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Abstract: Neutrosophic set concept is defined with membership,
non-membership and indeterminacy degrees. This concept is the so-
lution and representation of the problems with various fields. In this
paper, a geometric model is introduced for Neutrosophic data prob-

lem for the first time. This model is based on neutrosophic sets and
neutrosophic relations. Neutrosophic control points are defined ac-
cording to these points, resulting in neutrosophic Bèzier curves.

Keywords: Neutrosophic Sets, Neutrosophic Logic, Bèzier Curve

1 Introduction
While today’s technologies are rapidly developing, the contribu-
tion of mathematics is fundamental and leading the science. In
particular, the developments in geometry are not only modeling
the mathematics of the objects but also being geometrically mod-
eled in most abstract concepts. What is the use of these abstract
concepts in modeling? In the future of science, there will be arti-
ficial intelligence. For the development of this technology, many
branches of science work together and especially the topics such
as logic, data mining, quantum physics, machine learning come
to the forefront. Of course, the place where these areas can co-
operate is the computer environment. Data can be transferred in
various ways. One of them is to transfer the data as a geometric
model. The first method that comes to mind in terms of a ge-
ometric model is the Bzier technique. Although this method is
generally used for curve and surface designs, it is used in many
disciplines ranging from the solution of differential equations to
robot motion planning.

The embodied state of the adventure of obtaining meaning
and mathematical results from uncertainty states (fuzzy) was be-
gun by Zadeh [1]. Fuzzy sets proposed by Zadeh provided a
new dimension to the concept of classical sets. Atanassov intro-
duced intuitionistic fuzzy sets dealing with membership and non-
membership degrees [2]. Neutrosophy was proposed by Smaran-
dache as a mathematical application of the concept neutrality
[3]. Neutrosophic set concept is defined with membership, non-
membership and indeterminacy degrees. Neutrosophic set con-
cept is separated from intuitionistic fuzzy set by the difference as
follow: intuitionistic fuzzy sets are defined by degree of mem-
bership and non-membership degree and, uncertainty degrees by
the 1- (membership degree plus non-membership degree), while
degree of uncertainty are considered independently of the de-
gree of membership and non-membership in neutrosophic sets.
Here, membership, non-membership and uncertainty (indetermi-
nacy) degrees can be judged according to the interpretation in the
spaces to be used, such as truth and falsity degrees. It depends

entirely on subject space (discourse universe). In this sense, the
concept of neutrosophic set is the solution and representation of
the problems with various fields.

Recently, geometric interpretations of data that uncertain truth
were presented by Wahab and friends [4, 5, 6, 7]. They studied
geometric models of fuzzy and intuitionistic fuzzy data and gave
fuzzy interpolation and Bèzier curve modeling. In this paper, we
consider a geometric modeling of neutrosophic data.

2 Preliminaries
In this section, we will first give some fundamental definitions
dealing with Bzier curve and Neutrosophic sets (elements). We
will then introduce the new definitions needed to form a Neutro-
sophic Bèzier curve.

Definition 1 Let Pi, (i = 0, 1, 2, ..., n),Pi ∈ E3 be the set of
points. A Bézier curve with degree n is defined by

B(t) = Bn
i (t)Pi, t ∈ [0, 1] (1)

where Bn
i (t) =

∑n
i=0

(
n
i

)
(1 − t)n−iti and Pi are the Bernstein

polynomial function and the control points, respectively. Notice
that there are (n + 1)-control points for a Bèzier curve with de-
gree n. Because n−interpolation is done with (n + 1)-control
points [8, 9, 10, 11].

Definition 2 Let E be a universe and A ⊆ E. N =
{(x, T (x), I(x), F (x)) : x ∈ A} is a neutrosophic element
where Tp = N → [0, 1] (membership function), Ip = N →
[0, 1] (indeterminacy function) and Fp = N → [0, 1] (non-
membership function).

Definition 3 Let A∗ = {(x, T (x), I(x), F (x)) : x ∈ A} and
B∗ = {(y, T (y), I(y), F (y)) : y ∈ B} be neutrosophic ele-
ments. NR = {((x, y), T (x, y), I(x, y), F (x, y)) : (x, y) ∈
A×B} is a neutrosophic relation on A∗ and B∗.
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3 Neutrosophic Bèzier Model
Definition 4 NS of P ∗ in space N is NCP and P ∗ = {P ∗

i }
where i = 0, ..., n is a set of NCPs where there exists
Tp = N → [0, 1] as membership function, Ip = N → [0, 1]
as indeterminacy function and Fp = N → [0, 1] as non-
membership function with

Tp(P
∗) =


0 if Pi /∈ N

a ∈ (0, 1) if Pi

∼
∈ N

1 if Pi ∈ N

Fp(P
∗) =


0 if Pi /∈ N

c ∈ (0, 1) if Pi

∼
∈ N

1 if Pi ∈ N

Ip(P
∗) =


0 if Pi /∈ N

e ∈ (0, 1) if Pi

∼
∈ N

1 if P−
i ∈ N.

Bèzier Neutrosophic curves are generated based on the con-
trol points from one of TC = {(x, y, T (x, y))}, IC =
{(x, y, I(x, y))} and FC = {(x, y, F (x, y))} sets. Thus, there
will be three different neutrosophic Bèzier curve models for a
neutrosophic relation and variables x and y. A neutrosophic con-
trol point relation can be defined as a set of n+1 points that shows
a position and coordinate of a location and is used to described
three curve which are denoted by
NRpi = {NRp0 , NRp1 , ..., NRpn}
and can be written as
{((x0, y0), T (x0, y0), I(x0, y0), F (x0, y0))

, ..., ((xn, yn), T (xn, yn), I(xn, yn), F (xn, yn))}
in order to control the shape of a curve from a neutrosophic data.

Definition 5 A neutrosophic Bézier curve with degree n is de-
fined by

NB(t) = Bn
i (t)NRpi, t ∈ [0, 1] (2)

Every set of TC = {(x, y, T (x, y))}, IC = {(x, y, I(x, y))}
and FC = {(x, y, F (x, y))} determines a Bézier curve. Thus
we get three Bézier curves. A Neutrosophic Bézier curve is de-
fined by these three curves. So it is a set of curves just like in its
definition.

As an illustrative example, we can consider a neutrosophic
data in Table 1. One can see there are three qubic Bézier curves.

4 Conclusion and Future Work
Visualization or geometric modeling of data plays an impor-
tant role in data mining, databases, stock market, economy, and

Point Truth degree Indeterminacy degree Falsity degree
(2,3) 0.6 0.4 0.7
(1,3) 0.5 0.6 0.2
(4,6) 0.7 0.5 0.3
(3,5) 0.3 0.2 0.7

Table 1: A neutrosophic data example

Figure 1: Neutrosophic Bézier curves for data in Table 1.

stochastic processes. In this article, we used the Bézier tech-
nique for visualizing neutrosophic data. This model is suitable
for statisticians, data scientists, economists and engineers. Fur-
thermore, the differential geometric properties of this model can
be investigated as in [8] for classification of neutrosophic data.
On the other hand, transforming the images of objects into neu-
trosophic data is an important problem [12]. In our model, the
curve and the data can be transformed into each other by the
blossoming method, which can be used in neutrosophic image
processing. This and similar applications can be studied in the
future.
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Math. Comput. Appl. 16, no. 2: 350-358.

[9] Gallier, J. H. (2000). Curves and surfaces in geometric modeling: theory
and algorithms. Morgan Kaufmann.

[10] Farin, G. E. (2002). Curves and surfaces for CAGD: a practical guide.
Morgan Kaufmann.

[11] Marsh, D. (2006). Applied geometry for computer graphics and CAD.
Springer Science & Business Media.

[12] Cheng, H. D., Guo, Y. (2008). A new neutrosophic approach to image
thresholding. New Mathematics and Natural Computation, 4(03), 291-308.

Ferhat Taș, Selçuk Topal. Bèzier Curve Modeling for Neutrosophic Data Problem

Received: April 3, 2017.   Accepted: April 24, 2017.

5Neutrosophic Sets and Systems, Vol. 16, 2017



A Study on Neutrosophic Frontier and Neutrosophic 
Semi-frontier in Neutrosophic Topological Spaces 

1

P. Iswarya
1
 and Dr. K. Bageerathi

2

Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur, India
E mail ID : iswaryap3@gmail.com 

2
Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur, India

E mail ID : sivarathi_2006@yahoo.in 

ABSTRACT. In this paper neutrosophic frontier and 

neutrosophic semi-frontier in neutrosophic topology are
introduced and several of their properties, characterizations 

and examples are established. 

MATHEMATICS SUBJECT CLASSIFICATION 
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KEYWORDS : Neutrosophic frontier and Neutrosophic 

semi-frontier. 

I.  INTRODUCTION 

Theory of Fuzzy sets [21], Theory of 

Intuitionistic fuzzy sets [2], Theory of Neutrosophic 

sets [10] and the theory of Interval Neutrosophic sets 

[13] can be considered as tools for dealing with 

uncertainties. However, all of these theories have 

their own difficulties which are pointed out in [10]. 

In 1965, Zadeh [21] introduced fuzzy set theory as a 

mathematical tool for dealing with uncertainties 

where each element had a degree of membership. The 

Intuitionistic fuzzy set was introduced by Atanassov 

[2] in 1983 as a generalization of fuzzy set, where 

besides the degree of membership and the degree of 

non-membership of each element. The neutrosophic 

set was introduced by Smarandache [10] and 

explained, neutrosophic set is a generalization of 

Intuitionistic fuzzy set. In 2012, Salama, Alblowi 

[18], introduced the concept of Neutrosophic 

topological spaces. They introduced neutrosophic 

topological space as a generalization of Intuitionistic 

fuzzy topological space and a Neutrosophic set 

besides the degree of membership, the degree of 

indeterminacy and the degree of non-membership of 

each element.  

The concepts of neutrosophic semi-open 

sets, neutrosophic semi-closed sets, neutrosophic 

semi-interior and neutrosophic semi-closure in 

neutrosophic topological spaces were introduced by 

P. Iswarya and Dr. K. Bageerathi [12] in 2016. 

Frontier and semifrontier in intuitionistic fuzzy 

topological spaces were introduced by Athar 

Kharal [4] in 2014. In this paper, we are extending 

the above concepts to neutrosophic topological 

spaces. We study some of the basic properties of 

neutrosophic frontier and neutrosophic semi-frontier 

in neutrosophic topological spaces with examples. 

Properties of neutrosophic semi-interior, neutros-
ophic semi-closure, neutrosophic frontier and neut-
rosophic semi-frontier have been obtained in neutros-
ophic product related spaces. 

II. NEUTROSOPHIC FRONTIER

In this section, the concepts of the 

neutrosophic frontier in neutrosophic topological 

space are introduced and also discussed their 

characterizations with some related examples. 

Definition 2.1 Let , ,   [0, 1] and  +  +   1. 

A neutrosophic point [ NP for short ] x(,,) of X is a 

NS of X which is defined by    

In this case, x is called the support of x(,,) 
and ,  and  are called the value, intermediate 

value and the non-value of x(,,), respectively. A NP 

x(,,)  is said to belong to a NS A =  A, A, A  in X, 

denoted by x(,,)  A if   A(x),   A(x) and 

  A(x). Clearly a neutrosophic point can be

represented by an ordered triple of neutrosophic 

points as follows : x(,,)  = ( x ,  x , C ( x C ()) ). 
A class of all NPs in X is denoted as NP (X). 

Definition 2.2 Let X be a NTS and let A  NS (X). 

Then x(,,)  NP (X) is called a neutrosophic 

frontier point [ NFP for short ] of A if x(,,)  

NCl (A)  NCl (C (A)). The intersection of all the 

NFPs of A is called a neutrosophic frontier of A and 

is denoted by NFr (A). That is,  

NFr (A) = NCl (A)  NCl (C (A)). 
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Proposition 2.3 For each A  NS(X), A  NFr (A)  

NCl (A).  

Proof : Let A be the NS in the neutrosophic 

topological space X. Then by Definition 2.2,  

A  NFr (A)  = A  ( NCl (A)  NCl (C (A)) ) 

        = (A  NCl (A) )  ( A  NCl (C (A)) ) 

         NCl (A)  NCl (C (A)) 

  NCl (A) 

Hence A  NFr (A)  NCl (A). 

From the above proposition, the inclusion cannot be 

replaced by an equality as shown by the following 

example. 

Example 2.4 Let X = { a, b } and  = { 0N, A, B, C, 

D, 1N }. Then (X, ) is a neutrosophic topological 

space. The neutrosophic closed sets are C () = { 1N, 

E, F, G, H, 0N } where  

A =  ( 0.5, 1, 0.1), (0.9, 0.2, 0.5) ,  

B =  ( 0.2, 0.5, 0.9), (0, 0.5, 1) ,  

C =  ( 0.5, 1, 0.1), (0.9, 0.5, 0.5) ,  

D =  ( 0.2, 0.5, 0.9), (0, 0.2, 1) ,  

E =  ( 0.1, 0, 0.5), (0.5, 0.8, 0.9) ,  

F =  ( 0.9, 0.5, 0.2), (1, 0.5, 0) ,  

G =  ( 0.1, 0, 0.5), (0.5, 0.5, 0.9)  and  

H =  ( 0.9, 0.5, 0.2), (1, 0.8, 0) .  

Here NCl (A) = 1N and NCl (C (A)) = NCl (E) = E. 

Then by Definition 2.2, NFr (A) = E.  

Also A  NFr (A) =  (0.5, 1, 0.1), (0.9, 0.8, 0.5)   

1N. Therefore NCl (A) = 1N ⊈  (0.5, 1, 0.1), (0.9, 0.8, 

0.5) . 

Theorem 2.5 For a NS A in the NTS X, NFr (A) = 

NFr (C (A)). 

Proof : Let A be the NS in the neutrosophic 

topological space X. Then by Definition 2.2,  

NFr (A)  = NCl (A)  NCl (C (A))  

= NCl (C (A))  NCl (A) 

= NCl (C (A))  NCl (C (C (A))) 

Again by Definition 2.2, 

= NFr (C (A)) 

Hence NFr (A) = NFr (C (A)). 

Theorem 2.6 If a NS A is a NCS, then NFr (A)  A. 

Proof : Let A be the NS in the neutrosophic 

topological space X. Then by Definition 2.2,  

NFr (A)  = NCl (A)  NCl (C (A))  

 NCl (A)  

By Definition 4.4 (a) [18] , 

= A     

Hence NFr (A)  A, if A is NCS in X. 

The converse of the above theorem needs not be

true as shown by the following example. 

Example 2.7 From Example 2.4, NFr (C) = G  C. 

But C  C ().  

Theorem 2.8 If a NS A is NOS, then NFr (A)  

C (A). 

Proof : Let A be the NS in the neutrosophic 

topological space X. Then by Definition 4.3 [18] , 

A is NOS implies C (A) is NCS in X. By Theorem 2.6, 

NFr (C (A))  C (A) and by Theorem 2.5, we get 

NFr (A)  C (A). 

The converse of the above theorem is not true as 

shown by the following example. 

Example 2.9 From Example 2.4, NFr (G) = G  

C (G) = C. But G  .  

Theorem 2.10 For a NS A in the NTS X, C (NFr (A)) 

= NInt (A)  NInt (C (A)). 

Proof :  Let A be the NS in the neutrosophic 

topological space X. Then by Definition 2.2, 

C (NFr (A)) = C (NCl (A)  NCl (C (A)))     

By Proposition 3.2 (1) [18] , 

      = C (NCl (A))  C (NCl (C (A))) 

By Proposition 4.2 (b) [18] , 

      = NInt (C (A))  NInt (A)     

Hence C (NFr (A)) = NInt (A)  NInt (C (A)). 

Theorem 2.11 Let A  B and B  NC (X) ( resp., 

B  NO (X) ). Then NFr (A)  B ( resp., NFr (A)  

C (B) ), where NC (X) ( resp., NO (X) ) denotes the 

class of neutrosophic closed ( resp., neutrosophic 

open) sets in X. 

Proof : By Proposition 1.18 (d) [12] , A  B , 

NCl (A)  NCl (B)  -------------------- (1). 

By Definition 2.2,  

NFr (A) = NCl (A)  NCl (C (A))  

     NCl (B)  NCl (C (A))    by (1) 

     NCl (B)  

By Definition 4.4 (b) [18] , 

    = B 

Hence NFr (A)  B. 

Theorem 2.12 Let A be the NS in the NTS X. Then 

NFr (A) = NCl (A) – NInt (A). 

Proof : Let A be the NS in the neutrosophic 

topological space X. By Proposition 4.2 (b) [18] ,  

C (NCl (C (A))) = NInt (A) and by Definition 2.2, 

NFr (A)  = NCl (A)  NCl (C (A))  

= NCl (A) – C (NCl (C (A))) 

    by using A – B = A  C (B) 

By Proposition 4.2 (b) [18] , 

     = NCl (A) – NInt (A)  

Hence NFr (A) = NCl (A) – NInt (A). 
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Theorem 2.13 For a NS A in the NTS X,      

NFr (NInt (A))  NFr (A). 

Proof : Let A be the NS in the neutrosophic 

topological space X. Then by Definition 2.2,  

NFr (NInt (A)) = NCl (NInt (A))  NCl (C (NInt (A)))  

By Proposition 4.2 (a) [18] , 

 = NCl (NInt (A))  NCl (NCl (C (A))) 

By Definition 4.4 (b) [18] , 

 = NCl (NInt (A))  NCl (C (A)) 

By Definition 4.4 (a) [18] , 

    NCl (A)  NCl (C (A)) 

Again by Definition 2.2, 

 = NFr (A)    

Hence NFr (NInt (A))  NFr (A). 

The converse of the above theorem is not true as 

shown by the following example. 

Example 2.14 Let X = { a, b } and  = { 0N, A, B, C, 

D, 1N }. Then (X, ) is a neutrosophic topological 

space. The neutrosophic closed sets are C () = { 1N, 

E, F, G, H, 0N } where  

A =  ( 0.5, 0.6, 0.7), (0.1, 0.9, 0.4) ,  

B =  ( 0.3, 0.9, 0.2), (0.4, 0.1, 0.6) ,  

C =  ( 0.5, 0.9, 0.2), (0.4, 0.9, 0.4) ,  

D =  ( 0.3, 0.6, 0.7), (0.1, 0.1, 0.6) , 

E =  ( 0.7, 0.4, 0.5), (0.4, 0.1, 0.1) ,  

F =  ( 0.2, 0.1, 0.3), (0.6, 0.9, 0.4) ,  

G =  ( 0.2, 0.1, 0.5), (0.4, 0.1, 0.4)  and  

H =  ( 0.7, 0.4, 0.3), (0.6, 0.9, 0.1) .  

Define A1 =  ( 0.4, 0.2, 0.8), (0.4, 0.5, 0.1) . Then 

C (A1) =  ( 0.8, 0.8, 0.4), (0.1, 0.5, 0.4) .  

Therefore by Definition 2.2, NFr (A1) = H ⊈ 0N = 

NFr (NInt (A1)). 

Theorem 2.15 For a NS A in the NTS X, 

NFr (NCl (A))  NFr (A). 

Proof : Let A be the NS in the neutrosophic 

topological space X. Then by Definition 2.2,  

NFr (NCl (A)) = NCl (NCl (A))  NCl (C (NCl (A)))  

By Proposition 1.18 (f) [12] and 4.2 (b) [18] , 

 = NCl (A)  NCl (NInt (C (A))) 

By Proposition 1.18 (a) [12] , 

          NCl (A)  NCl (C (A)) 

Again by Definition 2.2, 

         = NFr (A)    

Hence NFr (NCl (A))  NFr (A). 

The converse of the above theorem is not true as 

shown by the following example. 

Example 2.16 From Example 2.14, let A2 =  ( 0.7, 

0.9, 0.2), (0.5, 0.9, 0.3) .  

Then C (A2) =  ( 0.2, 0.1, 0.7), (0.3, 0.1, 0.5) . Then 

by Definition 2.2, NFr (A2) = G.  

Therefore NFr (A2) = G ⊈ 0N = NFr (NCl (A2)). 

Theorem 2.17 Let A be the NS in the NTS X. Then 

NInt (A)  A – NFr (A). 

Proof : Let A be the NS in the neutrosophic 

topological space X. Now by Definition 2.2, 

A – NFr (A) = A − (NCl (A)  NCl (C (A)))  

     = ( A – NCl (A))  (A – NCl (C (A))) 

     = A – NCl (C (A))  

      NInt (A). 

Hence NInt (A)  A – NFr (A). 

Example 2.18 From Example 2.14, A1 – NFr (A1) = 

 ( 0.3, 0.2, 0.8), (0.1, 0.1, 0.6) .  

Therefore A1 – NFr (A1) =  ( 0.3, 0.2, 0.8), (0.1, 0.1, 

0.6)  ⊈ 0N = NInt (A1). 

Remark 2.19 In general topology, the following 

conditions are hold : 

NFr (A)  NInt (A) = 0N, 

NInt (A)  NFr (A) = NCl (A), 

NInt (A)  NInt (C (A))  NFr (A) = 1N. 

But the neutrosophic topology, we give 

counter-examples to show that the conditions of the 

above remark may not be hold in general. 

Example 2.20 From Example 2.14,  

NFr (A2)  NInt (A2) = G  C = G  0N. 

NInt (A2)  NFr (A2) = C  G = C  1N = NCl (A2). 

NInt (A2)  NInt (C (A2))  NFr (A2) = C  0N  G 

= C  1N. 

Theorem 2.21 Let A and B be the two NSs in the NTS 

X. Then NFr (A  B)  NFr (A)  NFr (B). 

Proof : Let A and B be the two NSs in the NTS X. 

Then by Definition 2.2,  

NFr (A  B) = NCl (A  B)  NCl (C (A  B))  

By Proposition 3.2 (2) [18] , 

= NCl (A  B)  NCl ( C (A)  C (B) ) 

 by Proposition 1.18 (h) and (o) [12] , 

 (NCl (A)  NCl (B))  (NCl (C (A))  NCl(C (B))) 

= [(NCl (A)  NCl (B) )  NCl (C (A)) ]     

         [ ( NCl (A)  NCl (B) )  NCl (C (B)) ]     

= [(NCl (A)  NCl (C (A)))(NCl (B)  NCl(C (A)))] 

 [(NCl (A)  NCl (C (B)))(NCl(B)  NCl(C (B)))] 

Again by Definition 2.2, 

= [NFr (A)  ( NCl (B)  NCl (C (A))) ]     

       [ ( NCl (A)  NCl (C (B)) )  NFr(B) ] 

= ( NFr (A)  NFr (B))  [ ( NCl (B)  NCl (C (A)) )   

  ( NCl (A)  NCl (C (B)) ) ] 
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 NFr (A)  NFr (B). 

Hence NFr (A  B)  NFr (A)  NFr (B). 

The converse of the above theorem needs not be

true as shown by the following example. 

Example 2.22 By Example 2.14, we define  

A1 =  ( 0.2, 0, 0.5), (0.4, 0.1, 0.1) , 

A2 =  ( 0.7, 0.9, 0.2), (0.5, 0.9, 0.3) ,  

A1  A2 = A3 =  ( 0.7, 0.9, 0.2), (0.5, 0.9, 0.1)  and 

A1  A2 = A4 =  ( 0.2, 0, 0.5), (0.4, 0.1, 0.3) . Then 

C (A1) =  ( 0.5, 1, 0.2), (0.1, 0.9, 0.4) , 

C (A2) =  ( 0.2, 0.1, 0.7), (0.3, 0.1, 0.5) , 

C (A3) =  ( 0.2, 0.1, 0.7), (0.1, 0.1, 0.5)  and 

C (A4) =  ( 0.5, 1, 0.2), (0.3, 0.9, 0.4) . 

Therefore NFr (A1)  NFr (A2) = E  G = E ⊈ G = 

NFr (A3) = NFr (A1  A2).  

Note 2.23 The following example shows that 

NFr (A  B) ⊈ NFr (A)  NFr (B) and  

NFr (A)  NFr (B) ⊈ NFr (A  B). 

Example 2.24 From Example 2.22, NFr (A1  A2) = 

NFr (A4) = E ⊈ G = NFr (A1)  NFr (A2). 

From Example 2.14, We define B1 =  ( 0.4, 0.5, 0.1), 

(0.2, 0.9, 0.5) ,  

B2 =  ( 0.5, 0.2, 0.9), (0.8, 0.4, 0.7) ,  

B1  B2 = B3 =  ( 0.5, 0.5, 0.1), (0.8, 0.9, 0.5)  and 

B1  B2 = B4 =  ( 0.4, 0.2, 0.9), (0.2, 0.4, 0.7) . 

Then 

C (B1) =  ( 0.1, 0.5, 0.4), (0.5, 0.1, 0.2) , 

C (B2) =  ( 0.9, 0.8, 0.5), (0.7, 0.6, 0.8) , 

C (B3) =  ( 0.1, 0.5, 0.5), (0.5, 0.1, 0.8)  and 

C (B4) =  ( 0.9, 0.8, 0.4), (0.7, 0.6, 0.2) . 

Therefore NFr (B1)  NFr (B2) = 1N  1N = 1N ⊈ H 

= NFr (B4) = NFr (B1  B2). 

Theorem 2.25 For any NSs A and B in the NTS X, 

NFr (A  B)  ( NFr (A)  NCl (B) )  ( NFr (B)  

NCl (A) ). 

Proof : Let A and B be the two NSs in the NTS X. 

Then by Definition 2.2,  

NFr (A  B) = NCl (A  B)  NCl (C (A  B))  

By Proposition 3.2 (1) [18] , 

= NCl (A  B)  NCl ( C (A)  C (B) )  

By Proposition 1.18 (n) and (h) [12] , 

 (NCl (A)  NCl (B))  (NCl (C(A))  NCl (C (B))) 

= [ ( NCl (A)  NCl (B) )  NCl (C(A)) ]  
         [ ( NCl (A)  NCl (B) )  NCl (C(B)) ]  
Again by Definition 2.2, 

= ( NFr (A)  NCl (B) )  ( NFr (B)  NCl (A) )     

Hence NFr (A  B)  ( NFr (A)  NCl (B) )  

( NFr (B)  NCl (A) ). 

The converse of the above theorem needs not be

true as shown by the following example. 

Example 2.26 From Example 2.24, 

( NFr (B1)  NCl (B2) )  ( NFr (B2)  NCl (B1) ) = 

(1N  1N )  (1N  1N ) = 1N  1N = 1N ⊈ H = 

NFr (B1  B2). 

Corollary 2.27 For any NSs A and B in the NTS X, 

NFr (A  B)  NFr (A)  NFr (B).  

Proof : Let A and B be the two NSs in the NTS X. 

Then by Definition 2.2,  

NFr (A  B)   = NCl (A  B)  NCl (C (A  B))  

By Proposition 3.2 (1) [18] , 

= NCl (A  B)  NCl ( C (A)  C (B) )     

By Proposition 1.18 (n) and (h) [12] , 

 (NCl (A)  NCl (B))  (NCl (C(A))  NCl (C (B))) 

= ( NCl (A)  NCl (B)   NCl (C (A)) )     

          ( NCl (A)  NCl (B)  NCl (C (B)) )  

Again by Definition 2.2, 

= ( NFr (A)  NCl (B) )  ( NCl (A)  NFr (B) ) 

 NFr (A)  NFr (B) 

Hence NFr (A  B)  NFr (A)  NFr (B).  

The equality in the above corollary may not hold as 

seen in the following example. 

Example 2.28 From Example 2.24, 

NFr (B1)  NFr (B2) = 1N  1N = 1N ⊈ H = NFr (B4) 

= NFr (B1  B2). 

Theorem 2.29 For any NS A in the NTS X, 

(1) NFr (NFr (A))  NFr (A), 

(2) NFr (NFr (NFr (A)))  NFr (NFr (A)). 

Proof : (1) Let A be the NS in the neutrosophic 

topological space X. Then by Definition 2.2,  

NFr (NFr (A)) = NCl (NFr (A))  NCl (C (NFr (A)))  

Again by Definition 2.2, 

= NCl ( NCl (A)  NCl (C (A)) )      

     NCl ( C ( NCl (A)  NCl (C (A)) ) )     

By Proposition 1.18 (f) [12] and by 4.2 (b) [18] , 

 ( NCl (NCl (A))  NCl (NCl (C (A))) )     

  NCl ( NInt (C (A))  NInt (A) )     

By Proposition 1.18 (f) [12] , 

= ( NCl (A)  NCl (C (A)) )  ( NCl (NInt (C (A))) 

         NCl (NInt (A))     

 NCl (A)  NCl (C (A))  

By Definition 2.2, 

= NFr (A)    

Therefore NFr (NFr (A))  NFr (A). 

(2) By Definition 2.2,  

NFr (NFr (NFr (A))) = NCl (NFr (NFr (A)))  

 NCl (C (NFr (NFr (A)))) 
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By Proposition 1.18 (f) [12] ,     

 (NFr (NFr (A)))  NCl (C (NFr (NFr (A)))) 

 NFr (NFr (A)).  

Hence NFr (NFr (NFr (A)))  NFr (NFr (A)). 

Remark 2.30 From the above theorem, the converse 

of (1) needs not be true as shown by the following

example and no counter-example could be found to 

establish the irreversibility of inequality in (2). 

Example 2.31 Let X = {a, b} and  = {0N, A, B, 1N }. 

Then (X, ) is a neutrosophic topological space. The 

neutrosophic closed sets are C () = { 1N, C, D, 0N } 

where  

A =  ( 0.8, 0.4, 0.5), (0.4, 0.6, 0.7) ,  

B =  ( 0.4, 0.2, 0.9), (0.1, 0.4, 0.9) ,  

C =  ( 0.5, 0.6, 0.8), (0.7, 0.4, 0.4)  and 

D =  ( 0.9, 0.8, 0.4), (0.9, 0.6, 0.1) . Define  

A1 =  ( 0.6, 0.7, 0.8), (0.5, 0.4, 0.5) . Then  

C (A1) =  ( 0.8, 0.3, 0.6), (0.5, 0.6, 0.5) .  

Therefore by Definition 2.2, NFr (A1) = D ⊈ C = 

NFr ( NFr (A1)). 

Theorem 2.32 Let A, B, C and D be the NSs in the 

NTS X. Then ( A  B )  ( C  D ) = ( A  D )  

( B  C ). 

Proof : Let A, B, C and D be the NSs in the NTS X. 

Then by Definition 2.2 [12] , 

 ( A  B )  ( C  D ) (x, y) 

= min { ( A  B ) (x),  ( C  D ) (y)}  

= min { min { A(x), B(x) }, min { C(y), D(y) } }  

= min { min { A(x), D(y) }, min { B(x), C(y) } } 

= min {  ( A  D ) (x, y),  ( B  C ) (x, y) }.  

Thus  ( A  B )  ( C  D ) (x, y) =  ( A  D )  ( B  C ) (x, y). 

Similarly  

 ( A  B )  ( C  D ) (x, y) 

= min { ( A  B ) (x),  ( C  D ) (y)}  

= min { min { A(x), B(x) }, min { C(y), D(y) } }  

= min { min { A(x), D(y) }, min { B(x), C(y) } } 

= min {  ( A  D ) (x, y),  ( B  C ) (x, y) }.  

Thus  ( A  B )  ( C  D ) (x, y) =  ( A  D )  ( B  C ) (x, y). 

And also  

 ( A  B )  ( C  D ) (x, y)  

= max {  ( A  B ) (x),  ( C  D ) (y)}  

= max { max { A(x), B(x) }, max { C(y), D(y) } }  

= max { max { A(x), D(y) }, max { B(x), C(y) } }  

= max {  ( A  D ) (x, y),  ( B  C ) (x, y) }.  

Thus  ( A  B )  ( C  D ) (x, y) =  ( A  D )  ( B  C ) (x, y).  

Hence ( A  B )  ( C  D ) = ( A  D )  ( B  C ). 

Theorem 2.33 Let Xi, 𝑖 = 1, 2, . . . , 𝑛 be a family of 

neutrosophic product related NTSs. If each Ai is a NS 

in Xi. Then NFr ( ∏   
 
    ) = [ NFr (A1)  NCl (A2)  

⋅ ⋅ ⋅  NCl (An) ]  [ NCl (A1)  NFr (A2)  NCl (A3) 

 ⋅ ⋅ ⋅  NCl (An) ]  ⋅ ⋅ ⋅  [ NCl (A1)  NCl (A2)  ⋅ ⋅ 
⋅  NFr (An) ].  

Proof : It suffices to prove this for 𝑛 = 2. Let Ai be 

the NS in the neutrosophic topological space Xi. Then 

by Definition 2.2, 

NFr (A1  A2) = NCl (A1  A2)  NCl (C (A1  A2))  

By Proposition 4.2 (a) [18]  , 

= NCl (A1  A2)  C ( NInt (A1  A2) )      

By Theorem 2.17 (1) and (2) [12] , 

= ( NCl (A1)  NCl (A2) )  C ( NInt (A1)  NInt (A2) ) 
= ( NCl (A1)  NCl (A2) )   

C[( NInt (A1)  NSCl (A1) ) (NInt (A2)  NCl (A2) )]  

By Lemma 2.3 (iii) [12] , 

= ( NCl (A1)  NCl (A2) )  [ C ( NInt (A1)   

     NCl (A1) )  1N  1N  C ( NInt (A2)  NCl (A2) ) ] 
= ( NCl (A1)  NCl (A2) )  [( NCl (C (A1))  NInt (C 

(A1)) )  1N  1N  ( NCl (C (A2))  NInt (C (A2)) ) ] 
= ( NCl (A1)  NCl (A2) ]  [ ( NCl (C (A1))  1N )   

        ( 1N  NCl (C (A2)) ) ]  

=  [ ( NCl (A1)  NCl (A2) )  (NCl (C (A1))  1N ) ] 

      [( NCl (A1)  NCl (A2) )  ( 1N  NCl (C (A2)) )] 

By Theorem 2.32, 

= [ ( NCl (A1)  NCl (C (A1)) )  ( 1N  NCl (A2) ) ] 

 [ ( NCl (A1)  1N )  ( NCl (A2)  NCl (C (A2)) ) ]  

= ( NFr (A1)  NCl (A2) )  ( NCl (A1)  NFr (A2) ).  
Hence NFr (A1  A2) = ( NFr (A1)  NCl (A2) )   

( NCl (A1)  NFr (A2) ). 

III. NEUTROSOPHIC SEMI-FRONTIER

In this section, we introduce the 

neutrosophic semi-frontier and their properties in 

neutrosophic topological spaces.  

Definition 3.1 Let A be a NS in the NTS X. Then the 

neutrosophic semi-frontier of A is defined as  

NSFr (A) = NSCl (A)  NSCl (C (A)). Obviously 

NSFr (A) is a NSC set in X. 

Theorem 3.2 Let A be a NS in the NTS X. Then the 

following conditions are holds : 

(i) NSCl (A) = A  NInt (NCl (A)), 

(ii) NSInt (A) = A  NCl (NInt (A)). 

Proof :  (i) Let A be a NS in X. Consider  

NInt ( NCl ( A  NInt (NCl (A)) ) )   

= NInt ( NCl (A)  NCl ( NInt (NCl (A)) ) )  

= NInt (NCl (A))  

 A  NInt (NCl (A))  

It follows that A  NInt (NCl (A)) is a NSC set in X. 

Hence NSCl (A)  A  NInt (NCl (A)) ------------ (1) 
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By Proposition 6.3 (ii) [12], NSCl (A) is NSC set in 

X. We have NInt (NCl (A))  NInt (NCl (NSCl (A))) 

 NSCl (A).  

Thus A  NInt (NCl (A))  NSCl (A) -------------- (2).  

From (1) and (2),  NSCl (A) = A  NInt (NCl (A)). 

(ii) This can be proved in a similar manner as (i). 

Theorem 3.3 For a NS A in the NTS X, NSFr (A) = 

NSFr (C (A)). 

Proof : Let A be the NS in the neutrosophic 

topological space X. Then by Definition 3.1, 

NSFr (A) = NSCl (A)  NSCl (C (A))  

 = NSCl (C (A))  NSCl (A) 

 = NSCl (C (A))  NSCl (C (C (A))) 

Again by Definition 3.1, 

 = NSFr (C (A)) 

Hence NSFr (A) = NSFr (C (A)). 

Theorem 3.4 If A is NSC set in X, then     

NSFr (A)  A. 

Proof : Let A be the NS in the neutrosophic 

topological space X. Then by Definition 3.1, 

NSFr (A) = NSCl (A)  NSCl (C (A))  

  NSCl (A)  

By Proposition 6.3 (ii) [12] , 

 = A     

Hence NSFr (A)  A, if A is NSC in X. 

The converse of the above theorem is not true as 

shown by the following example. 

Example 3.5 Let X = { a, b, c } and  = { 0N, A, B, 

C, D, 1N }. Then (X, ) is a neutrosophic topological 

space. The neutrosophic closed sets are C () = { 1N, 

F, G, H, I, 0N } where  

A =  ( 0.5, 0.6, 0.7), (0.1, 0.8, 0.4) , (0.7, 0.2, 0.3) ,  

B =  ( 0.8, 0.8, 0.5), (0.5, 0.4, 0.2) , (0.9, 0.6, 0.7) ,  

C =  ( 0.8, 0.8, 0.5), (0.5, 0.8, 0.2) , (0.9, 0.6, 0.3) ,  

D =  ( 0.5, 0.6, 0.7), (0.1, 0.4, 0.4) , (0.7, 0.2, 0.7) , 

E =  ( 0.8, 0.8, 0.4), (0.5, 0.8, 0.1) , (0.9, 0.7, 0.2) ,  

F =  ( 0.7, 0.4, 0.5), (0.4, 0.2, 0.1) , (0.3, 0.8, 0.7) ,  

G =  ( 0.5, 0.2, 0.8), (0.2, 0.6, 0.5) , (0.7, 0.4, 0.9) , 

H =  ( 0.5, 0.2, 0.8), (0.2, 0.2, 0.5) , (0.3, 0.4, 0.9) , 

I =  ( 0.7, 0.4, 0.5), (0.4, 0.6, 0.1) , (0.7, 0.8, 0.7)  

and  

J =  ( 0.4, 0.2, 0.8), (0.1, 0.2, 0.5) , (0.2, 0.3, 0.9) .  

Here E and J are neutrosophic semi-open and 

neutrosophic semi-closed set respectively. Therefore 

the neutrosophic semi-open and neutrosophic semi-

closed set topologies are NSO = 0N, A, B, C, D, E, 1N  

and C ()NSC =  1N, F, G, H, I, J, 0N . Therefore 

NSFr (C) = H  C. But C  C ()NSC.  

Theorem 3.6 If A is NSO set in X, then NSFr (A)  

C (A). 

Proof : Let A be the NS in the neutrosophic 

topological space X. Then by Proposition 4.3 [12] , 

A is NSO set implies C (A) is NSC set in X. By 

Theorem 3.4, NSFr (C (A))  C (A) and by 

Theorem 3.3, we get NSFr (A)  C (A). 

The converse of the above theorem is not true as 

shown by the following example. 

Example 3.7 From Example 3.5, NSFr (J) = J  

C (J) = E. But J  NSO.  

Theorem 3.8 Let A  B and B  NSC (X) ( resp., 

B  NSO (X) ). Then NSFr (A)  B ( resp., NSFr (A) 

 C(B) ), where NSC (X) ( resp., NSO (X) ) denotes 

the class of neutrosophic semi-closed ( resp., 

neutrosophic semi-open) sets in X. 

Proof : By Proposition 6.3 (iv) [12] , A  B , 

NSCl (A)  NSCl (B)  -------------------- (1). 

By Definition 3.1,  

NSFr (A) = NSCl (A)  NSCl (C (A))  

  NSCl (B)  NSCl (C (A))  by (1) 

        NSCl (B)  

By Proposition 6.3 (ii) [12] , 

 = B 

Hence NSFr (A)  B. 

Theorem 3.9 Let A be the NS in the NTS X. Then 

C (NSFr (A)) = NSInt (A)  NSInt (C (A)). 

Proof : Let A be the NS in the neutrosophic 

topological space X. Then by Definition 3.1, 

C (NSFr (A)) = C (NSCl (A)  NSCl (C (A)))     

By Proposition 3.2 (1) [18] , 

       = C (NSCl (A))  C (NSCl (C (A))) 

By Proposition 6.2 (ii) [12] , 

       = NSInt (C (A))  NSInt (A)     

Hence C (NSFr (A)) = NSInt (A)  NSInt (C (A)). 

Theorem 3.10 For a NS A in the NTS X, then 

NSFr (A)  NFr (A). 

Proof : Let A be the NS in the neutrosophic 

topological space X. Then by Proposition 6.4 [12] , 

NSCl (A)  NCl (A) and NSCl (C (A))  NCl (C (A)). 

Now by Definition 3.1,  

NSFr (A) = NSCl (A)  NSCl (C (A))     

       NCl (A)  NCl (C (A)) 

By Definition 2.2, 

      = NFr (A)     

Hence NSFr (A)  NFr (A). 

The converse of the above theorem is not true as 

shown by the following example. 

11Neutrosophic Sets and Systems, Vol. 16, 2017

P. Iswarya, Dr. K. Bageerathi. A Study on Neutrosophic Frontier and Neutrosophic Semi-frontier in Neutrosophic Topological 
Spaces 



Example 3.11 From Example 3.5, let A1 =  ( 0.4, 

0.1, 0.9), (0.1, 0.2, 0.6) , (0.1, 0.3, 0.9) , then 

C (A1) =  ( 0.9, 0.9, 0.4), (0.6, 0.8, 0.1) , (0.9, 0.7, 

0.1) . Therefore NFr (A1) = H ⊈ J = NSFr (A1).  

Theorem 3.12 For a NS A in the NTS X, then 

NSCl (NSFr (A))  NFr (A). 

Proof : Let A be the NS in the neutrosophic 

topological space X. Then by Definition 3.1, 

NSCl (NSFr (A))  = NSCl (NSCl (A)  NSCl (C (A)))  

 NSCl (NSCl (A))  NSCl (NSCl (C (A)))  

By Proposition 6.3 (iii) [12] , 

= NSCl (A)  NSCl (C (A))     

By Definition 3.1, 

= NSFr (A)     

By Theorem 3.10, 

 NFr (A)     

Hence NSCl (NSFr (A))  NFr (A). 

The converse of the above theorem is not true as 

shown by the following example. 

Example 3.13 From Example 3.5, NFr (A1) = H ⊈ J 

= NSCl (NSFr (A1)). 

Theorem 3.14 Let A be a NS in the NTS X. Then 

NSFr (A) = NSCl (A) – NSInt (A). 

Proof : Let A be the NS in the neutrosophic 

topological space X. By Proposition 6.2 (ii) [12] ,  

C (NSCl (C (A))) = NSInt (A) and by Definition 3.1, 

NSFr (A) = NSCl (A)  NSCl (C (A))  

  = NSCl (A) – C (NSCl (C (A))) 

        by using A – B = A  C (B) 

By Proposition 6.2 (ii) [12] , 

      = NSCl (A) – NSInt (A)  

Hence NSFr (A) = NSCl (A) – NSInt (A). 

Theorem 3.15 For a NS A in the NTS X, then 

NSFr (NSInt (A))  NSFr (A). 

Proof : Let A be the NS in the neutrosophic 

topological space X. Then by Definition 3.1,  

NSFr (NInt (A))=NSCl(NInt(A))NSCl(C(NSInt (A)))  

By Proposition 6.2 (i) [12] , 

  =NSCl(NSInt(A))NSCl(NSCl(C(A)))   

By Proposition 6.3 (iii) [12] , 

   = NSCl (NSInt (A))  NSCl (C (A)) 

By Proposition 5.2 (ii) [12] , 

   NSCl (A)  NSCl (C (A)) 

By Definition 3.1, 

  = NSFr (A)   

Hence NSFr (NSInt (A))  NSFr (A). 

The converse of the above theorem is not true as 

shown by the following example. 

Example 3.16 Let X = { a, b, c } and NSO =  0N, A, 

B, C, D, E, 1N  and C ()NSC =  1N, F, G, H, I, J, 0N  

where  

A =  ( 0.3, 0.4, 0.2), (0.5, 0.6, 0.7), (0.9, 0.5, 0.2) ,  

B =  ( 0.3, 0.5, 0.1), (0.4, 0.3, 0.2), (0.8, 0.4, 0.6) ,  

C =  ( 0.3, 0.5, 0.1), (0.5, 0.6, 0.2), (0.9, 0.5, 0.2) ,  

D =  ( 0.3, 0.4, 0.2), (0.4, 0.3, 0.7), (0.8, 0.4, 0.6) , 

E =  ( 0.5, 0.6, 0.1), (0.6, 0.7, 0.1), (0.9, 0.5, 0.2) ,  

F =  ( 0.2, 0.6, 0.3), (0.7, 0.4, 0.5), (0.2, 0.5, 0.9) ,  

G =  ( 0.1, 0.5, 0.3), (0.2, 0.7, 0.4), (0.6, 0.6, 0.8) , 

H =  ( 0.1, 0.5, 0.3), (0.2, 0.4, 0.5), (0.2, 0.5, 0.9) , 

I =  ( 0.2, 0.6, 0.3), (0.7, 0.7, 0.4), (0.6, 0.6, 0.8)  

and  

J =  ( 0.1, 0.4, 0.5), (0.1, 0.3, 0.6), (0.2, 0.5, 0.9) .  

Define A1 =  ( 0.2, 0.3, 0.4), (0.4, 0.5, 0.6) , (0.3, 0.4, 

0.8) .  

Then C (A1) =  ( 0.4, 0.7, 0.2), (0.6, 0.5, 0.4) , (0.8, 

0.6, 0.3) . Therefore NSFr (A1) = I ⊈ 0N = 

NSFr (NSInt (A1)). 

Theorem 3.17 For a NS A in the NTS X, then 

NSFr (NSCl (A))  NSFr (A). 

Proof : Let A be the NS in the neutrosophic 

topological space X. Then by Definition 3.1,  

NSFr(NSCl(A))=NSCl(NSCl(A))NSCl(C(NSCl (A)))  

By Proposition 6.3 (iii) and Proposition 6.2 (ii) [12] , 

    = NSCl (A)  NSCl (NSInt (C (A))) 

By Proposition 5.2 (i) [12] , 

    NSCl (A)  NSCl (C (A)) 

By Definition 3.1, 

   = NSFr (A)    

Hence NSFr (NSCl (A))  NSFr (A). 

The converse of the above theorem is not true as 

shown by the following example. 

Example 3.18 From Example 3.16, let A2 =  ( 0.2, 

0.6, 0.2), (0.3, 0.4, 0.6) , (0.3, 0.4, 0.8) . Then C (A2) 

=  ( 0.2, 0.4, 0.2), (0.6, 0.6, 0.3) , (0.8, 0.6, 0.3) . 

Therefore NSFr (A2) = 1N ⊈ 0N = NSFr (NSCl (A2)). 

Theorem 3.19 Let A be the NS in the NTS X. Then 

NSInt (A)  A – NSFr (A). 

Proof : Let A be the NS in the neutrosophic 

topological space X. Now by Definition 3.1, 

A – NSFr (A) = A − (NSCl (A)  NSCl (C (A)))  

       = ( A – NSCl (A))  (A – NSCl (C (A))) 

       = A – NSCl (C (A))  

        NSInt (A). 

Hence NSInt (A)  A – NSFr (A). 

The converse of the above theorem is not true as 

shown by the following example. 
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Example 3.20 From Example 3.16, A1 – NSFr (A1) = 

 ( 0.2, 0.3, 0.4), (0.4, 0.3, 0.7) , (0.3, 0.4, 0.8)  ⊈ 0N 

= NSInt (A1). 

Remark 3.21 In general topology, the following 

conditions are hold : 

NSFr (A)  NSInt (A) = 0N, 

NSInt (A)  NSFr (A) = NSCl (A), 

NSInt (A)  NSInt (C (A))  NSFr (A) = 1N. 

But the neutrosophic topology, we give 

counter-examples to show that the conditions of the 

above remark may not be hold in general. 

Example 3.22 From Example 3.16, define       

A1 =  ( 0.4, 0.6, 0.1), (0.5, 0.8, 0.3) , (0.9, 0.6, 0.2) .  

Then C (A1) =  ( 0.1, 0.4, 0.4), (0.3, 0.2, 0.5) , (0.2, 

0.4, 0.9) . Therefore NSFr (A1)  NSInt (A1) = 

F  D =  ( 0.2, 0.4, 0.3), (0.4, 0.3, 0.7), (0.2, 0.4, 

0.9)   0N.  

NSInt (A1)  NSFr (A1) = D  F =  ( 0.3, 0.6, 0.2), 

(0.7, 0.4, 0.5), (0.8, 0.5, 0.6)   1N = NSCl (A1). 

NSInt (A1)  NSInt (C (A1))  NSFr (A1) = D  0N 

 F =  ( 0.3, 0.6, 0.2), (0.7, 0.4, 0.5), (0.8, 0.5, 0.6)  

 1N. 

Theorem 3.23 Let A and B be NSs in the NTS X. 

Then NSFr (A  B)  NSFr (A)  NSFr (B). 

Proof : Let A and B be NSs in the NTS X. Then by 

Definition 3.1,  

NSFr (A  B) = NSCl (A  B)  NSCl (C (A  B))  

By Proposition 3.2 (2) [18] , 

= NSCl (A  B)  NSCl (C (A)  C (B) )  

By Proposition 6.5 (i) and (ii) [12] , 

 (NSCl(A)  NSCl(B))(NSCl(C(A))NSCl(C (B)))                

= [ ( NSCl (A)  NSCl (B) )  NSCl (C (A)) ]   

      [ ( NSCl (A)  NSCl (B) )  NSCl (C (B)) ] 

= [(NSCl(A)NSCl(C(A)))(NSCl(B)NSCl(C(A)))] 

[(NSCl(A)NSCl(C(B)))(NSCl(B)NSCl(C(B)))] 

By Definition 3.1, 

= [ NSFr (A)  ( NSCl (B)  NSCl (C (A)) ) ]   

   [ ( NSCl (A)  NSCl (C (B)) )  NSFr(B) ] 

= ( NSFr (A)  NSFr (B))  [ ( NSCl (B)   

      NSCl (C (A)) )  ( NSCl (A)  NSCl (C (B)) ) ] 

 NSFr (A)  NSFr (B). 

Hence NSFr (A  B)  NSFr (A)  NSFr (B). 

The converse of the above theorem needs not be

true as shown by the following example. 

Example 3.24 Let X = { a } with NSO =  0N, A, B, C, 

D, 1N  and C ()NSC =  1N, E, F, G, H, 0N  where  

A =  ( 0.6, 0.8, 0.4) ,  

B =  ( 0.4, 0.9, 0.7) ,  

C =  ( 0.6, 0.9, 0.4) ,  

D =  ( 0.4, 0.8, 0.7) , 

E =  ( 0.4, 0.2, 0.6) ,  

F =  ( 0.7, 0.1, 0.4) ,  

G =  ( 0.4, 0.1, 0.6)  and  

H =  ( 0.7, 0.2, 0.4) . Now we define  

B1 =  ( 0.7, 0.6, 0.5) ,  

B2 =  ( 0.6, 0.8, 0.2) ,  

B1  B2 = B3 =  ( 0.7, 0.8, 0.2)  and 

B1  B2 = B4 =  ( 0.6, 0.6, 0.5) . Then 

C (B1) =  ( 0.5, 0.4, 0.7) , 

C (B2) =  ( 0.2, 0.2, 0.6) , 

C (B3) =  ( 0.2, 0.2, 0.7)  and 

C (B4) =  ( 0.5, 0.4, 0.6) . 

Therefore NSFr (B1)  NSFr (B2) = 1N  E = 1N ⊈ E 

= NSFr (B3) = NSFr (B1  B2).  

Note 3.25 The following example shows that 

NSFr (A  B) ⊈ NSFr (A)  NSFr (B) and  

NSFr (A)  NSFr (B) ⊈ NSFr (A  B). 

Example 3.26 From Example 3.24, we define  

A1 =  ( 0.5, 0.1, 0.9) ,  

A2 =  ( 0.3, 0.5, 0.6) ,  

A1  A2 = A3 =  ( 0.5, 0.5, 0.6) , and  

A1  A2 = A4 =  ( 0.3, 0.1, 0.9) . Then 

C (A1) =  ( 0.9, 0.9, 0.5) , 

C (A2) =  ( 0.6, 0.5, 0.3) , 

C (A3) =  ( 0.6, 0.5, 0.5)  and 

C (A4) =  ( 0.9, 0.9, 0.3) . 

Therefore NSFr (A1)  NSFr (A2) = F  1N = F ⊈ G 

= NSFr (A4) = NSFr (A1  A2). 

Also NSFr (B1  B2) = NSFr (B4) = 1N ⊈ E = 1N  E 

= NSFr (B1)  NSFr (B2). 

Theorem 3.27 For any NSs A and B in the NTS X,  

NSFr (A  B)  ( NSFr (A)  NSCl (B) )  

( NSFr (B)  NSCl (A) ). 

Proof : Let A and B be NSs in the NTS X. Then by 

Definition 3.1,  

NSFr (A  B) = NSCl (A  B)  NSCl (C (A  B))  

By Proposition 3.2 (1) [18] , 

= NSCl (A  B)  NSCl ( C (A)  C (B) ) 

By Proposition 6.5 (ii) and (i) [12] , 

 (NSCl(A)NSCl (B))(NSCl(C(A))NSCl(C(B))) 

= [ ( NSCl (A)  NSCl (B) )  NSCl (C(A)) ]   

        [ ( NSCl (A)  NSCl (B) )  NSCl (C(B)) ] 
By Definition 3.1, 

 = ( NSFr (A)  NSCl (B) )  ( NSFr (B) NSCl (A))  

Hence NSFr (A  B)  ( NSFr (A)  NSCl (B) )  

( NSFr (B)  NSCl (A) ). 
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The converse of the above theorem is not true as 

shown by the following example. 

Example 3.28 From Example 3.24, ( NSFr (A1)  

NSCl (A2) )  ( NSFr (A2)  NSCl (A1) ) = (F  1N ) 

 (1N  F ) = F  F = F ⊈ G = NSFr (A1  A2). 

Corollary 3.29 For any NSs A and B in the NTS X, 

NSFr (A  B)  NSFr (A)  NSFr (B).  

Proof : Let A and B be NSs in the NTS X. Then by 

Definition 3.1,  

NSFr (A  B) = NSCl (A  B)  NSCl (C (A  B))  

By Proposition 3.2 (1) [18] , 

= NSCl (A  B)  NSCl ( C (A)  C (B) )     

By Proposition 6.5 (ii) and (i) [12] , 

 (NSCl(A)NSCl(B))(NSCl(C(A))  NSCl(C(B)))   

= ( NSCl (A)  NSCl (B)   NSCl (C (A)) )   

   ( NSCl (A)  NSCl (B)  NSCl (C (B)) )  

By Definition 3.1, 

= ( NSFr (A)  NSCl (B) )  ( NSCl (A)  NSFr (B))          

 NSFr (A)  NSFr (B).  

Hence NSFr (A  B)  NSFr (A)  NSFr (B).  

The equality in the above theorem may not hold as 

seen in the following example. 

Example 3.30 From Example 3.24,         

NSFr (A1)  NSFr (A2) = F  1N = 1N ⊈ G = 

NSFr (A4) = NSFr (A1  A2). 

Theorem 3.31 For any NS A in the NTS X, 

(1) NSFr (NSFr (A))  NSFr (A), 

(2) NSFr (NSFr (NSFr (A)))  NSFr (NSFr (A)). 

Proof : (1) Let A be the NS in the neutrosophic 

topological space X. Then by Definition 3.1, 

NSFr (NSFr (A))  

= NSCl (NSFr (A))  NSCl (C (NSFr (A)))  

By Definition 3.1, 

= NSCl ( NSCl (A)  NSCl (C (A)) )   

     NSCl ( C ( NSCl (A)  NSCl (C (A)) ) )    

By Proposition 6.3 (iii) and 6.2 (ii) [12] , 

 ( NSCl (NSCl (A))  NSCl (NSCl (C (A))) )  

      NSCl ( NSInt (C (A))  NSInt (A) )    

By Proposition 6.3 (iii) [12] , 

= (NSCl (A)  NSCl (C (A)))  (NSCl (NSInt(C (A))) 

         NSCl (NSInt (A))   

 NSCl (A)  NSCl (C (A))  

By Definition 3.1, 

= NSFr (A)     

Therefore NSFr (NSFr (A))  NSFr (A). 

(2) By Definition 3.1,  

NSFr (NSFr (NSFr (A))) = NSCl (NSFr (NSFr (A))) 

  NSCl (C (NSFr (NSFr (A)))) 

By Proposition 6.3 (iii) [12] , 

 (NSFr (NSFr (A)))  NSCl (C (NSFr (NSFr (A)))) 

 NSFr (NSFr (A)).  

Hence NSFr (NSFr (NSFr (A)))  NSFr (NSFr (A)). 

Remark 3.32 From the above theorem, the converse 

of (1) needs not be true as shown by the following

example and no counter-example could be found to 

establish the irreversibility of inequality in (2). 

Example 3.33 From Example 3.16, NSFr (A2) = 1N 

⊈ 0N = NSFr ( NSFr (A2)). 

Theorem 3.34 Let Xi, 𝑖 = 1, 2, . . . , 𝑛 be a family of 

neutrosophic product related NTSs. If each Ai is a NS 

in Xi, then NSFr ( ∏   
 
    ) = [ NSFr (A1)  NSCl 

(A2)  ⋅ ⋅ ⋅  NSCl (An) ]  [ NSCl (A1)  NSFr (A2)  

NSCl (A3)  ⋅ ⋅ ⋅  NSCl (An) ]  ⋅ ⋅ ⋅  [ NSCl (A1)  

NSCl (A2)  ⋅ ⋅ ⋅  NSFr (An) ].  

Proof : It suffices to prove this for 𝑛 = 2. Let Ai be 

the NS in the neutrosophic topological space Xi.  

Then by Definition 3.1, 

NSFr (A1  A2)= NSCl (A1  A2)  NSCl (C (A1  A2)) 

By Proposition 6.2 (i) [12] , 

= NSCl (A1  A2)  C ( NSInt (A1  A2) )   

By Theorem 6.9 (i) and (ii) [12] , 

= (NSCl(A1)  NSCl(A2)) C(NSInt(A1)  NSInt (A2)) 

= ( NSCl (A1)  NSCl (A2) )  C [ ( NSInt (A1)    
       NSCl (A1) )  ( NSInt (A2)  NSCl (A2) ) ]  

By Lemma 2.3 (iii) [12] , 

= ( NSCl (A1)  NSCl (A2) )  [ C ( NSInt (A1)  

NSCl (A1) )  1N  1N  C( NSInt (A2)  NSCl (A2) ) ] 
=(NSCl(A1)NSCl(A2))[(NSCl(C(A1))NSInt(C(A1)

))  1N  1N  (NSCl (C (A2))  NSInt (C (A2)) ) ]  
= ( NSCl (A1)  NSCl (A2) ]  [ ( NSCl (C (A1))  1N )  

          ( 1N  NSCl (C (A2)) ) ]  

= [( NSCl (A1)  NSCl (A2) )  (NSCl (C (A1))  1N )] 

 [(NSCl (A1)  NSCl (A2) )  (1N  NSCl (C (A2)) ) ] 

By Theorem 2.32, 

= [ (NSCl (A1)  NSCl (C (A1)) )  ( 1N  NSCl (A2))] 

  [(NSCl (A1)  1N )  (NSCl (A2)  NSCl (C (A2)))] 

= (NSFr (A1)  NSCl (A2))  (NSCl (A1)  NSFr (A2)) 

Hence NSFr (A1  A2) = ( NSFr (A1)  NSCl (A2) )  

( NSCl (A1)  NSFr (A2) ).  

CONCLUSION 

In this paper, we studied the concepts of frontier and 

semi-frontier in neutrosophic topological spaces. In 

future, we plan to extend this neutrosophic topology 
concepts by neutrosophic continuous, neutrosophic 

semi-continuous, neutrosophic almost continuous and 

neutrosophic weakly continuous in neutrosophic 
topological spaces, and also to expand this neutros-
ophic concepts by nets, filters and borders. 
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Abstract: In this paper, we define the notion of neutrosophic
semiopen (resp. preopen and α-open) functions and investigate re-
lation among them. We give a characterization of neutrosophic α-
open set, and provide conditions for a neutrosophic set to be a neu-

trosophic α-open set. We discuss characterizations of neutrosophic
pre-continuous (resp. α-continuous) functions. We give a condition
for a function of neutrosophic topological spaces to be a neutrosophic
α-continuous function.

Keywords:neutrosophic α-open set;neutrosophic semiopen; neutrosophic preopen; neutrosophic pre-continuous ; neutrosophic α-continuous.

1 Introduction and Preliminaries
After the advent of the notion of fuzzy set by Zadeh[11], C. L.
Chang [4] introduced the notion of fuzzy topological space and
many researchers converted, among others, general topological
notions in the context of fuzzy topology. The notion of intuition-
istic fuzzy set introduced by Atanassov [1, 2, 3] is one of the
generalizations of the notion of fuzzy set. Later, Coker [5] by
using the notion of the intuitionistic fuzzy set, offered the use-
ful notion of intuitionistic fuzzy topological space. Joung Kon
Jeon et al.[7] introduced and studied the notions of intuitionis-
tic fuzzy α-continuity and pre-continuity which we will investi-
gate in the context of neutrosophic topology. After the introduc-
tion of the concepts of neutrosophy and neutrosophic set by F.
Smarandache [[9], [10]], the concepts of neutrosophic crisp set
and neutrosophic crisp topological spaces were introduced by A.
A. Salama and S. A. Alblowi[8].

In this paper, we define the notion of neutrosophic semiopen
(resp. preopen and α-open) functions and investigate relation
among them. We give a characterization of neutrosophic α-open
set, and provide conditions for which a neutrosophic set is neu-
trosophic α-open. We discuss characterizations of neutrosophic
precontinuous (resp. α-continuous) functions.

Definition 1.1. [6] A neutrosophic topology (NT) on a nonempty
set X is a family T of neutrosophic sets in X satisfying the fol-
lowing axioms:

(i) 0
N
, 1

N
∈ T ,

(ii) G1 ∩G2 ∈ T for any G1, G2 ∈ T ,

(iii) ∪Gi ∈ T for arbitrary family {Gi | i ∈ Λ} ⊆ T .

In this case the ordered pair (X,T ) or simply X is called a neu-
trosophic topological space (briefly NTS) and each neutrosophic
set in T is called a neutrosophic open set (briefly NOS). The com-
plement A of a NOS A in X is called a neutrosophic closed set
(briefly NCS) in X . Each neutrosophic supra set (briefly NS)
which belongs to (X,T ) is called a neutrosophic supra open set
(briefly NSOS) in X . The complement A of a NSOS A in X is
called a neutrosophic supra closed set (briefly IFSCS) in X .

Definition 1.2. [6] Let A be a neutrosophic set in a neutrosophic
topological space X . Then
Nint(A) =

⋃
{G | G is a neutrosophic open set in X and

G ⊆ A} is called the neutrosophic interior of A;
Ncl(A) =

⋂
{G | G is a neutrosophic closed set in X and

G ⊇ A} is called the neutrosophic closure of A.

Definition 1.3. [6] Let X be a nonempty set. If r, t, s be real
standard or non standard subsets of ]0−, 1+[ then the neutro-
sophic set xr,t,s is called a neutrosophic point(in short NP )in
X given by

xr,t,s(xp) =

{
(r, t, s), if x = xp

(0, 0, 1), if x 6= xp

for xp ∈ X is called the support of xr,t,s.where r denotes the de-
gree of membership value ,t denotes the degree of indeterminacy
and s is the degree of non-membership value of xr,t,s.

2 Definitions
Definition 2.1. A neutrosophic set A in a neutrosophic 
topological space (X, T ) is called
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1) a neutrosophic semiopen set (briefly NSOS) if A ⊆
Ncl(Nint(A)).

2) a neutrosophic α-open set (briefly NαOS) if A ⊆
Nint(Ncl(Nint(A))).

3) a neutrosophic preopen set (briefly NPOS) if A ⊆
Nint(Ncl(A)).

4) a neutrosophic regular open set (briefly NROS) if A =
Nint(Ncl(A)).

5) a neutrosophic semipreopen or β-open set (briefly NβOS)
if A ⊆ Ncl(Nint(Ncl(A))).

A neutrosophic set A is called neutrosophic semiclosed (resp.
neutrosophic α-closed, neutrosophic preclosed, neutrosophic
regular closed and neutrosophic β-closed) (briefly NSCS, NαCS,
NPCS, NRCS and NβCS) if the complement of A is a neutro-
sophic semiopen (resp. neutrosophic α-open, neutrosophic pre-
open, neutrosophic regular open and neutrosophic β-open).

Example 2.1. Let X = {a, b, c}. Define the neutrosophic sets
A,B,C,D and E in X as follows:
A = 〈x, ( a

0.5 ,
b
0.4 ,

c
0.5 ), ( a

0.5 ,
b
0.4 ,

c
0.5 ), ( a

0.5 ,
b
0.6 ,

c
0.5 )〉,

B = 〈x, ( a
0.5 ,

b
0.55 ,

c
0.5 ), ( a

0.5 ,
b

0.55 ,
c
0.5 ), ( a

0.5 ,
b

0.55 ,
c
0.5 )〉,

C = 〈x, ( a
0.6 ,

b
0.6 ,

c
0.5 ), ( a

0.6 ,
b
0.6 ,

c
0.5 ), ( a

0.4 ,
b
0.4 ,

c
0.5 )〉. Then

T = {0
N
, 1

N
, A,B,C} is neutrosophic topology on X.

Thus, (X,T ) is neutrosophic topological space. Ob-
serve that D = 〈x, ( a

0.5 ,
b
0.5 ,

c
0.5 ), ( a

0.5 ,
b
0.5 ,

c
0.5 ), ( a

0.5 ,
b
0.5 ,

c
0.5 )〉

is both semiopen and α-open in (X,T ) and E =
〈x, ( a

0.5 ,
b
0.4 ,

c
0.4 ), ( a

0.5 ,
b
0.4 ,

c
0.4 ), ( a

0.5 ,
b
0.6 ,

c
0.6 )〉 is both preopen

and β-open in (X,T ).

Proposition 2.1. Let (X,T ) be a neutrosophic topological space.
If A is a neutrosophic α-open set then it is a neutrosophic
semiopen set.

Proposition 2.2. Let (X,T ) be a neutrosophic topological space.
If A is a neutrosophic α-open set then it is a neutrosophic preopen
set.

Proposition 2.3. Let A be a neutrosophic set in a neutrosophic
topological spaces (X,T ). If B is a neutrosophic semiopen set
such that B ⊆ A ⊆ Nint(Ncl(B)), then A is a neutrosophic
α-open set.

Proof. Since B is a neutrosophic semiopen set, we have
B ⊆ Ncl(Nint(B)). Thus, A ⊆ Nint(Ncl(B)) ⊆
Nint(Ncl(Ncl(Nint(B)))) = Nint(Ncl(Nint(B))) ⊆
Nint(Ncl(Nint(A))), and so A is a neutrosophic α-open
set.

Lemma 2.1. Any union of NS α-open sets (resp. neutrosophic
preopen sets) is a NS α-open sets (resp., neutrosophic preopen
sets).

The Proof is straightforward.

Proposition 2.4. A neutrosophic set A in a neutrosophic topo-
logical space X is neutrosophic α-open (resp. neutrosophic pre-
open) iff for every neutrosophic point xr,t,s ∈ A, there exists a
neutrosophic α-open set (resp. neutrosophic preopen set) Bxr,t,s

such that xr,t,s ∈ Bxr,t,s
⊆ A.

Proof. If A is a neutrosophic α-open set (resp. neutrosophic pre-
open set), then we may take Bxr,t,s

= A for every xr,t,s ∈ A.
Conversely assume that for every neutrosophic point xr,t,s ∈ A,
there exists a neutrosophic α-open set (resp., neutrosophic pre-
open set), Bxr,t,s

such that xr,t,s ∈ Bxr,t,s
⊆ A. Then,

A = ∪{xr,t,s|xr,t,s ∈ A} ⊆ ∪{Bxr,t,s |xr,t,s ∈ A} ⊆ A, and so
A = ∪{Bxr,t,s |xr,t,s ∈ A}, which is a neutrosophic α-open set
(resp. neutrosophic preopen set) by Lemma 2.1.

Definition 2.2. Let f be a function from a neutrosophic topolog-
ical spaces (X,T ) and (Y, S). Then f is called

(i) a neutrosophic open function if f(A) is a neutrosophic open
set in Y for every neutrosophic open set A in X .

(ii) a neutrosophic α-open function if f(A) is a neutrosophic
α-open set in Y for every neutrosophic open set A in X .

(iii) a neutrosophic preopen function if f(A) is a neutrosophic
preopen set in Y for every neutrosophic open set A in X .

(iv) a neutrosophic semiopen function if f(A) is a neutrosophic
semiopen set in Y for every neutrosophic open set A in X .

Proposition 2.5. Let (X,T ), (Y, S) and (Z,R) be three neu-
trosophic topological spaces, let f : (X,T ) → (Y, S) and
g : (Y, S) → (Z,R) be functions. If f is neutrosophic open
and g is neutrosophic α-open(resp., neutrosophic preopen), then
g ◦ f is neutrosophic α-open(resp. neutrosophic preopen).

Proof. The Proof is straightforward.

Proposition 2.6. Let (X,T ) and (Y, S) are neutrosophic topo-
logical spaces. If f : (X,T ) → (Y, S) is neutrosophic α-open
then it is neutrosophic semiopen.

Proof. Assume that f is neutrosophic α-open and letA be a neu-
trosophic open set inX . Then, f(A) is a neutrosophic α-open set
in Y . It follows from Proposition 2.1 that f(A) is a neutrosophic
semiopen set so that f is a neutrosophic semiopen function.

Proposition 2.7. Let (X,T ) and (Y, S) are neutrosophic topo-
logical spaces. If f : (X,T ) → (Y, S) is neutrosophic α-open
then it is neutrosophic preopen.

3 Neutrosophic Continuity
Definition 3.1. Let f be a function from a neutrosophic topo-
logical space (X,T ) to a neutrosophic topological space (Y, S).
Then f is called a neutrosophic pre-continuous function if
f−1(B) is a neutrosophic preopen set in X for every neutro-
sophic open set B in Y .
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Proposition 3.1. For a function f from a neutrosophic topologi-
cal spaces (X,T ) to an (Y, S), the following are equivalent.

(i) f is neutrosophic pre-continuous.

(ii) f−1(B) is a neutrosophic preclosed set in X for every neu-
trosophic closed set B in Y .

(iii) Ncl(Nint(f−1(A))) ⊆ f−1(Ncl(A)) for every neutro-
sophic set A in Y.

Proof. (i)⇒ (ii) The Proof is straightforward.
(ii) ⇒ (iii) Let A be a neutrosophic set in Y . Then Ncl(A) is
neutrosophic closed. It follows from (ii) that f−1(Ncl(A)) is a
neutrosophic preclosed set in X so that Ncl(Nint(f−1(A))) ⊆
Ncl(Nint(f−1(Ncl(A)))) ⊆ f−1(Ncl(A)).
(iii) ⇒ (i) Let A be a neutrosophic open set in
Y . Then A is a neutrosophic closed set in Y , and so
Ncl(Nint(f−1(A))) ⊆ f−1(Ncl(A)) = f−1(A). This im-
plies that Nint(Ncl(f−1(A))) = Ncl(Ncl(f−1(A))) =
Ncl(Nint(f−1(A))) = Ncl(Nint(f−1(A))) ⊆ f−1(A) =
f−1(A), and thus f−1(A) ⊆ Nint(Ncl(f−1(A))). Hence
f−1(A) is a neutrosophic preopen set inX , and f is neutrosophic
precontinuous.

Definition 3.2. Let xr,t,s be a neutrosophic point of a neutro-
sophic topological space (X,T ). A neutrosophic set A of X is
called neutrosophic neighbourhood of xr,t,s if there exists a neu-
trosophic open set B in X such that xr,t,s ∈ B ⊆ A.

Proposition 3.2. Let f be a function from a neutrosophic topo-
logical space (X,T ) to a neutrosophic topological space (Y, S).
Then the following assertions are equivalent.

(i) f is a neutrosophic pre-continuous function.

(ii) For each neutrosophic point xr,t,s ∈ X and every neutro-
sophic neighbourhood A of f(xr,t,s), there exists a neutro-
sophic preopen set B in X such that xr,t,s ∈ B ⊆ f−1(A).

(iii) For each neutrosophic point xr,t,s ∈ X and every neutro-
sophic neighbourhood A of f(xr,t,s), there exists a neu-
trosophic preopen set B in X such that xr,t,s ∈ B and
f(B) ⊆ A

Proof. (i)⇒ (ii) Let xr,t,s be a neutrosophic point in X and let
A be a neutrosophic neighbourhood of f(xr,t,s). Then there ex-
ists a neutrosophic open setB in Y such that f(xr,t,s) ∈ B ⊆ A.
Since f is a neutrosophic pre-continuous function, we know
that f−1(B) is a neutrosophic preopen set in X and xr,t,s ∈
f−1(f(xr,t,s)) ⊆ f−1(B) ⊆ f−1(A). Consequently (ii) is valid.
(ii) ⇒ (iii) Let xr,t,s be a neutrosophic point in X and let
A be a neutrosophic neighbourhood of f(xr,t,s). The condi-
tion (ii) implies that there exists a neutrosophic preopen set B
in X such that xr,t,s ∈ B ⊆ f−1(A) so that xr,t,s ∈ B and
f(B) ⊆ f(f−1(A)) ⊆ A. Hence (iii) is true.
(iii) ⇒ (i) Let B be a neutrosophic open set in Y and let
xr,t,s ∈ f−1(B). Then f(xr,t,s) ∈ B, and so B is a neutro-
sophic neighbourhood of f(xr,t,s) since B is neutrosophic open

set. It follows from (iii) that there exists a neutrosophic pre-
open set A in X such that xr,t,s ∈ A and f(A) ⊆ B so that
xr,t,s ∈ A ⊆ f−1(f(A)) ⊆ f−1(B). Applying Propostion 2.4
induces that f−1(B) is a neutrosophic preopen set in X. There-
fore, f is a neutrosophic pre-continuous function.

Definition 3.3. Let f be a function from a neutrosophic topo-
logical space (X,T ) to a neutrosophic topological space (Y, S).
Then f is called a neutrosophic α-continuous function if f−1(B)
is a neutrosophic α-open set inX for every neutrosophic open set
B in Y .

Proposition 3.3. Let f be a function from a neutrosophic topo-
logical space (X,T ) to a neutrosophic topological space (Y, S)
that satisfies Ncl(Nint(Ncl(f−1(B)))) ⊆ f−1(Ncl(B)) for
every neutrosophic set B in Y . Then f is a neutrosophic α-
continuous function.

Proof. Let B be an neutrosophic open set in Y . Then B is a
neutrosophic closed set in Y , which implies that from hypothesis
that Ncl(Nint(Ncl(f−1(B)))) ⊆ f−1(Ncl(B)) = f−1(B). It
follows that

Nint(Ncl(Nint(f−1(B)))) = Ncl(Ncl(Nint(f−1(B))))

= Ncl(Nint(Nint(f−1(B))))

= Ncl(Nint(Ncl(f−1(B))))

= Ncl(Nint(Ncl(f−1(B)))) ⊆ f−1(B)

= f−1(B)

so that f−1(B) ⊆ Nint(Ncl(Nint(f−1(B)))). This shows that
f−1(B) is a neutrosophic α-open set in X . Hence, f is a neutro-
sophic α-continuous function.

Proposition 3.4. Let f be a function from a neutrosophic topo-
logical space (X,T ) to a neutrosophic topological space (Y, S).
Then the following assertions are equivalent.

(i) f is neutrosophic α-continuous.

(ii) For each neutrosophic point xr,t,s ∈ X and every neutro-
sophic neighbourhood A of f(xr,t,s), there exists a neutro-
sophic α-open set B in X such that xr,t,s ∈ B ⊆ f−1(A).

(iii) For each neutrosophic point xr,t,s ∈ X and every neutro-
sophic neighbourhood A of f(xr,t,s), there exists a neu-
trosophic α-open set B in X such that xr,t,s ∈ B and
f(B) ⊆ A

Proof. (i)⇒ (ii) Let xr,t,s be a neutrosophic point in X and let
A be a neutrosophic neighbourhood of f(xr,t,s). Then there ex-
ists a neutrosophic open setB in Y such that f(xr,t,s) ∈ B ⊆ A.
Since f is neutrosophic α-continuous, we know that f−1(B) is
a neutrosophic α-open set in X and xr,t,s ∈ f−1(f(xr,t,s)) ⊆
f−1(B) ⊆ f−1(A). Consequently (ii) is valid.
(ii) ⇒ (iii) Let xr,t,s be a neutrosophic point in X and let
A be a neutrosophic neighbourhood of f(xr,t,s). The condi-
tion (ii) implies that there exists a neutrosophic α-open set B
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in X such that xr,t,s ∈ B ⊆ f−1(A) so that xr,t,s ∈ B and
f(B) ⊆ f(f−1(A)) ⊆ A. Hence (iii) is true.
(iii) ⇒ (i) Let B be a neutrosophic open set in Y and let
xr,t,s ∈ f−1(B). Then f(xr,t,s) ∈ B, and so B is a neutro-
sophic neighbourhood of f(xr,t,s) since B is neutrosophic open
set. It follows from (iii) that there exists a neutrosophic α-
open set A in X such that xr,t,s ∈ A and f(A) ⊆ B so that
xr,t,s ∈ A ⊆ f−1(f(A)) ⊆ f−1(B). Applying Proposition 2.4
induces that f−1(B) is a neutrosophic α-open set in X . There-
fore, f is a neutrosophic α-continuous function.

Proposition 3.5. Let f be a function from a neutrosophic topo-
logical space (X,T ) to a neutrosophic topological space (Y, S).
If f is neutrosophic α-continuous, then it is neutrosophic semi-
continuous.

Proof. Let B be a neutrosophic open set in Y . Since f is neutro-
sophic α-continuous, f−1(B) is a neutrosophic semiopen set in
X . It follows from Proposition 2.1 that f−1(B) is a neutrosophic
semiopen set in X so that f is a neutrosophic semi-continuous
function.

Proposition 3.6. Let f be a function from a neutrosophic topo-
logical space (X,T ) to a neutrosophic topological space (Y, S).
If f is neutrosophic α-continuous, then it is neutrosophic pre-
continuous.
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1 Introduction and Preliminaries
The fuzzy idea has invaded all branches of science as far back
as the presentation of fuzzy sets by L. A. Zadeh [17]. The im-
portant concept of fuzzy topological space was offered by C. L.
Chang [6] and from that point forward different ideas in topol-
ogy have been reached out to fuzzy topological space. The con-
cept of ”intuitionistic fuzzy set” was first presented by Atanassov
[1]. He and his associates studied this useful concept [2, 3, 4].
Afterward, this idea was generalized to ”intuitionistic L - fuzzy
sets” by Atanassov and Stoeva [5]. The idea of somewhat fuzzy
continuous functions and somewhat fuzzy open hereditarily ir-
resolvable were introduced and investigated by by G. Thangaraj
and G. Balasubramanian in [15]. The idea of intuitionistic fuzzy
nowhere dense set in intuitionistic fuzzy topological space pre-
sented and studied by by Dhavaseelan and et al. in [16]. The
concepts of neutrosophy and neutrosophic set were introduced by
F. Smarandache [[13], [14]]. Afterwards, the works of Smaran-
dache inspired A. A. Salama and S. A. Alblowi[12] to introduce
and study the concepts of neutrosophic crisp set and neutrosophic
crisp topological spaces. The Basic definitions and Proposition
related to neutrosophic topological spaces was introduced and
discussed by Dhavaseelan et al. [9]. In this paper the concepts of
neutrosophic Baire spaces are introduced and characterizations
of neutrosophic baire spaces are studied.

Definition 1.1. [13, 14] Let T,I,F be real standard or non standard
subsets of ]0−, 1+[, with supT = tsup, infT = tinf
supI = isup, infI = iinf
supF = fsup, infF = finf
n− sup = tsup + isup + fsup
n−inf = tinf +iinf +finf . T,I,F are neutrosophic components.

Definition 1.2. [13, 14] Let X be a nonempty fixed set. A
neutrosophic set [briefly NS] A is an object having the form
A = {〈x, µ

A
(x), σ

A
(x), γ

A
(x)〉 : x ∈ X} where µ

A
(x), σ

A
(x)

and γ
A

(x) which represents the degree of membership function

(namely µ
A

(x)), the degree of indeterminacy (namely σ
A

(x))
and the degree of nonmembership (namely γ

A
(x)) respectively

of each element x ∈ X to the set A.

Remark 1.1. [13, 14]

(1) A neutrosophic set A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈
X} can be identified to an ordered triple 〈µ

A
, σ

A
, γ

A
〉 in

]0−, 1+[ on X.

(2) For the sake of simplicity, we shall use the symbol
A = 〈µ

A
, σ

A
, γ

A
〉 for the neutrosophic set A =

{〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}.

Definition 1.3. [13, 14] LetX be a nonempty set and the neutro-
sophic sets A and B in the form
A = {〈x, µ

A
(x), σ

A
(x), γ

A
(x)〉 : x ∈ X}, B =

{〈x, µ
B

(x), σ
B

(x), γ
B

(x)〉 : x ∈ X}. Then

(a) A ⊆ B iff µ
A

(x) ≤ µ
B

(x), σ
A

(x) ≤ σ
B

(x) and γ
A

(x) ≥
γ

B
(x) for all x ∈ X;

(b) A = B iff A ⊆ B and B ⊆ A;

(c) Ā = {〈x, γ
A

(x), σ
A

(x), µ
A

(x)〉 : x ∈ X}; [Complement
of A]

(d) A ∩ B = {〈x, µ
A

(x) ∧ µ
B

(x), σ
A

(x) ∧ σ
B

(x), γ
A

(x) ∨
γ

B
(x)〉 : x ∈ X};

(e) A ∪ B = {〈x, µ
A

(x) ∨ µ
B

(x), σ
A

(x) ∨ σ
B

(x), γ
A

(x) ∧
γ

B
(x)〉 : x ∈ X};

(f) [ ]A = {〈x, µ
A

(x), σ
A

(x), 1− µ
A

(x)〉 : x ∈ X};

(g) 〈〉A = {〈x, 1− γ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}.

Definition 1.4. [13, 14] Let {Ai : i ∈ J} be an arbitrary family
of neutrosophic sets in X. Then

(a)
⋂
Ai = {〈x,∧µ

Ai
(x),∧σ

Ai
(x),∨γ

Ai
(x)〉 : x ∈ X};

Neutrosophic Sets and Systems, Vol. 16, 201720

University of New Mexico 

R. Dhavaseelan, S. Jafari, R. Narmada Devi, Md. Hanif Page. Neutrosophic Baire Spaces 



(b)
⋃
Ai = {〈x,∨µ

Ai
(x),∨σ

Ai
(x),∧γ

Ai
(x)〉 : x ∈ X}.

Since our main purpose is to construct the tools for developing
neutrosophic topological spaces, we introduce the neutrosophic
sets 0

N
and 1

N
in X as follows:

Definition 1.5. [13, 14] 0
N

= {〈x, 0, 0, 1〉 : x ∈ X} and 1
N

=
{〈x, 1, 1, 0〉 : x ∈ X}.

Definition 1.6. [9] A neutrosophic topology (NT) on a nonempty
set X is a family T of neutrosophic sets in X satisfying the fol-
lowing axioms:

(i) 0
N
, 1

N
∈ T ,

(ii) G1 ∩G2 ∈ T for any G1, G2 ∈ T ,

(iii) ∪Gi ∈ T for arbitrary family {Gi | i ∈ Λ} ⊆ T .

In this case the ordered pair (X,T ) or simply X is called a neu-
trosophic topological space (briefly NTS) and each neutrosophic
set in T is called a neutrosophic open set (briefly NOS). The com-
plement A of a NOS A in X is called a neutrosophic closed set
(briefly NCS) in X .

Definition 1.7. [9] Let A be a neutrosophic set in a neutrosophic
topological space X . Then
Nint(A) =

⋃
{G | G is a neutrosophic open set in X and

G ⊆ A} is called the neutrosophic interior of A;
Ncl(A) =

⋂
{G | G is a neutrosophic closed set in X and

G ⊇ A} is called the neutrosophic closure of A.

Definition 1.8. [9] Let X be a nonempty set. If r, t, s be real
standard or non standard subsets of ]0−, 1+[ then the neutro-
sophic set xr,t,s is called a neutrosophic point(in short NP )in
X given by

xr,t,s(xp) =

{
(r, t, s), if x = xp

(0, 0, 1), if x 6= xp

for xp ∈ X is called the support of xr,t,s.where r denotes the de-
gree of membership value, t denotes the degree of indeterminacy
and s is the degree of non-membership value of xr,t,s.

Definition 1.9. [11] A neutrosophic set A in neutrosophic topo-
logical space (X,T ) is called neutrosophic dense if there exists
no neutrosophic closed set B in (X,T ) such that A ⊂ B ⊂ 1N

Proposition 1.1. [11] If A is a neutrosophic nowhere dense set
in (X,T ), then A is a neutrosophic dense set in (X,T ) .

Proposition 1.2. [11] Let A be a neutrosophic set. If A is a
neutrosophic closed set in (X,T ) with Nint(A) = 0N , then A
is a neutrosophic nowhere dense set in (X,T ).

2 Neutrosophic Baire Spaces
Definition 2.1. Let (X,T ) be a neutrosophic topological space.
A neutrosophic set A in (X,T ) is called neutrosophic first cat-
egory if A =

⋃∞
i=1Bi, where Bi’s are neutrosophic nowhere

dense sets in (X,T ). Any other neutrosophic set in (X,T ) is
said to be of neutrosophic second category.

Definition 2.2. A neutrosophic topological space (X,T ) is
called neutrosophic first category space if the neutrosophic set
1N is a neutrosophic first category set in (X,T ).That is, 1N =⋃∞

i=1Ai where Ai’s are neutrosophic nowhere dense sets in
(X,T ). Otherwise (X,T ) will be called a neutrosophic second
category space.

Proposition 2.1. If A be a neutrosophic first category set in
(X,T ),then A =

⋂∞
i=1Bi where Ncl(Bi) = 1N .

Proof. LetA be a neutrosophic first category set in (X,T ). Then
A =

⋃∞
i=1Ai, where Ai’s are neutrosophic nowhere dense sets

in (X,T ). Now A =
⋃∞

i=1Ai =
⋂∞

i=1(Ai). Now Ai is a neu-
trosophic nowhere dense set in (X,T ). Then, by Proposition 1.1,
we have Ai is a neutrosophic dense set in (X,T ). Let us put
Bi = Ai. Then A =

⋂∞
i=1Bi where Ncl(Bi) = 1N .

Definition 2.3. Let A be a neutrosophic first category set in
(X,T ). Then A is called a neutrosophic residual set in (X,T ).

Definition 2.4. Let (X,T ) be a neutrosophic topological
space. Then (X,T ) is said to neutrosophic Baire space if
Nint(

⋃∞
i=1Ai) = 0N , where Ai’s are neutrosophic nowhere

dense sets in (X,T ).

Example 2.1. Let X = {a, b, c}. Define the neutrosophic sets
A,B,C and D as follows :
A = 〈x, ( a

0.6 ,
b
0.6 ,

c
0.5 ), ( a

0.6 ,
b
0.6 ,

c
0.5 ), ( a

0.3 ,
b
0.3 ,

c
0.5 )〉,

B = 〈x, ( a
0.6 ,

b
0.6 ,

c
0.6 ), ( a

0.6 ,
b
0.6 ,

c
0.6 ), ( a

0.3 ,
b
0.3 ,

c
0.3 )〉,

C = 〈x, ( a
0.3 ,

b
0.3 ,

c
0.4 ), ( a

0.3 ,
b
0.3 ,

c
0.4 ), ( a

0.7 ,
b
0.7 ,

c
0.4 )〉 and

D = 〈x, ( a
0.3 ,

b
0.3 ,

c
0.3 ), ( a

0.3 ,
b
0.3 ,

c
0.3 ), ( a

0.7 ,
b
0.7 ,

c
0.7 )〉. Then the

family T = {0N , 1N , A} is a neutrosophic topologies on X.
Thus, (X,T ) is a neutrosophic topological spaces. Now A,B,C
and D are neutrosophic nowhere dense sets in (X,T ) . Also
Nint(A ∪ B ∪ C ∪ D) = 0N . Hence (X,T ) is a neutrosophic
Baire space.

Proposition 2.2. If Nint(
⋃∞

i=1Ai) = 0N where Nint(Ai) =
0N and Ai ∈ T , then (X,T ) is a neutrosophic Baire space.

Proof. Now Ai ∈ T implies that Ai is a neutrosophic open
set in (X,T ). Since Nint(Ai) = 0N . By Proposition 1.2,
Ai is a neutrosophic nowhere dense set in (X,T ). Therefore
Nint(

⋃∞
i=1Ai) = 0N . where Ai’s are neutrosophic nowhere

dense set in (X,T ). Hence (X,T ) is a neutrosophic Baire
space.

Proposition 2.3. If Ncl(
⋂∞

i=1Ai) = 1N where Ai’s are neutro-
sophic dense and neutrosophic open sets in (X,T ), then (X,T )
is a neutrosophic Baire Space.

Proof. Now Ncl(
⋂∞

i=1Ai) = 1N implies that Ncl(
⋂∞

i=1Ai) =

0N . Then we have Nint(
⋂∞

i=1Ai) = 0N . Which implies that
Nint(

⋃∞
i=1Ai) = 0N . Let Bi = Ai. Then Nint(

⋃∞
i=1Bi) =
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0N . Now Ai ∈ T implies that Ai is a neutrosophic closed set in
(X,T ) and hence Bi is a neutrosophic closed and Nint(Bi) =
Nint(Ai) = Ncl(Ai) = 0N . Hence By Proposition 1.2,
Bi is a neutrosophic nowhere dense set in (X,T ). Hence
Nint(

⋃∞
i=1Bi) = 0N where Bi’s are neutrosophic nowhere

dense sets, implies that (X,T ) is a neutrosophic Baire space.

Proposition 2.4. Let (X,T ) be a neutrosophic topological space.
Then the following are equivalent

(i) (X,T ) is a neutrosophic Baire space.

(ii) Nint(A) = 0N , for every neutrosophic first category set A
in (X,T ).

(iii) Ncl(B) = 1N , for every neutrosophic residual set B in
(X,T ).

Proof. (i) ⇒ (ii) Let A be a neutrosophic first category
set in (X,T ). Then A = (

⋃∞
i=1Ai) where Ai’s are neu-

trosophic nowhere dense sets in (X,T ). Now Nint(A) =
Nint(

⋃∞
i=1Ai) = 0N . Since (X,T ) is a neutrosophic Baire

space. Therefore Nint(A) = 0N .
(ii) ⇒ (iii) Let B be a neutrosophic residual set in (X,T ).

ThenB is a neutrosophic first category set in (X,T ). By hypoth-
esis Nint(B) = 0N which implies that Ncl(A) = 0N . Hence
Ncl(A) = 1N .

(iii) ⇒ (i) Let A be a neutrosophic first category set in
(X,T ). Then A = (

⋃∞
i=1Ai) where Ai’s are neutrosophic

nowhere dense sets in (X,T ). Now A is a neutrosophic first
category set implies that A is a neutrosophic residual set in
(X,T ). By hypothesis, we have Ncl(A) = 1N , which im-
plies that Nint(A) = 1N . Hence Nint(A) = 0N . That is,
Nint(

⋃∞
i=1Ai) = 0N , where Ai’s are neutrosophic nowhere

dense sets in (X,T ). Hence (X,T ) is a neutrosophic Baire
space.

Proposition 2.5. A neutrosophic topological space (X,T ) is a
neutrosophic Baire space if and only if (

⋃∞
i=1Ai) = 1N , where

Ai’s is a neutrosophic closed set in (X,T ) withNint(Ai) = 0N ,
implies that Nint(

⋃∞
i=1Ai) = 0N .

Proof. Let (X,T ) be a neutrosophic Baire space. Now Ai is
a neutrosophic closed in (X,T ) and Nint(Ai) = 0N , implies
that Ai is a neutrosophic nowhere dense set in (X,T ). Now⋃∞

i=1Ai = 1N implies that 1N is a neutrosophic first category
set in (X,T ). Since (X,T ) is a neutrosophic Baire space space,
by Proposition 2.4,Nint(1N ) = 0N . That is, Nint(

⋃∞
i=1Ai) =

0N .
Conversely suppose that Nint(

⋃∞
i=1Ai) = 0N where Ai.

By Proposition 1.2, Ai is a neutrosophic nowhere dense set in
(X,T ). Hence Nint(

⋃∞
i=1Ai) = 0N implies that (X,T ) is a

neutrosophic Baire space.

Definition 2.5. Let (X,T ) and (Y, S) be any two neutrosophic
topological spaces. A map f : (X,T ) → (Y, S) is said to be a
neutrosophic open if the image of every neutrosophic open set A
in (X,T ) is neutrosophic open f(A) in (Y, S).

Definition 2.6. [10] Let (X,T ) and (Y, S) be any two neutro-
sophic topological spaces. A map f : (X,T ) → (Y, S) is called
neutrosophic contra continuous if the inverse image of every neu-
trosophic open set in (Y, S) is neutrosophic closed in (X,T ).

Proposition 2.6. Let (X,T ) and (Y, S) be any two neutrosophic
topological spaces. If f : (X,T ) → (Y, S) is an onto neutro-
sophic contra continuous and neutrosophic open then (Y, S) is a
neutrosophic Baire space.

Proof. Let A be a neutrosophic first category set in (Y, S). Then
A = (

⋃∞
i=1Ai) where Ai are neutrosophic nowhere dense sets

in (Y, S). Suppose Nint(A) 6= 0N . Then there exists a neu-
trosophic open set B 6= 0N in (Y, S), such that B ⊆ A. Then
f−1(B) ⊆ f−1(A) = f−1(

⋃∞
i=1Ai) =

⋃∞
i=1 f

−1(Ai). Hence

f−1(B) ⊆
∞⋃
i=1

f−1(Ncl(Ai)). (2.1)

Since f is neutrosophic contra continuous and Ncl(Ai) is a neu-
trosophic closed set in (Y, S), f−1(Ncl(Ai)) is a neutrosophic
open in (X,T ). From (2.1) we have

f−1(B) ⊆
∞⋃
i=1

f−1(Ncl(Ai)) =
∞⋃
i=1

Nint(f−1(Ncl(Ai)).

(2.2)
Since f is intuitionsitic fuzzy open and onto, Nint(f−1(Ai)) ⊆
f−1(Nint(Ai)). From 2.2, we have f−1(B) ⊆⋃∞

i=1 f
−1(NintNcl(Ai)) ⊆

⋃∞
i=1 f

−1(0N ) = 0N . Since
Ai is a neutrosophic nowhere dense. That is, f−1(B) ⊆ 0N and
hence f−1(B) = 0N which implies that B = 0N , which is a
contradiction to B 6= 0N . Hence Nint(A) = 0N where A is a
neutrosophic first category set in (Y, S). Hence by Proposition
2.4, (Y, S) is a neutrosophic Baire space.
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Current knowledge based recommender systems, despite 
proven useful and having a high impact, persist with some 
shortcomings. Among its limitations are the lack of more 
flexible models and the inclusion of indeterminacy of the 
factors involved for computing a global similarity. In this 
paper, a new knowledge based recommendation models 
xxxx 

based SVN number is presented. It includes database 
construction, client profiling, products filtering and 
generation of recommendation. Its implementation makes 
possible to improve reliability and include indeterminacy 
in product and user profile. An illustrative example is 
shown to demonstrate the model applicability. 

Keywords: recommendation systems, neutrosophy, SVN numbers.

1 Introduction

Recommendation systems are useful in decision making 
process providing the user with a group of options that meet 
expectations [1]. Based on the information and the algo-
rithms used to generate the recommendations,,  various 
techniques can be distinguish [2, 3]: 
Knowledge Based Recommender Systems use the 
knowledge about users’ necessities to infer recommenda-
tions not requiring a great amount of data like another ap-
proaches [4]. They use cased based reasoning techniques fre-
quently. In this paper, a new framework for including neu-
trosophic in knowledge based recommender system is pre-
sented. 
This paper is structured as follows: Section 2 reviews some 
important preliminary concepts about Single valued 
neutrosophic numbers (SVN number). In Section 3, is 
presented a knowledge based recommendation model 
framework based on SVN numbers. Section 4 shows a case 
study of the proposed model. The paper ends with 
conclusions and further work recommendations. 

2.2 SVN-numbers 

Neutrosophy [5] is a mathematical theory developed for 
dealing with indeterminacy. Neutrosophy has been the 
base for developing new methods to handle indeterminate 
and inconsistent information like neutrosophic sets an 
neutrosophic logic [6, 7] .  

The truth value in neutrosophic set is as follows [8]:  
Definition 1. Let 𝑁 be a set defined as: 𝑁 =  {(𝑇, 𝐼, 𝐹) ∶
𝑇, 𝐼, 𝐹 ⊆  [0, 1]}, a neutrosophic valuation n is a mapping 
from the set of propositional formulas to 𝑁 , that is for each 
sentence p we have 𝑣 (p)  =  (𝑇, 𝐼, 𝐹).  
Single valued neutrosophic set (SVNS ) [9] were developed 
with the goal of facilitate the real world applications of  neu-
trosophic set and set-theoretic operators.  
A single valued neutrosophic set (SVNS) has been defined 
as follows [9]: 
Definition 2. Let 𝑋 be a universe of discourse. A single val-
ued neutrosophic set 𝐴 over 𝑋 is an object having the form:  

𝐴 = {〈𝑥, 𝑢𝐴(𝑥), 𝑟𝐴(𝑥), 𝑣𝐴(𝑥)〉: 𝑥 ∈ 𝑋} (1) 

where  𝑢𝐴(𝑥): 𝑋 → [0,1], 𝑟𝐴(𝑥) ∶ 𝑋 →  [0,1] and 
𝑣𝐴(𝑥): 𝑋 →  [0,1] with 0 ≤ 𝑢𝐴(𝑥) +  𝑟𝐴(𝑥) + 𝑣𝐴(𝑥):≤ 3 for
all 𝑥 ∈ 𝑋. The intervals 𝑢𝐴(𝑥),  𝑟𝐴(𝑥) y 𝑣𝐴(𝑥) denote the
truth- membership degree, the indeterminacy-membership 
degree and the falsity membership degree of 𝑥 to 𝐴, respec-
tively. 
Single valued neutrosophic numbers (SVN number) is de-
noted by 𝐴= (𝑎, b, 𝑐), where 𝑎, 𝑏, 𝑐∈ [0,1] and 𝑎+𝑏+𝑐≤3. 
Euclidean distance in SVN  is defined as follows[12, 13]: 
Definition 3. Let𝐴 ∗  =  ( 𝐴1∗  , 𝐴2∗   , . . , 𝐴𝑛∗  ) be a vector of 𝑛
SVN numbers such that 𝐴𝑗 ∗ = (𝑎𝑗∗, 𝑏𝑗∗, 𝑐𝑗∗) j=(1,2, … , 𝑛)
and 𝐵𝑖 = (𝐵𝑖1, 𝐵𝑖2, … , 𝐵𝑖𝑚) (𝑖 = 1,2, … , 𝑚) be 𝑚 vectors 
of 𝑛 SVN numbers such that  𝐵𝑖𝑗 = ( 𝑎𝑖𝑗, 𝑏𝑖𝑗, 𝑐𝑖𝑗)  (𝑖 = 1,2, 
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… , 𝑚), (𝑗 = 1,2, … , 𝑛). Then the separation measure be-
tween 𝐵𝑖′𝑠 y 𝐴 ∗ is defined as follows:

sI= (
1
3
∑ {(|aij-aj

*|)
2
+(|bij-bj

*|)
2
+(|cij-cj

*|)
2
}n

j=1 )

1
2

 (2) 
(𝑖 = 1,2, … , 𝑚)  
In this paper linguistic variables[14] are represented using 
single valued neutrosophic numbers [13] for developing 
knowledge based recommender system.  

3 Proposed framework 

The proposed framework is presented in Figure 1. It is 
based mainly on the proposal made by Cordon [15] for rec-
ommendation systems based on content/knowledge adapted 
to SVN numbers. 

Figure. 1 Proposed framework 

3.1 Database creation 

A key for a recommendation model is the creation of the 
database. Each product 𝑎𝑖  will be described by a set of char-
acteristics that make up the profile:  

𝐶 = {𝑐1, … , 𝑐𝑘, … , 𝑐𝑙} (3) 

Each product will be described by a vector of features: 
𝐹𝑎𝑗 = {𝑣1

𝑗
, … , 𝑣𝑘

𝑗
, . . . 𝑣𝑙

𝑗}, 𝑗 = 1, …𝑛 (4) 

There are techniques for generating these profiles automati-
cally or semi-automatically for recommendation systems 
[15]. In this case, an expert or group of experts is suggested. 

 Profiles of product aj, is expressed using the linguistic scale 
expressed S, vk

j
∈ S where  S = {s1, … , sg} is the linguistic

term set for evaluating the characteristic ck using SVN. 
Having described the products: 

A = {a1, … , aj , … , an} (5) 
Then, are stored in a database. 

3.2 Acquisition of the user profile 

The proposed framework presents a fundamental differ-
ence with previous proposals, it is focused in the fact that 
most of this information is collected using SVN numbers this 
information is stored in the database. 

𝑃𝑒 = {𝑝1
𝑒, … , 𝑝𝑘

𝑒, … , 𝑝𝑙
𝑒} (6) 

This profile will be composed of a set of attributes: 
𝐶𝑒 = {𝑐1

𝑒, … , 𝑐𝑘
𝑒, … , 𝑐𝑙

𝑒} (7) 

3.3 Filtering 

In this activity, products according to the similarity with the 
user profile are filtered to find out which are the most ap-
propriate for the student. 
The similarity between user profile,Pe, product  𝑎𝑗 is calcu-
lated. For the calculation of the overall similarity  
The similarity measure can be obtained from a distance 
measurement, if 𝑑(𝑥, 𝑦)𝜖[0,𝑚𝑎𝑥] then[16] : 

𝑠𝑖𝑚(𝑝𝑘
𝑒 , 𝑣𝑘

𝑗) = 1 −
𝑑(𝑑𝑝𝑘

𝑒 ,𝑣𝑘
𝑗
)

𝑚𝑎𝑥
(8) 

In this case similarity is calculated as follows: 

𝑆𝑖
= 1 −

(

 
(
1

3
∑{(|aij-aj

*|)
2
+(|bij-bj

*|)
2
+(|cij-cj

*|)
2
}

n

j=1

)

1
2

)

 
 

(9) 
Where function S calculate similarity among user profile 
and products profiles  
[17]. 

3.4 Recommending 

In this activity, a set of products that match with the user 
profiles is suggested. After calculating the similarity prod-
ucts are ordered and represented with the following similar-
ity vector: 

𝑆 = (𝑠1, … , 𝑠𝑛) (10) 
The best is that best meet the needs of the user profile 
(greater similarity). 

4 Case study 

To show the applicability of the model, a case study is de-
veloped. 
 Initially a database of products is created: 

𝐴 = {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5} 
described with the following attributes: 

Database creation

Acquisition of user 
profile

Filtering 

Recommendation
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𝐶 = {𝑐1, 𝑐2, 𝑐3, 𝑐4,, 𝑐5} 
Attributes are evaluated in the linguistic scale show in Table 
1 and stored in the database. 

Linguistic terms SVNSs 
Extremely good (EG) (1,0,0) 
Very very good (VVG) (0.9, 0.1, 0.1) 
Very good (VG) (0.8,0,15,0.20) 
Good (G) (0.70,0.25,0.30) 
Medium good (MG) (0.60,0.35,0.40) 
Medium (M) (0.50,0.50,0.50) 
Medium bad (MB) (0.40,0.65,0.60) 
Bad (B) (0.30,0.75,0.70) 
Very bad (VB) (0.20,0.85,0.80) 
Very very bad (VVB) (0.10,0.90,0.90) 
Extremely bad (EB) (0,1,1) 

Table 1.  Linguistic terms used to provide the assessments [13].

Database used in this example is shown in Table 2.  
𝑐1 𝑐2 𝑐3 𝑐4 

𝑎1 MDB M MMB B 
𝑎2 B MD MB M 
𝑎3 MMB M M B 
𝑎4 M B MMB B 

Table 2:   Products database. 
If user  𝑢𝑒, wish to receive recommendation expressing 
his/her preferences in this case: 

𝑃𝑒 = {MDB,MB,MMB,MB} 
The next step in this case is the calculation of similarity be-
tween user profile and products profiles stored in database.  

𝑎1 𝑎2 𝑎3 𝑎4 
0.44 0.76 0.42 0.84 

Table 3: Similarity calculation  
A ranking of products based on similarity calculation is: 

{𝑎4, 𝑎2, 𝑎1, 𝑎3} 
In case that the recommendation of two products was 
needed it is as follows: 

𝑎4, 𝑎2 
This example shows the applicability of the proposal 

 5 Conclusions 

In this paper, a product recommendation model was pre-
sented following the knowledge-based approach. It is based 
on the use of SVN numbers to express linguistic terms. 

Future work will be related to the creation of the database 
from multiple experts, as well as obtaining the weights of 
the characteristics using group evaluations. In addition, we 
will work on the integration of more complex aggregation 
models, as well as hybridization with other models of rec-
ommendation.
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ABSTRACT
The two major motivations in medical science are to prevent 
and diagnose diseases. Diagnosis of disease must be done 
with care since it is the first stage of therapeutic actions 
towards eventual management of the disease; a mistake at this 
stage is disastruous, and such, adequate care must be ensured. 
Diagnosis becomes difficult in medical domain due to 
influence of medical uncertainties that arises from confus-
ability in disease symptomatic presentation between two 
diseases. This confusability of these diseases stems from the 
overlaps in the disease symptomatic presentation and has led 
to misdiagnosis with various degrees of associated costs and 
in worst cases led to death. In this research, we present the 
analysis of the existing systems and finally present a 
framework for the diagnosis of confusable disease using 
neutrosophic-based neural network. 

General Terms 

Clinical Decision Support System, Medical Diagnosis, 

Machine Learning, Soft Computing. 

Keywords
Decision Support System, Medical Uncertainties, 

Neutrosophic Logic, Confusable Diseases

1. INTRODUCTION
Decision making in medical science is unique and is quite 
different from other science disciplines since it is a known 
fact that scientists tend to look for typical, normal phenomena 
while medical sciences look out for the atypical, abnormal, 
morbid phenomena. Medical decision making is a 
collaborative process between Physicians, Patients, and lab 
technologists typically through exchange of information that 
would ultimately guide the physician to make appropriate and 
proper therapeutic recommendations. There is an exponential 
amount of data generated daily in the medical domain thereby 
opening doors for all forms of uncertainties such as 
incompleteness of information, inconsistent description of 
disease symptoms, overlapping diseases symptoms, just to 
mention a few and has led to difficulties in properly 
diagnosing diseases in such situations. Medical uncertainty is 
an inherent phenomenon in medical science; it is what fuels 
medical research, prompts patients to seek medical attention 

and stimulate medical intervention notwithstanding, it poses 
challenges in diagnostic decision making. In recent times, the 
negative effect of medical uncertainties has attracted attention 
due to the emerging realities of this period in medical sciences 
where evidence based, shared decision making and patient-
centered care has brought to fore the limitation of scientific 
knowledge. The effect of uncertainties in the medical domain 
has been acknowledged by researchers since the 1950’s when 
the sociologist Renee Fox conducted a seminal studies 
documenting how physician struggle with uncertainty during 
their trainings. Brause (2001) highlighted that almost all the 
physicians are confronted during their formative years by the 
task of learning to diagnose. Central to good diagnosis, is the 
ability of an experienced physician to know what symptoms 
or vitals to throw away and what to keep in the diagnostic 
process. 

The ability of the physician(s) to thoroughly scan through the 
series of laboratory tests and symptoms of a patient  which are 
time varying  as the case may be and pick out meaningful and 
useful  information that ‘stand-out’, for proper identification 
of a disease (amongst several diseases which would 
sometimes share common symptom ) makes a good physician. 
It is not overly out of place to say that perception plays a 
central role amidst skills and experiences garnered by an 
expert physician during his or her education pursuit, in order 
to perform a near accurate or accurate diagnosis of a disease. 
Sisson et al (2007), opined that medical diagnosis is both 
science and arts where the art is what separate between two 
well-trained medical personnel thus is very necessary to talk 
of it if we are aiming at developing an application that would 
sieve through data and provide semantically relevant 
information amidst the wide range of uncertainties in a 
manner that simulate a human expert physician.  

A pertinent question would be “how computers have helped in 
medical diagnosis?” and “how can we improve on the existing 
systems”. Computers have been employed widely in the 
medical sector in recent time, from local and global patient 
and medicine databases to emergency networks, or as digital 
archives. Meanwhile, in the case of medical diagnosis, due to 
the complexity of the task, it has not been realistic to expect a 
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fully automatic, computer-based, medical diagnosis system. 
However, recent advances in the field of intelligent systems 
are materializing into a wider usage of computers, armed with 
Artificial Intelligence (AI) techniques. It is therefore 
imperative to have a decision support to assist in the 
diagnostic decision making. A decision support system in this 
context is a computer based information system that supports 
medical staff in diagnostic decision making. A properly 
designed medical decision support systems is interactive 
software whose intent is to help medical practitioners to 
semantically sieve through a deluge of raw data in order to 
identify and solve medical problems. 

In the purview of computing, decision making in medical 
diagnosis is all about problem solving strategies which is done 
by taking potential candidate solutions from the possibilities 
of various solutions. But often times one is faced with the 
problem of how to choose from the abundant alternatives that 
have confusing or conflicting symptoms. If physician’s 
premises are wrong, then the final decision is also wrong 
which ultimately leads to cases of misdiagnosis whose cost is 
obvious. It is pertinent to note that we can successfully select 
the numbers of features that would optimally help in the 
diagnostic process but as to what values this features can 
have, which areas needs further probing cannot be empirically 
ascertained. Medical uncertainties come in different flavors 
and shapes, but its impact which comes along the lines of 
class overlap or confusable symptoms is of interest to us. It 
has continually affected the diagnostic decision of diseases 
which have ultimately led to performance degradation amidst 
the supposedly high percentage of accuracy of some re-known 
classifiers mostly when considered in relation to practical 
implementation in medical domain. The complexity of the 
management of low prevalent diseases in the midst of high 
prevalent ones is to a larger extent attributed to the fact that 
other diseases have signs and symptoms that are similar to 
those presented by patients of low prevalent ones. For 
example Typhoid which is highly prevalent in the Niger Delta 
region of Nigeria and Hepatitis disease which is low prevalent 
have some common symptoms and sometimes could be very 
confusing to novice practitioners and patients in rural areas  to 
diagnose correctly and as such as in most cases would overly 
conclude it for Typhoid. It should also be noted that in 
medical decision making, different types of misclassifications 
or misdiagnosis have different costs. For example, in Hepatitis 
diagnosis, a false positive decision translates into an 
unnecessary biomarkers test or liver biopsy which is 
associated with both emotional, financial cost and other 
inherent complications. False negative decision on the other 
hand, however, means a missed Hepatitis-positive which in 
turn can be deadly. 

Medical diagnosis must therefore take into consideration 
issues of uncertainty and class imbalance which comes either 
in form of confusability or overlaps ,incomplete information, 
vagueness, inconsistency or indeterminacy, disease 
prevalence in order to make a reliable decision towards the 
prediction and eventual treatment of a disease. Neutrosophic 
logic is a new logic which is an extended and general 

framework to measure the truth, indeterminacy, and 
falsehoodness of the information and as such suitable for 
handling issues of uncertainties thus giving fair estimate about 
the reliability of information. This research work proposes a 
framework that uses the tripartite membership power of 
Neutrosophic logic and combining it with the conventional 
Neural Networks in order to estimate a confusability 
measurement for two confusable diseases resulting from class 
overlap in lieu of providing an innovative approach that might 
be useful to support decisions about medical diagnoses for 
confusable diseases.  

2.0 RELATED LITERATURE 
Evans and Gadd [3], describe four different levels into which 
clinical knowledge is organized in a medical problem solving 
context. They stated that Observations are units of 
information that are recognized as potentially relevant in a 
problem solving context, however they do not constitute 
clinically useful facts. Findings are observations that have 
potential clinical significance (e.g. symptoms). Facets are 
clusters of findings that are suggestive of pre-diagnostic 
interpretations while clinical diagnosis is the level of 
classification that encompasses and explains all levels beneath 
it. The model is hierarchical with facets and diagnoses serving 
to establish a context in which observations and findings are 
interpreted, and to provide a basis for anticipating and 
searching for confirming or discriminating findings. 

Oguntimelehin et al [17] opined that medical diagnosis is 
simply the task of categorization which allows physician to 
make predictions using clinical situations and to determine 
appropriate cause of action. They said it is a complex decision 
process that involves a lot of vagueness and uncertainty 
management especially when the disease has multiple 
symptoms. Diagnosis has been seen generally as the 
identification of the nature and cause of a certain 
phenomenon. Several disciplines make use of it but we are 
only considering it in the parlance of medical science and to 
put it in more simplistic form, it is the answer to the question 
of whether a system( in this case human body) is 
malfunctioning or not, and to the process of computing the 
answer.  Expert diagnosis would not be trivialized in this 
regard, which is majorly based on experience with the system. 
Using this experience, a mapping is built that efficiently 
associates the observations to the corresponding diagnoses. 

2.1: Medical Uncertainties 

Mishel[13] defined uncertainty in illness as the inability to 
determine the meaning of illness-related events. McCormick 
[11] opines that uncertainty is a component of all illness 
experiences and it is believed to affect psychosocial 
adaptation and outcomes of disease and as such high levels of 
uncertainty are related to high emotional distress, anxiety and 
depression. Peter Szolovits [19] opines that “Uncertainty is 
the central, critical fact about medical reasoning. Patients 
cannot describe exactly what has happened to them or how 
they feel, doctors and nurses cannot tell exactly what they 
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observe, laboratories report results only with some degree of 
error, physiologists do not understand precisely how the 
human body works, medical researchers cannot precisely 
characterize how diseases alter the normal functioning of the 
body, pharmacologists do not fully understand the 
mechanisms accounting for the effectiveness of drugs, and no 
one can precisely determine one's prognosis”. Paul et al(2011) 
opine that irrespective of the visible negative effect of 
uncertainty in various domain and most importantly to the 
medical domain, there is limited comprehensible way of 
addressing the problems it poses in relation to layperson, 
physicians and patients and health policy makers. According 
to Smithson [26] this knowledge gaps reflect limitations in 
empirical evidence; however, a more fundamental problem is 
the absence of a shared concept of uncertainty, and a lack of 
integration of insights from different disciplines. Uncertainty 
is not a monolithic phenomenon and such in considering it, 
the varied meanings and synonyms should also be considered. 
Bammer et al [1] opined that there are multiple varieties of 
uncertainty, which may have distinct psychological effects 
and thus warrant different courses of action, thus there is, 
need to have an organized conceptual framework that 
categorizes these multiple varieties of uncertainty in a 
coherent, useful way. 

2.2: Confusable Diseases 

This research work pointed out the serious effect of 
uncertainty, yet how it affect medical diagnosis needs to be 
elucidated. When two or more diseases have some 
overlapping symptoms which make it naturally difficult for a 
physician to establish the right diagnosis, it is referred to as 
confusable diseases in medical parlance. Fries et al.[5] opined 
that in order to diagnose confusable diseases properly, a 
diagnostic criterion for a particular disease is needed so as not 
to confuse it with other diseases because of shared symptoms. 
Joop [8] opined that for a diagnosis to  be effective in this 
regard, the target disease  has to be recognized in a pool of 
confusable diseases and suggested two ways to handle this: by 
recognition of the combination of symptoms of the target 
disease or by exclusion of confusable disease as the cause of 
the symptoms .  

Confusable disease is poised with the following problems 
outline herewith. 

a. Confusable disease manifests the same symptoms
thereby leading to imprecise or incomplete
diagnosis by the physician.

b. A disease at one stage can manifest similar
symptoms with a different disease at another stage.

c. Failure to correctly diagnose a confusable disease
would lead to a physician giving the wrong
treatment to the patient.

d. Patients may be suffering from more than one
confusable disease.

2.3 Clinical Decision and Support Systems 

In literature, many researchers have given their definitions of 
Clinical Decision Support Systems (CDDS). Musen [15] 
defined a CDSS as any piece of software that takes 
information about a clinical situation as inputs and that 
produces inferences as outputs that can assist practitioners in 
their decision making and that would be judged as 
“intelligent” by the program’s users. Miller and Geissbuhler 
[12] defined a CDSS as a computer-based algorithm that 
assists a clinician with one or more component steps of the 
diagnostic process. Sim et al [22] defined CDSS as a software 
that is designed to be a direct aid to clinical decision-making, 
in which the characteristics of an individual patient are 
matched to a computerized clinical knowledge base and 
patient specific assessments or recommendations are then 
presented to the clinician or the patient for a decision. In more 
recent studies, researchers have been trying to classify CDSSs 
in the literature so as to provide a holistic picture of CDSSs. 
For example, Berlin et al [2] did research on CDSS taxonomy 
to describe the technical, workflow, and contextual 
characteristics of CDSSs, and the research results are very 
useful for researchers to have a comprehensive understanding 
of various designs and functions of CDSSs. 

A general model of all clinical and decision support system is 
shown in Fig 2.1. the interaction is simple: A patient clinical 
signs and symptoms or lab tests is fed into the system having 
the inference mechanism component which in turn in 
consultation with the knowledge base proffer a diagnostic and 
therapeutic recommendation to the doctor who in turn advise 
the patient accordingly. 

Fig. 2.1: A general model of CDSSs (Source:  Lincoln 1999, 
Reggia 1983) 

Clinical signs, symptoms, 
Laboratory results 

Diagnostic and Therapeutic 
recommendations 

Inference 

Mechanism 

Knowledge base 
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2.4: Neutrosophic Logic 
Neutrosophic Logic represents an alternative to the existing 
logics as a mathematical model of uncertainty, vagueness, 
ambiguity, imprecision, undefined, unknown, incompleteness, 
inconsistency, redundancy, contradiction. It is a non-classical 
logic. It is  a logic in which each proposition is estimated to 
have the percentage of truth in a subset T, the percentage of 
indeterminacy in a subset I, and the percentage of falsity in a 
subset F, where T, I, F are defined above, is called 
Neutrosophic Logic. 
A neutrosophic set A in X is characterized by a truth 
membership function TA, a indeterminacy- membership 
function IA and a falsity-membership function FA. TA(x),

IA(x) and FA(x) are real standard or non-standard subsets of]-
0, 1+ [. 
That is 
TA: X ԑ ]-0, 1+ [ 
IA: X ԑ ]-0, 1+ [ 
FA: X ԑ ]-0, 1+ [ 
There is no restriction on the sum of TA(x), IA(x) and FA(x),

so 
-0≤supTA(x) + sup IA(x) + sup FA(x) ≤ 
3+……………………………………………..2.1 
2.5: Conditional Probabilities 

In medical diagnosis, there are many variables that contribute 
to the diagnostic process of arriving at a particular disease 
with varied values of the variables which ultimately in most 
cases leads to some forgivable errors. As good as this may 
sound, there is a level of tolerable errors that would be 
associated with every instance of diagnosis of such disease 
but it is very unrealistic to quantify the errors for all instances 
of the disease owing to the fact that we would have just a 
handful of sample data (due to low prevalence) and as such 
there is going to be   many evaluation of the decision 
variables. In order to accomplish this feat in less time and 
space, conditional probabilities become handy. 
Conditional distributions are one of the key tools in 
probability theory for reasoning about uncertainty. They 
specify the distribution of a random variable when the value 
of another random variable is known (or more generally, 
when some event is known to be true). 
Formally, conditional probability of X = e given Y = d is 
defined as 
P(X = e|Y = d) =P(X = e, Y = d) /P(Y = b) 
………………………………………………….  .2.2 
Note that this is not defined when the probability of Y = d is 0. 
The idea of conditional probability extends naturally to the 
case when the distribution of a random variable is conditioned 
on several variables. 
As for notations, we write P(X|Y = d) to denote the 
distribution of random variable X when Y = d. We may also 
write P(X|Y ) to denote a set of distributions of X, one for each 
of the different values that Y can take. 
. 

3.0: Analysis of Existing Systems 

Proper diagnoses and prevention is the major concerns in 
medical science, it is there imperative to have systems that 
assist in medical diagnosis with such an accuracy comparable 
to human physicians. Many existing system have employed 
different approaches in ameliorating the effect of uncertainties 
yet there is still room for improvement so as to handle the 
diagnosis of confusable diseases. 

A detailed review and analysis of existing system was carried 
out in order to bring to fore areas to improve on, in order to 
tackle the embarrassing effect of confusable disease diagnosis. 
We reviewed the following:- 

i. The approaches and methods used in the existing
system in knowledge construction

ii. The inference mechanism in handling uncertainties
iii. Support for diagnostic criteria for reliability of

prediction of disease in a two class of diseases
diagnosis with confusable symptoms

3.1: Architecture of the Existing systems Using Neural 

Network 

 A typical architecture for diagnosis of disease used in 
existing system using an Artificial Neural Network is shown 
in Fig 3.1. 
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Fig. 3.1: Architecture of the Existing System (Source: Mohammed et al., 2015) 



3.2 Limitations of the Existing System 

The existing system has some limitations which prevent it 
from having a practically good performance as needed. The 
salient findings include 

1. Though some of the existing system ensures
multiple belongingness of a particular element to multiple 
classes with varied degree but capturing the neutralities due to 
class overlap or confusability which could degrade the 
prediction performance is missing. 

2. The existing system is mute or unable to classify
instances that falls under overlapping region and as such 
refers them for further medical probe. This clearly defeats 
timeliness and quality of service delivery we are seeking for 
in clinical diagnosis and as such not suitable to handle 
confusable diseases whose features are overlapped. 

3. In diagnosing confusability in disease classes, some
of the existing system used only unsupervised statistical 
approach such as k-means to separate the overlapping region 
from the non-overlapping region. K-means is very poor when 
it comes to data with serious overlapping; is unable to handle 
noisy data and outliers as well as not suitable for non-linear 
data sets. Supervised machine learning using neural network 
is more suitable for complex nature of biological systems and 
non-linear data sets.  

4. There is no reliability or justification metric for the
decision of the classification which serves as a diagnostic 
criterion that allows a disease to be definitely diagnosed or 
definitely excluded in cases of non-linear decision boundary 

cases. 

Fig. 3.2: Proposed System Architecture 
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4.1: Brief Description of the Components of 

the Proposed System 

This section talks about the brief description of the various 
components in the proposed system architecture. 
1. Patient Symptoms and Signs

Subcomponent 
Disease symptoms are the biological indicators which are 
associated with the clinical presentation of disease as learnt 
from medical literature and expert physicians. George et al 
(2000) opine that a symptom is a visible or even a measurable 
condition indicating the presence of a disease and thus can be 
regard as an aid towards diagnosis. It is based on this clinical 
presentation that a doctor or physician makes a tentative 
judgment about the state of the patient and consequently a test 
for confirmation.  

2. Feature Selection Sub Component

It is important to note that the essence of feature selection in 
this research is to help reduce the dimension of a dataset of 
features potentially relevant with respect to the diagnosis of 
the diseases, finding the best minimum subset without 
transforming the data into a new set. The feature selection 
process points out all the input features relevant for the 
diagnosis of the diseases, and it is an indispensable data 
preprocessing step. The difficulty of extracting the most 
relevant variables is due mainly to the large dimension of the 
original feature set, the correlations between inputs which 
cause redundancy and finally the presence of variables which 
do not affect the diseases.   In this research, we will employ 
feature selection using genetic algorithm for the feature 
searching techniques. The genetic algorithm was originally 
used to select binary string but it has been used been used in 
recent times to explore the inter-dependencies between the 
bits in the string, hence the choice of its usage.  Singh et al 
(2016) have successfully used it for feature selection and its 
performance was superlative. 

3. Confusability Measurement
There are two components that make up this component- 
Vagueness and multidimensional interpolation of the errors. 
The confusability measurement provides information on 
amount of uncertainty associated with such a classification 
that would have degraded the performance and is on this basis 
that final diagnosis is made. Confusability Measurement is 1-

|Tm(class I) –Tm(Class II)|, where Tm means the truth
membership. 

4. Inference Engine/Decision support

Component  
The decision made by the inference system through the neural 
work is optimized by this component by taking the result of 
the inference sub-component as input and with the aid of the 
result confusability measurement, a decision is ultimately 

made. The supporting components for the confusability 
measurement are multidimensional interpolation and 
vagueness calculated from the two networks which 
objectively influences the result of the proposed system 
thereby optimizing the practical implementation of the system 
in regards to sensitivity and specificity in an environment 
poised with class overlaps. 

5.0: Conclusion 

To make proper, reasonable and appropriate medical decision 
in the diagnosis of confusable diseases, the knowledge base 
and the inference mechanism play an indispensable role as 
they are the heart of clinical decision support systems. Once 
such clinical decision and support systems are built, we are 
faced in most times with a large feature set of symptoms 
which needs to be pruned to improve the performance of the 
system with regards to accuracy of classification. The key 
quality in this study is to achieve a better and proper diagnosis 
of confusable diseases. A genetic algorithm is applied in the 
feature selection phase. In quantifying the confusability, a 
multidimensional interpolation of error is plotted in the 
multidimensional feature space while the vagueness is 
calculated from the two class Neural Network as |1-(class A-
class B)|, both vagueness and the errors form the confusability 
measurement. The inference mechanism is also improved by 
employing the concept of neutrosophic logic thereby having a 
tripartite membership (Degree of class A, Confusability 
Measurement, Degree of class B)  rather than just two in order 
to make therapeutic recommendations. With these consid-
eration, it is hope that there is going to be an obvious 
improvement in the system performance in terms of handling 
confusability in disease symptomatic presentations and 
eventually renders a proper diagnosis. Therefore, in this study, 
the architecture for diagnosing confusable disease was 
developed using the concept of neutrosophic logic in 
combination with neural network. This will be able to capture 
and quantify the confusability in this situation and ultimately 
being used in the decision making process. 

6.0: Future Work 

In the paper, analysis of the existing systems was carried out 
and some limitations were highlighted for consideration. The 
proposed architecture provides an interface where a patient’s 
symptom is captured by the system, the confusability measure 
is calculated and in consultation with the knowledge base, the 
inference mechanism makes its therapeutic recommendation 
to the doctors who in turn advise the patient accordingly. 
Future work will delve into the implementation procedure of 
the framework for the diagnosis of confusable diseases using 
two confusable diseases and the result from the implem-
entation and evaluation will be provided. The interface for the 
system based on patients’ symptoms will also be presented. 
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1 Introduction and Preliminaries
In 1965, Zadeh [19] introduced the useful notion of a fuzzy set
and Chang [6] three years later offered the notion of fuzzy topo-
logical space. Since then, several authors have generalized nu-
merous concepts of general topology to the fuzzy setting. The
concept of intuitionistic fuzzy set was introduced and studied
by Atanassov [1] and subsequently some important research pa-
pers published by him and his colleagues [2,3,4]. The concept
of fuzzy compact open topology was introduced by S.Dang and
A . Behera[9]. The concepts of intuitionistic evaluation maps by
R.Dhavaseelan et al[9]. After the introduction of the concepts
of neutrosophy and neutrosophic set by F. Smarandache [[11],
[12]], the concepts of neutrosophic crisp set and neutrosophic
crisp topological spaces were introduced by A. A. Salama and S.
A. Alblowi[10].

In this paper the notion of neutrosophic compact open topol-
ogy is introduced. Some interesting properties are discussed.
Moreover, neutrosophic local compactness and neutrosophic
product topology are developed. We have also utilized the no-
tion of fuzzy locally compactness due to Wong[17], Christoph
[8] and fuzzy product topology due to Wong [18].

Throughout this paper neutrosophic topological spaces
(X,T ),(Y, S) and (Z,R) will be replaced byX ,Y and Z respec-
tively.

Definition 1.1. Let T,I,F be real standard or non standard subsets
of ]0−, 1+[, with supT = tsup, infT = tinf
supI = isup, infI = iinf
supF = fsup, infF = finf
n− sup = tsup + isup + fsup
n−inf = tinf +iinf +finf . T,I,F are neutrosophic components.

Definition 1.2. Let X be a nonempty fixed set. A neutro-
sophic set [briefly NS] A is an object having the form A =
{〈x, µ

A
(x), σ

A
(x), γ

A
(x)〉 : x ∈ X}, where µ

A
(x), σ

A
(x)

and γ
A

(x) which represent the degree of membership function
(namely µ

A
(x)), the degree of indeterminacy (namely σ

A
(x))

and the degree of nonmembership (namely γ
A

(x)) respectively
of each element x ∈ X to the set A.

Remark 1.1. (1) A neutrosophic set A =
{〈x, µ

A
(x), σ

A
(x), γ

A
(x)〉 : x ∈ X} can be identi-

fied to an ordered triple 〈µ
A
, σ

A
, γ

A
〉 in ]0−, 1+[ on

X.

(2) For the sake of simplicity, we shall use the symbol
A = 〈µ

A
, σ

A
, γ

A
〉 for the neutrosophic set A =

{〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}.

We introduce the neutrosophic sets 0
N

and 1
N

in X as follows:

Definition 1.3. 0
N

= {〈x, 0, 0, 1〉 : x ∈ X} and 1
N

=
{〈x, 1, 1, 0〉 : x ∈ X}.

Definition 1.4. [8] A neutrosophic topology (NT) on a nonempty
set X consists of a family T of neutrosophic sets in X which
satisfies the following:

(i) 0
N
, 1

N
∈ T ,

(ii) G1 ∩G2 ∈ T for any G1, G2 ∈ T ,

(iii) ∪Gi ∈ T for arbitrary family {Gi | i ∈ Λ} ⊆ T .

In this case the ordered pair (X,T ) or simply X is called a neu-
trosophic topological space (NTS) and each neutrosophic set in
T is called a neutrosophic open set (NOS). The complement A
of a NOS A in X is called a neutrosophic closed set (NCS) in X .

Definition 1.5. [8] Let A be a neutrosophic subset of a neutro-
sophic topological space X . The neutrosophic interior and neu-
trosophic closure of A are denoted and defined by
Nint(A) =

⋃
{G | G is a neutrosophic open set in X and
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G ⊆ A};
Ncl(A) =

⋂
{G | G is a neutrosophic closed set in X and

G ⊇ A}.

2 Neutrosophic Locally Compact and
Neutrosophic Compact Open Topology

Definition 2 .1. L et X  b e a  n onempty s et a nd x  ∈  X  a  fixed 
element in X . If r, t ∈ I0 = (0, 1] and s ∈ I1 = [0, 1) are 
fixed real numbers such that 0 < r + t + s < 3, then xr,t,s = 〈x, 
r, t, s〉 is called a neutrosophic point (in short NP) in X, where r 
denotes the degree of membership of xr,t,s, t denotes the degree 
of indeterminacy and s denotes the degree of nonmembership of 
xr,t,s and x ∈ X the support of xr,t,s.

The neutrosophic point xr,t,s is contained in the neutrosophic
A(xr,t,s ∈ A) if and only if r < µA(x), t < σA(x), s > γA(x).

Definition 2.2. A neutrosophic set A = 〈x, µ
A
, σ

A
, γ

A
〉 in a

neutrosophic topological space (X,T ) is said to be a neutro-
sophic neighbourhood of a neotrosophic point xr,t,s, x ∈ X , if
there exists a neutrosophic open set B = 〈x, µ

B
, σ

B
, γ

B
〉 with

xr,t,s ⊆ B ⊆ A.

Definition 2.3. Let X and Y be neutrosophic topological
spaces.A mapping f : X → Y is said to be a neutrosophic
homeomorphism if f is bijective, neutrosophic continuous and
neutrosophic open.

Definition 2.4. An neutrosophic topological space (X,T ) is
called a neutrosophic Hausdorff space or T2-space if for any
pair of distinct neutrosophic points(i.e., neutrosophic points with
distinct supports) xr,t,s and yu,v,w,there exist neutrosophic open
sets U and V such that xr,t,s ∈ U ,yu,v,w ∈ V and U ∧ V = 0N

Definition 2.5. An neutrosophic topological space (X,T ) is said
to be neutrosophic locally compact if and only if for every neu-
trosophic point xr,t,s in X , there exists a neutrosophic open set
U ∈ T such that xr,t,s ∈ U and U is neutrosophic compact,i.e.,
each neutrosophic open cover of U has a finite subcover.

Definition 2.6. Let A = 〈x, µA(x), σA(x), γA(x)〉 and
B = 〈y, µB(y), σB(y), γB(y)〉 be neutrosophic sets of X and Y
respectively.The product of two neutrosophic sets A and B in a
neutrosophic topological space X is defined as
(A×B)(x, y) = 〈(x, y),min(µA(x), µB(y)),min(σA(x), σB(y)),
max(γA(x), γB(y))〉 for all (x, y) ∈ X × Y .

Definition 2.7. Let f1 : X1 → Y1 and f2 : X2 → Y2. The
product f1 × f2 : X1 × X2 → Y1 × Y2 is defined by: (f1 ×
f2)(x1, x2) = (f1(x1), f2(x2)) ∀(x1, x2) ∈ X1 ×X2.

Lemma 2.1. Let fi : Xi → Yi (i = 1, 2) be functions and
U , V are neutrosophic sets of Y1, Y2, respectively, then (f1 ×
f2)−1(U × V ) = f−1

1 (U)× f−1
2 (V ) ∀ U × V ∈ Y1 × Y2

Definition 2.8. A mapping f : X → Y is neutrosophic continu-
ous iff for each neutrosophic point xr,t,s in X and each neutro-
sophic neighbourhoodB of f(xr,t,s) in Y ,there is a neutrosophic
neighbourhood A of xr,t,s in X such that f(A) ⊆ B.

Definition 2.9. A mapping f : X → Y is said to be neutrosophic
homeomorphism if f is bijective ,neutrosophic continuous and
neutrosophic open.

Definition 2.10. A neutrosophic topological space X is called
a neutrosophic Hausdorff space or T2 space if for any distinct
neutrosophic points xr,t,s and yu,v,w,there exists neutrosophic
open sets G1 and G2, such that xr,t,s ∈ G1,yu,v,w ∈ G2 and
G1 ∩G2 = 0∼

Definition 2.11. A neutrosophic topological space X is said to
be a neutrosophic locally compact iff for any neutrosophic point
xr,t,s in X , there exists a neutrosophic open set U ∈ T such that
xr,t,s ∈ U and U is neutrosophic compact that is, each neutro-
sophic open cover of U has a finite subcover.

Proposition 2.1. In a neutrosophic Hausdorff topological space
X , the following conditions are equivalent.

(a) X is a neutrosophic locally compact

(b) for each neutrosophic point xr,t,s in X , there exists a neu-
trosophic open set G in X such that xr,t,s ∈ G and Ncl(G)
is neutrosophic compact

Proof. (a) ⇒ (b) By hypothesis for each neutrosophic point
xr,t,s in X , there exists a neutrosophic open set G which is neu-
trosophic compact.Since X is neutrosophic Hausdorff (neutro-
sophic compact subspace of neutrosophic Hausdorff space is neu-
trosophic closed), G is neutrosophic closed, thus G = Ncl(G).
Hence xr,t,s ∈ G and Ncl(G) is neutrosophic compact.
(b)⇒ (a) Proof is simple.

Proposition 2.2. Let X be a neutrosophic Hausdorff topological
space.Then X is neutrosophic locally compact at a neutrosophic
point xr,t,s in X iff for every neutrosophic open setG containing
xr,t,s there exists a neutrosophic open set V such that xr,t,s ∈ V ,
Ncl(V ) is neutrosophic compact and Ncl(V ) ⊆ G.

Proof. Suppose that X is neutrosophic locally compact at a
neutrosophic point xr,t,s. By Definition 2.11, there exists
a neutrosophic open set G such that xr,t,s ∈ G and G is
neutrosophic compact. Since X is a neutrosophic Hausdorff
space,(neutrosophic compact subspace of neutrosophic Haus-
dorff space is neutrosophic closed), G is neutrosophic closed.
Thus G = Ncl(G). Consider a neutrosophic point xr,t,s ∈ G.
Since X is neutrosophic Hausdorff space, by Definition 2.10,
there exist neutrosophic open sets C and D such that xr,t,s ∈ C,
yu,v,w ∈ D and C ∩ D = 0∼. Let V = C ∩ G. Hence
V ⊆ G implies Ncl(V ) ⊆ Ncl(G) = G. Since Ncl(V ) is
neutrosophic closed and G is neutrosophic compact, (every neu-
trosophic closed subset of a neutrosophic compact space is neu-
trosophic compact) it follows that Ncl(V ) is neutrosophic com-
pact. Thus xr,t,s ∈ Ncl(V ) ⊆ G and Ncl(G) is neutrosophic
compact.
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The converse follows from Proposition 2.1(b).

Definition 2.12. Let X and Y be two neutrosophic topological
spaces.The function T : X × Y → Y ×X defined by T (x, y) =
(y, x) for each (x, y) ∈ X × Y is called a switching map.

Proposition 2.3. The switching map T : X × Y → Y × X
defined as above is neutrosophic continuous.

We now introduce the concept of a neutrosophic compact open
topology in the set of all neutrosophic continuous functions from
a neutrosophic topological spaceX to a neutrosophic topological
space Y .

Definition 2.13. Let X and Y be two neutrosophic topological
spaces and let Y X = {f : X → Y such that f is neutrosophic
continuous}. We give this class Y X a topology called the neutro-
sophic compact open topology as follows: Let K = {K ∈ IX :
K is neutrosophic compact on X} and V = {V ∈ IY : V
is neutrosophic open in Y }.For any K ∈ K and V ∈ V ,let
S

K,V
= {f ∈ Y X : f(K) ⊆ V }.

The collection of all such {S
K,V

: K ∈ K, V ∈ V} is a neutro-
sophic subbase to generate a neutrosophic topology on the class
Y X . The class Y X with this topology is called a neutrosophic
compact open topological space.

3 Neutrosophic Evaluation Map and Ex-
ponential Map

We now consider the neutrosophic product topological space
Y X×X and define a neutrosophic continuous map from Y X×X
into Y .

Definition 3.1. The mapping e : Y X × X → Y defined by
e(f, xr,t,s) = f(xr,t,s) for each neutrosophic point xr,t,s ∈ X
and f ∈ Y X is called the neutrosophic evaluation map.

Definition 3.2. Let X ,Y ,Z be neutrosophic topological spaces
and f : Z × X → Y be any function. Then the induced map
f̂ : X → Y Z is defined by (f̂(xr,t,s))(zt,u,v) = f(zt,u,v, xr,t,s)
for neutrosophic point xr,t,s ∈ X and zt,u,v ∈ Z.
Conversely, given a function f̂ : X → Y Z , a corresponding
function f can also be defined by the same rule.

Proposition 3.1. LetX be a neutrosophic locally compact Haus-
dorff space. Then the neutrosophic evaluation map e : Y X ×
X → Y is neutrosophic continuous.

Proof. Consider (f, xr,t,s) ∈ Y X × X ,where f ∈ Y X and
xr,t,s ∈ X .Let V be a neutrosophic open set containing
f(xr,t,s) = e(f, xr,t,s) in Y . Since X is neutrosophic lo-
cally compact and f is neutrosophic continuous, by Proposi-
tion 2.2, there exists a neutrosophic open set U in X such that
xr,t,s ∈ Ncl(U) is neutrosophic compact and f(Ncl(U)) ⊆ V .

Consider the neutrosophic open set S
Ncl(U),V

×U in Y X ×X .
Clearly (f, xr,t,s) ∈ SNcl(U),V

×U .Let (g, xt,u) ∈ S
Ncl(U),V

×U

be arbitrary. Thus g(Ncl(U)) ⊆ V . Since xt,u ∈ U ,we have
g(xt,u) ∈ V and e(g, xt,u) = g(xt,u) ∈ V .Thus e(S

Ncl(U),V
×

U) ⊆ V .Hence e is neutrosophic continuous.

Proposition 3.2. Let X and Y be two neutrosophic topological
spaces with Y being neutrosophic compact. Let xr,t,s be any
neutrosophic point in X and N be a neutrosophic open set in the
neutrosophic product spaceX×Y containing {xr,t,s}×Y . Then
there exists some neutrosophic neighbourhood W of xr,t,s in X
such that {xr,t,s} × Y ⊆W × Y ⊆ N .

Proposition 3.3. Let Z be a neutrosophic locally compact
Hausdorff space and X,Y be arbitrary neutrosophic topological
spaces. Then a map f : Z ×X → Y is neutrosophic continuous
iff f̂ : X → Y Z is neutrosophic continuous,where f̂ is defined
by the rule (f̂(xr,t,s))(zt,u,v) = f(zt,u,v, xr,t,s).

Proposition 3.4. LetX and Z be a neutrosophic locally compact
Hausdorff spaces. Then for any neutrosophic topological space
Y ,the function E : Y

Z×X → (Y Z)
X

defined by E(f) = f̂ (that
is E(f)(xr,t,s)(zt,u,v) = f(zt,u,v, xr,t,s) = (f̂(xr,t,s)(zt,u,v)))
for all f : Z ×X → Y is a neutrosophic homeomorphism.

Proof. (a) Clearly E is onto.

(b) For E to be injective, let E(f) = E(g) for f, g : Z ×X →
Y . Thus f̂ = ĝ, where f̂ and ĝ are the induced map of f and
g, respectively. Now for any neutrosophic point xr,t,s in X
and any neutrosophic point zt,u,v in Z, f(zt,u,v, xr,t,s) =

(f̂(xr,t,s)(zt,u,v)) = (ĝ(xr,t,s)(zt,u,v)) = g(zt,u,v, xr,t,s).
Thus f = g.

(c) For proving the neutrosophic continuity of E, consider any
neutrosophic subbasis neighbourhood V of f̂ in (Y Z)

X

, i.e
V is of the form S

K,W
where K is a neutrosophic compact

subset of X and W is neutrosophic open in Y Z . Without
loss of generality, we may assume that W = S

L,U
, where

L is a neutrosophic compact subset of Z and U is a neu-
trosophic open set in Y . Then f̂(K) ⊆ S

L,U
= W and this

implies that f̂(K)(L) ⊆ U . Thus for any neutrosophic point
xr,t,s in K and for every neutrosophic point zt,u,v in L, we
have (f̂(xr,t,s))(zt,u,v) ∈ U , that is f(zt,u,v, xr,t,s) ∈ U
and therefore f(L × K) ⊆ U . Now since L is a neutro-
sophic compact in Z and K is a neutrosophic compact in
X , L×K is also a neutrosophic compact in Z ×X[7] and
since U is a neutrosophic open set in Y , we conclude that
f ∈ S

L×K,U
⊆ Y

Z×X

. We assert that E(S
L×K,U

) ⊆ S
K,W

.
Let g ∈ S

L×K,U
be arbitrary. Thus g(L × K) ⊆ U ,

i.e g(zt,u,v, xr,t,s) = (ĝ(xr,t,s))(zt,u,v) ∈ U for all neu-
trosophic points zt,u,v ∈ L ⊆ Z and for every neutro-
sophic point xr,t,s ∈ L ⊆ X . So (ĝ(xr,t,s))(L) ⊆ U
for every neutrosophic point xr,t,s ∈ K ⊆ X , that is
(ĝ(xr,t,s)) ∈ S

L,U
= W for every neutrosophic points

xr,t,s ∈ K ⊆ X , that is ĝ(xr,t,s) ∈ S
L,U

= W for ev-
ery neutrosophic point xr,t,s ∈ K ⊆ U . Hence we have
ĝ(K) ⊆ W , that is ĝ = E(g) ∈ S

K,W
for any g ∈ S

L×K,U
.
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Thus E(S
L×K,U

) ⊆ S
K,W

. This proves that E is a neutro-
sophic continuous.

(d) For proving the neutrosophic continuity of E−1,we con-
sider the following neutrosophic evaluation maps: e1 :

(Y Z)X × X → Y Z defined by e1(f̂ , xr,t,s) = f̂(xr,t,s)

where f̂ ∈ (Y Z)
X

and xr,t,s is any neutrosophic point in X
and e2 : Y Z × Z → Y defined by e2(g, zt,u,v) = g(zt,u,v),
where g ∈ Y Z and zt,u,v is a neutrosophic point in Z. Let ψ
denote the composition of the following neutrosophic con-
tinuous functions ψ : (Z×X)× (Y Z)

X T−→ (Y Z)
X × (Z×

X)
i×t−−→ (Y Z)

X × (X ×Z)
=−→ ((Y Z)

X ×X)×Z e1×iZ−−−−→
(Y Z)×Z e2−→ Y , where i, iZ denote the neutrosophic iden-
tity maps on (Y Z)

X

and Z, respectively and T, t denote
the switching maps. Thus ψ : (Z × X) × (Y Z)

X →
Y , that is ψ ∈ Y (Z×X)×(Y Z)

X

. We consider the map

Ẽ : Y (Z×X)×(Y Z)
X

→ (Y (Z×X))(Y
Z)

X

(as defined in the
statement of the Proposition 3.4 in fact it is E). So Ẽ(ψ) :

(Y Z)
X → Y (Z×X). Now for any neutrosophic points

zt,u,v ∈ Z, xr,t,s ∈ X and f ∈ Y (Z×X), again we have
that (Ẽ(ψ) ◦ E)(f)(zt,u,v, xr,t,s) = f(zt,u,v, xr,t,s);hence
Ẽ(ψ) ◦ E=identity. Similarly for any ĝ ∈ (Y Z)

X

and neu-
trosophic points xr,t,s ∈ X, zt,u,v ∈ Z, so we have that
(E ◦ Ẽ(ψ))(ĝ)(xr,t,s, zt,u,v) = (ĝ(xr,t,s))(zt,u,v);hence
E ◦ Ẽ(ψ)=identity. Thus E is a neutrosophic homeomor-
phism.

Definition 3.3. The map E in Proposition 3.4 is called the expo-
nential map.

As easy consequence of Proposition 3.4 is as follows.

Proposition 3.5. Let X,Y, Z be neutrosophic locally compact
Hausdorff spaces. Then the map N : Y X × ZY → ZX defined
by N(f, g) = g ◦ f is neutrosophic continuous.

Proof. Consider the following compositions: X×Y X ×ZY T−→
Y X×ZY ×X t×iX−−−→ ZY ×Y X×X =−→ ZY ×(Y X×X)

i×e2−−−→
ZY × Y

e2−→ Z, where T, t denote the switching maps, iX , i
denote the neutrosophic identity functions on X and ZY , re-
spectively and e2 denotes the neutrosophic evaluation maps. Let
ϕ = e2 ◦ (i × e2) ◦ (t × iX) ◦ T . By proposition 3.4, we have
an exponential map E : ZX×Y X×ZY → (ZX)Y

X×ZY

. Since
ϕ ∈ ZX×Y X×ZY

, E(ϕ) ∈ (ZX)Y
X×ZY

. Let N = E(ϕ)
that is, N : Y X × ZY → ZX is neutrosophic continuous. For
f ∈ Y X , g ∈ ZY and for any neutrosophic point xr,t,s ∈ X ,it
easy to see that N(f, g)(xr,t,s) = g(f(xr,t,s)).
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Abstract: In this paper, we introduce and investigate a new class
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1 Introduction and Preliminaries
Intuitionistic fuzzy set is defined by Atanassov [2] as a general-
ization of the concept of fuzzy set given by Zadesh [14]. Using
the notation of intuitionistic fuzzy sets, Coker [3] introduced the
notion of an intuitionistic fuzzy topological space. The supra
topological spaces and studied s-continuous functions and s∗-
continuous functions were introduced by A. S. Mashhour [6] in
1993. In 1987, M. E. Abd El-Monsef et al. [1] introduced the
fuzzy supra topological spaces and studied fuzzy supra contin-
uous functions and obtained some properties and characteriza-
tions. In 1996, Keun Min [13] introduced fuzzy s-continuous,
fuzzy s-open and fuzzy s-closed maps and established a num-
ber of characterizations. In 2008, R. Devi et al. [4] introduced
the concept of supra α-open set, and in 1983, A. S. Mashhour
et al. introduced the notion of supra-semi open set, supra semi-
continuous functions and studied some of the basic properties for
this class of functions. In 1999, Necla Turan [11] introduced the
concept of intuitionistic fuzzy supra topological space. The con-
cept of intuitionistic fuzzy semi-supra open set was introduced
by Parimala and Indirani [7]. After the introduction of the con-
cepts of neutrosophy and a neutrosophic se by F. Smarandache
[[9], [10]], A. A. Salama and S. A. Alblowi[8] introduced the
concepts of neutrosophic crisp set and neutrosophic topological
spaces.

The purpose of this paper is to introduce and investigate a new
class of sets and functions between topological space called neu-
trosophic semi-supra open set and neutrosophic semi-supra open
continuous functions, respectively.

Definition 1.1. Let T , I , F be real standard or non standard sub-
sets of ]0−, 1+[, with supT = tsup, infT = tinf
supI = isup, infI = iinf
supF = fsup, infF = finf

n− sup = tsup + isup + fsup
n− inf = tinf + iinf + finf . T , I , F are neutrosophic compo-
nents.

Definition 1.2. Let X be a nonempty fixed set. A neutro-
sophic set [briefly NS] A is an object having the form A =
{〈x, µ

A
(x), σ

A
(x), γ

A
(x)〉 : x ∈ X}, where µ

A
(x), σ

A
(x)

and γ
A

(x) represent the degree of membership function (namely
µ

A
(x)), the degree of indeterminacy (namely σ

A
(x)) and the de-

gree of nonmembership (namely γ
A

(x)) respectively of each el-
ement x ∈ X to the set A.

Remark 1.1. (1) A neutrosophic set A =
{〈x, µ

A
(x), σ

A
(x), γ

A
(x)〉 : x ∈ X} can be identi-

fied to an ordered triple 〈µ
A
, σ

A
, γ

A
〉 in ]0−, 1+[ on

X .

(2) For the sake of simplicity, we shall use the symbol
A = 〈µ

A
, σ

A
, γ

A
〉 for the neutrosophic set A =

{〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}.

Definition 1.3. Let X be a nonempty set and the neutrosophic
sets A and B in the form
A = {〈x, µ

A
(x), σ

A
(x), γ

A
(x)〉 : x ∈ X}, B =

{〈x, µ
B

(x), σ
B

(x), γ
B

(x)〉 : x ∈ X}. Then

(a) A ⊆ B iff µ
A

(x) ≤ µ
B

(x), σ
A

(x) ≤ σ
B

(x) and γ
A

(x) ≥
γ

B
(x) for all x ∈ X;

(b) A = B iff A ⊆ B and B ⊆ A;

(c) Ā = {〈x, γ
A

(x), σ
A

(x), µ
A

(x)〉 : x ∈ X}; [Complement
of A]

(d) A ∩ B = {〈x, µ
A

(x) ∧ µ
B

(x), σ
A

(x) ∧ σ
B

(x), γ
A

(x) ∨
γ

B
(x)〉 : x ∈ X};
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(e) A ∪ B = {〈x, µ
A

(x) ∨ µ
B

(x), σ
A

(x) ∨ σ
B

(x), γ
A

(x) ∧
γ

B
(x)〉 : x ∈ X};

(f) [ ]A = {〈x, µ
A

(x), σ
A

(x), 1− µ
A

(x)〉 : x ∈ X};

(g) 〈〉A = {〈x, 1− γ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}.

Definition 1.4. Let {Ai : i ∈ J} be an arbitrary family of neu-
trosophic sets in X . Then

(a)
⋂
Ai = {〈x,∧µ

Ai
(x),∧σ

Ai
(x),∨γ

Ai
(x)〉 : x ∈ X};

(b)
⋃
Ai = {〈x,∨µ

Ai
(x),∨σ

Ai
(x),∧γ

Ai
(x)〉 : x ∈ X}.

Since our main purpose is to construct the tools for developing
neutrosophic topological spaces, we must introduce the neutro-
sophic sets 0

N
and 1

N
in X as follows:

Definition 1.5. 0
N

= {〈x, 0, 0, 1〉 : x ∈ X} and 1
N

=
{〈x, 1, 1, 0〉 : x ∈ X}.

Definition 1.6. [5] A neutrosophic topology (NT) on a nonempty
set X is a family T of neutrosophic sets in X satisfying the fol-
lowing axioms:

(i) 0
N
, 1

N
∈ T ,

(ii) G1 ∩G2 ∈ T for any G1, G2 ∈ T ,

(iii) ∪Gi ∈ T for arbitrary family {Gi | i ∈ Λ} ⊆ T .

In this case the ordered pair (X,T ) or simply X is called a neu-
trosophic topological space (NTS) and each neutrosophic set in
T is called a neutrosophic open set (NOS). The complement A
of a NOS A in X is called a neutrosophic closed set (NCS) in X .

Definition 1.7. [5] Let A be a neutrosophic set in a neutrosophic
topological space X . Then
Nint(A) =

⋃
{G | G is a neutrosophic open set in X and

G ⊆ A} is called the neutrosophic interior of A;
Ncl(A) =

⋂
{G | G is a neutrosophic closed set in X and

G ⊇ A} is called the neutrosophic closure of A.

Definition 1.8. Let X be a nonempty set. If r, t, s be real stan-
dard or non standard subsets of ]0−, 1+[, then the neutrosophic
set xr,t,s is called a neutrosophic point(in short NP )in X given
by

xr,t,s(xp) =

{
(r, t, s), if x = xp

(0, 0, 1), if x 6= xp

for xp ∈ X is called the support of xr,t,s, where r denotes the de-
gree of membership value ,t denotes the degree of indeterminacy
and s is the degree of non-membership value of xr,t,s.

Now we shall define the image and preimage of neutrosophic
sets. Let X and Y be two nonempty sets and f : X → Y be a
function.

Definition 1.9. [5]

(a) If B = {〈y, µ
B

(y), σ
B

(y), γ
B

(y)〉 : y ∈ Y } is a neutro-
sophic set in Y , then the preimage ofB under f , denoted by
f−1(B), is the neutrosophic set in X defined by
f−1(B) = {〈x, f−1(µ

B
)(x), f−1(σ

B
)(x), f−1(γ

B
)(x)〉 :

x ∈ X}.

(b) If A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X} is a neutro-
sophic set in X , then the image of A under f , denoted by
f(A), is the neutrosophic set in Y defined by
f(A) = {〈y, f(µ

A
)(y), f(σ

A
)(y), (1 − f(1 − γ

A
))(y)〉 :

y ∈ Y }. where

f(µ
A

)(y) =

{
supx∈f−1(y) µA

(x), if f−1(y) 6= ∅,
0, otherwise,

f(σ
A

)(y) =

{
supx∈f−1(y) σA

(x), if f−1(y) 6= ∅,
0, otherwise,

(1− f(1− γ
A

))(y) =

{
infx∈f−1(y) γA

(x), if f−1(y) 6= ∅,
1, otherwise,

For the sake of simplicity, let us use the symbol f−(γ
A

) for
1− f(1− γ

A
).

Corollary 1.1. [5] Let A , Ai(i ∈ J) be neutrosophic sets in
X , B, Bi(i ∈ K) be neutrosophic sets in Y and f : X → Y a
function. Then

(a) A1 ⊆ A2⇒ f(A1) ⊆ f(A2),

(b) B1 ⊆ B2⇒ f−1(B1) ⊆ f−1(B2),

(c) A ⊆ f−1(f(A)) { If f is injective,then A = f−1(f(A)) } ,

(d) f(f−1(B)) ⊆ B { If f is surjective,then f(f−1(B)) = B },

(e) f−1(
⋃
Bj) =

⋃
f−1(Bj),

(f) f−1(
⋂
Bj) =

⋂
f−1(Bj),

(g) f(
⋃
Ai) =

⋃
f(Ai),

(h) f(
⋂
Ai) ⊆

⋂
f(Ai) { If f is injective,then f(

⋂
Ai) =⋂

f(Ai)},

(i) f−1(1
N

) = 1
N

,

(j) f−1(0
N

) = 0
N

,

(k) f(1
N

) = 1
N

, if f is surjective

(l) f(0
N

) = 0
N

,

(m) f(A) ⊆ f(A), if f is surjective,

(n) f−1(B) = f−1(B).
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2 Main Results

Definition 2.1. A neutrosophic set A in a neutrosophic topolog-
ical space (X,T ) is called

1) a neutrosophic semiopen set (NSOS) if A ⊆
Ncl(Nint(A)).

2) a neutrosophic α open set (NαOS) if A ⊆
Nint(Ncl(Nint(A))).

3) a neutrosophic preopen set (NPOS) if A ⊆ Nint(Ncl(A)).

4) a neutrosophic regular open set (NROS) if A =
Nint(Ncl(A)).

5) a neutrosophic semipre open or β open set (NβOS) if A ⊆
Ncl(Nint(Ncl(A))).

A neutrosophic set A is called a neutrosophic semiclosed set,
neutrosophic α closed set, neutrosophic preclosed set, neutro-
sophic regular closed set and neutrosophic β closed set, respec-
tively (NSCS, NαCS, NPCS, NRCS and NβCS, resp), if the
complement of A is a neutrosophic semiopen set, neutrosophic
α-open set, neutrosophic preopen set, neutrosophic regular open
set, and neutrosophic β-open set, respectively.

Definition 2.2. Let (X,T ) ba a neutrosophic topological space.
A neutrosophic setA is called a neutrosophic semi-supra open set
(briefly NSSOS) ifA ⊆ s-Ncl(s-Nint(A)). The complement of
a neutrosophic semi-supra open set is called a neutrosophic semi-
supra closed set.

Proposition 2.1. Every neutrosophic supra open set is neutro-
sophic semi-supra open set.

Proof. Let A be a neutrosophic supra open set in (X,T ). Since
A ⊆ s-Ncl(A), we get A ⊆ s-Ncl(s-Nint(A)). Then
s-Nint(A) ⊆ s-Ncl(s-Nint(A)). Hence A ⊆ s-Ncl(s-
Nint(A)).

The converse of Proposition 2.1., need not be true as shown
in Example 2.1.

Example 2.1. Let X = {a, b}. Define the neutrosophic sets A,
B and C in X as follows:
A = 〈x, ( a

0.2 ,
b
0.4 ), ( a

0.2 ,
b
0.4 ), ( a

0.5 ,
b
0.6 )〉, B =

〈x, ( a
0.6 ,

b
0.2 ), ( a

0.6 ,
b
0.2 ), ( a

0.3 ,
b
0.4 )〉

and C = 〈x, ( a
0.3 ,

b
0.4 ), ( a

0.3 ,
b
0.4 ), ( a

0.4 ,
b
0.4 )〉. Then the families

T = {0
N
, 1

N
, A,B,A ∪ B} is neutrosophic topology on X .

Thus, (X,T ) is a neutrosophic topological space. Then C is
called neutrosophic semi-supra open but not neutrosophic supra
open set.

Proposition 2.2. Every neutrosophic α-supra open is neutro-
sophic semi-supra open

Proof. Let A be a neutrosophic α-supra open in (X,T ), then
A ⊆ s-Nint(s-Ncl(s-Nint(A))). It is obvious that s-Nint(s-
Ncl(s-Nint(A))) ⊆ s-Ncl(s-Nint(A)). Hence A ⊆ s-Ncl(s-
Nint(A)).

The converse of Proposition 2.2., need not be true as shown
in Example 2.2.

Example 2.2. Let X = {a, b}. Define the neutrosophic sets A,
B and C in X as follows:
A = 〈x, ( a

0.2 ,
b
0.3 ), ( a

0.2 ,
b
0.3 ), ( a

0.5 ,
b
0.3 )〉, B =

〈x, ( a
0.1 ,

b
0.2 ), ( a

0.1 ,
b
0.2 ), ( a

0.6 ,
b
0.5 )〉

and C = 〈x, ( a
0.2 ,

b
0.3 ), ( a

0.2 ,
b
0.3 ), ( a

0.2 ,
b
0.3 )〉. Then the families

T = {0
N
, 1

N
, A,B,A ∪ B} is neutrosophic topology on

X .Thus, (X,T ) is a neutrosophic topological space. Then C
is called neutrosophic semi-supra open but not neutrosophic
α-supra open set.

Proposition 2.3. Every neutrosophic regular supra open set is
neutrosophic semi-supra open set

Proof. Let A be a neutrosophic regular supra open set in (X,T ).
Then A ⊆ (s-Ncl(A)). Hence A ⊆ s-Ncl(s-Nint(A)).

The converse of Proposition 2.3., need not be true as shown
in Example 2.3.

Example 2.3. Let X = {a, b}. Define the neutrosophic sets A,
B and C in X as follows:
A = 〈x, ( a

0.2 ,
b
0.3 ), ( a

0.2 ,
b
0.3 ), ( a

0.5 ,
b
0.3 )〉, B =

〈x, ( a
0.1 ,

b
0.2 ), ( a

0.1 ,
b
0.2 ), ( a

0.6 ,
b
0.5 )〉

and C = 〈x, ( a
0.2 ,

b
0.3 ), ( a

0.2 ,
b
0.3 ), ( a

0.2 ,
b
0.3 )〉. Then the families

T = {0
N
, 1

N
, A,B,A ∪ B} is neutrosophic topology on X.

Thus, (X,T ) is a neutrosophic topological space. Then C is
neutrosophic semi-supra open but not neutrosophic regular-supra
open set.

Definition 2.3. The neutrosophic semi-supra closure of a setA is
denoted by semi-s-Ncl(A) =

⋃
{ G :G is aneutrosophic semi-

supra open set in X and G ⊆ A} and the neutrosophic semi-
supra interior of a set A is denoted by semi-s-Nint(A) =

⋂
{G

:G is a neutrosophic semi-supra closed set in X and G ⊇ A}.

Remark 2.1. It is clear that semi-s-Nint(A) is a neutrosophic
semi-supra open set and semi-s-Ncl(A) is a neutrosophic semi-
supra closed set.

Proposition 2.4. i) semi− s−Nint(A) = semi s-Ncl (A)

ii) semi− s−Ncl(A) = semi s-int (A)

iii) if A ⊆ B then semi-s-Ncl(A) ⊆ semi-s-Ncl(B) and
semi-s-Nint(A) ⊆ semi-s-Nint(B)

Proof. It is obvious.

Proposition 2.5. (i) The intersection of a neutrosophic supra
open set and a neutrosophic semi-supra open set is a neutro-
sophic semi- supra open set.
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(ii) The intersection of a neutrosophic semi-supra open set and
aneutrosophic pre-supra open set is a neutrosophic pre-supra
open set.

Proof. It is obvious.

Definition 2.4. Let (X,T ) and (Y, S) be two neutrosophic semi-
supra open sets and R be a associated supra topology with T . A
map f : (X,T ) → (Y, S) is called neutrosophic semi- supra
continuous map if the inverse image of each neutrosophic open
set in Y is a neutrosophic semi- supra open in X .

Proposition 2.6. Every neutrosophic supra continuous map is
neutrosophic semi-supra continuous map.

Proof. Let f : (X,T ) → (Y, S) be a neutrosophic supra contin-
uous map and A is a neutrosophic open set in Y . Then f−1(A)
is a neutrosophic open set in X . Since R is associated with T .
Then T ⊆ R. Therefore f−1(A) is a neutrosophic supra open
set in X which is a neutrosophic supra open set in X . Hence f is
aneutrosophic semi-supra continuous map.

Remark 2.2. Every neutrosophic semi-supra continuous map
need not be neutrosophic supra continuous map.

Proposition 2.7. Let (X,T ) and (Y, S) be two neutrosophic
topological spaces and R be a associated neutrosophic supra
topology with T . Let f be a map from X into Y . Then the
following are equivalent.

i) f is a neutrosophic semi-supra continuous map.

ii) The inverse image of a neutrosophic closed sets in Y is a
neutrosophic semi closed set in X .

iii) Semi-s-Ncl(f−1(A)) ⊆ f−1(Ncl(A)) for every neutro-
sophic set A in Y .

iv) f(semi-s-Ncl(A)) ⊆ Ncl(f(A)) for every neutrosophic
set A in X.

v) f−1(Nint(B)) ⊆ semi-s-Nint(f−1(B)) for every neu-
trosophic set B in Y .

Proof. (i) ⇒ (ii) : Let A be a neutrosophic closed set in Y .
Then A is neutrosophic open in Y , Thus f−1(A) = f−1(A) is
neutrosophic semi-open inX . It follows that f−1(A) is a neutro-
sophic semi-s closed set of X .
(ii)⇒ (iii) : LetA be any subset ofX . SinceNcl(A) is neutro-
sophic closed in Y then it follows that f−1(Ncl(A)) is neutro-
sophic semi-s closed in X . Therefore, f−1(Ncl(A)) = semi-s-
Ncl(f−1(Ncl(A)) ⊇ semi-s-Ncl(f−1(A))
(iii) ⇒ (iv) : Let A be any subset of X . By (iii) we ob-
tain f−1(Ncl(f((A))) ⊇ semi-s-Ncl(f−1(f(A))) ⊇ semi-s-
Ncl(A) and hence f(semi-s-Ncl(A)) ⊆ Ncl(f(A)).
(iv) ⇒ (v) : Let f(semi-s-Ncl(A)) ⊆ f(Ncl(A) for
every neutrosophic set A in X . Then semi-s-Ncl(A)) ⊆
f−1(Ncl(f(A)). semi− s−Ncl(A) ⊇ f−1(Ncl(f(A)))

and semi-s-Nint(A) ⊇ f−1(Nint(f(A))). Then semi-s-
Nint(f−1(B)) ⊇ f−1(Nint(B)). Therefore f−1(Nint(B)) ⊆
s-Nint(f−1(B)) for every B in Y .
(v) ⇒ (i) : Let A be a neutrosophic open set in Y .
Therefore f−1(Nint(A)) ⊆ semi-s-Nint(f−1(A)), hence
f−1(A) ⊆ semi-s-Nint(f−1(A)). But we know that semi-
s-Nint(f−1(A)) ⊆ f−1(A), then f−1(A) = semi-s-
Nint(f−1(A)). Therefore f−1(A) is a neutrosophic semi-s-
open set.

Proposition 2.8. If a map f : (X,T )→ (Y, S) is a neutrosophic
semi-s-continuous and g : (Y, S)→ (Z,R) is neutrosophic con-
tinuous, Then g ◦ f is neutrosophic semi-s-continuous.

Proof. Obvious.

Proposition 2.9. Let a map f : (X,T ) → (Y, S) be a neu-
trosophic semi-supra continuous map, then one of the following
holds

i) f−1(semi-s-Nint(A)) ⊆ Nint(f−1(A)) for every neutro-
sophic set A in Y .

ii) Ncl(f−1(A)) ⊆ f−1(semi-s-Ncl(A)) for every neutro-
sophic set A in Y .

iii) f(Ncl(B)) ⊆ semi-s-Ncl(f(B)) for every neutrosophic
set B in X .

Proof. Let A be any neutrosophic open set of Y , then condition
(i) is satisfied, then f−1(semi-s-Nint(A)) ⊆ Nint(f−1(A)).
We get, f−1(A) ⊆ Nint(f−1(A)). Therefore f−1(A) is a neu-
trosophic supra open set. Every neutrosophic supra open set is
a neutrosophic semi supra open set. Hence f is a neutrosophic
semi-s-continuous function. If condition (ii) is satisfied, then we
can easily prove that f is a neutrosophic semi -s continuous func-
tion if condition (iii) is satisfied, and A is any neutrosophic open
set of Y , then f−1(A) is a set inX and f(Ncl(f−1(A)) ⊆ semi-
s-Ncl(f(f−1(A))). This implies f(Ncl(f−1(A))) ⊆ semi-s-
Ncl(A). This is nothing but condition (ii). Hence f is a neutro-
sophic semi-s-continuous function.
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Abstract. The notion of neutrosophic cubic set is originated from 

the hybridization of the concept of neutrosophic set and interval 

valued neutrosophic set. We define similarity measure for 

neutrosophic cubic sets and prove some of its basic properties. 

We present a new  multi criteria group decision making method 

with linguistic variables in neutrosophic cubic set environment. 

Finally, we present a numerical example to demonstrate the 

usefulness and applicability of the proposed method. 

Keywords: Cubic set, Neutrosophic cubic set, similarity measure, multi criteria group decision making. 

1. Introduction

In practical life we frequently face decision making 

problems with uncertainty that cannot be dealt with the 

classical methods. Therefore sophisticated techniques are 

required for modification of classical methods to deal 

decision making problems with uncertainty. L. A. Zadeh 

[1] first proposed the concept of fuzzy set to deal non-

statistical uncertainty called fuzziness. K. T. Atanassov [2, 

3] introduced the concept of intuitionistic fuzzy set (IFS) to

deal with uncertainty by introducing the non-membership 

function as an independent component. F. Smarandache [4, 

5, 6, 7, 8] introduced the notion of neutrosophic set by 

introducing indeterminacy as independent component. The 

theory of neutrosophic sets is a powerful tool to deal with 

incomplete, indeterminate and inconsistent information 

involed in real world decision making problem.  Wang et 

al. [9] defined single valued neutrosophic set (SVNS) 

which is an instance of neutrosophic set. SVNS can 

independently express a truth-membership degree, an 

indeterminacy-membership degree and non-membership 

(falsity-membership) degree. SVNS is capable of 

representing human thinking due to the imperfection of 

knowledge received from real world problems. SVNS is 

obviously suitable for representing incomplete, 

inconsistent and indeterminate information.  

Neutrosophic sets and  SVNSs have become hot research 
topics in different areas of research such as conflict resolu-

tion [10], clustering analysis [11, 12], decision making [13-

41], educational problem [42, 43],  image processing [44, 
45, 46], medical diagnosis [47], optimization [48-53], 

social problem [54, 55]. 

By combining neutrosophic sets and SVNS with other sets, 

several neutrosophic hybrid sets have been proposed in the 
literature such as neutrosophic soft sets [56, 57, 58, 59, 60, 

61], neutrosophic soft expert set [62, 63], single val-
ued neutrosophic hesitant fuzzy sets [64, 65, 66, 67, 68], 

interval neutrosophic hesitant sets [69], interval neutro-

sophic linguistic sets [70], single valued neutrosophic lin-
guistic sets [71], rough neutrosophic set [72, 73, 74, 75, 76, 

77, 78, 79], interval rough neutrosophic set [80, 81, 82], 
bipolar neutrosophic set [83, 84], bipolar rough neutro-

sophic set [85] Tri-complex rough neutrosophic 
set[ 86], hyper complex rough neutrosophic set [87]. 
Neutrosophic refined set [88, 89, 90, 91, 92, 93],  
Bipolar neutrosophic refined sets [94], rough complex set   

neutrosophic cubic set [95]. 
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Jun et al. [96] put forward the concept of cubic set in fuzzy 

environment and defined external and internal cubic set. 

Ali et al. [95] proposed neutrosophic cubic set and defined 

external and internal neutrosophic cubic sets and their 

basic properties. 

Similarity measure is a vital topic in fuzzy set theory, Chen 

and Hsiao [97] presented comparisons of similarity 

measures of fuzzy sets. Pramanik and Mondal [98] studied 

weighted fuzzy similarity measure based on tangent func-

tion and presented its application to medical diagnosis. 

Hwang and  Yang [99] constructed a new similarity 

measure between intuitionistic fuzzy sets based on lower, 

upper and middle fuzzy sets. Pramanik and Mondal [100] 

developed tangent similarity measures in intuitionistic 

fuzzy environment and applied to medical diagnosis. Ren 

and Wang [101] proposed similarity measures in interval- 

valued intuitionistic fuzzy environment and applied it to 

multi attribute decision making problems. Baccour et al. 

[102] presented survey of similarity measures for 

intuitionistic fuzzy sets.  Baroumi and Smarandache [103] 

disicussed several similarity measures of neutrosophic sets.  

Mondal and Pramanik [104] extended the concept of 

intuitionistic tangent similarity measure to neutrosophic 

environment. Biswas et al. [105] studied cosine similarity 

measure with trapezoidal fuzzy neutrosophic number and 

its applied to multi attribute decision making problems. 

Pramanik and Mondal [106] proposed cosine similarity 

measure of rough neutrosophic set and applied it to 

medical diagnosis problems. Pramanik and Mondal 

[107]developed ccotangent similarity measure of rough 

neutrosophic sets and its application to medical diagnosis J. 

Ye [108] proposed a similarity measures under interval 

neutrosophic domain using hamming distance and 

Euclidean distance. P. Majumdar and S. K. Samanta [109] 

introduced some measures of similarity and entropy of 

single valued neutrosophic sets. Ali aydogdu [110] 

proposed similarity and entropy measure of single valued 

neutrosophic sets. Ali aydogdu [111] also defined entropy 

and similarity measures of interval neutrosophic sets. 

Mukherjee and Sarkar [112] proposed similarity measures, 

weighted similarity measure and developed an algorithm in 

interval valued neutrosophic soft set setting for supervised 

pattern recognition problem. In neutrosophic cubic set 

environment, similarity measure  is yet to appear.   

In this paper we define similarity measures in neutrosophic 

cubic set environment and develop a multi criteria group 

decision making (MCGDM) method in neutrosophic cubic 

set setting. The decision makers’ weights and criteria (at-

tributes) weights are described by neutrosophic cubic 

numbers using linguistic variables. The ranking of alterna-

tives is presented in descending order. Finally, illustrate 

numerical example MCGDM problem in neutrosophic 

cubic set environment is dolved to show the effectiveness 

of the proposed method.  

Rest of the paper is presented as follows. Section 2 pre-

sents some basic definition of fuzzy sets, interval-valued 

fuzzy sets, neutrosophic sets, interval valued neutrosophic 

sets, cubic set, neutrosophic cubic sets and their basic op-

erations. Section 3 is devoted to prove the basic properties 

of similarity measure for neutrosophic cubic sets. Section 4 

presents a MCGDM method based on similarity measure 

in neutrosophic cubic set environment. Section 5 presents a 

numerical example for a MCGDM problem. Finally, sec-

tion 6 presents conclusion and future scope of research.   

2 Preliminaries 

In this section, we recall some basic definitions which are 

relevant to develop the paper. 

Definition 2.1 [1] Fuzzy set  
Let U be a universal set. Then a fuzzy set Z over U is 

defined by Z = {(u, 
Z

 (u)): uU}

Where
Z

  : U  [0, 1] is called membership function of

Z and 
Z

 (u) specifies the grade or degree to which any 

element u in Z, 
Z

 (u)[0, 1]. Larger values of
Z

 (u) 

indicate higher degrees of membership. 

Definition 2.2 [113] Interval valued fuzzy set  
Let U be a universal set, then an interval valued fuzzy set 

~

Z  over U is defined by 
~

Z  = {[ Z


(u), Z


(u) ] /u: u

U }, where Z


(u), Z


(u) represent respectively the

lower and upper degrees of membership values for  u U

and 0Z


(u) + Z


(u)   1.

Definition 2.3 [96] Cubic set  
Let G be a non-empty set. A cubic set C (G) in G is defined by 

C (G) = {g, 

~

Z (g), Z (g)/gG}

Where 

~

Z (g) and Z (g) be the interval valued fuzzy set and fuzzy

set in G. 

Definition 2.4 [4] Neutrosophic set (NS)  
Let U be a space of points (objects) with a generic element 

in U denoted by u i.e. uU. A neutrosophic set R in U is

characterized by truth-membership function tR , a

indeterminacy membership function iR and falsity-

membership function f R . Where tR , iR , f R are the functions
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from U to ]


0, 1


[  i.e. tR , iR , f R :U  ]


0, 1


[  that

means  t R (u), iR (u), f R (u) are the real standard or non-

standard subset of ]


0, 1


[. Neutrosophic set can be 

expressed as R = {<u, ( tR (u), iR (u), f R (u))>: uU}.

Since   tR (u), iR (u), f R (u) are the subset of  ]


0, 1


[ then 

the sum  ( tR (u) + iR (u) + f R (u)) lies between 


0 and

3


, where 


0 = 0 -   and  3


= 3 +  ,  >0 and   0.

Definition 2.5 [9] Single valued neutrosophic set  
Let U be a space of points (objects) with a generic element 

in U denoted by u. A single valued neutrosophic set H in U 

is expressed by H = {<u, ( tH (u), iH (u), f H (u))>,

uU},where  tH (u), iH (u), f H (u): U [0, 1]

Therefore for each uU, tH (u), iH (u), f H (u)[0, 1] and

0 tH (u) + iH (u) + f H (u) 3.

Definition 2.6 [4] Complement of neutrosophic set  
The complement of neutrosophic set R denoted by R

´ 
and 

defined as R
´ 

= {< u, tR´ (u), iR´
(u), f R´ (u)>: uU},

where tR´ (u) = f R (u) , iR´ (u) = { 1


} - iR (u), f R´ (u) =

tR (u).

Definition 2.7 [8]Containment  
A neutrosophic set R1 is contained in another neutrosophic 

set R2 i.e. R1  R2 iff t 1R
(u)  t 2R (u), i 1R (u) i 2R (u)

and f 1R (u)  f 2R (u),  uU.

Definition 2.8 [4] Equality  
Two single valued neutrosophic set R1 and R2 are equal iff 

R1  R2 and R2  R1.

Definition 2.9 [4] Union  
The union of two single valued neutrosophic set R1 and R2 

is a neutrosophic set R3 (say) written as R3 = R1  R2.

t 3R
(u) = max { t 1R (u), t 2R (u)}, i 3R

(u) = max

{ i 1R (u), i 2R (u)}, f 1R (u) = min { f 1R (u),

f 2R (u)}, uU.

Definition 2.10 [4] Intersection  
The intersection of two single valued neutrosophic set R1 

and R2 denoted by R4 and written as R4 = R1  R2defined

by t 4R
(u) = min { t 1R (u), t 2R (u)}, i 4R (u) = min

{ i 1R (u), i 2R (u)}

f 4R (u) = max { f 1R (u), f 2R (u)},  uU.

Definition 2.11 [114] Interval neutrosophic set 
(INS)  

Let G be a non-empty set. An interval neutrosophic set 
~

G  

in G is characterized by truth-membership function tG
~ , the 

indeterminacy function iG
~ and falsity membership

function f G
~ . For each gG, tG

~ (g), iG
~ (g), f G

~ (g)   [0, 1]

and G
~

defined as 

G
~

= {<g; [ tG
~


(g), tG
~


(g)], [ iG
~


(g), iG
~


(g)], [ f G
~


(g), f G
~


(g)]:

gG}.

Definition 2.12 [114] Containment  
Let G1 and G2 be two interval neutrosophic set defined by 

1G
~

= {<g, [ 1G
~t


(g), t 1G
~


(g)], [ i 1G
~


(g), i 1G
~


(g)], [ f 1G
~


(g), 

f 1G
~


(g)]>: gG}

and 2G
~

= {<g, [ t 2G
~


(g), t 2G
~


(g)], [ i 2G
~


(g), i
2G

~


(g)], 

[ f 2G
~


(g), f 2G
~


(g)]>: gG}

then, (i) 1
G
~


2

G
~

 defined as 

t 1G
~


(g)  t 2G
~


(g),  t 1G
~


(g)  t 2G
~


(g) 

i 1G
~


(g)  i 2G
~


(g), i 1G
~


(g)  i
2G

~


(g) 

f 1G
~


(g)  f 2G
~


(g), f 1G
~


(g)  f 2G
~


(g) for all gG.

Definition 2.13 [114] Equality 

1G
~

 = 2G
~

iff 1G
~

 2G
~

 and 2G
~

 1G
~

 that means t 1G
~


(g) 

= t 2G
~


(g), t 1G
~


(g) = t 2G
~


(g), i 1G
~


(g) = i 2G
~


(g), i 1G
~


(g) = 

i
2G

~


(g), f 1G
~


(g) = f 2G
~


(g), f 1G
~


(g) = f 2G
~


(g) for all gG.

Definition 2.14 [114] Compliment 

Compliment of an interval neutrosophic set 1G
~

 denoted by

´
1G

~
and defined by

´
1G

~
= {<g, [ t 1G

~

 (g), t

1G
~


 (g)], [ i 1G
~

 (g), i

1G
~


 (g)], [ f
1G

~


 (g), 

f
1G

~


 (g)]>: gG},Where, t 1G
~

 (g) = f 1G

~


(g), t
1G

~


 (g) = 

f 1G
~


(g), i 1G
~

 (g) = {1} - i 1G

~


(g), i
1G

~


 (g) = {1} - i 1G
~


(g), 

f
1G

~


 (g) = t 1G
~


(g), f
1G

~


 (g) = f 1G
~


(g). 

Definition 2.15 [114] Union 

The union of two interval neutrosophic sets 1
G
~

, and 2G
~

is denoted by 3G
~

= 1G
~
 2G

~
 and defined as
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3G
~

= {<g, [max { t 1G
~ (g), t 2G

~ (g)},max 

{ t
1G

~


(g), t
2G

~


(g)}], [max { i 1G
~ (g), i 2G

~ (g)}, max 

{ i
1G

~


(g), i
2G

~


(g)}], [min { f 1G
~


(g), f 2G
~


(g)}, min 

{ f 1G
~


(g), f 2G
~


(g)}]>: gG}.

Definition 2.16 [114] Intersection 

The intersection of two interval neutrosophic set 1G
~

, 2G
~

is denoted by 4G
~

= 1G
~
 2G

~
 and defined as

4G
~

= {<g, [min { t 1G
~


(g), t 2G
~


(g)},min { t 1G
~


(g), t 2G
~


(g)}],

[min { i 1G
~


(g), i 2G
~


(g)}, min { i 1G
~


(g), i
2G

~


(g)}], [max 

{ f 1G
~


(g), f 2G
~


(g)}, max { f 1G
~


(g), f 2G
~


(g)}]>: gG}.

Definition 2.17 [95] Neutrosophic cubic set (NCS)  
A neutrosophic cubic set Q (N) in a universal set G is 

defined as 

 Q (N) = {<g, G
~

(g), R (g)>: gG}, where G
~

is an

interval neutrosophic set and R is a neutrosophic set in G. 

In this paper,we represent neutrosophic cubic set in the 

following form:  

Q (N) = < G
~

, R > as order pair, set of all neutrosophic 

cubic sets in G, we denote it by NCS (G). 

Definition 2.18 Another definition of neutrosophic 
cubic set  
Let G be a universal set, then the neutrosophic cubic set Q 

(N) in G is expressed as the pair  

< G
~

, R > , where G
~

 and R be the mappings represented by 

G
~

: G  INS (G), R:NS (G) 

Combining the two mappings, NCS can be expressed as Q 

(N) = G
~ R

: G  [INS (G), NS (G)] and defined as Q (N) = 

G
~ R

= {< g/ < G
~

(g), R (g)>>: gG}.

Definition 2.19 [95] Containment 

Let Q1 (N) = (
1

1
G
~ R

) and Q2 (N) = (
2

2
G
~ R

) be any two 

NCSs in G, then Q1 (N) contained in Q2 (N) i.e. Q1 

(N)Q2 (N) iff 1G
~

 2G
~

 and R1  R2.

Definition 2.20 [95] Equality 

Assume that Q1 (N) = (
1

1
G
~ R

) and Q2 (N) = (
2

2
G
~ R

) be the 

two NCSs in G. They are said to be equal iff Q1 (N)   Q2 

(N) and Q2 (N)  Q1 (N) that means 
1

G
~

 = 
2

G
~

 and R1 = 

R2. 

Definition 2.21 [95] Union  

The union of two NCSs Q1 (N) = (
1

1R

G
~

) and Q2 (N) = 

(
2

2R

G
~

) in G is denoted by 

Q1 (N)  Q2 (N) = Q3 (N) (say) and defined as

Q3 (N) = {<g, ( 1G
~
 2G

~
) (g), (R1  R2) (g)>: gG}.

Definition 2.22 [95] Intersection 

The intersection of two NCS Q1 (N) = (
1

1R

G
~

) and Q2 (N) 

= (
2

2R

G
~

) in G is denoted by Q1 (N)  Q2 (N) = Q4 (N)

(say) and defined as Q4 (N) = {<g, ( 1G
~
 2G

~
) (g), (R1

R2) (g)>: gG}.

Definition 2.23 [95]Complement  
Let Q1 (N) be a NCS. Then complement of Q1 (N) is 

denoted by Q 1
  (N) = {<g,


G
~

1
(g), 


R
~

1
(g)>: gG}.

3 Similarity measure of NCS 
We define  similarity measure for neutrosophic cubic set. 

Definition3.1  
Let Q1 and Q2 be two NCSs in G. Similarity measure for 

Q1and Q2 is defined as a mapping  

SM: NCS (G) × NCS (G)  [0, 1] that satisfies the 

following conditions: 

(1) 0  SM (Q1, Q2) 1 

(2) SM (Q1, Q2) = 1 iff Q1 = Q2 

(3) SM (Q1, Q2) = SM (Q2, Q1) 

(4) If Q1   Q2  Q3 then SM (Q1, Q3)   SM (Q1, 

Q2) and SM (Q1, Q3)  SM (Q2, Q3) for all Q1, Q2, 

Q3 NCS (G).

Similarity measure for two NCSs Q1 and Q2 expressed 

as  

SM (Q1, Q2) = )

n

1i
9

iD
1(

n

1



 , 

where Di = (│ t 1G
~


(gi) - t 2G
~


(gi)│+ │ t 1G
~


(gi) - t 2G
~


(gi)│+ 

│ i 1G
~


(gi) - i 2G
~


(gi)│+ │ i 1G
~


(gi) - i
2G

~


(gi)│+ │ f 1G
~


(gi) - 

f 2G
~


(gi)│+ │ f 1G
~


(gi) - f 2G
~


(gi)│+ │ t 1R (gi) - t 2R (gi)│+

│ i 1R (gi) - i 2R (gi)│+ │ f 1R (gi) - f 2R (gi)│).

We now prove that the similarity measure satisfies the four 

stated conditions: 

(1) 0  SM (Q1, Q2) 1 
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Proof: If Di has extreme value i.e. Di = 0 or 9, then 

SM (Q1, Q2) = 1 or 0                                        (1) 

If Di lies between 0 and 9 i.e0<Di<9, then 0<
9

D
i <1 

 0> - 
9

D
i > - 1 

Adding 1 each part of the above inequality, we obtain 

0< 1 - 
9

iD
<1




n

1i

0
n

1
< )

n

1i
9

iD
1(

n

1



 < 


n

1i

1
n

1
=1 

 0< )
9

D
1(

n

1 n

1i

i
 


<1 

 0<SM (Q1, Q2) <1  (2) 

Combining (1) and (2), we get 0  SM (Q1, Q2) 1 

(2) SM (Q1, Q2) = 1 iff Q1 = Q2 

Proof: 

If Q1 = Q2 , then Di = 0 by the definition of equality. 

SM (Q1, Q2) = )

n

1i
9

iD
1(

n

1



 = 1. 

(3) SM (Q1, Q2) = SM (Q2, Q1) 

Proof: SM (Q1, Q2) = )

n

1i
9

iD
1(

n

1



  , 

where Di(Q1, Q2) = (│ t 1G
~


(gi) - t 2G
~


(gi)│+ │ t 1G
~


(gi) - 

t 2G
~


(gi)│+ │ i 1G
~


(gi) - i 2G
~


(gi)│+ │ i 1G
~


(gi) - i
2G

~


(gi)│+ 

│ f 1G
~


(gi) - f 2G
~


(gi)│+ │ f 1G
~


(gi) - f 2G
~


(gi)│+ │ t 1R (gi) -

t 2R (gi)│+ │i 1R (gi) - i 2R (gi)│+ │f 1R (gi) - f 2R (gi)│)

since,│ t 1G
~


(gi) - t 2G
~


(gi)│=│ t 2G
~


(gi) - t 1G
~


(gi)│,│ t 1G
~


(gi) - 

t 2G
~


(gi)│= │ t 2G
~


(gi) - t 1G
~


(gi)│,│ i 1G
~


(gi) - 

i 2G
~


(gi)│=│ i 2G
~


(gi) - i 1G
~


(gi)│,│ i 1G
~


(gi) - 

i
2G

~


(gi)│=│ i
2G

~


(gi) - i 1G
~


(gi)│,│ f 1G
~


(gi) - f 2G
~


(gi)│= 

│ f 2G
~ (gi) - f 1G

~


(gi)│,│ f 1G
~


(gi) - f 2G
~


(gi)│=│ f 2G
~


(gi) - 

f 1G
~


(gi)│,│ t 1R (gi) - t 2R (gi)│= │ t 2R (gi) -

t 1R (gi)│,│ i 1R (gi) - i 2R (gi)│=│ i 2R (gi) -

i 1R (gi)│,│f 1R (gi) - f 2R (gi)│= │f 2R (gi) - f 1R (gi)│.

 Di (Q1, Q2) = Di (Q2, Q1) 

Therefore, SM (Q1, Q2) = SM (Q2, Q1). 

(4) If Q1   Q2 Q3 , then SM (Q1, Q3)  SM (Q1, Q2) 

and SM (Q1, Q3)  SM (Q2, Q3) for all Q1, Q2, Q3 NCS

(G). 

Proof: 

Let Q1   Q2 Q3 then , 

t 1G
~


(gi)  t 2G
~


(gi)  t 3G
~


(gi) , t 1G
~


(gi)  t 2G
~


(gi)  t 3G
~


(gi), 

i 1G
~


(gi)  i 2G
~


(gi)  i 3G
~


(gi) 

i 1G
~


(gi)  i
2G

~


(gi),  i
3G

~


(gi), 

f 1G
~


(gi) f 2G
~


(gi) f 3G
~


(gi), f 1G
~


(gi)  f 2G
~


(gi) f 3G
~


(gi) 

t 1R (gi) 

 t 2R (gi) t 3R (gi),i 1R (gi) i 2R (gi) i 3R (gi),f 1R (gi)

f 2R (gi) f 3R (gi)  (3) 

Now  Di(Q1, Q2) = (│ t 1G
~


(gi) - t 2G
~


(gi)│+ │ t 1G
~


(gi) - 

t 2G
~


(gi)│+ │ i 1G
~


(gi) - i 2G
~


(gi)│+ │ i 1G
~


(gi) - i
2G

~


(gi)│+ 

│ f 1G
~


(gi) - f 2G
~


(gi)│+ │ f 1G
~


(gi) - f 2G
~


(gi)│+ │ t 1R (gi) -

t 2R (gi)│+ │i 1R (gi) - i 2R (gi)│+ │f 1R (gi) - f 2R (gi)│)

And Di(Q1, Q3) = (│ t 1G
~


(gi) - t 3G
~


(gi)│+ │ t 1G
~


(gi) - 

t 3G
~


(gi)│+ │ i 1G
~


(gi) - i 3G
~


(gi)│+ │ i 1G
~


(gi) - i
3G

~


(gi)│+ 

│ f 1G
~


(gi) - f 3G
~


(gi)│+ │ f 1G
~


(gi) - f
3G

~


(gi)│+ │ t 1R (gi) -

t 2R (gi)│+ │ i 1R (gi) - i 3R
(gi)│+ │ f 1R (gi) -

f 3R
(gi)│)

From (3), we conclude that 

Di (Q1, Q3)   Di (Q1, Q2) 

 
9

)3Q,1Q(iD

9

)2Q,1Q(iD

 - 
9

)3Q,1Q(iD
 - 

9

)2Q,1Q(iD

 [  ]
9

)3Q,1Q(iD
1 [

9

)2Q,1Q(iD
1 ] 

 ]

n

1i
9

)3Q,1Q(iD
1[

n

1
n

1i

]
9

)3Q,1Q(iD
 -[1

n

1







 

 SM (Q1, Q3)  SM (Q1, Q2) 

Similarly we can shows that SM (Q1, Q3)  SM (Q2, Q3), 

hence the proof. 

4 MCGDM methods based on similarity measure 
in NCS environment 
In this section we propose a new MCGDM method based 

on similarity measure in NCS environment. Assume that 
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}n,...,3,2,1{  be a set of  n alternatives  with

criteria }m...,,3,2,1{   and

}r...,,3,2,1{  be the r decision makers. Let

}...,,,,{ r321    be the weight vestor of decision 

makers, where 
k

 > 0 and 1
r

1k
k




.  Proposed MCGDM 

method is presented using the following steps. 

Step1. Formation of ideal NCS decision matrix 
Ideal NCS decision matrix is an important matrix for 

similarity measure of MCGDM. Here we construct an ideal 

NCS matrix in the form  

M= 































nm2nn1n

m222212

m112111

m21

Q....QQ

......

QQQ

Q ...QQ

...... 

   (4)                                      

Where Qij = <Gij, Rij>, i = 1, 2, 3,…, n. j = 1, 2, 3, …, m. 

Step 2. Construction of NCS decision matrix 
Since r decision makers are involved in the decision 

making process, the k-th (k = 1, 2, 3,…, r) decision maker 

provides the evaluation information of the alternative 

i (i= 1, 2, 3,…, n) with respect to criteria j  (j= 1, 2,

3,…, m) in terms of the NCS. The k-th decision matrix 

denoted by M
k
 (See eq. (5)) is constreucted as follows: 

M
k
=<Q

k
ij

>=































k

nm

k

2n

k

n1n

k

m2

k

22

k

212

k

m1

k

12

k

111

m21

Q....QQ

......

QQQ

Q ...QQ

...... 

  (5) 

Where k = 1, 2, 3,…, r. i = 1, 2, 3,…, n. j = 1, 2, 3,…, m. 

Step 3. Determination of attribute weight

All attribute are not equally important in  decision making 

situation. Every decision maker provides their own opinion 

regarding to the attribute weight in terms of linguistic 

variables that can be converted into NCS. Let )(
jkw  be

the attribute weight for the attribute j given by the k-th

decision maker in term of NCS. We convert )(w jk   into 

fuzzy number as follows: 

)(w j

F

k  = 
















 

otherwise0

if),
9

V
1( j

kj

 (6) 

where kjV = 

2 2 2 2

2 2 2

2 2

(1 ( )) (1 ( )) ( ( )) ( ( ))

( ( )) ( ( )) (1 ( ))

( ( )) ( ( ))

j j j jk k k k

j j jkk k

j jk k

t t i i

f f t

fi

   

  

 

   

 

     
 
 

    
 

  
 

. 

Then aggregate weight for the criteria j can be

determined as: 

 



 








r

1k

r

1k
j

F
k

r

1k
j

F
k

j

))(1(1(

))(1(1(
W

w

w
 (7) 

Here 1

r

1k

jW 



 . 

Step 4. Calculation of weighted similarity 
measure  
We now calculate weighted similarity measure between 

idel matrix M and M
k
 as follows: 

 ,
kw k

i
S M M 

=  1 2
, ,...,

T
k k k

n   =

n

1i

m

1j
j

k

ij
W)

9

D
1(

m

1












  (8) 

Here, k =1, 2, 3,…, r. 

Step 5. Ranking of alternatives 

In order to rank alternatives, we propose the formula (see 

eq.9): 

 


r

1k

k

iki
 (9) 

We arrange alternatives according to the descending order 

values of 
i

. The highest value of
i

(i= 1, 2, 3,…, n)

reflects the best alternative. 

5 Numerical example 
We solve a MCGDM problem adapted from [108] to 

demonstrate the applicability and effectiveness of the 

proposed method. Assume that an investment company 

wants to invest a sum of money in the best option. The 

investment company  forms a decision making committee 

comprising of three members (k1, k2, k3) to make a panel of 

four alternatives to invest money. The alternatives are Car 

company ( 1 ), Food company ( 2 ), Computer company
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( 3 ) and Arm company ( 4 ). Decision makers take

decision based on the criteria namely, risk analysis ( 1 ),

growth analysis ( 2 ), environment impact ( 3 ) and

criterion weights are provided by the decision makers in 

terms of linguistic variables that can be converted into 

NCS.(See Table 1). 

----------------------------------------------------------------------------------------------------------------------------- -------------------- 

Table 1: Linguistic term for rating of attribute/ criterion 

Linguistic terms NCS 

Very important (VI) <[.7, .9], [.1, .2], [.1, .2], (.9, .2,.2)> 

Important (I) <[.6, .8], [.2, .3], [.2, .4], (.8, .3, .4)> 

Medium (M) <[.4, .5], [.4, .5], [.4, .5], (.5, .5, .5)> 

Unimportant (UI) <[.3, .4], [.5, .6], [.5, .7], (.4, .6, .7)> 

Very unimportant (VUI) <[.1, .2], [.6, .8], [.7, .9], (.2, .8, .9)> 

----------------------------------------------------------------------------------------------------------------------------- -------------------- 

Step1. Formation of ideal NCS decision matrix 
We construct ideal NCS decision matrix (see eq.(10).  

------------------------------------------------------------------------------------------------------------------- 

M=

































)0,0,1(],0,0[],0,0[],1,1[)0,0,1(],0,0[],0,0[],1,1[)0,0,1(],0,0[],0,0[],1,1[4

)0,0,1(],0,0[],0,0[],1,1[)0,0,1(],0,0[],0,0[],1,1[)0,0,1(],0,0[],0,0[],1,1[3

)0,0,1(],0,0[],0,0[],1,1[)0,0,1(],0,0[],0,0[],1,1[)0,0,1(],0,0[],0,0[],1,1[2

)0,0,1(],0,0[],0,0[],1,1[)0,0,1(],0,0[],0,0[],1,1[)0,0,1(],0,0[],0,0[],1,1[1

321 

 (10) 

---------------------------------------------------------------------------------------------------------------------- 

Step 2. Construction of NCS decision matrix 

The NCS decision matrices are constructed for four alternatives with respect to the three criteria. 

Decision matrix for k1 in NCS form 
M

1
 =

------------------------------------------------------------------------------------------------------------------------- 

M
1
=



































>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.7) .6, (.4, .7], [.5, .6], [.5, .4], [.3,<

>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.4) .3, (.8, .4], [.2, .3], [.2, .8], [.6,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<

>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.4) .3, (.8, .4], [.2, .3], [.2, .8], [.6,<

>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,< >.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<

4

3

2

1

321

Decision matrix for k2 in NCS form 
M

2
 =
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

































>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.4) .3, (.8, .4], [.2, .3], [.2, .8], [.6,< 

>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<

>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<

>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.7) .6, (.4, .7], [.5, .6], [.5, .4], [.3,< 

   

4

3

2

1

321

Decision matrix for k3 in NCS form 
M

3
 =



































>.7) .6, (.4, .7], [.5, .6], [.5, .4], [.3,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,< 

>.4) .3, (.8, .4], [.2, .3], [.2, .8], [.6,<>.4) .3, (.8, .4], [.2, .3], [.2, .8], [.6,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,< 

>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,< 

>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,< 

4

3

2

1

321

----------------------------------------------------------------------------------------------------------------------------- ------------------- 

Step 3. Determination of attribute weight 
The linguistic terms shown in Table 1 are used to evaluate 

each attribute. The importance of each attribute  for every 

decision maker is rated with linguistic terms shown in 

Table 2. Linguistic terms are converted into NCS (See 

Table 3.) .

----------------------------------------------------------------------------------------------------------------------------- -------------- 

Table 2. Attribute rating in linguistic variables  

1  2 3  
K1 VI M I 

K2 VI VI M 

K3 M VI M 

Table 3. Attribute rating in NCS 

1  2 3  
K1 <[.7, .9], [.1, .2], [.1, .2], 

(.9, .2,.2)> 

<[.4, .5], [.4, .5], [.4, .5], 

(.5, .5, .5)> 

<[.6, .8], [.2, .3], [.2, .4], 

(.8, .3, .4)> 

K2 <[.7, .9], [.1, .2], [.1, .2], 
(.9, .2,.2)> 

<[.7, .9], [.1, .2], [.1, .2], 
(.9, .2,.2)> 

<[.4, .5], [.4, .5], [.4, .5], 
(.5, .5, .5)> 

K3 <[.4, .5], [.4, .5], [.4, .5], 

(.5, .5, .5)> 

<[.7, .9], [.1, .2], [.1, .2], 

(.9, .2,.2)> 

<[.4, .5], [.4, .5], [.4, .5], 

(.5, .5, .5)> 

----------------------------------------------------------------------------------------------------------------------------- ----------- 

Using  eq. (6) and eq. (7), we obtain the attribute weights 

as follows: 27.w,37.w,36.w
321
 .   (11)                       

Step 4. Calculation of weighted similarity 
measures 

We now calculate weighted similarity measures using the 

formula (8). 

------------------------------------------------------------------------------------------------------------------------------------------------ -- 

S
w
(

1M,M ) = 





















24.

19.

22.

25.

, S
w 

(
2M,M ) = 





















22.

25.

20.

18.

, S
w 

(
3M,M ) = 





















20.

25.

21.

20.

  (12) 

----------------------------------------------------------------------------------------------------------------------------- --------------------- 

Step 5. Ranking of alternatives 
We rank the alternatives according to the descending value 

of 
i
 (i = 1, 2, 3, 4) using  eq.(10), eq.(11), and eq. (12).

We obtain 216.,232.,206.,202.
4321
 , 

Therefore the ranking order is 
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
3

>
4

>
2

>
1
 3 > 4 > 2 > 1 .

Hence Computer company ( 3 ) is the best alternative for

money investment.  

6 Conclusion 
In this paper we have defined similarity measure between 

neutrosophic cubic sets and proved its basic properties . 

We have developed a new  multi criteria group decision 

making method basd on the proposed similarity measure. 

We also provide an illustrative example for multi criteria 

group decision making method to show its applicability 

and effectiveness.   We have employed linguistic variables 

to present criteria weights and presented conversion of 

linguistic variables into neutrosophic cubic numbers. We 

have also proposed a conversion formula for neutrosophic 

cubic number into fuzzy number. The poposed method can 

be applied to other MCGDM making problems in 

neutrosophic cubic set environment such as banking 

system, engineering problems, school choice problems, 

teacher selection problem, etc.  We also hope that the 

proposed method will open up a new direction of research 

work in neutrosophic cubic set environment. 
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Abstract  In this paper, we aim to apply the concepts of the 

neutrosophic crisp sets and its operations to the classical 

mathematical morphological operations, introducing what we

call "Neutrosophic Crisp Mathematical Morphology". Sever-

al operators are to be developed, including the neutrosophic 

crisp dilation, the neutrosophic crisp erosion, the neutrosoph-

ic crisp opening and the neutrosophic crisp closing. 

Moreover, we extend the definition of some morphological 

filters using the neutrosophic crisp sets concept. For instance, 

we introduce the neutrosophic crisp boundary extraction, the 

neutrosophic crisp Top-hat and the neutrosophic crisp Bot-

tom-hat filters.  

The idea behind the new introduced operators and filters is to 

act on  the image in the neutrosophic crisp domain instead of 

the spatial domain.     

Keywords: Neutrosophic Crisp Set, Neutrosophic Sets, Mathematical Morphology, Filter Mathematical Morphology.

1 Introduction 

In late 1960's, a relatively separate part of image analysis 

was developed; eventually known as "The Mathematical 

Morphology". Mostly, it deals with   the mathematical 

theory of describing shapes using sets in order to extract 

meaningful information's from images, the concept of 

neutrosophy was first presented by Smarandache [14]; as 

the study of original, nature and scape of neutralities, as 

well as their interactions with different ideational spectra. 

The mathematical treatment for the neutrosophic 

phenomena, which already exists in our real world, was 

introduced in several studies; such as in [2]. 

The authors in [15], introduced the concept of the 

neutrosophic set to deduce. Neutrosophic mathematical 

morphological operations as an extension for the fuzzy 

mathematical morphology.   

In [9] Salama introduced the concept of neutrosophic crisp 

sets, to represent any event by a triple crisp structure. In 

this paper, we aim to use the idea of the neutrosophic crisp 

sets to develop an alternative extension of the binary 

morphological operations. The new proposed neutrosophic 

crisp morphological operations is to be used for image 

analysis and processing in the neutrosophic domain. To 

commence, we review the classical operations and some 

basic filters of mathematical morphology in both §2 and § 

3.  

A revision of the concepts of neutrosophic crisp sets and 

its basic operations, is presented in §4 . the remaining 

sections, (§5, §6 and §7), are devoted for presenting our 

new concepts for "Neutrosophic crisp mathematical 

morphology" and its basic operations, as well as some 

basic neutrosophic crisp morphological filters. 
2 Mathematical Morphological Operations: 

In this section, we review the definitions of the classical 

binary morphological operators as given by Heijmans [6]; 

which are consistent with the original definitions of the 

Minkowski addition and subtraction [4].  

For the purpose of visualizing the effect of these operators, 

we will use the binary image show in Fig.1(b); which is 

deduced form the original gray scale image shown in 

Fig.1(a). 
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        a)                                        b) 

Fig.1: a) the Original grayscale image  b) the Binary im-

age 

2.1 Binary Dilation: (Minkowski addition) 

Based on the concept of Minkowski addition, the dilation 

is considered to be one of the basic operations in mathe-

matical morphology, the dilations is originally developed 

for binary images [5]. To commence, we consider any Eu-

clidean space E and a binary image  in E, the Dilation 

of by some structuring element is defined by: 

, Bb b
ABA  where  is the translate of the set  

A along the vector b, i.e.,

},{ BbAaEbaAb 

The  Dilation  is commutative,  and  may  also be given by: 

 Aa aBBBBA




An interpretation of the Dilation of A by B can be under-

stood as, if we  put a copy of B at each pixel in A and un-

ion all of the copies, then we get . 

The Dilation can also be obtained by: 

, where (–B) de-

notes the reflection of B, that is,  

}{ BxExB   

Where the reflection satisfies the following property: 

)( BA = )()( BA 

. 

     a)                                       b) 

Fig.2: Applying the dilation operator: a) the Original    bi-

nary image   b) the dilated  image. 

2. 2 Binary Erosion: (Minkowski subtraction)

Strongly related to the Minkowski subtraction, the erosion 

of the binary image A by the structuring element B is de-

fined by:  Bb bABA
  Un-

like dilation, erosion is not commutative, much like how 

addition is commutative while subtraction is not [5]. 

hence BA  is all pixels in A that these copies were trans-

lated to. The erosion of A by B is also may be given by the 

expression: 

 where pB  is the transla-

tion of B by the vector p, i.e.,

EpBbEpbBp  },/{

. 

    a)                                         b) 

  Fig.3: Applying the erosion operator: a) the Original 

binary image   b) the eroted  image. 

2. 3 Binary Opening [5]:

The Opening of A  by B is obtained by the erosion of A by 

B, followed by dilation of the resulting image by B:  

.)( BBABA  The 

opening is also given by 


AB x

x

BBA


 , which means 

that, an opening can be consider to be the union of all 

translated copies of the structuring element that can fit in-

side the object. Generally, openings can be used to remove 

small objects and connections between objects. 

     a)                                        b) 

  Fig.4: Applying the opening operator: a) the Original 

binary image    b) the image  opening. 
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2.4  Binary Closing [5]: 

The closing of A by B is obtained by the dilation of A by B, 

followed by erosion of the resulting structure by B: 

BBABA • )( . 

The closing can also be obtained by  

))(( BcocoAcoBA •  , 

where coA  denotes the complement of A relative to E (that 

is, }{ AaEacoA   ). 

Whereas opening removes all pixels where the structuring 

element won’t fit inside the image foreground, closing fills 

in all places where the structuring element will not fit in the 

image background, that is opening removes small objects, 

while closing removes small holes. 

    a)                                         b) 

Fig.5: Applying the closing operator: a) the Original    bi-

nary image    b) the image closing. 

3. Mathematical Morphological Filters [13]:

In image processing and analysis, it is important to extract 

features of objects, describe shapes, and recognize patterns. 

Such tasks often refer to geometric concepts, such as size, 

shape, and orientation. Mathematical Morphology takes 

these concept from set theory, geometry, and topology to 

analyse the geometric structures in an image. Most essen-

tial image-processing algorithms can be represented in the 

form of Morphological operations.  

In this section we review some basic Morphological filters, 

such as: the boundary extraction, and the Top-hat and the 

Bottom-hat filters.  

3.1  The Boundary External  [13]: 

Boundary extraction of a set  requires first the dilating of 

 by a structuring element  and then taking the set dif-

ference between   and . That is, the boundary of 

a set  is obtained by:  . )( BAAA    

    a)                                    b) 

 Fig.6: Applying the External Boundary: a) the Original 

binary image    b) the External  Boundary. 

3.2 The Hat Filters [13]: 

In Mathematical Morphology and digital image processing, 

top-hat transform is an operation that extracts small ele-

ments and details from given images. There exist two types 

of hat filters: The Top-hat filter is defined as the difference 

between the input image and its opening by some structur-

ing element; The Bottom-hat filter is defined dually as the 

difference between the closing and the input image. Top-

hat filter are used for various image processing tasks, such 

as feature extraction, background equalization and image 

enhancement. 

If an opening removes small structures, then the difference 

of the original image and the opened image should bring 

them out. This is exactly what the white Top-hat  filter 

does, which is defined as the residue of the original and 

opening: 

Top-hat filter:     )( BAAThat    

The counter part of the Top-hat filter is the Bottom-hat fil-

ter which is defined as the residue of  closing and the orig-

inal:  

Bottom-hat filter:  ABABhat • )(  

These filters preserve the information removed by the 

Opening and Closing operations, respectively. They are of-

ten cited as white top-hat and  black top-hat, respectively. 

        a)                                         b) 

   Fig.7: Applying the Top-hat:  a) the Original binary im-

age   b) the Top-hat image   

        a)                                         b) 

 Fig.8: Applying the Bottom-hat filter:  

a) the Original binary image  b) Bottom-hat filter image
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4. Neutrosophic Crisp Sets Theory [9]:
In this section we review some basic concepts of neutro-

sophic crisp sets and its operations.  

4.1 Neutrosophic Crisp Sets: 
   4.1.1 Definition [9] 

Let X  be a non-empty fixed set, a neutrosophic crisp set 

A (NCS for short), can be defined as a triple of the form 
321 ,, AAA where 

and 
3A are crisp subsets of X. The three 

components represent a classification of the elements of 

the space  according to some event A; the subset con-

tains all the elements of X that are supportive to A , 

contains all the elements of X that are against A , and  

contains all the elements of X that stand in a distance from 

being with or against A .  Consequently, every crisp 

event A  in X can be considered as a NCS having the form: 

321 ,, AAAA  . The set of all neutrosophic crisp sets 

of  X will be denoted . 

Fig.9:  Neutrosophic Crisp Image:tivelycrespe 321 ,, AAA

4.1.2 Definition [7, 9]: 

The null (empty) neutrosophic set , the absolute (uni-

verse) neutrosophic set  and  

the complement of a neutrosophic crisp set are defined as 

follows: 

 may be defined as one of the following two N

types: 

Type 1:,  XN ,, 

Type 2:    XXN ,, 

2)  may be defined as one of the following two 

types: 

Type 1:  

Type 2: 

3) The complement of a NCS ( co A for short) may 

be defined as one of the following two types:

Type 1: , 

Type 2: . 

4.2. Neutrosophic Crisp Sets Operations: 
In [6, 14], the authors extended the definitions of the crisp 

sets operations to be defined over Neutrosophic Crisp Sets 

(in short NCSs). In the following definitions we consider a 

non-empty set X, and any two  Neutrosophic Crisp Sets of 

X, A  and B , where    and 

. 

4.2.1 Definition [8, 9]: 
For any two sets A, B  , A is said to be a neu-

trosophic crisp subset of the NCS B, i.e., ( BA  ), and 

may be defined as one of the following two types: 
332211 ,:1 BAandBABABAType 

4.2.2 Proposition [7, 9]:  
For any neutrosophic crisp set , the following properties 

are hold: 

a) AN  and 
NN  

b) 
NXA and 

NN XX 

4.2.3 Definition [7, 9]: 
The neutrosophic intersection and neutrosophic union of 

any two neutrosophic crisp sets A, B , may be 

defined as follows:   

1. The neutrosophic intersection ,  may be defined 

as one of the following two types:

  Type1:

  Type2: 

2. The neutrosophic union , may be defined as one 

of the following two types: 

Type 1:

Type2: 

4.2.4 Proposition [7, 9]: 

For any two neutrosophic crisp sets ,   , then: 

coBcoABAco  )(

and 

coBcoABAco  )(

Proof:  We can easily prove that the two statements are 

true for both the complement operators. De-
fined in definition 4.1.2. 

4.2.5 Proposition [9]: 
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For any arbitrary family  of neutrosophic 

crisp subsets of , a generalization for the neutrosophic in-

tersection and for the neutrosophic union given 

in Definition 4.2.3, can be defined as follows: 

1) 
Ii

iA


may be defined as one of the following two 

types: 

 Ii i

Ii

i

Ii

i

Ii

i AAAAType




 321 ,,:1

 Ii iIi i

Ii

i

Ii

i AAAAType




 321 ,,:2

2) may be defined as one of the  Ii iA


following two types: 

  
Ii Ii

iIi Ii iii AAAAType
 

 
 321 ,,:1

  
Ii Ii

iIi
Ii

iii AAAAType
 




 321 ,,:2

5. Neutrosophic Crisp Mathematical Morphology:
As a generalization of the classical mathematical morphol-

ogy, we present in this section the basic operations for the 

neutrosophic crisp mathematical morphology. To com-

mence, we need to define the translation of a neutrosophic 

set. 

5.1.1 Definition: 

Consider the Space X=Rn or Zn  With 

origin 0 = (0,...,0) given The  reflection  of  the  structuring 

element  B mirrored in its  Origin  is defined  as: 
321 ,, BBBB  . 

5.1 Definition: 

For every the ,Ap  translation by  is the map 

paaXXp  ,:  it 

transforms any Subset A of X into its translate 

by ,2Zp

Where 

},:{ 111 BpAupuAp 

},:{ 322 BpAupuAp 

},:{ 333 BpAupuAp 

5.2  Neutrosophic Crisp Mathematical Morpholog-
ical  Operations: 

5.2.1 Neutrosophic Crisp Dilation Operator: 

let A, B , then we define two types of the neu-

trosophic crisp dilation as follows: 

Type1: 
332211 ,,

~
BABABABA 

wher

e for each u and v  Z2

 1

111

Bb bABA


  2

222

Bb bABA
 


3

333

Bb

bABA




Fig.10(i): Neutrosophic Crisp Dilation components in type 1 

321 ,, AAA  respectively 

Type2: 

where for each u and  v Z2 

,1

111  Bb bABA


 
3

222

Bb

bABA





3

333

Bb

bABA




Fig.10(ii): Neutrosophic Crisp Dilation components in type 2 

321 ,, AAA respectively 

5.2.2 Neutrosophic Crisp  Erosion Operation: 
let A and B   ; then the neutrosophic dilation  is 

given as two type: 

Type 1: 

where for each  u and  v 
3

1112

Bb

bABAZ





3

222

Bb

bABA


 and  1

333

Bb bABA



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Fig.11(i): Neutrosophic Crisp Erosion components in type 1  

321 ,, AAA respectively 

Type2: 

where for each  u  and  v
2Z 

3

111

Bb

bABA




 1

222

Bb bABA


 and  1

333

Bb bABA




Fig.11(ii): Neutrosophic Crisp Erosion components in type2 

321 ,, AAA respectively 

5.2.3 Neutrosophic Crisp Opening Operation: 
let A, B ; then we define two types of the neu-

trosophic crisp dilation  operator as follows: 

Type 1:     
11111 )( BBABA 

22222 )( BBABA 
33333 )( BBABA 

Fig.12(i): Neutrosophic Crisp opening components in type1  

321 ,, AAA respectively 

 Type 2:       

11111 )( BBABA 
22222 )( BBABA •
33333 )( BBABA •

Fig.12(ii): Neutrosophic Crisp opening components in type2 

321 ,, AAA respectively 

5.2.4 Neutrosophic Crisp Closing Operation: 
let A and B   ; then the neutrosophic dilation  is 

given as two types: 

Type 1: 

33333 )( BBABA 
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Fig.13(i): Neutrosophic Crisp closing components in type1 

321 ,, AAA respectively 

Type 2:    

33333 )( BBABA 

Fig.13(ii): Neutrosophic Crisp closing components in type2 

321 ,, AAA respectively 

6. Algebraic Properties in Neutrosophic Crisp:
In this section, we investigate some of the algebraic prop-

erties of the neutrosophic crisp erosion and dilation, as 

well as the neutrosophic crisp opening and closing operator 

[15]. 

6.1 Properties of the Neutrosophic Crisp Erosion 
Operator: 

6.1.1 Proposition:  
The Neutrosophic erosion satisfies the monotonicity for all 

A, B  . 
332211 ,,):1 CACACABAaType 

332211 ,, CBCBCB 

22221111 , CBCACBCA 

3333 CACA 
332211 ,,) ACACACBAb 

332211 ,, BCBCBC 

22221111 , BCACBCAC 

3333 ACAC 

332211 ,,):2 CACACABAaType 

332211 ,, CBCBCB 

22221111 , CBCACBCA 

3333 CACA 
332211 ,,) ACACACBAb 

332211 ,, BCBCBC 

22221111 , BCACBCAC 

3333 ACAC 
Note that: Dislike the Neutrosophic crisp dilation opera-

tor, the Neutrosophic crisp erosion does not 

satisfy commutativity and the associativity 

properties. 

6.1.2 Proposition:  for any family  in 

 and B . 

Type1: a)  = 

332211 ,, BABABA
Ii

i

Ii

i

Ii

i 




)(),(),( 332211 BABABA
Ii

i

Ii

i

Ii

i 




 b) )(
~
 

Ii Ii

ii ABAB
 




Ii

i

Ii

i

Ii

i ABABAB


 332211 ,,

)(),(),( 332211

i

Ii

i

Ii

i

Ii

ABABAB 



 Type2: a)  = 

332211 ,, BABABA
Ii

i

Ii

i

Ii

i 




)(),(),( 332211 BABABA
Ii

i

Ii

i

Ii

i 




 b) )(
~
 

Ii Ii

ii ABAB
 




Ii

i

Ii

i

Ii

i ABABAB


 332211 ,,

)(),(),( 332211

i

Ii

i

Ii

i

Ii

ABABAB 




Proof:  a)   in two type:  
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Type 1: BA
Ii i

)(),(),( 3

)(

21 
Ii

bi

BbIi

ib

BbIi

ib

Bb

AAA








)(),(),( 32

)(

1

)(    
Ii

Bb ib

Ii
Bb bi

Ii Bb

bi AAA





 

 



       = )( BAiIi



Type 2: similarity, we can show that it is true in type 2, 

b) The proof is similar to point  a).

6.1.3 Proposition:  for any family 
in  and  B  

Type 1:  )
~

(
~

) BABAa
Ii

i

Ii

i 



332211 ,, BABABA

Ii iIi iIi i 
 

)(),(),( 332211 BABABA iIiiIiiIi


 
)

~
(

~
) 

Ii

i

Ii

i ABABb


  

 Ii iIi iIi i ABABAB


 332211 ,,

)(),(),( 332211

iIiiIiiIi
ABABAB 

 
Type 2:    )

~
(

~
) BABAa

Ii

i

Ii

i 



332211 ,, BABABA

Ii iIi iIi i 
 

)(),(),( 332211 BABABA iIiiIiiIi


 
)

~
(

~
) 

Ii

i

Ii

i ABABb


  

 Ii iIi iIi i ABABAB


 332211 ,,

)(),(),( 332211

iIiiIiiIi
ABABAB 

 

Proof:  a) 




BAType
Ii

i

~
:1 

)(),(),( 11

)(

1

)(  Ii i

Bb
Ii bi

Bb
Ii bi

Bb

AAA



 


 



)(),(),( 32

)(

1

)(  
Bb

ib

IiIi Bb

bi

Bb

biIi
AAA

 






)

~
( BA

Ii

i


   

Type 2: can be verified in a similar way as in type 1. 

b) The proof is similar to point  a)

6.2 Proposition:  (Properties of the Neutrosophic 

Crisp  Dilation Operator): 

6.2.1 Proposition:  
The neutrosophic Dilation satisfies the following proper-

ties:  BA,  

i) Commutativity: BA
~

= AB
~

ii) Associativity:  BBA 
~

)
~

( = )
~

(
~

BBA 

iii) Monotonicity: (increasing in both arguments):

Type1: 

a) 332211 ,, CACACABA 

332211 ,, CBCBCB 

22221111 , CBCACBCA    and  

  
3333 CBCA 

332211 ,,) ACACACBAb 

332211 ,, BCBCBC    

22221111 , BCACBCAC   and 
3333 BCAC 

    Type2: 
332211 ,,) CACACABAa 
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332211 ,, CBCBCB 

22221111 , CBCACBCA        and 

 3333 CBCA 

332211 ,,) ACACACBAb 

332211 ,, BCBCBC    

  and 22221111 , BCACBCAC 

3333 BCAC 

6.2.2 Proposition: for any family in  

 and B   

Type 1:     = 

 332211 ,, BABABA
Ii

i

Ii

i

Ii

i 




)(),(),( 332211 BABABA
Ii

i

Ii

i

Ii

i 



 = 


Ii

i

Ii

i

Ii

i ABABAB


 332211 ,,

)(),(),( 332211

i

Ii

i

Ii

i

Ii

ABABAB 




 Type 2:  = 

332211 ,, BABABA
Ii

i

Ii

i

Ii

i 




)(),(),( 332211 BABABA
Ii

i

Ii

i

Ii

i 




 = 


Ii

i

Ii

i

Ii

i ABABAB


 332211 ,,

)(),(),( 332211

i

Ii

i

Ii

i

Ii

ABABAB 




Proof:  we will prove this property for the two types of the 

neutrosophic crisp intersection operator:    

Type 1: BA
Ii i 

               

)(),(),( 3

)(

21 
Ii

bi

BbIi

ibBb
Ii

ibBb
AAA













)(),(),( 3

)(

21    
Ii Bb

bi

Ii
Bb ib

Ii
Bb ib AAA

 











     = )( BAiIi


  

Type 2:  

(),(), 3

(

21

Ii

bi

BbIi

ib

BbIi

ibA






               

)(),(),( 3

)(

21    
Ii Bb

bi

Ii
Bb ib

Ii
Bb ib AAA

 











)( BAiIi


 = 

b) The proof is similar to a)

6.2.3 Proposition:      for any family  in 

 and B 

Type 1:  )
~

(
~

) BABAa
Ii

i

Ii

i 



332211 ,, BABABA

Ii iIi iIi i 
 

)(),(),( 332211 BABABA iIiiIiiIi


 
)

~
(

~
) i

IiIi

i ABABb 




 Ii iIi iIi i ABABAB


 332211 ,,

)(),(),( 332211

iIiiIiiIi
ABABAB 

 
Type 2:  )

~
(

~
) BABAa

Ii

i

Ii

i 



332211 ,, BABABA

Ii iIi iIi i 
 

)(),(),( 332211 BABABA iIiiIiiIi


 
)

~
(

~
) i

IiIi

i ABABb 




 Ii iIi iIi i ABABAB


 332211 ,,
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)(),(),( 332211

iIiiIiiIi
ABABAB 

 
Proof:  a) we will prove this property for the two types of 

the neutrosophic crisp union operator:   




BAType
Ii

i

~
:1  )(),(),( 3

)(

21   
Bb

bi

IiBb Ii

ibIi ibBb
AAA





 


)
~

( BA
Ii

i 


 )(),(),( 3

)(

21  
Bb

bi

IiIi Bb

ibBb iIi
AAA





 




Type 2:  


BA
Ii

i

~
 )(),(),( 3

)(

2

)(

1   
Bb

bi

IiBb

bi

Ii
Ii iBb

AAA











)
~

( BA
Ii

i 


 )(),(),( 3

)(

2

)(

1  
Bb

bi

IiIi Bb

biBb iIi
AAA





 




b) The proof is similar to (a)

6.2.4 Proposition (Duality Theorem of  Neutrosophic 

Crisp Dilation):  

let A, B  .  Neutrosophic crisp  Erosion and  

Dilation are dual operations i.e. 

Type1: 

)(),(),()
~

( 332211 BAcocoBcoAcoBcoAcoBcoAco 

332211 ,, BABABA 

BA
~

= 

Type2: 

=

332211 ,, BABABA 

BA
~

= 

6.3 Properties of the Neutrosophic Crisp Opening 

Operator: 

6.3.1 Proposition:  

The neutrosophic opening satisfies the monotonicity   

 BA,

Type1: 
332211 ,, CACACABA 

332211 ,, CBCBCB 

,, 22221111 CBCACBCA  
3333 CBCA  

Type2:
332211 ,, CACACABA 

332211 ,, CBCBCB 

22221111 , CBCACBCA  
3333 CBCA  

6.3.2 Proposition:  for any family  in 

 and  B
Type1: )~(~ BABA

Ii

i

Ii

i  




332211 ,, BABABA
Ii

i

Ii

i

Ii

i •


 

)(),(),( 332211 BABABA
Ii

i

Ii

i

Ii

i •


 

Type2: )~(~ BABA
Ii

i

Ii

i  




332211 ,, BABABA
Ii

i

Ii

i

Ii

i ••


 

)(),(),( 332211 BABABA
Ii

i

Ii

i

Ii

i ••


 

6.3.3 Proposition: for any family 

      in   and  B    

Type1: )~(~ BABA
Ii

i

Ii

i  




332211 ,, BABABA
Ii iIi iIi i •

  

)(),(),( 332211 BABABA iIiiIiiIi
•

  

Type2: )~(~  
Ii

i

Ii

i BABA




332211 ,, BABABA
Ii iIi iIi i ••

  

)(),(),( 332211 BABABA iIiiIiiIi
••

  

Proof: Is similar to the procedure used to prove the propo-

sitions given in § 6.1.3 and  § 6.2.3. 
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6.4 Properties of the Neutrosophic Crisp Closing 

6.4.1 Proposition:  
The neutrosophic closing satisfies the monotonicity  

 BA,

Type1: 

a) 332211 ,, CACACABA •••

332211 ,, CBCBCB •••

,, 22221111 CBCACBCA ••••

3333 CBCA ••

Type2: 

a) 332211 ,, CACACABA •••

332211 ,, CBCBCB •••

,, 22221111 CBCACBCA ••••

3333 CBCA ••     

6.4.2 Proposition: for any family 

In  and  B

Type1: )~(~ BABA
Ii

i

Ii

i ••




332211 ,, BABABA
Ii

i

Ii

i

Ii

i 


••

)(),(),( 332211 BABABA
Ii

i

Ii

i

Ii

i 


••

Type2: )~(~ BABA
Ii

i

Ii

i ••




332211 ,, BABABA
Ii

i

Ii

i

Ii

i  


•

)(),(),( 332211 BABABA
Ii

i

Ii

i

Ii

i  


•

6.4.3 Proposition: for any family

in  and  B

Type1: )~(~ BABA
Ii

i

Ii

i 


••

332211 ,, BABABA
Ii iIi iIi i  

••

)(),(),( 332211 BABABA iIiiIiiIi
 

••

Type2: )~(~ 
Ii

i

Ii

i BABA


••

332211 ,, BABABA
Ii iIi iIi i   

•

)(),(),( 332211 BABABA iIiiIiiIi
  

•

Proof: Is similar to the procedure used to prove the propo-

sitions given in § 6.1.3. 

6.4.4 Proposition (Duality theorem of Closing): 
let A, B ;   Neutrosophic  erosion and  dilation 

are dual operations  i.e. 

Type1: 

)(),(),()~( 332211 BAcocoBcoAcoBcoAcoBcoAco •••

332211 ,, BABABA •  =    BA ~

Type2: 

332211 ,, BABABA ••  = BA ~

7. Neutrosophic Crisp Mathematical Morphologi-
cal Filters: 
 7.1 Neutrosophic Crisp External Boundary: 

Where 
1A  is the set of all pixels that belong to the 

foreground of the picture, 
3A  contains the pixels that 

belong to the background whilecontains those 
2A

pixel which do not belong to neither.
3A  nor  

1A
Let A, B , such that 321 ,, AAAA   and B is 

some structure element of the form ;,, 321 BBBB  then 

the NC boundary extraction filter is defined to be: 

)( 1111

1 BAAA 
3333

3 )( ABAA  , 

 )()( 3

3

1

1

2 AAAA   

 )()()( 11332 BABAAA 

)()()( AAAb  
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a)                                b) 
Fig. 14: Applying the neutrosophic crisp External boundary: 

a) the Original image  b) Neutrosophic crisp 

boundary. 

7.2 Neutrosophic Crisp Top-hat Filter: 

)()( 1111

1 BAAAB   
3333

3 )()( ABAAB •

))()(()( 3

3

1

1

2 ABABAAB   

 )()()( 33112* BABAAAB • 

)()()(~ * ABABApoT hat   

a)                                b)       
Fig. 15:  Applying the Neutrosophic crisp top-hat filter:  a) 
Original image b) Neutrosophic Crisp components 

321 ,, AAA  respectively 

7.3 Bottom-hat filter: 
1111

1 )()( ABAAB •

)()( 3333

3 BAAAB 

))()(()( 3

3

1

1

2 ABABAAB   

 )()()( 33112* BABAAAB •

)()()(
~ * ABABAomtBot hat 

a) b)  

Fig. 16: Applying the Neutrosophic crisp Bottom-hat filter:  

Neutrosophic Crisp components 321 ,, AAA  respectively 

8 Conclusion: 
In this paper we established a foundation for what we 

called "Neutrosophic Crisp Mathematical Morphology". 

Our aim was to generalize the concepts of the classical 

mathematical morphology.  

For this purpose, we developed serval neutrosophic crisp 

morphological operators; namley, the neutrosophic crisp 

dilation, the neutrosophic crisp erosion, the neutrosophic 

crisp opening and the neutrosophic crisp closing operators. 

These operators were presented in two different types, each 

type is determined according to the behaviour of the 

seconed component of the triple strucure of the operator. 

Furthermore, we developed three neutrosophic crisp 

morphological filters; namely, the neutrosophic crisp 

boundary extraction, the neutrosophic crisp Top-hat and 

the neutrosophic crisp Bottom-hat filters.  

Some promising expermintal results were presented to 

visualise the effect of the new introduced operators and 

filters on the image in the neutrosophic domain instead of  

the spatial domain.  
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Abstract—Classification based on fuzzy logic techniques can 

handle uncertainty to a certain extent as it provides only the fuzzy 

membership of an element in a set. This paper implements the 

extension of fuzzy logic: Neutrosophic logic to handle 

indeterminacy, uncertainty effectively. Classification is done on 

various techniques based on Neutrosophic logic i.e. Neutrosophic 

soft set, rough Neutrosophic set, Neutrosophic ontology to provide 

better results in comparison to fuzzy logic based techniques. It is 

proved that rough neutrosophic soft set will handle indeterminacy 

effectively that exists in the medical domain as it provides the 

minimum and maximum degree of truth, indeterminacy, falsity 

for every element. 

Keywords—Fuzzy set; Neutrosophic soft set; Rough Neutrosophic 

set, Rough Neutrosophic soft set. 

I.  INTRODUCTION 

Classification can be described as a procedure in which 
different items are identified, differentiated and inferenced [1]. 
Classification is followed by collecting the instances of 
appendicitis disease of different patients so that we would be 
able to do a comparative study on the various symptoms of the 
disease. There exist many techniques which are used for 
classification and give a practical answer to feasible inputs [2]. 
Fuzzy logic is of great interest because of its ability to deal with 
non-statistical ambiguity. In decision making, ambiguous data 
is treated probabilistically in numerical format. Indeterminacy 
is present everywhere in real life. If a die is tossed on a irregular 
surface then there is no clear face to see. Indeterminacy occurs 
due to defects in creation of physical space or defective making 
of physical items involved in the events. Indeterminacy occurs 
when we are not sure of any event. Neutrosophic logic will help 
us to consider this indeterminacy. 

This paper is written to concentrate on the classification of 
ambiguous, uncertain and incomplete data. Authors here 
propose a new technique of classification based on 
Neutrosophic rough soft set to handle indeterminacy. 
Neutrosophic rough soft set helps us to calculate the lower and 
upper approximation for every class. 

II. PRELIMINARIES & BASIC DEFINITIONS

This section provides the definition of various techniques 
based on fuzzy logic and Neutrosophic logic. In further 
sections, these techniques are used for classification of data. 
Fuzzy logic was described by L.A.Zadeh in 1965[3].Fuzzy 

logic is a multivalued logic in which the membership of truth 
lies in 0-1[3].  

Definition 1. Fuzzy set 

 A fuzzy set X over Uwhich is considered as Universe is a 
function defined as[4]: 

 (1) 

where : [0,1]x U  x is 

known as the membership function of X, the value ( )x u  is 

known as the degree of membership ofu U .Membership

value can lie between 0 and 1. 

Definition 2. Neutrosophic set[5] 

A Neutrosophic set A in Uwhich is considered as a space of 
items, is described by a truth-membership function TA, a 
indeterminacy-membership function IA and a falsity-
membership function FA[5].An element belonging to Uis 
represented byu. 

{ ,( ( ), ( ), ( )) : , ( ), ( ), ( ) [0,1]}A A A A A AA x T x I x F x x U T u I u F u     (2) 

There is no restriction on the sum of TA(u), IA(u) and FA(u), 

so 0 sup ( ) sup ( ) sup ( ) 3A A AT u I u F u     . The sum 

of the three degrees has no restriction as it can lie from 0-3. 

Definition 3. Soft set[6] 

A soft set FA over Uwhich is considered as Universe, is a set 
defined by a set valued function fA representing a mapping 

: ( )Af E P U  such that ( )Af x   if x E A  (3)

where fA is called approximate function of soft set FA. 

{( , ( )) : , ( )A A AF x f x x E f x    if x E A  (4)

Eis the set of parameters that describe the elements of U and 
AE. The subscript A in fA indicates that fA is approximate
function of FA and is called as called x-element of soft set for 
every xE.

Definition 4. Neutrosophic soft set (NSS)[7] 

{ ( ) / : }xX u u u U 
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Let U be a universe, N(U)is the set of all neutrosophic sets 
on U, E is the set of parameters that describe the elements of U 

and 

A E

. A Neutrosophic soft set N over U is a set 

described by a set valued function fN representing mapping 

: ( )Nf E N U  such that ( )Nf x   if x E A  (5)

where fN is called approximate function of Neutrosophic soft 
set N.  

{( , ( )) : , ( )NN x f x x E f x   if x E A  }(6)

Definition 5. Rough Neutrosophic set (RNS)[8] 

Let U be a Universe of non-null values and R is any 
equivalence relation on U. Consider F is any Neutrosophic set 
in U with its belonginess, ambiguity and non-belonginess 
function. The lower and higher approximations of F in the 

approximation(U,R) which is represented by 

( )N F

and 

( )N F are defined as 

( ) ( ) ( )( ) { , ( ), ( ), ( ) [ ] , }N F N F N F RN F x x v x x y x x U      (7) 

( ) ( ) ( )
( ) { , ( ), ( ), ( ) [ ] , }RN F N F N F

N F x x v x x y x x U      (8) 

where 

( ) [ ] ( ) [ ] ( ) [ ]( ) ( ), ( ) ( ), ( ) ( )
R R RN F y x F N F y x F N F y x Fx y v x v y x y     

          (9) 

[ ] [ ] [ ]( ) ( ) ( )
( ) ( ), ( ) ( ), ( ) ( )

R R Ry x F y x F y x FN F N F N F
x y v x v y x y     

         (10) 

where 



 and 



mean min and max operators. The pair

( ( ), ( ))N F N F is called rough Neutrosophic set in (U,R). R 

is an equivalence relation over U. 

Definition 6. Rough Neutrosophic soft set (RNSS) 

Authors here propose a new technique of Neutrosophic 
rough soft set by combining the concept of Neutrosophic soft 
set and rough Neutrosophic set. RNSS will provide the lower 
and upper approximations for every class available.  

Let U be a Universe of non-null values and R is any 
equivalence relation on U. Consider F is a set of every 
neutrosophic set in U with its belonginess, ambiguity and non-
belonginess function. Thelower and upper approximations of 
all the Neutrosophic sets can be calculated with min and max 
operator using eq. 9,10. 

Indeterminacy is present everywhere in real life. If weather 
experts will say that there is a chance of rain tomorrow is 60% 
then it does not specify that the chance of not raining is 40% as 
there are many factors like weather fronts etc which are not 
considered in weather reports. Various doctors may have 
different opinions on the same disease diagnosis so, 
indeterminacy can be seen in real life. 

Neutrosophic logic was proposed by Florentine 
Smarandache to present mathematical model of uncertainty and 
indeterminacy.In Neutrosophic logic, each idea is estimated to 
have the percentage of truth, indeterminacy and  falsity. [5] 

Consider U be any set of buildings and E is the set of 
parameters. Every parameter is a Neutrosophic word. Consider 
E= {wooden, expensive, beautiful, cheap}. To define a 
Neutrosophic soft set, there is a need to point out wooden 
buildings, expensive buildings and so on. Let us assume that 
there are three buildings in the universe U given by 
U={b1,b2,b3} and set of parameters A={e1,e2,e3,e4} where e1 
represents wooden, e2 represents expensive and so on. 

F(wooden)={<b1,0.6,0.3,0.4>,<b2,0.4,0.6,0.6>,<b3,0.6,0.4
,0.2>}, 

F(expensive)={<b1,0.7,0.4,0.5>,<b2,0.6,0.2,0.4>,<b3,0.7,
0.4,0.3>}, 

F(beautiful)={<b1,0.8,0.2,0.1>,<b2,0.6,0.7,0.6>,<b3,0.8,0.
4,0.3>}, 

F(cheap)={<b1,0.8,0.2,0.7>,<b2,0.4,0.6,0.4>,<b3,0.7,0.3,0
.2>}. 

F(e1) means buildings(wooden) whose value of function is 
the Neutrosophic set {<b1,0.6,0.3,0.4>, 
<b2,0.4,0.5,0.6>,<b3,0.6,0.4,0.2>}. 

Each approximation has two parts: predicate p and an 
approximate value-set v. For the approximation ‘wooden 
buildings={<b1,0.6,0.3,0.4>,<b2,0.4,0.6,0.6>,<b3,0.6,0.4,0.2>
}, predicate is wooden buildings and approximate value set is 
{<b1,0.6,0.3,0.4>, <b2,0.4,0.6,0.6>,<b3,0.6,0.4,0.2>}. 

The concept rough neutrosophic concept is introduced by 
combining both rough set and Neutrosophic set. These are the 
generalizations of rough fuzzy sets and rough intuitionistic 
fuzzy sets[8]. 

Let U={p1,p2,p3,p4} be a universe and R be an equivalence 
relation its partition of U is given as 

U/R = {{p1,p2},p4} 

 Let  
N(F)={(p1.(0.3,0.2,0.5)),(p2,(0.3,0.2,0.5)),(p3,(0.4,0.5,0.2))}. 

={(p1,(0.3,0.2,0.5)),(p2,(0.3,0.2,0.5)),(p3,(0.4,0.5,0.2))} 

={(p1,(0.3,0.2,0.5)),(p2,(0.3,0.2,0.5)),(p3,(0.4,0.5,0.2))} 

RNSS will calculate the lower and upper approximations for 
all the elements of universe U. All elements must exist in one 
of those partition elements. 

III. HOW ROUGH NEUTROSOPHIC ROUGH SET IS BETTER THAN

FUZZY SET 

Rough Neutrosophic soft set is combination of 
Neutrosophic soft set and rough Neutrosophic set. RNSS is 
based on Neutrosophic logic and fuzzy set is based on fuzzy 
logic instituted by L.A. Zadeh. In this logic, every proposition 
is estimated to have the degree of truth, indeterminacy and 
falsity (T,I,F). Neutrosophic soft set will provide predicate and 
approximate value set for every instance of classification data. 
Fuzzy set is a subset of Neutrosophic set and it provides the 
degree of membership and non-membership of any instance. 

( )N F

( )N F
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Rough Neutrosophic soft set provides the lower and upper 
approximations i.e. minimum and maximum degree of truth, 
indeterminacy and falsity. 

For example, In case of fuzzy logic if a person is suffering 
from dengue havingdegree of membership as 0.6 i.e. Person is 
said to be having 60% chance of dengue and 40 % chance of 
not suffering from dengue. So, fuzzydegree of membership to a 
class is represented by fuzzy set. 

In case of Neutrosophic logic if a person is suffering from 
dengue havinga membership value of 0.6 i.e. Person is said to 
be having 60% chances of dengue but not necessarily having 
40% chances of not suffering from dengue, no inference can be 
made about the 40%. In reality Neutrosophic logic is effective 
in providing the degree of truth, indeterminacy, falsity that a 
person has in favour of dengue as there are many indeterminate 
factors which are not considered by doctors. Authors here 
propose torepresent Neutrosophic logic by experimenting with 
Rough Neutrosophic soft set, that suitably captures the 
indeterminacy, which is not captured by fuzzy set. 

IV. DETAILS OF APPENDICITIS DATASET

Appendicitis dataset is chosen here for research from 
knowledge extraction based on evolutionary learning 
(KEEL)[9]. This dataset has 7 attributes which are defined in 2 
classes and are of real- value type. It has 106 instances as shown 
in Fig. 1. The seven different attributes are standardised in the 
range of 0-100 by multiplying each attribute by 100. 

The various attributes to be tested are WBC1, MNEP, 
MNEA, MBAP, MBAA, HNEP, HNEA. 

Classes to be classify:- 

0 means the patient suffers from appendicitis. 

1 means the patient does not sufferfrom appendicitis. 

In this research, we have collected the appendicitis dataset 
samples from knowledge extraction based on evolutionary 
learning. Using some training we have designed a fuzzy 
inference system that is able to classify an unknown 
appendicitis sample and on the behalf of the learning tuples it is 
able to predict the class to which that particular unknown 
sample belongs to whether the patient has appendicitis or not. 
Pursuing this research further will contribute us in designing a 
Neutrosophic inference system or Neutrosophic classifier. It 
has been suggested on the lines of fuzzy logic but instead of 
giving one defuzzified value, output value in neutrosophic 
classifier takes the neutrosophic format of the type: output 
(truthness, indeterminacy, falsity) . Then we will be able to 
predict more accurately in the overlapping sections of the 
attributes. Here, 96 instances are used for training and 10 
instances which are randomly selected are used for testing i.e. 
9:1. 

V. FUZZY SET BASED CLASSIFICATION 

Fuzzy set is a component of standard information theory. It 
shows vague probabilities with ties to concepts of random sets. 
It shares the frequent attribute of all uncertain probability 
models, the indeterminacy of an object is described in terms of 
probability or with bounds on probability. Fuzzy logic is a 
many-valued logic that deals with reasoning which is 

approximate not exact. Comparing with traditional binary sets, 
fuzzy logic variables may have a truth value that ranges 
between 0 and 1. Fuzzy classification is the process of 
collecting elements into a fuzzy set whose membership function 
is described by the truth value of a fuzzy propositional function. 
In fuzzy classification, a sample can have membership in 
various classes to varying degrees.Typically, the membership 
values are restricted so that all of the membership values for a 
specific sample sum to Linguistic rules related to the control 
system composing two parts; an antecedent part (between the 
IF and THEN) and a consequent part (after THEN). A variable 
is fuzzy if its ambiguity arises as a consequence of imprecision 
and vagueness and is describes by a membership function. 
There can be unlimited number of membership functions that 
can be used to represent a fuzzy set. For fuzzy sets, membership 
function increases the flexibility by sacrificing distinctiveness 
as we can regulate a membershipfunction so as to expand the 
service for a specific purpose. We use membership function as 
a curve or shape to describethe degree of membership each 
point in the input zone or universe of discourse. The mandatory 
condition for a membership function to satisfy is that it must be 
in the range of [0,1]. The membership functions constitute of 
different types of mathematical expressions and geometric 
shapes like triangular, trapezoidal, bell etc. We can choose a 
membership function from a wide selection range provided by 
MATLAB Fuzzy Logic ToolBox. There are 11 in-built 
membership functions included in Fuzzy Logic ToolBox, 
Triangular and Trapezoidal membership functions 

A. Determination of fuzzy membership and non-membership 

values 

Fuzzy logic determines the basis of classification for fuzzy 
set. For all the attributes and output classes of appendicitis 
dataset, suitable rules are designed to account for the 
overlapping expected in fuzzy logic. As per observation, in the 
inference system, three types of outputs are produced after 
defuzzification as shown by Fig. 1. Defuzzified value or crisp 
value is obtained by applying various defuzzification 
techniques [10] to fuzzified value given by the inference 
module. 

Fig.1. Criteria for assigning fuzzy values 

Case 1. It provides the grade of membership and non-
membership to class A. So, an output which belongs in the 
range of 0-a will support greater membership value for class A 
and smaller membership value for class B.  

Case 2. There is some degree of indeterminacy for the 
output value lying in the overlapping range of a-b. Higher 
membership to class A is shown by range a-a+b/2, 
greaterdegree of belongingness to class B is shown by range 
a+b/2-b. Equal degree of membership to both classes is shown 
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at point a+b/2, that cannot be classifiedinto any class. 
Neutrosophic logic is applied in the overlapping region where 
we are not sure about the existence of instance to class A or 
class B. In neutrosophic logic, every proposition is estimated to 
have some grade of truth, indeterminacy and falsity (T,I,F)[5]. 
Thus, to find the solution in overlapping areas, Neutrosophic 
logic comes to the rescue. 

Case 3. It provides the grade of membership and non-
membership to class B.So, an output lying in the range of b-c, 
will support greaterdegree of membership for class B and 
smaller degree of membership for class A.  

VI. ROUGH NEUTROSOPHIC SOFT SETBASED CLASSIFICATION

Rough Neutrosophic soft set is a description of each 
instance that belongs to the overlapping area. Each instance of 
rough Neutrosophic soft sethelps us to examine the probability 
of existence to a class with grade of truth, indeterminacy, falsity 
in that range.In the medical domain, there is a lot of ambiguity, 
indeterminacy and uncertainty as different doctors have 
different opinions on the same diagnosis. So, Neutrosophic 
logic would prove effective by considering the existing 
indeterminacy in medical domain and by providing the grade of 
indeterminacy for each instance. Hence by classifying the 
appendicitis data into three classes, the Neutrosophic logic will 
provide better results.  

A. Determination of  Neutrosophic membership values 

Rough Neutrosophic soft set works on the same dimension 
like fuzzy set, however it differs in the representation of output 
value. Output value after defuzzification, is described in the 
triplet format i.e. truthness, indeterminacy, falsity [5].  After 
obtaining the value in triplet form, it calculates the lower and 
upper approximations for every class existing in the universe. 
Neutrosophic logic will be applied in the overlapping regions to 
check whether the instance exists in class appendicitis or not. 
The design of Neutrosophic components is described  in Fig. 2. 

Fig. 2.Block diagram of neutrosophic components 

Data using Rough Neutrosophic soft set is classified using 
the following steps: 

1. The training sets and the testing sets are createdfor each
class. Out of the 106 instances, 96 instances i.e. 90% of the total 
are used for training and 10 instances i.e. 10% of the total  are 
used for testing. 

2. Three components are used to express Neutrosophic
logic: Neutrosphic truth, neutrosophic indeterminacy and 
neutrosophic falsity component[11] 

3. Truth component of Neutrosophic logic is descibed as
follows: 

a) For all the variables (input and output), membership
functions are designedso that there is no overlap between the 
two defined membership functions. 

b) Using rule editor, appropriate rules are produced.

4. Indeterminacy component of Neutrosophic logic is
designed as follows: 

a) For all the variables (input and output), membership
functions are designed in such a way as to overcome the 
overlapping regions. The other two components i.e. 
indeterminacy component and falsity components are designed 
for overlapping regions  

b) Using rule editor, appropriate rules are produced.

5. Falsity component of Neutrosophic logic using training
set is designed similarto indeterminacy component. In falsity 
component, the maximum value of every membership  function 
i.e. height is considered as 0.5. 

6. After training is done, all the three components i.e. truth,
indeterminate and falsity are verified using the 10 testing 
instances. 

7. All these values will help us to determine the NSS i.e.
predicate and approximate value-set for all testing instances. 

8. After creation of approximation value set, lower and
upper approximations are calculated for RNSS. 

VII. MATLAB IMPLEMENTATION OF FUZZY AND ROUGH 

NEUTROSOPHIC SOFT SET ON DATASE 

There are various techniques available for classification of 
data[12]. Here, fuzzy and Neutrosophic logic are used for the 
classification of data. Fuzzy and neutrosophic components are 
designed for appendicitis dataset as described below: 

1) Trapezoidal membership functions are designed for  input
variable 1 which is ranging between 0 to 100 as shown below 
in Fig. 3. 

Fig. 3. Trapezoidal Membership function for input 1 

2) Input membership function is defined for all other
attributes. 

3) Output membership function is designed for two classes
i.e. 1 and 0 represented by A and B as shown below in Fig. 4. 
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Fig. 4. Triangular Membership function for output class. 

4) The fuzzy component contains 35 If-Then Rules. The rule
base of neutrosophic truth, neutrosophic indeterminate and 
neutrosophic falsity component contain 40, 11 and 11 rules. 

5) Fuzzy component will provide the degree of membership
of belonginess. Its non-membership can be calculated as Non-
membership= 1 – membership. 

6) Neutrosophic components will provide the (T,I,F) values.
Then the Neutrosophic result is calculated for all classes. 

7) Lower and upper approximations are calculated with the
approximations available. 

VIII. EXPERIMENTS AND RESULTS

The Table I shows the details of the testing instances for 
fuzzy component on appendicitis dataset. 

TABLE I. DETAILS OF TESTING INSTANCES USING FUZZY SET 

S.no. Instance/class Degree 

of 

memb

ership 

Degree of 

non-

membershi

p 

Analysis 

1. [21.3 55.4 20.7 0 0 

74.9 22]/A 

0.08 0.92 Here, all 

instances lies 

in their 

classes 

correctly 

except two 

instances. 

Instance 5 and 

6 lies in 

overlapping 

range. In the 

overlapping 

region we 

cannot surely 

say about the 

belongingness 

of an instance 

so, fuzzy 

logic cannot 

handle 

indeterminate 

data. 

2. [5.8 58.9 8.7 58.3 

19.6 57.6 6]/A 

0.08 0.92 

3. [14.2 58.9 15.7 70.8 

32.5 93.8 18.6]/B 

0.41 0.59 

4. [53.8 73.2 54.9 5.6 

5.8 88.2 55.8]/B 

0.41 0.59 

5. [32.9 66.1 33.4 15.3 

11.2 67.4 30.4]/B 

0.29 0.71 

6. [75.1 82.1 79.7 29.2 

39.2 74.7 70]/B 

0.29 0.71 

7. [57.3 75 59 36.1 

39.2 95.6 61.9]/B 

0.41 0.59 

8. [51.6 76.8 54.4 13.9 

13.9 66.7 46.2]/B 

0.42 0.58 

9. [47.1 83.9 53.1 11.1 

10.4 84.5 48.1]/B 

0.42 0.58 

10. [62.2 75 63.5 26.4 

30.6 78.7 60.1]/B 

0.42 0.58 

The Table II shows the details of testing instances using 
Neutrosophic soft set. As we can see here that all instances exist 
in their classes accurately but 2 instances are having their 
membership values in overlapping areas. So, neutrosophic logic 
will be applied on those instances to get better results. 

TABLE II. DETAILS OF TESTING INSTANCES USING NEUTROSOPHIC SOFT 

SET 

Instance (T,I,F) values 

generated after 

defuzzification 

Neutrosophic 

result of 

appendicitis 

class (class A) 

Neutrosophic 

result of non-

appendicitis 

class (class B) 

[21.3 55.4 20.7 0 

0 74.9 22] 

(0.08,0.5,0.5) (1,0,0) (0,1,1) 

[5.8 58.9 8.7 58.3 

19.6 57.6 6] 

(0.08,0.5,0.5) (1,0,0) (0,1,1) 

[14.2 58.9 15.7 

70.8 32.5 93.8 

18.6] 

(0.41,0.5,0.5) (0,1,1) (1,0,0) 

[53.8 73.2 54.9 

5.6 5.8 88.2 55.8] 

(0.20,0.4,0.4) (0,1,0.1) (0.1,0,0) 

[32.9 66.1 33.4 

15.3 11.2 67.4 

30.4] 

(0.2901,0.25,0.2

5) 
(0.5,0,0.1) (0.1,1,0.5) 

[75.1 82.1 79.7 

29.2 39.2 74.7 70] 

(0.29,0.25,0.25) (0.5,0,0.1) (0.1,1,0.5) 

[57.3 75 59 36.1 

39.2 95.6 61.9] 

(0.4204,0.5,0.5) (0,1,1) (1,0,0) 

[51.6 76.8 54.4 

13.9 13.9 66.7 

46.2] 

(0.2865,0.5,0.5) (0,1,0.2) (0.2,0,0) 

[47.1 83.9 53.1 

11.1 10.4 84.5 

48.1] 

(0.2841,0.5,0.5) (0,1,0.1) (0.1,0,0) 

[62.2 75 63.5 26.4 

30.6 78.7 60.1] 

(0.2877,0.5,0.5) (0,1,0.1) (0.1,0,0) 

As it can be seen in Table II, NSS will provide the predicate 
and approximate value-set for every instance of every 
parameter. Predicate is class A instances and approximation 
value-set is <1,0,0>, <1,0,0>. Predicate is class B instances and 
approximation value-set for third instance is <0,1,1> and so on. 
Instance 5 and 6 lies in the overlapping region, Neutrosophic 
result is (0.1,1,0.5). So, it provides maximum value of 
indeterminacy in class B. 

The neutrosophic components will provide the 
Neutrosophic results for instances of class A and B. The 
Neutrosophic result of instances of class A can be calculated for 
class B using the complement. The complement can be 
calculated as: 

The Table III shows the details of testing instances using 
Rough Neutrosophic soft set. Here, U be a universe of 10 
instances and R be an equivalence relation its partition of U is 
given as 

U/R = {{p1,p2}}, p1 and p2 are the classes A and B. 

TABLE III. DETAILS OF TESTING INSTANCES USING ROUGH 

NEUTROSOPHIC SOFT SET 

( ) ( )

( ) 1 ( )

( ) ( )

B

B

A

T x F x

I x I x

F x T x






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Instance Neutrosop

hic result 

of 

appendiciti

s class(p1) 

Neutrosop

hic result 

of non-

appendiciti

s class(p2) 

Lower 

approx

imatio

n 

Higher 

approxi

mation 

[21.3 55.4 20.7 0 

0 74.9 22] 

(1,0,0) (0,1,1) (0,1,1) (1,0,0) 

[5.8 58.9 8.7 58.3 

19.6 57.6 6] 

(1,0,0) (0,1,1) (0,1,1) (1,0,0) 

[14.2 58.9 15.7 

70.8 32.5 93.8 

18.6] 

(0,1,1) (1,0,0) (0,1,1) (1,0,0) 

[53.8 73.2 54.9 

5.6 5.8 88.2 55.8] 

(0,1,0.1) (0.1,0,0) (0,1,0.

1) 

(0.1,0,0) 

[32.9 66.1 33.4 

15.3 11.2 67.4 

30.4] 

(0.5,0,0.1) (0.1,1,0.5) (0.1,1,

0.5) 

(0.5,0,0.1

) 

[75.1 82.1 79.7 

29.2 39.2 74.7 70] 

(0.5,0,0.1) (0.1,1,0.5) (0.1,1,

0.5) 

(0.5,0,0.1

) 

[57.3 75 59 36.1 

39.2 95.6 61.9] 

(0,1,1) (1,0,0) (0,1,1) (1,0,0) 

[51.6 76.8 54.4 

13.9 13.9 66.7 

46.2] 

(0,1,0.2) (0.2,0,0) (0,1,0.

2) 

(0.2,0,0) 

[47.1 83.9 53.1 

11.1 10.4 84.5 

48.1] 

(0,1,0.1) (0.1,0,0) (0,1,0.

1) 

(0.1,0,0) 

[62.2 75 63.5 26.4 

30.6 78.7 60.1] 

(0.1,0,0) (0,1,0.1) (0,1,0.

1) 

(0.1,0,0) 

Lower and higher approximation provide the minimum and 
maximum value of truth, indeterminacy and falsity component 
for every instance. Lower and higher approximations can be 
calculated using eq. 9,10. 

IX. DISCUSSION OF RESULTS

Classification using RNS i.e. rough neutrosophic sets 
presents more realistic results as it classifies the dataset into 
three classes. If it belongs to overlapping regions, we cannot be 
sure about its existence in either class. It is discussed in section 
8 that various instances are having results in overlapping areas 
which can be handled with neutrosophic logic easily. Rough 
neutrosophic soft set has prons over fuzzy set which are 
discussed as: 

1. Neutrosophic logic can handle indeterminacy of
overlapping areas which is used byRough Neutrosophic soft set. 

2. Membership value and non-membership value for every
instance is considered by fuzzy logic whereasRough 
Neutrosophic soft set considers the membership value in truth 
class, indeterminate class and falsity class.  

3. Lower as well as upper approximations are provided by
Rough Neutrosophic soft set. 

X. CONCLUSION 

The proposed rough Neutrosophic soft set divides the 
classification domain into overlapping and non-overlapping 

sections. RNSS will provide better results as it allows us to 
consider the indeterminacy present in the medical domain. 
There are many cases in which the doctors may vary in their 
decisions and cannot surely say whether the person suffers from 
that disease or not, so indeterminacy exists in medical field. 
Neutrosophic logic based techniques provide the grade of truth, 
indeterminacy, falsity for every instance but fuzzy logic based 
techniques provides the degree of membership and non-
membership. Also, the results generated by RNSS provide the 
minimum and maximum degree of truth, indeterminacy and 
falsity. Here, authors have confined the application of RNSS to 
a small dataset. 

As the results are encouraging, it can be applied on other 
complex datasets or which are having more ambiguous results 
which can be provided solution with Neutrosophic logic. 
Hybridization of other soft computing techniques with 
techniques based on neutrosophic logic can be done to analyze 
the indeterminacy present in the data. 
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Abstract. In this paper, we use PCR5 in order to fusion the 
information of two sources providing subjective probabilities of an 
event A to occur in the following form: chance that A occurs, 
indeterminate chance of occurrence of A, chance that A does not 
occur.
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I. INTRODUCTION 

Neutrosophic Probability [1] was defined in 1995 and 
published in 1998, together with neutrosophic set, neutrosophic 
logic, and neutrosophic probability. 

The words “neutrosophy” and “neutrosophic” were 
introduced by F. Smarandache in his 1998 book. 
Etymologically, “neutrosophy” (noun) [French neutre < Latin 
neuter, neutral, and Greek sophia, skill/wisdom] means 
knowledge of neutral thought. While “neutrosophic” 
(adjective), means having the nature of, or having the 
characteristic of Neutrosophy. 

Neutrosophy is a new branch of philosophy which studies 
the origin, nature, and scope of neutralities, as well as their 
interactions with different ideational spectra. 

Zadeh introduced the degree of membership/truth (t) in 
1965 and defined the fuzzy set.  

Atanassov introduced the degree of nonmembership/ 
falsehood (f) in 1986 and defined the intuitionistic fuzzy set.  

Smarandache introduced the degree of 
indeterminacy/neutrality (i) as independent component in 1995 
(published in 1998) and defined the neutrosophic set. He has 
coined the words “neutrosophy” and “neutrosophic”. In 2013 
he refined/split the neutrosophic set to n components: t1, t2, 
…tj; i1, i2, …, ik; f1, f2, …, fl, with j+k+l = n > 3. And, as
particular cases of refined neutrosophic set, he split the fuzzy 

set truth into t1, t2, …; and the intuitionistic fuzzy set into t1, t2, 
… and f1, f2, … .

See: http://fs.gallup.unm.edu/neutrosophy.htm.

For single valued neutrosophic logic, the sum of the 
components is: 

0 ≤ t+i+f ≤ 3 when all three components are independent; 

0 ≤ t+i+f ≤ 2 when two components are dependent, while the 
third one is independent from them; 

0 ≤ t+i+f ≤ 1 when all three components are dependent. 

When three or two of the components T, I, F are independent, 
one leaves room for incomplete information (sum < 1), 
paraconsistent and contradictory information (sum > 1), or 
complete information (sum = 1).  

If all three components T, I, F are dependent, then similarly 
one leaves room for incomplete information (sum < 1), or 
complete information (sum = 1). 

II. DEFINITION OF NEUTROSOPHIC MEASURE

A neutrosophic space is a set which has some 
indeterminacy with respect to its elements. 

Let X  be a neutrosophic space, and   a  -neutrosophic
algebra over X . A neutrosophic measure   is defined by for
neutrosophic set A  by 

3: X R  ,

   A = m(A), m(neutA),m(antiA) ,          (1) 

with antiA = the opposite of A, and neutA = the neutral 
(indeterminacy), neither A nor anti A (as defined above); for 
any A X  and A , 
m(A) means measure of the determinate part of A;

m(neutA) means measure of indeterminate part of A; 
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and m(antiA) means measure of the determinate part of antiA; 
where   is a function that satisfies the following two 
properties: 

a) Null empty set:    0 0 0, ,   .

b) Countable additivity (or  -additivity): For all

countable collections  n n L
A


   of      disjoint

neutrosophic sets in  , one has:

1n n n n

n L n L n Ln L

A m( A ), m( neutA ), m( antiA ) ( n )m( X )
  

   
     
  
  

(2) 
where X is the whole neutrosophic space, and 

1n n n
n L

n L n L

m( antiA ) ( n )m( X ) m( X ) m( A ) m( antiA ).


 

      

(3) 
A neutrosophic measure space is a triplet  X , , .

III. NORMALIZED NEUTROSOPHIC MEASURE

A neutrosophic measure is called normalized if 
   1 2 3X ( m( X ),m( neutX ),m( antiX )) x ,x ,x   ,

(4) 
with 1 2 3 1x x x   , and 1 2 30 0 0x ,x ,x   , where, of 

course, X is the whole neutrosophic measure space. 
As a particular case of neutrosophic measure   is the 
neutrosophic probability measure, i.e. a neutrosophic measure 
that measures probable/possible propositions 

 0 3X  ,

where X is the whole neutrosophic probability sample space. 

For single valued neutrosophic logic, the sum of the 
components is: 

0 ≤ x1+x2+x3 ≤ 3 when all three components are independent; 

0 ≤ x1+x2+x3 ≤ 2 when two components are dependent, while 
the third one is independent from them; 

0 ≤ x1+x2+x3 ≤ 1 when all three components are dependent. 

When three or two of the components x1, x2, x3 are 
independent, one leaves room for incomplete information 
(sum < 1), paraconsistent and contradictory information (sum 
> 1), or complete information (sum = 1).  

If all three components x1, x2, x3 are dependent, then 
similarly one leaves room for incomplete information (sum < 
1), or complete information (sum = 1).  

IV. NORMALIZED PROBABILITY

We consider the case when the sum of the components 
m(A) + m(neutA) + m(antiA) =1. 

We may denote the normalized neutrosophic probability 
of an event A as , where t is the chance that 

 occurs, i is indeterminate chance of occurrence of , and f 
is the chance that  does not occur. 

V. THE PCR5 FORMULA 

Let the frame of discernment 1 2{ , ,..., }, 2.n n      

Let ( , , , )G C     be the super-power set, which is Θ 
closed under union, intersection, and respectively 
complement. 

Let’s consider two masses provided by 2 sources: 
m1, m2 : G  [0, 1]. 

The conjunctive rule is defined as 

1 2

12 1 1 2 2
,

( ) ( ) ( )
X X G

m X m X m X


  . (5) 

Then the Proportional Conflict Redistribution Rule (PCR) #5 
formula for 2 sources of information is defined as follows: 

\ { }X G   ,  
2 2

1 2 2 1
5 12

\{ } 1 2 1 2

( ) ( ) ( ) ( )( ) ( ) [ ]
( ) ( ) ( ) ( )PCR

Y G X

m X m Y m X m Y
m X m X

m X m Y m X m Y

  
 



(6) 
where all denominators are different from zero.  
If a denominator is zero, that fraction is discarded. 

VI. APPLICATION IN INFORMATION FUSION

Suppose an airplane  is detected by the radar. What is the
chance that  is friendly, neutrally, or enemy? 

Let’s have two sources that provide the following 
information: 

, and .  
Then: 

(7) 
Because:  is redistributed back to the truth (t) and 
indeterminacy proportionally with respect to  and 
respectively : 

 ,      (8) 

whence  ,  .      (9) 

Similarly,  is redistributed back to  and 
proportionally with respect to  and respectively : 

 ,    (10) 
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whence  ,  .                       (11) 

Similarly,  is redistributed back to  and  (falsehood) 
proportionally with respect to  and respectively : 

 ,    (12) 

whence  ,  .    (13) 

Again, similarly  is redistributed back to  and 
proportionally with respect to  and respectively : 

 ,    (14) 

whence  ,  .      (15) 

In the same way,  is redistributed back to  and 
proportionally with respect to  and respectively : 

 ,    (16) 

whence  ,  .    (17) 

While  is redistributed back to  and  proportionally 
with respect to  and respectively : 

 ,    (18) 

whence  ,  .    (19) 

Then 

(20) 
and 

(21) 

VII. EXAMPLE

Let’s compute:    . 
 and 

are replaced into the three previous neutrosophic logic 
formulas: 

▪ (using PCR5 rule)

. 

. 

. 
▪ (using Dempster’s rule)

Conj. rule: 
0.12 0.03 0.15 

Dempster’s rule: 
0.40 0.10 0.50 

This is actually a PCR5 formula for a frame of 
discernment  whose all intersections are 
empty. 

We can design a PCR6 formula too for the same frame. 
Another method will be to use the neutrosophic 

, which is a generalization of fuzzy . 
If we have two neutrosophic probabilities 

Friend Neutral Enemy 

then 
= 

Of course, the quantity of  will go to Friend, 
quantity of  will go to Neutral, 
and quantity of  will go to Enemy. 
The other quantities will go depending on the pessimistic 

or optimistic way: 
a) In the pessimistic way (lower bound)  will 

go to Neutral, and  to 
Enemy.

b) In the optimistic way (upper bound)  will 
go to Friend, and  to Neutral. 
About , we can split it half-half to Friend 
and respectively Enemy.
We afterwards put together the pessimistic and
optimistic ways as an interval neutrosophic
probability.

c) Of course, the reader or expert can use different
transfers of intermediate mixed quantities , 
and respectively  to Friend,
Neutral, and Enemy.
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CONCLUSION

We have introduced the application of neutrosophic 
probability into information fusion, using the combination of 
information provided by two sources using the PCR5.  

Other approaches can be done, for example the 
combination of the information using the N-norm and N-
conorm, which are generalizations of the T-norm and T-
conorm from the fuzzy theory to the neutrosophic theory.  

More research is needed in this direction. 

References
[1] F. Smarandache, Neutrosophy. Neutrosophic Probability, Set, and 

Logic, Amer. Res. Press, Rehoboth, USA, 105 p., 1998;  
http://fs.gallup.unm.edu/eBook-neutrosophics4.pdf (4th edition). 

[2] W. B. Vasantha Kandasamy, Florentin Smarandache, Fuzzy Cognitive 
Maps and Neutrosophic Cognitive Maps, Xiquan, Phoenix, 211 p., 
2003; http://fs.gallup.unm.edu/NCMs.pdf 

[3] F. Smarandache, Introduction of Neutrosophic Measure, Neutrosophic 
Integral, and Neutrosophic Probability, Sytech, Craiova, 2013. 

[4] F. Smarandache, n-Valued Refined Neutrosophic Logic and Its 
Applications in Physics, Progress in Physics, 143-146, Vol. 4, 2013;  
http://fs.gallup.unm.edu/n-ValuedNeutrosophicLogic.pdf  

[5] F. Smarandache, (t,i,f)-Neutrosophic Structures and I-Neutrosophic 
Structures, Neutrosophic Sets and Systems, 3-10, Vol. 8, 2015. 

[6] F. Smarandache, J. Dezert, Information Fusion Based on New 
Proportional Conflict Redistribution Rules, Proceedings of the 8th 
International Conference on Information Fusion, Philadelphia, 25-29 
July, 2005; IEEE Catalog Number: 05EX1120C. 

79Neutrosophic Sets and Systems, Vol. 16, 2017

Received: June 2, 2017.   Accepted: June 17, 2017.



Rough Neutrosophic Multisets 
Suriana Alias1, Daud Mohamad2, Adibah Shuib3 

1 Faculty of Computer and Mathematical Sciences, Universiti Teknologi Mara (UiTM) Kelantan, Campus Machang, Kelantan, 18500, Malaysia. E-
mail: suria588@kelantan.uitm.edu.my 

2 Faculty of Computer and Mathematical Sciences, Universiti Teknologi Mara (UiTM) Shah Alam, Shah Alam, 40450, Malaysia. E-mail: 
daud@tmsk.uitm.edu.my 

3 Faculty of Computer and Mathematical Sciences, Universiti Teknologi Mara (UiTM) Shah Alam, Shah Alam, 40450, Malaysia. E-mail: 
adibah@tmsk.uitm.edu.my 

Abstract. Many past studies largely described the con-
cept of neutrosophic sets, neutrosophic multisets, rough 
sets, and rough neutrosophic sets in many areas. Howev-
er, no paper has discussed about rough neutrosophic mul-
tisets. In this paper, we present some definition of rough 
neutrosophic multisets such as complement, union and 

intersection. We also have examined some desired prop-
erties of rough neutrosophic multisets based on these def-
initions. We use the hybrid structure of rough set and 
neutrosophic multisets since these theories are powerful 
tool for managing uncertainty, indeterminate, incomplete 
and imprecise information.
 

Keywords: Neutrosophic set, neutrosophic multiset, rough set, rough neutrosophic set, rough neutrosophic multisets

1 Introduction

In our real-life problems, there are situations with un-
certain data that may be not be successfully modelled by 
the classical mathematics. For example, the opinion about 
“beauty”, which is can be describe by more beauty, beauty, 
beauty than, or less beauty. Therefore, there are some 
mathematical tools for dealing with uncertainties such as 
fuzzy set theory introduced by Zadeh [1], intuitionistic 
fuzzy set theory introduced by Attanasov [2], rough set 
theory introduced by Pawlak [3], and soft set theory initi-
ated by Molodtsov [4]. Rough set theory introduced by 
Pawlak in 1981/1982, deals with the approximation of sets 
that are difficult to describe with the available information. 
It is expressed by a boundary region of set and also ap-
proach to vagueness. After Pawlak’s work several re-
searcher were studied on rough set theory with applications 
[5], [6].  

However, these concepts cannot deal with indetermi-
nacy and inconsistent information. In 1995, Smarandache 
[7] developed a new concept called neutrosophic set (NS) 
which generalizes probability set, fuzzy set and intuition-
istic fuzzy set. There are three degrees of membership de-
scribed by NS which is membership degree, indeterminacy 
degree and non-membership degree. This theory and their 
hybrid structures has proven useful in many different field 
[8], [9], [10], [11],[12], [13],[14].  

Broumi et al. [15] proposed a hybrid structure called 
neutrosophic rough set which is combination of neutro-
sophic set [7] and rough set [3] and studied their properties. 
Later, Broumi et al. [16] introduced interval neutrosophic 

rough set that combines interval- valued neutrosophic sets 
and rough sets. It studies roughness in interval- valued 
neutrosophic sets and some of its properties. After the in-
troduction of rough neutrosophic set theory, many interest-
ing application have been studied such as in medical or-
ganisation [17], [18], [19].  

But until now, there have been no study on rough neu-
trosophic multisets (RNM). Therefore, the objective of this 
paper is to study the concept of RNM which is combina-
tion of rough set [3] and neutrosophic multisets [20] as a 
generalization of rough neutrosophic sets [15].  

This paper is arranged in following manner. In section 
2, some mathematical preliminary concepts were recall for 
more understanding about RNM. In section 3, the concepts 
of RNM and some of their properties are presented with 
examples. Finally, we conclude the paper.  

2 Mathematical Preliminaries 

In this section, we mainly recall some notions related 
to neutrosophic sets [7], [21], [22], neutrosophic multisets 
[23], [24], [20], [25], rough set [3], and rough neutrosophic 
set [15], [17], that relevant to the present work and for fur-
ther details and background. 
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Definition 2.1 (Neutrosophic Set) [7] Let X be an uni-
verse of discourse, with a generic element in X denoted by 
x, the neutrosophic (NS) set is an object having the form   

A = {⟨x, (TA(x), IA(x), FA(x))⟩ | x ∈ X} 

where the functions T, I, F : X →]−0, 1+[ define respective-
ly the degree of membership (or Truth), the degree of inde-
terminacy, and the degree of non-membership (or False-
hood) of the element x ∈ X to the set A with the condition 

−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+

From a philosophical point of view, the neutrosophic set 
takes the value from real standard or non-standard subsets 
of ]−0, 1+[. So, instead of ]−0, 1+[ we need to take the inter-
val [0, 1] for technical applications, because ]−0, 1+[ will be 
difficult to apply in the real applications such as in scien-
tific and engineering problems. Therefore, we have 

A = {⟨x, (TA(x), IA(x), FA(x))⟩ | x ∈  X, TA(x), IA(x),   

FA(x) ∈ [0, 1]}. 

There is no restriction on the sum of TA(x); IA(x) and FA(x), 
so  

0 ≤ TA(x) + IA(x) + FA(x) ≤ 3

For two NS, 

A = {⟨x, (TA(x), IA(x), FA(x))⟩ | x ∈ X} and 

B = {⟨x, (TB(x), IB(x), FB(x))⟩ | x ∈ X} 

the relations are defined as follows: 
(i) A ⊆ B if and only if TA(x) ≤ TB(x), IA(x) ≥ IB(x), 

FA(x) ≥ FB(x),  
(ii) A = B if and only if TA(x) = TB(x), IA(x) = IB(x), 

FA(x) = FB(x), 
(iii) A ∩ B = {⟨x, min(TA(x),TB(x)), max(IA(x),IB(x)), 

max(FA(x),FB(x))⟩ | x ∈ X}, 
(iv) A ∪ B = {⟨x, max(TA(x),TB(x)), min(IA(x),IB(x)), 

min(FA(x),FB(x))⟩ | x ∈ X}, 
(v) Ac = {⟨x, FA(x), 1− IA(x), TA(x)⟩ | x ∈ X} 
(vi) 0n = (0, 1, 1) and 1n = (1, 0, 0). 

As an illustration, let us consider the following example. 

Example 2.2. Assume that the universe of discourse U = 
{x1, x2, x3}, where x1 characterizes the capability, x2 char-
acterizes the trustworthiness and x3 indicates the prices of 
the objects. It may be further assumed that the values of x1, 
x2, and x3 are in [0, 1] and they are obtained from some 
questionnaires of some experts. The experts may impose 
their opinion in three components which is the degree of 
goodness, the degree of indeterminacy and that of poorness 

to explain the characteristics of the objects. Suppose A is a 
neutrosophic set (NS) of U, such that, 

A = {⟨x1, (0.3, 0.4, 0.5)⟩ , ⟨x2, (0.5, 0.1, 0.4)⟩ , 
⟨x3, (0.4, 0.3, 0.5)⟩}, 

where the degree of goodness of prices is 0.4, degree of in-
determinacy of prices is 0.3 and degree of poorness of 
prices is 0.5 etc. 

The following definitions are refer to [25]. 

Definition 2.3 (Neutrosophic Multisets) Let E be a 
universe. A neutrosophic multiset (NMS) A on E can be 
defined as follows:  



ExxFxFxF

xIxIxIxTxTxT x,A

p
AAA

p
AAA

p
AAA





:))(),...,(),((

)),(),...,(),(()),(),...,(),((
21

2121

where, the truth membership sequence 
))(),...,(),(( 21 xTxTxT p

AAA , the indeterminacy membership 

sequence ))(),...,(),(( 21 xIxIxI p
AAA and the falsity membership 

sequence ))(),...,(),(( 21 xFxFxF p
AAA may be in decreasing or 

increasing order, and the sum of 
 1,0)(),(),( xFxIxT i

A
i
A

i
A satisfies the condition 

3)()()(0  xFxIxT i
A

i
A

i
A  for any Ex and i =1, 2,…, p. 

Also, p is called the dimension (cardinality) of NMS A. 

For convenience, a NMS A can be denoted by the sim-
plified form: 

 },...,2,1,)(),(),(( piExxFxIxT x,A i
A

i
A

i
A 

Definition 2.4 Let A,B ∈ NMS(E). Then, 

(i) A is said to be NM subset of B is denoted by BA~

if )()( xTxT i
B

i
A  , )()( xIxI i

B
i
A  , 

ExxFxF i
B

i
A  ,)()( .

(ii) A is said to be neutrosophic equal of B is denoted 
by A = B if 

)()( xTxT i
B

i
A  , )()( xIxI i

B
i
A  , 

.,)()( ExxFxF i
B

i
A 

(iii) The complement of A denoted by CA
~

 is defined by 



ExxTxTxT

xIxIxI

xFxFxF x,A

p

AAA

p

AAA

p

AAA

C







:))(),...,(),((

)),(1),...,(1),((1

)),(),...,(),((

21

21

21~
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(iv) If  0)( xT i
A and 1)()(  xFxI i

A
i
A  for all Ex

and  ,...,,2,1 pi  then A is called null ns-set and 
denoted by ~ . 

(iv) If  1)( xT i
A and 0)()(  xFxI i

A
i
A  for all Ex

and  ,...,,2,1 pi  then A is called universal ns-

set and denoted by E
~

. 

Definition 2.5 Let A,B ∈ NMS(E). Then, 

(i) The union of A and B is denoted by CBA 
~ is 

    defined by 



ExxFxFxF

xIxIxI

xTxTxT x,C

p

CCC

p

CCC

p

CCC




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21

21

21
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i
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i
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i
C

i
B

i
A

i
C





  for Ex  and pi ...,,2,1 . 

(ii) The intersection of A and B is denoted by 
DBA 

~ and is defined by 



ExxFxFxF

xIxIxI

xTxTxT x,D

p
DDD

p
DDD

p
DDD





|))(),...,(),((

)),(),...,(),((

)),(),...,(),((

21

21

21

where 

),()()(

,)()()(),()()(

xFxFxF
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i
B

i
A

i
D

i
B

i
A

i
D

i
B

i
A

i
D





  for Ex  and pi ...,,2,1 . 

(iii) The addition of A and B is denoted by GBA 
~

and is defined by 


ExxFxFxF

xIxIxI

xTxTxT x,G

p
GGG

p
GGG

p
GGG





|))(),...,(),((

)),(),...,(),((

)),(),...,(),((
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21
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,)()()(

),()()()()(

xFxFxF
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i
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i
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i
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i
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i
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
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  for Ex  and pi ...,,2,1 . 

(iv) The multiplication of A and B is denoted by 
HBA ~ and is defined by



ExxFxFxF

xIxIxI

xTxTxT x,H

p
HHH

p
HHH

p
HHH


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)),(),...,(),((

)),(),...,(),((

21
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21

where 

),()()()()(

),()()()()(

),()()(

xFxFxFxFxF

xIxIxIxIxI

xTxTxT

i
B

i
A

i
B

i
A

i
H

i
B

i
A

i
B

i
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i
H

i
B

i
A

i
H







for Ex  and pi ...,,2,1 . 

Here  ,,,,  denotes minimum, maximum, addition, 
multiplication, subtraction of real numbers respectively. 

Definition 2.6 (Rough Set) [3] Let R be an equivalence 
relation on the universal set U. Then, the pair (U, R) is 
called a Pawlak’s approximation space. An equivalence 
class of R containing x will be denotes by [x]R . Now, for  X 
⊆ U, the upper and lower approximation of X with the re-
spect to (U, R) are denoted by, respectively A1(x) and A2(x) 
and defined by 

A1(x) = {x : [x]R ⊆ X} and A2(x) = {x : [x]R ∩ X ≠ ∅} 

Now, if A1(x) = A2(x), then X is called definable; otherwise, 
the pair A(X) = (A1(x), A2(x)) is called the rough set of X in 
U. 

Example 2.7 [5] Let A =(U, R) be an approximate space 
where U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and the relation R 
on U be definable aRb iff a ≡ b (mod 5) for all a, b ∈ U. 
Let us consider a subset X = {1, 2, 6, 7, 8, 9} of U. Then, 
the rough set of X is A(x) = ( A (x), ))(xA where A (x) = {1, 

2, 6, 7} and )(xA = {1, 2, 3, 4, 6, 7, 8, 9}. Here, the equiv-
alence classes are 

[0]R = [5]R = [10]R = {0, 5, 10} 

[1]R = [6]R = {1, 6} 

[2]R = [7]R = {2, 7} 

[3]R = [8]R = {3, 8} 

[4]R = [9]R = {4, 9} 

Thus, A (x) = {x ∈ U: [x]R ⊆ X } ={1, 2, 6, 7} and 

)(xA = {x : [x]R ∩ X ≠ ∅}= {1, 2, 3, 4, 6, 7, 8, 9}. 

The following definitions are refer to [15]. 

82 Neutrosophic Sets and Systems, Vol. 16, 2017

Suriana Alias, Daud Mohamad, Adibah Shuib. Rough Neutrosophic Multisets



Definition 2.8 Let A = (A1,A2) and B = (B1,B2) be two 
rough sets in the approximation space S = (U, R). Then, 

(i) A ∪ B = (A1 ∪ B1, A2 ∪ B2), 

(ii) A ∩ B = (A1 ∩ B1, A2 ∩ B2), 

(iii) A ⊆ B if A ∩ B = A, 

(iv) ∼ A = {U −A2, U −A1}. 

Definition 2.9 (Rough Neutrosophic Set) Let U be a 
non-null set and R be an equivalence relation on U. Let A 
be neutrosophic set in U with the membership function TA, 
indeterminacy function IA and non-membership function 
FA. The lower and the upper approximations of A in the 
approximation (U, R) denoted by )(AN and )(AN are re-
spectively defined as follows: 

)(AN = {⟨x, (TA(x), IA(x), FA(x))⟩ | y ∈[x]R, x ∈U }, 

)(AN  = {⟨x, (TA(x), IA(x), FA(x))⟩ | y ∈[x]R, x ∈U } 

where 

   

 
)()(

),()(),()(
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)()(

yFxF

yIxIyTxT

A
xy

AN

A
xy
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xy

AN

R

RR









   

 
)()(

),()(),()(
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)()(

yFxF

yIxIyTxT

A
Rxy

AN

A
Rxy

ANA
Rxy

AN









So, 

3)()()(0 )()()(  xFxIxT ANANAN ,    and 

3)()()(0 )()()(  xFxIxT
ANANAN  

Here  and  denote “min” and “max’’ operators re-
spectively. TA(y), IA(y) and FA(y) are the membership, inde-
terminacy and non-membership degrees of y with respect 
to A. N (A) and )(AN are two neutrosophic sets in U.  

Thus, NS mappings N    UNUNN :, are, respec-
tively, referred to as the upper and lower rough NS approx-
imation operators, and the pair is (N (A), ))(AN  called the 
rough neutrosophic set in (U, R).  

Based on the above definition, it is observed that N (A) 
and )(AN have a constant membership on the equivalence 
classes of U, if N (A) = )(AN ; i.e., 

)()(

),()(),()(

)()(

)()()()(

xIxF

xIxIxTxT

ANAN

ANANANAN





For any ,Ux  A is called a definable neutrosophic 
set in the approximation (U, R). Obviously, zero neutro-

sophic set (0N) and unit neutrosophic sets (1N) are definable 
neutrosophic sets. Let consider the example in the follow-
ing. 

Example 2.10 Let U = { p1, p2,  p3,  p4,  p5,  p6,  p7,  p8 } 
be the universe of discourse. Let R be an equivalence rela-
tion its partition of U is given by 

U/R = { {p1, p4}, {p2,  p3, p6}, { p5}, { p7,  p8} }. 

Let N(A) = { (p1, (0.3, 0.4, 0.5), (p4, (0.4, 0.6, 0.5)), (p5, 
(0.5, 0.7, 0.3)), (p7, (0.2, 0.4, 0.6)) } be a neutrosophic set 
of U. By definition 2.6 and 2.9, we obtain:  

N(A) = { (p1, (0.3, 0.6, 0.5)), (p4, (0.3, 0.6, 0.5)), (p5, 
(0.5, 0.7, 0.3)) } and 

)(AN = { (p1, (0.3, 0.4, 0.5)), (p4, (0.3, 0.4, 0.5)), (p5, 
(0.5, 0.7, 0.3)), (p7, (0.2, 0.4, 0.6)), (p8, (0.2, 0.4, 0.6)) }. 

For another neutrosophic sets, 

N(B) = { (p1, (0.3, 0.4, 0.5), (p4, (0.3, 0.4, 0.5)), (p5, 
(0.5, 0.7, 0.3)) }. 

The lower approximation and upper approximation of N(B) 
are calculated as 

N(B) = { (p1, (0.3, 0.4, 0.5)), (p4, (0.3, 0.4, 0.5)), (p5, 
(0.5, 0.7, 0.3)) } and 

)(BN = { (p1, (0.3, 0.4, 0.5)), (p4, (0.3, 0.4, 0.5)), (p5, 
(0.5, 0.7, 0.3)) }. 

Obviously, N(B) = )(BN is a definable neutrosophic set in 
the approximation space (U, R). 

Definition 2.11 If N(A) = (N(A), ))(AN is a rough neutro-
sophic set in (U, R), the rough complement of N(A) is the 
rough neutrosophic set denoted by ~N(A) = (N(A)c, 

))( cAN where N(A)c, cAN )( are the complements of neu-
trosophic sets N(A) and )(AN respectively,  

cAN )( = {⟨ )(),(1),(, )()()( xTxIxFx ANANAN  ⟩ | x ∈U}, 

cAN )( = {⟨ )(),(1),(, )()()( xTxIxFx
ANANAN

 ⟩ | x ∈U} 

Definition 2.12 If )( 1FN and )( 2FN are two rough neu-
trosophic set of the neutrosophic sets 1F and 2F respective-
ly in U, then we define the following: 

(i) N(F1) = N(F2) iff )()( 21 FNFN   and      

)()( 21 FNFN 

(ii) N(F1) ⊆ N(F2)  iff )()( 21 FNFN   and     

)()( 21 FNFN 
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(iii) )()( 21 FNFN  )()(),()( 2121 FNFNFNFN    

(iv) )()( 21 FNFN  )()(),()( 2121 FNFNFNFN   

(v)  )()( 21 FNFN )()(),()( 2121 FNFNFNFN 

(vi)  )()( 21 FNFN )()(),()( 2121 FNFNFNFN 

If N, M, L are rough neutrosophic set in (U, R), then the re-
sults in the following proposition are straightforward from 
definitions. 

Proposition 2.13. 

(i) ∼ N (~N) = N  

(ii) NMMNNMMN   ,

(iii) ),()( LMNLMN    and       
)()( LMNLMN    

(iv) ),()()( LNMNLMN   and 

)()()( LNMNLMN  

De Morgan’s Laws are satisfied for rough neutrosophic 
sets: 

Proposition 2.14. 

(i) ∼ ( N (F1)   N (F2) ) =  (∼N (F1))   (~ N (F2)) 

(ii) ∼ ( N (F1)   N (F2) ) =  (∼N (F1))   (~N (F2)) 

Proposition 2.15. If F1 and F2 are two neutrosophic sets 
in U such that F1 ⊆ F2, then N (F1) ⊆ N (F2)

(i) )()()( 2121 FNFNFFN    

(ii) )()()( 2121 FNFNFFN    

Proposition 2.16. 

(i) )(~~)( FNFN   

(ii) )(~~)(~ FNFN   

(iii) )()( FNFN   

3 Rough Neutrosophic Multisets

Based on the equivalence relation on the universe of 
discourse, we introduce the lower and upper approxima-
tions of neutrosophic multisets [20] in a Pawlak’s approx-
imation space [3] and obtained a new notion called rough 
neutrosophic multisets (RNM). Its basic operations such as 
complement, union and intersection also discuss over them 
with the examples. Some of it is quoted from [15], 
[25],[20], [26]. 

Definition 3.1 Let U be a non-null set and R be an equiv-
alence relation on U. Let A be neutrosophic multisets in U 
with the truth membership sequence i

AT , indeterminacy 

membership sequences i

AI and falsity membership se-
quences i

AF . The lower and the upper approximations of A 
in the approximation (U, R) denoted by )(ANm and 

)(ANm are respectively defined as follows: 

)(ANm = {⟨x, ( )()( xT i
ANm , )()( xI i

ANm , )()( xF i
ANm )⟩ |

y ∈ [x]R, x ∈ U}, 
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such that, 

)()( xT i
ANm , )()( xI i
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ANm , 
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xFxIxT
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NmA
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Here  and  denote “min” and “max’’ operators re-
spectively. )(yT i

A
, )(yI i

A
and )(yF i

A
are the membership se-

quences, indeterminacy sequences and non-membership 
sequences of y with respect to A and i =1, 2, …, p. 

Since Nm(A) and )(ANm are two neutrosophic multi-
sets in U, thus neutrosophic multisets mappings 
Nm    UNmUNmNm :, are respectively referred to as 
the upper and lower rough neutrosophic multisets approx-
imation operators, and the pair is (Nm(A), ))(ANm called the 
rough neutrosophic multisets in (U, R). 

From the above definition, we can see that Nm(A) and 
)(ANm have constant membership on the equivalence clas-

ses of U, if Nm(A) )(ANm ; i.e., 

),()( )()( xTxT i

ANm

i
ANm 

),()( )()( xIxI i

ANm

i
ANm 

).()( )()( xFxF i

ANm

i
ANm 

Let consider the following example. 

Example 3.2 Let U = { p1, p2,  p3,  p4,  p5,  p6,  p7,  p8 } be 
the universe of discourse. Let R be an equivalence relation 
its partition of U is given by 

U/R = {{p1, p4}, {p2,  p3, p6}, { p5}, { p7,  p8}}. 

Let Nm(A) = {(<p1, (0.8, 0.6, 0.5), (0.3, 0.2, 0.1), (0.4, 0.2, 
0.1)>, <p4, (0.5, 0.4, 0.3), (0.4, 0.4, 0.3), (0.6, 0.3, 0.3)>),  
<p5, (0.2, 0.1, 0.0), (0.3, 0.2, 0.2), (0.8, 0.7, 0.7)>, <p7, (0.7, 
0.6, 0.5), (0.3, 0.2, 0.1), (0.4, 0.3, 0.2)> } be a neutrosophic 
multisets of U. By definition 3.1 we obtain:  

Nm(A) = {p1, p4, p5} 

={<p1, (0.5, 0.6, 0.5), (0.3, 0.4, 0.3), (0.4, 0.3, 0.3)>, 
<p4, (0.5, 0.6, 0.5), (0.3, 0.4, 0.3), (0.4, 0.3, 0.3)>, <p5, 
(0.2, 0.1, 0.0), (0.3, 0.2, 0.2), (0.8, 0.7, 0.7)>} and 

)(ANm = {p1, p4, p5, p7, p8}  

{<p1, (0.8, 0.4, 0.3), (0.4, 0.2, 0.1), (0.6, 0.2, 0.1)>, <p4, 
(0.8, 0.4, 0.3), (0.4, 0.2, 0.1), (0.6, 0.2, 0.1)>, <p5, (0.2, 
0.1, 0.0), (0.3, 0.2, 0.2), (0.8, 0.7, 0.7)>, <p7, (0.7, 0.6, 
0.5), (0.3, 0.2, 0.1), (0.4, 0.3, 0.2)>, <p8, (0.7, 0.6, 0.5), 
(0.3, 0.2, 0.1), (0.4, 0.3, 0.2)>}.  

For another neutrosophic multisets 

Nm(B) = {<p1, (0.8, 0.6, 0.5), (0.3, 0.2, 0.1), (0.4, 0.2, 
0.1)>, <p4, (0.5, 0.4, 0.3), (0.4, 0.4, 0.3), (0.6, 0.3, 0.3)>, 
<p5, (0.2, 0.1, 0.0), (0.3, 0.2, 0.2), (0.8, 0.7, 0.7)>}. 

The lower approximation and upper approximation of 
Nm(B) are calculated as 

Nm(B) = {p1, p4, p5} 

={<p1, (0.5, 0.6, 0.5), (0.3, 0.4, 0.3), (0.4, 0.3, 0.3)>, 
<p4, (0.5, 0.6, 0.5), (0.3, 0.4, 0.3), (0.4, 0.3, 0.3)>, <p5, 
(0.2, 0.1, 0.0), (0.3, 0.2, 0.2), (0.8, 0.7, 0.7)>} and 

)(BNm = {p1, p4, p5} 

={<p1, (0.5, 0.6, 0.5), (0.3, 0.4, 0.3), (0.4, 0.3, 0.3)>, 
<p4, (0.5, 0.6, 0.5), (0.3, 0.4, 0.3), (0.4, 0.3, 0.3)>, <p5, 
(0.2, 0.1, 0.0), (0.3, 0.2, 0.2), (0.8, 0.7, 0.7)>} 

Obviously, Nm(B) = )(BNm is a definable neutrosophic 
multisets in the approximation space (U, R). 

Definition 3.3 Let ))(),(()( ANmANmANm  be a rough 
neutrosophic multisets in (U, R). The rough complement of 
Nm(A) is denoted by ))(,)(()(~ cc ANmANmANm  where 

cANm )( and cANm )( are the complements of neutrosophic 

multisets of )(ANm and )(ANm respectively, 

cANm )( = {⟨x, ( )()( xF i
ANm , )(1 )( xI i

ANm , )()( xT i
ANm )⟩ 

| x ∈ U}, 
cANm )(  = {⟨x, ( )(

)(
xF

A

i

Nm
, )(1

)(
xI

A

i

Nm
 , )(

)(
xT

A

i

Nm
)⟩ 

| x ∈ U} 

where i = 1, 2, …, p. 

Example 3.4 Consider RNM, Nm(A) in the set X = {x1, x2, 
x3, x4, x5, x6, x7},  y ∈ [x]R  is equivalence relation and i = 1, 
2, 3. 

Let Nm(A)  = {⟨x1, [(0.6, 0.4, 0.4), (0.7, 0.3, 0.4)], [(0.8, 
0.4, 0.5), (0.7, 0.6, 0.5)], [(0.4, 0.3, 0.5), (0.3, 0.2, 0.7)] ⟩,
⟨ x2, [(0.4, 0.3, 0.3), (0.5, 0.3, 0.4)], [(0.2, 0.4, 0.4), (0.3, 
0.3, 0.5)], [(0.7, 0.8, 0.4), (0.7, 0.1, 0.5)]⟩, ⟨ x4, [(0.2, 0.5, 
0.7), (0.7, 0.8, 0.0)], [(1.0, 1.0, 0.0), (0.9, 0.2, 0.5)], [(0.1, 
0.5, 0.3), (0.2, 0.8, 0.5)] ⟩} 

Then the complement of Nm(A) is defined as  
))(,)(()(~ cc ANmANmANm  = 

{⟨x1, [(0.4, 0.6, 0.6), (0.4, 0.7, 0.7)], [(0.5, 0.6, 0.8), 
(0.5, 0.4, 0.7)], [(0.5, 0.7, 0.4), (0.7, 0.8, 0.3)] ⟩, ⟨ x2, 
[(0.3, 0.7, 0.4), (0.4, 0.7, 0.5)], [(0.4, 0.6, 0.2), (0.5, 
0.7, 0.3)], [(0.4, 0.2, 0.7), (0.5, 0.9, 0.7)]⟩, ⟨ x4, [(0.7, 
0.5, 0.2), (0.0, 0.2, 0.7)], [(0.0, 0.0, 1.0), (0.5, 0.8, 
0.9)], [(0.3, 0.5, 0.1), (0.5, 0.2, 0.2)] ⟩}.

85Neutrosophic Sets and Systems, Vol. 16, 2017

Suriana Alias, Daud Mohamad, Adibah Shuib. Rough Neutrosophic Multisets



Definition 3.5  Let )(ANm and )(BNm are RNM respec-
tively in U, then the following definitions hold:  

(i) Nm(A) = Nm(B) iff )()( BNmANm  and 

)()( BNmANm   
(ii) Nm(A) ⊆ Nm(B) iff )()( BNmANm  and                 

)()( BNmANm 

(iii) )()( BNmANm   

)()(),()( BNmANmBNmANm 

(iv) )()( BNmANm   

)()(),()( BNmANmBNmANm 

(v)  )()( BNmANm  

)()(),()( BNmANmBNmANm 

(vi)  )()( BNmANm  

)()(),()( BNmANmBNmANm 

Example 3.6 Consider Nm(A) in Example 3.4 and Nm(B) 
are two RNM.  

Nm(B)  = {⟨x1, [(0.6, 0.1, 0.2), (0.3, 0.3, 0.3)], [(0.7, 0.2, 
0.5), (0.8, 0.6, 0.5)], [(0.7, 0.3, 0.5), (1.0, 0.2, 0.7)] ⟩,
⟨ x2, [(0.4, 0.4, 0.7), (0.6, 0.5, 0.6)], [(0.3, 0.4, 0.4), 
(0.6, 0.2, 0.5)], [(0.7, 0.8, 0.4), (0.6, 0.1, 0.5)]⟩, ⟨ x3, 
[(0.3, 0.4, 0.5), (0.6, 0.4, 0.0)], [(1.0, 1.0, 0.0), (0.7, 
0.2, 0.5)], [(0.1, 0.5, 0.3), (0.2, 0.8, 0.5)] ⟩, ⟨ x4, [(0.4, 
0.5, 0.6), (0.7, 0.8, 0.2)], [(1.0, 1.0, 0.0), (0.9, 0.2, 
0.1)], [(0.6, 0.5, 0.3), (0.2, 0.2, 0.7)] ⟩}

Then, we have

(i) Nm(A) ⊆ Nm(B) 

(ii) )()( BNmANm   

= {⟨x1, [(0.6, 0.1, 0.2), (0.7, 0.3, 0.3)], [(0.8, 0.2, 
0.5), (0.7, 0.6, 0.5)], [(0.7, 0.3, 0.5), (1.0, 0.2, 0.7)] ⟩,
⟨ x2, [(0.4, 0.3, 0.3), (0.6, 0.3, 0.4)], [(0.3, 0.4, 0.4), 
(0.6, 0.2, 0.5)], [(0.7, 0.8, 0.4), (0.7, 0.1, 0.5)]⟩, ⟨ x3, 
[(0.3, 0.4, 0.5), (0.6, 0.4, 0.0)], [(1.0, 1.0, 0.0), (0.7, 
0.2, 0.5)], [(0.1, 0.5, 0.3), (0.2, 0.8, 0.5)]⟩, ⟨x4, [(0.4, 
0.5, 0.6), (0.7, 0.8, 0.0)], [(1.0, 1.0, 0.0), (0.9, 0.2, 
0.1)], [(0.6, 0.5, 0.3), (0.2, 0.2, 0.5)] ⟩}. 

(iii) )()( BNmANm   

= {⟨x1, [(0.6, 0.4, 0.4), (0.3, 0.3, 0.4)], [(0.7, 0.4, 
0.5), (0.7, 0.6, 0.5)], [(0.4, 0.3, 0.5), (0.3, 0.2, 0.7)]⟩,
⟨ x2, [(0.4, 0.4, 0.7), (0.5, 0.5, 0.6)], [(0.2, 0.4, 0.4), 
(0.3, 0.3, 0.5)], [(0.7, 0.8, 0.4), (0.6, 0.1, 0.5)]⟩, ⟨x3, 

[(0.3, 0.4, 0.5), (0.6, 0.4, 0.0)], [(1.0, 1.0, 0.0), (0.7, 
0.2, 0.5)], [(0.1, 0.5, 0.3), (0.2, 0.8, 0.5)]⟩, ⟨x4, [(0.2, 
0.5, 0.7), (0.7, 0.8, 0.2)], [(1.0, 1.0, 0.0), (0.9, 0.2, 
0.5)], [(0.1, 0.5, 0.3), (0.2, 0.8, 0.7)] ⟩}.

Proposition 3.7 If Nm, Mm, Lm are the RNM in (U, R), 
then the following propositions are stated from definitions. 

(i) ∼ (~Nm) = Nm

(ii) NmMmMmNmNmMmMmNm   ,

(iii) ),()( LmMmNmLmMmNm    and       
)()( LmMmNmLmMmNm    

(iv) ),()()( LmNmMmNmLmMmNm    and 

   )()()( LmNmMmNmLmMmNm  

Proof (i): 

∼ (~ )))(),(((~~))( ANmANmANm 

))(,)((~ cc ANmANm

))(),(( ANmANm  
= Nm(A) 

Proof (ii – iv) : The proofs is straightforward from defini-
tion.

Proposition 3.8 De Morgan’s Law are satisfied for 
rough neutrosophic multisets: 

(i) ∼ (Nm(A)   Nm(B)) = (∼ Nm(A))  ( ~ Nm(B)) 

(ii)∼ (Nm(A)   Nm(B)) =(∼ Nm(A))   (~ Nm(B)) 

Proof (i):  

 (Nm(A)   Nm(B)) 

 = ∼ ({ Nm(A)  Nm(B) }, { )()( BNmANm  }) 

= (~{ Nm(A)  Nm(B) }, ~{ )()( BNmANm  }) 

= ({ Nm(A)  Nm(B) }c, { )()( BNmANm  }c) 

= (~{ Nm(A)  Nm(B) }, ~{ )()( BNmANm  }) 

= (∼Nm(A))  (~Nm(B)). 

Proof (ii): Similar to the proof of (i). 

Proposition 3.9. If A and B are two neutrosophic multi-
sets in U such that A ⊆ B, then Nm(A) ⊆ Nm(B)

(i) )()()( BNmANmBANm    

(ii) )()()( BNmANmBANm  
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Proof (i): 

}|)({inf)( )()( XxxTxT i
BANm

i
BANm    

)}|)(),({max(inf )()( XxxTxT i
BNm

i
ANm   

}}|)({inf},|)({inf{max )()( XxxTXxxT i
BNm

i
ANm 

}|))(,)({(max )()( XxxTxT i
BNm

i
ANm   

)()( )()( xTT i
BNm

i
ANm   

Similarly, 

)()()( )()()( xIIxI i
BNm

i
ANm

i
BANm   , 

)()()( )()()( xFFxF i
BNm

i
ANm

i
BANm  

 
Thus, )()()( BNmANmBANm  

Hence,  

)()()( BNmANmBANm  

Proof (ii): Similar to the proof of (i). 

Proposition 3.10. 

(i) Nm(A) = ∼ )(~ ANm  

(ii) )(~~)( ANmANm 

(iii) )()( ANmANm 

Proof (i): According to Definition 3.1, we can obtain 

A = {⟨x, ( )(),(),( xFxIxT i
A

i
A

i
A )⟩ | x ∈ X} 

~A = {⟨x, ( )(),(1),( xTxIxF i
A

i
A

i
A  )⟩ | x ∈ X} 

)(~ ANm = {⟨x, ( ),()(~ xF i

ANm
1- ),()(~ xI i

ANm
 

)()(~ xT i

ANm
)⟩ | y ∈ [x]R, x ∈ U} 

)(~~ ANm = {⟨x, ( ),()(~ xT i

ANm
1- (1- )),()(~ xI i

ANm
 

)()(~ xF i

ANm
)⟩ | y ∈ [x]R, x ∈ U} 

= {⟨x, ( ),()(~ xT i

ANm
),()(~ xI i

ANm

)()(~ xF i

ANm
)⟩ | y ∈ [x]R, x ∈ U} 

where 

 

 

 
),()(

),()(

),()(

)(~

)(~

)(~

yFxF

yIxI

yTxT

i
A

Rxy

i

ANm

i
A

Rxy

i

ANm

i
A

Rxy

i

ANm













Hence Nm(A) = ∼ )(~ ANm . 

Proof (ii): Similar to the proof of (i). 

Proof (iii): For any y ∈ Nm(A), we can have 

   
,)()()()( yTyTxT i

A
Rxy

i
A

Rxy

i
ANm




   
,)()()()( yIyIxI i

A
Rxy

i
A

Rxy

i
ANm


   and 

   
)()()()( yFyFxF i

A
Rxy

i
A

Rxy

i
ANm




Hence )()( ANmANm  . 

Conclusion

This paper firstly defined the rough neutrosophic mul-
tisets (RNM) theory and their properties and operations 
were studied. The RNM are the extension of rough neutro-
sophic sets [15]. The future work will cover the others op-
eration in rough set, neutrosophic multisets and rough neu-
trosophic set that is suitable for RNM theory such as the 
notion of inverse, symmetry, and relation.    
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Abstract. Recently, there has been increasing interest in 
competency-based education.  Additionally, neutrosophic 
cognitive maps and its application in decision making 
have become a topic of significant importance for re-
searchers and practitioners. In this paper, a framework 
33based on static analysis of neutrosophic cognitive maps 

applied to competencies modelling and prioritization in 
presented. A case study based on modelling and prioriti-
zation of transversal competencies in system engineering 
is developed. The paper ends with conclusion and future 
research directions. 
.

Keywords: : information systems, competencies, neutrosophic cognitive mapping, prioritization.

1 Introduction 

Recently, there has been increasing interest in competency-
based education [1].  Competency-based education is 
known to improve employability in students [2]There are 
many interdependencies among competencies, determining 
the interrelationship of competencies is very import for in 
evaluation [3].  

Neutrosophic sets and logic is a generalization of fuzzy set 
and logic based on neutrosophy [4]. Neutrosophy can handle 
indeterminate and inconsistent information, while fuzzy sets 
and intuitionistic fuzzy sets cannot describe them appropri-
ately [5]. In this paper a new model for competencies anal-
ysis based on neutrosophic cognitive maps(NCM) [6] is pre-
sented  giving methodological support and the possibility of 
dealing with interdependence, feedback and indeterminacy.  

This paper is structured as follows: Section 2 reviews some 
important preliminaries concepts about Neutrosophic cog-
nitive maps. In Section 3, a framework for competencies in-
terrelation analysis based on NCM static analysis is pre-
sented. Section 4 shows a case study of the proposed model. 
The paper ends with conclusions and further work recom-
mendations. 

2 Neutrosophic cognitive maps 

Neutrosophic Logic (NL) was introduced in 1995 as a gen-
eralization of the fuzzy logic, especially of the intuitionistic 

fuzzy logic [7]. A logical proposition P is characterized by 
three neutrosophic components: 

𝑁𝐿(𝑃)  = (𝑇, 𝐼, 𝐹) (1) 

where T is the degree of truth, F the degree of falsehood, 
and I the degree of indeterminacy. 
A neutrosophic matrix is a matrix where the elements a =
(aij)  have been replaced by elements in 〈R ∪ I〉 , where 
〈R ∪ I〉  is the neutrosophic integer ring [8].A neutrosophic 
graph is a graph in which at least one edge is a neutrosophic 
edge [9]. If indeterminacy is introduced in cognitive map-
ping it is called Neutrosophic Cognitive Map (NCM) [10].  
NCM are based on neutrosophic logic to represent uncer-
tainty and indeterminacy in cognitive maps [4]. A NCM is 
a directed graph in which at least one edge is an indetermi-
nacy denoted by dotted lines [11] (Figure 2.). 

Fig. 1. NCM example 
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In [12] and in [13] a static analysis of mental model frame-
work in the form of NCM is presented. The result of the 
static analysis  result is in the form neutrosophic numbers 
(a+bI, where I = indeterminacy) [14]. Finally a the de-neu-
trosophication process as proposes by Salmeron and 
Smarandache [15] is applied to given the final ranking 
value. In this paper, this model is extended and detailed to 
deal with factors prioritization. 

3 Proposed Framework 

Our aim is to develop a framework for competencies inter-
dependencies analysis based on NCM. The model consists 
of the following phases  

Fig. 2. Proposed framework for PEST analysis. 

1.1 Identifying competencies 

In this step, the relevant competencies are identified. Differ-
ent techniques can be used, for example the Delphi tech-
nique[16].  

1.2 Modelling interdependencies 

Causal interdependencies among competencies are mod-
elled. This step consists in the formation of NCM, according 
to the views of the evaluator.

1.3 Calculate centrality measures 

The following measures are calculated[17]  with absolute 
values of the  NCM adjacency matrix [18]: 

Outdegree 𝑜𝑑(𝑣𝑖) is the row sum of absolute values of a 
variable in the neutrosophic adjacency matrix. It shows the 
cumulative strengths of connections (𝑐𝑖𝑗) exiting the varia-
ble. 

𝑜𝑑(𝑣𝑖) = ∑ 𝑐𝑖𝑗
𝑁
𝑖=1    (2) 

Indegree 𝑖𝑑(𝑣𝑖)  is the column sum of absolute values of a 
variable. It shows the cumulative strength of variables en-
tering the variable. 

𝑖𝑑(𝑣𝑖) = ∑ 𝑐𝑗𝑖
𝑁
𝑖=1  (3) 

The centrality (total degree 𝑡𝑑(𝑣𝑖)), of a variable is the sum-
mation of its indegree (in-arrows) and outdegree (out-ar-
rows)  

𝑡𝑑(𝑣𝑖) = 𝑜𝑑(𝑣𝑖) + 𝑖𝑑(𝑣𝑖) (4) 

1.4 Ranking competencies 

A de-neutrosophication process gives an interval number for 
centrality. This one is based on max-min values of I . A neu-
trosophic value is transformed in an interval with two values, 
the maximum and the minimum value 𝐼 ∈ [0,1] . 

The contribution of a variable in a cognitive map can be un-
derstood by calculating its degree centrality, which shows 
how connected the variable is to other variables and what 
the cumulative strength of these connections are. The me-
dian of the extreme values [19] is used  to give a centrality 
value : 

𝜆([𝑎1, 𝑎2]) =
𝑎1+ 𝑎2

2
 (5) 

Then 

𝐴 > 𝐵 ⇔
𝑎1+ 𝑎2

2
>

𝑏1+ 𝑏2

2
 (6) 

 Finally, a ranking of variables is given. The numerical 
value it used for factor prioritization and/or reduction [20].  

4 Case study

In this case, the relationship between competencies are rep-
resented by a subset of so-called transversal competencies 
in system engineering 

Competencies Description 
𝑐1 Ability to solve 

mathematical prob-
lems 

𝑐2 Understanding and 
mastering the basic 
concepts of infor-
mation technology 

𝑐3 Basic knowledge 
about the use and 
programming of 
computers 

𝑐4 Ability to solve 
problems within 
your area of study 

Identifying 
competencies 

Modelling 
interdependencies

Calculate 
centrality 
measures

Ranking 
competencies
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𝑐5 Be motivated by 
professional 
achievement and to 
face new chal-
lenges. 

𝑐6 Use of the English 
language at written 
and oral level. 

Table 1. Competencies analyzed

The NCM is developed by capturing expert’s causal 
knowledge. The generated neutrosophic adjacency matrix is 
shown in Table 2. 

0 0.7 0.4 I 0 0 
0 0 0.9 0.7 0 0
0 0 0 0.9 0 0
0 0.5 0 0 0.9 0 

0 I 0 0.7 0 0

0 0.9 0.6 0.7 I 0
Table 2: Adjacency. matrix 

The centrality measures calculated are shown below. 
𝑐1

1.1+I 
𝑐2 1.6+I 
𝑐3

0.9 
𝑐4

1.4 
𝑐5

0.7 
𝑐6

2.2+I 
Table 3: Outdegree

𝑐1
A 0 

𝑐2
B 2.1+I 

𝑐3
C 1.9 

𝑐4
D 3+I 

𝑐5
E 0.9+I 

𝑐6
F 0 

Table 4:  Indegree 
𝑐1

A 1.1+I 
𝑐2

B 3.7+2I 

𝑐3
C 2.18 

𝑐4
D 3.4+I 

𝑐5
E 1.6+I 

𝑐6
F 2.2+I 

Table 5: Total degree

A static analysis in NCM [10] which gives as result initially 
neutrophic number of the form (a + bI, where I = indetermi-
nacy) . Finally, a de-neutrosification process as proposed by 
Salmerón and Smarandache [12] is developed. I ∈  [0,1] is 
replaced by its maximum and minimum values. 

𝑐1
[1.1, 2.1] 

𝑐2
[3.7, 5.7] 

𝑐3 2.18 
𝑐4

[3.4, 4.4] 
𝑐5

[1.6, 2.6] 
𝑐6

[2.2, 3.2] 

Table 6: de-neutrosification 

Finally, we work with the mean of the extreme values to ob-
tain a single value [19] . 

𝑐1
1.6 

𝑐2
4,7 

𝑐3
2.18 

𝑐4 3,9 
𝑐5

2,1 
𝑐6

2.7 
Table 7. Median of the extreme values 

From these numerical values, the following ranking is ob-
tained: 

𝑐2 ≻ 𝑐4 ≻ 𝑐6 ≻ 𝑐3 ≻ 𝑐5 ≻ 𝑐1 

In this case the most important competence is: "Under-
standing and mastering the basic concepts of information 
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5 Conclusion 

In the work, a model was presented to analyze the interrela-
tionships between competencies and giving a priority is us-
ing the static analysis of neutrosophic cognitive maps. In the 
case study developed was determined as the most im-
portant : Understanding and mastering the basic concepts on 
the laws of information technology.  

A future work is to analyze new competencies in the pro-
posed framework. Incorporating scenario analysis and de-
veloping a software tool is another area of research.  
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Abstract. Today, soft computing is a field that is used 

a lot in solving real-world problems, such as problems in 

economics, finance, banking... With the aim to serve for 

solving the real problem, many new theories and/or tools 

which were proposed, improved to help soft computing 

used more efficiently. We can mention some theories as 

fuzzy sets theory (L. Zadeh, 1965), intuitionistic fuzzy set 

(K Atanasov, 1986), neutrosophic set (F. Smarandache 

1999). In this paper, we introduce a new notion of sup-

port-neutrosophic set (SNS), which is the combination a 

neutrosophic set with a fuzzy set. So, SNS set is a direct 

extension of fuzzy set and neutrosophic sets (F. 

Smarandache). Then, we define some operators on the 

support-neutrosophic sets, and investigate some properties 

of these operators. 

Keywords: support-neutrosophic sets, support-neutrosophic fuzzy relations, support- neutrosophic similarity relations

1 Introduction 

In 1998, Prof. Smarandache gave the concept of the 
neutrosophic set (NS) [3] which generalized fuzzy set [10] 
and intuitionistic fuzzy set [1]. It is characterized by a de-
gree of truth (T), a degree of indeterminacy (I) and a de-
gree of falsity (F). Over time, the sub-class of the neutro-
sophic set were proposed to capture more advantageous in 
practical applications. Wang et al. [5] proposed the interval 
neutrosophic set and its operators. Wang et al. [6] 
proposed a single-valued neutrosophic set as an instance of 
the neutrosophic set accompanied with various set 
theoretic operators and properties. Ye [8] defined the 
concept of simpli-fied neutrosophic set whose elements of 
the universe have a degree of truth, indeterminacy and 
falsity respectively that lie between [0, 1]. Some 
operational laws for the simplified neutrosophic set and 
two aggregation operators, including a simplified 
neutrosophic weighted arithmetic average operator and a 
simplified neutrosophic weighted geometric average 
operator were presented. 

In 2015, Nguyen et al. [2] introduced a Support-
intuitionistic fuzzy set, it combines a intuitionistic fuzzy 
set with a fuzzy set (the support of an intuitionistic). Apter, 
Young et al [9] applied support – intuitionistic in decision 
making.   

Practically, lets' consider the following case: a 

customer is interested in two products A and B. The 

customer has one rating of good (i), indeterminacy (ii) or 

not good (iii) for each of the products. These ratings (i),(ii) 

and (iii) (known as neutrosophic ratings) will affect the 

customer's decision of which product to buy. However, the 

customer's financial capacity will also affect her decision. 

This factor is called the support factor, with the value is 

between 0 and 1. Thus, the decision of which product to 

buy are determined  by truth factors (i), indeterminacy 

factors (ii),  falsity factors (iii) and support factor (iv). If a 

product is considered good and affordable, it is the best 

situation for a buying decision. The most unfavorable 

situation is when a product is considered bad and not 

affordable (support factor is bad),in this case, it would be 

easy to refuse to buy the product.  

Another example, the business and purchase of cars in 

the Vietnam market. For customers, they will care about 

the quality of the car (good, bad and indeterminacy, they 

are neutrosophic) and prize, which are considered as 

supporting factors for car buyers. For car dealers, they are 

also interested in the quality of the car, the price and the 

government's policy on importing cars such as import 

duties on cars. Price and government policies can be 

viewed as supporting components of the car business. 

In this paper, we combine a neutrosophic set with a 
fuzzy set. This raise a new concept called support-
neutrosophic set (SNS). In which, there are four 
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membership functions of  an element in  a given set. The 
remaining of this paper was structured as follows: In 
section 2, we introduce the concept of support-
neutrosophic set and study some properties of SNS. In 
section 3, we give some distances between two SNS sets. 
Finally, we construct the distance of two support-

neutrosophic sets.  

2 Support-Neutrosophic set 

Throughout this paper, U will be a nonempty set called 
the universe of discourse. First, we recall some the concept 

about fuzzy set and neutrosophic set. Here, we use 
mathematical operations on real numbers. Let 𝑆1 and 𝑆2 be
two real standard or non-standard subsets, then  

𝑆1 + 𝑆2 = {𝑥|𝑥 = 𝑠1 + 𝑠2, 𝑠1 ∈ 𝑆1, 𝑠2 ∈ 𝑆2}

𝑆1 − 𝑆2 = {𝑥|𝑥 = 𝑠1 − 𝑠2, 𝑠1 ∈ 𝑆1, 𝑠2 ∈ 𝑆2}

𝑆2̅ = {1+} − 𝑆2 = {𝑥|𝑥 = 1+ − 𝑠2, 𝑠2 ∈ 𝑆2}

𝑆1×𝑆2 = {𝑥|𝑥 = 𝑠1×𝑠2, 𝑠1 ∈ 𝑆1, 𝑠2 ∈ 𝑆2}

𝑆1 ∨ 𝑆2 = [max{𝑖𝑛𝑓𝑆1, 𝑖𝑛𝑓𝑆2} , max{𝑠𝑢𝑝𝑆1, 𝑠𝑢𝑝𝑆2}]

𝑆1 ∧ 𝑆2 = [min{𝑖𝑛𝑓𝑆1, 𝑖𝑛𝑓𝑆2} , min{𝑠𝑢𝑝𝑆1, 𝑠𝑢𝑝𝑆2}]

1 1 2 2

1 2 1 2
,

( , ) inf ( , )
s S s S

d S S d s s
 



Remark: 𝑆1 ∧ 𝑆2
̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑆1̅ ∨ 𝑆2̅ and 𝑆1 ∨ 𝑆2

̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑆1̅ ∧ 𝑆2̅. Indeed,

we consider two cases:  

+ if 𝑖𝑛𝑓𝑆1 ≤ 𝑖𝑛𝑓𝑆2 and sup 𝑆1 ≤ sup 𝑆2 then 1 − 𝑖𝑛𝑓𝑆2 ≤
1 − 𝑖𝑛𝑓𝑆1 , 1 − 𝑠𝑢𝑝𝑆2 ≤ 1 − 𝑠𝑢𝑝𝑆1   and 𝑆1 ∧ 𝑆2 = 𝑆1 ,
𝑆1 ∨ 𝑆2 = 𝑆2. So that 𝑆1 ∧ 𝑆2

̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑆1̅ = 𝑆1̅ ∨ 𝑆2̅ and 𝑆1 ∨ 𝑆2
̅̅ ̅̅ ̅̅ ̅̅ ̅ =

𝑆2̅ = 𝑆1̅ ∧ 𝑆2̅.

+ if 𝑖𝑛𝑓𝑆1 ≤ 𝑖𝑛𝑓𝑆2 ≤ 𝑠𝑢𝑝𝑆2 ≤ sup 𝑆1 . Then 𝑆1 ∧ 𝑆2 =
[𝑖𝑛𝑓𝑆1, 𝑠𝑢𝑝𝑆2]  and 𝑆1̅ ∨ 𝑆2̅ = [1 − 𝑠𝑢𝑝𝑆2, 1 − 𝑖𝑛𝑓𝑆1] .
Hence 𝑆1 ∧ 𝑆2

̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑆1̅ ∨ 𝑆2̅ . Similarly, we have 𝑆1 ∧ 𝑆2
̅̅ ̅̅ ̅̅ ̅̅ ̅ =

𝑆1̅ ∨ 𝑆2̅.

Definition 1. A fuzzy set A on the universe U is an object 

of the form  

A = {(x, μA(x))|x ∈ U}

where μA(x)(∈ [0,1])  is called the degree of

membership of x in A.  

Definition 2. A neutrosophic set A on the universe U is an 

object of the form  

A = {(x, TA(x), IA(x), FA(x))|x ∈ U}

where 𝑇𝐴  is a truth –membership function, 𝐼𝐴  is an

indeterminacy-membership function, and 𝐹𝐴  is falsity –

membership function of 𝐴. TA(x), IA(x) and FA(x) are real

standard or non-standard subsets of ]0−, 1+[ ,  that is 

𝑇𝐴: 𝑈 →]0−, 1+[

𝐼𝐴: 𝑈 →]0−, 1+[

𝐹𝐴: 𝑈 →]0−, 1+[

In real applications, we usually use 

𝑇𝐴: 𝑈 → [0,1]

𝐼𝐴: 𝑈 → [0,1]
𝐹𝐴: 𝑈 → [0,1]

Now, we combine a neutrosophic set with a fuzzy 

set. That leads to a new concept called support-

neutrosophic set (SNS). In which, there are four 

membership functions of each element in a given set. This 

new concept is stated as follows:  

Definition 3. A support – neutrosophic set (SNS) 𝐴 on the 

universe 𝑈  is characterized by a truth –membership 

function 𝑇𝐴 , an indeterminacy-membership function 𝐼𝐴 , a

falsity – membership function 𝐹𝐴 and support-membership

function 𝑠𝐴 . For each 𝑥 ∈ 𝑈  we have TA(x), IA(x), FA(x)
and 𝑠𝐴(𝑥) are real standard or non-standard subsets of

]0−, 1+[ ,  that is 

𝑇𝐴: 𝑈 →]0−, 1+[

𝐼𝐴: 𝑈 →]0−, 1+[

𝐹𝐴: 𝑈 →]0−, 1+[

𝑠𝐴: 𝑈 →]0−, 1+[

We denote support – neutrosophic set (SNS) 

A = {(x, TA(x), IA(x), FA(x), sA(x))|x ∈ U}.

There is no restriction on the sum of TA(x), IA(x) ,

FA(x), so 0− ≤ 𝑠𝑢𝑝TA(x) + 𝑠𝑢𝑝IA(x)+  𝑠𝑢𝑝  FA(x) ≤ 3+ ,

and 0− ≤ 𝑠𝐴(𝑥) ≤ 1+.

When 𝑈 is continuous, a SNS can be written as 

𝐴 = ∫
< 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥), 𝑠𝐴(𝑥) >

𝑥⁄

𝑈

When 𝑈 = {𝑥1, 𝑥2, . . , 𝑥𝑛}  is discrete, a SNS can be

written as 

𝐴 =  ∑
< 𝑇𝐴(𝑥𝑖), 𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖), 𝑠𝐴(𝑥𝑖) >

𝑥𝑖

𝑛

𝑖=1

We denote 𝑆𝑁𝑆(𝑈) is the family of SNS sets on 𝑈. 

Remarks: 

+ The element 𝑥∗ ∈ 𝑈  is called “worst element” in 𝐴  if

𝑇𝐴(𝑥∗) = 0, 𝐼𝐴(𝑥∗) = 0, 𝐹𝐴(𝑥∗) = 1, 𝑠𝐴(𝑥∗) = 0 . The

element 𝑥∗ ∈ 𝑈 is called “best element” in 𝐴 if 

𝑇𝐴(𝑥∗ ) = 1, 𝐼𝐴(𝑥∗ ) = 1, 𝐹𝐴(𝑥∗) = 0, 𝑠𝐴(𝑥∗) = 1
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(if there is restriction 𝑠𝑢𝑝TA(x) + 𝑠𝑢𝑝IA(x)+ 𝑠𝑢𝑝 FA(x) ≤
1 then the element 𝑥∗ ∈ 𝑈 is called “best element” in 𝐴 if  

𝑇𝐴(𝑥∗ ) = 1, 𝐼𝐴(𝑥∗ ) = 0, 𝐹𝐴(𝑥∗) = 0, 𝑠𝐴(𝑥∗) = 1).

+ the support – neutrosophic set 𝐴 reduce an neutrosophic 

set if 𝑠𝐴(𝑥) = 𝑐 ∈ [0,1], ∀𝑥 ∈ 𝑈.

+ the support – neutrosophic set 𝐴  is called a support-

standard neutrosophic set if 

TA(x), IA(x), FA(x) ∈ [0,1] and

TA(x) + IA(𝑥) + FA(x) ≤ 1

for all 𝑥 ∈ 𝑈.  

+ the support – neutrosophic set 𝐴  is a support-

intuitionistic fuzzy set if TA(x),  FA(x) ∈ [0,1], IA(𝑥) = 0
and TA(x) + FA(x) ≤ 1 for all 𝑥 ∈ 𝑈.

+ A constant SNS set 

(𝛼, 𝛽, 𝜃, 𝛾)̂ = {(𝑥, 𝛼, 𝛽, 𝜃, 𝛾)|𝑥 ∈ 𝑈

where 0 ≤ 𝛼, 𝛽, 𝜃, 𝛾 ≤ 1}. 

+ the SNS universe set is 

𝑈 = 1𝑈 = (1,1,0,1)̂ = {(𝑥, 1,1,0,1)|𝑥 ∈ 𝑈}

+ the SNS empty set is 

𝑈 = 0𝑈 = (0,0,1,0)̂ = {(𝑥, 0,0,1,0)|𝑥 ∈ 𝑈}

Definition 4. The complement of a SNS 𝐴 is denoted by  

𝑐(𝐴) and is defined by  

 

 

( )

(

( )

( )

( ) ( )

( ) 1 ( )

( ) ( )

( ) 1 ( )

C A A

C A A

C A A

C A A

T x F x

I x I x

F x T x

s x s x













for all 𝑥 ∈ 𝑈. 

Definition 5. A SNS 𝐴 is contained in the other SNS 𝐵, 

denote 𝐴 ⊆ 𝐵, if and only if 

𝑖𝑛𝑓𝑇𝐴(𝑥) ≤ 𝑖𝑛𝑓𝑇𝐵(𝑥), 𝑠𝑢𝑝𝑇𝐴(𝑥) ≤ sup 𝑇𝐵(𝑥)

𝑖𝑛𝑓 𝐹𝐴(𝑥) ≥ 𝑖𝑛𝑓 𝐹𝐵(𝑥), 𝑠𝑢𝑝𝐹𝐴(𝑥) ≥ 𝑠𝑢𝑏 𝐹𝐵(𝑥) 

𝑖𝑛𝑓𝑠𝐴(𝑥) ≤ 𝑖𝑛𝑓𝑠𝐵(𝑥), 𝑠𝑢𝑝𝑠𝐴(𝑥) ≤ sup 𝑠𝐵(𝑥)

for all 𝑥 ∈ 𝑈. 

 Definition 6. The union of two SNS 𝐴 and 𝐵 is a SNS 

𝐶 = 𝐴 ∪ 𝐵, that is defined by  

𝑇𝐶 = 𝑇𝐴 ∨ 𝑇𝐵

𝐼𝐶 = 𝐼𝐴 ∨ 𝐼𝐵

𝐹𝐶 = 𝐹𝐵 ∧ 𝐹𝐵

𝑠𝐶 = 𝑠𝐴 ∨ 𝑠𝐵

Definition 7. The intersection of two SNS 𝐴 and 𝐵  is a 

SNS 𝐷 = 𝐴 ∩ 𝐵, that is defined by  

𝑇𝐷 = 𝑇𝐴 ∧ 𝑇𝐵

𝐼𝐷 = 𝐼𝐴 ∧ 𝐼𝐵

𝐹𝐷 = 𝐹𝐵 ∨ 𝐹𝐵

𝑠𝐷 = 𝑠𝐴 ∧ 𝑠𝐵

Example 1. Let 𝑈 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}  be the universe.

Suppose that 

       

1

0.5,0.8 , 0.4,0.6 , 0.2,0.7 ,  0.7,0.9
A

x


       

2

0.4,0.5 , 0.45,0.6 , 0.3,0.6 ,  0.5,0.8

x


       

3

0.5,0.9 , 0.4,0.5 , 0.6,0.7 ,  0.2,0.6

x


       

4

0.5,0.9 , 0.3,0.6 , 0.4,0.8 ,  0.1,0.6

x


and 

       

1

0.2,0.6 , 0.3,0.5 , 0.3,0.6 ,  0.6,0.9
B

x


       

2

0.45,0.7 , 0.4,0.8 , 0.9,1 ,  0.4,0.9

x


       

3

0.1,0.7 , 0.4,0.8 , 0.6,0.9 ,  0.2,0.7

x


       

4

0.5,1 , 0.2,0.9 , 0.3,0.7 ,  0.1,0.5

x


are two support –neutrosophic set on 𝑈.  

We have   

+ complement of 𝐴, denote 𝑐(𝐴) or ∼ 𝐴, defined by 
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 
       

1

0.2,0.7 ,  0.4,0.6 ,  0.5,0.8 ,  0.1,0.3
c A

x


       

2

0.3, 0.6 , 0.4,0.55 , 0.4,0.5 ,  0.2,0.5

x


       

3

  0.6,0.7 , 0.5,0.6 , 0.5,0.9 ,  0.4,0.8

x


       

4

0.4,0.8 ,  0.4,0.7 , 0.5,0.9 , 0.4,0.9

x


+ Union 𝐶 = 𝐴 ∪ 𝐵: 

       

1

0.5,0.8 ,   0.4,0.6 ,   0.2,0.6 , 0.7,0.9
C

x


       

2

0.45,0.7 , 0.45,0.8 , 0.3,0.6 ,  0.4,0.9

x


       

3

0.5,0.9 , 0.4,0.8 ,  0.6,0.7 , 0.2,0.7

x


       

4

0.5,1 , 0.3,0.9 , 0.3,0.7 ,  0.1,0.6

x


+ the intersection 𝐷 = 𝐴 ∩ 𝐵: 

       

1

0.2,0.6 ,   0.3,0.5 , 0.3,0.7 ,   0.6,0.9
D

x


       

2

0.4,0.5 , 0.4,0.6 ,  0.9,1 , 0.4,0.8

x


       

3

0.1,0.7 ,  0.4,0.5 ,  0.6,0.9 ,  0.2,0.6

x


       

4

0.5,0.9 , 0.2,0.6 ,  0.4,0.8 , 0.1,0.5
 

x


Proposition 1. For all A, B, C ∈ SNS(U), we have 

(a) If A ⊆ B  and B⊆ C then A ⊆ C,  
(b) c(c(A)) = A, 

(c) Operators ∩  and ∪ are commutative, associa-

tive, and distributive, 

(d) Operators ∩, ∼  and ∪  satisfy the law of De 

Morgan. It means that A ∩ B̅̅ ̅̅ ̅̅ ̅ = A̅ ∪ B̅  and

A ∪ B̅̅ ̅̅ ̅̅ ̅ = A̅ ∩ B̅

Proof. 

It is easy to verify that (a), (b), (c) is truth. 

We show that (d) is correct. Indeed, for each 

𝑇∼(𝐴∩𝐵) = 𝐹𝐴∩𝐵 = 𝐹𝐴 ∨ 𝐹𝐵 = 𝑇∼𝐴 ∨ 𝑇∼𝐵

𝐼∼(𝐴∩𝐵) = {1+} − 𝐼(𝐴 ∩ 𝐵) = 𝐼(𝐴) ∧ 𝐼(𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

= I(A)̅̅ ̅̅ ̅̅ ∨ I(B)̅̅ ̅̅ ̅̅ = 𝐼∼𝐴 ∨ I∼𝐵

𝐹∼(𝐴∩𝐵) = 𝑇𝐴∩𝐵 = 𝑇𝐴 ∧ 𝑇𝐵 = 𝐹∼𝐴 ∧ 𝐹∼𝐵

𝑠∼(𝐴∩𝐵) = {1+} − 𝑠(𝐴 ∩ 𝐵) = 𝑠(𝐴) ∧ 𝑠(𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

= s(A)̅̅ ̅̅ ̅̅ ∨ s(B)̅̅ ̅̅ ̅̅ = 𝑠∼𝐴 ∨ s∼𝐵

So that A ∩ B̅̅ ̅̅ ̅̅ ̅ = A̅ ∪ B̅. By same way, we have A ∪ B̅̅ ̅̅ ̅̅ ̅ =
A̅ ∩ B̅. ⧠ 

3 The Cartesian product of two SNS 

Let 𝑈, 𝑉 be two universe sets. 

Definition 8. Let 𝐴, 𝐵 two SNS on 𝑈, 𝑉, respectively. We 
define the Cartesian product of these two SNS sets: 

a) 

     

   

, ,  , ,  , ,
| ,    

, , ,

A B A B

A B A B

x y T x y I x y
A B x U y V

F x y s x y





  
    

   
where 

𝑇𝐴×𝐵(𝑥, 𝑦) = 𝑇𝐴(𝑥)𝑇𝐵(𝑦),

𝐼𝐴×𝐵(𝑥, 𝑦) = 𝐼𝐴(𝑥)𝐼𝐵(𝑦), 

𝐹𝐴×𝐵(𝑥, 𝑦) = 𝐹𝐴(𝑥)𝐹𝐵(𝑦)

and 

𝑠𝐴×𝐵(𝑥, 𝑦) = 𝑠𝐴(𝑥)𝑠𝐵(𝑦), ∀𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉.

     

   

, ,  , ,  , ,
| ,  

, , ,

A B A B

A B A B

x y T x y I x y
A B x U y V

F x y s x y





  
    

   

 

Where 

     , ,A B A BT x y T x T y  ě

       , ,A B A BI x y I x I y  ě

     ,A B A BF x y F x F y  ę

and 

     , ,  ,A B A Bs x y s x s y x U y V    ě  . 
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Example 2. Let 𝑈 = {𝑥1, 𝑥2} be the universe set. Suppose

that 

       

1

0.5,0.8 , 0.4,0.6 , 0.2,0.7 ,  0.7,0.9
A

x


       

2

0.4,0.5 , 0.45,0.6 , 0.3,0.6 ,  0.5,0.8

x


and 

       

1

0.2,0.6 , 0.3,0.5 , 0.3,0.6 ,  0.6,0.9
B

x


       

2

0.45,0.7 , 0.4,0.8 , 0.9,1 ,  0.4,0.9

x


are two SNS on 𝑈. Then we have 

       

 1

0.25,0.72 , 0.16,0.3 , 0.12,.49 , 0.14,0.54
 

,
A B

x x


       

 1

0.225,0.56 , 0.16,0.48 , 0.18,0.7 , 0.28,1

,x x


       

 2

0.2,0.45 , 0.18,0.3 , 0.18,0.42 , 0.1,0.48

,x x


       

 2

0.2,0.45 ,  0.135,  0.36 , 0.12,0.48 ,   0.05,0.48

,x x


and 

       

 1

0.5,0.8 , 0.4,0.5 , 0.6,0.7 ,  0.2,0.6

,
A B

x x


       

 1

05,0.8 , 0.3,0.6 ,  0.4,0.8 , 0.1,0.6
 

,x x


       

 2

0.4,0.5 ,  0.4,0.5 , 0.6,0.7 , 0.2,0.6

,x x


       

 2

0.4,0.5 , 0.3,0.6 ,  0.4,0.8 , 0.1,0.6

,x x


Proposition 2. For every three universes 𝑈, 𝑉, 𝑊 and three 

universe sets  𝐴 on 𝑈, 𝐵 on 𝑉, 𝐶 on 𝑊. We have  

a) 𝐴×𝐵 = 𝐵×𝐴 and 𝐴 ⊗ 𝐵 = 𝐵 ⊗ 𝐴
b) (𝐴×𝐵)×𝐶 = 𝐴×(𝐵×𝐶)

and (𝐴 ⊗ 𝐵) ⊗ 𝐶 = 𝐴 ⊗ (𝐵 ⊗ 𝐶)

Proof. It is obvious. 

4 Distance between support-neutrosophic sets 

In this section, we define the distance between 
two support-neutrosophic sets in the sene of 
Szmidt and Kacprzyk are presented: 

Definition 9. Let 𝑈 = {𝑥1, 𝑥2, … , 𝑥𝑛}  be the
universe set. Given  𝐴, 𝐵 ∈ 𝑆𝑁𝑆(𝑈), we define 

a) The Hamming distance

𝑑𝑆𝑁𝑆(𝐴, 𝐵) =
1

𝑛
∑ [𝑑(𝑇𝐴(𝑥𝑖), 𝑇𝐵(𝑥𝑖)) +𝑛

𝑖=1

𝑑(𝐼𝐴(𝑥𝑖), 𝐼𝐵(𝑥𝑖)) + 𝑑(𝐹𝐴(𝑥𝑖), 𝐹𝐵(𝑥𝑖)) +

𝑑(𝑠𝐴(𝑥𝑖), 𝑠𝐵(𝑥𝑖))]

b) The Euclidean distance

𝑒𝑆𝑁𝑆(𝐴, 𝐵) =
1

𝑛
∑ [𝑑2(𝑇𝐴(𝑥𝑖), 𝑇𝐵(𝑥𝑖)) +𝑛

𝑖=1

𝑑2(𝐼𝐴(𝑥𝑖), 𝐼𝐵(𝑥𝑖)) +

𝑑2(𝐹𝐴(𝑥𝑖), 𝐹𝐵(𝑥𝑖)) +

𝑑2(𝑠𝐴(𝑥𝑖), 𝑠𝐵(𝑥𝑖))]
1

2

Example 3. Let 𝑈 = {𝑥1, 𝑥2} be the universe set.
Two SNS 𝐴, 𝐵 ∈ 𝑆𝑁𝑆(𝑈)  as in example 2 we 
have 𝑑𝑆𝑁𝑆(𝐴, 𝐵) = 0.15; 𝑒𝑆𝑁𝑆(𝐴, 𝐵) = 0.15.

If 

       

1

0.5,0.7 , 0.4,0.6 , 0.2,0.7 ,  0.7,0.9
C

x


       

2

0.4,0.5 , 0.45,0.6 , 0.3,0.6 ,  0.5,0.8

x


and 

       

1

0.2,0.4 , 0.3,0.5 , 0.3,0.6 ,  0.6,0.9
D

x


       

2

0.6,0.7 , 0.4,0.8 , 0.9,1 ,  0.4,0.9

x


then 𝑑𝑆𝑁𝑆(𝐶, 𝐷) = 0,25  and 𝑒𝑆𝑁𝑆(𝐶, 𝐷) =
0,2081. 
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the distance and the Cartesian product of two support – 
neutrosophic sets. In the future, we will study more results 
on the support-neutrosophic set and their applications. 
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Conclusion 

In this paper, we introduce a new concept: support-
neutrosophic set. We also study operators on the support-
neutrosophic set and their initial properties. We have given 
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