−1)

Now, from definition of neutrosophic soft group, the 
result follows. 

(𝑖𝑖)   For the identity element 𝑒𝐺 in  𝐺,
𝑇𝑓𝑁(𝑒)(𝑒𝐺) = 𝑇𝑓𝑁(𝑒)(𝑥 ∘  𝑥−1)

≥  𝑇𝑓𝑁(𝑒)(𝑥) ∗  𝑇𝑓𝑁(𝑒)(𝑥)

=  𝑇𝑓𝑁(𝑒)(𝑥) ,

𝐼𝑓𝑁(𝑒)(𝑒𝐺) = 𝐼𝑓𝑁(𝑒)(𝑥 ∘  𝑥−1)

≤  𝐼𝑓𝑁(𝑒)(𝑥) ⋄  𝐼𝑓𝑁(𝑒)(𝑥)

=  𝐼𝑓𝑁(𝑒)(𝑥) ,

𝐹𝑓𝑁(𝑒)(𝑒𝐺) = 𝐹𝑓𝑁(𝑒)(𝑥 ∘  𝑥−1)

≤  𝐹𝑓𝑁(𝑒)(𝑥) ⋄  𝐹𝑓𝑁(𝑒)(𝑥)

=  𝐹𝑓𝑁(𝑒)(𝑥) ;

Hence,  the proposition is proved. 

3.3 Theorem: 

Let 𝑁1 and 𝑁2 be two neutrosophic soft groups over the
group (𝐺,∘).  Then, 𝑁1 ∩ 𝑁2    is also a neutrosophic soft
group over (𝐺,∘). 

Proof: 

Let 𝑁1 ⋂ 𝑁2 =  𝑁3;   Now for 𝑥, 𝑦 ∈  𝐺;

𝑇 𝑓𝑁3
(𝑒)(𝑥 ∘ 𝑦)

= 𝑇 𝑓𝑁1
(𝑒)(𝑥 ∘ 𝑦) ∗ 𝑇 𝑓𝑁2

(𝑒)(𝑥 ∘ 𝑦)

≥ [𝑇 𝑓𝑁1
(𝑒)(𝑥) ∗  𝑇 𝑓𝑁1

(𝑒)(𝑦)] ∗

[𝑇 𝑓𝑁2
(𝑒)(𝑥) ∗  𝑇 𝑓𝑁2

(𝑒)(𝑦)]

= [𝑇 𝑓𝑁1
(𝑒)(𝑥) ∗  𝑇 𝑓𝑁1

(𝑒)(𝑦)] ∗

[𝑇 𝑓𝑁2
(𝑒)(𝑦) ∗  𝑇 𝑓𝑁2

(𝑒)(𝑥)]

    (as ∗  is commutative) 
= 𝑇 𝑓𝑁1

(𝑒)(𝑥) ∗  [𝑇 𝑓𝑁1
(𝑒)(𝑦) ∗ 𝑇 𝑓𝑁2

(𝑒)(𝑦)]

∗ 𝑇 𝑓𝑁2
(𝑒)(𝑥)   (as ∗  is associative)

= 𝑇 𝑓𝑁1
(𝑒)(𝑥) ∗ 𝑇 𝑓𝑁3

(𝑒)(𝑦) ∗ 𝑇 𝑓𝑁2
(𝑒)(𝑥)

= 𝑇 𝑓𝑁1
(𝑒)(𝑥) ∗ 𝑇 𝑓𝑁2

(𝑒)(𝑥) ∗ 𝑇 𝑓𝑁3
(𝑒)(𝑦)

(as ∗  is commutative) 
= 𝑇 𝑓𝑁3

(𝑒)(𝑥) ∗ 𝑇 𝑓𝑁3
(𝑒)(𝑦)

Also,  
𝑇𝑓𝑁3

(𝑒)(𝑥−1) =  𝑇𝑓𝑁1
(𝑒)(𝑥−1) ∗ 𝑇𝑓𝑁2

(𝑒)(𝑥−1)

≥  𝑇 𝑓𝑁1
(𝑒)(𝑥) ∗ 𝑇 𝑓𝑁2

(𝑒)(𝑥)

= 𝑇 𝑓𝑁3
(𝑒)(𝑥);

Next, 
𝐼 𝑓𝑁3

(𝑒)(𝑥 ∘ 𝑦)

= 𝐼 𝑓𝑁1
(𝑒)(𝑥 ∘ 𝑦) ⋄ 𝐼 𝑓𝑁2

(𝑒)(𝑥 ∘ 𝑦)

≤ [𝐼 𝑓𝑁1
(𝑒)(𝑥) ⋄  𝐼 𝑓𝑁1

(𝑒)(𝑦)] ⋄

[𝐼 𝑓𝑁2
(𝑒)(𝑥) ⋄  𝐼 𝑓𝑁2

(𝑒)(𝑦)]

= [𝐼 𝑓𝑁1
(𝑒)(𝑥) ⋄  𝐼 𝑓𝑁1

(𝑒)(𝑦)] ⋄

[𝐼 𝑓𝑁2
(𝑒)(𝑦) ⋄  𝐼 𝑓𝑁2

(𝑒)(𝑥)]

         (as ⋄  is commutative) 
= 𝐼 𝑓𝑁1

(𝑒)(𝑥) ⋄  [𝐼 𝑓𝑁1
(𝑒)(𝑦) ⋄ 𝐼 𝑓𝑁2

(𝑒)(𝑦)]

⋄ 𝐼 𝑓𝑁2
(𝑒)(𝑥) (as ⋄  is associative)

= 𝐼 𝑓𝑁1
(𝑒)(𝑥) ⋄ 𝐼 𝑓𝑁3

(𝑒)(𝑦) ⋄ 𝐼 𝑓𝑁2
(𝑒)(𝑥)

= 𝐼 𝑓𝑁1
(𝑒)(𝑥) ⋄ 𝐼 𝑓𝑁2

(𝑒)(𝑥) ⋄ 𝐼 𝑓𝑁3
(𝑒)(𝑦)

(as ⋄  is commutative) 
= 𝐼 𝑓𝑁3

(𝑒)(𝑥) ⋄ 𝐼 𝑓𝑁3
(𝑒)(𝑦)

Also,    
𝐼 𝑓𝑁3

(𝑒)(𝑥−1) =  𝐼 𝑓𝑁1
(𝑒)(𝑥−1) ⋄ 𝐼 𝑓𝑁2

(𝑒)(𝑥−1)

≤  𝐼 𝑓𝑁1
(𝑒)(𝑥) ⋄ 𝐼 𝑓𝑁2

(𝑒)(𝑥)

= 𝐼 𝑓𝑁3
(𝑒)(𝑥);

Similarly, 
𝐹 𝑓𝑁3

(𝑒)(𝑥 ∘ 𝑦) ≤  𝐹 𝑓𝑁3
(𝑒)(𝑥) ⋄ 𝐹 𝑓𝑁3

(𝑒)(𝑦),

𝐹 𝑓𝑁3
(𝑒)(𝑥−1)   ≤ 𝐹 𝑓𝑁3

(𝑒)(𝑥);

This ends the theorem. The theorem is also true for a 
family of neutrosophic soft  groups over a group. 
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3.3.1 Remark: 

For two neutrosophic soft groups 𝑁1  and 𝑁2  over the
group 𝐺,  𝑁1⋃𝑁2 is not generally a neutrosophic soft group
over 𝐺. It is possible if anyone is contained in other.  

For example, let,    𝐺 =  (ℤ, +), 𝐸 =  2ℤ.   Consider 
two neutrosophic soft groups 𝑁1      and 𝑁2  over 𝐺  as
following. For  𝑥, 𝑛 ∈  ℤ, 

𝑇𝑓𝑁1
(2𝑛)(𝑥) = {

1

2
 if 𝑥 =  4kn, ∃k ∈  ℤ

0  others

𝐼𝑓𝑁1
(2𝑛)(𝑥) = {

0   if 𝑥 =  4kn, ∃k ∈  ℤ
1

4
 others

𝐹𝑓𝑁1
(2𝑛)(𝑥) = {

0   if 𝑥 =  4kn, ∃k ∈  ℤ
1

10
 others

  and 

𝑇𝑓2(2𝑛)(𝑥) = {
2

3
 if 𝑥 =  6kn, ∃k ∈  ℤ

0  others

𝐼𝑓𝑁2
(2𝑛)(𝑥) = {

0   if 𝑥 =  6kn, ∃k ∈  ℤ
1

5
 others

𝐹𝑓𝑁2
(2𝑛)(𝑥) = {

1

6
 if 𝑥 =  6kn, ∃k ∈  ℤ

1  others
Corresponding t-norm (∗) and s-norm (⋄) are defined as 

𝑎 ∗  𝑏 =  𝑚𝑖𝑛 (𝑎, 𝑏),  𝑎 ⋄  𝑏 =  𝑚𝑎𝑥 (𝑎, 𝑏).   Let  𝑁1  ⋃
𝑁2 =  𝑁3; Then for  𝑛 = 3, 𝑥 = 12, 𝑦 = 18   we have,

𝑇𝑓𝑁3
(6)(12 − 18) = 𝑇𝑓𝑁1

(6)( −6) ⋄ 𝑇𝑓𝑁2
(6)( −6)

        = max  (0, 0)  =  0     and 
𝑇𝑓𝑁3

(6)(12)  ∗  𝑇𝑓𝑁3
(6)(18)

=  { 𝑇𝑓𝑁1
(6)(12) ⋄  𝑇𝑓𝑁2

(6)(12)} ∗

{𝑇𝑓𝑁1
(6)(18)  ⋄  𝑇𝑓𝑁2

(6)(18) }

=   𝑚𝑖𝑛  {𝑚𝑎𝑥 (
1

2
, 0) , 𝑚𝑎𝑥 (0,

2

3
)} 

=    𝑚𝑖𝑛   (1

2
,

2

3
)   = 1

2

Hence, 
𝑇𝑓𝑁3

(6)(12 − 18) <  𝑇𝑓𝑁3
(6)(12) ∗  𝑇𝑓𝑁3

(6)(18);

i,e  𝑁1 ⋃ 𝑁2  is not a neutrosophic soft group, here.

Now, if we define 𝑁2  over 𝐺 as following:

𝑇𝑓𝑁2
(2𝑛)(𝑥) = {

1

 8
 if 𝑥 =  8kn, ∃k ∈  ℤ

0  others

𝐼𝑓𝑁2
(2𝑛)(𝑥) = {

 0     if 𝑥 =  8kn, ∃k ∈  ℤ
2

5
 others

𝐹𝑓𝑁2
(2𝑛)(𝑥) = {

1

6
 if 𝑥 =  8kn, ∃k ∈  ℤ

1

2
 others

Then, it can be easily verified that 𝑁2 ⊆ 𝑁1 and 𝑁1⋃𝑁2

is a neutrosophic soft  group over 𝐺. 

3.4 Definition: 

1. Let 𝑁1  and 𝑁2  be two NSSs over the common
universe (𝑈, 𝐸). Then their ‘𝐴𝑁𝐷′ operation is denoted by 
𝑁1⋀ 𝑁2 = 𝑁3 and is defined as:

𝑁3 = {[(𝑎, 𝑏), {< 𝑥, 𝑇𝑓𝑁3
(𝑎,𝑏)(𝑥), 𝐼𝑓𝑁3

(𝑎,𝑏)(𝑥),

𝐹𝑓𝑁3
(𝑎,𝑏)(𝑥) >∶ 𝑥 ∈  𝑈} ]: (𝑎, 𝑏) ∈ 𝐸×𝐸} where

𝑇𝑓𝑁3
(𝑎,𝑏)(𝑥) = 𝑇𝑓𝑁1

(𝑎)(𝑥) ∗  𝑇𝑓𝑁2
(𝑏)(𝑥),

𝐼𝑓𝑁3
(𝑎,𝑏)(𝑥) = 𝐼𝑓𝑁1

(𝑎)(𝑥) ⋄  𝐼𝑓𝑁2
(𝑏)(𝑥),

𝐹𝑓𝑁3
(𝑎,𝑏)(𝑥) = 𝐹𝑓𝑁1

(𝑎)(𝑥) ⋄  𝐹𝑓𝑁2
(𝑏)(𝑥);

2. Let 𝑁1  and 𝑁2  be two NSSs over the common
universe (𝑈, 𝐸).  Then their ‘𝑂𝑅′  operation is denoted by 
𝑁1⋁ 𝑁2 = 𝑁4 and is defined as:

𝑁4 = {[(𝑎, 𝑏), {< 𝑥, 𝑇𝑓𝑁4
(𝑎,𝑏)(𝑥), 𝐼𝑓𝑁4

(𝑎,𝑏)(𝑥),

𝐹𝑓𝑁4
(𝑎,𝑏)(𝑥) >∶ 𝑥 ∈  𝑈} ]: (𝑎, 𝑏) ∈ 𝐸×𝐸}

where 

𝑇𝑓𝑁4
(𝑎,𝑏)(𝑥) =   𝑇𝑓𝑁1

(𝑎)(𝑥) ⋄  𝑇𝑓𝑁2
(𝑏)(𝑥),

𝐼𝑓𝑁4
(𝑎,𝑏)(𝑥) =   𝐼𝑓𝑁1

(𝑎)(𝑥) ∗  𝐼𝑓𝑁2
(𝑏)(𝑥),

𝐹𝑓𝑁4
(𝑎,𝑏)(𝑥) =   𝐹𝑓𝑁1

(𝑎)(𝑥) ∗  𝐹𝑓𝑁2
(𝑏)(𝑥);

3.5 Theorem: 

Let  𝑁1 and 𝑁2 be two neutrosophic soft groups over the
group (𝐺,∘).  Then, 𝑁1⋀ 𝑁2   is also a neutrosophic soft
group over (𝐺,∘). 

Proof: 

Let 𝑁1⋀ 𝑁2 = 𝑁3. Then for 𝑥, 𝑦 ∈  𝐺 and  (𝑎, 𝑏)  ∈  𝐸×
𝐸,

𝑇𝑓𝑁3
(𝑎,𝑏)(𝑥 ∘ 𝑦)

= 𝑇𝑓𝑁1
(𝑎)(𝑥 ∘ 𝑦) ∗ 𝑇𝑓𝑁2

(𝑏)(𝑥 ∘ 𝑦)

≥ [ 𝑇𝑓𝑁1
(𝑎)(𝑥) ∗  𝑇𝑓𝑁1

(𝑎)(𝑦)] ∗

[ 𝑇𝑓𝑁2
(𝑏)(𝑥) ∗  𝑇𝑓𝑁2

(𝑏)(𝑦)]

= [ 𝑇𝑓𝑁1
(𝑎)(𝑥) ∗  𝑇𝑓𝑁1

(𝑎)(𝑦)] ∗

[ 𝑇𝑓𝑁2
(𝑏)(𝑦) ∗  𝑇𝑓𝑁2

(𝑏)(𝑥)]

        (as ∗  is commutative)         
= 𝑇𝑓𝑁1

(𝑎)(𝑥) ∗ [ 𝑇𝑓𝑁1
(𝑎)(𝑦) ∗  𝑇𝑓𝑁2

(𝑏)(𝑦)]

∗  𝑇𝑓𝑁2
(𝑏)(𝑥)   (as ∗ is associative)

= 𝑇𝑓𝑁1
(𝑎)(𝑥) ∗  𝑇𝑓𝑁3

(𝑎,𝑏)(𝑦) ∗  𝑇𝑓𝑁2
(𝑏)(𝑥)

= 𝑇𝑓𝑁1
(𝑎)(𝑥) ∗  𝑇𝑓𝑁2

(𝑏)(𝑥) ∗ 𝑇𝑓𝑁3
(𝑎,𝑏)(𝑦)

         (as ∗ is commutative) 
= 𝑇𝑓𝑁3

(𝑎,𝑏)(𝑥) ∗ 𝑇𝑓𝑁3
(𝑎,𝑏)(𝑦)

𝑇𝑓𝑁3
(𝑎,𝑏)(𝑥−1) = 𝑇𝑓𝑁1

(𝑎)(𝑥−1) ∗ 𝑇𝑓𝑁2
(𝑏)(𝑥−1)

≥  𝑇𝑓𝑁1
(𝑎)(𝑥) ∗  𝑇𝑓𝑁2

(𝑏)(𝑥)

=  𝑇𝑓𝑁3
(𝑎,𝑏)(𝑥)
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Similarly, 
𝐼𝑓𝑁3

(𝑎,𝑏)(𝑥 ∘ 𝑦) ≤ 𝐼𝑓𝑁3
(𝑎,𝑏)(𝑥) ⋄ 𝐼𝑓𝑁3

(𝑎,𝑏)(𝑦),

𝐼𝑓𝑁3
(𝑎,𝑏)(𝑥−1) ≤  𝐼𝑓𝑁3

(𝑎,𝑏)(𝑥) ;

𝐹𝑓𝑁3
(𝑎,𝑏)(𝑥 ∘ 𝑦) ≤ 𝐹𝑓𝑁3

(𝑎,𝑏)(𝑥) ⋄ 𝐹𝑓𝑁3
(𝑎,𝑏)(𝑦),

𝐹𝑓𝑁3
(𝑎,𝑏)(𝑥−1) ≤  𝐹𝑓𝑁3

(𝑎,𝑏)(𝑥) ;
This completes the proof. 
The theorem is true for a family of neutrosophic soft 

groups over a group. 

3.6 Definition: 

Let 𝑔 be a mapping from a set 𝑋 to a set 𝑌. If 𝑀 and 𝑁 
are two neutrosophic soft sets over 𝑋 and 𝑌, respectively, 
then the image of 𝑀 under 𝑔 is defined as a neutrosophic 
soft set   𝑔(𝑀) =  {[𝑒, 𝑓𝑔(𝑀) (𝑒)]: 𝑒 ∈ 𝐸}  over 𝑌,  where
𝑇𝑓𝑔(𝑀) (𝑒)(𝑦) = 𝑇𝑓𝑀(𝑒)[𝑔−1(𝑦)], 𝐼𝑓𝑔(𝑀)(𝑒)(𝑦) =

𝐼𝑓𝑀(𝑒)[𝑔−1(𝑦)],  𝐹𝑓𝑔(𝑀) (𝑒)(𝑦) = 𝐹𝑓𝑀(𝑒)[𝑔−1(𝑦)], ∀𝑦 ∈

 𝑌. 
The pre-image of 𝑁  under 𝑔  is defined as a 

neutrosophic soft set given by: 
𝑔−1(𝑁)  = {[𝑒, 𝑓𝑔−1(𝑁) (𝑒)]: 𝑒 ∈ 𝐸}  over 𝑋, where
𝑇𝑓

𝑔−1(𝑁)
(𝑒)(𝑥) = 𝑇𝑓𝑁(𝑒)[𝑔(𝑥)], 𝐼𝑓

𝑔−1(𝑁)
(𝑒)(𝑥) =

𝐼𝑓𝑁(𝑒)[𝑔(𝑥)], 𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝑥) = 𝐹𝑓𝑁(𝑒)[𝑔(𝑥)],

∀𝑥 ∈ 𝑋. 

3.7 Theorem: 

Let   𝑔 ∶  𝑋 →  𝑌 be an isomorphism in classical sense. 
If 𝑀  is a neutrosophic soft group over 𝑋  then 𝑔(𝑀) is a 
neutrosophic soft group over 𝑌. 

Proof: 

Let   𝑥1, 𝑥2 ∈ 𝑋;    𝑦1, 𝑦2 ∈ 𝑌;   such that  𝑦1  =  𝑔(𝑥1),
𝑦2 =  𝑔(𝑥2).    Now,

𝑇𝑓𝑔(𝑀) (𝑒)(𝑦1 ∘ 𝑦2)

= 𝑇𝑓𝑀(𝑒)[𝑔−1(𝑦1 ∘ 𝑦2)]

= 𝑇𝑓𝑀(𝑒)[𝑔−1(𝑦1) ∘ 𝑔−1(𝑦2)]

   (as 𝑔−1 is homomorphism) 
= 𝑇𝑓𝑀(𝑒)(𝑥1 ∘ 𝑥2)

≥ 𝑇𝑓𝑀(𝑒)(𝑥1) ∗ 𝑇𝑓𝑀(𝑒)(𝑥2)

= 𝑇𝑓𝑀(𝑒)[𝑔−1(𝑦1)] ∗  𝑇𝑓𝑀(𝑒)[𝑔−1(𝑦2)]

= 𝑇𝑓𝑔(𝑀) (𝑒)(𝑦1) ∗ 𝑇𝑓𝑔(𝑀) (𝑒)(𝑦2)

Next,    𝐼𝑓𝑔(𝑀) (𝑒)(𝑦1 ∘ 𝑦2)

=  𝐼𝑓𝑀(𝑒)[𝑔−1(𝑦1 ∘ 𝑦2)]

=   𝐼𝑓𝑀(𝑒)[𝑔−1(𝑦1) ∘ 𝑔−1(𝑦2)]

  (as 𝑔−1 is homomorphism) 
= 𝐼𝑓𝑀(𝑒) (𝑥1 ∘ 𝑥2)

≤ 𝐼𝑓𝑀(𝑒)(𝑥1) ⋄ 𝐼𝑓𝑀(𝑒)(𝑥2)

=   𝐼𝑓𝑀(𝑒)[𝑔−1(𝑦1)] ⋄  𝐼𝑓𝑀(𝑒)[𝑔−1(𝑦2)]

=   𝐼𝑓𝑔(𝑀) (𝑒)(𝑦1) ⋄ 𝐼𝑓𝑔(𝑀) (𝑒)(𝑦2)

Similarly,   𝐹𝑓𝑔(𝑀) (𝑒)(𝑦1 ∘ 𝑦2)

≤  𝐹𝑓𝑔(𝑀) (𝑒)(𝑦1) ⋄ 𝐹𝑓𝑔(𝑀) (𝑒)(𝑦2)

Next,     𝑇𝑓𝑔(𝑀) (𝑒)(𝑦1
−1) = 𝑇𝑓𝑀(𝑒)[𝑔−1(𝑦1

−1)]

=  𝑇𝑓𝑀(𝑒)[(𝑔−1(𝑦1))−1]  = 𝑇𝑓𝑀(𝑒)(𝑥1
−1)

≥  𝑇𝑓𝑀(𝑒)(𝑥1) = 𝑇𝑓𝑀(𝑒) [𝑔−1(𝑦1)]

=  𝑇𝑓𝑔(𝑀) (𝑒)(𝑦1)   i,e
𝑇𝑓𝑔(𝑀) (𝑒)(𝑦1

−1) ≥ 𝑇𝑓𝑔(𝑀) (𝑒)(𝑦1);

𝐼𝑓𝑔(𝑀) (𝑒)(𝑦1
−1)  = 𝐼𝑓𝑀(𝑒)[𝑔−1(𝑦1

−1)]

=  𝐼𝑓𝑀(𝑒)[(𝑔−1(𝑦1))−1]  = 𝐼𝑓𝑀(𝑒)(𝑥1
−1)

≤  𝐼𝑓𝑀(𝑒)(𝑥1) = 𝐼𝑓𝑀(𝑒) [𝑔−1(𝑦1)]

=  𝐼𝑓𝑔(𝑀) (𝑒)(𝑦1)   i,e
𝐼𝑓𝑔(𝑀) (𝑒)(𝑦1

−1) ≤ 𝐼𝑓𝑔(𝑀) (𝑒)(𝑦1);

Similarly,    𝐹𝑓𝑔(𝑀) (𝑒)(𝑦1
−1) ≤ 𝐹𝑓𝑔(𝑀) (𝑒)(𝑦1);

This proves the theorem. 

3.8 Theorem: 

Let 𝑔 ∶  𝑋 →  𝑌 be an homomorphism in classical sense. 
If 𝑁 is a neutrosophic soft group over 𝑌, then 𝑔−1(𝑁) is a 
neutrosophic soft group over 𝑋. [Note that 𝑔−1(𝑁) is the 
inverse image of 𝑁 under the mapping  𝑔. Here 𝑔−1  may 
not be a mapping.] 

Proof: 

Let   𝑥1, 𝑥2 ∈ 𝑋;    𝑦1, 𝑦2 ∈ 𝑌;   such that  𝑦1  =  𝑔(𝑥1),
𝑦2 =  𝑔(𝑥2).    Now,

𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1 ∘ 𝑥2)

=  𝑇𝑓𝑁(𝑒)[𝑔(𝑥1 ∘ 𝑥2)]

=  𝑇𝑓𝑁(𝑒)[𝑔(𝑥1) ∘ 𝑔(𝑥2)]

 (as 𝑔 is homomorphism) 
=   𝑇𝑓𝑁(𝑒) (𝑦1 ∘ 𝑦2)

≥ 𝑇𝑓𝑁(𝑒)(𝑦1) ∗ 𝑇𝑓𝑁(𝑒)(𝑦2)

=  𝑇𝑓𝑁(𝑒)[𝑔(𝑥1)] ∗  𝑇𝑓𝑁(𝑒)[𝑔(𝑥2)]

=  𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1) ∗ 𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2)

Next,   𝐼𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1 ∘ 𝑥2)

=  𝐼𝑓𝑁(𝑒)[𝑔(𝑥1 ∘ 𝑥2)]

=  𝐼𝑓𝑁(𝑒)[𝑔(𝑥1) ∘ 𝑔(𝑥2)]

 (as 𝑔 is homomorphism) 
=   𝐼𝑓𝑁(𝑒) (𝑦1 ∘ 𝑦2)

≤   𝐼𝑓𝑁(𝑒)(𝑦1) ⋄ 𝐼𝑓𝑁(𝑒)(𝑦2)

=  𝐼𝑓𝑁(𝑒)[𝑔(𝑥1)] ⋄  𝐼𝑓𝑁(𝑒)[𝑔(𝑥2)]

=  𝐼𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1) ⋄ 𝐼𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2)

Similarly,  𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1 ∘ 𝑥2)

≤  𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1) ⋄ 𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2)

Next, 𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1
−1) = 𝑇𝑓𝑁(𝑒)[𝑔(𝑥1

−1)]
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=  𝑇𝑓𝑁 (𝑒) [(𝑔(𝑥1))
−1

] = 𝑇𝑓𝑁 (𝑒)(𝑦1
−1)   ≥ 𝑇𝑓𝑁 (𝑒)(𝑦1) =

𝑇𝑓𝑁 (𝑒)[𝑔(𝑥1)]

=   𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1)   i,e
𝑇𝑓

𝑔−1(𝑁)
(𝑒)(𝑥1

−1) ≥ 𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1);

Similarly,    𝐼𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1
−1) ≤ 𝐼𝑓

𝑔−1(𝑁)
(𝑒)(𝑥1),

 𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1
−1) ≤ 𝐹𝑓

𝑔−1(𝑁)
(𝑒)(𝑥1);

Hence, the theorem is proved. 

3.9 Definition: 

Let 𝑁 be a neutrosophic soft group over the group 𝐺  
and  𝜆, 𝜇, 𝜂 ∈ (0,1] with  𝜆 + 𝜇 + 𝜂 ≤  3. Then,                           

1. 𝑁 is called (𝜆, 𝜇, 𝜂) -identity neutrosophic soft group
over 𝐺 if  ∀𝑒 ∈ 𝐸,         

𝑇𝑓𝑁(𝑒)(𝑥) = 𝜆,  𝐼𝑓𝑁(𝑒)(𝑥) = 𝜇, 𝐹𝑓𝑁(𝑒)(𝑥) = 𝜂 ;

for 𝑥 = 𝑒𝐺 , the identity element of G.
𝑇𝑓𝑁(𝑒)(𝑥) = 0,   𝐼𝑓𝑁(𝑒)(𝑥) = 𝐹𝑓𝑁(𝑒)(𝑥) = 1;                    

otherwise. 
2. 𝑁 is called (𝜆, 𝜇, 𝜂) -absolute neutrosophic soft group

over 𝐺 if  ∀𝑥 ∈ 𝐺, 𝑒 ∈ 𝐸,     𝑇𝑓𝑁(𝑒)(𝑥) = 𝜆,  𝐼𝑓𝑁(𝑒)(𝑥) = 𝜇,

𝐹𝑓𝑁(𝑒)(𝑥) = 𝜂.

3.10 Theorem: 

Let   𝜙 ∶  𝑋 →  𝑌   be an isomorphism in classical sense.   
1. If 𝑁 is a neutrosophic soft group over 𝑋, then 𝜙(𝑁)

is a (𝜆, 𝜇, 𝜂 ) -identity neutrosophic soft group over 𝑌  if  
𝑇𝑓𝑁(𝑒)(𝑥) = 𝜆,  𝐼𝑓𝑁(𝑒)(𝑥) = 𝜇,  𝐹𝑓𝑁(𝑒)(𝑥) = 𝜂;   when   𝑥 ∈

𝐾𝑒𝑟𝜙.   
𝑇𝑓𝑁(𝑒)(𝑥) = 0,  𝐼𝑓𝑁(𝑒)(𝑥) =  𝐹𝑓𝑁(𝑒)(𝑥) = 1;

otherwise,   ∀𝑥 ∈ 𝑋, 𝑒 ∈ 𝐸. 
2. If 𝑁 is a (𝜆, 𝜇, 𝜂) -absolute neutrosophic soft group

over 𝑋, then 𝜙(𝑁) is also so over 𝑌. 

Proof: 

1. Clearly, 𝜙(𝑁) is a neutrosophic soft group over 𝑌 by
theorem (3.7). Now, if 𝑥 ∈  𝑘𝑒𝑟𝜙   then 𝜙(𝑥) = 𝑒𝑌,  the
identity element of 𝑌. Then,   

𝑇𝑓𝜙(𝑁)(𝑒)(𝑒𝑌) =  𝑇𝑓𝑁(𝑒)[𝜙−1(𝑒𝑌)] = 𝑇𝑓𝑁(𝑒)(𝑥)

=    𝜆
𝐼𝑓𝜙(𝑁)(𝑒)(𝑒𝑌) =  𝐼𝑓𝑁(𝑒)[𝜙−1(𝑒𝑌)] =  𝐼𝑓𝑁(𝑒)(𝑥)

=  𝜇
𝐹𝑓𝜙(𝑁)(𝑒)(𝑒𝑌) =  𝐹𝑓𝑁(𝑒)[𝜙−1(𝑒𝑌)] =  𝐹𝑓𝑁(𝑒)(𝑥)

=   𝜂
Similarly, 𝑇𝑓𝑁(𝑒)(𝑥) = 0,  𝐼𝑓𝑁(𝑒)(𝑥) = 1,

𝐹𝑓𝑁(𝑒)(𝑥) = 1;     if 𝑥 otherwise.
 This ends the 1st part. 

2. Let, 𝑦 =  𝜙(𝑥) for 𝑥 ∈  𝑋, 𝑦 ∈  𝑌.  Then ∀𝑒 ∈  𝐸,

𝑇𝑓𝜙(𝑁)(𝑒)(𝑦) = 𝑇𝑓𝑁(𝑒)[𝜙−1(𝑦)] = 𝑇𝑓𝑁(𝑒)(𝑥) = 𝜆,

𝐼𝑓𝜙(𝑁)(𝑒)(𝑦) = 𝐼𝑓𝑁(𝑒)[𝜙−1(𝑦)] = 𝐼𝑓𝑁(𝑒)(𝑥) = 𝜇,

𝐹𝑓𝜙(𝑁)(𝑒)(𝑦) =  𝐹𝑓𝑁(𝑒)[𝜙−1(𝑦)] = 𝐹𝑓𝑁(𝑒)(𝑥) = 𝜂;

   This completes the 2nd part. 

4 Cartesian product of neutrosophic soft groups 

4.1 Definition: 

Let 𝑁1 and 𝑁2 be two neutrosophic soft groups over the
groups 𝑋 and 𝑌, respectively. Then their cartesian product 
is   𝑁1×  𝑁2 = 𝑁3   where 𝑓𝑁3

(𝑎, 𝑏) = 𝑓𝑁1
(𝑎)×𝑓𝑁2

(𝑏)  for
(𝑎, 𝑏)  ∈  𝐸 × 𝐸.  Analytically,    𝑓𝑁3

(𝑎, 𝑏) =

{< (𝑥, 𝑦), 𝑇𝑓𝑁3
(𝑎,𝑏)(𝑥, 𝑦)  𝐼𝑓𝑁3

(𝑎,𝑏)(𝑥, 𝑦),

𝐹𝑓𝑁3
(𝑎,𝑏)(𝑥, 𝑦) >∶ (𝑥, 𝑦)  ∈  𝑋×𝑌}

where 
𝑇𝑓𝑁3

(𝑎,𝑏)(𝑥, 𝑦) =  𝑇𝑓𝑁1
(𝑎)(𝑥) ∗ 𝑇𝑓𝑁2

(𝑏)(𝑦),

𝐼𝑓𝑁3
(𝑎,𝑏)(𝑥, 𝑦) =  𝐼𝑓𝑁1

(𝑎)(𝑥) ⋄ 𝐼𝑓𝑁2
(𝑏)(𝑦),

𝐹𝑓𝑁3
(𝑎,𝑏)(𝑥, 𝑦) =  𝐹𝑓𝑁1

(𝑎)(𝑥) ⋄ 𝐹𝑓𝑁2
(𝑏)(𝑦);

This definition can be extended for more than two 
neutrosophic soft groups. 

4.2 Theorem: 

Let  𝑁1 and 𝑁2  be two neutrosophic soft groups over
the groups 𝑋  and 𝑌 , respectively. Then their cartesian 
product  𝑁1×   𝑁2  is also a neutrosophic soft group over
𝑋 × 𝑌.

Proof: 

Let  𝑁1×  𝑁2 = 𝑁3  where  𝑓𝑁3
(𝑎, 𝑏) = 𝑓𝑁1

(𝑎)×𝑓𝑁2
(𝑏)

for (𝑎, 𝑏) ∈ 𝐸× 𝐸. Then for (𝑥1, 𝑦1),   (𝑥2, 𝑦2)  ∈  𝑋 × 𝑌 ,

𝑇𝑓𝑁3
(𝑎,𝑏)[(𝑥1, 𝑦1) ∘ (𝑥2, 𝑦2)]

= 𝑇𝑓𝑁3
(𝑎,𝑏)(𝑥1 ∘ 𝑥2,   𝑦1 ∘ 𝑦2)

= 𝑇𝑓𝑁1
(𝑎)(𝑥1 ∘ 𝑥2) ∗ 𝑇𝑓𝑁2

(𝑏)( 𝑦1 ∘ 𝑦2)

≥  [𝑇𝑓𝑁1
(𝑎)(𝑥1) ∗ 𝑇𝑓𝑁1

(𝑎)(𝑥2)] ∗

[𝑇𝑓𝑁2
(𝑏)( 𝑦1) ∗ 𝑇𝑓𝑁2

(𝑏)(𝑦2)]

=  [𝑇𝑓𝑁1
(𝑎)(𝑥1) ∗ 𝑇𝑓𝑁2

(𝑏)(𝑦1)] ∗

[𝑇𝑓𝑁1
(𝑎)( 𝑥2) ∗ 𝑇𝑓𝑁2

(𝑏)(𝑦2)]

=   𝑇𝑓𝑁3
(𝑎,𝑏)(𝑥1, 𝑦1) ∗ 𝑇𝑓𝑁3

(𝑎,𝑏)(𝑥2, 𝑦2)

Next, 
𝐼𝑓𝑁3

(𝑎,𝑏)[(𝑥1, 𝑦1) ∘ (𝑥2, 𝑦2)]

= 𝐼𝑓𝑁3
(𝑎,𝑏)(𝑥1 ∘ 𝑥2,   𝑦1 ∘ 𝑦2)

= 𝐼𝑓𝑁1
(𝑎)(𝑥1 ∘ 𝑥2) ⋄ 𝐼𝑓𝑁2

(𝑏)( 𝑦1 ∘ 𝑦2)

≤  [𝐼𝑓𝑁1
(𝑎)(𝑥1)𝐼𝑓𝑁1

(𝑎)(𝑥2)] ⋄

[𝐼𝑓𝑁2
(𝑏)( 𝑦1) ⋄ 𝐼𝑓𝑁2

(𝑏)(𝑦2)]

=  [𝐼𝑓𝑁1
(𝑎)(𝑥1) ⋄ 𝐼𝑓𝑁2

(𝑏)(𝑦1)] ⋄

[𝐼𝑓𝑁1
(𝑎)( 𝑥2) ⋄ 𝐼𝑓𝑁2

(𝑏)(𝑦2)]

=   𝐼𝑓𝑁3
(𝑎,𝑏)(𝑥1, 𝑦1) ⋄ 𝐼𝑓𝑁3

(𝑎,𝑏)(𝑥2, 𝑦2)

Similarly, 𝐹𝑓𝑁3
(𝑎,𝑏)[(𝑥1, 𝑦1) ∘ (𝑥2, 𝑦2)]

≤ 𝐹𝑓𝑁3
(𝑎,𝑏)(𝑥1, 𝑦1) ⋄ 𝐹𝑓𝑁3

(𝑎,𝑏)(𝑥2, 𝑦2).

Next, 
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𝑇𝑓𝑁3
(𝑎,𝑏)[(𝑥1, 𝑦1)−1] = 𝑇𝑓𝑁3

(𝑎,𝑏)(𝑥1
−1, 𝑦1

−1)

=  𝑇𝑓𝑁1
(𝑎)(𝑥1

−1) ∗ 𝑇𝑓𝑁2
(𝑏)(𝑦1

−1)

≥ 𝑇𝑓𝑁1
(𝑎)(𝑥1) ∗ 𝑇𝑓𝑁2

(𝑏)(𝑦1)

= 𝑇𝑓𝑁3
(𝑎,𝑏)(𝑥1, 𝑦1)

Similarly, 
𝐼𝑓𝑁3

(𝑎,𝑏)[(𝑥1, 𝑦1)−1] ≤ 𝐼𝑓𝑁3
(𝑎,𝑏)(𝑥1, 𝑦1),

𝐹𝑓𝑁3
(𝑎,𝑏)[(𝑥1, 𝑦1)−1] ≤ 𝐹𝑓𝑁3

(𝑎,𝑏)(𝑥1, 𝑦1).

Hence, the theorem is proved. 

5 Neutrosophic soft subgroup 

5.1 Definition: 

Let 𝑁1  and 𝑁2  be two neutrosophic groups over the
group 𝐺. Then 𝑁1 is neutrosophic soft subgroup of 𝑁2 if

𝑇𝑓𝑁1
(𝑒)(𝑥) ≤ 𝑇𝑓𝑁2

(𝑒)(𝑥),  𝐼𝑓𝑁1
(𝑒)(𝑥) ≥ 𝐼𝑓𝑁2

(𝑒)(𝑥),

𝐹𝑓𝑁1
(𝑒)(𝑥) ≥ 𝐹𝑓𝑁2

(𝑒)(𝑥);  ∀𝑥 ∈  𝐺, 𝑒 ∈  𝐸.

5.1.1 Example: 

We consider the Klein's -4 group 𝑉 = { 𝑒, 𝑎, 𝑏, 𝑐 } and 
𝐸 = { 𝛼, 𝛽, 𝛾, 𝛿 }  be a set of parameters. The two 
neutrosophic soft groups 𝑀, 𝑁  defined over (𝑉, 𝐸)  are 
given by the following tables when corresponding t-norm 
and s-norm are defined as   

𝑎 ∗  𝑏 = 𝑚𝑎𝑥 (𝑎 +  𝑏 − 1, 0) and 𝑎 ⋄  𝑏 =
 𝑚𝑖𝑛 (𝑎 + 𝑏, 1).

𝑓𝑀 (𝛼) 𝑓𝑀 (𝛽)
𝑓𝑀 (𝛾) 𝑓𝑀 (𝛿)

e 

a 

b 

c 

(0.65, 0.42, 0.54)     (0.68, 0.21, 0.76)  
(0.70, 0.31, 0.32)      (0.59, 0.38, 0.62) 

(0.61, 0.44, 0.78)     (0.62, 0.31, 0.79)  
(0.67, 0.41, 0.39)     (0.41, 0.49, 0.64) 

(0.55, 0.55, 0.59)     (0.59, 0.42, 0.80)  
(0.60, 0.36, 0.48)     (0.56, 0.43, 0.68) 

(0.47, 0.49, 0.69)     (0.67, 0.43, 0.84)  
(0.48, 0.52, 0.54)      (0.49, 0.50, 0.70) 

Table 3: Tabular form of neutrosophic soft group M. 

𝑓𝑁 (𝛼) 𝑓𝑁 (𝛽)
𝑓𝑁 (𝛾) 𝑓𝑁 (𝛿)

e 

a 

(0.65, 0.34, 0.14)      (0.88, 0.12, 0.72)  
(0.72, 0.21, 0.16)      (0.69, 0.31, 0.32) 

(0.71, 0.22, 0.78)      (0.71, 0.19, 0.44)  
(0.84, 0.16, 0.25)      (0.62, 0.32, 0.42) 

b 

c 

(0.75, 0.25, 0.52)      (0.83, 0.11, 0.28)  
(0.69, 0.31, 0.39)      (0.58, 0.41, 0.66) 

(0.67, 0.32, 0.29)      (0.75, 0.21, 0.19)  
(0.79, 0.19, 0.41)      (0.71, 0.27, 0.53) 

Table 4: Tabular form of neutrosophic soft group N. 

Obviously, 𝑀  is the neutrosophic soft subgroup of 𝑁 
over (𝑉, 𝐸). 

5.2 Theorem: 

Let 𝑁 be a neutrosophic soft group over the group 𝐺 and 
𝑁1, 𝑁2 be two neutrosophic soft subgroups of 𝑁. If 𝑇, 𝐼, 𝐹 of
neutrosophic soft group 𝑁  obey the disciplines of 
idempotent t-norm and idempotent s-norm, then, 

(i) 𝑁1⋂ 𝑁2 is a neutrosophic soft subgroup of     𝑁.
(ii) 𝑁1 ⋀ 𝑁2 is a neutrosophic soft subgroup of

 𝑁 ⋀ 𝑁.

Proof: 

The intersection(⋂), AND (⋀) of two neutrosophic soft 
groups is also so by theorems  (3.3) and (3.5).  Now to 
complete this theorem, we only verify the criteria of 
neutrosophic soft subgroup in each case. 

(i) Let  𝑁3 = 𝑁1⋂ 𝑁2.  For 𝑥 ∈  𝐺,

𝑇𝑓𝑁3
(𝑒)(𝑥) = 𝑇𝑓𝑁1

(𝑒)(𝑥) ∗ 𝑇𝑓𝑁2
(𝑒)(𝑥)

≤   𝑇𝑓𝑁(𝑒)(𝑥) ∗ 𝑇𝑓𝑁(𝑒)(𝑥) =  𝑇𝑓𝑁(𝑒)(𝑥) ,

𝐼𝑓𝑁3
(𝑒)(𝑥) = 𝐼𝑓𝑁1

(𝑒)(𝑥) ⋄ 𝐼𝑓𝑁2
(𝑒)(𝑥)

≥   𝐼𝑓𝑁(𝑒)(𝑥) ⋄ 𝐼𝑓𝑁(𝑒)(𝑥) =  𝐼𝑓𝑁(𝑒)(𝑥) ,

𝐹𝑓𝑁3
(𝑒)(𝑥) = 𝐹𝑓𝑁1

(𝑒)(𝑥) ⋄ 𝐹𝑓𝑁2
(𝑒)(𝑥)

≥   𝐹𝑓𝑁(𝑒)(𝑥) ⋄ 𝐹𝑓𝑁(𝑒)(𝑥) =  𝐹𝑓𝑁(𝑒)(𝑥) ;

(ii) Let  𝑁3 = 𝑁1⋀  𝑁2   and 𝑥 ∈  𝐺;   Then, 
𝑇𝑓𝑁3

(𝑎,𝑏)(𝑥) = 𝑇𝑓𝑁1
(𝑎)(𝑥) ∗ 𝑇𝑓𝑁2

(𝑏)(𝑥)

≤   𝑇𝑓𝑁(𝑎)(𝑥) ∗ 𝑇𝑓𝑁(𝑏)(𝑥) =  𝑇𝑓𝑁(𝑎,𝑏)(𝑥) ,

𝐼𝑓𝑁3
(𝑎,𝑏)(𝑥) = 𝐼𝑓𝑁1

(𝑎)(𝑥) ⋄ 𝐼𝑓𝑁2
(𝑏)(𝑥)

≥   𝐼𝑓𝑁(𝑎)(𝑥) ⋄ 𝐼𝑓𝑁(𝑏)(𝑥) =  𝐼𝑓𝑁(𝑎,𝑏)(𝑥) ,

𝐹𝑓𝑁3
(𝑎,𝑏)(𝑥) = 𝐹𝑓𝑁1

(𝑎)(𝑥) ⋄ 𝐹𝑓𝑁2
(𝑏)(𝑥)

≥   𝐹𝑓𝑁(𝑎)(𝑥) ⋄ 𝐹𝑓𝑁(𝑏)(𝑥) =  𝐹𝑓𝑁(𝑎,𝑏)(𝑥) ;

The theorems are also true for a family of neutrosophic 
soft subgroups of 𝑁. 

5.3 Example: 

We consider the group (S,.), cube root of unity where 
S= {1, 𝜔, 𝜔2}  and let  E= { 𝛼, 𝛽, 𝛾 } be a set of parameters. 
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The t-norm and s-norm are defined as:  𝑎 ∗  𝑏 = 𝑎𝑏  and 
𝑎 ⋄  𝑏 = 𝑎 + 𝑏  – 𝑎𝑏.  The neutrosophic soft group  𝑁  and 
it’s two subgroups 𝑁1, 𝑁2 defined over (S,.) are given by the
following tables. 

 𝑓𝑁(𝛼)  𝑓𝑁(𝛽) 𝑓𝑁(𝛾)
1 

𝜔

𝜔2   

(0.7,0.3,0.2) (0.6,0.3,0.5)     
(0.6,0.5,0.6) 

(0.7,0.2,0.4) (0.7,0.3,0.5)     
(0.5,0.5,0.7) 

(0.6,0.3,0.3) (0.5,0.4,0.6)     
(0.4,0.4,0.6) 

Table 5: Tabular form of neutrosophic soft group N. 

𝑓𝑁1
(𝛼) 𝑓𝑁1

(𝛽) 𝑓𝑁1
(𝛾)

1 

𝜔

𝜔2   

(0.4,0.4,0.9) (0.6,0.6,0.6)    
(0.5,0.6,0.6) 

(0.6,0.4,0.7) (0.5,0.8,0.5)    
(0.4,0.5,0.7) 

(0.3,0.5,0.8) (0.5,0.6,0.7)    
(0.4,0.8,0.7) 

Table 6: Tabular form of neutrosophic soft subgroup N1. 

𝑓𝑁2
(𝛼) 𝑓𝑁2

(𝛽) 𝑓𝑁2
(𝛾)

1 

𝜔

𝜔2   

(0.6,0.5,0.2) (0.6,0.4,0.6) 
(0.5,0.5,0.7) 

(0.7,0.3,0.4) (0.6,0.4,0.5) 
(0.4,0.5,0.8) 

(0.6,0.4,0.3) (0.5,0.5,0.7) 
(0.3,0.6,0.7) 

Table 7: Tabular form of neutrosophic soft subgroup N2. 

 𝑓𝑀(𝛼)  𝑓𝑀(𝛽) 𝑓𝑀(𝛾)
1 

𝜔

𝜔2   

(0.24,0.70,0.92) (0.36,0.76,0.84) 
(0.25,0.80,0.88) 

(0.42,0.58,0.82) (0.30,0.88,0.75) 
(0.16,0.75,0.94) 

(0.18,0.70,0.86) (0.25,0.80,0.91) 
(0.12,0.92,0.91) 

 Table 8: Tabular form of neutrosophic soft subgroup 𝑀 = 𝑁1⋂𝑁2. 

 𝑓𝑃(𝛼, 𝛼)  𝑓𝑃(𝛽, 𝛼) 𝑓𝑃(𝛾, 𝛼)
𝑓𝑃(𝛼, 𝛽) 𝑓𝑃(𝛽, 𝛽) 𝑓𝑃(𝛾, 𝛽)
𝑓𝑃(𝛼, 𝛾) 𝑓𝑃(𝛽, 𝛾) 𝑓𝑃(𝛾, 𝛾)

1 

𝜔

𝜔2   

(0.24,0.70,0.92) (0.36,0.80,0.68)     
(0.30,0.80,0.68) 
(0.24,0.64,0.96) (0.36,0.76,0.84)     
(0.30,0.76,0.84) 
(0.20,0.70,0.97) (0.30,0.80,0.88)     
(0.25,0.80,0.88) 

(0.42,0.58,0.82) (0.35,0.86,0.70)     
(0.28,0.65,0.82) 
(0.36,0.64,0.85) (0.30,0.88,0.75)     
(0.24,0.70,0.85) 
(0.24,0.70,0.94) (0.20,0.90,0.90)     
(0.16,0.75,0.94) 

(0.18,0.70,0.86) (0.30,0.76,0.79)     
(0.24,0.88,0.79) 
(0.15,0.75,0.94) (0.25,0.80,0.91)     
(0.20,0.90,0.91) 
(0.09,0,80,0.94) (0.15,0.84,0.91)   
(0.12,0.92,0.91) 

Table 9: Tabular form of neutrosophic soft subgroup 𝑃 = 𝑁1⋀𝑁2. 

 𝑓𝑃(𝛼, 𝛼)  𝑓𝑃(𝛽, 𝛼) 𝑓𝑃(𝛾, 𝛼)
𝑓𝑃(𝛼, 𝛽) 𝑓𝑃(𝛽, 𝛽) 𝑓𝑃(𝛾, 𝛽)
𝑓𝑃(𝛼, 𝛾) 𝑓𝑃(𝛽, 𝛾) 𝑓𝑃(𝛾, 𝛾)

1 

𝜔

𝜔2   

(0.49,0.51,0.36) (0.42,0.51,0.60)     
(0.42,0.65,0.68) 
(0.42,0.51,0.60) (0.36,0.51,0.75)     
(0.36,0.65,0.80) 
(0.42,0.65,0.68) (0.36,0.65,0.80)     
(0.36,0.75,0.84) 

(0.49,0.36,0.64) (0.49,0.44,0.70)     
(0.35,0.60,0.82) 
(0.49,0.44,0.70) (0.49,0.51,0.75)     
(0.35,0.65,0.85) 
(0.35,0.60,0.82) (0.35,0.65,0.85)     
(0.25,0.75,0.91) 

(0.36,0.51,0.51) (0.30,0.58,0.72)     
(0.24,0.58,0.72) 
(0.30,0.58,0.72) (0.25,0.64,0.84)     
(0.20,0.64,0.84) 
(0.24,0.58,0.72) (0.20,0.64,0.84)     
(0.16,0.64,0.84) 

Table 10: Tabular form of neutrosophic soft subgroup  𝑃 = 𝑁⋀𝑁 . 
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Tables 5 & 8 show the 1st result and Tables 9 & 10 show 
the 2nd result in theorem (5.2).    

5.4 Theorem: 

Let 𝑁1 and 𝑁2 be two neutrosophic soft groups over the
group 𝑋 such that 𝑁1 is the neutrosophic soft subgroup of
𝑁2 .  Let 𝑔 ∶  𝑋 →  𝑌 be an isomorphism in classical sense.
Then 𝑔(𝑁1)  and 𝑔(𝑁2)  are two neutrosophic soft groups
over 𝑌. Moreover 𝑔(𝑁1) is the neutrosophic soft subgroup
of 𝑔(𝑁2).

Proof: 

The 1st part is already proved in theorem (3.7). 
Let 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 so that 𝑦 =  𝑔(𝑥). Then, 

𝑇𝑓𝑁1
(𝑒)(𝑥) ≤ 𝑇𝑓𝑁2

(𝑒)(𝑥)

⟹  𝑇𝑓𝑁1
(𝑒)[𝑔−1(𝑦)] ≤ 𝑇𝑓𝑁2

(𝑒)[𝑔−1(𝑦)]

⟹  𝑇𝑓𝑔(𝑁1)(𝑒)(𝑦) ≤ 𝑇𝑓𝑔(𝑁2)(𝑒)(𝑦)

Similarly, 𝐼𝑓𝑔(𝑁1)(𝑒)(𝑦) ≥ 𝐼𝑓𝑔(𝑁2)(𝑒)(𝑦) ,

𝐹𝑓𝑔(𝑁1)(𝑒)(𝑦) ≥ 𝐹𝑓𝑔(𝑁2)(𝑒)(𝑦);

Hence, the theorem is proved. 

Conclusion

In the present paper, the theoretical point of view of neu-
trosophic soft group has been discussed with suitable exam-
ples. Here, we also have defined the Cartesian product on 
neutrosophic soft groups and neutrosophic soft subgroup. 
Some theorems have been established. We extended the 
concept of group in NSS theory context. This concept will 
bring a new opportunity in research and development of 
NSS theory. 
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