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Abstract: In the fifth version of our response-paper [26] to Imamura’s criticism, we recall that
NonStandard Neutrosophic Logic was never used by neutrosophic community in no application,
that the quarter of century old neutrosophic operators (1995-1998) criticized by Imamura were never
utilized since they were improved shortly after but he omits to tell their development, and that in
real world applications we need to convert/approximate the NonStandard Analysis hyperreals,
monads and binads to tiny intervals with the desired accuracy — otherwise they would be
inapplicable.

We point out several errors and false statements by Imamura [21] with respect to the inf/sup of
nonstandard subsets, also Imamura’s “rigorous definition of neutrosophic logic” is wrong and the
same for his definition of nonstandard unit interval, and we prove that there is not a total order on
the set of hyperreals (because of the newly introduced Neutrosophic Hyperreals that are

indeterminate), whence the Transfer Principle from R to R* is questionable.

After his criticism, several response publications on theoretical nonstandard neutrosophics
followed in the period 2018-2022. As such, I extended the NonStandard Analysis by adding the left
monad closed to the right, right monad closed to the left, pierced binad (we introduced in 1998), and
unpierced binad - all these in order to close the newly extended nonstandard space (R*) under
nonstandard addition, nonstandard subtraction, nonstandard multiplication, nonstandard division,
and nonstandard power operations [23, 24].

Improved definitions of NonStandard Unit Interval and NonStandard Neutrosophic Logic, together
with NonStandard Neutrosophic Operators are presented.

Keywords: Neutrosophic Logic; NonStandard Analysis; NonStandard Neutrosophic Logic;
Neutrosophic Operators; Neutrosophic Hyperreals

1. Introduction

I recall my first two answers to Imamura’s 7t Nov. 2018 critics [1] about the NonStandard
Neutrosophic Logic [20] on 24 Nov. 2018 (version 1) and 13 Feb. 2019 (version 2), and I
update them after Imamura has published a third version [21] on a journal without even citing my
previous response papers, nor making any comments or critics to them, although the paper was
uploaded to arXiv shortly after him and also online at my UNM [20]. I find it as dishonest.

Surely, he can recall over and over again the first neutrosophic connectives, but he has to tell the
whole story: they were never used in no application, and they were improved several times starting

Florentin Smarandache, Improved Definition of NonStandard Neutrosophic Logic and Introduction to Neutrosophic
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with the American researcher Ashbacher’s neutrosophic connectives in 2002, Rivieccio in 2008, and
Wang, Smarandache, Zhang, and Sunderraman in 2010. Version

The only reason I have added the nonstandard form to neutrosophic logic (and similarly to
neutrosophic set and probability) was in order to make a distinction between Relative Truth (which is
truth in some Worlds, according to Leibniz) and Absolute Truth (which is truth in all possible Words,
according to Leibniz as well) that occur in philosophy.

Another possible reason may be when the neutrosophic degrees of truth, indeterminacy, or
falsehood are infinitesimally determined, for example: the right monad (0.8*) means a value strictly
bigger than 0.8 but infinitely closer to 0.8. And similarly, the left monad (-0.8) means a value strictly
smaller than 0.8 but infinitely closer to 0.8. While the binad (:0.8*) means a value different from 0.8
but infinitely closer (from the right-hand side, or left-hand side) to 0.8. But they do not exist in our
real world (the real set R), only in the hyperreal set R*, so we need to convert / approximate these
hyperreal sets by tiny real intervals with the desired accuracy ( ¢ ), such as: (0.8,0.8+¢),
(0.8—¢,0.8), or (0.8—¢,0.8)(0.8,0.8+¢) respectively [24].

Since the beginning of the neutrosophic field, many things have been developed and evolved,
where better definitions, operators, descriptions, and applications of the neutrosophic logic have
been defined. The same way happens in any scientific field: starting from some initial definitions and
operations the community improves them little by little. The reader should check the last
development of the neutroosphics - there are thousands of papers, books, and conference
presentations online, check for example: http://fs.unm.edu/neutrosophy.htm. It is not fear to keep

recalling the old definitions and operators since they have been improved in the meantime. The last
development of the field should be revealed, not omitted.

The general definition of the neutrosophic set used in the last years.

Let U be a universe and a set S included in U. Then each element X € S, denoted as

x(T(x), I(x), F(x)), has a degree of membership/truth T(x) with respect to S, degree of
indeterminate-membership I(x), and degree of nonmembership F(x), where

T(x), I(x), F(x) are real subsets of [0, 1].

I was more prudent when I presented the sum of single valued standard neutrosophic
components, saying:

Let T, 1, F be single valued numbers, T, I, F € [0, 1], such that 0<T+I1+F<3.

A friend alerted me: “If T, I, F are numbers in [0, 11, of course their sum is between 0 and 3.” “Yes, 1
responded, I afford this tautology, because if I did not mention that the sum is up to 3, readers would
take for granted that the sum T + I + F is bounded by 1, since that is in all logics and in probability!”

Similarly, for the Neutrosophic Logic, but instead of elements we have propositions (in the
propositional logic).

2. Errors in Imamura’s paper [21]:

2.1 Imamura’s assertation, referring to the Neutrosophic components T, , F as subsets, that:

“Subsets of 10, 1*[” may have neither infima nor suprema” is false.

Counter-Examples of subsets that have both infima and suprema:

Let denote the nonstandard unit interval U = J-0, 1.

Let M = ]0.2+,-0.3[, which is a subset of U, then

inflM) = 0.2, sup(M) = 0.3.

In general, for any real numbers a and b, such that 0 < a <b < 1, one has the corresponding
nonstandard subset S = Ja*, -b[ included in U, that has both exist: inf(S) = a, sup(S) = b.

As a particular and interesting case, one has: ]0", <] 0,1'[. In general, for any finite real

numbers a,b e R, a<b, the nonstandard subset S = Ja*, -b[ included in R’, has both: inf(S) = a, sup(S)

0 + O+ 0 - -0
= b. More generally, for any X €{a,a,a} and any Yy e{b,b, b} the nonstandard subset ]X, y[ has
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0 0
Inf(x) =aand sup(y)=Db; even the subset ] a,b[=[a, b], which normally is standard, may become

nonstandard if it contains inside at least one hyperreal. Of course, if at least one of x or y is hyperreal,
then the subset ]x, y[ is nonstandard.

2.2 Imamura’s “rigorous definition of neutrosophic logic” is wrong.

Let K be a nonarchimedean ordered field. The ordered field K is called nonarchimedean if it has
nonzero infinitesimals.

He defined, for X,y € K, x and y are said to be infinitely close (denoted by X = V) if x-y is

infinitesimal. Then x is roughly smaller than y (denoted as X<Y)ifx<yor X=Y.

This is wrong. See the below Counter-Examples.
Let &> 0 be a positive infinitesimal, also X=5+¢& and Y =5—¢& be hyperreals.

Of course, X e (5"), right monad of 5, and Y € ("5), left monad of 5.

5+¢ is infinitely closer to 5, but above (strictly greater than) 5;
while 5— g is infinitely closer to 5, but below (strictly smaller than) 5.
Then x —y =2 &, which is infinitesimal, and, because x is infinitely close to y (X = Y ), one has that

x is roughly smaller than y (or X<Y), according to Imamura’s definition.

But this is false, since for £ >0 clearly 5+&>5>5—¢, whence x > y.
Therefore, x is not roughly smaller than y, but the opposite.
General Contra-Examples:
Let &> 0 be a positive infinitesimal, and the real number a e R.
Then for X=a+¢&and Y =a—& we get the same wrong result x <y, according to Imamura.
Further on, for X=a+ & and y =4, one gets the wrong result x <y.
And similarly, forx=aand Y =a— &, one gets the wrong result x <y.

2.3 There exists no order between a and -a*in R".

Let a€R be a real number, and & be a positive or negative (we do not know exactly)
infinitesimal.

Then Yy ="a" is a hyperreal number of the form y=a+¢&, where & may be positive or
negative infinitesimal.

Let ("@") be the left-right binad [5] of a, defined as:
("a")={ate, where ¢is a positive infinitesimal}.
Of course, ae(al),

The transfer principle [21] states that R* has the same first order properties as R.
But R" has only a partial order, since there is no order between a and -a*in R’,

while R has a total order.
-0 -0+ 0+ -0 0+ -0 0+
Onhas a < a < a,then a< a < a,whence a < a.

-0+ -0 _
But, similar problems of non-order relationships are between a , & respectivelyand ~a'.

Hence, the Transfer Principle from R to R"is questionable...

3. Uselessness of Nonstandard Analysis in Neutrosophic Logic, Set, Probability. Statistics, et al.

Imamura’s discussion [1] on the definition of neutrosphic logic is welcome, but it is useless, since
from all neutrosophic papers and books published, from all conference presentations, and from all
MSc and PhD theses defended around the world, etc. (more than two thousands) in the last two
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decades since the first neutrosophic research started (1998-2022), and from thousands of neutrosophic
researchers, not even a single one ever used the nonstandard form of neutrosophic logic, set, or
probability and statistics in no occasion (extended researches or applications).

All researchers, with no exception, have used the Standard Neutrosophic Set and Logic [so no stance
whatsoever of Nonstandard Neutrosophic Set and Logic], where the neutrosophic components T, I, F are
real subsets of the standard unit interval [0, 1].

People don't even write "standard" since it is understood, because nonstandard was never used
in no applications - it is unusable in real applications.

Even more, for simplifying the calculations, the majority of researchers have utilized the Single-
Valued Neutrosophic Set and Logic {when T, I, F are single real numbers from [0, 1]}, on the second place
was Interval-Valued Neutrosophic Set and Logic {when T, I, F are intervals included in [0, 1]}, and on the
third one the Hesitant Neutrosophic Set and Logic {when T, I, F were discrete finite subsets included in
[0, 1]}.

In this direction, there have been published papers on single-valued “neutrosophic standard
sets” [12, 13, 14], where the neutrosophic components are just standard real numbers, considering the
particular case when 0 < T+ ]+ F <1 (in the most general case 0 < T+ + F < 3).

Actually, Imamura himself acknowledges on his paper [1], page 4, that:

“neutrosophic logic does not depend on transfer, so the use of non-standard analysis is not
essential for this logic, and can be eliminated from its definition”.

Entire neutrosophic community has found out about this result and has ignored the nonstandard
analysis from the beginning in the studies and applications of neutrosophic logic for two decades.

4. Applicability of Neutrosophic Logic et al. vs. Theoretical NonStandard Analysis

He wrote:
“we do not discuss the theoretical significance or the applications of neutrosophic logic”

Why doesn’t he discuss of the applications of neutrosophic logic? Because it has too many that
brough its popularity among researchers [2], unlike the NonStandard Analysis that is a non-physical
(idealistic, imaginary) object and it is hard to apply it in the real world.

Neutrosophic logic, set, measure, probability, statistics and so on were designed with the
primordial goal of being applied in practical fields, such as:

Artificial Intelligence, Information Systems, Computer Science, Cybernetics, Theory Methods,

Mathematical Algebraic Structures, Applied Mathematics, Automation, Control Systems,

Big Data, Engineering, Electrical, Electronic, Philosophy, Social Science, Psychology,

Biology, Biomedical, Engineering, Medical Informatics, Operational Research,

Management Science, Imaging Science, Photographic Technology, Instruments,

Instrumentation, Physics, Optics, Economics, Mechanics, Neurosciences, Radiology Nuclear,

Medicine, Medical Imaging, Interdisciplinary Applications, Multidisciplinary Sciences etc. [2],

while nonstandard analysis is mostly a pure mathematics.

Since 1990, when I emigrated from a political refugee camp in Turkey to America, working as a
software engineer for Honeywell Inc., in Phoenix, Arizona State, I was advised by American
coworkers to do theories that have practical applications, not pure-theories and abstractizations as “art
pour art”.

5. Theoretical Reason for the Nonstandard Form of Neutrosophic Logic

The only reason I have added the nonstandard form to neutrosophic logic (and similarly to
neutrosophic set and probability) was in order to make a distinction between Relative Truth (which is
truth in some Worlds, according to Leibniz) and Absolute Truth (which is truth in all possible Words,
according to Leibniz as well) that occur in philosophy.
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Another possible reason may be when the neutrosophic degrees of truth, indeterminacy, or
falsehood are infinitesimally determined, for example a value infinitesimally bigger than 0.8 (or 0.8%),
or infinitesimally smaller than 0.8 (or -0.8). But these can easily be overcome by roughly using interval
neutrosophic values and depending on the desired accuracy, for example (0.80, 0.81) and (0.79, 0.80)
respectively.

I wanted to get the neutrosophic logic as general as possible [6], extending all previous logics
(Boolean, fuzzy, intuitionistic fuzzy logic, intuitionistic logic, paraconsistent logic, dialethism), and
to have it able to deal with all kinds of logical propositions (including paradoxes, nonsensical
propositions, etc.).

That’s why in 2013 I extended the Neutrosophic Logic to Refined Neutrosophic Logic [ from
generalizations of 2-valued Boolean logic to fuzzy logic, also from the Kleene’s and Lukasiewicz’s
and Bochvar’s 3-symbol valued logics or Belnap’s 4-symbol valued logic to the most general n-symbol
or n-numerical valued refined neutrosophic logic, for any integer n>1 |, the largest ever so far, when
some or all neutrosophic components T, I, F were respectively split/refined into neutrosophic
subcomponents: T1, Tz, ...; I, I, ...; F1, F2, ...;  which were deduced from our everyday life [3].

6. From Paradoxism movement to Neutrosophy — generalization of Dialectics

I started first from Paradoxism (that I founded in 1980’s as a movement based on antitheses,
antinomies, paradoxes, contradictions in literature, arts, and sciences), then I introduced the
Neutrosophy (as generalization of Dialectics (studied by Hegel and Marx) and of Yin Yang (Ancient
Chinese Philosophy), neutrosophy is a branch of philosophy studying the dynamics of triads,
inspired from our everyday life, triads that have the form:

<A>, its opposite <antiA>, and their neutrals <neutA>,
where <A> is any item or entity [4].

(Of course, we take into consideration only those triads that make sense in our real and scientific
world.)

The Relative Truth neutrosophic value was marked as 1, while the Absolute Truth neutrosophic
value was marked as I* (a tinny bigger than the Relative Truth’s value):

1+ >~ 1, where >~ is a nonstandard inequality, meaning 1+ is nonstandardly bigger than 1.

Similarly for Relative Falsehood / Indeterminacy (which falsehood / indeterminacy in some
Worlds), and Absolute Falsehood / Indeterminacy (which is falsehood / indeterminacy in all possible
worlds).

7. Introduction to Nonstandard Analysis [15, 16]

An infinitesimal number is a number ¢ such that its absolute value | ¢ [ <1/ n, for any non-null
positive integer n. An infinitesimal is close to zero, and so small that it cannot be measured.

The infinitesimal is a number smaller, in absolute value, than anything positive nonzero.

Infinitesimals are used in calculus, but interpreted as tiny real numbers.

An infinite number (w) is a number greater than anything:

1+1+1+...+1 (for any finite number terms)

The infinites are reciprocals of infinitesimals.

The set of hyperreals (non-standard reals), denoted as R’, is the extension of set of the real numbers,
denoted as R, and it comprises the infinitesimals and the infinites, that may be represented on the
hyperreal number line

1/e = wl/1.

The set of hyperreals satisfies the transfer principle, which states that the statements of first order
in R are valid in R* as well [according to the classical NonStandard Analysis]:
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"“Anything provable about a given superstructure V by passing to a nonstandard enlargement
*V of V is also provable without doing so, and vice versa.” It is a result of Lo$' theorem and the
completeness theorem for first-order predicate logic.” [16]

A monad (halo) of an element a € R", denoted by u(a), is a subset of numbers infinitesimally close
toa.
Let’s denote by R-+" the set of positive nonzero hyperreal numbers.

7.1. First Extension of NonStandard Analysis

We consider the left monad and right monad; afterwards we recall the pierced binad
(Smarandache [5]) introduced in 1998:

Left Monad {that we denote, for simplicity, by (-a)} is defined as:

p(a)=(a)={a-x x €ER | x is infinitesimal].

Right Monad {that we denote, for simplicity, by (a*)} is defined as:

w(at)=(a*)={a+x,x €Rs | xis infinitesimal}.

The Pierced Binad {that we denote, for simplicity, by (-a*)} is defined as:

ula) = (a)={a-x, x €R+ | xis infinitesimal} U {a+x, x €R+" | x is infinitesimal}

={a-x, x €R" | x is positive or negative infinitesimall}.

7.1. Second Extension of Nonstandard Analysis [23]

For necessity of doing calculations that will be used in nonstandard neutrosophic logic in order
to calculate the nonstandard neutrosophic logic operators (conjunction, disjunction, negation,
implication, equivalence) and in order to have the Nonstandard Real MoBiNad Set closed under
arithmetic operations, we extend now for the time: the left monad to the Left Monad Closed to the
Right, the right monad to the Right Monad Closed to the Left; and the Pierced Binad to the Unpierced
Binad, defined as follows (Smarandache, 2018-2019):

e  Left Monad Closed to the Right

0 -0
,u(aj = (a) ={a-x|x=0,0r Xe R and x is infinitesimal} = (@) {a}.

-0
And by X=a we understand the hyperreal X=a—¢&, or x = a, where ¢ is a positive

infinitesimal. So, x is not clearly known, X e{a—g,a}.

e Right Monad Closed to the Left
0+

0+
y(ajz(ajz{a+x|x:0, or Xe€ R and x is infinitesimal} = p(a") U{a}.

-0
And by X=a we understand the hyperreal X=a+¢&, or x = a4, where ¢ is a positive

infinitesimal. So, x is not clearly known, X e{a+ &,a}.

e  Unpierced Binad
—0+ -0+ .
,u( a ) = ( a ) ={a+x|x=0,or Xe& R where x is a positive or negative infinitesimal}=

zﬂ(_a)uﬂ<a+)u{a}=(*a) v(a")u{a}.
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-0+
Andby X= a we understand the hyperreal X=a—&,orx=g,0or X=a+¢&, where ¢isa

positive infinitesimal. So, x is not clearly known, X € {a —-&,q,a+ 8}.

The left monad, left monad closed to the right, right monad, right monad closed to the left, the
pierced binad, and the unpierced binad are subsets of R, while the above hyperreals are numbers
from R".

Let’s define a partial order on R".

8. Neutrosophic Strict Inequalities

We recall the neutrosophic strict inequality which is needed for the inequalities of nonstandard
numbers.

Let a, B be elements in a partially ordered set M.

We have defined the neutrosophic strict inequality

a>N

and read as

“a is neutrosophically greater than p”

if

a in general is greater than B,

or a is approximately greater than 5,

or subject to some indeterminacy (unknown or unclear ordering relationship between o and [3) or
subject to some contradiction (situation when o is smaller than or equal to (3) a is greater than f.

It means that in most of the cases, on the set M, a is greater than f.

And similarly for the opposite neutrosophic strict inequality a <N .

9. Neutrosophic Equality

We have defined the neutrosophic inequality

a=N B

and read as
“a is neutrosophically equal to f”

if

« in general is equal to f3,

or « is approximately equal to f,

or subject to some indeterminacy (unknown or unclear ordering relationship between a and f3) or
subject to some contradiction (situation when « is not equal to ) a is equal to {3.

It means that in most of the cases, on the set M, a is equal to .

10. Neutrosophic (Non-Strict) Inequalities

Combining the neutrosophic strict inequalities with neutrosophic equality, we get the >N
and <N neutrosophic inequalities.

Let a,  be elements in a partially ordered set M.

The neutrosophic (non-strict) inequality

a=Nf

and read as

“a is neutrosophically greater than or equal to §”

if

a in general is greater than or equal to B,

or « is approximately greater than or equal to 3,
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or subject to some indeterminacy (unknown or unclear ordering relationship between « and f3) or
subject to some contradiction (situation when o is smaller than [3) « is greater than or equal to .

It means that in most of the cases, on the set M, « is greater than or equal to .

And similarly for the opposite neutrosophic (non-strict) inequality a <N B.

11. Neutrosophically Ordered Set

Let M be a set. (M, <N) is called a neutrosophically ordered set if:
vV a, p €M, one has: either ot <N 3, or a =N f3, or a >N f3.

12. Definition of Standard Part and Infinitesimal Part of a HyperReal Number

For each hyperreal (number) h e R” one defines its standard part

st(h) be the real (standard) part of h, St(h)eR,

and its infinitesimal part, that may be positive (+&), or zero (0), or negative (—&), and any
combination of two or three of them in the case of Neutrosophic Hyperreals that have alternative
(indeterminate) values as seen below, denoted as in(h) € R".

Then h=st(h)+in(h).

Two hyperreal numbers h: and h2 are equal, if:

st(h1) = st(hz2) and in(h1) = in(h2).

e  Examples
Let ¢ be a positive infinitesimal, and the hyperreal numbers:
h=4-ce("4)

def 0
h,=4+0=4¢R
hy=4+se(4)
h, =4—{e, or 0]

={4—6‘,0r4-0}={4—8,01‘4}e[£j
hy :4+{0’or E}=1{4+0,ord+e} =14, 0r4+8}e((2)

hy =4 +{-¢, or £}={4-&,or4+¢) e(ij

h7 :4+{_8’0r 0,or ¢}={4-&,0r4+0,0ord+¢ }={4-&,0r4, or4+$}e(ffj

Then, their standard parts are all the same:
st(h) =st(h,) =...=st(h,) = 4
While their infinitesimal parts are different:

in(h) =—¢
in(h,) =0

in(h,) =&

13. Neutrosophic Hyperreal Numbers

The below cases are indeterminate, as in neutrosophy, that’s why they are called
Neutrosophic Hyperreals, introduced now for the first time:
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in(h,) ={—¢&, or 0}; one can also write that iN(h,) e{—&,0}, because we are not sure if
in(hy)= —& , or in(hs)=0.
in(hy) ={¢, or 0}; one can also write that in(h,) e{¢,0}.

in(hy) ={—¢, or €}, or in(hy) e{—¢,&}.
in(h,) ={-¢, or0,or &}, or in(h;) e{-¢,0,&}.

14. Nonstandard Partial Order of Hyperreals

Let i1 and h2 be hyperreal numbers. Then hi <v hz if:
either st(hi) < st(hz), or st(h1) = st(h2) and in(h1) <~ in(hz).
By in(h1) we understand all possible infinitesimals of /1, and similarly for in(hz).
This makes a partial order on the set of hyperreals R’, because of the Neutrosophic Hyperreals
that have indeterminate infinitesimal parts and cannot always be ordered.

15. Appurtenance of a Hyperreal number to a Nonstandard Set

We define for the first time the appurtenance of a hyperreal number () to a subset S of R,
denoted as €, or an approximate appurtenance (from a Neutrosophic point of view).

As seeing above, a hyperreal number may have one, two, or three infinitesimal parts - depending
on its form.

Let’s denote the standard part of & by st(h), and its infinitesimal part(s) be in(h) = in(h)s, in(h)z,
and in(h)s. We construct three corresponding hyperreal numbers:

h1=st(h) + in(h):

h2 = st(h) + in(h)2

hs = st(h) + in(h)s

Ifall three h,,h,,h ;€ S, then h ey S.If at least one does not belong to S, then h ¢, S.

(In the case when & has only one or two possible infinitesimals, of course we take only them.)
The appurtenance of a hyperreal number to a nonstandard set may be later extended if new
forms of Neutrosophic Hyperreals are constructed in the meantime.

16. Notations and Approximations

Approximation is required with a desired accuracy, since the hyperreals, monads and binads do
not exist in our real world. They are only very abstract concepts built in some imaginary math space.

That’s why they must be approximated by real tiny sets.

As an example, let’s assume that the truth-value (T) of a proposition (P), in the propositional
logic, is the hyperreal T(P) = 0.7+ that means, in nonstandard analysis, according to Imamura [22]:

“The interpretation of T(P) = 0.7+ (right monad of 0.7 in your terminology):

1. the truth value of P is strictly greater than and infinitely close to 0.7 (but its precise
value is unknown);

2. the truth value of P can be strictly greater than and infinitely close to 0.7;

3. the truth value of P takes all hyperreals strictly greater than and infinitely close to 0.7
simultaneously.”

We prove by reductio ad absurdum that such a number does not exist in our real world. Let
assume that 0.7+= w. Then w > 0.7, but on the set of continuous real numbers, in the interval (0.7, w]
there exists a number v such that 0.7 < v < w, therefore v is closer to 0.7 than w, and thus w is not
infinitely close to 0.7. Contradiction. Even Imamura acknowledges about 0.7+ that “its value is
unknown”.
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And because they do not exist in our real world, we need to approximate/convert them with a
given accuracy to the real world, therefore, instead of 0.7+ we may take for example the tiony interval
(0.7, 0.7001) with four decimals, or (0.7, 0.7000001), etc.

In the same way one can prove that, for any real number a €R, its left monad, left monad closed
to the right, right monad, right monad closed to the left, pierced binad, and unpierced binad do not
exist in our real world. They are just abstract concepts available in abstract/imaginary math spaces.

17. Nonstandard Unit Interval

Imamura cites my work:

“by “-a” one signifies a monad, i.e., a set of hyper-real numbers in non-standard analysis:
(-a)={a-x €R.| xis infinitesimal } , and similarly “b+" is a hyper monad:
(b+)={b+x €R. | xis infinitesimal } . ([5] p. 141; [6] p. 9)”

But these are inaccurate, because my exact definitions of monads, since my 1998 first world

neutrosophic publication {see [5], page 9; and [6], pages 385 - 386}, were:
“(-a) ={a—x:x € Re* | x is infinitesimal }, and similarly “b+" is a hyper monad:
(b*) ={b+x:x €Re*| x is infinitesimal }”
Imamura says that:
“The correct definitions are the following:
(-a)={a-x €R.| x is positive infinitesimal },
(b+) ={b+x €R.| x is positive infinitesimal }.”

I did not have a chance to see how my article was printed in Proceedings of the 3rd Conference of
the European Society for Fuzzy Logic and Technology [7], that Imamura talks about, maybe there were
some typos, but Imamura can check the Multiple Valued Logic / An International Journal [6], published
in England in 2002 (ahead of the European Conference from 2003, that Imamura cites) by the
prestigious Taylor & Francis Group Publishers, and clearly one sees that it is: R+ (so, x is a positive
infinitesimal into the above formulas), therefore there is no error.

Then Imamura continues:

“Ambiguity of the definition of the nonstandard unit interval. Smarandache did not give
any explicit definition of the notation J-0, 1*[ in [5] (or the notation #0, 1/ in [6]). He
only said:

Then, we call ] -0, 1* [ a non-standard unit interval. Obviously, 0 and 1, and analogously
non-standard numbers infinitely small but less than 0 or infinitely small but greater than
1, belong to the non-standard unit interval. ([5] p. 141; [6] p. 9).”

Concerning the notations I used for the nonstandard intervals, such as t -l or ] [, it was
imperative to employ notations that are different from the classical [ ] or ( ) intervals, since the
extremes of the nonstandard unit interval were unclear, vague with respect to the real set.

I thought it was easily understood that:

10, I*[ = (-0) V[0, 1] v (1").

Or, using the previous neutrosophic inequalities, we may write:

10,17 ={x €ER’, -0<nx<NI.

Imamura says that:

“Here -0 and 1* are particular real numbers defined in the previous paragraph:
“0=0-¢cand 1* =1+ ¢, where ¢ is a fixed non-negative infinitesimal.”
This is untrue, I never said that “¢ is a fixed non-negative infinitesimal”, € was not fixed, I said
that for any real numbers a and b {see again [5], page 9; and [6], pages 385 - 386}:
“(a)={a—-x:x € R | xisinfinitesimal }, (b*)={b+x:x € R | x is infinitesimal }".
Therefore, once we replace a=0and b =1, we get:
(70) = {0—x: x € R+*| xis infinitesimal },

(1) ={1+x: x € R+*| xis infinitesimal }.
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Thinking out of box, inspired from the real world, was the first intent, i.e. allowing neutrosophic
components (truth / indeterminacy / falsehood) values be outside of the classical (standard) unit real
interval [0, 1] used in all previous (Boolean, multi-valued etc.) logics if needed in applications, so
neutrosophic component values < 0 and > 1 had to occurs due to the Relative / Absolute stuff, with:

O<~v0 and 1*>~1.

Later on, in 2007, I found plenty of cases and real applications in Standard Neutrosophic Logic
and Set (therefore, not using the Nonstandard Neutrosophic Logic and Set), and it was thus possible
the extension of the neutrosophic set to Neutrosophic Overset (when some neutrosophic component is > 1),
and to Neutrosophic Underset (when some neutrosophic component is < 0), and to Neutrosophic Offset (when
some neutrosophic components are off the interval [0, 1], i.e. some neutrosophic component > 1 and some
neutrosophic component < 0). Then, similar extensions to respectively Neutrosophic Over/Under/Off Logic,
Measure, Probability, Statistics etc. [8, 17, 18, 19], extending the unit interval [0, 1] to

[V, Q] withW<0<1<Q,
where ¥, (J are standard real numbers.

Imamura says, regarding the definition of neutrosophic logic that:
“In this logic, each proposition takes a value of the form (T, I, F), where T, I, F are subsets
of the nonstandard unit interval ]-0, 1*[ and represent all possible values of Truthness,
Indeterminacy and Falsity of the proposition, respectively.”

Unfortunately, this is not exactly how I defined it.

In my first book {see [5], p. 12; or [6] pp. 386 — 387} it is stated:

“Let T, I, F be real standard or non-standard subsets of ]-0, 1+[*
meaning that T, I, F may also be “real standard” not only real non-standard.

In The Free Online Dictionary of Computing, 1999-07-29, edited by Denis Howe from England, it is
written:
Neutrosophic Logic:
<logic> (Or "Smarandache logic”) A generalization of fuzzy logic based on
Neutrosophy. A proposition is t true, i indeterminate, and f false, where t, i, and f are real
values from the ranges T, I, F, with no restriction on T, I, F, or the sum
n=t+i+f.
Neutrosophic logic thus generalizes:
e intuitionistic logic, which supports incomplete theories (for 0 <n <100,
0<t,f<100);
o fuzzy logic (for n =100 and i=0, and 0 < t,i,f < 100);
e Boolean logic (for n=100 and i = 0, with t,f either 0 or 100);
o multi-valued logic (for 0 < t,i,f < 100);
e paraconsistent logic (for n > 100, with both t,f <100);
o dialetheism, which says that some contradictions are true
(for t = f=100 and i = 0; some paradoxes can be denoted this way).
Compared with all other logics, neutrosophic logic introduces a percentage of
"indeterminacy” - due to unexpected parameters hidden in some propositions. It also
allows each component t,i,f to "boil over” 100 or "freeze” under 0. For example, in some
tautologies t > 100, called "overtrue”.
['Neutrosophy / Neutrosophic probability, set, and logic", F. Smarandache, American Research Press, 1998].

As Denis Howe said in 1999, the neutrosophic components t, i, f are “real values from the ranges

T, I, F”, not nonstandard values or nonstandard intervals. And this was because nonstandard
ones were not important for the neutrosophic logic (the Relative/Absolute plaid no role in
technological and scientific applications and future theories).
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18.

Formal Notations

In my first version of the paper, I used informal notations. Let’s see them improved.
Hyperreal Numbers are represented without parentheses () around them:

a=a=a-—-¢
0
a=a+0, which coincides with the real number a.

+
a'=a=a+e¢
Neutrosophic Hyperreal Numbers (that are indeterminate, alternative) are represented without

braces, or with braces {}around them for discrete sets that may have one, two, or three elements:

19.

0
a=a—¢,ora+0={a—¢&,or a+0}

+0
a=a+¢,ora+0={a+¢,or a+0}

—+

a=a-¢,or at+e={a—¢&,or a+¢}

—0+
a=a—¢,ora+0,or a+ec={a—¢&,or a+0,or a+¢&}

For the monads and binads one just adds the parentheses around them:

Monad Sets: a = (3),(-61) - (éj,(ar) _ (a)
s (51

Improved Definition of NonStandard Unit Interval

Formula of NonStandard Unit Interval
0 0 0+ —+ 0+ +

170,1°[=]0,]={a € R",0 < st(a) <1,_{aaaaa aaaclol}
Proof of the above formula

For 0<St@ <1 j; qoes not matter what in(a) is, because st(a) +in(a) €,]0,1[, this being a

nonstandard interval.

It is not necessarily to set any restriction on in(a) in this case, since @ is the smallest hyperreal,

+

while ais the greatest hyperreal in the set of seven types of hyperreals listed above.

Let & be a positive infinitesimal, £ € R’.
m
Leta=0,and O be any possible hyperreal number associated to 0.
m m - -
For st(0 ) = 0, the smallest in(0 ) may be —&, whence 0—&=0¢,]0,1[;

m 0 -+ + - +
and if in( 0 ) is bigger (i.e. 0, or +&), of course 0+0=0¢€,]0,1] and 0+&=0¢,]0,1[.
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-0 0+ —+ -0+
Then also any other nonstandard version of the number 0, suchas: 0,0,0, 0 €, ]O, 1[

m
Leta=1,and 1be any possible hyperreal number associate to 1.

m m + -+
For st(1) =1, the greatest in(1) may be +¢&, whence 1+&=1¢€,]0,1],

m 0 -+ - -+
and if in(1) is smaller (i.e. 0, or —¢), of course 1+0=1€,]0,1] and 1-=1¢,]0,1[.

-0 0+ —+ 0+
Then also any other nonstandard version of the number 1, suchas: 1,1,1, 1 €] 0 1[

Remark:

This formula has to be updated if new types of hyperreals / monads / binads will be introduced

e  Example of Inclusion of Nonstandard Sets

10,1[]0,1[<]0,1[

e  Partial Ordering on the Set of Hyperreals
—+ -0+
Let a € R be areal number. Then there is no order between @ and @, nor betweenaand a .

Some nonstandard inequalities involving hyperreals:
- 0 +

a<n d<n a

-0 —+ 0+ +

asx da<vx a <~ a

- -0 —+ -0+

dsy dasx asna

- —+ +

asn asn a

J Examples of Nonstandard Intervals
-0 -0

]a a[ {a,a,a}

- 0 + -0 0+ —+ O+
]aa[ {a,a,a,a,a,a, a}

20. Improved Definition of NonStandard Neutrosophic Logic

In the nonstandard propositional calculus, a proposition P has degrees of truth (T),
indeterminacy (I), and falsehood (F), such that T, I, F are nonstandard subsets of the nonstandard unit

interval ]70,1°[,or T,I,F <,]170,1°[.
As a particular case one has when T, I, F are hyperreal or neutrosophic hyperreal numbers of the
nonstandard unit interval ]~0,1°[,or T,I,F €,]1 0,1°[.

21. NonStandard Neutrosophic Operators

Since the Hyprereal Set R* does not have a total order, in general we cannot use connectives
(nonstandard conjunction, nonstandard disjunction, nonstandard negation, nonstandard
implication, nonstandard equivalence, etc.) involving the operations of min/max or inf/sup, but we
may use connectives involving addition, subtraction, scalar multiplication, multiplication, power,
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and division operations dealing with nonstandard subsets or hyprereals from the nonstandard unit

interval ]70,1"[. See below operations with hyperreals, monads and binads.

For any nonstandard subsets or hyperreal numbers, Ty, I1, Fi, Tq, I, F2, from the nonstandard unit
interval ]~0,1'[ one has:
e  NonStandard Neutrosophic Conjunction

(T1, Iy, F1) /AN (T2, I, F2) = (T1 AF T2, L VF I, F1 VE F2)

e  NonStandard Neutrosophic Disjunction
(T1, I, F1) UN (T3, I, F2) = (T1 VF T2, It /AF I2, F1 /F F2)

¢  NonStandard Neutrosophic Negation

“N(Ty, In, F1i) = (F1, 1" — |l, T1)

e  NonStandard Neutrosophic Implication
(T3, I, F1) -~ (T2, I, F2) = (Fy, 1 - |l, T1) UN (T2, I, F2) = (F1 VF T, (1 — |1 )ANE DL, Ti/\F F2)

¢ NonStandard Neutrosophic Equivalence
(T3, I1, F1) <>~ (T2, I, F2) means (T1, I, F1) —n~ (T2, I, F2) and (T2, I, F2) —n~ (T1, 11, F1)

Example of Fuzzy Conjunction:
ANFB=AB

Example of Fuzzy Disjunction:
AVFB=A+B-AB

More explanations about them follow.

22. Approximations of the NonStandard Logical Operators/Connectives A, V, , —, <

Imamura’s critics of my first definition of the neutrosophic operators is history for over a quarter
of century ago. He is attacking my paper with "errors... errors... paradoxes" etc., however my first
operators were not kind of errors, but less accurate approximations of the aggregation with respect
to the falsity component (F), but not with respect to the truth (T) and indeterminacy (I) ones that were
correct.

The representations of sets of monads and binads by tiny intervals were also approximations (=)
with a desired accuracy (& > 0), from a classical (real) point of view, for the real number a€R:

(‘a)=(é);(a—g,a)
(a*)=($jz(a,a+5)

(‘a*):(g); (a—¢,a+¢)

(;)j =(a-¢,4a]
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((gj ~[a,a+¢)

(_50;) =(a—¢,a+¢)

And by language abuse one denotes:

(gjz a=[a,a]

The representations of hyperreal numbers ( h = st(h) + in(h) ) by tiny numbers closed to their
standard part ( st(h) ) were also approximations ( =) with a desired accuracy
(&> 0), from a classical (real) point of view:

aza—¢
+
aza+¢
—+

a=za—¢&,or a+¢&

-0
aza—¢,or0
0+
a=0,or a+¢
-0+

a=za—¢,or0,or a+¢&
0
a=a

All aggregations in fuzzy and fuzzy-extensions (that includes neutrosophic) logics and sets are
approximations (not exact, as in classical logic), and they depend on each specific application and on
the experts. Some experts/authors prefer ones, others prefer different operators.

It is NOT A UNIQUE operator of fuzzy/neutrosophic conjunction, as it is in classical logic, but a
class of many neutrosophic operators, which is called neutrosophic t-norm; similarly for
fuzzy/neutrosophic disjunction, called neutrosophic t-conorm, fuzzy/neutrosophic negation,
fuzzy/neutrosophic implication, fuzzy/neutrosophic equivalence, etc.

All fuzzy, intuitionistic fuzzy, neutrosophic (and other fuzzy-extension) logic operators are
inferential approximations, not written in stone. They are improved from application to application.

23. Operations with monads, binads, and hyperreals

In order to operate on them, it is easier to consider their real approximations to tiny intervals for
the monads and binads, or to real numbers closed to the standard form of the hyperreal numbers, as
in above section.

For monads and binads:

My, My, M3 My, My, Mg X%, X3
a |o b =| aob |, where ©is any of the well-defined arithmetic operation

(addition, subtraction, multiplication, scalar multiplication, power, root, division).
Where m;,m,,m, e{—, 0, +}, but there are cases when some or all of the infinitesimal parts

m,, M,, M, may be discarded for a or for b or for both, if one has only monads, or closed monads, or

pierced binads. If such mi is discarded, we consideritas m. =¢, for i €{l,2,3}.
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Always we do the classical operation acb, but the problem is: what are the infinitesimals
X1, %o, X 3

corresponding to the result ( aoh J, i.e. whatare X, X,,X; =7

Of course the infinitesimals X, , X, , X; e{—, 0, +}, that represent respectively the left monad of

aob, just the real number ao b, or the right monad of ao b . To find them, we need to move from
R*to R using tiny approximations.
One gets the similar result for hyperreal numbers as for monads and binads:
m,My,M3  My,My,Mg  X,Xp,X3
a o b =aohb
¢ A Monad-Binad Example
Let &,&, >0 be tiny real numbers.

Let’s prove that:

- + -0+
We approximate the above monads by:

—0+
(a—¢g,a)+(b,b+g,)=(a+b—¢g,a+b+g,) = (a+bj

because, in the real interval (a+b—g,a+b+¢,), one gets values smaller than a+b (whence

the — on the top, standing for ‘left monad of a+b’), equal to a+b (whence the 0 on the top, standing just
for ‘the real number a+b’), and greater than a+b (whence the + on the top, standing for ‘right monad
of a+b”).

e  Numerical example

(2 (3)-(233)- ()

because (2) + (éj =(2-0.1,2)+(3,3+0.2) =(5-0.1,5+0.2), and this interval is a little below 5,

a little above 5, and also includes 5.

For hyperreal numbers the result is similar:
-+ -0+
a+b=a+b because

-+
atbza—-¢g+b+eg,=a+b—g +¢,, where &,¢,are any tiny positive numbers,
hence a+b—g +¢&, can be less than a+b, equal to a+b, or greater than a+b by conveniently

choosing the tiny positive numbers & and &,,as: & >¢&,,0r & =¢&,,0r & <&, respectively.

¢  More Examples of NonStandard Operations

(é)+b=(albj
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()] (=)

24. NonStandard Neutrosophic Operators (revisited)

Let’s denote:

AF, AN, Ap representing respectively the fuzzy conjunction, neutrosophic conjunction, and
plithogenic conjunction; similarly

VF, VN, Vp representing respectively the fuzzy disjunction, neutrosophic disjunction, and
plithogenic disjunction,

—e, " p representing respectively the fuzzy negation, neutrosophic negation, and
plithogenic negation,

—F, —N, —P representing respectively the fuzzy implication, neutrosophic implication, and
plithogenic implication; and

g, <>, $>p representing respectively the fuzzy equivalence, neutrosophic equivalence,
and plithogenic equivalence.

I agree that my beginning neutrosophic operators (when I applied the same fuzzy t-norm, or the
same fuzzy t-conorm, to all neutrosophic components T, I, F) were less accurate than others developed
later by the neutrosophic community researchers. This was pointed out since 2002 partially corrected
by Ashbacher [9] and confirmed in 2008 by Rivieccio [10] and fixed in 2010 by Wang, Smarandache,
Zhang, and Sunderraman [25], much ahead of Imamura [1] in 2018. They observed that if on T1 and
T2 one applies a fuzzy t-norm, on their opposites F1 and F2 one needs to apply the fuzzy t-conorm (the
opposite of fuzzy t-norm), and reciprocally.

About inferring I1 and I, some researchers combined them in the same directions as T: and To.

Then:

(T1, I, F1) AN (T3, I, F2) = (T1 AF T2, I1 AF I, F1 VE F2),
(T1, Iy, F1) VN (T3, I, F2) = (T1 VF T2, I1 VF I, F1 \F F2),
(T1, I, F1) >N~ (T2, I, F2) = (F1, I, T1) VN (T3, I, F2) = (F1VE T2, L1VE I, T1\F F2);
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others combined I1 and I2 in the same direction as F: and F: (since both I and F are negatively
qualitative neutrosophic components), the most used one:

(T1, I, F1) AN (T2, I, F2) = (T1 Ar T2, iV F I, F1 VF F2),
(T1, I, F1) VN (T2, Io, F2) = (T1 VF T2, I1 AF I, F1 \F F2),

(T1, I, F1) >N~ (T2, I, F2) = (F1, I, T1) VN (T3, I, F2) = (F1VE T2, 1 Ar I, T1\ F F2).

Now, applying the neutrosophic conjunction suggested by Imamura:

“This causes some counterintuitive phenomena. Let A be a (true) proposition with
value ({1},{0},{0})and let B be a (false) proposition with value ({0},{0},{1}).

Usually we expect that the falsity of the conjunction A A B is { 1 }. However, its
actual falsity is { 0 }.”

we get:

(1,0,0) AN (0,0,1)=(0,0, 1), (50)

which is correct (so the falsity is 1).

Even more, recently, in an extension of neutrosophic set to plithogenic set [11] (which is a set
whose each element is characterized by many attribute values), the degrees of contradiction c( , )
between the neutrosophic components T, I, F have been defined (in order to facilitate the design of
the aggregation operators), as follows: ¢(T, F) = 1 (or 100%, because they are totally opposite), c(T, 1)
=c(F, I) = 0.5 (or 50%, because they are only half opposite), then:

(T3, I, F1) Ap (T2, I, F2) =(T1 Ar T2, 0.5(I1ArI2) + 0.5(11 Vr I2), F1 VFF2),

(T1, I, F1) Ve (T2, I, F2) =(T1 Ve T2, 0.5(I1 VrI2) + 0.5(11/F I2), F1 ArF2).

(T1, I, F1) >~ (T2, I, F2) = -y (T1, I, F1) W (T3, I, F2) = (F1, I, T1) W (T, I, F2)

= (F1 vt T2, 0.5(Livr I2) + 0.5(I1Nr I2), T1 AF F2).

For NonStandard Neutrosophic Logic, one replace all the above neutrosophic components T, 11,
Fi, T3, I, F2 by hyperreal numbers, monads or binads from the nonstandard unit interval J-0, 1*[ and
use the previous nonstandard operations.

25. Application of NonStandard Neutrosophic Logic

Assume two sources s1 and s2 provide information about the nonstandard truth value of a given
proposition P:

s.(P) = (T,(P), 1,(P), F.(P)) =(i, 04, ofzj

s,(P) =(T,(P),1,(P),F,(P)) = (o?s,ofﬁ,d%)

Let’s use the below Fuzzy Conjunction:
AANFB=AB
and Fuzzy Disjunction:
AVFB=A+B-AB
We fusion the two sources (using the nonstandard neutrosophic conjunction):
S, (P) Ay S,(P) =(T,(P) A: T,(P), 1,(P) v 1,(P), F(P) v F,(P))
+ 0 —+ + - 0- + 0 —+ + —+ + - -0 - -0
=(IA: 0.8,0.4v, 0.6,0.2v. 0.3) = (1x0.8,0.4+0.6—0.4x0.6,0.2+0.3-0.2x0.3)
+ -0+ — - - + -0+ -0+ - - + 0+ -0+
=(0.8, 1 -0.24,0.5-0.06) = (0.8, 1 —0.24,0.5-0.06) =(0.80,0.76,0.44),
which means that with respect to the two fusioned sources, the nonstandard neutrosophic
degree of truth of the proposition P is tinnily above 0.8, its nonstandard neutrosophic degree of
indeterminacy is tinnily below or above or equal to 0.76, and similarly its nonstandard neutrosophic
degree of falsity is tinnily below or above or equal to 0.44.
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Converting/approximating from hyperreal numbers to real numbers, with an accuracy & =
0.001, one gets:
$,(P) Ay s,(P) =((0.8,0.8+0.001), (0.76 —0.001,0.76 +0.001), (0.44 - 0.001,0.44 +0.001))

—((0.800,0.801), (0.759,0.761), (0.439,0.441))

26. Open Statement

In general, the Transfer Principle, from a non-neutrosophic field to a corresponding
neutrosophic field, does not work. This conjecture is motivated by the fact that each neutrosophic
field may have various types of indeterminacies.

27. Conclusion

We thank very much Dr. Takura Imamura for his interest and critics of Nonstandard Neutrosophic
Logic, which eventually helped in improving it. {In the history of mathematics, critics on nonstandard
analysis, in general, have been made by Paul Halmos, Errett Bishop, Alain Connes and others.} We
hope we’ll have more dialogues on the subject in the future.

We introduced in this paper for the first time the Neutrosophic Hyperreals (that have an
indeterminate form), and we improved the definitions of NonStandard Unit Interval and of
NonStandard Neutrosophic Logic.

We pointed out several errors and false statements by Imamura [21] with respect to the inf/sup
of nonstandard subsets, also Imamura’s “rigorous definition of neutrosophic logic” is wrong and the
same for his definition of nonstandard unit interval, and we proved that there is not a total order on
the set of hyperreals (because of the newly introduced Neutrosophic Hyperreals that are
indeterminate) therefore the transfer principle is questionable. We conjectured that: In general, the
Transfer Principle, from a non-neutrosophic field to a corresponding neutrosophic field, does not
work.
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Abstract: Multiple attribute decision-making (MADM) problems often contain quantitative and
qualitative information that is inconsistent, uncertain, and incomplete. However, existing
evaluation methods can only perform quantitative or qualitative processing on all attribute data,
which easily leads to some information loss. In order to deal with MADM problems more
effectively, this paper proposes a single-valued neutrosophic linguistic neutrosophic element
(SvNLNE), which consists of a single-valued neutrosophic number for quantitative expression and
a linguistic neutrosophic number for qualitative description. This paper also provides the
fundamental operations of SYNLNEs, the SYNLNE score and accuracy functions for sorting the
elements, and the SvNLNE weighted arithmetic averaging (SVNLNEWAA) and geometric
averaging (SVNLNEWGA) operators for information aggregation. Finally, some MADM
approaches are developed based on the SYNLNEWAA and SYNLNEWGA operators, and their
application and rationality are further illustrated by an investment case in the SYNLNE setting.

Keywords: multi-attribute decision making; single-valued neutrosophic linguistic neutrosophic
element; single-valued neutrosophic linguistic neutrosophic element weighted arithmetic
averaging operator; single-valued neutrosophic linguistic neutrosophic element weighted
geometric averaging operator

1. Introduction

In complex decision-making (DM) environments, conflicting quantitative and qualitative
attribute data often need to be considered to optimize the selection of alternatives. Among them,
quantitative information is usually expressed as numerical variables, while qualitative information
is usually depicted as linguistic variables because linguistic items are more suitable to describe
human cognition of objective things. In recent decades, many theories and methods on numerical
and linguistic DM methods have been proposed for the DM problem. To handle uncertain and
incomplete quantitative information, the fuzzy set [1] was firstly defined with a numerical
membership degree. Then, the intuitionistic fuzzy set (IFS) [2] was presented by appending a
numerical non-membership degree, and the interval-valued IFS [3] was represented by the
interval-valued membership and non-membership degrees. Recently, for further comprehensive
expression of the incomplete, uncertain and inconsistent data in DM problems, the simplified
neutrosophic set (SNS) [4] that implied the definitions of single-valued neutrosophic set (SVNS) [5]
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and interval neutrosophic set (IVNS) [6] was put forward as a subclass of neutrosophic set (NS) [7]
by constraining the membership degrees of truth, indeterminacy and falsity in the standard range of
[0,1]. Since then, various aggregation operators and multi-attribute DM (MADM) methods of
SvNSs/IvNSs/SNSs have been presented [4,8-10], and some extended neutrosophic sets, such as the
neutrosophic cubic set (NCS) [11], the simplified neutrosophic indeterminate set (SNIS) [12], the
neutrosophic Z-numbers [13] and the consistency neutrosophic set (CNS) [14], have also been
proposed for specific applications. However, the numerical variable-based DM methods described
above are more suitable for dealing with quantitative information than qualitative information.
Thus, in terms of human thinking and expression habits, the linguistic neutrosophic number (LNN)
[15], which is generalized from the concepts of linguistic variable (LV) [16], interval linguistic
variable (ILV) [17] and linguistic intuitionistic fuzzy number (LIFN) [18], was proposed as a new
branch of NS [7] to represent incomplete, indeterminate and inconsistent qualitative information
using linguistic membership degrees of truth, falsity and uncertainty. Then, various aggregation
operators and MADM methods of LNNs have been presented for linguistic DM problems [19-21].
Other extended sets, such as the linguistic neutrosophic uncertain number (LNUN) [22], have also
been introduced to satisfy special applications. Unfortunately, theories and methods based on
linguistic variables are more suitable for solving qualitative DM problems than quantitative DM
problems.

In practical MADM applications, there is often quantitative and qualitative attribute
information that needs to be evaluated together. However, existing DM methods can only make
final decisions on a single type of information, but cannot handle multiple types of information.
Especially for MADM problems with incomplete, inconsistent and indeterminate information, the
single-valued neutrosophic number (SvNN) is only used for quantitative processing, while the LNN
is only used for qualitative processing. Therefore, to overcome the limitations of existing DM
approaches and better satisfy the preferences of the evaluators, this paper defines the single-valued
neutrosophic linguistic neutrosophic set/element (SYNLNS/SvNLNE) as a combination of SYNN and
LNN to uniformly describe quantitative and qualitative information and proposes the basic
operational laws of SVNLNE. Then, this paper puts forward a SYNLNE weighted arithmetic
averaging (SVNLNEWAA) operator and a SYNLNE weighted geometric averaging (SYNLNEWGA)
operator, and further develops MADM approaches based on the presented operators in the SYNLNE
setting.

In the construction of the paper, the preliminaries of SYNNs and LNNs are first reviewed in
Section 2. The concepts, the fundamental operations, and the score and accuracy functions of
SvNLNSs are put forward in Section 3. Then, two aggregation operators of SYNLNEWAA and
SVNLNEWGA are presented and proved in Section 4. In Section 5, a new MADM method with
SvNLNE information is developed by applying the proposed SYNLNEWAA and SNLNEWGA
operators. Finally, comparative analysis and conclusions are given in Sections 6 and 7, respectively.

2. Preliminaries of SYNNs and LNNs

This section introduces the concepts and operational relations of SYNNs and LNNs.

2.1 SuNNs

Definition 1 [5]. Set E as a fixed universal set. Then, a SYNS H in E can be given by

H={(5.(T(5),U(6).V (9)))I5 <E],

Where <T(6), U(6), V(3)> is the SYNN for § € E'satisfying the condition of T(5), U(6), V() € [0,1], and
can simply be written as hs =<Ts, Us, Vs>.

Definition 2 [5]. Assuming hs1 =<Ts1, Us1, Vs1> and hs2=<Ts2, Us2, V52> are two SvNNs and o > 0, there
are the following relations:
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(1) hé‘l ® h&z = <T51 +T5z _Ta‘lTaz ’U§1U 52 'V51V52 >,‘
(2) hal ® ha‘z = <T51T52 ’U51 +U52 _U51U 52 IV§1 +V§2 _V51V52> ;
(3) ohy :<1_(1_T§1)07U§11V£>;

4) h:;[ = <TJ{I'1_(1_U51)G ’1_(1_V51)0> :

2.2 LNNs

Definition 3 [15]. Set E as a fixed universal set and L = {Is| s=0, 1, -, r} as a linguistic term set (LTS)
whose odd cardinality is 7 + 1. Then, a linguistic neutrosophic set Z in E can be given by

zZ= {(5,<|T(5), Lo )18 € E} ,

(o) sy Iy 5)> is a LNN for § € E, containing the linguistic variables of truth, indeterminacy

and falsity 1.l 1 €L - Then, the LNN <|T(5),Iu(5),lv(§)> can be simply denoted as

2, =11, )-
Definition 4 [15]. Assuming z;, = <I

where <I

are two LNNsin L and 0 >0,

752! I“o‘z ! IV{FZ >

and z;, = <I

751’ I”51 ! IV{>‘1 >
there exist the following relations:

1) 2,9z = <|

N T51%52 ' Usilsa ' VsiVsa [
Ts1tTs2— v

r r
(2) z,®z5 =(I I I ;
61 62 T517s2 ! _UspUsp ! VsiVs2 [

P Us1+Us2 p Vs1+Vs2 P

3) oz, =1 Ll

, N I
' 7r[liﬁj T(U(*)l] r(voil]
r r r

@ zZ=(1_ 0
& r(ﬂj r—r(l—%) r r[l—T]
3. SvNLNSs

Definition 5. Set E as a universal setand L = {ls| s=0, 1, ---, } as a LTS with an odd cardinality r + 1.
Then, a SYNLNS H can be defined as

H={(6.(T(3).U ()Y (8): (Lo Lo o) | 5 <}

where <T(68), U(J), V(8)> for § € E is a SYNN depicted independently by the truth, indeterminacy and
falsity numerical variables T(6), U(6), V(3) € [0, 1], and <|T(5) ugs) Iv(&)> for § € E is a LNN described

independently by the truth, indeterminacy and falsity linguistic variables I .l .1, €L with
7(6),u(8),0(d) € [0, r].

Then, the element (5, <T(5),U (6).V (5)>,<IT(5),IU(§),IV(5)>) of H can be simply represented by
& =((T U, Vo) (1, L, ) for T, Us, Va e [0, 1, 11,1, €L, and #, us, v5 € [0, ], called
SvNLNE. It is obvious that SYNLNS is composed of SYNNs and LNNs in E.
Definition 6. Set &; =((T, Ui Vi) (L Lo, ) and & =((ToUs Vi) (I 0L, ) as two

Ts1) Ust ! Vo1 Ts2 ' Usz ) V2
SvNLNESs. Then there exist the following relations:
(1) é1C &2 Tor < Top, Unn> Usp, Vsr= Vs, |To_1 <l Il >l ,and IVM > |Vd2 ;

Ts2 7 Us1 - Usp
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Q) é=éno &1 énand &1 2 & ie, Tan=Ts, Un=Usp, Vo= Vs, I =1_,1, =I,_ ,and |, =1, ;

751 752 7 Ugy 52 V1 Vs2

(B) 1 @S5 :(<T§l +Ts, _TslTaz’U51U52'V51V52>I<IT , W!IW'IW>J ’

r r

(4) 551 ®§52 = (<T51T521U51 +Ua‘2 _Ua‘lUéZ'V&l +V§2 —V51V§2>,<|W,| UgyUsp 'IV‘ e W>J/

u
Usy+Usa— r

(5) o0& =|(1-(1-T,) . UZ. Vs ,<| S P a> for o> 0;
< Mg e

r

6) &7 = <T§,1—(1—U51)” ,1—(1—v§l)“>,<| [ R > for ¢ > 0.
() et ey
To compare SVNLNESs, the score and accuracy functions for SYNLNEs and their sorting
approaches are given by the definitions below.
Definition 7. Set £ = (< T, U, V>, <Ix, lu, I>) as SYNLNE. Then, its score and accuracy functions are

1(2+T-U-V 2 —u-
F(§):§( * T ”TSr“ "j for F(¢) e [0, 1], )
G(f):%[T _vﬂ;q for G(€) e [-1, 1]. )
Definition 8. Let 551:(<T§11Ua‘1'V§1>l<|qﬂ’Iudlvlvl,.1>) and 552:(<T52’U§2’V§2>’<IT§2’Iu(yz'IV(;2>) be two

SvNLNEs, then based on the score and accuracy values of F(&s) and G(Es) (¢ =1, 2), the ranking
approaches are given below:

(1) If F(&o1) > F(Ew2), then Es1 > Es;
(2) If F(&s1) = F(Es2) and G(Es1) > G(Es2), then Es1 > Ex;
3) 1f F(Ex1) = F(42) and G(Es1) = G(Es2), then &g = £

4. Aggregation Operators of SYNLNEs

4.1 SYNLNEWAA Operator

Theorem 1. Set S, :(<T9,Ug,Vg>,<I [ >) (¢=1,2, -+, 1) as a collection of SYNLNEs. Then the

) 1
7o TV

SvNLNEWAA operator can be represented as

<l_ll[(l_T§)g; ’ﬁug% ’ﬁvg% ’>’
SWNLNEWAA(,, &+, 8,) =" 0.8, = , (3)

I
n n n
] -y, o 1| o 1| 5%

where o¢ € [0, 1] is the weight of & (¢=1, 2, ---, ) with zzzlag =1.

Proof. (1) It is straightforward that the theorem is valid when n=1;
(2) When 1 =2, from the relation (5) of Definition 6, we can obtain

0.6 = <1—(1—T1)“1,Ul“l,Vl”1>,<I L
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0252: <1_(1_T2)62’U2621V202>’<| - ,,Z,I u Gz’l v, \72 >J
[ aCORECIEG

From the relation (3) of Definition 6, the SYNLNEWAA aggregation result is
SYNLNEWAA(S,, &) = 0,8, © 0,
(1T +1-(-T)" —[1--T)" [1-(-T)" Jurug vy,

I N T IR

A IR SR B
2 o, 2
= <1_Hg:1(1_T§) ! ¢ 1U§ Hg 1°¢ >’< " ’Hz [1,2]% ’IrHZ [uij% 'Ier [L]‘f >J

(3) Let 1 = u, the aggregation result of SYNLNS is

&)=2,0.8
= 1_1_[ Hu ’H =1 -:G; A 7 ”;’I u "?’I o (Ve |
T T P ——

(4) Let = + 1, the aggregation result of SYNLNS is

u
§y+1) = Zagég @ O-,u+1 u+l
¢=1

-1, 0T +1-(1-T,,) ™ [1_1—[;(14;)%][1 (- TM)%},
(T oz (T v

| g AT AT

el e el e

- (-T2 AR § AT L AR
b S e e g

Thus, Theorem 1 is proved to be valid for any 7.

Additionally, for the SYNLNE collection given by s = (<Tg,U g,V§>,<IT: |

SYNLNEWAA(E,, &, -+

SYNLNEWAA(,, S, .-,

the SYNLNEWAA operator implies some properties:

(1) Idempotency: There is SUNLNEWAA(&, &, -+, &) = ¢ when &= {is satisfied for ¢=1, 2, ---, 77

) 12

m
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(2) Boundedness: Assume & = (<mgin(Tg). max (Ug)’ max (Vg )>’<mgin(|r; )’ m?X(IU; )’ m;“('w )>) and

&= (<m§X(Tg), mgin (Ug), mgin (Vg )> , <m?X<|r: ), mgin (Iug ), mgin (Ivg )>) represent the minimum and
maximum SvNLNEs for ¢=1,2, ..., 7 then & <SUNLNEWAA(E, &+, ) <&

(3) Monotonicity: There is SYNLNEWAA(&,&,, &, ) <SINLNEWAA(&, &+, &)  when  the
conditionof & <& is satisfied for ¢=1,2, -, 7.

Proof. (1) Suppose &=(K7, I, ¥, <1, 1., 1>). Since &.is equal to & for ¢=1, 2, -+, 5, we can obtain

SINLNEWAA(,,&,,-++,&,) = D" 0.,

s10c ) s oc ! 37 joc :(<T'U'V>’<If’IU’IV>):§

IO

(2) Because ¢ is the minimum SvNLNE and &* is the maximum SvNLNE, & <cé.<&* can be obtained.

= <1—(1—T)ZZ“" Ty T > |

Hence, Z;’Zlagg* < Zzzl%fg < zzzlo—gcf* . According to the property (1), Zzzlagg* =& and
D108 =& Thus, & <SUNLNEWAA(E, &, &,) <&
(3) Since & <& for¢=1,2, ..., 7, there exists Z’;laggg < Z’;lagcf; . Therefore,

SNLNEWAA(&,&, -+, &, ) < SNLNEWAA(E, &+, &, ).
The properties of the SYNLNEWAA operator are proved above. [

4.2 SYNLNEWGA Operator

Theorem 2. Set <. =(<Tg,Ug,Vg>,<I [ >) (¢=1,2 -, 1) as a cluster of SYNLNEs, then the

SvNLNEWGA operator is

{JERARES | CETRERE | (AL

SWNLNEWGA(&,, &, ¢,) =], &7 = | I | -

LR I S

where o, € [0, 1] indicates the weight of & with zzzlo-g =1.

Proof. (1) When n =1, the theorem 2 is obviously correct;

(2) When 1 = 2, from the relation (6) of Definition 6, we can obtain

"= <T1C’1'1—(1—U1)“1’1—(1—V1)”1>’<',m' wp! >J
G e )
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7= (T71-(1-U,)™ 1-(1- V)“2>< U R >J
[ (GRS CORE e

From the relation (4) of Definition 6, the aggregation result is

SYNLNEWGA(&,,&,) = &7 ® &7

ToT7 1= (L-U)™ +1-(1-U,)* -[1-(1-U,)"* |[1-(1-U,)™ ],
1-(1-V,)™ +1-(1-V,)* =[1-@-V)™ |[1-@-V,)™ | ’

GIEL .oy LTS

PRET, 28
<Hg1g A-TT0,a-u)m -1 (lV)>

1
-
—
= |
—

[El

=| =
—

= |
~—
N

I N
<rna£:—J ) e m>
(3) Let 1=, the aggregation result of SYNLNS is
(M7 a-TT2, U )" a- T -v.) ),
SINLNEWGA(&,&,+.&, ) =[]/,¢7 = < >
L el ) Ly
M) e e

(4) Let = + 1, the aggregation result of SYNLNS is
SINLNEWGA(&, &+, &, ) = [ 1, &7 ® &7

(T o T (-0, - (1m0, [T (0. -0, ],
L e e s e L SR EC |
|

I o o, 1|

_ £ \% (¢ il G o ewst ]!
= rHﬂ Lo |7y Bt r_rl—[# 1t ror| ow
1 r r B u Yo U, e =1 - r
-~ 7 N 7 s %
, o [ r

oo T

< AT -u) T T ),

I EACH I i u)E! I TERAG
PETEA PRIGETR V)"
ngzl(T) r—rl_[g:1 [1—7] r_ng:1[1_T)

Thus, Eq.(4) is proved to be valid for any 7.

Additionally, for the group of SYNLNESs given by &= (<Tg,Ug,Vg>,<IT: o, >) (¢=1,2, ..., 1),

there are some properties of the SYNLNEWGA operator:
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(1) Idempotency: There is SVNLNEWGA(E,,S,,---,&,) =& when &= {is satisfied for ¢=1, 2, -+, 1.
(2) Boundedness: Assume ¢&° :(<m§in(T§),mgax(Ug),m?x(Vg )>’<mgin(|r; ),méz_ix(lu: ),m?X(k; )>) and

£ = (<mfx (Tg ) mgin (Ug ) , mgin (Vg )> , <mé{ix (|Tg ) , mgin (lu; ) mgin <Iv§ )>j represents the minimum and
maximum SvNLNEs for ¢=1, 2, ..., 7, then & <SUNLNEWGA(E,,&,,+++, &) <&".

(3) Monotonicity: There is SUNLNEWGA(&,&,, -, &, ) <SWNLNEWGA(&,&,-+,&) when  the
condition of §g < 5; (¢=1,2, -+, n) is satisfied.

Since the property proof of the SYNLNEWGA operator is similar to that of the SYNLNEWAA

operator, it is omitted here. []

5. MADM Method in the SYNLNE Setting

In this section, by applying the SYNLNEWAA and SYNLNEWGA operators, a novel MADM
method is developed to solve DM problems with quantitative and qualitative information.

For a complex DM problem, m alternatives (given by R= {R1, Rz, R3, ***, Ru}) need to be evaluated
on 7 attributes (given by S = {s1, s2, ***, sy}) in the SYNLNE setting, where the attribute types may be

!

different. Assume each alternative is evaluated as a SYNLNE ff,g :(<T u.Vv >,<I 11 >) with (=

! g T VU TV,

1,2,-,mand ¢=1, 2, -+, . Then, all evaluated values can be further constructed as the SYNLNE
decision matrix E= (&ig)m=.

Then, MADM problems with SYNLNE information can be solved by the SYNLNEWAA and
SvNLNEWGA operators along with the SYNLNE score and accuracy functions. Details about the
new MADM method are given as below.

Step 1. Standardize the initial evaluation data in the SYNLNE format. For instance, a quantitative
attribute data denoted by the SYNN & = (<T, U, V>) can be converted into the SYNLNE &= (<T, U, V>,

<Irsr, luwr, lver>), and a qualitative attribute data given by the LNN & = (<I, lu, [>) can be transformed

into the SYNLNE &'= (<t/r, ulr, v/r>, <ls, lu, I>). As a result, the initial decision matrix E= (¢ .)m=; can be

standardized as E'= (fl'g)

mxn '
Step 2. Assume P = {01, 02, -, 0y} is a weight vector that represents the importance of attributes S = {

s1, 52, =, sn}, where o, is the weight of §;(;= 1, 2, -, 1) with o, € [0, 1] and Zzzlag =1. Then, by

applying the SYNLNEWAA operator, the aggregation result of 5; (t=1,2, ~,m)is

<1_HZ:1(1_T1§) K Z:lU 40; 'HZ:thgg; >‘
& =SUNLNEWAA(&,,&,,++,&, ) = > 0.8 =

| el Lo .
n i n (U n (Vi
r*’l_L:l(l*T] rl_L:l[T] ’Hc:l[T]

Similarly, by applying the SYNLNEWGA operator, the aggregation result of & (1=1,2, ~, m)is
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<HZ=1TI;JG ’1_HZ=1<1_U1€ )U; ’1_HZ:1(1_V1§ )”; >’

£ = SUNLNEWGA(&,,&,,+,&, ) =TT, (&) = | | |

rH"Zl[f] ' r—rnzzl{l—f) r— rH [1——)
Step 3: Get the score values of F (5,') (t=1,2, -, m) by Eq. (1) and the accuracy values of G (f,') (t=1,
2, -, m) by Eq. (2) if necessary.

Step 4: Sort all the alternatives in descending order of the score and accuracy values, then the first
one is optimal.

Step 5: End.

6. Example

To illustrate the application of the raised MADM method in the SYNLNE environment, an
example of investment decision is given in this section. This example is adapted from references
[4,15] and contains both quantitative and qualitative attributes.

A company needs to choose the best of the four alternatives § = {81, 92, 93, 94} that are engaged
in electronic devices, weapons, clothing, and construction, respectively. Then, some experts are
asked to comprehensively assess the options by considering the attributes E = {di, &, &3, di}, where di
is the environmental impact, &2 is the growth, &3 is the risk, and di is the possible return rate of the
investment. The evaluation data can be given in any form of LNN, SvNN, or SYNLNE according to
the attribute characteristics and the preferences of the evaluators. Among them, the qualitative
information will be evaluated from the LTS L = {lo = very low, I1 = low, [2 = slight low, I3 = medium, s
= slight high, 5 = high, Is = very high} with the odd cardinality » + 1 = 7. Suppose the original

evaluation matrix M= (&.)m« is established as

(0.7,0.2,0.2),(l,. . 1,)) ((0.78,0.1,0.2))

I, 0,0

(( (ot h)) - (Clstai))

| (€0.8,0.,0.1) | 1)) (U 1,)) (e 15))  (0.8,0.2,03))
(<o750201>< 210) (1 0) ((601)) ((0.75,01,0.1)) |
((0.9,0.1,0.1), (1,1, | ) ((5.10,)) ((40,.15)) ((0.81,0.2,0.1))

According to the information standardization rules of SvNLNE, the matrix M can be
standardized as

((0.7,0.2,0.2), |4,|1,|1 ) ((0.83,0.17,0.17),(l;, L. 1,)

((0.8,0.1,0.1),(l5,1,,1,))  ((0.83,0.17,0.33) (I;,1,.1,)

) ((0.67,0.33,0.17),(1,.1,,1,)

((0.83,0.33,0.33), (I, I, 1,)

(0750201 all)
(0.9,0.1,0.1), |,|1,1)

{

(¢
((0.83,05,0.17),(l;.1,.,1,)) ({0.78,0.1,0.2) <|468,06,1>
((1,0.33,0.17) (I, 1, 1))~ ((0.8,0.2,0.3),(I,5,1;,.1))
(( ) ((075,0.,0.0),{I,s, %,6»
) { o))

Assuming the weight vector P = (0.25, 0.2, 0.25, 0.3) represents the attribute importance of E, the

(1,0.17,0.17), |6,|1,|1
((o 67,0.33,0.5),(I,,1,,1, ) (<0.81, 0.2,0.2), (I, 15,1

decision process using the SYNLNEWAA operator can be performed as below.
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Step 1. By Eq. (3), the aggregated values of SYNLNEWAA for each alternative 9: (: = 1, 2, 3, 4) can be
obtained as
&= (<0.7902, 0.197, 0.1842>, <4.7075,1.1291,1.0562>),
&=1(<1,0.1842,0.201>, <6,1.4937,1.6295>),
&=(<1,0.1719,0.1258>, <6,1.1719,0.8579>),
&= (<0.8186,0.2116,0.1902>, <4.7631,1.4428,1.297>).
Step 2. By Eq. (1), the score values of F(&) (: =1, 2, 3, 4) can be further obtained as
F(&) =0.8049, F(&) = 0.849, F(&) = 0.894, F(&) = 0.7923.
Step 3. Since F(&) > F(&) > F(&) > F(&), the ranking of the four alternatives is 93> 3> $1 > .

Therefore, s is the best choice.

Similarly, the decision steps using the SYNLNEWGA operator can be carried out as below.

Step 1°. By Eq. (4), the aggregated values of SYNLNEWGA for each alternative 3. (1 =1, 2, 3, 4) can
be obtained as

&= (<0.7821,0.2571,0.1852>, <4.6358,1.4967,1.0609>),

& =(<0.8528,0.2064,0.229>, <5.1695,1.5823,1.7082>),

&=(<0.7872,0.1927,0.1306>, <4.5859,1.3721,0.8832>),

&=(<0.7966,0.241, 0.2683>, <4.6886,1.5327,1.6932>).

Step 2°. By Eq. (1), the score values of F(&) (t=1, 2, 3, 4) are

F(&) =0.781, F(&) = 0.7884, F(&) = 0.8087, F(&) = 0.7552.

Step 3°. Since F(&) > F(&) > F(&)> F(&), the four alternatives are ranked as 93> 92> 91> 94. Thus, 95 is
also the best choice.

Obviously, the sorting results obtained by the above two operators are the same, and the best
options are also the same. Thus, one can choose one of the two operators according to the actual
needs.

Different from the existing MADM approaches, the MADM method proposed in this paper
handles the incomplete, inconsistent and uncertain data in the form of SYNLNE instead of SYNN or
LNN, and uses two novel aggregation operators of SYNLNEWAA and SYNLNEWGA. The SYNLNE
composed of SYNN and LNN uses numerical and linguistic variables to represent the truth,
uncertainty, and falsity membership degrees of fuzzy information. Hence, it can express mixed
information of quantitative and qualitative attributes better than SYNN or LNN that can only depict
quantitative or qualitative attribute information. Moreover, the proposed SVNLNEWAA and
SvNLNEWGA operators can aggregate SYNNs and LNNs in addition to SYNLNEs, because SYNN
and LNN are two special cases of SYNLNE when all attributes are quantitative or qualitative. And
the proposed MADM method can handle DM problems in the SYNN and/or LNN setting, while the
existing DM methods of SYNN and LNN cannot deal with DM problems under the SYNLNE
environment.

All in all, SYNLNE is the further generalization of SYNN and LNN, and the MADM method
based on the SYNLNEWAA and SYNLNEWGA operators offers a unified way for complex DM
problems with both quantitative and qualitative attributes.

7. Conclusions

This paper originally defined the concept, fundamental operations, and score and accuracy
functions of SYNLNE, and then developed the MADM method of the SYNLNE using the proposed
SvNLNEWAA and SYNLNEWGA operators. Finally, an investment case proved that the proposed
MADM method can effectively solve MADM problems with the SYNLNEs that contain mixed-type
or single-type attribute information, overcoming the shortcomings of traditional methods that can
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only handle single-type attribute data. The research results of this paper enrich the neutrosophic
theory and MADM methods.

The paper mainly contributes: (1) The presented SVNLNE can effectively express mixed
quantitative and qualitative information for the first time; (2) The proposed SYNLNEWAA and
SvNLNEWGA operators can aggregate the hybrid information of SYNN and LNN; (3) The proposed
MADM approach of SYNLNS can effectively solve complex DM problems containing qualitative
and quantitative attributes, which cannot be satisfactorily processed by existing methods.

Further research will concentrate on the similarity measures of SYNLNEs, the development of
novel aggregation operators, and their applications such as pattern recognition and medical
diagnosis in the SYNLNE environment.

Funding: The research was funded by the Social Sciences and Humanities Youth Foundation of Ministry of
Education (Grant No.21YJCZHO039)
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Abstract.

This manuscript comes as first attempt in building a new type of neutrosophic topological
spaces, the aim is to shed the light on a new structure known as the n**-power set P"(X) of a set,
this new kind of sets enables authors to create and built new topology spaces called Neutrosophic
SuperHyper Topological Spaces and Neutrosophic SuperHyper Bi-Topological Spaces , the n‘"-
power sets are the optimal representation for the applications in our real world. In this article, new
concepts and theorems related to this new topologies have been discussed, which are pairwise
neutrosophic open n‘"-power set, pairwise neutrosophic closed n"-power set, as well as, the
closures and the interiors are defined with their properties. Many of relations for these concepts have
been introduced.

Keywords: n'" -power set P™(X); Neutrosophic SuperHyper Topological Spaces (NSHTSs);
Neutrosophic SuperHyper Bi-Topological Spaces (NSHBi-TSs).

Introduction.

The concepts of the neutrosophic n"-power set of a set, SuperHyperGraph and Pliothogenic
n-SuperHyperGraph, SuperHyperAlgebra, n-ary (classical-/Neutro-/Anti-) HyperAlgebra have been
firstly introduced by the father of neutrosophic theory F. Smarandache in 2016 [4]. As the
introduction for Neutrosophic SuperHyper Topological Spaces which is until yet is fathomless
branch of science, in this section we recalling the fundamental definitions of the neutrosophic logic
with preliminaries of related n**-power set of a set. There is no doubt that the essential theory of
neutrosophic was introduced and built by F. Smarandache in 1995 [5,6]. Any mathematician who
tracking the trace of this knowledge will easily deduce that the neutrosophic theory was rapidly and

broadly radiated through Neutrosophic Sets and Systems journal, and International Journal of
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Neutrosophic Science, these two journals are very active and reputed journals indexed by dozens of
repositories, encyclopedias, and identifications' websites especially Scopus database.
This manuscript has been organized as follow:

The authors present some basic preliminaries in section 1, while section 2 has been dedicated
to submit a new structure of neutrosophic topology called = Neutrosophic SuperHyper
Topological Spaces, in this section and for the first time, this type of topology was discussed in details.
The main core of this article is in section 3 which is contain definitions, theorems, and corollaries
covered the new subject that introduced firstly in this paper which is named Neutrosophic

SuperHyper Bi-Topological Spaces. The last section is the conclusion section.

1. Preliminaries

1.1  System of Sub-System of Sub-Sub-System and so on [1]

A system may be a set, space, organization, association, team, city, region, country, etc. One consider
both: the static and dynamic systems.

With respect to various criteria, such as: political, religious, economic, military, educational, sportive,
touristic, industrial, agricultural, etc.

A system S is made up of several sub-systems S,,5,, ..., S,, for integer p = 1; then each su-system
Si, for i € {1,2,...,p} is composed of many sub-sub-systems S;;,S;,, ..., Sjp,, for integer p; = 1; then
each sub-sub-systems S;;, for j € {1,2, ...,p;} is composed sub-sub-sub-systems Sy, S;j,, ---'Sszj, for
integers p;; and so on.

The following example of systems made of Sub-Sub-Sub-Systems (four levels)

i) Using a Tree-Graph Representation, one has:
S
Level 1
S1 S

S, X Level 2

i Sis Si3 So1 Syy Level 3
Level 4

S121 S122
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ii) Using a Geometric Representation, one has:

S

AN

iii) Using an Algebraic Representation through pairs of braces {}, one has:

I

7
(o)) @

P°(S) =S ={a,b,c,d,e, f,g,h1}
1 level of pairs of braces abcdefghi Level 1

P'(S) = {{a,b,c,d, e}, {f, g, h}, {1}
Level 2
2 level of pairs of braces
i.e. a pair of braces {} inside, another @ ’
pair of braces {}, or {... {...} ...}

2 level of closed curves

P2(S) = P(P(S))
= {{{a}, (b, c,d}, {e}}, {f}. {g, R}}. {13}

Level 3

3 levels of pairs of braces

3 level of closed curves

P3(S) = P(P*(5))

= {({a), (b}, {d}, {e3}, {0F), g, 3}, (1) e
’ Level 4
o)

4 levels of pairs of braces 4 level of closed curves
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1.2 Definition of nth -Power of a set [1]:

The n'™* -Power of a set was firstly introduced by F. Smarandache at (2016) [4] by:

P™(S) asthe n'™ -PowerSet of the set S, for integer n > 1, is recursively defined as:

P2(S) = P(P(S)), P3(S) =P (P(P(S))), ..., P(S) = P(P"1(S)), where P°(S)=S, and P1(S) =

P(S),i.e. P°(S) c PX(S) c P%(S) c -+ c P"1(S) c P™(S).

The n'™ -PowerSet of a Set is better reflect for our complex reality, since a set S ( that may represent
a group, a society, a country, a continent, etc.) of elements (such as: people, objects, and in general
any items) is organized onto subsets P(S), which on their turns are also organized onto subsets of

subsets, and so on, that is our world.

1.3  Example

Suppose that the set of the grandparents represents the power set P2(S) = P(P(S)), then the first
offspring is the parents themselves which can be regarded as the power set P(S), and the second
offspring is the non-empty set P°(S) =S, i.e. S = P°(S) c PX(S) c P?(S).

The following medical case study would be appropriate to demonstrate the importance of the power
set concept:

There are many diseases and conditions that can be passed on through genes. Some of these
diseases include Down syndrome, hemophilia, hypertension, sickle cell anemia, and cystic fibrosis.
Most genetic diseases are a combination of mutations in multiple genes, often in combination with
environmental factors. There are three groups of genetic diseases, each with their own
causes: monogenetic diseases, multifactorial inherited diseases, and chromosomal abnormalities.

The couple of husband can be represented as PowerSet P(S) ,it isimportant to
know what P(S) have inherited a genetic disease from their parents (i.e. represented the non-empty
set P°(S) =S as grandparents) and to remember that the above mentioned genetic diseases can
be passed on to their descendants (i.e. the offspring which is mathematically denoted by the power
set P2(S) = P(P(S)) .If S&P(S) are aware of possible diseases that can be inherited to P(S)&
P2(S) respectively, contact a specialist and see what S & P(S) can do to help P(S)& P2(S) and avoid
serious problems later. By working together with the help of family and doctor, the health risks can

be avoided instead of taking their toll later.

1.4  Neutrosophic HyperOperation and Neutrosophic HyperStructures
[2]:

In the classical HyperOperation and classical HyperStructures, the empty-set @ doesnot belong
to the power set, (i.e. P.(H) = P(H)/{@}). Nonetheless, in the real world we encounter many
situations when HyperOperation # is indeterminate, for example a#b =@ ( unknown, or

undefined), or partially indeterminate, for example: a # b = { [0.2,0.3], @}. In our everyday life, there
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are many more operations and lows that have some degrees of indeterminacy (vagueness,
unclearness, unknowingness, contradiction, etc.), than those that are totally determined. That’s why
in 2016 the scientists F. Smarandache have extended the classical HyperOperation to the
Neutrosophic HyperOperation, by taking the whole power P(H) ( that includes the empty-set @ as
well), instead of . P,(H)(that does not include the empty-set @), as follow.

1.4.1 Definition of Neutrosophic HyperOperation:
Let U be a universe of discourse and H be a non-empty set, H c U.
A Neutrosophic Binary HyperOperation #, is defined as follows:
#,: H> > P(H), where H is a discrete or continuous set, and P(H) is the powerset of

H that includes the empty-set @.

1.4.2 A Neutrosophic m-ary HyperOperation #,, is defined as:
#,: H™ —> P(H), for integer m = 1. Similarly, for m =1 one gets a Neutrosophic

Unary HyperOperation.

2. Neutrosophic SuperHyper Topological Spaces

This section gives an original creativity neutrosophic mathematical structure for new notion
named as Neutrosophic SuperHyper Topological Spaces (NSHTS) defined under a new kind of sets

called neutrosophic n"-power set P™(X).

2.1 Definition

Let X be a non-empty set, P"(X) is the neutrosophic n""-power set of a set X, for integer n > 1. A
Neutrosophic SuperHyper Topological space on P™(X) is a subfamily t"¢“"°tP° of N(P™(X)), and

satisfying the following axioms:
1- The neutrosophic universal n*"-power set 1pn() ,and the neutrosophic empty n‘"-
power set Opn(yy both are belonging to g™¢*7otope,
2-  Any arbitrary (finite on infinite) union of members of t™¢%7°tP% belong to TMeUTOLOPO,
3- gneutrotoro g closed under finite intersection of members of Tme¥TOPO (je, the

intersection of any finite number of members of t"¢“"°®°P° belongs to T"e*T0tOPO ),

Then (t"e#tretore pn(x)) is called Neutrosophic SuperHyper Topological Spaces (NSHTS). Because
of the definition of (NSHTS) via neutrosophic n*"-power open sets that commonly used in this
manuscript, the family of neutrosophic sets T"¢*7°tP° of the n‘"-power sets are commonly called a

(NSHTS) on the neutrosophic n**-power sets P"(X).
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A subpowerset P™!(C) € P™2(X) for integers m1 < m2 is to be closed in (t™¢¥7°t°P°, P (X)) if its

complement P™?(X)/P™!(C) is an open set.

2.2 Numerical Example:

What is the difference between P!(x) & P?(x) in the structured of the Neutrosophic SuperHyper
topological spaces (t™e%trotere, pn(xY)), and how it effects on the distribution of the internal elements?

take a look on the following example:

Suppose X = {a, b, c} with the following

T = {0.7,0.4}
Pl(x) ={{a, T =03, = 0.1,F = 0.6}, {b,c} I ={0,0.3} },
F ={0.4,0.3}

T = {{0.73},{0.4}}
P2(x) ={{a,T = 03,1 = 0.1,F = 0.6}, {{b}, {c}} I = {{0},{0.3}}

F = {{0.4},{0.3}}
For more details, we can see that In P'(x) the element a affected by its membership functions
{0.3,0.1,0.6} directly, while the element(s) {b,c} has (have) two kinds of affected (directed affect)
and (indirect affect) as follow:

- The element b has a separate direct affect by its membership functions {0.7,0,0.4}, and
the element ¢ has a separate direct affect by its membership functions {0.4,0.3,0.3}.
- The structured element {b,c} have common indirect affected by their membership

functions {0.7,0.4},{0,0.3},{0.4,0.3}.

This is a very harmonic with the previous example (1.3) stated in section one, by expressing
the elements a,b as the parents (husband and wife), each one of them can affected separately by the
inherited genes from their parents, also, they will crossing their parents’ gene to their offspring
mutually and their descendants will be affected directly by their parents and indirectly by their
grandparents.

Then (tmewtretore pn(x)) is the Neutrosophic SuperHyper Topological spaces, where:

gnettrotopo — {OPn(X): 1P”(X)' pl ), p2 ()}

2.3 Definition

Let P"(X) be a neutrosophic n**-power set over a non-empty set X, the neutrosophic interior and
the neutrosophic closure of P"(X) are respectively defined as:

int™( P*(X)) =U {P™(X): P™(X) € P™"(X),P™(X) € "eWtrotPo}  this means that for the same
collection of the neutrosophic n**-power set P"(X), all P™(X) given that m <n regarded as

interior for P™(X).
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c™(P™(X)) =n {P"(X): P"(X) € P"(X), (P"(X))° € greutrotorey,

2.4 Definition

The following mathematical phrases are true for any two neutrosophic n1**-power set
P™ (Y1) and n2'™-power set P"?(Y2) on the neutrosophic n'"-power set P"(X), given that
nl,n2 < n, and that there is no restrictions on the relation between n; and n, :

1- Tpnl(y1)({x}) < Tpnz(yz)({x})r Ipniyy) (xh < Ipnz(yz)({x}): and Fpniyq) (&) =

Fpnz(yy({x}), for integers n1,n2 = 1, and for all {x} € P™(X) iff P"*(Y1) € P"*(Y2).

2- P"(Y1) € P"2(Y2) and P"™2(Y2) € P"(Y1) iff P"(Y1) = P"(Y2), given that n; = n,.

3- PM(Y1) N P"2(Y2) =
{({x}, min{TPn1(y1) ({x}), Tpna (r2) ({x})} , min{ Ipni(yqy D), Ipn2(yy) ({x})}, maX{Fpnl(n) ({x}), Fpnz (v2) ({x})})
“{x} € PM(X)}

4- P™M (Y1) UP™(Y2) =
{({x}, maX{Tpnl(n) (), T pnz(y7) ({x})} ) max{ Ipnayy({x 1), Tpnz(yzy ({x})}, min{Fpnl(m) ({x}), Fpnz(yy) ({x})})
s {x} € P"(X)}

In general, the union or the intersection of any arbitrary members of neutrosophic n‘*-power set
P™(X);e; are defined by:

i € P00 = Lt (T i} inf (T} 5ub {F i ) 0} € PP,

i Z [P0 = {({x) sup {Tpni({xn} ,Sup {1 Pni({xn} ' i“f{F Pnf({xn}) :{x} € PM(X)}

5- The neutrosophic n*"-power universal set P"(X) is denoted by 1pnx) ,and it is exist if
and only if the following conditions are holding together:
Tenay = 1pneoy Ipngay = Lenexy, and Fpngay = Opnix).

6- The neutrosophic n*"-power empty set P*(X) is denoted by Opn(y) , and it is exist if
and only if the following conditions are holding together:
Tency = Opneny Iy = Opmexy and Fpnggy = 1pncx)-

7- Let P™ (Y1) € P"*(Y2), given that n, <n,, then the complementary of P™ (Y1)
concerning to P™(Y2) is defined as follow:
P™(Y1) \ P™*(Y2) = {<|TP"1(Y1) {xh - Tpnz(y) ({x})|, |IP"1(Y1) (&) -
Ipnz(yz)({x})L 1pnexy — |Fpn1(y1) ({xp) - Fpnz(yy) ({x})|)}

8- Clearly, the neutrosophic complement of 1pnx) and Opn(x) are defined as:

(Xprx))© = (Ton(ay = Opnexy, Ipnyy = Opnexy, Fprag) = 1pnexy) = Oprixy,
(0pnx)) = (Ton(ay = Longey Ipncugy = Lenexy, Fprag = Oprexy) = Lpngxy.
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2.5 Proposition

Let P™(X),P"(X),P™(X),and P™(X) € N(P"(X)) without any restrictions on the

relations between n,, n,, n3, ny, and n, then the following mathematical statements are true:

i) Let P™(X) € P™(X),and P"3(X) S P™(X), given that n, < n,,&n; < n,, this
implies that P™(X) n P™(X) € P™(X) N P™(X),
ii) (Pnl(X)C)C = P™(X), also if P™(X)¢ € P"(X)¢ = P"(X) € P™(X),

i) (PMOO N PX))° = PP U PR(X)S,
iv)  (PM0 U P2X)° = PPN PE(X),

2.6 Definition

Let X be a non-empty set, P"(X) is the n'-power neutrosophic set of a set X, for integer
n=>1.If a,B,y be real standard or non-standard subsets of |0, 1+[ , then the neutrosophic nth-
power set P™(x,p,) is called a neutrosophic n"- power point, and it is defined by:

(@pn(xy, Bprexy Yeno ) if P*(x) = P"(y)

n —
P (xa.ﬁ'}’(y)) - {<0Pn(x)'0P"(x)' 1P”(x))' if P™(x) # Pn(y)

For x,y € X,and P" (xa_ﬁ_y), P™(y) € P™"(X), here P™(y) is called the support of P"(xqp,).

2.7 Definition

Let P™(X) € N(P™"(X)), the belonging operation of the neutrosophic n'*- power point
P™(xqp,) to PP (X) (ie. P™(xqp,) € P (X) ) is satisfied if and only if Tpniy = @, Ipnigy =
ﬂ, Fpnl({x}) < Y-

2.8 Definition

A sub-collection 7;, of neutrosophic n"- power set P"(X) on a non-empty set X is said to be

Neutrosophic SuperHyper Supra Topological Space on X if the n"'- power sets 0pn(x), Lpncx) € 75, ,
[o0]

and UP™M(X) €1, for {PM(X)}2, €1, . Then (z;,P*(X)) is called Neutrosophic SuperHyper
iel
Supra Topological Space on X.

3 Neutrosophic SuperHyper Bi-Topological Spaces

This section contains new concepts presents for the first time linking the concept of the

neutrosophic n'"- power sets with the traditional neutrosophic bi-topological spaces.
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3.3 Definition

Let (7,97, Pn(X)),and (7,2"@P%", Pn(X)) be two different Neutrosophic SuperHyper
topological spaces on X. Then (t,!StP%r g,2ndpair pn(xY) js called Neutrosophic SuperHyper Bi-
Topological space (NSHBI-TS).

3.4 Definition

Let (t,1stPair, ¢,2ndpair pn(xy) be a (NSHBI-TS). A collection of a neutrosophic n‘"- power
set N = {{{x}: Tpn(iep, Ipnciapys Fprgap): 16} € PM(X)} over P™(X) is said to be a pairwise
neutrosophic nt"- power open set in (z,!5tP4, 7,2ndpair pn(xy) if there exist a neutrosophic nt"-

1stpair

power open set Ny = {{{x}: Tpn1 (), Ipni gy, Fpri(ayp): ix} € PP(X)} in 74 and a neutrosophic
Tlth- powel‘ Opel‘l set Nz = {({x} TPYLZ({X}), IPHZ({X}), FPnZ({x})>: {x} c PTl(X)} in T22ndpair SuCh that N =
Ny UN, = {{{x}, Tenqy = max{ Tpma gy, Tenzgap Tenco) = max{Ipm g, pnz b Frneay =

min{FPm({x}), FPnZ({x})}>Z {x} c Pn(X)}

3.5 Definition

Let (t,15tPair, g,2ndpair pn(xy) be a (SHNBI-TS). A collection of a neutrosophic nt"- power
set C = {({x}: Tpeuuyy Ipe(ayy Frequp): {x} € PM(X)} over P™(X) is said to be a pairwise neutrosophic

1stpair
)

n'"- power closed set in (t; T,29Palr pn (X)) if its neutrosophic complement is a pairwise

istpair ¢, Zndpair pn(xy) Clearly, a neutrosophic n‘"- power

neutrosophic n**- power open set in (t;
set C over P"(X) is a pairwise neutrosophic n*- power closed set in (t,StP%", ,2ndpair pn(xy)
if there exist a neutrosophic n**- power closed set C; = {({x}: Tper ey Iper (apyr Fpea): {3 € PM(X)}
in (7,"%%7)¢ and a neutrosophic n- power closed set C, = {{{x}: Tpez(y), Ipezgayy, Fpez(ayy): {6} €
PM(X)} in (?*T)¢ such  that € =G NG ={({x}, Tpeqny = min{Tper gy, Tpeziaph
Ipeqy = min{lper (i), Ipez o} Frequy = max{Fpei gy, Fpezpp}): {x} € P*(X)} . Where (1;747)¢ =
{(N)* € N(P"(X)): N € 7,797, i = 1st,2nd . The family of all pairwise neutrosophic n'*- power
open/closed sets in  (7,lStP4r g,2ndpair pn(x))  js  denoted by PN nf* POS in

(7,514l g 2ndpair, pn(xy) / PNnt*PCS in (z, 'SP, 7,2dpeir, pn(x)), respectively.

3.6 Theorem

Let (t,1stpair, g,2ndpair pn(xy) be Neutrosophic SuperHyper Bi-Topological space. Then,

1. Opn(y),and lpn(, are pairwise neutrosophic n‘"- power open/closed sets.

2. An arbitrary neutrosophic union of pairwise neutrosophic n**- power open sets
is a pairwise neutrosophic n**- power open set.

3. An arbitrary neutrosophic intersection of pairwise neutrosophic n**- power

closed sets is a pairwise neutrosophic n**- power closed set.
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Proof:

1stpair 22ndpair
)

1. Let Opnigyy, Opnzgyy & 74 T respectively, and ny +n, =n,
since  Opniy)UOpnz(yy = Opn(yy , hence Opnyy is a PN n'* POS in
(T 15tPOIT, g 2ndpair pr(yyy . Similarly, 1pngy, is a PN na'ft PCS
in(z, 1stpair g 2ndpair pnxyy.

2. Suppose {N; = ({x}: Tpmigayy, Ipmi ey Fpmiqagy): i € 1} €
PNnt"POS in (r,15tP47, ,2ndpair pn(x))  Then each N; is a pairwise
neutrosophic n™" power open set for all i € I , this implies that there exist
N € 7,154 and  N? € 1,2M4tPa" guch that N; = N} UN? for all i€l
which implies that

UN; Y 1 2 [UN-l] [UN-Z
=, N N = 4 4
i€l lEI[LU i ieluiel

1stpair 2ndpair

Now, since 7, and T, are both Neutrosophic SuperHyper

Topological Spaces on the neutrosophic n'* power set P™(X), then
1 . 2 . .

[U Nl ¢ T, 15tPar - and [U N; ] C 1,2MPair  Therefore, Y Ni s a pairwise
i€l i€l i€l

neutrosophic n**- power open set.

3. Itis immediate from the definition (3.3).

3.7 Corollary

Let (t,'stPair, g, 2ndpair pn(xy) be Neutrosophic SuperHyper Bi-Topological space. Then, the family

of all pairwise neutrosophic n‘"- power open sets is a Neutrosophic SuperHyper Supra Topological
Space (NSHSTS) on X. This (NSHSTS) is denoted by 77,7 .

3.8 Theorem

Let (t,1stPair, g,2ndpair pn(xy) be Neutrosophic SuperHyper Bi-Topological space. Then,

1.

3.

1stpair 2ndpair _
)

Every 1, Ty neutrosophic n**- power open set is a pairwise

. . i A supra
neutrosophic n**- power open set, i.e. 7,SP4r y 7, 2ndpair ¢ 7 7PTE

1stpair 2ndpair _
)

Every 1, T, neutrosophic n**- power closed set is a pairwise

neutrosophic n"- power closed set, i.e. (7,P%7)¢ U (1,2M4P4)¢ c (77,P7*)¢,

1stpair 2ndpair supra _ 2ndpair suprayc _ 2ndpairyc
If 7,'SPOT © 1,°M9PAT then 1., = 1,°"P% and (77, )¢ = (1, "*PHN)°.

Proof. Straightforward.
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3.9 Definition

Let (r,lstpair g,2ndpair pn(xy) be Neutrosophic SuperHyper Bi-Topological space, and
P"(X) € N(P"(X)).The pairwise neutrosophic closure of P"(X), denoted by cl;(P"(X)) , is the
neutrosophic intersection of all pairwise neutrosophic closed supra n'*- power sets of P™(X), i.e,,
2 (PM(X)) =n {P™(X) € (z27™) : PP(X) € P™(X)}. It is clear that c[?(P"(X)) is the smallest

pairwise neutrosophic n'"- power closed set containing P™(X).

3.10 Theorem

Let (r,!stpair g,2ndpair pn(xy) be Neutrosophic SuperHyper Bi-Topological space, and
P"(X),P"?(X) € N(P™"(X)), without restrictions on the relations between nl,n2,n. Then, the
following mathematical statements are true:

L cl3(0pnigy)) = Opnigyy, and clp(Lpmigy)) = Lpnigy, i = 1,2.

2. P™(X) € clz(P™(X)).

3. P"(X) is a pairwise neutrosophic n'*- power closed set if and only if
cly(PM(X)) = PM(X) .

4. PM(X) c PM(X) = cl}(P™(X)) € clF(P™(X)).

5. cM(PM(X) U clF (P (X)) € cl(PM(X) U P"2(X)).

6. clt [cl}(P™(X)] = cl(P™(X), ie., cl}(P™(X) is a pairwise neutrosophic n"-

power closed set.

Proof. Straightforward.
3.11 Theorem

Let (r,!$tPair, g,2ndpair pn(xy) be Neutrosophic SuperHyper Bi-Topological space, and P™(X) €
N(P™(X)). Then,

P (xa55) € el (P (X)) & U (P (xa5)) N PM(X) # Opmagyy, VU (P (e ) €

PG C9)F
Where U (P"1 (xa,l;,y)) is any pairwise neutrosophic n‘"- power open set contains P™(x,p,) , and

15 (P™(xqp,)) is the family of all pairwise neutrosophic supra n*- power open set contains

pt (xa,ﬁry)
Proof:

Let P™(x4p,) € cl(P™ (X)), and suppose that there exist U (P”l(xa‘ﬁ‘y)) €1y, (P (xgp, ),

such that U (P”l(xa,ﬁ,y)) N P™M(X) = 0pm1(y. Then PP (X) € (U (Pnl(xa_ﬁ_y)))a thus cl(Pm(X)) €
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cly (U (P”I(xa,ﬁ,y)))c =U (P”l(xa,ﬁ‘y)))c which implies that clZ(P™(X))Nn U (P"l(xa_/g_y)) =

Opni(y , this is a contradiction. hence U (P"1 (xa,ﬁ,y)) N P (X) # Opni(yy.

Conversely, assume that P™(x4p,) € cl2(P™ (X)), then P™(x4p,) € (cl2(P™(X)))¢ . Thus,
(cl;,l(P"1 (X)))C € T,0 “(P™M (xa‘ﬁ‘y)), therefore, by hypothesis, (Cllf,l(P"1 (X)))C NP (X) # 0pni(yy,

this is a contradiction. Hence we get P™ (x,,) € cl3(P™(X)).

3.12 Theorem

Let (t,lstPair g,2ndpair pn(xy) be Neutrosophic SuperHyper Bi-Topological space. A

neutrosophic n*- power set P™(X) over P"(X) is a pairwise neutrosophic n‘"- power closed set if
and only if P (X) = cl:1 1sepair (P (X)) N cl?zzndpair (P™(X)).

Proof:

Suppose that P™(X) is a pairwise neutrosophic n'"-power closed set and P™(x,z,) &

P™(X). Then P™(x4p,) & cl?( P™(X)). Thus, by theorem (3.9), there exists U (P”l(xa_ﬁ_y)) €

T3, “(P™(x4p,)) such that U (P”l(xa‘ﬁ‘y)) N P™(X) = Opni(yy . Again, since U (P"1 (xa_ﬁ_y)) €
T3, C(P™(x4p,)) , then there exists P™(X) € 7,*'P%"T and P™2(X) € 1,°"P%" such that
U (P"1 (xa,l;,y)) = P™(X) U P™(X) . consequently, (P™(X)UP™(X))n P"(X) = Opni(yy , this
implies that P™(X) N P™(X) = Opni(yy, and  P™2(X) N P™(X) = Opniyy . Since P™(x,p,) €
U (P”1 (x“ﬁ,y)), then either P™(x,p,) € P™(X) or P™(x,p,) € P™(X), this implies that either

pmt (x“,[;,y) ¢ cl?llstpair (P (X)) or P™ (xa‘ﬁ‘y) ¢ cl?zm,,air (P"(X)) . Therefore, P™ (xa,ﬁ,y) ¢
¢l sstpair (P (X)) N €L anapair (P™ (X)) Thus, cl? ssepair (P™ (X)) N L anapair (P™ (X)) S P™(X). On
the other hand, we have P™(X) Cc cl?llstpair(Pnl @xX)Hn clfzzndpair (P"(X)) . Hence, P™(X) =
Cl.?llstpair(Pnl &)Hn Cl.?zzndpair (P™(X)).

Conversely, suppose that P™(X) = clfllstpair(Pnl xX)NHn cl?zzndpair (P (X)) . Since,
cl? 1stpair (P (X)) is a neutrosophic n" -power closed set in (z;"**",P*(X)) , and
chZan,,aiT(Pnl(X)) is a neutrosophic n"-power closed set in (7,2"%%", P"(X)), so, by definition

(3.3), cl?llstpair(Pnl(X)) n cl?Zanpair(Pnl(X)) is a pairwise neutrosophic n*- power closed set in

(z,15tPair 7, 2ndpair pn(yy) consequently, P"!(X) is a pairwise neutrosophic n*”'- power closed set.

3.13 Corollary
Let (z,15tPair g,2ndpair pn(xy) be Neutrosophic SuperHyper Bi-Topological space.
Then, clp(P™(X)) = L7 1sepair (P™ (X)) N €L znapair (P™ (X)), Y P™(X) € N(P"(X).
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4 Conclusion

The types of the topological spaces in neutrosophic theory are always changed
depending upon the structure of the sets, in this article, the Neutrosophic SuperHyper
Topological Spaces has been fathomed especially Neutrosophic SuperHyper Bi-Topological
Spaces. The definitions of the neutrosophic interior and the neutrosophic closure of P™(X)
have been presented. Also, the neutrosophic universal n‘*-power set P"(X) and the
neutrosophic empty n"-power set P"(X) were discussed. The union and the intersection
operations have been defined. As well as, the authors presented pairwise neutrosophic n"-

h

power open set, pairwise neutrosophic closed n' - power set, many of theorems,

propositions and examples to support the new notion.
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Abstract: The main focus of this article is to discuss the concept of neutrosophic sets, neutrosophic
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1. Introduction

In real life situations, most of the problems in economics, social science , environmental science
and in many other cases information are vague, imprecise and insufficient. Fuzzy set [1],

intuitionistic fuzzy set [2] etc are used as the tool to deal with such uncertainties.

Later on Molodtsov[3], pointed out that these theories have their own difficulties and as such
the novel concept of soft set theory was initiated. The theory of soft set has rich potential for solving
problems in economics, social science and medical science etc. Maji .et.al [4, 5] have studied the
theory of fuzzy soft set. Maji. et. al [6], have extended the theory of fuzzy soft set to intuitionistic

fuzzy soft sets.

Smarandhache [7], introduced the concept of neutrosiphic sets as a mathematical tool to deal
with some situations involving impreciseness, inconsistencies and interminancy. It is expected that
neutrosophic sets will produce more accurate result than those obtained by using fuzzy sets or
intuitionistic fuzzy sets. Maji. et. al [8], have extended the theory of neutrosophic set to neutrosophic

soft set. Maji. ef. al [9] applied the theory of neutrosophic soft set in decision making process.

In recent years several mathematicians have used this concept in different mathematical
structures, which can be seen in the works of Deli et.al [10-12]. Later this very concept has been
modified by Deli and Broumi [13] in developing the basic of neutrosophic soft matrices and its
successful utilization in decision making process. The concept of intuitionistic neutrosophic sets was
developed by Broumi and Smarandache [14] and some of its properties were discussed. Bera and

Mahapatra [15] studied some algebraic structure of neutrosophic soft set. Various decision making
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algorithms over neutrosophic soft set theory have been developed in the literature of neutrosophc
set theory. Many researchers for example [16]have worked on applying neutrosophic sets invarious
decision making processes. Many new development regarding neutrosophic sets and neutrosophic
soft matrices are found in the works of [17-23] Neutrosophic soft block matrix is a neutrosophic soft
matrix which is defined using smaller neutrosophic soft matrices. Some authors, as for example[24,

25] have discussed neutrosophic soft block matrices.

The main focus of this article is to deal with the concept of various types of neutrosophic soft
block matrices and some operations on these matrices. The next section briefly introduces some
definitions related to neutrosopphic set, neutrosophic soft set, neutrosophic soft matrix,
neutrosophic soft block matrices and so on. Section 3 defines operations on neutrosophic soft
matrices etc. Section 4 presents some special form of neutrosophic soft block matrices and some

related properties.

2. Preliminaries (proposed work with more details)

Some basic definitions that are useful in subsequent sections of this article are discussed in this

section.
Definition 2.1: Neutrosophic sets (Smarandache, 2005)
Let U be the universe of discourse, The neutrosophic set A on the universe of discourse U is

defined as A={<T,(X), 1,(X),Fo,(X) > x€U} , where the characteristic functions

T,I,F:U —>[0,1] and O0<T+I1+F <3"; TLF are neutrosophic components which defines

the degree of membership, the degree of interminancy and the degree of non membership
respectively.

Definition 2.2: Neutrosophic soft set (Maji, 2013)

Let U be an initial universe set and E is the set of parameters. Suppose P (U) denotes the collection of

all neutrosophic subsets of U. Let AC E . A pair (F, E) is called neutrosophic soft set over U where F
is a mapping givenby F:E —P(U)
Definition 2.3: Neutrosophic soft Matrix (Deli.et.al, 2015)

Let U ={u,u,,U,,.....U. } be the universe set and E ={X,X,,X;,......X,} be the set of
parameters. Let AC EThe set (F, A) is a neutrosophic soft set over U. Then the subset of UXE is
uniquely defined by R, ={(u,e):ee A,ue F,(e)} which is a relation form of (F, E). Now the
relation Ra is characterized by truth membership function Ty :UXE —[0,1] , interminancy

membership function |, :UxE —[0,1] and falsity membership function R, UxE —[0,1]
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where  Tp (u,e)€[0,1] , I (u,e)€[0,1] and F; (u,e)€[0,1] indicates truthfulness,

interminancy and falsity.

If

(Ta b Fi__J=(Ta(um,en), Ia(umen), Fa(umen)) and ai=(Ta(uiej), Ia(uiej), Fa(uie))) we can define a
8; &, .. &,

matrix '&U _ 8y dp . Ay,
An 8o Amn

This is called neutrosophic soft matrix of order mxn corresponding to the neutrosophioc soft set

(F,E) over U.

Definition 2.4: Triangular neutrosophic soft matrix

Triangular neutrosophic soft matrix is a special type of square neutrosophic soft matrix. A square

neutrosophic soft matrix is called lower triangular if all the entries 8 =(0,0,) for i<j, ij=1, 2,

3,.....,nand upper triangular if a;=(0,0,)) for i>j,ij=1,2,3, ...... ,n.

Definition 2.5: Toeplitz neutrosophic soft matrix
Toeplitz neutrosophic soft matrix is a square neutrosophic soft matrix of the form
(T All’ I All’ FllA) (T A12’ I A].2’ FlZA) (TA13' I A13’ FlSA) (TA14’ I A14’ F14A)
A — (T A21’ I AZl’ FZlA) (T Aﬁl].Y I All’ FllA) (TAZJ.Y I A21’ FZlA) (TA13’ I A13’ FlSA)
(T A3].Y I A3l’ F31A) (T AZlY I A21’ F21A) (T All’ I All’ FllA) (TAZIY I AZl’ FZlA)
(T A41’ I A41’ F41A) (T A3l’ I A31’ F31A) (TAZI’ I A21’ FZlA) (T All’ I All’ FllA)

Definition 2.6: Zero neutrosophic soft matrix

Zero neutrosophic soft matrix is neutrosophic soft matrix in which all the entries are of the form
(0,0,1).

Definition 2.7: Tridiagonal neutrosophic soft matrix

Neutrosophic soft tridiagonal matrix is another special neutrosophic soft matrix which has non
zero entries in the lower diagonal, main diagonal and upper diagonal and all other entries being

(0.0.1). Thatisa Neutrosophic soft tridiagonal matrix A has the form

B, C, .. 0

= A B, C,.. o .

A= where A, B,,C. are non zero entries in the lower, main and upper
0 A B G
0 0 A B,

diagonal respectively.
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Definition 2.8:Neutrosofic soft block matrix ( Uma.et.al,2017 & Dhar, 2020)

A neutrosophic soft block matrix or a partitioned matrix is a neutrosophic soft matrix that is
interpretated as having been broken into sections called blocks or submatrices. A neutrosophic soft
block matrix can be visualized as the original neutrosophic soft matrix by drawing lines parallel to
its rows and columns. These sub-matrices may be considered as the elements of the original
matrices. Any neutrosophic soft matrix can be interpreted as a neutrosophic soft block matrix in one
or more ways, with each interpretation defined by how its rows and columns are partitioned.

For example

(T All’ I All’ FllA) (T A12’ I AlZ' FlZA) (T A13’ I A13’ F13A) (T A14’ I A14' F14A)

b1
Il

(T A21’ I A217 FZlA) (T A22’ I A22’ FZZA) : (T A23’ I A237 I:23A) (T A24’ I A247 F24A)
_(T ASl’ I ASl’ F31A) (T A32’ I A32’ F32A) : (TA331 I A33’ F33A) (T A347 I A34’ F34A)_

The above neutrosophic soft matrix can be represented as

N

P21 22

14

where

F~)11 = I:(T A111 I A111 F1f) (T A121 I A12’ Fl?):|
I512 = I:(TA13' I A13’ FA13) (T A14! I A14’ FA14)}

- (TR TR o TR T FD

PZl_ 22
TAILES) T8 FD) A5 FS) (TA14FD)
7

33

Then
A I511 ~12 . . . . .
A=| . - is an example of neutrosophic soft block matrix or neutrosophic soft partitioned
2 2
matrix.

So the neutrosophic soft matrix A is partitioned by the dotted lines dividing the neutrosophic soft

matrix into neutrosophic soft sub-matrices P;, P, , P,;, P,, . The neutrosophic soft matrix A can be

partitioned in several ways.

Definition 2.9: Square neutrosophic soft block matrix
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If the number of rows and the number of columns of a neutrosophic soft blocks are equal then the

matrix is said to be square neutrosophic soft block matrix.

l?’ IlAl’ Fl?) (Tlg\’ |1A2’ Fl?) : (Tlg’ |1A37 Fl?) (Tlﬁ’ Ilﬁ’ F14A) : (Tl?’ |1A57 Fl?) (Tlé’ I
@R (00 Fe) 0 (TR (TR 0 (T 150 Fe) - (Tos, |
A= .

TLGFD (RIBFD © CAIAED TAILED & (AILED (T

(AR TAIAED © TAIAFD (TAILED © (&IAFD T4
or
A A A

A Ap Ay

is a square fuzzy block matrix since all AJ— ’s are square blocks.

Definition 2.10: Rectangular neutrosophic soft block matrix
If the number of rows and the number of columns of blocks are unequal then the matrix is said to be

rectangular neutrosophic soft block matrix .For example

(T Bll’ I Bll’ I:llB) (T BlZ’ I BlZ’ FlZB) (T B13’ I B13' FlSB) (T Bl4’ I Bl4’ I:14‘3)

b1
Il

(T BZl’ I BZl’ F21B) (TBZZ’ I B22’ FZZB) : (T B23’ I BZS’ F23B) (T B24' I B24’ FZAB)
_(T BSl’ I BSl’ F31B) (T BSZ’ I B32’ FSZB) : (T B33’ I B33’ F33B) (T B34’ I B347 F34B)_

Is a rectangular neutrosophic soft block matrix.

3. Operations on Neutrosophic Soft matrices

3.1 Addition of neutrosophic soft matrices

Let A=[(T, ijA, |iJA, FijA)] ,B= [(TijB, |i;3, FijB )] be two neutrosophic soft matrices. Then the max-min

product of the two neutrosophic soft matricesA and B is denoted as A+ B is defined as

A+B =[max(T,*, T.%), min(1.}, 12), min(F/,

B . .
Fi)] foralliandj.
3.2 Max-min product of neutrosophic soft matrices

Let A=[(T, ijA, |iJA, FijA)] ,B= [(TijB, |ijB, F“-B )] be two neutrosophic soft matrices. Then the max-min

product of the two neutrosophic soft matricesA and B is denoted as AB is defined as

1A, 12

AB =[maxmin(T,*, T,%),min max(1;*, 1), min max(F,*, F.*)] for all i and .

3.3 Transpose of neutrosophic soft matrices

A
167
A
251

A
36"
A
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Let A=][(T ijA, |iJA, FijA)] be two neutrosophic soft matrices. Then the transpose of this neutrosophic

soft block matrix will be defined by denoted by AT and is defined by AT =[(T J-f, | j/?, ij)]

3.4 Addition of neutrosophic soft block matrices

Au : '5'12 B, @ By

Let A=|..... S and B=|.... o be two neutrosophic soft block matrices in

which the corresponding blocks are conformable for addition, then the addition of two neutrosophic

soft block matrices can be defined as

'&ll + B11 AIZ + B12

3.5 Multiplication of neutrosophic soft block matrices

Let A B betwo neutrosophic soft block matrices which can be represented by

Then the product of two neutrosophic soft block matrices will be denoted by AB and is defined by
ABLy +ABy 1 AB, +A,By,

AnBiy + ABy o AyBL +ALB,,
provided that the blocks considered here are conformable for multiplication.

3.5 Transpose of a neutrosophic soft block matrix

Let A = { F:)ll F:)lz }
P21 Pzz

be a neutrosophic soft block matrix, then the transpose of that neutrosophic soft block matrix is

defined as

4. Some special types of neutrosophic soft block matrices
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In this section, the intention is to discuss about various types of neutrosophic soft block matrices and
the associative properties.

4.1 Neutrosophic soft block triangular matrix

Neutrosophic soft block triangular matrix is a special type of square neutrotrosophic soft matrix.
Neutrosophic block triangular matrices can be of two forms such as upper triangular or lower

triangular.

4.1.1 Neutrosophic Soft Block upper triangular matrix
Neutrosophic soft block upper triangular matrix is a neutrosophic soft matrix of the form
A= ~ |where X, Y and W are square neutrosophic soft matrices.

0]

4.1.2Neutrosophic Soft Block lower triangular matrix

Neutrosophic soft block lower triangular matrix is a neutrosophic soft matrix of the form

- [X O . .

VoV where X, Y and W are square neutrosophic soft matrices.

4.1.3Properties of Neutrosophic Soft Block triangular matrix

e Addition of two neutrosophic soft block upper triangular matrices of same order results in a
neutrosophic soft block upper triangular matrix.

e Product of two neutrosophic soft block upper triangular matrices is again a neutrosophic
soft block upper triangular matrix.

e Addition of two neutrosophic soft block lower triangular matrices results in a neutrosophic
soft block upper triangular matrix.

e Multiplication of two neutrosophic soft block lower triangular matrices of same order is

again a neutrosophic soft block lower triangular matrix.
4.2 Neutrosophic soft block diagonal matrix
Neutrosophic soft block diagonal matrix is a square neutrosophic soft block matrix in which the

main diagonal blocks are square neutrosophic soft matrices and all off diagonal blocks are zero

neutrosophic soft matrices. Neutrosophic soft block diagonal matrix A has the following form
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A, 0 .. 0

A-| 0 M

where A; is a square neutrosophic soft block matrix for all

0 0 .. A,

1j=1,2,3,.....,0.

4.3 Neutrosophic soft block quasidiagonal matrix
It is a neutrosophic soft block matrix whose diagonal blocks are square neutrosophic soft block

matrices of different order and off diagonal blocks are zero neutrosophic soft block matrices. Thus

Dl 0O .. O

. 0 D2 .. 0

A= ] _ ] ] is a quasidiagonal matrix whose diagonal blocks Di ,1=1,2,3,.....,n are
0 0 .. D

n

square neutrosophic soft matrices of different orders.

4.4 Neutrosophic soft block tridiagonal matrix

Neutrosophic soft block tridiagonal matrix is another special neutrosophic soft block matrix
which is just like the neutrosophic soft block diagonal matrix, a square neutrosophic soft matrix ,
having square neutrosophic soft matrices in the lower diagonal, main diagonal and upper diagonal
with all other blocks being zero neutrosophic soft matrices. Neutrosophic soft block tridiagonal

matrix A has the form

B, C 0

~ |A B, C,.. O

A= where A, B,,C, are square neutrosophic soft block matrices in the
0 A B G
0 0 A B,

lower diagonal, main diagonal and upper diagonal respectively.

4.4.1 Properties of Neutrosophic soft block tridiagonal matrix

e Sum of two neutrosophic soft block tridiagonal matrices of same order is again a

neutrosophic soft block tridiagonal matrix.

B, C, .. 0 D, E 0
- B, C,.. O o F D, E.. 0O
Let A= A 2 2 and B=| ' 2 2
0 A B, C 0 F, D, E
0 0 A, B, 0 O F, D,

Then from the definition of addition of two neutrosopic soft block matrices it can be obtained that
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B,+D, C,+E 0

AoBo A+F B,+D, C,+E,.. 0
0 A+F, B,+D, C,+E
0 0 A+F, B,+D,

which is obviously a tridiagonal neutrosophic soft block matrix.

e Product of two neutrosophic soft block tridiagonal matrices is again a neutrosophic soft

block up tridiagonal matrix.

e Transpose of neutrosophic soft block tridiagonal matrix is again a neutrosophic soft

tridiagonal matrix.

B, C 0
~ -~ |A B, C,.. O
Example: Let be A neutrosophic soft block tridiagonal matrix A= then
0 A B C
3 3
0 0 A B,

BB A .. O
AT _ C, B A.. 0 . . 1 s .
A = which a neutrosophic soft block tridiagonal matrix is again

0 C B A

0 0 C, B,

4.5 Neutrosophic soft block toeplitz matrix

Neutrosophic soft block tridiagonal matrix is another special neutrosophic soft block matrix, which

contains blocks that are repeated down the diagonals of the matrix. The individual block elements of

A; must also be Toeplitz matrices. Neutrosophic soft block toeplitz matrix A has the form

Ar A Ay Ay

A= A A A where A; are square neutrosophic soft block matrices
Ar Ay A A
Ar A A Ay

respectively.
4.5.1Properties of neutrosophic soft block toepliz matrix
e Addition of neutrosophic soft block toepliz matrices is again a neutrosophic soft block

toepliz matrix provided the matrices are conformal for addition.

e Transpose of a neutrosophic soft block toepliz matrix is again a neutrosophic soft block

toepliz matrix.
Example: If the above toepliz matrix A is considered then
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A A A Ay
AT — A12 Ail AZl ASl
As A Al Ay
Av As Ay Ay

this is again a neutrosophic soft toplitz matrix.

8.1.3 Transportation

If A, Bbetwo neutrosophic soft block toeplitz matrices, then (A+ é)T =A"+B'

Ac A, A A,
A A A A A

A A Al A
Ar An Ay Ay

A+B, A,+B, A;+B; A,+B,
Ay+By A +B; A,+B, A;+Bg;
Ay+By A +B, A +B; A, +Bg
Ay+By A, +By A +B, A +By

(o]

Il
U W W W
® R KB
W W W W
[y [ N
I—\w l—‘w r—\w
- N w
Hm I—‘w »—\w
N w =

©
=3
o
~N
~
0
=

00

Then A +

A A A Ay
Then AT = A12 Au Aﬂ A31 and BT =

As A A Ay
A As A Ay

I Ail + Bll AZl + BZl A31 + B31 A4l + B41
A12 + BZl Ail + Ail A21 + BZl ASl + B31 — AT + ET
A&.S + BlS A12 + BlZ A‘ll + Bll AZl + BZl

_A14 + BlA A13 + BlS A12 + BlZ All + Bll

r—\m Hw I—‘w
w N -
o ™
>~ B OR
93] EUJ gUJ
o O
roA

H
=
o
N
=

o
~
o
w
o
)
EUJ

(A+B)’

4.6 Neutrosophic soft Block Circulant Matrix

A neutrosophic soft Block Circulant Matrix is a neutrosophic soft block matrix of the form

where A 'S are nxn arbitrary matrics.

4.6.1 Properties of Neutrosophic soft Block Circulant Matrix
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If A and B be two neutrosophic block circulant matrices then A+B and AB is again a neutrosophic

block circulant matrix. Again for block circulant matrices AB=BA.

4.7 Direct sum of neutrosophic soft block matrices.

If A A, A ..., A, are square neutrosophic soft block matrices of order m,m,,m,,....,m respectively.

A, 0 .. 0
Then diag('&n"&zzﬂa‘sy """ "&Yr)Z 0 A-22 O

0 O A’r m+m,+....... +m

is called the direct sum of the square neutrosophic soft block matrix A,, 4, A,,....., A, and itis

r

4.7.1 Properties of direct sum

The following algebraic properties are hold by neutrosophic soft block matrices:

e Commutativity: Let AB be two diagonal neutrosophic soft block matrices then

p~2
o
o
o

Thus Ae®BzB@®A and hence it can be concluded that the direct sum of two neutrosophic soft block

matrices are not commutative.

e Associativity: Let A,B,C be three square neutrosophic soft block matrices. Then as

obtained above

A 0
A®B=|... : ... = D(say)
0 B
Therefore
5 o A0 O
(A@B)@éZIj@é:{o é}: 0 B 0| where A®B=D
00C
Again
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5 A0 O
fo@Eoc) =AeE<|” Y-|0 B 0| where BOG-E
0 E 0 0 C

Hence associative laws hold for neutrosophic soft block matrices.
4.8 Mixed sum of neutrosophic soft block matrices
Let A, é, é, D be four neutrosophic soft block matrices which are conformable for addition. Then

By the definitions of addition and direct sum of neutrosophic soft block matrices it can be obtained

that

Then the following result holds:
(A+B)®(C+D)=(A®C)+(B®D)
4.9 Multiplication of direct sum of neutrosophic soft block matrices

If A, é,é, D be four neutrosophic soft block matrices which are conformable for addition and
multiplication then the mixed multiplication of direct sum is
(A®B)(C® D) =(AC)®(BD)
By the definition of direct sum and multiplication of neutrosophic soft block matrices
i oax = [A 0[C 0
(A@B)Ca@D)=|" it
0 B||0O D
AC 0| sz ==
= .~ |=AC®BD
0 BD

e Transposition

If A B betwo neutrosophic soft block matrices then the transportation of the direct sum of A and B

is

AT
(A@ By’ {‘; EH:N@ET

5. Results
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In the process it is found that different types of neutrosophic soft block matrices which are
discussed here behave in the same way as the block matrices that exist in the literature.

6. Applications

Neutrosophic soft matrices having been broken into sections called blocks or partitioned are
useful for cutting down calculations in the cases of problems which involves neutrosophic soft
matrices.

7. Conclusions

Different types of neutrosophic soft block matrices as triangular, tridiagonal, quasidiagonal,
circulant, toepliz are discussed. Some operations on neutrosophic soft block matrices which are also
discussed in this article gives a clear indication that such operations produces almost similar results
to those of classical matrices. Future research will be in the direction of finding determinants of
neutrosophic soft block matrices.
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Abstract

This article aims to introduce some modern algebraic structures as hyper super matrices. The classical
algebra and matrices cannot process higher-dimensional information with several levels of ambiguity and
uncertainty. Hence, it is necessary to establish such superalgebraic structures that can organize and
classify the uncertain and incomplete information floating in parallel higher dimensions as facts, events,
or realities. To achieve the desired goal, a particular construction of Hypersoft Matrix (HS-Matrix) and
Subjectively Whole Hyper-SuperSoft Matrix (SWHSS-Matrix) is offered in a plithogenic Fuzzy
environment initially, and some aggregation operators are formulated. A Local-Global-Universal
Combined Consciousness State Ranking Model is formulated as an application. As the classification of
non-physical phenomena like state of physical health or Consciousness has not yet been addressed in the
area of decision making therefor the proposed model will open a new dimension of classification of the
non-physical part of the universe in which one can select the most suitable possible reality from several
parallel realities which would be useful in the field of artificial intelligence. This model classifies the
accumulated states of matter bodies (subjects). And gives a possible description of the Combined-
Consciousness State of a Universe. In addition, it offers a local ranking by observing the information
through several angles of vision, just like a human mind does, and a universal ranking by classifying the
accumulated states. Furthermore, the final Global Ranking is achieved by constructing a percentage
frequency-matrix and an authenticity measure of the order is offered. A numerical example is constructed
to describe SWHSS-Matrix and LGU-Ranking Model. Some pie graphs are used to describe the individual
states, accumulated states, and the ultimate accumulated universal state of all given subjects (a Combined
Conscious State of Universe).

Keywords: Subjectively-Whole-Hyper-Super-Soft-Matrix, Parallel-Dimensions, Attributive-Ranking,
Local-Global-Universal-Ranking, Combined-Consciousness, Percentage-Frequency-Matrix, Pie-Graphs.
1. Introduction

As we know, the human brain has some factors of vagueness and precariousness in its judgments and
inferences due to multiple opinions, and the complexity of the data, as attributes events, and information
derived from its own environments. Scientists after taking into account this basic trait of the human mind
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start arguing the dire need for some different mathematics that could possibly handle this vagueness factor.
Some of the following theories developed gradually. Fuzzy set theory by Zadeh (1965) [1] Intuitionistic
fuzzy set (IFS) theory by k.Atanassov [2] [3]. The cloud of vagueness is further extended by F. Smarandache,
[4][5][6]. Some more recent extensions and modernizations of the neutrosophic set are presented in [7] [§]
[9] [10] [11] [12]. In 1999 Molodtsove [13] introduced Soft Set, a soft set is a parameterized representation
of subsets in which one can express multiple attributes and subjects in a unique parameterized formulation.
Some further extensions of the soft set were provided in [14] [15] [16]. Later, in 2018, F.Smarandache [17]
[18] introduced another expanded version of Softest known as the Hypersoft-Set and the Plithogenic
Hypersoft-Set. In these sets, he extended the function of the combination of attributes to multi attributes
and sub-attributes. He presented the basic definitions and addressed many open problems of the
development of new literature, such as aggregation operators and MADM techniques. We are going to
answer some of the open issues raised by Smarandache, S.Rana and co-authors "[19] extended the
Plithogenic Hyper-Soft Set to Plithogenic Whole-Hyper-Soft Set by accumulating the memberships and
providing both exterior and interior states of the part of Universe/Event/Reality/Information (a
combination of Attributes, Sub Attributes, Subjects represented). We represented the Plithogenic Fuzzy
Hyper-Soft set and the Plithogenic Fuzzy Whole Hyper-Soft set in a novel form of matrices in the fuzzy
environment named as Plithogenic Fuzzy Hyper-Soft Matrix (PFHS-Matrix) and Plithogenic Fuzzy Whole
Hyper-Soft Matrix and some local operators were established. Furthermore. In the next phase, S.Rana and
co-authors "[20] further dilated the Plithogenic Whole Hyper-Soft Set to Plithogenic
Crisp/Fuzzy/Intuitionistic/Neutrosophic Subjective Hyper-Soft Set and represented them in the more
dilated version of Soft-Matrix initially in the fuzzy environment termed as Plithogenic Subjective Hyper
Super Soft-Matrix. Then developed a Local-Global Universal Subjective Ranking Model by using the new
amplified expression of matrices. Some further literature on HyperSoft Set and Plithogency was established
in [21-28]. In this article, in the first stage, we have further broadened those earlier introduced Plithogenic
Fuzzy Whole Hyper Soft Set and Plithogenic Subjective Hyper-Soft Set to Plithogenic Attributive
Subjectively Whole Hyper Soft Set (PASWHSS-Set) in the Fuzzy environment. we have formulated a new
type of Matrix initially in a fuzzy environment named Plithogenic Subjectively Whole Hyper Super Soft
Matrix (PSWHSS-Matrix). These advanced types of matrices are generated by the hybridization of hyper
matrices and super matrices [29-32] These hypersoft matrices are sets/clusters of parallel layers of matrices
representing clusters of parallel universes/ realities/ events/ information. These are such hyper-matrices
(parallel layers of matrices) whose elements are also matrices. Thus, these matrices are tensors of rank three
and four, respectively, having three and four indices of variations. Then later, we have formulated an LGU
Combined-Consciousness State Ranking Model. The forte of this model is its classification of nonphysical
phenomena. Thus, it will allow opening a new non-physical dimension of classification i.e. selecting one
possibility out of multiple possibilities. Moreover, it offers a transparent ranking of attributes (states of
subjects) and universes from micro-universe to macro-universe levels by observing them through
numerous angles of vision in dissimilar environments of different ambiguity and hesitation levels.
Furthermore, it will also furnish and formulate extreme and neutral values of these universes (sets of
information, realities, events). This new model actually compacts the expanded Universe to a single lowest
point. Finally, we have also anticipated producing a percentage authenticity measure of ranking, which is
provided by using a frequency matrix. In the end, we have given an application of the Model using a
numerical example. In this example, fuzzy linguistic scales are used to quantify the states of our subjects
(bodies of matter known as individuals). The quantified states of subjects are attributes/sub-attributes
known as individual fuzzy states or individual fuzzy memberships. Later, the aggregation operators are
used to accumulate these states (subject-wise). The accumulated states are represented by fuzzy whole
memberships. Initially, these states are accumulated at the local level using a single aggregation operator
representing a viewpoint, and a local ordering of states would be achieved. The global ordering of states
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would be achieved through the use of multiple aggregation operators. By the further accumulation of the
already accumulated states, the universal states of accumulation and the universal order would be reached.

Now the further query arises why we are specifically using hyper-Soft and Hyper-Super-Soft matrices for
the expression of the Plithogenic Hyper-Soft Set and Plithogenic Attributive Hyper-Soft Set? The answer
might be convincing that this Plithogenic Universe is so vast and expanded in its interior ( having Fuzzy,
Intuitionistic Fuzzy, Neutrosophic, environments with memberships non-memberships, and
indeterminacies) and in its exterior (managing many attributes, sub-attributes, and sub-sub-attributes
concerning to its subjects). Therefore to organize and classify such highly scattered information we need to
formulate some super algebraic structures like these Matrices.

This article is organized into seven basic sections. After the (section-1) introduction, Section 2 summarises
some related preliminaries. In Section 3 we introduce some fundamental new concepts and definitions of
the Hypersoft set expression, the HS matrix, and the SWHSS matrix with examples in a plithogenic fuzzy
environment. We use these new types of matrices to develop the LGU Combined-Consciousness State
Ranking Model. While in Section 4 some local aggregation operators such as disjunction operators,
conjunction operators, averaging operators and compliment operators for PFHS matrices are formulated.
Section 5 describes the algorithm of the LGU Combined-Consciousness State Ranking Model in the
plithogenic fuzzy environment In this Model, we would provide the classification of attributes (a non-
physical phenomenon or states) at the local, Global and Universal levels. We offer the Universal ranking
by classifying these already accumulated universal states. The Local Ranking is offered by observing the
higher dimensional information through several angles of vision or states just like a human mind which
possesses multiple layers of thought. These thoughts undergo and change their angles in order to achieve
a precise or accurate status but before certain complex procedures of mind are applied upon them. Finally,
mental thoughts hold their possibly best and desired status/angels depending upon certain complex
procedures and environments. In order to learn the transparent Global Ranking, we have applied a
Percentage-Frequency-Matrix by accumulating the states of the human mind (several angles of vision).
Finally, to preserve transparency and accuracy, our model also provides the authenticity measure of the
ordering. In Section 6 Application of the LGU-Combined-Consciousness State Ranking Model is presented
and final combined universal states are offered. In Section 7 the flow of the model from individual states
of subjects to their combined-universal states is described by pi graphs and some conclusions and open
problems are discussed.

2 Preliminaries

This section, narrates some fundamental useful definitions of the hyper-soft set, Hyper matrices, and
Super matrices.

Definition 2.1 [17] (Hyper-soft set)
Let U be the initial universe of discourse P(U) the power set of U.
let a;,ay,...,a, for n = 1 be n distinct attributes, whose corresponding attribute-values are respectively the sets
A, Ay, Ap with A;NA; = @ fori # jand i,j € {1,2,...,n}.
Then the pair (F, Ay X A X...X A,,) where,
F:A; XxAX..x A, = P(),
is called a hyper-soft set over U;
Definition 2.2 [29] [30] (super-matrices)
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A rectangular or square arrangements of numbers in rows and columns are known as matrices,or simply ordinary

matrices, wheras a super-matrix is such matrix whose elements are matrices. These elements can be either scalars or
matrices.

a1 Qa2
= [a21 azz], where
2 —4 10 40
A1 = [0 1 ] 2 = [21 —12b
3 -1 4 12
a,; = |5 7 l, Ayy = [—17 6 laisasuper-matrix.
-2 9 3 7

Note: The elements of super-matrices are considered as sub-matrices i.e. ay4,ay5,ay1, Ay, are submatrices of the
super-matrix a.

Definition 2.3 [31] [32] (Hyper-matrices)
Forny,...,ng € N, a function f: (ny) X...X (ng) — F is a hyper-matrix, or d-hyper-matrix. Often a, y are used

to denote the value f(ky...kq) of f at (kq...kg) and think of f (renamed as A) as specified by a d-dimensional

table of values, writing A = [akl---kd]k .
1--Kq

A 3-hypermatrix can be written on a (2-dimensional) piece of paper as a list of ordinary matrices, called slices. For
example

Q111 Q121 Q31 - Q112 Qi22 Q132
A =|0Q211 Q21 Q31 . Q12 Qzz2 Q332
G311 Q321 Q331 - Q312 A3z 332

3. Plithogenic Fuzzy HS-Matrix and Plithogenic Fuzzy SWHSS-Matrix
This section, develops some literature about the plithogenic hypersoft set in the following manner.

1. We introduce some basic new beliefs and definitions of expression of hypersoft set and HS-
Matrix with examples.

2. We introduce novel HS-matrix as SWHSS-Matrix in plithogenic Fuzzy environment.

3. We portray the compact and expanded expressions of HS-Mtricx and SWHSS-Matrix.
To develop an understanding of the literature, we give some new definitions.

Definition 3.1 ( Plithogenic Fuzzy HyperSoft-Set (PFHS-Set)): Let Ur be the initial universe of discourse P(Ur)
the power set of Up. A}‘ is a combination of attributes/Sub-Attributes for some j = 1,2,3,..., N Attributes,
k=123,...,L Sub-Attributes and x;i=123,..., M are subjects under consideration then
(Fp, A%, A%. .., A%) is PFHS-Set represented by plithogenic fuzzy memberships u A (x)-

where, Fp:A¥ x A% x A% x...x AX -, P(Uy ) is a mapping from a complex cross product of the attributes
to the power set P(Ur). This PFHS-Set is represented as

X1 <”A$€ (xl)) )

X2 (HAk(xz)) )
F={ ’

XM <#A5.< (XM))

Definition 3.2 (Plithogenic Fuzzy HyperSoft-Matrix (PFHS-Matrix)):

Let Ur be the Fuzzy universe of discourse, P(Ur) be the power set of Ug, A]’-‘ is a combination of

attributes/sub-attributes for some j =1,2,3,...,N attributes, k = 1,2,3,...,L sub-attributes and x;i =
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1,2,3,..., M are subjects under consideration then PFHS-Matrix, Ff{ = [,u Al_c(xi):l is a mapping Fy: A¥ x A% x
J

Ak x..x Ak - P(Uz), from a complex cross product of the attributes to the power set P(Ug) .,
Where wu,k(x;) € [0,1] are fuzzy memberships s.t u,k(x;) +v,k(x;) =1 . These Fuzzy memberships
J J J

pur(x;) are the elements of PFHS-Matrix and are assigned for the Part of
J

Universe/Reality/Event/Information, by decision-makers or concerned bodies through the linguistic
scales. For further details, see ref. [28-31]. we may call these memberships the individual fuzzy

memberships.
We may write FfS simply as F.The compact form of PFHS-Matrix, is
F =[] (3.1)
And an expanded form of PFHS-Matrix, is
Ak Ak ak
Xy _l/‘Allf(xO llAIZC(xO Co e Mgk (x1) 7]
X2 HAllc(xz) HAl;(xz) e .UAN(xz)
F — : . . . . . . (3.2)
XM _llAllc(xM) llAIZC(xM) coe Mgk (xM)_

Example 1:
Consider the mapping F defined as,
Fri A x Ak x Ak x..x AK -, P(Ur)
(taking some specific numeric values of Af)
Consider T = {x;, x5, %3}, is a subset of powerset P(Ur ) and x; subjects for i = 1,2,3, are x;, x,, x3. The
associated states of these subjects are A]’-‘ Attributes/Sub-Attributes for j = 1,2,3,4 and k = 1,2,3. To
represent these states some fuzzy memberships would be assigned by the Concerned body, through the
five-point linguistic scale (see ref. [28-31]) T
The set representation of information is described as PFHS-Set as,

%,(0.3,0.6,0.5,0.5),

F, (A3, AL, A%, A2) = {x,(0.4,0.4,0.3,0.1), (3.3)
x5(0.6,0.3,0.4,0.7)

And further organized and expressed in one layer of PFHS-Matrix F,
Al Ay A3 A3

X103 06 05 0.5
F=x2[04 04 03 0.1 (34)
X306 03 04 0.7

Where A} A} A} A% is a specific @ combination of Attributes/Sub-Attributes representing states of
subjects xy, x, x3. Fjj is representing a single layer out of multiple possible layers of PFHS-Matrix. For a
more detailed description and applications, see [19]

Example 2. Consider layered representation F = [ﬂA§c (xi)] fork=1,j =123,4and i = 1,2,3, i.e (first
level-layer) and for k = 2, j = 1,2,3,4 and i = 1,2,3, i.e (second level-layer). let T = {x4, x,, x3} be Subjects
in PFHS-Set associated to given attribute the PFHS-Set is represented through fuzzy memberships as
described bellow,
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x,(0.3,0.6,0.3,0.5),

F(AL AL AL AY) = {x,(0.4,0.5,0.2,0.1), (3.5)
x5(0.6,0.2,0.3,0.7)
x,(0.5,0.4,0.2,0.6)
F(A%, A%, A%, 4%) = {,x,(0.5,0.7,0.8,0.4), (3.6)
x5(0.7,0.6,0.5,0.9)
The matrix representation of this PFHS-Set F is described as PFHS-Matrix,
[0.3 0.6 03 0.5]
|0.4 0.5 0.2 0.1|
_|l0.6 02 03 0.7
F=1105 04 02 0.6| (38)
l0.5 0.7 0.8 0.4-J
0.7 06 05 09

For further details, see ref.[20]

Definition 3.3 (Plithogenic Fuzzy Subjectively-Whole Hyper-Super-Soft-Matrix (PFSWHSS-Matrix)):

Let Ur be the primary universe of discourse, in the Fuzzy situation and P(Ur) be the power set of Ur. Let
Af AL, ... Af are Af N distinct attributes/subattributes for = 1,2,...N , k = 12,...L is representing

I:HA]I‘(xi):l
[o50)
Fp: A¥ x A% x...x AK > P(Up)

we may use a compact notation of PESWHSS-Matrix, Fi’jt,

fuzzy memberships p,k(x;) (individual fuzzy states of subjects regarding each attribute) and the
i

attribute values then PESWHSS-Matrix is, F is mapping

This matrix is expressed by both individual

aggregated fuzzy memberships Q(X) (subject-wise aggregated states). In Ffft=12,..0 is
j

representing aggregation operators. In PESWHSS-Matrix the fuzzy states (fuzzy memberships) of all
given subjects are aggregated and then represented as for each attribute/sub-attribute. This PESWHSS-
Matrix handles not only a single combination of attributes/subattributes but rather multiple combinations
of attributes/sub-attributes out of their complex cross products or in other words. This matrix F¥, has
four indices of variation is a soft tensor of rank 4. We may write F/5* as F for the simplification of notation.
Four types of variation are presented in this PESWHSS matrix. The first Variations on the index i =
1,2,...M generate M rows of Matrix, the second variations on the index j = 1,2,... N generate N columns,
and the third variations on k = 1,2,...L produces L combinations of rows and columns as parallel-layers
of M X N matrices as hyperSoft Matrix. The fourth variation on t = 1,2,...P describes the P sets of
Clusters.

The representation of PESWHS-Matrix in a compact form is,

[HA]I\'- (xi)]

F= , (3.9)
o5 0]
]
-[.UA} (xi)]-
F= represents a single Layer of SWHSS-Matrix for k = 1 i.e an a universe.
[Qf\l_ 0.4 )]
[*a5 ]
[.UA} (xi)]
F= represents a single Layer of SWHSS-Matrix for k = 2 i.e an § universe.
[Qf\l_ X )]
[*a5 ]
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The representation of PESWHS-Matrix in an expanded form is,

777#,4}(7‘1) MA%(’H) o MA}V(XJW
HA}(xz) MA%(XZ) e MA}V(Xz)

,:“A{(XM) A.uA%(xM) ;uA}V(xM),
[2u® o) . . . eu®)] |
"HA%(xl) #A%(xl) BRI #A,Zv(x1)"
HAﬁ(xz) ﬂAg(xz) e ﬂAﬁ,(xz)

,klAg(xm) .I-lAé(xM) .MAfV(xM),
(20 QLX) . . . Q)] |
T#Ag(xl) rap(x) o e () )
|uAg(xz) par(x2) o g (x2)

s Cod) maCa) - - o p Gl
[0 o . .. eu )] |

F=|- (3.10)

"’ﬂAi(xl) 771 €0 T RN DR |
#Ai(xz) MA%(XZ) S MA}V(Xz)

i) i) - o Gl
[eh0 LX) . . . eL )] |
“.UA{(%) MAg(XJ B MA,ZV(XJ“
.“A{(xz) .“A%(xz) e HA,ZV(xz)

G meGad) - - - g Con)]
(20 QLX) . . . LX) |
M) mal) - o o i)
.UAQ(xz) HA%(XZ) e HA,LV(xz)

laCa) maCod « o g Gon)]
l[ehx) oL . . . 95 (] |

This PESWHS-Matrix exhibits both internal and subjective external states of the universe. The internal
state of the universe, event, or reality is reflected by individual fuzzy memberships u,k(x;) whilst the
J

Subjectively exterior state of the universe, event, or reality is reflected through Subjectively aggregated
memberships Q,x(X) that is accumulated specifically for all given subjects at each attributive/sub-
J

attributive level. Therefore the PFSWHSS-Matrix would provide an attributive classification (non-
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physical classification) through a subject-wise accumulation of states. The subjective aggregation is
applied to fuzzy memberships u,x(x;) at the index i, i.e at each specific sub-attributive level by applying
J

several suitable aggregation operators. In the next section-4 for the construction of this PESWHSS-Matrix,
we have formulated some aggregation operators. The application of these operators and SWHSS-Matrix
as LGU Combined-Consciousness State Ranking Model is presented in Section-5, whereas the application
of this Whole Model is described in Sec-6, where the faculty ranking Model is represented.

4 Local aggregation operators for the Construction of SWHSS-Matrix

This section describes Local aggregation operators like disjunction operators, conjunction operators,
Averaging operators, and Compliment-operator for PFHS-Matrix. By applying these local operators on
the PFHS-Matrix the SWHSS-Matrix would be constructed. By utilizing Local disjunction, Local
conjunction, and Local averaging operators, we would develop a combined (whole) memberships sz 0:9)

for PESWSS-Matrix that would be presented in the last row-matrix of the. SWHSS-Matrix
The general mathematical expression for SWHSS-Matrix F in the plithogenic fuzzy environment is given
below.
[Fed]
F = In this Matrix the last row of cumulative memberships Q;\,_c (X) is framed by using three
o5y 0] '
J
local operators, t = 1 is used for the Max-operator t = 2 for Min-operator, and t = 3 for the averaging-
operator. Furthermore, t = 4 is representing Compliment-operator.
In SHWHS-Matrix

Fg, = [[ll A}c(xi)] [ﬂf\k(Xi)]] the last column of cumulative memberships Q,«(x;) are obtained by using
three local operators, t = 1 used for the Max-operator t = 2 is used to portray the Min-operator, and t =
3 is used for the averaging-operator. Furthermore, t = 4 represents the compliment.

These four operators are described as follows:
4.1 Local-Disjunction-Operator for the construction of SWHSS-Matrix:

U; (uA;((x,-)) = Ml_ax <,uA}<(xi)) = Q}A}‘(X)’ forsome k =1 (4.1)

This Max-operator reflects the optimal state of mind of the decision-maker.
4.2 Local-Conjunction Operator for construction of SWHSS-Matrix:

n; <,uA}<(xi)) = Ml_in (,uA;c(xi)> = Qi}c(X) , forsome k =1 (4.2)

This Min-operator reflects the pessimistic state of mind of the decision-maker.
4.3 Local-Averaging-Operator for construction of SWHSS-Matrix:

% (#Ak(xi)>
T; <MA;_((xi)) = + = QZ}C(X) , for some k =1 (4.3)

This averaging operator reflects the neutral state of mind of the decision-maker.
4.4 Local Compliment for the construction of SWHSS-Matrix:
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-
Max, <1 - qu.«(xi))
J

Coc(F) = { M (1 B MA}((xi)> +, forsomek =1 (4.4)

(1—HA]_((xi)>
M J

i=1 "

5. Algorithm of LGU Combined-Consciousness State Ranking Model
This section, utilizes the local operators built in the previous section for the formulation of the LGU Combined-

Consciousness State Ranking Model in the Fuzzy environment.

In this model, we would provide the classification of attributes (a nonphysical phenomenon) at the local,
Global, and Universal levels. We have called this Model the LGU Combined-Consciousness State Ranking
Model. Some specialties of this LGU Combined-Consciousness State Ranking Model are mentioned to

describe why this model would be preferred over previously developed MADM models

1.

The first and most important feature of this model is that it provides a ranking of the non-
physical states of the universe. As we know, the classification of non-physical phenomena has not
yet been addressed in the area of decision-making. This model will open a new dimension of
classification of the non-physical part of the universe / event / reality / information, in which one
can choose a possible reality from several parallel realities that would be useful in the field of
artificial intelligence.

The second peculiarity of this model is that it offers the classification of attributes by looking at
them from multiple angles of visions. For example, the choice of the max operator is an
expression of an optimistic perspective. In contrast to this, the choice of the Min-operator is an
expression of the pessimistic point of view and the choice of the average-operator is an
expression of a neutral point of view. The combination of all operators in one model offers a
transparent decision that is made from multiple perspectives

This model has the potential to offer a classification of attributes in numerous environments such
as Fuzzy, Intuitionistic, Neutrosophic, or any other suitable environment required. Each
environment has its own ambiguity or hesitation level. By choosing a particular environment,
this model would be expanded to work on any level of uncertainty, hesitation, or ambiguity.
This attributive/state ranking model offers the ranking from micro-universe to macro-universe
stages i.e. from inner smaller cell to outer larger universe.

Primarily, this Model delivers the internal ranking of attributes (states of subjects) named "Local
Attributive ranking" (ranking of states) (classification of attributes/states of micro-universe)

On the next stage, this Model offers an exterior classification of states named "Global Attributive
Ranking."

On a further extended level this Model offers the 3rd type of attributive ranking named
"Universal Combined-Consciousness State Ranking (Classification of attributes of the macro-
universe)

This model also offers extreme values, as extreme behaviors, and neutral values, as neutral
behavior of universes that would be helpful to find the optimal and neutral states of all kinds of
universes/realities/events/information from their micro- to macro levels.

At the final level, it provides a precise measure of the authenticity of classification by using the
frequency matrix.

Initially, we consider the case of the PESWHSS-Matrix to rank the given attributes or states of subjects.

These subjects with their all attributes/sub attributes are considered to be one universe.
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Later, we can generalize this Model into Plithogenic Intuitionistic, Plithogenic Neutrosophic, and other
multiple useful required environments agreeing the state of mind of the decision-makers.
The Algorithm of the LGU Combined-Consciousness State Ranking Model is described below,
Step 1. Construction of Universe: Consider the fuzzy universe of discourse Up = {x;} i =1,2,3,..., M.
Consider some attributes/sub-attributes and subjects need to be classified where attributes/sub-attributes
are Af j = 1,2,3,...,N and k = 1,2,..., L represents numeric values of attributes 4; (parallel level layers),
and concerned subjects are T = {x;} © U where i can take some values from 1 to M such that Define
mappings F and G such that,

F: A¥ x Ak x A% x...x A% — P(U) For some fixed k (leve-1) (5.1)

G: A% x Ak x A% x...x A% - P(U), For some different fixed k (level-2) (5.2)
Step 2. Construction of PFHS-Matrix: Write the data or information (fuzzy-memberships) of PFHS-Set in

the form of PFHS-Matrix B = [,qug(xl-)]. If there are some non-favorable attributes in the given
J
Information, we may replace their memberships (u,x(x;)) by non-membership (1 — u,k(x;)) while the
J ]

neutral and favorable attributes would be displayed by their fuzzy memberships.
Step 3. Construction of PESWHSS-Matrix: By using local aggregation operators constructed in Sec. -4
formulate PFSWHSS-Matrix given as,

[lse]
" flgeol]

Step 4. Local Attributive Ranking: The Local Attributive Ranking is the ranking of the accumulated states

of matter bodies (subjects) that would be acquired by considering cumulative memberships sz (X) of the
J

(5.3)

last row of each layer of By,.

The higher the membership value, the better the attribute / sub-attribute that corresponds to this
membership. At this stage, the attributive classification of all layers or a selected layer would be provided
according to the required situation. In addition, the process would eventually stop when the transparent
local attributive ranking is obtained. If there are some ties or ambiguities in the local attributive ranking
that would be eliminated in the next step of the global ranking, a more transparent ranking would be
observed.

Step 5. Global Attributive Ranking: Final global attribute ordering would be provided by using the
Frequency Matrix, "F;;" and the percentage frequencies Matrix f;; by combining the states of mind of the
decision-makers.

Al fll f12 . . . le
AZ f21 f22 . . . fZN

=l G4a
AN fMl fMZ . . . fNN
Al fl*l 1*2 . . . l*N
A2 f2*1 f2*2 . . . fZ*N

R A G4
Avlfyr fyz - - - fan
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Where, f; is the percentage frequency measure
« _ i)
f” 2:.: fij)

x 100 (5.4)c

In F;; the values of the first column signify the frequency with which the 1st position is achieved, which
is reached by some specific attributes. The elements of the column 2 represent the frequency of acquiring
the second position and so on. Similarly the elements of F;; represent the percentage frequencies. To find
out which attribute would be assigned the first position we consider the entries in the first column of Fj;
the attribute corresponds to the highest value of the first column attains the first position and then we
delete this column of the first position and the row associated with this attribute. This reduces the
dimension of the matrix. Then, for the second position, add the remaining percentage frequencies of the
first position into the next percentage frequencies of the second column and then look for the highest
percentage frequency in the second column for the decision of the second position.

Once the second position is determined, we delete the corresponding column and row of that position
and continue the practice until the final position is allocated.

This Percentage Frequency Matrix has a great potential to handle ties.

Step 6. Authenticity measurement of the Global ranking: In the last step, we can check the authenticity
by means of ratios.

Percentage authenticity measure of j;, selected positions for i, Attribute,
Highest frequency of j:p position

. —— x 100
Total frequency of jspposition
max(f;))
M =—=—=—x100 5.5
Y Zz(f ij) (5:5)

Step 7. Final Universal States (Combined Consciousness States) and Ranking;:

The final universal states (Combined Consciousness states) of Universes as final accumulated fuzzy
memberships Q,, are provided by using the disjunction operator, (t = 1) the conjunction operator, (t =
2), and the average operator (t = 3) on already cumulative memberships of the last row of SWHSS-Matrix
Ba,, These accumulated fuzzy memberships Q,, represent the final Universal State or the Combined
Consciousness State of the universe.

For a fixed k and t the universe with the greatest cumulative membership would be considered the better
universe, and further order of the universes would be observed by arranging the Q. in descending order.
To get the final ranking of the universal states and to obtain extreme and neutral accumulated states of
the Universe/Reality/Event/Information, we would proceed as

Taking t = 1,2,3 respectively on Q,,; we would obtain the following extreme and neutral values.

Q. = mjaxﬂi,; X) (5.6)

2 = min [02,(0)| 57)
% Qi’?(x)

Q; = ——1— (5.8)

At this level Q; and Q,, would give the extreme (lowest and highest) states and Q3 would give the
neutral states of Universe/Reality/Event/Information as accumulated fuzzy memberships.

The local order of the universes is obtained by arranging these cumulative memberships in descending
order, and the global order is offered by using the same scenario of the frequency matrix (step-5).
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5. Application of LGU Combined-Consciousness State Ranking Model
Numerical Example:
To achieve the purpose of non-physical classification, initially, we first develop two PFHS-Sets with a-
Combination and f-Combination of attributes, i.e., for @ and  universes. Then we represent it as PFHS-
Matrix B, which consists of two layers that represent the mappings F and G that are used to parameterize
a combination of attributes/subattributes. By assuming different or specific numerical values of k,
consider a-Combination of attributes are parameterized by mapping F and -Combination of attributes
by mapping G. The overall LGU Combined-Consciousness State Ranking is described by following the
steps in the algorithm described in Section -5.
Step 1. Construction of the Universe: Consider U be the set in five candidates of the mathematics department
and out of these five only three have participated in consciousness quantification and classification
experiment. let T be a set of these three candidates (subjects), T = {Peter, Aina, kitty}, (T < U). The elements
of T are our subjects. The states of these subjects are A attributes quantified through the fuzzy linguistic
scales. The classification of these attributes is required.
These Afattributes are organized in the following manner:
A’f = Intelligence level with numeric values, k = 1,2 s.t
A} = very intelligent, A? = moderate intelligent
A% = Fous, with numeric values, k = 1,2 s.t
A} = Strong focus A3 = Weak focus
A% = Observation with numeric values, k = 1,2 s.t
A} = Strong observation , A3 = weak observation
A% = Expression with numeric values k = 1,2 st
A} = Strong expression, A7 = Weak expression
F and G be the plithogenic fuzzy parameterizations of the combination of their states (attributes) such that
F: A¥ x A% x A% x...x A% > P(U) (choosing some of the numeric values of A¥, k=12,..,L
G: A% x A% x A% x...x A¥, > P(U) (choosing some other numeric values of A%, k = 1,2,...,L
Let these candidates of set T are our x;subjects, i = 1,2,3, and their states are attributed/sub-attribute
represented Af j = 1,2,3,4 and k = 1,2. We are looking for the best-reflected attribute among the given
Combination of attributes (case of the local universe). The local universe of subjects and attributes for first
level k = 1 is described as
T = {Peter, Aina, kitty} = {x, x5, x5} where xy, x,, x3 represent x; subjects under consideration, initially,
we represent the combination of states of the first level for k = 1(combination of attributes that are
parametrized by mapping F)
1. Intelligence: j = 1, k = 1 (very intelligent)
2. Focus: j = 2, k = 1 (strong focus)
3. Observation: j = 3, k = 1 (strong observation)
4. Expression: j = 4, k = 1 (strong expression)
Now fuzzy memberships (fuzzy parameterization) are assigned by using fuzzy linguistic scales for details
see ref. [33-36].
Let the Function F represents the fuzzy parameterization of the given combination of states/attributes s.t.,
F(AL AL, AL, AL) = {x,(0.3,0.7,0.4,0.5), x, (0.4,0.5,0.4,0.1), x5 (0.6,0.2,0.5,0.7) } 6.1)
let us name the combination of attributes Af, A}, A3, A} as @ Combination representing the first level for
k=1
Consider some other combination of states described for k = 2 These states are parametrized by mapping
Gs.t G: AF x A% x Ak x A% > P(U)
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The local universe of subjects and attributes for second-level k = 2 is described below
1. Intelligence j = 1, k = 2 (moderate intelligent)
2. Focus: j = 2, k = 2 (weak focus)
3. Observation: j = 3, k = 2 (weak observation)
4. Expression: j = 3, k = 2 (weak expression)
Let the function be G represent the fuzzy parametrization of the given combination of states/attributes s.t,

G(A2%, A% A%, A%) = {x,(0.5,0.0,0.2,0.6), x,(0.6,0.7,0.8,0.5), x5 (0.4,0.7,0.5,0.9)}
(6.2)
let us name the combination of attributes A7, A3, A}, A} as § Combination representing the second level for
k=2
Step 2. Construction of PFHS-Matrix:
The first layer of PFHS-Matrix B = [u 4k (xl-)] is constructed by using the parametrized states given in Eq.
6.1 for a combination (first level layer of PFHS-Matrix, k =1) and The second layer of PFHS-Matrix is

constructed by using the parametrized states given in Eq. 6.2 for f combination (second level layer of
PFHS-Matrix, k =2) and this information would be displayed in PFHS-Matrix as shown below.

03 0.7 04 0.5]
[0.4 0.5 0.4 0.1]
_lloe 02 05 0.7.|
B_I 05 00 02 06] 6.3)
l0.6 0.7 08 0.5J
04 0.7 05 09I

Step 3. Construction of PESWHSS-Matrix:
The PFSWHSS-Matrix By, is constructed by using Egs. (3.10 ), (4.1), (4.2), and (4.3) for information of (6.3)
m[0.3 0.7 04 05 T 1
04 05 04 01
06 02 05 0.7
[[0.6 0.7 0.5 0.7]]
[0.5 00 02 06 ]
06 0.7 08 05
04 0.7 05 09
[[[0.6 0.7 0.8 0.9][
0.3 0.7 04 05 7
04 05 04 01
06 02 05 0.7
(0.3 0.2 0.4 0.1]]
Bac=|lfo5 00 02 06 ] (6.4)
06 0.7 08 05
04 0.7 05 09
[[[0.4 0.0 0.2 o0.5]/
0.3 0.7 04 05
04 05 04 01
0.6 02 05 0.7
[0.43 0.46 0.43 0.43]
[0.5 0.0 0.2 0.6
06 0.7 08 05
04 0.7 05 09
11[0.5 0.46 0.5 0.66]

Step 4. Local Attributive/States Ranking: By, provides The local order of states/attributes for a
Combination of attributes or a-universe i.e the first level-layer is obtained by observing the whole
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memberships of (6.4) for first-level k = 1 and first aggregation operator (¢t = 1). See Eq.4.1 We observe
here a tie between A3 (Qi% (X) = 0.7) and A} (Q}\}} (X) = 0.7) which would be removed in the next step of

the Global States ranking using the Frequency-Matrix Fj;.

AL =4} > Al > AL (6.5)
Ba,, provides The local ordering of attributes for f Combination of attributes or f-Universe (second

level-layer obtained for k = 2) See Eq. 6.4 by using the first operator t = 1 (eq. 4.1)

A2 > A2 > A% > A2 (6.6)
Ba,, provides the local ordering of attributes for a-Combination of attributes (a-Universe) by using the
second operator t = 2 Eqs 6.4 and (4.2)

AL = Al > AL > A} (6.7)
Similarly
Ba,, provides the local ordering of attributes for 8 Combination of attributes (8-Universe ) by using the

second operator t = 2 Eqs 6.4 and (4.2)

AZ = A% > A% > A2 (6.8)
Ba,, provides the local ordering of attributes for « Combination of attributes (a-Universe) by using the
third operator t = 3 Eqs 6.4 and (4.3)

AL > Al = AL = A} (6.9)
Ba,, provides the local ordering of attributes for # Combination of attributes (8-Universe ) by using the
third operator (t = 3) Eqs 6.4 and (4.3)

AZ = A2 = A2 > A2 (6.10)
Step 5. Global States/Attributive Ranking:
The frequency matrix F;; provides a final global ordering of attributes. In the frequency matrix Fj, which
is a square matrix of frequencies of positions for first level-layer a-Universe, the columns of Fjj represents
frequencies of positions, i.e., the entries of the first column represent the frequencies of attaining the first
position by some attributes while a row of F;; represents the attributes. The F] is constructed from Eqg.

(6.5), (6.7), (6.9), and (5.4)a, (5.4)b, (5.4)c

a

4t D1 P2 P3 Ds
}[0 3 0 0 ]
Fi=412 0 1 0 (6.11)
AL [1 1 1 0 J
alt 1 0 1
p1 P2 P3 Pa
4o’ 100 o o |
Fi*=4z2l667 0 333 0 | (6.11)a
A} l33.3 333 333 0 J
Ai'333 333 0 33.3
The Global States ranking of attributes obtained from F* is given below.
AL > AL > AL > A (6.12)

S.Rana, M. Saeed, F. Smarandache, LGU-Combined-Consciousness State Model



Neutrosophic Sets and Systems, Vol. 51,2022 74

The Pf is constructed from Eq. (6.6), (6.8), (6.10), and (5.4)a, (5.4)b, (5.4)c

‘32 P1 P2 P3 D3
A1 [0 2 0 1 l
Fi=a3l0 0 1 2 (6.13)
42 lo 1 2 0 J
423 0 0 0
‘32 b1 D2 D3 b3
A1 [0 66.7 0.0 33.3]
FEF =430 00 333 667 (6.13)
42 lo 333 667 0 J
421100 00 0
The Global States ranking of attributes obtained from Fljﬁ is given below.
Az = A2 > A2 > A3 (6.14)

It is observed that the ties of local ranking are removed in the final global ranking
Step 6. Authenticity measurement of the Global States Ranking:
Percentage authenticity measure for first level a-universe is obtained by using Eq. (5.5) and (6.11)a
Percentage authenticity of the first position for 43 = 66.7%
Percentage authenticity of the second position for A} = 60%
Percentage authenticity of the third position for 4} = 50%
Percentage authenticity of the fourth position for A3 = 100%
Percentage authenticity measure for first level f-universe is obtained by using (5.5) and (6.13)a
Percentage authenticity of the first position for A5 = 100%
Percentage authenticity of the second position for A7 = 66.7%
Percentage authenticity of the third position for 43 = 66.67%
Percentage authenticity of the fourth position for 43 = 66.7%
Step 7. Final Universal States (Combined Consciousness States) and Ranking:
we provide the final ordering of the universe by using all three aggregation operators.
Maximum Combined Consciousness States (Universal Memberships) of a and  universes:
taking k = 1,2 for a and f universes and fixing t = 1 (Max-operator) using Egs. (6.4) and (5.6)
Q,,=07 Q, =09 (6.15)
We can see by using operator t = 1, § universe is better than a universe.
Minimum Combined consciousness States (Universal Memberships) of a and f universes:
Taking k = 1,2 for a and f universes and fixing ¢ = 2 minimum universal memberships of all given
Attributes with respect to subjects, are obtained using Egs. (6.4) and (5.7) respectively.
Q,=01 0, =00 (6.16)
We observe by using the operator t = 2, § universe is better than « universe.
Neutral Combined Consciousness States (Universal Memberships) of a and f universes:
similarly, taking k = 1,2 for @ and § universes and fixing t = 3, we can provide average universal
memberships of all given subjects with respect to attributes, using Egs. (6.4) and (5.7)
Q,; = 0.437, Q,5 = 0.53 (6.17)
The Universal States ordering: By applying the frequency matrix analysis (Eqs. 6.15, 6.16, 6.17, and (5.4)a,
(5.4)b, (5.4)c The ranking of the states of the universes is
B(universe) > a(universe) (6.18)
7. Pie graphs of the LGU Combined-Consciousness State Ranking Model
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7.1 Pie graphs of the LGU Combined-Consciousness State Ranking Model for the a-Universe
The pie graphs (Figl-Fig 4) present the individual states (fuzzy memberships) of 3 subjects considering

one attribute at a time for the a-Universe (for aggregation purposes, we use the averaging operator (t = 3)

Individual states of x1,x2,x3 for A-1 Inidvidual states of x1,x2,x3 for A-2

P

mx-1 mx-2 mx3 mx-1 mx-2 mx-3
Figure 1a (Individual states of A-1) Figure 2a (Individual states of A-2)
Individual states of x1,x2,x3 for A-3 Individual states of x1,x2,x3 for A-4

mx-1 mx-2 mx-3 mx-1l mx-2 mx-3

Figure 3a (Individual states of A-3) Figure 4a (Individual states of A-4)
Fig. 5 represents the aggregated states of the three subjects ( a-Universe first level of aggregation)
represented for each attribute.
Fig 6 is representing the aggregated state of the whole universe that is obtained by aggregating the

previous aggregated states of fig 5 by using the averaging operator ( a-Universe second level of
aggregation)

Aggregated states of x1,x2,x3 Universal aggregated state

L

= Final Universal membership by t-3

A1 mA-2 mA3 =A4 = Final Universal non-membership by t-3
Figure 5a (Aggregated states) Figure 6a (Universal states)
7.2 Pie graphs of the LGU Combined-Consciousness State Ranking Model for the B-Universe
(Figlb-Fig 4b) pie graphs are presenting the individual states (fuzzy memberships) of 3 subjects by

considering one attribute at a time for the f-Universe (The aggregation operator used is the averaging
operator (t =3)
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States of x1,x2,x3 for A-1 States of x1,x2,x3 for A-2 0

srorfe

mx-1 mx-2 mx-3 mx-1 mx-2 mx-3

Figure 1b ( Aggregated States for A-1) Fig 2b ( Aggregated States for A-2)

Individual states of x1,x2,x3 for A-3 Individual states of x1,x2,x3 for A-4

@

mx-1l mx-2 mx-3 mx-1l mx-2 mx-3

Figure 3b ( Aggregated States for A3) Figure 4b( Aggregated States for A-4)
Fig 5b is representing aggregated states of the three subjects ( f-Universe first level of aggregation)
represented for each attribute.
Fig. 6b represents the aggregated state of the entire -Universe that is obtained by aggregating the previous
aggregated states of Fig. 5b by using the averaging operator ( f-Universe, the second level of aggregation)

Aggregated states of x1,x2,x3 Universal aggregated state
. B ',
‘ = Final Universa ership by t-3
mA-11 =mA-21 =A31 =A41 = Final Universal non-membership by
-3
Figure 5b (Aggregated states) Figure 6b (Aggregated states)

8. Conclusion :

1. We have observed the final global ordering obtained in Eq. (6.12 ) is the most frequently observed local
ordering in all these ranking orders, which is also observed the same in the local ordering of § universe
in Eq. (6.14) which shows the final global State ranking is most transparent and authentic Ranking.

2. Expressions (6.15), (6.16), (6.17) provide the highest, lowest, and average states of universes, through
final accumulative memberships.

3. The Ordering of universes shows that on the Global Universal level, § universe is better than «
universe.
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4. these results of local and global ordering are also verified by the pie graphs

1. Local ordering: we can observe local orders using these novel plithogenic hyper-supersoft matrices and
local operators. Each operator reflects the state of mind of the decision-maker; for example, the Max
operator reflects the optimal state of mind, the Min operator reflects the Passimistic state of mind, and the
Average operator reflects the neutral state of mind.
2. Global ordering: We can provide a global order by combining the results of all three rankings using the
frequency matrix. These three rank orders are obtained from three aggregation operators that represent
three states of the human mind. The ranking at the levels of global states will be transparent and impartial,
taking into account three different states of the human mind

3. Universal ordering: We can compare the universes by applying the max operator (t =
1), the min operator (t = 2) and the average operator (t = 3) on cumulative memberships of the last
row for each universe. The universe with the largest cumulative membership would be better, and further,
a local ordering of the universes is obtained by arranging these cumulative memberships in descending
order and the global ordering is offered by using the same scenario of the frequency matrix
4. Extreme Universal Memberships: We can also find out the extreme values of these universes and can
observe these attributes in the large universe made up of several smaller parallel universes. We can choose
from among all universes the best-reflected attribute that is best in most universes.
5. local and global ordering inside the universe: In this article, our focus is on the non-physical states of the
subjects or universe. Local and global ordering We have offered a local and global ordering of states of
subjects (Attributes, Sub-attributes) within a universe.
6. local and global ordering of the Universe: Furthermore, a local and global ordering of states of the Universe
is offered. The state of the universe is obtained by accumulating the states of all subjects of the given
universe.
7. Combined Consciousness of the Universe: The state of the universe is presented by the accumulated states
of all its subjects. In this ranking model, the accumulated states of all subjects as a Combined
Consciousness of the universe is offered in the form of universal memberships.

9. Open problems:
Now, let us list some of the open problems that could be addressed in future research.
¢ In this article, we developed the LGU Combined Consciousness State Ranking Model in the plithogenic
fuzzy environment.
This model can be extended to other environments, such as intuitionistic environment, neutrosophic
environment, or any other mixed environment according to the required conditions or states of mind of
the decision-makers.
¢ In addition, some other local operators can be used in the construction of the model according to the
requirements of the relevant authorities.
e Attributive and subjective ranking models can be constructed using the literature developed in this
article.
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Abstract: With the continuous advancement of science and technology, the decision-making
environment faced by managers is increasingly complex, which puts forward higher
requirements for managers. Due to the complexity of the multi-attribute decision-making
problem, it is difficult for the decision-maker to make the correct choice. In addition, due to
the influence of the educational background and limited knowledge of the managers, it is
impossible to evaluate with simple statistical data. In essence, the location problem of low-
carbon logistics parks is a MADM problem. Therefore, this paper establishes an optimization
model to solve the multiple-attribute decision-making (MADM) problem with alternative
preference and single-valued neutrosophic (SVN) information. Considering that the
information of weight is unknown, a scientific model is built based on the minimum deviation
method deriving the criterion weight. Furthermore, the above models and methods are
extended to interval neutrosophic sets (INs). To verify the validity of the modified model, a
numerical case for low-carbon logistics park site selection is taken as an example. Through
the case study, we found that the method has strong operability and can make the most of the

available information.

Keywords: Multiple-attribute decision-making (MADM); single-valued neutrosophic sets
(SVNSs); interval neutrosophic sets (INs); preference information; low-carbon logistics park

site selection

1. Introduction

Decision makers (DMs) often have difficulty expressing their preferences accurately when

presented with inaccurate, uncertain expression when solving MADM issues[1-5]. Fuzzy Sets
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(ESs) [6]are considered to solve the MADM problems [7, 8]. Intuitionistic fuzzy sets (IFS)[9], as
an extension, have subsequently been widely used in solving MCDM problems. Since IFSs
consider both membership and non-membership, they are more flexible and practical than
traditional FSs[10-14]. In some practical cases, membership, non-membership and hesitation of
an element of IFSs may not be a specific figure. Therefore, it is extended to IVES [15-20]. To
represent uncertainty and inconsistency in information, Smarandache [21] introduced
neutrosophic sets (NS) as an alternative to IFSs and IVIFSs. To facilitate practical application,
the SVNS [22] and INS [23] were proposed as subclasses of NS, and then Ye [24] introduce’ed
SNS, SVNS and INS. According to the literature. NS is a generalization of FS, IFS, and IVIFS.
In practice, SNS (SVNS and INS) are ideal for the expression of incomplete and uncertain
information in practical applications. In recent years, SNSs (ins) and SVNSs (SVNSs) is the ideal
choice for expressing incomplete, uncertain and inconsistent information. Sahin and Kucuk
[25] gave the introduction of entropy measure of SVNSs. And correlation coefficient of SVNSs
and the method of using SVNSs for decision making are introduced based on the preliminary
knowledges. In a time-neutral environment, Broumi and Smarandache [26] built the correlation
coefficients of INSs. While Zhang, Wang and Chen [27] developed INNWA operator and
INNWG operator. Furthermore, Ye [28-32] introduced a similarity measure between SVNSs
and INSs. Ye [33] examined interval-neutral MADM methods based on probability degree
sequencing and ordered weighted aggregate operators. Ye and Jun [34] proposes an interval-
neutral MADM with confidence information. Peng, Wang, Zhang and Chen [35] studied a
transcendent approach to MADM problems with simplified neutral sets. With interval-value
neutral sets, Zhang, Wang and Chen [36] devised a transcendent method to solve the MADM
issues. In their paper, Tian, Zhang, Wang, Wang and Chen [37] examined the use of interval
neutral set cross entropy. The SVNNWBM operator was proposed by Liu and Wang [38] using
the Bonferroni mean, the WBM, and the normalized WBM. Liu, Chu, Li and Chen [39]
combined Hamacher operator and generalized operator into NS, proposed the GNNHWA
operator, GNNHOWA operator and GNNHHA operator. Zhao, Du and Guan [40] extended
the GWA operator to work in line with the IVNS data. Liu and Wang [41] further proposed
INPOWA operator. In their study, the preferred weighted average operator and priority
weighted geometric operator for SNN [42] were then defined. Ye [43] proposed INWEA
operator and DUNWEA operator based on exponential algorithm. Li, Liu and Chen [44]

proposed some Heronian mean operators with SVNSs.
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Knowledge explosion, information torrent, rapid technological change, rapid social
change, rapid economic development, and so on, this is an era of change, but also an era of
development. With the popularization of the Internet and the rapid development of the e-
commerce industry, the way of shopping has gradually shifted from offline to online[45, 46].
Online shopping has become an indispensable part of contemporary people's lives, and the
accompanying logistics system is an important part of it. support. The rapid development of
SF Express, "Three Links and One Delivery” (Zhongtong, Shentong, Yuantong, Yunda Express),
JD Logistics and other niche express delivery has driven economic growth, but their extensive
logistics operations have also caused great damage to the environment. Influence. Logistics
systems include a variety of activities, such as supplier production, transportation and
distribution, that consume energy and emit carbon[47-50]. In the context of global warming
and environmental deterioration, it is extremely urgent to develop low-carbon logistics[51-53].
Government departments have formulated a series of plans to implement them. The primary
task of the logistics industry system from the perspective of low carbon is to carry out
reasonable planning of logistics activities, build logistics parks and solve the problem of site
selection of logistics parks[54-56]. The location of a low-carbon logistics park depends on
factors such as the economic development of a certain place, market demand, low-carbon
attributes of logistics and transportation routes, and whether carbon emissions meet
environmental requirements[57-59]. In essence, the location problem of low-carbon logistics
parks is a MADM problem. During the process of single valued neutral MADM with
alternative preference information. The weights are not completely known or completely
unknown. Nevertheless, none of the above methods are suitable for dealing with this situation.
To overcome this limitation, it is necessary to find methods based on the minimum deviation
method. The aim of this manuscript is to establish a method based on the least deviation
method. We will introduce SVNSs in the next section of this paper. In Section 3, we build the
MADM model under SVNSs, where the information about criterion weight is not completely
known, and the attribute value and preference value of options are SVNNSs. In Section 4, There
is no complete information about criterion weight, and the attribute value and preference value
are expressed as INNSs. In Section 5, illustrative examples for low-carbon logistics park site

selection are indicated. In Section 6, we summarize the full text.

2. Preliminaries
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Definition 1[60]. Assume W be a set with an element in a fixed set W, which is denoted by

@ .ANSs v in W is defined by the functionof truth-membership 7, (w) , indeterminacy-
membership 4, (ZU ) and a falsity-membership function o, (w) . The functions 7, (w) ,

‘91/ (ZU) and O, (w) are real standard or nonstandard subsets of ]70,1+[ , that’s,
7, (@)W = 01,9 (@):W— | 01 and 4 (@):W — | 01 . There is no

restriction of T, (ZU) , 9 (ZU) and o, (ZU) , o)

0" <supz, (@)+supg (@)+supo, (@)<3".

Definition 2[22]. Let W be a collection in fixed set W, denoted by @ . A SVNSsV inW is

defined as follows:
V={(ZU,7ZV (w),&‘v (w),av (w))W} (1)

Where EV(X) , S(w) and O'V(ZU) are in the value of [0,1] , that is,

z,(@):W —[0,1],9 (@):W —[0,1]and o, (@):W —[0,1]. And the sum of 7, (@),

4 (ZU) and GV(ZU) meets the condition OSEV(ZU)+19V(ZD')+O'V(ZU)S3 . Then a

v

simplification of v is represented by v = {(ZU,EV (ZU),19 (ZU),O'V (ZU))|ZU EW} , which is a

14

SVNS.

v

For a SVNS {(ZUJZV (ZU),19 (ZU),O'V (w))|w EW} , the ordered triple components

(7Z (ZU),B (w),a (ZU)), are defined as a SVNN, and each SVNN can be expressed as

1% =(7Z'V,19V,Gv), where 7, € [O, ],19V S [O,l],av IS [O,l], and 0< 7, +8 +0, <3.
Definition 3[61]. Set v = (7ZV , n9v , O'V) be a SVNN, a score function ¥ is represented:

p0)=EEEE) )< fo @

Definition 4[61]. Set v = (ﬂv , 19V , O'V) be a SVNN, an accuracy function J is represented:
x(v)=r,-0,, x(v)e[-11] . 3)

Definition 5[61]. Let v=(z,,9,0,) and wu=(7,9%,0,) be two SVNNs,

Uy

(2+7z#—l9 —Gﬂ)

u

3

(2+7,-9,-0,)

w(v)= 3 and y(#) =

be the scores function, and let
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2(v)=7,—0, and y(u)=7,—0, betheaccuracy degrees, thenif y (V)< (v), then
v<u;if w(v)=w(u), then
@) ify (v)=w(v), then v=u; Q@) if y(v)<w(u), then v<u.
Definition 6[611. Let v =(7,,9,,0,) and p=(7,,9,,0,) be two SNNs, and some
basic operations are defined:
Wveu=(z,+z,-77,99,00,)
@Qveu=(zr,9,+9,-99,0,+0,-0,0,);

@) =((=).(8) 1-(-a.)').2>0

Based on Definition 6, the following properties are derived.

@) av=(1-(1-7,) (4) (a,)").2>0;

Theorem 1[22]. Let Vv =(7ZV,19V,O'V) and u :(ﬂu"gu’au) be two SVNNs, 4, 4,4, >0,

then
DveOu=udv;
QvOu=u®v;
B A(vOu)=Av® Ay,
@ (vou) =(v) &u);
B) AV @ ALy =(4+4)Vv;
(6) (V)ﬂl @(V)ﬂz _ (V)(ﬂﬁﬂz) ;
@ ((r)*)" =),
Definition 7[61]. Let v, = (ﬁa,lga,O'a)(a =1, 2,---,¢) be a collection of SVNNSs, and let

SVNWA:Q? —» Q, if

¢
SVNWA, (13, v,,+,v, ) = @ (7,V,)

a=

{l—ﬁ(l_ﬂa )y“,ﬁ(sa)“, ¢ (o, )y} W

N

a=1 a=1 a=1

4
where }/:(}/1,7/2,---,7¢)T be the weight of va(a:1,2,---,¢), and 7, >0, 27a =1,

a=1

then SVNWA is called SVNWA operator.
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Definition 8[25]. Let V:(HV,SV,O'V) and ,u=(7rﬂ,u9

s

Gﬂ) be two SVNNs, then the

Hamming distance is defined:

d(v,,u):%(

ﬂv—ﬂﬂ‘+ 19‘/—19#‘4"0‘,—0”‘) (5)

3. Models for SVN MADM issues

(1) Let €= {5‘1, Eyytty 8¢} be a discrete set of alternatives;(2) Let ¢ = {gl, Gyttt g{p} be
a set of attributes;(3) Let v= (Vl, Vo, V¢) be subjective preference and
v, = (ﬂvu , 19‘,{! 'O, ) are SVSNs, which is subjective preference on alternative
g, (0{ =12,---, ¢) .(4) The criterion weights is incompletely known. Let
}/:(}/1,}/2,---,}/(/)) €R Dbe the weight of attributes, where y,20 , #=12,---,¢ ,
ZZ=1 Vs = 1, R isa set of criterion weight, constructed by the following forms [62, 63], for

a # [:Form 1. A weak sequence: Vo2 7 5> Form 2. A strict sequence: 7, —7, >0, L, > 0

;Form 3. A sequence of differences: y, =7, 2y, =V ., for P #0# p;Form 4. A sequence

with  multiples:  y, 21,7, , 0<7p,<1 ; Form 5. An interval form:

0, <y, <t ,+¢&,0<¢ <l +¢&,<1. Suppose that V Z(Vaﬂ)w Z(ﬂaﬁ,3aﬂ,0'aﬂ)¢w is

SVN decision matrix, naﬂe[O,l],Saﬂe[O,l],aaﬂe[O,l] , 0<7,+8,+0,,<3 ,
a:l,z,...1¢’ ﬁ:]_,Z,...1¢.

Definition 961l Let V =(v,,) ~=(7,.9,.0,), ~is the SYN matrix,
xp xQ

Vv = (Val’ VoV, ) be the attribute values for alternative &, , & =1,2,-++, ¢, then we call

a a 'V ap

Ve =(7,.8,,0,) =SYNWA (V.1 VoV, )

P 2 ¢ 2 (6)
- &)= 1T 102 [Te)
B-1 B=1 B-1
the overall value of &,, where y = ( YV Vg )T is the criterion attributes.
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On the premise that the attribute weight is known, we can aggregate the weighted values
into a total value through Eq. (6). According to the overall attribute value, we can make a final
ranking of possible solutions, and finally choose the most suitable solution.

If the attribute weight information of the decision model is unknown, to reflect the
subjective preference and objective information of the DM at the same time, the optimization
decision model is established. However, there are some differences between DM's subjective
preference and objective information. To make decision-making more scientific and reasonable,
the selection of attribute weight vector should minimize the total deviation between objective

information and DM subjective preference.

For y, € x, the deviation of alternative &, to DM'’s subjective preference is defined as

follows:

Kap ()= 5(Vip v ) 7500 =124 =12, 0. )
Let Ka (y)zz(i:Kaﬂ (7/):

=1

K(vaﬁ,va)yﬁ,azl,Z,---,¢

s

1

=

Then K, (}/ ) denote the deviation of €, to DM’s subjective preference valueVv .

According to the above analysis, we must select the criterion weight vector to minimize

all deviations of possible solutions. To this end, we establish a linear programming model:

Subject to 22:17% =1y, 20,

)

If the attribute weight information is completely unknown, another programming model

he
I
P
N
S

+\3aﬁ -9,

+

Toy — 7, Oup —O,

v,

where K(vaﬁ,va ) = %(

is established:

(M-2) :%ﬁﬁi(

The Lagrange function is constructed as follows:
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8,-8

+ =9, |+

>3

a=1 =1

L(}/,/i)=

Toe — ﬂ’-va

O, —0,.

Vv,

Wl

A&
)]/ﬂ+€(zyﬂ_1] 8)
B

where A is the Lagrange multiplier.

Differentiating Eq. (8) and setting these partial derivatives equal to zero:

oL L
a—:Z( Ty =T, | |85 =8, | |04 — 0, )+/17/ﬂ =0
7ﬂ a=1
oL ©)
—=2.7;-1=0
6 A=l
By solving Eq. (9), we get the attribute weights:
[
) Z;( Toy — 7, +‘19aﬂ -4, +‘0aﬂ -o, )
S —E 10
Vs =71, - (10)
Z[( Ty =7, | #9589, |+|0,s -0, m
=
By standardizing ]/; p=12,---, (p) be a unit, we have
¢
Z(ﬂ'aﬁ, —7, |48 =8, |+|0,4 0, )
e (11
ZZ( Ty =7, |95 =8, | (0,5 — 0, )
a=1 p=1

We propose a practical method to solve MADM with alternative preference and SVNs.

(Procedure one)

Step 1. Let V = (Vaﬂ )¢w = (ﬁaﬁ,gaﬁ,aaﬂ )(M’be a SVN matrix, y z(}/l,yz,---,yw)be the
criterion weight, where 7, € [0,1] , B=12,---,¢p, y isa setof the known weight
information. Let v = (Vl, VZ,---,V¢) be subjective preference, vV, = (ﬁva ,19Va O, ) are

SVNNSs, which are subjective preference values on alternatives £, (a =12,---, ¢) .

Step 2. By solving the model (M-1), the partially known index values of the weight information

are obtained.

Step 3. Utilize the weight }/2(7/1,}/2,---,}/@) and Eq. (7), we obtain the Vv, of

g, (a=12-,9).
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Step 4. Obtain the scores W (Va) of v, (Ot =1 2,---,¢) to rank all the solutions
g, (0[ =1, 2,---,¢). Then we calculate the ;((Va) and )((Vﬂ) , and then rank the

alternatives through ¥ (Va ) and y (V 5 ) .

Step 5. Rank solutions &, (0[ =1, 2,---,¢) and select the best one through l//(va) and
1(v,) (a@=1,2,9).

Step 6. End.

4. Models for INS MADM problems

Definition 10[23]. Let W Dbe a collection with element in fix setW , denoted by @ . An INSs

v inW is defined as follows:
17={(w,7z1; (w),gg (ZU),G‘; (w))|w eW} (12)
where 7, (w ) , 3 (ZU) and o, (ZU ) , which are interval values in the value of [0,1] , that is,

\4 14 v

0<sup(7, ())+sup(% (=))+sup(c, (=))<3.

For a INSs {( ( ) ( ) (ZU))|ZU EW} , the ordered triple components

T (w)g[o,l],g (w)g[O,l] and 1oz (w)g[O,l]

(7 (@), 9 (@)), are described as an INNs, and each INN can be expressed as
v~=<@,@,&;>:<[ 2o (3.8 ,
(707 |<[04].[ 8.9 |<[0a],[ 67,67 |<[04] andO< 7 +3! +&7 <3.

Definition 11164]. Let 7 =([ 2%, 2 ,[ &, 3! |,[67 67 ]) beanINN, ascore function y

is represented:

X X _ =X -~y gy =~y
R et );(2”’ 50) oyl o

Definition 12[64]. Let V = ([ﬁx ~Y} [9},9}],[&5,&5 :|) be an INN, an accuracy

function y is represented:

~X ~Y

(V)= — x(v)e[-11]. (14)
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Tang [64] gave an order relation between two INNs.

Definition 13[64]. Let ([ﬂx ~Y} [ 3x ‘9Y] [ax Y ]) nd
([ SR [‘%Xgﬂ[oixﬁ]) be two INN,

X _ G § _ 5" SX g ~X v
g”(VN):(zm -9 - )6(2+7z -3 -6!) " l//(ﬂ):(zmﬁ g ﬁ)6+(2+7z 9 -6})

be the scores of V and fI , respectively, and let ;((17)=

z(ﬂ):(ﬁﬂ "H%ﬁ);(&ﬁ +5ﬁ)

be the accuracy degrees of V and j , then if

w (V) <y (i), then v < fi;if w(V)=w(/1), then

@ if w(V)=w (i), then V=j1;2)if y(V)<x(it), thenfi<ji.

Definition 140271, Let n=([m0 A L& 8 ] [6f e ) and
n=(7a] %9 ],[5—;,&”) be two INNs, and some basic operations are

defined:
L ([E AR R A e w A A,

(1)V1@V2{[lwx,9;9;],[555;,555;] J

[z} 7) 7 7,

@7 e, =[&+F-F9.9+9 -39 |

[

~X =X X =X Y o ~Y Y Y
0, +0, —0O; 0, ,0;, +0; —(71(71}

) [1—(1—ﬁlx)i,1—(1—ﬁf)q, |
@iv=c Ll
[CORCINICORCH
@ (7) = [(ﬁlx) (ﬁfz ’[(glx) ’Ele) | a0,
[1—(1—55) 1-(1-6") ]
Theorem 20271, Let ([ A AR R ANC ]) and

7 =([# 7 [ 8.8 )[6).61]) betwoINNs 4,4, 4, >0, then
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Qv,@ev,=v,dv;
v, ®v,=v,v;
(3) /1(17169172)2/1171@1!72;
(4) (v, ®V, )ﬂ = (‘71)1 ® (7, )ﬂ ;
(5) ﬂl‘jl (—Dﬂ?‘;l = (/11 +/12)‘71;
(6) (‘;1)11 ®(‘71)ﬂz (Vl)(ﬂﬁﬂfz)’
(7)) =),
Definition ~ 15[27].  Let ([nx a2 )[85.8 [} ,&;])(ﬂ ~1.2,,9)

(ﬁ =1, 2,---,(0) be a collection of INNs, and let INWA:Q? — Q , if

INWA 7,) =§?1(yﬂvﬂ)
1—ﬁ(1—ﬁ; )yﬂ,l—ﬁ(l—ﬁ;)”}, (15)
_|L s p=1
B ax ' T1( &V T (2x VP TU( 2 V*
NEIRIEIRT CIRICOE
W =1 p=1 =1
T n
where ¥ = (7/1,7/2,---,%) be the criterion weight, and y, >0, Z}/ﬁ =1, then INWA is
B
called INWA operator.
Definition 16[64]. Let VlZ([ﬂlx ~Y] |:19X SYJ [ 5 ~Y]) and

(I:ﬂzx,ﬁ';{] I:ugzx,g;:l,[ﬁzx,ﬁg}) be two INNs, then the normalized Hamming
distance between 1 Z([ﬂ'lx ~Y] ':19)( 19Y:| I: 55,6, ]) and
([7[; ,7?;{] [gzx ’g;(]’[&zx ,5:}) is defined:

A R A F A

K (7,7,) == (16)

|9 -3 |+[6) - 65| +|6Y - 63
Let ¢ , ¢ and y be presented as in section 3. Suppose that

V = (ﬁaﬂ )¢w = (I: aﬂ, ] |:19;<ﬂ,19Y ] I: ~aﬂ’ ]) is the INN matrix,

<
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(757 |<[0a],  [3, 9 |c[0.1] 7%, 0" e[ 4, 0<#,+3),+5),<3,
a=12,---,¢, P=12,---,¢ . The subjective preference information on alternatives is

H
a

known, andV, = ([7?‘2 , ﬁ;ﬂ } , [zg:; , g‘,Ya ] , [5:( 5"2 :I) are INNs, which is subjective preference
values on alternative &, (0( =12, ¢) )

Definition 17(27]. Let V =(7,,) =([ﬁjﬂ,ﬁlﬁ],[gjﬂ,éjﬂ],[&jﬁ,&Zﬂ})w is the INN

matrix, vV, = (170{1, VooV ) be the vector of attribute values fore,, & =1,2,--+, ¢, then we

a ap

call

= INWA, (7,1, 7,5,V ) = él(yﬂ&aﬂ) 17)
1—]£[(1—7f§,,)7”,1—ﬁ(1— i) |,
_|L B=1 B=1
_¢~x7ﬂ¢~v7ﬂ B (X o T <YV
TI(%)" T1(%5)" || T1(s2)" 11(2)
L =1 =1 =1 p=1

T
the overall value of & , where y = ( VirVorttt, }/w) is the criterion weight.

When the attribute weight information is completely known, aggregate all the weighted
attribute values corresponding to each alternative into a whole using Eq. (17).

If the decision model is difficult to obtain attribute weight, sometimes the criterion weight
information is completely unknown. To reflect the subjective preference and objective
information of decision-makers, an optimization model is established to obtain the weight of
attributes. However, there are some differences between DM's subjective preference and
objective information. To make the decision more reasonable, the selection of criterion weight
vector is to minimize the total deviation between objective information and DM subjective
preference.

The least deviation method was used to calculate the difference between DM's subjective

preference and objective information. For the ¢, € ¢, the deviation of alternative &, to DM’s

subjective preference is described as follows:

Kys (7) =6V 7, ) 7o =12+, 6, B=12,--,00. (18)
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Let Ka(y):gKaﬁ(y)z

M

K(Vaﬂ WV, )]/ﬂ ,a=12,---,¢ Based on the above analysis, we
1

=
Il

must choose weights to minimize all deviations from all alternatives. To this end, we

establish a linear programming model:

MK (1) = 33K, (1) = E Sk (7,07, )7,
(|\/|-3) a=1 =1 ool Al

Subjectto >’ y,=1y,20,=12,-,¢
p=1/8 B

~Y ~Y aX axX
|y — 75 |+ BM —I9V~a

aY qY ~X ~X
G5 ‘ + ‘O‘aﬂ —G;

~X ~X
Ty =705,

where K( aﬂ"j ):%
+

~Y ~Y
a _0-170,

By solving the model(l\/l-3), we get the y = ( Vir Vot 7(/))' which is used as attributes

weight.

If the information about criterion weights is completely unknown, we build another

programming model:

minK ()= 3 3 K., (7)

a=1 p=1
(M) 1Z¢:Z¢: Ry — 7o |+ |y — 7L |+, —9; +
M-4) == ’

60351 ‘SY —SY‘+‘0'13 O' s

st Zﬁﬂ}/; =17,20,=12¢

~Y
— O";a

To solve this model, we build the Lagrange function:

NI 3 M TRET oY
, = . 7 (19)
o258, - |+[o, -7 |+l -t | 72\

where A is the Lagrange multiplier.

Differentiating Eq. (19) with respect to 7, ( p=12,--, (0) and A, and setting these partial

derivatives equal to zero,

oL | =7 |+ — 7 |+ gjﬁ—gé

8_:2 & _3|4leX —6Xl+lg ~Y +/1}//3:0

Vp ez +‘9aﬂ_‘9v Oup O-Va aﬂ_o-fa (20)
2

o310

8 p=1
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By solving Eq. (20), we get the attribute weights:

~X ~X ~Y ~Y aX a X
b | Ty =75 | Ty = 7 |+ = |+
QY qY Y ~Y
. ot ‘lgaﬂ — %, | 1% ~ %,
5= (21)

?

~ X ~ X ~Y ~Y aX A X
Ty =75 ‘ +‘7raﬂ -7 ‘ +‘l9aﬂ —19%‘+

aY aY Y
p=1 ‘19,,ﬂ - l9v~a —G;

5~ 65,
By normalizing ]/; ( p=12,---, (p) be a unit, we have

~ X ~ X
T

~Y
Top — 75,

~Y aX O X
Top =75 |+ Saﬁ—gfa +

~X

+

¢

o "goYrﬁ -9 g -5,
W, = (22)

I ~X _ ~X Y ~Y ax _ gx
Z«zlﬁ Top = 7. 5~ 7 ‘+‘19a -4 |+
A1 a-1 ‘SY —SY —0 —5';

Based on the above model, a practical method is proposed to solve INN-MADM with
alternative preference information. The method includes the following steps:

(Procedure two)

Step 1. Let vz(&“ﬂ)eﬁw:([ ~aﬂ, H,gjﬂ,,gY ] [~a¢' ~Yﬁ])¢w be an INN matrix, where

ﬁaﬂ =|:7~Z;(ﬂ,7~raﬂ:| [3;;,19\( ] I: ~aﬁ" ~Zﬁ:| » for &, €& with respect to ¢, €6,
7:(71’72""'7;0) be the weight of attributes, where E[O,l] , p=L2,---p
which is constructed by the forms 1-5. Let v = (171, Vyyo, V¢) be subjective preference,
v, = ([ﬁ'vx Y ],I:g‘;x ,95 :I, I:O:VX Nop ]) are INNs, which are subjective preference on
alternatives &, (OC =12,---, ¢) )

Step 2. By solving the model (M-3), the partially known index values of the weight is obtained.

If the criterion weight is unknown, then we can obtain the criterion weights by Eq. (22).

Step 3. Utilize y = (}/1, ]/2,---,}/(/)) and Eq. (17), we obtainthe vV, of &, (a =1, 2,---,¢).
Step 4. Compute out the scores l//(l7a) of v, (0( =1 2,---,¢) to rank all the alternatives

£, (a:1,2,---,¢) then rank the alternatives &, and &, through y (17a) and

Z(‘;ﬁ)‘
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Step 5. Rank all the alternatives &, (a =12,---, m) and select the best one(s) through i (17a )

and;((&a) (a=1,2,---,¢).

Step 6. End.

5. Case Study

With the expansion of the e-commerce Internet, online shopping has been enthusiastically
sought after by people, and the logistics industry has also risen rapidly. Logistics promotes
economic growth and is increasingly prominent in the national economic status. However, as
an indispensable part of the logistics industry, logistics parks have many difficult problems.
Usually occupies a large scale, and the construction investment cost is high. Once completed,
it is not easy to relocate, and today's environmental problems are becoming more and more
serious. The basic criteria for planning and building a low-carbon logistics park It is "low
energy consumption, high efficiency". The location problem of low-carbon logistics parks can
be regarded as a MADM problem. Generally, multiple decision-makers give corresponding
evaluations to a limited number of alternatives under the influence of different factors, and use
scientific decision-making methods to evaluate the relevant ones. The evaluation information
is processed, so as to sort the different alternatives and make a reasonable choice. In this section,
we apply the constructed model to a real-world example, taking the low-carbon logistics park

site selection as an example. Through market research, a panel of five possible low-carbon
logistics park sites &, (a =123, 4,5) was selected. The experts selected four indexes to
evaluate five low-carbon logistics park sites: (D g, is transportation and warehousing
investments; @) ¢, is regional goods material turnover; ® g, is land use; @ ¢, is degree of
environmental protection. Five possible low-carbon logistics park sites &, (a =12,3, 4,5)

will use the SVNNs by the decision maker under the above four attributes, as listed in the

following matrix.

(05,08,0.1) (06,03,03) (03,0601 (050.702)]
(07,02,0.1) (07,02,0.2) (0.7,0.2,04) (0.80.20.1)
V=|(0.6,0.7,0.2) (0.5,0.7,0.3) (0.5,0.3,0.1) (0.6,0.30.2)
(08,01,03) (0.6,0.3,04) (0.3,04,0.2) (0.5060.1)
(06,04,04) (04,08,0.1) (0.7,06,01) (05080.2)]

DMs’ subjective preference value on alternative:
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7, =(0.6,05,0.2),7, =(0.7,02,0.1),7, =(0.3,0.4,0.3)
7,=(0.9,0.3,0.2),7, =(0.5,0.6,0.4)

Next, developed method is used to select the best location of low-carbon logistics park.

Case 1: Criterion weight information is known as follows:

y={0.18<7,<0.23,0.20< y, <0.24,0.25< y, <0.30,
025<7,<033,7,20,4=1234" 7, :1}

Step 1. The single-objective programming model is obtained as follows:

min K () =0.6333y, +0.6667y, +0.8333y, +0.7000y,
Solving this model, we get the weight of attributes: » =(0.2300 0.2400 0.2500 0.2800 )T
Step 2. Utilize the weight y = ( Vi 7/2,---,)/{/)) and by Eq. (6), we obtain the vV, of the low-

carbon logistics park site &, (a =12,---, ¢) .

7, = (0.4845,0.5667,0.1581), 7, = (0.7322,0.2000,0.1670)
7, = (0.5538,0.4468,0.1854), 7, = (0.5824,0.3040,0.2135)
7, =(0.5633,0.6348,0.1670)

Step 3. Calculate the scoresl//(ﬁa) of 17a (a =12, ¢)

w (v,) = 0.5866, (7, ) = 0.7884, (7, = 0.6406
w(v,)=0.6883,y (7, ) = 0.5872

Step 4. Rank all the low-carbon logistics park sites &, (0( =12,3,4, 5) through W(‘;a)

(a =1,2,---,5):82 > &, > & > & > &, and thus the most desirable low-carbon logistics park
siteis &g .

Case 2: When the weight is unknown, we use another method to get the optimal location

of low-carbon logistics park.

Step 1. Get the weight of attributes:

y= (0.2235 0.2353 0.2941 0.2471 )T
Step 2. Utilize the y = ( VirVar Y, (0) and Eq. (6), we obtain the overall values vV, of the

low-carbon logistics park site £, (a =12,---, ¢) .
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v, = (0.4762,0.5647,0.1537),, = (0.7286,0.2000,0.1770)
7, = (0.5498,0.4425,0.1794),7, = (0.5732,0.3031,0.2172)
7, =(0.5727,0.6296,0.1618)

Step 3. Compute out the scoresy/ (V, ) (@ =1,2,-++,¢) of V, (2 =1,2,---,9).

w(v,) = 0.5860, (v, ) = 0.7839, (7, ) = 0.6426
w(v,)=0.6843, (7,) = 0.5938

Step 4. Rank all the solutions through i (‘70[ ) (&, > &y > & > & > &, and thus the most

desirable low-carbon logistics park site is &, .
If the five possible low-carbon logistics park sites &, (a =12,3,4, 5) are to be evaluated

using the INNSs, as listed in the following matrix.

[0.6,0.7], [0.3,0.4], [0.3, 0.4])
[0.7,0.8], [0.1,0.2], [0.2, 0.3])

([0.5,0.6], [0.8,0.9], [0.1,02]) (]
(
([0.5,0.6], [0.7,0.8], [0.3,0.4]
(
(

[0.7,09], [0.2, 03] [0.1,02]
0.6,0.7], [0.7,0.8], [0.2, 0.3]

(I )
V= ([ )
([0.8,0.9], [0.1,0.2], [0.3, 0.4])
(I )

)
[0.6,0.7], [0.3,0.4], [0.4, 0.5])
)

[0.6,0.7], [04, 05] [04 0.5]) ([0.4,0.5], [0.8,0.9], [01 0.2

[0.3,0.4], [0.6,0.7], [0.1,0.2]) ([0.5,0.6], [0.7,0.8], [0.1, 0.2]

( )l )
([0.7,0.9], [0.2,0.3], [0.4,0.5]) ([0.8,0.9], [0.2, 03] [01 0.2])
([0.5, 06],[03 0.4],[0.4,0.2]) ([0.6,0.7],[0.3,0.4], [0.2,0.3])
([0.3,0.4], [0.4,0.5], [02 0.3]) ([0.5,0.6], [0.6,0.7], [0.1,0.2])
([0.7,0.8], [0.6,0.7], [0.1,0.2]) ([0.5,0.6], [0.8,0.9], [0.2,0.3])

DM'’s subjective preference value on alternative is:

7, =([0.6,0.7],[0.5,0.6],[0.2,0.3]),v, =([0.7,0.8],[0.2,0.3],[0.1,0.2])
7, =([0.3,0.4],[0.4,05],[0.3,0.4]),7, =([0.9,1.0],[0.3,0.4],[0.2,0.3])
7, =([0.5,0.6],[0.6,0.7],[0.4,0.5])

Case 1: The attribute weights are partially known,

y=1{0.18<y,<0.23,0.20< 4, 0.24,0.25< y, < 0.30,
0.25<y,<0.33,7,>0,8=1234 7, :1}
Step 1. Establish the ingle-objective programming model:

min K () = 0.65007, +0.7000, +0.8500y, +0.7333y,
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Solving this model, we get the weight of attributes:

}/2(0.2300 0.2400 0.2500 0.2800 )T
Step 2. Utilize the y = ( VirVart ]/40) and Eq. (17), we obtain the V_ of the low-carbon

logistics park sites &, (0( =12, ¢) .

( [0.4845,0.5168],[0.5667,0.6731],[0.1302,0.2362])
, =([0.7322,0.8556],[0.1693,0.2722],[0.1670,0.2772])
( [0.5538,0.6323],[0.4468,0.5540],[0.1854,0.2905] )

[
[

[0.5824,0.6960],[0.3040,0.4218],[0.2135,0.3234]
= ([0.5633,0.4059],[0.6348,0.7383], [0.1670,0.2766]

Step 3. Calculate the scoresl//(fa) of &, (a =12,---, ¢)

w (7,) = 05658,y (7,) = 0.7837, () = 0.6183
w(7,)=0.6693,p (7,) = 0.5254

Step 4. Rank all the low-carbon logistics park sites &, (Ol =12,3,4, 5) through scores iy (17a )

(a :].,2,---,5) of V, (0[ =12, ,¢) &, > &, > & = & > &, and most desirable alternative is
£,.

Case 2: If attribute weights are completely unknown, we utilize an alternative approach to

obtain the best low-carbon logistics park sites.

Step 1. Utilize the Eq. (22) to get the weight of attributes:

—(0.2216 0.2386 0.2898 0.2500 )'
Step 2. Utilize the y = ( Vi 72,---,]/(/,) and Eq. (17), we obtain theV, of the low-carbon

logistics park site &, (az=1,2,---,8).

[0.4774,0.5169],[0.5633,0.6696], [0.1300, 0.2360]
0.7289,0.8546],[0.1695,0.2723],[0.1763,0.2873])
0.5499,0.6328],[0.4431,0.5503],[0.1802, 0.2857])
0.5734,0.6960],[0.3040,0.4209],[0.2171,0.3264]
0.5714,0.4078],[0.6312,0.7346],[0.1617,0.2712])

(
=l
=
=
!
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Step 3. Calculate the scores of V, (a =12,---, ¢) )

w (7,) = 05659,y (7, ) =0.7797,y (7, ) = 0.6206,
w (7,)=0.6668, (7,) = 0.5301

Step 4. Rank all the low-carbon logistics park sites &, (a =1,2,3,4, 5) through l//(ﬁa):

&, > &, > & > & » &, and thus the most optimal low-carbon logistics park site is &, .

6. Conclusion

Under the background of increasingly standardized logistics market and increasingly fierce
market competition, there is an increasing demand for establishing and improving logistics functions
and information-based logistics centers. In order to respond to the new needs of economic and social
development and advocate the concept of green, low-carbon and sustainable development, low-
carbon logistics is the only way for the development of the logistics industry. The planning and
construction of logistics parks are considered to be an important part of promoting the development
of modern logistics. In the planning process of the logistics park, the layout and location function are
the important basic parts that affect the overall development of the logistics park. Choosing a
reasonable location is particularly important for building a logistics center. One of the most important
parts of logistics park planning is the quantitative optimization of the logistics park location problem.
In recent years, the location theory has developed rapidly, and there are many types of locations. The
rapid development of the location theory of logistics parks is attributed to the informatization of
today's science and technology, which provides a powerful tool for feasibility analysis and rational
decision-making. The logistics park location problem is also regarded as a MADM problem. In this
manuscript, we studied the SVN-MADM problem with alternative preference information. In the
fuzzy background, the weight information of indicators is often uncertain, and based on this, the
minimum deviation method is used to determine the weight of indicators. On the other hand, in the
process of MADM, in order to obtain comprehensive evaluation information, The SVNWA operator
is used to aggregate all decision information. Calculate the value of the scoring function and the
accuracy function and rank the alternatives. On the basis of guaranteeing the validity, the calculation
steps are relatively simple, thus realizing the operability. Furthermore, the above models and
methods are extended to INNs. Finally, illustrative examples for low-carbon logistics park site
selection demonstrates the extension of the model from theory to practical application. The
constructed models and methods can be applied to other MADM problems, such as investment risk
assessment, selection of commodity suppliers, selection of factory locations, etc. In the future

research, we shall continue to focus on the detailed research of decision-making methods and
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aggregation operators by fusing TODIM method[65-67], QUALIFLEX method [68-71], ARAS method
[72-75], WASPAS method [76-79], Maclaurin symmetric mean (MSM) [80], Muirhead mean (MM) [81-
84] and power average (PA) [85, 86] operators to Neutrosophic numbers and propose some new

MAGDM methods.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Road traffic management has been a serious concern in the transportation sector for many
years now. The explosion of the number of cars along with the inability of creating new high-
capacity road infrastructures in big cities makes mitigating this danger a problem for the scientific
research community. Traffic congestion contributes to increased pollution, economic loss, and a
general deterioration in the quality of life. As a result, researchers are being asked to cope with the
complexity of establishing effective and smooth traffic flow. However, as in traffic congestion
control, real-world decision-making problems are always fraught with uncertainty and
indeterminacy. The neutrosophic environment has been applied successfully to deal with these
problems and recently, researchers tried to use various neutrosophic approaches to tackle the traffic
congestion problem. This paper provides a brief overview of the most recently used neutrosophic
techniques to handle traffic congestion and transportation problems in general. The aim of the

investigation is to summarize the available neutrosophic traffic flow problems and their progress

to enable future researchers to differentiate the major problems to be manipulated and identify
conditions to be optimized.

Keywords: Road traffic control; Intelligent Traffic Management System; Neutrosophic
environment; Neutrosophic logic; Neutrosophic approaches.

1. Introduction

Transport researchers have long worked to improve traffic management on urban roads.
Congestion is a critical issue affecting negatively road users and traffic controllers. Despite the
important attempts and research that have been made to minimize traffic congestion, this serious
problem continues to worsen [1]. The direct reason for this is the slow development of transportation
systems and road capacity as well as the explosive growth of urban and rural population rates, which
causes an increase in vehicle demand and hence the vehicles’ number on the roads. Thus, traffic
congestion is a serious matter that should be urgently addressed in order to offer a safe and healthy
environment for people [1].
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In order to manage the traffic flow, the road traffic management system takes various real-time
decisions [3]. As existing practical situation traffic flow parameters involve vagueness due to several
uncontrolled factors so that the developed models unable to tackle such conditions [4]. For instance,
the number of vehicles in a specific lane in real-time is always unknown precisely. Furthermore, the
non-recurrent traffic congestion sources, which are special incidents that happen suddenly as shown
in Figure 1, cannot be accurately managed. This gives rise for the use of fuzzy logic controllers in
traffic management endeavor. The concept of fuzzy set, which is initialized by Zadeh in 1965 [5], has
been widely applied in problems that include uncertainty and vagueness since it imitates human
perception and thinking based on linguistic information.

Neutrosophic concept was initialized by Florentin Smarandache in 1995 as an extension of the fuzzy

logic and its derivatives. It goes beyond the fuzzy set and fuzzy logic by expressing the false
membership information and beyond the intuitionistic fuzzy set and intuitionistic fuzzy logic by
handling the indeterminacy of information. Neutrosophic logic is a logic in which each proposition
is estimated to have a degree of truth (T), a degree of indeterminacy (neutrality) (I), and a degree of
falsity (F). It can then handle the uncertainty and impreciseness related to the road traffic flow that
the fuzzy logic may fail to properly address.

The forthcoming part of the study is arranged as follows. In Section 2, an introduction of the
basic concepts that we focus on in this paper is provided. In Section 3, some of the available methods
in the scientific literature that tackle road traffic problems based on the Neutrosophic sets are
presented. In Section 4, a comparative analysis is provided for the different presented methods.
Finally, section 5, introduces the main challenges and future perspectives and concludes our brief

review.

Heavy snow. Publlcworks,
Heavy rain. construction '
Foggy and
weather maintenance

Figure 1: Non-recurrent traffic congestion sources.

2. Basic concepts

This section introduces some of the fundamental principles covered in this paper as shown in

Figure 2.
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Neutrosophic Set

Interval Neutrosophic Set

Interval valued intultionistic fuzzy Set
Intuitionistic fuzzy Set

Fuzzy Set

Classical Set

Figure 2: Relationship between classical, fuzzy, intuitionistic fuzzy, interval-valued intuitionistic

fuzzy, interval neutrosophic sets, and neutrosophic sets.

2.1 Fuzzy set (FS)

When we encounter vagueness in our daily life activities fuzzy theory is the right tool to overcome
it. It is often applicable transportation engineering and planning. In classical set theory if an element
belongs to a set its membership degree is simply 1 and if it does not belong to a set its membership
degree is 0. In contrast, in the theory of vagueness the degree to which the element belongs to a set is
not clearly known, instead we use values in the interval [0,1]. This type of set is called fuzzy sets. So,

a fuzzy set is identified by its membership degree alone.

2.2 Intuitionistic fuzzy set (IFS)

Let X be the universe of discourse. A set A € X that can be written in the form A=
{{X,ua (x),v5 (x),); x €X is called an intuitionistic fuzzy set where, p, (x), va (x) are degree of
acceptance and degree of rejection of the element x in A respectively are each subsets of [0,1] such
that, 0 < py (x) +v, (x) € 1.In addition, for A in X ,mu(x) =1 - py (x) — vy (x) is called the
intuitionistic fuzzy set index or the degree of indeterminacy of x€ X and forevery x € X,0< my <1.

2.3 Neutrosophic logic

In Neutrosophic logic each statement has a truth degree (T), an indeterminacy degree (neutrality) (I),
and a falsity degree(F), where T, I, F € [0, 1] and 0< T + 1+ F < 3. The degrees T, I, F are nondependent

to each other.

2.4 Single valued neutrosophic set (SVNS)

If in a set A every member of A has a degree of belongingness (1 (X)), a degree of indeterminacy
(ua (%)) and a degree of non-belongingness (w5 (%)), with p, (%), v (), W (x) € [0,1],then the set
is a single valued neutrosophic setand x = x(uA %),y X), w4 (X)) is a single valued neutrosophic
element of A such that we have the following relations between the three degrees

0 <y (%),vp (%), wp (x) <Tland
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0<py X)+vy X)+wy X)) <3 VxeX

2.5 Interval valued neutrosophic set

If in a set A every member of A has a degree of belongingness p, (x), a degree of indeterminacy

va (x) and a degree of non-belongingness w, (x), with pa (%), va (X), wa (%) are all elements of the
closed interval [0,1], and p, (x) = [EA(X)'HA(X)] s (%) = [UA(), DA®)] 0a ) = [0a(X), BAK)] are

respectively upper and lower degree of belongingness , upper and lower degree of indeterminacy

and upper and lower degree non-belongingness , then A is an interval valued neutrosophic set.
2.1 Soft Set

Neutrosophic sets may be combined with other types of sets to get another hybrid structure which
can be applicable in transport engineering. One of such type of set is a soft set which is initiated for
the first time by Molodtsov in 1999 and defined as follows.

Let X be a universe of discourse and P be a set of parameters. Let P (X) denote the power set of X
and A € P. A combination (F,A) is called a soft set over X, where F is a mapping given by F: A—P
(X). In other words, a soft set over U is a parameterized family of subsets of the universe X. For e €A,
F (e) may be considered as the set of e-approximate elements of the soft set (F, A). Clearly, a soft set

is not a set in a classical sense.

3. The Application of Neutrosophic Theory in Intelligent Traffic Management Systems

This section outlines some of the suggested Neutrosophic logic-based solutions for managing traffic

flow and transportation problems in general. Table 1 summarizes these approaches.

Jun Ye introduced in [6] the neutrosophic linear equations, the neutrosophic matrix and the
neutrosophic matrix operations relying on the Neutrosophic Numbers concept. Then, he chose the
traffic flow case study to apply the neutrosophic linear equations system in a real scenario and

demonstrate its efficiency in handling the indeterminacy problem of a real environment.

For traffic management, El Bendadi et al. suggested in [7] two clustering strategies namely, Credal
C-Means clustering (CCM) and Neutrosophic C-Means clustering (NCM). When overlapping items
are found, both proposed techniques have a comparable propensity to construct a novel cluster that
determines the imprecision object. The indeterminacy cluster is interpreted differently by each
approach. The CCM algorithm forms a number of meta-cluster that is proportionate to the number
of singleton clusters, while the NCM approach represents all indeterminate items with a single

indeterminacy cluster.

In [8], Muhammad Akram created a traffic-monitoring road network model based on the notion of
bipolar neutrosophic planar graphs. The suggested approach may be used to compute and track the
yearly accident proportion. The overall number of accidents can be reduced by monitoring and

installing additional security measures.
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Nagarajan et al. studied in [9] a triangular interval type-2 Schweizer, Sklar weighted arithmetic
(TIT2SSWA) operator, a triangular interval type-2 Schweizer and Sklar weighted geometric
(TIT2SSWG) operator based on Schweizer and Sklar triangular norms. Afterward, the validity of
these operators was examined based on a numerical example, and then an interval neutrosophic
Schweizer and Sklar weighted arithmetic INSSWA) and interval neutrosophic Schweizer and Sklar
weighted geometric (INSSWG) operators were proposed in order to extend these operators to an
interval neutrosophic environment. Moreover, a new traffic flow approach is introduced based on
the presented operators as well as an improved score function. The score function was used to
analyze the traffic flow based on TIT2SSWA and INSSWA operators as well as TIT2SSWG and
INSSWG operators. Both used methods identified the same intersection as the more congested one.
In another paper [10], Nagarajan et al. used the Gauss Jordan method to examine the flow of traffic
in a neutrosophic environment and under various indeterminacy ranges.

In another paper, Nagarajan et al. proposed [11] Dombi Single valued Neutrosophic Graph and
Dombi Interval-valued Neutrosophic Graph. Furthermore, the Cartesian product and composition of
the suggested graphs were extracted and then verified with the numerical example. The
Neutrosophic Controllers' importance and their use in managing traffic are theoretically emphasized.
It has been pointed out that the triangular norms T Norm and T-Conorm can be utilized rather than
minimum and maximum operations in control systems like traffic management systems. Finally, the
pros and cons of some fuzzy logic methods and neutrosophic logic methods have been discussed.
Finally, In another paper, Nagarajan et al. [12] examined the traffic flow control in a neutrosophic
environment under diverse ranges of indeterminacy and then proposed a road traffic study based on

Crisp, Fuzzy, and Neutrosophic.

Phillip Smith introduced in [13] a Multiple Attribute Decision-Making (MADM) method for picking
out sustainable public transportation systems under uncertainty, which means using incomplete
information involving single-valued neutrosophic sets (SVNSs) which means in turn a generalization
of a classical set, a fuzzy set, and an intuitionistic fuzzy set. In the context of the Public Transit
Sustainable Mobility Analysis Tool (PTSMAT) SVNSs and SVNS connectives are demonstrated and
used with a composite (multiple attributes) sustainability index. The results of the presented case
study of PTSMAT for the UBC Corridor study in Vancouver, Canada are identical to those of the
original study despite the fact that neutrosophic formalism opens a wide range of possibilities for
recognition of uncertainty in sustainability assessment. The results of the presented case study of
PTSMAT for the UBC Corridor study in Vancouver, Canada are similar to those obtained in the
original study despite the fact that to recognize the uncertainty in sustainability assessment,

neutrosophic formalism opens a wide range of possibilities.

In [14], R. Sujatha et al. used Fuzzy Cognitive Map and Induced Fuzzy Cognitive Map to examine

road traffic flow patterns at a congested intersection in Chennai, India's biggest city.

A new emergency transport model that simulates emergency transport from the logistics center to
each incident area as well as between incident locations was created by Lin Lu and Xiaochun Luo in

[15]. The emergency transshipment problem was transformed into a multiattribute decision-making
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problem using the SVNS concept in indeterminate and uncertain circumstances. The suggested
technique was applied in an emergency operation scenario to rank and select effective transportation
routes.

In developing countries, to control traffic flow at signaled crossroads, The fixed-time traffic light
control method is used. However, this method does not allow congested intersections to identify their
level of congestion and therefore allows vehicles to cross the intersection. To deal with this challenge,
road managers must set their opinions and create an intelligent automated decision-making system
to replace them. The manager’s decision process might be analyzed utilizing the approach of Interval-
Valued Neutrosophic Soft Set (IVNSS) theory to take advantage of fuzziness in traffic flow and
determine efficient timings and optimal phase change. Enalkachew Teshome Ayele et al. [16]
suggested an IVNSS traffic management system that can ameliorate traffic congestion control. It
evaluates the different phases and timings of the traffic light based on the real-time traffic density at
the intersection rather than a fixed phase and duration.

Under neutrosophic statistics, Muhammad Aslam created a control chart for neutrosophic
exponentially weighted moving average (NEWMA) using recurrent sampling in [17]. To track traffic
collisions on the highway (RTC), the author employed a NEWMA chart. The proposed NEWMA
chart goes beyond the previously proposed control charts for tracking the RTC, according to a
simulated study and a real-world example. According to the comparative study, the presented
NEWMA chart might be utilized to successfully regulate RTC. The new chart will allow changes in

accidents and injuries to be detected faster than previous charts.

In [18], Rayees et al. identified four different kinds of Plithogenic hypersoft sets (PHSS) relying on
the application-specific features number used, the type of alternatives, or the degree of attribute value
appurtenance. These four PHSS categories cover the fuzzy and neutrosophic situations that may have
neutrosophic applications in symmetry. They then proposed a new multi-criteria decision-making
(MCDM) technique based on PHSS (TOPSIS) as an extension of the method for order preference by
similarity to an ideal solution. Uncertainty complicates a variety of real-world MCDM scenarios,
necessitating the division of each selection criterion or attribute into attribute values and the
independent evaluation of all options against each attribute value. The suggested PHSS-based
TOPSIS may be utilized to tackle real MCDM challenges that are precisely defined by the PHSS notion
depending on the provided criteria. The proposed PHSS-based TOPSIS resolves a parking space
Choosing issue in a fuzzy neutrosophic environment in a real-world application, and it is verified by

comparing it to fuzzy TOPSIS.

In [19], Simic et al. expanded the CRITIC and MABAC approaches to type-2 neutrosophic sets for the
selection of public transportation pricing systems, and Pamucar et al. proposed in [20] a hybrid model
that comprised fuzzy FUCOM and neutrosophic fuzzy MARCOS for assessing alternative fuel

vehicles for sustainable road transportation in the United States.

For controlling road accidents and injuries when the smoothing constant is uncertain Muhammad
Aslam and Mohammed Albassam [21] proposed an S2N NEWMA control chart to track road
accidents and injuries by employing repeated sampling. The tables and control chart figures are

generated using the neutrosophic Monte Carlo simulation. This chart identifies changes in accidents
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and injuries quicker than prior charts, lowering and pinpointing the causes of traffic accidents and

injuries.

In [22], M. Abdel-Basset et al. stated that autonomous vehicles play an important role in the intelligent
transportation system; nonetheless, these vehicles pose a number of risks. As a result, a novel hybrid
model is proposed for recognizing these hazards. This process contains uncertainty and foggy data.
The neutrosophic hypothesis is used to deal with uncertainty. The neutrosophic theory provides
three membership functions: true, indeterminacy, and false (T, I, F). In this study, the concept of
MCDM is combined with neutrosophic theory since autonomous vehicles have several contradictory
criteria. First, the Analytic Hierarchy Process defines the weights of criteria (AHP). Second, to assess
the dangers of autonomous cars, approaches such as Multi-Attributive Border Approximation Area
Comparison (MABAC) and Preference Ranking Organization Method for Enrichment Evaluations II
are utilized (PROMETHEE II). In the case study, ten distinct choices were used. An understanding
and a sensitivity analysis of this process in an uncertain environment are given to demonstrate the

robustness of the suggested model.

In [23], F. Xiao et al. introduced a method that ameliorates the multi-valued neutrosophic
MULTIMOORA method relying on prospect theory. The suggested approach is utilized to select a
suitable subway building scheme. Firstly, Multi-valued neutrosophic sets (MVNNSs) were utilized to
offer evaluations of subway building. Secondly, the IGMVNWHM operator is added, which takes
into account the inputs interactions. Thirdly, a new distance measure between two MVNNSs is
determined. The fourth approach is an IMVN-PT-MULTIMOORA technique.

Nasrullah Khan et al. presented in this article [24] neutrosophic multiple dependent state sampling
control chart for the neutrosophic EWMA statistic. The control chart coefficients were set by the
neutrosophic statistical interval method for different process settings. The neutrosophic average run
lengths and the neutrosophic standard deviation have been estimated by the Monte Carlo simulation
to verify the efficiency of the suggested chart. A comparison of this chart with existing charts has
been done. As result, this chart is comparatively robust in monitoring the incomplete, and unclear
quality characteristics. However, the production process should adhere to the normal distribution,
which represents a limitation of this study. The presented chart could be used in the chemical,

packing, and electronic industries.

In [25], Fayed et al. introduced a robust occupancy detection system that relies on a novel fusion
approach for merging heterogeneous sensor data that significantly enhances occupancy detection

efficiency. The suggested method is suitable for use in traffic management.

Table 1. An overview of the most Neutrosophic approaches that deal with the problem of road

traffic congestion

Year Ref Scope Contributions and Methods Topics

used

2017 JunYe[6] TrafficFlow A traffic flow problem = Neutrosophic Numbersand

application = example is  Their Operational Laws.
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offered to demonstrate the
application and efficacy of
employing the system of
neutrosophic linear equations
to solve the indeterminate

traffic flow problem.

* Neutrosophic Linear Equations
and Neutrosophic Matrices.

= A Neutrosophic Linear
Equations System Solving.

= A Traffic Flow Problem
Application.

2018 El Road Safety =~ The Credal C-means (CCM) = CCM working Principle.
Bendadi and Neutrosophic C-means * NCM working Principle.
etal. [7] (NCM) algorithms describe = Comparison of the CCM and

the credal clustering and  NCM algorithms for different
neutrosophic clustering  datasets based on different
respectively. To demonstrate  criteria namely, error rate,
their behavior and efficacy, = imprecision rate, intra class
real-world road safety data  inertia.
were tested and their results
compared.
Muham  Traffic Some applications of bipolar = Bipolar Neutrosophic Graphs.
mad Monitoring neutrosophic graphs were = Applicationsto MCDM.
Akram described. * Bipolar Neutrosophic Planar
[8] Graphs.
= Applications of Neutrosophic
Planar Graphs.
= Bipolar Neutrosophic Line
Graphs.
= Application of Bipolar
Neutrosophic Line Graphs.
2019 Nagaraja Traffic Flow  To control traffic flow thathas = Basic concepts of a traffic
netal. [9] been analyzed by  control system, fuzzy logic’
determining the intersection  role, output methods from
with more vehicles, an  fuzzy linguistic terms and
improved score function for  structure of the fuzzy control
interval neutrosophic  system.
numbers (INNs) is proposed. = Operational laws.
* Neutrosophic perspective.
= Traffic flow using proposed
operators.
Nagaraja TrafficFlow  MATLAB is used to = Bipolar Neutrosophic Line
n et Control investigate  traffic  flow  Graphs.
al.[10] control in a neutrosophic = Basic concept: Single Valued

environment using Gauss

Jordan method.

Neutrosophic Set, Gauss
Jordan Method.
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= Description of the proposed

methodology
Nagaraja Traffic Dombi Single valued = Basic Concepts: Graph, Fuzzy
n et Control Neutrosophic Graph and  Graph, Dombi Fuzzy Graph,
al.[11] Dombi  Interval valued  Single Valued Neutrosophic
Neutrosophic Graph have  Graph, Interval Valued
been suggested. As well as  Neutrosophic Graph,
the theoretical significance of = Triangular Norms, Dombi
Neutrosophic Controllers  Triangular Norms, Hamacher
and their application in traffic =~ Triangular Norms, Dombi and
control management. Hamacher Triangular Norms
Special Cases, Standard
Products of graphs,
Neutrosophic Controllers.
= Proposed Dombi Interval
Valued Neutrosophic Graph.
= Traffic Control Comparison
based on divers types of set
and Graph theory.
Nagaraja TrafficFlow  The Jordan approach is used = Neutrosophic number.
n et in this study to evaluate = Application: at analyzing the
al.[12] traffic flow control in a traffic flow
neutrosophic environment.
Phillip Transportati A multi-attribute decision- = Neutrosophic sets.
Smith on making method for selecting = Single-valued neutrosophic
[13] Sustainabilit  sustainable public  averages.
y transportation systems in the = Score functions
Assessment  uncertainty, represented by = Cross-entropy.
SVNSs and their = Application to sustainable
connectives. transport.
R Sujatha Crowded Some traffic congestion ®Fundamental concepts of
etal. [14] junction causes are unknown and  Fuzzy Cognitive Maps and
in Chennai indeterminate, Thus,  Neutrosophic Cognitive Maps.
Neutrosophic Cognitive = Description of the traffic
Maps is employed in this  congestion problem.
paper to identify a solution. = Comparison of expert’ opinion.
2020 Lin Lu Emergency In confusing and uncertain = Methods: The Basic Concept of
and Transportati  environments, the SVNS is  Single-Valued Neutrosophic
Xiaochun onProblem  used to turn the emergency  Set.
Luo [15] transshipment problem into a
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multiattribute decision-

making problem.

= A new emergency transport

model is presented.

Enalkach Trafficlight = To manage both phase = Preliminary concepts: Soft Set,
ew Control change and green time  Single valued neutrosophic set,
Teshome extension / termination based Interval Valued Neutrosophic
Ayele on the traffic circumstances at ~ Set.
[16] any time, an algorithm is = The proposed two stage IVNSS
proposed in this paper. traffic light control model and
its verification.
Muham  Road traffic =~ The suggested Neutrosophic = Neutrosophic EWMA chart
mad crashes Exponentially Weighted  using repetitive sampling.
Aslam monitoring Moving Average (NEWMA) = Comparative study based on
17 chartis used to monitor traffic ~ Road Traffic Crashes
accidents. simulation data.
= Using real-time data to
monitor road traffic accidents.
Muham  Solve In a real-world application, = The Four Classifications of
mad a parking the suggested Plithogenic = PHSS.
Rayees problem fuzzy hypersoft set (PHSS)- = The Proposed PHSS-Based
Ahmad based TOPSIS solves a  TOPSIS Applied to a Parking
[18] parking  place  selection Issue.
problem in a  fuzzy
neutrosophic environment.
2021 Simic et Public The public transport services _
al. [19] transportatio  pricing is a complicated
n pricing problem that authorities must
system handle since  numerous
selection elements must be observed
when deciding on a pricing
scheme. A two-stage hybrid
MCDM model based on type-
2 neutrosophic numbers
(T2NNss) is presented to offer
researchers and practitioners
a simple and flexible
decision-making tool.
Assessment  The goal of this research is to = AFV assessment methodology.
Pamucar of alternative create a multi-criteria = Case study in the New Jersey.
etal. [20] fuel vehicles decision-making (MCDM)
for framework that combine
sustainable fuzzy FUCOM and
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Muham
mad
Aslam
and
Moham
med
Albassa
m [21]
M.
Abdel-
Basset et
al. [22]

Fei Xiao
et al. [23]

Nasrulla
h Khan
[24]

road
transportatio

n

Reducing
and
identifying
the causes of
traffic
accidents

and injuries

Risk
Management
in
Autonomous
Vehicles

Traffic flow
and its
application
in a multi-

valued way

Tracking
Traffic
Accidents

and Injuries

neutrosophic
MARCOS
various  Alternative
Vehicles (AFVs)

sustainable transportation.

fuzzy
for prioritizing
Fuel

for

The use of a neutrosophic
statistical approach for road

safety.

To

uncertainty and incomplete

represent and handle

risk information consistently
and reliably, the proposed
model combines the single-

valued neutrosophic sets, the

AHP, MABAC, and
PROMETHEE II
methodologies.

This paper improves the
multi-valued  neutrosophic
MULTIMOORA method.

The Use of Neutrosophic
Weighted

Moving Average Statistics in

Exponentially

Tracking Road Accidents and

Injuries

* The Proposed S2N -NEW M A
Chart.
= The Proposed Control Chart

* Neutrosophic linguistic
information.

= Suggested hybrid MCDM
approach.

= Preliminaries: Multi-valued
neutrosophic sets (MVNNSs),
Heronian Mean (HM)
operators, The MULTIMOORA
method, Prospect theory.

* IGMVNWHM operator,
Distance measure between two
MVNNSs and IMVN-PT-
MULTIMOORA method.

= Solution framework for MVN-
MCGDM problem.

= Methodology of the Proposed
Chart.

* The Proposed NEWMA X-Bar
Control Chart Based
on Multiple Dependent State
Sampling.

* The Proposed Neutrosophic
Control Chart Simulation
Study.
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2022 Noha S. Improving The suggested approach = The efficient occupancy

Fayed occupancy addresses sensor data
[25] Detection uncertainty using
system. Neutrosophy. It also

enhances  reliability = by
combining data from various
sensors. Training and testing
time is decreased since it only
employs one feature created
by fusing input from many

Sensors.

detection system and its

evaluation.

4. Comparative Analysis

Table 2 below gives a comparative analysis of the different neutrosophic methods used recently in

the literature for traffic management and transportation system improvement in general, in order to

understand each method's key role, advantages, and limitations.

Table 2. Comparison of different neutrosophic methods used for traffic management.

Types Advantages

Limitations

Neutrosophic Sets =  In neutrosophic theory, we use .
neutrosophic numbers ->a + Ib
where a, b € R.

* Addresses uncertainty as well as
uncertainty caused by unpredictable
environmental disturbances

* The Neutrosophic set presents the
degrees of membership,
indeterminacy, and non-membership
of the element x € S. For instance:
¢(0.5,0.1,0.4) € S means probability of
50% "x' belong to the set S 10% 'x’ is
not in S and 40% is undecided.

= The operations are entirely different.

Interval Valued = Adaptability and flexibility. .
Neutrosophic Sets =  handles more uncertainty and
indeterminacy.
* Calculations errors can be rounded
up and down.
* Can handle problems with one
number or a group of numbers in the

real unit interval.

Calculations errors can't

be rounded up and down.

Can't handle criterion
incomplete weight

information.
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Neutrosophic
Graphs

Interval Valued
Neutrosophic
Graphs

Dombi
Neutrosophic
Graphs

Dombi Interval
Valued
Neutrosophic
Graphs

Type 2 fuzzy and
interval
neutrosophic
Single valued

neutrosophic  sets
(SVNSs)

Neutrosophic

Cognitive Maps

Neutrosophic
Markov

An optimized output is possible if
the paths and the terminal points are

uncertain.

Can address additional uncertainty
discovered in terminal points

(vertices) and paths (edges).

Can handle indeterminacy.

Can handle uncertainty well for

interval values.

Based on a rule that fully accepts
uncertainties.
Adaptability.

Can handle uncertain and

inconsistent information.

Provide the ability to treat the relation
between two vertices as

indeterminate.

Can handle the occurred
indeterminacy in a system.

The neutrosophic Markov chain's
equilibrium state demonstrates the
ability of traffic states transitions
accurately in order to predict the

traffic.

Can’t deal with more

uncertainty.

Can't handle incomplete
criterion weight

information.

Can’t handle uncertainty

for interval values.

Can't handle incomplete
criterion weight

information.

The membership functions
are fuzzy thus
computational complexity
is high.

* Not flexible and
practical than interval
valued neutrosophic

sets

*  No comparative work
has been done with
respect to the existing
models in relation to
waiting time

*  Applicability for other
types of traffic

junction is not clear

Applicable only for T-
shaped traffic junction
Applicability for other
types of traffic junction is

not clear
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* Regarding the stability of traffic
states, verification of ergodicity can

be achieved in a minimum of steps.

Interval valued = Applied parameterization tools in *  The model is not

neutrosophic  soft which others techniques lack validated.

sets * The method is verified with *  Other parameters like
numerical example pedestrian movements

and emission of pollutants

are not considered

5. Conclusion and Future Challenges

For many years, road traffic control has been a major problem in the transportation field. Traffic jam
adds to increased pollution and an overall decline in life quality. Real-world decision-making
challenges, such as controlling traffic congestion, are always vague and indeterminate. Therefore, the
neutrosophic environment has been effectively used to address these problems, and lately,
researchers attempted to employ several neutrosophic techniques to address transportation
problems.

In this paper, we have conducted a brief review that deal with the use of neutrosophic logic in the
field of traffic control. The review concentrated on several methods for describing and optimizing
traffic flow. The review looked at several traffic management approaches in a neutrosophic
environment and analyzed the benefits and limitations of the offered models. Many research
conducted comparisons with real data sets and demonstrated the benefits of using neutrosophic sets
and neutrosophic logic.

According to the literature review, there are still unresolved concerns and issues that need to be
addressed in future investigations. The issues include (i) controlling a large number of junctions at
the same time to maintain uninterrupted traffic flow, especially during traffic jams, (ii) A comparative
study between the developed models and the existing models should be made to test the efficiency
of the developed model with respect to the average vehicle delay which is the major measure of
effectiveness for the flow of traffic at traffic junction. (iii) The theory of neutrosophic sets is currently
advancing quickly. However, there is a problem in determining membership, falsity and
indeterminacy degrees in in traffic flow parameters. The nature of determining those degrees is
extremely individual. The cause of these challenges might be the theory's parameterization tool's
inadequacy. (v) No approach for analyzing the stability of neutrosophic controller systems has yet
been created. (vi) The majority of neutrosophiclogic-based results that deliver increased performance

are simulation-based.
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above for contra An-irresolute functions and derived some relations between them.
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AN-pre-irresolute function.

1. Introduction

Zadeh [16] initiated fuzzy set theory in 1965 that deals with uncertainty in real life
situations. Chang [2] designed fuzzy topology that gave a special note to the field of
topology in 1968. Attanassov [1] in 1983, see the sights of intuitionistic fuzzy sets by
considering both membership and non-membership of the elements. In 1997, Coker [4]
worked on Intuitionistic fuzzy sets by extending the concepts of fuzziness and found a
place for Intuitionistic fuzzy topological space.

Smarandache [5] to [7] & [14] introduced Neutrosophic set which is a generalization of
fuzzy set and intuitionistic fuzzy set. This is a strong tool to discuss about the existence of
incomplete, indeterminate and inconsistent information in the real life situation.
Smarandache focused his observations en route for the degree of indeterminacy that
directed into Neutrosophic Sets (NS). Soon after, Salama and Albowi [10] familiarized

Neutrosophic Topological Spaces (NTS). Further, Salama, Smarandache and Valeri Kromov
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[11] presented the continuous (Cts) functions in NTS. In [3], irresolute functions was
introduced and analysed by Crossley and Hildebrand in Topological Spaces. Further, Vijaya [13]
and Santhi [12] investigated the properties of A-a-irresolute function and contra A-a-irresolute
function in Generalized Topological Spaces. In addition to that, properties of a-irresolute
function and contra a-irresolute function in Nano Topological Spaces was look over by
Yuvarani and et. al., [15]. By keeping all these works as a motivation, in 2020, Raksha Ben,

Hari Siva Annam [8] & [9] contrived An-Topological Space and deliberated its properties.

In this disquisition, we explore our perception of An-a-irresolute function,
AN-semi-irresolute function, An-pre-irresolute function, contra An-a-irresolute function,
contra An-semi-irresolute function, contra An-pre-irresolute function and we have scrutinized
about some of their basic properties. At every place the novel notions have been validated with

apposite paradigms.

2. Prerequisites

2.1. Definition [10]

Let Q be a non-empty fixed set. A NS, E = {{ w, Mg (w), Ie(w), Ne(w)) : @ € Q} where Mk (w),
Ie (w) and Nt (w) represents the degree of membership, indeterminacy and non-membership
functions respectively of every element w € Q.
2.2. Remark [10]

A NS, E can be recognized as a structured triple E = {{ @, Mk (w), [k (w), Ne(0)) : @ € Q} in
10,1+ on Q.
2.3. Remark [10]

The NS, On and In in Q) is defined as

P1) On={(w,0,0,1):w€EQ}

(P2) On={(w,0,1,1):we€EQ}
(P3) On={(w,0,1,0):we€EQ}
(Py) On={(@,0,0,0):we€EQ}
Ps) In={(w,1,0,0):we€EQ}
P In={({w1,0,1):0eQ)
) In={(w,1,1,0):weQ)
P In={(w,1,1,1):weQ)

2.4. Definition [10]
If E = {{ ME(w), It (w), NE(w)) }, then the complement of E on Q is
P  E={(w1-Me(w),1-I(w) and1-Ni@)):we Q)
(P) E ={{w, Ne(w), It (w) and Mk (w)) : @ € Q}
(Pn)  E ={{w, Ne(w), 1-Ie(w) and Me(w)) : @ € Q}
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2.5. Definition [10]
Let Q be a non-empty set and let E = { { @, Mk (w), [t (w), Ne(w)) : @ € Q} and F = {{ @, Mr (w), Ir
(w), Nr(w)) : w € Q}. Then
(i) ECSF=M:e(w)<Mr(w), [(w) <Ir(w), Ne(w) 2 Nr(w),V 0 € Q
(ii)) E S F=Me(w)<Mr(w), [e(w) 2 Ir(w), Ne(w) 2 Nr(w),V 0 € Q
2.6. Definition [10]
Let Q be a non-empty set and E = {{ w, Mk (w), Ir(w), Ne(w)) : @ € Q}, F = {{ w, Mr(w), Ir(w),
Nk (w) ) : w € Q} are NSs. Then,
) EnF= (@ Mk (w)AMr(w), It (w) V I (w), NE(w) V NF(w) )
) EnF= (@ Mk (w) A Mr(w), It (w) A I (w), NE(w) V NF(w) )
(P1e) EUF= (w, Me(w) vV Mr(w), It (w) A Ir(w), NE(w) A Nk (w) )
) EUF= (@ Mk (w)VMr(w), It (w) VI (w), NE(w) A NF(w))
2.7. Definition [9]
Let Q # ¢. A family of Neutrosophic subsets of () is An-topology if it satisfies
(A1) ONEM (A2) E1U Ez2 € An for any Ei, E2 € Ax.
2.8. Remark [9]
Members of An-topology are Ax-Open Sets (An-OS) and their complements are An-Closed Sets
(AN-CS).
2.9. Definition [9]
Let (Q, An) be a AN-TS and E = {{ @, Mk (w), It (w), NE(w) ) } be a NS in Q. Then
A~-Closure (E) = [ {F: E € F, F is An-CS}
a~-Interior (E) = U {G: G € E, G is An-OS)
2.10. Definition [8]
A NS, E in An-TS is said to be
(i) AN-Semi-Open Set (AN-SOS) if E € An-Cl(An-Int(E)),
(ii) AN-Pre-Open Set (AN-POS) if E € An-Int(An-CI(E)),
(iii) An-a-Open Set (An-aOS) if E € An-Int(An-Cl(An-Int(E))).
2.11. Lemma [8]
Every An- aOS is AN-SOS and An-POS.
2.12. Definition [8]
Let the function h: (Q1, 1) — (€2, 12) is defined to be AN-Cts (resp. An-SCts, AN-PCts, An-aCts) if
the inverse image of AN-CS in (02, T2) is a AN-CS (resp. AN-SCS, An-PCS, An-aCS) in (Q1, T1).
3. An-Irresolute Functions
3.1. Definition
Let (Q1, m) and (Q2, t2) be AN-TSs. Then h: Q1— Q2 is said to be a An-a-irresolute function
(resp. An-semi-irresolute, An-pre-irresolute) if the inverse image of every An-aOS (resp.

AN-SOS, AN-POS) in (€2, 12) is an An-aOS (resp. An-SOS, An-POS) in (Q1, T).
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3.2. Example
Let h: (Q1, T1) > (Q2, T2) be defined as h(p) = s and h(q) = r, where (1 = {p, q} and Q2= {r, s},
m1={0N, A, B}, T2={0n, C, D}.

() A= ((0.2 08 009)(0.1,0.708)), B= ((0.3,0.5,0.6), (0.4,0.6,0.7)),
C= ((0.1,0.7,0.8),(0.2,0.8,0.9)), D= ((0.4,0.6,0.7), (0.3,0.5,0.6)),
G= ((0.3,0.7,0.8), (02, 0.6,0.7) ), H= ((0.2,0.6,0.7),(0.3,0.7,0.8)).

Here {On, A, B, G} and {O~, C, D, H} are An-aOS of (€21, t1) and (2, T2) respectively. Hence, his a

AN-a-irresolute function.

() A= ((0.3,070.8), (0.2 0.6 08)), B= ((04,0.6,07),(0.5, 05,06)),
C= ((0.5,0.5,0.6), (0.4, 0.6, 0.7) >, D= ((0.2,0.6,0.8), (0.3,0.7,0.8)),
G= ((0.3,0.7,0.8), (0.4, 0.5,0.7) >, H= ((0.4,05,0.7),(0.3,0.7,0.8)) .

Here {On, A, B, G} and {Ox, C, D, H} are An-SOS of (€21, t1) and (22, 12) respectively. Therefore, h

is a AN-semi-irresolute function.

(i) A= ((0.3,08 09), (04,07 06)), B= ((04,0.6,07),(0.5,0.6,06)),
C= ((0.5,0.6,0.6), (0.4,0.6,0.7)), D= ((04,0.7,0.6), (0.3,0.8,0.9)),
G= ((0.2,09,09), (0.3,0.8,09)), H= ((0.3,0.7,0.8), (0.5,0.5,0.6)),
1= ((0.3,0.8,0.9),(0.2,0.9,09)), J= ((0.5,0.5,0.6), (0.3,0.7,0.8)) .

Here {ON, A, B, G, H} and {On, C, D, 1, J} are An-POS of (€1, 1) and (Q2, 12) respectively and so h is

a An-pre-irresolute function.
3.3. Theorem

Let (Q, t)beaAn-TSand E € Q. Then E is An-aOS iff it is AN-SOS and An-POS.
Proof:

If E is An-aOS, then by Lemma 2.11, E is An-SOS and An-POS. Conversely if E is An-SOS
and AN-POS, then E € An-Cl(AN-Int(E)) and E S An-Int(AnN-CI(E)). Therefore An-Int(An-CL(E)) S
AN-INt(AN-CI(AN-CI(AN-Int(E)))) = An-Int(AN-CI(AN-Int(E))). That is  An-Int(An-CI(E))
AN-Int(AN-CI(AN-Int(E))). Also E < An-Int(AN-CLE)) S An-Int(An-Cl(An-Int(E))) implies E
AN-Int(AN-CL(AN-Int(E))). Thus E is An-aOS.

3.4. Theorem

(]

N

Let h: Q1—Q:2 be a function, where ({1, T1) and (Q2, 12) be AN-TSs. Then the succeeding
are equivalent.

(i) his An-a-irresolute.

(ii) h'(E) is An-aCS in ({1, 1), for every An-aCS E in (Q2, ).

(iii) h(AN-aCI(E)) < An-aCl(h(E)) V EcC Q.

(iv) Aw-aCl(h-}(E)) < hl(An-aCl(E)) V EcCQo.

(v) hl(A-aInt(E)) < An-alnt(h-i(E)) V EcCQo.

(vi) h is An-a-irresolute for every w € (1, T1).
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Proof

(i) implies (ii) It is obvious.

(ii) implies (iii) Let E € Q. In that case, ANn-aCl(h(E)) is a Ax-aCS of (2, 12). By (ii),
hi(An-aCl(h(E))) is a ANn-aCS in (1, m), and ANn-aCl(E) < AN-aCl(h'h(E)) <
AN-aCl(h-1(AN-aCl(h(E)))) = h-'(An-aCl(h(E))). So h(An-aCl(E)) & An-aCl(h(E)).

(iii) implies (iv) Let E < Q2. By (iii), h(Ax-aCl(h1(E))) S AN-aCl(hh}(E)) & An-aCI(E).
So An-aCl(h-{(E)) ch-}(ANn-aCl(E)).

(iv) implies (v) Let E < Q2. By (iv), h'(ANn-aCl(Q2-E)) © An-aCl(h1(Q2-E)) =
An-aCl(Q1-  h'Y(E)). Since Qi-An-aCl(€1-E) = An-alnt(E), subsequently h-'(An-alnt(E)) =
h1(Q2-An-aCl(Q2-E)) = Q1 - h'1(An-aCl(Q2-E)) © Q1 - An-aCL(Q1 — h'1(E)) = An-alnt(h-1(E)).

(v) implies (vi) Let E be any An-aOS of (Q2, 12), subsequently E = An-alnt(E). By (v), h-'(E)
= h'(An-alnt(E)) € An-alnt(h-1(E)) € h(E). So, h''(E) = An-alnt(h-'(E)). Thus, h-)(E) is a
AN-aOS of ({1, T1). Therefore, h is An-a-irresolute.

(i) implies (vi) Let h be An-a-irresolute, w € (21, 1) and any Ax-aOS E of (Q2, 12), 3
h(w) € E. Then w € h''(E) = An-alnt(h-'(E)). Let F = h-'(E) followed by F is a Ax-aOS of (€1, 1)
and so h(F) = hh-(E) © E. Thus, h is An-a-irresolute for each w € ({1, T1).

(vi) implies (i) Let E be a An-aOS of (Q2, 12), w € h'}(E). Then h(w) €E. By hypothesis
there exists a AN-aOS F of (1, 1) 3 weF and h(F) CE. Thus we€F Ch'(h(F))ch!(E) and
w € F = A-alnt(F) € An-alnt(h''(E)) = h'(E) € M-alnt(h'’(E)). Hence h(E) =
An-aInt(f-1(E)). Thus, h is An-a-irresolute.

3.5. Theorem

Let h: Q1—Q:2 be a bijective function, where (1, ©1) and (Q2, 12) be AN-TSs. Then h is
M-a-irresolute iff An-adnt(h(E)) Ch(Av-alnt(E)) V E < Q.

Proof

Let E € 1. By Theorem 3.4 and since h is bijective, h-'(Ax-alnt(h(E))) <
An-alnt(h-'(h(E))) = An-alnt(E). So, hh!(An-alnt(h(E))) < h(An-alnt(E)). Consequently
An-alnt(h(E)) S h(An-adnt(E)).

Conversely, let E be a Ax-aOS of (Q2, t). Then E = Ax-alnt(E). By hypothesis,
h(An-alnt(h-'(E))) © An-alnt(h(h'(E))) = An-alnt(E) = E implies h-th(A~x-alnt(h-1(E))) ©h-'(E).
Since h is bijective, An-alnt(h-'(E)) = h-th(An-alnt(h-1(E))) Dh-1(E).

Hence h'1(E) = An-alnt(h-1(E)). So h-1(E) is An-aOS of ({1, t1). Thus, h is An-a-irresolute.
3.6. Lemma

Let (Q, 1) be a An-TS and EC Q. Then An-adnt(E) = E [ An-Int((An-Cl(Ax-Int(E))), An-aCI(E) =
E U An-Cl(nInt(An-C1(E))).

3.7. Lemma
Let (Q, 1) be a An-TS, then
(i) W-aCl(E) € WCIE) V E < Q.
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(ii) A-CI(E) =n-aCI(E) V' E < Q where E is An-aOS.
Proof

(i) Let E < Q. Since ANInt(E) < An-alnt(E), U-An-Int(E) D U-An-alnt(E). Hence An-aCI(E)
c MW-CI(E).

(i) Let E be any An-aOS of (Q, 1), then E C AnInt(AN-Cl(Ax-Int(E))). Then An-CI(E)
C A-CIONInt(n-CI(nInt(E)))) = An-Cl(AnInt(E)) < An-Cl(AnInt(An-CI(E))). So, ANCIE) < EU
AN-CI(AN-Int(AN-CI(E))). By Lemma 3.6, ANCI(E) < An-aCl(E). By (i), An-aCl(E) < An-CI(E),
therefore AN-CI(E) = An-aCI(E).

3.8. Theorem

Let h: Q1—>Q:> be a An-a-irresolute function, where (Q1, t1) and (Q2, 12) be AN-TSs. Then
AN-CI(h'1(E)) Ch1(AN-CI(E)) for every An-OS E of Qo.

Proof

Let E be any An-OS of Q2. Since h is An-a-irresolute and by Lemma 3.7, An-aCl(h'(E)) =
ANCl(h'(E)). By Theorem 3.4, A~x-aCl(h'(E)) < h'(An-aCl(E)) and by Lemma 3.7,
h1(w-aCl(E)) <  hl(A-CI(E)). Then  An-aCl(h'(E)) <  hl(AnCI(E)).  Therefore
MN-Cl(hi(E)) € h!(AN-CI(E)).

3.9. Theorem

Let (Q1, 11) and (Q2, 12) be AN-TSs and h: Q1—>Q2 is AN-semi-irresolute iff h-1(E) is An-SCS in
1, V AN-SCS E of Qo.

Proof

If h is An-semi-irresolute, then for every An-SOS F of Q2, h-1(F) is An-SOS in 1. If E is
any AN-SCS of Q2, then Q)2 — E is An-SOS. As a consequence, h''(Q2 — E) is AN-SOS but h-1(Q2 — E)
= Q1-h-1(E) so that h-1(E) is An-SCS in Q.

Conversely, if, for all AN-SCS E of Q2, h"1(E) is AN-SCS in (1 and if F is any An-SOS of Qo,
then Q2-F is AN-SCS. Also h-1(Q2-F) = Q1-h-1(F) is An-SCS in Q1. Accordingly h-1(F) is Ax-SOS in
Q1. As aresult, h is AN-semi-irresolute.

3.10. Theorem

If hi: (Qi, ) > (Q2 1) is An-semi-irresolute and h2: (Q2, ) — (Qs 1) is
AN-semi-irresolute, then h2ohi : (Q1, 11) > (Qs, ) is An-semi-irresolute.

Proof

If E ¢ Qs is An-SOS, then h2(E) is AN-SOS in Q2 because h:2 is An-semi-irresolute.
Consequently since hi is An-semi-irresolute, hi'(h2’(E)) = (h20hi)(E) is Ax-SOS in (.
Hence h2ohi is An-semi-irresolute.

3.11. Example (hz0ohi1 is An-semi-irresolute F* hi & h2is AN-semi-irresolute)

Let hi: (Q1, t1) = (Q2, ©2) be defined by hi(p) = s, hi(q) = r and h2: (Q2, ©2) — (Qs, 1) be

defined by ha(r) = u and ha(s) = v where 1 = {p, q}, Q2= {r, s} and Qs = {u, v}. Let 1 = {On, A, B},
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2 ={0N, C, D} and 13 = {On, E, F}. Now, {On, A, B, G}, {On, C, D, H} and {On, E, F, I} are An-SOS of
(Q1, T1), (€22, T2) and (s, 13) respectively, where
A= ((0.3,0.7,0.8),(0.2,0.6,0.8)), B= ((04,0.6,0.7),(0.5,0.506)),
C=((08,04,0.2),(0.8,0.3,03)), D= ((0.6,05,0.5),(0.7,0.4,04)),
E= ((0.2,0.6,0.8),(0.3,0.7,0.8)), F= ((0.505,0.6), (04,06,0.7)),
G= ((0.3,0.7,0.8), (04, 0.5,0.7) ), H= ((0.7,0.5,0.4),(0.8,0.3,03)),
I= ((04,05,60.7),(0.3,0.70.8)) .
Here, h2ohi: Q1 — Qs defined by h2ohi (p) = v and h2ohi(q) = u is Ax-semi-irresolute, but
h1 and h: are not An-semi-irresolute.
3.12. Corollary
Let (Q1, m), (Q2, ©2) and (Qs3, 13) be AN-TSs.  If hi: Q1—Q2 and h2: Q2—>Q3 are An-a-irresolute
then h2ohi: Q1— Qs is An-a-irresolute.
Proof
Let E is An-aOS in (Qs, 13). Since h2 is An-a-irresolute, h21(E) is An-aOS in (Q2, 12). Also
since h1 is An-a-irresolute, hi! (h21(E)) = (h2oh1)1(E) is An-aOS in (Q1, 11). Therefore h2ohi is
AN-o-irresolute.
3.13. Corollary
If hi: (Q1, 1) — (Q2, T2) is An-a-irresolute (resp. An-semi-irresolute, An-pre-irresolute)
and h2: (Q2, ©2) - (Qs, ) is An-aCts (resp. AN-SCts, AN-PCts) then h2ohi: (Q1, T1) - (Qs, 1) is
An-aCts (resp. AN-SCts, An-PCts).
Proof
Let E is An-OS in (Qs, 13). Since h2 is An-aCts (resp. AN-SCts, AN-PCts), h2'(E) is An-aOS
(resp. AN-SOS, An-POS) in (02, 12). Also since hi is An-o-irresolute (resp. An-semi-irresolute,
An-pre-irresolute), hi! (h2''(E)) = (h20oh1)'(E) is AN-0OS (resp. An-SOS, An-POS) in (Q1, T1).
Therefore h2ohi is An-aCts (resp. AN-SCts, AN-PCts).
3.14. Theorem
Let (Q1, T1) and (Q2, 12) be An-TSs.  If h: Q102 is An-semi-irresolute and An-pre-irresolute
then h is An-a-irresolute.
Proof
Let E is An-aOS in (02, 12), then by Theorem 3.3, E is An-SOS and A~-POS. Since h is
AN-semi-irresolute and An-pre-irresolute, h-''(E) is An-SOS and An-POS. Therefore h-'(E) is
An-aOS. Hence h is An-a-irresolute.
3.15. Theorem
Let (QQ1, T1) and (Q2, 12) be An-TSs. A function h: Qi—>Q: is An-aCts iff it is AN-SCts and
AN-PClts.
Proof

It is clear from Theorem 3.3.
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