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Abstract: In this current era, neutrosophic set theory is a crucial topic to demonstrate the 

ambiguous information due to existence of three disjunctive components appears in it and it 

provides a wide range of applications in distinct fields for the researchers. Generally, neutrosophic 

sets is the extended version of crisp set, fuzzy set and intuitionistic fuzzy sets to focus on the 

uncertain, hesitant and ambiguous datas of a real life mathematical problem. Demonstration of 

pentagonal neutrosophic number and its classification in different aspect is focused in this research 

article. Manifestation of de-neutrosophication technique of linear pentagonal neutrosophic number 

using removal area method has been developed here which has a remakable impact in crispfication 

of pentagonal neutrosophic number. Afterthat, utilizing this invented result, a minimal spanning 

tree problem has been solved in pentagonal neutrosophic environment. Comparision analysis is 

done with the other established method in this article and this noble design will be benificial for the 

researchers in neutrosophic domain in future. 

 

 

1. Introduction 

Currently, one of the eminent experimental studies of this era is on the subject of unpredictability 

and indeterminateness. On this aspect, Conception of Fuzzy set [1] has come up with an efficient 

way to work on. The theory of uncertainty plays an important role to deal with different issues 

relating to structure modelling in engineering domain, to do statistical calculation, in the field of 

social science and in any sort of real life problems relating to decision making and networking. After 

the invention of fuzzy set theory, researchers from several fields developed triangular [2, 3], 

trapezoidal [4], pentagonal [5] fuzzy number and its applications in various field of research. 

Professor Atanassov [6] put forward the concept of intuitionistic fuzzy sets where he considered 

both the idea of membership and non-membership functions. Later, in 2007 Liu F [7], merged the 

idea of triangular fuzzy set and intuitionistic set and created triangular intuitionistic fuzzy set. 

Further, Ye [8] familiarized with a basic concept on trapezoidal intuitionistic fuzzy set which 

includes both the truthiness and falseness membership function which are trapezoidal number in 

nature. Disjunctive interesting models in science and technology are developed day by day due to 

the invention of uncertainty theory.    
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In year 1995, Smarandache proposed the concept of neutrosophic sets, which was published in 1998 

[9], comprised of three distinct logical components: i) truthfulness, ii) skepticism, iii) falsity. Due to 

the presence of hesitation component this theory gave a high impact in different kind of research 

domain. Further, Wang et al. [10] proposed single valued neutrosophic sets; Ye [11] formulated the 

concept of simplified Neutrosophic Sets, and Peng et. al. [12, 13] introduced some ideas on novel 

operations and aggregation operators. Recently, the concept of several forms of triangular and 

trapezoidal neutrosophic numbers having membership functions that are dependent or independent 

was manifested by Chakraborty et.al [14, 15]. In 2015, R. Helen [16] manifested the idea of 

pentagonal fuzzy number and A.Vigin [17] utilized it in neural network. T.Pathinathan [18] 

provided with the conception of reverse order triangular, trapezoidal and pentagonal fuzzy number. 

Several researches on neutrosophic arena were published in different fields like multi criteria 

decision making [19-26], graph theory [27-31], optimization techniques [32, 33] etc. Recently (2019), 

Chakraborty A [34] manifested the concept of pentagonal neutrosophic number and its classification 

component wise and applied it in solving a transportation problem in neutrosophic domain. 

Demonstration of pentagonal neutrosophic fuzzy number and its de-Neutrosophication value using 

removal area technique has been developed in this article, moreover it is applied on graph theory 

problem to evaluate the minimal spanning tree. 

In this current epoch, neutrosophic set theory is applied in different sections of graph theory to 

evaluate the minimum path. Minimal spanning tree is one of the extremely vital concepts in the field 

of graph theory. Single valued neutrosophic minimal spanning tree and clustering method 

associated with it was originated by Ye [35]. Mandal & Basu [36] introduced similarity measure 

in optimum spanning tree problems related with neutrosophic arena. Mullai et. al [37] 

formulated minimum spanning tree problem in bipolar neutrosophic domain. Further, Broumi 

et.al [38, 39] manifested the concept of shortest path problem in neutrosophic graphs. Later, 

Broumi et.al [40] generated the perception of decision-making problem with the help of interval 

valued neutrosophic number and Kandasamy [41] developed double-valued neutrosophic sets 

and their application in minimum spanning tree problems. Currently, Broumi et.al [42] 

formulated neutrosophic shortest path for solving Dijkstra algorithm in graph theory. A few 

published articles [43-50] are addressed here related with neutrosophic domain which plays an 

important role in uncertainty research arena. Recently, in 2017 F. Smarandache developed a 

concept namely Plithogenic set, which has a great impact in current research arena and its is 

applied in hospital care system [51], IoT based problem [52], multi criteria decision making 

problem [53], cancer related problems [54], fractal programming problem [55], hybrid MCDM 

problem [56,57] and forecasting problems [58] etc.   

1.1 Motivation  

The invention of uncertainity theory plays a vital role in formulation of real-life scientific 

mathematical model, structural modelling in engineering domain, multi criteria oriented medical 

diagonosis problem etc. Recently, a question will arrise if someone choose pentagonal neutrosophic 

number in any field of research then what will be the crispification value of this said number? How 

can we convert a pentagonal neutrosophic number equivalent to a crisp number in logical and 

scientific way? How can we generated some motivating approach in de-neutrosophication 

technique? Again, The concept of minimal spanning tree is a very well known concept in 



Neutrosophic Sets and Systems, Vol.29, 2019     3 

 

 

Avishek Chakraborty, Shreyashree Mondal, Said Broumi, De-Neutrosophication Technique of Pentagonal Neutrosophic 

Number and Application in Minimal Spanning Tree 

     

 

mathematics field. Now, generally we considered crisp numbers in place of  weight in a spanning 

tree problem. But, suppose the exact value of the weights are unknown to us and decision maker’s 

mind is in dilema in case of putting the exact weights. Thus, it is a conception of neutrosophic 

number which contains truth, falsity and hesitation components. Here we consider pentagonal 

neutrosophic numbers to allocate the weights of a spanning tree problem. Now, question will arise 

at once how can we tackle this problem in neutrosophic environment? From this aspect we shall try 

to built up this article. 

The following table discusses the measurement of uncertaininty, vagueness and hesitation of 

four disjunctive types of Minimal Spanning Tree including crisp environment, fuzzy environment, 

intuitionistic fuzzy environment and pentagonal neutrosophic environment. 

 

Edge Parameters in 

case of  Minimal 

Spanning Tree 

Problem 

Measurement of 

Uncertainty 

 

Measurement of 

Hesitation 

 

Measurement of 

Vagueness 

 

Crisp Number × × × 

Crisp Interval Valued 

Number 

× × × 

Fuzzy Number Can Determine × × 

Interval Valued Fuzzy 

Number 

Can Determine × × 

Intuitionistic Fuzzy 

Number 

Can Determine × Can Determine 

Interval Valued 

Intuitionistic Fuzzy 

Number 

Can Determine × Can Determine 

Pentagonal 

Neutrosophic 

Number 

Can Determine Can Determine Can Determine 

 

From the above table, it is observed that only pentagonal neutrosophic environment can tackle the 

impreciseness, hesitation and truthiness in a membership function of a uncertain number, which is 

more reliable, logical and realistic for a decision maker. Thus, we consider our minimal spanning 

tree model in neutrosophic arena and all the edges of the graph as pentagonal neutrosophic number 

all the graph. 

 

Advantage and Restrictions of disjunctive categories of set  

The below table will shows us the advantage and restrictions of different kind of parameters in our 

real life mathematical problems. 
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Disjunctive Categories of 

Set/Number 

Advantages Restrictions 

Crisp Number Determine the accurate value 

of a realistic problem 

perfectly. 

Cannot determine the 

uncertainty information of a 

realistic problem. 

Fuzzy Number Can describe the uncertainty 

information of a realistic 

problem. 

Cannot describe the hesitation 

& falsity information of a 

realistic problem. 

Intuitionistic Fuzzy Number Can determine the uncertainty 

&falsity information of a 

realistic problem. 

Cannot determine the 

hesitation information of a 

realistic problem. 

Pythagorean Fuzzy Number Can deal with the uncertainty 

& falsity information of a 

realistic problem. 

Cannot deal with the 

hesitation information of a 

realistic problem. 

Neutrosophic Fuzzy Number Can describe the uncertainty, 

falsity & hesitation 

information of a realistic 

problem. 

Cannot describe the 

incomplete weight 

information of a realistic 

problem. 

1.2 Contribution  

In this research article, researchers are primarily focused on pentagonal neutrosophic fuzzy 

number and its properties. A very engrossing question will arises among the researchers from all 

around the world that how a neutrosophic number can be transformed into a crisp number? From 

the last century, researchers are tried to develop lots of new methods associated with the 

de-Neutrosophication technique for crispification. Here, we generate the idea of crispification of 

pentagonal neutrosophic fuzzy number is enlarged using removal area skill. Nowadays, researchers 

are giving their attention to solve the problem of minimal spanning tree in neutrosophic arena. By 

utilizing the idea of newly generated de-Neutrosophication skill on pentagonal neutrosophic 

number field, we can able to tackle the problems on minimal spanning tree. Lastly, comparison 

analysis is done with the established methods to show the importance of this algorithm.  

1.3 Novelties 

Several research articles had already published in different journals on neutrosophic arena. 

Researches from different domain applied this concept in distinct areas also. The conception of 

pentagonal neutrosophic number is totally new in research domain. Thus it can be extended into 

different fields and can be applied into various research arenas. However a few numbers of articles 

has been developed in pentagonal neutrosophic environment till now. Thus, our motivation and 

target is to try to sketch out some unpublished points that are described below. 

  Formulation of linear pentagonal neutrosophic number and its classification. 

  De-Neutrosophication technique of linear pentagonal neutrosophic number. 

  Application in minimal spanning tree problem. 
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1.4 Structure of the paper  

In this reseach article section 1 contains introduction and litrature survey of neutrosophic number, 

section 2 covers mathematical preliminaries, section 3 admits a de-neutrosophication technique of of 

linear pentagonal neutrosophic fuzzy number, section 4 covers minimal spanning tree problem in 

neutrosophic environment, section 5 shows comparison table and lastly section 6 contains the 

conclusion part of the total reseach work. 

2. Mathematical Preliminaries 

Definition 2.1: Fuzzy Set: [1] A set , is denoted as  and is 

generally represented by , where   the crisp set  and   the interval , 

then set  is called an intuitionistic fuzzy set. 

Definition 2.2: Intuitionistic Fuzzy Set (IFS):  A set [6] , is defined as 

, where  is named as the truth membership function 

which indicate the degree of assurance,  is named the falsity membership and 

 satisfies the following the relation 

. 

Definition 2.3: Neutrosophic Set: [9] A set  is called a neutrosophic set if 

, where  is said to be the truth 

membership function,   is said to be the indeterminacy membership function and 

 is said to be the falsity membership function. 

 exhibits the following relation: 

 

 Definition 2.4: Single-Valued Neutrosophic Set: A Neutrosophic set  in the definition 2.1 is 

said to be a Single-Valued Neutrosophic Set  if  is a single-valued independent variable. 

, where  denoted the 

concept of trueness, indeterminacy and falsity memberships function respectively. 

If there exist three points , for which , then 

the   is called neut-normal.  

is called neut-convex, which follows the relation: 

 

 

 

where  

Definition 2.5: Single-Valued Pentagonal Neutrosophic Number: A Single-Valued Pentagonal 

Neutrosophic Number  is defined and described as 

, where . The 
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truth membership function , the indeterminacy membership function 

 and the falsity membership function  are given as: 

 

 

3. De-Neutrosophication of a Linear Neutrosophic Pentagonal Number 

On development of the de-Neutrosophication technique, results can be generated into a crisp 

number according to the results of pentagonal neutrosophic number and its membership functions. 

Researchers from all around the globe are concerned to know what shall be the crisp value 

associating the pentagonal neutrosophic number having membership function? By the passing days, 

they have continuously developed some convenient means to change a fuzzy number to a crisp 

number and some of these approaches are discussed below: 

1. BADD (basic defuzzification distributions) 

2. BOA (bisector of area) 

3. CDD (constraint decision defuzzification) 

4. COA (center of area) 

5. COG (center of gravity) 

6. ECOA (extended center of area) 

7. EQM (extended quality method) 

8. FCD (fuzzy clustering defuzzification), etc. 

On this pentagonal neutrosophic arena, researches had an ambiguity in finding the suitable method 

of changing the pentagonal neutrosophic number to a crisp number. There are three distinct 

membership functions present in pentagonal neutrosophic number. To transform a neutrosophic 

number to a crisp number, “removal area method” is proposed on this article.  

On this pentagonal neutrosophic arena, researches had an ambiguity in finding the suitable method 

of changing the pentagonal neutrosophic number to a crisp number. There are three distinct 

membership functions present in pentagonal neutrosophic number. To transform a neutrosophic 

number to a crisp number, “removal area method” is proposed on this article.  
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Suppose, we consider a linear pentagonal neutrosophic number as follows 

 

 

Figure 3.1: Graphical representation of Linear Pentagonal Neutrosophic Number. 

[ 

Description of above figure: On the above figure we focused on the graphical presentation of 

linear pentagonal neutrosophic number. The black lined pentagonal represent the truth membership 

function. Red lined pentagonal represents the falsity membership function and blue lined 

pentagonal shows indefiniteness membership function of the number. In this,  follows the relation 

0 . The pentagonal number can be altered to triangular neutrosophic number if . 

Let us assume a real number  and a fuzzy number  for black line specified pentagons, 

area of the left side distribution of w.r.t  is  that indicates the zone fenced by  

and the left side of the fuzzy number  Proceeding in this way, the right zone area of  w.r.t  is 

Considering a real number  along with the fuzzy number  for the left most top 

and inverted pentagon, then  area of lest side of  wrt is is described as the area 

bounded by  and the left portion of the fuzzy number  For the second time, the area of right 

side of  wr.t  is , A fuzzy number  for the right most top and inverted pentagon, 

then left side removal of  w.r.t  is is described by the area bounded by  and the 

left side of the fuzzy number  similarly, the right portion removal of  w.r.t  is  

Mean is described as  , , 

 

Then, we quantified the de-neutrosophication value of a linear pentagonal neutrosophic number as, 

 

For , 
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Thus,  

Here, we take   

     

                 Figure 3.1(a)                             Figure 3.1(b) 

                              

 

                  Figure 3.2(a)                      Figure 3.2(b) 
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         Figure 3.3(a)                    Figure 3.3(b) 

Then, 

Area of Figure 3.1(a) =  

Area of Figure 3.1(b) =  

Area of Figure 3.2(a) =   

Area of Figure 3.2(b  

Area of Figure 3.3(a) =  

Area of Figure 3.3(a) =  

                            Hence,  

 

  ,  

 

So,  ……….(1) 
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Table 3.1: Numerical computation of De-Neutrosophication value 

Sl. 

No. 

Pentagonal Neutrosophic Number De-Neutrosophication value 

1 (1,2,3,4,5;0.5,1.5,2.5,3.5,4.5;2.2,2.8,3.7,4.5,6) 3.091667 

2 (0.5,1.5,2.5,3.5,4.5;0.3,1.3,2.3,3.3,4.3;1.8,2.8,3.8,4.8,5.8) 2.86667 

3 (0.7,1.7,2.5,3.5,4.7;0.5,1.5,2.2,3.2,4;1.7,2.7,3.7,4.7,5.7) 2.86250 

4 (1.2,2.2,3.2,4.2,5.2;1,2,3,4,5;2.5,3.5,4.5,5,6.5) 3.52500 

5 (1,4,7,10,13;0.5,3.5,6.5,9.5,12.5;4.5,7.5,9,12,14.5) 7.66667 

4. Minimal Spanning Tree in Pentagonal Neutrosophic Environment 

Spanning Tree: Let, G is a graph and T is a subgraph of G. If T is a connected graph having no 

circuits and covers all vertices of G, then T is called a spanning tree. 

Minimal Spanning Tree: A spanning tree which contains the least weight in G is defined as minimal 

spanning tree. Let us consider a graph in pentagonal neutrosophic domain. Here we developed an 

algorithm to search out the minimal spanning tree where the weights are pentagonal neutrosophic 

numbers. Thus this is a problem of neutrosophic graph. 

Algorithm: 

 Construct an adjacency matrix of the graph. 

 Utilize de-Neutrosophication technique and construct crisp matrix. 

 Select the least weight and if there is a tie in selection of least weight then take any one edge 

from the given graph. 

 From the edges that are left behind select an edge containing the least edge that doesn’t form 

a loop with the previous established figure. 

 Continue this process until all vertices will be covered. 

 Stop. 

4.1 Illustrative Example: 

 To acquire a minimal spanning tree of the following graph 

 

Figure 4.1.1: A Graph with pentagonal neutrosophic number Weight Edges 
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Table 1: The values of weights related with edges 

Edges Pentagonal Single-Valued Neutrosophic Weights 

  

  

  

  

  

  

  

  

  

  

  

 

Step 1: The associated adjacency matrix of figure 1 is given as follows: 

 

Step 2: Using the De-neutrosophic value, the associated matrix becomes 
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Step 3: After examining, the least value is 1.433. So, the edge is selected which is connected with the 

nodes (1, 5) and thus labelled it. This procedure is repeated till the final spanning tree is found. 

 

Figure 4.1.2 : Diagrammatic Presentation of Step 3 

Step 4: After studying, the least value is 1.433 among the remaining weighted edges. Therefore the edge is 

selected connecting the nodes  and label it.  

 

Figure 4.1.3: Diagrammatic Presentation of Step 4 

Step 5: After examining, the least value is 1.504 amongst the remaining weighted edges. The edge is 

selected connecting nodes (1, 2) and thus marked it. 

 

Figure 4.1.4: Diagrammatic Presentation of Step 5 



Neutrosophic Sets and Systems, Vol.29, 2019     13 

 

 

Avishek Chakraborty, Shreyashree Mondal, Said Broumi, De-Neutrosophication Technique of Pentagonal Neutrosophic 

Number and Application in Minimal Spanning Tree 

     

 

Step 6: Examined that the least value is 1.542 among the remaining weighted edges. Hence, the edge 

is selected connecting with nodes (3, 5) and labelled it. 

 

Figure 4.1.5: Diagrammatic Presentation of Step 6 

 

Step 6: Examined that the least value is 1.570 out of the remaining weighted edges. Therefore, the edge is 

selected connecting the nodes  and marked it. 

 

Figure 4.1.6: Diagrammatic Presentation of Step 7 

Step 7: After examining all the nodes are joined and if more edges are to be joined it will form a 

circuit in the figure formed and as stated by the definition of a spanning tree it must not form any 

circuit but also all the nodes must be connected. Thus, the ultimate minimal spanning tree is 

followed: 
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Figure 4.1.7: Diagrammatic Representation of ultimate minimal spanning tree 

The least weight of the graph is – +1.570  units.  

5. Comparison:   

Here, we compare our work with Mullai’s [37] established algorithm. According to previous 

concept, the required minimal spanning tree can be obtained from the following steps.   

Step 1: Let  

Step 2: Let  

Step 3: Let  

Step 4: Let  

Step 5: Let  

Step 6: Let  

The Required spanning tree is 

 

Figure 5.1: Diagrammatic Presentation of minimal spanning tree 
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Discussion: There is a contrast among the proposed approach and Mullai’s technique is that 

Mullai’s formulation is based on edges which are repeatedly evaluated at every steps of the 

algorithm which leads to the increase of time complexity. However, our technique relating with 

Matrix can be skillfully handled by utilizing Matlab software. In Mullai’s method we need to 

consider each steps one by one manually but in our proposed method we can solve it using the help 

of computational software available in mathematics field with the help of computer as it is totally 

based on matrix concept. Thus we can claim that it will more useful and short time taking approach 

than any other established algorithm in this research domain.   

 

6. Conclusion 

In this research article, the concept of pentagonal neutrosophic number has been developed in a different aspect. 

Demonstration of De-Neutrosophication method utilizing the removal area technique has been introduced here 

for conversion of a pentagonal neutrosophic number into a real number. Further, this result is applied in the field 

of graph theory to evaluate the minimal spanning tree of a general graph. Comparison analysis is done with the 

established method which gave a crucial impact in this article for the evaluation of minimal spanning tree. 

Since, no work has been developed in this field so we can claim that this is the best method. Though the stated 

algorithm able to analyze the solutions of minimal spanning tree problem in pentagonal neutrosophic domain 

but more reliable, logical and short time taking algorithm maybe established in this field such that it can gives us 

much more fast, accurate and exact results after the total computation. Thus, these are the limitations of this 

stated algorithm in neutrosophic scenario. 

In future, researchers can developed some interesting algorithms using pentagonal neutrosophic number in 

various fields like multi criteria decision making problem, image processing problem, pattern recognition 

problem, cloud computing problem and other mathematical modeling problems. Again, researcher may develop 

some new structural formulations of pentagonal neutrosophic number in different aspects. Also, researchers can 

compare this work with the new invented concept in pentagonal neutrosophic environment.  
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Abstract: Group is the basic algebraic structure describing symmetry based on associative law. In 

order to express more general symmetry (or variation symmetry), the concept of group is 

generalized in various ways, for examples, regular semigroups, generalized groups, neutrosophic 

extended triplet groups and AG-groupoids. In this paper, based on the law of cyclic association and 

the background of non-associative ring, left weakly Novikov algebra and CA-AG-groupoid, a new 

concept of cyclic associative groupoid (CA-groupoid) is firstly proposed, and some examples and 

basic properties are presented. Moreover, as a combination of neutrosophic extended triplet group 

(NETG) and CA-groupoid, the notion of cyclic associative neutrosophic extended triplet groupoid 

(CA-NET-groupoid) is introduced, some important results are obtained, particularly, a 

decomposition theorem of CA-NET-groupoid is proved. 

Keywords: Cyclic associative groupoid (CA-groupoid); CA-AG-groupoid; neutrosophic extended 

triplet group (NETG); CA-NET-groupoid; Decomposition theorem 

 

 

1. Introduction 

For algebraic operations, the associative law is very important, and it also characterizes the 

symmetry of operation: since from (ab)c = a(bc), turn it upside down, we have (cb)a = c(ba). This is also 

associative, that is, symmetry. Based on associative law, the concept of group is studied as basic 

algebraic structure describing symmetry. In order to express more general symmetry (or variation 

symmetry), group is generalized in various ways, for examples, regular semigroups, generalized 

groups, neutrosophic extended triplet groups and AG-groupoids (see [1, 16, 17, 22-24, 32]).  

In many fields (such as non-associative rings and non-associative algebras [5, 18, 20, 21]), image 

processing [14] and networks [7]), non-associativity has important research significance. This paper 

focuses on non-associative algebraic structures satisfying the following operation law: 

x(yz) = z(xy).     (Cyclic associative law) 

As early as 1995, M. Kleinfeld studied the rings with x(yz) = z(xy) in [13], this research comes 

from the study of Novikov rings. After then, A. Behn, I. Correa, I. R. Hentzel and D. Samanta further 

investigated this kind of ring and algebra in [2, 3, 19]. Moreover, Zhan and Tan [34] introduced the 

notion of left weakly Novikov algebra: a non-associative algebra is called left weakly Novikov if it 

satisfies 

(xy)z = (zx)y.     (Left weakly Novikov law) 

Obviously, the equation above is antithetical parallelism of the cyclic associative law (turn it 

upside down, y(xz) = z(yx), that is cyclic associative).  

mailto:zhangxiaohong@sust.edu.cn


Neutrosophic Sets and Systems, Vol. 29, 2019     20  

 

 

Xiaohong Zhang, Zhirou Ma and Wangtao Yuan, Cyclic Associative Groupoids (CA-Groupoids) and Neutrosophic 

Extended Triplet Groupoids (CA-NET-Groupoids) 

Not only that, cyclic associativity is also applied to the research of AG-groupoids: in 2016, M. 

Iqbal, I. Ahmad, M. Shah and M.I. Ali [11] proposed the notion of cyclic associative AG-groupoid 

(CA-AG-groupoid), some new results are obtained in [9, 10].  

Since cyclic associative law is widely used in algebraic systems, so we focus on basic algebra 

structure endow with a binary operation satisfying cyclic associative law in this paper, call it cyclic 

associative groupoid (CA-groupoid). We will also study the relationships between CA-groupoids 

and other related algebraic structures (see [4, 8, 12, 15, 26-31]). 

The rest of this paper is organized as follows: in Section 2, we give some basic concepts and 

properties on semigroup, AG-groupoid and neutrosophic extended triplet groupoid (NETG); in 

Section 3, we give the definition of CA-groupoid and some interesting examples; in Section 4, we 

discuss the basic properties of CA-groupoids and analyze the relationships among some related 

algebraic systems; specially, we prove that every CA-groupoid with a left (or right) identity element 

is a commutative semigroup; in Section 5, we propose the new notion of cyclic associative 

neutrosophic extended triplet groupoid (CA-NET-groupoid), investigate basic properties of 

CA-NET-groupoids, and prove the composition theorem of CA-NET-groupoids. 

 

2. Preliminaries 

In this paper, a groupoid means that an algebraic structure consisting of a non-empty set with a 

single binary operation acting on it. 

Let (S, ·) be a groupoid. Some concepts are defined as follows (traditionally, the dot operator is 

omitted without confusion):  

(1) S is called left nuclear square if for any a, b, cS, a²(bc) = (a²b)c; middle nuclear square if a(b²c) 

= (ab²)c; right nuclear square if a(bc²) = (ab)c². S is called nuclear square if it is left, middle, and right 

nuclear square. 

(2) S is called a Bol*-groupoid if (a, b, c, dS) a((bc)d) = ((ab)c)d. 

(3) S is called left alternative if for all a, bS, (aa)b = a(ab); and is called right alternative if b(aa)= 

(ba)a. S is called alternative, if it is both left alternative and right alternative. 

(4) S is called right commutative if for all a, b, cS, a(bc) = a(cb); and is called left commutative if 

(ab)c = (ba)c. S is called bi-commutative groupoid, if it is right and left commutative. 

(5) An element aS is called idempotent if a²=a. 

(7) S is called transitively commutative if ab = ba and bc = cb implies ac = ca for all a, b, cS. 

(8) S is called semigroup, if for any a, b, cS, a(bc) = (ab)c. A semigroup (S, ·) is commutative, if 

for all a, bS, ab = ba. A semigroup (S, ·) is called band, if for all aS, a²=a. 

Definition 1. ([24]) Assume that (S, ·) is a groupoid. S is called an Abel-Grassmann’s groupoid (or 

simply AG-groupoid), if S satisfying the left invertive law:  

a, b, cS, (ab)c = (cb)a. 

For any AG-groupoid (S, ·), the medial law holds, that is,  

(ab)(cd) = (ac)(bd), a, b, cS. 

Definition 2. ([10, 11]) Let (S, ·) be an AG-groupoid. (1) S is called an AG*-groupoid, if (ab)c = b(ac) 

for all a, b, cS. (2) S is called an AG**-groupoid, if (a, b, cS) a(bc) = b(ac). (3) S is called an 

T1-AG-groupoid, if (a, b, c, dS) ab = cd  ba = dc. 

Definition 3. ([22, 23]) Suppose that N is a non-empty set and · is a binary operation on N. If for any 

aN, there exist neut(a), anti(a)N such that  

neut(a) · a = a · neut(a) = a;  

anti(a) · a = a · anti(a) = neut(a). 

Then (N, ·) is called a neutrosophic extended triplet set, neut(a) is called a neutral of “a”, anti(a) is 

called an opposite of “a”, and (a, neut(a), anti(a)) is called a neutrosophic extended triplet. 

Definition 4. ([22, 23]) Assume that (N, ·) is a neutrosophic extended triplet set. If  

(1) (N, ·) is well-defined, that is, (a, bN) a·bN.  

(2) (N, ·) is associative, that is, (a, b, cN) (a·b)·c=a·(b·c). 
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Then, (N, ·) is called a neutrosophic extended triplet group (NETG). 

Theorem 1. ([30, 32]) Suppose that (N, ·) is a neutrosophic extended triplet group (NETG). Then 

(aN) neut(a) is unique. 

 

3. Cyclic Associative Groupoids (CA-Groupoids) 

Definition 5. Assume that (S, ·) is a groupoid. If  

a·(b·c) = c·(a·b),  a, b, cS, 

then (S, ·) is called a cyclic associative groupoid (shortly, CA-groupoid). By convention, operator · 

can be omitted without confusion. 

Example 1. Considering the regular pentagon as shown in Figure 1, the center is at the origin of the 

x-y plane and the bottom side is parallel to the x-axis, the vertices are labeled a, b, c, d, e. 

 

Figure 1. Regular pentagon 

Denote S={I, R, R2, R3, R4}, representing some transformations of the regular pentagon, where I is 

0 degrees clockwise around the center, R is 72 degrees clockwise around the center, R² is 144 degrees 

clockwise around the center, R³ is 216 degrees clockwise around the center, R4 is 288 degrees 

clockwise around the center. Define binary operation as a composition of functions in S, for arbitrary 

U, VS, VU   is that the first transforming V and then transforming U. We can verity that (S, ◦) is a 

CA-groupoid, the Cayley table can be presented as Table 1. 

 
Table 1. The operation ◦ on S = {I, R, R2, R3, R4} 

◦ I                       R R² R³ R4 

I I R R² R³ R4 

R R R² R³ R4 I 

R² R² R³ R4 I R 

R³ R³ R4 I R R² 

R4 R4 I R R² R³ 

 

Example 2. Suppose that Z is the set of all integer and nZ. Denote Wn = {a2+nb2|a, bZ}, then (Wn, ·) 

is a CA-groupoid, where · is the normal multiplication. In fact, for arbitrary element w1 = a12+nb12, w2= 

a22+nb22, w3 = a32+nb32Wn, we have 
w1·(w2·w3) = (a1a2a3 - na1b2b3 - nb1a2b3 - nb1b2b3)2+n(a1a2b3 + a1b2a3 + b1a2a3 - nb1b2b3)2 = w3·(w1·w2). 

Moreover, the result above can be extended and applied to solving binary indefinite equation, please 

see [6, 25]. We can obtain the following results (the proof is omitted). 
Proposition 1. (1) Every commutative semigroup is a CA-groupoid. (2) Assume that (S, ·) is a 

CA-groupoid. If S is commutative, then S is a commutative semigroup. 
The following example shows that there exists CA-groupoid which is not a semigroup and not 

an AG-groupoid. 

Example 3. Suppose S = {1, 2, 3, 4}, define a binary operation · on S in Table 2. Then, (S, ·) is a 

CA-groupoid.  
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Table 2. The operation · on S 

· 1                       2 3 4 
1 1 1 1 1 
2 1 1 2 1 
3 1 1 4 2 
4 1 1 2 1 

 
Moreover, S is not a AG-groupoid because (4·3)·3 ≠ (3·3)·4. S isn’t a semigroup because (3·4)· 3 ≠ 

3·(4·3). 

From the following example, we know that there exists CA-groupoid which is a semigroup and 

but it is not commutative. 

Example 4. Assume S = {1, 2, 3, 4}, define a binary operation · on S by Table 3. Then, (S, ·) is a 

CA-groupoid, and (S, ·) is a semigroup, but · is not commutation because 2·4 ≠ 4·2. 

Table 3. The operation · on S 

· 1                                   2 3 4 
1 1 1 1 1 
2 1 3 1 3 
3 1 1 1 1 
4 1 1 1 3 

Example 5. ([2]) Let A be an algebra (i.e. A be a linear space over a field F) with basis x₁, x₂, x₃, x₄, x₅, 

and the following nonzero products of basis elements 
x2·x1 = x3, x4·x2 = x₃, x5·x1 = -x3, x3·x1=x₄, x3·x₂=x5.            (NZP) 

For any a, bA, denote a= 

5

1i iixa , b= 

5

1j jj xb , where ai, bjF (i, j=1, 2, 3, 4, 5), then 

5 5

2 1 3 3 1 4 3 2 5 4 2 3 5 1 31 1

2 1 4 2 5 1 3 3 1 4 3 2 5

( ) ( )

( )

i i j ji j
a b a x b x a b x a b x a b x a b x a b x

a b a b a b x a b x a b x

 
       

    

 
 

This means that A2=<x₃, x₄, x₅>. Moreover, AA²=0, since for any cA, c= 

5

1k kkxc , where ckF (k=1, 2, 

3, 4, 5),  

])[()()( 5234133152412

5

1
xbaxbaxbababaxcbac

k kk   
 

Note that, all nonzero products of basis elements are presented in (NZP), therefore, other products 

of basis elements are zero, that is, x1·x3 = x1·x4 = x1·x5 = … = 0. Hence, (A, ·) is a CA-groupoid, since it 

satisfies the stronger identity a·(b·c) = 0 = c·(a·b), a, b, cA.  

Example 6. ([2]) Let N = {x₁, x₂, x₃, …} a countably infinite set of indeterminates, for any element 

xiN, call it is a letter. Denote P that is the set of the words in the letters xi such that each letter 

occurs at most once in each word. For any word uP, if it is formed by k letters xi, then say that u 

has length k, denote by length(u) = k. Obviously, length(u)≥1 for any uP. Suppose K is a field and A 

is the set of finite formal sums of words of P and with coefficient in K. For any u, vP, define 

multiplication · by:  

(1) u·v = 0, if length(v) >1, u=v or v is a letter that is in the composition of u; 

(2) u·v = uv, if v is a letter that is not in the composition of u, where uv is the word obtained adding 

the letter v at the end of the word u. 

For any a, bA, denote a= 

m

i ii pa
1

, b= 

n

j jjqb
1

, where ai, bjK, pi, qjP (i=1, 2, …, m, j=1, 2, …, n), 

then 

 


mnt tt

n

j jj

m

i ii udqbpaba )()(
11
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Where, dtK, utP. By the definition of the multiplication in A, ut = 0 or length(ut)>1. Therefore, 

AA²=0, since for any cA, c= 

l

s ssvc
1

, where csK, vsP (s=1, 2, …, l),  

0)()()(
1

   mnt tt

l

s ss udvcbac  

Hence, (A, ·) is a CA-groupoid, since it satisfies the stronger identity a·(b·c) = 0 = c·(a·b), a, b, cA.  

Example 7. Let S = [1, 2] (real number interval). For any a, bS, define the multiplication · by 










3,2

3,1

baifba

baifba
ba  

Then (S, ·) is a CA-groupoid, since it satisfies a·(b·c) = c·(a·b), a, b, cS, the proof is as follows: 

Case 1: a+b+c−1≤3. It follows that b+c ≤ a+b+c−1≤ 3 and a+b ≤ a+b+c−1≤ 3. Then a·(b·c) = a·(b+c−1) 

= a+b+c−2 = c·(a+b−1) = c·(a·b). 

Case 2: a+b+c−1>3, b+c≤3 and a+b≤3. Then a·(b·c) = a·(b+c−1) = a+b+c−3 = c·(a+b−1) = c·(a·b). 

Case 3: a+b+c−1>3, b+c≤3 and a+b>3. It follows that a+b+c−2 ≤ a+3−2 = a+1 ≤ 3. Then a·(b·c) = 

a·(b+c−1) = a+b+c−3 = c·(a+b−2) = c·(a·b). 

Case 4: a+b+c−1>3, b+c>3 and a+b≤3. It follows that a+b+c−2 ≤ 3+c−2 = c+1 ≤ 3. Then a·(b·c) = 

a·(b+c−2) = a+b+c−3 = c·(a+b−1) = c·(a·b). 

Case 5: a+b+c−1>3, b+c>3 and a+b>3. When a+b+c−2≤3, a·(b·c) = a·(b+c−2) = a+b+c−3 = c·(a+b−2) = 

c·(a·b); When a+b+c−2>3, a·(b·c) = a·(b+c−2) = a+b+c−4 = c·(a+b−2) = c·(a·b). 

4. Some Properties of CA-Groupoids 

Proposition 2. If (S, ·) is a CA-groupoid, then, for any, 

(1)  a, b, c, dS, (ab)(cd) = (da)(cb); 

(2) a, b, c, d, x, yS, (ab)((cd)(xy)) = (da)((cb)(xy)). 

Proof. Assume that a, b, c, d, x, yS, by Definition 5 we have 

(ab)(cd) = d((ab)c) = c(d(ab)) = c(b(da)) = (da)(cb). 

(ab)((cd)(xy)) = (xy)((ab)(cd)) = (xy)((da)(cb)) = (da)((cb)(xy)). □ 

Theorem 2. Let (S, ·) be a CA-groupoid.  

(1) If S have a left identity element, that is, there exists eS such that e·a=a for all aS, then S is a 

commutative semigroup. 

(2) If eS is a left identity element in S, then eS is an identity element in S. 

(3) If eS is a right identity element in S, that is, a·e=a for all aS, then eS is an identity element in 

S. 

(4) If S have a right identity element, then S is a commutative semigroup. 

Proof. (1) Suppose a, bS, a·b = a·(e·b) = b·(a·e) = e·(b·a) = b·a. It follows that (S, ·) is a commutative 

CA-groupoid. By Proposition 1 (2) we know that (S, ·) is a commutative semigroup. 

(2) Assume that eS is a left identity element in S, then for any aS, a·e = a·(e·e) = e·(a·e) = e·(e·a) = 

e·a = a. This means that eS is an identity element in S. 

(3) Assume that eS is a right identity element in S, then for any aS, e·a = e·(a·e) = e·(e·a) = a·(e·e) 

= a·e = a. This means that eS is an identity element in S. 

(4) It follows from (1) and (3). □ 

Theorem 3. Let (S, ·) be a semigroup.  

(1) When S is right commutative CA-groupoid, S is an AG-groupoid. 

(2) When S is right commutative CA-groupoid, S is left commutative CA-groupoid. 

(3) When S is left commutative CA-groupoid, S is right commutative CA-groupoid 

(4) When S is left commutative CA-groupoid, S is an AG-groupoid. 

(5) When S is left commutative AG-groupoid, S is an CA-groupoid. 

(6) When S is left commutative AG-groupoid, S is right commutative AG-groupoid. 

(7) When S is right commutative AG-groupoid, S is left commutative AG-groupoid. 

(8) When (S, ∗) is right commutative AG-groupoid, S is an CA-groupoid. 
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Proof. (1) If (S, ·) is right commutative CA-groupoid, then, a, b, cS, (a·b)·c = a·(b·c) = c·(a·b) = c·(b·a). 

It follows that (S, ·) is an AG-groupoid by Definition 1. 

(2) If (S, ·) is right commutative CA-groupoid, then, a, b, cS, (a·b)·c = a·(b·c) = a·(c·b) = b·(a·c) = 

(b·a)·c. That is, (S, ·) is left commutative CA-groupoid.  

(3) Assume that (S, ·) is left commutative CA-groupoid. Then, for any a, b, cS, a·(b·c) = c·(a·b) = 

(c·a)·b = (a·c)·b = a·(c·b). This means that (S, ·) is right commutative CA-groupoid.  

(4) It follows from (1) and (3). 

(5) Suppose that (S, ·) is left commutative AG-groupoid. Then, for any a, b, cS, 

a·(b·c) = (a·b)·c = (b·a)·c = c·(a·b). 

Using Definition 5, (S, ·) is a CA-groupoid. 

(6) If (S, ·) is left commutative AG-groupoid, then, a, b, cS, a·(b·c) = (a·b)·c = (c·b)·a = (b·c)·a = 

(a·c)·b = a·(c·b). That is, (S, ·) is right commutative AG-groupoid.  

(7) If (S, ·) is right commutative AG-groupoid, then, a, b, cS, 

(a·b)·c = a·(b·c) = a·(c·b) = (a·c)·b = (b·c)·a = b·(c·a) = b·(a·c) = (b·a)·c. 

This means that (S, ·) is left commutative AG-groupoid.  

(8) It follows from (5) and (7). □ 

Example 8. Let S = {a, b, c, d}. Define the operate · on S in Table 4. Then, (S, ·) is a CA-groupoid, but 

isn’t a CA-AG-groupoid because (b·d)·d ≠ (d·d)·b. 

Table 4. The operation on S 

· a                                   b c d 

a a a a a 

b a a a b 

c a a c c 

d a a c c 

Example 9. Let S = {a, b, c, d, e}. Define the operate · on S in Table 5. Then, (S, ·) is a CA-AG-groupoid, 

and (S, ·) is not a semigroup, because (a·a)·a ≠ a·(a·a). 

Table 5. The operation on S 

· a                                   b c d e 

a b c c c e 

b d c c c e 

c c c c c e 

d c c c c e 

e e e e e c 

From Proposition 1, Theorem 3, Example 4, Example 8 and Example 9, we know the 

relationships among some algebraic systems, we can present as Figure 2.  

 
Figure 2. The relationships among some algebraic systems 
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Theorem 4. Let (S, ·) be a CA-groupoid. If for all aS, a²=a, then S is commutative. 

Proof. Suppose that (S, ·) is a CA-groupoid and a, bS, we have 

a·b=(a·a)·(b·b)=b·((a·a) ·b)=b·(b·(a·a))=b·(a·(b·a))=(b·a) ·(b·a)=b·a; 

hence S is commutative.  

It follows that (S, ·) is a commutative CA-groupoid, and it is a commutative semigroup.  

Definition 6. Let (S1, ·1) and (S2, ·2) be two CA-groupoids, S₁×S₂ = {(a, b)|aS₁, bS₂}. Define binary 

operation · on S₁×S₂ as following: (a₁, a2) · (b1, b₂) = (a₁·1 b₁, a₂·2b₂), (a₁, a2), (b1, b₂)S₁×S₂. 

(S₁×S₂, ·) is called the direct product of (S1, ·1) and (S2, ·2), and S₁ and S₂ are called the direct factors of 

S₁×S₂. 

Theorem 5. Let (S1, ·1) and (S2, ·2) be two CA-groupoids. Then the direct product (S₁×S₂, ·) defined in 

Definition 7 is a CA-groupoid. 

Proof. If (a1, a2), (b1, b2), (c1, c2)S1×S₂, then 

(a1, a2) · ((b1, b2) · (c1, c2)) = (a1, a2) · (b1 ·1 c1, b2 ·2 c2) = (a1 ·1 (b1 ·1 c1), a2 ·2 (b2 ·2 c2))  

= (c1 ·1 (a1 ·1 b1), c2 ·2 (a2 ·2 b2)) = (c1, c2) · (a1 ·1 b1, a2 ·2 b2) = (c1, c2) · ((a1, a2) · (b1, b2)). 

Hence, (S1×S₂, ·) is a CA-groupoid.  

 

5. Cyclic Associative Neutrosophic Extended Triplet Groupoids (CA-NET-Groupoids) 

In this section, we mainly study a class of important CA-groupoids, called CA-NET-groupoids. 

The research ideas are derived from regular semigroups in classical semigroup theory and the recent 

research results on neutrosophic extended triplet groupoids (NETGs, see [15, 22-23, 26, 30, 32-33]). 

After giving the basic definitions and properties, this section focuses on the structure of 

CA-NET-groupoids. The results show that every CA-NET-groupoid can be decomposed into 

disjoint union of some of its subgroups, which is actually an extension of the famous Clifford’s 

theorem in semigroup theory. 

Definition 7. Assume that (N , ·) be a neutrosophic extended triplet set. If  

(1) (N, ·) is well-defined, that is, ( a, bN) a*bN; 

(2) (N, ·) is cyclic associative, that is, ( a, b, cN) a·(b·c) = c·(a·b). 

Then (N, ·) is called a cyclic associative neutrosophic extended triplet groupoid (shortly, 

CA-NET-groupoid). A CA-NET-groupoid (N, ·) is commutative, if ( a, bN) a·b = b·a. 

Theorem 6. If (N, ·) is a CA-NET-groupoid and aN. Then the local unit element neut(a) is unique 

in N.  

Proof. Suppose that local unit element neut(a) is not unique in S. Then, there exists s, t{neut(a)} 

such that (p, qN) 

as = sa =a and ap=pa=s; at = ta = a and aq = qa = t. 

(1) s = ts. Since s = pa = p(at) = t(pa) = ts. 

(2) t = st. Since t = qa = q(as) = s(qa) = st. 

(3) s = ss and t = tt. Since s = pa = p(as) = s(pa) = ss, and t = qa = q(at) = t(qa) = tt. 

(4) ts = st. Since ts = t(ts) = s(tt) = st. 

Hence s=t and neut(a) is unique in N. □ 

From the following example, we know that anti(a) may be not unique. 

Example 10. Denote N = {1, 2, 3, 4}. Define the operate · on N in Table 6. Then, (N, ·) is CA-NET- 

groupoid. Moreover, neut(1) = 1 and {anti(1)} = {1, 2, 3, 4}. 

Table 6. The operation · on N 

· 1                                   2 3 4 

1 1 1 1 1 

2 1 4 1 2 

3 1 1 3 1 

4 1 2 1 4 

Theorem 7. If (N, ·) be a CA-NET-groupoid, then 
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(1)  aN, neut(a)neut(a) = neut(a); 

(2)  aN, neut(neut(a)) = neut(a); 

(3)  aN,  anti(neut(a)){anti(neut(a))}, anti(neut(a))a = a. 

Proof. (1) By a(anti(a)) = anti(a)a = neut(a), we get 

neut(a)neut(a) = neut(a)(a(anti(a))) = anti(a)(neut(a)a) = anti(a)a = neut(a). 

(2) For any aN, using the definition of neut(neut(a)) we have  

neut(neut(a))neut(a) = neut(a)neut(neut(a)) = neut(a). 

By the definition of anti(neut(a)) we have 

anti(neut(a))neut(a) = neut(a)anti(neut(a)) = neut(neut(a)). 

By (1) and Theorem 7, we get that neut(neut(a)) = neut(a). 

(3) Using Definition 5, Definition 8 and above (1), for all aN, 

anti(neut(a))a = anti(neut(a))(neut(a)a) = a(anti(neut(a))neut(a)) = a(neut(neut(a))) = a(neut(a)) =a. 

It follows that anti(neut(a))a = a. □ 

From the following example, neut(anti(a)) may be not equal to neut(a). 

Example 11. Denote N = {1, 2, 3, 4}. Define the operate · on N in Table 7. Then, (N, ·) is CA-NET- 

groupoid. Moreover, neut(1) = 1, neut(2) = 2, {anti(1)} = {1, 2, 3, 4}. While anti(1) = 2, neut(anti(a)) ≠ 

neut(a), because neut(anti(1)) = neut(2) = 2 ≠ 1 = neut(1). 

Table 7. The operation · on N 

· 1                                   2 3 4 

1 1 1 1 1 

2 1 2 1 4 

3 1 1 3 1 

4 1 4 1 2 

 

Theorem 8. If (N, ·) is a CA-NET-groupoid. Then 
(1)  aN,  p, q{anti(a)}, p(neut(a)) = q(neut(a)); 

(2)  aN,  anti(a){anti(a)}, anti(neut(a))anti(a){anti(a)}; 

(3)  aN,  q{anti(a)}, anti(q)neut(a) = a(neut(q)); 

Proof. (1)  aN,  p, q {anti(a)}, by the definition of neutral and opposite element, using 

Theorem 7, we get 

pa = ap = neut(a), qa = aq = neut(a). 

p(neut(a)) = p(aq) = q(pa) = q(neut(a)). 

(2) aN,  anti(a){anti(a)},  anti(neut(a)){anti(neut(a))},  

a[anti(neut(a))anti(a)] = anti(a){a[anti(neut(a))]} = anti(neut(a))[anti(a)a] = anti(neut(a))neut(a) = 

neut(neut(a)) = neut(a); 

[anti(neut(a))anti(a)]a = [anti(neut(a))anti(a)]{a[neut(a)]} = neut(a){[anti(neut(a))anti(a)]a} = 

a{neut(a)[anti(neut(a))anti(a)]} = a{anti(a)[neut(a)anti(neut(a))] = a[anti(a)neut(a)] = neut(a)[a(anti(a))] = 

neut(a)neut(a) = neut(a). 

Thus, anti(neut(a))anti(a) {anti(a)}. 

(3)  aN,  q{anti(a)}, by aq = qa = neut(a) and q(anti(q)) = anti(q)q = neut(q), we get 

a(neut(q)) = a[q(anti(q))] = anti(q)(aq) = anti(q)neut(a). 

This shows that anti(q)neut(a) = a(neut(q)). 

Proposition 3. If (N, ·) is a CA-NET-groupoid. Then 

(1)  a, b, cN, ab = ac b(neut(a)) = c(neut(a)); 

(2)  a, b, cN, ba = ca if and only if b(neut(a)) = c(neut(a)).  

Proof. (1) Assume ab = ac. For aN, by the definition of CA-NET-groupoid, anti(a)N. Multiply 

anti(a) to the left side with ab = ac,  

anti(a)(ab) = anti(a)(ac), b[anti(a)a] = c[anti(a)a], b(neut(a)) = c(neut(a)). 
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(2) Assume ba = ca. Then, 

anti(a)(ba) = anti(a)(ca), a[anti(a)b] = a[anti(a)c], b[a(anti(a))] = c[a(anti(a))], b(neut(a)) = c(neut(a)). 

Conversely, suppose that b(neut(a)) = c(neut(a)). By Definition 5, 

a[b(neut(a))] = a[c(neut(a))], neut(a)(ab) = neut(a)(ac), b[neut(a)a] = c[neut(a)a], ba = ca.  

Proposition 4. Suppose that (N, ·) is a commutative CA-NET-groupoid. Then  

 a, bN, neut(a)neut(b) = neut(ab). 

Proof. Because the local unit element of every element is unique in N, consider left hand side, 

neut(a)neut(b). Now multiply to the left with ab,  

(ab)[neut(a)neut(b)] = neut(b)[(ab)neut(a)] = neut(a)[neut(b)(ab)] = neut(a)[b(neut(b)a)] = 

= neut(a){a[b(neut(b))]} = neut(a)(ab) = b[neut(a)a] = ba = ab. 

And multiply to the right with ab for neut(a)neut(b), we can get 

[neut(a)neut(b)](ab) = b{[neut(a)neut(b)]a} = a{b[neut(a)neut(b)]} = a{neut(b)[b(neut(a))]} = 

a{neut(a)[neut(b)b]} = a[neut(a)b] = b[a(neut(a))] = ba = ab. 

Therefore, neut(a)neut(b) = neut(ab).  

Definition 8. Let (N, ·) be a CA-NET-groupoid. If ( a, bN) a(neut(b)) = neut(b)a, then N is called a 

weak commutative CA-NET-groupoid (briefly, WC-CA-NET-groupoid). 

Theorem 9. Assume that (N, ·) is a CA-NET-groupoid. Then N is a commutative CA-NET-groupoid 

if and only if N is a weak commutative CA-NET-groupoid. 

Proof. Suppose that N is a commutative CA-NET-groupoid. Obviously, N is a weak commutative 

CA-NET-groupoid. Conversely, if N is a weak commutative CA-NET-groupoid, then ( a, bN) 

ab = a[neut(b)b] = b[a(neut(b))] = neut(b)(ba) = neut(b)[b(neut(a)a)] = neut(b){a[b(neut(a))]} 

= neut(b)[neut(a)(ab)] = (ab)[neut(b)neut(a)] = neut(a)[(ab)neut(b)] = neut(a)[neut(b)(ab)] 

= neut(a)[b(neut(b)a)] = neut(a){a(b[neut(b)]) = neut(a)(ab) = b[neut(a)a] = ba. 

Therefore, N is a commutative CA-NET-groupoid. □ 

Theorem 10. Suppose that (N, ·) is a CA-NET-groupoid. Denote the set of all different neutral 

element in N by E(N). For any eE(N), denote N(e) = {aN| neut(a) = e}. Then  

(1)  eE(N), N(e) is a subgroup of N. 

(2)  e1, e2E(N), e1≠e2   N(e1) ∩ N(e2) = . 

(3) )()( eNN NEe  . 

Proof. (1)  xN(e), neut(x) = e. This means that e is an identity element in N(e). Moreover, by 

Theorem 8 (1), ee = e. 

If x, yN(e), then neut(x) = neut(y) = e. We prove that neut(xy) = e. In fact, by Definition 5 and 

Proposition 2 (1) we have 

(xy)e = (xy)(ee) = (ex)(ey) = xy; e(xy) = y(ex) = x(ye) = xy. 

On the other hand,  anti(x){anti(x)},  anti(y){anti(y)}, by Proposition 2 (1), 

(xy)[anti(x)anti(y)] = (anti(y)x)(anti(x)y) = [y(anti(y))](anti(x)x) = neut(y)neut(x) = ee = e. 

 [anti(x)anti(y)](xy) = [y(anti(x))][x(anti(y))] = (anti(y)y)[x(anti(x))] = neut(y)neut(x) = ee = e. 

Thus, by the definition of neutral element and Theorem 7, we know that neut(xy) = e. It follows that 

xyN(e), that is, N(e) is closed under operation ·. 

Moreover,  xN(e), there exists qN and q {anti(x)}. Using Theorem 11 (1), q(neut(x)) 

{anti(x)}; and using Theorem 11 (5), neut(q(neut(x))) = neut(x). Denote t = q(neut(x)), then 

t = q(neut(x)){anti(x)}, and neut(t) = neut(q(neut(x))) = neut(x) = e. 

This means that there exists t{anti(x)}, neut(t) = e, that is, tN(e).  

Combing above results, we know that (N(e), ·) is a subgroup of N. 

(2) Assume that xN(e1) ∩ N(e2) and e1, e2E(N). Then neut(x) = e1, neut(x) = e2. By Theorem 7 we 

get e1 = e2. Therefore, e1 ≠ e2   N(e1) ∩ N(e2) = . 

(3)  xN, there exists neut(x)N. Denote e = neut(x), then eE(N) and xN(e). This means 

that )()( eNN NEe  . □ 
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6. Conclusions  

In this paper, the concept of cyclic associative groupoid (CA-groupoid) is introduced for the 

first time from various backgrounds, such as non-associative rings and non-associative algebras, 

weak Novikov algebras and CA-AG-groupoids. The research results of this paper show that 

CA-groupoid, as a non-associative algebraic structure, has typical representativeness and rich 

connotation, and is closely related to many kinds of algebraic structures. This paper obtains many 

interesting conclusions. Here are some important results：  

(1) Every commutative semigroup is CA-groupoid, every commutative CA-groupoid is a semi- 

group. (see Example 1, 2 and Proposition 1)  

(2) From some non-associative and non-commutative algebras (as vector spaces over fields), we 

can get some CA-groupoids. (see Example 5 and 6) 

(3) Every CA-groupoid with left (or right) identity element is a commutative semigroup, every 

left cancellative element of a CA-groupoid is right cancellative. (see Theorem 2 and 4) 

(4) CA-groupoids and AG-groupoids are closely related, but they do not contain each other. 

(see Theorem 3 and Figure 2) 

(5) For cyclic associative neutrosophic extended triplet groupoids (CA-NET- groupoids), there 

are some interesting properties. (see Theorem 7, 8, 9 and 11) 

(6) A CA-groupoid is weak commutative if and only if it is commutative CA-NET-groupoid. 

(see Definition 9 and Theorem 10) 

(7) Every CA-NET- groupoid is a disjoint union of its subgroup. (Decomposition Theorem of 

the CA-NET-groupoids, see Theorem 12) 

As a direction of future research, we’ll investigate regularity, cancellability and the 

relationships among CA-groupoids, CA-NET-groupoids and related algebraic systems. 
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Abstract: This study applies the neutrosophic set theory to evaluate the service quality of airline. 

This research offers a novel approach for evaluating the service quality of airline under a group 

decision making (GDM) in a vague decision environment. The complexity of the selected decision 

criteria for the airline service quality is a significant feature of this analysis. To simulate these 

processes, a methodology that combines neutrosophic using bipolar numbers with Technique for 

Order Preference by Similarity to Ideal Solution (TOPSIS) under GDM is suggested. Neutrosophic 

with TOPSIS approach is applied in the decision making process to deal with the vagueness, 

incomplete data and the uncertainty, considering the decisions criteria in the data collected by the 

decision makers (DMs). Service quality is a composite of various attributes, among them many 

intangible attributes are difficult to measure. This characteristic introduces the obstacles for 

respondent in replying to the survey. In order to overcome the issue, we invite neutrosophic set 

theory into the measurement of performance. We have introduced a real life example in the 

research of how to evaluate airline service according to opinion of experts. Through solution of a 

numerical example we present steps of how formulate problem in TOPSIS by neutrosophic. By 

applying TOPSIS in obtaining criteria weight and ranking, we found the most concerned aspects of 

service quality are tangible and the least is empathy. The most concerned attribute is courtesy, 

safety and comfort. 

Keywords: Bipolar neutrosophic numbers; TOPSIS method; Service quality; Group decision 

making; Airline 

 

 

1. Introduction 

In Egypt, the air travel market, both domestic and international, have been experiencing great 

competition in recent years due to both the deregulation and the increasing of customers awareness 

of service quality. Under the situation, carriers endeavor to build up increasingly advantageous 

courses, yet in addition present progressively limited time motivations, including mileage rewards, 

long standing customer enrollment program, sweepstakes, etc. Carriers want to unite the piece of 

the pie and improve productivity. Nonetheless, the peripheral advantages of showcasing 

procedures step by step diminish on the grounds that the majority of the carriers demonstration also. 

Perceiving this confinement of the showcasing methodologies, some of air bearers currently will in 

general spotlight on the dedication of improving client administration quality. The air bearers give a 

scope of administrations to clients including ticket reservation, buy, airplane terminal ground 

administration, on-board administration and the administration at the goal.  

Aircraft administration likewise comprises of the help related with interruptions, for example, 

lost-things taking care of and administration for deferred travelers. Administration quality can be 

viewed as a composite of different characteristics. It comprises of substantial traits, yet in addition 
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elusive/emotional properties, for example, wellbeing, comfort, which are hard to quantify precisely. 

Diverse individual as a rule has wide scope of observations toward quality administration, 

contingent upon their inclination structures and jobs in procedure specialist 

organizations/recipients. To gauge administration quality, traditional estimation instruments are 

conceived on cardinal or ordinal scales. A large portion of the analysis about scale dependent on 

estimation is that scores don't really speak to client inclination. This is on the grounds that 

respondents need to inside proselyte inclination to scores and the transformation may present 

contortion of the inclination being caught. 

    Since administration industry contains elusiveness, perishability, connection and heterogeneity, 

it makes people groups progressively hard to gauge administration quality. To investigate the past 

related research record, a large portion of the strategies for assessing carrier administration quality 

utilizes measurements strategy. 5-point of Likert Scales is the significant method to assess 

administration quality previously.  

These days, the neutrosophic set hypothesis has been connected to the field of the board 

science, similar to basic leadership nonetheless, it is hardly utilized in the field of administration 

quality. Lingual articulations, for instance, fulfilled, reasonable, disappointed, are viewed as the 

normal portrayal of the inclination or decisions. This study aims to suggest a set of valuation criteria 

for the service quality of airline in relationship to the selection of the best airlines. There are many 

resources that can be used for collecting the evaluation criteria, such as the judgments of academic 

experts, industrial and decision makers, the current scientific literature or available regulations and 

passengers. Decision making is mostly about choosing the preferable choice between a set of 

alternatives by considering the influence of many criteria altogether. In the last five decades, the 

multi criteria decision making (MCDM) methodology became one of the most important key in 

solving complicated and complex decision problems in the existence of multiple criteria and 

alternatives [1]. 

 The MCDM methodology can be used to resolve multi valuation and ordering problems that 

combine a number of inconsistent criteria. After this progress, several types of MCDM methods are 

suggested to successfully solve various types of decision making problems. This powerful 

methodology often needs qualitative and quantitative data, which are used in the measurement of 

obtainable alternatives. In multi MCDM problems, interdependency, mutuality and interactivity 

features between decision criteria are of a vague nature, which obscures the task of a membership 

[2]. However, most methods proved inadequate and inappropriate in solving and explaining real life 

problems, mostly because they rely on crisp values. Many MCDM methods use the fuzzy or the 

intuitionistic fuzzy set theories to overcome this obstacle. Nevertheless, F and IF numbers are also 

not always appropriate. Classes of F and IF sets proved to be efficient in some implementations. 

Nevertheless, in our opinion that is a compromise, since the neutrosophic set offers major and better 

possibilities [3, 4-11].  

The notion / concept of neutrosophic set provides a substitute approach where there is a lack of 

accuracy to the determinations imposed by the crisp sets or traditional fuzzy sets, and in situations 

where the presented information is not suitable to locate its inaccuracy. Neutrosophic sets are very 

powerful and successful in overcoming situations and cases in incomplete information environment, 

uncertainty, vagueness and imprecision, and it is described by a membership degree, an 

indeterminacy degree and a nonmembership degree [5]. Therefore, neutrosophic sets introduce a 
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qualified tool for expressing DMs' preferences and priorities, completely determining the 

membership function in situations where DM opinions are subject to indeterminacy or lack of 

information. DMs use linguistic variables expressed in two parts, where the first part is employed to 

voice their preferences and the other part is used to convey the confirmation degree of linguistic 

variable according to each DM. Neutrosophic set is becoming a scientific key tool, receiving 

attention from many DMs and academic researchers for developing and improving the neutrosophic 

methodology. 

The main accomplishments of this research are: 

 The characterization and preparation of an effective evaluation framework to lead the 

marketing industry towards the suitable airline selection. 

 It also contributes to the literature by providing a novel Neutrosophic with TOPSIS method 

under GDM setting, by considering the interactions among airlines selection criteria in a 

vague environment. 

The research is organized as it is assumed up: Section 2 presents the TOPSIS method. Section 3 gives 

an insight into some basic definitions on neutrosophic sets. Section 4 explains the proposed 

methodology of neutrosophic TOPSIS group decision making model. Section 5 introduces numerical 

example. Finally, we close our research with some remarks. 

 

2. TOPSIS 

 

The TOPSIS was first proposed by Hwang and Yoon (1981). The hidden rationale of TOPSIS is 

to characterize the perfect arrangement and the negative perfect arrangement. The perfect 

arrangement is the arrangement that amplifies the advantage criteria and limits the cost criteria; 

while the negative perfect arrangement augments the cost criteria and limits the advantage criteria. 

The ideal option is the one, which is nearest to the perfect arrangement and most distant to the 

negative perfect arrangement. The positioning of choices in TOPSIS depends on 'the relative 

closeness to the perfect arrangement', which maintains a strategic distance from the circumstance of 

having same comparability to both perfect and negative perfect arrangements. To whole up, perfect 

arrangement is made out of every single best worth feasible of criteria, though negative perfect 

arrangement is comprised of every single most exceedingly awful worth achievable of criteria. 

During the procedures of elective determination, the best option would be the one that is closest to 

the perfect arrangement and most distant from the negative perfect arrangement.  

 

3. Preliminaries 

In this section, we give the fundamental meanings of neutrosophic set and bipolar neutrosophic 

numbers (BNNs). 

Definition 1. A bipolar neutrosophic set A in X is defined as an object of the form A = 〈x,  

(x),  (x),  (x),  (x),  (x),  (x) 〉: x ∈ X}, where ,  ,  : X [1,0  and , ,  : X 

[-1,0 ]. The positive membership degree   (x),  (x),  (x) denotes the truth membership, the 

indeterminate membership and the false membership of an element x  X corresponding to a bipolar 

neutrosophic set A, and the negative membership degree  (x),  (x),  (x) denotes the truth 

membership, the indeterminate membership and the false membership of an element x  X to some 

implicit counter property corresponding to a bipolar neutrosophic set A.  
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Definition 2. Let  = 〈x, (x),  (x), (x), (x),  (x), (x)  〉 and  = 〈x, (x),  

(x), (x), (x),  (x), (x)  〉 be two bipolar neutrosophic sets. Then, their union is defined as: 

(  )(x)=( max( (x) , (x)), , min(( (x) , (x)), min( (x),  (x)) , , 

max(( (x) , (x)) ), for all x  X. 

Definition 3. Let = ( ) and = ( ) be two bipolar 

neutrosophic numbers. Then, the operations for NNs are defined as below: 

𝜆  =  , , ,  - ,- - ) ) 

 = , , - ),-( ),-(  ) 

 ( + -  ,  ,  ,  , - ( - -  -  ),-( - -  -  )) 

 (  , +  -   +  +  -  , - ( - -  -  ), -    , -  ), 

where   0. 

Definition 4. Let = ( ) be a bipolar neutrosophic number. Then, the score 

function s ( ), accuracy function a ( ) and certainty function c ( ) of an NBN are defined as 

follows: 

 
(

(1) 

 
(2) 

 
(3) 

Definition 5.  Let = ( ) and = ( ) be two bipolar 

neutrosophic numbers. The comparison method can be defined as follows: 

 if  >  , then  is greater than , that is,  is superior to , denoted by 

>  

  =  and   >  , then  is greater than , that is,  is superior 

to , denoted by  < ; 

 if  = ),   =   ) and ( ) > ( ), then  is greater than , that 

is,  is superior to , denoted by > ; 

 if  = ),   =   ) and ( ) =  ( ), then  is equal to , that is, 

 is indifferent to , denoted by = . 

Definition 6. Let = ( ) (𝑗 = 1, 2,…, 𝑛) be a family of bipolar neutrosophic 

numbers. A mapping :  → 𝒬 is called bipolar neutrosophic weighted average operator if it 

satisfies the condition: ( ,….., )=   =⟨ 1 −  ,      ,  

 ,-  , -1(  ), - ( 1 -  )), where  is the weight 

of  (𝑗 = 1,2, … , 𝑛),  ∈ [0,1] and   =1. 

 

4. Methodology 

 

In this section, the steps of the suggested bipolar neutrosophic with TOPSIS framework are 

presented in details. 

Step 1. Organize a committee of experts and determine the goal, the alternatives and the 

valuation criteria. Suppose that experts want to appreciate the collection of n criteria and m 

alternatives. Experts are symbolized by  = { , , }, where E = 1, 2, ..., E, and alternatives 

by  = { , , ..., }, where i = 1, 2, ..., m, assessed on n criteria  = { , , .., }, j =  1, 2, ..., n. 
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Step 2. Depict and design the linguistic scales to describe experts, and set the alternatives. 

Step 3. Obtain experts’ judgments on each element. 

Based on previously knowledge and experience, experts are demanded to convey their judgments. 

Every expert gives his / her judgment on every of these elements. 

Step 4. Obtain the conversion of (BNNs) bipolar neutrosophic numbers. 

When all experts give their valuations on each element. Let  be a (BN) decision matrix of the  

DMs for calculating weights of criteria by opinions of DMs, then: 

 =  , k ϵ K                                                          (4) 

where  = [ (x), (x), (x) (x), (x), (x)] , k = 1, 2, …, K, i = 1, 2, …, m, j = 1,2, …, n. 

Step 5. Calculating the weights of experts. 

Experts’ judgments are collected by using the following equation: 

 =   (5) 

Step 6. Construct the evaluation matrix.  

Build the evaluation matrix   with the assistance of BNNS to evaluate the ratings of 

alternatives with respect to each criterion. Let  be a (BN) decision matrix of the experts, then: 

 =  , k ϵ K                                                          
(

(6) 

where  = [ (x), (x), (x) (x), (x), (x)] , k = 1, 2, …, K, i = 1, 2, …, m, j = 1,2, …, n. 

Step 7. Aggregate the final evaluation matrix.  

Using Eq.7, aggregate the crisp values of evaluation matrices into a final matrix.  

 =                                                                   
(

(7) 

Then, normalize the obtained matrix by Eq. 8. 

= ; r = 1, 2… m; t = 1, 2… n.                                                     (

(8) 

After that, calculate the weight matrix by Eq. 9. 

 =                                                                         
(

(9) 

Step 8. Define Ideal Solution , . 

Calculate the positive and negative ideal solution using Eqs. (10, 11). 

 = {< max ( | j ϵ  >, < min ( | j ϵ  >}               (10) 

 = {< min ( | j ϵ  >, < max ( | j ϵ  >}               (11) 
 

Step 9. Positive and Negative Ideal Solution ,  . 

Calculate the Euclidean distance between positive solution ( ) and negative ideal solution ( ) 

using Eqs. (12, 13). 
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 =    ,                                                
(

(12) 

 

 =                                                    
(

(13) 

Step 10. Rank the alternatives based on closeness coefficient. 

 =     
(

(14) 

5.  Numerical Example  

We presented in this area a numerical case, which requires techniques and information 

investigation to test the ability and effectiveness of proposed structure for determination of the best 

aircraft. 

5.1. Case Study 

In an exertion of leading the overview, 250 surveys are conveyed to authorize visit directs in 21 

general travel offices. The reason of limiting the capability of respondents was that we wished 

respondents had the experience of going with all carriers to be assessed. The authorized visit aides 

were the most normal decisions because of their regular voyages. Among the 250 overviews, 211 

were returned for an arrival pace of 47%. The other statistic measurements were: 21% were at their 

age of 21–41; 99.05% got in any event secondary school training; normal working knowledge in the 

travel industry was 5.9 years. The poll of administration quality assessment mostly was made out of 

two sections: inquiries for assessing the general significance of criteria and aircraft's presentation 

relating to every measure. TOPSIS technique was utilized in getting the overall load of criteria and 

positioning of options. Concerning the presentation comparing to criteria of each carrier, we utilized 

semantic articulation to quantify the communicated exhibition. So as to set up the enrollment 

capacity related with each semantic articulation term, we requested that respondents indicate the 

range from 0 to 1 comparing to etymological term 'disappointed', 'reasonable', 'fulfilled' and 

'exceptionally fulfilled'. These score were later pooled to align the participation capacities. We 

picked three noteworthy air transporters as the objects of this experimental examination. Carrier A, 

the most established aircraft in Egypt, with over 30 year’s history, gains the most noteworthy piece 

of the overall industry by about 30%. The piece of the pie of aircraft B, despite the fact that is just 20% 

as of now, is quickly developing a result of the positive picture and notoriety. Carrier C is a 

preferably youthful jetliner with less over 10 years of activity history. The piece of the pie of carrier C 

is the least out of the three aircrafts at about 13%. There are three experts: , , and , and 

three alternatives A, B and C  .For evaluating the airlines alternatives, seven criteria are considered 

as selection factors: (Appearance of crew), (Food), (Professional skill of crew), 

(Customer complaints handling), (Responsiveness of crew), (Safety) and (Timeliness). 

 

5.2. The Calculation Process 

Step 1. Organize a committee of experts and determine the goal, alternatives and valuation 

criteria.  

Step 2. Determine the appropriate linguistic variables for weights  of criteria  and 

alternatives  with regard to each criterion. Each linguistic variable is a bipolar neutrosophic 

number. For criteria weights and for compilation alternatives, the linguistic variables are as in Table 

1. 
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Table 1. Linguistic terms for evaluation criteria and alternatives. 

Linguistic terms 
Bipolar neutrosophic number 

[ (x), (x), (x) (x), (x), (x)] 

Excessively Good (EG)  

Very Good (VG)  

Midst Good (MG)  

Perfect (P)  

Approximately Similar (AS)  

Bad (B)  

Midst Bad (MB)  

Very Bad (VB)  

Excessively Bad (EB)  
 

Step 3. Calculating the weights of experts 

Table 2 presents the criteria weights according to all experts, after deciding linguistic variables 

to each expert. Convert the linguistic variables into bipolar neutrosophic numbers. Use Eq. 5 to 

aggregate weights in BNNs. Then, employ Eq. 1 to calculate the crisp weight values. After that, make 

a normalization procedure on the previous values, as in Table 3. 

 

Table 2. Criteria weights according to all experts. 

Exs        

        

        

        

        
 

 

Table 3. The normalized criteria weights. 

  crisp  

 [ ] 0.6875 0.17 

 [ ] 0.4458 0.09 

  0.4792 0.11 

 [ ] 0.7250 0.21 

 [ ] 0.6042 0.14 

 [ ] 0.6417 0.15 

 [ ] 0.5375 0.13 
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Step 4. Construct the evaluation matrix.  

Obtain the final decision matrix by making the aggregation procedure of experts’ priorities and 

preferences, as in Table 4. Calculate the crisp values of matrices and insert them into the aggregated 

matrix. 

Table 4. The aggregated crisp values of decision matrix. 

/         

A 0.48 0.69 0.5 0.64 0.55 0.51 0.82 

B 0.53 0.73 0.55 0.67 0.51 0.84 0.69 

C 0.85 0.48 0.63 0.54 0.61 0.63 0.76 

 

Apply the normalization process by using Eq. 8 to obtain the normalized evaluation matrix, as 

presented in Table 5. 

 

Table 5. The normalized decision matrix. 

/         

A 0.43 0.62 0.51 0.60 0.57 0.44 0.62 

B 0.48 0.66 0.56 0.62 0.53 0.72 0.53 

C 0.77 0.43 0.65 0.50 0.63 0.54 0.58 

 

Build the weighted matrix by multiplying the normalized evaluation matrix by the weights of 

criteria using Eq. 9, as in Table 6. 

 

Table 6. The weighted matrix. 

/         

Weight 0.17 0.09 0.11 0.21 0.14 0.15 0.13 

A 0.073 0.055 0.056 0.126 0.079 0.066 0.081 

B 0.082 0.059 0.061 0.130 0.074 0.108 0.068 

C 0.130 0.039 0.072 0.105 0.088 0.081 0.075 

 

Step 5. Define Ideal Solution , . 

Define the ideal solutions using Eqs. 10 and 11. 

Step 6. Positive and Negative Ideal Solution ,  . 

Calculate the Euclidean distance between positive solution ( ) and negative ideal solution ( ) 

using Eqs. 13 and 14.  

Step 7. Rank the alternatives based on closeness coefficient. 

Calculate the performance score using Eq. 14, and make the last ranking of alternatives as presented 

in Table 7 and in Figure.1. 
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Table 7. The TOPSIS result and ranking of alternatives. 

/     Rank 

A 0.073 0.029 0.28 3 

B 0.053 0.053 0.50 2 

C 0.059 0.065 0.53 1 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

Airline   A Airline   C Airline   B

 
Figure 1. Ranking the alternatives using TOPSIS under Neutrosophic. 

 

6.  Conclusion 

The idea of value administration goes past the specialized parts of giving the administration Fit 

incorporates clients' impression of what the administrations ought to be and how the 

administrations is to be passed on. In examining the two concerns, we build up the systems for 

recognizing the most significant characteristics of administration quality for clients and catch clients' 

evaluation of three aircrafts dependent on these traits.  

The assessment methodology comprises of the accompanying advances: (1) distinguish the 

assessment criteria for carrier administration quality; (2) survey the normal significance of every 

model by TOPSIS over every one of the respondents. (3) Represent the presentation evaluation of air 

bearers for every paradigm by neutrosophic numbers, which expressly endeavors to precisely catch 

the genuine inclination of assessors. Singular appraisal at that point is amassed as a general 

evaluation for every carrier under every rule. (4) Use TOPSIS as the principle gadget in positioning 

the administration nature of the three air transporters.  

The noteworthy discoveries of this investigation spread a few viewpoints. Clients are for the 

most part worried about the physical part of the administration and less worried about the 

sympathy perspective. The finding proposes that aircrafts ought to keep up their physical highlights 

about a specific level and keep redesign important. 
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Abstract: This article introduces a new computer based application for finding the values of the 

complement of neutrosophic sets, union of neutrosophic sets, intersection of neutrosophic sets and 

the inclusion of any two neutrosophic sets by using the software .NET Framework, Microsoft Visual 

Studio and C# Programming Language.  In addition to this, the application has produces the values 

of neutrosophic topology [𝜏], neutrosophic 𝛼-closed set, neutrosophic 𝑔𝛼-closed set, neutrosophic 

*𝑔𝛼-closed set and neutrosophic 𝑏∗𝑔𝛼-closed set values in neutrosophic topological spaces. Also it 

generates the values of its complement sets. 

Keywords: .NET framework; Microsoft Visual Studio; C# Application; Neutrosophic Set 

Operations; Neutrosophic Topology; Neutrosophic 𝛼 -Closed Set; Neutrosophic 𝑔𝛼 -Closed Set; 
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1. Introduction 

Nowadays the word `topology' is being commonly used and getting popularity day by day in 

the field of modern mathematics. It seems to be derived from Greek words: topos means a surface and 

logos means a discourse. The use of word `Topology' was first occurred in the title of the book 

`Vorstudien Zur Topologie' by Johann Benedict Listing in 1847. The general topology got its real start 

in 1906 due to Riesz, Frechet and Moore. By using the concept of neutrosophic set, which was 

introduced by Smarandache [24, 25]. Salama et al. [17] were introduced neutrosophic topological 

spaces by using the two most important concepts of Topology and neutrosophic sets in 2012.  

In the last few decades many researchers has applied this effective concept in neutrosophic 

topology and they have introduced many neutrosophic sets, namely Arokiarani et al. [10] were 

introduced neutrosophic 𝛼-closed sets in neutrosophic topological spaces in 2017, which is the basic 

set for many researchers to produce various neutrosophic closed and neutrosophic open sets. In 2019, 

Saranya et al. [20] were introduced neutrosophic 𝑔𝛼-closed sets, neutrosophic *𝑔𝛼-closed sets and 

neutrosophic 𝑏∗𝑔𝛼 -closed sets in neutrosophic topological spaces in and developed a new C# 

application to deal with neutrosophic 𝛼-closed sets, neutrosophic 𝑔𝛼-closed sets; neutrosophic *𝑔𝛼-

closed sets in neutrosophic topology. In 2014, Salama et al. [19] has developed some software 

programs for dealing with neutrosophic sets. Salama et al. [16] has designed and implemented a 

neutrosophic data operations by using object oriented programming in 2014. Neutrosophic theory 

was applied by various authors in different fields to produce some real world applications like time 

series, forecasting, decision making, etc [1-9, 11-15, 18, 21-23]. 
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To reduce the manual calculations for finding the values of the complement, union, intersection 

and the inclusion of two neutrosophic sets in a neutrosophic field, we have developed a C# 

application by using .NET Framework, Microsoft Visual Studio and C# Programming Language. In 

this application the user can calculate the values of neutrosophic topology, neutrosophic 𝛼-closed 

set, neutrosophic 𝑔𝛼 -closed set, neutrosophic *𝑔𝛼 -closed set and neutrosophic 𝑏∗𝑔𝛼 -closed set 

values in each resultant screens. Also it generates the values of its complement sets. 

 

The present study introduces the C# application for finding the neutrosophic closed sets and 

neutrosophic open sets in neutrosophic topological spaces via .NET Framework, Microsoft Visual 

Studio and C# Programming Language. The overall working process of this application have been 

shown as a flow chart in Figure:1. Individual Flow Chart of neutrosophic topology, neutrosophic 𝛼-

closed sets, neutrosophic 𝑔𝛼 -closed sets, neutrosophic *𝑔𝛼 -closed sets and neutrosophic 𝑏∗𝑔𝛼 -

closed sets are given in Figure:2, Figure:13, Figure:16, Figure:20 and in Figure:23. Figure:3 shows the 

initial resultant page[In this page, the user has to enter 0N, 1N and the neutrosophic sets of L and M 

values. Also, the results of neutrosophic topology(𝜏), neutrosophic 𝛼-closed set, neutrosophic 𝑔𝛼-

closed set, neutrosophic *𝑔𝛼-closed set and neutrosophic 𝑏∗𝑔𝛼-closed set via C# application are 

shown in Figure:12, Figure:15, Figure:19, Figure:22 and in Figure:25. It also produces the values of its 

complements of each closed sets. 

2. Preliminaries 

In this section, we recall some of the basic definitions which was already defined by various authors. 

Definition: 2.1 [17] 

Let X be a non empty fixed set. A neutrosophic set E is an object having the form  

E = {< x, mv(E(x)), iv(E(x)), nmv(E(x)) >  for all  x ∈  X},  

where mv(E(x))  represents the degree of membership, iv(E(x))  represents the degree of 

indeterminacy and nmv(E(x)) represents the degree of non-membership functions of each element 

x ∈  X to the set E. 

Definition: 2.2 [17] 

Let 𝐸 and 𝐹 be two neutrosophic sets of the form,  

E = {< x, mv(E(x)), iv(E(x)), nmv(E(x)) >  for all  x ∈  X}                 and  

𝐹 = {< x, mv(F(x)), iv(F(x)), nmv(F(x)) >  for all  x ∈  X}.   

Then, 

1. 𝐸 ⊆ 𝐹  if and only if 𝑚𝑣(𝐸(𝑥))  ≤  𝑚𝑣(𝐹(𝑥)) , 𝑖𝑣(𝐸(𝑥))  ≤  𝑖𝑣(𝐹(𝑥))  and 𝑛𝑚𝑣(𝐸(𝑥))  ≥

 𝑛𝑚𝑣(𝐹(𝑥)) for all x ∈  X, 

2. 𝐴𝑐 = {< 𝑥, 𝑛𝑚𝑣(𝐸(𝑥)), 1 − 𝑖𝑣(𝐸(𝑥)), 𝑚𝑣(𝐸(𝑥)) > for all  x ∈  X}, 

3. 𝐸 ∪  𝐹 = {𝑥, 𝑚𝑎𝑥[𝑚𝑣(𝐸(𝑥)), 𝑚𝑣(𝐹(𝑥))], 𝑚𝑖𝑛[𝑖𝑣(𝐸(𝑥)), 𝑖𝑣(𝐹(𝑥))],  

𝑚𝑖𝑛[𝑛𝑚𝑣(𝐸(𝑥)), 𝑛𝑚𝑣(𝐹(𝑥))]for all  x ∈  X}, 

4. 𝐸 ∩  𝐹 = {𝑥, 𝑚𝑖𝑛[𝑚𝑣(𝐸(𝑥)), 𝑚𝑣(𝐹(𝑥))], 𝑚𝑎𝑥[𝑖𝑣(𝐸(𝑥)), 𝑖𝑣(𝐹(𝑥))],  

𝑚𝑎𝑥[𝑛𝑚𝑣(𝐸(𝑥)), 𝑛𝑚𝑣(𝐹(𝑥))] for all  x ∈  X}. 

Definition: 2.3 [17] 

A neutrosophic topology on a non-empty set 𝑋 is a family 𝜏 of neutrosophic subsets in 𝑋 

satisfying the following axioms: 
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i) 0𝑁, 1𝑁 ∈ 𝜏, 

ii) 𝐺1 ∩ 𝐺2  ∈ 𝜏 for any 𝐺1, 𝐺2 ∈ 𝜏, 

iii) ∪ 𝐺𝑖 ∈ 𝜏 for all {𝐺𝑖  ∶  𝑖 ∈  𝐽} ⊆ 𝜏.  

Then the pair (𝑋, 𝜏) or simply 𝑋 is called a neutrosophic topological space.  

3. Results  

In this section we have shown the working process of C# application for finding the values of 

the complement, union, intersection and the inclusion of any two neutrosophic sets. Also it produces 

the values of neutrosophic topology(𝜏) , neutrosophic 𝛼 -closed set, neutrosophic 𝑔𝛼 -closed set, 

neutrosophic *𝑔𝛼-closed set and neutrosophic 𝑏∗𝑔𝛼-closed set values in neutrosophic topological 

spaces. The complements of neutrosophic 𝛼-closed set, neutrosophic 𝑔𝛼-closed set, neutrosophic 

*𝑔𝛼-closed set and neutrosophic 𝑏∗𝑔𝛼-closed set values will be displayed at the end of the results of 

each sets. 

 

Figure.1: Flow Chart of the Existence of Neutrosophic Sets 
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3.1. Existence of Neutrosophic Topology via C# Application 

3.1.1. Algorithm: Neutrosophic Topology 

 

 

input 

 

0N, 1N, L, M 

 

 

 

output 

complement of L and M, 

union of L and M 

intersection of L and M 

             inclusion of L and M 

neutrosophic Topology 

 

STEPS: 

step-1: check 0N and 1N is valid 

step-2: L and M should be a neutrosophic set 

step-3: calculate the complement of L and M 

step-4: calculate the union of L and M 

step-5 calculate the intersection of L and M  

step-6: check the inclusion of L and M 

step-7: if the union and the intersection conditions satisfied then go to step-8 else repeat step-2 

step-8: compute the neutrosophic topology for the assigned data. 

 

Figure.2: Flow Chart of Neutrosophic Topology [FC-NT] 



Neutrosophic Sets and Systems, Vol. 29, 2019     44  

 

 

Saranya S and Vigneshwaran M, .NET Framework to deal with Neutrosophic 𝒃∗𝒈𝜶 -Closed Sets in Neutrosophic 

Topological Spaces 

  

 

Figure.3: Screenshot of Initial Resultant Screen / User Screen   

In the above resultant screen, the user has to enter all the values of 0N, 1N, L and M. Follow the 

below conditions to enter the values 

 0N and 1N values should be any three values of {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)} and {(1, 1, 

1), (1, 1, 0), (1, 0, 1), (1, 0, 0)}. 

 L and M values should be based on Definition 2.1 and Remark 2.2 of [20]. 

 

Figure.4: Screenshot of Incomplete Data in the Resultant Screen 
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The above figure shows the entered values of the initial resultant screen. In this, some of the values 

are not entered by the user. So the following command box intimates the user to enter all the 

values. 

 

Figure.5: Screenshot of Dialog Box-1  

 

 

Figure.6: Screenshot of Invalid Data in the Resultant Screen 

The above figure shows the entered values of the initial resultant screen. Here some of the values 

are not properly entered by the user. For this incorrect data the following command box intimate 

the user to enter the values in the non-standard unit interval 0 and 1 also the user did not follow the 

conditions to enter L and M. Both L and M should be a neutrosophic values. 

 

 

Figure.7: Screenshot of Dialog Box-2 
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Figure.8: Screenshot of Invalid Data in the Resultant Screen 

In the above figure, the entered values of 0N are not followed by the conditions of 0N. For this incorrect 

data the following command box intimate the user to enter the valid data in the 0N th place. 

 

Figure.9: Screenshot of Dialog Box-3 

 

Figure.10: Screenshot of Invalid Data in the Resultant Screen 
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In the above figure, the entered values of 1N are not followed by the conditions of 1N. For this incorrect 

data the following command box intimate the user to enter the valid data in the 1Nth place. 

 

Figure.11: Screenshot of Dialog Box-4 

The following figure shows the results of the complement of two neutrosophic sets L' and M, union 

of two neutrosophic sets L∪M, intersection of two neutrosophic sets L∩M and the inclusion of two 

neutrosophic sets L⊆M. Also it shows the result of neutrosophic topology. 

 

Figure.12: Screenshot of the Existence of Neutrosophic Topology via C# Application 
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3.2. Existence of Neutrosophic 𝜶-Closed Set via C# Application 

3.2.1. Algorithm: Neutrosophic 𝜶-Closed Set 

 

 

 

 

STEPS: 

step-1: check 𝐂 is valid 

step-2: find 𝐍𝐜𝐥(𝐂), if 𝐍𝐜𝐥(𝐂) satisfies the neutrosophic closure condition then go to step-3 else repeat 

step-1 

step-3: find 𝐍𝐢𝐧𝐭[𝐍𝐜𝐥[𝐂]], if 𝐍𝐢𝐧𝐭[𝐍𝐜𝐥[𝐂]] satisfies the neutrosophic interior of neutrosophic closure 

condition then go to step-4 else repeat step-1 

step-4: find 𝐍𝐜𝐥[𝐍𝐢𝐧𝐭[𝐍𝐜𝐥[𝐂]]] , if 𝐍𝐜𝐥[𝐍𝐢𝐧𝐭[𝐍𝐜𝐥[𝐂]]]  satisfies the neutrosophic closure of 

neutrosophic interior of neutrosophic closure condition then go to step-5 else repeat step-1 

step-5: if 𝑵𝜶𝒄𝒍[𝑪] = 𝐂 then produce neutrosophic 𝜶-closed set else repeat step-1  

step-6: compute the neutrosophic 𝜶-open set [D] for the assigned data. 

 

Figure.13: Flow Chart of Neutrosophic 𝜶-Closed Set [FC-𝐍𝛂𝐂𝐒] 

 

input 

 

neutrosophic set 𝐂 

 

 

output 

neutrosophic 𝜶-closed set; 

neutrosophic 𝜶-open set 
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Figure.14: Screenshot of Dissatisfaction of the Definition of Neutrosophic 𝜶-Closed Set 

The above figure shows that the entered neutrosophic set 𝐂 and it is not satisfy the definition of 

neutrosophic 𝜶-closed set. To get a neutrosophic 𝜶-closed set and a neutrosophic 𝜶-open set, the 

user has to enter some other neutrosophic values. Repeat this process until to get the values of 

neutrosophic 𝜶-closed sets. 

 

Figure.15: Screenshot of the Existence of Neutrosophic 𝜶-Closed Set [N𝜶CS] via C# Application 
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3.3. Existence of Neutrosophic 𝒈𝜶-Closed Set via C# Application 

3.3.1. Algorithm: Neutrosophic 𝒈𝜶-Closed Set 

 

 

 

 

STEPS: 

step-1: check 𝐄 is valid 

step-2: check E ⊆ D then go to step-3 otherwise repeat step-1 

step-3: find 𝐍𝐜𝐥(𝐄), if 𝐍𝐜𝐥(𝐄) satisfies the neutrosophic closure condition then go to step-4 else repeat 

step-1 

step-4: find 𝐍𝐢𝐧𝐭[𝐍𝐜𝐥[𝐄]], if 𝐍𝐢𝐧𝐭[𝐍𝐜𝐥[𝐄]] satisfies the neutrosophic interior of neutrosophic closure 

condition then go to step-5 else repeat step-1 

step-5: find 𝐍𝐜𝐥[𝐍𝐢𝐧𝐭[𝐍𝐜𝐥[𝐄]], if 𝐍𝐜𝐥[𝐍𝐢𝐧𝐭[𝐍𝐜𝐥[𝐄]]] satisfies the neutrosophic closure of neutrosophic 

interior of neutrosophic closure condition then go to step-6 else repeat step-1 

step-6: calculate 𝐍𝜶𝐜𝐥[𝐄] 

step-7: if 𝐍𝜶𝐜𝐥[𝐄]  ⊆ 𝐃then produce neutrosophic 𝒈𝜶-closed set else repeat step-1  

step-8: compute the neutrosophic 𝒈𝜶-open set [𝐅] for the assigned data.  

 

 

Figure.16: Flow Chart of Neutrosophic 𝒈𝜶-Closed Set [𝐍𝐠𝛂𝐂𝐒] 

The following two figures [Figure 17 & Figure 18] shows that the neutrosophic set E is not satisfy the 

definition of neutrosophic 𝒈𝜶-closed sets. 

 

input 

 

neutrosophic set 𝐄 

 

 

output 

neutrosophic 𝒈𝜶-closed set; 

neutrosophic 𝒈𝜶-open set 
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Figure.17: Screenshot of Dissatisfaction of the Definition of Neutrosophic 𝒈𝜶-Closed Set  

  

 

Figure.18: Screenshot of Dissatisfaction of the Definition of Neutrosophic 𝒈𝜶-Closed Set 
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Figure.19: Screenshot of the Existence of Neutrosophic 𝒈𝜶-Closed Set [𝐍𝐠𝛂𝐂𝐒] via C# 

3.4 Existence of Neutrosophic *𝒈𝜶-Closed Set via C# Application 

3.4.1. Algorithm: Neutrosophic * 𝒈𝜶-Closed Set 

 

 

 

 

STEPS: 

step-1: check 𝐆 is valid 

step-2: check 𝐆 ⊆  𝐅 then go to step-3 otherwise repeat step-1  

step-3: find 𝐍𝐜𝐥(𝐆), if 𝐍𝐜𝐥(𝐆) satisfies the neutrosophic closure condition then go to step-4 else 

repeat step-1 

step-4: calculate 𝐍𝐜𝐥[𝐆] 

step-5: if 𝐍𝐜𝐥[𝐆]  ⊆  𝐅 then produce neutrosophic *𝒈𝜶-closed set else repeat step-1 

step-6: compute the neutrosophic *𝒈𝜶-open set [𝐇] for the assigned data. 

 

input 

 

neutrosophic set 𝐆 

 

 

output 

 neutrosophic *𝒈𝜶-closed set; 

neutrosophic *𝒈𝜶-open set 
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Figure.20: Flow Chart of Neutrosophic *𝒈𝜶-Closed Set [𝐅𝐂-𝐍*𝒈𝜶𝐂𝐒] 

The following figure shows that the neutrosophic set 𝐆  does not satisfies the definition of 

neutrosophic *𝒈𝜶-closed sets. 

 

 

Figure.21: Screenshot of Dissatisfaction of the Definition of Neutrosophic *𝒈𝜶-Closed Set 

 

Figure.22: Screenshot of the Existence of Neutrosophic *𝒈𝜶-Closed Set [𝐍*𝒈𝜶𝐂𝐒] via C# Application 
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3.5. Existence of Neutrosophic 𝒃∗𝒈𝜶-Closed Set via C# Application 

Algorithm: Neutrosophic 𝒃∗𝒈𝜶-Closed Set 

 

 

 

 

STEPS: 

step-1: check 𝐈 is valid  

step-2: check 𝐈 ⊆ 𝐇 then goto step-3 otherwise repeat step-1 

step-3: find 𝐍𝐜𝐥(𝐈), if 𝐍𝐜𝐥(𝐈) satisfies the neutrosophic closure condition then go to step-4 else repeat 

step-1 

step-4: find 𝐍𝐢𝐧𝐭[𝐈], if 𝐍𝐢𝐧𝐭[𝐈] satisfies the neutrosophic interior condition then go to step-5 else 

repeat step-1 

step-5: find 𝐍𝐢𝐧𝐭[𝐍𝐜𝐥[𝐈]], if 𝐍𝐢𝐧𝐭[𝐍𝐜𝐥[𝐈]] satisfies the neutrosophic interior of neutrosophic closure 

condition then go to step-6 else repeat step-1 

step-6: find 𝐍𝐜𝐥[𝐍𝐢𝐧𝐭[𝐈]], if 𝐍𝐜𝐥[𝐍𝐢𝐧𝐭[𝐈]] satisfies the neutrosophic closure of neutrosophic interior 

condition then go to step-7 else repeat step-1 

step-7: calculate [𝐍𝐜𝐥[𝐍𝐢𝐧𝐭[𝐈]]] ∪ [𝐍𝐢𝐧𝐭[𝐍𝐜𝐥[𝐈]]] 

step-8: if [𝐍𝐜𝐥[𝐍𝐢𝐧𝐭[𝐈]]] \cup [𝐍𝐢𝐧𝐭[𝐍𝐜𝐥[𝐈]]]  ⊆ 𝐈 then goto step-9 else repeat step-1 

step-9: calculate 𝐍𝐛𝐜𝐥(𝐈) 

step-10: if 𝐍𝐛𝐜𝐥[𝐈]  ⊆ 𝐇 then produce neutrosophic 𝒃∗𝒈𝜶-closed set else repeat step-1 

step-11: compute the neutrosophic 𝒃∗𝒈𝜶-open set [𝐅] for the assigned data. 

 

Figure.23: Flow Chart of Neutrosophic 𝒃∗𝒈𝜶-Closed Set [𝐅𝐂-𝐍𝒃∗𝒈𝜶𝐂𝐒] 

 

input 

 

neutrosophic set 𝐈 

 

 

output 

 neutrosophic 𝒃∗𝒈𝜶-closed set; 

neutrosophic 𝒃∗𝒈𝜶-open set 
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The following figure shows that the neutrosophic set 𝐈 is not satisfies the definition of neutrosophic 

*𝒈𝜶-closed sets. 

 

Figure.24: Screenshot of Dissatisfaction of the Definition of Neutrosophic 𝒃∗𝒈𝜶-Closed Set 

 

 

Figure.25: Screenshot of the Existence of Neutrosophic 𝒃∗𝒈𝜶-Closed Set [𝐍𝒃∗𝒈𝜶𝐂𝐒] via C# application 
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We have assumed the values of neutrosophic sets 0N, 1N, 𝐋, 𝐌 as follows: If 

𝟎𝑵 = {(𝟎, 𝟎, 𝟎), (𝟎, 𝟎, 𝟏), (𝟎, 𝟏, 𝟎)}, 𝟏𝑵 = {(𝟏, 𝟏, 𝟏), (𝟏, 𝟏, 𝟎), (𝟏, 𝟎, 𝟏)},  

L = {(𝟎. 𝟑, 𝟎. 𝟐, 𝟎. 𝟑), (𝟎. 𝟏, 𝟎. 𝟏, 𝟎), (𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟓)} and  

M = {(𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟓), (𝟎. 𝟏, 𝟎. 𝟏, 𝟎), (𝟎. 𝟑, 𝟎. 𝟒, 𝟎. 𝟑)}. 

After entered all the values of the above in the user screen, the current application has produced the 

complement set of 𝐋 and 𝐌, that is, 𝐋′ and 𝐌′. Also it has executed the union of 𝐋 and 𝐌, that is 

[𝐋 ∪ 𝐌] and the intersection of 𝐋 and 𝐌, that is [𝐋 ∩ 𝐌]. Moreover, it has checked out the inclusion 

of 𝐋 and 𝐌, that is, whether 𝐋 is contained in 𝐌 or not. Finally it has produces the neutrosophic 

topology [𝝉].  

𝐋′ = {(𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟓), (𝟎. 𝟗, 𝟎. 𝟗, 𝟏), (𝟎. 𝟑, 𝟎. 𝟐, 𝟎. 𝟑)}, 

𝐌′ = {(𝟎. 𝟑, 𝟎. 𝟒, 𝟎. 𝟑), (𝟎. 𝟗, 𝟎. 𝟗, 𝟏), (𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟓)}, 

𝐋 ∪ 𝐌 = {(𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟓), (𝟎. 𝟏, 𝟎. 𝟏, 𝟎), (𝟎. 𝟑, 𝟎. 𝟒, 𝟎. 𝟑)}, 

𝐋 ∩ 𝐌 = {(𝟎. 𝟑, 𝟎. 𝟐, 𝟎. 𝟑), (𝟎. 𝟏, 𝟎. 𝟏, 𝟎), (𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟓)}, 

𝐋 ⊆ 𝐌 = True, 

Then the Neutrosophic Topology [𝛕] = {𝟎𝑵, 𝑳, 𝑴, 𝑳 ∪ 𝑴, 𝑳 ∩ 𝑴, 𝟏𝑵}. 

By using this application we have checked out the following neutrosophic sets as neutrosophic 𝜶-

closed set in neutrosophic topological spaces.  

Table.1: Neutrosophic 𝜶-Closed Sets 

 

By using this application we have checked out the following neutrosophic sets as neutrosophic 𝒈𝜶-

closed set in neutrosophic topological spaces. 
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Table.2: Neutrosophic 𝒈𝜶-Closed Sets 

 

We have assumed the values of neutrosophic sets 𝟎𝑵, 𝟏𝑵, 𝐋, 𝐌 as follows: 

If 𝟎𝑵 = {(𝟎, 𝟎, 𝟎), (𝟎, 𝟏, 𝟎), (𝟎, 𝟎, 𝟏)}, 𝟏𝑵 = {(𝟏, 𝟏, 𝟏), (𝟏, 𝟏, 𝟎), (𝟏, 𝟎, 𝟏)}, 

𝐋 =  {(𝟎. 𝟓, 𝟎. 𝟒, 𝟎. 𝟓), (𝟎. 𝟑, 𝟎. 𝟑, 𝟎. 𝟐), (𝟎. 𝟕, 𝟎. 𝟕, 𝟎. 𝟕)} and  

𝐌 =  {(𝟎. 𝟕, 𝟎. 𝟕, 𝟎. 𝟕), (𝟎. 𝟑, 𝟎. 𝟑, 𝟎. 𝟐), (𝟎. 𝟓, 𝟎. 𝟔, 𝟎. 𝟓)}. 

After entered all the values of the above in the user screen, the current application has produced the 

complement set of 𝐋 and 𝐌, that is, 𝐋′ and 𝐌′. Also it has executed the union of 𝐋 and 𝐌, that is 

[𝐋 ∪ 𝐌] and the intersection of 𝐋 and 𝐌, that is [𝐋 ∩ 𝐌]. Moreover, it has checked out the inclusion 

of 𝐋 and 𝐌, that is, whether 𝐋 is contained in 𝐌 or not. Finally it has produces the neutrosophic 

topology [𝝉].  

𝐋′ = {(𝟎. 𝟕, 𝟎. 𝟕, 𝟎. 𝟕), (𝟎. 𝟕, 𝟎. 𝟕, 𝟎. 𝟖), (𝟎. 𝟓, 𝟎. 𝟒, 𝟎. 𝟓)}, 

𝐌′ = {(𝟎. 𝟓, 𝟎. 𝟔, 𝟎. 𝟓), (𝟎. 𝟕, 𝟎. 𝟕, 𝟎. 𝟖), (𝟎. 𝟕, 𝟎. 𝟕, 𝟎. 𝟕)}, 

𝐋 ∪ 𝐌 = 𝐌 

𝐋 ∩ 𝐌 = 𝐋 

𝐋 ⊆ 𝐌 = True, 

Then the Neutrosophic Topology [𝛕] = {𝟎𝑵, 𝑳, 𝑴, 𝟏𝑵}. 

𝐍𝜶𝐂𝐒 = {(𝟎. 𝟓, 𝟎. 𝟔, 𝟎. 𝟓), (𝟎. 𝟕, 𝟎. 𝟕, 𝟎. 𝟕), (𝟎. 𝟕, 𝟎. 𝟕, 𝟎. 𝟕)},  

𝐍𝜶𝐎𝐒 = {(𝟎. 𝟕, 𝟎. 𝟕, 𝟎. 𝟕), (𝟎. 𝟑, 𝟎. 𝟑, 𝟎. 𝟑), (𝟎. 𝟓, 𝟎. 𝟔, 𝟎. 𝟓)}, 

𝐍g𝜶𝐂𝐒 = {(𝟎. 𝟓, 𝟎. 𝟒, 𝟎. 𝟓), (𝟎. 𝟑, 𝟎. 𝟑, 𝟎. 𝟐), (𝟎. 𝟖, 𝟎. 𝟖, 𝟎. 𝟕)} and  

𝐍𝐠𝜶𝐎𝐒 = {(𝟎. 𝟖, 𝟎. 𝟖, 𝟎. 𝟕), (𝟎. 𝟕, 𝟎. 𝟕, 𝟎. 𝟖), (𝟎. 𝟓, 𝟎. 𝟒, 𝟎. 𝟓)}. 

By using this application we have checked out the following neutrosophic sets as neutrosophic *𝒈𝜶-

closed set in neutrosophic topological spaces. 
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Table.3: Neutrosophic *𝒈𝜶-Closed Sets 

 

By using this application we have checked out the following neutrosophic sets as neutrosophic 

𝒃∗𝒈𝜶-closed set in neutrosophic topological spaces. 

Table.4: Neutrosophic 𝒃∗𝒈𝜶-Closed Sets 
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Figure.26: Statistical Representation of Neutrosophic Closed Sets 

 

Figure.27: Linear Regression Lines of Neutrosophic Closed Sets 

In statistics, a linear regression line represents a straight line it describes how a response variable 𝐲 

changes as an explanatory variable 𝐱 changes in the graph. Sometimes it is called as a trend line and 

its respective equations are denoted as a trend line equation. These type of trend lines are used in 

business to predict 𝐲 value for the given value of 𝐱. Here we have used this regression line and its 

equations to predict the neutrosophic points in the non-standard interval to get the 𝐧-number of 

neutrosophic 𝜶 closed sets, neutrosophic 𝒈𝜶 closed sets, neutrosophic * 𝒈𝜶 -closed sets and 

neutrosophic 𝒃∗𝒈𝜶-closed sets in neutrosophic topological spaces. Also we can check the stronger 

and weaker sets among the existing sets by using 𝑹𝟐 value. 
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4. Conclusion 

This paper has introduced a new computer application for finding the neutrosophic closed sets and 

neutrosophic open sets in neutrosophic topological spaces via .NET Framework, Microsoft Visual 

Studio and C# Programming Language. Flow Chart's and the algorithm of neutrosophic topology, 

neutrosophic 𝜶 -closed set, neutrosophic 𝒈𝜶 -closed set, neutrosophic * 𝒈𝜶 -closed set and 

neutrosophic 𝒃∗𝒈𝜶-closed set were presented. Also the existence of its results via C# application was 

shown in each figure. The complement sets were executed through this application. In future it will 

be extended to produce the values of the same in the neutrosophic supra topological spaces.  
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Abstract:  The main objective of this paper is to make known to a new concept of generalised 

neutrosophic bipolar vague sets and also defined neutrosophic bipolar vague topology in topological 

spaces. Also, we introduce generalized neutrosophic bipolar vague closed sets and conferred its 

properties. 

Keywords: Bipolar set, Vague set, Neutrosophic set, Neutrosophic Bipolar Vague set, Neutrosophic 

Bipolar Vague Topological Spaces. 

 

 

1. Introduction  

Levine [24] studied the Generalized closed sets in general topology. Several investigations were 

conducted on the generalizations of the notion of the fuzzy set, after the introduction of the concept of 

fuzzy sets by Zadeh [34]. In the traditional fuzzy sets, the membership degree of component ranges 

over the interval [0, 1]. Few types of fuzzy set extensions in the fuzzy set theory are present, for example, 

intuitionistic fuzzy sets[12], interval-valued fuzzy sets[32], vague sets[30] etc. As a generalization of 

Zadeh’s fuzzy set, the notion of vague set theory was first introduced by Gau W.L and Buehrer D.J [22]. 

In 1996, H.Bustince & P.Burillo indicated that vague sets are intuitionistic fuzzy sets [15].  

Intuitionistic fuzzy sets and interval-valued intuitionistic fuzzy sets can handle only unfinished 

information but not the indeterminate and unreliable information which happens normally in actual 

circumstances. Hence, the conception of a neutrosophic set is very common, and then it can overcome 

the aforesaid issues on the intuitionistic fuzzy set and the interval-valued intuitionistic fuzzy set. In 

1995, the definition of Smarandache’s neutrosophic set, neutrosophic sets and neutrosophic logic have 

been useful in many real applications to handle improbability. Neutrosophy is a branch of philosophy 

which studies the source, nature and scope of neutralities, as well as their interactions with different 

ideational scales [31]. The neutrosophic set uses one single value to indicate the truth-membership 

grade, indeterminacy-membership degree and falsity membership grade of an element in the universe 

X. The theory has been brought into extensive application in varieties of field [1-6, 8, 10, 11, 14, 17, 23, 

27, 33, 35] for dealing with indeterminate and unreliable information in actual domain. The conception 

of Neutrosophic Topological space was introduced by A.A.Salama and S.A.Alblowi [29].   

Bipolar-valued fuzzy sets, which was introduced by Lee [25, 26] is an extension of fuzzy sets 

whose membership degree range is extended from the interval [0, 1] to [-1, 1]. The membership degrees 

of the Bipolar valued fuzzy sets signify the degree of satisfaction to the property analogous to a fuzzy 

set and its counter-property in a bipolar valued fuzzy set, if the membership degree is 0 it means that 

the elements are unrelated to the corresponding property. Furthermore if the membership degree is on 

(0, 1] it indicates that the elements somewhat fulfil the property, and if the membership degree is on 

mailto:riyaraju1116@gmail.com
mailto:princy.pjs@gmail.com
mailto:fsmarandache@gmail.com
mailto:princy.pjs@gmail.com
https://www.sciencedirect.com/science/article/pii/0165011495001549#!
https://www.sciencedirect.com/science/article/pii/0165011495001549#!
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 [-1,0) it indicates that elements somewhat satisfy the entire counter property.  After that, Deli et al. [21] 

announced the concept of bipolar neutrosophic sets, as an extension lead of neutrosophic sets. In the 

bipolar neutrosophic sets, the positive membership degree 𝑇+(𝑥), 𝐼+(𝑥), 𝐹+(𝑥)  signifies the truth 

membership, indeterminate membership and false membership of an element x ∈ X analogous to a 

bipolar neutrosophic set A and the negative membership degree  𝑇−(𝑥), 𝐼−(𝑥), 𝐹−(𝑥) signifies the truth 

membership, indeterminate membership and false membership of an element x ∈ X to some implied 

counter-property analogous to a bipolar neutrosophic set A. There are quite a few extensions of 

Neutrosophic Bipolar sets such as Neutrosophic Bipolar Soft sets [7] and Rough Neutrosophic Bipolar 

sets [28]. 

Neutrosophic vague set is a combination of neutrosophic set and vague set which was well-

defined by Shawkat Alkhazaleh [30]. Neutrosophic vague theory is a useful tool to practise incomplete, 

indeterminate and inconsistent information. In this paper, we introduced the perception of a 

neutrosophic bipolar vague set as a combination of neutrosophic set, Bipolar set and vague set and we 

also define the concept of generalised Neutrosophic Bipolar Vague set.                   

2. Preliminaries 

Definition 2.1[16]: Let X be the universe. Then a bipolar valued fuzzy sets, A on X is defined by positive 

membership function 𝜇𝐴 
+ : X→[0,1] and a negative membership function 𝜇𝐴 

− : X→[-1,0]. For sake of 

easiness, we shall practice the symbol A= {< x, 𝜇𝐴 
+ (x), 𝜇𝐴 

− (x)>: x ∈ X}. 

Definition 2.2[18]: Let  A and B be two bipolar valued fuzzy sets then their union, intersection and 

complement are well-defined as follows:  

(i)𝜇𝐴∪𝐵
+ (𝑥) = max { 𝜇𝐴 

+ (x), 𝜇𝐵
+(x)}. 

(ii) 𝜇𝐴∪𝐵
− (𝑥) = min { 𝜇𝐴 

− (x), 𝜇𝐵
−(x)}. 

(iii) 𝜇𝐴∩𝐵
+ (𝑥) = min { 𝜇𝐴 

+ (x), 𝜇𝐵
+(x)}. 

(iv) 𝜇𝐴∩𝐵
− (𝑥) = max { 𝜇𝐴 

− (x), 𝜇𝐵
−(x)}. 

(v) 𝜇𝐴̅
+(𝑥)= 1-𝜇𝐴 

+ (x) and 𝜇𝐴̅
−(𝑥)= -1-𝜇𝐴 

+ (x) for all x∈ 𝑋. 

Definition 2.3[15]: A vague set A in the universe of discourse U is a pair (tA , fA ) where tA : U→[0,1], fA 

: U→[0,1] denote the mapping such that tA + fA ≤ 1 for all u∈ 𝑈 .The function tA and fA are called true 

membership function and false membership function respectively. The interval [tA ,1-fA] is called the 

vague value of u in A, and denoted by νA(u), i.e νA(u)=[tA ,1-fA].   

Definition 2.4[15]: Let A be a non-empty set and the vague set A and B in the form  A= {<x, tA ,1-fA >:x∈

𝑋}, B={<x, tB ,1-fB >:x∈ 𝑋}.  

Then  

(i)A⊆ B if and only if tA(x)≤tA(x) and 1-fB(x) ≤ 1-fB(x).  

(ii)A∪ B={<max(tA(x),tB(x)), max(1-fA(x),1-fB(x))>/x∈X}. 

(iii) A∩ B={<min(tA(x),tB(x)), min(1-fA(x),1-fB(x))>/x∈X}. 

(iv)𝐴̅={<x, fA(x) ,1-tA(x)>:x∈X}. 

Definition 2.5[14]:Let X be a universe of discourse. Then a neutrosophic set is well-defined as:  𝐴 = {〈x, 

TA(x), IA(x), FA(x)〉:x ∈ X}, which is categorized by a truth-membership function TA:X → ]0−,1+[ , an 

indeterminacy membership function IA:X → ]0−,1+[and a falsity-membership function FA:X → ]0−,1+[. 

There is no restriction to the sum of TA(x), IA(x) and FA(x), so 0−≤ supTA(x) ≤ supIA(x) ≤ supFA(x) ≤ 3+.   

Definition 2.6[30]: A neutrosophic vague set 𝐴𝑁𝐵𝑉(NVS in short) on the universe of discourse X written 

as,  

𝐴𝑁𝐵𝑉  = {<  𝑇̂𝑁𝐵𝑉(𝑥), 𝐼𝑁𝐵𝑉(𝑥), 𝐹̂𝑁𝐵𝑉(𝑥) >: 𝑥 ∈ 𝑋} whose truth-membership, indeterminacy-membership 

and falsity-membership functions is defined as,  

𝑇̂𝑁𝐵𝑉(𝑥) = [𝑇−, 𝑇+], 𝐼𝑁𝐵𝑉(𝑥) = [𝐼−, 𝐼+], 𝐹̂𝑁𝐵𝑉(𝑥) = [𝐹−, 𝐹+] where 

𝑇+ = 1 − 𝐹− , 𝐹+ = 1 −and 𝑇−, - 0≤ 𝑇−+𝐼− + 𝐹− ≤ 2+ .    

3. Bipolar Neutrosophic Vague Set: 

Under this division, we present and well-defined the notion of neutrosophic bipolar vague set and its 

operations. 



Neutrosophic Sets and Systems. Vol. 29, 2019               64  

 

 

 Mohana K ,Princy R  and Florentin Smarandache .An Introduction To Neutrosophic Bipolar Vague Topological Spaces 

 
 

Definition 3.1: If A={< x, [𝑇𝐴
−, 𝑇𝐴

+]+, [𝐼𝐴
−, 𝐼𝐴

+]+, [𝐹𝐴
−, 𝐹𝐴

+]+, [𝑇𝐴
−, 𝑇𝐴

+]−, [𝐼𝐴
−, 𝐼𝐴

+]−, [𝐹𝐴
−, 𝐹𝐴

+]− >} and B={< x, 

[𝑇𝐵
−, 𝑇𝐵

+]+, [𝐼𝐵
−, 𝐼𝐵

+]+, [𝐹𝐵
−, 𝐹𝐵

+]+, [𝑇𝐵
−, 𝑇𝐵

+]−, [𝐼𝐵
−, 𝐼𝐵

+]−, [𝐹𝐵
−, 𝐹𝐵

+]−>} where  
(𝑇+)+ = 1 − (𝐹−)+ , (𝐹+)+ = 1 − (𝑇−)+  and (𝑇+)− = −1 − (𝐹−)− , (𝐹+)− = −1 − (𝑇−)−  𝑇+ , 𝐼+ , 𝐹+ : 

X→[0,1] and 𝑇−, 𝐼−, 𝐹−:X→[-1,0]  are two neutrosophic bipolar vague sets then their union, intersection 

and complement are well-defined as follows: 

1.A∪B= { max[𝑇𝐴
−, 𝑇𝐵

−]+, max[𝑇𝐴
+, 𝑇𝐵

+]+, 

                 min[𝐼𝐴
−, 𝐼𝐵

−]+ , min[𝐼𝐴
+, 𝐼𝐵

+]+ , 

                 min[𝐹𝐴
−, 𝐹𝐵

−]+, min[𝐹𝐴
+, 𝐹𝐵

+]+, 

      min[𝑇𝐴
−, 𝑇𝐵

−]−, min[𝑇𝐴
+, 𝑇𝐵

+]−, 

      max [𝐼𝐴
−, 𝐼𝐵

−]− , max[𝐼𝐴
+, 𝐼𝐵

+]−, 

      max[𝐹𝐴
−, 𝐹𝐵

−]−, max[𝐹𝐴
+, 𝐹𝐵

+]−}. 

2.A∩B={ min[𝑇𝐴
−, 𝑇𝐵

−]+, min[𝑇𝐴
+, 𝑇𝐵

+]+, 

                 max[𝐼𝐴
−, 𝐼𝐵

−]+ ,max[𝐼𝐴
+, 𝐼𝐵

+]+ , 

                 max[𝐹𝐴
−, 𝐹𝐵

−]+, max[𝐹𝐴
+, 𝐹𝐵

+]+, 

      max[𝑇𝐴
−, 𝑇𝐵

−]−, max[𝑇𝐴
+, 𝑇𝐵

+]−, 

      min [𝐼𝐴
−, 𝐼𝐵

−]− , min[𝐼𝐴
+, 𝐼𝐵

+]−, 

      min[𝐹𝐴
−, 𝐹𝐵

−]−, min[𝐹𝐴
+, 𝐹𝐵

+]−}. 

3. 𝐴̅={<[𝐹𝐴
−, 𝐹𝐴

+]+, [1 − 𝐼𝐴
−, 1 − 𝐼𝐴

+]+, [𝑇𝐴
−, 𝑇𝐴

+]+, [𝐹𝐴
−, 𝐹𝐴

+]−, [1 − 𝐼𝐴
−, 1 − 𝐼𝐴

+]−, [𝑇𝐴
−, 𝑇𝐴

+]−>}. 

Definition 3.2: Suppose A and B be two neutrosophic bipolar vague sets defined over a universe of 

disclosure X. We say that A ⊆ B if and only if [𝑇𝐴
− ≤ 𝑇𝐵

−]+,  [𝑇𝐴
+ ≤ 𝑇𝐵

+]+,  [𝐼𝐴
− ≥ 𝐼𝐵

−]+ , [𝐼𝐴
+ ≥ 𝐼𝐵

+]+ , 

[𝐹𝐴
− ≥ 𝐹𝐵

−]+, [𝐹𝐴
+ ≥ 𝐹𝐵

+]+, [𝑇𝐴
− ≥ 𝑇𝐵

−]−, [𝑇𝐴
+ ≥ 𝑇𝐵

+]−, [𝐼𝐴
− ≤ 𝐼𝐵

−]−, [𝐼𝐴
+ ≤ 𝐼𝐵

+]−, [𝐹𝐴
− ≤ 𝐹𝐵

−]−,  [𝐹𝐴
+ ≤ 𝐹𝐵

+]−.  

Definition 3.3: A bipolar vague topology NBVT on a nonempty set X is a family NBVτ of Neutrosophic 

bipolar vague set in X sustaining the following axioms: 

1. 0, 1 ∈ 𝑁𝐵𝑉𝜏 . 

2. G1∩ G2 ∈ 𝑁𝐵𝑉𝜏 , for any G1,G2 ∈ 𝑁𝐵𝑉𝜏. 

3. ∪Gi ∈ 𝑁𝐵𝑉𝜏  for any arbitrary family { Gi: Gi∈ 𝑁𝐵𝑉𝜏  , i∈I}. 

Under such case the pair (X, 𝑁𝐵𝑉𝜏) is known as the neutrosophic bipolar vague topological space and 

any NBVS in 𝑁𝐵𝑉𝜏  is known as bipolar vague open set in X . The complement 𝐴̅ of a neutrosophic 

bipolar vague open set (NBVOS) A in a neutrosophic bipolar vague topological space (X, 𝑁𝐵𝑉𝜏 ) is 

referred as a neutrosophic bipolar vague closed (NBVCS) in X. 

Example 3.4: Assume X={u,v}, 

𝐴𝑁𝐵𝑉= {
𝑢

[0.5,0.7][0.5,0.5][0.3,0.5][−0.4,−0.1][−0.5,−0.6][−0.9,−0.6]
,

𝑣

[0.3,0.6][0.4,0.4][0.4,0.7][−0.2,−0.2][−0.6,−0.8][−0.8,−0.8]
} , 

𝐵𝑁𝐵𝑉= {
𝑢

[0.5,0.9][0.3,0.3][0.1,0.5][−0.4,−0.3][−0.4,−0.4][−0.7,−0.6]
,

𝑣

[0.4,0.6][0.2,0.2][0.4,0.6][−0.5,−0.3][−0.5,−0.5][−0.7,−0.5]
}. 

Then the family 𝑁𝐵𝑉𝜏={0,1,A,B} of neutrosophic bipolar vague sets in X is a NBVT on X. 

Definition 3.5: Suppose (X, 𝑁𝐵𝑉𝜏) is a neutrosophic bipolar vague topological space and  

A={< x, [𝑇𝐴
−, 𝑇𝐴

+]+, [𝐼𝐴
−, 𝐼𝐴

+]+, [𝐹𝐴
−, 𝐹𝐴

+]+, [𝑇𝐴
−, 𝑇𝐴

+]−, [𝐼𝐴
−, 𝐼𝐴

+]−, [𝐹𝐴
−, 𝐹𝐴

+]− >} be a NBVS inX . Then the 

neutrosophic bipolar vague interior and neutrosophic bipolar vague closure of A are well-defined by, 

NBVcl(A)=⋂{K:K is a NBVCS in X and A⊆K}, 

NBVint(A)=⋃{G:G is a NBVOS in X and G⊆A}. 

Note that NBVcl(A) is a NBVCS and NBVint(A) is a NBVOS in X . Further,  

   1. A is a NBVCS in X iff NBVcl(A)=A 

   2. A is a NBVOS in X iff NBVint(A)=A. 

Example 3.6: Assume that X={a, b}, 

A={x,
𝑎

[0.5,0.7][0.5,0.5][0.3,0.5][−0.4,−0.1][−0.5,−0.6][−0.9,−0.6]
,

𝑏

[0.3,0.6][0.4,0.4][0.4,0.7][−0.2,−0.2][−0.6,−0.8][−0.8,−0.8]
} 

B= {
𝑎

[0.5,0.9][0.3,0.3][0.1,0.5][−0.4,−0.3][−0.4,−0.4][−0.7,−0.6]
,

𝑏

[0.4,0.6][0.2,0.2][0.4,0.6][−0.5,−0.3][−0.5,−0.5][−0.7,−0.5]
}. 

Then the family 𝑁𝐵𝑉𝜏={0,1,A,B} of a neutrosophic bipolar vague sets in X is  NBVT on X. If, 

F={<x,
𝑎

[0.5,0.4][0.5,0.5][0.6,0.5][−0.6,−0.4][−0.3,−0.3][−0.6,−0.4]
,

𝑏

[0.5,0.7][0.1,0.1][0.3,0.5][−0.3,−0.4][−0.2,−0.2][−0.6,−0.7]
>} 
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Then, NBVint(A)=⋃{G:G is a NBVOS in X and G⊆F}=0  and NBVcl(A)=⋂{K:K is a NBVCS in X and 

F⊆K}=1. 

Proposition 3.7: For any NBVS A in (X, 𝑁𝐵𝑉𝜏) we have, 

1. NBVcl(𝐴̅)=NBVint(A)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

2. NBVint(𝐴̅)=NBVcl(A)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Proof: Let A={< x, [𝑇𝐴
−, 𝑇𝐴

+]+, [𝐼𝐴
−, 𝐼𝐴

+]+, [𝐹𝐴
−, 𝐹𝐴

+]+, [𝑇𝐴
−, 𝑇𝐴

+]−, [𝐼𝐴
−, 𝐼𝐴

+]−, [𝐹𝐴
−, 𝐹𝐴

+]− >} and suppose that 

NBVOS’s contained in A are indexed by the family  

{<x, [𝑇𝐺𝑖

− , 𝑇𝐺𝑖

+]+, [𝐼𝐺𝑖

− , 𝐼𝐺𝑖

+ ]+, [𝐹𝐺𝑖

− , 𝐹𝐺𝑖

+ ]+, [𝑇𝐺𝑖

− , 𝑇𝐺𝑖

+ ]−, [𝐼𝐺𝑖

− , 𝐼𝐺𝑖

+ ]−, [𝐹𝐺𝑖

− , 𝐹𝐺𝑖

+ ]− >: 𝑖 ∈ 𝐽}. Then 

 NBVint(A)= <𝑥, ⋃[𝑇𝐺𝑖

− , 𝑇𝐺𝑖

+]
+

, ⋂[𝐼𝐺𝑖

− , 𝐼𝐺𝑖

+ ]
+

, ⋂[𝐹𝐺𝑖

− , 𝐹𝐺𝑖

+ ]
+

, ⋂[𝑇𝐺𝑖

− , 𝑇𝐺𝑖

+ ]
−

, ⋃[𝐼𝐺𝑖

− , 𝐼𝐺𝑖

+ ]
−

, ⋃[𝐹𝐺𝑖

− , 𝐹𝐺𝑖

+ ]
−

> and hence 

 NBVint(A̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ) =< 𝑥, ⋂[𝐹𝐺𝑖

− , 𝐹𝐺𝑖

+ ]
+

, ⋃[1 − 𝐼𝐺𝑖

− , 1 − 𝐼𝐺𝑖

+ ]
+

, ⋃[𝑇𝐺𝑖

− , 𝑇𝐺𝑖

+ ]
+

, ⋃[𝐹𝐺𝑖

− , 𝐹𝐺𝑖

+ ]
−

, ⋂[1 − 𝐼𝐺𝑖

− , 1 −

𝐼𝐺𝑖

+ ]
−

, ⋂[𝑇𝐺𝑖

− , 𝑇𝐺𝑖

+ ]
−

> ---------       (1) 

Since, 

𝐴̅={<[𝐹𝐴
−, 𝐹𝐴

+]+, [1 − 𝐼𝐴
−, 1 − 𝐼𝐴

+]+, [𝑇𝐴
−, 𝑇𝐴

+]+, [𝐹𝐴
−, 𝐹𝐴

+]−, [1 − 𝐼𝐴
−, 1 − 𝐼𝐴

+]−, [𝑇𝐴
−, 𝑇𝐴

+]−>}. Where 

[𝑇𝐺𝑖

− , 𝑇𝐺𝑖

+]
+

≤ [𝑇𝐴
−, 𝑇𝐴

+]+, [𝐼𝐺𝑖

− , 𝐼𝐺𝑖

+ ]
+

≥ [𝐼𝐴
−, 𝐼𝐴

+]+, [𝐹𝐺𝑖

− , 𝐹𝐺𝑖

+ ]
+

≥ [𝐹𝐴
−, 𝐹𝐴

+]+, [𝑇𝐺𝑖

− , 𝑇𝐺𝑖

+]
−

≥ [𝑇𝐴
−, 𝑇𝐴

+]−, 

[𝐼𝐺𝑖

− , 𝐼𝐺𝑖

+ ]
−

≤ [𝐼𝐴
−, 𝐼𝐴

+]−,  [𝐹𝐺𝑖

− , 𝐹𝐺𝑖

+ ]
−

≤ [𝐹𝐴
−, 𝐹𝐴

+]− for every i∈J we obtain that 

{< 𝑥, [𝐹𝐺𝑖

− , 𝐹𝐺𝑖

+ ]
+

, [1 − 𝐼𝐺𝑖

− , 1 − 𝐼𝐺𝑖

+ ]
+

, [𝑇𝐺𝑖

− , 𝑇𝐺𝑖

+]
+

, [𝐹𝐺𝑖

− , 𝐹𝐺𝑖

+ ]
−

, [1 − 𝐼𝐺𝑖

− , 1 − 𝐼𝐺𝑖

+ ]
−

, [𝑇𝐺𝑖

− , 𝑇𝐺𝑖

+ ]
−

> i∈J} 

Is the family of NBVS’s containing𝐴̅, that is , 

NBVcl( 𝐴̅ )= < 𝑥, ⋂[𝐹𝐺𝑖

− , 𝐹𝐺𝑖

+ ]
+

, ⋃[1 − 𝐼𝐺𝑖

− , 1 − 𝐼𝐺𝑖

+ ]
+

, ⋃[𝑇𝐺𝑖

− , 𝑇𝐺𝑖

+]
+

, ⋃[𝐹𝐺𝑖

− , 𝐹𝐺𝑖

+ ]
−

, ⋂[1 − 𝐼𝐺𝑖

− , 1 −

𝐼𝐺𝑖

+ ]
−

, ⋂[𝑇𝐺𝑖

− , 𝑇𝐺𝑖

+ ]
−

> ------------ (2). 

Hence from (1) and (2) we get NBVcl(𝐴̅)=NBVint(A)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

(2) follows from (1). 

Proposition 3.8: If (X, 𝑁𝐵𝑉𝜏) is a NBVTS and A,B be are NBVS’s in X. Then the following properties 

hold: 

1. NBVint(A)⊆A 

2. A⊆ NBνcl(A) 

3. A⊆ 𝐵 ⇒ NBVint(A) ⊆ NBVint(B) 

4. A⊆ 𝐵 ⇒ NBVcl(A) ⊆ NBVcl(B) 

5. NBVint(NBVint(A))= NBVint(A) 

6. NBVcl(NBVcl(A)= NBVcl(A) 

7. NBVint(𝐴 ∩ 𝐵)= NBVint(A) ∩  NBVint(B) 

8. NBVcl(A∪ 𝐵)= NBVcl(A)∪ NBVcl(B) 

9. NBVint(1)=1 

10. NBVcl(0)=0 

Definition 3.9: Suppose (X, 𝑁𝐵𝑉𝜏) and (Y, 𝑁𝐵𝑉𝜎) be two neutrosophic bipolar vague topological spaces 

and 𝜓: 𝑋 → 𝑌 be a function. Then 𝜓 is referred to be a neutrosophic bipolar vague continuous iff the 

preimage of each neutrosophic bipolar vague open set in Y is a neutrosophic bipolar vague open set in 

X. 

Proposition 3.10: Suppose A, {Ai: i∈J} be a neutrosophic bipolar vague set in X, and B, {Bj: j∈K} be a 

neutrosophic bipolar vague set in Y, and let 𝜓: 𝑋 → 𝑌 be a function. Then, 

(a) A1⊆A2⟺  𝜓(A1) ⊆  𝜓(A2) 

(b) B1⊆B2⟺  𝜓−1(B1) ⊆  𝜓−1(B2) 

(c) 𝜓−1(∪Bi)= ∪  𝜓−1(Bi) and 𝜓−1(∩Bi)= ∩ 𝜓−1(Bi) 

Proof: Obvious. 

Proposition 3.11: The subsequent are equivalent to each other.  

1. 𝜓: 𝑋 → 𝑌 is neutrosophic bipolar vague continuous. 

2. 𝜓−1(NBVint(B))  ⊆  NBVint(𝜓−1(B)) for each NBVOS B in Y. 

3. NBVcl(𝜓−1(B)) ⊆ 𝜓−1(NBVcl(B)) for each NBVOS B in Y. 

Proof: (1)⟹(2) Given 𝜓: 𝑋 → 𝑌 is neutrosophic bipolar vague continuous. 
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Then we have to show that 𝜓−1(NBVint(B))  ⊆  NBVint(𝜓−1(B)) for each NBVOS B in Y. 

Let B={< y, [𝑇𝐵
−, 𝑇𝐵

+]+, [𝐼𝐵
−, 𝐼𝐵

+]+, [𝐹𝐵
−, 𝐹𝐵

+]+, [𝑇𝐵
−, 𝑇𝐵

+]−, [𝐼𝐵
−, 𝐼𝐵

+]−, [𝐹𝐵
−, 𝐹𝐵

+]−>} be NBVOS in Y. 

NBVint(B)= 

{ < 𝑦, ⋃[𝑇𝐻𝑖

− , 𝑇𝐻𝑖

+ ]
+

, ⋂[𝐼𝐻𝑖

− , 𝐼𝐻𝑖

+ ]
+

, ⋂[𝐹𝐻𝑖

− , 𝐹𝐻𝑖

+ ]
+

, ⋂[𝑇𝐻𝑖

− , 𝑇𝐻𝑖

+ ]
−

, ⋃[𝐼𝐻𝑖

− , 𝐼𝐻𝑖

+ ]
−

, ⋃[𝐹𝐻𝑖

− , 𝐹𝐻𝑖

+ ]
−

>:i∈I} 

Where, 

[𝑇𝐻𝑖

− , 𝑇𝐻𝑖

+ ]
+

≤ [𝑇𝐵
−, 𝑇𝐵

+]+, [𝐼𝐻𝑖

− , 𝐼𝐻𝑖

+ ]
+

≥ [𝐼𝐵
−, 𝐼𝐵

+]+, [𝐹𝐻𝑖

− , 𝐹𝐻𝑖

+ ]
+

≥ [𝐹𝐵
−, 𝐹𝐵

+]+, [𝑇𝐻𝑖

− , 𝑇𝐻𝑖

+ ]
−

≥ [𝑇𝐵
−, 𝑇𝐵

+]−, 

[𝐼𝐻𝑖

− , 𝐼𝐻𝑖

+ ]
−

≤ [𝐼𝐵
−, 𝐼𝐵

+]− ,  [𝐹𝐻𝑖

− , 𝐹𝐻𝑖

+ ]
−

≤ [𝐹𝐵
−, 𝐹𝐵

+]−  for every i ∈ I. By the definition of continuity 

𝜓−1(NBVint(B))  is a neutrosophic bipolar vague open set in 𝑁𝐵𝑉𝜏 . Now, 

𝜓−1(NBVint(B))  ={ 

𝜓−1(< 𝑦, ⋃[𝑇𝐻𝑖

− , 𝑇𝐻𝑖

+ ]
+

, ⋂[𝐼𝐻𝑖

− , 𝐼𝐻𝑖

+ ]
+

, ⋂[𝐹𝐻𝑖

− , 𝐹𝐻𝑖

+ ]
+

, ⋂[𝑇𝐻𝑖

− , 𝑇𝐻𝑖

+ ]
−

, ⋃[𝐼𝐻𝑖

− , 𝐼𝐻𝑖

+ ]
−

, ⋃[𝐹𝐻𝑖

− , 𝐹𝐻𝑖

+ ]
−

>)} 

= {(<x, 𝜓−1( ⋃[𝑇𝐻𝑖

− , 𝑇𝐻𝑖

+ ]
+

), 𝜓−1(⋂[𝐼𝐻𝑖

− , 𝐼𝐻𝑖

+ ]
+

) , 𝜓−1 (⋂[𝐹𝐻𝑖

− , 𝐹𝐻𝑖

+ ]
+

) , 𝜓−1 ( ⋂[𝑇𝐻𝑖

− , 𝑇𝐻𝑖

+ ]
−

) , 𝜓−1(⋃[𝐼𝐻𝑖

− , 𝐼𝐻𝑖

+ ]
−

) , 

𝜓−1(⋃[𝐹𝐻𝑖

− , 𝐹𝐻𝑖

+ ]
−

) >)}. 

= {<x, ⋃[𝜓−1 [ [𝑇𝐻𝑖

− , 𝑇𝐻𝑖

+ ]
+

],  ⋂[𝜓−1[𝐼𝐻𝑖

− , 𝐼𝐻𝑖

+ ]
+

] , ⋂[𝜓−1[𝐹𝐻𝑖

− , 𝐹𝐻𝑖

+ ]
+

] , ⋂[𝜓−1[𝑇𝐻𝑖

− , 𝑇𝐻𝑖

+ ]
−

] , ⋃[𝜓−1[[𝐼𝐻𝑖

− , 𝐼𝐻𝑖

+ ]
−

] , 

⋃[𝜓−1[[𝐹𝐻𝑖

− , 𝐹𝐻𝑖

+ ]
−

]>}. 

⊆ NBVint(𝜓−1(B)) 

(2)⟹(1). Given 𝜓−1(NBVint(B))  ⊆  NBVint(𝜓−1(B)) for each NBVOS B in Y. Let  

B={< y, [𝑇𝐵
−, 𝑇𝐵

+]+, [𝐼𝐵
−, 𝐼𝐵

+]+, [𝐹𝐵
−, 𝐹𝐵

+]+, [𝑇𝐵
−, 𝑇𝐵

+]−, [𝐼𝐵
−, 𝐼𝐵

+]−, [𝐹𝐵
−, 𝐹𝐵

+]−>} be NBVOS in Y. We know that B is 

a neutrosophic bipolar vague open in Y if and only if NBVint(B)=B and hence  𝜓−1(NBVint(B))= 𝜓−1(B). 

But according to our supposition 𝜓−1(NBVint(B))  ⊆  NBVint(𝜓−1 (B)), therefore we get 𝜓−1 (B)  ⊆

 NBVint(𝜓−1(B), i.e., 𝜓−1(B) is a NBVS in X and thus 𝜓 is a  neutrosophic bipolar vague continuous. 

(1)⟹ (3) Given 𝜓: 𝑋 → 𝑌 is neutrosophic bipolar vague continuous. 

Suppose B={< y, [𝑇𝐵
−, 𝑇𝐵

+]+, [𝐼𝐵
−, 𝐼𝐵

+]+, [𝐹𝐵
−, 𝐹𝐵

+]+, [𝑇𝐵
−, 𝑇𝐵

+]−, [𝐼𝐵
−, 𝐼𝐵

+]−, [𝐹𝐵
−, 𝐹𝐵

+]−>} be NBVOS in Y.  

Also suppose NBVcl(B) = 

{<y,⋂[𝑇𝐾𝑖

− , 𝑇𝐾𝑖

+ ]
+

, ⋃[𝐼𝐾𝑖

− , 𝐼𝐾𝑖

+ ]
+

, ⋃[𝐹𝐾𝑖

− , 𝐹𝐾𝑖

+ ]
+

, ⋃[𝑇𝐾𝑖

− , 𝑇𝐾𝑖

+ ]
−

, ⋂[𝐼𝐾𝑖

− , 𝐼𝐾𝑖

+ ]
−

, ⋂[𝐹𝐾𝑖

− , 𝐹𝐾𝑖

+ ]
−

>:i∈ 𝐼},where 

[𝑇𝐾𝑖

− , 𝑇𝐾𝑖

+ ]
+

≤ [𝑇𝐵
−, 𝑇𝐵

+]+,[𝐼𝐾𝑖

− , 𝐼𝐾𝑖

+ ]
+

≥ [𝐼𝐵
−, 𝐼𝐵

+]+,[𝐹𝐾𝑖

− , 𝐹𝐾𝑖

+ ]
+

≥ [𝐹𝐵
−, 𝐹𝐵

+]+, 

[𝑇𝐾𝑖

− , 𝑇𝐾𝑖

+ ]
−

≥ [𝑇𝐵
−, 𝑇𝐵

+]−, [𝐼𝐾𝑖

− , 𝐼𝐾𝑖

+ ]
−

≤ [𝐼𝐵
−, 𝐼𝐵

+]− ,  [𝐹𝐾𝑖

− , 𝐹𝐾
+]

−
≤ [𝐹𝐵

−, 𝐹𝐵
+]−  for every i ∈ I. Since 𝜓  is a 

neutrosophic bipolar vague continuous iff the inverse image of each NBVCS  in Y is a NBVCS in X, 

therefore 𝜓−1(NBVcl(B)) is a NBVCS in X. 

Now, 𝜓−1 (NBVcl(B))=  {𝜓−1(< 𝑦,∩ [𝑇𝐾𝑖

− , 𝑇𝐾𝑖

+ ]
+

,∪ [𝐼𝐾𝑖

− , 𝐼𝐾𝑖

+ ]
+

,∪ [𝐹𝐾𝑖

− , 𝐹𝐾𝑖

+ ]
+

,∪ [𝑇𝐾𝑖

− , 𝑇𝐾𝑖

+ ]
−

,∩ [𝐼𝐾𝑖

− , 𝐼𝐾𝑖

+ ]
−

,∩

[𝐹𝐾𝑖

− , 𝐹𝐾𝑖

+ ]
−

>)} 

={(<x, 𝜓−1( ∩ [𝑇𝐾𝑖

− , 𝑇𝐾𝑖

+ ]
+

), 𝜓−1(∪ [𝐼𝐾𝑖

− , 𝐼𝐾𝑖

+ ]
+

) , 𝜓−1 (∪ [𝐹𝐾𝑖

− , 𝐹𝐾𝑖

+ ]
+

) , 𝜓−1 ( ∪ [𝑇𝐾𝑖

− , 𝑇𝐾𝑖

+ ]
−

) , 𝜓−1(∩ [𝐼𝐾𝑖

− , 𝐼𝐾𝑖

+ ]
−

) , 

𝜓−1(∩ [𝐹𝐾𝑖

− , 𝐹𝐾𝑖

+ ]
−

) >)}. 

= {<x, ∩ [𝜓−1 [ [𝑇𝐾𝑖

− , 𝑇𝐾𝑖

+ ]
+

],  ∪ [𝜓−1[𝐼𝐾𝑖

− , 𝐼𝐾𝑖

+ ]
+

] , ∪ [𝜓−1[𝐹𝐾𝑖

− , 𝐹𝐾𝑖

+ ]
+

] , ∪ [𝜓−1[𝑇𝐾𝑖

− , 𝑇𝐾𝑖

+ ]
−

] , ∩ [𝜓−1[[𝐼𝐾𝑖

− , 𝐼𝐾𝑖

+ ]
−

] , ∩

[𝜓−1[[𝐹𝐾𝑖

− , 𝐹𝐾𝑖

+ ]
−

]>} 

⊇ NBVcl(𝜓−1(B)) 

(3)⟹(1) 

Given NBVcl(𝜓−1(B))⊆ 𝜓−1(NBVcl(B)), for each NBVOS B in Y. Let 

B={< y, [𝑇𝐵
−, 𝑇𝐵

+]+, [𝐼𝐵
−, 𝐼𝐵

+]+, [𝐹𝐵
−, 𝐹𝐵

+]+, [𝑇𝐵
−, 𝑇𝐵

+]−, [𝐼𝐵
−, 𝐼𝐵

+]−, [𝐹𝐵
−, 𝐹𝐵

+]−>} be NBVCS in Y. Since NBVcl(B)=B. 

But it is given that NBVcl(𝜓−1(B))⊆ 𝜓−1(NBVcl(B)), hence NBVcl(𝜓−1(B))⊆  𝜓−1(B). Hence 𝜓−1(B)= 

NBVcl(𝜓−1(B)), i.e., 𝜓−1(B) is a NBVCS in X and this proves that 𝜓 is a neutrosophic bipolar vague 

continuous.  

4. Generalized Neutrosophic Bipolar Vague Closed Sets: 

Definition 4.1:  Suppose if (X, 𝑁𝐵𝑉𝜏) be a neutrosophic bipolar vague topological space. A neutrosophic 

bipolar vague set A in (X, 𝑁𝐵𝑉𝜏) is referred to be a generalized neutrosophic bipolar vague closed set if 

NBVcl(A) ⊆ 𝐺  whenever A⊆G and G is a neutrosophic bipolar vague open. The complement of a 

generalized neutrosophic bipolar vague closed set is generalized neutrosophic bipolar vague open set. 
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Definition 4.2: Suppose let (X, 𝑁𝐵𝑉𝜏) be a neutrosophic bipolar vague topological space and let A be a 

neutrosophic bipolar vague set in X. The generalized neutrosophic bipolar vague closure (GNBVcl for 

short) and the generalized neutrosophic bipolar vague interior (GNBVint for short) of A are well-

defined by,  

1) GNBVcl(A)=⋂{G:G is a generalized neutrosophic bipolar vague closed sets in X and A⊆ 𝐺}, 

2) GNBVint(A)=⋃{G:G is a generalized neutrosophic bipolar vague open sets in X and A⊇ 𝐺}. 

Remark 4.3:  Every NBVCS is generalized neutrosophic bipolar vague closed but not conversely. 

Example 4.4: Assume that X= {u,v} and 𝑁𝐵𝑉𝜏={0,1,F} is a NBVT on X where, 

F=<𝑥,
𝑢

[0.5,0.9][0.3,0.3][0.1,0.5][−0.4,−0.3][−0.4,−0.4][−0.7,−0.6]
,

𝑣

[0.4,0.6][0.2,0.2][0.4,0.6][−0.5,−0.3][−0.5,−0.5][−0.7,−0.5]
> 

Then the neutrosophic bipolar vague set,  

A=< 𝑥,
𝑢

[0.5,0.7][0.5,0.5][0.3,0.5][−0.4,−0.1][−0.5,−0.6][−0.9,−0.6]
,

𝑣

[0.3,0.6][0.4,0.4][0.4,0.7][−0.2,−0.2][−0.6,−0.8][−0.8,−0.8]
> is a 

generalized neutrosophic bipolar vague closed but not NBVC in X. 

Proposition 4.5: Suppose that (X, 𝑁𝐵𝑉𝜏) be a neutrosophic bipolar vague topological space. If A is a 

generalized neutrosophic bipolar vague closed set and A ⊆ B ⊆ NBVcl(A), then B is a generalized 

neutrosophic bipolar vague closed set. 

Proof: Suppose let G be a neutrosophic bipolar vague open set in (X, 𝑁𝐵𝑉𝜏), such that B⊆G. Since A⊆B, 

A⊆ 𝐺. Now A is a generalized neutrosophic bipolar vague closed set and NBVcl(A) ⊆G. But NBVcl(B) ⊆ 

NBVcl(A). Since NBVcl(B)  ⊆  NBVcl(A)  ⊆ G, NBVcl(B)  ⊆ G. Hence B is a generalized neutrosophic 

bipolar vague closed set. 

Proposition 4.6: Suppose if A is a neutrosophic bipolar vague open set and generalized neutrosophic 

bipolar vague closed set in (X, 𝑁𝐵𝑉𝜏), then A is said to be a neutrosophic bipolar vague closed set in X. 

Proof: Assume that A is a neutrosophic bipolar vague open set in X. Since A ⊆ A, by hypothesis 

NBVcl(A) ⊆A. Then from definition A⊆ NBVcl(A). Therefore NBVcl(A)= A. Hence A is neutrosophic 

bipolar vague closed set in X.Proposition 4.7: Suppose that NBVint(A)  ⊆B⊆A and assume A is a 

generalized neutrosophic bipolar vague open set then B is also a generalized neutrosophic bipolar vague 

open set.             

Proof: Now, 𝐴̅ ⊆ 𝐵̅ ⊆ NBVint(A)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = NBVcl(𝐴̅). As A is a generalized neutrosophic bipolar vague open, 𝐴̅ 

is a generalized neutrosophic bipolar vague closed set. By proposition 4.5, 𝐵̅ generalized neutrosophic 

bipolar vague closed set. That is, B is also a generalized neutrosophic bipolar vague open set. 

Definition 4.8: Suppose (X, 𝑁𝐵𝑉𝜏) and (Y, 𝑁𝐵𝑉𝜎)be any two neutrosophic bipolar vague topological 

spaces. 

1. A map 𝜓 : (X, 𝑁𝐵𝑉𝜏) →(Y, 𝑁𝐵𝑉𝜎)  is referred to be a generalized neutrosophic bipolar vague 

continuous if the inverse image of every neutrosophic bipolar vague open set in (Y, 𝑁𝐵𝑉𝜎) is a 

generalized neutrosophic bipolar vague open set in (X, 𝑁𝐵𝑉𝜏). 

2. A map 𝜓: (X, 𝑁𝐵𝑉𝜏)→(Y, 𝑁𝐵𝑉𝜎) is called as a generalized neutrosophic bipolar vague irresolute if 

the inverse image of every generalized neutrosophic bipolar vague open set in (Y, 𝑁𝐵𝑉𝜎) is a 

generalized neutrosophic bipolar vague open set in (X, 𝑁𝐵𝑉𝜏). 

Proposition 4.9: Suppose (X, 𝑁𝐵𝑉𝜏) and (Y, 𝑁𝐵𝑉𝜎)be any two neutrosophic bipolar vague topological 

spaces. A mapping 𝜓: (X, 𝑁𝐵𝑉𝜏)→(Y, 𝑁𝐵𝑉𝜎) is referred to be generalized neutrosophic bipolar vague 

continuous function mapping. Then for every neutrosophic bipolar vague set A in X, 𝜓(GNBVcl(A)) ⊆ 

NBVcl(𝜓(𝐴)). 

Proof: Assume A to be a neutrosophic bipolar vague set in (X, 𝑁𝐵𝑉𝜏) . Since NBVcl( 𝜓(𝐴))  is a 

neutrosophic bipolar vague closed set and since 𝜓  is a generalized neutrosophic bipolar vague 

continuous mapping, the set 𝜓−1(NBVcl(𝜓(𝐴))) is a generalized neutrosophic bipolar vague closed set 

and  thus 𝜓−1(NBVcl(𝜓(𝐴))) ⊇A.  

Now, GNBVcl(A))⊆ 𝜓−1 (NBVcl(𝜓(𝐴))). Therefore 𝜓(GNBVcl(A)) ⊆ NBVcl(𝜓(𝐴)).           
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Proposition 4.10: If (X, 𝑁𝐵𝑉𝜏) and (Y, 𝑁𝐵𝑉𝜎) are two neutrosophic bipolar vague topological spaces. Let 

the mapping 𝜓 : (X, 𝑁𝐵𝑉𝜏) →(Y, 𝑁𝐵𝑉𝜎)  be a generalized neutrosophic bipolar vague continuous  

mapping. Then for every neutrosophic bipolar vague set A in Y, GNBVcl(𝜓−1(A)) ⊆ 𝜓−1(NBVcl(A). 

Proof: Assume A to be a neutrosophic bipolar vague set in (Y, 𝑁𝐵𝑉𝜎) . Let B= 𝜓−1( A). Then, 

𝜓(B)= 𝜓(𝜓−1(A)) ⊆A. By proposition 4.10, 𝜓(GNBVcl(𝜓−1(A))) ⊆NBV cl(𝜓(𝜓−1(A))). Thus, 

GNBVcl(𝜓−1(A)) ⊆ 𝜓−1(NBVcl(A). 

Proposition 4.11: Suppose let (X, 𝑁𝐵𝑉𝜏)  and (Y, 𝑁𝐵𝑉𝜎) be any two neutrosophic bipolar vague 

topological spaces. Let 𝜓 : (X, 𝑁𝐵𝑉𝜏) →(Y, 𝑁𝐵𝑉𝜎)  is referred to be a neutrosophic bipolar vague 

continuous  mapping, then it is a generalized neutrosophic bipolar vague continuous  mapping. 

Proof: Suppose let A be a neutrosophic bipolar vague open set in (Y, 𝑁𝐵𝑉𝜎). Since the mapping 𝜓 is a 

neutrosophic bipolar vague continuous mapping, 𝜓−1(𝐴) is a neutrosophic bipolar vague open set in 

(X, 𝑁𝐵𝑉𝜏). Every neutrosophic bipolar vague open set is a generalized neutrosophic bipolar vague open 

set. Now, 𝜓−1(𝐴) is a generalized neutrosophic bipolar vague open set in (X, 𝑁𝐵𝑉𝜏). Hence 𝜓 is thus a 

generalized neutrosophic bipolar vague continuous mapping. 

The converse of the proposition need not be true as shown in example.  

Example 4.12: Assume that X={a,b}, Y={u,v} and, 

A=<x, 
𝑎

[0.5,0.4][0.5,0.5][0.6,0.5][−0.6,−0.4][−0.3,−0.3][−0.6,−0.4]
,

𝑏

[0.6,0.7][0.1,0.1][0.3,0.4][−0.3,−0.4][−0.2,−0.2][−0.6,−0.7]
>, 

B=<x, 
𝑎

[0.5,0.3][0.5,0.5][0.7,0.5][−0.4,−0.2][−0.4,−0.4][−0.8,−0.6]
,

𝑏

[0.5,0.4][0.2,0.2][0.6,0.5][−0.3,−0.4][−0.2,−0.2][−0.6,−0.7]
>. 

Then 𝑁𝐵𝑉𝜏 ={0,1,A} and 𝑁𝐵𝑉𝜎 ={0,1,B} are NBVT on X and Y respectively. Define a mapping 𝜓 : (X, 

𝑁𝐵𝑉𝜏)→(Y, 𝑁𝐵𝑉𝜎) by 𝜓(a)=u and 𝜓(b)=v. then 𝜓 is a generalized neutrosophic bipolar vague continuous 

mapping but not bipolar vague continuous mapping.  

Proposition 4.13: Suppose let (X, 𝑁𝐵𝑉𝜏)  and (Y, 𝑁𝐵𝑉𝜎) be any two neutrosophic bipolar vague 

topological spaces. A mapping 𝜓: (X, 𝑁𝐵𝑉𝜏)→(Y, 𝑁𝐵𝑉𝜎) is said to be a generalized neutrosophic bipolar 

vague irresolute mapping, then it is a generalized neutrosophic bipolar vague continuous  mapping. 

Proof: Let A be a neutrosophic bipolar vague open set in (Y, 𝑁𝐵𝑉𝜎). Since every neutrosophic bipolar 

vague open set is a generalized neutrosophic bipolar vague open set in (Y, 𝑁𝐵𝑉𝜎), but 𝜓 is a generalized 

neutrosophic bipolar vague irresolute mapping, 𝜓−1(𝐴) is a generalized neutrosophic bipolar vague 

open set in (X, 𝑁𝐵𝑉𝜏). Thus 𝜓 is a generalized neutrosophic bipolar vague continuous mapping. 

Proposition 4.14: Suppose let (X, 𝑁𝐵𝑉𝜏), (Y, 𝑁𝐵𝑉𝜎) and (Z, 𝑁𝐵𝑉𝜌) be any three bipolar vague topological 

spaces. Let 𝜓: (X, 𝑁𝐵𝑉𝜏)→(Y, 𝑁𝐵𝑉𝜎) be a generalized neutrosophic bipolar vague irresolute mapping 

and    𝜓1: (Y, 𝑁𝐵𝑉𝜎)→( Z, 𝑁𝐵𝑉𝜌) be a generalized neutrosophic bipolar vague continuous  mapping. 

Then 𝜓1 ∘ 𝜓 is a generalized neutrosophic bipolar vague continuous mapping. 

Proof: Let A be a neutrosophic bipolar vague open set in (Z, 𝑁𝐵𝑉𝜌) . Since 𝜓1   is a generalized 

neutrosophic bipolar vague continuous mapping, 𝜓1
−1 (A) is a generalized neutrosophic bipolar vague 

open set in (Y, 𝑁𝐵𝑉𝜎) . Since 𝜓 is a generalized neutrosophic bipolar vague irresolute mapping, 𝜓−1(𝜓1
−1 

(A)) is a generalized neutrosophic bipolar vague open set in (X, 𝑁𝐵𝑉𝜏). Thus 𝜓1 ∘ 𝜓 is a generalized 

neutrosophic bipolar vague continuous mapping. 

 

Conclusion: 

 This paper presented the new concept of Neutrosophic Bipolar Vague sets and studied some 

basic operational relation of Neutrosophic Bipolar Vague set. Then a generalization of NBVSs in closed 

set is done. As a future work, we shall continue to work in the application of NBVS to other domains, 

such as medical diagnosis, pattern recognition and decision making. 
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Abstract:  This study utilizes the notions of ℵ-α-open set to introduce and study new form of 

ℵ -ccontinuity termed as ℵ -almost contra α-continuous function. Besides, we also introduce 

ℵ𝛼 -connected space, ℵ -weakly Hausdorff space, separation axioms, ℵ𝛼 -normal and ℵ -strong 

normal spaces. Characterizations of ℵ-almost contra α-continuous functions is also discussed. 

Keywords: ℵ -almost contra α-continuous function; ℵ𝛼 -connected space; ℵ -weakly Hausdorff 

space; ℵ-locally αindiscrete space; ℵ𝛼-normal space; ℵ-strong normal space. 

 

1. Introduction 

Many real-world problems in Finance, Medical sciences, Engineering and Social sciences deals 

with uncertainties. There are difficulties in solving the uncertainties in these data by traditional 

mathematical models. There are approaches such as fuzzy sets [28], intuitionistic fuzzy sets [10], 

vague sets [13], and rough sets [18] which can be treated as mathematical tools to avert obstacles 

dealing with ambiguous data. But all these approaches have their implicit crisis in solving the 

problems involving indeterminate and inconsistent data due to inadequacy of parameterization 

tools. Smarandache [24] studied the idea of neutrosophic set as an approach for solving issues that 

cover unreliable, indeterminacy and persistent data. Neutrosophic topological space was introduced 

by Salama et.al. [19] in 2012. Further Neutrosophic topological spaces are studied in [20]. 

Applications of neutrosophic topology depend upon the properties of neutrosophic open sets, 

neutrosophic closed sets, neutrosophic interior operator and neutrosophic closure operator. 

Topologists studied the sets that are near to neutrosophic open sets and neutrosophic closed sets. In 

this order, Arokiarani et.al.[9] defined neutrosophic semi-open (resp. pre-open and α-open) 

functions and investigated their relations. In [9], the characterizations of characterizations of 

neutrosophic pre continuous (resp. α-continuous) functions is also discussed. 

  The idea of almost continuous functions is done in 1968 [21] in topology. Similarly, the notion 

of fuzzy almost contra continuous and fuzzy almost contra α-continuous functions were discussed 

in [16]}. Recently, Al-Omeri and Smarandache [26, 27] introduced and studied a number of the 

definitions of neutrosophic closed sets, neutrosophic mapping, and obtained several preservation 

properties and some characterizations about neutrosophic of connectedness and neutrosophic 

connectedness continuity. More recently, in [1, 8] authors have given how new trend of 

Neutrosophic theory is applicable in the field of Medicine and multimedia with a novel and 

powerful model. 

In this paper, we define Almost contra-continuity in the context of neutrosophic topology such 

as Neutrosophic Almost α-contra-continuous function. We also discuss some characterizations of 

this concept. Moreover ℵ𝛼-connected space, ℵ- weakly Hausdorff space, separation axioms and ℵ𝛼 

-normal spaces are presented and investigated some properties. 
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2. Preliminaries 

Definition: 2.1 [22, 23] Allow T,I,F as real standard or non standard members of ]0−, 1+[, with 

𝑠𝑢𝑝𝑇 = 𝑡𝑠𝑢𝑝, 𝑖𝑛𝑓𝑇 = 𝑡𝑖𝑛𝑓,  

𝑠𝑢𝑝𝐼 = 𝑖𝑠𝑢𝑝, 𝑖𝑛𝑓𝐼 = 𝑖𝑖𝑛𝑓  ,  

𝑠𝑢𝑝𝐹 = 𝑓𝑠𝑢𝑝, 𝑖𝑛𝑓𝐹 = 𝑓𝑖𝑛𝑓 

𝑛 − 𝑠𝑢𝑝 = 𝑡𝑠𝑢𝑝 + 𝑖𝑠𝑢𝑝 + 𝑓𝑠𝑢𝑝 

𝑛 − 𝑖𝑛𝑓 = 𝑡𝑖𝑛𝑓 + 𝑖𝑖𝑛𝑓 + 𝑓𝑖𝑛𝑓  . T,I,F are neutrosophic components.  

Definition: 2.2 [22, 23] Let 𝑆1 be a non-empty fixed set. A definition set (in short 𝑁-set) Λ is an 

object such that Λ = {〈𝑥, 𝜇
Λ

(𝑥), 𝜎
Λ

(𝑥), 𝛾
Λ

(𝑥)〉: 𝑥 ∈ 𝑆1}  wherein 𝜇
Λ

(𝑥), 𝜎
Λ

(𝑥)  and 

𝛾
Λ

(𝑥)  which represents the degree of membership function (viz 𝜇
Λ

(𝑥) ), the degree of 

indeterminacy (viz 𝜎
Λ

(𝑥)) as well as the degree of non-membership (viz 𝛾
Λ

(𝑥)) respectively of 

each element 𝑥 ∈ 𝑆1 to the set Λ.  

Remark: 2.3[22, 23]   

I. An 𝑁-set 𝛬 = {〈𝑥, 𝜇
𝛬

(𝑥), 𝜎
𝛬

(𝑥), 𝛤
𝛬

(𝑥)〉: 𝑥 ∈ 𝑆1}can be identified to an ordered triple 

〈𝜇
𝛬

, 𝜎
𝛬

, 𝛤
𝛬

〉 in ]0−, 1+[ on 𝑆1.  

II. In this paper, we use the symbol 𝛬 = 〈𝜇
𝛬

, 𝜎
𝛬

, 𝛤
𝛬

〉 for the 𝑁-set 𝛬 =

{〈𝑥, 𝜇
𝛬

(𝑥), 𝜎
𝛬

(𝑥), 𝛤
𝛬

(𝑥)〉: 𝑥 ∈ 𝑆1}. 

Definition: 2.4[12] Let 𝑆1 ≠ ∅ and the 𝑁-sets Λ and Γ be defined as  

Λ = {〈𝑥, 𝜇
Λ

(𝑥), 𝜎
Λ

(𝑥), Γ
Λ

(𝑥)〉: 𝑥 ∈ 𝑆1}, Γ = {〈𝑥, 𝜇
Γ

(𝑥), 𝜎
Γ

(𝑥), Γ
Γ

(𝑥)〉: 𝑥 ∈ 𝑆1}. Then   

I. 𝛬 ⊆ 𝛤 iff 𝜇
𝛬

(𝑥) ≤ 𝜇
𝛤

(𝑥), 𝜎
𝛬

(𝑥) ≤ 𝜎
𝛤

(𝑥) and 𝛤
𝛬

(𝑥) ≥ 𝛤
𝛤

(𝑥) for all 𝑥 ∈ 𝑆1;  

II. 𝛬 = 𝛤 iff 𝛬 ⊆ 𝛤 and 𝛤 ⊆ 𝛬;  

III. 𝛬̅ = {〈𝑥, 𝛤
𝛬

(𝑥), 𝜎
𝛬

(𝑥), 𝜇
𝛬

(𝑥)〉: 𝑥 ∈ 𝑆1}; [Complement of 𝛬]  

IV. 𝛬 ∩ 𝛤 = {〈𝑥, 𝜇
𝛬

(𝑥) ∧ 𝜇
𝛤

(𝑥), 𝜎
𝛬

(𝑥) ∧ 𝜎
𝛤

(𝑥), 𝛤
𝛬

(𝑥) ∨ 𝛤
𝛤

(𝑥)〉: 𝑥 ∈ 𝑆1};  

V. 𝛬 ∪ 𝛤 = {〈𝑥, 𝜇
𝛬

(𝑥) ∨ 𝜇
𝛤

(𝑥), 𝜎
𝛬

(𝑥) ∨ 𝜎
𝛤

(𝑥), 𝛤
𝛬

(𝑥) ∧ 𝛾
𝛤

(𝑥)〉: 𝑥 ∈ 𝑆1};  

VI. [ ]𝛬 = {〈𝑥, 𝜇
𝛬

(𝑥), 𝜎
𝛬

(𝑥),1 − 𝜇
𝛬

(𝑥)〉: 𝑥 ∈ 𝑆1};  

VII. 〈〉 𝛬 = {〈𝑥, 1 − 𝛤
𝛬

(𝑥), 𝜎
𝛬

(𝑥), 𝛤
𝛬

(𝑥)〉: 𝑥 ∈ 𝑆1}.  

 

Definition: 2.5[12] Let {Λ𝑖: 𝑖 ∈ 𝐽} be an arbitrary family of 𝑁-sets in 𝑆1. Thereupon   

I. ∩ 𝛬𝑖 = {〈𝑝,∧ 𝜇
𝛬𝑖

(𝑝),∧ 𝜎
𝛬𝑖

(𝑝),∨ 𝛤
𝛬𝑖

(𝑝)〉: 𝑝 ∈ 𝑆1};  

II. ∪ 𝛬𝑖 = {〈𝑝,∨ 𝜇
𝛬𝑖

(𝑝),∨ 𝜎
𝛬𝑖

(𝑝),∧ 𝛤
𝛬𝑖

(𝑝)〉: 𝑝 ∈ 𝑆1}.  

 The main theme is to construct the tools for developing NTS, so we establish the neutrosophic sets 

0
ℵ

 along with 1
ℵ

 in X as follows:  

 

Definition: 2.6[12] 0
ℵ

= {〈𝑞, 0,0,1〉: 𝑞 ∈ 𝑋} and 1
ℵ

= {〈𝑞, 1,1,0〉: 𝑞 ∈ 𝑋}.  

Definition: 2.7[12] A definition topology (in short,ℵ-topology) on 𝑆1 ≠ ∅ is a family 𝜉1 of 𝑁-sets in 

𝑆1 satisfying the laws given below:   

I. 0
𝑁

, 1
𝑁

∈ 𝜉1,  

II. 𝑊1 ∩ 𝑊2 ∈ 𝑇 being 𝑊1, 𝑊2 ∈ 𝜉1,  

III. ∪ 𝑊𝑖 ∈ 𝜉1 for arbitrary family {𝑊𝑖|𝑖 ∈ 𝛬} ⊆ 𝜉1. 

 

 In this case the ordered pair (𝑆1, 𝜉1) or simply 𝑆1 is termed as 𝑁𝑇𝑆 and each 𝑁-set in 𝜉1 

is named as neutrosophic open set (in short,ℵ-open set) . The complement Λ of an ℵ-open set Λ in 

𝑆1 is known as neutrosophic closed set (briefly,ℵ-closed set) in 𝑆1. 
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Definition: 2.8[12] Let Λ be an ℵ-set in an 𝑁𝑇𝑆𝑆1. Thereupon  

ℵ𝑖𝑛𝑡(Λ) =∪ {𝐺|𝐺 is an ℵ-open set in 𝑆1 and 𝐺 ⊆ Λ} is termed as neutrosophic interior (in 

brief ℵ-interior ) of Λ; 

ℵ𝑐𝑙(Λ) =∩ {𝐺|𝐺  is an ℵ-closed set in 𝑆1  and 𝐺 ⊇ Λ} is termed as neutrosophic closure 

(shortly ℵ𝑐𝑙) of Λ.  

Definition: 2.9[12] Let 𝑋 be a nonempty set. Whenever 𝑟, 𝑡, 𝑠 be real standard or non standard 

subsets of ]0−, 1+[ then the neutrosophic set 𝑥𝑟,𝑡,𝑠 is termed as neutrosophic point(in short NP )in 𝑋 

given by𝑥𝑟,𝑡,𝑠(𝑥𝑝) = (
(𝑟, 𝑡, 𝑠),  𝑖𝑓   𝑥 = 𝑥𝑝

(0,0,1),  𝑖𝑓   𝑥 = 𝑥𝑝
 for 𝑥𝑝 ∈ 𝑋 is termed as the support of 𝑥𝑟,𝑡,𝑠, wherein 𝑟 

indicates the degree of membership value, 𝑡 indicates the degree of indeterminacy along with 𝑠 as 

the degree of non-membership value of 𝑥𝑟,𝑡,𝑠.  

Definition: 2.10[12] Allow (𝑆1, 𝜉1) be a NTS. A neutrosophic set Λ in (𝑆1, 𝜉1) is termed as 𝔤ℵ 

closed set if 𝑁𝑐𝑙(Λ) ⊆ Γ whenever Λ ⊆ Γ and Γ is a ℵ-open set. The complement of a 𝔤ℵ-closed set 

is named as 𝔤ℵ-open set.  

Definition: 2.11[12] Let (𝑋, 𝑇) be a NTS and Λ be a neutrosophic set in X. Subsequently, the 

neutrosophic generalized closure and neutrosophic generalized interior of Λ are defined by, 

(𝑖)𝑁𝐺𝑐𝑙(Λ) =  ∩ {𝐺:  𝐺  𝑖𝑠  𝑎  𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑  𝑛𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐  𝑐𝑙𝑜𝑠𝑒𝑑   

 𝑠𝑒𝑡  𝑖𝑛  𝑆1  𝑎𝑛𝑑  Λ  ⊆   𝐺}.

(𝑖𝑖)𝑁𝐺𝑖𝑛𝑡(Λ) =  ∪ {𝐺:  𝐺  𝑖𝑠  𝑎  𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑  𝑛𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐  𝑜𝑝𝑒𝑛   

 𝑠𝑒𝑡  𝑖𝑛  𝑆1  𝑎𝑛𝑑  Λ ⊇   𝐺}.

 

3. Neutrosophic Almost Contra α-Continuous Functions. 

A new form of ℵ𝛼-continuity termed as ℵ-almost contra α-continuity is discussed along with 

some of their properties. 

Definition 3.1 Let (𝑆1, 𝜉1) and (𝑆2, 𝜉2) be any two NTS . A function 𝑔: (𝑆1, 𝜉1) → (𝑆2, 𝜉2) is named as 

ℵ-almost contra 𝛼-continuous if inverse image of each ℵ-regular open set in 𝑆2 is ℵ𝛼-closed set in 𝑆1.  

Recall that, for a function 𝑓: 𝑆1 → 𝑆2, the subset 𝐺𝑓 = {𝑥, 𝑓(𝑥): 𝑥 ∈ 𝑆1} ⊂ 𝑆1 × 𝑆2 is said to be graph of 

f. 

Theorem 3.2 Let𝑓: 𝑆1 → 𝑆2  be a function along with 𝑔: 𝑆1 → 𝑆1 × 𝑆2  be the graph function defined by 

𝑔(𝑥) = (𝑥, 𝑓(𝑥)) being each 𝑥 ∈ 𝑆1. Whenever g is ℵ-almost contra 𝛼-continuous function, thereupon f is 

ℵ-almost contra 𝛼-continuous function.  

Proof. Let M be a ℵ-regular closed set in 𝑆2 accordingly 𝑆1 × 𝑀 is a ℵ-regular closed set in 𝑆1 × 𝑆2. 

In view of g is ℵ-almost contra 𝛼-continuous, so that𝑓−1(𝑀) = 𝑔−1(𝑆1 × 𝑀) is a ℵ𝛼-open in 𝑆1. 

Thus f is ℵ-almost contra 𝛼-continuous.  

 

Definition: 3.3 

1.  A nonempty family 𝔽 of ℵ −open sets on (𝑆1, 𝜉1) is known as ℵ −filter if 

I. 0ℵ ∉ 𝔽 

II.   If  A,B ∈ 𝔽 then 𝐴 ∩ 𝐵 ∈ 𝔽 

III.  If 𝐴 ∈ 𝔽 and 𝐴 ⊂ 𝐵 then 𝐵 ∈ 𝔽 

2. A nonempty family 𝔹 of ℵ − open sets on 𝔽 is named as ℵ − filter base if   

I. 0ℵ ∉ 𝔹 
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II. If 𝐵1 , 𝐵2 ∈ 𝔹 then 𝐵3 ⊂ 𝐵1 ∩ 𝐵2 for some 𝐵3 ∈ 𝔹 

3. A ℵ −filter 𝔽 is known as ℵ −convergent to a ℵ −point 𝑥𝑟,𝑠,𝑡 of a NTS(𝑆1, 𝜉1) if for each ℵ −open 

set A of (𝑆1, 𝜉1)containing𝑥𝑟,𝑠,𝑡, there exists a ℵ −set 𝐵 ∈ 𝔽 so as 𝐵 ⊆ 𝐴.  

4.  A ℵ − filter 𝔽  is said to be ℵ𝛼 -convergent to a ℵ −point 𝑥𝑟,𝑠,𝑡  of a NTS(𝑆1, 𝜉1)  if for each 

ℵ𝛼 −open set A of (𝑆1, 𝜉1)containing𝑥𝑟,𝑠,𝑡,there exists a ℵ − 𝑠𝑒𝑡𝐵 ∈ 𝔽 thereby 𝐵 ⊆ 𝐴.  

5. A ℵ −filter 𝔽 is said to be ℵ rc-convergent to a ℵ −point 𝑥𝑟,𝑠,𝑡  of a NTS(𝑆1, 𝜉1) if for each ℵ 

regular closed set A of (𝑆1, 𝜉1) containing 𝑥𝑟,𝑠,𝑡,there exists a ℵ −set 𝐵 ∈ 𝔽 so as 𝐵 ⊆ 𝐴.  

 

Proposition 3.4 If a function 𝜇: 𝑆1 → 𝑆2 is ℵ-almost contra 𝛼-continuous function and each ℵ −filter base 

𝔽 in 𝑆1 is ℵ𝛼-converging to 𝑥𝑟,𝑠,𝑡, the ℵ −filter base 𝜇(𝔽) is ℵrc-convergent to 𝜇(𝑥𝑟,𝑠,𝑡).  

Proof. Let 𝑥𝑟,𝑠,𝑡 ∈ 𝑆1 and 𝔽 be any ℵ-filter base in 𝑆1 is ℵ𝛼-converging to 𝑥𝑟,𝑠,𝑡. As 𝜇 is ℵ-almost 

contra 𝛼-continuous, subsequently for any ℵ regular closed R in 𝑆2 including 𝜇(𝑥𝑟,𝑠,𝑡), there exists 

ℵ𝛼-open W in 𝑆1 involving 𝑥𝑟,𝑠,𝑡 so as 𝜇(𝑊) ⊂ 𝑅. As 𝔽 is ℵ𝛼-convergent to 𝑥𝑟,𝑠,𝑡, there occurs 𝐴 ∈

𝔽  thereby 𝐴 ⊂ 𝑊 . This means that 𝜇(𝐴) ⊂ 𝑅  and consequently the ℵ -filter base 𝜇(𝔽)  is 

ℵrc-convergent to 𝜇(𝑥𝑟,𝑠,𝑡). 

 

Definition: 3.5 

1. A space 𝑆1 is termed as ℵ𝛼-connected if 𝑆1 can’t be expressed as union of two disjoint non-empty 

ℵ𝛼-open sets.  

2. A space 𝑆1 is named as ℵ-connected if 𝑆1 cannot be written as union of two disjoint non-empty 

ℵ-open sets.  

Theorem 3.6 If 𝑓: 𝑆1 → 𝑆2 is a ℵ-almost contra 𝛼-continuous surjection along with 𝑆1  is ℵ𝛼-connected 

space, then𝑆2 is ℵ-connected.  

Proof. Let 𝑓: 𝑆1 → 𝑆2 be a ℵ-almost contra 𝛼-continuous surjection with 𝑆1 is ℵ𝛼-connected space. 

Assuming 𝑆2 is a not ℵ-connected space. Accordingly, there existdisjointℵ-open sets 𝑊 and 𝑅such 

that 𝑆2 = 𝑊 ∪ 𝑅 . Then, 𝑊 and 𝑅  are ℵ -clopen in 𝑆2 . As 𝑓  is ℵ -almost contra 𝛼 -continuous, 

𝑓−1(𝑊)and𝑓−1(𝑅) are ℵ𝛼-open sets in 𝑆1. In addition 𝑓−1(𝑊)and𝑓−1(𝑅) are disjoint non-empty 

and𝑆1 = 𝑓−1(𝑊) ∪ 𝑓−1(𝑅). It is contradiction to the fact that𝑆1 is ℵ𝛼-connected space. Hence, 𝑆2 is 

ℵ-connected. 

Definition 3.6 A space 𝑆1 is named as ℵ-locally 𝛼-indiscrete  if every ℵ𝛼-open set is ℵ-closed in 𝑆1.  

Definition 3.7 A function 𝑔: 𝑆1 → 𝑆2 is termed as ℵ-almost continuous if 𝑔−1(𝑉) is ℵ-open in 𝑆1 for each 

ℵ-regular open set 𝑉 in 𝑆2.  

Definition 3.8 A function 𝑓: 𝑆1 → 𝑆2 is known as ℵ-almost 𝛼-continuous if 𝑓−1(𝑉) is ℵ𝛼-open in 𝑆1 for 

each ℵ-regular open set 𝑉 in 𝑆2.  

Theorem 3.9 If a function 𝜂: 𝑆1 → 𝑆2  is ℵ -almost contra 𝛼 -continuous function and 𝑆1  is ℵ -locally 

𝛼-indiscrete space, then 𝑓 is ℵ-almost continuous function.  

Proof.Let𝑊  be a ℵ-regular closed set in 𝑆2 . Since 𝜂  is ℵ-almost contra 𝛼-continuous function, 

𝜂−1(𝑊) is ℵ𝛼-open set in 𝑆1  and 𝑆1  is ℵ-locally 𝛼-indiscrete space, which implies 𝜂−1(𝑊) is a 

ℵ-closed set in 𝑆1. Hence,𝜂 is ℵ-almost continuous function. 



Neutrosophic Sets and Systems, Vol. 29, 2019 75  

 

 

R.Dhavaseelan and Md. Hanif PAGE, Neutrosophic Almost Contra α-Continuous Functions. 

 

Definition 3.10 A space 𝑆1  named as ℵ-weakly Hausdorff  if each element of 𝑆1  is an intersection of 

ℵ-regular closed sets.  

Definition 3.11 A space 𝑆1 is named as   

1. ℵ𝛼-𝑇0 if for each pair of distinct ℵ-points 𝑥𝑟,𝑠,𝑡 and 𝑦𝑟,𝑠,𝑡 in 𝑆1, there exists ℵ𝛼-open set 𝑈 such 

that 𝑥𝑟,𝑠,𝑡 ∈ 𝑈, 𝑦𝑟,𝑠,𝑡 ∉ 𝑈 or 𝑥𝑟,𝑠,𝑡 ∉ 𝑈, 𝑦𝑟,𝑠,𝑡 ∈ 𝑈.  

2. ℵ𝛼-𝑇1 if for each pair of  distinct ℵ-points 𝑥𝑟,𝑠,𝑡 and 𝑦𝑟,𝑠,𝑡 in 𝑆1, there exist ℵ𝛼-open sets 𝑈 and 𝑉 

containing 𝑥𝑟,𝑠,𝑡 and 𝑦𝑟,𝑠,𝑡 respectively, so as 𝑦𝑟,𝑠,𝑡 ∉ 𝑈 and 𝑥𝑟,𝑠,𝑡 ∉ 𝑉.  

3. ℵ𝛼 - 𝑇2  if for each pair of distinct ℵ -points 𝑥𝑟,𝑠,𝑡  and 𝑦𝑟,𝑠,𝑡  in 𝑆1 , there exists ℵ𝛼 -open set 𝑈 

containing 𝑥𝑟,𝑠,𝑡 and ℵ𝛼-open set 𝑉 containing 𝑦𝑟,𝑠,𝑡 so as 𝑈 ∩ 𝑉 = 0𝑁.  

4. A space 𝑆1 is termed as ℵ𝛼-normal if each pair of non-empty disjoint ℵ-closed sets can be separated 

by disjoint ℵ𝛼-open sets.  

5. A space 𝑆1 is termed as ℵ-strongly-normal ifr each pair of disjoint non-empty ℵ-closed sets 𝑈 and 𝑉 

there exists disjoint  ℵ-open sets W and R such that 𝑈 ⊂ 𝑊, 𝑉 ⊂ 𝑅 and ℵ𝑐𝑙(𝑊) ∪ ℵ𝑐𝑙(𝑅) = 0ℵ.  

6. A space 𝑆1 is called a ℵ-ultra normal if each pair of non-empty disjoint ℵ-closed sets can be separated 

by disjoint ℵ-clopen sets.  

Theorem 3.12 If 𝑓: 𝑆1 → 𝑆2 is an ℵ-almost contra 𝛼-continuous injection and 𝑆2 is ℵ-weakly Hausdorff 

space, then 𝑆1 is ℵ𝛼-𝑇1.  

Proof. Let 𝑆2 be a ℵ-weakly Hausdorff space. For any distinct ℵ points 𝑥𝑟,𝑠,𝑡 and 𝑦𝑟,𝑠,𝑡 in 𝑆1, there 

exist 𝑉 and 𝑊 , ℵ-regular closed sets in 𝑆2 such that𝑓(𝑥𝑟,𝑠,𝑡) ∈ 𝑉, 𝑓(𝑦𝑟,𝑠,𝑡) ∉ 𝑉, 𝑓(𝑦𝑟,𝑠,𝑡) ∈ 𝑊  and 

𝑓(𝑥𝑟,𝑠,𝑡) ∉ 𝑊. As 𝑓 is ℵ-almost contra 𝛼-continuous, 𝑓−1(𝑉)and𝑓−1(𝑊) are ℵ𝛼-open subsets of 𝑆1 

such that 𝑥𝑟,𝑠,𝑡 ∈ 𝑓−1(𝑉), 𝑦𝑟,𝑠,𝑡 ∉ 𝑓−1(𝑉), 𝑦𝑟,𝑠,𝑡 ∈ 𝑓−1(𝑊) and 𝑥𝑟,𝑠,𝑡 ∉ 𝑓−1(𝑊). Hence, 𝑆1 is ℵ𝛼-𝑇1. 

Theorem 3.13 If ℎ: 𝑆1 → 𝑆2  is a ℵ-almost contra 𝛼-continuous injective mapping from space 𝑆1  into a 

ℵ-Ultra Hausdroff space 𝑆2, thern𝑆1 is ℵ𝛼-𝑇2.  

Proof. Let 𝑥𝑟,𝑠,𝑡 and 𝑦𝑟,𝑠,𝑡  be any two distinct  ℵ  elements in 𝑆1 . As 𝑓  is an injective ℎ(𝑥𝑟,𝑠,𝑡) ≠

ℎ(𝑦𝑟,𝑠,𝑡) and 𝑆2  is ℵ -Ultra Hausdroff space, there exist disjoint ℵ -clopen sets 𝑈 and 𝑉  of 

𝑆2 containing ℎ(𝑥𝑟,𝑠,𝑡)  and ℎ(𝑦𝑟,𝑠,𝑡)  respectively. Subsequently, 𝑥𝑟,𝑠,𝑡 ∈ ℎ−1(𝑈) and 𝑦𝑟,𝑠,𝑡 ∈ ℎ−1(𝑉) , 

wherein ℎ−1(𝑈) and ℎ−1(𝑉) are disjoint ℵ𝛼-open sets in 𝑆1. Then,𝑆1 is ℵ𝛼-𝑇2. 

Proposition 3.14 If 𝑆2  is ℵ  strongly-normal and𝜇: 𝑆1 → 𝑆2  is a ℵ  almost contra-𝛼 -continuous closed 

injection, then𝑆1 is ℵ𝛼-normal.  

Proof. Suppose 𝐽 and 𝐾are disjoint ℵ-closed members of 𝑆1. Let 𝜇 is ℵ-closed and injective 𝑓(𝐽) 

and 𝑓(𝐾) are disjoint ℵ-closed sets in 𝑆2. As 𝑆2 is ℵ strongly-normal, there exist ℵ-open sets 𝑊 

and 𝑅 in 𝑌 so that 𝜇(𝐽) ⊂ 𝑊 and 𝜇(𝐾) ⊂ 𝑅 and ℵ𝑐𝑙(𝑊) ∩ ℵ𝑐𝑙(𝑅) = 0ℵ. Then, since ℵ𝑐𝑙(𝑊) and 

ℵ𝑐𝑙(𝑉)  are ℵ  regular closed, and 𝜇  is an ℵ almost contra 𝛼 -continuous, 

𝜇−1(ℵ𝑐𝑙(𝑊)) and 𝜇−1(ℵ𝑐𝑙(𝑅))  are ℵ𝛼 -open sets in 𝑆1 . This implies  𝐽 ⊆ 𝜇−1(ℵ𝑐𝑙(𝑊)) , 𝐾 ⊆

𝜇−1(ℵ𝑐𝑙(𝑅)) and 𝜇−1(ℵ𝑐𝑙(𝑊)) and 𝜇−1(ℵ𝑐𝑙(𝑅)) are disjoint,so 𝑆1 is ℵ𝛼-normal. 
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Theorem 3.15  If 𝑓: 𝑆1 → 𝑆2  is a ℵ -almost contra 𝛼 -continuous, ℵ -closed injection along with 𝑆2  is 

ℵ-ultra normal, then 𝑆1 is ℵ𝛼-normal.  

Proof. Let 𝑃 and 𝑄 be disjoint ℵ-closed sets of 𝑆1 . As 𝑓 is ℵ-closed as well as injective, 𝑓(𝑃) 

along with 𝑓(𝑄) are disjoint ℵ-closed sets in 𝑆2 . Since 𝑆2  is ℵ-ultra normal, there exist disjoint 

ℵ-clopen sets 𝑈 and 𝑉 in 𝑆2such that𝑓(𝑃) ⊂ 𝑈 and 𝑓(𝑄) ⊂ 𝑉. This implies 𝑃 ⊂ 𝑓−1(𝑈) with 𝑄 ⊂

𝑓−1(𝑉) . As 𝑓  is a ℵ -almost contra 𝛼 -continuous injection, 𝑓−1(𝑈)  and 𝑓−1(𝑉)  are disjoint 

ℵ𝛼-open sets in 𝑆1. Therefore, 𝑆1 is ℵ𝛼-normal.  

Definition 3.16 A function 𝑓: 𝑆1 → 𝑆2 is called ℵ-weakly almost contra 𝛼 continuous if  for each ℵ-point 

𝑥𝑟,𝑠,𝑡 in 𝑆1 and each ℵ regular closed set 𝑉 of 𝑆2containing𝑓(𝑥𝑟,𝑠,𝑡), there exists a ℵ𝛼-open set U in 𝑆1 ,  

such that ℵ𝑐𝑙(𝑓(𝑈)) ⊆ 𝑉.  

Definition 3.17 A function 𝑓: 𝑆1 → 𝑆2 is termed as ℵ(𝛼, 𝑆)-open if the image of each ℵ-open set is ℵ-semi 

open.  

Theorem 3.18  If 𝑓: 𝑆1 → 𝑆2  is a ℵ -weakly almost contra 𝛼 -continuous and ℵ(𝛼, 𝑆) -open then, f is 

ℵ-almost contra 𝛼 continuous.  

Proof. Let 𝑥𝑟,𝑠,𝑡 be a ℵ point in 𝑆1 and V be a ℵ-regular closed set  containing 𝑓(𝑥𝑟,𝑠,𝑡). Since f is 

ℵ-weakly almost contra 𝛼 continuous, there exist a ℵ𝛼-open set U in 𝑆1  containing 𝑥𝑟,𝑠,𝑡  so as 

ℵ𝑐𝑙(𝑓(𝑈)) ⊆ 𝑉 . Since f is a ℵ(𝛼, 𝑆) -open, 𝑓(𝑈)  is a ℵ -semi open set in 𝑆2  and 𝑓(𝑈) ⊆

ℵ𝑐𝑙(ℵ𝑖𝑛𝑡(𝑓(𝑈))) ⊆ 𝑉.This shows f is ℵ almost contra 𝛼 continuous. 

 

4. Conclusions 

    In this paper, we have introduced and studied the concepts like, Neutrosophic Almost 

α-contra-continuous function, ℵ𝛼-connected space, ℵ-weakly Hausdorff space, separation axioms 

and ℵ𝛼-normal spaces and investigated some properties. Some preservation theorems are also 

discussed. It will be necessary to carry out more theoretical research to establish a general 

framework for decision-making and to define patterns for complex network conceiving and practical 

application. 
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Abstract. There are various factors which lead to the criminal behaviour in humans. Prominent re-

searchers monitoring the situation of crime in Nigeria cite poverty, unemployment, family-breakdown, 

bribing & corruption, lack of co-operation from public and negative perception of police to be the major 

causes behind criminal behaviour. The factors like underemployment, inadequate equipment, NGOs 

are not taken into account by the researchers because these are considered to be indeterminate. To show 

how these indeterminate factors are actually related to crime in Nigeria we model the situation mathe-

matically using FCMs and NCMs. The work also shows how efficient is the technique of Neutrosophic 

Cognitive Maps (NCM) against Fuzzy Cognitive Maps (FCM) to deal with the uncertainties and inde-

terminacy in Situation Analysis. The obtained results are interpreted which demonstrate the im-

portance of indeterminate factors in analysing the situation of crime in Nigeria. This shows how inde-

terminate factors when taken into consideration could enhance the accuracy and efficiency of mathe-

matical models using the concept of Neutrosophic Cognitive Maps. 

 

Keywords: Fuzzy logic, Fuzzy Cognitive Maps, Neutrosophy, Neutrosophic Cognitive Maps, 

 Situation Analysis, Crime in Nigeria. 

 

1. Introduction 

The term situation from situation (Medieval Latin) is defined as placed in certain location. Sit-

uation also represents dispositions of a person, set of circumstances and surrounding environment. 

According to Pew (2000), a situation is “a set of environmental conditions and system states with 

which the participant is interacting that can be characterized uniquely by a set of information, 

knowledge, and response options”. For Roy (2001) “Situation Analysis is a process, the examination of 

a situation, its elements, and their relations, to provide and maintain a product, i.e. a state of Situation 

Awareness (SAW) for the decision maker”. Situation analysis plays a vital role in deciding our actions 

which are needed to progress further based on our current situation. It is important since it forecast 

results based on current decisions being taken by the agent. Situation analysis though appears to be 

simple in predicting the results based on current scenario, but on the other side there exist challenges 

that are being faced by the agent who is analyzing the situation.  

An agent who analyses an event for Situation Analysis apprehends data from various sources 

like reports, databases, various devices, surroundings and people etc. Based on the data collected to-

gether with expert’s opinion, conclusions have been drawn by the agent. These conclusions are of 

great importance in Situation Analysis. The problem arises where raw, conflictual and paradoxical da-

tum is being transformed into statements which are understood by man and machine. Hence measur-

ing the world i.e. quantitative measurement of factors that affect any situation and reasoning about 

the world i.e. qualitative inferences being drawn from information, co-exists in Situation Analysis. It 

poses a great challenge to combine these two important aspects in logical and mathematical frame-
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works. Hence a framework general enough is needed to take into account various uncertainties and 

indeterminacies arising during information processing, being done in Situation Analysis.  

Netrosophic theory is not limited to the field of situation analysis but it is spreading its wings 

in various other fields. The researchers around the globe have employed the neutrosophic techniques 

to solve a number of problems prevailing in current scenario i.e. in [23] [29] [30] it is being used to 

solve the problem in multi-criteria decision making. In this authors have proposed a hybrid technique 

to detect disease based on certain criteria. In [28] authors have used Bipolar neutrosophic sets in solv-

ing the multi-attribute decision making problem. The applications of neutrosophy is not confined as 

the authors in [24] [25] have used this to obtain solutions to a given mathematical problem. In [24] it is 

used to find an optimal solution to a given linear programming problem and in [25] it is used in solv-

ing the differential equation in neutrosophic environment. In [26] authors have used neutrosophic 

time series in forecasting the different phenomenon happening all around us. Authors in [27] have 

used neutrosophic sets in understanding and enhancing the supply chain sustainability in current 

scenario. The proposed approach claims to be efficient in solving decision making problems while 

meeting the supply chain sustainability requirement. Authors in [31] have used IoT and Fog compu-

ting to propose a health care system for the prediction and diagnosis of diseases. For this purpose they 

have introduced a neutrosophic multi-criteria decision making technique. The above work by promi-

nent researchers proves that the application of neutrosophic theory in various fields of research is the 

need of the hour. Some of the problems are discussed below: 

 

1.2 Obstacles in situation analysis 

A lot of hurdles exist in prediction and estimation of Situation Analysis described by Anne-Laure 

Jousselme and Patrick Maupin (2004). These hurdles comprises of ontological limits i.e. due nature of 

objects, epistemic limits that originate because of cognitive limitation of agents, anarchy when situa-

tion is not governed by law, ignorance, vagueness of concepts, Chance and Chaos as per exact estima-

tion is sought, data ignorance and of course uncertainty which is an unavoidable obstacle. Indetermi-

nacy arises from paradoxical conclusions to a given inference from impossible physical measurements. 

Uncertainty is regarded as discoloration of information, as misconception in measurement and does 

not rely on state of mind. G´erald Bronner a sociologist (1997) regards uncertainty as a mind’s state 

that depends on our potential to bypass it. He proposes two types of uncertainties: uncertainty in fi-

nality (or uncertainty in material) and uncertainty of sense. The first one is defined as “state of mind of 

a person, who wants to achieve a desire, and is in opposition with the open possibilities” (e.g. Will my 

rail ticket get confirm?) or it is our understanding of the world, whereas the other one is “state of a 

person where a part or whole of its system of representation is deteriorated or may be” or it refers to 

the representation of the world. Agents in situation analysis tackle with uncertainty of sense (i.e. data 

driven) and uncertainty in finality (i.e. goal driven) from the bottom-up and the top-down perspective 

respectively.  
The rest of this paper is organized as follows: Section 2 presents related work. Section 3 gives a 

brief description of proposed solution. In section 4 we illustrate proposed work. Section 5 interprets 

the results obtained. In section 6 we have compared previous solution to proposed work and section 7 

concludes the work. 

2 Related works  

      A lot of research work is carried out by the researchers where they needed modelling of real 

life situations and representing them mathematically for interpretation and drawing conclusions. We 

present the work done by well-known researchers in this field. Igor Bagány and Márta Takács [12] ex-

plored the correlations among various factors being involved in education system so that its function-

ality can be modelled. It is being done to effectively examine various education systems. Here authors 

have employed fuzzy cognitive map (FCM) technology, since it aids in determining qualitative illus-
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tration of the relationships and parameters. C. Enrique Peliez and John B. Bowles [13] seek to deter-

mine the behavior of a system in case of device failure. It requires the combination of various tasks by 

the expert to choose components for the purpose of analysis, find out failure modes, predict effects 

and put forward the corrective actions etc. Fuzzy Cognitive Maps and Fuzzy Set Theory provide 

foundation for automating the reasoning that is required to do a Failure Modes Effects Analysis on a 

system. The information processing model described by G. Jiang et al. [14] is cantered on the cognitive 

behavior of human brains. They have recommended two ways of modelling situation cognitively, 

which are representation and reasoning about Situation Analysis with ontology and using fuzzy cog-

nitive maps (FCM) to develop a Situation Analysis model. Mentioned work done by prominent au-

thors revolves around the factors which govern a particular situation, they accordingly have simulat-

ed behavior of the system. This shows that factors or sources play an important role in describing the 

situation and accordingly system is modelled and various inferences are drawn. If all the factors are 

not taken into consideration the results can be fatal. Almost all work by researchers in analyzing a sit-

uation employs Fuzzy Cognitive Maps (FCMs) introduced by B. Kosko [11]. These fuzzy structures re-

semble neural networks and mathematically model complex systems where situation analysis is need-

ed. We briefly describe the FCM in the next section.  

Though all the above mentioned approaches have significantly achieved wonderful results but 

these all lack somewhere in considering the indeterminate factors while modelling the situation. These 

indeterminate factors are of same importance as the determinate factors. When all these are taken into 

consideration it would aid in achieving the desirable goals. Later in the paper it is being proved math-

ematically. 
 

2.1 Fuzzy Cognitive Maps 

      Fuzzy Cognitive Map (FCM) is a directed graph introduced by Bart Kosko [11]. Nodes are repre-

sented as concepts and relationship among them as edges. It portrays relationship among concepts. 

FCMs with weights assigned to the edges are in the set {-1, 0, 1} are known as simple FCMs. Let us as-

sume that C1,…., Cn are the nodes of FCM. Using edges eij∈ {0, 1, -1}, a graph that is directed is drawn. 

The matrix E where E = (eij) is called the adjacency matrix (connection matrix) of the Fuzzy Cognitive 

Map. Fuzzy cognitive maps (FCMs) are employed in case of unsupervised data. FCMs perform on ex-

pert’s opinion. FCMs are used to model the world as the set of different classes together with the rela-

tionship among these classes. An edge that is directed from concept Ci to Cj ascertains the extent of Ci 

causing Cj. FCMs aid in modeling various problems varying from socio-economic to popular political 

developments etc. The edges eij are in the set [-1, 0, 1], eij = 0 shows that casualty is absent, eij> 0 shows 

that Cj increments as Ci gets incremented (or Cj decrements as Ci decrements), eij< 0 shows negative 

causality i.e. Cj gets decremented as Ci decrements (or Cj increments as Ci gets decremented). Now let 

us consider a real life situation to further understand the application of FCM in Situation Analysis. 

 

2.2 Application of FCM in Situation Analysis 

      To analyze the situation we have taken into consideration the factors nourishing crime in Nigeria, 

put forward by various researchers. Anthony Abayomi Adebayo [17] has examined the increasing 

wave of crime in Nigeria. Study reveals that factors such as inadequately equipped police, unem-

ployment, and breakdown of family values, poverty, Bribery and corruption have made it difficult to 

prevent and control crime in Nigeria. Ime Okon Utuk [19] has studied the effect of NGO on economic 

development which in turn has effect on crime. Recent facts from the ‘Nigeria Economic Report’ of 

World Bank [20] reveal that the challenge to country’s employment is more in line with underem-

ployment than unemployment. Taking into account all factors which nourish crime in Nigeria, a rep-

resentational model has been shown in following figure 1.  
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Figure 1: Factors effecting crime 

 

Let us consider the following nodes: 

CrimeI

NGOsH

ymentUnderemploG

corruptionBriberyF

breakdownFamilyE

ntUnemploymeD

PovertyC

policeofperceptionnegative

publicfromoperationcoofLackB

equipmentInadequateA



















__&

_

____

_&____

_

 

These factors govern a situation that is being analyzed by the agent. In Situation Analysis using FCMs, 

experts present their views about the existence of relationship or non-existence of relationship. Based 

on the expert’s opinion together with his own knowledge, agent draws the inferences. Now we model 

the problem of crime prevailing in Nigeria by using the technique of FCM in the following figure 2. 

 

 

Figure: 2 An instance of FCM model 
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Here casual increase (or decrease) of A increases (or decreases) I and is marked with “1” as allowed in 

FCMs. Similarly casual increase (or decrease) of H decreases (or increases) I and is marked with “-1”. 

As indicated in above figure neither anything about the effect of G on I, D on G, nor G on E is 

mentioned. The Fuzzy Adjacency matrix (E) that is the representation of above Situation is presented 

in Figure 3. 
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Figure: 3 Related connection matrix of the graph in Figure 1 

 

Suppose we have taken the state vector X1i.e. X1=  000000001 . Now we will see 

its effects on E. The following resultant vector is obtained after thresholding and updating. The 

symbol ’→’ symbolizes the updating and thresholding of the resultant vector. 

X1E =    100111111110111110   = X2 

X2E =    100111111110111116  =X2 

Thus crime has affect or is affected by lack of co-operation from public & negative perception of police, 

poverty, unemployment, family breakdown, bribing & corruption but underemployment, Inadequate 

equipment, NGOs are absent in this plot. This means crime flourishes with lack of co-operation from 

public & negative perception of police, poverty, unemployment, family breakdown and bribing & 

corruption. The state vector gives fixed point. 

 

2.3 Role of Indeterminacy in Situation Analysis 

Practically speaking, when Situation Analysis is being done in real life, the unpredictability and 

indeterminacy of things happening in life, affects every sphere almost as determined factors. It is a re-

striction of mathematical modeling that it assigns weightage to only known concepts; and is uncon-

cern about indeterminate relationships between concepts; thereby our views are sometimes biased 

and skewed. Keeping in mind all factors we present an indeterminate model. Authors Anne-Laure 

Jousselme and Patrick Maupin [3] have studied situation analysis, various obstacles, governing prin-

ciples and methods. Authors have described Kripke model [16] that assumes   to be a propositional 

atom. This model is represented by triple structure<S, Π, R>where  

 S is collection of worlds which is non-empty;  

 Π :   1,0 S  represents truth assigned to atoms of world; 

 R SS  is the accessibility relation. 

Here‘0’,‘1’ represents ‘True’ , ‘False’.  

Authors have introduced Neutrosophy in Kripke model [16] and presented a new model that has 

taken into account the indeterminacy. Earlier in Kripke model ‘ ’ can only have TRUE or FALSE as 

values. In Neutrosophic logic ‘ ’can be True (T%), False (F%) and Indeterminate (I%). Therefore ‘ ’ 

is having triplet of truth values referred to as neutrosophical values.  

Indeterminacy plays a crucial role in real life as stated by W. B. Vasantha Kandasamy [5][3], 

therefore when Situation Analysis is being done using FCMs, it does not reflect the true picture since 

fuzzy theory evaluates the existence or non-existence of associateship but it has failed to attribute the 
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indeterminate relations among concepts. Therefore in Situation Analysis, when data under scrutiny 

contains concepts which are indeterminate, we are not able to formulate mathematical expression 

using FCMs. 

3 Proposed Solution 

The proposed solution to indeterminacy uses the concept of Neutrosophic Cognitive Map (NCMs). It 

is a technique in Neutrosophy introduced by W. B. Vasantha Kandasamy [5]. The concept of 

Neutrosophic logic introduced by Florentine Smarandache [6 - 8], which is a merger of the fuzzy logic 

together with the inclusion of indeterminacy. When data under scrutiny contains concepts which are 

indeterminate, we are not able to formulate mathematical expression. Presentation of Neutrosophic 

logic by Florentine Smarandache [6][7][8] has put forward a panacea to this problem. It is the reason 

Neutrosophy has been introduced as an additional notion in Situation Analysis. Fuzzy theory 

evaluates the existence or non-existence of associateship but it has failed to attribute the indeterminate 

relations among concepts. Therefore one can say that the indeterminate situation together with fuzzy 

will result in Neutrosophic logic. Further we have employed Neutrosophic Cognitive Maps (NCMs) in 

place of Fuzzy Cognitive Maps (FCMs) to represent the real life situation in Situation Analysis. Earlier 

researches in Situation Analysis have not included the indeterminacy which is a part and parcel of real 

life. Hence when working on Situation Analysis, indeterminacy need to be considered. Contemplating 

the importance of indeterminacy we propose to use NCM in Situation Analysis. 
 

4 Proposed Work 

This research work assesses the power of Neutrosophic logic proposed by Florentin Smarandache 

to tackle hindrances encountered while performing Situation Analysis. An agent observing a scene for 

situation analysis gathers information from various sources. Here agent tries to reach at the level 

where he can make decisions about the situation under consideration. While dealing with 

unsupervised data there always comes a point where no relation can be determined among the 

concepts. Here person faces Neutrosophic questions like “can you find any relation among concepts” 

or “are you not in a position to determine any relationship among concepts” and so on. In this way we 

try to introduce an idea of indeterminacy to them. We have underlined one basic principle that guides 

the modernization in Situation Analysis by introducing the concept of uncertainty by A.L. Jousselme 

et al. [15]. 

4.1 Stating uncertainty 

a. Uncertainty as a mind state refers to an agent not having enough information to make a deci-

sion i.e. “Agent is not sure about the object”. 

b. Uncertainty as a tangible feature of information representing the loopholes of perception sys-

tem i.e. “The dimension of this object is uncertain”. 

4.2 Methodology used in proposed work 

       Now indeterminacy has been introduced in Fuzzy Cognitive Maps (FCMs) and the generalized 

structure so obtained is referred as Neutrosophic Cognitive Maps (NCMs) by W. B. Vasantha Kan-

dasamy [5]. NCM is a neutrosophic directed graph (a directed graph with dotted edge representing 

indeterminacy) with concepts represented as nodes of the directed graph and relationship or indeter-

minacy as edge of the graph. Let us suppose C1, C2,……,Cn are n nodes from Neutrosophic vector 

space V. The nodes of graph are represented by (x1,x2,…..,xn) where xi’s can be‘0’ or ‘1’ or ‘I’ (I shows 

indeterminacy) where xi= 1 indicates the ON state of the node whereas xi=0 indicates the OFF state and 

xi= I indicates the indeterminate state of node in that situation. Suppose Ci and Cj are two nodes in this 

model (NCM), a directed edge from Ci to Cj represents the relationship of Ci and Cj. The edges of di-

rected graph in NCM are weighted having value in set {-1, 0, 1, I}. When eij is the weight assigned to 

the directed edge from Ci to Cj then if the value of eij is ‘0’ it shows Ci does not affect Cj, it is ‘1’ repre-
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senting increase (or decrease) of Ci leads to increase (or decrease) of Cj, when it is ‘-1’ representing in-

crease (or decrease) of Ci leads decrease (or increase) of Cj and when the value is ‘I’ it shows effect of 

Ci on Cj is indeterminate. These NCMs are called simple NCMs. Let N (E) be a matrix defined as N (E) 

= (eij) then N (E) is called as Neutrosophic adjacency matrix. 

4.3 Reformulating Problems encountered in Situation Analysis using NCM 

       Now we present a graphical model of situation by considering the factors which nourish crime in 

Nigeria. This was earlier represented by FCM. The recent facts from the ‘Nigeria Economic Report’ of 

World Bank [20] reveal that employment challenge faced by the country is more in line with under-

employment than presumed unemployment. Furthermore Adeleke Adegbami [18] has concluded that 

effect of underemployment causes same level of anxiety as unemployment itself. The workers who are 

underemployed are not provided with the opportunities to utilize their educational qualification, ex-

perience and skills that they possess. They assume that their ability and capability are not up to the 

mark with the work they are assigned to. Therefore these workers experience lower job satisfaction 

and get frustrated. This can be referred to as disguised unemployment. Further Kimberly Amadeo a 

U.S. Economy expert [21] has studied underemployment and its effects on poverty and found that 

underemployment leads to higher levels of poverty. Hence underemployment has indeterminate rela-

tionship with crime which is being shown in NCM but not in FCM. Now we include indeterminacy in 

Figure 1.  Dotted lines represent indeterminate relation between the nodes. 

 

 

Figure: 4 Factors effecting crime and indeterminate relations 

 

Now we reformulate previous logic of FCM used in analyzing the situation into NCM in Figure 5. 

 

 

Figure: 5 An instance of NCM model 
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Neutrosophic Cognitive Maps not only represent the existence or non-existence of relationship among 

concepts but also represent indeterminate relations among the concepts as shown above. Further we 

represent Neutrosophic Augmented Matrix N (E) in Figure 6.
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Figure: 6 Related connection matrix to the graph in Figure 5.

 

Earlier we have studied effect of X1 on E. Now we will try to find what effect does 

X1=  000000001 has on N (E). After resultant vector is updated and thresholded 

we have the following.  

X1 N (E) =    100111111110111110  = X2 

X2 N (E) =    1011111111111116 II  = X3 

X3 N (E)=    1011111111111116 IIII  =X3 

The symbol ’→’ represents the thresholded and updated resultant vector. This shows that crime has 

affect or is affected by lack of co-operation from public & negative perception of police, poverty, 

unemployment, family breakdown, bribing & corruption and the factor underemployment is 

indeterminate to crime. However results obtained using FCM show as if there is no effect of 

underemployment on crime. Hence NCMs are better than FCMs in analyzing situation in Situation 

Analysis. 

 

5 Interpretations of the Results Obtained Using FCM and NCM 

Work done in Situation Analysis earlier was based on FCMs. FCMs do not consider indeter-

minate relations. Since in situation analysis there is uncertainty of sense i.e. data driven (bottom-up 

perspective) together with uncertainty in finality i.e. goal driven (top-down perspective) which comes 

as a challenge to the agent. It is a limitation in FCMs modeling that only assigns weightage to known 

concepts and unconcern about indeterminate relationships between concepts; thereby our views are 

sometimes biased and skewed. Further with NCMs we include indeterminacy in FCMs. Now experts 

face Neutrosophic questions like “Is there any relationship among concepts?” or “Are you not in a 

state to determine any relation among concepts?” and so on. In this way they get familiar with the 

idea of indeterminacy. The problem formulated by FCM is considered and we reformulate question-

naire in different format so that the experts are allowed to answer like “the relationship among certain 

concepts is indeterminable or not known”. On the grounds of expert’s opinion together with the no-

tion of indeterminacy a model is obtained which is referred to as Neutrosophic model. The result ob-

tained is mentioned in the table below: 

Table 1:  Results obtained from FCM and NCM 

Effect of X1 on E using FCM Effect of X1 on N(E) using NCM 

 100111111   10111111 I  
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Earlier when problem was formulated using FCM we got resultant vector as 

 100111111  where A was ON state which shows that crime in ON state affects or is 

affected by lack of co-operation from public & negative perception of police, poverty, unemployment, 

family breakdown, bribing and corruption, but underemployment, Inadequate equipment, Non-

Governmental Organization (NGOs) are absent in this plot. The sate Vector leads to a fixed point. But 

in real life underemployment has effect on crime. We have employed Neutrosophic Cognitive Maps 

(NCMs) in place of Fuzzy Cognitive Maps (FCMs) to represent the real life situation in Situation 

Analysis. When indeterminacy is included and Neutrosophic Adjacency Matrix is formulated, we 

again studied the effect of factors on crime. This time the resultant vector 

is  10111111 I . This clearly shows that crime is affected by lack of co-operation 

from public & negative perception of police, poverty, unemployment, family breakdown, bribing and 

corruption, but underemployment is indeterminate to crime. In FCMs, the values assigned to edges of 

graph are the results of knowledge and experience possessed by the expert. These values are functions 

of engineering judgments and common sense. Moreover in FCM structure the parameters are tunable. 

Now as FCMs are replaced by NCMs, we allow the experts to make statement of indeterminacy 

among concepts. If FCM is employed, these edges do not get any value except a ‘0’ but in case of 

NCM, certainly they do have a weight ‘I’; an element of indeterminacy. 

 

6 Proposed Solution versus Previous Solution 

The work done earlier in the field of Situation Analysis has not included the indeterminacy which 

could occur in modeling the situation. In parameter analysis of educational model only factors which 

have effect or no effect are considered. The experts are put forward with questions like “this factor 

affects another or not?” the expert responds with positive, negative or absence of impacts, but 

indeterminacy of impacts is not taken into consideration. In Failure Mode Effect Analysis nothing 

about the uncertainty of system design is mentioned. In contrast uncertainty in system design is of 

much importance since changes In Design of the system under consideration will have corresponding 

changes in the modes of failure of the system. In Information Processing Model Fuzzy Cognitive Maps 

(FCMs) are used for acquisition of causal knowledge and guide the reasoning process. Indeterminate 

relations are not considered. Taking indeterminacy into account; improves the evaluation and hence 

valid inferences are drawn. Now further modeling the situation using Neutrosophic Cognitive Maps 

(NCMs) allow us to model indeterminacy. In this model experts face Neutrosophic questions like “is 

there any relation among concepts” or “are you not in a state to determine any relation among 

concepts and so on”. These questions led to the introduction of indeterminacy to the experts. The 

problem formulated by FCM is considered and we reformulate questionnaire in different format so 

that the experts are allowed to answers like “the relationship among certain concepts is 

indeterminable or not known”. On the grounds of opinion of the expert together with the notion of 

indeterminacy, we have obtained the Neutrosophic model. 

 

7 Conclusion 

One of the great scientists Albert Einstein [22] quoted, "So far as the laws of mathematics refer to 

reality, they are not certain. And so far as they are certain, they do not refer to reality“. Earlier used 

FCM technique does not take into account indeterminacy. When unsupervised data is analyzed we are 

not in a position to say anything for certain. At some point of time we come across the indeterminacy 

of facts when analyzing the unsupervised data. The only powerful tool that aids in understanding and 

applying the concept of indeterminacy is the notion of Neutrosophy. This paper discusses NCM 

technique and a comparison with FCM is presented. The presented Neutrosophic Cognitive Map 

approach in analyzing the situation has led to the inclusion of indeterminacy in Situation Analysis and 

gives a better understanding of how indeterminacy plays a vital role in this field. By exploring various 

concepts and relationships among them, NCM is designed and corresponding Neutrosophic 
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Adjacency Matrix is formulated. Through examining the Adjacency matrix a valid inference can be 

drawn. Future work in this regard might be exploring the structure of NCM and corresponding 

adjacency matrix, applying learning algorithms to refine structure and carrying out simulation where 

Situation Analysis is needed to validate the output. 
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1. Introduction 

Smarandache’s neutrosophic system have wide range of real time applications for the fields of 

Computer Science ,Information Systems, Applied Mathematics , Artificial Intelligence, Mechanics, 

decision making. Medicine, Electrical & Electronic, and Management Science etc. [20-25]. Topology 

is a classical subject, as a generalization topological spaces many type of topological spaces 

introduced over the year. Smarandache [9] defined the Neutrosophic set on three component 

Neutrosophic sets (T Truth, F -Falsehood, I- Indeterminacy). Neutrosophic topological spaces (N-T-

S) introduced by Salama [17] et al., R.Dhavaseelan [6], Saied Jafari are introduced Neutrosophic 

generalized closed sets. Neutrosophic b closed sets are introduced C. Maheswari[14] et al.Aim of this 

paper is we introduce and study about Neutrosophic generalized b closed sets and Neutrosophic 

generalized b continuity in Neutrosophic topological spaces and its properties and Characterization 

are discussed with details. 

 

2. Preliminaries  

In this section, we recall needed basic definition and operation of Neutrosophic sets and its 

fundamental Results 

Definition 2.1 [9] Let X be a non-empty fixed set. A Neutrosophic set P is an object having the form 

 P = {< 𝑥, μP(x), σP(x), γP(x) >: 𝑥 ∈ 𝑋}, 

μP(x)-represents the degree of membership function 

σP(x)-represents degree indeterminacy and then 

γP(x)-represents the degree of non-membership function 
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Definition 2.2 [9]. Neutrosophic set P = {<  𝑥, μP(x), σP(x), γP(x) >: 𝑥 ∈ 𝑋}, on X and  ∀x ∈ X then 

complement of P is PC  = {<  𝑥, γP(x), 1 − σP(x), μP(x) >: 𝑥 ∈ 𝑋} 

Definition 2.3 [9]. Let P and Q are two Neutrosophic sets, ∀x ∈ X 

P = {<  𝑥, μP(x), σP(x), γP(x) >: 𝑥 ∈ 𝑋} 

Q = {<  𝑥, μQ(x), σQ(x), γQ(x) >: 𝑥 ∈ 𝑋} 

Then P ⊆ Q ⇔ μP(x) ≤ μQ(x), σP(x) ≤ σQ(x)& γP(x) ≥ γQ(x)} 

Definition 2.4 [9]. Let X be a non-empty set, and Let P and Q be two Neutrosophic sets are 

P = {<  𝑥, μP(x), σP(x), γP(x) >: 𝑥 ∈ 𝑋}, Q = {<  𝑥, μQ(x), σQ(x), γQ(x) >: 𝑥 ∈ 𝑋}Then 

1. P ∩ Q = {<  𝑥, μP(x) ∩ μQ(x), σP(x) ∩ σQ(x), γP(x) ∪ γQ(x) >: 𝑥 ∈ 𝑋} 

2. P ∪ Q = {<  𝑥, μP(x) ∪ μQ(x), σP(x) ∪ σQ(x), γP(x) ∩ γQ(x) >: 𝑥 ∈ 𝑋} 

Definition 2.5 [17]. Let X be non-empty set and τN be the collection of Neutrosophic subsets of X 

satisfying the following properties: 

1.0N, 1N ∈ τN 

2. T1 ∩ T2 ∈ τN for any T1, T2 ∈ τN 

3. ∪ Ti ∈ τN for every {Ti: i ∈ j} ⊆ τN 

Then the space  (X, τN) is called a Neutrosophic topological space(N-T-S). 

The element of τN are called Neu-OS (Neutrosophic open set) 

and its complement is Neu-CS(Neutrosophic closed set) 

Example 2.6.  Let X ={x} and ∀x ∈ X 

A1 = 〈x,
6

10
,

6

10
,

5

10
〉,  A2 = 〈x,

5

10
,

7

10
,

9

10
〉 

A3 = 〈x,
6

10
,

7

10
,

5

10
〉  ,A4 = 〈x,

5

10
,

6

10
,

9

10
〉 

Then the collection τN = {0N, A1, A2, A3, A4,1N} is called a N-T-S on X. 

Definition 2.7. Let (X, τN)be a N-T-S and P = {<  𝑥, μP(x), σP(x), γP(x) >: 𝑥 ∈ 𝑋} be a Neutrosophic 

set in X. Then P is said to be 

1. Neutrosophic b closed set [14] (Neu-bCS in short) if Neu-cl(Neu-int(P))∩Neu-int(Neu-cl(P))⊆P, 

2. Neutrosophic α-closed set [2] (Neu- αCS in short) if Neu-cl(Neu-int(Neu-cl(P)))⊆P, 

3. Neutrosophic pre-closed set [20] (Neu-Pre-CS in short) if Neu-cl(Neu-int(P))⊆P, 

4. Neutrosophic regular closed set [9] (Neu-RCS in short) if Neu-cl(Neu-int(P)) = P, 

5. Neutrosophic semi closed set [11] (Neu-SCS in short) if Neu-int(Neu-cl(P))⊆P, 

6. Neutrosophic generalized closed set [6] (Neu-GCS in short) if Neu-cl(P⊆H whenever P⊆H and H  

   is an Neu-OS, 

7. Neutrosophic generalized pre closed set [13] (Neu-GPCS in short) if Neu-Pcl(P) ⊆ H whenever P  

  ⊆ H and H is an Neu-OS, 

8. Neutrosophic α generalized closed set [12] (Neu- αGCS in short) if Neu α-cl(P)⊆H whenever P  

   ⊆ H and H is an Neu-OS, 

9. Neutrosophic generalized semi closed set [19](Neu-GSCS in short) if Neu-Scl(P)⊆H whenever  

   P⊆H and H is an Neu-OS. 

Definition 2.8 [9] (X, τN)be a N-T-S and P = {< 𝑥, μP(x), σP(x), γP(x) >: 𝑥 ∈ 𝑋} be a Neutrosophic set 

in X.Then  
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Neutrosophic closure of P is Neu-Cl(P)=∩{H:H is a Neu-CS in X and P⊆H} 

Neutrosophic interior of P is Neu-Int(P)=∪{M:M is a Neu-OS in X and M⊆P}. 

Definition 2.9 [14]Let (X, τN) be a N-T-S and P = {< 𝑥, μP(x), σP(x), γP(x) >: 𝑥 ∈ 𝑋}  be a 

Neutrosophic set in X. Then the Neutrosophic b closure of P ( Neu-bcl(P)in short) and  Neutrosophic 

b interior of P (Neu-bint(P) in short) are defined as Neu-bint(P)= ∪{ G/G is a Neu-bOS in X and G⊆P},  

Neu-bcl(P)= ∩{ K/K is a Neu-bCS in X and P⊆K }. 

Proposition 2.10 Let (X, τN)  be any N-T-S. Let P and Q be any two Neutrosophic sets in 

(X, τN).Then the Neutrosophic generalized b closure operator satisfies the following properties. 

1. Neu-bcl(0N)=0N and Neu-bcl(1N) = 1N, 

2. P⊆Neu-bcl(P), 

3. Neu-bint(P)⊆P, 

4. If P is a Neu-bCS then P=Neu-bcl(Neu-bcl(P)), 

5. P⊆Q⇒Neu-bcl(P) ⊆Neu-bcl(Q), 

6. P⊆Q⇒Neu-bint(P)⊆Neu-bint(Q). 

 

3. Neutrosophic Generalized b Closed Sets 

Definition 3.1. A Neutrosophic set P in a N-T-S (X, τN) is said to be a Neutrosophic generalized b 

closed set(Neu-GbCS in short) if Neu-bcl(P) ⊆H whenever P⊆H and H is a Neu-OS in (X, τN).The 

family of all Neu-GbCSs of a N-T-S (X, τN) is denoted by Neu-gbC(X). 

Example 3.2. Let X = {p1, p2} τN = {0N, E1, 1N} is be a N.T.on X where 

E1 = 〈x, (
2

10
,

5

10
,

8

10
) , (

3

10
,

5

10
,

7

10
)〉. Then the Neutrosophic set P = 〈x, (

7

10
,

5

10
,

3

10
) , (

6

10
,

5

10
,

4

10
)〉is a Neu-

GbCS in X. 

Example 3.3. Let X = {p1, p2}  τN = {0N, E1, 1N}  isbe a N.T.on X. where E1 =

〈x, (
6

10
,

5

10
,

3

10
) , (

8

10
,

5

10
,

2

10
)〉 . Then the Neutrosophic set P = 〈x, (

6

10
,

5

10
,

4

10
) , (

3

10
,

5

10
,

7

10
)〉 is not a Neu-

GbCS in X. 

Theorem 3.4. Every Neu-CS is a Neu-GbCS but not conversely. 

Proof. Let P⊆H and H is a Neu-OS in (X, τN). Since P is a Neu-CS and Neu-bcl(P) ⊆Neu-cl(P), Neu-

bcl(P) ⊆Neu-cl(P)=P⊆H. Therefore P is a Neu-GbCS in X. 

Example 3.5. Let X = {p1, p2}  τN = {0N, E1, 1N}  is be a N.T. on X .where E1 =

〈x, (
3

10
,

5

10
,

6

10
) , (

2

10
,

5

10
,

7

10
)〉. Then the Neutrosophic set P = 〈x, (

5

10
,

5

10
,

4

10
) , (

6

10
,

5

10
,

3

10
)〉 is a Neu-GbCS 

but not a Neu-CS in X, since Neu-cl(P)=E1≠P 

Theorem 3.6. Every Neu-αCS is a Neu-GbCS but not conversely. 

Proof. Let P⊆H and H is a Neu-OS in (X, τN). Since P is a Neu-αCS, Neu-αcl(P)= P. Therefore Neu-

bcl(P) ⊆Neu-αcl(P)=P⊆H. Hence P is a Neu-GbCS in X. 

Example 3.7. Let X = {p1, p2}  τN = {0N, E1, 1N}  is be a N.T. on X .where E1 =

〈x, (
3

10
,

5

10
,

6

10
) , (

2

10
,

5

10
,

8

10
)〉. Then the Neutrosophic set P = 〈x, (

5

10
,

5

10
,

3

10
) , (

6

10
,

5

10
,

3

10
)〉 is a Neu-GbCS 

but not a Neu-αCS in X, since Neu-cl(Neu-int(Neu-cl(P)))= E1
C ⊈ P. 
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Theorem 3.8. Every Neu-Pre-CS is a Neu-GbCS but not conversely. 

Proof. Let P ⊆ H and H is a Neu-OS in (X, τN) .Since P is a Neu-Pre-CS,Neu-cl(Neu-int(P))  ⊆ P. 

Therefore Neucl(Neu-int(P))∩Neu-int(Neu-cl(P)  ⊆Neu-cl(P)∩Neu-cl(Neu-int(P)  ⊆ P. This implies 

Neu-bcl(P) 

 ⊆H. Hence P is a Neu-GbCS in X. 

Example 3.9.Let X = {p1, p2}  τN = {0N, E1, 1N}  is be a N.T.on X.where E1 =

〈x, (
9

10
,

5

10
,

8

10
) , (

3

10
,

5

10
,

7

10
)〉. Then the Neutrosophic set P = 〈x, (

4

10
,

5

10
,

6

10
) , (

5

10
,

5

10
,

5

10
)〉 is a Neu-GbCS 

but not a Neu-pre closed set in X, since Neu-cl(Neu-int(P))= E1
C ⊈ P. 

Theorem 3.10. Every Neu-bCS is a Neu-GbCS but not conversely. 

Proof. Let P⊆H and H is a Neu-OS in (X, τN). Since P is a Neu-bCS,Neu-bcl(P)=P. Therefore Neu-

bcl(P)=P ⊆ H. Hence P is a Neu-GbCS in X. 

Example 3.11 Let X = {p1, p2}  τN = {0N, E1, 1N}  is be a N.T.on X .where E1 =

〈x, (
6

10
,

5

10
,

4

10
) , (

8

10
,

5

10
,

2

10
)〉.Then the Neutrosophic set P = 〈x, (

8

10
,

5

10
,

2

10
) , (

9

10
,

5

10
,

1

10
)〉 is a Neu-GbCS 

but not a Neu-bCS in X, since Neu-cl (Neu-int(P))∩ Neu-int(Neu-cl(P))=1N⊈ P. 

Theorem 3.12. Every Neu-RCS is a Neu-GbCS but not conversely. 

Proof. Let P⊆H and H is a Neu-OS in (X, τN). Since P is a Neu-RCS , Neu-cl(Neu-int(P))=P. This 

implies Neu-cl(P)=Neu-cl(Neu-int(P)). Therefore Neu-cl(P)=P. Hence P is a Neu-CS in X. By theorem 

3.4, P is a Neu-GbCS in X. 

Example 3.13.Let X = {p1, p2} τN = {0N, E1, 1N} is be a N.T.on X  

where E1 = 〈x, (
2

10
,

5

10
,

8

10
) , (

4

10
,

5

10
,

6

10
)〉.Then the Neutrosophic set P = 〈x, (

7

10
,

5

10
,

3

10
) , (

5

10
,

5

10
,

5

10
)〉 is a 

Neu-GbCS but not a Neu-RCS in X, since Neu-cl(Neu-int(P))=E1C≠ P. 

Theorem 3.14.  Every Neu-GCS is a Neu-GbCS but not conversely. 

Proof. Let P⊆H and H is a Neu-OS in (X, τN). Since P is a Neu-GCS, Neu-cl(P) ⊆H. Therefore Neu-

bcl(P) ⊆Neu-cl(P), Neu-bcl(P)⊆H. Hence P is a Neu-GbCS in X. 

Example 3.15 Let X = {p1, p2}  τN = {0N, E1, 1N}  is be a N.T.on X. where E1 =

〈x, (
2

10
,

5

10
,

8

10
) , (

4

10
,

5

10
,

6

10
)〉.Then the Neutrosophic set P = 〈x, (

1

10
,

5

10
,

8

10
) , (

3

10
,

5

10
,

7

10
)〉 is a Neu-GbCS 

but not a Neu-GCS in X, since Neu-cl(P)= E1
C ⊈ E1. 

Theorem 3.16. Every Neu-αGCS is a Neu-GbCS but not conversely. 

Proof. Let P⊆H and H is a Neu-OS in (X, τN).Since P is a Neu-αGCS, Neu-αcl(P)⊆H.Therefore 

Neubcl(P) ⊆ Neu-αcl(P), Neu-bcl(P)⊆H. Hence P is a Neu-GbCS in X. 

Example 3.17.Let X = {p1, p2}  τN = {0N, E1, 1N}  is be a N.T.on X. where E1 =

〈x, (
5

10
,

5

10
,

4

10
) , (

5

10
,

5

10
,

5

10
)〉.Then the Neutrosophic set P = 〈x, (

5

10
,

5

10
,

5

10
) , (

3

10
,

5

10
,

7

10
)〉 is a Neu-GbCS 

but not a Neu-αGCS in X, since Neu-cl(Neu-int(Neu-cl(A)))= 1N ⊈ E1 

Theorem 3.18. Every Neu-GPCS is a Neu-GbCS but not conversely. 

Proof. Let P⊆H and H is a Neu-OS in (X, τN). Since P is a Neu-GPCS, Neu-Pcl(P)⊆H. Therefore 

Neubcl(P) ⊆ Neu-Pcl(P), Neu-bcl(P) ⊆ H. Hence P is a Neu-GbCS in X. 
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Example 3.19. Let X = {p1, p2}  τN = {0N, E1, E2, 1N}  is be a N.T.on X.where E1 =

〈x, (
2

10
,

5

10
,

8

10
) , (

3

10
,

5

10
,

7

10
)〉 ,  E2 = 〈x, (

4

10
,

5

10
,

6

10
) , (

5

10
,

5

10
,

5

10
)〉 Then the Neutrosophic set P =

〈x, (
4

10
,

5

10
,

6

10
) , (

5

10
,

5

10
,

5

10
)〉 is a Neu-GbCS but not a Neu-Gp closed set in X, since Neu-Pcl(P)= E2

C ⊈

E2. 

Theorem 3.20. Every Neu-SCS is a Neu-GbCS but not conversely. 

Proof. Let P⊆H and H is a Neu-OS in (X, τN).Since P is a Neu-SCS, Neu-bcl(P) ⊆ Neu-Scl(P) ⊆ H. 

Therefore P is a Neu-GbCS in X. 

Example 3.21. Let X = {p1, p2} τN = {0N, E1, 1N} is be a N.T.on X  

where E1 = 〈x, (
9

10
,

5

10
,

1

10
) , (

7

10
,

5

10
,

2

10
)〉.Then the Neutrosophic set P = 〈x, (

7

10
,

5

10
,

3

10
) , (

6

10
,

5

10
,

4

10
)〉 is a 

Neu-GbCS but not a Neu-SCS in X, since Neu-int(Neu-cl(P))=1N ⊈ P 

Theorem 3.22. Every Neu-GSCS is a Neu-GbCS but not conversely. 

Proof. Obivious 

Example 3.23.Let X = {p1, p2} τN = {0N, E1, 1N} is be a N.T.on X  

where E1 = 〈x, (
8

10
,

5

10
,

6

10
) , (

0

10
,

5

10
,

1

10
)〉.Then the Neutrosophic set P = 〈x, (

6

10
,

5

10
,

5

10
) , (

2

10
,

5

10
,

3

10
)〉 is a 

Neu-GbCS but not a Neu-GSCS in X, since Neu-int(Neu-cl(P))=1N ⊈ P The following implications 

are true: 

 

Theorem 3.24. The union of any two Neu-GbCSs need not be a Neu-GbCS in general as seen from 

the following example. 

Example 3.25. Let X = {p1, p2}  τN = {0N, E1, 1N}  is be a N.T.on X where E1 =

〈x, (
6

10
,

5

10
,

4

10
) , (

8

10
,

5

10
,

2

10
)〉.Then the Neutrosophic set P = 〈x, (

1

10
,

5

10
,

9

10
) , (

8

10
,

5

10
,

2

10
)〉, 

Q = 〈x, (
6

10
,

5

10
,

4

10
) , (

7

10
,

5

10
,

3

10
)〉 is a are Neu-GbCSs but P∩Q is not a Neu-GbCS in X, since Neu-

bcl(P∩Q) =1N ⊈ E1 
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Theorem 3.26. `If P is a Neu-GbCS in (X, τN).such that P⊆Q⊆Neu-bcl(P) then Q is a Neu-GbCS in 

(X, τN). 

Proof. Let Q be a Neutrosophic set in a N-T-S (X, τN).such that Q⊆H and H is a Neu-OS in X. This 

implies P ⊆ H. Since P is a Neu-GbCS, Neu-bcl(P)⊆H. By hypothesis, we have Neu-bcl(Q)⊆Neu-

bcl(Neu-bcl(P))= Neu-bcl(P)⊆H. Hence Q is a Neu-GbCS in X. 

Theorem 3.27. If P is Neutrosophic b open and Neutrosophic generalized b closed in a N-T-S 

(X, τN).then P is Neutrosophic b closed in (X, τN). 

Proof. Since P is Neutrosophic b open and Neutrosophic generalized b closed in (X, τN)., Neu-

bcl(P)⊆P. but P ⊆ Neu-bcl(P). Thus Neu-bcl(P)=P and hence P is Neutrosophic b closed in (X, τN). 

 

4. Neutrosophic generalized b open sets 

In this section, we introduce Neutrosophic generalized b open sets in Neutrosophic topological 

space and study some of their properties. 

Definition 4.1. A Neutrosophic set P is said to be a Neutrosophic generalized b open set (Neu-GbOS 

in short)in (X, τN).if the complement PC is a Neu-GbCS in X. The family of all Neu-GbOSs of a N-T-S 

(X, τN) is denoted by Neu-GbO (X). 

Example 4.2.Let X = {p1, p2}  τN = {0N, E1, 1N}  is be a N.T.on X ,where E1 =

〈x, (
3

10
,

5

10
,

7

10
) , (

4

10
,

5

10
,

6

10
)〉.Then the Neutrosophic set P = 〈x, (

4

10
,

5

10
,

6

10
) , (

5

10
,

5

10
,

5

10
)〉 is a Neu-GbOS in 

X. 

Theorem 4.3. For any N-T-S (X, τN)., we have the following: 

1. Every Neu-OS is a Neu-GbOS. 

2. Every Neu-bOS is a Neu-GbOS. 

3. Every Neu-αOS is a Neu-GbOS. 

4. Every Neu-GOS is a Neu-GbOS. 

5. Every Neu-GPOS is a Neu-GbOS. 

Proof. Straight forward. 

The converse part of the above results need not be correct in common as seen from using following 

examples. 

Example 4.4. Let X = {p1, p2}  τN = {0N, E1, 1N}  is be a N.T.on X where E1 =

〈x, (
4

10
,

5

10
,

5

10
) , (

3

10
,

5

10
,

4

10
)〉.Then the Neutrosophic set P = 〈x, (

4

10
,

6

10
,

6

10
) , (

4

10
,

5

10
,

5

10
)〉 is a Neu-GbOS 

but not a Neu-OS in X. 

Example 4.5. Let X = {p1, p2}  τN = {0N, E1, 1N}  is be a N.T.on X where E1 =

〈x, (
6

10
,

5

10
,

4

10
) , (

8

10
,

5

10
,

2

10
)〉.Then the Neutrosophic set P = 〈x, (

2

10
,

5

10
,

8

10
) , (

1

10
,

5

10
,

9

10
)〉 is a Neu-GbOS 

but not a Neu-bOS in X. 

Example 4.6. Let X = {p1, p2} τN = {0N, E1, 1N} is be a N.T.on X  

where E1 = 〈x, (
3

10
,

5

10
,

6

10
) , (

2

10
,

5

10
,

8

10
)〉.Then the Neutrosophic set P = 〈x, (

3

10
,

5

10
,

5

10
) , (

3

10
,

5

10
,

6

10
)〉 is a 

Neu-GbOS but not a Neu-bOS in X. 
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Example 4.7. Let X = {p1, p2} τN = {0N, E1, 1N} is be a N.T.on X  

where E1 = 〈x, (
2

10
,

5

10
,

7

10
) , (

4

10
,

5

10
,

6

10
)〉.Then the Neutrosophic set P = 〈x, (

8

10
,

5

10
,

0

10
) , (

7

10
,

5

10
,

3

10
)〉 is a 

Neu-GbOS but not a Neu-GOS in X. 

Example 4.8.Let X = {p1, p2} τN = {0N, E1, E2, 1N} is be a N.T.on X where  

E1 = 〈x, (
2

10
,

5

10
,

8

10
) , (

3

10
,

5

10
,

7

10
)〉 , E2 = 〈x, (

4

10
,

5

10
,

6

10
) , (

5

10
,

5

10
,

5

10
)〉 .Then the Neutrosophic set P =

〈x, (
6

10
,

5

10
,

4

10
) , (

5

10
,

5

10
,

5

10
)〉 is a Neu-GbOS but not a Neu-GPOS in X. 

The intersection of any two Neu-GbOSs need not be a Neu-GbOS in general 

Example 4.9. Let X = {p1, p2} τN = {0N, E1, 1N} is be a N.T.on X  

where E1 = 〈x, (
6

10
,

5

10
,

3

10
) , (

8

10
,

5

10
,

2

10
)〉, .Then the Neutrosophic sets P = 〈x, (

6

10
,

5

10
,

3

10
) , (

9

10
,

5

10
,

1

10
)〉 

and  Q = 〈x, (
7

10
,

5

10
,

2

10
) , (

8

10
,

5

10
,

2

10
)〉are Neu-GbOSs but P∩Q is not a Neu-GbOS in X. 

Theorem 4.10. A Neutrosophic set P of a N-T-S (X, τN)., is a Neu-GbOS if and only if H⊆Neu-bint(P) 

whenever H is a Neu-CS and H⊆P. 

Proof. Necessity: Suppose P is a Neu-GbOS in X. Let G be a Neu-CS and H⊆P. Then FC is a Neu-OS 

in X such that PC⊆HC. Since PC is a Neu-GbCS, Neu-bcl(PC) ⊆HC.Hence (Neu-bint(P))C ⊆HC . This 

implies H⊆Neu-bint(P). 

Sufficiency: Let P be any Neutrosophic set of X and let H⊆Neu-bint(P) whenever H is a Neu-CS and 

H⊆P.Then P⊆HC and HC is a Neu-OS. By hypothesis, (Neu-bint(P))C⊆HC . Hence Neu-bcl(PC) ⊆HC . 

Hence P is a Neu-GbOS in X. 

Theorem 4.11. If P is a Neu-GbOS in (X, τN)., such that Neu-bint(P) ⊆Q⊆P then Q is a Neu-GbOS in 

(X, τN) 

Proof. By hypothesis, we have Neu-bint(P)⊆Q⊆P. This implies PC⊆QC⊆(Neu-bint(P)) C. That is, 

PC⊆QC⊆Neubcl(PC). Since PC is a Neu-GbCS, by theorem 3.26, QC is a Neu-GbCS. Hence Q is a Neu-

GbOS in X. 

 

5. Applications of Neutrosophic Generalized b Closed Sets 

In this section, we introduce Neutrosophic bU1 2⁄  spaces, Neutrosophic gbU1 2⁄  spaces and 

Neutrosophic gbUb spaces in Neutrosophic topological space and study some of their properties. 

Definition 5.1. A N-T-S (X, τN).,  is called a Neutrosophic bU1 2⁄  space (Neu- bU1 2⁄ space in short) if 

every Neu-bCS in X is a Neu-CS in X. 

Definition 5.2. A N-T-S (X, τN)., is called a Neutrosophic gbU1 2⁄  space (Neu-gbU1 2⁄  space in short) 

if every Neu-GbCS in X is a Neu-CS in X. 

Definition 5.3. A N-T-S (X, τN)., is called a Neutrosophic gbUb space (Neu- gbUb space in short) if 

every Neu-GbCS in X is a Neu-bCS in X. 

Theorem 5.4. Every Neu-gbU1 2⁄  space is a Neu- gbUb  space. 

Proof. Let (X, τN)be a Neu-gbU1 2⁄  space and let P be a Neu-GbCS in X. By hypothesis, P is a Neu-CS 

in X.Since every Neu-CS is a Neu-bCS, P is a Neu-bCS in X. Hence (X, τN)., is a Neu- gbUb space. 
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The converse of the above theorem need not be true in general as seen from the following example. 

Example 5.5. Let X = {p1, p2}  τN = {0N, E1, 1N}  is be a N.T.on X where E1 =

〈x, (
9

10
,

5

10
,

9

10
) , (

1

10
,

5

10
,

1

10
)〉,.Then the Neutrosophic set  

P = 〈x, (
2

10
,

5

10
,

3

10
) , (

8

10
,

5

10
,

7

10
)〉  is a Neu- gbUbspace but not a Neu-gbU1 2⁄ space, 

Theorem 5.6. Let (X, τN) .,  be a N-T-S and (X, τN) .,a Neu- gbU1 2⁄  space. Then the following 

statements hold. 

1. Any union of Neu-GbCS is a Neu-GbCS. 

2. Any intersection of Neu-GbOS is a Neu-GbOS. 

Proof. 1. Let {𝐴𝑖}𝑖∈𝑗  be a collection of Neu-GbCS in a Neu-gbU1 2⁄ space (X, τN)., Therefore every Neu-

GbCS is a Neu-CS. but the union of Neu-CS is a Neu-CS. Hence the union of Neu-GbCS is a Neu-

GbCS in X. 

2. It can be proved by taking complement in (1). 

Theorem 5.7. A N-T-S (X, τN)., is a Neu- gbUb space if and only if Neu-Gb(X)=Neu-bO(X). 

Proof. Necessity: Let P be a Neu-GbOS in X. Then PC is a Neu-GbCS in X. By hypothesis, PC is a Neu-

bCS in X. Therefore P is a Neu-bOS in X. Hence Neu-GbO (X)=Neu-bO(X).  

Sufficiency: Let P be a Neu-GbCS in X. Then PC is a Neu-GbOS in X. By hypothesis, PC is a Neu-bOS 

in X. Therefore P is a Neu-bCS in X. Hence(X, τN)., is a Neu- gbUb space. 

Theorem 5.8. A N-T-S (X, τN) is a Neu-gbU1 2⁄  space if and only if Neu-GbO(X) = Neu-O(X). 

Proof. Necessity: Let P be a Neu-GbOS in X. Then PC is a Neu-GbCS in X. By hypothesis, PC is a Neu-

CS in X. Therefore P is a Neu-OS in X. Hence Neu-GbO(X)=Neu-O(X). 

Sufficiency: Let P be a Neu-GbCS in X.Then PC is a Neu-GbOS in X. By hypothesis, PC is a Neu-OS in 

X. Therefore P is a Neu-CS in X. Hence (X, τN)  is a Neu-gbU1 2⁄ space. 

 

6. Neutrosophic generalized b continuity mapping 

In this section we have introduced Neutrosophic generalized b continuity mapping and studied 

some of its properties. 

Definition 6.1. A mapping f: (X, τN) → (Y, σN)is called a Neutrosophic generalized b continuity (Neu-

Gbcontinuity in short) if f-1(Q) is a Neu-Gb CS in (X, τN)for every Neu-CS Q of (Y, σN). 

Example 6.2. Let X = {p1, p2}, Y = {q1 , q2}, E1 = 〈x, (
2

10
,

5

10
,

4

10
) , (

3

10
,

5

10
,

7

10
)〉  E2 =

〈x, (
3

10
,

5

10
,

7

10
) , (

4

10
,

5

10
,

6

10
)〉 , τN = {0N, E1, 1N}  and σN = {0N, E2, 1N}   are N-T-S on X and Y 

respectively. Define a mapping f: (X, τN) → (Y, σN)  by f(p1)=q1 and f(p2)=q2 .Then f is a Neu-Gb 

continuity mapping. 

Theorem 6.3. Every Neutrosophic continuity mapping is a Neu-Gb continuity mapping but not 

conversely. 

Proof. Let f: (X, τN) → (Y, σN)  be a Neutrosophic continuity mapping. Let P be a Neu-CS in Y. Since 

f is Neutrosophic continuity mapping, f-1(P) is a Neu-CS in X. Since every Neu-CS is a Neu-GbCS, f-

1(P) is a Neu-Gb CS in X. Hence f is a Neu-Gb continuity mapping 
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Example 6.4. Let X = {p1, p2}, Y = {q1 , q2}, E1 = 〈x, (
3

10
,

5

10
,

6

10
) , (

2

10
,

5

10
,

7

10
)〉  E2 =

〈x, (
4

10
,

5

10
,

5

10
) , (

3

10
,

5

10
,

6

10
)〉 , τN = {0N, E1, 1N}  and σN = {0N, E2, 1N}   are N-T-S on X and Y 

respectively. Define a mapping f: (X, τN) → (Y, σN) by f(p1)=q1 and f(p2)=q2 .The Neutrosophic set P =

〈x, (
5

10
,

5

10
,

4

10
) , (

6

10
,

5

10
,

3

10
)〉   is Neu-CS in Y. Then f-1(P) is Neu-GbCS in X but not Neu-CS in X. 

Therefore, f is a Neu-Gb continuity mapping but not a Neutrosophic continuity mapping. 

Theorem 6.5. Every Neu-α continuity mapping is a Neu-Gb continuity mapping but not conversely. 

Proof. Let f: (X, τN) → (Y, σN) be a Neu- α continuity mapping. Let P be a Neu-CS in Y. Then f-1(P) is a 

Neu-αCS in X. Since every Neu-αCS is a Neu-GbCS, f-1(P) is a Neu-GbCS in X. Hence, f is a Neu-Gb 

continuity mapping. 

Example 6.6. Let X = {p1, p2}, Y = {q1 , q2}, E1 = 〈x, (
3

10
,

5

10
,

6

10
) , (

2

10
,

5

10
,

8

10
)〉  E2 =

〈x, (
3

10
,

5

10
,

5

10
) , (

3

10
,

5

10
,

6

10
)〉 , τN = {0N, E1, 1N}  and σN = {0N, E2, 1N}   are N-T-S on X and Y 

respectively. Define a mapping 

 f: (X, τN) → (Y, σN) by f(p1)=q1 and f(p2)=q2 .The Neutrosophic set P = 〈x, (
5

10
,

5

10
,

3

10
) , (

6

10
,

5

10
,

3

10
)〉  is 

Neu-CS in Y. Then f-1(P) is Neu-Gb CS in X but not Neu- αCS in X. Then f is Neu-Gb continuity 

mapping but not a Neu- α continuity mapping. 

Theorem 6.7. Every Neu-R continuity mapping is a Neu-Gb continuity mapping but not conversely. 

Proof. Let f: (X, τN) → (Y, σN)  be a Neu-R continuity mapping. Let P be a Neu-CS in Y. Then by 

hypothesis f-1(P) is a Neu-RCS in X. Since every Neu-RCS is an Neu-GbCS, f-1(P) is a Neu-Gb CS in X. 

Hence, f is a Neu-Gb continuity mapping. 

Example 6.8. Let X = {p1, p2}, Y = {q1 , q2}, E1 = 〈x, (
2

10
,

5

10
,

8

10
) , (

4

10
,

5

10
,

6

10
)〉  E2 =

〈x, (
3

10
,

5

10
,

7

10
) , (

5

10
,

5

10
,

5

10
)〉 , τN = {0N, E1, 1N}  and σN = {0N, E2, 1N}   are N-T-S on X and Y 

respectively. Define a mapping  f: (X, τN) → (Y, σN)  by f(p1)=q1 and f(p2)=q2 .The Neutrosophic 

set P = 〈x, (
7

10
,

5

10
,

3

10
) , (

5

10
,

5

10
,

5

10
)〉  is Neu-CS in Y. Then f-1(P) is Neu-Gb CS in X but not Neu-RCS in 

X. Then f is Neu-Gb continuity mapping but not a Neu-R continuity mapping 

Theorem 6.9. Every Neu-GS continuity mapping is a Neu-Gb continuity mapping but not conversely. 

Proof. Let f: (X, τN) → (Y, σN) be a Neu-GS continuity mapping. Let P be a Neu-CS in Y. Then by 

hypothesis f-1(P) is a Neu-GCS in X. Since every Neu-GSCS is a Neu-Gb CS, f-1(P) is a Neu-GbCS in 

X. Hence f is a Neu-Gb continuity mapping 

Example 6.10. Let X = {p1, p2}, Y = {q1, q2}, E1 = 〈x, (
5

10
,

5

10
,

2

10
) , (

6

10
,

5

10
,

2

10
)〉  E2 =

〈x, (
6

10
,

5

10
,

3

10
) , (

6

10
,

5

10
,

2

10
)〉 , τN = {0N, E1, 1N}  and σN = {0N, E2, 1N}   are N-T-S on X and Y 
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respectively. Define a mapping  f: (X, τN) → (Y, σN)  by f(p1)=q1 and f(p2)=q2 .The Neutrosophic 

set P = 〈x, (
3

10
,

5

10
,

6

10
) , (

2

10
,

5

10
,

6

10
)〉  is Neu-CS in Y. Then f-1(P) is Neu-Gb CS in X but not Neu-GSCS 

in X. Then f is Neu-Gb continuity mapping but not a Neu-GS continuity mapping. 

Theorem 6.11.  Every Neu-αG continuity mapping is a Neu-Gb continuity mapping but not 

conversely. 

Proof. Let f: (X, τN) → (Y, σN)  be anNeu-αG continuity mapping. Let P be a Neu-CS in Y. Then, by 

hypothesis f-1(P) is a Neu- αgcs in X. Since, every Neu- αGCS is a Neu-GSCS and every Neu-GSCS is 

a Neu-GbCS, f-1(P) is a Neu-Gb CS in X. Hence f is a Neu-Gb continuity mapping. 

Example 6.12. Let X = {p1, p2}, Y = {q1, q2}, E1 = 〈x, (
5

10
,

5

10
,

4

10
) , (

5

10
,

5

10
,

5

10
)〉  E2 =

〈x, (
5

10
,

5

10
,

5

10
) , (

7

10
,

5

10
,

3

10
)〉 , τN = {0N, E1, 1N}  and σN = {0N, E2, 1N}   are N-T-S on X and Y 

respectively. Define a mapping  f: (X, τN) → (Y, σN)  by f(p1)=q1 and f(p2)=q2 .The Neutrosophic 

set P = 〈x, (
5

10
,

5

10
,

5

10
) , (

3

10
,

5

10
,

7

10
)〉  is Neu-CSin Y. Then f-1(P) is Neu-Gb CS in X but not Neu-αGCS 

in X. Then f is Neu-Gb continuity mapping but not an Neu-αG continuity mapping. 

The following implications are true: 

 

 

 

Theorem 6.13. A mapping f: X → Y is Neu-Gb continuity then the inverse image of each Neu-OS in 

Y is a Neu-αGOS in X. 

Proof. Let P be a Neu-OS in Y. This implies PC is Neu-CS in Y. Since f is Neu-Gb continuity, f-1(PC ) is 

Neu-Gb CS in X. Since f-1(PC )=(f-1(P))C, f-1(P) is a Neu-Gb OS in X. 

Theorem 6.14. Let f: (X, τN) → (Y, σN) be a Neu-Gb continuity mapping, then f is a Neutrosophic 

continuity mapping if X is a Neu-bU1 2⁄  space. 

Proof. Let P be a Neu-CS in Y. Then f-1(P) is a Neu-Gb CS in X, since f is a Neu-Gb Continuity. Since 

X is a Neu-bU1 2⁄  space, f-1(P) is a Neu-CS in X. Hence f is a Neutrosophic continuity mapping. 
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Theorem 6.15. Let f: (X, τN) → (Y, σN) be a Neu-Gb continuity function, then f is a Neu-G continuity 

mapping if X is a Neu-gbU1 2⁄ space 

Proof. Let P be a Neu-CS in Y. Then f-1(P) is a Neu-GbCS in X, by hypothesis. Since X is a Neu-

gbU1 2⁄  space, f-1(P) is a Neu-GCS in X. Hence f is a Neu-G continuity mapping. 

Theorem 6.16. Let f: (X, τN) → (Y, σN) be a Neu-Gb continuity mapping and g: (X, τN) → (Z, ρN) is 

Neutrosophic continuity, then  gof: (X, τN) → (Z, ρN)is a Neu-Gb continuity. 

Proof. Let P be a Neu-CS in Z. Then, g-1(P) is a Neu-CS in Y, by hypothesis. Since, f is a Neu-Gb 

continuity mapping, f-1(g-1(P)) is a Neu-Gb CS in X. Hence, g of is a Neu-Gb continuity mapping. 

 

7 .Conclusion 

Many different forms of closed sets have been introduced over the years. Various interesting 

problems arise when one considers openness. Its importance is significant in various areas of 

mathematics and related sciences, in this paper we have introduced Neutrosophic generalized b 

closed sets in Neutrosophic Topological Spaces and then we presented Neutrosophic generalized b 

continuity mapping and studied some of its properties. Also we investigate the relationships between 

the other existing Neutrosophic continuity functions. This shall be extended in the future Research 

with some applications 
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Abstract: In various decision-making models the divergence measure is found to be a useful 

information measure in handling impreciseness and uncertainty among the qualitative and 

quantitative factors of the decision-making process. In the proposed work, a novel parametric 

divergence measure for neutrosophic sets has been proposed along with its various properties. On 

the basis of the proposed parametric divergence measure, we have outlined some methodologies 

along with its implementing procedural steps for classification problem (pattern recognition 

problem, medical diagnosis problem) and multi criteria decision making problem. Also, numerical 

examples for the application problems have been provided for illustration of the proposed 

methodologies. Comparative remarks along with necessary observations and advantages have also 

been presented in view of the existing appraoches. 

Keywords: Neutrosophic set; Divergence measure; Decision-making; Medical diagnosis; Pattern 

recognition.  

 

1. Introduction 

In the applications of expert system, fusion of information and belief system, the notion of truth-

membership of fuzzy set (FS) [1] is not the only parameter to be supported by the evident but there is 

need of falsity-membership against by the evident. The intuitionistic fuzzy sets (IFSs) [2] consider both 

types of memberships and can manage the incomplete and imprecise information except the 

indeterminate/inconsistent information which may exist in case of a belief system. The concept of FSs 

and IFSs have been widely applied to model such uncertainties and hesitancy inherent in many 

practical circumstances having a comprehensive application in the area of decision processes, 

classification problems, econometrics, selection processes etc. 

The notion of a neutrosophic set (NS) introduced by Smarandache [3] is a more generalized 

platform for handling and presenting the uncertainty, impreciseness, incompleteness and 

inconsistency inherited in a real world problem. As per the statement of Smarandache - “Neutrosophy 

is a branch of philosophy which studies the origin, nature and scope of neutralities, as well as their interactions 

with different ideational spectra”[3]. From a philosophical point of view, the neutrosophic set can be 

understood as a formal generalized framework of the crisp set, fuzzy set, intuitionistic fuzzy set (IFS) 

etc. A special case of neutrosophic set is single valued neutrosophic set (SVNS) which has been given 

by Wang et al. [4]. In literature, various extensions of SVNSs have been available with a hybrid 

approach such as soft set analogous to NS, rough NS, neutrosophic hesitant fuzzy set, etc.  

Various researchers have extensively studied different information measures (similarity 

measures, entropy, distance measures, divergence measures etc.) for different types of fuzzy 

mailto:saurabh.srivastava@juit.ac.in
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sets/intuitionistic fuzzy sets because of their wider applicability in the different fields of science and 

engineering. In 1993, Bhandari and Pal [5] first studied the directed divergence based on the mutual 

information measure given by Kullback and Leibler [6]. Fan and Xie [7] provided a divergence measure 

based on exponential operation and established relation with the fuzzy exponential entropy. Further, 

Montes et al. [8] studied the special classes of measures of divergence in connecting with fuzzy and 

probabilistic uncertainty. Next, Ghosh et al. [9] have successfully implemented the fuzzy divergence 

measure in automated leukocyte recognition. Besides this, four fuzzy directed divergence measures 

were proposed by Bhatia and Singh [10] with important properties and particular cases. 

Vlachos and Sergiadis [11] successfully presented an intuitionistic fuzzy directed divergence 

measure analogous to Shang and Jiang [12]. Further, a set of axioms for the distance measure of IFSs 

is provided by Wang and Xin [13] and then Hung and Yang [14] proposed a set of axioms for 

intuitionistic divergence measure by applying Hausdorff metric. Li [15] provided the intuitionistic 

fuzzy divergence measure and Hung and Yang [16] proposed intuitionistic J-divergence measure with 

its application in pattern recognition. In intuitionistic fuzzy setup, Montes et. al. [17] established some 

important relationships among divergence measures, dissimilarity measures and distance measures. 

In literature, the fuzzy divergence measures and intuitionistic fuzzy divergence measures have been 

widely applied in various applications – decision-making problems [18, 19], medical diagnosis [20], 

logical reasoning [21] and pattern recognition [22, 23] etc. Kaya and Kahraman [24] have provided 

comparison of fuzzy multi-criteria decision-making methods for intelligent building assessment along 

with detailed ranking results. 

It may be noted that the degree of indeterminacy/hesitancy in case of IFSs is dependent on the 

other two uncertainty parameters of membership degree and non-membership degree. This gives a 

sense of limitation and boundedness for the decision makers to quantify the impreciseness factors. To 

overcome such limitations, the NS theory found to be more advantageous and effective tool in the field 

of information science and applications. Broumi and Smarandache [25] studied various types of 

similarity measures for neutrosophic sets. On the basis of the distance measure between two single 

valued neutrosophic sets, Majumdar and Samanta [26] proposed some similarity measures and 

studied their characteristics. Ye [27] studied various similarity measures for interval neutrosophic sets 

(INSs) on the basis of distance measures and used them in group decision-making [28]. Further, by 

using distance based similarity measures for single valued neutrosophic multisets, Ye et al. [29] solved 

the medical diagnosis problem. Also, Ye [30] studied various measures of similarity measures on the 

basis of cotangent function for SVNSs & utilized to solve MCDM problem and fault detection. Dhivya 

and Sridevi [31] studied a new single valued neutrosophic exponential similarity measure and its 

weighted form to overcome some drawbacks of existing measures and applied in decision making and 

medical diagnosis problem. Wu et al. [32] established a kind of relationship among entropy, similarity 

measure and directed divergence based on the three axiomatic definitions of information measure by 

involving a cosine function. Also, a new multi-attribute decision making method has been developed 

based on the proposed information measures with a numerical example of city pollution evaluation. 

Thao and Smarandache [33] proposed new divergence measure for neutrosophic set with some 

properties and utilized to solve the medical diagnosis problem and the classification problem. 

Recently, the notion of NSs theory and its various generalizations have been explored in various 

field of research by different researchers. Abdel-Basset et al. [34] developed a new model to handle the 

hospital medical care evaluation system based on plithogenic sets and also studied intelligent medical 

decision support model [35] based on soft computing and internet of things. In addition to this, a 

hybrid plithogenic approach [36] by utilizing the quality function in the supply chain management has 

also been developed. Further, a new systematic framework for providing aid and support to the cancer 

patients by using neutrosophic sets has been successfully suggested by Abdel-Basset et al. [37]. Based 

on neutrosophic sets, some new decision-making models have also been successfully presented for 

project selection [38] and heart disease diagnosis [39] with advantages and defined limitations. In 

subsequent research, Abdel-Basset et al. [40] have proposed a modified forecasting model based on 

neutrosophic time series analysis and a new model for linear fractional programming based on 
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triangular neutrosophic numbers [41]. Also, Yang et al. [42] have studied some new similarity and 

entropy measures of the interval neutrosophic sets on the basis of new axiomatic definition along with 

its application in MCDM problem. 

In view of the above discussions on the recent trends in the field of neutrosophic set theory, it 

may be observed that the neutrosophic information measures such as distance measures, similarity 

measures, entropy, divergence measures, have been successfully utilized and implemented to handle 

the issues related to uncertainty and vagueness. For the sake of wider applicability and the desired 

flexibility, we need to develop some parametric information measures for SVNSs. These parametric 

measures will give rise to a family of information measures and we can have selections based on the 

desired requirements. Subsequently, they can be utilized in various soft computing applications. This 

approach is novel in its kind where we propose a parametric divergence measure for the neutrosophic 

sets with various properties so that these can be well utilized in different classification problem and 

decision-making problems. 

The rest of the paper is structured as - In Section 2, some fundamental preliminaries of the 

neutrosophic sets, information measures are presented with its properties. In Section 3, a new 

parametric divergence measure for neutrosophic sets has been introduced with its proof. In Section 4, 

various properties of the proposed divergence measure have also been discussed along with their 

proofs. Further, in Section 5, application examples of classification problems and decision-making 

problem have been solved by providing the necessary steps of the proposed methodologies based on 

the proposed parametric divergence measure. In view of the results obtained in contrast with the 

existing methodologies related to these fields, some comparative remarks have also been stated for the 

problems under consideration. The presented work and its results have been summarized in Section 6 

with scope for the future work.  

2. Preliminaries 

Here, some basic definitions and fundamental notions in reference with neutrosophic set, 

information measures and its properties are presented. Smarandache [3] introduced the notion of 

neutrosophic set as follows:  

Definition 1. [3] Let X  be a fixed class of points (objects) with a generic element x  in X . A 

neutrosophic set M  in X  is specified by a truth-membership function ( )MT x , an indeterminacy-

membership function ( )MI x  and a falsity-membership function ( )MF x , where ( ), ( )M MT x I x  and 

( )MF x  are real standard or nonstandard subsets of the interval ( )0,1− +
 such that

( ) ( ) ( )( ) : 0,1 , ( ) : 0,1 , ( ) : 0,1M M MT x X I x X F x X− + − + − +→ → →  and the sum of these functions 

viz. ( ) ( ) ( )M M MT x I x F x+ +  satisfies the requirement

0 sup ( ) sup ( ) sup ( ) 3 .M M MT x I x F x− + + +   We denote the neutrosophic set 

 = ( , ( ), ( ), ( ) |M M MM x T x I x F x x X .  

      In case of neutrosophic set, indeterminacy gets quantified in an explicit way, while truth-

membership, indeterminacy-membership and falsity-membership are independent terms. Such 

framework is found to be very useful in the applications of information fusion where the data are 

logged from different sources. For scientific and engineering applications, Wang et al. [4] defined a 

single valued neutrosophic set (SVNS) as an instance of a neutrosophic set as follows:  

Definition 2 [4] Let X  be a fixed class of points (objects) with a generic element x  in X . A single 

valued neutrosophic set M  in X  is characterized by a truth-membership function ( )MT x , an 

indeterminacy membership function ( )MI x  and a falsity-membership function ( )MF x . For each point 

x X , ( )MT x , ( )MI x ,  ( ) 0,1MF x  . A single valued neutrosophic set M  can be denoted by  
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 = < ( ), ( ), ( ) | .M M MM T x I x F x x X
 

It may be noted that  ( ) ( ) ( ) 0,3M M MT x I x F x+ +  .  

      We denote ( )SVNS X  as the set of all the SVNSs on X . For any two SVNSs 

, ( )M N SVNS X , some of the basic and important operations and relations may be defined as 

follows (Refer [4]):   

• Union of M  and N :   = ( , ( ), ( ), ( ) | ;M N M N M NM N x T x I x F x x X     

where ( ) = max{ ( ), ( )}M N M NT x T x T x , ( ) = min{ ( ), ( )}M N M NI x I x I x  and  

( ) = min{ ( ), ( )}; .M N M NF x F x F x for all x X   

• Intersection of M  and N :   = ( , ( ), ( ), ( ) | ;M N M N M NM N x T x I x F x x X     

where ( ) = min{ ( ), ( )}M N M NT x T x T x , ( ) = max{ ( ), ( )}M N M NI x I x I x  and 

( ) = max{ ( ), ( )}; .M N M NF x F x F x for all x X   

•Containment: M N  if and only if  

( ) ( ), ( ) ( ), ( ) ( ), .M N M N M NT x T x I x I x F x F x for all x X     

• Complement: The complement of a neutrosophic set M , denoted by M , defined by  

 ( ) =1 ( ), ( ) =1 ( ), ( ) =1 ( ); .M M MM M M
T x T x I x I x T x T x for all x X− − −   

Definition 3. [32] Consider M  and N  be two single-valued neutrosophic sets, then the cross entropy 

between M  and N  must satisfy the following two axioms: 

• ( , ) 0C M N  ;  

• ( , ) = 0C M N  if =M N .  

Based on the above stated axioms, Wu et al. [32] proposed the divergence measure for two SVNS 

M  and N , given by  

 
3

1

=1

1
( , ) = 1 ( 2 cos 1).

43( 2 1)

t t

t

M N
C M N 

− 
− − 

−  
  

     Also, Thao and Smarandache [33] have put forward various properties and axiomatic 

definition for divergence measure of single valued neutrosophic sets M  and N  with four axioms 

as follows:   

• DivAxiom 1: ( , ) = ( , )D M N D N M ;  

• DivAxiom 2: ( , ) 0D M N  ; and ( , ) = 0D M N  if =M N .  

• DivAxiom 3: ( , ) ( , ) ( )D M P N P D M N P SVNS X     .  

• DivAxiom 4: ( , ) ( , ) ( )D M P N P D M N P SVNS X     . 

3. Parametric Divergence Measure of Neutrosophic Sets  

In this section, we present a new parametric divergence measure for two arbitrary SVNSs and 

discuss its properties. Recently, Ohlan et al. [43] proposed the generalized Hellinger’s divergence 

measure for fuzzy sets A  and B  as follows:  

( ) ( )
2( 1) 2( 1)

=1

( ) ( ) ( ) ( )
( , ) = , .

( ) ( ) ( ) ( )

n
A i B i i iA B

i A i B i i iA B

x x x x
h A B

x x x x

 



   


   

+ + − −
 

+ 
 
 
 

       (1) 

Analogous to the above proposed divergence measure for fuzzy sets given by Equation (1), we 

propose the following parametric divergence measure for single valued neutrosophic set:  
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( ) ( )( )
( )

( ) ( )( )

( ) ( )( )
( )

( ) ( )( )

2 1 2 1

=1

1 1
( , ) = 2

2

n M i N i M i N i

i
M i N i M i N i

T x T x T x T x
Div M N

T x T x T x T x

 



  

+ + 
− − − − 

+ 
+ − − 

 

  

 
( ) ( )( )

( )

( ) ( )( )

( ) ( )( )
( )

( ) ( )( )

2 1 2 1

=1

1 1
2

2

n M i N i M i N i

i
M i N i M i N i

I x I x I x I x

I x I x I x I x

 



 

+ + 
− − − − 

+ + 
+ − − 

 

  

( ) ( )( )
( )

( ) ( )( )

( ) ( )( )
( )

( ) ( )( )

2 1 2 1

=1

1 1
2 , .

2

n M i N i M i N i

i
M i N i M i N i

F x F x F x F x

F x F x F x F x

 



 


+ + 
− − − − 

+ +  
+ − − 

 

      (2) 

Next, we need to prove that the proposed parametric divergence measure for single valued 

neutrosophic sets is a valid information measure.  

Theorem 1. The divergence measure ( , )Div M N  given by Equation (2) is a valid divergence measure 

for 

two SVNSs.  

Proof:  In order to prove the theorem, we need to show that the divergence measure given by 

Equation (2) satisfies the four axioms (Divaxiom (1) - (4) [33]) stated in Section 2.   

• Divaxiom 1: Since Equation (2) is symmetric with respect to M  and N , therefore it is quite 

obvious that ( ) ( ), = , .Div M N Div N M   

• Divaxiom 2: In view of Equation (2), we observe that ( ), = 0Div M N   

( ) = ( ), ( ) = ( ), ( ) = ( ) .M N M N M NT x T x I x I x F x F x for all x X  It remains to show that 

( ), 0Div M N  . For this, we first show the convexity of Div . Since Div  is of the Csiszar’s f -

divergence type with generating mapping ( ): 0,f
+ → , defined by,  

             ( )
( )

( )

( )
( )

2 1

2 1
= 1 = 0.

1

t
f t with f

t




 

+

−

+
                             (3) 

 Differentiating Equation (3) two times with respect to t  and on simplification, we get  

 ( )
( )( )( )

( )

2
3 / 2 2

''

2 3 / 2

2 2 2 4 1 1 12
= .

2 1

t t t t t t
f t

t t




 

   

+

+ + + + + + − 
 

+ 
 

Since   and ( )0,t  , therefore, ( )'' 0f t   which proves the convexity of ( )f t . 

Thus, ( ), 0.Div M N   

• Divaxiom 3: For this purpose we decompose the collection X  into two disjoint subsets 1X  and 

2X  such that,  

( ) ( ) 1 = | ( ) , ( ) ( ) ( ), ( ) ( ) ( ) ;i M i N i P i M i N i P i M i N i P iX x X T x T x T x I x I x I x F x F x F x       (4) 

 and  

( ) ( ) 2 = | ( ) , ( ) ( ) ( ), ( ) ( ) ( ) .i M i N i P i M i N i P i M i N i P iX x X T x T x T x I x I x I x F x F x F x       (5) 

 Using the definition of intersection of neutrosophic sets and Equation (2) in connection of 

Equations (4) and (5), the component terms with respect to 1X  will vanish while the component terms 

with respect to 2X  only will remain in left hand side. Therefore, the left hand side term will have 
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only one term while the right hand side will have two regular terms. The detailed calculation may be 

shown easily. In view of this, Divaxiom 3 is satisfied. 

• Divaxiom 4: This axiom can similarly be proved by using the definition of union on the basis of proof 

of Divaxiom 3. This implies that ( ),Div M N  is a valid divergence measure between the single 

valued neutrosophic sets M  and N . 

4. Properties of New Parameterized Neutrosophic Divergence Measure 

In this section some important properties of the proposed parametric measures of neutrosophic fuzzy 

divergence are given and proved.  

Theorem 2. For any , ( )M N and P SVNS X , the proposed divergence measure (2) satisfies the following 

properties:  

1.  
( ) ( ), = ,Div M N M N Div M N  

 

2.  
( ) ( ) ( ), , = ,Div M N M Div M N M Div M N   + 

 

3.  
( ) ( ) ( ) ( ), , = , ,Div M N P Div M N P Div M P Div N P    +  +

 

4.  
( ) ( ), = ,Div M M N Div N M N  

 

5.  
( ) ( ), = ,Div M M N Div N M N  

.  

Proof : For this purpose we decompose the collection X  into two disjoint subsets 1X & 2X  s.t.,

( ) ( ) 1 = | , ( ) ( ), ( ) ( ) ;i M i N i M i N i M i N iX x X T x T x I x I x F x F x                           (6) 

( ) ( ) 2 = | , ( ) ( ), ( ) ( ) .i M i N i M i N i M i N iX x X T x T x I x I x F x F x                       (7) 

1.  ( , )Div M N M N    
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 In view of the Equation (6) and Equation (7), we have 
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Theorem 3. For any , ( )M N SVNS X , the proposed divergence measure (2) satisfies the following 

properties: 
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Proof:  
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4.  Using (a) and (c), ( ) ( ) ( ) ( ), , = , ,Div M N Div M N Div M N Div M N   + +  holds.  

5. Application of Parametric Divergence Measure in Decision Making Problems 

We study some important applications of the proposed divergence measure for neutrosophic sets 

in the area of classication problems and decision-making. 

5.1 Pattern Recognition 

In order to illustrate an application of the proposed divergence measure in the field of pattern 

recognition, we refer to a well posed problem which has been discussed in literature [33]. Consider 

three existing patterns 1A , 2A  and 3A  representing the classes 1C , 2C  and 3C respectively and 

being described by the following SVNSs in 1 2 3= { , , }X x x x :  

 1 1 2 3= {( ,0.7,0.7,0.2), ( ,0.7,0.8,0.4), ( ,0.6,0.8,0.2)};A x x x  

 2 1 2 3= {( ,0.5,0.7,0.3), ( ,0.7,0.7,0.5), ( ,0.8,0.6,0.1)};A x x x  

 3 1 2 3= {( ,0.9,0.5,0.1), ( ,0.7,0.6,0.4), ( ,0.8,0.5,0.2)}.A x x x  

Consider an unknown sample pattern B  which is given by 

 1 2 3= {( ,0.7,0.8,0.4), ( ,0.8,0.5,0.3), ( ,0.5,0.8,0.5)}.B x x x  

Now, the main objective of the problem is to find out the class to which B belongs. As per the principle 

of minimum divergence measure [44], the procedure for allocation of B to 
*C


 is determined by  

                 
* = ( ( , )).min karg Div A B



                                  (8) 

Table 1: Values of ( )BADiv k ,  with  3,2,1  

   
1A  2A  3A  

B 1 0.035200913 0.109091158 0.116197599 

B 4 0.0001939 0.010382714 0.003212291 

Clearly, from the Table 1, it may be observed that B has to get into the class 1C . The obtained result is 

based on the proposed parametric divergence measure and is perfectly consistent with the results 

achieved by [33]. 

5.2 Medical Diagnosis 
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In a classical problem of medical diagnosis, assume that if a doctor needs to diagnose some of patients’ 

 " , , , "P Al Bob Joe Ted=  under some defined diagnoses  

 " , , , , , "D Viral fever Malaria Typhoid Stomach problem Cough Chest problem= ,  

& a set of symptoms  " , , , , "S Temperature Headache Stomach pain Cough Chest pain= . 

The following tables (Refer Table 2 & Table 3) serve the purpose of the proposed computational 

application: 

Table 2: Symptoms characteristic for the diagnoses considered [33] 

 “Viral Fever” “Malaria” “Typhoid” “Stomach 

Problem” 

“Chest 

Problem” 

“Temperature” (0.7,0.5,0.6) (0.7,0.9,0.1) (0.3,0.7,0.2) (0.1,0.6,0.7) (0.1,0.9,0.8) 

“Headache” (0.8,0.2,0.9) (0.4,0.5,0.5) (0.6,0.9,0.2) (0.7,0.4,0.3) (0.1,0.6,0.7) 

“Stomach 

Pain” 

(0.8,0.1,0.1) (0.5,0.9,0.2) (0.2,0.5,0.5) (0.7,0.7,0.8) (0.5, 0. 7, 0.6) 

“Cough” (0.45,0.8,0.7) (0.7,0.8,0.6) (0.2,0.5,0.5) (0.2,0.8,0.65) (0.2,0.8,0.6) 

“Chest Pain” (0.2,0.6,0.5) (0.1,0.6,0.8) (0.1,0.8,0.8) (0.5,0.8,0.6) (0.8,0.8,0.2) 

 

Table 3: Symptoms for the diagnose under consideration 

 “Temperature” “Headache” “Stomach 

pain” 

“Cough” “Chest pain” 

“Al” (0.7,0.6,0.5) (0.6,0.3,0.5) (0.5,0.5,0.75) (0.8,0.75,0.5) (0.7,0.2,0.6) 

“Bob” (0.7,0.3,0.5) (0.5,0.5,0.8) (0.6,0.5,0.5) (0.65,0.4,0.75) (0.2,0.85,0.65) 

“Joe” (0.75,0.5,0.5) (0.2,0.85,0.7) (0.7,0.6,0.4) (0.7,0.55,0.5) (0.5,0.9,0.64) 

“Ted” (0.4,0.7,0.6) (0.7,0.5,0.7) (0.6,0.7,0.5) (0.5,0.9,0.65) (0.6,0.5,0.85) 

In order to have a proper diagnose, we evaluate the value of the proposed divergence measure 

( ) dPDiv ,  between the patient’s symptoms & the defined symptoms for each diagnose Dd  , 

with  1, 2,..., 5 = . Similar to the Equation (8), the proper diagnose d for the patient P  may be 

based on the following equation: 

                            ( )( )* arg min , .Div P d 


 =                           (9) 

 

 

Table  4: Values of ( , )kDiv A B , with {1, 2,3} 
 

 “Viral Fever” “Malaria” “Typhoid” “Stomach 

Problem” 

“Chest 

Problem” 

“Al” 0.29738 0.27867 0.41362 0.26433 0.37028 
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“Bob” 0.09767 0.23291 0.13969 0.18798 0.41526 

“Joe” 0.29928 0.16506 0.13089 0.26385 0.26343 

“Ted” 0.20289 0.16876 0.20367 0.03168 0.27893 

In view of Table 4, it is being concluded that the patient Al and Ted are suffering from the stomach 

problem, Bob is suffering from viral fever and Joe is suffering from Typhoid.  

It may be observed that the result obtained through the proposed method is perfectly consistent with 

the results achieved by [33]. 

Comparative Remarks: It may be observed that the proposed method is found to be perfectly 

competent to provide the desired result with an added advantage of the parameters involvement in 

the proposed divergence measure. The parameters may provide a better variability in the selection of 

a divergence measure for achieving a better specificity and accuracy.  

5.2 Multi-criteria Decision-Making Problem 

The main purpose of MCDM problem is to identify the alternative from the available alternatives 

under consideration. Here, on the basis of the proposed parametric divergence measure for 

neutrosophic sets, an algorithm for solving MCDM problem is being outlined. Consider the available 

m -alternatives, i.e., 1 2= { , , , }mZ Z Z Z  and n -criterion, i.e., 1 2= { , , , }nO o o o . The target of a 

decision maker is to pick the optimal alternative out of the available m-alternatives fulfilling the n-

criterion. The perspectives/opinions of decision makers have been taken in the form of a matrix 

=[ ]ij m nA a 
 called neutrosophic decision matrix where = ( , , )ij ij ij ija T I F . 

Procedural Steps of Algorithm for MCDM Problem: 

Step 1: Construct the neutrosophic decision matrix based on the available data. 

Step 2: Sometimes heterogeneity in the type of criterions in a MCDM problem is observed. In order to 

resolve this issue, it is required to make them homogeneous before applying any methodology. 

Mainly, the criteria may be categorized into two types: benefit criteria and cost criteria. We need to 

transform the decision matrix, for this we transform the cost criteria into the benefit criteria. Thus the 

decision matrix =[ ]ij m nA a 
 is converted into a new decision matrix, say, = [ ]ij m nB b 

 where 
ijb  is 

given by 
;

= ( , , ) =
;

ij

cij ij ij ij

ij

a for benefits criteria
b T I F

a for cost criteria





                               (10) 

where = [ ]ij m nB b 
 representing the alternatives in the form of 

={( ,1 , 1 , 1 ) | }; =1,2, , =1,2, , .i j ij ij ij jZ o T I F o O i m and j n− − −                   (11) 

Step 3: Evaluate the best preferred solution as 

= {sup( ( )), inf ( ( )), inf ( ( ))} =1,2, , =1,2, , .ij i ij i ij iZ T Z I Z F Z i m and j n+
             (12) 

Step 4: Determine the value of divergence measure of alternatives 
'

iZ s  from Z +
using Equation (2). 
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Step 5. Now, sorting the computed values of the divergence measure, we can find the preference order 

of the alternatives '

iZ s . The best alternative is the one which corresponds to the least value of the 

divergence measure. 

For the sake of illustration of the proposed methodology, a multi-criteria decision-making problem 

[45] related to a manufacturing company which needs to hire the best supplier. Assume that there are 

four available suppliers 1 2 3 4= { , , , }Z Z Z Z Z  whose capabilities and competencies have been 

evaluated with the help of four laid down criteria 1 2 3 4= { , , , }.O o o o o  Based on the information 

available about the suppliers w.r.t. the individual criteria, we determine a neutrosophic decision 

matrix as given below: 

1.  In the given MCDM problem, all criterions are of same kind. Therefore, we need not to transform 

the cost criteria into the benefit criteria or vice versa by using Equation (10). The constructed 

neutrosophic decision matrix based on the available information is in the following Table 5.    

Table  5: Neutrosophic Decision Matrix 
 

 

 

 

 

 

 

2. The best preferred solution obtained by using equation (12) is given by   

= {(0.6,0.1,0.1), (0.5,0.1,0.3), (0.9,0.0,0.1), (0.7,0.2,0.1)}.Z +
 

3. Compute the values of divergence measure between 
'

iZ s ( = 1, 2,3, 4)i  and Z +
using Equation 

(2) and tabulate them in the following Table 6.  

 

Table  6: Values of Proposed Divergence Measure between 
'

iZ s  and Z +
 

4. Now, the ranking of the alternatives can be performed. The best alterative is one which has the 

lowest value of the divergence measure from the best preferred solution. The sequence of the 

alternatives has been particularly obtained as: 2 1 3 4.Z Z Z Z    

 1o  2o  3o  4o  

1Z  (0.5, 0.1, 0.3) (0.5, 0.1, 0.4) (0.7, 0.1, 0.2) (0.3, 0.2, 0.1) 

2Z  (0.4, 0.2, 0.3) (0.3, 0.2, 0.4) (0.9,0.0,0.1) (0.5, 0.3, 0.2) 

3Z  (0.4, 0.3, 0.1) (0.5, 0.1, 0.3) (0.5, 0.0, 0.4) (0.6, 0.2, 0.2) 

4Z  (0.6,0.1,0.2) (0.2, 0.2, 0.5) (0.4, 0.3, 0.2) (0.7, 0.2, 0.1) 

Divergence Measure 
     1( , )Z Z +

 2( , )Z Z +

 3( , )Z Z +

 4( , )Z Z +

 

Proposed Divergence Measure 0.42409 0.27570 0.4791 0.80810 

Ye’s Divergence Measure [33] 1.1101 1.1801 0.9962 1.2406 
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Hence, among all the four suppliers, 2Z  is supposed to be the best one.  

6. Conclusions and Scope for Future Work 

The parametric divergence measure for SVNSs has been successfully proposed along with 

discussions on its various properties. In literature, this parametric measure for the neutrosophic set is 

for the first time where the applications of the proposed divergence measure have been successfully 

utilized in the computational fields of pattern analysis, medical diagnosis & MCDM problem. The 

procedural steps of the proposed methodologies for solving these application problems have been well 

illustrated with numerical examples for each. The results hence obtained are found to be equally and 

firmly consistent in comparison with the existing methodologies. 

In order to have a direction for the scope of future work, it has been observed that there is a notion 

of another set called rough set, which do not conflict the concept of neutrosophic set, can be mutually 

incorporated. Sweety and Arockiarani [46] combined the mathematical tools of fuzzy sets, rough sets 

and neutrosophic sets and introduced a new notion termed as fuzzy neutrosophic rough sets. In future, 

the following important research contributions can be systematically carried out 

• The study on the various information measures - entropy, similarity measures and divergence 

measures for fuzzy neutrosophic rough sets can be done with their various possible applications. 

• In recent years, various researchers have duly utilized the notion of neutrosophic sets to relations, 

theory of groups and rings, theory of soft sets and so on. On the basis of this, the theoretical 

contribution related to fuzzy neutrosophic rough sets in the field of algebra may be proposed. 

Funding: This research received no external funding. 
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1 Introduction  

Hyperstructure theory was introduced by Marty in 1934 [16]. The concept of hyperring and the 

general form of hyperring for introducing the notion of hyperring homomorphism was developed by 

Corsini [11]. Vougiouklis [31] coined different type of hyperrings called 𝐻𝑣-ring, 𝐻𝑣-subring, and left 

and right 𝐻𝑣-ideal of a 𝐻𝑣-ring, all of which are generalizations of the corresponding concepts related to 

hyperrings introduced by Corsini [11].   

In general fuzzy sets [34] the grade of membership is represented as a single real number in the 

interval [0,1]. The uncertainty in the grade of membership of the fuzzy set model was overcome using 

the interval-valued fuzzy set modelintroduced by Turksen [29]. In 1986, Atanassov [8] introduced 

intuitionistic fuzzy sets which is a generalization of fuzzy sets. This model was equivalent to interval 

valued fuzzy sets in [32]. Intuitionistic fuzzy sets can only handle incomplete information, and not 

indeterminate information which commonly exists in real-life [32]. To overcome these problems, 

Smarandache introduced the neutrosophic model. Some new trends of neutrosophic theory were 

introduced in [1,2,3,4,5,6,7] .Wang et al. [32] introduced the concept of single-valued neutrosophic sets 

(SVNSs), whereas Smarandache introduced plithogenic set as generalization of neutrosophic set model 

in [13].  

The theory of hyperstructures are widely used in various mathematical theories. The study on 

fuzzy algebra began by Rosenfeld [17], and this was subsequently expanded to other fuzzy based 

models such as intuitionistic fuzzy sets, fuzzy soft sets and vague soft sets. Some of the recent works 

related to fuzzy soft rings and ideal, vague soft groups, vague soft rings and vague soft ideals can be 

found in [21; 22; 23; 26, 27]. Research on fuzzy algebra led to the development of fuzzy hyperalgebraic 

theory. The concept of fuzzy ideals of a ring introduced by Liu [15]. The generalization of the fuzzy 

hyperideal introduced by Davvaz[12]. The concepts of fuzzy 𝛾-ideal was then introduced by Bharathi 
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and Vimala [10], and the fuzzy 𝛾 -ideal was subsequently expanded in [33]. The hypergroup and 

hyperring theory for vague soft sets were developed by Selvachandran et al. in [18,19,20,24,25] 

In this paper we develop the theory of single-valued neutrosophic hyperrings and single-valued 

neutrosophic hyperideals to furter contribute to the development of the body of knowledge in 

neutrosophic hyperalgebraic theory. 
 

2 Preliminaries 

Let 𝑋 be a space of points (objects) with a generic element in 𝑋 denoted by 𝑥. 

Definition 2.1. [32] A SVNS 𝐴is a neutrosophic set that is characterized by a truth-membership function 

𝑇𝐴(𝑥), an indeterminacy-membership function 𝐼𝐴(𝑥), and a falsity-membership function 𝐹𝐴(𝑥), where 

𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0, 1]. This set 𝐴 can thus be written as 
𝐴 = {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉: 𝑥 ∈ 𝑈}.                                                        (1) 

The sum of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 𝐹𝐴(𝑥) must fulfill the condition 0 ≤ 𝑇𝐴(𝑥) +  𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3. For a SVNS 

𝐴 in 𝑈, the triplet (𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)) is called a single-valued neutrosophic number (SVNN). Let 𝑥 =

(𝑇𝑥, 𝐼𝑥 , 𝐹𝑥) to represent a SVNN . 

 

Definition 2.2. [32]  Let 𝐴 and 𝐵 be two SVNSs over a universe 𝑈. 

(i) 𝐴 is contained in 𝐵, if 𝑇𝐴(𝑥) ≤ 𝑇𝐵(𝑥), 𝐼𝐴(𝑥) ≤ 𝐼𝐵(𝑥), and 𝐹𝐴(𝑥) ≥ 𝐹𝐵(𝑥), for all 𝑥 ∈ 𝑈. This rela-

tionship is denoted as 𝐴 ⊆ 𝐵. 

(ii) 𝐴 and 𝐵 are said to be equal if 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴. 

(iii) 𝐴𝑐 = 〈𝑥, (𝐹𝐴(𝑥), 1 − 𝐼𝐴(𝑥), 𝑇𝐴(𝑥))〉, for all 𝑥 ∈ 𝑈. 

(iv) 𝐴 ∪ 𝐵 = (𝑥, (max(𝑇𝐴, 𝑇𝐵), max(𝐼𝐴, 𝐼𝐵), min(𝐹𝐴, 𝐹𝐵))), for all 𝑥 ∈ 𝑈. 

(v) 𝐴 ∩ 𝐵 = (𝑥, (min(𝑇𝐴 , 𝑇𝐵), min(𝐼𝐴, 𝐼𝐵), max(𝐹𝐴, 𝐹𝐵))), for all 𝑥 ∈ 𝑈. 

 

Definition 2.3. [16] A hypergroup 〈𝐻, ∘〉  is a set  𝐻  with an associative hyperoperation (∘) ∶ 𝐻 × 𝐻 →

𝑃(𝐻)  which satisfies 𝑥 ∘ 𝐻 = 𝐻 ∘ 𝑥 = 𝐻  for all  𝑥  in  𝐻 (reproduction axiom) . 

 

Definition 2.4.[12] A hyperstructure 〈𝐻, ∘〉 is called an  𝐻𝑣-group  if the following axioms hold: 

(i) 𝑥 ∘ (𝑦 ∘ 𝑧) ∩ (𝑥 ∘ 𝑦) ∘ 𝑧 ≠ ∅   for all   𝑥, 𝑦, 𝑧  𝜖  𝐻, (𝐻𝑣-semigroup) 

(ii) 𝑥 ∘ 𝐻 = 𝐻 ∘ 𝑥 = 𝐻  for all  𝑥  in  𝐻. 

 

Definition 2.5.[16] A subset  𝐾  of  𝐻  is called a  subhypergroup  if  〈𝐾, ∘〉  is a hypergroup.  

 

Definition 2.6.[11]A  𝐻𝜈-ring  is a multi-valued system (𝑅, +, ∘) which satisfies the following axioms: 

(i) (𝑅, +) is a 𝐻𝜈-group,   

(ii) (𝑅, ∘) is a 𝐻𝜈-semigroup,  

(iii) The hyperoperation “∘” is weak distributive over the hyperoperation “+”, that is for each  

𝑥, 𝑦, 𝑧 𝜖 𝑅   the conditions 𝑥 ∘ (𝑦 + 𝑧) ∩ ((𝑥 ∘ 𝑦) + (𝑥 ∘ 𝑧))  ≠  𝜙 and (𝑥 + 𝑦) ∘ 𝑧 ∩ ((𝑥 ∘ 𝑧) + (𝑦 ∘

𝑧))  ≠  𝜙 holds true. 

 

Definition 2.7. [11]A nonempty subset 𝑅′  of 𝑅  is a subhyperring of (𝑅, +, ∘)  if (𝑅′, +)  is a 

subhypergroup of (𝑅, +) and for all 𝑥, 𝑦, 𝑧 𝜖  𝑅′, 𝑥 ∘ 𝑦  𝜖  𝑃∗(𝑅′), where 𝑃∗(𝑅′) is the set of all non-empty 

subsets of 𝑅′. 

Definition 2.8. [11] Let 𝑅 be a 𝐻𝑣-ring. A nonempty subset 𝐼 of 𝑅 is called a left (respectively right) 𝐻𝑣-

ideal if the following axioms hold: 

(i) (𝐼, +) is a 𝐻𝑣-subgroup of (𝑅, +), 

(ii) 𝑅 ∘ 𝐼 ⊆ 𝐼(resp.  𝐼 ∘ 𝑅 ⊆ 𝐼).  

If  𝐼  is both a left and right  𝐻𝑣-ideal  of  𝑅,  then  𝐼  is said to be a 𝐻𝑣-ideal  of  𝑅. 
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3 Single-Valued NeutrosophicHyperrings 

Throughout this section, we denote the hyperring(𝑅, +, ∘)by 𝑅. 
 
Definition 3.1.Let 𝐴 be a SVNS over 𝑅. 𝐴 is called a single-valued neutrosophic hyperringover 𝑅, if , 
 
(i) Ɐ 𝑎, 𝑏 ∈ 𝑅, min{𝑇𝐴(𝑎), 𝑇𝐴(𝑏)} ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} , max{𝐼𝐴(𝑎), 𝐼𝐴(𝑏)} ≥ sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 

and max{𝐹𝐴(𝑎), 𝐹𝐴(𝑏)} ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 
(ii) Ɐ 𝑥, 𝑎 ∈ 𝑅,  there exists 𝑏 ∈ 𝑅  such that 𝑎 ∈ 𝑥 + 𝑏  and min{𝑇𝐴(𝑥), 𝑇𝐴(𝑎)} ≤

𝑇𝐴(𝑏) , max{𝐼𝐴(𝑥), 𝐼𝐴(𝑎)} ≥ 𝐼𝐴(𝑏) and max{𝐹𝐴(𝑥), 𝐹𝐴(𝑎)} ≥ 𝐹𝐴(𝑏) 
(iii) Ɐ 𝑥, 𝑎 ∈ 𝑅,  there exists 𝑐 ∈ 𝑅  such that 𝑎 ∈ 𝑐 + 𝑥  and min{𝑇𝐴(𝑥), 𝑇𝐴(𝑎)} ≤

𝑇𝐴(𝑐) , max{𝐼𝐴(𝑥), 𝐼𝐴(𝑎)} ≥ 𝐼𝐴(𝑐) and max{𝐹𝐴(𝑥), 𝐹𝐴(𝑎)} ≥ 𝐹𝐴(𝑐) 
(iv) Ɐ 𝑎, 𝑏 ∈ 𝑅, min{𝑇𝐴(𝑎), 𝑇𝐴(𝑏)} ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} , max{𝐼𝐴(𝑎), 𝐼𝐴(𝑏)} ≥ sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}  and 

max{𝐹𝐴(𝑎), 𝐹𝐴(𝑏)} ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} 
 
 
Example 3.2.The family of 𝑡-level sets of SVNSs over 𝑅 is a subhyperring of 𝑅 is given below: 
 

𝐴𝑡 = {𝑎 ∈ 𝑅: 𝑇𝐴(𝑎) ≥ 𝑡, 𝐼𝐴(𝑎) ≥ 𝑡, 𝐹𝐴(𝑎) ≤ 𝑡},for all 𝑡 ∈ [0, 1]. 
 
Then 𝐴 is a single-valued neutrosophic hyperring over 𝑅. 
 
Theorem 3.3. 𝐴 is a SVNS over 𝑅. Then 𝐴 is a single-valued neutrosophichyperring over 𝑅 iff 𝐴 is sin-
gle-valued neutrosophic semi hyper group over (𝑅, ∘) and also a single-valued neutrosophic hyper-
group over (𝑅, +).  
 
Proof. This is obvious by Definition 3.1.        ∎ 
 
Theorem 3.4. Let 𝐴 and 𝐵 be single-valued neutrosophic hyperrings over 𝑅. Then𝐴 ∩ 𝐵 is a single-val-
ued neutrosophichyperring over 𝑅 if it is non-null.  
 
Proof. Let 𝐴  and 𝐵  are single-valued neutrosophic hyperrings over 𝑅. By Definition 3.1, 𝐴 ∩ 𝐵 =
{〈𝑎, 𝑇𝐴∩𝐵(𝑎), 𝐼𝐴∩𝐵(𝑎), 𝐹𝐴∩𝐵(𝑎)〉: 𝑎 ∈ 𝑅}, where 𝑇𝐴∩𝐵(𝑎) = min(𝑇𝐴(𝑎), 𝑇𝐵(𝑎)) , 𝐼𝐴∩𝐵(𝑎) =
max(𝐼𝐴(𝑎), 𝐼𝐵(𝑎)) , 𝐹𝐴∩𝐵(𝑎) = max(𝐹𝐴(𝑎), 𝐹𝐵(𝑎)). Then for all 𝑎, 𝑏 ∈ 𝑅, we have the following. We only 
prove all the four conditions for the truth membership terms 𝑇𝐴, 𝑇𝐵 . The proof for the 𝐼𝐴 , 𝐼𝐵 and 𝐹𝐴, 𝐹𝐵 
membership functions obtained in a similar manner.  
 

(i) min{𝑇𝐴∩𝐵(𝑎), 𝑇𝐴∩𝐵(𝑏)} = min{min(𝑇𝐴(𝑎), 𝑇𝐵(𝑎)) , min(𝑇𝐴(𝑏), 𝑇𝐵(𝑏))} 

≤ min{min(𝑇𝐴(𝑎), 𝑇𝐴(𝑏)) , min(𝑇𝐵(𝑎), 𝑇𝐵(𝑏))} 

      ≤ min{inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} , inf{𝑇𝐵(𝑐): 𝑐 ∈ 𝑎 + 𝑏}} 

             ≤ inf{min(𝑇𝐴(𝑐), 𝑇𝐵(𝑐)) : 𝑐 ∈ 𝑎 + 𝑏} 

   = inf{𝑇𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 

Similarly, max{𝐼𝐴∩𝐵(𝑎), 𝐼𝐴∩𝐵(𝑏)} ≥ sup{𝐼𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 + 𝑏}  and max{𝐹𝐴∩𝐵(𝑎), 𝐹𝐴∩𝐵(𝑏)} ≥ sup{𝐹𝐴∩𝐵(𝑐): 𝑐 ∈

𝑎 + 𝑏}. 

(ii) Ɐ𝑥, 𝑎 ∈ 𝑅, there exists 𝑏 ∈ 𝑅 such that 𝑎 ∈ 𝑥 + 𝑏. Then it follows that: 

min{𝑇𝐴∩𝐵(𝑎), 𝑇𝐴∩𝐵(𝑏)} = min{min(𝑇𝐴(𝑎), 𝑇𝐵(𝑎)) , min(𝑇𝐴(𝑏), 𝑇𝐵(𝑏))} 

≤ min{min(𝑇𝐴(𝑎), 𝑇𝐴(𝑏)) , min(𝑇𝐵(𝑎), 𝑇𝐵(𝑏))} 

≤ min(𝑇𝐴(𝑐), 𝑇𝐵(𝑐)) 

              = 𝑇𝐴∩𝐵(𝑐) 

Similarly, max{𝐼𝐴∩𝐵(𝑎), 𝐼𝐴∩𝐵(𝑏)} ≥ 𝐼𝐴∩𝐵(𝑐) and max{𝐹𝐴∩𝐵(𝑎), 𝐹𝐴∩𝐵(𝑏)} ≥ 𝐹𝐴∩𝐵(𝑐). 

(iii) It can be easily verified that Ɐ 𝑥, 𝑎 ∈ 𝑅,  there exists 𝑐 ∈ 𝑅  such that 𝑎 ∈ 𝑐 + 𝑥  & 

min{𝑇𝐴∩𝐵(𝑥), 𝑇𝐴∩𝐵(𝑎)} ≤ 𝑇𝐴∩𝐵(𝑐), max{𝐼𝐴∩𝐵(𝑥), 𝐼𝐴∩𝐵(𝑎)} ≥ 𝐼𝐴∩𝐵(𝑐)  and max{𝐹𝐴∩𝐵(𝑥), 𝐹𝐴∩𝐵(𝑎)} ≥
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𝐹𝐴∩𝐵(𝑐). 

(iv) Ɐ 𝑎 ∈ 𝑅, min{𝑇𝐴∩𝐵(𝑎), 𝑇𝐴∩𝐵(𝑏)} ≤ inf{𝑇𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} , max{𝐼𝐴∩𝐵(𝑎), 𝐼𝐴∩𝐵(𝑏)} ≥ sup{𝐼𝐴∩𝐵(𝑐): 𝑐 ∈

𝑎 ∘ 𝑏} and max{𝐹𝐴∩𝐵(𝑎), 𝐹𝐴∩𝐵(𝑏)} ≥ sup{𝐹𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}. 

Hence, 𝐴 ∩ 𝐵 is single-valued neutrosophichyperring over 𝑅.   ∎ 

Theorem 3.5. Let 𝐴 be a single-valued neutrosophic hyperring over 𝑅. Then for every 𝑡 ∈ [0, 1], 𝐴𝑡 ≠ ∅ 

is a subhyperring over 𝑅. 

 

Proof. Let 𝐴 be a single-valued neutrosophichyperring over 𝑅.  Ɐ 𝑡 ∈ [0, 1], let 𝑎, 𝑏 ∈ 𝐴𝑡 . Then 

𝑇𝐴(𝑎), 𝑇𝐴(𝑏) ≥ 𝑡, 𝐼𝐴(𝑎), 𝐼𝐴(𝑏) ≤ 𝑡and 𝐹𝐴(𝑎), 𝐹𝐴(𝑏) ≤ 𝑡. Since 𝐴 is a single-valued neutrosophic sub hyper 

group of (𝑅, +), we have the following: 

inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} ≥ min{𝑇𝐴(𝑎), 𝑇𝐴(𝑏)} ≥ min{𝑡, 𝑡} = 𝑡, 

sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} ≤ 𝑡, 

and 

sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} ≤ 𝑡. 

This implies that 𝑐 ∈ 𝐴𝑡 and then for every 𝑐 ∈ 𝑎 + 𝑏, we obtain 𝑎 + 𝑏 ⊆ 𝐴𝑡. As such, for every 𝑐 ∈ 𝐴𝑡, 

we obtain 𝑐 + 𝐴𝑡 ⊆ 𝐴𝑡. Now let 𝑎, 𝑐 ∈ 𝐴𝑡. Then 𝑇𝐴(𝑎), 𝑇𝐴(𝑐) ≥ 𝑡, 𝐼𝐴(𝑎), 𝐼𝐴(𝑐) ≤ 𝑡and 𝐹𝐴(𝑎), 𝐹𝐴(𝑐) ≤ 𝑡. 

 

𝐴 is a single-valued neutrosophic subhypergroup of (𝑅, +), there exists 𝑏 ∈ 𝑅 such that 𝑎 ∈ 𝑐 + 𝑏 and 

𝑇𝐴(𝑏) ≥ min(𝑇𝐴(𝑎), 𝑇𝐴(𝑐)) ≥ 𝑡, 𝐼𝐴(𝑏) ≤ max(𝐼𝐴(𝑎), 𝐼𝐴(𝑐)) ≤ 𝑡, 𝐹𝐴(𝑏) ≤ max(𝐹𝐴(𝑎), 𝐹𝐴(𝑐)) ≤ 𝑡, and this im-

plies that 𝑏 ∈ 𝐴𝑡. Therefore, we obtain 𝐴𝑡 ⊆ 𝑐 + 𝐴𝑡. As such, we obtain 𝑐 + 𝐴𝑡 = 𝐴𝑡. As a result, 𝐴𝑡 is a 

subhypergroup of (𝑅, +). 

 

Let 𝑎, 𝑏 ∈ 𝐴𝑡 ,then 𝑇𝐴(𝑎), 𝑇𝐴(𝑏) ≥ 𝑡, 𝐼𝐴(𝑎), 𝐼𝐴(𝑏) ≤ 𝑡 and 𝐹𝐴(𝑎), 𝐹𝐴(𝑏) ≤ 𝑡.Since 𝐴 is a single-valued neutro-

sophic subsemihypergroup of (𝑅, ∘), then for all 𝑎, 𝑏 ∈ 𝑅, we have the following: 

inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} ≥ min{𝑇𝐴(𝑎), 𝑇𝐴(𝑏)} = 𝑡, 

sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} ≤ max(𝐼𝐴(𝑎), 𝐼𝐴(𝑏)) = 𝑡, 

and 

sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} ≤ max(𝐹𝐴(𝑎), 𝐹𝐴(𝑏)) = 𝑡. 

This implies that 𝑐 ∈ 𝐴𝑡  and consequently 𝑎 ∘ 𝑏 ∈ 𝐴𝑡 . Therefore, for every 𝑎, 𝑏 ∈ 𝐴𝑡  we obtain 𝑎 ∘ 𝑏 ∈

𝑃∗(𝑅). Hence 𝐴𝑡 is a subhyperring over 𝑅.        

 

Theorem 3.6. Let 𝐴 be a single-valued neutrosophic set over 𝑅.Then the following statements are equiv-

alent: 

(i) 𝐴is a single-valued neutrosophic hyperring over 𝑅. 

(ii) Ɐ𝑡 ∈ [0, 1], a non-empty 𝐴𝑡 is a sub hyperring over 𝑅. 

Proof.  

(𝑖) ⟹ (𝑖𝑖) Ɐ 𝑡 ∈ [0, 1], by Theorem 3.5, 𝐴𝑡 is sub hyperring over 𝑅. 

(𝑖𝑖) ⟹ (𝑖) Assume that 𝐴𝑡  is a subhyperring over 𝑅. Let 𝑎, 𝑏 ∈ 𝐴𝑡  and therefore 𝑎 + 𝑏 ⊆ 𝐴𝑡0
. Then for 

every 𝑐 ∈ 𝑎 + 𝑏 we have 𝑇𝐴(𝑐) ≥ 𝑡0, 𝐼𝐴(𝑐) ≤ 𝑡0and 𝐹𝐴(𝑐) ≤ 𝑡0, which implies that: 

min(𝑇𝐴(𝑎), 𝑇𝐴(𝑏)) ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏}, 

max(𝐼𝐴(𝑎), 𝐼𝐴(𝑏)) ≥ sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏}, 

and 
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max(𝐹𝐴(𝑎), 𝐹𝐴(𝑏)) ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 

Therefore, condition (i) of Definition 3.1 has been verified.  

Next, let 𝑥, 𝑎 ∈ 𝐴𝑡1
 for every 𝑡1 ∈ [0, 1]  which means that there exists 𝑏 ∈ 𝐴𝑡1

 such that 𝑎 ∈ 𝑥 ∘ 𝑏 . 

Since𝑏 ∈ 𝐴𝑡1
, we have 𝑇𝐴(𝑏) ≥ 𝑡1, 𝐼𝐴(𝑏) ≤ 𝑡1 and 𝐹𝐴(𝑏) ≤ 𝑡1, and thus we have  

𝑇𝐴(𝑏) ≥ 𝑡1 = min(𝑇𝐴(𝑎), 𝑇𝐴(𝑐)), 

𝐼𝐴(𝑏) ≤ 𝑡1 = max(𝐼𝐴(𝑎), 𝐼𝐴(𝑐)), 

and 

𝐹𝐴(𝑏) ≤ 𝑡1 = max(𝐹𝐴(𝑎), 𝐹𝐴(𝑐)). 

Therefore, condition (ii) of Definition 3.1 has been verified. Compliance to condition (iii) of Definition 

3.1 can be proven in a similar manner. Thus, 𝐴 is a single-valued neutrosophic subhypergroup of (𝑅, +). 

Now since 𝐴𝑡 is a subsemihypergroup of the semihypergroup (𝑅, ∘), we have the following. Let 𝑎, 𝑏 ∈

𝐴𝑡2
 and therefore we have 𝑎 ∘ 𝑏 ∈ 𝐴𝑡2

.  Thus for every 𝑐 ∈ 𝑎 ∘ 𝑏 , we obtain 𝑇𝐴(𝑐) ≥ 𝑡2, 𝐼𝐴(𝑐) ≤ 𝑡2  and 

𝐹𝐴(𝑐) ≤ 𝑡2, and therefore it follows that: 

min(𝑇𝐴(𝑎), 𝑇𝐴(𝑏)) ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}, 

max(𝐼𝐴(𝑎), 𝐼𝐴(𝑏)) ≥ sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}, 

and 

max(𝐹𝐴(𝑎), 𝐹𝐴(𝑏)) ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}, 

which proves that condition (iv) of Definition 3.1 has been verified. Hence 𝐴 is a single-valued neutro-

sophic hyperring over 𝑅.        

4 Single-Valued Neutrosophic Hyperideals 

Definition 4.1.Let 𝐴 be a SVNS over 𝑅. Then 𝐴 is single-valued neutrosophic left (resp. right) 
hyperideal over 𝑅, if , 
 
(i) Ɐ 𝑎, 𝑏 ∈ 𝑅, min{𝑇𝐴(𝑎), 𝑇𝐴(𝑏)} ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} , max{𝐼𝐴(𝑎), 𝐼𝐴(𝑏)} ≥ sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 

and max{𝐹𝐴(𝑎), 𝐹𝐴(𝑏)} ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 
(ii) Ɐ 𝑥, 𝑎 ∈ 𝑅,  there exists 𝑏 ∈ 𝑅  such that 𝑎 ∈ 𝑥 + 𝑏  and min{𝑇𝐴(𝑥), 𝑇𝐴(𝑎)} ≤

𝑇𝐴(𝑏) , max{𝐼𝐴(𝑥), 𝐼𝐴(𝑎)} ≥ 𝐼𝐴(𝑏) and max{𝐹𝐴(𝑥), 𝐹𝐴(𝑎)} ≥ 𝐹𝐴(𝑏) 
(iii) Ɐ 𝑥, 𝑎 ∈ 𝑅,  there exists 𝑐 ∈ 𝑅  such that 𝑎 ∈ 𝑐 + 𝑥  and min{𝑇𝐴(𝑥), 𝑇𝐴(𝑎)} ≤

𝑇𝐴(𝑐) , max{𝐼𝐴(𝑥), 𝐼𝐴(𝑎)} ≥ 𝐼𝐴(𝑐) and max{𝐹𝐴(𝑥), 𝐹𝐴(𝑎)} ≥ 𝐹𝐴(𝑐) 
(iv) Ɐ 𝑎, 𝑏 ∈ 𝑅, 𝑇𝐴(𝑏) ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}  (resp. 𝑇𝐴(𝑎) ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} ), 𝐼𝐴(𝑏) ≥

sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} (resp. 𝐼𝐴(𝑎) ≥ sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}) and 𝐹𝐴(𝑏) ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}  (resp. 
𝐹𝐴(𝑎) ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}) 

 

𝐴 is a single-valued neutrosophic left (resp. right) hyperidealof 𝑅.  From conditions (i), (ii) and (iii) 𝐴 is 

a single-valued neutrosophic subhypergroup of (𝑅, +).  

 
Definition 4.2.Let 𝐴 be a SVNS over 𝑅. Then 𝐴 is a single-valued neutrosophic hyper ideal over 𝑅, if the 
following conditions are satisfied: 

 
(i) Ɐ 𝑎, 𝑏 ∈ 𝑅, min{𝑇𝐴(𝑎), 𝑇𝐴(𝑏)} ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} , max{𝐼𝐴(𝑎), 𝐼𝐴(𝑏)} ≥ sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 

and max{𝐹𝐴(𝑎), 𝐹𝐴(𝑏)} ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 
(ii) Ɐ 𝑥, 𝑎 ∈ 𝑅,  there exists 𝑏 ∈ 𝑅  such that 𝑎 ∈ 𝑥 + 𝑏  and min{𝑇𝐴(𝑥), 𝑇𝐴(𝑎)} ≤

𝑇𝐴(𝑏) , max{𝐼𝐴(𝑥), 𝐼𝐴(𝑎)} ≥ 𝐼𝐴(𝑏) and max{𝐹𝐴(𝑥), 𝐹𝐴(𝑎)} ≥ 𝐹𝐴(𝑏) 
(iii) Ɐ 𝑥, 𝑎 ∈ 𝑅,  there exists 𝑐 ∈ 𝑅  such that 𝑎 ∈ 𝑐 + 𝑥  and min{𝑇𝐴(𝑥), 𝑇𝐴(𝑎)} ≤

𝑇𝐴(𝑐) , max{𝐼𝐴(𝑥), 𝐼𝐴(𝑎)} ≥ 𝐼𝐴(𝑐) and max{𝐹𝐴(𝑥), 𝐹𝐴(𝑎)} ≥ 𝐹𝐴(𝑐) 
(iv) Ɐ 𝑎, 𝑏 ∈ 𝑅, max(𝑇𝐴(𝑎), 𝑇𝐴(𝑏)) ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} , max(𝐼𝐴(𝑎), 𝐼𝐴(𝑏)) ≥ sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} 

and max(𝐹𝐴(𝑎), 𝐹𝐴(𝑏)) ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} 
 



Neutrosophic Sets and Systems, Vol. 29, 2019 

 

D.preethi et al, Vimala et al. Single-Valued NeutrosophicHyperrings and Hyperideals 

126 

From conditions (i), (ii) and (iii) 𝐴 is a single-valued neutrosophic sub hyper group of (𝑅, +). Condition 
(iv) indicate both single-valued neutrosophic left hyperideal and single-valued neutrosophic right hy-
perideal. Hence 𝐴 is a single-valued neutrosophic hyper ideal of 𝑅.  

 
Theorem 4.3.Let 𝐴 be a non-null SVNS over 𝑅. 𝐴 is a single-valued neutrosophic hyperideal over 𝑅 iff 
𝐴 is a single-valued neutrosophic hyper group over (𝑅, +) and also 𝐴is both a single-valued neutro-
sophic left hyper ideal and a single-valued neutrosophic right hyper ideal of 𝑅.  
 
Proof. This is straight forward by Definitions 4.1 and 4.2.       
 
Theorem 4.4.Let 𝐴and 𝐵 be two single-valued neutrosophic hyper ideals over 𝑅. Then 𝐴 ∩ 𝐵 is a single-
valued neutrosophichyperideal over 𝑅 if it is non-null.  
 
Proof. Let 𝐴  and 𝐵  are single-valued neutrosophic hyper ideals over 𝑅. By Definition 4.2, 𝐴 ∩ 𝐵 =
{〈𝑎, 𝑇𝐴∩𝐵(𝑎), 𝐼𝐴∩𝐵(𝑎), 𝐹𝐴∩𝐵(𝑎)〉: 𝑎 ∈ 𝑅}, where 𝑇𝐴∩𝐵(𝑎) = min(𝑇𝐴(𝑎), 𝑇𝐵(𝑎)) , 𝐼𝐴∩𝐵(𝑎) = max(𝐼𝐴(𝑎), 𝐼𝐵(𝑎)) 
and𝐹𝐴∩𝐵(𝑎) = max(𝐹𝐴(𝑎), 𝐹𝐵(𝑎)). Then Ɐ 𝑎, 𝑏 ∈ 𝑅, we have the following. We only prove all the four 
conditions for the truth membership terms 𝑇𝐴, 𝑇𝐵 . The proof for the 𝐼𝐴 , 𝐼𝐵 and 𝐹𝐴, 𝐹𝐵 membership func-
tions obtained in a similar manner.   
(i) min{𝑇𝐴∩𝐵(𝑎), 𝑇𝐴∩𝐵(𝑏)} = min{min(𝑇𝐴(𝑎), 𝑇𝐵(𝑎)) , min(𝑇𝐴(𝑏), 𝑇𝐵(𝑏))} 

  ≤ min{min(𝑇𝐴(𝑎), 𝑇𝐴(𝑏)) , min(𝑇𝐵(𝑎), 𝑇𝐵(𝑏))} 

          ≤ min{inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} , inf{𝑇𝐵(𝑐): 𝑐 ∈ 𝑎 + 𝑏}} 

              ≤ inf{min(𝑇𝐴(𝑐), 𝑇𝐵(𝑐)) : 𝑐 ∈ 𝑎 + 𝑏} 

              = inf{𝑇𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 

Similarly, it can be proven that max{𝐼𝐴∩𝐵(𝑎), 𝐼𝐴∩𝐵(𝑏)} ≥ sup{𝐼𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 + 𝑏}  and 

max{𝐹𝐴∩𝐵(𝑎), 𝐹𝐴∩𝐵(𝑏)} ≥ sup{𝐹𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 + 𝑏}. 

(ii) Ɐ𝑥, 𝑎 ∈ 𝑅, there exists 𝑏 ∈ 𝑅 such that 𝑎 ∈ 𝑥 + 𝑏. Then: 

min{𝑇𝐴∩𝐵(𝑎), 𝑇𝐴∩𝐵(𝑏)} = min{min(𝑇𝐴(𝑎), 𝑇𝐵(𝑎)) , min(𝑇𝐴(𝑏), 𝑇𝐵(𝑏))} 

     ≤ min{min(𝑇𝐴(𝑎), 𝑇𝐴(𝑏)) , min(𝑇𝐵(𝑎), 𝑇𝐵(𝑏))} 

≤ min(𝑇𝐴(𝑐), 𝑇𝐵(𝑐)) 

                = 𝑇𝐴∩𝐵(𝑐) 

Similarly, max{𝐼𝐴∩𝐵(𝑎), 𝐼𝐴∩𝐵(𝑏)} ≥ 𝐼𝐴∩𝐵(𝑐) and max{𝐹𝐴∩𝐵(𝑎), 𝐹𝐴∩𝐵(𝑏)} ≥ 𝐹𝐴∩𝐵(𝑐). 

(iii) Ɐ 𝑥, 𝑎 ∈ 𝑅,  there exists 𝑐 ∈ 𝑅  such that 𝑎 ∈ 𝑐 + 𝑥  and min{𝑇𝐴∩𝐵(𝑥), 𝑇𝐴∩𝐵(𝑎)} ≤

𝑇𝐴∩𝐵(𝑐), max{𝐼𝐴∩𝐵(𝑥), 𝐼𝐴∩𝐵(𝑎)} ≥ 𝐼𝐴∩𝐵(𝑐) and max{𝐹𝐴∩𝐵(𝑥), 𝐹𝐴∩𝐵(𝑎)} ≥ 𝐹𝐴∩𝐵(𝑐). 

 

(iv) Ɐ 𝑎 ∈ 𝑅, max{𝑇𝐴∩𝐵(𝑎), 𝑇𝐴∩𝐵(𝑏)} ≤ inf{𝑇𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} , min{𝐼𝐴∩𝐵(𝑎), 𝐼𝐴∩𝐵(𝑏)} ≥ sup{𝐼𝐴∩𝐵(𝑐): 𝑐 ∈

𝑎 ∘ 𝑏} and min{𝐹𝐴∩𝐵(𝑎), 𝐹𝐴∩𝐵(𝑏)} ≥ sup{𝐹𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}. 

Hence, it is verified that 𝐴 ∩ 𝐵 is a single-valued neutrosophichyperideal over 𝑅.   

 

5. Conclusion 

We developed hyperstructure for the SVNS model through several hyperalgebraic structures 

such as hyperrings and hyperideals. The properties of these structures were studied and verified. The 

future work is on the development of hyperalgebraic theory for Plithogenic sets which is the 

generalization of neutrosophic set and also planned to develop some real life applications. 
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Abstract: The decision-making problems in which there are large numbers of qualitative and 

quantitative factors involved, the technique of dimensionality reduction plays an important role for 

simplicity and wider applicability. The impreciseness in the information about these factors are 

being considered in the neutrosophic perception with the parameters - degree of truth-membership, 

degree of indeterminacy (neutral) and degree of falsity for a better span of the information. In the 

present communication, we first propose a technique for finding the threshold value for the 

information provided in the form of neutrosophic soft matrix. Further, utilizing the proposed 

definitions of the object-oriented neutrosophic soft matrix and the parameter-oriented neutrosophic 

soft matrix, we present a new algorithm for the dimensionality reduction process. The proposed 

algorithm has also been applied in an illustrative example of decision-making problem. Further, a 

comparative analysis in contrast with the existing methodologies has been successfully presented 

with comparative remarks and additional advantages.  

 

Keywords: Neutrosophic soft matrix, Dimensionality reduction, multiple criteria decision-making, 

Object-oriented matrix, Parameter-oriented matrix. 
 

 

1. Introduction 

The methodology of dimensionality reduction is to set out an arrangement of set of high 

dimensional vectors to a lower dimensionality space while holding systematic measures among 

them. Due to the inherited disadvantage of dimensionality, there are limitations over using the 

techniques of machine learning as well as the techniques of data mining for high dimensional data. 

However, there are two noteworthy dimensionality reduction – procedure where the process of 

feature selection and feature extraction/feature reduction is involved. In the procedural steps of feature 

selection, we select a subset of optimal/most useful features as per the need of the objective function. 

The prime necessity of the feature selection is to enhance the process of data mining and to increase 

the speed of learning by reducing the dimensionality and obliterate the noise. Feature extraction or 
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Feature reduction is the task of mapping the large dimensional data to a smaller dimensional data. 

The major goals of the dimensionality reduction techniques are to enhance the ability to handle both 

irrelevant and redundant features, to enhance the cost efficiency in contrast with the existing subset 

evaluation methods etc. It may be noted that the higher the number of factors, the harder it will be to 

visualize and work on it. 

In case of extreme data modality, dimensionality reduction becomes the center of curiosity to a 

significant point of study in various fields of application. In the field of soft sets, Chen at al. [1] 

presented a novel concept of parameterization reduction and compared with the reduction of 

attributes in rough set theory. There are sequential and simultaneous perspectives to consolidate the 

selection of samples and for reduction of dimensionality of data whose application structure has 

been given by Xu et al. [2]. This almost gives the best results while processing of the large-scale 

training data in comparison to the original data models. In addition to this, they also reached to the 

conclusion that the selection of samples and the reduction of the data dimensionality are mandatory 

and helpful for handling the modern large-scale databases. Su et al. [3] introduced a new approach 

called linear sequence discriminant analysis (LSDA) for reducing the dimensionality of the 

sequences and devised two new algorithms which differs in the extraction of the statistics. Perfilieva 

[3] introduced the technique of fuzzy transforms which are in agreement with the technique of 

dimensionality reduction, based on Laplacian eigenmaps along with an application of fuzzy 

transform to the mathematical finance. 

Konate et al. [5] utilized the principal component analysis (PCA) and linear discriminant 

analysis (LDA) for the reduction of the dimensionality of the original log set of Chinese Continental 

Scientific Drilling Main Hole to a convenient size, and then feed these reduced-log set into the three 

classifiers, i.e., support vector machines, feed forward back propagation and radial basis function 

neural networks. Further, they also demonstrate and discussed the utilization of the combination of 

dimensionality reduction methods & classifiers and come up with the result that the reduced log set 

found from dimensionality reduction separate the metamorphic rocks types better or almost as well 

as the original log set. Sabitha et al. [6] utilized the three different dimensionality reduction 

techniques, i.e., principal component analysis, singular value decomposition & learning vector 

quantization. They applied these three techniques to solar irradiance data set which consists of 

temperature, solar irradiance, and humidity data and evaluated the efficiency and attain the best 

technique to be applicable for the data set. Chaterjee et al. [7] proposed a novel hybrid method 

surround factor relationship and multi-attributive border approximation area comparison 

(MABAC) methods for selection and evaluation of non-traditional machining processes. The 

technique condenses the problem of pair wise comparisons for estimating criteria weights in 

multi-criteria decision-making problem significantly. 

Mukhametzyanov and Pamucar [8] presented a model to check the result consistency of MCDM 

methods and in the process of choosing the best one. Further, issue of sensitivity in the process of 



Neutrosophic Sets and Systems, Vol. 29, 2019     131 

 

 

Abhishek Guleria and Rakesh Kumar Bajaj, Technique for Reducing Dimensionality of Data in Decision Making Utilizing 

Neutrosophic Soft Matrices 

 

decision-making using the different ranking algorithms, e.g., “SAW, MOORA, VIKOR, COPRAS, 

CODAS, TOPSIS, D’IDEAL, MABAC, PROMETHEE-I,II, ORESTE-II” have been analyzed by making 

necessary perturbations in the entries of the decision matrix within a permissible imprecision value. 

In order to deal with the vagueness and impreciseness in various engineering applications, 

socio-economic problems and other decision-making problems, there are many theories available in 

literature which have their own limitations due to the involvement of the parameterization tools. 

Molodtsov [9] proposed a new kind of set, termed as soft set, which has the capability to overcome 

such limitations and put forward important deliberations based on this. Next, Maji et al. [10-12] 

extended the notion of soft set to fuzzy soft set & intuitionistic fuzzy soft set and proposed various 

standard binary operations over it with applications in decision-making. Kahraman et al. [13] 

studied the fuzzy multi-criteria decision-making literature in detail and presented a literature 

review on the MCDM techniques. Liu et al. [14] proposed a model for evaluation and selection of a 

transport service provider based on a single valued neutrosophic number (an extension of interval 

valued intuitionistic fuzzy number). It was a modified version of the DEMATEL method 

(Decision-making Trial and Evaluation Laboratory Method) for ranking alternative solutions. 

Kumar and Bajaj [15] introduced the concept of complex intuitionistic fuzzy soft set and proposed 

some important distance measures with applications.  

Hooda and Hooda [16] used the entropy optimization principles for establishing some criteria 

for dimension reduction over multivariate data with no external variables. A new criterion for 

maximum entropy and its relation with other criteria have been established for the selection of 

principal variables. Maji et al. [17] first introduced the notion of neutrosophic soft set, operations for 

handling the imprecise & inconsistent information which was further redfined by Deli and Broumi  

[18] for a better understanding of the belief systems. Further, Peng et al. [19] extended the concept to 

the Pythagorean fuzzy soft set (PyFSS) with different binary operations and utilized them to solve 

decision-making problems. Cuong [20] extended the notion of intuitionistic fuzzy soft sets to picture 

fuzzy soft set. Recently, Guleria and Bajaj [21] successfully proposed the notion of T-spherical fuzzy 

soft set and studied some new aggregation operators along with some applications in the field of 

decision-making. 

  The concept of soft matrices was first introduced by Naim and Serdar [22] for representing the 

notion of soft set with its successful application in the decision-making problems. This matrix 

representation of soft set was further extended by Yong et al. [23] and Chetia et al. [24] by 

incorporating the fuzzy and intuitionistic fuzzy setup to deal the decision-making problems 

respectively.  Also, Deli and Broumi [18] have proposed neutrosophic soft matrices and operators 

which are more functional to make theoretical studies and application in the neutrosophic soft set 

theory. Such matrices are helpful in representing a neutrosophic soft set in the memory of computers 

for a wider applicability. Hooda and Kumari [25] proposed a dimensionality reduction model for 

finding coherent and logical solution to various real-life problems containing uncertainty, 
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impreciseness and vagueness by utilizing the fuzzy soft set. Recently, Guleria and Bajaj [26] studied 

the Pythagorean fuzzy soft matrices and its various types along with a new decision-making 

algorithm to deal the medical diagnosis problem and decision-making problem. In the field of 

neutrosophic set theory, the new trends have brought important field of research. Abdel-Basset et al. 

[27] developed a multi-criteria group decision-making method under neutrosophic environment 

based on analytic network process and VIKOR method to solve a supplier selection problem. Many 

researchers have worked on neutrosophic set theory and applied these notions in solving various 

multi-criteria decision-making problems, viz., selection processes [28-30], green supply chain 

management [31], IoT based problems [32,33]. 

  In the literature available, the problem of dimensionality reduction has not been addressed 

using the notion of neutrosophic soft matrices yet. In the proposed research work, in order to handle 

the parameterization tool in a more elaborative way, we have proposed a new methodology to 

handle the dimensionality reduction of the data in a decision-making problem using the notion of 

neutrosophic sets in a well structure way and compared it with the existing methodologies & 

example. 

The paper has been organized as follows. The basic notions related to the definitions and 

operations of neutrosophic soft sets and soft matrices have been presented in Section 2. The 

definitions of the object-oriented neutrosophic soft matrix, the parameter-oriented neutrosophic soft 

matrix and its threshold value have been proposed along with an algorithm for the dimensionality 

reduction in Section 3. In Section 4, an application by taking a decision-making problem into account 

has been dealt with the help of a numerical example using the proposed methodology. Some 

comparative remarks depicting the advantages and limitations have also been listed. Finally, the 

paper is concluded in Section 5 by stating the scope for the future work. 

2. Basic Notions & Preliminaries 

Some of the basic definitions and fundamental notions related to the neutrosophic soft set and 

matrix are briefly presented in this section which is easily available in literature. The geometrical 

extensions and generalizations of fuzzy set are being presented by Figure 1 below:  

 

Figure 1: Geometrical Representation of Extensions and Generalizations of Fuzzy Set 
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In the above Figure 1, the different constraint conditions for the various generalized types of fuzzy 

sets for intuitionistic fuzzy set (IFS), Pythagorean fuzzy set (PyFS), neutrosophic set (NS), picture 

fuzzy set (PFS) and spherical fuzzy set (SFS) in terms of membership degree (  ), non-membership 

degree ( ), indeterminacy or hesitation ( ) have been presented. The constraints have been figured 

out geometrically as per the conditions.  

There are different basic notions of matrices, e.g., fuzzy matrices, intuitionistic fuzzy matrices and 

neutrosophic matrices whose formal definitions are as follows: 

Definition 1  

Let },,,{ 21 muuuU = be the set of alternatives and },,,{ 21 nvvvV = be the set of attributes of 

every element of U .  

• A fuzzy matrix [34] is defined by {( , ), ( , )}i j M i jM u v u v= for all 

1,2, , & 1,2, ,i m j n= =  where, : [0, 1]M U V  → .
.
 

• A intuitionistic fuzzy matrix [35] is defined by 

{( , ), ( , ), ( , )}i j M i j M i jM u v u v u v = for all 1,2, , & 1,2, ,i m j n= =  

where, : [0, 1]M U V  →  and : [0, 1]M U V  →
.
 satisfying the condition 

0 ( , ) ( , ) 1M i j M i ju v u v  +  .  

• A neutrosophic fuzzy matrix [36] is defined by {[( )] | ( )}ij m n ijM a a K I=  for all 

1,2, , & 1,2, ,i m j n= =  where, ( )K I
.
 is the neutrosophic field. 

For detailed description, the cited references may be referred.  

Definition 2 [37] A single valued neutrosophic set M in U (universal set) is defined by 

{ , ( ), ( ), ( ) | };M M MM u T u I u F u u U=     with : [0, 1]MT U → , : [0, 1]MI U →  and 

: [0, 1]MF U →  being the degree of truth membership, degree of indeterminacy and degree of falsity 

membership respectively and satisfy the condition 

0 ( ) ( ) ( ) 3; .M M MT u I u F u u U + +     

The sequential development of the notion of soft sets and soft matrices to the concept of 

Neutrosophic soft sets/matrices can be easily found with necessary illustrative examples in literature 

[9, 17, 18, 22, 23]. 

Suppose },,,,{ 321 nuuuuU = is the universe of discourse and let the collection of parameters 

},,,,{ 321 nppppP =  be under consideration.  

• The pair ),( PF is defined to be a soft set over U  : ( )F P U→ , where ( )U is the 

power set of U .  

• Let ( )FS U  represents the collection of all fuzzy sets of U . A pair ( , )F P  is defined as a 

fuzzy soft set over ( )FS U , where F is a function : ( ( ))F P FS U→ .  

• The pair ( , )F P is termed as the neutrosophic soft set over U  if : ( )F P NS U→  and 

can be defined by ( , ) {( , ( )) : , ( ) ( )}F P p F p p P F p NS U=   , where ( )NS U  is the 

collection of all neutrosophic sets of U .  
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• Suppose ( , )F P  be a soft set on U . Then the set U P  is represented 

by {( , ), , ( )}R u p p P u F p=   .The characterizing function 

of R is : [0, 1]R U P  → defined as 

1 ( , ) ;
( , )

0 ( , ) .
R

if u p R
u p

if u p R



= 


 

If ( , )ij R i ja u p= , then a matrix [ ] [ ( , )]ij R i ja u p= is defined as soft matrix of the soft 

set ( , )F P  on U  of size m n . 

•If ( , )F P  be a neutrosophic soft set on U , then the set U P  is represented by 

                             {( , ), , ( )}R u p p P u F p=   .  

The set R may defined by its characterizing functions- truth function, indeterminacy and  

falsity function given by : [0, 1]RT U P → , : [0, 1]RI U P →  and  : [0, 1]RF U P →  

respectively. 

If ( , , ) ( ( , ), ( , ), ( , ))ij ij ij R i j R i j R i jT I F T u p I u p F u p= , where ( , )R i jT u p represents the 

belongingness of iu , ( , )R i jI u p represents the indeterminacy of iu and 

( , )R i jF u p represents the non-belongingness of iu  in the neutrosophic set ( )jF p  

respectively, then the neutrosophic soft matrix of order m n over ,U  is given by 

         

11 11 11 12 12 12 1 1 1

21 21 21 22 22 22 2 2 2

1 1 1 2 2 2

( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , )
[ ] ( , , )

( , , ) ( , , ) ( , , )

n n n

n n nM M M

ij m n ij ij ij m n

m m m m m m mn mn mn

T I F T I F T I F

T I F T I F T I F
m T I F

T I F T I F T I F

 

 
 
  = =   
 
 

.

 

In order to have a better understanding for constructing a neutrosophic soft matrix, let us 

consider 1 2 3{ , , }U u u u=  as a universal set and 1 2 3{ , , }P p p p=  as a set of parameters and  

1 1 2 3

2 1 2 3

3 1 2 3

( ) {( ,0.4,0.5,0.4), ( ,0.5,0.5,0.3), ( ,0.9,0.6,0.2)},

( ) {( ,0.2,0.6,0.5), ( ,0.5,0.6,0.3), ( ,0.5,0.4,0.2)},

( ) {( ,0.9,0.6,0.2), ( ,0.5,0.4,0.2), ( ,0.5,0.4,0.3)},

F p u u u

F p u u u

F p u u u

=

=

=  

then ( , )F P represents the family of 1 2 3( ), ( ), ( )F p F p F p on U after parameterization. 

Hence, the neutrosophic soft matrix [ ( , )]M F P may be given by

 

3 3

(0.4, 0.5,0.4) (0.2,0.6, 0.5) (0.5, 0.3,0.2)

[ ] ( , , ) (0.5,0.5, 0.3) (0.5,0.6, 0.3) (0.5, 0.6,0.6)

(0.9,0.6, 0.2) (0.5, 0.4,0.2) (0.5,0.4, 0.3)

M M M

ij m n ij ij ijm T I F 

 
  = =   
  

. 

Throughout this paper, we take m nNSM   to represent the collection of all the neutrosophic soft 

matrices of order m n . 
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Operations over Neutrosophic Soft Matrices: 

Different types of binary operations for two Neutrosophic soft matrices ( ), ,M M M

ij ij ijM T I F =
 

 

and ( ), ,N N N

ij ij ij m nN T I F NSM 
 = 
 

 are as follows [18]: 

• ( ), 1 , & .c M M M

ij ij ijM F I T i j = − 
 

 

• ( ) ( ) ( )max , , min , ,min , & .M N M N M N

ij ij ij ij ij ijM N T T I I F F i j  = 
 

 

• ( ) ( ) ( )min , , max , , max , & .M N M N M N

ij ij ij ij ij ijM N T T I I F F i j  = 
 

 

3. Algorithm for Dimensionality Reduction 

In this section, we first propose two types of matrices - object-oriented neutrosophic soft matrix and 

parameter-oriented neutrosophic soft matrix, and then by proposing a new definition for the threshold 

value we provide a new algorithm for the dimensionality reduction. In general, let 

1 2{ , , , }mU u u u=  be the universe of discourse and 1 2 3{ , , , , }nP p p p p=  be the set of 

parameters. Consider M to be the neutrosophic soft matrix of the neutrosophic soft set ( , )F P .  

Definition 3 The object-oriented neutrosophic soft matrix with respect to the parameter is defined as:  

( )1,  2, ,   & 1,  2,..., ;          3.1, , ;
ij ij ij

i

j j j

T I F
O i

P P P
m j n= =  =

 
 
 
     

where | |   denotes the cardinality of the set.  

Definition 4 The parameter-oriented neutrosophic soft matrix with respect to the object is defined as:  

( )1,  2, ,  & 1,  2,..., ;           3.2, , ;
ij ij ij

j

i i i

T I F
P i

U U U
m j n= =  =

 
 
 
    

where | |   denotes the cardinality of the set.  

Definition 5 If [( , , )]M M M

ij ij ij m nM T I F NSM =  , then the respective score matrix of neutrosophic soft 

matrix M is  

                       
( )( ) ; & . (3.3)ij ij ij ijS M s T I F i j  = = −    

 

Definition 6 The threshold value of neutrosophic soft matrix is defined as 

( ) ,M M M

ij ij ijS T T I F= − where 

( )
, , ,

, , , , ; 1, 2, , & 1, 2, , . (3.4)
ij ij ij

T T T

i j i j i j

T I F
T T I F i m j n

U P U P U P

 
= = = = 

   
    

where | |   denotes the cardinality of the set.  
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Procedural steps of the proposed algorithm:

 
The methodology of the proposed algorithm for dimensionality reduction is given by: 

•   Step 1. We first construct the neutrosophic soft matrix as outlined in the beginning of the 

  section.  

• Step 2. Find the object-oriented matrix for the object iO and the parameter-oriented matrix 

for the parameters
jP .  Next, compute their score matrix using equation (3.1).  

• Step 3. Find the threshold element and threshold value of the neutrosophic soft matrix as 

proposed in equation (3.2).  

• Step 4. Remove those objects for which ( ) ( )iS O S T   and those parameters for 

which ( ) ( )jS P S T . 

• Step 5. The new neutrosophic soft matrix is the desired dimensionality reduced matrix.  

Based on the neutrosophic soft matrix, the object-oriented neutrosophic soft matrix, the 

parameter-oriented neutrosophic soft matrix and the score matrix, the proposed algorithm for 

dimensionality reduction may be represented with the help of the following flow chart (Figure 2):  

 

Figure 2: Algorithm for Dimensionality Reduction Using Neutrosophic Soft Matrix 

4. Application of Dimensionality Reduction in Decision-Making 

We consider an illustrative numerical example in this section for showing the step by step 

implementation of the proposed algorithm. 

Example: Consider there are 5 suppliers (say) 1 2 3 4 5{ , , , , }U u u u u u=
 
whose proficiencies are being 

evaluated on the criteria given by 1 2 3{ , , }P p p p= , where“ 1p : level of technology innovation”, 
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“ 2p : ability of management”, “ 3p : level of services”. The available data in the form of a 

neutrosophic soft set is shown below: 

1 1 2 3 4 5

2 1 2 3 4 5

3

( , ) {{ ( ) ( ,0.5,0.6,0.4), ( ,0.9,0.4,0.1), ( ,0.6,0.4,0.2), ( ,0.6,0.4,0.2), ( ,0.4,0.5,0.3)}

{ ( ) ( ,0.6,0.7,0.2), ( ,0.5,0.7,0.1), ( ,0.5,0.4,0.4), ( ,0.8,0.6,0.2), ( ,0.6,0.4,0.2)}

{ ( ) (

F P F p u u u u u

F p u u u u u

F p u

= =

=

= 1 2 3 4 5,0.5,0.6,0.2), ( ,0.4,0.8,0.3), ( ,0.7,0.6,0.2), ( ,0.6,0.4,0.4), ( ,0.5,0.5,0.1)}}u u u u

Step 1. First we construct the respective neutrosophic soft matrix. 

1 2 3

1

2

3

4

5

(0.5,0.6,0.4) (0.6,0.7,0.2) (0.5,0.6,0.2)

(0.9,0.4,0.1) (0.5,0.7,0.1) (0.4,0.8,0.3)

(0.6,0.4,0.2) (0.5,0.4,0.4) (0.7,0.6,0.2)

(0.6,0.4,0.2) (0.8,0.6,0.2) (0.6,0.6,0.4)

(0.4,0.5,0.3) (0.6,0.4,0.2) (0

p p p

u

u

u

u

u .5,0.5,0.1)

 
 
 
 
 
 
 
 
 
 
 

 

Step 2. Find the object-oriented neutrosophic soft matrix iO for i = 1, 2, 3, 4, 5 and the parameter- oriented 

neutrosophic soft matrix
jP  for j = 1, 2, 3. 

1 2 3

1

2

3

4

(0.5,0.6,0.4) (0.6,0.7,0.2) (0.5,0.6,0.2) (0.533,0.633,0.2667)

(0.9,0.4,0.1) (0.5,0.7,0.1) (0.4,0.8,0.3) (0.6,0.633,0.1667)

(0.6,0.4,0.2) (0.5,0.4,0.4) (0.7,0.6,0.2) (0.6,0.4667,0.2667)

(0.6,0.4,0

ip p p O

u

u

u

u

5

.2) (0.8,0.6,0.2) (0.6,0.6,0.4) (0.6667,0.4667,0.2667)

(0.4,0.5,0.3) (0.6,0.4,0.2) (0.5,0.5,0.1) (0.5,0.4667,0.2)

(0.6,0.46,0.24) (0.6,0.56,0.22) (0.54,0.58,0.24)j

u

P

 
 
 
 
 
 
 
 
 
 
 

 

Now, the score matrix of object-oriented neutrosophic soft matrix ( )iS O  and parameter- oriented 

neutrosophic soft matrix ( )jS P  is given as: 

1 2 3

1

2

3

( )

(0.5,0.6,0.4) (0.6,0.7,0.2) (0.5,0.6,0.2) (0.533,0.633,0.2667) 0.364179

(0.9,0.4,0.1) (0.5,0.7,0.1) (0.4,0.8,0.3) (0.6,0.633,0.1667) 0.494479

(0.6,0.4,0.2) (0.5,0.4,0.4) (0.7,0.6,0.2) (0.6,0.466

i ip p p O S O

u

u

u

4

5

7,0.2667) 0.475531

(0.6,0.4,0.2) (0.8,0.6,0.2) (0.6,0.6,0.4) (0.6667,0.4667,0.2667) 0.542231

(0.4,0.5,0.3) (0.6,0.4,0.2) (0.5,0.5,0.1) (0.5,0.4667,0.2) 0.40666

(0.6,0.46,0.24) (0.6,0.56,0.22) (0.54,0.58,0.24)j

u

u

P

( ) 0.4896 0.4768 0.4008jS P

 
 
 
 
 
 
 
 
 
 
 
  

 

Step 3. Compute the threshold element and threshold value of the neutrosophic soft matrix and its 

score value: 

 (0.58,0.546,0.233)T =  and ( ) 0.452782S T = . 
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Step 4. Now, we suppress those alternatives for which ( ) ( )iS O S T and those parameters for 

which ( ) ( )jS P S T .  Thus, our new desired matrix M  is given as: 

3

2'

3

4

0.4945

0.4755

0.5422

p

u
M

u

u

 
 
 =
 
 
 

 

Since the score value for supplier 4u is highest than the other score values, therefore, the supplier 4u  

is the best one to choose. 

 

On the other hand, the same problem is studied by Sumathi and Arockiarani [38] and the solution 

based on their proposed methodology is as follows: 

0.3664

0.4944

0.4755

0.5422

0.4067

AMA

 
 
 
 =
 
 
  

 

Therefore, the supplier 4u  is best. 

Comparative Remarks: 

Based on the above calculations and analysis, the following are the important comparative remarks:  

• Sumathi and Arockiarani [38] solved the problem of decision-making without using the 

concept of dimension reduction and found that the supplier 4u is highly preferable for any 

other supplier.  

• The proposed methodology has first dimensionally reduced the available data and then 

worked out that the supplier 4u  is the most suitable one.  

• Hence, the proposed method is consistent and better enough for solving decision-making 

problems.  

Advantages of the Proposed Work: 

In view of the above detailed analysis, the proposed algorithm for dimensionality reduction by 

utilizing the concept of neutrosophic soft matrices is found to be worthy enough in contrast with the 

existing related literatures. The following are the major advantages of the proposed work:  

• The proposed methodology has significantly reduced the amount of the data and in addition 

the decision is found to be equally consistent, reliable and dependable.  

• The methodology involves the notions of matrices and hence will prove to be widely 

applicable in many real-world applications.  
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• In case of large data set, the proposed methodology may suitably be implemented using the 

matrices for which we have the built-in-tools.  

5. Conclusions and Scope for Future Work 

In this paper, the technique for finding threshold value of the neutrosophic soft matrix is 

successfully provided with the definition of object-oriented and parameter-oriented neutrosophic 

soft matrix. An algorithm for dimensionality reduction has been properly outlined step by step. A 

numerical example clearly demonstrates the proposed methodology. In order to exhibit the viability 

and flexibility of the proposed algorithm, an example related to the decision-making problem has 

also been presented in detail. The example clearly validates our contribution and demonstrates that 

the proposed algorithm efficiently applies for the dimension reduction process. 

The proposed dimensionality reduction technique may further be applied in the following area:  

• Enhancing the performance of large-scale image retrieval: In large multimedia databases, it 

may not be feasible to search through the whole database in order to retrieve the nearest 

neighbors for a query. For similarity search and indexing, we do need a good data structure. It 

is quite possible that the existing data structures do not translate well for the high dimensional 

multimedia descriptors. By utilizing the proposed algorithm for the dimensionality reduction, 

we can map the nearest neighbors in the high dimensional space to nearest neighbors in the 

lower dimensional space. Similarly, in the field of content-based image retrieval (CBIR), the 

utilization of the dimensionality reduction algorithm may be in the images on the basis of 

textual features and images on the basis of visual features than to apply the traditional methods 

where all indexes (features) to be used to compare images which will lead to a large size image 

collection. 

• Face Recognition Algorithm: In the field of face recognition, a typical face recognition 

algorithm is 100 x 100 pixels in size i.e., 10000-dimensional vector, not all dimensions are 

needed. By applying the proposed algorithm for the dimensionality reduction, we can reduce 

the dimensional vectors. In the intrusion detection/ data mining applications, dimensionality 

reduction focuses on representing the data with minimum number of dimensions such that its 

properties are not lost and hence reducing the underlying complexity in the processing of the 

data. By using the proposed algorithm, we can map a given set of high dimensional data points 

into a surrogate low dimensional space. 
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Abstract: In this paper, we first propose the concept of Vague-valued possibility Neutrosophic 

vague soft expert sets (VPNVSEsets in short). It is a combination of vague-valued possibility 

neutrosophic vague sets and soft expert sets. We also define its basic operations and study some 

related properties. Lastly an algorithm is proposed applied to the concept of vague-valued 

possibility Neutrosophic vague soft expert sets in hypothetical decision making problem. Here we 

associate the degree of belongingness degree of indeterminacy and non-belongingness of the 

elements of universe set with the vague –valued possibility set. 

 

Keywords: Soft set, Neutrosophic soft expert set, Neutrosophic Vague soft set. 

 

 

1. Introduction 

          Most real life problems involve data with a high level of uncertainty and imprecision. 

Traditionally, classical mathematical theories such as fuzzy mathematics, probability theories and 

interval mathematics are used to deal with uncertain and fuzziness. But all these theories have their 

difficulties and weakness as pointed out by Molodstov [14]. This led to the introduction of the theory 

of soft sets by Molodstov [14] in 1999. However, in order to handle the indeterminate and inconsistent 

information, neutrosophic set is defined [18]. The theory of vague set was first proposed by Gau and 

Buehrer [12]. It is an extension of fuzzy set theory. In 2010,W. Xu J. Ma, S. Wang and G. Hao, 

introduced Vague soft sets and their properties as a generalization of [12].  G. Selvachandran and 

A.R. salleh [19], introduced Possibility vague soft expert theory and its application in decision 

making. 

        In, [18] Smarandache talked about neutrosophic set theory. It is an important new 

mathematical tools for handling problems involving imprecise, indeterminacy and inconsistent data. 

Neutrosophic vague set was defined by S. Allehezaleh [2] in 2015. The concept of neutrosophic vague 

soft expert set was first introduced by Ashraf Al-Qurn and N. Hassan in 2016 [16]. It is the 

combination of neutrosophic vague sets and soft expert sets. In2016,[19] G.Selvachandran and Abdul 

Razak Salleh introduced the concept of Possibility Intuitionistic Fuzzy Soft Expert and Its Application 

in Decision Making . In [15], Mukherjee and Sarkar introduced the concept of possibility interval 

mailto:anjan2011_m@tripurauniv.in
mailto:anjan2011_m@tripurauniv.in
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valued intuitionistic fuzzy soft expert theory which is a generalization of [20].  N. Hassan and A.Al-

Quran [13], introduced Possibility Neutrosophic Vague soft expert set for decision under uncertainty. 

For further applications we refer the papers{[4],[5],[6],[7],[8],[9],[10],[11]}. 

 We first introduce the concept of vague-valued possibility neutrosophic vague soft expert set. 

It is a combination of vague-valued possibility neutrosophic vague set and soft expert set.  The 

concept is to improve the reasonability of decision making in reality. Next we define its basic 

operation as a generalization of [13]. Finally we present an application of this concept in solving a 

decision making problem. 

2. Preliminaries 

           We give some basic notions in neutrosophic vague set, neutrosophic vague soft set, soft 

expert set and neutrosophic soft expert set. 

Definition 2.1. [ 2] A neutrosophic vague set ANV(NVS in short) on the universe of discourse X written 

as ANV = {<x; 𝑇̂𝐴𝑁𝑉 (x); 𝐼𝐴𝑁𝑉 (x); 𝐹̂𝐴𝑁𝑉 (x)>; xX} whose truth-membership, indeterminacy-

membership, and falsity-membership functions is defined as 𝑇̂𝐴𝑁𝑉(x) = [T-, T+], 𝐼𝐴𝑁𝑉(x) = [I-, I+] and 

𝐹̂𝐴𝑁𝑉(x) = [F-, F+], where (1) T+ = 1 − F−, (2) F+ = 1 − T− and (3) −0 ≤ T− + I− + F− ≤ 2+. 

Definition 2.2. [2 ] If ΨNV is a NVS of the universe U, where ∀ui∈U, 𝑇̂𝛹𝑁𝑉(x) = [1, 1], 𝐼𝛹𝑁𝑉(x)= [0, 0], 

𝐹̂𝛹𝑁𝑉(x)= [0, 0], then ΨNV is called a unit NVS, where 1 ≤ i ≤ n. If NV is a NVS of the universe U, where 

∀ui∈U, 𝑇̂𝛹𝑁𝑉(x) = [0, 0], 𝐼𝛹𝑁𝑉(x) = [1, 1], 𝐹̂𝛹𝑁𝑉(x) = [1, 1], then NV is called a zero NVS, where 1 ≤ i ≤ 

n. 

Definition 2.3.[ 2]  Let ANV and BNV be two NVSs of the universe U. If ∀ui∈U, (1) 𝑇̂𝐴𝑁𝑉(ui) = 𝑇̂𝐵𝑁𝑉(ui), 

(2) 𝐼𝐴𝑁𝑉(ui) =  𝐼𝐵𝑁𝑉(ui) and (3) 𝐹̂𝐴𝑁𝑉(ui) =  𝐹̂𝐵𝑁𝑉(ui), then the NVS ANV is equal to BNV , denoted by 

ANV = BNV , where 1 ≤ i ≤ n. 

Definition 2.4. [2 ]  Let ANV and BNV be two NVSs of the universe U. If ∀ui∈U, (1) 𝑇̂𝐴𝑁𝑉 (ui) ≤ 

𝑇̂𝐵𝑁𝑉(ui), (2)𝐼𝐴𝑁𝑉(ui) ≥𝐼𝐵𝑁𝑉(ui) and (3)𝐹̂𝐴𝑁𝑉(ui) ≥ 𝐹̂𝐵𝑁𝑉(ui), then the NVS ANV is included by BNV , 

denoted by ANV⊆ BNV , where 1 ≤ i ≤ n. 

Definition 2.5. [2 ] The complement of a NVS ANV is denoted by Ac and is defined by  

𝑇 𝑐̂𝐴𝑁𝑉(x) = [1 − T+, 1 − T−], 

𝐼𝑐̂𝐴𝑁𝑉(x) = [1 − I+, 1 − I−], and 

𝐹𝑐̂𝐴𝑁𝑉(x) = [1 − F+, 1 − F−]. 

Definition 2.6.[ 2] The union of two NVSs ANV and BNV is a NVS CNV , written as CNV = ANV∪ BNV , 

whose truth-membership, indeterminacy-membership and false-membership functions are related 

to those of ANV and BNV given by  

𝑇𝐶𝑁𝑉
(𝑥)=  [max (𝑇𝐴𝑁𝑉𝑥

− , 𝑇𝐵𝑁𝑉𝑥

− ), max (𝑇𝐴𝑁𝑉𝑥

+ , 𝑇𝐵𝑁𝑉𝑥

+ )] 

𝐼𝐶𝑁𝑉
(𝑥)=  [min (𝐼𝐴𝑁𝑉𝑥

− , 𝐼𝐵𝑁𝑉𝑥

− ), min (𝐼𝐴𝑁𝑉𝑥

+ , 𝐼𝐵𝑁𝑉𝑥

+ )] and 

𝐹𝐶𝑁𝑉
(𝑥)=  [min (𝐹𝐴𝑁𝑉𝑥

− , 𝐹𝐵𝑁𝑉𝑥

− ), min (𝐹𝐴𝑁𝑉𝑥

+ , 𝐹𝐵𝑁𝑉𝑥

+ )] 

Definition 2.7. [2 ]  The intersection of two NVSs ANV and BNV is a NVS CNV , written as HNV = ANV ∩ 

BNV , whose truth-membership, indeterminacy-membership and false-membership functions are 

related to those of ANV and BNV given by 

𝑇𝐻𝑁𝑉
(𝑥)=  [min(𝑇𝐴𝑁𝑉𝑥

− , 𝑇𝐵𝑁𝑉𝑥

− ), min (𝑇𝐴𝑁𝑉𝑥

+ , 𝑇𝐵𝑁𝑉𝑥

+ )] 

𝐼𝐻𝑁𝑉
(𝑥)=  [max (𝐼𝐴𝑁𝑉𝑥

− , 𝐼𝐵𝑁𝑉𝑥

− ), max (𝐼𝐴𝑁𝑉𝑥

+ , 𝐼𝐵𝑁𝑉𝑥

+ )] and 
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𝐹𝐻𝑁𝑉
(𝑥)=  [max (𝐹𝐴𝑁𝑉𝑥

− , 𝐹𝐵𝑁𝑉𝑥

− ), max (𝐹𝐴𝑁𝑉𝑥

+ , 𝐹𝐵𝑁𝑉𝑥

+ )] 

Definition 2.8. [17] LetU be an initial universal set . Let E be a set of parameters. Let NV(U) denote 

the power set of all neutrosophic vague subsets of U and let A⊆E. A collection of pairs (𝐹̂, E ) is called 

a neutrosophic vague soft set {NVSset} over U, where 𝐹̂ is a mapping given by 𝐹̂ : A → NV(U).  

Let U be a universe. E a set of parameters. X a set of experts (agents), and O a set of opinions. Let Z = 

E × X × O and A⊆Z.  

Definition 2.9. [3] A pair (F, A) is called a soft expert set over U, where F is a mapping given by F : A 

→ P(U), where P(U) denotes the power set of U.  

Let U be a universe, E a set of parameters, X a set of experts (agents), and O = {1 = agree, 0 = disagree} 

a set of opinions. Let Z = E × X × O and A⊆Z. 

Definition 2.10. [16] A pair (F, A) is called a neutrosophic soft expert set (NSES in short) over U, 

where F is a mapping given by F : A → PN(U), where PN(U) denotes the power neutrosophic set of 

U. 

Let U be a universe, E a set of parameters, X a set of experts (agents), and O = {1 = agree, 0 = disagree} 

a set of opinions. Let Z = E × X × O and A⊆Z.  

Definition 2.11. [16] A pair (F, A) is called a neutrosophic vague soft expert set over U, where F is a 

mapping given by F :A → NVU, where NVU denotes the power neutrosophic vague set of U.  

Suppose F :A → NVU is a function defined as F(a) = F(a)(u), ∀u∈U. For each ai ∈A,F(ai) = F(ai) (u), where 

F(ai) represents the degree of belongingness, degree of indeterminacy and non-belongingness of the 

elements of U in F(ai). Hence F(ai) can be written as: 

F(ai) = {
𝑢𝑖

𝐹(𝑎𝑖)(𝑢𝑖)
}, for i = 1, 2, 3, … 

Where 𝐹(𝑎𝑖)(𝑢𝑖)  = < [ 𝑇𝐹(𝑎𝑖)
− (𝑢𝑖) , 𝑇𝐹(𝑎𝑖)

+ (𝑢𝑖) ], [ 𝐼𝐹(𝑎𝑖)
− (𝑢𝑖) , 𝐼𝐹(𝑎𝑖)

+ (𝑢𝑖) ],[ 𝐹𝐹(𝑎𝑖)
− (𝑢𝑖) , 𝐹𝐹(𝑎𝑖)

+ (𝑢𝑖) ] > and 

𝑇𝐹(𝑎𝑖)
+ (𝑢𝑖) = 1- 𝐹𝐹(𝑎𝑖)

− (𝑢𝑖), 𝐹𝐹(𝑎𝑖)
+ (𝑢𝑖) = 1- 𝑇𝐹(𝑎𝑖)

− (𝑢𝑖) with [𝑇𝐹(𝑎𝑖)
− (𝑢𝑖), 𝑇𝐹(𝑎𝑖)

+ (𝑢𝑖)], [𝐼𝐹(𝑎𝑖)
− (𝑢𝑖), 𝐼𝐹(𝑎𝑖)

+ (𝑢𝑖)] 

and[𝐹𝐹(𝑎𝑖)
− (𝑢𝑖), 𝐹𝐹(𝑎𝑖)

+ (𝑢𝑖)] representing the truth-membership function, indeterminacy-membership 

function and falsity-membership function of each of the elements ui∈U, respectively. 

Example 2.12 [16]. Suppose that a company produced new types of its products and wishes to take 

the opinion of some experts concerning these products. Let U = {u1, u2, u3, u4} be a set of products. E = 

{e1, e2} a set of decision parameters where ei(i = 1, 2) denotes the decision “easy to use,” and “quality,” 

respectively. Let X = {p, q} be a set of experts. Suppose that the company has distributed a 

questionnaire to the two experts to make decisions on the company’s products, and we get the 

following: 

F(e1, p, 1) 

= {
𝑢1

<[0.2,0.8]; [0.1,0.3]; [0.2,0.8]>
,

𝑢2

<[0.1,0.7]; [0.2,0.5]; [0.3,0.9] >
,

𝑢3

<[0.5,0.6]; [0.3,0.7]; [0.4,0.5]>
,

𝑢4

<[0.8,1]; [0.1,0.2]; [0,0.2]>
, } 

F(e1, q, 1) 

= {
𝑢1

<[0.8,0.9]; [0.3,0.4]; [0.1,0.2]>
,

𝑢2

<[0.2,0.4]; [0.2,0.4]; [0.6,0.8]>
,

𝑢3

<[0,0.5] ; [0.5,0.7]; [0.5,1]>
,

𝑢4

<[0.6,0.7]; [0.2,0.4]; [0.3,0.4]>
} 

F(e2, p, 1) 

= {
𝑢1

<[0.3,0.9]; [0.1,0.3]; [0.1,0.7]>
,

𝑢2

<[0.2,0.5]; [0.2,0.5]; [0.5,0.8]>
,

𝑢3

<[0.6,0.9]; [0.1,0.7]; [0.1,0.4]>
,

𝑢4

<[0.2,0.4]; [0.2,0.2]; [0.6,0.8]>
} 
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F(e2, q, 1) 

= {
𝑢1

<[0.4,0.6]; [0.1,0.4]; [0.4,0.6]>
,

𝑢2

<[0.1,0.3]; [0.2,0.4]; [0.7,0.9]>
,

𝑢3

<[0.1,0.5]; [0.5,0.7]; [0.5,0.9]>
,

𝑢4

<[0.2,0.7]; [0.2,0.4]; [0.3,0.8]>
} 

F(e1, p, 0) 

= {
𝑢1

<[0.2,0.8]; [0.7,0.9]; [0.2,0.8]>
,

𝑢2

<[0.3,0.9]; [0.5,0.8]; [0.1,0.7]>
,

𝑢3

<[0.4,0.5]; [0.3,0.7]; [0.5,0.6]>
,

𝑢4

<[0,0.2]; [0.8,0.9]; [0.8,1]>
} 

F(e1, q, 0) 

= {
𝑢1

<[0.1,0.7]; [0.7,0.9]; [0.3,0.9]>
,

𝑢2

<[0.5,0.8]; [0.5,0.8]; [0.2,0.5]>
,

𝑢3

<[0.5,1] ; [0.3,0.5]; [0,0.5]>
,

𝑢4

<[0.3,0.4]; [0.6,0.8]; [0.6,0.7]>
} 

F(e2, p, 0) 

= {
𝑢1

<[0.2,0.8]; [0.7,0.9]; [0.2,0.8]>
,

𝑢2

<[0.3,0.9]; [0.5,0.8]; [0.1,0.7]>
,

𝑢3

<[0.1,0.4]; [0.3,0.9]; [0.6,0.9]>
,

𝑢4

<[0.6,0.8]; [0.8,0.8]; [0.2,0.4]>
} 

F(e2, q, 0) 

= {
𝑢1

<[0.4,0.6]; [0.6,0.9]; [0.4,0.6]>
,

𝑢2

<[0.7,0.9]; [0.6,0.8]; [0.1,0.3]>
,

𝑢3

<[0.5,0.9]; [0.3,0.5]; [0.1,0.5]>
,

𝑢4

<[0.3,0.8]; [0.6,0.8]; [0.2,0.7]>
} 

    The neutrosophic vague soft expert set (F, Z) is a parameterized family {F(ei), i = 1, 2, 3, ...} of all 

neutrosophic vague sets of U and describes a collection of approximation of an object. 

Definition 2.13. [16 ]. The complement of a NVSE set (F,A) is denoted by (F, A) and is defined by (F, 

A)c = (Fc, A) where Fc: A → NVU is a mapping given by Fc (α) = 𝑐̃(F(α)), ∀α∈A. 

Where 𝑐̃is a neutrosophic vague complement. 

.Definition2.14. [15] The union of two NVSE sets (F, A) and (G, B) over U, denoted by(F, A)∪̃ (G, B), 

is a neutrosophic vague soft expert set (H, C), where C = A∪B and ∀ε∈ C, 

 (H, C) = {

F (ε), if ε ∈  A −  B,
G (ε) , if ε ∈  B −  A,

F(ε) ∪̃  G (ε) , if ε ∈  A ∩  B

 where ∪̃ denotes the union of the neutrosophic vague set 

Definition 2.15. [16] The intersection of two neutrosophic vague soft expert sets (F, A) and (G, B) over 

a universe U, is a neutrosophic vague soft expert set (H, C), denoted by (F, A)∩̃ (G, B) such that C = 

A ∩ B and ∀e ∈ c  

(H, C) = {

F (ε), if ε ∈  A −  B,
G (ε) , if ε ∈  B −  A,

F(ε) ∩̃  G (ε) , if ε ∈  A ∩  B

 where∩̃ denotes the intersection of neutrosophic vague set. 

Definition 2.16 [16].Let (F,A) and (G, B) be any two NVSE sets over a soft universe (U, Z).  

      Then “(F,A)AND(G, B)” denoted (F,A) ∧̃ (G, B) is defined by (F,A)∧̃ (G, B) = (H, A×B), where 

(H, A×B) = H(α, β), such that H(α, β) = F(α) ∩ G(β), for all (α, β) ∈A × B, where ∩ represents the basic 

intersection. 

Definition 2.17[ 16 ].Let (F,A) and (G, B) be any two neutrosophic vague soft expert sets over a soft 

universe (U, Z). 

  Then “(F,A) OR (G, B)” denoted (F,A)∨̃ (G, B) is defined by (F,A)∨̃ (G, B) = (H,A × B), where (H, A × 

B) = H(α, β), such that H(α, β) = F(α) ∪G(β), for all (α, β) ∈A × B, where ∪represents the basic union. 
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Definition 2.18 [16].  Let U be a Universe. E a set of parameters, X a set of experts. Q = {1 = agree, 0 

= disagree} a set of opinions. Let Z = E×X×Q and A⊆Z. 

    Let U= {u1,u2, …,un} be a universal set of elements, let E= { e1, e2, e3,------, em} be a universal set of 

parameters . Let X = {x1,x2, …,xi} be a set of experts and let Q = {1 = agree, 0 = disagree} be a set of 

opinions. Let Z = E×X×Q and A⊆Z. Then the pair (U, Z) is called a soft universe. Let F:Z→NVSs(V),  

and p be a fuzzy subset of Z define by p: Z→I U, where IU is the collection of all fuzzy subsets of U. 

Suppose Fp: Z→NVSs(U)×IU be a function define by Fp= {(F(Z)(ui), P(Z)(ui))},for all ui∈U.. Then Fp is 

called a possibility neutrosophic vague soft expert set (denoted by PNVSES) over the soft universe 

(U, Z). For each zi∈Z, Fp(zi) = (F(zi)(ui), P(zi)(ui)) where F(zi) represent the degree of belongingness 

degree of indeterminacy and non-belongingness of the elements of U in F(zi) and P(zi) represents the 

degree of possibility of belongingness of the elements of U in F(zi). 

3. Vague-valued possibility neutrosophic vague soft expert set 

       In this section we introduce the definition of a vague-valued Possibility neutrosophic vague 

soft expert se t(VPNVSE set)}. 

       Let U be a Universe. E a set of parameters. X a set of experts and Q = {1 = agree, 0 = disagree} 

a set of opinions. Let Z = E×X×Q and A⊆Z. 

Definition3.1. Let U={u1,u2, …,un} be a universal set of elements, let E= { e1, e2,e3,------,em} be a 

universal set of parameters . Let X = {x1,x2, …,xi} be a set of experts and let Q = {1 = agree, 0 = disagree} 

be a set of opinions. Let Z = E×X×Q and A⊆Z. Then the pair (U, Z) is called a soft universe. Let 

F:ZNVSs(V),  and p be a vague- valued subset of Z define by p: ZV(U). 

Suppose Fp: ZNVSs(U)×V(U) be a function define by Fp= {(F(Z)(ui), P(Z)(ui))}, uiV. Then Fp is 

called a vague- valued possibility neutrosophic vague soft expert set (denoted by VPNVSES) over the 

soft universe (U, Z). For each ziZ, Fp(zi) = (F(zi)(ui), P(zi)(ui)) where F(zi) represent the degree of 

belongingness degree of indeterminacy and non-belongingness of the elements of U in F(zi). 

So F(zi)(ui) = {[𝑇𝐹(𝑧𝑖)
− (𝑢𝑖), 𝑇𝐹(𝑧𝑖)

+ (𝑢𝑖)], [𝐼𝐹(𝑧𝑖)
− (𝑢𝑖), 𝐼𝐹(𝑧𝑖)

+ (𝑢𝑖)], [𝐹𝐹(𝑧𝑖)
− (𝑢𝑖), 𝐹𝐹(𝑧𝑖)

+ (𝑢𝑖)]} 

and 𝑇𝐹(𝑧𝑖)
+ (𝑢𝑖) = 1 − 𝐹𝐹(𝑧𝑖)

− (𝑢𝑖) , 𝐹𝐹(𝑧𝑖)
+ (𝑢𝑖) = 1 − 𝑇𝐹(𝑧𝑖)

− (𝑢𝑖)  with [ 𝑇𝐹(𝑧𝑖)
− (𝑢𝑖),  𝑇𝐹(𝑧𝑖)

+ (𝑢𝑖)] , 

[ 𝐼𝐹(𝑧𝑖)
− (𝑢𝑖),  𝐼𝐹(𝑧𝑖)

+ (𝑢𝑖)] , [ 𝐹𝐹(𝑧𝑖)
− (𝑢𝑖),  𝐹𝐹(𝑧𝑖)

+ (𝑢𝑖)]  representing the truth membership function 

indeterminacy membership function and fails membership function of each of the elements  

uiU respectively. P(zi) represents the vague –value [ tA(x), 1-fA(x)],indicates that the exact grade of 

membership of x to A( which may be unknown but it is bounded by tA(x) and 1-fA(x).. Hence Fp(zi) 

can be written as Fp(zi) = {{(
𝑢𝑖

𝐹(𝑧𝑖)(𝑢𝑖)
) , 𝑃(𝑧𝑖)(𝑢𝑖)} for i = 1, 2, 3,……, . The VPNVSES(Fp,z) can be written 

simply as Fp. If A⊆Z, it is also possible to have a VPNVSES(Fp, A). For simplicity we take the set of 

opinion contains of only two values namely agree and disagree. 

       Suppose that a company produced new types of its products & wishes to take the opinion of 

some experts corresponding those products. Let U = {u1, u2, u3} be a set of products. E = {e1, e2} a set of 

decision parameters. Here, ei (i=1,2) denote the decision “easy to use”   and “equality”. Let X = {p, 

q} be a set of experts. Suppose that the company has distributed questionnaire to, the two experts to 

make decisions on the company products. Then we have to following. 
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Fp: ZVNVSs(U)×V(U) is a function then  

Fp(e1, p, 1) = {(
𝑢1

[0.2,0.8]; [0.1,0.3]; [0.2,0.8]
, [ 0.3,0.5], (

𝑢2

[0.1,0.7]; [0.2,0.5]; [0.3,0.9]
 ,[0.5,0.7], (

𝑢3

[0.5,0.6]; [0.3,0.7]; [0.4,0.5]
 

,[0.7,0.9]} 

Fp(e1, q, 1) = {(
𝑢1

[0.8,0.9]; [0.3,0.4]; [0.1,0.2]
 ,[0.4,0.6], (

𝑢2

[0.2,0.4]; [0.2,0.4]; [0.6,0.8]
 ,[0.6,0.8], (

𝑢3

[0.0,0.5]; [0.5,0.7]; [0.5,1]
 

,[0.8,1]} 

Fp(e2, p, 1) = {(
𝑢1

[0.3,0.9]; [0.1,0.3]; [0.1,0.7]
 ,[0.5,0.7], (

𝑢2

[0.2,0.5]; [0.2,0.5]; [0.5,0.8]
 ,[0.6,0.8], (

𝑢3

[0.6,0.9]; [0.1,0.7]; [0.1,0.4]
 

,[0.3,0.5]} 

Fp(e2, q, 1) = {(
𝑢1

[0.4,0.6]; [0.1,0.4]; [0.4,0.6]
 ,[0.2,0.4], (

𝑢2

[0.1,0.3]; [0.2,0.4]; [0.7,0.9]
 ,[0.4,0.6], (

𝑢3

[0.1,0.3]; [0.5,0.7]; [0.7,0.9]
 

,[0.7,0.9]} 

Fp(e1, p, 0) = {(
𝑢1

[0.2,0.8]; [0.7,0.9]; [0.2,0.8]
 ,[0.1,0.3], (

𝑢2

[0.3,0.9]; [0.5,0.8]; [0.1,0.7]
 ,[0.3,0.6], (

𝑢3

[0.4,0.5]; [0.3,0.7]; [0.5,0.6]
 

,[0.5,0.7]} 

Fp(e1, q, 0) = {(
𝑢1

[0.1,0.2]; [0.6,0.7]; [0.8,0.9]
 ,[0.8,0.9], (

𝑢2

[0.6,0.8]; [0.6,0.8]; [0.2,0.4]
 ,[0.6,0.8], (

𝑢3

[0.5,1]; [0.3,0.5]; [0,0.5]
 

,[0.3,0.7]} 

Fp(e2, p, 0) = {(
𝑢1

[0.1,0.7]; [0.7,0.9]; [0.3,0.9]
 ,[0.2,0.5], (

𝑢2

[0.5,0.8]; [0.5,0.8]; [0.2,0.5]
 ,[0.3,0.6], (

𝑢3

[0.1,0.4]; [0.3,0.9]; [0.6,0.9]
 

,[0.3,0.7]} 

Fp(e2, q, 0) = {(
𝑢1

[0.4,0.6]; [0.8,0.9]; [0.4,0.6]
 ,[0.20.5], (

𝑢2

[0.7,0.9]; [0.6,0.8]; [0.1,0.3]
 ,[0.4,0.6], (

𝑢3

[0.5,0.9]; [0.3,0.5]; [0.1,0.5]
 

,[0.5,0.7]} 

      Thus we have the VPNVSE set (Fp, Z) as follows:  

(Fp, Z) ={(e1, p, 1) = {(
𝑢1

[0.2,0.8]; [0.1,0.3]; [0.2,0.8]
 ,[0.3,0.5], (

𝑢2

[0.1,0.7]; [0.2,0.5]; [0.3,0.9]
 ,[0.5,0.7], 

(
𝑢3

[0.5,0.6]; [0.3,0.7]; [0.4,0.5]
 ,[0.7,0.9]} 

(e2, p, 1) = {(
𝑢1

[0.3,0.9]; [0.1,0.3]; [0.1,0.7]
 ,[0.5,0.7], (

𝑢2

[0.2,0.5]; [0.2,0.5]; [0.5,0.8]
 ,[0.60.8], (

𝑢3

[0.6,0.9]; [0.1,0.7]; [0.1,0.4]
 

,[0.3,0.5]} 
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(e1, q, 1) = {(
𝑢1

[0.8,0.9]; [0.3,0.4]; [0.1,0.2]
 ,[0.4,0.6], (

𝑢2

[0.2,0.4]; [0.2,0.4]; [0.6,0.8]
 ,[0.6,0.8], (

𝑢3

[0.0,0.5]; [0.5,0.7]; [0.5,1]
 ,[0.8,1]} 

(e2, q, 1) = {(
𝑢1

[0.4,0.6]; [0.1,0.4]; [0.4,0.6]
 ,[0.2,0.4], (

𝑢2

[0.1,0.3]; [0.2,0.4]; [0.7,0.9]
 ,[0.4,0.6], (

𝑢3

[0.1,0.3]; [0.5,0.7]; [0.7,0.9]
 

,[0.7,0.9]} 

(e1, p, 0) = {(
𝑢1

[0.2,0.8]; [0.7,0.9]; [0.2,0.8]
 ,[0.1,0.3], (

𝑢2

[0.3,0.9]; [0.5,0.8]; [0.1,0.7]
 ,[0.3,0.5], (

𝑢3

[0.4,0.5]; [0.3,0.7]; [0.5,0.6]
 

,[0.5,0.7]} 

(e2, p, 0) = {(
𝑢1

[0.1,0.7]; [0.7,0.9]; [0.3,0.9]
 ,[0.2,0.5], (

𝑢2

[0.5,0.8]; [0.5,0.8]; [0.2,0.5]
 ,[0.3,0.6], (

𝑢3

[0.1,0.4]; [0.3,0.9]; [0.6,0.9]
 

,[0.3,0.7]} 

(e1, q, 0) = {(
𝑢1

[0.1,0.2]; [0.6,0.7]; [0.8,0.9]
 ,[0.8,0.9], (

𝑢2

[0.6,0.8]; [0.6,0.8]; [0.2,0.4]
 ,[0.6,0.8], (

𝑢3

[0.5,1]; [0.3,0.5]; [0,0.5]
 ,[0.3,0.6]} 

(e2, q, 0) = {(
𝑢1

[0.4,0.6]; [0.8,0.9]; [0.4,0.6]
 ,[0.2,0.3], (

𝑢2

[0.7,0.9]; [0.6,0.8]; [0.1,0.3]
 ,[0.4,0.6], (

𝑢3

[0.5,0.9]; [0.3,0.5]; [0.1,0.5]
 

,[0.5,0.7]} 

The collection (Fp, Z) is a VPNVSE set over the soft inverse (U, Z). 

Definition 3.3: Let (Fp, A) and (Gq, B) be two VPNVSE sets over the soft inverse (U, Z) then (Fp, A) is 

a VPNVSE sub set of  (Gq, B) if ABand for all A the following conditions are satisfied. 

(i) p() is a  vague sub set of q(). 

(ii) F()is a neutrosophic vague soft set of G(). 

It is denoted by (Fp, A)(Gq, A). Then (Gq, A) is called aVague-valued possibility neutrosophic soft 

expert superset of (Fp, A). 

Definition 3.4.Let (Fp, A) and (Gq, B) be two VPNVSE sets over the soft inverse (U, Z) then (Fp, A) 

equal to (Gq, B) if for all A the following holds 

(i) p() = q(). 

(ii) F() = G(). 

In other words (Fp, A) = (Gq, B) if (Fp, A) is a subset of (Gq, B)and  (Gq, B) is a subset of (Fp, A). 

 

4. Basic Operations On Vague-Valued Possibility Neutrosophic Soft Expert Sets. 

       Now we introduce some basic operations on PNVSE sets. These are ‘complement’ Union & 

intersection. Then we study some of the properties related to these operations. 
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Definition 4.1 Let (Fp, A) be a VPNVSE set over the soft universe (U, Z) then the complement of (Fp, 

A) denoted by (Fp, A)c is defined as  

 (Fp, A)c = (𝑐̅(F𝛼), c(P(𝛼))) ∀ 𝛼 ∈A. 

Where 𝑐̅ a neutrosophic vague complement and c is a Vague-valued  set complement. 

If A be a vague set over the universe U, then  

A = [{x, tA(x), 1-fA(x)}: x∈V} in this definitiontA(x) is a lower bound on the grade of membership of x 

to A derived from the evidence for x and fA(x) is a lower bound on the negation of x to A derived 

from the evidence against x. The vague value [tA(x), 1-fA(x)] indicates that the exact grade of 

membership of x to A may be unknown, but it is bounded by tA(x) & 1-fA(x). It is to be noted that 

every fuzzy set 𝛼 correspondence to the following vague set: 𝛼 = {(x, [𝛼(x), 1- 𝛼(x)]): x∈ U} thus the 

notion of vague sets is a generalization of fuzzy sets. The complement of the vague set A is Ac = [{x, 

fA(x), 1-tA(x)}: x∈U}. 

 

Example 4.2: Consider the VPNVSE (FP, A) over a soft universe (U, Z) as an example 3.2. Now by 

definition 4.1 (FP, A)c is given as follows: 

(FP, z)c = {(e1, p, 1) = {(
𝑢1

[0.2,0.8]; [0.7,0.9]; [0.2,0.8]
 ,[0.5, 0.7]), (

𝑢2

[0.3,0.9]; [0.5,0.8]; [0.1,0.7]
 , [0.3, 0.5]), 

(
𝑢3

[0.4,0.5]; [0.3,0.7]; [0.5,0.6]
 , [0.1, 0.3])}, (e2, p, 1) = {(

𝑢1

[0.1,0.7]; [0.7,0.9]; [0.3,0.9]
 , [0.3, 0.5]), (

𝑢2

[0.5,0.8]; [0.5,0.8]; [0.2,0.5]
 , 

[0.2, 0.4]), (
𝑢3

[0.1,0.4]; [0.3,0.9]; [0.6,0.9]
 , [0.5, 0.7])}, (e1, q, 1) = {(

𝑢1

[0.1,0.2]; [0.6,0.7]; [0.8,0.9]
 , [0.4, 0.6]), 

(
𝑢2

[0.6,0.8]; [0.6,0.8]; [0.2,0.4]
 , [0.2, 0.4]), (

𝑢3

[0.5,1]; [0.3,0.5]; [0.0,0.5]
 , [0.0, 0.2]}, (e2, q, 1) = {(

𝑢1

[0.4,0.6]; [0.6,0.9]; [0.4,0.6]
 , [0.6, 

0.8]), (
𝑢2

[0.7,0.9]; [0.6,0.8]; [0.1,0.3]
 , [0.4, 0.6]), (

𝑢3

[0.7,0.9]; [0.3,0.5]; [0.1,0.3]
 , [0.1, 0.3])},(e1, p, 0) = 

{(
𝑢1

[0.2,0.8]; [0.1,0.3]; [0.2,0.8]
 , [0.7, 0.9]), (

𝑢2

[0.1,0.7]; [0.2,0.5]; [0.3,0.9]
 , [0.5, 0.7]), (

𝑢3

[0.5,0.6]; [0.3,0.7]; [0.4,0.5]
 , [0.3, 0.5])}, 

(e2, p, 0) = {(
𝑢1

[0.3,0.9]; [0.1,0.3]; [0.1,0.7]
 , [0.5, 0.8]), (

𝑢2

[0.2,0.5]; [0.2,0.5]; [0.5,0.8]
 , [0.4, 0.7]), (

𝑢3

[0.6,0.9]; [0.1,0.7]; [0.1,0.4]
 , 

[0.3, 0.7])}, (e1, q, 0) = {(
𝑢1

[0.8,0.9]; [0.3,0.4]; [0.1,0.2]
 , [0.1, 0.2]), (

𝑢2

[0.2,0.4]; [0.2,0.4]; [0.6,0.8]
 , [0.2, 0.4]), 

(
𝑢3

[0,0.5]; [0.5,0.7]; [0.5,1]
 , [0.4, 0.7]}, (e2, q, 0) = {(

𝑢1

[0.4,0.6]; [0.1,0.2]; [0.4,0.6]
 , [0.5, 0.8]), (

𝑢2

[0.1,0.3]; [0.2,0.4]; [0.7,0.9]
 , [0.4, 

0.6]), (
𝑢3

[0.1,0.5]; [0.5,0.7]; [0.5,0.9]
 , [0.3, 0.5])} 

Proposition 4.3: Let (Fp, A) be a VPNVSE set over the soft universe (U, Z) . Here,(Fp, A) = (F(e), p(e)) 

then ((Fp, A)c)c = (Fp, A). 

Proof: Let (Fp, A)c = (Gq, B) then by definition (Gq, B) = (G(e), q(e)) 
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G(e) = C̅(F(e)) and q(e) = C(p(e)). Where 𝑐̅ a neutrosophic vague complement and c is a Vague-

valued set complement. 

So it follows that  

(Gq, B)c = {C̅(G(e)), C(q(e)} 

 = {C̅(C̅(F(e))), C(C(p(e)))} 

 = (F(e), p(e)) = (Fp, A) 

 ((F(e), p(e)c)c = (Fp, A) 

Definition 4.4: Let (Fp, A) and (Gq, B) be two V PNVSE set over a soft universe (U, Z) then the 

intersection of (Fp, A) and (Gq, B) denoted by (Fp, A) ∩̅ (Gq, B) is a VPNVSE set defined as (Fp, A) ∩̅ 

(Gq, B) = (Hr, C),  

where C = A ∩ B and  

r(𝛼) = p(𝛼) ∩ q(𝛼) ∀𝛼∈C 

H(𝛼) = F(𝛼) ∩̅ G(𝛼) ∀𝛼 ∈C 

And H(𝛼) = {

F(𝛼)                       𝑖𝑓 𝛼 ∈ 𝐴 − 𝐵

G(𝛼)                         𝑖𝑓 𝛼 ∈ 𝐵 − 𝐴

F(𝛼) ∩  G(𝛼)         𝑖𝑓 𝛼 ∈ 𝐴 ∩ 𝐵

 

Definition 4.5 Let (Fp, A) and (Gq, B) be two VPNVSE sets over a soft universe (U, Z). Then the union 

of (Fp, A) and (Gq, B) denoted by (Fp, A) ∪̅(Gq, B) is a PNVSE set defined as (Fp, A) ∪̅(Gq, B) = (Hr, C), 

where C = A ∪ B and  

r(𝛼) = p(𝛼) ∪ q(𝛼) ∀𝛼 ∈C 

H(𝛼) = F(𝛼) ∪̅ G(𝛼) ∀𝛼 ∈C 

And H(𝛼) = {

F(𝛼)                       𝑖𝑓 𝛼 ∈ 𝐴 − 𝐵

G(𝛼)                         𝑖𝑓 𝛼 ∈ 𝐵 − 𝐴

F(𝛼) ∪̅  G(𝛼)         𝑖𝑓 𝛼 ∈ 𝐴 ∪ 𝐵

 

5. Application of vague-valued possibility neutrosophic vague soft expert in a decision making 

problem 

      A company is looking to have a person to fill the vacancy for a position in their company. Out 

of all the candidates were short listed - The three candidates form the universe of the element U = { 

u1, u2, u3}  were short listed out of all candidates. The hiring committee consists of hiring manager, 

head of the department and HR director of the firm . The committee is represented by the set X = { x, 

y, z} (a set of experts), while the set Q = { 1 = agree, 0 = disagree} represents the set of opinions of the 

hiring committee members. The hiring committee consider a set of parameters E = {e1, e2, e3, e4}.  The 
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parameters ei (i = 1, 2, 3, 4) represents the characteristic or qualities that the candidates are assessed 

on namely “experience”, “academic qualifications”, “attitude towards the professionalism “and 

“technical knowledge” respectively. After finishing the interview of all the candidates and going 

through their certificates and other supporting papers. The hire committee constitutes the VPNVSE 

set (Fp, z) as follows: 

 (Fp, z) = [{(e1, x, 1) = {(
𝑢1

[0.2,0.8]; [0.1,0.3]; [0.2,0.8]
 , [0.3, 0.5]), (

𝑢2

[0.1,0.7]; [0.2,0.5]; [0.3,0.9]
 , [0.5, 0.7]), 

(
𝑢3

[0.5,0.6]; [0.3,0.7]; [0.4,0.5]
 , [0.7, 0.9])}, (e2, x, 1) = {(

𝑢1

[0.3,0.9]; [0.1,0.3]; [0.1,0.7]
 , [0.5, 0.7]), (

𝑢2

[0.2,0.5]; [0.2,0.5]; [0.5,0.8]
 , 

[0.6, 0.8]), (
𝑢3

[0.6,0.9]; [0.1,0.7]; [0.1,0.4]
 , [0.3, 0.5])},(e3, x, 1) = {(

𝑢1

[0.2,0.7]; [0.5,0.7]; [0.3,0.8]
 , [0.3, 0.5]), 

(
𝑢2

[0.1,0.7]; [0.4,0.5]; [0.3,0.9]
 , [0.2, 0.5]), (

𝑢3

[0.2,0.6]; [0.3,0.5]; [0.4,0.8]
, [0.4, 0.6])}, (e4, x, 1) = {(

𝑢1

[0.2,0.3]; [0.4,0.6]; [0.7,0.8]
 , 

[0.5, 0.7]), (
𝑢2

[0.1,0.3]; [0.2,0.5]; [0.7,0.9]
 , [0.3, 0.6]), (

𝑢3

[0.3,0.4]; [0.4,0.6]; [0.6,0.7]
 , [0.6, 0.8])},(e1, y, 1) = 

{(
𝑢1

[0.8,0.9]; [0.3,0.4]; [0.1,0.2]
 , [0.4, 0.6]), (

𝑢2

[0.2,0.4]; [0.2,0.4]; [0.6,0.8]
 , [0.6, 0.8]), (

𝑢3

[0.0,0.5]; [0.5,0.7]; [0.5,1]
 , [0.8, 1])}, (e2, 

y, 1) = {(
𝑢1

[0.4,0.6]; [0.1,0.4]; [0.4,0.6]
 , [0.2, 0.4]), (

𝑢2

[0.1,0.3]; [0.2,0.4]; [0.7,0.9]
 , [0.4, 0.6]), (

𝑢3

[0.1,0.3]; [0.5,0.7]; [0.7,0.9]
 , [0.7, 

0.9])},(e3, y, 1) = {(
𝑢1

[0.2,0.5]; [0.4,0.6]; [0.5,0.8]
 , [0.3, 0.5]), (

𝑢2

[0.1,0.3]; [0.2,0.4]; [0.7,0.9]
 , [0.6, 0.8]), 

(
𝑢3

[0.4,0.5]; [0.8,0.9]; [0.5,0.6]
 , [0.5, 0.7])}, (e4, y, 1) = {(

𝑢1

[0.3,0.5]; [0.5,0.7]; [0.5,0.7]
 , [0.5, 0.7]), (

𝑢2

[0.5,0.7]; [0.9,1]; [0.3,0.5]
 , 

[0.2, 0.5]), (
𝑢3

[0.6,0.9]; [0.2,0.3]; [0.1,0.4]
 , [0.3, 0.6])},(e1, z, 1) = {(

𝑢1

[0.1,0.4]; [0.3,0.6]; [0.6,0.9]
 , [0.4, 0.7]), 

(
𝑢2

[0.5,0.7]; [0.2,0.5]; [0.3,0.5]
 , [0.3, 0.5]), (

𝑢3

[0.2,0.5]; [0.4,0.7]; [0.5,0.8]
 , [0.7, 0.9])}, (e2, z, 1) = {(

𝑢1

[0.1,0.5]; [0.4,0.6]; [0.5,0.9]
 , 

[0.4, 0.5]), (
𝑢2

[0.6,0.7]; [0.3,0.5]; [0.3,0.4]
 , [0.3, 0.5]), (

𝑢3

[0.0,0.1]; [0.2,0.4]; [0.9,1]
 , [0.7, 0.9])},(e3, z, 1) = 

{(
𝑢1

[0.3,0.5]; [0.5,0.7]; [0.5,0.7]
 , [0.1, 0.3]), (

𝑢2

[0.3,0.4]; [0.5,0.6]; [0.6,0.7]
 , [0.3, 0.7]), (

𝑢3

[0.4,0.6]; [0.3,0.5]; [0.4,0.6]
 , [0.7, 0.9])}, 

(e4, z, 1) = {(
𝑢1

[0.1,0.5]; [0.3,0.7]; [0.5,0.9]
 , [0.4, 0.7]), (

𝑢2

[0.5,0.7]; [0.1,0.2]; [0.3,0.5]
 , [0.3, 0.7]), (

𝑢3

[0.4,0.5]; [0.7,0.8]; [0.5,0.6]
 , 

[0.7, 1])}, (e1, x, 0) = {(
𝑢1

[0.2,0.8]; [0.7,0.9]; [0.2,0.8]
 , [0.1, 0.3]), (

𝑢2

[0.3,0.9]; [0.5,0.8]; [0.1,0.7]
 , [0.3, 0.5]), 

(
𝑢3

[0.4,0.5]; [0.3,0.7]; [0.5,0.6]
 , [0.5, 0.7])}, (e2, x, 0) = {(

𝑢1

[0.1,0.7]; [0.7,0.9]; [0.3,0.9]
 , [0.2, 0.5]), (

𝑢2

[0.5,0.8]; [0.5,0.8]; [0.2,0.5]
 , 

[0.3, 0.6]), (
𝑢3

[0.1,0.4]; [0.3,0.9]; [0.6,0.9]
 , [0.3, 0.7])},(e3, x, 0) = {(

𝑢1

[0.2,0.4]; [0.3,0.6]; [0.6,0.8]
 , [0.3, 0.5]), 

(
𝑢2

[0.5,0.8]; [0.3,0.6]; [0.2,0.5]
 , [0.2, 0.5]), (

𝑢3

[0.4,0.7]; [0.7,0.8]; [0.3,0.6]
 , [0.6, 0.9])}, (e4, x, 0) = {(

𝑢1

[0.3,0.5]; [0.7,0.9]; [0.5,0.7]
 , 

[0.3, 0.5]), (
𝑢2

[0.5,0.7]; [0.8,0.9]; [0.3,0.5]
 , [0.4, 0.7]), (

𝑢3

[0.5,1]; [0.3,0.5]; [0,0.5]
 , [0.3, 0.6])},(e1, y, 0) = 
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{(
𝑢1

[0.3,0.5]; [0.5,0.8]; [0.5,0.7]
 , [0.1, 0.3]), (

𝑢2

[0.1,0.3]; [0.4,0.6]; [0.7,0.9]
 , [0.3, 0.5]), (

𝑢3

[0.4,0.6]; [0.7,0.9]; [0.4,0.6]
 , [0.4, 0.7])}, 

(e2, y, 0) = {(
𝑢1

[0.1,0.2]; [0.6,0.7]; [0.8,0.9]
 , [0.8, 0.9]), (

𝑢2

[0.6,0.8]; [0.6,0.8]; [0.2,0.4]
 , [0.6, 0.8]), (

𝑢3

[0.5,1]; [0.3,0.5]; [0,0.5]
 , [0.3, 

0.6])},(e3, y, 0) = {(
𝑢1

[0.4,0.6]; [0.8,0.9]; [0.4,0.6]
 , [0.2, 0.5]), (

𝑢2

[0.7,0.9]; [0.6,0.8]; [0.1,0.3]
 , [0.4, 0.6]), 

(
𝑢3

[0.5,0.9]; [0.3,0.5]; [0.1,0.5]
 , [0.5, 0.7])}, (e4, y, 0) = {(

𝑢1

[0.3,0.5]; [0.6,0.8]; [0.5,0.7]
 , [0.4, 0.6]), (

𝑢2

[0.1,0.3]; [0.4,0.6]; [0.7,0.9]
 , 

[0.4, 0.7]), (
𝑢3

[0.2,0.6]; [0.5,0.7]; [0.4,0.8]
 , [0.1, 0.4])},(e1, z, 0) = {(

𝑢1

[0.2,0.5]; [0.4,0.7]; [0.5,0.8]
 , [0.4, 0.8]), 

(
𝑢2

[0.2,0.4]; [0.3,0.5]; [0.6,0.8]
 , [0.4, 0.7]), (

𝑢3

[0.2,0.7]; [0.5,0.7]; [0.3,0.8]
 , [0.1, 0.5])}, (e2, z, 0) = {(

𝑢1

[0.4,0.5]; [0.5,1]; [0.5,0.6]
 , 

[0.5, 0.8]), (
𝑢2

[0.1,0.4]; [0.3,0.5]; [0.6,0.9]
 , [0.5, 0.8]), (

𝑢3

[0.3,0.5]; [0.7,0.9]; [0.5,0.7]
 , [0.2, 0.5])},(e3, z, 0) = 

{(
𝑢1

[0.5,0.9]; [0.6,0.8]; [0.1,0.5]
 , [0.4, 0.7]), (

𝑢2

[0.2,0.5]; [0.5,1]; [0.5,0.8]
 , [0.2, 0.4]), (

𝑢3

[0.4,0.7]; [0.6,0.8]; [0.3,0.6]
 , [0.6, 0.8])}, (e4, 

z, 0) = {(
𝑢1

[0.3,0.5]; [0.6,0.8]; [0.5,0.7]
 , [0.4, 0.6]), (

𝑢2

[0.1,0.4]; [0.3,0.5]; [0.6,0.9]
 , [0.6, 0.8]), (

𝑢3

[0.6,0.8]; [0.5,0.7]; [0.2,0.4]
 , [0.5, 

0.7])}. 

       The collection (Fp, z) is a VPNVSE set over the soft universe (U, Z).  The VPNVSE set (Fp, Z) 

is used together with an algorithm to solve the decision making problem. The algorithm given below 

is taken by the committee to determine the most suitable candidate to be hired for the position. The 

sets of algorithm are as follows: 

Step 1: Input the VPNVSE set (Fp, Z). 

Step 2: Calculate  the value of 𝛼𝐹(𝑎𝑖)(𝑢𝑖) = 𝑇𝐹(𝑎𝑖)
− (𝑢𝑖) - 𝐹𝐹(𝑎𝑖)

− (𝑢𝑖) for interval truth-membership 

part [𝑇𝐹(𝑎𝑖)
− (𝑢𝑖),  𝑇𝐹(𝑎𝑖)

+ (𝑢𝑖)] , where 𝑇𝐹(𝑎𝑖)
+ (𝑢𝑖) = 1- 𝐹𝐹(𝑎𝑖)

− (𝑢𝑖) , for each element ui∈U. 

Step 3: Calculate the arithmetic overage  𝛽𝐹(𝑎𝑖)(𝑢𝑖) of the end points of the interval indeterminacy 

membership part [𝐼𝐹(𝑎𝑖)
− (𝑢𝑖),  𝐼𝐹(𝑎𝑖)

+ (𝑢𝑖)] , for each element ui∈U. 

Step 4: Find the value of 𝛾𝐹(𝑎𝑖)(𝑢𝑖) = 𝐹𝐹(𝑎𝑖)
− (𝑢𝑖) - 𝑇𝐹(𝑎𝑖)

− (𝑢𝑖) for interval falsity-membership part 

[𝐹𝐹(𝑎𝑖)
− (𝑢𝑖),  𝐹𝐹(𝑎𝑖)

+ (𝑢𝑖)] , where 𝐹𝐹(𝑎𝑖)
+ (𝑢𝑖) = 1- 𝑇𝐹(𝑎𝑖)

− (𝑢𝑖) , for each element ui∈U. 

Step 5: Find  α F(ai)  (ui)- β F(ai )  (ui) -𝛾𝐹(𝑎𝑖)(𝑢𝑖)for each element ui∈U. 

Step 6: Find the higher numerical grade from the agree-PNVSE set & disagree-PNVSE set. 

Step 7: Take the arithmetic average of [tA, 1-fA] of the set corresponding vague set associated with the 

Neutrosophic vague soft set. 
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Step 8: Find the higher numerical grade for the average vague set value for the highest agree-

VPNVSE set & disagree-VPNVSE set 

Step 9: Compute the score of each element ui∈U by taking the sum of the product of the maximum 

numerical grade (λ𝑖) with the corresponding average numerical value of vague set 𝜇𝑖 for the agree 

VPNVSE set and disagree-VPNVSE set by Ai& Di respectively. 

Step 10: Find the value  𝑟𝑖 = Ai - Di, for each element ui ∈ U. 

Step 11: Determine the values of highest scores = max ui ∈ ∪ {𝑟𝑖}. Then the decision is to choose 

element ui as optimal or best solution if there are more than one element. 

Table-1 Value of 𝛼𝐹(𝑎𝑖)(𝑢𝑖), 𝛽𝐹(𝑎𝑖)(𝑢𝑖), 𝛾𝐹(𝑎𝑖)(𝑢𝑖)The value of  𝛼𝐹(𝑎𝑖)(𝑢𝑖) - 𝛽𝐹(𝑎𝑖)(𝑢𝑖) - 𝛾𝐹(𝑎𝑖)(𝑢𝑖)& 

the average of the vague set corresponding to the highest numerical grade 

 u1 u2 u3  u1 u2 u3 

(e1, x, 1) 
0, 0.2, 0 

 -0.2,0.35, 0.2 0.1,0.5-0.1 (e1, x, 0) 0,0.8,0 0.2,0.65,-0.2 -0.1,0.5,0.1 

-0.2,( 0.4) 
-0.75, (0.6) -0.3,(0.8) -0.8,(0.2) -0.25(0.4) -0.7,(0.6) 

(e2, x, 1) 0.2, 0.2, -0.2 -0.3,0.35,0.3 0.5,0.4-0.5 (e2, x, 0) -0.2,0.8,0.2 0.3,0.65,-0.3 -0.5,0.6,0.5 

0.2, (0.6) -0.85,(0.35) 0.6,(0.4) -1.2,(0.35) -0.05,(0.45) -1.6,(0.5) 

(e3, x, 1) -0.5,0.5,0.5 -0.6,0.35,0.6 -0.3,0.5,0.3 (e3, x, 0) -0.4,0.45,0.4 0.3,0.45,-0.3 0.1,0.75,-0.1 

-1.5,(0.6) -1.55,(0.45) -0.8, (0.5) -1.25,(0.4) 0.15,(0.35) 0.55,(0.75) 

(e4, x, 1) -0.5,0.5,0.5 -0.6,0.35,0.6 -0.3,0.5,0.3 (e4, x, 0) -0.2,0.8,0.2 0.2,0.85,-0.2

  

0.5,0.4,-0.5 

-1.5,(0.6) -1.55,(0.45) -1.1, (0.7) -1.20,(0.4) -0.45,(0.55) 0.6,(.45) 

(e1, y, 1) 
0.7,0.35,-0.7 

 -0.4,0.3,0.4 -0.5,0.6,0.5 (e1, y, 0) -0.2,0.8,0.2 -0.6,0.5,0.6 0,0.8,0 

1.05,(0.5) 
-1.1,(0.7) -0.6,(0.9) -1.05,(0.2) -1.7,(0.4) -0.8,(0.55) 

(e2, y, 1) 0,0.25,0 -0.6,0.3,0.6 -0.6,0.6,0.6 (e2, y, 0) -0.7,0.65,0.7 0.4,0.7,-0.4 0.5,0.4,-0.5 

-0.25,(0.3) -1.5,(0.5) -1.8,(0.8) -2.05,(0.85) 0.1, (0.7) 0.6, (0.45) 

(e3, y, 1) -0.3,0.5,0.3 -0.6,0.3,0.6 -0.1,0.85,0.1 (e3, y, 0) 0,0.85,0 0.6,0.7,-0.6 0.5,0.4,-0.5 
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-1.1, (0.4) -1.5, (0.7) -1.05, (0.6) -0.85,(0.35) 0.5,(0.5) 0.6,(0.45) 

(e4, y, 1) -0.2,0.6,0.2 0.2,0.95,-0.2 0.5,0.25,-0.5 (e4, y, 0) -0.2,0.7,0.2 -0.6,0.5,0.6

  

-0.2,0.6,0.2 

-1.0,(0.6) -0.55,(0.35) 0.75,(0.45) -1.1,(0.5) -1.7,(0.55) -1.0,(0.25) 

(e1, z, 1) 
-0.5,0.45,0.5 

 0.2,0.35,-0.2 -0.3,0.55,0.3 (e1, z, 0) -0.3,0.55,0.3 -0.4,0.35,0.4 -0.1,0.6,0.1 

-1.45,(0.55) 
0.5,(0.4) -1.1,(0.8) -1.15,(0.6) -1.15,(0.55) -0.8,(0.3) 

(e2, z, 1) -0.4,0.5,0.4 0.3,0.4,-0.3 -0.9,0.3,0.9 (e2, z, 0) -0.1,0.75,0.1 -0.5,0.4,0.5 -0.2,0.8,0.2 

-1.3,(0.45) 0.2,(0.4) -2.1,(0.8) -0.95,(0.65) -1.4,(0.65) -1.2,(0.35) 

(e3, z, 1) -0.2,0.6,0.2 -0.3,0.55,0.3 0,0.4,0 (e3, z, 0) 0.4,0.7,-0.4 -0.3,0.75,0.3 0.1,0.7,-0.1 

-1.0,(0.2) -1.15,(0.5) -0.4,(0.8) 0.1,(0.55) -1.65,(0.3) -0.5,(0.7) 

(e4, z, 1) -0.4,0.5,0.4 0.2,0.15,-0.2 -0.1,0.75,0.1 (e4, z, 0) -0.2,0.7,0.2 -0.5,0.4,0.5 0.4,0.6,-0.4 

-1.3,(0.55) 0.25,(0.5) -0.95,(0.85) -1.1,(0.5) -1.4,(0.7) 0.2,(0.6) 

Table-2 

 High 

numerical 

grad for 

agree 

PNVSE 

set (𝜆𝑖) 

High 

numerical 

average 

value of the 

vague set 

(𝜇𝑖) 

correspond

ing to 

highest 

numerical 

grad 

𝜆𝑖 × 𝜇𝑖  High 

numerical 

grad for 

disagree 

PNVSE 

set (𝜆𝑖) 

High 

numerical 

average 

value of 

the vague 

set (𝜇𝑖) 

correspon

ding to 

highest 

numerical 

grad 

𝜆𝑖 × 𝜇𝑖 

(e1, x, 1) u1(-0.2) 0.4 -0.08 (e1, x, 0) u2(-0.25) 0.4 -0.1 

(e2, x, 1) u3(0.6) 0.4 0.24 (e2, x, 0) u2(-0.05) 0.45 -0.0225 

(e3, x, 1) u3(0.8) 0.5 -0.40 (e3, x, 0) u3(0.55) 0.75 0.4125 
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For agree 

Score u1 = -0.08+0.525+(-0.075) = 0.370 

Score u2 = 0.02+0.08+0.125 = 0.225 

Score u3 = 0.24+(-0.40)+(-0.75)+(-0.63) +0.3375+(-0.32) = -1.5225 

For disagree 

Score u1 = -0.6175+0.055 = -0.5625 

Score u2 = -0.1+(-0.0225) = -0.1225, 

Score u3 = 0.4125+0.27+0.27+0.36 +(-0.25)+(-0.24)+0.12 = 0.9425 

Table 3. The score ri = Ai-Di 

Ai Di ri 

Score u1 = 0.37 Score u1 = -0.5625 0.9325 

Score u2 = 0.225 Score u2 = -0.1225 0.3475 

Score u3 = -1.5225 Score u3 = 0.9425 -2.465 

Thus S = max ui∈∪ {𝑟𝑖} = r1.So, the committee is advised to hire candidate u1 to fill the vacant position. 

6. Conclusions 

      We give the advances of our proposal method using VPNVSE set as compared to that PVSE set 

as proposed by [19]. The VPNVSE set is a generalization of PVSE set. The VPNVSE set each examine 

the universal U in never detail with three membership functions, especially when there are many 

parameters involved, where PVSE set can tell us limited information about the universal U. It can 

(e4, x, 1) u3(-1.1) 0.7 -0.77 (e4, x, 0) u3(0.6) 0.45 0.27 

(e1, y, 1) u1(1.05) 0.5 0.525 (e1, y, 0) u3(-0.8) 0.55 -0.44 

(e2, y, 1) u1(-0.25) 0.3 -0.075 (e2, y, 0) u3(0.6) 0.45 0.27 

(e3, y, 1) u3(-1.05) 0.6 -0.63 (e3, y, 0) u3(0.6) 0.6 0.36 

(e4, y, 1) u3(0.75) 0.45 0.3375 (e4, y, 0) u3(-1.0) 0.25 -0.25 

(e1, z, 1) u2(0.05) 0.4 0.02 (e1, z, 0) u3(-0.8) 0.3 -0.24 

(e2, z, 1) u2(0.2) 0.4 0.08 (e2, z, 0) u1(-0.95) 0.65 -0.6175 

(e3, z, 1) u3(-0.4) 0.8 -0.32 (e3, z, 0) u1(0.1) 0.55 0.055 

(e4, z, 1) u2(0.25) 0.5 0.125 (e4, z, 0) u3(0.2) 0.6 0.12 
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only handle the incomplete information comparing both the truth-membership value and falsity-

membership values with corresponding vague set. But VPNVSE set can handle problems involving 

imprecise, indeterminacy and incomplete data with corresponding vague set. Thus it makes more 

accurate and realistic than PVSE set (PNVSE set [13]). In future many applications in decision making 

problems can be solved with VPNSE sets- especially in medical sciences.  
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Abstract: Neutrosophic topological structure can be applied in many fields, viz. physics, 

chemistry, data science, etc., but it is difficult to apply the object with periodicity. So, we present 

this concept to overcome this problem and novelty of our work is to extend the range of 

membership, indeterminacy and non-membership from closed interval [0, 1] to unit circle in the 

neutrosophic complex plane and modify the existing definition of neutrosophic complex topology 

proposed by [17], because we can’t apply the existing definition to some set theoretic operations, 

such as union and intersection. Also, we introduce the new notion of neutrosophic complex   

-connectedness in neutrosophic complex topological spaces and investigate some of its properties. 

Numerical example also provided to prove the nonexistence 

Keywords: neutrosophic sets; neutrosophic complex topology; neutrosophic complex  -closed 

set; neutrosophic complex   -connectedness between neutrosophic sets. 

 

 

1. Introduction 

In 1965, Zadeh [25] introduced fuzzy sets, after that there have been a number of developments in 

this fundamental concept. Atanassov [3] introduced the notion of intuitionistic fuzzy sets, which is 

generalized form of fuzzy set. Using the generalized concept of fuzzy sets, D. Coker [5] introduced 

the notion of intuitionistic fuzzy topological spaces. F. Smarandache [21, 22] introduced and 

studied neutrosophic sets. Applications of neutrosophic sets has been studied by many 

researchers [1, 2, 14]. Shortly, Salama et.al [19] introduced and studied Neutrosophic topology. 

Since then more research have been identified in the field of neutrosophic topology [4, 8, 11, 15, 18, 

23], neutrosophic complex topology [10], neutrosophic ideals [17], etc. Kuratowski [9] introduced 

connectedness between sets in general topology. Thereafter various weak and strong form of 

connectedness between sets have been introduced and studied, such as b-connectedness [7], 

p-connectedness between sets [20], GO-connectedness between sets [19]. Parimala et.al, [16] 

initiated and investigated the concept of neutrosophic-closed sets. Wadei Al-Omeri [24], presented 

the concept of generalized closed and pre-closed sets in neutrosophic topological space and 
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extended their discussions on pre- T1/2 space and generalized pre-T1/2. They also initiated the 

concept of generalized neutrosophic connected and of their properties.  

R. Devi [17] brought the concept complex topological space and investigated some properties of 

complex topological spaces. Topological set with real values are not sufficient for the complex 

plane, this led to define this proposed concept. Every neutrosophic complex set contains a 

membership, indeterminacy and non-membership function in neutrosophic complex topology and 

each membership function in neutrosophic complex set contain amplitude and phase term. 

Similarly, indeterminacy and non-membership functions in neutrosophic complex set contain 

amplitude and phase terms. The null neutrosophic complex set has 0 as amplitude and phase 

value in membership and indeterminacy and 1 as amplitude and phase value in non-membership. 

The unit neutrosophic complex set has 1 as amplitude and phase value in membership and 

indeterminacy and 0 as amplitude and phase value in non-membership. The only open and closed 

set in neutrosophic complex topological space is 0 and 1. The remaining neutrosophic complex 

sets are not both open and closed. If it is both open and closed sets then it can’t be a connected in 

neutrosophic complex topology. In this work, we define the concepts of neutrosophic complex 

 -connectedness between neutrosophic complex sets in neutrosophic complex topological 

spaces and also study some of its properties. 

 

2. Preliminaries 

We recall the following basic definitions in particular the work of R. Devi [17] which are useful for 

the sequel. 

Definition 2.1. Let X  and I be the unit circle in the complex plane. A neutrosophic complex 

set (NCS) A is defined as }:)(),(),(,{ 11111 XxxRxQxPxA AAA  where the 

mappings )(),(),( 111 xRxQxP AAA  denote the degree of membership, the degree of 

indeterminacy and the degree of non-membership for each element 1x  in X to the set A, 

respectively, and 3)()()(0  xRxQxP AAA
for each x1 ϵ X. 

Here
)(

11

)(

11

)(

11
111 )()(,)()(,)()(

xj

AA

xj

AA

xj

AA
AAA exFxRexIxQexTxP


  and 

)(),(),( 111 xFxIxT AAA  are amplitude terms, )(),(),( 111 xxx AAA  are the phase terms. 

Definition 2.2. Two NCSs A and B are of the form 

}:)(),(),(,{ 11111 XxxRxQxPxA AAA  and 

}:)(),(),(,{ 11111 XxxRxQxPxB BBB  .Then 

BA    if and only if  )()()()(),()( xRxRandxQxQxPxP BABABA  . 

}:)(),(),(,{ 11111 XxxPxQxRxA AAA  . 

}:)()(,)()(),()(,{ 11111111 XxxRxRxQxQxPxPxBA BABABA  . 

}:)()(,)()(),()(,{ 11111111 XxxRxRxQxQxPxPxBA BABABA   

Where 

,))(()()(
))((

111
1xj

BABA
BAexTTxPxP

 
 ,))(()()(

))((

111
1xj

BABA
BAexTTxPxP

 


,))(()()(
))((

111
1xj

BABA
BAexIIxQxQ

 


,))(()()(
))((

111
1xj

BABA
BAexIIxQxQ

 
  

))((

111
1))(()()(

xj

BABA
BAexFFxRxR

 


))((

111
1))(()()(

xj

BABA
BAexFFxRxR

 
  
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Definition 2.3. A subset A of a neutrosophic complex topological space ),( X  is called 

i. A neutrosophic complex semi-generalized closed (briefly, NCsg-closed) set if complex semi 

closure of (A) U  whenever  UA  and U is semi-open in ),( X ; 

ii. A neutrosophic  complex  -closed set if complex semi closure of (A) U   whenever 

UA   and U is neutrosophic complex semi-generalized open in ),( X ; 

iii. A neutrosophic complex  -closed (briefly, N C CS) set if complex  closure (A) 

U whenever UA   and U is neutrosophic complex  -open in ),( X . 

Definition 2.4. Two neutrosophic complex sets A and B of X are said to be q-complex coincident 

(ACqB for short) if and only if there exist an element y in X such that  )()( yByA . 

Definition 2.5. For any two neutrosophic complex sets A and B of X, BA   iff A and 
CB  are 

not q-coincident (
CB  is the usual complement of the set B). 

Remark 2.6. Every neutrosophic complex closed (resp. neutrosophic complex open) set is 

neutrosophic complex  - closed (resp. neutrosophic complex  - open) but the converse 

may not be true. 

3. On neutrosophic complex  - connectedness between neutrosophic complex sets 

In this section, modified definition of neutrosophic complex topology and definition of 

neutrosophic complex  - connectedness between sets are presented, some of its properties also 

investigated and counter examples are also provided. 

Definition 3.1. A neutrosophic complex topology (NCT) on a nonempty set X is a family _ of 

NCSs in X satisfying the following conditions: 

 (T1) 1,0 where 001110 0,0,1,1,1,1,0,0 jjjjjj eeexeeex   

 (T2) BA  for any BA,  ; 

(T3)  iA for any arbitrary family  }:{ JiAi  

Definition 3.2. A neutrosophic complex topological space ),( X  is said to be neutrosophic 

complex  -connected between neutrosophic complex sets A and B if there is no neutrosophic 

complex  -closed neutrosophic complex  -open set F in X such that FA   and ¬(FCqB). 

Theorem 3.3. If a neutrosophic complex topological space ),( X  is neutrosophic complex  - 

connected between neutrosophic complex sets A and B, then it is neutrosophic complex connected 

between A and B. 

Proof:  If ),( X  is not neutrosophic complex connected between A and B, then there exists an 

neutrosophic complex closed open set F in X such that FA   and ¬(F qB). Then every 

neutrosophic complex closed open set F in X is a neutrosophic complex  closed neutrosophic 

complex   open set F in X. If F is an neutrosophic  -closed  -open set in X such that 

FA   and ¬(FqB) then ),( X  is not neutrosophic  -connected between A and B, which 

contradicts our hypothesis. Hence ),( X  is a neutrosophic complex connected between A and B. 

Remark 3.4. Following example clears that the converse of the above theorem may be false. 

Example3.5.  

Let X = {a,b} and }4.0,4.0,6.0,,4.0,4.0,5.0,{ 4.04.06.04.04.05.0  jjjjjj eeebeeeaU , 

}6.0,6.0,3.0,,7.0,7.0,2.0,{ 6.06.05.07.07.02.0  jjjjjj eeebeeeaA and 

}5.0,5.0,4.0,,4.0,4.0,5.0,{ 5.05.04.04.04.05.0  jjjjjj eeebeeeaB  be neutrosophic 

complex sets on X. Let },1,0{ ~~ U  be a neutrosophic complex topology on X. Then ),( X  
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is neutrosophic complex connected between A and B but it is not neutrosophic complex 

 -connected between A and B. 

Theorem 3.6. A NCT ),( X is neutrosophic complex  - connected if and only if it is 

neutrosophic complex  - connected between every pair of its non-empty neutrosophic 

complex sets. 

Proof: Necessity: Let A, B be any pair of neutrosophic complex subsets of X. Suppose ),( X is 

not neutrosophic complex   - connected between neutrosophic complex sets A and B. Then 

there exists a neutrosophic complex   - closed complex   - open set F of X such that A is a 

subset of F and ¬(FCqB). Since neutrosophic complex sets A and B are neutrosophic non-empty, it 

follows that F is a neutrosophic non - empty proper neutrosophic complex  - closed complex 

  - open set of X. Hence ),( X is not neutrosophic complex   - connected. 

Sufficiency: Suppose ),( X is not neutrosophic complex  - connected. Then there exist a 

neutrosophic non empty proper neutrosophic complex   - closed complex   - open set F 

of X. Consequently ),( X  is not neutrosophic complex   - connected between F and
CF , a 

contradiction. 

Remark 3.7. If a neutrosophic topological space ),( X is neutrosophic complex - connected 

between a pair of its neutrosophic complex subsets, it is not necessarily that ),( X  is 

neutrosophic complex   - connected between every pair of its neutrosophic complex subsets, 

as the following example shows. 

Example 3.8.  

Let X = {a,b} and }4.0,4.0,6.0,,4.0,4.0,5.0,{ 4.04.06.04.04.05.0  jjjjjj eeebeeeaU , 

}4.0,4.0,6.0,,3.0,3.0,4.0,{ 4.04.06.03.03.04.0  jjjjjj eeebeeeaA

}4.0,4.0,4.0,,2.0,2.0,5.0,{ 4.04.04.02.02.05.0  jjjjjj eeebeeeaB

}6.0,6.0,3.0,,7.0,7.0,2.0,{ 6.06.03.07.07.02.0  jjjjjj eeebeeeaC and 

}5.0,5.0,4.0,,4.0,4.0,5.0,{ 5.05.04.04.04.05.0  jjjjjj eeebeeeaD  be neutrosophic sets on 

X. Let },1,0{ ~~ U be a neutrosophic complex topology on X. Then ),( X  is a neutrosophic 

complex connected between neutrosophic complex sets A and B but it is not neutrosophic complex 

connected between neutrosophic complex sets C and D. Also ),( X  is not neutrosophic complex 

 - connected. 

Theorem 3.9. An NCT ),( X  is neutrosophic complex   - connected between neutrosophic 

complex sets A and B if and only if there is no neutrosophic complex   - closed complex  - 

open set F in X such that 
CBFA  . 

Proof. Necessity: Let ),( X  be an neutrosophic complex  - connected between neutrosophic 

complex sets A and B. Suppose on the contrary that F is an neutrosophic complex  - closed 

complex  - open set in X such that 
CBFA  . Now 

CBF   which implies that ¬(FCqB). 

Therefore F is a neutrosophic complex  - closed complex  - open set in X such that FA  

and ¬(FCqB). Hence ),( X  is not neutrosophic complex  - connected between neutrosophic 

complex sets A and B, which is a contradiction. 

Sufficiency: Suppose on the contrary that ),( X  is not a neutrosophic complex  - connected 

between neutrosophic complex sets A and B. Then there is a neutrosophic complex  - closed 

complex  - open set F in X such that FA  and ¬(FCqB). Now, ¬(FCqB) which implies that 

CBF  . Therefore F is a neutrosophic complex  - closed complex  - open set in X such 

that
CBFA  , which contradicts our assumption. 
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Theorem 3.10. If a NCT ),( X  is neutrosophic complex  - connected between neutrosophic 

complex sets A and B, then A and B are neutrosophic non-empty in complex plane. 

Proof. Let ),( X be a neutrosophic complex  - connected between neutrosophic complex sets 

A and B. Suppose the neutrosophic complex sets A or B or both are empty set then the intersection 

of A and B is empty, which is contradiction to the definition of connectedness. The only open and 

closed sets in neutrosophic complex sets are 0 and 1. We know that every neutrosophic complex 

connected space is a  - connected between A and B. Therefore ),( X is not a neutrosophic 

complex  - connected between neutrosophic complex sets A and B. This leads to the 

contradiction to the hypothesis.  

Theorem 3.11. Let ),( X  be a NCT and A,B be two neutrosophic complex sets in X. If ACqB 

then ),( X  is a neutrosophic complex  - connected between A and B. 

Proof. If B is any neutrosophic complex  - closed complex  - open set of X such that A and 

BC are not q-coincident and A is a subset of B. This is contradiction to the given statement A is 

complex q-coincident with B. Therefore ),( X  is neutrosophic complex  - connected 

between A and B. 

Remark 3.12. Example 3.13 shows that the converse of the above theorem may not hold.  

Example 3.13.  

Let X = {a,b} and }5.0,5.0,3.0,,6.0,6.0,2.0,{ 5.05.03.06.06.02.0  jjjjjj eeebeeeaU , 

}6.0,6.0,3.0,,3.0,3.0,4.0,{ 6.06.03.03.03.04.0  jjjjjj eeebeeeaA  and 

}4.0,4.0,5.0,,5.0,5.0,2.0,{ 4.04.05.05.05.02.0  jjjjjj eeebeeeaB  be neutrosophic 

complex sets on X. Let },1,0{ ~~ U  be a neutrosophic complex topology on X. Then ),( X  

is neutrosophic complex  -connected between neutrosophic sets A and B but ¬(AqB). 

 4. On subspace of neutrosophic complex topology and subset of neutrosophic complex set 

Theorem 4.1. If a NCT ),( X  is a neutrosophic complex  - connected between neutrosophic 

complex sets A and B such that A and B are subset of A1 and B1 respectively, then ),( X  is a 

neutrosophic complex  - connected between A1 and B1. 

Proof.  Let ),( X  be a neutrosophic complex  - connected between neutrosophic complex 

sets A and B such that A and B are subset of A1 and B1 respectively.  Suppose ),( X  is not a 

neutrosophic complex  - connected between A1 and B1. Then there exist a set A1 such that A1 

a subset of complement of B1 and intersection of A and B1 is empty. Also intersection of A and B is 

empty since A is a subset of A1 and A1 is a subset of complement of B1. This is contradiction to the 

assumption that ),( X  is a neutrosophic complex  - connected between neutrosophic 

complex sets A and B. Hence ),( X  is a neutrosophic complex  - connected between A1 and 

B1. 

Theorem 4.2. A NCT ),( X  is a neutrosophic complex  -connected between neutrosophic 

complex sets A and B if and only if it is neutrosophic complex  - connected between NC  

cl(A) and NC cl(B). 

Proof. Necessity: Let ),( X  be a neutrosophic complex  - connectedness between A and B. 

On the contrary, ),( X  is not a neutrosophic complex  - connected between NC cl(A) 

and NC  cl(B). We know that every neutrosophic complex set A and B are subset of 

NC cl(A) and NC cl(B), respectively. Therefore there does not exist neutrosophic complex 

 - connected between A and B. Follows from Theorem 4.1, because A is a subset of NC  

cl(A) and B is a subset of NC cl(B).        
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Sufficiency: Suppose ),( X  is not a neutrosophic complex  - connected between 

neutrosophic complex sets A and B. Then there is a neutrosophic complex  - closed 

complex - open set F of X such that FA   and ¬(FCqB). Since F is a neutrosophic complex 

 -closed and FA  , F cl(A) NC . Now, ¬(FCqB) which implies that 
CBF   

Therefore F = 
CC cl(B)) (NC = )int(B NC int(F) NC   . Hence (FCqN cl(B)) and 

X is not a neutrosophic complex   - connected between NC cl(A) and NC cl(B). 

Theorem 4.3. Let ),( YY   be a subspace of a NCT ),( X  and A;B be neutrosophic complex 

subsets of Y. If ),( YY   is a neutrosophic complex  - connectedness between A and B then so 

is ),( X  

Proof. Suppose, on the contrary, that ),( X  is not a neutrosophic complex  -connected 

between neutrosophic sets A and B. Then there exist a neutrosophic complex  -closed complex 

 -open set F of X such that FA   and ¬(FCqB). Put YFFY  .  Then FY is neutrosophic 

complex  -closed complex  -open set in Y such that YFA  and ¬(FYCqB). Hence 

),( YY   is not a neutrosophic complex  -connected between A and B, a contradiction. 

Theorem 4.4. Let ),( YY   be a neutrosophic complex subspace of a NCT ),( X  and A, B be 

neutrosophic subsets of Y. If ),( X  is a neutrosophic complex  -connected between 

neutrosophic complex sets A and B, then so is ),( YY  . 

Proof. If ),( YY   is not a neutrosophic complex  -connected between neutrosophic complex 

sets A and B, then there exist a neutrosophic complex  - closed complex  -open set F of Y 

such that FA   and ¬(FCqB). Since Y is a neutrosophic complex closed open in X, F is a 

neutrosophic complex  -closed complex  -open set in X. Hence X cannot be neutrosophic 

complex   -connected between neutrosophic complex sets A and B, a contradiction. 

5. Conclusions 

Neutrosophic topology is an extension of fuzzy topology. Neutrosophic complex topology is an 

extension of neutrosophic topology and complex neutrosophic set. In neutrosophic complex set, 

membership degree stands for truth value with periodicity, indeterminacy stands for 

indeterminacy with periodicity and non-membership stands for falsity with periodicity. In this 

paper, we modified the definition proposed by [17] and we presented the new concept of 

neutrosophic complex   - connectedness between NCSs in NCTs using new definition and 

some properties of neutrosophic complex   - connectedness is investigated along with 

numerical example. Also this work encourages that in future, this concept can be extended to 

various connectednesses and analyse the properties with application. 
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  Abstract: As neutrosophic deal with uncertain, inconsistent and also indeterminate information, the 

model of NS is a significant technique to covenant with real methodical and engineering. 

Neutrosophic fuzzy is more generalized than intuitionistic fuzzy .The common process for 

unraveling the neutrosophic transportation problems involves procedures like, north-west corner 

method, matrix minima method and Vogel’s approximation method. By determining the mean of 

the specified costs the optimal elucidation of the neutrosophic fuzzy transportation problem is 

initiated in this paper. This technique has been implemented into two phases. In first methodology, 

the complete contingency cost table is constructed and in the second phase and the optimum 

allocation is made. The significance of this technique confers a better optimal solution compared to 

other methods. A numerical example for the projected technique is explicated and compared along 

with existing techniques. 

            Keywords: Neutrosophic Fuzzy Transportation Problem, Complete Contingency Cost Table (CCCT),                                

                                   Costs Mean. 

1. Introduction 

The prominent fail on the charge and the pricing of raw materials and commodities is evidently 

owing to transportation cost. The outlay of transportation is elicited by dealer and manufacturer. 

Exclusive of the conservative methods like North West corner method, row minima method, least 

cost method, column minima method ,Vogel’s approximation method and modified distribution 

method many researchers have endowed with new techniques to find a better initial basic feasible 

solution for the transportation problem.  

To handle imprecise, uncertain and indeterminate problems that cannot be dealt by fuzzy 

and its various types, the neutrosophic set theory (NS) theory  was illustrated by samarandache 

in 1995.NS is acquired by three autonomous mapping such as truth (T), indeterminacy (I) and 

falsity (F) and takes values from ]0−, 1+[ . The scope of neutrality is explained with the aid of NS 

theory. NSs can be accomplished to handle uncertainty in an enhanced way. Single valued 

neutrosophic acquires extra consideration and get optimized solution than other types of fuzzy 

sets because of accurateness, adoptability and link to a system. Vogel’s approximation technique 

for solving the Transportation Problem was premeditated by Harvey and Shore (1970) [32]. 

mailto:jvprbh1@gmail.com
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Application of heuristics for solving Transportation Problem was proposed by Shimshak, Kaslik 

and Barelay (1981) [31]. Deshumukh (2012) [17] offered a pioneering technique for unraveling 

Transportation Problem. Sudhakar, Arunnsankar, and Karpagam (2012) [34] have given a 

modified approach for solving transportation problem. Transportation Problems with mixed 

restrictions have been resolved by Pandian and Natarajan (2010) [25]. Abdel-Basset, M., 

Manogaran, G., Gamal, A., & Chang, V. (2019) [2] presented an intelligent medical decision 

support model based on soft computing and IOT to detect and observe type-2 diabetes patients. 

Abdel-Basset, M., Mohamed, R., Zaied, A. E. N. H., & Smarandache, F. (2019) [3] discovered a 

hybrid plithogenic decision-making approach with quality function deployment for selecting 

supply chain sustainability metrics. The proposed method is a combination of quality function 

deployment (QFD) with plithogenic aggregation operations.  

Researchers like Md. Amirul Islam(2013)[22], Quddos et al and Sudhakar et al (2012)[26], 

Serder Korukoglu and Serkan Balli(2011) [30], Balakrishnan (1990)[11],Reena et al 

(2014,2016)[27,28], Urashikumari et al(2017) [35], Biswas.P(2016) [12] Krishna Prabha and Vimala 

(2016)[21,36], Palanivel and Suganya(2018) [24], Abul et al (2017) [9], Hajjari(2011)[18], Hitchcock 

.F.L(1947)[19], Joshua(2017)[20], Mohanaselvi et al (2012)[23], Said Broumi(2019)[15,29],Chang 

(1981)[16], Smarandache (2005)[33] and Wang(2010)[37] have predicted a variety of techniques 

for solving transportation and NS transportation problems. Real life transportation problem in 

neutroshopic environment is deliberated by Akansha singhet al(2017) [10]. The same numerical 

problem is considered. Abdel-Basset, M., Atef, A., & Smarandache, F. (2019) [6] invented a 

hybrid Neutrosophic multiple criteria cluster decision making approach for project selection. A 

novel group decision making replica based on neutrosophic sets for heart disease diagnosis was 

recommended by Abdel-Basset, M., Gamal, A., Manogaran, G., & Long, H. V. (2019)[7].The idea 

of first-and high-order NTS was suggested by Abdel-Basset, M., Chang, V., Mohamed, M., & 

Smarandache, F. (2019)[8]. 

Broumi et al. (2018)[14] proposed an innovative system and technique for the planning of 

telephone network using NG. Broumi et al (2019) [13] proposed SPP under interval valued neu 

trosophic setting. Score function is utilized in machine erudition. Abdel-Basset et al (2019) [1] 

have proposed a novel model for evaluation hospital medical care systems with  plithogenic sets 

and this research stratifies the plithogenic multi criteria decision making (MCDM) technique for 

defining the considerable weights of assessing standards, and the VIKOR technique is applied 

for enhancing the serving efficiency classifications of the possible substitutes. Abdel-Basset, M., 

& Mohamed, M. (2019)[4] proposed a powerful framework based on neutrosophic sets to aid 

patients with cancer. Abdel-Basset, M., Mohamed, M., & Smarandache, F. (2019) [5] determined a 

Linear fractional programming based on triangular neutrosophic numbers. By means of the 

recommend approach, the transformed MOLFP problem is condensed to a single objective linear 

programming (LP) problem which can be deciphered simply, by proper linear programming 

method. In this paper, new unconventional technique to unravel neutrosophic Fuzzy 

transportation problem using Mean and CCCT is proposed and presented with numerical 

example. The paper is organized as follows. Section 1 confers the introduction part and section 2 

deals with the preliminary. In section 3 the algorithm for unraveling is presented .A numerical 
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example is illustrated in section 4 and the result is compared with existing methods. Finally the 

paper is concluded in section 5. 

2. Preliminaries 

Definition 2.1: Let 𝑋  be a space of points with generic elements in 𝑋  denoted by 𝑥 .The 

neutrosophic set A is an object having the form, 𝐴 = {〈𝑥 ∶ 𝑇𝐴(𝑋), 𝐼𝐴(𝑋), 𝐹𝐴(𝑋)〉 , 𝑥 ∈ 𝑋},where the 

functions T,I,F : X→]-0,1+[ define respectively the truth-membership function, indeterminacy-

membership function and falsity- membership function of the element 𝑥 ∈ 𝑋 to the set A with the 

condition -0 ≤  𝑇𝐴(𝑋) + 𝐼𝐴(𝑋) + 𝐹𝐴(𝑋) ≤ 3
+ .The functions are real standard or nonstandard subsets 

of  ]-0,1+ [. 

Definition 2.2 [13] Let RN = 〈[𝑅𝑇 , 𝑅𝐼 , 𝑅𝑀, 𝑅𝐸 , ](𝑇𝑅 , 𝐼𝑅 , 𝐹𝑅)〉 and SN = 〈[𝑆𝑇  , 𝑆𝐼 , 𝑆𝑀 , 𝑆𝐸 , ](𝑇𝑆 , 𝐼𝑆, 𝐹𝑆)〉 be two 

trapezoidal neutrosophic numbers (TpNNs) and 𝜃 ≥ 0 ,then 

RN ⊕ SN = 〈[𝑅𝑇   + 𝑆𝑇 , 𝑅𝐼   + 𝑆𝐼 , 𝑅𝑀   + 𝑆𝑀, 𝑅𝐸   + 𝑆𝐸  ](𝑇𝑅  + 𝑇𝑠 − 𝑇𝑅 𝑇𝑠, 𝐼𝑅  𝐼𝑠, 𝐹𝑅𝐹𝑆)〉  

RN ⊗ SN = 〈[𝑅𝑇  . 𝑆𝑇 , 𝑅𝐼  . 𝑆𝐼 , 𝑅𝑀  . 𝑆𝑀, 𝑅𝐸   . 𝑆𝐸  ](𝑇𝑅  . 𝑇𝑠 ,𝐼𝑅  +  𝐼𝑠 − 𝐼𝑅 . 𝐼𝑠 , 𝐹𝑅+𝐹𝑆 − 𝐹𝑅. 𝐹𝑆)〉 

𝜃 RN = 〈[𝜽𝑅𝑇 , 𝜽𝑅𝐼 , 𝜽𝑅𝑀 , 𝜽𝑅𝐸 , ](1 − (1 − 𝑇𝑅))
𝜃 , (𝐼𝑅)

𝜃 , (𝐹𝑅)
𝜃)〉 

Definition2.3 [13]: Let R= [ RT, RI, RM, RE ] and RT ≤ RI ≤ RM ≤ RE then the centre of gravity (COG) 

in R is 

 COG(R) = {

𝑅 𝑖𝑓 𝑅𝑇  = 𝑅𝐼 = 𝑅𝑀 = 𝑅𝐸
1

3
[𝑅𝑇  + 𝑅𝐼 + 𝑅𝑀 + 𝑅𝐸 − 

𝑅𝑇  𝑅𝐼−𝑅𝑀𝑅𝐸

𝑅𝐸 +𝑅𝑀 −𝑅𝐼− 𝑅𝑇  
] 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

-------------- (1) 

Definition2.4 [13]: Let SN = 〈[𝑆𝑇 , 𝑆𝐼 , 𝑆𝑀, 𝑆𝐸 , ](𝑇𝑆, 𝐼𝑆, 𝐹𝑆)〉 be a TpNN then the score, accuracy and 

certainty functions are as follows  

S (SN ) = 𝐶𝑂𝐺(𝑅) ×
(2+𝑇𝑆−𝐼𝑆−𝐹𝑆)

3
  -------------- (2) 

a(SN) = 𝐶𝑂𝐺 (𝑅) × (𝑇𝑆 − 𝐼𝑆) 

C(SN) = 𝐶𝑂𝐺 (𝑅) × (𝑇𝑆 ) 

Definition2.5 [12]: Let N be a trapezoidal neutrosophic number in the set of real numbers with 

the truth, indeterminacy and falsity membership functions are defined by  

TN(x) = 

{
 
 

 
 
(𝑥−𝑎)𝑡𝑁

𝑏−𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

𝑡𝑁 , 𝑏 ≤ 𝑥 ≤ 𝑐
(𝑑−𝑥)𝑡𝑁

𝑑−𝑐
, 𝑐 ≤ 𝑥 ≤ 𝑑

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

IN(x) = 

{
 
 

 
 
𝑏−𝑥+(𝑥−𝑎)𝑡𝑁

𝑏−𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

𝑖𝑁 , 𝑏 ≤ 𝑥 ≤ 𝑐
𝑥−𝑐+(𝑑−𝑥)𝑖𝑁

𝑑−𝑐
, 𝑐 ≤ 𝑥 ≤ 𝑑

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

TN(x) = 

{
 
 

 
 
𝑏−𝑥+(𝑥−𝑎)𝑓𝑁

𝑏−𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

𝑓𝑁 , 𝑏 ≤ 𝑥 ≤ 𝑐
𝑥−𝑐+(𝑑−𝑥)𝑓𝑁

𝑑−𝑐
, 𝑐 ≤ 𝑥 ≤ 𝑑

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Where 𝑡𝑁  = [ 𝑡𝐿 ,  𝑡𝑈]  ⊂ [0,1], 𝑖𝑁  = [ 𝑖𝐿 ,  𝑖𝑈]  ⊂ [0,1], and 𝑓𝑁  = [ 𝑓𝐿 ,  𝑓𝑈]  ⊂ [0,1]  are interval 

numbers.Then the number N can be denoted by ([a,b,c,d]: [ 𝑡𝐿 ,  𝑡𝑈], [ 𝑖𝐿 ,  𝑖𝑈] ,[ 𝑓𝐿 ,  𝑓𝑈])  called 

interval valued  trapezoidal neutrosophic number. 

 

 

3. Customized Algorithm  

The algorithm is accomplished into two phases: 

1. Complete Contingency Cost Table (CCCT)  

2. Optimum Allocation of Transportation Problem 

3.1 Complete Contingency Cost Table – CCCT 

Step 1 The slightest cost of each element in every row should be deducted and relegate it 

to the right-top of subsequent elements from the given Transportation Table (TT). 

Step 2 The slightest cost of each element in every row should be deducted and consign 

them on the right-foot of the corresponding elements. 

Step 3 Frame the CCCT by accumulating the right-top and right-foot elements. 

3.2 Optimum Allocation of Transportation Problem 

Step 1 The Row Mean Total Opportunity Cost (RMTOC) is found by calculating the row 

mean along every row. Column Mean Total Opportunity Cost (CMTOC) is found by 

calculating the column mean along every column. 

Step 2 Spot the prevalent element among the RMTOCs and CMTOCs, if there is more 

than one prevalent element then select the prevalent element along which the least cost 

element is present. If there is more than one smallest element, select any one of them 

arbitrarily. 

Step 3 Allocate 𝑥𝑖𝑗= min (𝑎𝑖 , 𝑏𝑗 ) on the left top of the least entry in the (i ,j )th of the TT 

Step 4  

If 𝑎𝑖 < 𝑏𝑗, leave the ith row and obtain  𝑏𝑗
! = 𝑏𝑗 − 𝑎𝑖.  

If 𝑎𝑖 > 𝑏𝑗, leave the jth column and obtain 𝑏𝑗
! =  𝑎𝑖− 𝑏𝑗 . 

If 𝑎𝑖 = 𝑏𝑗 , leave either ith row or jth column but not both.  

             Step 5 Repeat the Steps 1 to 4 until all allocations are made.  

            Step 6 Estimate, Z =   ∑  ∑ 𝐶𝑖𝑗𝑋𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1  , where Z is the minimum transportation cost,𝐶𝑖𝑗  is 

the cost element of the TT.  

 

4. Numerical Example 

Consider the following Neutrosophic Transportation Problem, 

Table 1: Neutrosophic Transportation Table 

 D1 D2 D3 D4 SUPPLY 

 

O1 

(3, 5, 6,8  ); 

0.6, 0.5, 0.4 

(5, 8, 10, 14); 

0.3, 0.6, 0.6 

(12, 15, 19, 22); 

0.6, 0.4, 0.5 

(14, 17, 21, 

28); 

0.8, 0.2, 0.6 

(22,26,28,32); 

0    0.7, 0.3, 0.4 

 

O2 

(0, 1, 3,6   ); 

0.7, 0.5, 0.3 

(5, 7, 9, 11); 

0.9, 0.7, 0.5 

(15, 17, 19, 22); 

0.4, 0.8, 0.4 

(9, 11, 14, 16); 

0.5, 0.4, 0.7 

   (17, 22, 27,31); 

    0.6, 0.4, 0.5 

 (4, 8, 11, 15 ); 

0.6, 0.3, 0.2 

(1, 3, 4, 6); 

0.6, 0.3, 0.5 

(5, 7, 8, 10); 

0.5, 0.4, 0.7 

(5, 9, 14, 19); 

0.3, 0.7, 0.6 

   (21,28,32,37); 
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O3    0.8, 0.2, 0.4 

DEMAND (13, 16, 18, 21); 

0.5, 0.5, 0.6 

(17, 21, 24, 28); 

0.8, 0.2, 0.4 

(24, 29, 32, 35); 

0.9, 0.5, 0.3 

(6, 10, 13, 15); 

0.7, 0.3, 0.4 

 

 

Converting the trapezoidal neutrosophic numbers into crisp numbers by using (1) and (2), By 

s(𝑆𝑁) = COG (R) × 
(2+𝑇𝑆 −𝐼𝑆−𝐹𝑆)

3
,                                        COG (R) = 

1

3
[𝑅𝑇 + 𝑅𝐼 +𝑅𝑀+𝑅𝐸 −

𝑅𝐸𝑅𝑀−𝑅𝐼𝑅𝑇

𝑅𝐸+𝑅𝑀 −𝑅𝐼−𝑅𝑇
] 

(3, 5, 6, 8) ; 0.6, 0.5, 0.4   

COG (R) = 
1

3
[3 + 5 + 6 + 8 −

8∗6−5∗3

8+6−5−3
] = 

1

3
[22 −

48−15

6
]   =

1

3
[22 −

33

6
] =

1

3
[22 − 5.5] =

16.5

3
 = 5.5 

 s(𝑆𝑁) =5.5 × 
(2+0.6−0.5−0.4)

3
 = 5.5×0.56= 3.116 = 3 

Similarly proceeding for all numbers we get the resulting crisp TT. 

 

Table 2:  Crisp Transportation Table 

 D1 D2 D3 D4 SUPPLY 

O1 3 4 8 9 26 

O2 1 4 8 6 24 

O3 4 2 3 5 30 

 17 23 28 12  

 

4.1 Formation of the Complete Contingency Cost Table (CCCT) 

From the given crisp transportation table, remove the least value from each of the 

elements of every row and consign them on the right-top of subsequent elements. In each column 

deduct the least value from each element and place them on the right-foot of the corresponding 

elements. Add the right-top and right-foot elements of Steps 1 and 2 and frame the CCCT. 

Table 3:  Complete Contingency Cost Table 

 D1 D2 D3 D4 SUPPLY 

O1 2 3 10 10 26 

O2 0 5 12 6 24 

O3 5 0 1 3 30 

 17 23 28 12  

4.2 Allocation of the cost with supply and demand:  

Calculate the mean of complete contingency costs of cells along each row and each 

column just subsequent to and beneath the supply and demand amount correspondingly inside 

the first brackets. By solving the given problem using the above steps, we get the following final 

allocation. The ( ) represents the allocations and [ ] represents the mean along each row/column. 
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Table 4:  R /C SD Total Opportunity Cost 

  

D1 

 

D2 

 

D3 

 

D4 

 

SUPPLY 

 

MEAN 

   

 

O1 

 

2(3) 

 

3(23) 

 

10 

 

10 

 

26 

 

[6.25] 

 

[5] 

 

[5] 

 

[2.5] 

 

O2 

 

0(14) 

 

5 

 

12 

 

6(10) 

 

24 

 

[5.75] 

 

[3.7] 

 

[3.7] 

 

[2.5] 

 

O3 

 

5 

 

0 

 

1(28) 

 

3(2) 

 

30 

 

[2.25] 

 

[2.7] 

  

DEMAND 17 23 28 12      

MEAN [2.3] [2.6] [7.7] 

MAX 

[6.3]      

 [2.3] [2.6]  [6.3] 

MAX 

     

 [1] [4]  

 

[8] 

MAX 

     

 [1] [4] 

MAX 

       

 

The total opportunity cost is given bellow, 

Table 5:  CCCT Total Opportunity Cost 

 D1 D2 D3 D4 

O1 3(3) 4(23) 8  9 

O2 1(14) 4 8 6(10) 

O3 4 2 3(28) 5(2) 
 

The optimum cost is given by (3x3)+(4x23)+(1x14)+(6x10)+(3x28)+(5x2) = 9+92+14+60+84+10 =269          

Advantages and limitations of the proposed algorithm Advantages     

By correlating the systematic algorithm with existing methods like North West corner, 

least cost and Vogel’s approximation method we get the following results. This approach can be 

easily extended and applied to other neutrosophic networks such as Single-value, cubic, Bipolar, 

Interval bipolar neutrosophic numbers and so on. 

Table 6: Comparison Table 
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NWC 

 

MMM 

 

VAM 

 

PROPOSED METHOD 

349 339    272                 269 

 

 

Figure 1: Comparison Chart 

5. Conclusion  

The advantage of using the new algorithm with CCCT is discussed in this paper. We use a 

numerical example to illustrate the efficiency of our proposed algorithm. The main goal of this 

work is to portray an algorithm for solving transportation problem, in the neutrosophic 

environment using CCCT. The proposed algorithm will be very effective for real-life problem. The 

algorithm can be extended for all kinds of neutrosophic fuzzy numbers. The new method of 

manipulating mean is easier and saves time. This method gives a better optimum solution when 

compared with other methods. 
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Abstract: One of the important non-linear data structures in Computer Science is graph. Most of the 

real life network, be it a road transportation network, or airlines network or a communication 

network etc., cannot be exactly transformed into a graph model, but into a Multigraphs model. The 

Multigraph is a topological generalization of the graph where multiple links (or edges/arcs) may 

exist between two nodes unlike in graph. The existing algorithms to extract the neutrosophic 

shortest path in a graph cannot be applied to a Multigraphs. In this paper a method is developed to 

extract the neutrosophic shortest path in a directed Multigraph and then the corresponding 

algorithm is designed.  The classical Dijkstra’s algorithm is applicable to graphs only where all the   

link weights are crisp, but we borrow this concept to apply to Multigraphs where the weights of the 

links are neutrosophic numbers (NNs).  This new method may be useful in many application areas 

of computer science, communication networks, transportation networks, etc. in particular in those 

type of networks which cannot be modelled into graphs but into Multigraphs.   

  

Keywords: Multiset, NN, neutrosophic-min-weight arc-set, neutrosophic shortest path 

estimate, neutrosophic relaxation. 
 

 

1.  Introduction 

 

Graph Theory [4, 13, 51] is used in huge volume of applications in various branches of Engineering, 

mainly in Information Technology, Computer Science, Communication Engineering, Transportation 

Engineering, Space Engineering, Oceanography, and also in Mathematical Sciences, Social Science, 

Medical Science, Economics, Optimization, Decision Sciences, etc.  The Multigraph [45, 51] is an 

important generalization of the data structure graph in which multiple links (or edges/arcs) may 

exist to connect a pair of nodes.  For instance, consider a communication system in an Adhoc 

Network or a MANET where there are many multipaths or multiroute facilities. For another 

example, it is common that two neighbor routers in a network may share more than one direct 

connections existing in the topology between them, for the purpose of reducing the bandwidth 

compared to the case where a single connection be used. In fact there are a number of real life 

instances of communication network system, airlines network, road transportation network, etc. 

which cannot be transformed into graphs model,  but can be well transformed into multigraphs 
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model for the purpose of various analysis and decision makings.  In real life situation, in many of 

these type of directed multigraphs another issue is that the weights of the links are not always crisp 

rather neutrosophic numbers (NNs).  Throughout in this paper, those multigraphs are under 

consideration which are not having any loop.  

The NSPP problem is solved by Broumi in [32-36], but there is no work reported in the existing 

literature on solving neutrosophic shortest path problem (NSPP) in a multigraph.  In this paper we 

solve the NSPP problem for a multigraph where the arc-weights are neutrosophic numbers (NNs). It 

is known that the very popular Dijkstra’s algorithm is applicable to graphs only where the weights 

of the links are crisp numbers, but is not applicable to multigraphs even having crisp weights for its 

liunks. In this paper we extend this philosophy of Dijkstra’s algorithm to apply to the case of 

directed multigraphs having the weights of the links as neutrosophic numbers (NNs). This problem 

is not solved so far in any literature, but the SPP in a multigraph having weights of the links as fuzzy 

or intuitionistic fuzzy numbers are solved (for example, see [46-49]). But it has been well justified in 

length in the pioneering works [27,28,29] about the cases where fuzzy theory fails, and intuitionistic 

fuzzy theory can offer soft solutions; in fact the works [27,28,29] expos the major drawbacks of the 

fuzzy set theory. And then in the work [8,49] it is further justified that neutrosophic theory 

generalizes the intuitionistic fuzzy theory. An intuitionistic fuzzy set can be viewed as a special case of a 

neutrosophic set, but the converse is not necessarily true. The era of improvement of various models are like:-   

Crisp Set → Fuzzy Set (and various types of higher order Fuzzy Sets) → IFS→ NS. And hence, by heredity the 

same is true for the corresponding notion of numbers too, i.e.  Crisp Number → Fuzzy Number → IFN→ NN.  

Consequently, it is now obvious to the soft-computing researchers that the application of 

neutrosophic theory can surely provide better solutions [35] for ill-defined or imprecise problems.  

 

2.  Preliminaries  

In this section some relevant literatures are recollected from the work of Smarandache [8-12], Salama 

[1, 2] and also few works of other authors [5, 14, 15, 19]. In his pioneer work, Smarandache 

introduced the concepts of neutrosophic trio components T, I, and F which represent respectively the 

membership value, indeterminacy value, and non-membership value, where  ]-0,1+[  stands for a 

non-standard unit interval.  

2.1    Basic Preliminaries of the Neutrosophic Theory  

This subsection contains some elements of basic notions on the theory of neutrosophic sets, in 

particular about the single valued neutrosophic sets out of the existing literatures. 

Definition 2.1.1 Let X be a non-null set. A neutrosophic set A of the universe X is an object having 

the form A = {< x : TA(x), IA(x), FA(x)> , x X}, where the trio functions T, I, F : X → ]-0,1+[  define the 

truth-membership function, indeterminacy-membership function, and falsity-membership function 

respectively of the element x X to the set A along with the following condition: 

-0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+ .   

The trio functions TA(x), IA(x) and FA(x) are three real standard (or nonstandard) subsets of 

non-standard unit interval ]-0,1+[ .   

Application of the general model of NSs as defined above to the practical problems and issues may 

require complex computations, and consequently the authors [14, 15] suggested the notion of a 
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SVNS as a particular instance of a NS which can be used in real problems of scientific and 

engineering areas. 

Definition 2.1.2 Let T, I, F be three real standard or nonstandard subsets of the non-standard unit 

interval ]-0,1+[ , with the following:  

Sup_T = t_sup, inf_T = t_inf  

Sup_I = i_sup, inf_I = i_inf  

Sup_F = f_sup, inf_F = f_inf  

n-sup = t_sup + i_sup + f_sup  

n-inf = t_inf + i_inf + f_inf,  

Then T, I, F are called neutrosophic trio components.  

Definition 2.1.3 The NS 0N in X is defined as follows:  

(i)   0N   = {<x, (0,0,1)> :  x X}  

(ii)  0N   = {<x, (0,1,1)> :  x X}  

(iii)  0N   = {<x, (0,1,0)> :  x X}  

(iv)  0N   = {<x, (0,0,0)> :  x X}  

The NS 1N in X is defined as follows:  

(i)   1N   = {<x, (1,0,0)> :  x X}  

(ii)  1N   = {<x, (1,0,1)> :  x X}  

(iii)  1N   = {<x, (1,1,0)> :  x X}  

(iv)  1N   = {<x, (1,1,1)> :  x X}  

Definition 2.1.4 Let X be a non-null set. A single valued neutrosophic set A (SVNS A) is an object 

having the form A = {< x : TA(x), IA(x), FA(x)> , x X}, where TA(x), IA(x), FA(x)  [0,1] define the 

truth-membership function, indeterminacy-membership function, and falsity-membership function 

respectively of the element x X  Therefore a SVNS A could be expressed as  A = {< x : TA(x), IA(x), 

FA(x)> , x X} where TA(x), IA(x), FA(x)  [0,1].  

Definition 2.1.5 Let A1 = (T1, I1, F1) and A2 = (T2, I2, F2) be two single valued neutrosophic numbers. 

Then, the operations for SVNNs are defined as below:  

(i)  A1   A2 = <T1 + T2 – T1T2, I1I2, F1F2>. 

(ii)  A1   A2 = <T1T2, I1 + I2 -  I1I2, F1 + F2 -  F1F2>.  

(iii) kA1 =  < 1- (1-T1)k, I1k, F1k >     where k > 0.   

(iv)  A1k  = < T1k, 1- (1-I1)k , 1- (1-F1)k >     where k > 0.   

 

Definition 2.1.6  

The neutrosophic zero 0N may be defined as follow: 

0N   =  {<x, (0,1,1)> :  x X} To compare two single valued neutrosophic numbers, one can use 

score function. 

Definition 2.1.7 Let A1 = (T1, I1, F1) be a single valued neutrosophic number. Then, the score function 

s(A1),  accuracy function a(A1) and  the certainty function c(A1)  of the SVNN  A1 are defined as 

below :  

(i)   s(A1)  =  
1 1 1

2

3

T I F  
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(ii)  a(A1)  =  T1 – F1  

(iii) c(A1)  =  T1   

Definition 2.1.8 Suppose that A1 = (T1, I1, F1) and A2 = (T2, I2, F2) be two single valued neutrosophic 

numbers. Then we define a ranking method as follows: 

(i)  if s(A1) > s(A2),  then the SVNN A1  is neutrosophic greater than the SVNN A2  denoted by the 

notation A1 A2.  

(ii) if  s(A1) = s(A2)  but  a(A1) > a(A2),   then the SVNN A1  is neutrosophic greater than the 

SVNN A2  denoted by the notation A1 A2. 

(iii) if  s(A1) = s(A2)  but  a(A1) = a(A2) and c(A1) > c(A2),   then the SVNN A1  is neutrosophic 

greater than the SVNN A2  denoted by the notation A1 A2. 

(iv) if  s(A1) = s(A2)  and  a(A1) = a(A2) and c(A1) > c(A2),   then the SVNN A1  is neutrosophic 

equal to the SVNN A2  denoted by the notation A1 = A2. 

However for simple cases, the following ranking method may be followed for easy applications:  

(i)  if s(A1) > s(A2),  then the SVNN A1  is neutrosophic greater than the SVNN A2  denoted by the 

notation A1 A2.  

(ii) if  s(A1) < s(A2),   then the SVNN A1  is neutrosophic less than the SVNN A2  denoted by the 

notation A1  A2. 

(iii) if s(A1) = s(A2),  then the SVNN A1  is neutrosophic equal to the SVNN A2  denoted by the 

notation A1 = A2. 

For a deep study on the Theory of Nneutrosophic Sets introduced by Smarandache, his main work 

[8-12] could be viewed.  The notion of a neutrosophic numbers (NNs) is important to quantify an 

imprecise or ill-defined quantity. In this paper although, we shall use the very basic neutrosophic 

operations viz. neutrosophic addition , neutrosophic subtraction , and ranking of neutrosophic 

numbers, etc.  

If we can rank n number of neutrosophic numbers, we then easily by soft-compute find out the min 

NN and max NN of these n number of NNs. If A1, A2, A3,…., An  be n  neutrosophic numbers  

sorted in neutrosophic ascending order  i.e. if  A1    A2    A3  …….  An,  then A1 and An 

can be regarded respectively as the neutrosophic-min NN and neutrosophic-max NN of these n 

NNs.  

 

2.2   Multisets: Some Preliminaries   

We present some basic preliminaries of the notion of multigraphs [45, 51]. Mathematically, a 

multigraph G is an ordered pair (V, E) consisting of two sets V and E, where V or V (G) is a set of 

vertices (or, nodes), and E or E(G) is the set of links or edges or arcs.  In multigraphs, although 

multiple links (or edges or arcs) may exist between a pair of nodes (vertices), but in our work here 

we consider only those multigraphs that has no loop.  The multigraphs could be classified by two 

types:  undirected multigraphs and directed multigraphs.  For any undirected multigraph if the 

edge (i, j) and the edge (j, i) exist, then it is obvious that they are identical unlike in the case of the 

directed multigraphs. A rigorous theoretical study on the algebra of multigraphs has been done in 

the work [45].  Figure 1 below shows a directed multigraph G = (V, E), in which the set V = {A, B, C, 

D} and the set E = {AB1, AB2, BA, AD, AC, CB, BD, DB}.   
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Figure 1:   A directed multigraph G 

     

A multigraph H = (W, F)   is   called a submultigraph of the multigraph G = (V, E)   if W ⊆ V and 

F ⊆ E.  The Figure 2 below shows a submultigraph H of the multigraph G (of Figure 1).  

 

Figure 2: A submultigraph H of the directed multigraph G 

  

It is observed that in many real life cases of various networks, be it in a communication network or 

road transportation network, or any such network topologies, the weights of the links are not always 

crisp but neutrosophic numbers.  For an example, see the Figure-3 below which shows a public 

road transportation network multigraph for a traveler in which case the cost implication for 

traveling each link have been available to him as a neutrosophic number (NN). The NN of an arc in 

such a multigraphs is called neutrosophic weight (nw) of the arc.  

Figure 3:  A directed multigraph G with neutrosophic weights of arcs. 
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In our work here we consider this type (as viewed in Figure 3) of real life instances of directed 

multigraphs of a network and then develop a soft-computing method to extract the neutrosophic 

shortest path from a given source node to a pre-decided destination node.  

 

3.  Neutrosophic Shortest Path in a Directed Multigraph  

A good amount of work has been done on the notion of neutrosophic graph and its application by 

several authors [6, 7, 16, 17, 19-44, 49]. The Neutrosophic Shortest Path Problem (NSPP) has been 

solved for graphs by Broumi [32-36], but for the case of a directed multigraph no attempt has been 

reported so far in the literature for extracting a neutrosophic shortest path.  In our proposed 

method here, we solve the NSPP for multigraphs using the style of Dijkstra’s Algorithm but by 

soft-computing exercises. And for doing this, first of all we define the terms:  

Neutrosophic-Min-Weight arc-set, Neutrosophic shortest path estimate (d[v]) of a vertex, 

Neutrosophic relaxation of an arc, etc.  In the context of the theory of multigraphs, and then 

develop few sub algorithms. 

 

3.1. Neutrosophic-Min Weight Arc-set of a directed multigraph 

Consider a directed multigraph G in which the links are of having neutrosophic weights. Consider 

two adjacent nodes u and v, and suppose that there exist n number of links arcs from the node u to 

the node v in G, n being a non-negative integer.   Let Wuv denotes the ordered set consisting of the  

elements which are the arcs connecting the nodes u and v,  but keyed & sorted in non-descending 

order by the values of the respective neutrosophic weights (where sorting is done by using a suitable 

and pre-choosen ranking method of neutrosophic numbers). 

∴    Wuv  =  { (uv1 , w1uv),   (uv2 , w2uv),   (uv3 , w3uv), ….. , (uvn , wnuv) }.  

Here uvi is the arc-i from node u to nodex v and wi is the neutrosophic weight of this arc, for i = 1, 2, 

3,..…., n.  If two or more neutrosophic weights here happen to be neutrosophic equal then they may 

be placed at random at the corresponding place of non-descending array in this set with no loss of 

generality in our analysis.  

Without any confusion, we may denote the multiset { w1uv, w2uv, w3uv, ..….. ,wnuv } also using the same 

notational name Wuv.  Suppose that wuv be the neutrosophic-min value of the members of the 

multiset Wuv = {w1uv, w2uv, w3uv, .... ,wnuv }.  Obviously, wuv = w1uv ,  because the multiset Wuv  is 

already sorted.  

Now construct the set W = {< (u,v), wuv > : (u,v)   E }. Then W is called the 

neutrosophic-min-weight arc-set of the multigraph G. Suppose that the sub algorithm NMWA(G) 

returns the neutrosophic-min-weight arc-set W.  

 

3.2. Neutrosophic Shortest Path Estimate d[v] of a vertex v in a directed multigraph 

Suppose that during the execution the node s is the source vertex and the currently traversed vertex 

is u. There is, in general, no single value of neutrosophic weight for link between the vertex u and 

the neighbor vertex v, rather there are multiple neutrosophic weights as there are multiple arcs 

between the vertex u and the neighbor vertex v. Using the value of wuv from the neutrosophic-min 

weight multiset w of the directed multigraph G, one could now soft-compute the neutrosophic 

shortest path estimate i.e. d[v] of any vertex v as mentioned below:-  
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(Neutrosophic shortest path estimate of the vertex v)  =    

(Neutrosophic shortest path estimate of the vertex u)   (Neutrosophic-min of all the neutrosophic 

weights corresponding to the links from the vertex u to the vertex v). 

or, d[v]  =  d[u]wuv .   

 

 
Figure 4:  Neutrosophic estimation procedure for d[v] 

 

3.3. Neutrosophic Relaxation of an Arc  

In this subsection we present the next step which is ‘relaxation’ as introduced in the classical 

Dijkstra’s algorithm. In our proposed method here we extend the notion of relaxation to the case of 

neutrosophic weighted arcs.  By the term ‘neutrosophic relaxation’ in our work we mean the 

relaxation process of an arc for which the arc-weight is a neutrosophic number (as particular cases, it 

could be crisp or fuzzy or intuitionistic fuzzy number too as all of them could be viewed as NN).  

First of all we do initialization of the multigraph along with its starting vertex and neutrosophic 

shortest path estimate for each vertices of the multigraph G. The corresponding algorithm is called 

‘NEUTROSOPHIC-INITIALIZATION-SINGLE-SOURCE’ as presented below: 

NEUTROSOPHIC-INITIALIZATION-SINGLE-SOURCE (G, s) 

1. For each vertex v ∈ V[G]      

2. d[v]  = ∞ 

3.   v.π   = NIL 

4. d[s]  = 0  

After doing the neutrosophic initialization, the process of neutrosophic relaxation of each arc starts. 

The following sub-algorithm NEUTROSOPHIC-RELAX will play the role to update d[v]  i.e. the 

neutrosophic shortest distance value between the starting vertex s  and the vertex v (which is a 

neighbor of the currently traversed vertex u).  

 

NEUTROSOPHIC-RELAX (u, v, W) 

1. IF d[v]   d[u]    wuv 

2. THEN d[v] ← d[u]    wuv 

3. v.π ← u 

Where, wuv W is the neutrosophic-min weight of the arcs from vertex u to vertex v, and v.π 

denotes the parent node of vertex v. 



Neutrosophic Sets and Systems, Vol. 29, 2019 181 

 

 

Siddhartha Sankar Biswas, Neutrosophic Shortest Path Problem (NSPP) in a Directed Multigraph 

 

Figure 5: Diagram showing how the NEUTROSOPHIC-RELAX algorithm works. 

3.4. Neutrosophic Shortest Path Algorithm (NSPA)    

In this subsection we develop the main algorithm to extract the single source neutrosophic shortest 

path in a directed multigraph. Let us name this Neutrosophic Shortest Path Algorithm by the title 

NSPA.  In our proposed algorithm we call the sub algorithms developed so far in this work, and 

also the sub algorithm EXTRACT-NEUTROSOPHIC-MIN (Q) which extracts the node u with the 

minimum key by using the neutrosophic ranking of NN method, and then it updates Q.  

NSPA (G, s) 

1  NEUTROSOPHIC-INITIALIZATION-SINGLE-SOURCE (G, s) 

2. W ← NMWA (G) 

3   S ← ∅ 

4   Q ← V [G] 

5   WHILE   Q ≠ ∅ 

6        DO   u ← EXTRACT-NEUTROSOPHIC-MIN (Q) 

7                 S ← S ∪ {u} 

8                 FOR   each vertex v ∈ Adj[u] 

9                 DO NEUTROSOPHIC-RELAX (u, v, W) 

Example 3.1  

Let us consider the directed Multigraph G (as in Figure 6) with neutrosophic weights of its links. The 

problem is to solve the single-source neutrosophic shortest paths problem over this multigraph 

taking the node A as the source and the node D as the destination. 

Figure 6:  A directed multigraph G with neutrosophic weighted arcs. 

 

It is clear that if the NSPA algorithm is applied to solve this NSPP, it will yield the following results: 

 1.   wAB  = 0
~

1 , wAC = 3
~

,  wCB   = 4
~

,  wCD   = 6
~

, and wBD  = 2
~

 ;  and then 



Neutrosophic Sets and Systems, Vol. 29, 2019 182 

 

 

Siddhartha Sankar Biswas, Neutrosophic Shortest Path Problem (NSPP) in a Directed Multigraph 

 2.  S = {A, C, B, D}, i.e. the extracted neutrosophic shortest path from starting the source node A to 

the destination node D is:    

              A     C       B     D.     

 3.  d–values i.e.  Neutrosophic shortest distance estimate-values of each node   

       From the starting node an up to the destination node D will be:   

             d[A] = 0 , d[C] =  NN 3
~

,  d[B] =  NN 7
~

, d[D] = NN 9
~

.  

Here all operations are to be carried out using Definition 2.1.5. The method for ranking of n number of 

neutrosophic numbers is already mentioned earlier (Definition 2.1.7 and 2.1.8), and the concept of the 

‘neutrosophic shortest distance’ is to be understood accordingly with the help of this ranking method.  

Thus the result finally is A    C      B    D with minimum cost of NN . 

 

4.  Conclusion 

Multigraph is a very useful generalization of the mathematical model graph. In real life environment 

there are many problems of network (viz.  road transportation network, communication network, 

circuit systems, airlines network etc.)  Which cannot be mathematically modeled into ‘graphs’ but 

can be very appropriately modeled into ‘multigraphs’ only.  And besides that, many of the directed 

multigraphs have the weights of the links which are not always crisp but neutrosophic number 

(NN). The important problem NSPP has been solved by Broumi [32-36] while it is for graphs, but not 

for multigraphs. In this work we have considered the NSPP for those networks which are 

multigraphs, and we have proposed a method to extract the neutrosophic shortest path in a directed 

multigraph from a given source node to one pre-choosen destination node.  It is claimed by us that 

that our proposed method and the corresponding algorithms developed for NSPP on directed 

multigraphs can play an important role in many real life application areas in the fields of computer 

science, communication network, road transportation systems, etc. in particular for those type of 

networks that cannot be mathematically modeled into ‘graphs’ but into the multigraphs. 
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Abstract: As a generalization of fuzzy sets and intuitionistic fuzzy sets, neutrosophic sets have been 

developed by Smarandache to represent imprecise, incomplete and inconsistent information existing 

in the real world. A neutrosophic set is characterized by a truth-value, an indeterminacy value, and a 

falsity-value. Salama introduced neutrosophic topological spaces by using Smarandache’s 

neutrosophic sets. In this article, we introduce the concept of  𝒩𝛼𝑔#𝜓 -open and 𝒩𝛼𝑔#𝜓 -closed 

mappings in neutrosophic topological spaces and studied some of their related properties. Further 

the work is extended to 𝒩𝛼𝑔#𝜓- homeomorphism, 𝒩𝛼𝑔#𝜓-C homeomorphism and 𝒯𝒩
𝛼𝑔#𝜓

-space in 

neutrosophic topological spaces and establishes some of their related attributes.  

Keywords: 𝒩𝛼𝑔#𝜓 -open map,  𝒩𝛼𝑔#𝜓 -closed map, 𝒯𝒩
𝛼𝑔#𝜓

-space,  𝒩𝛼𝑔#𝜓 -homeomorphism, 

𝒩𝛼𝑔#𝜓-C homeomorphism. 

 

1. Introduction 

The first successful attempt towards containing non-probabilistic uncertainty, i.e. 

uncertainty which is not incite by randomness of an event, into mathematical modeling was made in 

1965 by L. A. Zadeh [21] through his significant theory on fuzzy sets (FST). 

A fuzzy set is a set where each element of the universe belongs to it but with some value or 

degree of belongingness which lies between 0 and 1 and such values are called membership value of 

an element in that set. This gradation concept is very well suited for applications involving vague 

data such as natural language processing or in artificial intelligence, handwriting and speech 

recognition etc. Although Fuzzy set theory is very successful in handling uncertainties arising from 

vagueness or partial belongingness of an element in a set, it cannot model all type of uncertainties 

pre-veiling in different real physical problems such as problems involving incomplete information. 

Further generalization of this fuzzy set was introduced by K. Atanassov [10] in 1986, which 

is known as Intuitionistic fuzzy sets (IFS). In IFS, instead of one membership value, there is also a 

non-membership value devoted to each element. Further there is a restriction that the sum of these 

two values is less or equal to unity. In IFS the degree of non-belongingness is not independent but it 

is dependent on the degree of belongingness. Fuzzy set theory can be considered as a special case of 

an IFS where the degree of non-belongingness of an element is exactly equal to 1 minus the degree of 
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belongingness. IFS have the expertise to handle vague data of both complete and incomplete in 

nature. In applications like expert systems, belief systems and information fusion etc., where degree 

of non-belongingness is equally important as degree of belongingness, intuitionistic fuzzy sets are 

quite useful. 

There are of course several other generalizations of Fuzzy as well as Intuitionistic fuzzy sets 

like L-fuzzy sets and intuitionistic L- fuzzy sets, interval valued fuzzy and intuitionistic fuzzy sets 

etc that have been developed and applied in solving many practical physical problems. Recently a 

new theory has been introduced which is known as neutrosophic logic and sets. The term 

neutrosophy means knowledge of impartial thought and this impartial represents the main 

distinction between fuzzy and intuitionistic fuzzy logic and set. Neutrosophic logic was introduced 

by Smarandache [14] in 1995. It is a logic in which each proposition is calculated to have a degree of 

truth (T), a degree of indeterminacy (I) and a degree of falsity (F). A Neutrosophic set is a set where 

each element of the universe has a degree of truth, indeterminacy and falsity respectively and which 

lies between [0, 1]*, the non-standard unit interval 

Unlike in intuitionistic fuzzy sets, where the included uncertainty is dependent of the 

degree of belongingness and degree of non-belongingness, here the uncertainty present, i.e. the 

indeterminacy factor, is independent of truth and falsity values. Neutrosophic sets are indeed more 

general than IFS as there are no constraints between the degree of truth, degree of indeterminacy 

and degree of falsity. All these degrees can individually vary within [0, 1]*.  

Smarandache’s neutrosophic concept have wide range of real time applications for the fields of 

[1,2,3,4,5,6,7&8] Information Systems, Computer Science, Artificial Intelligence, Applied 

Mathematics, decision making. Mechanics, Electrical & Electronic, Medicine and Management 

Science etc. 

 Salama and Alblowi[18] introduced the new concept of neutrosophic topological space in 

2012. The neutrosophic closed sets and neutrosophic continuous functions were introduced by 

Salama, Smarandache and Valeri[19] in 2014. Arokiarani et al.[9] introduced the neutrosophic 

α-closed set in neutrosophic topological spaces.  

Parimala et al.[14] studied the concept of neutrosophic 𝛼𝜓-closed sets and neutrosophic 

homeomorphisms[15] in neutrosophic topological spaces. Recently Vigneshwaran et al.[13] 

introduced the concept of 𝒩𝛼𝑔#𝜓-closed sets in neutrosophic topological spaces and studied some of 

its properties and also 𝒩𝛼𝑔#𝜓-continuous and 𝒩𝛼𝑔#𝜓-irresolute functions[12] were initiated and 

studied in neutrosophic topological spaces.  

The focus of this article is to introduce the idea of  𝒩𝛼𝑔#𝜓  -open and  𝒩𝛼𝑔#𝜓 - closed 

mappings in neutrosophic topological spaces and also the work is extended to 𝒩𝛼𝑔#𝜓 

-homeomorphism, 𝒩𝛼𝑔#𝜓 -C homeomorphism and  𝒯𝒩
𝛼𝑔#𝜓

-space in neutrosophic topological 

spaces and obtain some of its basic properties. 

2. Preliminaries 

Definition 2.1.[17] A neutrosophic set 𝒮 is an object of the following form 𝒜={〈s, 𝒰𝒜(s),

𝒱𝒜(s), 𝒲𝒜(s): sϵ𝒮〉} where 𝒰𝒜(s), 𝒱𝒜(s) and 𝒲𝒜(s) denote the degree of membership, the 
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degree of indeterminacy and the degree of non membership for each element sϵ𝒮 to the set 

𝒜, respectively. 

Definition 2.2. [17] Let 𝒜 and ℬ be Neutrosophic sets of the form 

𝒜={〈s, 𝒰𝒜(s), 𝒱𝒜(s), 𝒲𝒜(s): sϵ𝒮〉}  and 

ℬ={〈 s, 𝒰ℬ(s), 𝒱ℬ(s), 𝒲ℬ(s): sϵ𝒮〉}. Then 

(i)𝒜 ⊆ ℬ if and only if  𝒰𝒜(s) ≤ 𝒰ℬ(s), 𝒱𝒜(s) ≤ 𝒱ℬ(s) and 𝒲𝒜(s) ≥ 𝒲ℬ(s); 

(ii)𝒜̅= {〈𝒲𝒜(s), 𝒱𝒜(s), 𝒰𝒜(s): sϵ𝒮〉}; 

(iii)𝒜 ∪ ℬ={ 〈s, 𝒰𝒜(s) ∨  𝒰ℬ(s), 𝒱𝒜(s) ∧ 𝒱ℬ(s), 𝒲𝒜(s) ∧ 𝒲ℬ(s): sϵ𝒮〉}; 

(iv)𝒜 ∩ ℬ={ 〈s, 𝒰𝒜(s) ∧  𝒰ℬ(s), 𝒱𝒜(s) ∨ 𝒱ℬ(s), 𝒲𝒜(s) ∨ 𝒲ℬ(s): sϵ𝒮〉}. 

Definition 2.3. [18] A neutrosophic topology in a nonempty set 𝒳  is a family ℑ  of 

neutrosophic sets in 𝒳 satisfying the following axioms: 

(i) 0N, 1N  ∈  ℑ; 

(ii)𝒰 ∩ 𝒱 ϵ ℑ  for any 𝒰, 𝒱 ϵ ℑ; 

     (iii)∪ (𝒰)i   for any arbitrary family (𝒰)i : i ∈ J ⊆ ℑ 

Definition 2.4.[18] Let 𝒫 be a neutrosophic set in neutrosophic topological space 𝒳. Then 

𝒩int(𝒫)=∪{𝒟 : 𝒟 is a neutrosophic open set in 𝒳 and 𝒟 ⊆ 𝒫 } is called a neutrosophic 

interior of 𝒫. 

𝒩cl(𝒫)=∩{ ℰ : ℰ is a neutrosophic closed set in 𝒳 and ℰ ⊇ 𝒫 } is called a neutrosophic 

closure of 𝒫. 

Definition 2.5.[12] A subset 𝒜  of a neutrosophic space (𝒳, ℑ)  is called a neutrosophic 

𝒩𝛼𝑔#𝜓-closed set if 𝒩𝛼𝑐𝑙(𝒜) ⊆ 𝒢  whenever 𝒜 ⊆ 𝒢 and 𝒢 is 𝒩𝑔#𝜓-open in (𝒳, ℑ). 

Definition 2.6. A function d: (𝒮, ℑ) → (𝒯, ξ) is called 

(i) a 𝒩𝛼𝑔#𝜓-continuous[13] if 𝑑−1(𝒜) is a 𝒩𝛼𝑔#𝜓 -closed set of (𝒮, ℑ) for every neutrosophic closed 

set 𝒜 of (𝒯, ξ).  

(ii) a 𝒩𝛼𝑔#𝜓 -irresolute[13] if 𝑑−1(𝒜) is a 𝒩𝛼𝑔#𝜓-closed set of (𝒮, ℑ) for every 𝒩𝛼𝑔#𝜓-closed set 𝒜  

of  (𝒯, ξ).  

Definition 2.7.[15] A bijection 𝑔: (𝒮, ℑ) → (𝒯, ξ) is called a homeomorphism if 𝑔 and 𝑔−1  are 

neutrosophic continuous mappings.  

All over this paper neutrosophic αg#ψ-interior and neutrosophic αg#ψ-closure is denoted by 

𝒩αg#ψ-i∗   and 𝒩αg#ψ-c∗   respectively. 

3. 𝓝𝜶𝒈#𝝍-open mapping  

Definition 3.1. A mapping  𝑑: (𝒮, ℑ) → (𝒯, ξ) is 𝒩𝛼𝑔#𝜓-open if image of every neutrosophic open 

set of (𝒮, ℑ) is 𝒩𝛼𝑔#𝜓 -open set in (𝒯, ξ).  

Theorem 3.2. Each neutrosophic open mapping is a 𝒩𝛼𝑔#𝜓-open mapping.  

Proof: Let 𝒜 be a neutrosophic open set in (𝒮, ℑ). Since d is a neutrosophic open mapping, 𝑑(𝒜) is 

neutrosophic open in (𝒯, ξ). But every neutrosophic open set is a 𝒩𝛼𝑔#𝜓-open set. Therefore, 𝑑(𝒜) 

is a 𝒩𝛼𝑔#𝜓-open set in (𝒯, ξ). Hence, 𝑑 is a 𝒩𝛼𝑔#𝜓-open mapping.  

Let a 𝒩𝛼𝑔#𝜓-open mapping be not a neutrosophic open map by the following example.  
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Example 3.3. Let 𝒮 = {u, v, w},   ℑ ={0N, 𝒟1,𝒟2, 𝒟3, 𝒟4 1N} be a neutrosophic topology on (𝒮, ℑ). 

𝒟1  =〈s, (0.2,0.1,0.1), (0.2,0.1,0.1), (0.3,0.5,0.5)〉 

𝒟2 =〈s, (0.1,0.2,0.2), (0.4,0.3,0.3), (0.3,0.3,0.3)〉 

𝒟3 =〈s, (0.2,0.2,0.2), (0.2,0.1,0.1), (0.3,0.3,0.3)〉 

𝒟4=〈s, (0.1,0.1,0.1), (0.4,0.3,0.3), (0.3,0.5,0.5)〉, and 

let  𝒯 = {u, v, w},  ξ ={0N, ℱ1,ℱ2, ℱ3, ℱ4 1N}  be a neutrosophic topology on (𝒯 , ξ). 

ℱ1=〈t, (0.3,0.3,0.3), (0.2,0.1,0.1), (0.2,0.2,0.2)〉 

ℱ2=〈t, (0.2,0.2,0.2), (0.1,0.1,0.1), (0.3,0.3,0.3)〉 

ℱ3=〈t, (0.3,0.3,0.3), (0.1,0.1,0.1), (0.2,0.1,0.1)〉 

ℱ4=〈t, (0.2,0.2,0.2), (0.2,0.1,0.1), (0.3,0.3,0.3)〉 

Define 𝑑 ∶  (𝒮, ℑ)  →  (𝒯 , ξ) by 𝑑(𝑢) = 𝑢,  𝑑(𝑣) = 𝑣,  𝑑(𝑤) = 𝑤. 

𝒩𝛼𝑔#𝜓 -open sets of (𝒯, ξ) = 〈s, (0.2,0.1,0.1), (0.2,0.1,0.1), (0.3,0.5,0.5)〉. 

Here 𝑑(𝒟1) is 𝒩𝛼𝑔#𝜓-open in (𝒯, ξ). Therefore 𝑑 is 𝒩𝛼𝑔#𝜓-open mapping. However, it is 

not a neutrosophic open mapping because 𝑑(𝒟1) is not neutrosophic open in (𝒯, ξ).  

Theorem 3.4. A mapping 𝑑: (𝒮, ℑ) → (𝒯, ξ)  is 𝒩𝛼𝑔#𝜓 -open iff for every neutrosophic set 𝒜  of 

(𝒮, ℑ), 𝑑(𝑖∗(𝒜) ⊆ 𝒩𝛼𝑔#𝜓 − (𝑖∗(𝑑(𝒜)). 

Proof: Necessity: Let 𝑑 be a 𝒩𝛼𝑔#𝜓-open mapping and 𝒜 is a neutrosophic open set in (𝒮, ℑ). 

Now, 𝑖∗(𝒜) ⊆  𝒜   implies 𝑑(𝑖∗( 𝒜)) ⊆  𝑑(𝒜) . Since d is a 𝒩𝛼𝑔#𝜓 -open mapping, 𝑑(𝑖∗(𝒜))  is 

𝒩𝛼𝑔#𝜓-open set in (𝒯, ξ) such that 𝑑(𝑖∗(𝒜) ⊆ 𝑑(𝒜) therefore 𝑑(𝑖∗(𝒜 ⊆ 𝒩𝛼𝑔#𝜓(𝑖∗𝑑(𝒜)).  

Sufficiency: Assume 𝒜  is a neutrosophic open set of (𝒮, ℑ). Then 𝑑(𝒜) = 𝑑(𝑖∗(𝒜) ⊆ 𝒩𝛼𝑔#𝜓 −

 (𝑖∗(𝑑(𝒜)). But 𝒩𝛼𝑔#𝜓 − (𝑖∗(𝑑(𝒜))) ⊆ 𝑑(𝒜). So 𝑑(𝒜) = 𝒩𝛼𝑔#𝜓 − (𝑖∗(𝒜)) which implies 𝑑(𝒜) is a 

𝒩𝛼𝑔#𝜓-open set of (𝒯, ξ) and hence 𝑑 is a 𝒩𝛼𝑔#𝜓-open.  

Theorem 3.5. If 𝑑: (𝒮, ℑ) → (𝒯, ξ) is a 𝒩𝛼𝑔#𝜓-open mapping then 𝑖∗(𝑑−1(𝒜) ⊆ 𝑑−1(𝒩𝛼𝑔#𝜓- (𝑖∗(𝒜)) 

for every neutrosophic set  𝒜 of (𝒯, ξ).  

Proof: Let  𝒜 is a neutrosophic set of (𝒯, ξ). Then 𝑖∗ (𝑑−1( 𝒜)) is a neutrosophic open set in (𝒮, ℑ). 

Since 𝑑  is 𝒩𝛼𝑔#𝜓 -open 𝑑(𝑖∗ (𝑑−1( 𝒜)))  is 𝒩𝛼𝑔#𝜓 - open in (𝒯, ξ)  and hence 𝑑(𝑖∗(𝑑−1( 𝒜))) ⊆

 𝒩𝛼𝑔#𝜓 −  (𝑖∗ (𝑑(𝑑−1( 𝒜))) ⊆ 𝒩𝛼𝑔#𝜓 − (𝑖∗ ( 𝒜)).  Thus 𝑖∗ (𝑑−1( 𝒜)) ⊆ 𝑑−1(𝒩𝛼𝑔#𝜓 − (𝑖∗ ( 𝒜))).  

Theorem 3.6. A mapping 𝑑: (𝒮, ℑ) → (𝒯, ξ) is 𝒩𝛼𝑔#𝜓-open iff for each neutrosophic set ℱ of (𝒯, ξ) 

and for each neutrosophic closed set 𝒰 of (𝒮, ℑ) containing 𝑑−1(ℱ) there is a 𝒩𝛼𝑔#𝜓-closed set 𝒜 

of (𝒯, ξ) such that ℱ ⊆ 𝒜 and 𝑑−1(𝒜) ⊆ 𝒰. 

Proof: Necessity: Assume 𝑑 is a 𝒩𝛼𝑔#𝜓-open mapping. Let ℱ be the neutrosophic closed set of 

(𝒯, ξ) and 𝒰 is a neutrosophic closed set of (𝒮, ℑ) such that 𝑑−1 (ℱ) ⊆  𝒰. Then 𝒜 = (𝑑−1(𝒰𝑐 ))𝑐 

is 𝒩𝛼𝑔#𝜓-closed set of (𝒯, ξ) such that 𝑑−1 (𝒜)⊆  𝒰.  

Sufficiency: Assume 𝒢 is a neutrosophic open set of (𝒮, ℑ). Then 𝑑−1((𝑑(𝒢))𝑐 ⊆ 𝒢 𝑐  and 𝒢 𝑐  is 

neutrosophic closed set in (𝒮, ℑ). By hypothesis there is a 𝒩𝛼𝑔#𝜓-closed set 𝒜 of (𝒯, ξ) such that 

(𝑑(𝒢))𝑐 ⊆ 𝒜 and 𝑑−1(𝒜) ⊆ 𝒢 𝑐 . Therefore 𝒢 ⊆ (𝑑−1(𝒜))𝑐. Hence 𝒜𝑐 ⊆ 𝑑(𝒢)⊆ 𝑑((𝑑−1 (𝒜))𝑐)⊆ 𝒜𝑐  

which implies 𝑑(𝒢) = 𝒜𝑐 . Since 𝒜𝑐  is 𝒩𝛼𝑔#𝜓-open set of (𝒯, ξ). Hence 𝑑(𝒢) is 𝒩𝛼𝑔#𝜓-open in 

(𝒯, ξ) and thus 𝑑 is 𝒩𝛼𝑔#𝜓-open mapping.  

Theorem 3.7. A mapping 𝑑: (𝒮, ℑ) → (𝒯, ξ) is 𝒩𝛼𝑔#𝜓-open iff 𝑑−1 (𝒩𝛼𝑔#𝜓-(𝑐∗(ℬ))⊆ 𝑐∗( 𝑑−1 (ℬ)) for 

every neutrosophic set ℬ of (𝒯, ξ).  

Proof: Necessity: Assume d is a 𝒩𝛼𝑔#𝜓  -open mapping. For any neutrosophic set ℬ of (𝒯, ξ), 

𝑑−1(ℬ)⊆ 𝑐∗(𝑑−1(ℬ)). Therefore by theorem 3.3 there exists a 𝒩𝛼𝑔#𝜓-closed set ℱ in (𝒯, ξ) such that 
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ℬ ⊆ ℱ  and 𝑑−1 (ℱ) ⊆  𝑐∗(𝑑−1(ℬ)) . Therefore we obtain that 𝑑−1 (𝒩𝛼𝑔#𝜓 - 𝑐∗  (ℬ)) ⊆  𝑑−1(ℱ) ⊆ 

𝑐∗( 𝑑−1 (ℬ)).  

Sufficiency: Assume ℬ is a neutrosophic set of (𝒯, ξ) and F is a neutrosophic closed set of (𝒮, ℑ) 

containing 𝑑−1 ( ℬ ). Put 𝒲 = 𝑐∗(ℬ) , then ℬ ⊆ 𝒲  and 𝒲  is 𝒩𝛼𝑔#𝜓 -closed and 𝑑−1(𝒲) ⊆

𝑐∗(𝑑−1(ℬ)) ⊆  ℱ. Then by theorem 3.6, 𝑑 is 𝒩𝛼𝑔#𝜓-open mapping.  

Theorem 3.8. If 𝑑: (𝒮, ℑ) → (𝒯, ξ) and 𝑒 ∶  (𝒯, ξ) → (𝒱, 𝜔) be two neutrosophic mappings and 𝑒𝑜𝑑 : 

(𝒮, ℑ) → (𝒱, 𝜔)  is 𝒩𝛼𝑔#𝜓-open. If 𝑒 ∶  (𝒯, ξ) → (𝒱, 𝜔)is 𝒩𝛼𝑔#𝜓 -irresolute then 𝑑: (𝒮, ℑ)→ (𝒯, ξ) is 

𝒩𝛼𝑔#𝜓-open mapping.  

Proof: Let ℋ  be a neutrosophic open set in (𝒮, ℑ). Then 𝑒𝑜𝑑(ℋ) is 𝒩𝛼𝑔#𝜓 -open set of (𝒱, 𝜔) 

because 𝑒𝑜𝑑 is 𝒩𝛼𝑔#𝜓-open mapping. Since 𝑒  is 𝒩𝛼𝑔#𝜓-irresolute and 𝑒𝑜𝑑(ℋ) is 𝒩𝛼𝑔#𝜓-open set 

of (𝒱, 𝜔)  therefore 𝑒−( 𝑒𝑜𝑑 (ℋ) )= 𝑑(ℋ)  is 𝒩𝛼𝑔#𝜓 -open set in (𝒯, ξ) . Hence 𝑑  is 𝒩𝛼𝑔#𝜓 -open 

mapping. 

Theorem 3.9. If 𝑑: (𝒮, ℑ) → (𝒯, ξ)  is neutrosophic open and 𝑒 ∶  (𝒯, ξ) → (𝒱, 𝜔)  is 𝒩𝛼𝑔#𝜓 -open 

mappings then 𝑒𝑜𝑑: (𝒮, ℑ) → (𝒱, 𝜔)  is 𝒩𝛼𝑔#𝜓-open.  

Proof: Let ℋ be a neutrosophic open set in (𝒮, ℑ). Then 𝑑(ℋ) is a neutrosophic open set of (𝒯, ξ) 

because 𝑑  is a neutrosophic open mapping. Since 𝑒  is 𝒩𝛼𝑔#𝜓 -open, 𝑒(𝑑(ℋ))  =  (𝑒𝑜𝑑)(ℋ)  is 

𝒩𝛼𝑔#𝜓-open set of (𝒱, 𝜔). Hence 𝑒𝑜𝑑 is 𝒩𝛼𝑔#𝜓-open mapping.  

 

4. 𝓝𝜶𝒈#𝝍-closed mapping  

Definition 4.1. A mapping 𝑑: (𝒮, ℑ) → (𝒯, ξ) is 𝒩𝛼𝑔#𝜓-closed if image of every neutrosophic closed 

set of (𝒮, ℑ) is 𝒩𝛼𝑔#𝜓-closed set in (𝒯, ξ).  

Theorem 4.2. Each neutrosophic closed mapping is 𝒩𝛼𝑔#𝜓-closed mapping.  

Proof: Let 𝒜 be a neutrosophic closed set in (𝒮, ℑ). Since 𝑑 is a neutrosophic closed mapping, 

𝑑(𝒜) is neutrosophic closed in (𝒯, ξ). But every neutrosophic closed set is a 𝒩𝛼𝑔#𝜓-closed set. 

Therefore, 𝑑(𝒜) is a 𝒩𝛼𝑔#𝜓-closed set in (𝒯, ξ). Hence, 𝑑 is a 𝒩𝛼𝑔#𝜓-closed mapping.  

Let a 𝒩𝛼𝑔#𝜓 -closed mapping need not be a neutrosophic closed map by the following example.  

Example 4.3. Let 𝒮 = {u, v, w},   ℑ ={0N, 𝒟1,𝒟2, 𝒟3, 𝒟4 1N} be a neutrosophic topology on (𝒮, ℑ). 

𝒟1  =〈s, (0.2,0.1,0.1), (0.2,0.1,0.1), (0.3,0.5,0.5)〉 

𝒟2 =〈s, (10.1,0.2,0.2), (0.4,0.3,0.3), (0.3,0.3,0.3)〉 

𝒟3 =〈s, (0.2,0.2,0.2), (0.2,0.1,0.1), (0.3,0.3,0.3)〉 

𝒟4=〈s, (0.1,0.1,0.1), (0.4,0.3,0.3), (0.3,0.5,0.5)〉, and 

let  𝒯 = {u, v, w},  ξ ={0N, ℱ1,ℱ2, ℱ3, ℱ4 1N}  be a neutrosophic topology on  (𝒯 , ξ). 

ℱ1=〈t, (0.3,0.3,0.3), (0.2,0.1,0.1), (0.2,0.2,0.2)〉 

ℱ2=〈t, (0.2,0.2,0.2), (0.1,0.1,0.1), (0.3,0.3,0.3)〉 

ℱ3=〈t, (0.3,0.3,0.3), (0.1,0.1,0.1), (0.2,0.1,0.1)〉 

ℱ4=〈t, (0.2,0.2,0.2), (0.2,0.1,0.1), (0.3,0.3,0.3)〉 

Define 𝑑 ∶  (𝒮, ℑ)  →  (𝒯 , ξ) by 𝑑(𝑢) = 𝑢, 𝑑(𝑣) = 𝑣, 𝑑(𝑤) = 𝑤. 

𝒩𝛼𝑔#𝜓-closed sets of (𝒯, ξ) = 〈s, (0.3,0.5,0.5), (0.2,0.1,0.1), (0.2,0.1,0.1)〉. 

Here 𝑑(𝒟1)𝑐 is 𝒩𝛼𝑔#𝜓-closed in (𝒯, ξ). Therefore 𝑑 is 𝒩𝛼𝑔#𝜓-closed mapping. However, it 

is not a neutrosophic closed mapping because 𝑑(𝒟1)𝑐  is not neutrosophic closed set in 

(𝒯, ξ).   
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Theorem 4.4. A mapping 𝑑: (𝒮, ℑ) → (𝒯, ξ) is 𝒩𝛼𝑔#𝜓-closed iff for each neutrosophic set 𝒮 of (𝒯, ξ) 

and for each neutrosophic open set 𝒰 of (𝒮, ℑ) containing 𝑑−1 (𝒮) there is a 𝒩𝛼𝑔#𝜓-open set 𝒜 of 

(𝒯, ξ) such that 𝒮⊆ 𝒜 and 𝑑−1(𝒜)⊆ 𝒰.  

Proof: Necessity: Assume 𝑑 is a 𝒩𝛼𝑔#𝜓-closed mapping. Let 𝒮 be the neutrosophic closed set of 

(𝒯, ξ) and 𝒰 is a neutrosophic open set of (𝒮, ℑ) such that 𝑑−1(𝒮) ⊆  𝒰. Then 𝒜 = 𝒯 − 𝑑−1 (𝒰)𝑐 

is 𝒩𝛼𝑔#𝜓-open set of (𝒯, ξ) such that 𝑑−1(𝒜)⊆ 𝒰.  

Sufficiency: Assume ℱ is a neutrosophic closed set of (𝒮, ℑ). Then (𝑑(ℱ))𝑐 is a neutrosophic set of 

(𝒯, ξ) and ℱ𝑐  is neutrosophic open set in (𝒮, ℑ) such that 𝑑−1((𝑑(ℱ))𝑐)⊆ ℱ𝑐 . By hypothesis there 

is a 𝒩𝛼𝑔#𝜓 -open set 𝒜  of (𝒯, ξ)  such that (𝑑(ℱ))𝑐 ⊆ 𝒜  and 𝑑−1 ( 𝒜 ) ⊆  ℱ𝑐 . Therefore ℱ ⊆ 

(𝑑−1 (𝒜))𝑐 . Hence 𝒜𝑐 ⊆  𝑑(ℱ ) ⊆ 𝑑((𝑑−1(𝒜))𝑐 ) ⊆ 𝒜𝑐  which implies 𝑑(ℱ )=  𝒜𝑐 . Since 𝒜𝑐  is 

𝒩𝛼𝑔#𝜓 -closed set of (𝒯, ξ) . Hence 𝑑(ℱ ) is 𝒩𝛼𝑔#𝜓 -closed in (𝒯, ξ)  and thus 𝑑  is neutrosophic 

𝒩𝛼𝑔#𝜓-closed mapping.  

Theorem 4.5. If 𝑑: (𝒮, ℑ) → (𝒯, ξ) is neutrosophic closed and 𝑒 ∶  (𝒯, ξ) → (𝒱, 𝜔) is 𝒩𝛼𝑔#𝜓 -closed. 

Then 𝑒𝑜𝑑: (𝒮, ℑ) → (𝒱, 𝜔)  is 𝒩𝛼𝑔#𝜓-closed. 

Proof: Let ℋ be a neutrosophic closed set in (𝒮, ℑ). Then 𝑑(ℋ) is neutrosophic closed set of (𝒯, ξ) 

because 𝑑 is neutrosophic closed mapping. Now 𝑒𝑜𝑑(ℋ) = 𝑒(𝑑(ℋ)) is 𝒩𝛼𝑔#𝜓-closed set in (𝒱, 𝜔) 

because 𝑒 is 𝒩𝛼𝑔#𝜓-closed mapping. Thus 𝑒𝑜𝑑 is 𝒩𝛼𝑔#𝜓-closed mapping.  

Theorem 4.6. If 𝑑: (𝒮, ℑ) → (𝒯, ξ) is 𝒩𝛼𝑔#𝜓-closed map, then 𝒩𝛼𝑔#𝜓- (𝑐∗(𝑑(𝒜))⊆ 𝑑(𝑐∗(𝒜)).  

Proof: Obvious. 

Theorem 4.7. Let 𝑑: (𝒮, ℑ) → (𝒯, ξ) and 𝑒 ∶  (𝒯, ξ) → (𝒱, 𝜔)are 𝒩𝛼𝑔#𝜓 - closed mappings. If every 

𝒩𝛼𝑔#𝜓- closed set of (𝒯, ξ) is neutrosophic 𝛼-closed then, 𝑒𝑜𝑑: (𝒮, ℑ) → (𝒱, 𝜔)  is 𝒩𝛼𝑔#𝜓 -closed.  

Proof: Let ℋ  be a neutrosophic closed set in (𝒮, ℑ). Then 𝑑(ℋ) is 𝒩𝛼𝑔#𝜓  -closed set of (𝒯, ξ) 

because 𝑑 is 𝒩𝛼𝑔#𝜓-closed mapping. By hypothesis 𝑑(ℋ) is neutrosophic 𝛼-closed set of (𝒯, ξ). 

Now 𝑒(𝑑(ℋ)) =  (𝑒𝑜𝑑)(ℋ) is 𝒩𝛼𝑔#𝜓 -closed set in (𝒱, 𝜔)  because 𝑒 is 𝒩𝛼𝑔#𝜓 -closed mapping. 

Thus 𝑒𝑜𝑑  is 𝒩𝛼𝑔#𝜓-closed mapping.  

Theorem 4.8. Let 𝑑: (𝒮, ℑ) → (𝒯, ξ)  be a objective mapping, then the following statements are 

equivalent: 

 (a) 𝑑 is a neutrosophic 𝒩𝛼𝑔#𝜓-open mapping.  

 (b) 𝑑 is a neutrosophic 𝒩𝛼𝑔#𝜓-closed mapping. 

 (c) 𝑑−1 is 𝒩𝛼𝑔#𝜓-continuous mapping.  

Proof: (a)⇒(b): Let us assume that 𝑑 is a 𝒩𝛼𝑔#𝜓-open mapping. By definition, ℋ is a neutrosophic 

open set in (𝒮, ℑ), then  𝑑(ℋ) is a 𝒩𝛼𝑔#𝜓-open set in (𝒯, ξ). Here, ℋ is neutrosophic closed set in 

(𝒮, ℑ), then 𝒮 − ℋ is a neutrosophic open set in (𝒮, ℑ). By assumption,  𝑑(𝒮 − ℋ) is a 𝒩𝛼𝑔#𝜓-open 

set in (𝒯, ξ). Hence, 𝒯−𝑑(𝒮 − ℋ) is a 𝒩𝛼𝑔#𝜓 -closed set in (𝒯, ξ). Therefore, 𝑑 is a 𝒩𝛼𝑔#𝜓-closed 

mapping.  

(b) ⇒(c): Let ℋ be a neutrosophic closed set in (𝒮, ℑ). By (b), 𝑑(ℋ) is a 𝒩𝛼𝑔#𝜓-closed set in (𝒯, ξ). 

Hence, 𝑑(ℋ ) = (𝑑−1)−1 ( ℋ ), so 𝑑−1  is a 𝒩𝛼𝑔#𝜓 -closed set in (𝒯, ξ) . Hence, 𝑑−1  is 𝒩𝛼𝑔#𝜓 

-continuous.  

(c) ⇒(a): Let ℋ be a neutrosophic open set in (𝒮, ℑ). By (c), (𝑑−1)−1(ℋ) =𝑑 (ℋ) is a 𝒩𝛼𝑔#𝜓-open 

mapping. 
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5. 𝓝𝜶𝒈#𝝍-homeomorphism  

Definition 5.1. A bijection 𝑑: (𝒮, ℑ) → (𝒯, ξ) is called a 𝒩𝛼𝑔#𝜓-homeomorphism if 𝑑 and 𝑑−1 are 

𝒩𝛼𝑔#𝜓 -continuous.  

Theorem 5.2. Each neutrosophic homeomorphism is a 𝒩𝛼𝑔#𝜓-homeomorphism.  

Proof: Let  𝑑  be neutrosophic homeomorphism, then 𝑑 and 𝑑−1  are neutrosophic continuous. 

But every neutrosophic continuous function is 𝒩𝛼𝑔#𝜓 -continuous. Hence, 𝑑  and 𝑑−1  is 𝒩𝛼𝑔#𝜓 

-continuous. Therefore, 𝑑 is a 𝒩𝛼𝑔#𝜓-homeomorphism.  

Let a 𝒩𝛼𝑔#𝜓-homeomorphism need not be a neutrosophic homeomorphism by the following 

example.  

Example 5.3. Let 𝒮 = {u, v, w},   ℑ ={0N, 𝒟1,𝒟2, 𝒟3, 𝒟4 1N} be a neutrosophic topology on (𝒮, ℑ). 

𝒟1  =〈s, (0.2,0.1,0.1), (0.2,0.1,0.1), (0.3,0.5,0.5)〉 

𝒟2 =〈s, (0.1,0.2,0.2), (0.4,0.3,0.3), (0.3,0.3,0.3)〉 

𝒟3 =〈s, (0.2,0.2,0.2), (0.2,0.1,0.1), (0.3,0.3,0.3)〉 

𝒟4=〈s, (0.1,0.1,0.1), (0.4,0.3,0.3), (0.3,0.5,0.5)〉, and 

let  𝒯 = {u, v, w},  ξ ={0N, ℱ1,ℱ2, ℱ3, ℱ4 1N}  be a neutrosophic topology on  (𝒯 , ξ). 

ℱ1=〈t, (0.3,0.3,0.3), (0.2,0.1,0.1), (0.2,0.2,0.2)〉 

ℱ2=〈t, (0.2,0.2,0.2), (0.1,0.1,0.1), (0.3,0.3,0.3)〉 

ℱ3=〈t, (0.3,0.3,0.3), (0.1,0.1,0.1), (0.2,0.1,0.1)〉 

ℱ4=〈t, (0.2,0.2,0.2), (0.2,0.1,0.1), (0.3,0.3,0.3)〉 

Define d ∶  (𝒮, ℑ)  →  (𝒯 , ξ) by d(u) = u,  d(v) = v,  d(w) = w. 

𝒩𝛼𝑔#𝜓 -closed sets of (𝒮, ℑ) =𝒜=〈s, (0.3,0.3,0.3), (0.1,0.1,0.1), (0.2,0.1,0.1)〉 

Here 𝑑−1(ℱ3)𝑐  is 𝒩𝛼𝑔#𝜓 -closed in (𝒮, ℑ) . Therefore 𝑑  is 𝒩𝛼𝑔#𝜓 -continuous and 𝑑−1  is 𝒩𝛼𝑔#𝜓 

-continuous if (𝒟3)𝑐 is a 𝒩𝛼𝑔#𝜓-closed set in (𝒮, ℑ), then the image 𝑑(𝒟3)𝑐=(ℱ4)𝑐   is neutrosophic 

closed in (𝒯, ξ). Hence, 𝑑 and 𝑑−1 are 𝒩𝛼𝑔#𝜓-continuous then it is a 𝒩𝛼𝑔#𝜓- homeomorphism. 

However, 𝒜 is neutrosophic closed in (𝒯, ξ) but it is not neutrosophic closed in (𝒮, ℑ). Therefore it 

is not neutrosophic continuous. Therefore it is not neutrosophic homeomorphism.  

Theorem 5.4. Let 𝑑: (𝒮, ℑ) → (𝒯, ξ) be a bijective mapping. If 𝑑  is 𝒩𝛼𝑔#𝜓 -continuous, then the 

following statements are equivalent: 

 (a) 𝑑 is a 𝒩𝛼𝑔#𝜓-closed mapping. 

 (b) 𝑑 is a 𝒩𝛼𝑔#𝜓-open mapping.  

 (c) 𝑑−1 is a 𝒩𝛼𝑔#𝜓-homeomorphism.  

Proof: (a) ⇒(b): Assume that 𝑑 is a bijective mapping and a 𝒩𝛼𝑔#𝜓-closed mapping. Hence, 𝑑−1 is a 

𝒩𝛼𝑔#𝜓-continuous mapping. We know that each neutrosophic open set in (𝒮, ℑ) is a 𝒩𝛼𝑔#𝜓-open 

set in (𝒯, ξ). Hence, 𝑑 is a 𝒩𝛼𝑔#𝜓-open mapping.  

(b) ⇒(c): Let 𝑑 be a bijective and neutrosophic open mapping. Further, 𝑑−1 is a 𝒩𝛼𝑔#𝜓 -continuous 

mapping. Hence, 𝑑 and 𝑑−1 are 𝒩𝛼𝑔#𝜓-continuous. Therefore, 𝑑 is a 𝒩𝛼𝑔#𝜓 -homeomorphism. 

(c) ⇒(a): Let 𝑑 be a 𝒩𝛼𝑔#𝜓-homeomorphism, then 𝑑 and 𝑑−1 are 𝒩𝛼𝑔#𝜓-continuous. Since each 

neutrosophic closed set in (𝒮, ℑ)  is a 𝒩𝛼𝑔#𝜓 -closed set in (𝒯, ξ) , hence 𝑑  is a 𝒩𝛼𝑔#𝜓 -closed 

mapping. 

Definition 5.5. Let (𝒮, ℑ) be a neutrosophic topological spaces said to be a neutrosophic 

𝒯𝒩
𝛼𝑔#𝜓

 -space if every 𝒩𝛼𝑔#𝜓-closed set is neutrosophic closed in(𝒮, ℑ).  
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Theorem 5.6. Let 𝑑: (𝒮, ℑ) → (𝒯, ξ)  be a 𝒩𝛼𝑔#𝜓 -homeomorphism, then 𝑑  is a neutrosophic 

homeomorphism if (𝒮, ℑ) and (𝒯, ξ) are 𝒯𝒩
𝛼𝑔#𝜓

-space.  

Proof: Assume that ℋ is a neutrosophic closed set in (𝒯, ξ), then 𝑑−1 (ℋ) is a 𝒩𝛼𝑔#𝜓 -closed set in 

(𝒮, ℑ). Since (𝒮, ℑ) is an 𝒯𝒩
𝛼𝑔#𝜓

-space, 𝑑−1 (ℋ) is a neutrosophic closed set in (𝒮, ℑ). Therefore, 𝑑 

is neutrosophic continuous. By hypothesis, 𝑑−1  is 𝒩𝛼𝑔#𝜓  -continuous. Let 𝒢 be a neutrosophic 

closed set in (𝒮, ℑ). Then, (𝑑−1)−1(𝒢) = 𝑑(𝒢) is a neutrosophic closed set in (𝒯, ξ), by presumption. 

Since (𝒯, ξ)  is a 𝒯𝒩
𝛼𝑔#𝜓

-space, 𝑑(𝒢 ) is a neutrosophic closed set in (𝒯, ξ) . Hence, 𝑑−1  is 

neutrosophic continuous. Hence, 𝑑 is a neutrosophic homeomorphism.  

Theorem 5.7. Let 𝑑: (𝒮, ℑ) → (𝒯, ξ) be a neutrosophic topological space, then the following are 

equivalent if (𝒯, ξ) is a  𝒯𝒩
𝛼𝑔#𝜓

 -space:  

(a) 𝑑 is 𝒩𝛼𝑔#𝜓-closed mapping. 

(b) If ℋ is a neutrosophic open set in (𝒮, ℑ), then 𝑑(ℋ) is 𝒩𝛼𝑔#𝜓-open set in (𝒯, ξ).  

(c) 𝑑(𝑖∗ (ℋ))⊆ 𝑐∗( 𝑖∗(𝑑(ℋ))) for every neutrosophic set ℋ in (𝒮, ℑ). 

Proof: (a) ⇒ (b): Obvious.  

(b) ⇒ (c): Let ℋ be a neutrosophic set in (𝒮, ℑ). Then, 𝑖∗(ℋ) is a neutrosophic open set in (𝒮, ℑ). 

Then, 𝑑(𝑖∗(ℋ)) is a 𝒩𝛼𝑔#𝜓 -open set in (𝒯, ξ). Since (𝒯, ξ) is a 𝒯𝒩
𝛼𝑔#𝜓

 -space, so 𝑑(𝑖∗(ℋ )) is a 

neutrosophic open set in (𝒯, ξ). Therefore, 𝑑(𝑖∗(ℋ)) = 𝑖∗(𝑑(𝑖∗(ℋ)))⊆ 𝑐∗(𝑖∗ (d(ℋ))). 

(c) ⇒ (a): Let ℋ be a neutrosophic closed set in (𝒮, ℑ). Then, ℋ𝑐  is a neutrosophic open set in 

(𝒮, ℑ) . From, 𝑑(𝑖∗ (ℋ𝑐 ))⊆  𝑐∗ (  𝑖∗ (𝑑(ℋ𝑐 ))). Hence, 𝑑(ℋ𝑐 )⊆  𝑐∗(𝑖𝑛𝑡(𝑑(ℋ𝑐 ))). Therefore, 𝑑(ℋ𝑐 ) is 

𝒩𝛼𝑔#𝜓 -open set in (𝒯, ξ) . Therefore, 𝑑(ℋ ) is a 𝒩𝛼𝑔#𝜓  -closed set in (𝒮, ℑ) . Hence, 𝑑  is a 

neutrosophic closed mapping.  

Theorem 5.8. Let 𝑑: (𝒮, ℑ) → (𝒯, ξ) and e : (𝒯, ξ) → (𝒱, 𝜔)  be 𝒩𝛼𝑔#𝜓 -closed, where (𝒮, ℑ)  and 

(𝒱, 𝜔) are two neutrosophic topological spaces and (𝒯, ξ) a 𝒯𝒩
𝛼𝑔#𝜓

-space, then the composition 

𝑒𝑜𝑑 is 𝒩𝛼𝑔#𝜓-closed.  

Proof: Let ℋ  be a neutrosophic closed set in (𝒮, ℑ) . Since 𝑑  is 𝒩𝛼𝑔#𝜓 -closed and 𝑑(ℋ ) is a 

𝒩𝛼𝑔#𝜓-closed set in (𝒯, ξ), by assumption, 𝑑(ℋ) is a neutrosophic closed set in (𝒯, ξ). Since 𝑒 is 

𝒩𝛼𝑔#𝜓-closed, then 𝑒(𝑑(ℋ)) is 𝒩𝛼𝑔#𝜓-closed in (𝒱, 𝜔) and 𝑒(𝑑(ℋ)) = 𝑒𝑜𝑑 (ℋ). Therefore, 𝑒𝑜𝑑 is 

𝒩𝛼𝑔#𝜓- closed.  

Theorem 5.9. Let 𝑑: (𝒮, ℑ) → (𝒯, ξ) and 𝑒 ∶  (𝒯, ξ) → (𝒱, 𝜔)be two neutrosophic topological spaces, 

then the following hold:  

(a) If 𝑒𝑜𝑑 is 𝒩𝛼𝑔#𝜓-open and 𝑑 is neutrosophic continuous, then 𝑒 is 𝒩𝛼𝑔#𝜓-open.  

(b) If 𝑒𝑜𝑑 is neutrosophic open and 𝑒 is 𝒩𝛼𝑔#𝜓-continuous, then 𝑑 is 𝒩𝛼𝑔#𝜓-open.  

Proof: Obvious 

6. 𝓝𝜶𝒈#𝝍−C Homeomorphism  

Definition 6.1. A bijection 𝑑: (𝒮, ℑ) → (𝒯, ξ) is called a 𝒩𝛼𝑔#𝜓-C homeomorphism if 𝑑 and 𝑑−1 are 

𝒩𝛼𝑔#𝜓-irresolute mappings.  
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Theorem 6.2. Each 𝒩𝛼𝑔#𝜓-C homeomorphism is a 𝒩𝛼𝑔#𝜓-homeomorphism.  

Proof: Let us assume that ℋ is a neutrosophic closed set in (𝒯, ξ). This shows that ℋ is a 𝒩𝛼𝑔#𝜓 

-closed set in (𝒯, ξ) . By assumption, 𝑑−1 (ℋ ) is a 𝒩𝛼𝑔#𝜓 -closed set in (𝒮, ℑ) . Hence, 𝑑  is a 

𝒩𝛼𝑔#𝜓-continuous mapping. Hence, 𝑑 and 𝑑−1  are 𝒩𝛼𝑔#𝜓-continuous mappings. Hence 𝑑  is a 

𝒩𝛼𝑔#𝜓-homeomorphism.  

Let a 𝒩𝛼𝑔#𝜓 -homeomorphism need not be a 𝒩𝛼𝑔#𝜓 -C homeomorphism by the following 

example.  

Example 6.3.  Let 𝒮 = {u, v, w},   ℑ ={0N, 𝒟1,𝒟2, 𝒟3, 𝒟4 1N} be a neutrosophic topology on (𝒮, ℑ). 

𝒟1  =〈s, (0.2,0.1,0.1), (0.2,0.1,0.1), (0.3,0.5,0.5)〉 

𝒟2 =〈s, (0.1,0.2,0.2), (0.4,0.3,0.3), (0.3,0.3,0.3)〉 

𝒟3 =〈s, (0.2,0.2,0.2), (0.2,0.1,0.1), (0.3,0.3,0.3)〉 

𝒟4=〈s, (0.1,0.1,0.1), (0.4,0.3,0.3), (0.3,0.5,0.5)〉, and 

let  𝒯 = {u, v, w},  ξ ={0N, ℱ1,ℱ2, ℱ3, ℱ4 1N}  be a neutrosophic topology on (𝒯 , ξ). 

ℱ1=〈t, (0.3,0.3,0.3), (0.2,0.1,0.1), (0.2,0.2,0.2)〉 

ℱ2=〈t, (0.2,0.2,0.2), (0.1,0.1,0.1), (0.3,0.3,0.3)〉 

ℱ3=〈t, (0.3,0.3,0.3), (0.1,0.1,0.1), (0.2,0.1,0.1)〉 

ℱ4=〈t, (0.2,0.2,0.2), (0.2,0.1,0.1), (0.3,0.3,0.3)〉 

Define 𝑑 ∶  (𝒮, ℑ)  →  (𝒯 , ξ) by d(u) = u,  d(v) = v,  d(w) = w. 

Assume 𝒩𝛼𝑔#𝜓-closed sets of (𝒮, ℑ) =𝒜=〈s, (0.3,0.3,0.3), (0.1,0.1,0.1), (0.2,0.1,0.1)〉 is 

𝒩𝛼𝑔#𝜓 -continuous then it is 𝒩𝛼𝑔#𝜓 -homeomorphism. However, it is not a 𝒩𝛼𝑔#𝜓 -C 

homeomorphism because it is not 𝒩𝛼𝑔#𝜓- irresolute.  

Theorem 6.4. If 𝑑: (𝒮, ℑ) → (𝒯, ξ) is a 𝒩𝛼𝑔#𝜓-C homeomorphism, then 𝒩𝛼𝑔#𝜓-𝑐∗(𝑑−1 (ℋ))⊆ 𝑑−1 

(𝒩𝛼(𝑐∗ ( ℋ))) for each neutrosophic topological space ℋ in (𝒯, ξ).  

Proof: Let ℋ be a neutrosophic topological space in (𝒯, ξ). Then, 𝒩𝛼(𝑐∗ ( ℋ)) is a neutrosophic 

𝛼-closed set in (𝒯, ξ), and every neutrosophic 𝛼-closed set is a 𝒩𝛼𝑔#𝜓-closed set in (𝒯, ξ). Assume 𝑑 

is 𝒩𝛼𝑔#𝜓  -irresolute, 𝑑−1  (𝒩𝛼(𝑐∗  (ℬ)) is a 𝒩𝛼𝑔#𝜓-closed set in (𝒮, ℑ), then 𝒩𝛼𝑔#𝜓  𝑐∗(𝑑−1 (𝒩𝛼(𝑐∗ 

( ℋ)))) = 𝑑−1(𝒩𝛼(𝑐∗( ℋ))). Here, 𝒩𝛼𝑔#𝜓-𝑐∗(𝑑−1(ℋ))⊆ 𝒩𝛼𝑔#𝜓-𝑐∗(𝑑−1(𝒩𝛼(𝑐∗( ℋ)))) = 𝑑−1 (𝒩𝛼(𝑐∗( ℋ))). 

Therefore, 𝒩𝛼𝑔#𝜓- 𝑐∗( 𝑑−1 (ℋ))⊆ 𝑑−1 (𝒩𝛼(𝑐∗( ℋ))) for every neutrosophic set ℋ in (𝒯, ξ).  

Theorem 6.5. Let 𝑑: (𝒮, ℑ) → (𝒯, ξ) be a 𝒩𝛼𝑔#𝜓-C homeomorphism, then 𝒩𝛼(𝑐∗ ( 𝑑−1 (ℋ))) = 𝑑−1 

(𝒩𝛼(𝑐∗( ℋ))) for each neutrosophic set ℋ in (𝒯, ξ). 

Proof: Since 𝑑 is a 𝒩𝛼𝑔#𝜓-C homeomorphism, then 𝑑 is a 𝒩𝛼𝑔#𝜓-irresolute mapping. Let ℋ be a 

neutrosophic set in (𝒯, ξ). Clearly, 𝒩𝛼(𝑐∗( ℋ)) is a 𝒩𝛼𝑔#𝜓-closed set in (𝒮, ℑ). Then 𝒩𝛼(𝑐∗( ℋ)) is a 

𝒩𝛼𝑔#𝜓 -closed set in (𝒮, ℑ). Since 𝑑−1  (ℋ )⊆ 𝑑−1 (𝒩𝛼(𝑐∗ (  ℋ ))), then𝒩𝛼(𝑐∗ (  𝑑−1 (ℋ )))⊆𝒩𝛼(𝑐∗ ( 𝑑−1 

(𝒩𝛼(𝑐∗ (  ℋ ))))) = 𝑑−1 (𝒩𝛼(𝑐∗ (  ℋ ))). Therefore, 𝒩𝛼(𝑐∗ (𝑑−1  (ℋ )))⊆ 𝑑−1 (𝒩𝛼(𝑐∗ (  ℋ ))). Let 𝑑  be a 

𝒩𝛼𝑔#𝜓-C homeomorphism. 𝑑−1 is a 𝒩𝛼𝑔#𝜓 -irresolute mapping. Let us consider neutrosophic set 

𝑑−1(ℋ) in (𝒮, ℑ), which implies 𝒩𝛼(𝑐∗ ( 𝑑−1 (ℋ))) is a 𝒩𝛼𝑔#𝜓-closed set in (𝒮, ℑ). Hence, 𝒩𝛼𝑔#𝜓- 

𝑐∗( 𝑑−1(ℋ)) is a 𝒩𝛼𝑔#𝜓-closed set in (𝒮, ℑ). This implies that (𝑑−1)−1(𝒩𝛼(𝑐∗( 𝑑−1 (ℋ)))) = 𝑑(𝒩𝛼(𝑐∗ 

( 𝑑−1(ℋ)))) is a 𝒩𝛼𝑔#𝜓-closed set in (𝒯, ξ). This proves ℋ  = (𝑑−1)−1(𝑑−1 (ℋ))⊆ (𝑑−1)−1(𝒩𝛼  (𝑐∗ 

( 𝑑−1(ℋ))) = d(𝒩𝛼(𝑐∗( 𝑑−1(ℋ)))). Therefore, 𝒩𝛼(𝑐∗(ℋ))⊆ 𝒩𝛼(𝑐∗(𝑑(𝒩𝛼(𝑐∗( 𝑑−1(ℋ))))))= 𝑑(𝒩𝛼(𝑐∗(𝑑−1 

(ℋ)))), since 𝑑−1 is a 𝒩𝛼𝑔#𝜓-irresolute mapping. Hence, 𝑑−1(𝒩𝛼(𝑐∗( ℋ)))⊆ 𝑑−1(𝑑(𝒩𝛼(𝑐∗( 𝑑−1 (ℋ)))) 

= 𝒩𝛼(𝑐∗ (  𝑑−1 (ℋ ))). That is, 𝑑−1  (𝒩𝛼(𝑐∗ (  ℋ )))⊆𝒩𝛼(𝑐∗ (  𝑑−1 (ℋ ))). Hence, 𝒩𝛼(𝑐∗ (  𝑑−1 (ℋ ))) = 𝑑−1 

(𝒩𝛼(𝑐∗( ℋ))).  
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Theorem 6.6. If 𝑑: (𝒮, ℑ) → (𝒯, ξ) and 𝑒 ∶  (𝒯, ξ) → (𝒱, 𝜔) are 𝒩𝛼𝑔#𝜓-C homeomorphisms, then 𝑒𝑜𝑑 

is a 𝒩𝛼𝑔#𝜓-C homeomorphism.  

Proof: Let 𝑑 and 𝑒 to be two 𝒩𝛼𝑔#𝜓-C-homeomorphisms. Assume ℋ is a 𝒩𝛼𝑔#𝜓 -closed set in 

(𝒱, 𝜔). Then, 𝑒−1 (ℋ ) is a 𝒩𝛼𝑔#𝜓 -closed set in (𝒯, ξ) . Then, by hypothesis, 𝑑−1  (𝑒−1 (ℋ )) is a 

𝒩𝛼𝑔#𝜓-closed set in (𝒮, ℑ). Hence, 𝑒𝑜𝑑 is a 𝒩𝛼𝑔#𝜓 -irresolute mapping. Now, let 𝒢 be a 𝒩𝛼𝑔#𝜓 

-closed set in (𝒮, ℑ) . Then, by presumption, 𝑑(𝑒)  is a 𝒩𝛼𝑔#𝜓 -closed set in (𝒯, ξ) . Then, by 

hypothesis, 𝑒(𝑑(𝒢)) is a 𝒩𝛼𝑔#𝜓-closed set in (𝒱, 𝜔). This implies that 𝑒𝑜𝑑 is a 𝒩𝛼𝑔#𝜓-irresolute 

mapping. Hence, 𝑒𝑜𝑑 is a 𝒩𝛼𝑔#𝜓-C-homeomorphism.  

7. Conclusions 

In this paper, the new concept of a neutrosophic homeomorphism and a 𝒩𝛼𝑔#𝜓 - 

homeomorphism in neutrosophic topological spaces was discussed. Furthermore, the work was 

extended as the  𝒩𝛼𝑔#𝜓 -C homeomorphism,  𝒩𝛼𝑔#𝜓 -open and  𝒩𝛼𝑔#𝜓 -closed mapping and 

neutrosophic 𝒯𝒩
𝛼𝑔#𝜓

-space. Further, the study demonstrated 𝒩𝛼𝑔#𝜓-C homeomorphisms and also 

derived some of their related attributes. 
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Abstract: The object of this article is mainly to discuss the notion of neutrosophic extended triplet 

direct product (NETDP) and neutrosophic extended triplet semi-direct product (NETS-DP) of NET 

group. The purpose is to give a clear introduction that allows a solid foundation for additional 

studies into the field. We introduce neutrosophic extended triplet internal direct product (NETIDP) 

and neutrosophic extended triplet external direct products (NETEDP) of NET group. Then, we 

define NET internal and external semi-direct products for NET group by utilizing the notion of 

NET set theory of Smarandache. Moreover, some results related to NETDP and NETS-DPs are 

obtained. 
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1. Introduction 

Neutrosophy is a new branch of philosophy, presented by Florentin Smarandache [1] in 1980, 

which deals the interactions with different ideational spectra in our everyday life. A NET is an object 

of the structure 
( ) ( )( , , ),neut x anti xx e e  for ,x N was firstly presented by Florentin Smarandache [2-4] 

in 2016. In this theory, the extended neutral and the extended opposites can similar or non-identical 

from the classical unitary element and inverse element respectively. The NETs are depend on real 

triads: (friend, neutral, enemy), (pro, neutral, against), (accept, pending, reject), and in general 

( , ( ), ( ))x neut x anti x as in neutrosophy is a conclusion of Hegel’s dialectics that is depend on x and

( )anti x . This theory acknowledges every concept or idea x together along its opposite ( )anti x  

and along their spectrum of neutralities ( )neut x  among them. Neutrosophy is the foundation of 

neutrosophic logic, neutrosophic set, neutrosophic probability, and neutrosophic statistics that are 

utilized or applied in engineering (like software and information fusion), medicine, military, 

airspace, cybernetics, and physics. Kandasamy and Smarandache [5] introduced many new 

neutrosophic notions in graphs and applied it to the case of neutrosophic cognitive and relational 

maps. The same researchers [6] were introduced the concept of neutrosophic algebraic structures for 

groups, loops, semi groups and groupoids and also their N  algebraic structures in 2006. 

Smarandache and Mumtaz Ali [7] proposed neutrosophic triplets and by utilizing these they defined 

NTG and the application areas of NTGs. They also define NT field [8] and NT in physics [9]. 

Smarandache investigated physical structures of hybrid NT ring [10]. Zhang et al [11] examined the 

Notion of cancellable NTG and group coincide in 2017. Şahın and Kargın [12], [13] firstly introduced 

new structures called NT normed space and NT inner product respectively. Smarandache et al [14] 

mailto:moges6710@mail.com
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studied new algebraic structure called NT G-module which is constructed on NTGs and NT vector 

spaces. The above set theories have been applied to many different areas including real decision 

making problems [15-39]. Additionally, Abdel Basset et al applied neutrosophic set theory to 

artificial intelligence in medicine [43, 44, 46, 56], decision making [45, 48, 49, 52], programming [47], 

forecasting [50], IoT [51], chain management [53], TOPSIS technique [54], and importing field [55]. 

   This paper deals with direct and semi-direct products of NETGs. We give basic definitions, 

notations, facts, and examples about NETs which play a significant role to define and build new 

algebraic structures. Then, the concept of NET internal and external direct and semi-direct 

products are given and their difference between the classical structures are briefly discussed. 

Finally, some results related to NET direct and semi-direct products are obtained. 

2. Preliminaries  

Since some properties of NETs are used in this work, it is important to have a keen knowledge 

of NETs. We will point out some few NETs and concepts of NET group, NT normal subgroup, and 

NT costs according to what needed in this work. 

Definition 2.1 [7, 9] A NT has a form     ,  ,  ,a neu at nti aa for     , ,a a Na neut anti  , 

accordingly  neut a  and  anti a N  are neutral and opposite of ,a  that is different from the 

unitary element, thus: ( ) ( )a neut a neut a a a     and ( ) ( ) ( )a anti a anti a a neut a     

respectively. In general, a  may have one or more than one neut's and one or more than one anti's. 

Definition 2.2 [3, 9] A NET is a NT, defined as definition 1, but where the neutral of a  (symbolized 

by 
( )neut ae  and called "extended neutral") is equal to the classical unitary element. As a 

consequence, the "extended opposite" of a , symbolized by 
( )anti ae  is also same to the classical 

inverse element. Thus, a NET has a form
( ) ( )( , , )neut a anti aa e e , for ,a N where 

( )neut ae  and 
( )anti ae

  in N  are the extended neutral and negation of a  respectively, thus:
( ) ( ) ,neut a neut aa e e a a     

which can be the same or non-identical from the classical unitary element if any and 
( ) ( ) ( ).anti a anti a neut aa e e a e     Generally, for each a ∊ N there are one or more

( )neut ae 's and 
( )anti ae 's. 

Definition 2.3 [7, 9] suppose ( , )N   is a NT set. Subsequently ( , )N   is called a NTG, if the 

axioms given below are holds. 

(1) ( , )N  is well-defined, i.e. for and ( , ( ), ( )), ( , ( ), ( ) ,a neut a anti a b neut b anti b N one    

has ( , ( ), ( )) ( , ( ), ( )) .a neut a anti a b neut b anti b N   

(2)  ( , )N   is associative, i.e. for anyone has  

( , ( ), ( )) ( , ( ), ( ) ( , ( ), ( )) .a neut a anti a b neut b anti b c neut c anti c N    

Theorem 2.4 [41] Let ( , )N   be a commutative NET relating to   an

( , ( ), ( )), ( , ( ), ( ))a neut a anti a b neut b anti b N ; 

 (i)    ( ) ( ) ( );neut a neut b neut a b    

 (ii)  ( ) ( ) ( );anti a anti b anti a b    

Definition 2.5 [3, 9] Assume ( , )N   is a NET strong set. Subsequently ( , )N   is called a NETG, if 

the axioms given below are holds. 

(1)  ( , )N   is well-defined, i.e. for any ( , ( ), ( )), ( , ( ), ( ) ,a neut a anti a b neut b anti b N  

one has ( , ( ), ( )) ( , ( ), ( ) .a neut a anti a b neut b anti b N    

(2)  ( , )N   is associative,  

i.e. for any ( , ( ), ( )), ( , ( ), ( )), ( , ( ), ( )) ,a neut a anti a b neut b anti b c neut c anti c N one has 
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 

 

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )).

a neut a anti a b neut b anti b c neut c anti c

a neut a anti a b neut b anti b c neut c anti c

 

  
 

Definition 2.6 [42] Assume that 
1

( , )N   and 
2

( , )N  are two NETG’s. A mapping 

1 2
:f N N  is called a neutro-homomorphism if: 

(1)  For any 
1

( , ( ), ( )), ( , ( ), ( ) ,a neut a anti a b neut b anti b N we have 

 

   

( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( ))

f a neut a anti a b neut b anti b

f a neut a anti a f b neut b anti b



 
 

 (2)  If ( , ( ), ( ))a neut a anti a is a NET from 
1
,N Then 

   ( ) ( )f neut a neut f a and    ( ) ( ) .f anti a anti f a  

Definition 2.8 [40] Assume that 
1

( , )N  is a NETG and H is a subset of 
1
.N  H is called a NET 

subgroup of N  if itself forms a NETG under .  On other hand it means: 

  (1)  
( )neut ae lies in .H  

  (2)  For any ( , ( ), ( )), ( , ( ), ( ) ,a neut a anti a b neut b anti b H  

( , ( ), ( )) ( , ( ), ( ) .a neut a anti a b neut b anti b H   

       (3)  If ( , ( ), ( )) ,a neut a anti a H  then 
( ) .anti ae H  

Definition 2.9 [40] A NET subgroup H  of a NETG N  is called a NT normal subgroup of N  if 

( , ( ), ( )) ( , ( ), ( )), ( , ( ), ( ))a neut a anti a H H a neut a anti a a neut a anti a N   and we represent it 

as .H N(  

3. Direct Products of NETG  

   In this section, we define NET internal and external direct products. Then, we give propositions 

and proof them. 

Definition 3.1 Assume that we have two neutrosophic extended triplet groups H and K, and 

N H K   is the NET cartesian product (NETCP) of H and K, in other words 

 

   

( , ( ), ( )),2 2 2
, ( ), ( )),( , ( ), ( )) ,( 1 1 1 1 11 ( , ( ), ( ))2 2 2

, ( ), ( ) , , ( ), ( ) .1 2 1 2 1 2 1 2 1 2 1 2

neut antih h h
N neut anti neut antih h h k k k

neut antik k k

neut anti neut anti H Kh h h h h h k k k k k k

 
  

 

        

 

Clearly N is closed under multiplication, it is obvious to see associativity and it has a neutral 

element denoted by ( , )1 1 1N H K  and the anti-neutrals of 

 ( , ( ), ( )), ( , ( ), ( ))h neut h anti h k neut k anti k is  ( )), ( )) ,anti h anti k  respectively. 

Definition 3.2 Suppose that ,H K  are two NETGs. The NETG N H K  with binary operation 

described componentwise as denoted in definition (3.1.1) is called the “neutrosophic extended 

triplet direct product” of H and K . 

Example 3.3 Find the NET direct product of two NETG 2z and .3z  Since  
2

0,1z  and 

 
3

0,1,3 ,z   the NETs 
2z is (0,0,0), (1,0,1) and the NETs of 

3z is (0,0,0), (1,0,2), (2,0,1).  

The NET direct products are 
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       

   2 3

(0,0,0), (0,0,0) , (0,0,0), (1,0,2) , (0,0,0), (2,0,1) , (1,0,1), (0,0,0) ,
.

(1,0,1), (1,0,2) , (1,0,1), (2,0,1)
z z

  
   

  

Definition 3.4 If a NETG N contains neutrosophic triplet normal subgroups (NTNS-Gs) H and 

K as shown N HK and  ,1H K N  we call N is the “NETIDP” of H and .K  

Example 3.5 Examine the NETG 
6
, )(z  and the following NET subgroups: 

{(0,0,0), (2,0, 4), (4,0, 2)}

{(0,0,0), (3,0,3)}.

H

K




 

Note that 
( , ( ), ( )) ( , ( ), ( )) : ( , ( ), ( )) ,

.
( , ( ), ( ))

h neut h anti h k neut k anti k h neut h anti h H
N

k neut k anti k K

  
 

 
 

That means (0,0,0), (2,0,4), (4,0,2) + (0,0,0), (3,0,3)  

 (0,0,0),(1,0,5),(2,0,4),(3,0,3),(4,0,2), (5,0,1) . So the first condition is met. Also the 

neutral for 6z is 0N and  (0,0,0)0H K N   so the second condition is met. Lastly 
6z is an 

abelian so the third condition is met. 

Table 1. The elements of NETG
6

( , )z  . 

+ 0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 2 3 4 5 0 

2 2 3 4 5 0 1 

3 3 4 5 0 1 2 

4 4 5 0 1 2 3 

5 5 0 1 2 3 4 

As can be seen, the formed NETs of 
6z is  (0,0,0), (1,0,5), (2,0,4), (3,0,3), (4,0,2), (5,0,1) .  

and also all classical internal direct products are usually not NETIDPs (some do not even contain 

either the neutral or anti-neutral elements). 

Proposition 3.6 If N is the NETIDP of H and ,K  subsequently N is neutro-isomorphic to the 

NETDP .H K  

Proof to put on that N is neutro-isomorphic to ,H K we describe the succeeding map 

: ,f H K N   

 ( , ( ), ( )), ( , ( ), ( ))f h neut h anti a k neut k anti k  , ( ), ( )h k neut h k anti h k                     (1) 

If    ( , ( ), ( ) , , ( ), ( ) ,h neut h anti h H k neut k anti k K  then  

 

 

( , ( ), ( )

( , ( ), ( ) .

h k neut h k anti h k

k h neut k h anti k h

  

   
 

Actually, we’ve utilizing that both NETGs K and H are neutrosophic triplet normal that 
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   
1 1

( , ( ), ( ))( , ( ), ( ) , ( ), ( ) ( , ( ), ( ) ,h neut h anti h k neut k anti k h neut h anti h k neut k anti k K
 

  

   
1 1

( , ( ), ( ))( , ( ), ( ) , ( ), ( ) ( , ( ), ( )h neut h anti h k neut k anti k h neut h anti h k neut k anti k H
 

  

Implying that 

   

 

1 1
( , ( ), ( ))( , ( ), ( ) , ( ), ( ) ( , ( ), ( )

.1

h neut h anti h k neut k anti k h neut h anti h k neut k anti k

K H N

 

  
 

At the same time let us show that f is a NETG neutro-isomorphism. 

1. This a NETG neutro-homomorphism onwards 

 ' ' ' ' ' '( , ( ), ( )), ( , ( ), ( )), ( , ( ), ( )), ( , ( ), ( ))f h neut h anti h k neut k anti k h neut h anti h k neut k anti k

 ' ' ' ' ' '( , ( ), ( )),( , ( ), ( ))f h h neut h h anti h h k k neut k k anti k k        by (1) . 

 ' ' ' ' ' '( , ( ), ( )) ( ), ( ), ( )) ( , ( ), ( ))h neut h anti h h k neut h k anti h k k neut k anti k     

 ' ' ' ' ' '( , ( ), ( )) ( ), ( ), ( )) ( , ( ), ( ))h neut h anti h k h neut k h anti k h k neut k anti k     

 
' ' '

' ' '

( , ( ), ( )),
( , ( ), ( )), ( , ( ), ( )) .

( , ( ), ( ))

h neut h anti h
f h neut h anti h k neut k anti k f

k neut k anti k

 
   

 

 

2. Let us show that the map f  is injective. First we have to check that its neutro-kernel is 

trivial. Actually, if 

 ( , ( ), ( )), ( , ( ), ( ) 1f h neut h anti h k neut k anti k N  Then 

 ( , ( ), ( )), ( , ( ), ( ) 1h neut h anti h k neut k anti k N  

   
1

, ( ), ( ) , ( ), ( )h neut h anti h k neut k anti k


   

 

   

, ( ), ( )

, ( ), ( ) 1

h neut h anti h K

h neut h anti h H K N

 

   
 

We have then that 
 , ( ), ( )h neut h anti h

=
 , ( ), ( )k neut k anti k  1N

which proves that 

the neutro-kernel is  ( , ) .1 1N N  

3. Lastly it’s obvious to see that f is subjective since .N HK  briefly record that the 

definitions of NETEDP and NETIDP are assuredly unlimited to two NETGs. We can totally 

describe them for n NETGs as ,..., .1H H n   

Definition 3.7 If ,...,1H H n  are random NETGs the NET external direct product of ,...,1H H n  

is ...1 2N H H H n     which is the NET cartesian product with componentwise multiplication. 
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Example 3.8 Let NETG  (8) 1,3,5,7u   and  (12) 1,5,7,11u   under multiplication modulo 

8 and mudulo 12 respectively. Let’s construct a NETG table for (12).u  

Table 2. The elements of NETG (12)u . 

  1 5 7 11 

1 1 5 7 11 

5 5 1 11 7 

7 7 11 1 5 

11 11 7 5 1 

The NETs of (8)u are (1,1,1), (3,1,3), (5,1,5), (7,1,7)  and the NETs of (12)u are 

(1,1,1), (5,1,5), (7,1,7), (11,1,11).   
Now let’s see the NET external direct products of 

       

         

   

(8) (12) (1,1,1), (1,1,1) , (1,1,1), (5,1,5) , (1,1,1), (7,1,7) , (1,1,1), (11,1,11) ,

(3,1,3), (1,1,1) , (3,1,3), (5,1,5) , (3,1,3), (7,1,7) , (3,1,3), (11,1,11) , (5,1,5), (1,1,1) ,

(5,1,5), (5,1,5) , (5,1,5), (7,1,7) , (5,1,5), (

u u 

     

     

11,1,11) , (7,1,7), (1,1,1) , (7,1,7), (3,1,3) ,

(7,1,7), (5,1,5) , (7,1,7), (7,1,7) , (7,1,7), (11,1,11) .

 

In general, all classical internal direct products are not NETEDPs (some do not even contain either 

the neutral or anti-neutral elements). 

Definition 3.9 If N contains NETNS-Gs ,...,1H H n as shown ...1N H Hn  and every n  can be 

symbolized as    , ( ), ( ) ... , ( ), ( )h neut h anti h neut antih h hn n n  particularly, we call  N is the 

neutrosophic extended triplet internal direct product of ,..., .1H H n  There is a small distinction 

between neutrosophic extended triplet internal product as we see in the definition, since in this 

instance of two NET subgroups, the condition dedicated briefly record that each  n can be 

symbolized particularly as   , ( ), ( ) , ( ), ( ) ,1 1 1 2 2 2neut anti neut antih h h h h h but alternately that 

the intersection of the two NET subgroups is  ( ) .1N  The following proposition indicates the 

relation among those two points of view. 

Proposition 3.10 Assume that ...1N H Hn  thus every H i  is a NET normal subgroup of .N  

The succeeding axioms are equivalent. 

I. N  is the NETDP of the .H i  

II.  ... ,11 2 1H H H Hi i N   1,..., .i n   

Proof Let’s show . .    Let’s suppose that N is the NETIDP of the H i , in other words all 

element in N can be inscribed particularly as a product of elements in  H i . Let’s assume 
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    , ( ), ( ) ... .11 2 1n neut n anti n H H H Hi i N    We obtain that 

 , ( ), ( ) ... ,1 2 1n neut n anti n H H Hi   this is particularly expressed as  

    

   

, ( ), ( ) , ( ), ( ) , ( ), ( ) ...1 1 1 2 2 2

, ( ), ( ) ... , , ( ), ( ) .1 11 1 1

n neut n anti n neut anti neut antih h h h h h

neut anti neut antih h h h h hH H HN i N n ji i i j j j



  

 

Moreover,  , ( ), ( )n neut n anti n Hi thus      , ( ), ( ) ...1 11 1n neut n anti n n nH HN N i   and we 

have     , ( ), ( ) 1neut antih h h Nj j j   for all j and    , ( ), ( ) .1n neut n anti n N  

. .    Conversely, let us assume that  , ( ), ( )n neut n anti n N  can be written either   

    

   

, ( ), ( ) , ( ), ( ) , ( ), ( ) ...1 1 1 2 2 2

, ( ), ( ) , , ( ), ( ) ,

n neut n anti n neut anti neut antih h h h h h

neut anti neut antih h h h h h H jn n n j j j




 

or  

    

   

, ( ), ( ) , ( ), ( ) , ( ), ( ) ...1 1 1 2 2 2

, ( ), ( ) , , ( ), ( ) .

n neut n anti n neut anti neut antik k k k k k

neut anti neut antik k k k k k H jn n n j j j




 

Remember that whereby every H j are NET normal subgroups, subsequently 

  , ( ), ( ) , ( ), ( )neut anti neut antih h h h h hi i i j j j  

    

 

, ( ), ( ) , ( ), ( ) , , ( ), ( ) ,

, ( ), ( ) .

neut anti neut anti neut antih h h h h h h h h Hij j j i i i i i i

neut antih h h H jj j j

 


 

In other words, we can do the succeeding manipulations. 

    , ( ), ( ) , ( ), ( ) ... , ( ), ( )1 1 1 2 2 2neut anti neut anti neut antih h h h h h h h hn n n  

    , ( ), ( ) , ( ), ( ) ... , ( ), ( )1 1 1 2 2 2neut anti neut anti neut antik k k k k k k k kn n n  

   , ( ), ( ) ... , ( ), ( )2 2 2neut anti neut antih h h h h hn n n  

     

 

1
, ( ), ( ) ... , ( ), ( ) , ( ), ( ) ...1 1 1 1 1 1 2 2 2

, ( ), ( )

neut anti neut anti neut antih h h k h h k k k

neut antik k kn n n

  
   

   , ( ), ( ) ... , ( ), ( )3 3 3neut anti neut antih h h h h hn n n  
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   
 

 

   

1
, ( ), ( )1 2 2 2, ( ), ( ) ... , ( ), ( )1 1 1 1 1 1
, ( ), ( )2 2 2

, ( ), ( ) ... , ( ), ( )3 3 3

neut antih h h
neut anti neut antih h h k h h

neut antik k k

neut anti neut antik k k k k kn n n

 
   

  
 

 

and likewise and then so long as we achieve 

                     1
, ( ) , ( ) , ( ) , ( )n e u t a n t i n e u t a n t ih h h k k kn n n n n n


                       (1) 

     

 

11
, ( ), ( ) , ( ), ( ) ... , ( ), ( )1 1 1 1 1 1 1 1 1

, ( ), ( ) .1 1 1

neut anti neut anti neut antih h h k k k h h hn n n

neut antik k kn n n


   

  

 

Until now the left hand side (1) refers to H n although the right hand side refers to  ... ,1 1   H H n  

we obtain such     1
, ( ), ( ) , ( ), ( ) ... 11 1neut anti neut antih h h k k k H H Hn n Nn n n n n n


    

signifying that  , ( ), ( )neut antih h hn n n =  , ( ), ( ) .neut antik k kn n n  

We end this by repeating the procedure. Let’s prove this for the conditions of two NETGs. We’ve 

noticed overhead that the NET cartesian product of two NETGs H and K endowed in relation to a 

NETG structure by taking in mind componentwise binary operation. 

   , ( ), ( ) , , ( ), ( )1 1 1 1 1 1neut anti neut antih h h k k k

   , ( ), ( ) , , ( ), ( ) .1 1 1 1 1 1 1 1 1 1 1 1neut anti neut anti H Kh h h h h h k k k k k k          

  The preference of this binary operation of course decides the structures of ,N H K   and 

exceptionally, we’ve noticed such the neutro-isomorphic duplicates of NETGs H and K  in N  

are NETNS-Gs. Contrarily that one may describe a NETIDP, we have to suppose that we’ve two 

NETNS-Gs.  

  Now let’s examine a further overall setting, thus the NET subgroup  K  doesn’t need to be NET 

normal, for whatever we have to describe another binary operation on the NETCP  .H K  this’ll 

take us to the definition of NETIS-DP and NETES-DP. 

  Remember that a neutro-auto orphism of a NETG H is an objective NETG 

neutro-homomorphism from .H H  It’s obvious to realize such the set of neutro-auto orphism 

of H shapes a NETG according to the composition of maps and identify element the neutrality map 

.1H  We symbolize it by ( ).1Aut H  

Proposition 3.11 Suppose that H and K are NETGs, and   

   : ( ), , ( ), ( ) , ( ), ( )K Aut H k neut k anti k k neut k anti k   are a  NETG 

neutro-homomorphism. Subsequently the binary operation       ,H K H K H K      
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 
' ' ' ' '

'

( , ( ), ( )), ( , ( ),
( , ( ), ( )), ( , ( ), ( )) ,

( ))

h neut h anti h k neut k
h neut h anti h k neut k anti k

anti k

 
  
 

 

 ' ' '

' ' '

( , ( ), ( )) (( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))

h neut h anti h k neut k anti k h neut h anti h

k neut k anti k k neut k anti k

 
 
 
 

 

endows  H K  with a NETG structure, with neutral element  , .1 1H K  

Proof let’s realize such the closure property is holds. 

1) Neutrality: Let’s prove that   ,1 1H K  is the neutral element. We have  

  1( , ( ), ( )),( , ( ), ( ))   ,1h neut h anti h k neut k an Ht k Ki  

  ( , ( ), ( )) ( , ( ), ( )) ,( , ( ), ( ))1h neut h anti h k neut k anti k k neut k anti kH  

 ( , ( ), ( )), ( , ( ), ( ))h neut h anti h k neut k anti k For all ( , ( ), ( )) ,h neut h anti h H  

( , ( ), ( )) ,k neut k anti k K Whereby ( , ( ), ( ))k neut k anti k  is a NETG 

neutro-homomorphism. We also have  

  ' ' ' ' ' ', ( , ( ), ( )),( , ( ), ( ))1 1 h neut h anti h k neut k anti kH K  

 ' ' ' ' ' '( , ( ), ( )),( , ( ), ( ))1 h neut h anti h k neut k anti kH  

 ' ' ' ' ' '( , ( ), ( )),( , ( ), ( ))h neut h anti h k neut k anti k  

2) Anti-neutrality : Let  ( , ( ), ( )), ( , ( ), ( ))h neut h anti h k neut k anti k H K  and let’s prove 

that 

   
1

11 ( , ( ), ( )) , , ( ), ( )
( , ( ), ( ))

h neut h anti h k neut k anti k
k neut k anti k


  

 
 

is the anti-neutral of  

 ( , ( ), ( )), ( , ( ), ( )) .h neut h anti h k neut k anti k  

We have  

 

 

1
, ( )

1
( , ( ), ( )) , ( )( , ( ), ( )),( , ( ), ( ))

1
, ( ), ( )

h neut h

k neut k anti k anti hh neut h anti h k neut k anti k

k neut k anti k



 
    

  
 

 
 
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 
 

1
( , ( ), ( ))

, ( ), ( ) ( , ( ), ( ))
1

, ( ), ( ) ,1

k neut k anti k
h neut h anti h k neut k anti k

h neut h anti h K




 
 
  
 

 

     1
, ( ), ( ) , ( ), ( ) , , .1 1 1h neut h anti h h neut h anti h K H K


   

We also have  

   

 

1 11 , ( ), ( ) , , ( ), ( )
( , ( ), ( )

( , ( ), ( ))( , ( ), ( )

h neut h anti h k neut k anti k
k neut k anti k

h neut h anti h k neut k anti k


   

   

   

 

11 1, ( ), ( ) , ( ), ( )( , ( ), ( )

, ( ), ( ) ,1

h neut h anti h k neut k anti kk neut k anti k

h neut h anti h K


  

 
  
 

 

     

     

11 1, ( ), ( ), ( ), ( ) , ( ), ( )
.

1 1, ( ), ( ) , ( ), ( ) ,1, ( ), ( )

h neut h anti hk neut k anti k k neut k anti k

h neut h anti h h neut h anti h Kk neut k anti k

 



  
 

  
  

 

 

Using that  

   
1 1

, ( ), ( ), ( ), ( ) k neut k anti kk neut k anti k
   

Whereby  is a NETG neutro-homomorphism. Instantly  

     

 

11 1, ( ), ( ), ( ), ( ) , ( ), ( )

, ( ), ( ) ,1

h neut h anti hk neut k anti k k neut k anti k

h neut h anti h K

 
  

 
 
 

 

      11 , ( ), ( ) , ( ), ( ) ,1, ( ), ( ) h neut h anti h h neut h anti h Kk neut k anti k
  

    1 ,1 1, ( ), ( ) H Kk neut k anti k   ,1 1H K  

using that   1
, ( ), ( )k neut k anti k   is a NETG neutro-homomorphism for every 

 , ( ), ( ) .k neut k anti k K  

3) Associativity : Lastly let’s check that the following condition holds,   we’ve  

 

( , ( ), ( )), ( , ( ), ( )), ( ', ( '), ( ')),

( ', ( '), ( '))

( '', ( ''), ( '')), ( '', ( ''), ( ''))

h neut h anti h k neut k anti k h neut h anti h

k neut k anti k

h neut h anti h k neut k anti k

 
 
   
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 

( , ( ), ( )), ( , ( ), ( )), ( ', ( '), ( ')),

( , ( ), ( )), ( ', ( '), ( '))

( '', ( ''), ( '')), ( '', ( ''), ( ''))

h neut h anti h k neut k anti k h neut h anti h

k neut k anti k k neut k anti k

h neut h anti h k neut k anti k

 
  
   

( , ( ), ( )) ,( ', ( '), ( ')),( , ( ), ( ))

( ', ( '), ( '))( , ( ), ( ))

( '', ( ''), ( '')), ( , ( ), ( )), ( ', ( '), ( ')),

( '', ( ''),

h neut h anti h h neut h anti hk neut k anti k

k neut k anti kk neut k anti k

h neut h anti h k neut k anti k k neut k anti k

k neut k an





 
 
 
 

,
( ''))ti k

 
 
 

 

While conversely  

( ', ( '), ( ')), ( ', ( ')

(( , ( ), ( )), ( , ( ), ( ))) , ( '))( '', ( ''), ( '')),

( '', ( ''), ( ''))

h neut h anti h k neut k

h neut h anti h k neut k anti k anti k h neut h anti h

k neut k anti k

 
 
 
 
 

 

(( , ( ), ( )), ( , ( ), ( )))

( ', ( '), ( ')), ( '', ( ''),( ', ( '), ( '))

( '')), ( ', ( '), ( '))( '', ( ''), ( ''))

h neut h anti h k neut k anti k

h neut h anti h h neut hk neut k anti k

anti h k neut k anti k k neut k anti k





 
 
 
 

 

 

 

( ', ( '),( ', ( '), ( '))

( '))( , ( ), ( )) ,( , ( ), ( ))
( '', ( ''), ( ''))

( , ( ), ( )) ( ', ( '), ( '))( '', ( ''), ( ''))

k neut kh neut h anti h

anti kh neut h anti h k neut k anti k
h neut h anti h

k neut k anti k k neut k anti k k neut k anti k





  
  
  

   
  


 



 

Whereby K  is a NETG, we have 

 

 

( , ( ), ( ))( ', ( '), ( ')) ( '', ( ''), ( ''))

( , ( ), ( )) ( ', ( '), ( '))( '', ( ''), ( '')) .

k neut k anti k k neut k anti k k neut k anti k

k neut k anti k k neut k anti k k neut k anti k
 

Mark that by seeing at the first component 

( , ( ), ( ))( ', ( '), ( '))

( , ( ), ( )) ( ', ( '), ( '))

k neut k anti k k neut k anti k

k neut k anti k k neut k anti k



 
 

utilizing that   is a NETG neutro-homomorphism, therefore 

 

 

( , ( ), ( )) ( ', ( '), ( '))( , ( ), ( ))

( ', ( '), ( ') ( '', ( ''), ( ''))( , ( ), ( ))

h neut h anti h h neut h anti hk neut k anti k

k neut k anti k h neut h anti hk neut k anti k




 

 

 

( , ( ), ( )) ( ', ( '), ( '))( , ( ), ( ))

( ', ( '), ( '))
.( , ( ), ( )) ( , ( ), ( ))

( '', ( ''), ( '')

h neut h anti h h neut h anti hk neut k anti k

k neut k anti k
k neut k anti k k neut k anti k

h neut h anti h




 



 
 
 
 
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Furthermore, ( , ( ), ( ))k neut k anti k is a NETG neutro-homomorphism, yielding 

 

  

( , ( ), ( )) ( ', ( '), ( '))( , ( ), ( ))

( '', ( ''), ( ''))( , ( ), ( )) ( ', ( '), ( '))

h neut h anti h h neut h anti hk neut k anti k

h neut h anti hk neut k anti k k neut k anti k



 
 

 

( ', ( '), ( '))

( , ( ), ( )) ( , ( ), ( )) ( ', ( '), ( '))

( '', ( ''), ( ''))

h neut h anti h

h neut h anti h k neut k anti k k neut k anti k

h neut h anti h

 

 
 
 
 
 
 

 

which concludes the proof. Now let’s define the first NET semi-direct product. 

    In general, the NET direct product is not enough because the operation between elements of the 

two NET subgroups is always commutative. On other hand, if N is a NETG, H is a NTNS-G, K is 

a NET subgroup ( K need not be NT normal like in a NET direct product), ,1K N N   then N

must be a NET semi-direct product. (The operation between elements of H and K need not be 

commutative.) So, we can argue that the NET semi-direct product classifies all NETGs constructed in 

this way. 

4. Semi-Direct Products of NETG  

Definition 4.1 Suppose that H and K are two NETGs, and : ( )K Aut H   is a NETG 

neutro-homomorphism. The set H K endowed in a relation to the binary operation 

  

 

( , ( ), ( )), ( , ( ), ( )) ( ', ( '), ( ')), ( ', ( '), ( '))

( , ( ), ( )) ( ', ( '), ( ')) ,( , ( ), ( ))

( , ( ), ( ))( ', ( '), ( '))

h neut h anti h k neut k anti k h neut h anti h k neut k anti k

h neut h anti h h neut h anti hk neut k anti k

k neut k anti k k neut k anti k

 
  

 
 

 

is a NETG N called a “NET external semi-direct product of NETGs H and K ” b 

, symbolized by .N H Kx 
  

Example 4.2 The NET set ,L H N  where ,H N are NETGs and N AutH is the NETES-DP 

of H and N when equipped with the following operation, defined by the action 

: :N AutH   ( , ( ), ( )),( , ( ), ( ))1 1 1 1 1 1neut anti neut antih h h n n n  

 ( , ( ), ( )) ( , ( ), ( )) ,1 1 1 ( , ( ), ( )) 2 2 21 1 1

( , ( ), ( ))( , ( ), ( ))1 1 1 2 2 2

neut anti neut antih h h h h hneut antin n n

neut anti neut antin n n n n n

 
 
 
 

 

 ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )) ,1 1 1 1 1 1 2 2 2
,

( , ( ), ( ))( , ( ), ( ))1 1 1 2 2 2

neut anti neut anti neut antih h h n n n h h h

neut anti neut antin n n n n n

 
  
 
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for all ( , ( ), ( )),( , ( ), ( ))1 1 1 2 2 2neut anti neut anti Hh h h h h h  and all ( , ( ), ( )),1 1 1neut antin n n

( , ( ), ( )) .2 2 2neut anti Nn n n   

Definition 4.3 Let N be a NETG in a relation to NET subgroups H and .K We say that N is the 

“NETIS-DP of H and K ” if H is a NETNS-G of ,N thus HK N and  .1H K N  It is 

symbolized by N H ⋊ .K  

Example 4.4 Let’s show that the dihedral NETG 2D n  is the NETIS-DP of two of its NET 

subgroups : the NET subgroup of rotations of a regular n  gon, and the NET subgroup generated 

by a single reflection of the same regular n  gon. If 

( , ( ), ( )),( , ( ), ( )) ,2 a neut a anti a x neut x anti xD n   where ( , ( ), ( ))a neut a anti a generates the 

NET subgroup ( , ( ), ( ))a neut a anti a   of rotations and ( , ( ), ( ))x neut x anti x generates the NET 

subgroup ( , ( ), ( )) ,x neut x anti x  then we know that ( , ( ), ( )) 1
na neut a anti a N and 

2( , ( ), ( )) ,1x neut x anti x N  where 1N  is the neutral symmetry. We know that 

  ( , ( ), ( )) ( , ( ), ( )) ;1 a neut a anti a x neut x anti xN     we also know that, if x  is a reflection 

and a  a rotation, then  

1( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )).nx neut x anti x a neut a anti a a neut a anti a x neut x anti x  

  Being 2D n the NETG of all symmetries of a regular n  gon, it contains all and only the rotations 

and reflections of the n  gon itself; this fact, combined with the fact that 

  ( , ( ), ( )) ( , ( ), ( )) ,1 a neut a anti a x neut x anti xN     allows us to deduce 

( , ( ), ( )) ( , ( ), ( )) .2a neut a anti a x neut x anti x D n     

Since ( , ( ), ( )) ( , ( ), ( )) ,2a neut a anti a x neut x anti x D n    it follows 

( , ( ), ( )) ( , ( ), ( )) .2a neut a anti a x neut x anti x D n    Finally, we obtain 

1

1

( , ( ), ( ))( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) ;n

x neut x anti x a neut a anti a x neut x anti x

a neut a anti a a neut a anti a



  
 

thus, ( , ( ), ( ))a neut a anti a   is NT normal. Therefore  

( , ( ), ( )) ( , ( ), ( )) .2 a neut a anti a x neut x anti xD n   ã  
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Lemma 4.5 Assume that N is a NETG with NET subgroups H and .K  Assume that N HK

and  .1H K N  Subsequently all element ( , ( ), ( ))n neut n anti n of N can be inscribed 

particularly in the form ( , ( ), ( ))( , ( ), ( )),h neut h anti h k neut k anti k for ( , ( ), ( ))h neut h anti h H

and ( , ( ), ( )) .k neut k anti k K  

Proof Since ,N HK we know that ( , ( ), ( ))n neut n anti n can be written as 

( , ( ), ( ))( , ( ), ( )).h neut h anti h k neut k anti k  Assume it can also be inscribed 

( ', ( '), ( '))( ', ( '), ( ')).h neut h anti h k neut k anti k  Then 

( , ( ), ( ))( , ( ), ( )) ( ', ( '), ( '))( ', ( '), ( '))h neut h anti h k neut k anti k h neut h anti h k neut k anti k  

so  

 

1 1( ', ( '), ( ')) ( , ( ), ( )) ( ', ( '), ( '))( , ( ), ( ))

.1

h neut h anti h h neut h anti h k neut k anti k k neut k anti k

H K N

 

  
 

In case ( , ( ), ( )) ( ', ( '), ( '))h neut h anti h h neut h anti h and  

( , ( ), ( )) ( ', ( '), ( ')).k neut k anti k k neut k anti k  

  The NETIDPs and NETEDPs were two sides of the similar objects, consequently are the 

NETIS-DPs and NETES-PDs. If N H Kx 
 is the NETES-DP of NETGS H and ,K  subsequently 

 1H H  is a NETNS-G of N and it’s obvious that N is the NETIS-DP of  1H  and 

 1 .K  Because of this we can go from NETES-PDs to NETIS-PDs. The following conclusion goes 

in the another way, from NET internal to external semi-direct products. 

Proposition 4.6 Assume that N is a NETG with NET subgroups H and ,K and N is the 

NETIS-PDs of H and .K  Then N H Kx 
where : ( )K Aut H   is stated by  

 

 
1

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) ,

h neut h anti h k neut k anti k h neut h anti hk neut k anti k

k neut k anti k






 

( , ( ), ( )) , ( , ( ), ( )) .h neut h anti h H k neut k anti k K   

Proof Note that ( , ( ), ( ))k neut k anti k refers to ( )Aut H where H is NET normal. By the lemma 

4.5 all the element ( , ( ), ( ))n neut n anti n of N can be inscribed particularly in terms of  

( , ( ), ( ))( , ( ), ( )),h neut h anti h k neut k anti k  

with ( , ( ), ( ))h neut h anti h H and ( , ( ), ( )) .k neut k anti k K So that, the map : ,H K Nx 
   

 ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))h neut h anti h k neut k anti k h neut h anti h k neut k anti k   

is a bijection. It is just to prove such this bijection is a neutro-homomorphism. Stated 

 ( , ( ), ( )), ( , ( ), ( ))h neut h anti h k neut k anti k  
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and  

 ( ', ( '), ( ')), ( ', ( '), ( '))h neut h anti h k neut k anti k  in .H Kx 
 

We have  

 
( ', ( '), ( ')), ( ', ( '),

( , ( ), ( )), ( , ( ), ( ))
( '))

h neut h anti h k neut k
h neut h anti h k neut k anti k

anti k

  
  

  
 

 ( , ( ), ( )) ( ', ( '), ( ')) ,( , ( ), ( ))

( , ( ), ( ))( ', ( '), ( '))

h neut h anti h h neut h anti hk neut k anti k

k neut k anti k k neut k anti k



  
   
  
  

 

1

( , ( ), ( ))( , ( ), ( ))( ', ( '), ( '))

( , ( ), ( )) , ( , ( ), ( ))( ', ( '), ( '))

h neut h anti h k neut k anti k h neut h anti h

k neut k anti k k neut k anti k k neut k anti k




 
  

 
 

( , ( ), ( ))( , ( ), ( ))( ', ( '), ( '))( ', ( '), ( '))h neut h anti h k neut k anti k h neut h anti h k neut k anti k  

 
( ', ( '), ( ')),

( , ( ), ( )), ( , ( ), ( )) .
( ', ( '), ( '))

h neut h anti h
h neut h anti h k neut k anti k

k neut k anti k
 

 
  

 
 

  Therefore  is a NETG neutro-homomorphism, which ends the proof. Shortly, we obtain such all 

NETIS-DP is neutro-isomorphic to any NETES-DP, when  is conjugation. 

5. Conclusion 

   The most important point of this article is first to define the NETs and subsequently use these 

NETs to describe the NET internal and external direct and semi-direct products of NETG. As in 

classical group theory, in neutrosophic extended triplet group theory building blocks for finite NET 

groups is simple NET groups. One way to make this simple NETG to larger group is NET direct 

product. As an addition, we allow rise to a new field called NT Structures (such as neutrosophic 

extended triplet direct product and semi-direct product. Another researchers can work on the 

application of NETEDP and NETIDP and semi-direct product to NT vector spaces (representation of 

the NETG), module theory, number theory, analysis, geometry, zigzag products of graphs and 

topological spaces.  
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Abstract: In recent years, there has been a growing interest in neutrosophic theory, and there are 

several methods for solving various problems under neutrosophic environment. However, a few 

papers have discussed the Data envelopment analysis (DEA) with neutrosophic sets. So, in this 

paper, we propose an input-oriented DEA model with simplified neutrosophic numbers and 

present a new strategy to solve it. The proposed method is based on the weighted arithmetic 

average operator and has a simple structure. Finally, the new approach is illustrated with the help 

of a numerical example. 

Keywords: Data envelopment analysis; Neutrosophic set; Simplified neutrosophic sets (SNSs); 

Aggregation operator. 

 

 

1. Introduction 

With the advent of technology and the complexity and volume of information, senior 

executives have required themselves to apply scientific methods to determine and increase the 

productivity of the organization under their jurisdiction. Data envelopment analysis (DEA) is a 

mathematical technique to evaluate the relative efficiency of a set of some homogeneous units called 

decision-making units (DMUs) that use multiple inputs to produce multiple outputs. DMUs are 

called homogeneous because they all employ the same inputs to produce the same outputs. DEA by 

constructing an efficiency frontier measures the relative efficiency of decision making units (DMUs). 

Charnes et al. [1] developed a DEA model (CCR) based on the seminal work of Farrell [2] under the 

assumption of constant returns to scale (CRS). Banker et al. [3] extended the pioneering work 

Charnes et al. [1] and proposed a model conventionally called BCC to measure the relative efficiency 

under the assumption of variable returns to scale (VRS). DEA technique has just been effectively 

connected in various cases such as broadcasting companies [4], banking institutions [5-8], R&D 

organizations [9-10], health care services [11-12], manufacturing [13-14], telecommunication [15], 

and supply chain management [16-19]. However, data in the standard models are certain, but there 

are numerous circumstances in real life where we have to face uncertain parameters. Zadeh [20] first 

proposed the theory of fuzzy sets (FSs) against certain logic where the membership degree is a real 

number between zero and one. After this work, many researchers studied on this topic; details of 

some researches can be observed in [21-30]. Several researchers also proposed some models of DEA 

under fuzzy environment [31-42]. However, Zadeh’s fuzzy sets cannot deal with certain cases in 

which it is difficult to define the membership degree using one specific value. To overcome this lack 

of knowledge, Atanassov [43] introduced an extension of the FSs that called the intuitionistic fuzzy 

sets (IFSs). Although the theory of IFSs can handle incomplete information in various real-world 

issues, it cannot address all types of uncertainty such as indeterminate and inconsistent information. 

mailto:saedalatpanah@gmail.com
mailto:smarand@unm.edu
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Therefore, Smarandache [44-45], proposed the neutrosophic set (NS) as a strong general 

framework that generalizes the classical set concept, fuzzy set [20], interval-valued fuzzy set [46], 

intuitionistic fuzzy set [43], and interval-valued intuitionistic fuzzy set [47]. Neutrosophic set (NS) 

can deal with uncertain, indeterminate and incongruous information where the indeterminacy is 

quantified explicitly and truth membership, indeterminacy membership and falsity membership are 

completely independent. It can effectively describe uncertain, incomplete and inconsistent 

information and overcomes some limitations of the existing methods in depicting uncertain decision 

information. Moreover, some extensions of NSs, including interval neutrosophic set [48-51], bipolar 

neutrosophic set [52-54], single-valued neutrosophic set [55-59], simplified neutrosophic sets [60-64], 

multi-valued neutrosophic set [65-67], and neutrosophic linguistic set [68-70] have been presented 

and applied to solve various problems; see [71-80]. 

Although there are several approaches to solving various problems under neutrosophic 

environment, to the best of our knowledge, there are few investigations regarding DEA with 

neutrosophic sets. The first attempt has been proposed by Edalatpanah in [81] and further research 

has been presented in [82]. So, in this paper, we design a model of DEA with simplified neutrosophic 

numbers (SNNs) and establish a new strategy to solve it. The proposed method is based on the 

weighted arithmetic average operator and has a simple structure. 

This paper organized as follows: some basic knowledge, concepts and arithmetic operations on 

SNNs are introduced in Section 2. In Section 3, we review some concepts of DEA and the 

input-oriented BCC model. In Section 4, we introduce the mentioned model of DEA under the 

simplified neutrosophic environment and propose a method to solve it.  In Section 5, an example 

demonstrates the application of the proposed model. Finally, some conclusions and future research 

are offered in Section 6. 

2. Simplified neutrosophic sets  

Smarandache [44-45] has provided a variety of real-life examples for possible applications of his 

neutrosophic sets; however, it is difficult to apply neutrosophic sets to practical problems. Therefore, 

Ye [60] reduced neutrosophic sets of non-standard intervals into a kind of simplified neutrosophic 

sets (SNSs) of standard intervals that will preserve the operations of the neutrosophic sets. In this 

section, we will review the concept of SNSs, which are a subclass of neutrosophic sets briefly. 

Definition 1 [60].  Let X be a space of points (objects), with a generic element in X denoted by x. A 

neutrosophic set A in X is characterized by a truth-membership function TA(x), an indeterminacy 

membership function IA(x) and a falsity-membership function FA(x). If the functions TA(x), IA(x) and 

FA(x) are singleton subintervals/subsets in the real standard [0, 1], that is TA(x): [0,1],X →  IA(x): 

[0,1],X → and FA(x): [0,1].X → Then, a simplification of the neutrosophic set A is denoted by  

{( ( ) ( ) ( )) | },,  ,  , A A AA x T x I x F x x X=  which is called a SNS. Also, SNS satisfies the condition 

.0 ( ) ( ) ( ) 3A A AT x I x F x+  +  

Definition 2 [60].   For SNSs A and B, A ⊆B if and only if ,( ) ( )A BT x T x ( ) ( ),A BI x I x  and 

)  ( ) (A BF x F x for every x in X. 

Definition 3 [63].  Let A, B be two SNSs. Then the arithmetic relations are defined as: 

( ) ( ) ( ) ( ) ( ) ( ), ( ) ( ) ,( ) ,A A A AB B B Bi A B T x T x T x T x I x I x F x F x = + −                                     (1)                                     

( ) ( ) ( ) ( ) ( ). ( ), ( ) ( ) ( ). ( ) ,( ) ,A A AB B B B A BAii A B T x T x I x I x I x I x F x F x F x F x+ − + −=                      (2)                      

.( ( )) ( )) ,( ( ))) 1 ( , 0(1 ,A A Aiii A T x I x F x    = −  −                                                (3) 

.( )) , )1( ) ( ,1 (1 ( )) ,1 0(
A A Aiv A T x I x F x   − − = − −                                             (4) 

Definition 4 [60]. Let Aj (j = 1, 2, ... , n) be a SNS. The simplified neutrosophic weighted arithmetic 

average operator is defined as: 

                 
1

1

( , , )
n

n j j

j

F A A A 
=

=                                                        (5) 
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where 
1 2( , , , )nW   =  is the weight vector of Aj, [0,1]j   and 

1

1.
n

j

j


=

=  

Theorem 1 [63]. For the simplified neutrosophic weighted arithmetic average operator, the 

aggregated result is as follows:   

                   
1

1 1 1

( , , ) 1 (1 ) , ( ) , ( ) .( ) ( ) ( )j j j

j j j

n n n

n A A A

j j j

F A A T x I x F x
  



= = =

= − −                        (6) 

3. The input-oriented BCC model of DEA  

Data envelopment analysis (DEA) is a linear programming method for assessing the efficiency 

and productivity of decision-making units (DMUs). In the traditional DEA literature, various 

well-known DEA approaches can be found such as CCR and BCC models [1, 3]. The efficiency of a 

DMU is established as the ratio of sum weighted output to sum weighted input, subjected to happen 

between one and zero.  Let DMUO is under consideration, then input-oriented BCC model for the 

relative efficiency is as follows [3]: 

       1

1

1

.

, 1,2,...,

, 1,2,...,

1

0 , 1,2,...,

o

n

j ij o i

j

n

j rj ro

j

n
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Min

s t

x x i m

y y r s

j n



 







=

=

=

 =

 =

=

 =







                                           (7) 

       In this model, each DMU (suppose that we have n  DMUs) uses m  inputs ijx  

( 1,2,..., ),i m= to obtains s  outputs rjy ( 1,2,..., ).r s= Here ( 1,2,...., )ru r s=  and ( 1,2,...., ),iv i m=  

are the weights of the i th input and r th output. This model is calculated for every DMU to find 

out its best input and output weights. If * 1o = , we say that the DMUo is efficient otherwise it is 

inefficient. 

4. Simplified Neutrosophic Data Envelopment Analysis 

In this section, we establish DEA under simplified neutrosophic environment. Consider the 

input and output for the j th DMU as ( , , )
ij ij ij ijx x xx T I F = , ( , , )

rj rj rj rjy y yy T I F = which are the 

simplified neutrosophic numbers (SNN). Then the simplified neutrosophic BCC model that called 

SNBCC is defined as follows: 
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                             (8) 

Next, to solve the model (8) we propose the following algorithm: 

Algorithm 1. 

Step 1. Consider the DEA model (8) that the inputs and outputs of each DMU are SNN. 
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Step 2. Using the Definition 3 and Theorem 1, the SNBCC model of Step 1 can be transformed 

into the following model: 

      oMin   

       .s t  

( )

( )

1 1 1

1 1 1

1

1 (1 ) , ( ) , ( ) 1 (1 ) , ( ) , ( )

1 (1 ) , ( ) , ( ) , ,

1,

0, 1,2,..., .

j j j o o o

ij ij ij io io io

j j j

rj rj rj ro ro ro

n n n

x x x x x x

j j j

n n n

y y y y y y

j j j

n

j

j

j

T I F T I F

T I F T I F

j n

     

  





= = =

= = =

=

 
− −  − − 

 

 
− −  

 

=

 =

  

  



                    (9) 

Step 3. Using Definition 2, the SNBCC model of Step 2 can be transformed into the following 

model: 

     
.

oMin

s t


         (10) 

     

1

1

1

1

1

1

(1 ) (1 ) , 1, 2,...,

( ) ( ) , 1, 2,...,

( ) ( ) , 1, 2,...,

(1 ) (1 ), 1, 2,...,

( ) , 1, 2,...,

( ) , 1, 2,...

j o

ij io

j o

ij io

j o

ij io

j

rj ro

j

rj ro

j

rj ro

n

x x

j

n

x x

j

n

x x

j

n

y y

j

n

y y

j

n

y y

j

T T i m

I I i m

F F i m

T T r s

I I r s

F F r

 

 

 







=

=

=

=

=

=

−  − =

 =

 =

−  − =

 =

 =













1

,

1,

0, 1, 2,..., .

n

j

j

j

s

j n





=

=

 =



          

Step 4. Using the natural logarithm, transform the nonlinear model of (10) into the following linear 

model:    

    oMin                                                                      (11) 

     .s t      

     
1

ln(1 ) ln(1 ), 1,2,...,
ij io

n

j x o x

j

T T i m 
=

−  − =                           (12) 

     
1

ln( ) ln( ), 1,2,...,
ij io

n

j x o x

j

I I i m 
=

 =                             (13) 

     
1

ln( ) ln( ), 1,2,...,
ij io

n

j x o x

j

F F i m 
=

 =                             (14) 

     
1

ln(1 ) ln(1 ), 1,2,...,
rj ro

n

j y y

j

T T r s
=

−  − =                              (15) 

    
1

ln( ) ln( ), 1,2,...,
rj ro

n

j y y

j

I I r s
=

 =                             (16) 
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1

ln( ) ln( ), 1,2,...,
rj ro

n

j y y

j

F F r s
=

 =                            (17) 

    
1

1,
n

j

j


=

=                                                                               (18) 

0, 1,2,..., .j j n  =  

Step 5. Run model (11) and obtain the optimal solution. 

 

5. Numerical example 

In this section, an example of DEA problem under simplified neutrosophic environment is used 

to demonstrate the validity and effectiveness of the proposed model. 

Example 5.1. Consider 10 DMUs with three inputs and outputs where all the input and output data 

are designed as SNN (see tables 1 and 2). 

Table 1. DMUs with three SNN inputs 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. DMUs with three SNN outputs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, we use Algorithm.1 to solve the mentioned performance assessment problem. For example, 

The Algorithm.1 for DMU1 can be used as follows: 

Step 1. Obtain the SNBCC model (8): 

DMUS Inputs 1 Inputs 2 Inputs 3 

DMU1 <0.75, 0.1, 0.15> <0.75,0.1, 0.15> <0.8, 0.05, 0.1> 

DMU2 <0.85, 0.2,0.15> <0.6, 0.05,0.05> <0.9, 0.1, 0.2> 

DMU3 <0.9, 0.01, 0.05> <0.95, 0.01, 0.01> <0.98, 0.01, 0.01> 

DMU4 <0.7,0.2, 0.1> <0.65, 0.2, 0.15> <0.8, 0.05, 0.2> 

DMU5 <0.9, 0.05, 0.1> <0.95, 0.05, 0.05> <0.7, 0.2, 0.4> 

DMU6 <0.85, 0.2, 0.1> <0.7, 0.05, 0.1> <0.6, 0.2, 0.3> 

DMU7 <0.8, 0.3, 0.1> <0.9, 0.5, 0.1> <0.8, 0.1, 0.3> 

DMU8 <0.55, 0.3, 0.35> <0.65, 0.2, 0.25> <0.5, 0.35, 0.4> 

DMU9 <0.8, 0.05, 0.1> <0.9, 0.01, 0.05> <0.8, 0.05, 0.1> 

DMU10 <0.6, 0.1, 0.3> <0.8. 0.3. 0.1> <0.65, 0.2, 0.1> 

DMUS Outputs 1 Outputs  2 Outputs  3 

DMU1 <0.7, 0.15, 0.2> <0.7,0.15, 0.2> <0.65, 0.2, 0.25> 

DMU2 <0.15, 0.2,0.25> <0.15, 0.2,0.25> <0.25, 0.15, 0.05> 

DMU3 <0.75, 0.1, 0.15> <0.7, 0.15, 0.2> <0.8, 0.05, 0.1> 

DMU4 <0.5,0.35, 0.4> <0.6, 0.25, 0.3> <0.55, 0.3, 0.35> 

DMU5 <0.6, 0.2, 0.25> <0.6, 0.15, 0.4> <0.3, 0.5, 0.5> 

DMU6 <0.55, 0.3, 0.35> <0.5, 0.5, 0.5> <0.6, 0.25, 0.3> 

DMU7 <0.8, 0.1, 0.2> <0.3, 0.01, 0.05> <0.9, 0.05, 0.05> 

DMU8 <0.8, 0.1, 0.3> <0.8, 0.25, 0.3> <0.85, 0.2, 0.2> 

DMU9 <0.65, 0.2, 0.25> <0.7, 0.15, 0.2> <0.75, 0.1, 0.15> 

DMU10 <0.6, 0.1, 0.5> <0.75. 0.1. 0.3> <0.8, 0.3, 0.5> 
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1

1

1 2 3

4 5 6

7 8 9

10

0.75,0.1,0.15 0.85,0.2,0.15 0.9,0.01,0.05

0.7,0.2,0.1 0.9,0.05,0.1 0.85,0.2,0.1
0.75

0.8,0.3,0.35 0.8,0.05,0.1 0.6,0.1,0.3

0.6,0. ,0 3

.

1 .

Min

s t



  

  


  



        

   

 





  
 
 

    


       

 


( ) ,,0.1,0.15 

1

1 2 3

4 5 6

7 8 9

10

0.7,0.1,0.2 0.6,0.05,0.05 0.95,0.01,0.01

0.65,0.2,0.15 0.95,0.05,0.05 0.7,0.05,0.1
0.7,0.1

0.9,0.5,0.1 0.65,0.2,0.25 0.9,0.01,0.05

0.8,0.3,0.1

  

  


  



        

      



 
 
 





      
















( ),0.2 ,

( )
1

1 2 3

4 5 6

7 8 9

10

0.8,0.05,0.1 0.9,0.1,0.2 0.98,0.01,0.01

0.8,0.05,0.2 0.7,0.2,0.4 0.6,0.2,0.3
0.8,0.05,0.1

0.8,0.1,0.3 0.5,0.35,0.4 0.7,0.0
,

5,0.1

0.65,0.2,0.1

  

  


  



 
 
  




 
  

        

   



   
 

      

 

 

( )

1 2 3

4 5 6

7 8 9

10

0.7,0.15,0.2 0.15,0.2,0.25 0.75,0.1,0.15

0.5,0.35,0.4 0.6,0.2,0.25 0.55,0.3,0.35
0.7,0.15,0.2

0.8,0.1,0.2 0.8,0.1,0.3 0.65,0.2,0.25

0.6,0.1,0.5

  

  

  



 
 
  
 



  


        

        


      

 





,   

( )

1 2 3

4 5 6

7 8 9

10

0.6,0.1,0.3 0.2,0.1,0.3 0.7,0.15,0.2

0.6,0.25,0.3 0.6,0.15,0.4 0.5,0.5,0.5
0.6,0.1,0.3

0.3,0.01,0.05 0.8,0.25,0.3 0.7,0
,

.15,0.2

0.75,0.1,0.3

  

  

  



 


 
  
 
  


        

       
 

       





 

  

1 2 3

4 5 6

7 8 9

10

0.65,0.2,0.25 0.25,0.15,0.05 0.8,0.05,0.1

0.55,0.3,0.35 0.3,0.5,0.5 0.6,0.25,0.3
0.65,0.2,0

0.9,0.05,0.05 0.85,0.2,0.2 0.75,0.1,0.15

0.8,0.3,0.5

  

  

  



        

        


      



 
 
  
 
  



 



( ).25 ,

1 2 3 4 4 6 7 8 9 10 1,

0, 1,2,...,10.j j

         



+ + + + + + + + + =

 =
 

 

Step 2. Using the Step 4 of Algorithm 1, we have: 

   1

.

Min

s t


 

(Using Eq. (12)) 

    
1 2 3 4 5

6 7 8 9 10 1

ln(0.25) ln(0.15) ln(0.1) ln(0.3) ln(0.1)

ln(0.15) ln(0.2) ln(0.2) ln(0.4) ln(0.4) ln(0.25),

    

     

+ + + + +

+ + + + 
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1 2 3 4 5

6 7 8 9 10 1

ln(0.3) ln(0.4) ln(0.05) ln(0.35) ln(0.05)

ln(0.3) ln(0.1) ln(0.35) ln(0.1) ln(0.2) ln(0.3)

    

     

+ + + + +

+ + + + 
 

    
1 2 3 4 5

6 7 8 9 10 1

ln(0.2) ln(0.1) ln(0.02) ln(0.2) ln(0.3)

ln(0.4) ln(0.2) ln(0.5) ln(0.3) ln(0.35) ln(0.2)

    

     

+ + + + +

+ + + + 
 

(Using Eq. (13)) 

   
1 2 3 4 5

6 7 8 9 10 1

ln(0.1) ln(0.2) ln(0.01) ln(0.2) ln(0.05)

ln(0.2) ln(0.3) ln(0.05) ln(0.1) ln(0.1) ln(0.1)

    

     

+ + + + +

+ + + + 
 

   
1 2 3 4 5

6 7 8 9 10 1

ln(0.1) ln(0.05) ln(0.01) ln(0.2) ln(0.05)

ln(0.05) ln(0.5) ln(0.2) ln(0.01) ln(0.3) ln(0.1)

    

     

+ + + + +

+ + + + 
 

  
1 2 3 4 5

6 7 8 9 10 1

ln(0.05) ln(0.05) ln(0.01) ln(0.05) ln(0.2)

ln(0.2) ln(0.1) ln(0.35) ln(0.05) ln(0.2) ln(0.05)

    

     

+ + + + +

+ + + + 
 

(Using Eq. (14)) 

  
1 2 3 4 5

6 7 8 9 10 1

ln(0.15) ln(0.15) ln(0.05) ln(0.1) ln(0.1)

ln(0.1) ln(0.35) ln(0.1) ln(0.3) ln(0.3) ln(0.15)

    

     

+ + + + +

+ + + + 
 

  
1 2 3 4 5

6 7 8 9 10 1

ln(0.2) ln(0.05) ln(0.01) ln(0.15) ln(0.05)

ln(0.1) ln(0.1) ln(0.25) ln(0.05) ln(0.1) ln(0.2)

    

     

+ + + + +

+ + + + 
 

  
1 2 3 4 5

6 7 8 9 10 1

ln(0.1) ln(0.2) ln(0.01) ln(0.2) ln(0.4)

ln(0.3) ln(0.3) ln(0.4) ln(0.1) ln(0.1) ln(0.1)

    

     

+ + + + +

+ + + + 
 

(Using Eq. (15)) 

  
1 2 3 4 5

6 7 8 9 10

ln(0.3) ln(0.85) ln(0.25) ln(0.5) ln(0.4)

ln(0.45) ln(0.2) ln(0.2) ln(0.35) ln(0.4) ln(0.3),

    

    

+ + + + +

+ + + + 
 

  
1 2 3 4 5

6 7 8 9 10

ln(0.4) ln(0.8) ln(0.3) ln(0.4) ln(0.4)

ln(0.5) ln(0.7) ln(0.2) ln(0.3) ln(0.25) ln(0.4),

    

    

+ + + + +

+ + + + 
 

  
1 2 3 4 5

6 7 8 9 10

ln(0.35) ln(0.75) ln(0.2) ln(0.45) ln(0.7)

ln(0.4) ln(0.1) ln(0.15) ln(0.25) ln(0.2) ln(0.35),

    

    

+ + + + +

+ + + + 
 

(Using Eq. (16)) 

  
1 2 3 4 5

6 7 8 9 10

ln(0.15) ln(0.2) ln(0.1) ln(0.35) ln(0.2)

ln(0.3) ln(0.1) ln(0.1) ln(0.2) ln(0.1) ln(0.15),

    

    

+ + + + +

+ + + + 
 

  
1 2 3 4 5

6 7 8 9 10

ln(0.1) ln(0.1) ln(0.15) ln(0.25) ln(0.15)

ln(0.5) ln(0.01) ln(0.25) ln(0.15) ln(0.1) ln(0.1),

    

    

+ + + + +

+ + + + 
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1 2 3 4 5

6 7 8 9 10

ln(0.2) ln(0.15) ln(0.05) ln(0.3) ln(0.5)

ln(0.25) ln(0.05) ln(0.2) ln(0.1) ln(0.3) ln(0.2),

    

    

+ + + + +

+ + + + 
 

(Using Eq. (17)) 

  
1 2 3 4 5

6 7 8 9 10

ln(0.2) ln(0.25) ln(0.15) ln(0.4) ln(0.25)

ln(0.35) ln(0.2) ln(0.3) ln(0.25) ln(0.5) ln(0.2),

    

    

+ + + + +

+ + + + 
 

  
1 2 3 4 5

6 7 8 9 10

ln(0.3) ln(0.3) ln(0.2) ln(0.3) ln(0.4)

ln(0.5) ln(0.05) ln(0.3) ln(0.2) ln(0.3) ln(0.3),

    

    

+ + + + +

+ + + + 
 

  
1 2 3 4 5

6 7 8 9 10

ln(0.25) ln(0.05) ln(0.1) ln(0.35) ln(0.5)

ln(0.3) ln(0.05) ln(0.2) ln(0.15) ln(0.5) ln(0.25),

    

    

+ + + + +

+ + + + 
 

(Using Eq. (18)) 

  
1 2 3 4 4 6 7 8 9 10 1,

0, 1,2,...,10.j j

         



+ + + + + + + + + =

 =
 

Step 3. After computations with Lingo, we obtain 
*

1 0.9068 =  for DMU1. 

Similarly, for the other DMUs, we report the results in Table 3. 

Table 3. The efficiencies of the other DMUs 

DMUs 1 2 3 4 5 6 7 8 9 10 
*  0.9068 0.9993 0.5153 0.9973 0.6382 0.6116 1 1 0.6325 1 

Rank 4 2 8 3 5 7 1 1 6 1 

By these results, we can see that DMUs 7, 8, and 10 are efficient and others are inefficient. 

6. Conclusions and future work 

There are several approaches to solving various problems under neutrosophic environment.  

However, to the best of our knowledge, the Data Envelopment Analysis (DEA) has not been 

discussed with neutrosophic sets until now. This paper, therefore, plans to fill this gap and a new 

method has been designed to solve an input-oriented DEA model with simplified neutrosophic 

numbers. A numerical example has been illustrated to show the efficiency of the proposed method. 

The proposed approach has produced promising results from computing efficiency and 

performance aspects. Moreover, although the model, arithmetic operations and results presented 

here demonstrate the effectiveness of our approach, it could also be considered in other DEA models 

and their applications to banks, police stations, hospitals, tax offices, prisons, schools and 

universities. As future researches, we intend to study these problems.  
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Abstract: Vague sets and neutrosophic sets play an inevitable role in the developing scenario of 

mathematical world. In this modern era of artificial intelligence most of the real life situations are 

found to be immersed with unclear data. Even the newly developed concepts are found to fail with 

such problems. So new sets like Plithogenic and new combinations like neutrosophic vague arose. 

Classical set theory dealt with single universe and can be studied by taking it’s subsets. Situations 

demand two universes instead of a unique one in certain problems. In this paper two universes are 

introduced simultaneously and under consideration in a neutrosophic vague environment. It’s basic 

operations, topology and continuity are also discussed with examples. A real life example is also 

discussed.  

Keywords: binary set, fuzzy binary set, vague binary set, neutrosophic vague binary sets, 

neutrosophic vague binary topology, neutrosophic vague binary continuity 

 

 

1. Introduction 

Functions are tightly packed but relations are not. They are more general than functions. Decimal 

system deals with ten digits while binary with two - only with 0 and 1. For detecting electrical signal’s 

on or off state binary system can be used more effectively. It is the prime reason of selecting binary 

language in computers. Binary operations in algebra will give another idea! After a binary operation, 

‘operands’ produce an element which is also a member of the parent set - means ‘domain and co-

domain’ are in the same set. But binary relations are quite different from the ideas mentioned above. 

They are subsets of the cartesian product of the sets under consideration, taken in a special way. It is 

clear that binary stands for two. In point-set topology information from elements of topology will 

give information about subsets of the universal set under consideration. But real life can’t be confined 

into a single universal set. It may be two or more than two.  Being an extension of classical sets 

[George Cantor, 1874-1897] [27], fuzzy sets (FS’s) [Zadeh, 1965] [29] can deal with partial 

membership. In intuitionistic fuzzy sets (IFS’s) [Attanassov, 1986] [12] two membership grades are 

there - truth and false. As an extension of fuzzy sets Gau and Buehrer [9] introduced vague sets in 

1993. Neutro-sophy means knowledge of neutral thought. It is a new branch of philosophy 

introduced by Florentin Smarandache [6] in 1995 - by giving an additional component - 

indeterminacy. Movement of paradoxism was set up by him in early 1980’s. New concept dealt with 

the principle of using non-artistic elements to set artistic. Within no time so many hybrid structures 

developed by using the merits of the newly developed theory. In 2014, Alblowmi. S. A and Mohmed 

Eisa [1] gave some new concepts of neutrosophic sets. In 1996, Dontchev [5] developed Contra-

continous functions and strongly s-closed spaces. In 2014, Salama A.A, Florentin Smarandache and 

Valeri Kromov [25] developed neutrosophic closed set and neutrosophic continous functions. 

mailto:e-mail@e-mail.com
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Shawkat Alkhazaleh [26] introduced the concept of neutrosophic vague in 2015. To loosen the hard 

structure of classical sets, Molodtsov [15] introduced soft set theory in 1999. In 2017, Gulfam 

Shahzadi, Muhammad Akram and Arsham Borumand Saeid [10] gave an application via 3 different 

methods of single-valued neutrosophic sets in medical field. Mai Mohamed et al., [19] developed a 

critical path problem in network diagrams under uncertain activity time. Later in 2018, Mohamed 

Abdel Basset et al., [23] developed a project selection method using TOPSIS and trapezoidal 

neutrosophic number. Mai Mohamed et al., [21] made a medical application to aid cancer patients 

based on neutrosophic set theory.  As an extenstion to crisp, fuzzy, intuitionistic and neutrosophic 

sets, Florentin Smarandache [7] introduced plithogenic sets in 2018.  In 2018, Mary Margaret A, 

Trinita Pricilla M [14] developed neutrosophic vague generalized Pre-continous and irresolute 

mappings. In 2018, Mohamed Abdel-Basset, Asmaa Atef, Florentin Smarandache [18] introduced a 

hybrid neutrosophic multiple criteria group decision making approach for project selection. In 2018, 

Vildan Cetkin and Halis Ayg𝑢̈n [28] developed an approach to neutrosophic ideals. Later in 2019, 

Mohamed Abdel-Basset et al., [22] applied plithogenic aggregation operators to a decision making 

method for projects viz., ‘supply chain sustainability’.  In 2019, Mohamed Abdel-Basset and Mai-

Mohamed [20] introduced linear fractional programming based on triangular neutrosophic numbers. 

In 2019, Mohamed Abdel- Basset, Gunasekaran Manogaran et al., [17] developed a neutrosophic 

multi criteria decision making method for type 2 diabetic patients. In 2019, Hazwani Hashim, Lazim 

Abdullah and Asharaf Al-Quran [11] developed interval neutrosophic vague sets.  In 2019, 

Mohamed Abdel-Basset, El-hosney, M., Gamal., & Smarandache.F [16] gave a new model for 

evaluation hospital medical care systems based on plithogenic sets. In 2019 Banu Priya et al., [2] 

investigated neutrosophic 𝛼𝑔𝑠  continuity and neutrosophic 𝛼𝑔𝑠  irresolute maps. In 2019, 

Dhavaseelan et al., [3] introduced neutrosophic 𝛼𝑚-closed setsand discussed it’s continuity, strongly 

continuity and irresoluteness. In 2019 Dhavaseelan, Subash Moorthy and S. Jafari [4] introduced 

𝑔𝑁compact open topology and discussed on generalized neutrosophic exponential map. In 2019, 

Muhammad Akram et al., [24] proposed the notion of neutrosophic Soft topological K-Algebras and 

discussed it’s several terms like 𝐶5- connectedness, super connectedness, compactness etc. In 2019, 

Mary Margaret A, Trinita Pricilla M and Shawkat Alkhazaleh [13] developed neutrosophic vague 

topological spaces. Vague binary soft set theory was developed by Dr. Francina Shalini. A [8] and 

Remya.P.B in 2018. In this paper a new concept neutrosophic vague binary set is developed by using 

two universes. It’s topology, continuity and various types of continuities are also under concern. 

2. Preliminaries  

Definition 2.2. [26] (Neutrosophic vague set) 

A neutrosophic vague set 𝐴𝑁𝑉  (𝑁𝑉𝑆  in short) on the universe of discourse X can be written as                         

𝐴𝑁𝑉  = {〈𝑥 ;  𝑇̂𝐴𝑁(𝑋) ;  𝐼𝐴𝑁(𝑋), 𝐹̂𝐴𝑁(𝑋)〉; 𝑥 ∈ 𝑋}  whose truth-membership, indeterminacy-membership 

and falsity-membership functions are defined as  

𝑇̂𝐴𝑁𝑉(𝑥)=[𝑇−, 𝑇+],  𝐼𝐴𝑁𝑉(𝑥)= [𝐼−, 𝐼+] and 𝐹̂𝐴𝑁𝑉(𝑥)= [𝐹−, 𝐹+]  

where (1) 𝑇+= 1− 𝐹−; 𝐹+ = 1− 𝑇− and  

      (2)   − 0 ≤  𝑇− + 𝐼− + 𝐹− ≤ 2+ 
                   − 0 ≤  𝑇+ + 𝐼+ + 𝐹+ ≤ 2+ 

Definition 2.3. [26] (Unit Neutrosophic Vague Set) 

Let Ψ𝑁𝑉 be a neutrosophic vague set (𝑁𝑉𝑆 in short) of the universe 𝑈 where ∀ 𝑢𝑖 ∈ 𝑈, 

𝑇̂Ψ𝑁𝑉
(𝑥) = [1, 1], 𝐼Ψ𝑁𝑉

(𝑥) = [0, 0], 𝐹̂Ψ𝑁𝑉
(𝑥) = [0, 0], then Ψ𝑁𝑉 is called a unit 𝑁𝑉𝑆, where 1 ≤ 𝑖 ≤ 𝑛 

Definition 2.4. [26] (Zero Neutrosophic Vague Set) 

Let Φ𝑁𝑉 be a neutrosophic vague set (𝑁𝑉𝑆 in short) of the universe 𝑈 where ∀ 𝑢𝑖 ∈ 𝑈, 

𝑇̂Φ𝑁𝑉
(𝑥) = [0, 0], 𝐼Φ𝑁𝑉

(𝑥) = [1, 1], 𝐹̂Φ𝑁𝑉
(𝑥) = [1, 1], then Φ𝑁𝑉 is called a zero 𝑁𝑉𝑆, where 1 ≤ 𝑖 ≤ 𝑛 

Definition 2.5. [26] (Neutrosophic vague subset)  

Let 𝐴𝑁𝑉 and 𝐵𝑁𝑉 be two 𝑁𝑉𝑆′𝑠 of the universe 𝑈.  

If ∀ 𝑢𝑖∈  ; [1 ≤ i ≤ n] 

1.  𝑇̂𝐴𝑁𝑉(𝑢𝑖) ≤ 𝑇̂𝐵𝑁𝑉 (𝑢𝑖)   
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2.  𝐼𝐴𝑁𝑉  (𝑢𝑖) ≥ 𝐼𝐵𝑁𝑉  (𝑢𝑖) and  

3. 𝐹̂𝐴𝑁𝑉  (𝑢𝑖)≥ 𝐹̂𝐵𝑁𝑉  (𝑢𝑖)  

then the 𝑁𝑉𝑆 𝐴𝑁𝑉 are included by 𝐵𝑁𝑉 denoted by 𝐴𝑁𝑉 ⊆ 𝐵𝑁𝑉  

Definition 2.6. [26] (Complement of a Neutrosophic vague set)  

The complement of a 𝑁𝑉𝑆 𝐴𝑁𝑉 is denoted by 𝐴𝑐𝑁𝑉 and is defined by 

𝑇̂𝑐𝐴𝑁𝑉(𝑥) = [1−𝑇+, 1−𝑇−], 𝐼𝑐𝐴𝑁𝑉 (𝑥) = [1−𝐼+,  1−𝐼−] and 𝐹̂𝑐𝐴𝑁𝑉 (𝑥) = [1−𝐹+, 1−𝐹−]  

Definition 2.7. [26] (Union of Neutrosophic vague sets)      

Union of two 𝑁𝑉𝑆′𝑠  𝐴𝑁𝑉  and 𝐵𝑁𝑉  is a 𝑁𝑉𝑆  𝐶𝑁𝑉  written as 𝐶𝑁𝑉 = 𝐴𝑁𝑉 ∪ 𝐵𝑁𝑉  whose truth-

membership, indeterminacy-membership and false-membership functions are related to those of 

𝐴𝑁𝑉 and 𝐵𝑁𝑉 given by  

𝑇̂𝐶𝑁𝑉(𝑥) = [max (𝑇− 𝐴𝑁𝑉(𝑥), 𝑇
−𝐵𝑁𝑉(𝑥)),max (𝑇

+𝐴𝑁𝑉(𝑥), 𝑇
+ 𝐵𝑁𝑉  (𝑥))]  

𝐼𝐶𝑁𝑉(𝑥) = [min (𝐼− 𝐴𝑁𝑉(𝑥), 𝐼
−𝐵𝑁𝑉(𝑥)),min (𝐼

+𝐴𝑁𝑉(𝑥),  𝐼
+ 𝐵𝑁𝑉  (𝑥))]  

𝐹̂𝐶𝑁𝑉(𝑥) = [min (𝐹− 𝐴𝑁𝑉(𝑥), 𝐹
−𝐵𝑁𝑉(𝑥)),min (𝐹

+𝐴𝑁𝑉(𝑥), 𝐹
+ 𝐵𝑁𝑉  (𝑥))] 

Definition 2.8. [26] (Intersection of Neutrosophic vague sets)  

Intersection of two 𝑁𝑉𝑆′𝑠 𝐴𝑁𝑉  and 𝐵𝑁𝑉  is a 𝑁𝑉𝑆 𝐶𝑁𝑉  written as 𝐷𝑁𝑉  = 𝐴𝑁𝑉 ∩ 𝐵𝑁𝑉  whose truth-

membership, indeterminacy-membership and false-membership functions are related to those of 

𝐴𝑁𝑉 and 𝐵𝑁𝑉 given by 

𝑇̂𝐷𝑁𝑉 (𝑥) = [min (𝑇− 𝐴𝑁𝑉(𝑥), 𝑇
−𝐵𝑁𝑉(𝑥)),min (𝑇

+𝐴𝑁𝑉(𝑥), 𝑇
+ 𝐵𝑁𝑉  (𝑥))]  

𝐼𝐷𝑁𝑉 (𝑥) = [max (𝐼− 𝐴𝑁𝑉(𝑥), 𝐼
−𝐵𝑁𝑉(𝑥)),max (𝐼

+𝐴𝑁𝑉(𝑥),  𝐼
+ 𝐵𝑁𝑉  (𝑥))]  

𝐹̂𝐷𝑁𝑉(𝑥) = [max (𝐹− 𝐴𝑁𝑉(𝑥), 𝐹
−𝐵𝑁𝑉(𝑥)),max (𝐹

+𝐴𝑁𝑉(𝑥), 𝐹
+ 𝐵𝑁𝑉  (𝑥))] 

Definition 2.9.[14]  

Let (𝑋, 𝜏) be a topological space. A subset 𝐴 of 𝑋 is called: 

(i) Semi-closed set if 𝑖𝑛𝑡(𝑐𝑙(𝐴)) ⊆ 𝐴 

(ii) Pre-closed set if 𝑐𝑙(𝑖𝑛𝑡(𝐴)) ⊆ 𝐴 

(iii) Semi-pre closed set if 𝑖𝑛𝑡(𝑐𝑙(𝑖𝑛𝑡(𝐴))) ⊆ 𝐴 

(iv) Regular-closed set if 𝐴 = 𝑐𝑙(𝑖𝑛𝑡(𝐴)) 

(v) Generalized semi-closed set if 𝑠𝑐𝑙(𝐴) ⊆ 𝑈 whenever 𝐴 ⊆ 𝑈 and 𝑈 is open in 𝑋 

Definition 2.10. [4] (Image and Pre-image of neutrosophic vague sets) 

Let 𝑋𝑁𝑉 and 𝑌𝑁𝑉 be two non-empty neutrosophic vague sets and f : 𝑋𝑁𝑉 ⟶ 𝑌𝑁𝑉 be a function, then 

the following statements hold: 

(1)If 𝐵𝑁𝑉 = {〈𝑥,   𝑇̂𝐵(𝑥); 𝐼𝐵(𝑥); 𝐹̂𝐵(𝑥)〉; 𝑥 ∈ 𝑋𝑁𝑉} is a 𝑁𝑉𝑆 in 𝑌𝑁𝑉, then the preimage of 𝐵𝑁𝑉 under f , 

denoted    

     by 𝑓−1(𝐵𝑁𝑉), is the 𝑁𝑉𝑆 in 𝑋𝑁𝑉 defined by 

               𝑓−1(𝐵𝑁𝑉) = {〈𝑥, 𝑓−1 (𝑇̂𝐵(𝑥)) ;  𝑓
−1 (𝐼𝐵(𝑥)) ; 𝑓

−1 (𝐹̂𝐵(𝑥))〉 ; 𝑥 ∈ 𝑋𝑁𝑉} 

(2)If 𝐴𝑁𝑉  = {〈𝑥,   𝑇̂𝐴(𝑥); 𝐼𝐴(𝑥); 𝐹̂𝐴(𝑥)〉; 𝑥 ∈ 𝑋𝑁𝑉} is a 𝑁𝑉𝑆  in 𝑋𝑁𝑉 , then the image of 𝐴𝑁𝑉  under f , 

denoted    

     by 𝑓(𝐴𝑁𝑉), is the 𝑁𝑉𝑆 in 𝑌𝑁𝑉 defined by 

               𝑓(𝐴𝑁𝑉) = {〈𝑦, 𝑓𝑠𝑢𝑝 (𝑇̂𝐴(𝑦)) ;  𝑓𝑖𝑛𝑓 (𝐼𝐴(𝑦)) ; 𝑓𝑖𝑛𝑓 (𝐹̂𝐴(𝑦))〉 ; 𝑦 ∈ 𝑌𝑁𝑉} 

where 

𝑓𝑠𝑢𝑝 (𝑇̂𝐴(𝑦))= {
𝑠𝑢𝑝𝑥∈𝑓−1(y)𝑇̂𝐴(𝑥),   𝑖𝑓 𝑓

−1(y) ≠ ∅

0,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

 

𝑓𝑖𝑛𝑓 (𝐼𝐴(𝑦))= {
𝑠𝑢𝑝𝑥∈𝑓−1(y)𝐼𝐴(𝑥),   𝑖𝑓 𝑓

−1(y) ≠ ∅

0,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

𝑓𝑖𝑛𝑓 (𝐹̂𝐴(𝑦))= {
𝑠𝑢𝑝𝑥∈𝑓−1(y)𝑇̂𝐴(𝑥),   𝑖𝑓 𝑓

−1(y) ≠ ∅

0,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

for each 𝑦 ∈ 𝑌𝑁𝑉 

Definition 2.11.[5] (Strongly continous functions) 
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A function f : (X, 𝜏 ) → (Y, 𝜎 ) to be strongly continous if 𝑓(𝐴̅) ⊂ 𝑓(𝐴) , ∀  subset 𝐴  of 𝑋  or 

equivalently, if the inverse image of every set in 𝑌 is clopen in 𝑋.  

Definition 2.12. [14] (Neutrosophic Vague Continuous Mapping) 

Let (X, 𝜏) and (Y, 𝜎) be any two neutrosophic vague topological spaces. A map f : (X, 𝜏) →(Y, 𝜎) is 

said to be neutrosophic vague continuous (𝑁𝑉 continuous) if f-1(𝑉) is neutrosophic vague closed set 

in (X, 𝜏) for every neutrosophic vague closed set 𝑉 of (Y, 𝜎) 

Definition 2.13 [14] (Neutrosophic Vague semi-continous mapping) 

Let (X, 𝜏) and (Y, 𝜎) be any two neutrosophic vague topological spaces. A map f : (X, 𝜏) →(Y, 𝜎) is 

said to be neutrosophic vague semi-continous if f-1(𝑉) is neutrosophic vague semi-closed set in (X, 𝜏) 

for every neutrosophic vague closed set V of (Y, 𝜎) 

Definition 2.14 [14] (Neutrosophic Vague pre-continous mapping) 

Let (X, 𝜏) and (Y, 𝜎) be any two neutrosophic vague topological spaces. A map f : (X, 𝜏) →(Y, 𝜎) is 

said to be neutrosophic vague pre-continous if f-1(𝑉) is neutrosophic vague pre-closed set in (X, 𝜏) for 

every neutrosophic vague closed set V of (Y, 𝜎) 

Definition 2.15 [14] (Neutrosophic Vague regular continous mapping) 

Let (X, 𝜏) and (Y, 𝜎) be any two neutrosophic vague topological spaces. A map f : (X, 𝜏) →(Y, 𝜎) is 

said to be neutrosophic vague regular continous if f-1(𝑉) is neutrosophic vague regular-closed set in 

(X, 𝜏) for every neutrosophic vague closed set V of (Y, 𝜎) 

Definition 2.16 [14] (Neutrosophic Vague semi pre-continous mapping) 

Let (X, 𝜏) and (Y, 𝜎) be any two neutrosophic vague topological spaces. A map f : (X, 𝜏) →(Y, 𝜎) is 

said to be neutrosophic vague semi pre-continous if f-1(𝑉) is neutrosophic vague semi pre-closed set 

in (X, 𝜏) for every neutrosophic vague closed set V of (Y, 𝜎) 

 

3. Neutrosophic Vague Binary Sets 

In this section neutrosophic vague binary sets are discussed with examples. For this as a preliminary 

tool fuzzy binary sets and vague binary sets are discussed as a general case by taking all members 

instead of taking a subset of cartesian product in a confined manner. 

Definition 3.1. (Binary Set) 

Binary set 𝐴 over a common universe {𝑈1 = {𝑥𝑗/ 1 ≤ 𝑗 ≤ 𝑛}; 𝑈2 = {𝑦𝑘/1 ≤ 𝑘 ≤ 𝑝}} is an object of the 

form 𝐴̌ = {〈𝑥𝑗〉, 〈𝑦𝑘〉} 

Definition 3.2. (Fuzzy Binary Set) 

Fuzzy binary set 𝐴 over a common universe {𝑈1 = {𝑥𝑗/ 1 ≤ 𝑗 ≤ 𝑛}; 𝑈2 = {𝑦𝑘/1 ≤ 𝑘 ≤ 𝑝}} 

is an object of the form  

𝐴̌𝐹  = {〈
𝜇𝐴(𝑥𝑗)

𝑥𝑗
;  ∀ 𝑥𝑗  ∈  𝑈1〉 , 〈

𝜇𝐴(𝑦𝑘)

𝑦𝑘
;  ∀ 𝑦𝑘 ∈ 𝑈2〉}  where 𝜇𝐴(𝑥𝑗) : 𝑈1⟶ [0, 1] gives the truth membership 

value of the elements 𝑥𝑗  in 𝑈1 ; 𝜇𝐴(𝑦𝑘) : 𝑈2⟶ [0, 1] gives the truth membership values of the 

elements 𝑦𝑘  in 𝑈2  

Example 3.3.  

𝐴̌𝐹 = {〈
0.2

ℎ1
𝑁 ,

0.4

ℎ2
𝑁 ,

0.1

ℎ3
𝑁〉 , 〈

0.6

ℎ1
𝑆 ,

0.3

ℎ2
𝑆 〉} represents the fuzzy binary set  

Definition 3.4. (Vague Binary Set) 

Vague binary set 𝐴  over a common universe {𝑈1 = {𝑥𝑗/ 1 ≤ 𝑗 ≤ 𝑛}; 𝑈2 = {𝑦𝑘/1 ≤ 𝑘 ≤ 𝑝}}  is an 

object of the form  

𝐴̌𝑉 = {〈
𝑉𝐴(𝑥𝑗)

𝑥𝑗
;  ∀ 𝑥𝑗  ∈  𝑈1〉 , 〈

𝑉𝐴(𝑦𝑘)

𝑦𝑘
;  ∀ 𝑦𝑘 ∈ 𝑈2〉} = {〈

[𝑡𝐴(𝑥𝑗),1− 𝑓𝐴(𝑥𝑗)]

𝑥𝑗
;  ∀ 𝑥𝑗  ∈  𝑈1〉 , 〈

[𝑡𝐴(𝑦𝑘),1− 𝑓𝐴(𝑦𝑘)]

𝑦𝑘
;  ∀ 𝑦𝑘 ∈ 𝑈2〉};  

𝑉𝐴(𝑥𝑗) : 𝑈1⟶ [0, 1] ;  𝑉𝐴(𝑦𝑘): 𝑈2⟶ [0, 1]  

 

Example 3.5. 

𝐴̌𝑉 = {〈
[0.2,0.6]

ℎ1
𝑁 ,

[0.4,0.7]

ℎ2
𝑁 ,

[0.1,0.9]

ℎ3
𝑁  〉 , 〈

[0.6,0.9]

ℎ1
𝑆 ,

[0.3,0.4]

ℎ2
𝑆 〉} is a vague binary set where 𝑈1 = {ℎ1

𝑁, ℎ2
𝑁, ℎ3

𝑁
}, 𝑈2 = {ℎ1

𝑆, ℎ2
𝑆
} 

Definition 3.6. (Neutrosophic binary set) 
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Neutrosophic binary set 𝐴̌𝑁 over a common universe {𝑈1 = {𝑥𝑗/ 1 ≤ 𝑗 ≤ 𝑛};𝑈2 = {𝑦𝑘/1 ≤ 𝑘 ≤ 𝑝}} is 

an object of the form  

𝐴̌𝑁 = {〈
(𝑇𝐴(𝑥𝑗),   𝐼𝐴(𝑥𝑗),   𝐹𝐴(𝑥𝑗)) 

𝑥𝑗
∕  ∀ 𝑥𝑗  ∈  𝑈1〉 , 〈

(𝑇𝐴(𝑦𝑘),   𝐼𝐴(𝑦𝑘),   𝐹𝐴(𝑦𝑘))

𝑦𝑘
∕  ∀ 𝑦

𝑘
∈ 𝑈2〉}  

𝑇𝐴(𝑥𝑗),  𝐼𝐴(𝑥𝑗),  𝐹𝐴(𝑥𝑗) : 𝑈1⟶ [0, 1] gives the ‘truth, indeterminacy and false’ membership values of the 

elements 𝑥𝑗 in 𝑈1 and  𝑇𝐴(𝑦𝑘), 𝐼𝐴(𝑦𝑘), 𝐹𝐴(𝑦𝑘):𝑈2⟶ [0, 1] gives the ‘truth, indeterminacy and false’ 

membership values of the elements 𝑦𝑘 in 𝑈2 

Example 3.7. 

𝐴̌𝑁 = {〈
(0.2,   0.3,   0.4 ) 

ℎ1
𝑁 ,

(0.4,   0.1,   0.3 ) 

ℎ2
𝑁  ,

(0.1,   0.3,   0.1 ) 

ℎ3
𝑁 〉 , 〈

(0.6,   0.2,   0.1 ) 

ℎ1
𝑆 ,

(0.3,   0.5,   0.6 ) 

ℎ1
𝑆 〉}  is a neutrosophic binary set 

where 𝑈1 = {ℎ1
𝑁, ℎ2

𝑁, ℎ3
𝑁
}, 𝑈2 = {ℎ1

𝑆, ℎ2
𝑆
}  

Definition 3.8. (Neutrosophic vague binary set) 

A neutrosophic vague binary set 𝑀𝑁𝑉𝐵 (𝑁𝑉𝐵𝑆 in short) over a common universe 

{𝑈1 = {𝑥𝑗/ 1 ≤ 𝑗 ≤ 𝑛}; 𝑈2 = {𝑦𝑘/1 ≤ 𝑘 ≤ 𝑝}} is an object of the form                                                                                                                                                                                         

𝑀𝑁𝑉𝐵 = {〈
𝑇̂𝑀𝑁𝑉𝐵

(𝑥𝑗),   𝐼𝑀𝑁𝑉𝐵
(𝑥𝑗),   𝐹̂𝑀𝑁𝑉𝐵

(𝑥𝑗)

𝑥𝑗
;  ∀ 𝑥𝑗 ∈ 𝑈1〉 〈

𝑇̂𝑀𝑁𝑉𝐵
(𝑦𝑘),   𝐼𝑀𝑁𝑉𝐵

(𝑦𝑘),   𝐹̂𝑀𝑁𝑉𝐵
(𝑦𝑘)

𝑦𝑘
;  ∀ 𝑦𝑘 ∈ 𝑈2〉}                      

is defined as 

𝑇̂𝑀𝑁𝑉𝐵
 (𝑥𝑗) = [𝑇−(𝑥𝑗), 𝑇

+(𝑥𝑗)],  𝐼𝑀𝑁𝑉𝐵
(𝑥𝑗)= [𝐼−(𝑥𝑗), 𝐼

+(𝑥𝑗)] and 𝐹̂𝑀𝑁𝑉𝐵
(𝑥𝑗) = [𝐹−(𝑥𝑗), 𝐹

+(𝑥𝑗)] ; 𝑥𝑗 ∈ 𝑈1 and  

𝑇̂𝑀𝑁𝑉𝐵
 (𝑦𝑘) = [𝑇−(𝑦𝑘), 𝑇

+(𝑦𝑘)],  𝐼𝑀𝑁𝑉𝐵
(𝑦𝑘)= [𝐼−(𝑦𝑘), 𝐼

+(𝑦𝑘)] and 𝐹̂𝑀𝑁𝑉𝐵
(𝑦𝑘) = [𝐹−(𝑦𝑘), 𝐹

+(𝑦𝑘)] ; 𝑦𝑘 ∈ 𝑈2 

 

where (1) 𝑇+(𝑥𝑗)= 1− 𝐹−(𝑥𝑗); 𝐹
+(𝑥𝑗) = 1− 𝑇−(𝑥𝑗) ; ∀ 𝑥𝑗 ∈ 𝑈1 and  

          𝑇+(𝑦𝑘)= 1− 𝐹−(𝑦𝑘); 𝐹
+(𝑦𝑘) = 1− 𝑇−(𝑦𝑘) ; ∀ 𝑦𝑘 ∈ 𝑈2  

                                   

       (2)  − 0 ≤  𝑇−(𝑥𝑗) + 𝐼−(𝑥𝑗) + 𝐹−(𝑥𝑗) ≤ 2+ ;  − 0 ≤  𝑇−(𝑦𝑘) + 𝐼−(𝑦𝑘) + 𝐹−(𝑦𝑘) ≤ 2+ 

                                                 or 

           − 0 ≤  𝑇−(𝑥𝑗) + 𝐼−(𝑥𝑗) + 𝐹−(𝑥𝑗) + 𝑇−(𝑦𝑘) + 𝐼−(𝑦𝑘) + 𝐹−(𝑦𝑘) ≤ 4+ 

                                  and  
                  − 0 ≤  𝑇+(𝑥𝑗) + 𝐼+(𝑥𝑗) + 𝐹+(𝑥𝑗) ≤ 2+ ;    − 0 ≤  𝑇+(𝑦𝑘) + 𝐼+(𝑦𝑘) + 𝐹+(𝑦𝑘) ≤ 2+ 

                                                 or 

           − 0 ≤  𝑇+(𝑥𝑗) + 𝐼+(𝑥𝑗) + 𝐹+(𝑥𝑗) + 𝑇+(𝑦𝑘) + 𝐼+(𝑦𝑘) + 𝐹+(𝑦𝑘) ≤ 4+ 

(3) 𝑇−(𝑥𝑗), 𝐼
−(𝑥𝑗), 𝐹

−(𝑥𝑗) : 𝑉(𝑈1) ⟶ [0, 1] and 𝑇−(𝑦𝑘), 𝐼
−(𝑦𝑘), 𝐹

−(𝑦𝑘) : 𝑉(𝑈2) ⟶ [0, 1] 

   𝑇+(𝑥𝑗), 𝐼
+(𝑥𝑗), 𝐹

+(𝑥𝑗) : 𝑉(𝑈1) ⟶ [0, 1] and 𝑇+(𝑦𝑘), 𝐼
+(𝑦𝑘), 𝐹

+(𝑦𝑘) : 𝑉(𝑈2) ⟶ [0, 1] 

Here 𝑉(𝑈1), 𝑉(𝑈2) denotes power set of vague sets on 𝑈1, 𝑈2 respectively.  

Example 3.9. 

Let  𝑈1 = {𝑥1,   𝑥2,   𝑥3}, 𝑈2 = {𝑦1,   𝑦2} be the common universe under consideration.                                

A 𝑁𝑉𝐵𝑆 is given below: 

𝑀𝑁𝑉𝐵

=

{
 
 

 
 〈
[0.2, 0.3],   [0.6, 0.7],   [0.7, 0.8]

𝑥1
;  
[0.3, 0.7],   [0.5, 0.6],   [0.3, 0.7]

𝑥2
;  
[0.1, 0.9],   [0.4, 0.8],   [0.1, 0.9]

𝑥3
〉

〈
[0.6, 0.8],   [0.5, 0.7],   [0.2, 0.4]

𝑦1
;  
[0.2, 0.7],   [0.6, 0.9],   [0.3, 0.8]

𝑦2
〉

}
 
 

 
 

 

Definition 3.10. (Zero neutrosophic vague binary set and Unit Neutrosophic vague binary set) 

Let {𝑈1 = {𝑥𝑗/ 1 ≤ 𝑗 ≤ 𝑛}; 𝑈2 = {𝑦𝑘/1 ≤ 𝑘 ≤ 𝑝}} be two universes under consideration.  

(i)  A zero 𝑁𝑉𝐵𝑆 denoted as Φ𝑁𝑉𝐵 over this common universe is given by,                                                                                                   

Φ𝑁𝑉𝐵 = {〈
[0, 0],   [1, 1],   [1, 1]

𝑥𝑗
;  ∀ 𝑥𝑗 ∈ 𝑈1〉 , 〈

[0, 0],   [1, 1],   [1, 1]

𝑦𝑘
;  ∀ 𝑦𝑘 ∈ 𝑈2〉} 

(ii)  A unit 𝑁𝑉𝐵𝑆 denoted as Ψ𝑁𝑉𝐵 over this common universe is given by,  

          Ψ𝑁𝑉𝐵 = {〈
[1,1],   [0,0],   [0,0]

𝑥𝑗
;  ∀ 𝑥𝑗 ∈ 𝑈1〉 , 〈

[1,1],   [0,0],   [0,0]

𝑦𝑘
;  ∀ 𝑦𝑘 ∈ 𝑈2〉}   

4. Operations on Neutrosophic Vague Binary sets                                                                                           

In this section some usual set theoretical operations are developed for 𝑵𝑽𝑩𝑺′𝒔                   
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Definition 4.1. (Subset of Neutrosophic vague binary sets)                                              

Let 𝑴𝑵𝑽𝑩 and 𝑷𝑵𝑽𝑩 be two 𝑵𝑽𝑩𝑺′𝒔 on a common universe 𝑼𝟏, 𝑼𝟐. Then 𝑴𝑵𝑽𝑩 is included by 

𝑷𝑵𝑽𝑩 denoted by 𝑴𝑵𝑽𝑩 ⊆ 𝑷𝑵𝑽𝑩 if the following conditions found true :                                            

If ∀ 𝒙𝒋 ∈ 𝑼𝟏 and 1 ≤ j ≤ n                                                                                                                                               

(1) 𝑻̂𝑴𝑵𝑽𝑩
 (𝒙𝒋) ≤ 𝑻̂𝑷𝑵𝑽𝑩  (𝒙𝒋) (2) 𝑰̂𝑴𝑵𝑽𝑩

 (𝒙𝒋) ≥ 𝑰̂𝑷𝑵𝑽𝑩 (𝒙𝒋) and (3) 𝑭̂𝑴𝑵𝑽𝑩
 (𝒙𝒋) ≥ 𝑭̂𝑷𝑵𝑽𝑩 (𝒙𝒋)                                                    

and ∀ 𝒚𝒌 ∈ 𝑼𝟐 and 1 ≤ k ≤ p                                                                                                                                            

(1) 𝑻̂𝑴𝑵𝑽𝑩
 (𝒚𝒌) ≤ 𝑻̂𝑷𝑵𝑽𝑩  (𝒚𝒌) (2) 𝑰̂𝑴𝑵𝑽𝑩

 (𝒚𝒌) ≥ 𝑰̂𝑷𝑵𝑽𝑩  (𝒚𝒌) and (3) 𝑭̂𝑴𝑵𝑽𝑩
 (𝒚𝒌) ≥ 𝑭̂𝑷𝑵𝑽𝑩  (𝒚𝒌)                                      

Example 4. 2.                                                                                                                                                                                  

Let 𝑼𝟏 = {𝒙𝟏,   𝒙𝟐}, 𝑼𝟐 = {𝒚𝟏} be a common universe. Let   

𝑀𝑁𝑉𝐵

= {〈
[0.1, 0.2],   [0.6, 0.7],   [0.8, 0.9]

𝑥1
;  
[0.2, 0.6],   [0.5, 0.6],   [0.4, 0.8]

𝑥2
 〉 〈
[0.1, 0.3],   [0.6, 0.7],   [0.7, 0.9]

𝑦1
 〉} 

𝑃𝑁𝑉𝐵 =

{〈
[0.2,0.3],   [0.5,0.6],   [0.7,0.8]

𝑥1
;  
[0.3,0.7],   [0.4,0.5],   [0.3,0.7]

𝑥2
 〉 〈

[0.2,0.4],   [0.5,0.6],   [0.6,0.8]

𝑦1
 〉}.  

Clearly, 𝑀𝑁𝑉𝐵⊆𝑃𝑁𝑉𝐵                                                                                         

 

Definition 4.3. (Union of two neutrosophic vague binary sets)                                                     

Let 𝑀𝑁𝑉𝐵 and 𝑃𝑁𝑉𝐵 are two 𝑁𝑉𝐵𝑆′𝑠                                                                                                                                

(i) Union of two 𝑁𝑉𝐵𝑆′𝑠, 𝑀𝑁𝑉𝐵 and 𝑃𝑁𝑉𝐵 is a 𝑁𝑉𝐵𝑆, given as                                              

𝑀𝑁𝑉𝐵 ∪ 𝑃𝑁𝑉𝐵= 𝑆𝑁𝑉𝐵= {〈
𝑇̂𝑆𝑁𝑉𝐵(𝑥𝑗),   𝐼𝑆𝑁𝑉𝐵(𝑥𝑗),   𝐹̂𝑆𝑁𝑉𝐵(𝑥𝑗)

𝑥𝑗
;  ∀ 𝑥𝑗 ∈ 𝑈1〉 〈

𝑇̂𝑆𝑁𝑉𝐵(𝑦𝑘),   𝐼𝑆𝑁𝑉𝐵(𝑦𝑘),   𝐹̂𝑆𝑁𝑉𝐵(𝑦𝑘)

𝑦𝑘
;  ∀ 𝑦𝑘 ∈ 𝑈2〉}        

whose truth-membership, indeterminacy-membership and false-membership functions are related 

to those of 𝑀𝑁𝑉𝐵 and 𝑃𝑁𝑉𝐵 is given by  

𝑇̂𝑆𝑁𝑉𝐵(𝑥𝑗) = [max (𝑇− 𝑀𝑁𝑉𝐵(𝑥𝑗), 𝑇
−𝑃𝑁𝑉𝐵(𝑥𝑗)),max (𝑇

+𝑀𝑁𝑉𝐵(𝑥𝑗), 𝑇
+ 𝑃𝑁𝑉𝐵  (𝑥𝑗))]  

𝐼𝑆𝑁𝑉𝐵(𝑥𝑗) = [min (𝐼− 𝑀𝑁𝑉𝐵(𝑥𝑗), 𝐼
−𝑃𝑁𝑉𝐵(𝑥𝑗)),min (𝐼

+𝑀𝑁𝑉𝐵(𝑥𝑗),  𝐼
+ 𝑃𝑁𝑉𝐵  (𝑥𝑗))]  

𝐹̂𝑆𝑁𝑉𝐵(𝑥𝑗) = [min (𝐹− 𝑀𝑁𝑉𝐵(𝑥𝑗), 𝐹
−𝑃𝑁𝑉𝐵(𝑥𝑗)),min (𝐹

+𝑀𝑁𝑉𝐵(𝑥𝑗), 𝐹
+ 𝑃𝑁𝑉𝐵  (𝑥𝑗)]  

                                  and 

𝑇̂𝑆𝑁𝑉𝐵(𝑦𝑘) = [max (𝑇− 𝑀𝑁𝑉𝐵(𝑦𝑘), 𝑇
−𝑃𝑁𝑉𝐵(𝑦𝑘)),max (𝑇

+𝑀𝑁𝑉𝐵(𝑦𝑘), 𝑇
+ 𝑃𝑁𝑉𝐵  (𝑦𝑘))]  

𝐼𝑆𝑁𝑉𝐵(𝑦𝑘) = [min (𝐼− 𝑀𝑁𝑉𝐵(𝑦𝑘), 𝐼
−𝑃𝑁𝑉𝐵(𝑦𝑘)),min (𝐼

+𝑀𝑁𝑉𝐵(𝑦𝑘),  𝐼
+ 𝑃𝑁𝑉𝐵  (𝑦𝑘))]  

𝐹̂𝑆𝑁𝑉𝐵(𝑦𝑘) = [min (𝐹− 𝑀𝑁𝑉𝐵(𝑦𝑘), 𝐹
−𝑃𝑁𝑉𝐵(𝑦𝑘)),min (𝐹

+𝑀𝑁𝑉𝐵(𝑦𝑘), 𝐹
+ 𝑃𝑁𝑉𝐵  (𝑦𝑘)] 

Example 4. 4. 

In example 4. 2.  

𝑆𝑁𝑉𝐵

= {〈
[0.2, 0.3],   [0.5, 0.6],   [0.7, 0.8]

𝑥1
;  
[0.3, 0.7],   [0.4, 0.5],   [0.3, 0.7]

𝑥2
 〉 〈
[0.2, 0.4],   [0.5, 0.6],   [0.6, 0.8]

𝑦1
 〉} 

Definition 4. 5. (Intersection of two neutrosophic vague binary sets)                                               

Let 𝑀𝑁𝑉𝐵 and 𝑃𝑁𝑉𝐵 are two 𝑁𝑉𝐵𝑆′𝑠                                                                                                                                

(i) Intersection of two 𝑁𝑉𝐵𝑆′𝑠, 𝑀𝑁𝑉𝐵 and 𝑃𝑁𝑉𝐵 is a 𝑁𝑉𝐵𝑆, given as                                             

𝑀𝑁𝑉𝐵 ∩ 𝑃𝑁𝑉𝐵 = 𝑅𝑁𝑉𝐵 = {〈
𝑇̂𝑅𝑁𝑉𝐵(𝑥𝑗),   𝐼𝑅𝑁𝑉𝐵(𝑥𝑗),   𝐹̂𝑅𝑁𝑉𝐵(𝑥𝑗)

𝑥𝑗
;  ∀ 𝑥𝑗 ∈ 𝑈1〉 〈

𝑇̂𝑅𝑁𝑉𝐵(𝑦𝑘),   𝐼𝑅𝑁𝑉𝐵(𝑦𝑘),   𝐹̂𝑅𝑁𝑉𝐵(𝑦𝑘)

𝑦𝑘
;  ∀ 𝑦𝑘 ∈ 𝑈2〉}                                       

whose truth-membership, indeterminacy-membership and false-membership functions are related 

to those of 𝑀𝑁𝑉𝐵 and 𝑃𝑁𝑉𝐵 is given by  

𝑇̂𝑅𝑁𝑉𝐵(𝑥𝑗) = [min (𝑇− 𝑀𝑁𝑉𝐵(𝑥𝑗), 𝑇
−𝑃𝑁𝑉𝐵(𝑥𝑗)),min (𝑇

+𝑀𝑁𝑉𝐵(𝑥𝑗), 𝑇
+ 𝑃𝑁𝑉𝐵  (𝑥𝑗))]  

𝐼𝑅𝑁𝑉𝐵(𝑥𝑗) = [max (𝐼− 𝑀𝑁𝑉𝐵(𝑥𝑗), 𝐼
−𝑃𝑁𝑉𝐵(𝑥𝑗)),max (𝐼

+𝑀𝑁𝑉𝐵(𝑥𝑗),  𝐼
+ 𝑃𝑁𝑉𝐵  (𝑥𝑗))]  

𝐹̂𝑅𝑁𝑉𝐵(𝑥𝑗) = [max (𝐹− 𝑀𝑁𝑉𝐵(𝑥𝑗), 𝐹
−𝑃𝑁𝑉𝐵(𝑥𝑗)),max (𝐹

+𝑀𝑁𝑉𝐵(𝑥𝑗), 𝐹
+ 𝑃𝑁𝑉𝐵  (𝑥𝑗)] 

                                  and 

𝑇̂𝑅𝑁𝑉𝐵(𝑦𝑘) = [min (𝑇− 𝑀𝑁𝑉𝐵(𝑦𝑘), 𝑇
−𝑃𝑁𝑉𝐵(𝑦𝑘)),min (𝑇

+𝑀𝑁𝑉𝐵(𝑦𝑘), 𝑇
+ 𝑃𝑁𝑉𝐵  (𝑦𝑘))]  

𝐼𝑅𝑁𝑉𝐵(𝑦𝑘) = [max (𝐼− 𝑀𝑁𝑉𝐵(𝑦𝑘), 𝐼
−𝑃𝑁𝑉𝐵(𝑦𝑘)),max (𝐼

+𝑀𝑁𝑉𝐵(𝑦𝑘),  𝐼
+ 𝑃𝑁𝑉𝐵  (𝑦𝑘))]  

𝐹̂𝑅𝑁𝑉𝐵(𝑦𝑘) = [max (𝐹− 𝑀𝑁𝑉𝐵(𝑦𝑘), 𝐹
−𝑃𝑁𝑉𝐵(𝑦𝑘)),max (𝐹

+𝑀𝑁𝑉𝐵(𝑦𝑘), 𝐹
+ 𝑃𝑁𝑉𝐵  (𝑦𝑘)] 
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Example 4. 6.                                                                                                                                                                                                                                                    

In example 4. 2. 𝑅𝑁𝑉𝐵 = {〈
[0.1,0.2],   [0.6,0.7],   [0.7,0.8]

𝑥1
;  
[0.2,0.6],   [0.5,0.6],   [0.4,0.8]

𝑥2
 〉 〈

[0.1,0.3],   [0.6,0.7],   [0.7,0.9]

𝑦1
 〉} 

Definition 4. 7. (Complement of a NVBS)                                                     

Let 𝑀𝑁𝑉𝐵 is defined as in definition 3.1. It’s complement is denoted by 𝑀𝑁𝑉𝐵
𝐶  and is given by 

𝑀𝑐
𝑁𝑉𝐵 = {〈

𝑇̂𝑐𝑀𝑁𝑉𝐵
(𝑥𝑗),   𝐼

𝑐
𝑀𝑁𝑉𝐵

(𝑥𝑗),   𝐹̂
𝑐
𝑀𝑁𝑉𝐵

(𝑥𝑗)

𝑥𝑗
;  ∀ 𝑥𝑗 ∈ 𝑈1〉 〈

𝑇̂𝑐𝑀𝑁𝑉𝐵
(𝑦𝑘),   𝐼

𝑐
𝑀𝑁𝑉𝐵

(𝑦𝑘),   𝐹̂
𝑐
𝑀𝑁𝑉𝐵

(𝑦𝑘)

𝑦𝑘
;  ∀ 𝑦𝑘 ∈ 𝑈2〉}  

is defined as 

𝑇̂𝑐𝑀𝑁𝑉𝐵
 (𝑥𝑗) = [ 1 − 𝑇+(𝑥𝑗), 1 − 𝑇

−(𝑥𝑗)],   

𝐼𝑐𝑀𝑁𝑉𝐵
(𝑥𝑗)= [1− 𝐼+(𝑥𝑗), 1−𝐼

−(𝑥𝑗)] and  

𝐹̂𝑐𝑀𝑁𝑉𝐵
(𝑥𝑗) = [1 − 𝐹+(𝑥𝑗), 1 − 𝐹−(𝑥𝑗)] ;  ∀ 𝑥𝑗 ∈ 𝑈1  

                     and  

𝑇̂𝑐𝑀𝑁𝑉𝐵
 (𝑦𝑘) = [ 1 − 𝑇+(𝑦𝑘), 1 − 𝑇−(𝑦𝑘)],   

𝐼𝑐𝑀𝑁𝑉𝐵
(𝑦𝑘)= [1− 𝐼+(𝑦𝑘), 1−𝐼−(𝑦𝑘)] and  

𝐹̂𝑐𝑀𝑁𝑉𝐵
(𝑦𝑘) = [1 − 𝐹+(𝑦𝑘), 1 − 𝐹−(𝑦𝑘)] ; ∀ 𝑦𝑘 ∈ 𝑈2                                                                                                      

Example 4. 8.                                                                                       

Let  𝑀𝑁𝑉𝐵 is defined as in example 3.2. It’s complement is given by,  

𝑀𝑁𝑉𝐵
𝑐

=

{
 
 

 
 〈
[0.7, 0.8],   [0.3, 0.4],   [0.2, 0.3]

𝑥1
;  
[0.3, 0.7],   [0.4, 0.5],   [0.3, 0.7]

𝑥2
;  
[0.1, 0.9],   [0.2, 0.6],   [0.1, 0.9]

𝑥3
〉

〈
[0.2, 0.4],   [0.3, 0.5],   [0.6, 0.8]

𝑦1
;  
[0.3, 0.8],   [0.1, 0.4],   [0.2, 0.7]

𝑦2
〉

}
 
 

 
 

 

 

5. Neutrosophic vague binary topology 

In this section neutrosophic vague binary topology (𝑁𝑉𝐵𝑇  in short) is developed for 𝑁𝑉𝐵𝑆′𝑠 .                     

It’s various concepts are also discussed. 

 

Definition 5.1. (Neutrosophic vague binary topology) 

A neutrosophic vague binary topology on a common universe 𝑈1 , 𝑈2  is a family 𝜏∆
𝑁𝑉𝐵  of 

neutrosophic vague binary sets in 𝑈1, 𝑈2 satisfying the following axioms: 

(1) Φ𝑁𝑉𝐵, Ψ𝑁𝑉𝐵 ∈ 𝜏∆
𝑁𝑉𝐵 

(2) For any 𝑀𝑁𝑉𝐵, 𝑃𝑁𝑉𝐵 ∈ 𝜏∆
𝑁𝑉𝐵, 𝑀𝑁𝑉𝐵 ∩ 𝑃𝑁𝑉𝐵 ∈ 𝜏∆

𝑁𝑉𝐵 

i.e., finite intersection of 𝑁𝑉𝐵𝑆′𝑠 of 𝜏∆
𝑁𝑉𝐵 is again a member of 𝜏∆

𝑁𝑉𝐵 

    (3) Let {𝑀𝑁𝑉𝐵
𝑖 ; 𝑖 ∈ 𝐼} ⊆ 𝜏∆

𝑁𝑉𝐵 then ⋃ 𝜏∆
𝑁𝑉𝐵

𝑖∈𝐼  ⊆ 𝜏∆
𝑁𝑉𝐵 

        i.e., arbitrary union of neutrosophic vague binary sets in 𝜏∆
𝑁𝑉𝐵 is again a member of 𝜏∆

𝑁𝑉𝐵 

Example 5.2. 

Let 𝑈1 = {𝑥1,   𝑥2} ; 𝑈2 = {𝑦1}. Following is a neutrosophic vague binary topology ;  

 

𝜏∆
𝑁𝑉𝐵 =  

{
 
 
 
 
 

 
 
 
 
 Φ𝑁𝑉𝐵 = ({〈

[0,0],[1,1],[1,1]]

𝑥1
〉,   〈

[0,0],[1,1],[1,1]

𝑥2
〉} , {〈

[0,0],[1,1],[1,1]

𝑦1
〉}),   

𝑀𝑁𝑉𝐵 = ({〈
[0.2,0.4],[0.6,0.8],[0.6 0.8]]

𝑥1
〉,   〈

[0.3,0.6],[0.7,0.8],[0.4,0.7]

𝑥2
〉} , {〈

[0.6,0.8],[0.7.9],[0.2,0.4]

𝑦1
〉}) ,

𝑃𝑁𝑉𝐵 = ({〈
[0.6,0.7],[0.1,0.9],[0.3,0.4]]

𝑥1
〉,   〈

[0.7,0.8],[0.3,0.7],[0.2,0.3]

𝑥2
〉} , {〈

[0.6,0.7],[0.2,0.5],[0.3,0.4]

𝑦1
〉}) ,

𝐾𝑁𝑉𝐵 = 𝑀𝑁𝑉𝐵 ∩ 𝑃𝑁𝑉𝐵 = ({〈
[0.2,0.4],[0.6,0.9],[0.6,0.8]]

𝑥1
〉,   〈

[0.3,0.6],[0.7,0.8],[0.4,0.7]

𝑥2
〉} , {〈

[0.6,0.7],[0.7,0.9],[0.3,0.4]

𝑦1
〉}) ,

𝐻𝑁𝑉𝐵 = 𝑀𝑁𝑉𝐵 ∪ 𝑃𝑁𝑉𝐵 = ({〈
[0.6,0.7],[0.1,0.8],[0.3,0.4]]

𝑥1
〉,   〈

[0.7,0.8],[0.7,0.8],[0.2,0.3]

𝑥2
〉} , {〈

[0.6,0.8],[0.2,0.5],[0.2,0.4]

𝑦1
〉}) ,

Ψ𝑁𝑉𝐵 = ({〈
[1,1],[0,0],[0,0]]

𝑥1
〉,   〈

[1,1],[0,0],[0,0]

𝑥2
〉} , {〈

[1,1],[0,0],[0,0]

𝑦1
〉}) }

 
 
 
 
 

 
 
 
 
 

 

Definition 5.3. (Neutrosophic vague binary open set) 

Every elements of a 𝑁𝑉𝐵𝑇 is known as a neutrosophic vague binary open set (𝑁𝑉𝐵𝑂𝑆 in short) 

Example 5.4. 

In example 5.2. Φ𝑁𝑉𝐵, 𝑀𝑁𝑉𝐵, 𝑃𝑁𝑉𝐵, 𝐾𝑁𝑉𝐵, 𝐻𝑁𝑉𝐵, Ψ𝑁𝑉𝐵 are all 𝑁𝑉𝐵𝑂𝑆’s 

Definition 5.5. (Neutrosophic vague binary closed set) 

Complement of a 𝑁𝑉𝐵𝑂𝑆 is known as a neutrosophic vague binary closed set (𝑁𝑉𝐵𝐶𝑆 in short) 

Example 5.6. 
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In example 5.2. Φ𝑁𝑉𝐵
𝑐 , 𝑀𝑁𝑉𝐵

𝐶 , 𝑃𝑁𝑉𝐵
𝐶 , 𝐾𝑁𝑉𝐵

𝐶 , 𝐻𝑁𝑉𝐵
𝐶 , Ψ𝑁𝑉𝐵

𝑐  are all 𝑁𝑉𝐵𝐶𝑆’s, where 

Φ𝑁𝑉𝐵
𝑐 = ({〈

[1,1],[0,0],[0,0]]

𝑥1
〉 ,   〈

[1,1],[0,0],[0,0]

𝑥2
〉} , {〈

[1,1],[0,0],[0,0]

𝑦1
〉}) = Ψ𝑁𝑉𝐵 

𝑀𝑁𝑉𝐵
𝐶 = ({〈

[0.6,0.8],[0.2,0.4],[0.2 0.4]]

𝑥1
〉 ,   〈

[0.4,0.7],[0.2,0.3],[0.3,0.6]

𝑥2
〉} , {〈

[0.2,0.4],[0.1.3],[0.6,0.8]

𝑦1
〉}) 

𝑃𝑁𝑉𝐵
𝐶 = ({〈

[0.3,0.4],[0.1,0.9],[0.6,0.7]]

𝑥1
〉 ,   〈

[0.2,0.3],[0.3,0.7],[0.7,0.8]

𝑥2
〉} , {〈

[0.3,0.4],[0.5,0.8],[0.6,0.7]

𝑦1
〉}) 

𝐾𝑁𝑉𝐵
𝐶 =({〈

[0.6,0.8],[0.1,0.4],[0.2,0.4]]

𝑥1
〉,   〈

[0.4,0.7],[0.2,0.3],[0.3,0.6]

𝑥2
〉} , {〈

[0.3,0.4],[0.1,0.3],[0.6,0.7]

𝑦1
〉}) 

𝐻𝑁𝑉𝐵
𝐶 =({〈

[0.3,0.4],[0.2,0.9],[0.6,0.7]]

𝑥1
〉 ,   〈

[0.2,0.3],[0.2,0.3],[0.7,0.8]

𝑥2
〉} , {〈

[0.2,0.4],[0.5,0.8],[0.6,0.8]

𝑦1
〉}) 

Ψ𝑁𝑉𝐵
𝑐 =({〈

[0,0],[1,1],[1,1]]

𝑥1
〉 ,   〈

[0,0],[1,1],[1,1]

𝑥2
〉} , {〈

[0,0],[1,1],[1,1]

𝑦1
〉}) = Φ𝑁𝑉𝐵 

Remark 5.7. 

Φ𝑁𝑉𝐵 and Ψ𝑁𝑉𝐵 will both acts as 𝑁𝑉𝐵𝑂𝑆 and 𝑁𝑉𝐵𝐶𝑆 

Definition 5.8. (Neutrosophic vague binary topological space) 

The triplet (𝑈1, 𝑈2, 𝜏∆
𝑁𝑉𝐵) is known as a neutrosophic vague binary topological space (𝑁𝑉𝐵𝑇𝑆 in short), 

where 𝜏∆
𝑁𝑉𝐵 is a neutrosophic vague binary topology defined as in definition 5.1. 

Example 5.9. 

If 𝑈1 = {𝑥1,   𝑥2} ; 𝑈2 = {𝑦1};  𝜏∆
𝑁𝑉𝐵= {Φ𝑁𝑉𝐵 , 𝑀𝑁𝑉𝐵 , 𝑃𝑁𝑉𝐵 , 𝐾𝑁𝑉𝐵 , 𝐻𝑁𝑉𝐵 , Ψ𝑁𝑉𝐵} defined as in example 5.2. 

then the triplet (𝑈1, 𝑈2, 𝜏∆
𝑁𝑉𝐵) is clearly a 𝑁𝑉𝐵𝑇𝑆. 

Definition 5.10. (Neutrosophic vague binary discrete topology and  

               Neutrosophic vague binary discrete topological Space) 

A topology consisting of only empty and unit 𝑁𝑉𝐵𝑆’s is known as a neutrosophic vague binary 

discrete topology ( 𝑁𝑉𝐵𝐷𝑇 in short) and the corresponding neutrosophic vague binary topological 

space is known as a neutrosophic vague binary discrete topological space (𝑁𝑉𝐵𝐷𝑇𝑆 in short).  

i.e.,  𝜏∆
𝑁𝑉𝐵= {Φ𝑁𝑉𝐵, Ψ𝑁𝑉𝐵} 

Example 5.11. 

In example 5.2.  
𝜏∆
𝑁𝑉𝐵= 

 {
Φ𝑁𝑉𝐵 = ({〈

[0,0],[1,1],[1,1]]

𝑥1
〉 ,   〈

[0,0],[1,1],[1,1]

𝑥2
〉} , {〈

[0,0],[1,1],[1,1]

𝑦1
〉}) ,

Ψ𝑁𝑉𝐵 = ({〈
[1,1],[0,0],[0,0]]

𝑥1
〉 ,   〈

[1,1],[0,0],[0,0]

𝑥2
〉} , {〈

[1,1],[0,0],[0,0]

𝑦1
〉})

} 

 is clearly a 𝑁𝑉𝐵𝐷𝑇 and the corresponding neutrosophic vague topological space is the 𝑁𝑉𝐵𝐷𝑇𝑆. 

Definition 5.12. (Neutrosophic vague binary indiscrete topology and 

                Neutrosophic vague binary discrete topological Space) 

A 𝑁𝑉𝐵𝑇  defined by it’s power set is known as  neutrosophic vague binary indiscrete topology 

(𝑁𝑉𝐵𝐼𝐷𝑇 in short) and the corresponding neutrosophic vague binary topological space is known as 

a neutrosophic vague binary indiscrete topological space (𝑁𝑉𝐵𝐼𝐷𝑇𝑆 in short).  

Definition 5.13. (Neutrosophic vague binary interior and Neutrosophic vague binary closure) 

Let (𝑈1, 𝑈2, 𝜏∆
𝑁𝑉𝐵) be a 𝑁𝑉𝐵𝑇𝑆 and also  

let 𝑀𝑁𝑉𝐵 = {〈
𝑇̂𝑀𝑁𝑉𝐵

(𝑥𝑗),   𝐼𝑀𝑁𝑉𝐵
(𝑥𝑗),   𝐹̂𝑀𝑁𝑉𝐵

(𝑥𝑗)

𝑥𝑗
;  ∀ 𝑥𝑗 ∈ 𝑈1〉 〈

𝑇̂𝑀𝑁𝑉𝐵
(𝑦𝑘),   𝐼𝑀𝑁𝑉𝐵

(𝑦𝑘),   𝐹̂𝑀𝑁𝑉𝐵
(𝑦𝑘)

𝑦𝑘
;  ∀ 𝑦𝑘 ∈ 𝑈2〉}  

is a 𝑁𝑉𝐵𝑆 over a common universe 𝑈1, 𝑈2 defined as in definition 3.1. Then it’s neutrosophic vague 

binary interior (denoted as 𝑀𝑁𝑉𝐵
0 ) and neutrosophic vague binary closure (denoted as 𝑀̅𝑁𝑉𝐵)  

are defined as follows: 

𝑀𝑁𝑉𝐵
0 = ∪ {𝑀𝑁𝑉𝐵

𝑖 ; 𝑖 ∈ 𝐼|𝑀𝑁𝑉𝐵
𝑖  𝑖𝑠 𝑎 𝑁𝑉𝐵𝑂𝑆 𝑜𝑣𝑒𝑟 𝑈1, 𝑈2 𝑤𝑖𝑡ℎ 𝑀𝑁𝑉𝐵

𝑖 ⊆ 𝑀𝑁𝑉𝐵  ;  ∀ 𝑖} 

𝑀̅𝑁𝑉𝐵= ∩ {𝑀𝑁𝑉𝐵
𝑖 ; 𝑖 ∈ 𝐼|𝑀𝑁𝑉𝐵

𝑖  𝑖𝑠 𝑎 𝑁𝑉𝐵𝐶𝑆 𝑜𝑣𝑒𝑟 𝑈1, 𝑈2 𝑤𝑖𝑡ℎ 𝑀𝑁𝑉𝐵 ⊆ 𝑀𝑁𝑉𝐵
𝑖  ;  ∀ 𝑖} 

Example 5.14. 

In example 5.2.  

𝐻𝑁𝑉𝐵
0 = ({〈

[0.6,0.7],[0.1,0.8],[0.3,0.4]]

𝑥1
〉 ,   〈

[0.7,0.8],[0.7,0.8],[0.2,0.3]

𝑥2
〉} , {〈

[0.6,0.8],[0.2,0.5],[0.2,0.4]

𝑦1
〉}) = 𝐻𝑁𝑉𝐵 

From example 5.6.  

𝑀𝑁𝑉𝐵
𝐶̅̅ ̅̅ ̅̅ ̅= ({〈

[0.6,0.8],[0.2,0.4],[0.2 0.4]]

𝑥1
〉 ,   〈

[0.4,0.7],[0.2,0.3],[0.3,0.6]

𝑥2
〉} , {〈

[0.2,0.4],[0.1.3],[0.6,0.8]

𝑦1
〉})= 𝑀𝑁𝑉𝐵

𝐶  

Proposition 5.15. 
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(i) 𝑀𝑁𝑉𝐵 is a 𝑁𝑉𝐵𝑂𝑆 ⇔ 𝑀𝑁𝑉𝐵
0 = 𝑀𝑁𝑉𝐵 

(ii) 𝑀𝑁𝑉𝐵 is a 𝑁𝑉𝐵𝐶𝑆 ⇔ 𝑀̅𝑁𝑉𝐵 = 𝑀𝑁𝑉𝐵 

Proof 

Proof is clear 

Proposition 5.16. 

(i) 𝑀𝑁𝑉𝐵
1 ⊆ 𝑀𝑁𝑉𝐵

2  and 𝑃𝑁𝑉𝐵
1 ⊆ 𝑃𝑁𝑉𝐵

2  ⇒ (𝑀𝑁𝑉𝐵
1 ∪ 𝑃𝑁𝑉𝐵

1 ) ⊆ (𝑀𝑁𝑉𝐵
2 ∪ 𝑃𝑁𝑉𝐵

2 ) and  

                                       (𝑀𝑁𝑉𝐵
1 ∩ 𝑃𝑁𝑉𝐵

1 ) ⊆ (𝑀𝑁𝑉𝐵
2 ∩ 𝑃𝑁𝑉𝐵

2 ) 

(ii) 𝑀𝑁𝑉𝐵 ⊆ 𝑀𝑁𝑉𝐵
1  and 𝑀𝑁𝑉𝐵 ⊆ 𝑀𝑁𝑉𝐵

2  ⇒ 𝑀𝑁𝑉𝐵 ⊆ (𝑀𝑁𝑉𝐵
1 ∩𝑀𝑁𝑉𝐵

2 )   

      𝑀𝑁𝑉𝐵
1  ⊆ 𝑀𝑁𝑉𝐵  and  𝑀𝑁𝑉𝐵

2  ⊆ 𝑀𝑁𝑉𝐵 ⇒ (𝑀𝑁𝑉𝐵
1 ∪ 𝑀𝑁𝑉𝐵

2 ) ⊆ 𝑀𝑁𝑉𝐵   

(iii) 𝑀̿𝑁𝑉𝐵= 𝑀𝑁𝑉𝐵 

(iv) 𝑀𝑁𝑉𝐵 ⊆ 𝑃𝑁𝑉𝐵 ⇒ 𝑃̅𝑁𝑉𝐵 ⊆ 𝑀̅𝑁𝑉𝐵 

(v) ∅̅𝑁𝑉𝐵= 𝜓𝑁𝑉𝐵 

(vi) Ψ̅𝑁𝑉𝐵= Φ𝑁𝑉𝐵 

Proof 

Proof is clear 

6. Continuous mapping for 𝑵𝑽𝑩𝑺’s 

Continuity plays vital role in any topology. In this section image, pre-image and continuity are 

developed for 𝑁𝑉𝐵𝑆’s.  

Definition 6.1. (Image and Pre-image of neutrosophic vague binary sets) 

Let 𝑀𝑁𝑉𝐵 and 𝑃𝑁𝑉𝐵 be two non-empty 𝑁𝑉𝐵𝑆’s defined on two common universes 𝑈1, 𝑈2 and 𝑉1, 𝑉2 

respectively. Define a function f : 𝑀𝑁𝑉𝐵 ⟶ 𝑃𝑁𝑉𝐵 , then the following statements hold: 

 

(1)If 𝐷𝑁𝑉𝐵  ={〈
  𝑇̂𝐷𝑁𝑉𝐵(𝑠𝑖); 𝐼𝐷𝑁𝑉𝐵(𝑠𝑖); 𝐹̂𝐷𝑁𝑉𝐵(𝑠𝑖)

𝑠𝑖
;  𝑠𝑖 ∈ 𝑉1〉 ; 〈

  𝑇̂𝐷𝑁𝑉𝐵(𝑡𝑟); 𝐼𝐷𝑁𝑉𝐵(𝑡𝑟); 𝐹̂𝐷𝑁𝑉𝐵(𝑡𝑟)

𝑡𝑟
;  𝑡𝑟 ∈ 𝑉2〉}  is a 𝑁𝑉𝐵𝑆 

in 𝑃𝑁𝑉𝐵, then the preimage of 𝐷𝑁𝑉𝐵  under f , denoted by 𝑓−1(𝐷𝑁𝑉𝐵), is a 𝑁𝑉𝐵𝑆 in 𝑀𝑁𝑉𝐵 defined by 

 𝑓−1(𝐷𝑁𝑉𝐵) =  

{〈
 𝑓−1  (𝑇̂𝐷𝑁𝑉𝐵(𝑠𝑖)) ;  𝑓

−1 ( 𝐼𝐷𝑁𝑉𝐵(𝑠𝑖)) ;   𝑓
−1 (𝐹̂𝐷𝑁𝑉𝐵(𝑠𝑖))

𝑠𝑖
;  𝑠𝑖 ∈ 𝑉1〉 ; 〈

 𝑓−1 ( 𝑇̂𝐷𝑁𝑉𝐵(𝑡𝑟)) ; 𝑓
−1 (𝐼𝐷𝑁𝑉𝐵(𝑡𝑟)) ; 𝑓

−1 (𝐹̂𝐷𝑁𝑉𝐵(𝑡𝑟))

𝑡𝑟
;  𝑡𝑟 ∈ 𝑉2〉} 

 

(2)If 𝐴𝑁𝑉𝐵={〈
  𝑇̂𝐴𝑁𝑉𝐵(𝑥𝑗); 𝐼𝐴𝑁𝑉𝐵(𝑥𝑗); 𝐹̂𝐴𝑁𝑉𝐵(𝑥𝑗)

𝑥𝑗
; 𝑥𝑗 ∈ 𝑈1〉 ; 〈

  𝑇̂𝐴𝑁𝑉𝐵
(𝑦𝑘); 𝐼𝐴𝑁𝑉𝐵

(𝑦𝑘); 𝐹̂𝐴𝑁𝑉𝐵
(𝑦𝑘)

𝑦𝑘
;  𝑦𝑘 ∈ 𝑈2〉}is a 𝑁𝑉𝐵𝑆 

in 𝑀𝑁𝑉𝐵 , then the image of 𝐴𝑁𝑉𝐵  under f , denoted by 𝑓(𝐴𝑁𝑉𝐵 ), is a 𝑁𝑉𝐵𝑆  in 𝑃𝑁𝑉𝐵  defined by 

𝑓(𝐴𝑁𝑉𝐵)  

= {〈
𝑓𝑠𝑢𝑝 (𝑇̂𝐴𝑁𝑉𝐵(𝑠𝑖));  𝑓𝑖𝑛𝑓(𝐼𝐴𝑁𝑉𝐵(𝑠𝑖));  𝑓𝑖𝑛𝑓(𝐹̂𝐴𝑁𝑉𝐵(𝑠𝑖))

𝑠𝑖
;  𝑠𝑖 ∈ 𝑉1〉 ; 〈

 𝑓𝑠𝑢𝑝(𝑇̂𝐴𝑁𝑉𝐵(𝑡𝑟));  𝑓𝑖𝑛𝑓(𝐼𝐴𝑁𝑉𝐵(𝑡𝑟));  𝑓𝑖𝑛𝑓(𝐹̂𝐴𝑁𝑉𝐵(𝑡𝑟))

𝑡𝑟
;  𝑡𝑟 ∈ 𝑉2〉} 

where 

{
 
 

 
 𝑓𝑠𝑢𝑝 (𝑇̂𝐴𝑁𝑉𝐵(𝑠𝑖)) = {

𝑠𝑢𝑝𝑥𝑗∈𝑓−1(𝑠𝑖)𝑇̂𝐴𝑁𝑉𝐵(𝑥𝑗),   𝑖𝑓 𝑓
−1(𝑠𝑖) ≠ ∅

0,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓𝑠𝑢𝑝 (𝑇̂𝐴𝑁𝑉𝐵(𝑡𝑟)) = {
𝑠𝑢𝑝𝑦𝑘∈𝑓−1(𝑡𝑟)𝑇̂𝐴𝑁𝑉𝐵(𝑦𝑘),   𝑖𝑓 𝑓

−1(𝑡𝑟) ≠ ∅

0,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

{
 
 

 
 𝑓𝑖𝑛𝑓 (𝐼𝐴𝑁𝑉𝐵(𝑠𝑖)) = {

𝑖𝑛𝑓𝑥𝑗∈𝑓−1(𝑠𝑖)𝐼𝐴𝑁𝑉𝐵(𝑥𝑗),   𝑖𝑓 𝑓
−1(𝑠𝑖) ≠ ∅

0,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓𝑖𝑛𝑓 (𝐼𝐴𝑁𝑉𝐵(𝑡𝑟)) = {
𝑖𝑛𝑓𝑦𝑘∈𝑓−1(𝑡𝑟)𝐼𝐴𝑁𝑉𝐵(𝑦𝑘),   𝑖𝑓 𝑓

−1(𝑡𝑟) ≠ ∅

0,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

{
 
 

 
 𝑓𝑖𝑛𝑓 (𝐹̂𝐴𝑁𝑉𝐵(𝑠𝑖)) = {

𝑖𝑛𝑓𝑥𝑗∈𝑓−1(𝑠𝑖)𝐹̂𝐴𝑁𝑉𝐵(𝑥𝑗),   𝑖𝑓 𝑓
−1(𝑠𝑖) ≠ ∅

0,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓𝑖𝑛𝑓 (𝐹̂𝐴𝑁𝑉𝐵(𝑡𝑟)) = {
𝑖𝑛𝑓𝑦𝑘∈𝑓−1(𝑡𝑟)𝐹̂𝐴𝑁𝑉𝐵(𝑦𝑘),   𝑖𝑓 𝑓

−1(𝑡𝑟) ≠ ∅

0,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

for each 𝑠𝑖 ∈ 𝑉1 and for each 𝑡𝑟 ∈ 𝑉2 

Definition 6.2. (Neutrosophic Vague strongly continous mapping) 
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Let (X, 𝜏) and (Y, 𝜎) be any two neutrosophic vague topological spaces. A map f : (X, 𝜏) →(Y, 𝜎) is 

said to be neutrosophic vague strongly continous if inverse image of every neutrosophic vague set in 

(Y, 𝜎) is neutrosophic vague clopen set [ a set which acts simultaneously as neutrosophic vague open 

set and neutrosophic vague closed set] in (X, 𝜏) 

Definition 6.3.  

(i) Neutrosophic Vague Binary Continuity:                                                                                           

Let (𝑈1, 𝑈2, 𝜏∆
𝑁𝑉𝐵) and (𝑉1, 𝑉2, 𝜎∆

𝑁𝑉𝐵) be any two 𝑁𝑉𝐵𝑇𝑆’s.         

A map f : (𝑈1, 𝑈2, 𝜏∆
𝑁𝑉𝐵) ⟶ (𝑉1, 𝑉2, 𝜎∆

𝑁𝑉𝐵) is said to be neutrosophic vague binary continuous                          

(𝑁𝑉𝐵 continuous) if forevery 𝑁𝑉𝐵𝑂𝑆 (or 𝑁𝑉𝐵𝐶𝑆) 𝑀𝑁𝑉𝐵 of (𝑉1, 𝑉2, 𝜎∆
𝑁𝑉𝐵) ,  𝑓−1(𝑀𝑁𝑉𝐵) is a 𝑁𝑉𝐵𝑂𝑆  

(or 𝑁𝑉𝐵𝐶𝑆) in (𝑈1, 𝑈2, 𝜏∆
𝑁𝑉𝐵)                                 

(ii)Various kinds of Continuities for 𝑵𝑽𝑩𝑺’s 

Let (𝑈1, 𝑈2, 𝜏∆
𝑁𝑉𝐵) and (𝑉1, 𝑉2, 𝜎∆

𝑁𝑉𝐵) be any two 𝑁𝑉𝐵𝑇𝑆’s. A map f : (𝑈1, 𝑈2, 𝜏∆
𝑁𝑉𝐵) ⟶ (𝑉1, 𝑉2, 𝜎∆

𝑁𝑉𝐵) is 

said to be 

(1) Neutrosophic vague binary semi-continuous (𝑁𝑉𝐵𝑆𝐶):                                                                                 

if forevery neutrosophic vague binary open set (𝑁𝑉𝐵𝑂𝑆  in short) [or neutrosophic vague binary 

closed set (𝑁𝑉𝐵𝐶𝑆 in short)] 𝑀𝑁𝑉𝐵 of (𝑉1, 𝑉2, 𝜎∆
𝑁𝑉𝐵), 𝑓−1(𝑀𝑁𝑉𝐵) is a neutrosophic vague binary semi-

open set (𝑁𝑉𝐵𝑆𝑂𝑆 in short) [or neutrosophic vague binary semi - closed set (𝑁𝑉𝐵𝑆𝐶𝑆 in short)] in 

(𝑈1, 𝑈2, 𝜏∆
𝑁𝑉𝐵) 

(2) Neutrosophic vague binary pre-continuous (𝑁𝑉𝐵𝑃𝐶 continuous):                                                                                

if forevery 𝑁𝑉𝐵𝑂𝑆 [or 𝑁𝑉𝐵𝐶𝑆] 𝑀𝑁𝑉𝐵 of (𝑉1, 𝑉2, 𝜎∆
𝑁𝑉𝐵) 𝑓−1(𝑀𝑁𝑉𝐵) is a neutrosophic vague binary pre- 

open set (𝑁𝑉𝐵𝑃𝑂𝑆  in short) [or neutrosophic vague binary pre-closed set (𝑁𝑉𝐵𝑃𝐶𝑆 in short)] in 

(𝑈1, 𝑈2, 𝜏∆
𝑁𝑉𝐵)                                          

(3) Neutrosophic vague binary strongly-continuous (𝑁𝑉𝐵𝑆𝐶 continuous):                                                                           

if inverse image of every neutrosophic vague binary set in (𝑉1, 𝑉2, 𝜎∆
𝑁𝑉𝐵) is neutrosophic vague binary 

clopen set [ a set which acts simultaneously as neutrosophic vague binary open set and neutrosophic 

vague binary closed set] in (𝑈1, 𝑈2, 𝜏∆
𝑁𝑉𝐵)  

(4) Neutrosophic vague binary regular-continuous (𝑁𝑉𝐵𝑅𝐶 continuous):                                                                        

if forevery 𝑁𝑉𝐵𝑂𝑆  [or 𝑁𝑉𝐵𝐶𝑆] 𝑀𝑁𝑉𝐵  of (𝑉1, 𝑉2, 𝜎∆
𝑁𝑉𝐵 ) 𝑓−1(𝑀𝑁𝑉𝐵 ) is a neutrosophic vague binary 

regular- open set (𝑁𝑉𝐵𝑅𝑂𝑆  in short) [or neutrosophic vague binary regular-closed set (𝑁𝑉𝐵𝑅𝐶𝑆 in 

short)] in (𝑈1, 𝑈2, 𝜏∆
𝑁𝑉𝐵)                                          

(5) Neutrosophic vague binary semi-pre-continuous (𝑁𝑉𝐵𝑅𝐶 continuous):                                                                      

if forevery 𝑁𝑉𝐵𝑂𝑆  [or 𝑁𝑉𝐵𝐶𝑆] 𝑀𝑁𝑉𝐵  of (𝑉1, 𝑉2, 𝜎∆
𝑁𝑉𝐵 ) 𝑓−1(𝑀𝑁𝑉𝐵 ) is a neutrosophic vague binary 

generalized semi- open set (𝑁𝑉𝐵𝐺𝑆𝑂𝑆 in short) [or neutrosophic vague binary generalized semi-

closed set (𝑁𝑉𝐵𝐺𝑆𝐶𝑆 in short)] in (𝑈1, 𝑈2, 𝜏∆
𝑁𝑉𝐵)                                         

Example 6.4. 

Let 𝑓 = (𝑔, ℎ):𝑀𝑁𝑉𝐵 ⟶ 𝑃𝑁𝑉𝐵  be a function defined as , 𝑓(Φ𝑁𝑉𝐵
1 ) = Φ𝑁𝑉𝐵

2 , 𝑓(𝑀𝑁𝑉𝐵
1 ) =  𝑃𝑁𝑉𝐵

1 ,  

𝑓(𝑀𝑁𝑉𝐵
2 )= 𝑃𝑁𝑉𝐵

1 , 𝑓(Ψ𝑁𝑉𝐵
1 ) = Ψ𝑁𝑉𝐵

2  where 𝑔: 𝑈1 ⟶ 𝑉1 and ℎ: 𝑈2 ⟶ 𝑉2 be two functions with 𝑔(𝑥1) =

𝑠2, 𝑔(𝑥2) = 𝑠1 and ℎ(𝑦1) = 𝑡1 , where 𝑈1 = {x1,   x2}, U2 = {y1} and 𝑉1 = {s𝟏,   s𝟐}, U2 = {t1}.         

Let 𝜏∆
𝑁𝑉𝐵= {Φ𝑁𝑉𝐵

1 , 𝑀𝑁𝑉𝐵
1 , 𝑀𝑁𝑉𝐵

2 , 𝑀𝑁𝑉𝐵
3 ,  𝑀𝑁𝑉𝐵

4 ,  𝑀𝑁𝑉𝐵
5 ,  𝑀𝑁𝑉𝐵

6 ,  𝑀𝑁𝑉𝐵
7 ,  𝑀𝑁𝑉𝐵

8 ,  𝑀𝑁𝑉𝐵
9 ,  𝑀𝑁𝑉𝐵

10 ,  𝑀𝑁𝑉𝐵
11 , Ψ𝑁𝑉𝐵

1  } and 

𝜎∆
𝑁𝑉𝐵= {Φ𝑁𝑉𝐵

2 , 𝑃𝑁𝑉𝐵
1 , Ψ𝑁𝑉𝐵

2 } be their respective 𝑁𝑉𝐵𝑇’s.  

Here         

Φ𝑁𝑉𝐵
1 = {〈

[0,0],   [1,1],   [1,1]

𝑥1
;  
[0,0],   [1,1],   [1,1]

𝑥2
〉,   〈

[0,0],   [1,1],   [1,1]

𝑦1
〉}     

𝑀𝑁𝑉𝐵
1

= {〈
[0.3, 0.4],   [0.7, 0.8],   [0.6, 0.7]

𝑥1
;  
[0.2, 0.7],   [0.1, 0.5],   [0.3, 0.8]

𝑥2
 〉 〈
[0.4, 0.9],   [0.2, 0.6],   [0.1, 0.6]

𝑦1
 〉} 

𝑀𝑁𝑉𝐵
2

= {〈
[0.1, 0.6],   [0.6, 0.9],   [0.4, 0.9]

𝑥1
;  
[0.6, 0.8],   [0.3, 0.7],   [0.2, 0.4]

𝑥2
 〉 〈
[0.2, 0.7],   [0.2, 0.9],   [0.3, 0.8]

𝑦1
 〉} 

𝑀𝑁𝑉𝐵
3

= {〈
[0.6, 0.8],   [0.1, 0.5],   [0.2, 0.4]

𝑥1
;  
[0.3, 0.6],   [0.6, 0.8],   [0.4, 0.7]

𝑥2
 〉 〈
[0.2, 0.7],   [0.2, 0.9],   [0.3, 0.8]

𝑦1
 〉} 
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𝑀𝑁𝑉𝐵
4

= {〈
[0.1, 0.4],   [0.7, 0.9],   [0.6, 0.9]

𝑥1
;  
[0.2, 0.6],   [0.6, 0.8],   [0.4, 0.8]

𝑥2
 〉 〈
[0.2, 0.7],   [0.2, 0.9],   [0.3, 0.8]

𝑦1
 〉} 

𝑀𝑁𝑉𝐵
5

= {〈
[0.6, 0.8],   [0.1, 0.5],   [0.2, 0.4]

𝑥1
;  
[0.6, 0.8],   [0.1, 0.5],   [0.2, 0.4]

𝑥2
 〉 〈
[0.4, 0.9],   [0.2, 0.6],   [0.1, 0.6]

𝑦1
 〉} 

𝑀𝑁𝑉𝐵
6

= {〈
[0.1, 0.4],   [0.7, 0.9],   [0.6, 0.9]

𝑥1
;  
[0.2, 0.7],   [0.3, 0.7],   [0.3, 0.8]

𝑥2
 〉 〈
[0.2, 0.7],   [0.2, 0.9],   [0.3, 0.8]

𝑦1
 〉} 

𝑀𝑁𝑉𝐵
7

= {〈
[0.3, 0.6],   [0.6, 0.8],   [0.4, 0.7]

𝑥1
;  
[0.6, 0.8],   [0.1, 0.5],   [0.2, 0.4]

𝑥2
 〉 〈
[0.4, 0.9],   [0.2, 0.6],   [0.1, 0.6]

𝑦1
 〉} 

𝑀𝑁𝑉𝐵
8

= {〈
[0.1, 0.6],   [0.6, 0.9],   [0.4, 0.9]

𝑥1
;  
[0.3, 0.6],   [0.6, 0.8],   [0.4, 0.7]

𝑥2
 〉 〈
[0.2, 0.7],   [0.2, 0.9],   [0.3, 0.8]

𝑦1
 〉} 

𝑀𝑁𝑉𝐵
9

= {〈
[0.6, 0.8],   [0.1, 0.5],   [0.2, 0.4]

𝑥1
;  
[0.6, 0.8],   [0.3, 0.7],   [0.2, 0.4]

𝑥2
 〉 〈
[0.2, 0.7],   [0.2, 0.9],   [0.3, 0.8]

𝑦1
 〉} 

𝑀𝑁𝑉𝐵
10

= {〈
[0.3, 0.4],   [0.7, 0.8],   [0.6, 0.7]

𝑥1
;  
[0.2, 0.6],   [0.6, 0.8],   [0.4, 0.8]

𝑥2
 〉 〈
[0.2, 0.7],   [0.2, 0.9],   [0.3, 0.8]

𝑦1
 〉} 

𝑀𝑁𝑉𝐵
11

= {〈
[0.6, 0.8],   [0.1, 0.5],   [0.2, 0.4]

𝑥1
;  
[0.3, 0.7],   [0.1, 0.5],   [0.3, 0.7]

𝑥2
 〉 〈
[0.4, 0.9],   [0.2, 0.6],   [0.1, 0.6]

𝑦1
 〉} 

Ψ𝑁𝑉𝐵
1 = {〈

[1, 1],   [0, 0],   [0, 0]

𝑥1
;  
[1, 1],   [0, 0],   [0, 0]

𝑥2
〉 ,   〈

[1, 1],   [0, 0],   [0, 0]

𝑦1
〉} 

and 𝑉1 = {𝑠1,   𝑠2}, 𝑉2 = {𝑡1} be a common universe with 

Φ𝑁𝑉𝐵
2 = {〈

[0, 0],   [1, 1],   [1, 1]

𝑠1
;  
[0, 0],   [1, 1],   [1, 1]

𝑠2
〉 ,   〈

[0, 0],   [1, 1],   [1, 1]

𝑡1
〉} 

𝑃𝑁𝑉𝐵
1

= {〈
[0.2, 0.3],   [0.5, 0.6],   [0.7, 0.8]

𝑠1
;  
[0.3, 0.7],   [0.4, 0.5],   [0.3, 0.7]

𝑠2
 〉 〈
[0.2, 0.4],   [0.5, 0.6],   [0.6, 0.8]

𝑡1
 〉} 

 

Ψ𝑁𝑉𝐵
2 = {〈

[1, 1],   [0, 0],   [0, 0]

𝑠1
;  
[1, 1],   [0, 0],   [0, 0]

𝑠2
〉 ,   〈

[1, 1],   [0, 0],   [0, 0]

𝑡1
〉} 

It is got that, 𝑓−1 (Φ𝑁𝑉𝐵
2 )= Φ𝑁𝑉𝐵

1 , 𝑓−1 (P𝑁𝑉𝐵 )= 𝑀𝑁𝑉𝐵
3 ,  𝑓−1 (Ψ𝑁𝑉𝐵

2 )= Ψ𝑁𝑉𝐵
1 . Then clearly f is a 

neutrosophic vague binary contiuous mapping. 

 

7. Distance Measures for 𝑵𝑽𝑩𝑺′𝒔 

Let ;  be the common universe. Also let 

 and  be two .                                                                                 

(i) Hamming distance between them is defined as                                                                                       

( ) = 

𝟏

𝟔
[∑ {[|𝑻𝑴𝑵𝑩

− (𝒙𝒋) − 𝑻𝑷𝑵𝑩
− (𝒙𝒋)| + |𝑰𝑴𝑵𝑩

− (𝒙𝒋) − 𝑰𝑷𝑵𝑩
− (𝒙𝒋)| + |𝑭𝑴𝑵𝑩

− (𝒙𝒋) − 𝑭𝑷𝑵𝑩
− (𝒙𝒋)|] + [|𝑻𝑴𝑵𝑩

+ (𝒙𝒋) − 𝑻𝑷𝑵𝑩
+ (𝒙𝒋)| + |𝑰𝑴𝑵𝑩

+ (𝒙𝒋) − 𝑰𝑷𝑵𝑩
+ (𝒙𝒋)| + |𝑭𝑴𝑵𝑩

+ (𝒙𝒋) − 𝑭𝑷𝑵𝑩
+ (𝒙𝒋)|]}

𝒏
𝒋=𝟏 ]  

+ 
𝟏

𝟔
[∑ {[|𝑻𝑴𝑵𝑩

− (𝒚𝒌) − 𝑻𝑷𝑵𝑩
− (𝒚𝒌)| + |𝑰𝑴𝑵𝑩

− (𝒚𝒌) − 𝑰𝑷𝑵𝑩
− (𝒚𝒌)| + |𝑭𝑴𝑵𝑩

− (𝒚𝒌) − 𝑭𝑷𝑵𝑩
− (𝒚𝒌)|] + [|𝑻𝑴𝑵𝑩

+ (𝒚𝒌) − 𝑻𝑷𝑵𝑩
+ (𝒚𝒌)| + |𝑰𝑴𝑵𝑩

+ (𝒚𝒌) − 𝑰𝑷𝑵𝑩
+ (𝒚𝒌)| + |𝑭𝑴𝑵𝑩

+ (𝒚𝒌) − 𝑭𝑷𝑵𝑩
+ (𝒚𝒌)|]}

𝒑
𝒌=𝟏 ] 
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 (ii) Normalized Hamming distance between them is defined as                                                                             

( )= 

𝟏

𝟔𝒏
[∑ {[|𝑻𝑴𝑵𝑩

− (𝒙𝒋) − 𝑻𝑷𝑵𝑩
− (𝒙𝒋)| + |𝑰𝑴𝑵𝑩

− (𝒙𝒋) − 𝑰𝑷𝑵𝑩
− (𝒙𝒋)| + |𝑭𝑴𝑵𝑩

− (𝒙𝒋) − 𝑭𝑷𝑵𝑩
− (𝒙𝒋)|] + [|𝑻𝑴𝑵𝑩

+ (𝒙𝒋) − 𝑻𝑷𝑵𝑩
+ (𝒙𝒋)| + |𝑰𝑴𝑵𝑩

+ (𝒙𝒋) − 𝑰𝑷𝑵𝑩
+ (𝒙𝒋)| + |𝑭𝑴𝑵𝑩

+ (𝒙𝒋) − 𝑭𝑷𝑵𝑩
+ (𝒙𝒋)|]}

𝒏
𝒋=𝟏 ]  

+ 
𝟏

𝟔𝒑
[∑ {[|𝑻𝑴𝑵𝑩

− (𝒚𝒌) − 𝑻𝑷𝑵𝑩
− (𝒚𝒌)| + |𝑰𝑴𝑵𝑩

− (𝒚𝒌) − 𝑰𝑷𝑵𝑩
− (𝒚𝒌)| + |𝑭𝑴𝑵𝑩

− (𝒚𝒌) − 𝑭𝑷𝑵𝑩
− (𝒚𝒌)|] + [|𝑻𝑴𝑵𝑩

+ (𝒚𝒌) − 𝑻𝑷𝑵𝑩
+ (𝒚𝒌)| + |𝑰𝑴𝑵𝑩

+ (𝒚𝒌) − 𝑰𝑷𝑵𝑩
+ (𝒚𝒌)| + |𝑭𝑴𝑵𝑩

+ (𝒚𝒌) − 𝑭𝑷𝑵𝑩
+ (𝒚𝒌)|]}

𝒑
𝒌=𝟏 ] 

(iii)Euclidean distance between them is defined as                                                                                          

( ) = 

√
  
  
  
  
  
  
  
  
 

[
𝟏

𝟔
[∑{[|𝑻𝑴𝑵𝑩

− (𝒙𝒋) − 𝑻𝑷𝑵𝑩
− (𝒙𝒋)|

𝟐
+ |𝑰𝑴𝑵𝑩

− (𝒙𝒋) − 𝑰𝑷𝑵𝑩
− (𝒙𝒋)|

𝟐
+ |𝑭𝑴𝑵𝑩

− (𝒙𝒋) − 𝑭𝑷𝑵𝑩
− (𝒙𝒋)|

𝟐
] + [|𝑻𝑴𝑵𝑩

+ (𝒙𝒋) − 𝑻𝑷𝑵𝑩
+ (𝒙𝒋)|

𝟐
+ |𝑰𝑴𝑵𝑩

+ (𝒙𝒋) − 𝑰𝑷𝑵𝑩
+ (𝒙𝒋)|

𝟐
+ |𝑭𝑴𝑵𝑩

+ (𝒙𝒋) − 𝑭𝑷𝑵𝑩
+ (𝒙𝒋)|

𝟐
]}

𝒏

𝒋=𝟏

]]

+

[
𝟏

𝟔
[∑{[|𝑻𝑴𝑵𝑩

− (𝒚𝒌) − 𝑻𝑷𝑵𝑩
− (𝒚𝒌)|𝟐 + |𝑰𝑴𝑵𝑩

− (𝒚𝒌) − 𝑰𝑷𝑵𝑩
− (𝒚𝒌)|𝟐 + |𝑭𝑴𝑵𝑩

− (𝒚𝒌) − 𝑭𝑷𝑵𝑩
− (𝒚𝒌)|𝟐] + [|𝑻𝑴𝑵𝑩

+ (𝒚𝒌) − 𝑻𝑷𝑵𝑩
+ (𝒚𝒌)|𝟐 + |𝑰𝑴𝑵𝑩

+ (𝒚𝒌) − 𝑰𝑷𝑵𝑩
+ (𝒚𝒌)|𝟐 + |𝑭𝑴𝑵𝑩

+ (𝒚𝒌) − 𝑭𝑷𝑵𝑩
+ (𝒚𝒌)|𝟐]}

𝒑

𝒌=𝟏

]]

 

 (iv)Normalized Euclidean distance between them is defined as                                                                  

( ) =  

√
  
  
  
  
  
  
  
  
 

[
𝟏

𝟔𝒏
[∑{[|𝑻𝑴𝑵𝑩

− (𝒙𝒋) − 𝑻𝑷𝑵𝑩
− (𝒙𝒋)|

𝟐
+ |𝑰𝑴𝑵𝑩

− (𝒙𝒋) − 𝑰𝑷𝑵𝑩
− (𝒙𝒋)|

𝟐
+ |𝑭𝑴𝑵𝑩

− (𝒙𝒋) − 𝑭𝑷𝑵𝑩
− (𝒙𝒋)|

𝟐
] + [|𝑻𝑴𝑵𝑩

+ (𝒙𝒋) − 𝑻𝑷𝑵𝑩
+ (𝒙𝒋)|

𝟐
+ |𝑰𝑴𝑵𝑩

+ (𝒙𝒋) − 𝑰𝑷𝑵𝑩
+ (𝒙𝒋)|

𝟐
+ |𝑭𝑴𝑵𝑩

+ (𝒙𝒋) − 𝑭𝑷𝑵𝑩
+ (𝒙𝒋)|

𝟐
]}

𝒏

𝒋=𝟏

]]

+

[
𝟏

𝟔𝒑
[∑{[|𝑻𝑴𝑵𝑩

− (𝒚𝒌) − 𝑻𝑷𝑵𝑩
− (𝒚𝒌)|𝟐 + |𝑰𝑴𝑵𝑩

− (𝒚𝒌) − 𝑰𝑷𝑵𝑩
− (𝒚𝒌)|𝟐 + |𝑭𝑴𝑵𝑩

− (𝒚𝒌) − 𝑭𝑷𝑵𝑩
− (𝒚𝒌)|𝟐] + [|𝑻𝑴𝑵𝑩

+ (𝒚𝒌) − 𝑻𝑷𝑵𝑩
+ (𝒚𝒌)|𝟐 + |𝑰𝑴𝑵𝑩

+ (𝒚𝒌) − 𝑰𝑷𝑵𝑩
+ (𝒚𝒌)|𝟐 + |𝑭𝑴𝑵𝑩

+ (𝒚𝒌) − 𝑭𝑷𝑵𝑩
+ (𝒚𝒌)|𝟐]}

𝒑

𝒌=𝟏

]]

 

8. 𝑵𝑽𝑩𝑺′𝒔 in Medical Diagonosis 

This section deals with an application of 𝑁𝑉𝐵𝑆′𝑠 in medical diagnosis. 

Following table describes datas collected from three patients after conducting liver function test. First 

set of sample is collected before treatment which describes the first universe. Second set of sample is 

collected after treatment which describes the second universe. 𝑃𝑁𝑉𝐵
1 , 𝑃𝑁𝑉𝐵

2 , 𝑃𝑁𝑉𝐵
3  are three NVBS’s 

formed, based on the datas of the three patients under consideration 

 

Before Treatment 

(BT) 

𝑷𝟏 𝑷𝟐 𝑷𝟑 

Albumin [0.042, 0.052] [0.025, 0.052] [0.052, 0.064] 

Globulin Serum [0.035, 0.045] [0.033, 0.035] [0.011, 0.035] 

Bilirubin Total [0.045, 0.100] [0.070, 0.100] [0.093, 0.100] 

      

     

After Treatment (AT) 𝑷𝟏 𝑷𝟐 𝑷𝟑 

Albumin [0.031, 0.052] [0.036, 0.052] [0.052, 0.064] 

Globulin Serum [0.021, 0.035] [0.035, 0.042] [0.019, 0.035] 

Bilirubin Total [0.025, 0.100] [0.017, 0.100] [0.099,0.100] 

 

 Data collected from 3 persons are converted to 𝑁𝑉𝐵𝑆′𝑠 as given below: 

𝑃𝑁𝑉𝐵
1

=

{
 
 

 
 〈
[0.042, 0.052],   [0.948, 0.958],   [0.948, 0.958]

𝑃𝐵𝑇
𝐴𝑙𝑏𝑢𝑚𝑖𝑛 ,

[0.035, 0.045],   [0.955, 0.965],   [0.955, 0.965]

𝑃𝐵𝑇
𝐺𝑙𝑜𝑏𝑢𝑙𝑖𝑛 𝑆𝑒𝑟𝑢𝑚 ,

[0.045, 0.100],   [0.900, 0.955],   [0.900, 0.955]

𝑃𝐵𝑇
𝐵𝑖𝑙𝑖𝑟𝑢𝑏𝑖𝑛 𝑇𝑜𝑡𝑎𝑙

〉 ,

〈
[0.031, 0.052],   [0.948, 0.969],   [0.948, 0.969]

𝑃𝐴𝑇
𝐴𝑙𝑏𝑢𝑚𝑖𝑛 ,

[0.021, 0.035],   [0.965,0.979 ],   [0.965, 0.979]

𝑃𝐴𝑇
𝐺𝑙𝑜𝑏𝑢𝑙𝑖𝑛 𝑆𝑒𝑟𝑢𝑚 ,

[0.025, 0.100],   [0.900, 0.975],   [0.900, 0.975]

𝑃𝐴𝑇
𝐵𝑖𝑙𝑖𝑟𝑢𝑏𝑖𝑛 𝑇𝑜𝑡𝑎𝑙

〉
}
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𝑃𝑁𝑉𝐵
2

=

{
 
 

 
 〈
[0.025, 0.052],   [0.948, 0.975],   [0.948, 0.975]

𝑃𝐵𝑇
𝐴𝑙𝑏𝑢𝑚𝑖𝑛

,
[0.033, 0.035],   [0.965, 0.967],   [0.965, 0.967]

𝑃𝐵𝑇
𝐺𝑙𝑜𝑏𝑢𝑙𝑖𝑛 𝑆𝑒𝑟𝑢𝑚

,
[0.070,0.100],   [0.900, 0.930],   [0.900, 0.930]

𝑃𝐵𝑇
𝐵𝑖𝑙𝑖𝑟𝑢𝑏𝑖𝑛 𝑇𝑜𝑡𝑎𝑙

〉 ,

〈
[0.036, 0.052],   [0.948, 0.964],   [0.948, 0.964]

𝑃𝐴𝑇
𝐴𝑙𝑏𝑢𝑚𝑖𝑛 ,

[0.035, 0.042],   [0.958, 0.965],   [0.958, 0.965]

𝑃𝐴𝑇
𝐺𝑙𝑜𝑏𝑢𝑙𝑖𝑛 𝑆𝑒𝑟𝑢𝑚 ,

[0.017, 0.100],   [0.900, 0.983],   [0.900, 0.983]

𝑃𝐴𝑇
𝐵𝑖𝑙𝑖𝑟𝑢𝑏𝑖𝑛 𝑇𝑜𝑡𝑎𝑙

〉
}
 
 

 
 

 

 

𝑃𝑁𝑉𝐵
3

=

{
 
 

 
 〈
[0.052, 0.064],   [0.936, 0.948],   [0.936, 0.948]

𝑃𝐵𝑇
𝐴𝑙𝑏𝑢𝑚𝑖𝑛 ,

[0.011, 0.035],   [0.965, 0.989],   [0.965, 0.989]

𝑃𝐵𝑇
𝐺𝑙𝑜𝑏𝑢𝑙𝑖𝑛 𝑆𝑒𝑟𝑢𝑚 ,

[0.011, 0.035],   [0.965, 0.989],   [0.965, 0.989]

𝑃𝐵𝑇
𝐵𝑖𝑙𝑖𝑟𝑢𝑏𝑖𝑛 𝑇𝑜𝑡𝑎𝑙

〉 ,

〈
[0.052, 0.064],   [0.936, 0.948],   [0.936, 0.948]

𝑃𝐴𝑇
𝐴𝑙𝑏𝑢𝑚𝑖𝑛 ,

[0.019, 0.035],   [0.965, 0.981],   [0.965, 0.981]

𝑃𝐴𝑇
𝐺𝑙𝑜𝑏𝑢𝑙𝑖𝑛 𝑆𝑒𝑟𝑢𝑚 ,

[0.099, 0.100],   [0.900, 0.901],   [0.900, 0.901]

𝑃𝐴𝑇
𝐵𝑖𝑙𝑖𝑟𝑢𝑏𝑖𝑛 𝑇𝑜𝑡𝑎𝑙

〉
}
 
 

 
 

 

 

𝐷𝑁𝑉𝐵
𝐿𝐹𝑇  is a NVBS formed, based on the actual range fixed for a liver function test. Ranges for 𝐷𝑁𝑉𝐵

𝐿𝐹𝑇  

under a liver function test for albumin, Globulin serum and Bilirubin Total is given as follows: 

 

Before Treatment 

(BT) 

𝐷𝑁𝑉𝐵
𝐿𝐹𝑇  

Albumin [0.034, 0.052],   [0.948, 0.966],   [0.948, 0.966] 

Globulin Serum [0.015, 0.035],   [0.965, 0.985], [0.965, 0.985] 

Bilirubin Total [0.000, 0.100],   [0.900, 0.100], [0.900, 0.100] 

 

 

After Treatment (AT) 𝐷𝑁𝑉𝐵
𝐿𝐹𝑇  

Albumin [0.034, 0.052],   [0.948, 0.966],   [0.948, 0.966] 

Globulin Serum [0.015, 0.035],   [0.965, 0.985], [0.965, 0.985] 

Bilirubin Total [0.000, 0.100],   [0.900, 0.100], [0.900, 0.100] 

 

Above datas are converted to NVBS as below. 

 

𝐷𝑁𝑉𝐵
𝐿𝐹𝑇

=

{
 
 

 
 〈
[0.034, 0.052],   [0.948, 0.966],   [0.948, 0.966]

𝐷𝐵𝑇
𝐴𝑙𝑏𝑢𝑚𝑖𝑛

,
[0.015, 0.035],   [0.965, 0.985], [0.965, 0.985]

𝐷𝐵𝑇
𝐺𝑙𝑜𝑏𝑢𝑙𝑖𝑛−𝑆𝑒𝑟𝑢𝑚

,
[0.000, 0.100],   [0.900, 0.100], [0.900, 0.100] 

𝐷𝐵𝑇
𝐵𝑖𝑙𝑖𝑟𝑢𝑏𝑖𝑛 𝑇𝑜𝑡𝑎𝑙 

〉 ,

〈
[0.034, 0.052],   [0.948, 0.966],   [0.948, 0.966]

𝐷𝐴𝑇
𝐴𝑙𝑏𝑢𝑚𝑖𝑛

,
[0.015, 0.035],   [0.965, 0.985], [0.965, 0.985]

𝐷𝐴𝑇
𝐺𝑙𝑜𝑏𝑢𝑙𝑖𝑛−𝑆𝑒𝑟𝑢𝑚

,
[0.000, 0.100],   [0.900, 0.100], [0.900, 0.100]

𝐷𝐴𝑇
𝐵𝑖𝑙𝑖𝑟𝑢𝑏𝑖𝑛 𝑇𝑜𝑡𝑎𝑙

〉
}
 
 

 
 

 

 

Neutrosophic vague binary euclidean distance measure can be used to diagonise which patient is 

more suffering with liver problems even after treatment. Following table gives the neutrosophic 

vague binary euclidean difference between each of the patients from 𝐷𝑁𝑉𝐵
𝐿𝐹𝑇  

 

𝒅𝑵𝑽𝑩𝑺
𝑬𝑫 (𝑷𝑵𝑽𝑩

𝟏
,𝑫𝑵𝑽𝑩

𝑳𝑭𝑻
 ) 𝒅𝑵𝑽𝑩𝑺

𝑬𝑫 (𝑷𝑵𝑽𝑩
𝟐

,𝑫𝑵𝑽𝑩
𝑳𝑭𝑻

 ) 𝒅𝑵𝑽𝑩𝑺
𝑬𝑫 (𝑷𝑵𝑽𝑩

𝟑
,𝑫𝑵𝑽𝑩

𝑳𝑭𝑻
 ) 

0.014856 0.277330 0.745502 

Lowest neutrosophic vague binary euclidean difference is for patient I. So patient I suffers more 

with liver problems even after treatment 

 

9. Conclusions  

Neutrosophic vague binary sets are developed in this paper with some examples and basic 

concepts. Real life situations demand binary and higher dimensional universes than a unique one. 

Being the vital concept to homeomorphism - ‘which is the underlying principle to any topology’ – 

continuity has an important role in topology. It is also developed for this new concept. Practical 
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applications are tremendous for binary concept in day today life. One real life example in medical 

diagonosis is discussed above. Several situations demand combined result than ‘a unique separate 

one’- to compare and deal situations in a more fast manner. Neutrosophic vague binary sets is a good 

tool for comparison in such cases. It could be made use in surveys, case studies and in some other 

sort of similar situations. Topology are special type of subsets to a universal set- based on which 

study of all other subsets of the universal set is possible. New study will produce a combined result 

or net effect than taking a single result. This work could be extended by taking subsets of the common 

universe.   
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Abstract: In the paper, we propose an alternative strategy for multi-level linear programming 
(MLP) problem with neutrosophic numbers through goal programming strategy. Multi-level linear 
programming problem consists of k levels where there is an upper level at the first level and 
multiple lower levels at the second level with one objective function at every level. Here, the 
objective functions of the level decision makers and constraints are described by linear functions 
with neutrosophic numbers of the form [u + vI], where u, v are real numbers and I signifies the 
indeterminacy. At the beginning, the neutrosophic numbers are transformed into interval numbers 
and consequently, the original problem transforms into MLP problem with interval numbers. Then 
we compute the target interval of the objective functions via interval programming procedure and 
formulate the goal achieving functions. Due to potentially conflicting objectives of k decision 
makers, we consider a possible relaxation on the decision variables under the control of each level 
in order to avoid decision deadlock. Thereafter, we develop three new goal programming models 
for MLP problem with neutrosophic numbers. Finally, an example is solved to exhibit the 
applicability, feasibility and simplicity of the proposed strategy. 

Keywords: neutrosophic numbers; interval numbers; multi-level linear programming; goal 
programming 

 

1. Introduction 

Multi-level programming (MLP) programming problem consists of multi-levels with single 
objective function at each level where each level decision maker (DM) tries to get maximum benefit 
over a common feasible region. In the paper, we consider an MLP problem with neutrosophic 
numbers information where the objective functions and common constraints are linear functions 
and each DM independently controls a set of decision variables. In 1988, Anandalingam [1] 
proposed Stackelberg solution concept for MLP problem in crisp environment and extended the 
concept to solve decentralized bi-level programming problem.  

Goal programming (GP) [2, 3, 4, 5, 6, 7, 8] is one of the popular mathematical tools for solving 
multi-objective mathematical programming problems with multiple and conflicting objectives to 
obtain optimal compromise solutions. In 1991, Inuiguchi and Kume [9] incorporated the notion of 
interval GP.  
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 In 1998, Smarandache [10] incorporated a novel concept called neutrosophic set to tackle with 
inconsistent, incomplete, indeterminate information where indeterminacy is an independent and 
important factor. Roy and Das [11] developed a computational algorithm for solving multi-objective 
linear programming problem by utilizing neutrosophic optimization technique. Das and Roy [12] 
used neutrosophic optimization method for obtaining optimal solution for multi-objective non linear 
programming problem. Hezam et al. [13] used first order Taylor polynomial series approximation 
method for neutrosophic multi-objective programming problem. Abdel-Baset et al. [14] developed 
two models for neutrosophic goal programming problems and applied the concept to industrial 
design problem. In 2016, Pramanik [15] proposed three novel neutrosophic GP models for 
optimization problem by minimizing indeterminacy membership functions for practical 
neutrosophic optimization. Pramanik [16] also proposed the framework of neutrosophic linear goal 
programming for multi-objective optimization with uncertainty and indeterminacy simulteneously.  

Smarandache [17, 18] introduced the concept of neutrosophic number and presented its 
fundamental properties. Jiang and Ye [19] presented a general neutrosophic number optimization 
model for solving optimal design of truss structures.  Deli and Şubaş [20] developed a ranking 
method for single valued neutrosophic numbers and applied the concept to solve a multi-attribute 
decision making problem. Ye [21] discussed a neutrosophic number linear programming technique 
for neutrosophic number optimization problems where objective functions and constraints are 
described by neutrosophic numbers. Ye et al. [22] presented general solutions of neutrosophic 
number non-linear optimization models for unconstrained and constrained problems. 

In 2018, Pramanik and Banerjee [23] discussed a solution methodology for single-objective 
linear programming problem where the coefficients of objective functions and the constraints are 
neutrosophic numbers. Pramanik and Banerjee [24] also studied GP technique for multi-objective 
linear programming problem with neutrosophic coefficients. Recently, Pramanik and Dey [25] 
proposed novel GP models for solving bi-level programming problem with neutrosophic numbers 
by minimizing deviational variables. In this paper, we extend the concept of Pramanik and Dey [25] 
to solve MLP problem with neutrosophic numbers based on GP strategy. 

We organize the paper in the following way. In section 2, some definitions concerning interval 
numbers, neutrosophic numbers and their essential properties are given. In section 3, we present the 
mathematical formulation of MLP problem described by neutrosophic numbers. In section 4, the GP 
strategies for MLP problem with neutrosophic numbers is discussed by considering upper 
(superior) and lower (inferior) preference bounds on the decision vectors of the level DMs. In section 
5, an application of the developed strategy for MLP problem is demonstrated. Finally, conclusion 
with some future scope of research is provided in the last section.  

2. Preliminaries 

In the section, we provide some basic definitions regarding interval numbers, neutrosophic 
numbers. 
2.1 Interval number [26] 

An interval number is defined by P = [PL, PU] = {p: PL  p  PU, p  }, where PL, PU are left and 
right limit of the interval P on the real line . 
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Definition 2.1: Let  (P) and  (P) be the midpoint and the width of an interval number, 

respectively. 

Then,  (P) = 
2

1 [PL + PU] and  (P) = [PU - PL] 

The scalar multiplication of P by  is defined as given below. 

 P =
0],,[

,0],,[








LU

UL

PP

PP
 

The absolute value of P is defined as given below. 

| P| = 
0],,[

0}],,max{,0[

,0],,[







ULU

ULUL

LUL

PPP

PPPP

PPP

 

The binary operation * between P1 = [ LP1 , UP1 ] and P2 = [ LP2 , UP2 ] is defined as follows: 

P1* P2 = {p1* p2: LP1  p1  UP1 , LP2  p2  UP2 , p1, p2  }. 

2.2 Neutrosophic number [17, 18] 
A neutrosophic number is represented by E = m + nI, where m, n are real numbers where m is 

determinate part and nI is indeterminate part and I  [I L, I U ] represents indeterminacy. 
Therefore, E = [m + nI L, m + nI U] = [EL, EU], (say) 

Example: Suppose a neutrosophic number E = 2 + 3I, where 2 is determinate part and 3I is 
indeterminate part. Here, we take I  [0.2, 0.7]. Then, E becomes an interval number of the form N = 
[2.6, 4.1]. 
Now, we define some properties regarding neutrosophic numbers as follows: 
Suppose that E1 = [m1 + n1I1] = [m1 + n1

LI1 , m1 + n1
UI1 ] = [ LE1 , UE1 ] and E2 = [m2 + n2 I2] = [m2 + n2

LI2 , m2 

+ n2
UI2 ] = [ LE2 , UE2 ] be two neutrosophic numbers where I1  [ LI1 , UI1 ], I2  [ LI2 , UI2 ], then 

(i). E1 + E2 = [ LE1 + LE2 , UE1 + UE2 ], 

(ii). E1 - E2 = [ LE1 - UE2 , UE1 - LE2 ], 

(iii). E1   E2 = [Min { LE1  LE2 , LE1  UE2 , UE1  LE2 , UE1  UE2 }, Max 

{ LE1  LE2 , LE1  UE2 , UE1  LE2 , UE1  UE2 }] 
(iv). E1 / E2 = [Min { LE1 /

LE2 , LE1 /
UE2 , UE1 /

LE2 , UE1 /
UE2 }, Max { LE1 /

LE2 , LE1 /
UE2 , UE1 /

LE2 , UE1 /
UE2 }], if 0  

E2. 

3. Formulation of MLP problem for minimization-type objective function with neutrosophic 
numbers 

Mathematically, an MLP problem with neutrosophic numbers for minimization-type objective 
function at every level can be formulated as given below. 

1x
Min Z1 (x) = [A11 + B11I11] x1 + [A12 + B12 I12] x2 + ... + [A1k + B1k I1k] xk + [G1 + H1I1]                      (1)  

2x
Min Z2 (x) = [A21 + B21I21] x1 + [A22 + B22 I22] x2 + ... + [A2k + B2k I2k] xk + [G2 + H2I2]                      (2) 

kx
Min Zk (x) = [Ak1 + Bk1Ik1] x1 + [Ak2 + Bk2 I12] x2 + ... + [Akk + Bkk Ikk] xk + [Gk + HkIk]                       (3)  

Subject to  

xX ={x = (x1, x2, ..., xk)   RN |[C1 + D1
/

1I ] x1 + [C2 + D2
/
2I ] x2 + ... + [Ck + Dk

/
kI ] xk   + I/, x  0}. (4) 

Here, xi = (xi1, xi2, ..., 
iiNx )T: Decision vector under the control of i-th level DM, i = 1, 2, .., k. Ai1, 

Bi1 (i = 1, 2, ..., k) are N1- dimension row vectors; Ai2, Bi2 (i = 1, 2, ..., k) are N2 - dimension row vectors; 
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and similarly, Aik, Bik (i = 1, 2, ..., k) are Nk - dimension row vectors where N = N1 + N2 + ... + Nk; and Gi, 
Hi (i = 1, 2, ..., k) are constants. Ci, Di (i = 1, 2, ..., k) are M Ni (i = 1, 2, ..., k) constant matrix and  , are 
M dimensional constant column matrix. X (  ) is considered compact and convex in RN. Also, we 
have Iij  [ L

ijI , U
ijI ], i = 1, 2, ..., k; j = 1, 2, ..., k; Ii  [ L

iI , U
iI ], /

iI  [ L
iI / , U

iI / ], i = 1, 2, ..., k. Representation 
of an MLP problem is shown in Figure 1 as follows. 
      
First level 

 
 

 
Second level 

 
                                                     
                                             

    . 
    . 

                                                   
      
 k-th level 

 

Figure 1.  Depiction of an MLP problem 

4. Goal programming strategy for solving MLP problem involving neutrosophic numbers 

The MLP problem with neutrosophic numbers that is defined in Section 3 can be restated as 
follows: 
First level:  

1x
Min Z1 (x) = [A11 + B11I11] x1 + [A12 + B12 I12] x2 + ... + [A1k + B1k I1k] xk + [G1 + H1I1] 

= {[A11 + B11
LI11 ] x1 + [A12 + B12

LI12 ] x2 + ... + [A1k + B1k
L
kI1 ] xk + [G1 + H1

LI1 ], [A11 + B11
UI11 ] x1 + [A12 + B12

UI12 ] 

x2 + ... + [A1k + B1k
U
kI1 ] xk + [G1 + H1

UI1 ]} = [ LS1 (x), US1 (x)] (say);                                      (5) 
Second level:  

2x
Min  Z2 (x) = [A21 + B21I21] x1 + [A22 + B22 I22] x2 + ... + [A2k + B2k I2k] xk + [G2 + H2 I2] 

= {[A21 + B21
LI21] x1 + [A22 + B22

LI22 ] x2 + ... + [A2k + B2k
L
kI2 ] xk + [G2 + H2

LI 2 ], [A21 + B21
UI21] x1 + [A22 + B22

UI22 ] 

x2 + ... + [A2k + B2k
U
kI2 ] xk + [G2 + H2

UI 2 ]} = [ LS2 (x), US2 (x)] (say);                                      (6) 
and similarly, for 

k- th level: 

kx
Min  Zk (x) = [Ak1 + Bk1Ik1] x1 + [Ak2 + Bk2 Ik2] x2 + ... + [Akk + Bkk Ikk] xk + [Gk + Hk Ik] 

= {[Ak1 + Bk1
L
kI 1 ] x1 + [Ak2 + Bk2

L
kI 2 ] x2 + ... + [Akk + Bkk

L
kkI ] xk + [Gk + Hk

L
kI ], [Ak1 + Bk1

U
kI 1 ] x1 + [Ak2 + Bk2

U
kI 2 ] 

x2 + ... + [Akk + Bkk
U
kkI ] xk + [Gk + Hk

U
kI ]} = [ L

kS (x), U
kS (x)] (say);                                      (7)                                            

and the system constrains  reduce to  
[C1 + D1

/
1I ] x1 + [C2 + D2 /

2I ] x2 + ...+  [Ck + Dk
/
kI ] xk   + I/ 



Neutrosophic Sets and Systems, Vol. 29, 2019                                                                                                                                    246
 

 
Surapati Pramanik, Partha Pratim Dey, Multi-level linear programming problem with neutrosophic numbers: A goal 
programming strategy 
 

  {[C1 + D1
LI /

1 ] x1 + [C2 + D2
LI /

2 ] x2 + ...+  [Ck + Dk
L

kI / ] xk, {[C1 + D1
UI /

1 ] x1 + [C2 + D2
UI /

2 ] x2 + ...+  [Ck 

+ Dk
U

kI / ] x  [  + LI / ,  + UI / ] = [RL, RU] (say) 

 [ LW (x), UW (x)]  [RL, RU].                                                                   (8) 
Proposition 1. [27] 

If 
 j

jjn

j
z],[ 21

1
 [q1, q2], then 

 j
jn

j
z][ 2

1
 q1, 

 j
jn

j
z][ 1

1
  q2 are the maximum and minimum 

value range inequalities for the constraint condition, respectively. 
According to the proposition 1 of Shaocheng [27], the interval inequality of the system 

constraints (8) transform to the following inequalities as follows: 
[C1 + D1

LI /
1 ] x1 + [C2 + D2

LI /
2 ] x2  RU, [C1 + D1

UI /
1 ] x1 + [C2 + D2

UI /
2 ] x2  RL, xi0, i = 1, 2, 

i.e. LW (x)   RU, 
UW (x)  RL, x0. 

Hence, the minimization-type MLP problem can be re-formulated as follows: 
First level: 

1x
Min Z1 (x) = [ LS1 (x), US1 (x)], 

Second level: 
2x

Min Z2 (x) = [ LS2 (x), US2  (x)], 

. 

. 
k-th level:

 kx
Min Zk (x) = [ L

kS (x), U
kS  (x)], 

Subject to  

[ LW (x), UW (x)]  [RL, RU], x0.                                                            (9) 
For getting the best optimal solution of Zi, (i = 1, 2, ..., k), the following problem is solved owing 

to Ramadan [28] as follows: 

Xx
Min


Zi (x) = L
iS (x), i = 1, 2, ..., k 

Subject to  

UW (x)   RL, x0, i = 1, 2, ..., k.                                                            (10) 
We solve the Eq. (10) and let B

ix = ( B
i1x , B

i2x , ..., B

IiNx , B

1IiNx


, ..., B
iNx ), (i = 1, 2, ..., k)  be the 

individual best solution of i-th level DM and L
iS ( B

ix ), (i = 1, 2, ..., k) be the  individual best objective 
value of i-th level DM, (i = 1, 2, ..., k). 

For obtaining the worst optimal solution of Zi, (i = 1, 2, ..., k), we solve the following problem 
due to Ramadan [28] as given below. 

Xx
Min


Zi (x) = U
iS (x), i = 1, 2, ..., k 

Subject to  

WL (x)   RU, x0.                                                                        (11) 
Let *

ix = ( *
i1x , *

i2x , ..., *
iN I

x , *
iN 1I

x


, ..., *
iNx ), (i = 1, 2, ..., k)  be the individual worst solution of i-th 

level DM subject to the given constraints and U
iS ( *

ix ), (i = 1, 2, ..., k) be the  individual worst 
objective value of i-th level DM, (i = 1, 2, ..., k).     

 Therefore, [
L
iS (

B
ix ),

U
iS (

*
ix )] be the optimal value of i-th level DM, (i = 1, 2, ..., k)  in the interval 

form. Let [


iT ,

iU ] be the target interval of i-th objective functions set by level DMs. 

The target level of i-th objective function can be formulated as follows:  
U
iS (x)


iT , (i = 1, 2, ..., k) 
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L
iS (x) 


iU , (i = 1, 2, ..., k). 

Hence, the goal achievement functions are formulated as follows: 

-
U
iS (x) +

U
id = -


iT , (i = 1, 2, ..., k) 

L
iS (x) +

L
id =


iU , (i = 1, 2, ..., k) 

where
U
id ,

L
id , (i = 1, 2, ..., k) are deviational variables. 

In a large hierarchical organization, the individual benefit of the level DMs are not same, 
cooperation between k level DMs is necessary to arrive at a compromise optimal solution.  
Suppose that )x,...,x,x,...,x,x( B

iN
B

1iN
B
iN

B
i2

B
i1 ii B

ix , (i = 1, 2, ..., k) be the individual best solution of i-th 

level DM. Suppose (
B
ix - i ) and (

B
ix + i ), (i = 1, 2, ..., k) be the lower and upper bounds of decision 

vector provided by i-th level DM where i  and i , (i = 1, 2, ..., k) are the negative and positive 
tolerance variables which are not essentially equal [25, 29-41].  

Now by considering the preference bounds of the decision variables, we propose three 
alternative GP models for MLP problem with neutrosophic numbers as follows: 
GP Model I. 

Min 


k

i 1
(

U
id +

L
id ) 

Subject to 

-
U
iS (x) +

U
id = -


iT , (i = 1, 2, ..., k) 

L
iS (x) +

L
id =


iU , (i = 1, 2, ..., k) 

LW (x)   RU, UW (x)  RL,  

(
B
ix - i )xi (

B
ix + i ), (i = 1, 2, ..., k) 

L
id ,

U
id , x0, (i = 1, 2). 

GP Model II. 

Min 


k

i 1
(

U
i

U
i dw +

L
i

L
i dw ) 

Subject to 

-
U
iS (x) +

U
id = -


iT , (i = 1, 2, ..., k) 

L
iS (x) +

L
id =


iU , (i = 1, 2, ..., k) 

LW (x)   RU, UW (x)  RL,  

(
B
ix - i  )xi  (

B
ix + i ), (i = 1, 2, ..., k) 

U
iw 0, 

L
iw 0, (1, 2, ..., k) 

L
id ,

U
id , x0, (1, 2, ..., k). 

GP Model III. 
Min   
Subject to 

-
U
iS (x) +

U
id = -


iT , (i = 1, 2, ..., k) 

L
iS (x) +

L
id =


iU , (i = 1, 2, ..., k) 

LW (x)   RU, UW (x)  RL,  

(
B
ix - i  )xi  (

B
ix + i ), (i = 1, 2, ..., k) 
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 
U
id , 

L
id , (i = 1, 2) 

L
id ,

U
id , x0, (1, 2, ..., k). 

A flowchart of the proposed strategy for MLP problem with neutrosophic coefficients is shown in 
Figure 2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flow chart of an MLP 

5. Numerical Example  

We consider the following MLP problem with neutrosophic numbers to demonstrate the 
proposed GP procedure. Without any loss of generality we consider I [0, 1]. 
First level: 

 
1x

Min Z1 (x) = [11 + 2I] x1 + [7 + 3I] x2 + [3 + I] x3, 

Second level: 

2x
Min Z2 (x) = [1 + 2I] x1 + [2 + I] x2 + [2 + 3I] x3+ [4+ I], 

Third level: 

3x
Min Z3 (x) = [1 + 2I] x1 + [2 + I] x2 + 0.5 x3+ [5+ I], 

Subject to  
[3+ 2I] x1 + [1 + I] x2+ [1 + 2 I] x3 [5+ 2I],  
[4+ I] x1 + [2 + 3I] x2 - [2 + I] x3 [4+ 3I],  
[1+ I] x1 + [2 + 2I] x2+ [2 + I] x3 [3+ 2I],  
x1, x2, x30. 
Using interval programming technique, the transformed problem of first level DM can be 

presented as follows (see Table 1): 
 

Start 
Every DM presents his/ her linear objective function 

with neutrosophic numbers 

Linear constraints with neutrosophic  numbers are 

given 

Transform the MLP problem with neutrosophic 

numbers into the MLP problem interval numbers  

Preference bounds are assigned by the level DMs  

Three novel GP models are proposed 

GP Models are solved to obtain optimal solution 

compromise solution 
Stop 

Goal achievemnt functions are developed  
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Table 1. First level DM’s problem for best and worst solutions 
________________________________________________________________________________________ 

First level DM’s problem to obtain                     First level DM’s problem to obtain        
best solution                                                worst solution 

________________________________________________________________________________________ 
Min LS1 (x) = 11 x1 + 7x2 + 7x3                                            Min US1 (x) = 13 x1 + 10x2 + 4x3 

Subject to                                           Subject to 
5 x1 + 2 x2+ 3x35,                                    3 x1 + x2 + x37, 

5 x1 + 5 x2- 3x34,                                    4 x1 + 2 x2- 2x37, 
2 x1 + 4 x2+ 3x33,                                        x1 + 2 x2+ 2x35, 

x1, x2, x30.                                          x1, x2, x30. 
_______________________________________________________________________________ 

The best and worst solutions of First level DM are calculated as follows (see Table 2): 
 

Table 2. First level DM’s best and worst solutions 
________________________________________________________________________________________ 

The best solution                                          The worst solution 
_______________________________________________________________________________ 

BS1 = 10.536 at (0.78, 0.171, 0.252)                           
*
1S = 34.3 at (1.8, 0.75, 0.85) 

__________________________________________________________________________________ 
The transformed problem of second level DM can be presented as follows (see Table 3): 

 
 

Table 3. Second level DM’s problem for best and worst solutions 
________________________________________________________________________________________ 

Second level DM’s problem to get               Second level DM’s problem to get  
best solution                                    worst solution 

___________________________________________________________________________ 
Min LS1 (x) = x1 + 2x2 + 2x3+ 4                      Min US2 (x) = 3x1 + 3x2 + 5 x3+ 5 

Subject to                                       Subject to 
5 x1 + 2 x2+ 3x35,                                3 x1 + x2+ x37, 

5 x1 + 5 x2- 3x34,                                4 x1 + 2 x2- 2x37, 
2 x1 + 4 x2+ 3x33,                                   x1 + 2 x2+ 2x35, 

x1, x2, x30.                                      x1, x2, x30. 
_______________________________________________________________________________ 

The best and worst solutions of second level DM are determined as given below (see Table 4) 
 

Table 4. Second level DM’s best and worst solutions 
_____________________________________________________________________________________ 

The best solution                                              The worst solution 
______________________________________________________________________________ 

BS2 = 5.5 at (0.875, 0.312, 0)                                    
*
2S = 15.2 at (1.8, 1.6, 0) 

_______________________________________________________________________________ 
Similarly, the transformed problem of third level DM can be shown as follows (see Table 5): 
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Table 5. Third level DM’s problem for best and worst solutions 
____________________________________________________________________________________ 

Third level DM’s problem to get                     Third level DM’s problem to get                                  
best solution                                             worst solution 

____________________________________________________________________________________ 
Min LS3 (x) = x1 + 2x2 + 0.5x3+ 5                             Min US3 (x) = 3x1 + 3x2 + 0.5 x3+ 6 

Subject to                                                Subject to 
5 x1 + 2 x2+ 3x35,                                        3 x1 + x2+ x37, 

5 x1 + 5 x2- 3x34,                                        4 x1 + 2 x2- 2x37, 
2 x1 + 4 x2+ 3x33,                                            x1 + 2 x2+ 2x35, 

x1, x2, x30.                                              x1, x2, x30. 
__________________________________________________________________________________ 

The best and worst solutions of third level DM are computed as given below (see Table 6) 
 

Table 6. Third level DM DM’s best and worst solutions 
_____________________________________________________________________________________ 

The best solution                                              The worst solution 
______________________________________________________________________________ 

BS3 = 6.167 at (1, 0, 0.333)                                    
*
3S = 13.85 at (2.4, 0, 1.3) 

______________________________________________________________________________ 
The objective function of first level DM with specified targets can be presented as follows: 

11x1 + 7x2 + 3x335, 13x1 + 10x2 + 4x311, 
The goal achievement functions of first level DM with specified targets can be presented as follows: 

11x1 + 7x2 + 3x3+ Ld1  =35, -13x1 -10x2 - 4x3+ Ud1 = -11, 

The objective function of second level DM with specified targets can be presented as follows: 
x1 + 2x2 + 2x3 16, 3x1 + 3x2 + 5x3+ 5 6, 

Also, the goal achievement functions of LDM with specified targets can be developed as follows: 

x1 + 2x2 + 2x3+ Ld2  =16, -3x1 -3x2 - 5x3+ 5 + Ud2 = -6, 

Similarly, the objective function of third level DM with specified targets can be presented as follows: 
x1 + 2x2 + 0.5x3+ 5 14, 3x1 + 3x2 + 0.5x3+ 6 7, 

Also, the goal achievement functions of third level DM with specified targets can be established as 
follows: 

x1 + 2x2 + 0.5x3+ 5 + Ld3  =14, -3x1 -3x2 -0.5x3- 6 + Ud3 = -7, 

Let, the first level DM assigns preference bounds on the decision variable x1 as 0.78 – 0.7  
x10.78 + 0.8, the second level DM offers preference bounds on the decision variable x2 as 0.312 – 0. 
3   x20.312 + 1.5, and the third level DM provides preference bounds on the decision variable x3 as 
0.333 – 0. 3  x30.333 + 1.5, in order to get optimal compromise solution.  

Therefore, the GP models for MLP problem involving neutrosophic coefficients can be 
developed as follows: 
GP Model I. 

Min (
Ld1 +

Ud1 +
Ld2 +

Ud2 +
Ld3 +

Ud3 ) 
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Subject to  

11x1 + 7x2 + 3x3+
Ld1  = 35,  

-13x1 -10x2 - 4x3+
Ud1 = -11, 

x1 + 2x2 + 2x3+
Ld2  =16,  

-3x1 -3x2 - 5x3+ 5 +
Ud2 = -6, 

x1 + 2x2 + 0.5x3+ 5 +
Ld3  =14,  

-3x1 -3x2 -0.5x3- 6 +
Ud3 = -7, 

5 x1 + 2 x2+ 3x35, 
5 x1 + 5 x2- 3x34, 
2 x1 + 4 x2+ 3x33, 
3 x1 +  x2+ x37, 
4 x1 + 2 x2- 2x37, 
x1 + 2 x2+ 2x35, 
0.78 – 0.7  x10.78 + 0.8, 
0.312 – 0. 3  x20.312 + 1.5, 
0.333 – 0. 3  x30.333 + 1.5 

L
id ,

U
id 0, (i = 1, 2, 3) 

x1, x2, x30. 
 
GP Model II. 

Min 6
1 (

Ld1 +
Ud1 +

Ld2 +
Ud2 +

Ld3 +
Ud3 ) 

Subject to  

11x1 + 7x2 + 3x3+
Ld1  = 35,  

-13x1 -10x2 - 4x3+
Ud1 = -11, 

x1 + 2x2 + 2x3+
Ld2  =16,  

-3x1 -3x2 - 5x3+ 5 +
Ud2 = -6, 

x1 + 2x2 + 0.5x3+ 5 +
Ld3  =14,  

-3x1 -3x2 -0.5x3- 6 +
Ud3 = -7, 

5 x1 + 2 x2+ 3x3 5, 
5 x1 + 5 x2- 3x3 4, 
2 x1 + 4 x2+ 3x3 3, 
3 x1 +  x2+ x3 7, 
4 x1 + 2 x2- 2x3 7, 
x1 + 2 x2+ 2x3 5, 
0.78 – 0.7  x1 0.78 + 0.8, 
0.312 – 0. 3  x2 0.312 + 1.5, 
0.333 – 0. 3  x3 0.333 + 1.5 

L
id ,

U
id  0, (i = 1, 2, 3) 

x1, x2, x3 0. 
 
GP Model III. 

Min   
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Subject to  

11x1 + 7x2 + 3x3+ Ld1  =35,  

-13x1 -10x2 - 4x3+ Ud1 = -11, 

x1 + 2x2 + 2x3+ Ld2  =16,  

-3x1 -3x2 - 5x3+ 5 + Ud2 = -6, 

x1 + 2x2 + 0.5x3+ 5 + Ld3  =14,  

-3x1 -3x2 -0.5x3- 6 + Ud3 = -7, 

5 x1 + 2 x2+ 3x3 5, 

5 x1 + 5 x2- 3x3 4, 

2 x1 + 4 x2+ 3x3 3, 

3 x1 +  x2+ x3 7, 

4 x1 + 2 x2- 2x3 7, 

x1 + 2 x2+ 2x3 5, 

0.78 – 0.7  x1 0.78 + 0.8, 

0.312 – 0. 3  x2 0.312 + 1.5, 

0.333 – 0. 3  x3 0.333 + 1.5, 

  L
iD ,  U

iD , (i = 1, 2, 3) 

L
id , U

id  0, (i = 1, 2, 3) 

x1, x2, x3 0. 

The solutions of the developed GP models are shown in the Table 7 as follows: 

 
Table 7. The solutions of the MLP problem involving neutrosophic numbers 

_______________________________________________________________________________ 
GP Model     Solution point     Objective values 

      (x1, x2, x3)     Z1   Z2   Z3 
_____________________________________________________________________________________ 

GP Model I    (1.58, 1.3, 0.96)  (29.36, 37.38)  (10.10, 18.44) (9.66, 15.12) 
GP Model II    (1.58, 1.3, 0.96)  (29.36, 37.38)  (10.10, 18.44) (9.66, 15.12) 
GP Model III    (1.58, 1.3, 0.96)  (29.36, 37.38)  (10.10, 18.44) (9.66, 15.12) 

_____________________________________________________________________________________ 
 

Note: It is observed that the three GP models produce the same optimal compromise solution set. 
 

6. Conclusion 
In the paper, we have proposed three new goal programming models for multi-level linear 

programming problem where objective and constraints are linear functions with neutrosophic 
coefficients. By applying interval programming procedure, we transform the multi-level linear 
programming problem into interval programming problem. Then, we determine best and worst 
solutions for all k -level decision makers and establish the goal achievement functions. We consider 
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preference upper and lower bounds on the decision variables under the control of all k - level 
decision makers in order to achieve optimal compromise solution of the multi-level system. Finally, 
goal programming models are proposed to solve multi-level linear programming problem by 
minimizing deviational variables. A multi-level linear programming under neutrosophic numbers 
environment is finally solved to show the applicability and feasibility of the proposed GP strategy. 

In future, we hope to utilize the proposed GP strategy to solve multi-objective decentralized 
bi-level linear programming, multi-objective decentralized multi-level linear programming 
problems, and other real world decision-making problems with neutrosophic numbers information. 
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