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Abstract: In the fifth version of our response-paper [26] to Imamura’s criticism, we recall that 

NonStandard Neutrosophic Logic was never used by neutrosophic community in no application, 

that the quarter of century old neutrosophic operators (1995-1998) criticized by Imamura were never 

utilized since they were improved shortly after but he omits to tell their development, and that in 

real world applications we need to convert/approximate the NonStandard Analysis hyperreals, 

monads and binads to tiny intervals with the desired accuracy – otherwise they would be 

inapplicable.  

We point out several errors and false statements by Imamura [21] with respect to the inf/sup of 

nonstandard subsets, also Imamura’s “rigorous definition of neutrosophic logic” is wrong and the 

same for his definition of nonstandard unit interval, and we prove that there is not a total order on 

the set of hyperreals (because of the newly introduced Neutrosophic Hyperreals that are 

indeterminate), whence the Transfer Principle from R to R* is questionable. 

After his criticism, several response publications on theoretical nonstandard neutrosophics 

followed in the period 2018-2022. As such, I extended the NonStandard Analysis by adding the left 

monad closed to the right, right monad closed to the left, pierced binad (we introduced in 1998), and 

unpierced binad - all these in order to close the newly extended nonstandard space (R*) under 

nonstandard addition, nonstandard subtraction, nonstandard multiplication, nonstandard division, 

and nonstandard power operations [23, 24]. 

Improved definitions of NonStandard Unit Interval and NonStandard Neutrosophic Logic, together 

with NonStandard Neutrosophic Operators are presented. 

Keywords: Neutrosophic Logic; NonStandard Analysis; NonStandard Neutrosophic Logic; 

Neutrosophic Operators; Neutrosophic Hyperreals   

 

1.  Introduction 

I recall my first two answers to Imamura’s 7th Nov. 2018 critics [1] about the NonStandard 

Neutrosophic Logic [20] on 24 Nov. 2018 (version 1) and 13 Feb. 2019 (version 2), and I                  

update them after Imamura has published a third version [21] on a journal without even citing my 

previous response papers, nor making any comments or critics to them, although the paper was 

uploaded to arXiv shortly after him and also online at my UNM [20]. I find it as dishonest. 

Surely, he can recall over and over again the first neutrosophic connectives, but he has to tell the 

whole story: they were never used in no application, and they were improved several times starting 
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with the American researcher Ashbacher’s neutrosophic connectives in 2002, Rivieccio in 2008, and 

Wang, Smarandache, Zhang, and Sunderraman in 2010. Version  

The only reason I have added the nonstandard form to neutrosophic logic (and similarly to 

neutrosophic set and probability) was in order to make a distinction between Relative Truth (which is 

truth in some Worlds, according to Leibniz) and Absolute Truth (which is truth in all possible Words, 

according to Leibniz as well) that occur in philosophy.  

Another possible reason may be when the neutrosophic degrees of truth, indeterminacy, or 

falsehood are infinitesimally determined, for example: the right monad (0.8+) means a value strictly 

bigger than 0.8 but infinitely closer to 0.8. And similarly, the left monad (-0.8) means a value strictly 

smaller than 0.8 but infinitely closer to 0.8. While the binad (-0.8+) means a value different from 0.8 

but infinitely closer (from the right-hand side, or left-hand side) to 0.8. But they do not exist in our 

real world (the real set R), only in the hyperreal set R*, so we need to convert / approximate these 

hyperreal sets by tiny real intervals with the desired accuracy (  ), such as: (0.8,0.8 )+ , 

(0.8 ,0.8)− , or (0.8 ,0.8) (0.8,0.8 ) −  +  respectively [24].  

Since the beginning of the neutrosophic field, many things have been developed and evolved, 

where better definitions, operators, descriptions, and applications of the neutrosophic logic have 

been defined. The same way happens in any scientific field: starting from some initial definitions and 

operations the community improves them little by little. The reader should check the last 

development of the neutroosphics - there are thousands of papers, books, and conference 

presentations online, check for example: http://fs.unm.edu/neutrosophy.htm.  It is not fear to keep 

recalling the old definitions and operators since they have been improved in the meantime. The last 

development of the field should be revealed, not omitted.  

The general definition of the neutrosophic set used in the last years. 

Let U be a universe and a set S included in U. Then each element x S , denoted as  

x(T(x), I(x), F(x)), has a degree of membership/truth T(x) with respect to S, degree of 

indeterminate-membership I(x), and degree of nonmembership F(x), where  

T(x), I(x), F(x) are real subsets of [0, 1]. 

I was more prudent when I presented the sum of single valued standard neutrosophic 

components, saying:  

Let T, I, F be single valued numbers, T, I, F  [0, 1], such that 0 ≤ T + I + F ≤ 3. 

A friend alerted me: “If T, I, F are numbers in [0, 1], of course their sum is between 0 and 3.” “Yes, I 

responded, I afford this tautology, because if I did not mention that the sum is up to 3, readers would 

take for granted that the sum T + I + F is bounded by 1, since that is in all logics and in probability!”  

Similarly, for the Neutrosophic Logic, but instead of elements we have propositions (in the 

propositional logic). 

2.  Errors in Imamura’s paper [21]:  

2.1 Imamura’s assertation, referring to the Neutrosophic components T, I, F as subsets, that: 

“Subsets of ]-0, 1+[” may have neither infima nor suprema” is false. 

Counter-Examples of subsets that have both infima and suprema: 

Let denote the nonstandard unit interval U = ]-0, 1+[. 

Let M = ]0.2+, -0.3[, which is a subset of U, then 

inf(M) = 0.2, sup(M) = 0.3. 

In general, for any real numbers a and b, such that 0 ≤ a < b ≤ 1, one has the corresponding 

nonstandard subset S = ]a+, -b[ included in U, that has both exist: inf(S) = a, sup(S) = b. 

As a particular and interesting case, one has: ]0 , 1[ ] 0,1 [+ − − + . In general, for any finite real 

numbers ,a b R , a < b, the nonstandard subset S = ]a+, -b[ included in R*, has both: inf(S) = a, sup(S) 

= b. More generally, for any 
0 0

{ , , }x a a a
+ +

  and any 
0 0

{ , , }y b b b
− −

 the nonstandard subset ] , [x y has 
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inf( )x a= and sup( )y b= ; even the subset
0 0

] , [ [ , ]a b a b , which normally is standard, may become 

nonstandard if it contains inside at least one hyperreal. Of course, if at least one of x or y is hyperreal, 

then the subset ]x, y[ is nonstandard. 

 

2.2 Imamura’s “rigorous definition of neutrosophic logic” is wrong. 

Let K be a nonarchimedean ordered field. The ordered field K is called nonarchimedean if it has 

nonzero infinitesimals. 

He defined, for ,x y K , x and y are said to be infinitely close (denoted by x y ) if x-y is 

infinitesimal. Then x is roughly smaller than y (denoted as x y

 ) if x < y or x y . 

This is wrong. See the below Counter-Examples. 

Let  > 0 be a positive infinitesimal, also 5x = +  and 5y = − be hyperreals. 

Of course, (5 )x + , right monad of 5, and ( 5)y − , left monad of 5. 

5 +  is infinitely closer to 5, but above (strictly greater than) 5; 

while 5 − is infinitely closer to 5, but below (strictly smaller than) 5. 

Then x – y = 2 , which is infinitesimal, and, because x is infinitely close to y ( x y ), one has that 

x is roughly smaller than y (or x y

 ), according to Imamura’s definition. 

But this is false, since for 0   clearly 5 5 5 +   − , whence x > y. 

Therefore, x is not roughly smaller than y, but the opposite. 

 General Contra-Examples: 

Let  > 0 be a positive infinitesimal, and the real number a R . 

Then for x a = + and y a = − we get the same wrong result x < y, according to Imamura. 

Further on, for x a = + and y = a, one gets the wrong result x < y. 

And similarly, for x = a and y a = − , one gets the wrong result x < y. 

 

2.3 There exists no order between a and -a+ in R*. 

Let a R be a real number, and  be a positive or negative (we do not know exactly) 

infinitesimal. 

Then y a− +=  is a hyperreal number of the form y a = + , where  may be positive or 

negative infinitesimal. 

Let ( )a− +
 be the left-right binad [5] of a, defined as: 

( ) { ,a a − + =   where  is a positive infinitesimal}. 

Of course, ( )a a− + − + . 

The transfer principle [21] states that R∗ has the same first order properties as R. 

But R* has only a partial order, since there is no order between a and -a+ in R*, 

while R has a total order. 

On has 
0

a
−

N
0

a
− +

N
0

a
+

, then 
0

a
−

N  a 
N

0

a
+

, whence 
0

a
−

N
0

a
+

. 

But, similar problems of non-order relationships are between 
0

a
− +

, 
0

a
−

 respectively and a− +
. 

Hence, the Transfer Principle from R to R* is questionable… 

 

3.  Uselessness of Nonstandard Analysis in Neutrosophic Logic, Set, Probability. Statistics, et al.  

Imamura’s discussion [1] on the definition of neutrosphic logic is welcome, but it is useless, since 

from all neutrosophic papers and books published, from all conference presentations, and from all 

MSc and PhD theses defended around the world, etc. (more than two thousands) in the last two 
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decades since the first neutrosophic research started (1998-2022), and from thousands of neutrosophic 

researchers, not even a single one ever used the nonstandard form of neutrosophic logic, set, or 

probability and statistics in no occasion (extended researches or applications).   

All researchers, with no exception, have used the Standard Neutrosophic Set and Logic [so no stance 

whatsoever of Nonstandard Neutrosophic Set and Logic], where the neutrosophic components T, I, F are 

real subsets of the standard unit interval [0, 1].  

People don't even write "standard" since it is understood, because nonstandard was never used 

in no applications - it is unusable in real applications. 

 Even more, for simplifying the calculations, the majority of researchers have utilized the Single-

Valued Neutrosophic Set and Logic {when T, I, F are single real numbers from [0, 1]}, on the second place 

was Interval-Valued Neutrosophic Set and Logic {when T, I, F are intervals included in [0, 1]}, and on the 

third one the Hesitant Neutrosophic Set and Logic {when T, I, F were discrete finite subsets included in 

[0, 1]}.  

In this direction, there have been published papers on single-valued “neutrosophic standard 

sets” [12, 13, 14], where the neutrosophic components are just standard real numbers, considering the 

particular case when 0 ≤ T + I + F ≤ 1 (in the most general case 0 ≤ T + I + F ≤ 3).  

Actually, Imamura himself acknowledges on his paper [1], page 4, that:  

“neutrosophic logic does not depend on transfer, so the use of non-standard analysis is not 

essential for this logic, and can be eliminated from its definition”.  

Entire neutrosophic community has found out about this result and has ignored the nonstandard 

analysis from the beginning in the studies and applications of neutrosophic logic for two decades.  

 

4.  Applicability of Neutrosophic Logic et al. vs. Theoretical NonStandard Analysis  

       He wrote: 

“we do not discuss the theoretical significance or the applications of neutrosophic logic” 

Why doesn’t he discuss of the applications of neutrosophic logic? Because it has too many that 

brough its popularity among researchers [2], unlike the NonStandard Analysis that is a non-physical 

(idealistic, imaginary) object and it is hard to apply it in the real world. 

Neutrosophic logic, set, measure, probability, statistics and so on were designed with the 

primordial goal of being applied in practical fields, such as:  

Artificial Intelligence, Information Systems, Computer Science, Cybernetics, Theory Methods,  

Mathematical Algebraic Structures, Applied Mathematics, Automation, Control Systems,  

Big Data, Engineering, Electrical, Electronic, Philosophy, Social Science, Psychology,  

Biology, Biomedical, Engineering, Medical Informatics, Operational Research,  

Management Science, Imaging Science, Photographic Technology, Instruments,  

Instrumentation, Physics, Optics, Economics, Mechanics, Neurosciences, Radiology Nuclear,  

Medicine, Medical Imaging, Interdisciplinary Applications, Multidisciplinary Sciences etc. [2],  

while nonstandard analysis is mostly a pure mathematics.  

Since 1990, when I emigrated from a political refugee camp in Turkey to America, working as a 

software engineer for Honeywell Inc., in Phoenix, Arizona State, I was advised by American 

coworkers to do theories that have practical applications, not pure-theories and abstractizations as “art 

pour art”.  

 

5.  Theoretical Reason for the Nonstandard Form of Neutrosophic Logic  

The only reason I have added the nonstandard form to neutrosophic logic (and similarly to 

neutrosophic set and probability) was in order to make a distinction between Relative Truth (which is 

truth in some Worlds, according to Leibniz) and Absolute Truth (which is truth in all possible Words, 

according to Leibniz as well) that occur in philosophy.   
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Another possible reason may be when the neutrosophic degrees of truth, indeterminacy, or 

falsehood are infinitesimally determined, for example a value infinitesimally bigger than 0.8 (or 0.8+), 

or infinitesimally smaller than 0.8 (or -0.8). But these can easily be overcome by roughly using interval 

neutrosophic values and depending on the desired accuracy, for example (0.80, 0.81) and (0.79, 0.80) 

respectively.  

I wanted to get the neutrosophic logic as general as possible [6], extending all previous logics 

(Boolean, fuzzy, intuitionistic fuzzy logic, intuitionistic logic, paraconsistent logic, dialethism), and 

to have it able to deal with all kinds of logical propositions (including paradoxes, nonsensical 

propositions, etc.).   

That’s why in 2013 I extended the Neutrosophic Logic to Refined Neutrosophic Logic [ from 

generalizations of 2-valued Boolean logic to fuzzy logic, also from the Kleene’s and Lukasiewicz’s 

and Bochvar’s 3-symbol valued logics or Belnap’s 4-symbol valued logic to the most general n-symbol 

or n-numerical valued refined neutrosophic logic, for any integer n ≥ 1 ], the largest ever so far, when 

some or all neutrosophic components T, I, F were respectively split/refined into neutrosophic 

subcomponents: T1, T2, …; I1, I2, …; F1, F2, …;  which were deduced from our everyday life [3].   

  

6.  From Paradoxism movement to Neutrosophy – generalization of Dialectics 

I started first from Paradoxism (that I founded in 1980’s as a movement based on antitheses, 

antinomies, paradoxes, contradictions in literature, arts, and sciences), then I introduced the 

Neutrosophy (as generalization of Dialectics (studied by Hegel and Marx) and of Yin Yang (Ancient 

Chinese Philosophy), neutrosophy is a branch of philosophy studying the dynamics of triads, 

inspired from our everyday life, triads that have the form:   

<A>, its opposite <antiA>, and their neutrals <neutA>, 

where <A> is any item or entity [4].   

(Of course, we take into consideration only those triads that make sense in our real and scientific 

world.)   

The Relative Truth neutrosophic value was marked as 1, while the Absolute Truth neutrosophic 

value was marked as 1+ (a tinny bigger than the Relative Truth’s value):  

1+ >N 1, where >N  is a nonstandard inequality, meaning 1+ is nonstandardly bigger than 1.   

Similarly for Relative Falsehood / Indeterminacy (which falsehood / indeterminacy in some 

Worlds), and Absolute Falsehood / Indeterminacy (which is falsehood / indeterminacy in all possible 

worlds).  

  

7.  Introduction to Nonstandard Analysis [15, 16]  

An infinitesimal number is a number ε such that its absolute value | ε |<1/ n , for any non-null 

positive integer n. An infinitesimal is close to zero, and so small that it cannot be measured.   

The infinitesimal is a number smaller, in absolute value, than anything positive nonzero.  

Infinitesimals are used in calculus, but interpreted as tiny real numbers.  

An infinite number (ω) is a number greater than anything:   

1 + 1 + 1 + … + 1 (for any finite number terms) 

 The infinites are reciprocals of infinitesimals.  

The set of hyperreals (non-standard reals), denoted as R*, is the extension of set of the real numbers, 

denoted as R, and it comprises the infinitesimals and the infinites, that may be represented on the 

hyperreal number line   

1/ε = ω/1.                                                      

 The set of hyperreals satisfies the transfer principle, which states that the statements of first order 

in R are valid in R* as well [according to the classical NonStandard Analysis]: 
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" ‘Anything provable about a given superstructure V by passing to a nonstandard enlargement 

*V of V is also provable without doing so, and vice versa.’ It is a result of Łoś' theorem and the 

completeness theorem for first-order predicate logic.” [16] 

 

A monad (halo) of an element a ∊ R*, denoted by μ(a), is a subset of numbers infinitesimally close 

to a.  

Let’s denote by R+* the set of positive nonzero hyperreal numbers.  

7.1. First Extension of NonStandard Analysis 

We consider the left monad and right monad; afterwards we recall the pierced binad 

(Smarandache [5]) introduced in 1998:  

Left Monad {that we denote, for simplicity, by (-a)} is defined as:  

μ(-a) = (-a) = {a - x, x ∊ R+* | x is infinitesimal}.                                        

Right Monad {that we denote, for simplicity, by (a+)} is defined as:  

μ(a+) = (a+) = {a + x, x ∊ R+* | x is infinitesimal}.                         

The Pierced Binad {that we denote, for simplicity, by (-a+)} is defined as:  

μ(-a+) = (-a+) = {a - x, x ∊ R+* | x is infinitesimal} ∪ {a + x, x ∊ R+* | x is infinitesimal}  

                    = {a - x, x ∊ R* | x is positive or negative infinitesimal}.           

7.1. Second Extension of Nonstandard Analysis [23] 

For necessity of doing calculations that will be used in nonstandard neutrosophic logic in order 

to calculate the nonstandard neutrosophic logic operators (conjunction, disjunction, negation, 

implication, equivalence) and in order to have the Nonstandard Real MoBiNad Set closed under 

arithmetic operations, we extend now for the time: the left monad to the Left Monad Closed to the 

Right, the right monad to the Right Monad Closed to the Left; and the Pierced Binad to the Unpierced 

Binad, defined as follows (Smarandache, 2018-2019): 

 

• Left Monad Closed to the Right 
0 0

{ | 0,a a a x x
− −   

= = − =   
   

or 
*x R+  and x is infinitesimal} = ( ) { }a a −  . 

And by 
0

x a
−

=  we understand the hyperreal x a = − , or x = a, where  is a positive 

infinitesimal. So, x is not clearly known, { , }x a a − . 

 

• Right Monad Closed to the Left 
0 0

{ | 0,a a a x x
+ +   
= = + =   

   
or 

*x R+  and x is infinitesimal} = ( ) { }a a +  . 

And by 
0

x a
−

=  we understand the hyperreal x a = + , or x = a, where  is a positive 

infinitesimal. So, x is not clearly known, { , }x a a + . 

 

• Unpierced Binad 
0 0

{ | 0,a a a x x
− + − +   

= = + =   
   

or 
*x R where x is a positive or negative infinitesimal}=    

=
( ) ( ) { }a a a − + 

= ( ) ( ) { }a a a− +  .  
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And by 
0

x a
− +

=  we understand the hyperreal x a = − , or x = a, or x a = + , where  is a 

positive infinitesimal. So, x is not clearly known, { , , }x a a a  − + . 

The left monad, left monad closed to the right, right monad, right monad closed to the left, the 

pierced binad, and the unpierced binad are subsets of R*, while the above hyperreals are numbers 

from R*.  

Let’s define a partial order on R*. 

 

8.  Neutrosophic Strict Inequalities 

We recall the neutrosophic strict inequality which is needed for the inequalities of nonstandard 

numbers. 

Let α, β be elements in a partially ordered set M. 

We have defined the neutrosophic strict inequality 

α >N β  

and read as 

“α is neutrosophically greater than β” 

if 

α in general is greater than β, 

or α is approximately greater than β, 

or subject to some indeterminacy (unknown or unclear ordering relationship between α and β) or 

subject to some contradiction (situation when α is smaller than or equal to β) α is greater than β. 

It means that in most of the cases, on the set M, α is greater than β. 

And similarly for the opposite neutrosophic strict inequality α <N β.  

9.  Neutrosophic Equality 

We have defined the neutrosophic inequality 

α =N β  

and read as 

“α is neutrosophically equal to β” 

if 

α in general is equal to β, 

or α is approximately equal to β, 

or subject to some indeterminacy (unknown or unclear ordering relationship between α and β) or 

subject to some contradiction (situation when α is not equal to β) α is equal to β. 

It means that in most of the cases, on the set M, α is equal to β. 

 

10.  Neutrosophic (Non-Strict) Inequalities 

Combining the neutrosophic strict inequalities with neutrosophic equality, we get the ≥N 

and ≤N neutrosophic inequalities. 

Let α, β be elements in a partially ordered set M. 

The neutrosophic (non-strict) inequality 

α ≥N β  

and read as 

“α is neutrosophically greater than or equal to β” 

if 

α in general is greater than or equal to β, 

or α is approximately greater than or equal to β, 



Neutrosophic Sets and Systems, Vol. 51, 2022     8  

 

 

Florentin Smarandache, Improved Definition of NonStandard Neutrosophic Logic and Introduction to Neutrosophic 

Hyperreals (Fifth version) 

or subject to some indeterminacy (unknown or unclear ordering relationship between α and β) or 

subject to some contradiction (situation when α is smaller than β) α is greater than or equal to β. 

It means that in most of the cases, on the set M, α is greater than or equal to β. 

And similarly for the opposite neutrosophic (non-strict) inequality α ≤N β. 

11.  Neutrosophically Ordered Set 

Let M be a set. (M, <N) is called a neutrosophically ordered set if: 

 α, β ∊ M, one has: either α <N β, or α =N β, or α >N β. 

 

12.  Definition of Standard Part and Infinitesimal Part of a HyperReal Number 

For each hyperreal (number) 
*h R one defines its standard part  

st(h) be the real (standard) part of h, ( )st h R , 

and its infinitesimal part, that may be positive ( )+ , or zero (0), or negative ( )− , and any 

combination of two or three of them in the case of Neutrosophic Hyperreals that have alternative 

(indeterminate) values as seen below, denoted as 
*( )in h R . 

Then ( ) ( )h st h in h= + . 

Two hyperreal numbers h1 and h2 are equal, if: 

st(h1) = st(h2) and in(h1) = in(h2). 

 

• Examples 

Let  be a positive infinitesimal, and the hyperreal numbers: 

1 4 ( 4)h  −= − 
 

0

2 4 0 4
def

h R= + = 
 

3 4 (4 )h  += + 
 

4 4 { ,h = −
or 0} = {4- , or 4-0} = {4- , or 4}

0

4
− 

 
 

 

5 4 {0,h = +
or  } = {4+0, or 4+ } = {4, or 4+ }

0

4
+ 

 
 

 

6 4 { ,h = + −
or  } = {4- , or 4+ } 4

−+ 
  
 

 

7 4 { ,h = + −
or 0, or  } = {4- , or 4+0, or 4+ }= {4- , or 4, or 4+ }

0

4
− + 

 
 

 

Then, their standard parts are all the same: 

1 2 7( ) ( ) ... ( ) 4st h st h st h= = = =  

While their infinitesimal parts are different: 

1( )in h = −  

2( ) 0in h =  

3( )in h =  

 

13.  Neutrosophic Hyperreal Numbers  

The below cases are indeterminate, as in neutrosophy, that’s why they are called 

Neutrosophic Hyperreals, introduced now for the first time: 
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4( ) {in h = − , or 0}; one can also write that 
4( ) { ,0}in h  − , because we are not sure if  

 in(h4)= − , or in(h4)= 0. 

5( ) {in h = , or 0}; one can also write that 
4( ) { ,0}in h  . 

6( ) { ,in h = −  or  }, or 
6( ) { , }in h   − . 

7( ) { ,in h = −  or 0, or  }, or 
6( ) { ,0, }in h   − . 

 

14.  Nonstandard Partial Order of Hyperreals  

Let h1 and h2 be hyperreal numbers. Then h1 <N h2 if:  

either st(h1) < st(h2), or st(h1) = st(h2) and in(h1) <N in(h2). 

By in(h1) we understand all possible infinitesimals of h1, and similarly for in(h2). 

This makes a partial order on the set of hyperreals R*, because of the Neutrosophic Hyperreals 

that have indeterminate infinitesimal parts and cannot always be ordered. 

 

15.  Appurtenance of a Hyperreal number to a Nonstandard Set  

We define for the first time the appurtenance of a hyperreal number (h) to a subset S of R*, 

denoted as 
N , or an approximate appurtenance (from a Neutrosophic point of view). 

As seeing above, a hyperreal number may have one, two, or three infinitesimal parts - depending 

on its form. 

Let’s denote the standard part of h by st(h), and its infinitesimal part(s) be in(h) = in(h)1, in(h)2, 

and in(h)3. We construct three corresponding hyperreal numbers: 

h1 = st(h) + in(h)1 

h2 = st(h) + in(h)2 

h3 = st(h) + in(h)3 

If all three 
1 2 3, , Nh h h S , then 

Nh S . If at least one does not belong to S, then 
Nh S .  

(In the case when h has only one or two possible infinitesimals, of course we take only them.) 

The appurtenance of a hyperreal number to a nonstandard set may be later extended if new 

forms of Neutrosophic Hyperreals are constructed in the meantime.  

 

16.  Notations and Approximations   

Approximation is required with a desired accuracy, since the hyperreals, monads and binads do 

not exist in our real world.  They are only very abstract concepts built in some imaginary math space. 

That’s why they must be approximated by real tiny sets. 

As an example, let’s assume that the truth-value (T) of a proposition (P), in the propositional 

logic, is the hyperreal T(P) = 0.7+ that means, in nonstandard analysis, according to Imamura [22]:  

“The interpretation of T(P) = 0.7+ (right monad of 0.7 in your terminology): 

1. the truth value of P is strictly greater than and infinitely close to 0.7 (but its precise 

value is unknown); 

2. the truth value of P can be strictly greater than and infinitely close to 0.7; 

3. the truth value of P takes all hyperreals strictly greater than and infinitely close to 0.7 

simultaneously.”  

We prove by reductio ad absurdum that such a number does not exist in our real world. Let 

assume that 0.7+ = w. Then w > 0.7, but on the set of continuous real numbers, in the interval (0.7, w] 

there exists a number v such that 0.7 < v < w, therefore v is closer to 0.7 than w, and thus w is not 

infinitely close to 0.7. Contradiction. Even Imamura acknowledges about 0.7+ that “its value is 

unknown”. 
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And because they do not exist in our real world, we need to approximate/convert them with a 

given accuracy to the real world, therefore, instead of 0.7+ we may take for example the tiony interval 

(0.7, 0.7001) with four decimals, or (0.7, 0.7000001), etc.  

In the same way one can prove that, for any real number a ∊ R, its left monad, left monad closed 

to the right, right monad, right monad closed to the left, pierced binad, and unpierced binad do not 

exist in our real world.  They are just abstract concepts available in abstract/imaginary math spaces. 

 

17.  Nonstandard Unit Interval   

Imamura cites my work:  

 “by “−a” one signifies a monad, i.e., a set of hyper-real numbers in non-standard analysis: 

(−a) = { a − x ∈ R∗ | x is infinitesimal } , and similarly “b+” is a hyper monad:  

(b+) = { b + x ∈ R∗ | x is infinitesimal } . ([5] p. 141; [6] p. 9)”  

But these are inaccurate, because my exact definitions of monads, since my 1998 first world 

neutrosophic publication {see [5], page 9; and [6], pages 385 - 386}, were:  

“(−a) = { a – x: x ∈ R+∗ | x is infinitesimal }, and similarly “b+” is a hyper monad: 

(b+) = { b + x: x ∈ R+∗ | x is infinitesimal }”  

 Imamura says that:  

“The correct definitions are the following:  

(−a) = { a − x ∈ R∗ | x is positive infinitesimal },  

(b+) = { b + x ∈ R∗ | x is positive infinitesimal }.”  

I did not have a chance to see how my article was printed in Proceedings of the 3rd Conference of 

the European Society for Fuzzy Logic and Technology [7], that Imamura talks about, maybe there were 

some typos, but Imamura can check the Multiple Valued Logic / An International Journal [6], published 

in England in 2002 (ahead of the European Conference from 2003, that Imamura cites) by the 

prestigious Taylor & Francis Group Publishers, and clearly one sees that it is: R+* (so, x is a positive 

infinitesimal into the above formulas), therefore there is no error.  

Then Imamura continues:   

“Ambiguity of the definition of the nonstandard unit interval. Smarandache did not give 

any explicit definition of the notation ]−0, 1+[ in [5] (or the notation ⫦−0, 1+⫣ in [6]). He 

only said:  

Then, we call ] −0, 1+ [ a non-standard unit interval. Obviously, 0 and 1, and analogously 

non-standard numbers infinitely small but less than 0 or infinitely small but greater than 

1, belong to the non-standard unit interval. ([5] p. 141; [6] p. 9).”  

Concerning the notations I used for the nonstandard intervals, such as ⫦ ⫣ or ] [, it was 

imperative to employ notations that are different from the classical [ ] or ( ) intervals, since the 

extremes of the nonstandard unit interval were unclear, vague with respect to the real set.  

I thought it was easily understood that:   

]−0, 1+[  = (-0) ∪[0, 1] ∪ (1+).                                                                                                 

Or, using the previous neutrosophic inequalities, we may write:  

]−0, 1+[  = {x ∊ R*, -0 ≤N x ≤N 1+}.                                                                                                

Imamura says that:   

“Here −0 and 1+ are particular real numbers defined in the previous paragraph: 

 −0 = 0−ε and 1+  = 1+ ε, where ε is a fixed non-negative infinitesimal.”  

 This is untrue, I never said that “ε is a fixed non-negative infinitesimal”, ε was not fixed, I said 

that for any real numbers a and b {see again [5], page 9; and [6], pages 385 - 386}:   

“(−a) = { a – x: x ∈ R+∗ | x is infinitesimal },  (b+) = { b + x: x ∈ R+∗ | x is infinitesimal }”.  

 Therefore, once we replace a = 0 and b = 1, we get:  

 (−0) = { 0 – x: x ∈ R+
∗ | x is infinitesimal },  

 (1+) = { 1 + x: x ∈ R+
∗ | x is infinitesimal }.  
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 Thinking out of box, inspired from the real world, was the first intent, i.e. allowing neutrosophic 

components (truth / indeterminacy / falsehood) values be outside of the classical (standard) unit real 

interval [0, 1] used in all previous (Boolean, multi-valued etc.) logics if needed in applications, so 

neutrosophic component values < 0 and > 1 had to occurs due to the Relative / Absolute stuff, with:  
-0 <N 0   and   1+ >N 1. 

Later on, in 2007, I found plenty of cases and real applications in Standard Neutrosophic Logic 

and Set (therefore, not using the Nonstandard Neutrosophic Logic and Set), and it was thus possible 

the extension of the neutrosophic set to Neutrosophic Overset (when some neutrosophic component is > 1), 

and to Neutrosophic Underset (when some neutrosophic component is < 0), and to Neutrosophic Offset (when 

some neutrosophic components are off the interval [0, 1], i.e. some neutrosophic component > 1 and some 

neutrosophic component < 0).  Then, similar extensions to respectively Neutrosophic Over/Under/Off Logic, 

Measure, Probability, Statistics etc. [8, 17, 18, 19], extending the unit interval [0, 1] to  

[Ψ, Ω], with Ψ ≤ 0 < 1 ≤ Ω, 

where Ψ, Ω are standard real numbers.  

 

Imamura says, regarding the definition of neutrosophic logic that:  

“In this logic, each proposition takes a value of the form (T, I, F), where T, I, F are subsets 

of the nonstandard unit interval ]−0, 1+[ and represent all possible values of Truthness, 

Indeterminacy and Falsity of the proposition, respectively.”  

Unfortunately, this is not exactly how I defined it.  

In my first book {see [5], p. 12; or [6] pp. 386 – 387} it is stated:  

“Let T, I, F be real standard or non-standard subsets of ]-0, 1+[“  

meaning that T, I, F may also be “real standard” not only real non-standard.  

 

In The Free Online Dictionary of Computing, 1999-07-29, edited by Denis Howe from England, it is 

written:  

Neutrosophic Logic:  

<logic> (Or "Smarandache logic") A generalization of fuzzy logic based on 

Neutrosophy. A proposition is t true, i indeterminate, and f false, where t, i, and f are real 

values from the ranges T, I, F, with no restriction on T, I, F, or the sum  

n = t + i + f.  

Neutrosophic logic thus generalizes:  

• intuitionistic logic, which supports incomplete theories (for 0 < n < 100, 

 0 ≤ t,i,f ≤ 100);  

• fuzzy logic (for n = 100 and i = 0, and 0 ≤ t,i,f ≤ 100);  

• Boolean logic (for n=100 and i = 0, with t,f either 0 or 100);  

• multi-valued logic (for 0 ≤ t,i,f ≤ 100);  

• paraconsistent logic (for n > 100, with both t,f < 100);  

• dialetheism, which says that some contradictions are true  

(for t = f = 100 and i = 0; some paradoxes can be denoted this way).  

Compared with all other logics, neutrosophic logic introduces a percentage of 

"indeterminacy" - due to unexpected parameters hidden in some propositions. It also 

allows each component t,i,f to "boil over" 100 or "freeze" under 0. For example, in some 

tautologies t > 100, called "overtrue".   

["Neutrosophy / Neutrosophic probability, set, and logic", F. Smarandache, American Research Press, 1998].  

 

As Denis Howe said in 1999, the neutrosophic components t, i, f are “real values from the ranges  

T, I, F”, not nonstandard values or nonstandard intervals. And this was because nonstandard 

ones were not important for the neutrosophic logic (the Relative/Absolute plaid no role in 

technological and scientific applications and future theories).  
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 18.  Formal Notations    

In my first version of the paper, I used informal notations. Let’s see them improved. 

Hyperreal Numbers are represented without parentheses (  ) around them:  

a a a 
−

− = = −  
0

0a a= + , which coincides with the real number a. 

a a a 
+

+ = = +  

Neutrosophic Hyperreal Numbers (that are indeterminate, alternative) are represented without 

braces, or with braces {}around them for discrete sets that may have one, two, or three elements: 

0

a a 
−

= − , or a + 0 = { ,a − or 0}a+  

0

a a 
+

= + , or a + 0 = { ,a + or 0}a+  

a a 
−+

= − , or a + ={ ,a − or }a +  

0

a a 
− +

= − , or a + 0, or a + ={ ,a − or 0a+ , or }a +  

For the monads and binads one just adds the parentheses around them: 

 

Monad Sets: 
0

, ( ) , ( )a a a a a a
− +

− +     
= = =     
     

 

Binad Sets: 
0 0 0

, , ,a a a a
− + −+ − +       
       
       

 

 

19.  Improved Definition of NonStandard Unit Interval     

• Formula of NonStandard Unit Interval 

*] 0,1 [ ]0,1[ { ,0 ( ) 1a R st a
− +

− +  =    } = 

0 0 0 0

{ , , , , , , , [0,1]}a a a a a a a a
− − + −+ − + +

 . 

 

Proof of the above formula 

 

For 0 ( ) 1st a   it does not matter what in(a) is, because ( ) ( ) ]0,1[Nst a in a+  , this being a 

nonstandard interval. 

It is not necessarily to set any restriction on in(a) in this case, since a
−

 is the smallest hyperreal, 

while a
+

is the greatest hyperreal in the set of seven types of hyperreals listed above. 

 

Let  be a positive infinitesimal, 
*R  . 

Let a = 0, and 0
m

 be any possible hyperreal number associated to 0. 

For st( 0
m

) = 0, the smallest in( 0
m

) may be − , whence 0 0 ]0,1[N
− − +

− =  ; 

and if in( 0
m

) is bigger (i.e. 0, or + ), of course 
0

0 0 0 ]0,1[N

− +

+ =   and 0 0 ]0,1[N
+ − +

+ =  . 
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Then also any other nonstandard version of the number 0, such as:  
0 0 0

0, 0, 0, 0 ]0,1[N

− + −+ − + − +

 . 

Let a = 1, and 1
m

be any possible hyperreal number associate to 1. 

For st( 1
m

) = 1, the greatest in(1
m

) may be + , whence 1 1 ]0,1[N
+ − +

+ =  , 

and if in(1
m

) is smaller (i.e. 0, or − ), of course 
0

1 0 1 ]0,1[N

− +

+ =   and 1 1 ]0,1[N
− − +

− =  . 

Then also any other nonstandard version of the number 1, such as:  
0 0 0

1, 1, 1, 1 ]0,1[N

− + −+ − + − +

 . 

 

Remark: 

This formula has to be updated if new types of hyperreals / monads / binads will be introduced 

• Example of Inclusion of Nonstandard Sets 

]0,1[ ]0,1[ ]0,1[
+ − − +

   

 

• Partial Ordering on the Set of Hyperreals 

Let a R be a real number. Then there is no order between a and a
−+

, nor between a and 
0

a
− +

. 

Some nonstandard inequalities involving hyperreals: 

a
−

<N 
0

a <N a
+

 
0

a
−

≤N a
−+

≤N 
0

a
+

 ≤N a
+

 

a
−

≤N 
0

a
−

≤N a
−+

≤N

0

a
− +

 

a
−

≤N a
−+

≤N a
+

 

 

• Examples of Nonstandard Intervals 
0 0 0

] , [ { , , }a a a a a
− − −

=  
0 0 0 0

] , [ { , , , , , , }a a a a a a a a a
− + − + − + −+ − +

=  

 

20.  Improved Definition of NonStandard Neutrosophic Logic     

In the nonstandard propositional calculus, a proposition P has degrees of truth (T), 

indeterminacy (I), and falsehood (F), such that T, I, F are nonstandard subsets of the nonstandard unit 

interval ] 0,1 [− +
, or , , ] 0,1 [NT I F − + . 

As a particular case one has when T, I, F are hyperreal or neutrosophic hyperreal numbers of the 

nonstandard unit interval ] 0,1 [− +
, or , , ] 0,1 [NT I F − + . 

 

21.  NonStandard Neutrosophic Operators      

Since the Hyprereal Set R* does not have a total order, in general we cannot use connectives 

(nonstandard conjunction, nonstandard disjunction, nonstandard negation, nonstandard 

implication, nonstandard equivalence, etc.) involving the operations of min/max or inf/sup, but we 

may use connectives involving addition, subtraction, scalar multiplication, multiplication, power, 
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and division operations dealing with nonstandard subsets or hyprereals from the nonstandard unit 

interval ] 0,1 [− +
. See below operations with hyperreals, monads and binads. 

 

For any nonstandard subsets or hyperreal numbers, T1, I1, F1, T2, I2, F2, from the nonstandard unit 

interval ] 0,1 [− +
one has: 

• NonStandard Neutrosophic Conjunction 

(T1, I1, F1) ∧N (T2, I2, F2) = (T1 ∧F T2, I1∨F I2, F1 ∨F F2) 

 

• NonStandard Neutrosophic Disjunction 

(T1, I1, F1) ∨N (T2, I2, F2) = (T1 ∨F T2, I1 ∧F I2, F1 ∧F F2)     

       

• NonStandard Neutrosophic Negation 

N
(T1, I1, F1) = (F1, 11 I+ − , T1) 

 

• NonStandard Neutrosophic Implication 

(T1, I1, F1) →N (T2, I2, F2) = (F1, 11 I+ − , T1) ∨N (T2, I2, F2) = (F1 ∨F T2, ( 11 I+ −  ) ∧F I2, T1 ∧ F F2)  

 

• NonStandard Neutrosophic Equivalence 

(T1, I1, F1) ↔N (T2, I2, F2) means (T1, I1, F1) →N (T2, I2, F2) and (T2, I2, F2) →N (T1, I1, F1) 

 

Example of Fuzzy Conjunction: 

A ∧ F B = AB 

 

Example of Fuzzy Disjunction: 

A ∨F B = A + B - AB 

 

More explanations about them follow. 

 

22.  Approximations of the NonStandard Logical Operators/Connectives ∧, ∨,  , →, ↔      

Imamura’s critics of my first definition of the neutrosophic operators is history for over a quarter 

of century ago. He is attacking my paper with "errors… errors… paradoxes" etc., however my first 

operators were not kind of errors, but less accurate approximations of the aggregation with respect 

to the falsity component (F), but not with respect to the truth (T) and indeterminacy (I) ones that were 

correct. 

The representations of sets of monads and binads by tiny intervals were also approximations (  ) 

with a desired accuracy (ε > 0), from a classical (real) point of view, for the real number a R :  

( ) ( , )a a a a
−

−  
=  − 
   

( ) ( , )a a a a 
+

+  
=  + 
   

( ) ( , )a a a a 
−+

− +  
=  − + 
   

0

( , ]a a a
− 

 − 
   
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0

[ , )a a a 
+ 
 + 

   
0

( , )a a a 
− + 

 − + 
   
And by language abuse one denotes: 

0

[ , ]a a a a
 

= = 
 

 

 

The representations of hyperreal numbers ( h = st(h) + in(h) ) by tiny numbers closed to their 

standard part ( st(h) ) were also approximations (  ) with a desired accuracy  

( ε > 0 ), from a classical (real) point of view:  

a a 
−

 −  

a a 
+

 +  

a a 
−+

 − , or a +  
0

a a 
−

 − , or 0 
0

0a
+

 , or a +  
0

a a 
− +

 − , or 0, or a +  
0

a a=  

 

All aggregations in fuzzy and fuzzy-extensions (that includes neutrosophic) logics and sets are 

approximations (not exact, as in classical logic), and they depend on each specific application and on 

the experts. Some experts/authors prefer ones, others prefer different operators.  

It is NOT A UNIQUE operator of fuzzy/neutrosophic conjunction, as it is in classical logic, but a 

class of many neutrosophic operators, which is called neutrosophic t-norm; similarly for 

fuzzy/neutrosophic disjunction, called neutrosophic t-conorm, fuzzy/neutrosophic negation, 

fuzzy/neutrosophic implication, fuzzy/neutrosophic equivalence, etc. 

All fuzzy, intuitionistic fuzzy, neutrosophic (and other fuzzy-extension) logic operators are 

inferential approximations, not written in stone. They are improved from application to application.  

 

23.  Operations with monads, binads, and hyperreals       

In order to operate on them, it is easier to consider their real approximations to tiny intervals for 

the monads and binads, or to real numbers closed to the standard form of the hyperreal numbers, as 

in above section. 

For monads and binads: 

1 2 3 1 2 3 1 2 3, , , , , ,m m m m m m x x x

a b a b
     

=     
     

, where is any of the well-defined arithmetic operation 

(addition, subtraction, multiplication, scalar multiplication, power, root, division). 

Where 
1 2 3, , { ,0, }m m m  − + , but there are cases when some or all of the infinitesimal parts 

1 2 3, ,m m m may be discarded for a or for b or for both, if one has only monads, or closed monads, or 

pierced binads.  If such mi is discarded, we consider it as 
im = , for {1,2,3}.i  
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Always we do the classical operation a b , but the problem is: what are the infinitesimals 

corresponding to the result 
1 2 3, ,x x x

a b
 
 
 

, i.e. what are 
1 2 3, , ?x x x =  

Of course the infinitesimals
1 2 3, , { ,0, }x x x  − + , that represent respectively the left monad of 

a b , just the real number a b , or the right monad of a b . To find them, we need to move from 

R* to R using tiny approximations. 

One gets the similar result for hyperreal numbers as for monads and binads: 

1 2 3 1 2 3 1 2 3, , , , , ,m m m m m m x x x

a b a b=  

• A Monad-Binad Example 

Let 
1 2, 0    be tiny real numbers. 

Let’s prove that: 
0

a b a b
− + − +     

+ = +     
     

 

We approximate the above monads by: 

1 2 1 2( , ) ( , ) ( , )a a b b a b a b   − + + = + − + +    
0

a b
− + 
+ 

 
 

because, in the real interval 
1 2( , )a b a b + − + + , one gets values smaller than a+b (whence 

the – on the top, standing for ‘left monad of a+b’), equal to a+b (whence the 0 on the top, standing just 

for ‘the real number a+b’), and greater than a+b (whence the + on the top, standing for ‘right monad 

of a+b’). 

 

• Numerical example 
0 0

2 3 2 3 5
− + − + − +       
+ = + =       

         

because 2 3 (2 0.1,2) (3,3 0.2) (5 0.1,5 0.2)
− +   
+  − + + = − +   

   
, and this interval is a little below 5, 

a little above 5, and also includes 5. 

For hyperreal numbers the result is similar: 
0

a b a b
− + − +

+ = +  because 

1 2 1 2a b a b a b   
− +

+  − + + = + − + , where 
1 2,  are any tiny positive numbers,  

hence 
1 2a b  + − +  can be less than a+b, equal to a+b, or greater than a+b by conveniently 

choosing the tiny positive numbers 
1 and 

2 , as: 
1 2  , or 

1 2 = , or 
1 2   respectively. 

 

• More Examples of NonStandard Operations 

a b a b
− −   
+ = +   

     

a b a b
+ +   

+ = +   
     

a b a b
− − −     
+ = +     

       

a b a b
+ + +     
+ = +     

       

a b b a b
−+ −+   

+ + = +   
     
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0

a b a b
−+ −+ − +     

+ = +     
     

 

0

a b a b
− −+ − +     

+ = +     
     

 

8 2 4
+ −   

 =   
     

8 2 4
− +   

 =   
     

0 0

8 2 4
− + − +   

 =   
     

9 3
− −   

=   
   

 

2

11 121
− −   

=   
     

0

6 7 42
− + − +     
 =     

       

10 4 6
− + −     

− =     
       

10 4 6
+ − +     

− =     
       
Etc. 

 

24.  NonStandard Neutrosophic Operators (revisited)       

Let’s denote:   

∧F, ∧N, ∧P representing respectively the fuzzy conjunction, neutrosophic conjunction, and 

plithogenic conjunction; similarly   

∨F, ∨N, ∨P representing respectively the fuzzy disjunction, neutrosophic disjunction, and 

plithogenic disjunction,  

, ,F N P   representing respectively the fuzzy negation, neutrosophic negation, and 

plithogenic negation,  

→F, →N, →P representing respectively the fuzzy implication, neutrosophic implication, and 

plithogenic implication; and  

, ,F N P    representing respectively the fuzzy equivalence, neutrosophic equivalence, 

and plithogenic equivalence. 

I agree that my beginning neutrosophic operators (when I applied the same fuzzy t-norm, or the 

same fuzzy t-conorm, to all neutrosophic components T, I, F) were less accurate than others developed 

later by the neutrosophic community researchers. This was pointed out since 2002 partially corrected 

by Ashbacher [9] and confirmed in 2008 by Rivieccio [10] and fixed in 2010 by Wang, Smarandache, 

Zhang, and Sunderraman [25], much ahead of Imamura [1] in 2018. They observed that if on T1 and 

T2 one applies a fuzzy t-norm, on their opposites F1 and F2 one needs to apply the fuzzy t-conorm (the 

opposite of fuzzy t-norm), and reciprocally.  

About inferring I1 and I2, some researchers combined them in the same directions as T1 and T2.  

Then:  

 (T1, I1, F1) ∧N (T2, I2, F2) = (T1 ∧F T2, I1 ∧F I2, F1 ∨F F2),              

  (T1, I1, F1) ∨N (T2, I2, F2) = (T1 ∨F T2, I1 ∨F I2, F1 ∧F F2),           

(T1, I1, F1) →N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) = (F1 ∨F T2, I1 ∨F I2, T1 ∧ F F2);      
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others combined I1 and I2 in the same direction as F1 and F2 (since both I and F are negatively 

qualitative neutrosophic components), the most used one:  

 (T1, I1, F1) ∧N (T2, I2, F2) = (T1 ∧F T2, I1∨F I2, F1 ∨F F2),             

  (T1, I1, F1) ∨N (T2, I2, F2) = (T1 ∨F T2, I1 ∧F I2, F1 ∧F F2),           

(T1, I1, F1) →N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) = (F1 ∨F T2, I1 ∧F I2, T1 ∧ F F2).          

Now, applying the neutrosophic conjunction suggested by Imamura:  

“This causes some counterintuitive phenomena. Let A be a (true) proposition with 

value ({ 1 } , { 0 } , { 0 }) and let B be a (false) proposition with value  ({ 0 } , { 0 } , { 1 }).  

Usually we expect that the falsity of the conjunction A ∧ B is { 1 }. However, its 

actual falsity is { 0 }.”  

we get:  

 (1, 0, 0) ∧N (0, 0, 1) = (0, 0, 1),              (50)  

which is correct (so the falsity is 1).  

Even more, recently, in an extension of neutrosophic set to plithogenic set [11] (which is a set 

whose each element is characterized by many attribute values), the degrees of contradiction c( , ) 

between the neutrosophic components T, I, F have been defined (in order to facilitate the design of 

the aggregation operators), as follows: c(T, F) = 1 (or 100%, because they are totally opposite), c(T, I) 

= c(F, I) = 0.5 (or 50%, because they are only half opposite), then:  

(T1, I1, F1) ∧P (T2, I2, F2) = (T1 ∧F T2, 0.5(I1∧F I2) + 0.5(I1∨F I2), F1 ∨F F2),    

(T1, I1, F1) ∨P (T2, I2, F2) = (T1 ∨F T2, 0.5(I1∨F I2) + 0.5(I1∧F I2), F1 ∧F F2).    

(T1, I1, F1) →N (T2, I2, F2) = 
N  (T1, I1, F1) ∨N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) 

  = (F1 ∨F T2, 0.5(I1∨F I2) + 0.5(I1∧F I2), T1 ∧ F F2). 

For NonStandard Neutrosophic Logic, one replace all the above neutrosophic components T1, I1, 

F1, T2, I2, F2 by hyperreal numbers, monads or binads from the nonstandard unit interval ]-0, 1+[ and 

use the previous nonstandard operations.  

 

25.  Application of NonStandard Neutrosophic Logic       

Assume two sources s1 and s2 provide information about the nonstandard truth value of a given 

proposition P: 

1 1 1 1( ) ( ( ), ( ), ( )) 1,0.4,0.2s P T P I P F P
+ −+ − 

= =  
   

0 0

2 2 2 2( ) ( ( ), ( ), ( )) 0.8,0.6,0.3s P T P I P F P
+ − 

= =  
 

 

Let’s use the below Fuzzy Conjunction: 

A ∧ F B = A∙B 

and Fuzzy Disjunction: 

A ∨F B = A + B - A∙B 

We fusion the two sources (using the nonstandard neutrosophic conjunction): 

1 2 1 2 1 2 1 2( ) ( ) ( ( ) ( ), ( ) ( ), ( ) ( ))N F F Fs P s P T P T P I P I P F P F P =   
0 0

(1 0.8,0.4 0.6,0.2 0.3)F F F

+ −+ + − −

=     = 
0 0 0

(1 0.8,0.4 0.6 0.4 0.6,0.2 0.3 0.2 0.3)
+ −+ + −+ + − − − −

 + −  + −   

0 0 0

(0.8, 1 0.24,0.5 0.06) (0.8, 1 0.24,0.5 0.06)
+ − + −+ − − + − + − + − −

= − − = − −
0 0

(0.80,0.76,0.44)
+ − + − +

= , 

which means that with respect to the two fusioned sources, the nonstandard neutrosophic 

degree of truth of the proposition P is tinnily above 0.8, its nonstandard neutrosophic degree of 

indeterminacy is tinnily below or above or equal to 0.76, and similarly its nonstandard neutrosophic 

degree of falsity is tinnily below or above or equal to 0.44. 
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Converting/approximating from hyperreal numbers to real numbers, with an accuracy  = 

0.001, one gets: 

( )

( )

1 2( ) ( ) (0.8,0.8 0.001), (0.76 0.001,0.76 0.001), (0.44 0.001,0.44 0.001)

(0.800,0.801), (0.759,0.761), (0.439,0.441)

Ns P s P  + − + − +

=
 

 

 

26. Open Statement  

In general, the Transfer Principle, from a non-neutrosophic field to a corresponding 

neutrosophic field, does not work. This conjecture is motivated by the fact that each neutrosophic 

field may have various types of indeterminacies. 

27. Conclusion  

We thank very much Dr. Takura Imamura for his interest and critics of Nonstandard Neutrosophic 

Logic, which eventually helped in improving it. {In the history of mathematics, critics on nonstandard 

analysis, in general, have been made by Paul Halmos, Errett Bishop, Alain Connes and others.} We 

hope we’ll have more dialogues on the subject in the future.  

We introduced in this paper for the first time the Neutrosophic Hyperreals (that have an 

indeterminate form), and we improved the definitions of NonStandard Unit Interval and of 

NonStandard Neutrosophic Logic. 

We pointed out several errors and false statements by Imamura [21] with respect to the inf/sup 

of nonstandard subsets, also Imamura’s “rigorous definition of neutrosophic logic” is wrong and the 

same for his definition of nonstandard unit interval, and we proved that there is not a total order on 

the set of hyperreals (because of the newly introduced Neutrosophic Hyperreals that are 

indeterminate) therefore the transfer principle is questionable. We conjectured that: In general, the 

Transfer Principle, from a non-neutrosophic field to a corresponding neutrosophic field, does not 

work. 
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Abstract: Multiple attribute decision-making (MADM) problems often contain quantitative and 

qualitative information that is inconsistent, uncertain, and incomplete. However, existing 

evaluation methods can only perform quantitative or qualitative processing on all attribute data, 

which easily leads to some information loss. In order to deal with MADM problems more 

effectively, this paper proposes a single-valued neutrosophic linguistic neutrosophic element 

(SvNLNE), which consists of a single-valued neutrosophic number for quantitative expression and 

a linguistic neutrosophic number for qualitative description. This paper also provides the 

fundamental operations of SvNLNEs, the SvNLNE score and accuracy functions for sorting the 

elements, and the SvNLNE weighted arithmetic averaging (SvNLNEWAA) and geometric 

averaging (SvNLNEWGA) operators for information aggregation. Finally, some MADM 

approaches are developed based on the SvNLNEWAA and SvNLNEWGA operators, and their 

application and rationality are further illustrated by an investment case in the SvNLNE setting. 

Keywords: multi-attribute decision making; single-valued neutrosophic linguistic neutrosophic 

element; single-valued neutrosophic linguistic neutrosophic element weighted arithmetic 

averaging operator; single-valued neutrosophic linguistic neutrosophic element weighted 

geometric averaging operator 

 

 

1. Introduction 

In complex decision-making (DM) environments, conflicting quantitative and qualitative 

attribute data often need to be considered to optimize the selection of alternatives. Among them, 

quantitative information is usually expressed as numerical variables, while qualitative information 

is usually depicted as linguistic variables because linguistic items are more suitable to describe 

human cognition of objective things. In recent decades, many theories and methods on numerical 

and linguistic DM methods have been proposed for the DM problem. To handle uncertain and 

incomplete quantitative information, the fuzzy set [1] was firstly defined with a numerical 

membership degree. Then, the intuitionistic fuzzy set (IFS) [2] was presented by appending a 

numerical non-membership degree, and the interval-valued IFS [3] was represented by the 

interval-valued membership and non-membership degrees. Recently, for further comprehensive 

expression of the incomplete, uncertain and inconsistent data in DM problems, the simplified 

neutrosophic set (SNS) [4] that implied the definitions of single-valued neutrosophic set (SvNS) [5] 
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and interval neutrosophic set (IvNS) [6] was put forward as a subclass of neutrosophic set (NS) [7] 

by constraining the membership degrees of truth, indeterminacy and falsity in the standard range of 

[0,1]. Since then, various aggregation operators and multi-attribute DM (MADM) methods of 

SvNSs/IvNSs/SNSs have been presented [4,8-10], and some extended neutrosophic sets, such as the 

neutrosophic cubic set (NCS) [11], the simplified neutrosophic indeterminate set (SNIS) [12], the 

neutrosophic Z-numbers [13] and the consistency neutrosophic set (CNS) [14], have also been 

proposed for specific applications. However, the numerical variable-based DM methods described 

above are more suitable for dealing with quantitative information than qualitative information. 

Thus, in terms of human thinking and expression habits, the linguistic neutrosophic number (LNN) 

[15], which is generalized from the concepts of linguistic variable (LV) [16], interval linguistic 

variable (ILV) [17] and linguistic intuitionistic fuzzy number (LIFN) [18], was proposed as a new 

branch of NS [7] to represent incomplete, indeterminate and inconsistent qualitative information 

using linguistic membership degrees of truth, falsity and uncertainty. Then, various aggregation 

operators and MADM methods of LNNs have been presented for linguistic DM problems [19-21]. 

Other extended sets, such as the linguistic neutrosophic uncertain number (LNUN) [22], have also 

been introduced to satisfy special applications. Unfortunately, theories and methods based on 

linguistic variables are more suitable for solving qualitative DM problems than quantitative DM 

problems.  

In practical MADM applications, there is often quantitative and qualitative attribute 

information that needs to be evaluated together. However, existing DM methods can only make 

final decisions on a single type of information, but cannot handle multiple types of information. 

Especially for MADM problems with incomplete, inconsistent and indeterminate information, the 

single-valued neutrosophic number (SvNN) is only used for quantitative processing, while the LNN 

is only used for qualitative processing. Therefore, to overcome the limitations of existing DM 

approaches and better satisfy the preferences of the evaluators, this paper defines the single-valued 

neutrosophic linguistic neutrosophic set/element (SvNLNS/SvNLNE) as a combination of SvNN and 

LNN to uniformly describe quantitative and qualitative information and proposes the basic 

operational laws of SvNLNE. Then, this paper puts forward a SvNLNE weighted arithmetic 

averaging (SvNLNEWAA) operator and a SvNLNE weighted geometric averaging (SvNLNEWGA) 

operator, and further develops MADM approaches based on the presented operators in the SvNLNE 

setting.  

In the construction of the paper, the preliminaries of SvNNs and LNNs are first reviewed in 

Section 2. The concepts, the fundamental operations, and the score and accuracy functions of 

SvNLNSs are put forward in Section 3. Then, two aggregation operators of SvNLNEWAA and 

SvNLNEWGA are presented and proved in Section 4. In Section 5, a new MADM method with 

SvNLNE information is developed by applying the proposed SvNLNEWAA and SvNLNEWGA 

operators. Finally, comparative analysis and conclusions are given in Sections 6 and 7, respectively. 

2. Preliminaries of SvNNs and LNNs 

This section introduces the concepts and operational relations of SvNNs and LNNs. 

2.1 SvNNs 

Definition 1 [5]. Set E as a fixed universal set. Then, a SvNS H in E can be given by  

       , , , |H T U V E      , 

Where <T(𝛿), U(𝛿), V(𝛿)> is the SvNN for 𝛿  E satisfying the condition of T(𝛿), U(𝛿), V(𝛿)  [0,1], and 

can simply be written as h𝛿 =<T𝛿, U𝛿, V𝛿>. 

Definition 2 [5]. Assuming h𝛿1 =<T𝛿1, U𝛿1, V𝛿1> and h𝛿2=<T𝛿2, U𝛿2, V𝛿2> are two SvNNs and σ > 0, there 

are the following relations: 
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(1) 
1 2 1 2 1 2 1 2 1 2, ,h h T T T T U U V V             ; 

(2) 
1 2 1 2 1 2 1 2 1 2 1 2, ,h h T T U U U U V V V V                 ; 

(3)  1 1 1 11 1 , ,h T U V
  

       ; 

(4)    1 1 1 1,1 1 ,1 1h T U V
  

        . 

2.2 LNNs 

Definition 3 [15]. Set E as a fixed universal set and L = {ls| s = 0, 1, ⋯, r} as a linguistic term set (LTS) 

whose odd cardinality is r + 1. Then, a linguistic neutrosophic set Z in E can be given by  

       , , , |
u v

Z l l l E
   

   , 

where      
, ,

u v
l l l
   

 is a LNN for 𝛿  E, containing the linguistic variables of truth, indeterminacy 

and falsity 
     

, ,
u v

l l l L
   

 . Then, the LNN      
, ,

u v
l l l
   

can be simply denoted as 

, ,u vz l l l
    . 

Definition 4 [15]. Assuming 
1 1 11 , ,u vz l l l

     and 
2 2 22 , ,u vz l l l

     are two LNNs in L and σ > 0, 

there exist the following relations: 

(1) 
1 2 1 2 1 2

1 2

1 2 , ,u u v v

r r r

z z l l l
     

 

   
  

  ; 

(2) 
1 2 1 2 1 2

1 2 1 2

1 2 , ,u u v v
u u v v

r r r

z z l l l
     

   

   
   

  ; 

(3) 
1 1 1

1
1

, ,
u v

r r r r
r r r

z l l l  
  

 


     
      

     

 ; 

(4) 
1 1 1

1
1 1

, ,
u v

r r r r r
r r r

z l l l  
  



      
        

     

 . 

3. SvNLNSs 

Definition 5. Set E as a universal set and L = {ls| s = 0, 1, ⋯, r} as a LTS with an odd cardinality r + 1. 

Then, a SvNLNS H can be defined as 

             , , , , , ,
u v

H T U V l l l E
   

      , 

where <T(𝛿), U(𝛿), V(𝛿)> for 𝛿  E is a SvNN depicted independently by the truth, indeterminacy and 

falsity numerical variables T(𝛿), U(𝛿), V(𝛿)  [0, 1], and      
, ,

u v
l l l
   

 for 𝛿  E is a LNN described 

independently by the truth, indeterminacy and falsity linguistic variables 
     

, ,
u v

l l l L
   

 with 

𝜏(𝛿),u(𝛿),v(𝛿)  [0, r].  

Then, the element             , , , , , ,
u v

T U V l l l
   

     of H can be simply represented by 

 , , , , ,u vT U V l l l
         for T𝛿, U𝛿, V𝛿  [0, 1], , ,u vl l l L

    , and 𝜏𝛿, u𝛿, v𝛿  [0, r], called 

SvNLNE. It is obvious that SvNLNS is composed of SvNNs and LNNs in E. 

Definition 6. Set  
1 1 11 1 1 1, , , , ,u vT U V l l l

         and  
2 2 22 2 2 2, , , , ,u vT U V l l l

         as two 

SvNLNEs. Then there exist the following relations: 

(1) ξδ1  ξδ2  Tδ1 ≤ Tδ2, Uδ1 ≥ Uδ2, Vδ1≥ Vδ2, 
1 2

l l
   ,

1 2u ul l
 
 , and 

1 2v vl l
 
 ; 
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(2) ξδ1 = ξδ2  ξδ1  ξδ2 and ξδ1  ξδ2, i.e., Tδ1 = Tδ2 , Uδ1 = Uδ2, Vδ1= Vδ2, 
1 2

l l
   ,

21
u ul l



 , and 
1 2v vl l

 
 ; 

(3) 
1 2 1 2 1 2

1 2

1 2 1 2 1 2 1 2 1 2, , , , ,u u v v

r r r

T T T T U U V V l l l
     

 

           
 

 
 

 
    

 
 

; 

(4) 
1 2 1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2, , , , ,u u v v
u u v v

r r r

T T U U U U V V V V l l l
     

   

              
   

 
      

 
 

; 

(5)  
1 1 1

1 1 1 1
1

1 1 , , , , ,
u v

r r r r
r r r

T U V l l l  
  

  

    


     
      

     

 
   
 
 

 for σ > 0; 

(6)    
1 1 1

1 1 1 1
1 1

,1 1 ,1 1 , , ,
u v

r r r r r
r r r

T U V l l l  
  

  

    


     
        

     

 
     
 
 

for σ > 0. 

To compare SvNLNEs, the score and accuracy functions for SvNLNEs and their sorting 

approaches are given by the definitions below. 

Definition 7. Set ξ = (< T, U, V>, <lτ, lu, lv>) as SvNLNE. Then, its score and accuracy functions are 

1 2 2
( )

2 3 3

T U V r u v
F

r




      
  

 
 for F(𝜉)  [0, 1],          (1) 

1
( )

2

v
G T V

r




 
   

 
 for G(𝜉)  [1, 1].                  (2) 

Definition 8. Let  
1 1 11 1 1 1, , , , ,u vT U V l l l

         and  
2 2 22 2 2 2, , , , ,u vT U V l l l

         be two 

SvNLNEs, then based on the score and accuracy values of F(ξδ𝜍) and G(ξδ𝜍) (𝜍 =1, 2), the ranking 

approaches are given below: 

(1) If F(ξδ1) > F(ξδ2), then ξδ1 > ξδ2; 

(2) If F(ξδ1) = F(ξδ2) and G(ξδ1) > G(ξδ2), then ξδ1 > ξδ2; 

(3) If F(ξδ1) = F(ξδ2) and G(ξδ1) = G(ξδ2), then ξδ1 = ξδ2. 

4. Aggregation Operators of SvNLNEs 

4.1 SvNLNEWAA Operator 

Theorem 1. Set  , , , , ,u vT U V l l l
        (𝜍 = 1, 2, ⋯, η) as a collection of SvNLNEs. Then the 

SvNLNEWAA operator can be represented as 

1 1 1

1 1 1

1 2 1

(1 ) , ( ) , ( )

1 (1 ) , , , ,

( , , , )

u v
r r r r

r r r

T U V

SvNLNEWAA

l l l

  

  
      

  

  
  

  

  


 



    

  

  



 

 
  

 
  
 
 
   
 

  

 , (3) 

where 𝜎𝜍  [0, 1] is the weight of 𝜉𝜍 (𝜍 =1, 2, ⋯, η) with 
1

1






 . 

Proof. (1) It is straightforward that the theorem is valid when η = 1; 

(2) When η = 2, from the relation (5) of Definition 6, we can obtain 

1 1 1

1 1 1
1 1 1

1 1 1 1 1
1

1 (1 ) , ,V , , ,
u v

r r r r
r r r

T U l l l  

  


 

     
      

     

 
   
 
 

, 
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2 2 2

2 2 2
2 2 2

2 2 22
1

2 1 (1 ) , ,V , , ,
u v

r r r r
r r r

T U l l l  

  


 

     
      

     

 
   
 
 

. 

From the relation (3) of Definition 6, the SvNLNEWAA aggregation result is 

       1 2 1 2 1 2 1 2

1 21 2
1 21 2

1 2
1 2

1 2 1 1 2 2

1 2 1 2 1 2 1 2

1 1

1 1

( , )

1 1 1 1 1 1 1 1 , , ,

, ,
u u

r rr r r r
r rr r

r r r r rr r r

SvNLNEWAA

T T T T U U V V

l l   

 

       

 

 

     

          
             

                
        

   

 

            
   



 

1 2
1 2

2 2 2

1 1 1

2 2 2

1 1 1
1

1 1 , , , , , .

v v
r r

r r

r

u v
r r r r

r r r

l

T U V l l l

 

  

  
  

  

  

  

     

  

   
   
   

        
           

     

 
 
 
 
 
 
 
 
 

 
   
 
   
 

  

 

(3) Let η = μ, the aggregation result of SvNLNS is 

 
1 1 1

1 2 1

1 1 1
1

( , , , )

1 1 , , , , ,
u v

r r r r
r r r

SvNLNEWAA

T U V l l l
  

  
      

  



  

   

     

    

  



        
           

     



 
   
 
   
 



  
. 

(4) Let η = μ + 1, the aggregation result of SvNLNS is 

       

   

1 1

1 1

1
1

1

1 2 1 1 1

1

1 11 1

1 11 1

1

1 1

( , , , )

1 1 1 1 1 1 1 1 ,

,

,

r r
r

r r r r
r r

SvNLNEWAA

T T T T

U U V V

l

   

   



  
  





    


    

    

    

    



 

      

 

 






  



  

  

 

   
           

   

 

            
      







 

 

 

1
1

1

1 1
1 1

1 1

1

1

1

,

,

1 1 ,

r r
r

r

u u v v
r r r r

r r r r

r r

l l

T U

  
 



      
    

 

 



 

  






 
 

 

      
                   

          
                              





 
 
 
 
 
 
 
 
 
 
 

  
 
 

  
1 1 1

1 1 1

1 1

1 1
1

, , , , .
u v

r r r r
r r r

V l l l

  
      

  

  

   

  

 

       
           

     

 
 
 
   
 

 

 

Thus, Theorem 1 is proved to be valid for any η. 

Additionally, for the SvNLNE collection given by  , , , , ,u vT U V l l l
         (𝜍 = 1, 2, ⋯, η), 

the SvNLNEWAA operator implies some properties: 

(1) Idempotency: There is SvNLNEWAA(𝜉1, 𝜉2, ⋯, 𝜉η) = 𝜉 when 𝜉𝜍 = 𝜉 is satisfied for 𝜍 = 1, 2, ⋯, η. 
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(2) Boundedness: Assume            min ,max ,max , min ,max ,maxu vT U V l l l
     

    
     

 
and 

           max ,min ,min , max ,min ,minu vT U V l l l
     

    
     

 
represent the minimum and 

maximum SvNLNEs for 𝜍 = 1, 2, , η, then  1 2, , ,SvNLNEWAA        . 

(3) Monotonicity: There is    * * *

1 2 1 2, , , , , ,SvNLNEWAA SvNLNEWAA        when the 

condition of *

    is satisfied for 𝜍 = 1, 2, ⋯, η. 

Proof. (1) Suppose ξ=(<T,U,V>,<l𝜏,lu,lv>). Since ξ𝜍 is equal to ξ for 𝜍 = 1, 2, ⋯, η, we can obtain 

 

   1 11

1 1 1

1 2 1

1

, , ,

1 1 , , , , , , , , , ,u v

u v
r r r r

r r r

SvNLNEWAA

T U V l l l T U V l l l
 

   
  

      



  

 





    

 

    



     
      

     



 
       
 
 



. 

(2) Because 𝜉- is the minimum SvNLNE and 𝜉+ is the maximum SvNLNE, 𝜉-≤𝜉𝜍≤𝜉+ can be obtained. 

Hence, 
1 1 1

  

     
      

  
    . According to the property (1), 

1




   


 and 

1




   


 . Thus,  1 2, , ,SvNLNEWAA        . 

(3) Since *

   for 𝜍 = 1, 2, …, η, there exists *

1 1

 

    
   

 
  . Therefore, 

   * * *

1 2 1 2, , , , , ,SvNLNEWAA SvNLNEWAA       . 

The properties of the SvNLNEWAA operator are proved above.  

4.2 SvNLNEWGA Operator 

Theorem 2. Set  , , , , ,u vT U V l l l
        (𝜍 = 1, 2, ⋯ , η) as a cluster of SvNLNEs, then the 

SvNLNEWGA operator is 

1 1 1

1 1 1

1 2 1

1 1

,1 (1 ) ,1 (1 ) ,

( , , , )

, ,
T u v

r r r r r
r r r

T U V

SvNLNEWGA

l l l

  



    
    

  

    

    

 

  

  

  



     
             

     

    
 
 

   
 
   
 

  

 , (4) 

where σ𝜍  [0, 1] indicates the weight of ξ𝜍 with 
1

1






 . 

Proof. (1) When η = 1, the theorem 2 is obviously correct; 

(2) When η = 2, from the relation (6) of Definition 6, we can obtain 

1 1 1 1

1 1 1
1 1 1

1 1 1 1
1 1

= ,1 (1 ) ,1 (1 ) , ,
u v

r r r r r
r r r

T U V l l l  

   




     
        

     

 
    
 
 

， , 



Neutrosophic Sets and Systems, Vol. 51, 2022     27  

 

 

Wen-Hua Cui, Jun Ye, Jing-Jing Xue and Ke-Li Hu, Weighted aggregation operators of single-valued neutrosophic 

linguistic neutrosophic sets and their decision-making method 

2 2 2 2

2 2 2
2 2 2

2 2 2 2
1 1

= ,1 (1 ) ,1 (1 ) , ,
u v

r r r r r
r r r

T U V l l l  

   




     
        

     

 
    
 
 

， . 

From the relation (4) of Definition 6, the aggregation result is 

  1 1

1 2 1 2 1 2

1 2 1 2

1 2
1 2

1 2
1 2

1 2 1 2

1 2 1 2 1 2

1 2 1 2

1 1

,

,1 (1 ) 1 (1 ) 1 (1 ) 1 (1 ) ,

1 (1 ) 1 (1 ) 1 (1 ) 1 (1 )

,
= r r r

r r u u
r r r rr r r

SvNLNEWGA

T T U U U U

V V V V

l l 

 

 

     

   

 

   

   
   

       
        

   

 

               

               

，

1 2
1 2

1 2
1 2

1 2
1 2

1 1

1 1

1 1

2 2 2

1 1 1

,

,1 (1 ) ,1 (1 )

=

u u
r r r

r r

r

v v
r r r r

r rv v
r r r r

r r r

l

T U V

 

 

 

    

    

     
        
         

      
         
             

        
   

  

 
 
 
 
 
 
 
 
 
 
  
 

     

2 2 2

1 1 1
1 1

.

, ,
u v

r r r r r
r r r

l l l    
  

  



  

     
             

     

 
 
 
 
 
   
 

，

 

(3) Let η = μ, the aggregation result of SvNLNS is 

 

   

1 1 1

1 1 1

1 2 1

1 1

,1 1 ,1 1 ,

, , ,

, ,
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
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 
 

   
 
   
 

  

 . 

(4) Let η = μ + 1, the aggregation result of SvNLNS is 

 

         

       
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  
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
 
 
 
 
 
   

Thus, Eq.(4) is proved to be valid for any η. 

Additionally, for the group of SvNLNEs given by  , , , , ,u vT U V l l l
         (𝜍 = 1, 2, …, η), 

there are some properties of the SvNLNEWGA operator: 
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(1) Idempotency: There is 1 2( , , , )SvNLNEWGA      when 𝜉𝜍 = 𝜉 is satisfied for 𝜍 = 1, 2, ⋯, η. 

(2) Boundedness: Assume            min ,max ,max , min ,max ,maxu vT U V l l l
     

    
     

 
 and 

           max ,min ,min , max ,min ,minu vT U V l l l
     

    
     

 
 represents the minimum and 

maximum SvNLNEs for 𝜍 = 1, 2, …, η, then 
1 2( , , , )SvNLNEWGA      . 

(3) Monotonicity: There is    * * *

1 2 1 1, , , , , ,SvNLNEWGA SvNLNEWGA       when the 

condition of *

    (𝜍 = 1, 2, ⋯, η) is satisfied. 

Since the property proof of the SvNLNEWGA operator is similar to that of the SvNLNEWAA 

operator, it is omitted here.  

5. MADM Method in the SvNLNE Setting 

In this section, by applying the SvNLNEWAA and SvNLNEWGA operators, a novel MADM 

method is developed to solve DM problems with quantitative and qualitative information. 

For a complex DM problem, m alternatives (given by R= {R1, R2, R3, ⋯, Rm}) need to be evaluated 

on η attributes (given by S = {s1, s2, ⋯, sη}) in the SvNLNE setting, where the attribute types may be 

different. Assume each alternative is evaluated as a SvNLNE  , , , , ,u vT U V l l l
         with ι = 

1, 2, ⋯, m and 𝜍 = 1, 2, ⋯, η. Then, all evaluated values can be further constructed as the SvNLNE 

decision matrix E= (𝜉𝜄𝜍)m×η. 

Then, MADM problems with SvNLNE information can be solved by the SvNLNEWAA and 

SvNLNEWGA operators along with the SvNLNE score and accuracy functions. Details about the 

new MADM method are given as below. 

Step 1. Standardize the initial evaluation data in the SvNLNE format. For instance, a quantitative 

attribute data denoted by the SvNN ξ = (<T, U, V>) can be converted into the SvNLNE ξ’= (<T, U, V>, 

<lT×r, lU×r, lV×r>), and a qualitative attribute data given by the LNN ξ = (<lτ, lu, lv>) can be transformed 

into the SvNLNE ξ’= (<τ/r, u/r, v/r>, <lτ, lu, lv>). As a result, the initial decision matrix E= ( ι𝜍)m×η can be 

standardized as  ''
m

E  



 . 

Step 2. Assume P = {σ1, σ2, ⋯, ση} is a weight vector that represents the importance of attributes S = { 

s1, s2, ⋯, sη}, where σ𝜍 is the weight of '

 (𝜍 = 1, 2, ⋯, η) with σ𝜍  [0, 1] and 
1

1






 . Then, by 

applying the SvNLNEWAA operator, the aggregation result of '

 (ι = 1, 2, ⋯, m) is 

 

 

1 1 1

1 1 1

' ' ' ' '

1 2 1

1

1 1 , , ,

, , ,

, ,
u v

r r r r
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  
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
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  

  



     
           

     

 
  

 
    

 
    
 

  

 . 

Similarly, by applying the SvNLNEWGA operator, the aggregation result of '

  (ι = 1, 2, ⋯, m) is  
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   
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 

  

 . 

Step 3: Get the score values of  'F  (ι = 1, 2, ⋯, m) by Eq. (1) and the accuracy values of  'G  (ι = 1, 

2, ⋯, m) by Eq. (2) if necessary.  

Step 4: Sort all the alternatives in descending order of the score and accuracy values, then the first 

one is optimal. 

Step 5: End. 

6. Example 

To illustrate the application of the raised MADM method in the SvNLNE environment, an 

example of investment decision is given in this section. This example is adapted from references 

[4,15] and contains both quantitative and qualitative attributes. 

A company needs to choose the best of the four alternatives ϑ = {ϑ1, ϑ2, ϑ3, ϑ4} that are engaged 

in electronic devices, weapons, clothing, and construction, respectively. Then, some experts are 

asked to comprehensively assess the options by considering the attributes E = {𝛿1, 𝛿2, 𝛿3, 𝛿4}, where 𝛿1 

is the environmental impact, 𝛿2 is the growth, 𝛿3 is the risk, and 𝛿4 is the possible return rate of the 

investment. The evaluation data can be given in any form of LNN, SvNN, or SvNLNE according to 

the attribute characteristics and the preferences of the evaluators. Among them, the qualitative 

information will be evaluated from the LTS L = {l0 = very low, l1 = low, l2 = slight low, l3 = medium, l4 

= slight high, l5 = high, l6 = very high} with the odd cardinality r + 1 = 7. Suppose the original 

evaluation matrix M= (𝜉ι𝜍)m×η is established as  

       
       
       
       

4 1 1 5 1 1 5 3 1

5 2 2 5 1 2 6 2 1

4 2 1 4 2 1 6 1 1

5 1 1 5 2 2 4 2 3

0.7,0.2,0.2 , , , , , , , 0.78,0.1,0.2

0.8,0.1,0.1 , , , , , , , 0.8,0.2,0.3

0.75,0.2,0.1 , , , , , , , 0.75,0.1,0.1

0.9,0.1,0.1 , , , , , , , 0.81,0.2,0.1

l l l l l l l l l

l l l l l l l l l
M

l l l l l l l l l

l l l l l l l l l





 










 


. 

According to the information standardization rules of SvNLNE, the matrix M can be 

standardized as 

   

   
   
   

4 1 1 5 1 1

5 2 2 5 1 2'

4 2 1 4 2 1

5 1 1 5 2 2

5

0.7,0.2,0.2 , , , 0.83,0.17,0.17 , , ,

0.8,0.1,0.1 , , , 0.83,0.17,0.33 , , ,

0.75,0.2,0.1 , , , 0.67,0.33,0.17 , , ,

0.9,0.1,0.1 , , , 0.83,0.33,0.33 , , ,

0.83,0.5,0.17 , ,

l l l l l l

l l l l l l
M

l l l l l l

l l l l l l

l





 




   
   
   
   

3 1 4.68 0.6 1.2

6 2 1 4.8 1.2 1.8

6 1 1 4.5 0.6 0.6

4 2 3 4.86 1.2 0.6

, 0.78,0.1,0.2 , , ,

1,0.33,0.17 , , , 0.8,0.2,0.3 , , ,
.

1,0.17,0.17 , , , 0.75,0.1,0.1 , , ,

0.67,0.33,0.5 , , , 0.81,0.2,0.1 , , ,

l l l l l

l l l l l l

l l l l l l

l l l l l l









 

Assuming the weight vector P = (0.25, 0.2, 0.25, 0.3) represents the attribute importance of E, the 

decision process using the SvNLNEWAA operator can be performed as below. 
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Step 1. By Eq. (3), the aggregated values of SvNLNEWAA for each alternative ϑι (ι = 1, 2, 3, 4) can be 

obtained as 

ξ1= (<0.7902, 0.197, 0.1842>, <4.7075,1.1291,1.0562>), 

ξ2 = (<1,0.1842,0.201>, <6,1.4937,1.6295>), 

ξ3 = (<1,0.1719,0.1258>, <6,1.1719,0.8579>), 

ξ4 = (<0.8186,0.2116,0.1902>, <4.7631,1.4428,1.297>). 

Step 2. By Eq. (1), the score values of F(ξι) (ι = 1, 2, 3, 4) can be further obtained as 

F(ξ1) =0.8049, F(ξ2) = 0.849, F(ξ3) = 0.894, F(ξ4) = 0.7923. 

Step 3. Since F(ξ3) > F(ξ2) > F(ξ1) > F(ξ4), the ranking of the four alternatives is ϑ3 > ϑ2 > ϑ1 > ϑ4. 

Therefore, ϑ3 is the best choice. 

Similarly, the decision steps using the SvNLNEWGA operator can be carried out as below. 

Step 1’. By Eq. (4), the aggregated values of SvNLNEWGA for each alternative ϑι (ι = 1, 2, 3, 4) can 

be obtained as 

ξ1= (<0.7821,0.2571,0.1852>, <4.6358,1.4967,1.0609>), 

ξ2 = (<0.8528,0.2064,0.229>, <5.1695,1.5823,1.7082>),  

ξ3 = (<0.7872,0.1927,0.1306>, <4.5859,1.3721,0.8832>),  

ξ4 = (<0.7966,0.241, 0.2683>, <4.6886,1.5327,1.6932>). 

Step 2’. By Eq. (1), the score values of F(ξι) (ι = 1, 2, 3, 4) are  

F(ξ1) = 0.781, F(ξ2) = 0.7884, F(ξ3) = 0.8087, F(ξ4) = 0.7552. 

Step 3’. Since F(ξ3) > F(ξ2) > F(ξ1)> F(ξ4), the four alternatives are ranked as ϑ3 > ϑ2 > ϑ1> ϑ4. Thus, ϑ3 is 

also the best choice. 

Obviously, the sorting results obtained by the above two operators are the same, and the best 

options are also the same. Thus, one can choose one of the two operators according to the actual 

needs. 

Different from the existing MADM approaches, the MADM method proposed in this paper 

handles the incomplete, inconsistent and uncertain data in the form of SvNLNE instead of SvNN or 

LNN, and uses two novel aggregation operators of SvNLNEWAA and SvNLNEWGA. The SvNLNE 

composed of SvNN and LNN uses numerical and linguistic variables to represent the truth, 

uncertainty, and falsity membership degrees of fuzzy information. Hence, it can express mixed 

information of quantitative and qualitative attributes better than SvNN or LNN that can only depict 

quantitative or qualitative attribute information. Moreover, the proposed SvNLNEWAA and 

SvNLNEWGA operators can aggregate SvNNs and LNNs in addition to SvNLNEs, because SvNN 

and LNN are two special cases of SvNLNE when all attributes are quantitative or qualitative. And 

the proposed MADM method can handle DM problems in the SvNN and/or LNN setting, while the 

existing DM methods of SvNN and LNN cannot deal with DM problems under the SvNLNE 

environment.  

All in all, SvNLNE is the further generalization of SvNN and LNN, and the MADM method 

based on the SvNLNEWAA and SvNLNEWGA operators offers a unified way for complex DM 

problems with both quantitative and qualitative attributes.  

7. Conclusions 

This paper originally defined the concept, fundamental operations, and score and accuracy 

functions of SvNLNE, and then developed the MADM method of the SvNLNE using the proposed 

SvNLNEWAA and SvNLNEWGA operators. Finally, an investment case proved that the proposed 

MADM method can effectively solve MADM problems with the SvNLNEs that contain mixed-type 

or single-type attribute information, overcoming the shortcomings of traditional methods that can 
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only handle single-type attribute data. The research results of this paper enrich the neutrosophic 

theory and MADM methods. 

The paper mainly contributes: (1) The presented SvNLNE can effectively express mixed 

quantitative and qualitative information for the first time; (2) The proposed SvNLNEWAA and 

SvNLNEWGA operators can aggregate the hybrid information of SvNN and LNN; (3) The proposed 

MADM approach of SvNLNS can effectively solve complex DM problems containing qualitative 

and quantitative attributes, which cannot be satisfactorily processed by existing methods. 

Further research will concentrate on the similarity measures of SvNLNEs, the development of 

novel aggregation operators, and their applications such as pattern recognition and medical 

diagnosis in the SvNLNE environment.  
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Abstract. 

This manuscript comes as first attempt in building a new type of neutrosophic topological 

spaces, the aim is to shed the light on a new structure known as the 𝑛𝑡ℎ-power set 𝑃𝑛(𝑋) of a set, 

this new kind of sets enables authors to create and built new topology spaces called Neutrosophic 

SuperHyper Topological Spaces and Neutrosophic SuperHyper Bi-Topological Spaces , the 𝑛𝑡ℎ -

power sets  are the optimal representation for the applications in our real world. In this article, new 

concepts and theorems related to this new topologies have been discussed, which are pairwise 

neutrosophic open 𝑛𝑡ℎ -power set, pairwise neutrosophic closed 𝑛𝑡ℎ -power set, as well as, the 

closures and the interiors are defined with their properties. Many of relations for these concepts have 

been introduced. 

Keywords: 𝑛𝑡ℎ -power set 𝑃𝑛(𝑋) ; Neutrosophic SuperHyper Topological Spaces (NSHTSs); 

Neutrosophic SuperHyper Bi-Topological Spaces (NSHBi-TSs). 

 

Introduction.  

The concepts of the neutrosophic 𝑛𝑡ℎ-power set of a set, SuperHyperGraph and Pliothogenic 

n-SuperHyperGraph, SuperHyperAlgebra, n-ary (classical-/Neutro-/Anti-) HyperAlgebra have been 

firstly introduced by the father of neutrosophic theory F. Smarandache in 2016 [4]. As the 

introduction for  Neutrosophic SuperHyper Topological Spaces which is until yet is fathomless 

branch of science, in this section we recalling the fundamental definitions of the neutrosophic logic 

with preliminaries of related  𝑛𝑡ℎ-power set of a set. There is no doubt that the essential theory of 

neutrosophic was introduced and built by F. Smarandache in 1995 [5,6]. Any mathematician who 

tracking the trace of this knowledge will easily deduce that the neutrosophic theory was rapidly and 

broadly radiated through Neutrosophic Sets and Systems journal, and International Journal of 

https://orcid.org/0000-0002-0968-5611
mailto:dr.huda-ismael@uotelafer.edu.iq
mailto:gncmatematik@hotmail.com
mailto:moslmnooh1993@gmail.com
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Neutrosophic Science, these two journals are very active and reputed journals indexed by dozens of 

repositories, encyclopedias, and identifications' websites especially Scopus database. 

This manuscript has been organized as follow: 

The authors present some basic preliminaries in section 1, while section 2 has been dedicated 

to submit a new structure of neutrosophic topology called Neutrosophic SuperHyper 

Topological Spaces, in this section and for the first time, this type of topology was discussed in details. 

The main core of this article is in section 3 which is contain definitions, theorems, and corollaries 

covered the new subject that introduced firstly in this paper which is named Neutrosophic 

SuperHyper Bi-Topological Spaces. The last section is the conclusion section. 

 

1. Preliminaries 

1.1 System of Sub-System of Sub-Sub-System and so on [1] 

A system may be a set, space, organization, association, team, city, region, country, etc. One consider 

both: the static and dynamic systems. 

With respect to various criteria, such as: political, religious, economic, military, educational, sportive, 

touristic, industrial, agricultural, etc. 

A system 𝑆 is made up of several sub-systems 𝑆1, 𝑆2, … , 𝑆𝑝, for integer 𝑝 ≥ 1; then each su-system 

𝑆𝑖, for 𝑖 ∈ {1,2, … , 𝑝} is composed of many sub-sub-systems 𝑆𝑖1 , 𝑆𝑖2, … , 𝑆𝑖𝑝𝑖
, for integer 𝑝𝑖 ≥ 1; then 

each sub-sub-systems 𝑆𝑖𝑗 , for 𝑗 ∈ {1,2, … , 𝑝𝑖} is composed sub-sub-sub-systems 𝑆𝑖𝑗1, 𝑆𝑖𝑗2 , … , 𝑆𝑖𝑗𝑝𝑗
, for 

integers 𝑝𝑗; and so on. 

The following example of systems made of Sub-Sub-Sub-Systems (four levels) 

i) Using a Tree-Graph Representation, one has: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Level 1 

Level 2 

Level 3 

Level 4 

𝑆 

𝑆1 
𝑆2 𝑆3 

𝑆11 𝑆12 𝑆13 

𝑆121 𝑆122 

𝑆21 𝑆22 
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ii) Using a Geometric Representation, one has: 

 

 

 

 

 

 

 

 

 

iii) Using an Algebraic Representation through pairs of braces {}, one has: 

𝑃0(𝑆) = 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑙} 

1 level of pairs of braces 

 

 

 

 

Level 1 

𝑃1(𝑆) = {{𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, {𝑓, 𝑔, ℎ}, {𝑙}} 

 

2 level of pairs of braces 

i.e. a pair of braces {} inside, another 

pair of braces {}, or {… {…} ...} 

 

 

 

 

2 level of closed curves 

 

Level 2 

𝑃2(𝑆)  = 𝑃(𝑃(𝑆))

= {{{𝑎}, {𝑏, 𝑐, 𝑑}, {𝑒}}, {{𝑓}, {𝑔, ℎ}}, {𝑙}} 

 

 

3 levels of pairs of braces 

 

 

 

 

 

 

3 level of closed curves 

 

 

 

Level 3 

 

 

𝑃3(𝑆)  = 𝑃(𝑃2(𝑆))

= {{{𝑎}, {𝑏, 𝑐}, {𝑑}, {𝑒}}, {{𝑓}, {𝑔, ℎ}}, {𝑙}} 

 

 

 

 

 

4 levels of pairs of braces 

 

 

 

 

 

 

 

4 level of closed curves 
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1.2 Definition of nth -Power of a set [1]: 

The 𝑛𝑡ℎ  -Power of a set was firstly introduced by F. Smarandache at (2016) [4] by: 

𝑃𝑛(𝑆) as the 𝑛𝑡ℎ -PowerSet of the set 𝑆, for integer 𝑛 ≥ 1, is recursively defined as: 

𝑃2(𝑆) = 𝑃(𝑃(𝑆)) , 𝑃3(S) = 𝑃 (𝑃(𝑃(𝑆))), …, 𝑃𝑛(𝑆) = 𝑃(𝑃𝑛−1(𝑆)) , where 𝑃0(𝑆) = 𝑆 , 𝑎𝑛𝑑 𝑃1(𝑆) =

𝑃(𝑆), i.e. 𝑃0(𝑆) ⊂ 𝑃1(𝑆) ⊂ 𝑃2(𝑆) ⊂ ⋯ ⊂ 𝑃𝑛−1(𝑆) ⊂ 𝑃𝑛(𝑆). 

The 𝑛𝑡ℎ -PowerSet of a Set is better reflect for our complex reality, since a set 𝑆 ( that may represent 

a group, a society, a country, a continent, etc.) of elements (such as: people, objects, and in general 

any items) is organized onto subsets 𝑃(𝑆), which on their turns are also organized onto subsets of 

subsets, and so on, that is our world. 

 

1.3 Example 

Suppose that the set of the grandparents represents the power set 𝑃2(𝑆) = 𝑃(𝑃(𝑆)), then the first 

offspring is the parents themselves which can be regarded as the power set 𝑃(𝑆), and the second 

offspring is the non-empty set 𝑃0(𝑆) = 𝑆, i.e. 𝑆 = 𝑃0(𝑆) ⊂ 𝑃1(𝑆) ⊂ 𝑃2(𝑆). 

The following medical case study would be appropriate to demonstrate the importance of the power 

set concept: 

There are many diseases and conditions that can be passed on through genes. Some of these 

diseases include Down syndrome, hemophilia, hypertension, sickle cell anemia, and cystic fibrosis. 

Most genetic diseases are a combination of mutations in multiple genes, often in combination with 

environmental factors. There are three groups of genetic diseases, each with their own 

causes: monogenetic diseases, multifactorial inherited diseases, and chromosomal abnormalities.  

 The couple of husband can be represented as PowerSet 𝑃(𝑆) , it is important to 

know what 𝑃(𝑆) have inherited a genetic disease from their parents  (i.e. represented the non-empty 

set 𝑃0(𝑆) = 𝑆  as grandparents) and to remember that the above mentioned genetic diseases can 

be passed on to their descendants (i.e. the offspring which is mathematically denoted by the power 

set 𝑃2(𝑆) = 𝑃(𝑃(𝑆))  . If 𝑆 & 𝑃(𝑆)  are aware of possible diseases that can be inherited to 𝑃(𝑆)&  

𝑃2(𝑆) respectively , contact a specialist and see what 𝑆 & 𝑃(𝑆) can do to help 𝑃(𝑆)&  𝑃2(𝑆) and avoid 

serious problems later. By working together with the help of family and doctor, the health risks can 

be avoided instead of taking their toll later. 

 

1.4 Neutrosophic HyperOperation and Neutrosophic HyperStructures 

[2]: 

In the classical HyperOperation and classical HyperStructures, the empty-set ∅ does not belong 

to the power set, (i.e. 𝑃∗(𝐻) = 𝑃(𝐻)/{∅}) . Nonetheless, in the real world we encounter many 

situations when HyperOperation # is indeterminate, for example 𝑎 # 𝑏 = ∅  ( unknown, or 

undefined), or partially indeterminate, for example: 𝑎 # 𝑏 = { [0.2, 0.3], ∅}. In our everyday life, there 
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are many more operations and lows that have some degrees of indeterminacy (vagueness, 

unclearness, unknowingness, contradiction, etc.), than those that are totally determined. That’s why 

in 2016 the scientists F. Smarandache have extended the classical HyperOperation to the 

Neutrosophic HyperOperation, by taking the whole power 𝑃(𝐻) ( that includes the empty-set ∅ as 

well), instead of . 𝑃∗(𝐻)(that does not include the empty-set ∅), as follow. 

 

1.4.1 Definition of Neutrosophic HyperOperation: 

Let 𝑈 be a universe of discourse and 𝐻 be a non-empty set, 𝐻 ⊂ 𝑈. 

A Neutrosophic Binary HyperOperation #2 is defined as follows: 

#2: 𝐻2 → 𝑃(𝐻), where 𝐻 is a discrete or continuous set, and 𝑃(𝐻) is the powerset of 

𝐻 that includes the empty-set ∅. 

 

1.4.2 A Neutrosophic m-ary HyperOperation #𝒎 is defined as: 

#𝑚: 𝐻𝑚 → 𝑃(𝐻), for integer 𝑚 ≥ 1. Similarly, for 𝑚 = 1 one gets a Neutrosophic 

Unary HyperOperation. 

 

2. Neutrosophic SuperHyper Topological Spaces 

This section gives an original creativity neutrosophic mathematical structure for new notion 

named as Neutrosophic SuperHyper Topological Spaces (NSHTS) defined under a new kind of sets 

called neutrosophic 𝑛𝑡ℎ-power set 𝑃𝑛(𝑋). 

 

2.1 Definition  

Let 𝑋 be a non-empty set, 𝑃𝑛(𝑋) is the neutrosophic 𝑛𝑡ℎ-power set of a set 𝑋, for integer 𝑛 ≥ 1. A 

Neutrosophic SuperHyper Topological space on 𝑃𝑛(𝑋) is a subfamily 𝜏𝑛𝑒𝑢𝑡𝑟𝑜𝑡𝑜𝑝𝑜 of 𝑁(𝑃𝑛(𝑋)), and 

satisfying the following axioms: 

1- The neutrosophic universal 𝑛𝑡ℎ -power set 1𝑃𝑛(𝑋)  ,and the neutrosophic empty 𝑛𝑡ℎ -

power set 0𝑃𝑛(𝑋) both are belonging to 𝜏𝑛𝑒𝑢𝑡𝑟𝑜𝑡𝑜𝑝𝑜. 

2- Any arbitrary (finite on infinite) union of members of 𝜏𝑛𝑒𝑢𝑡𝑟𝑜𝑡𝑜𝑝𝑜 belong to 𝜏𝑛𝑒𝑢𝑡𝑟𝑜𝑡𝑜𝑝𝑜. 

3- 𝜏𝑛𝑒𝑢𝑡𝑟𝑜𝑡𝑜𝑝𝑜  is closed under finite intersection of members of 𝜏𝑛𝑒𝑢𝑡𝑟𝑜𝑡𝑜𝑝𝑜  (i.e. the 

intersection of any finite number of members of 𝜏𝑛𝑒𝑢𝑡𝑟𝑜𝑡𝑜𝑝𝑜 belongs to 𝜏𝑛𝑒𝑢𝑡𝑟𝑜𝑡𝑜𝑝𝑜 ). 

Then (𝜏𝑛𝑒𝑢𝑡𝑟𝑜𝑡𝑜𝑝𝑜 , 𝑃𝑛(𝑋)) is called Neutrosophic SuperHyper Topological Spaces (NSHTS). Because 

of the definition of (NSHTS) via neutrosophic 𝑛𝑡ℎ-power open sets that commonly  used in this 

manuscript, the family of neutrosophic sets 𝜏𝑛𝑒𝑢𝑡𝑟𝑜𝑡𝑜𝑝𝑜 of the 𝑛𝑡ℎ-power sets are commonly called a 

(NSHTS) on the neutrosophic 𝑛𝑡ℎ-power sets 𝑃𝑛(𝑋). 
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A subpowerset  𝑃𝑚1(𝐶) ⊆ 𝑃𝑚2(𝑋) for integers 𝑚1 ≤ 𝑚2 is to be closed in (𝜏𝑛𝑒𝑢𝑡𝑟𝑜𝑡𝑜𝑝𝑜 , 𝑃𝑛(𝑋)) if its 

complement 𝑃𝑚2(𝑋)/𝑃𝑚1(𝐶) is an open set. 

 

2.2 Numerical Example: 

What is the difference between 𝑃1(𝑥) & 𝑃2(𝑥) in the structured of the Neutrosophic SuperHyper 

topological spaces (𝜏𝑛𝑒𝑢𝑡𝑟𝑜𝑡𝑜𝑝𝑜 , 𝑃𝑛(𝑋)), and how it effects on the distribution of the internal elements? 

take a look on the following example: 

 

Suppose 𝑋 = {𝑎, 𝑏, 𝑐} with the following 

 𝑃1(𝑥) = {{𝑎, 𝑇 = 0.3, 𝐼 = 0.1, 𝐹 = 0.6}, {𝑏, 𝑐}
𝑇 = {0.7,0.4}

𝐼 = {0,0.3}

𝐹 = {0.4,0.3}
}, 

 

 𝑃2(𝑥) = {{𝑎, 𝑇 = 0.3, 𝐼 = 0.1, 𝐹 = 0.6}, {{𝑏}, {𝑐}}

𝑇 = {{0.7}, {0.4}}

𝐼 = {{0}, {0.3}}

𝐹 = {{0.4}, {0.3}}

}. 

For more details, we can see that In 𝑃1(𝑥) the element 𝑎  affected by its membership functions 

{0.3, 0.1, 0.6} directly, while the element(s) {𝑏, 𝑐} has (have) two kinds of affected (directed affect) 

and (indirect affect) as follow: 

- The element b has a separate direct affect by its membership functions {0.7,0,0.4}, and 

the element 𝑐 has a separate direct affect by its membership functions {0.4,0.3,0.3}. 

- The structured element {𝑏, 𝑐} have common indirect affected by their membership 

functions {0.7,0.4}, {0,0.3}, {0.4,0.3}. 

This is a very harmonic with the previous example (1.3) stated in section one, by expressing 

the elements 𝑎, 𝑏 as the parents (husband and wife), each one of them can affected separately by the 

inherited genes from their parents, also, they will crossing their parents’ gene to their offspring 

mutually and their descendants will be affected directly by their parents and indirectly by their 

grandparents. 

Then (𝜏𝑛𝑒𝑢𝑡𝑟𝑜𝑡𝑜𝑝𝑜 , 𝑃𝑛(𝑋)) is the Neutrosophic SuperHyper Topological spaces, where: 

𝜏𝑛𝑒𝑢𝑡𝑟𝑜𝑡𝑜𝑝𝑜 = {0𝑃𝑛(𝑋), 1𝑃𝑛(𝑋), 𝑃1(𝑥), 𝑃2(𝑥)} 

 

2.3 Definition 

Let 𝑃𝑛(𝑋) be a neutrosophic 𝑛𝑡ℎ-power set over a non-empty set 𝑋, the neutrosophic interior and 

the neutrosophic closure of 𝑃𝑛(𝑋) are respectively defined as: 

𝑖𝑛𝑡𝑛( 𝑃𝑛(𝑋)) =∪ {𝑃𝑚(𝑋): 𝑃𝑚(𝑋) ⊆ 𝑃𝑛(𝑋), 𝑃𝑚(𝑋) ∈ 𝜏𝑛𝑒𝑢𝑡𝑟𝑜𝑡𝑜𝑝𝑜} , this means that for the same 

collection of the neutrosophic 𝑛𝑡ℎ -power set 𝑃𝑛(𝑋) , all 𝑃𝑚(𝑋)  given that 𝑚 ≤ 𝑛  regarded as 

interior for 𝑃𝑛(𝑋). 
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𝑐𝑙𝑛(𝑃𝑛(𝑋)) =∩ {𝑃ℎ(𝑋): 𝑃𝑛(𝑋) ⊆ 𝑃ℎ(𝑋), (𝑃ℎ(𝑋))𝑐 ∈ 𝜏𝑛𝑒𝑢𝑡𝑟𝑜𝑡𝑜𝑝𝑜}. 

 

2.4 Definition 

The following mathematical phrases are true for any two neutrosophic 𝑛1𝑡ℎ -power  set 

𝑃𝑛1(𝑌1)  and 𝑛2𝑡ℎ -power  set 𝑃𝑛2(𝑌2)  on the neutrosophic 𝑛𝑡ℎ -power set 𝑃𝑛(𝑋) , given that 

𝑛1, 𝑛2 ≤ 𝑛, and that there is no restrictions on the relation between 𝑛1 𝑎𝑛𝑑 𝑛2 : 

1- 𝑇𝑃𝑛1(𝑌1)({𝑥}) ≤ 𝑇𝑃𝑛2(𝑌2)({𝑥}), 𝐼𝑃𝑛1(𝑌1)({𝑥}) ≤ 𝐼𝑃𝑛2(𝑌2)({𝑥}), 𝑎𝑛𝑑 𝐹𝑃𝑛1(𝑌1)({𝑥}) ≥

𝐹𝑃𝑛2(𝑌2)({𝑥}), for integers 𝑛1, 𝑛2 ≥ 1, and for all {𝑥} ⊆ 𝑃𝑛(𝑋) iff 𝑃𝑛1(𝑌1) ⊆ 𝑃𝑛2(𝑌2). 

2- 𝑃𝑛1(𝑌1) ⊆ 𝑃𝑛2(𝑌2) and 𝑃𝑛2(𝑌2) ⊆ 𝑃𝑛1(𝑌1) iff 𝑃𝑛1(𝑌1) = 𝑃𝑛2(𝑌2), given that 𝑛1 = 𝑛2. 

3- 𝑃𝑛1(𝑌1) ∩ 𝑃𝑛2(𝑌2) = 

{〈{𝑥}, min{𝑇𝑃𝑛1(𝑌1)({𝑥}), 𝑇𝑃𝑛2(𝑌2)({𝑥})} , min{ 𝐼𝑃𝑛1(𝑌1)({𝑥}), 𝐼𝑃𝑛2(𝑌2)({𝑥})}, max{𝐹𝑃𝑛1(𝑌1)({𝑥}), 𝐹𝑃𝑛2(𝑌2)({𝑥})}〉

∶ {𝑥} ⊆ 𝑃𝑛(𝑋)} 

4- 𝑃𝑛1(𝑌1) ∪ 𝑃𝑛2(𝑌2) = 

{〈{𝑥}, max{𝑇𝑃𝑛1(𝑌1)({𝑥}), 𝑇𝑃𝑛2(𝑌2)({𝑥})} , max{ 𝐼𝑃𝑛1(𝑌1)({𝑥}), 𝐼𝑃𝑛2(𝑌2)({𝑥})}, min{𝐹𝑃𝑛1(𝑌1)({𝑥}), 𝐹𝑃𝑛2(𝑌2)({𝑥})}〉

∶ {𝑥} ⊆ 𝑃𝑛(𝑋)} 

In general, the union or the intersection of any arbitrary members of neutrosophic 𝑛𝑡ℎ-power set 

𝑃𝑛𝑖(𝑋)𝑖∈𝐼 are defined by: 

∩
𝑖 ∈ 𝐼

𝑃𝑛𝑖(𝑋) = {〈{𝑥}, inf {𝑇𝑃𝑛𝑖({𝑥})} , inf {𝐼𝑃𝑛𝑖({𝑥})} , sup {𝐹𝑃𝑛𝑖({𝑥})}〉 : {𝑥} ⊆ 𝑃𝑛(𝑋)}, 

∪
𝑖 ∈ 𝐼

𝑃𝑛𝑖(𝑋) = {〈{𝑥}, sup {𝑇𝑃𝑛𝑖({𝑥})} , sup {𝐼𝑃𝑛𝑖({𝑥})} , inf {𝐹𝑃𝑛𝑖({𝑥})}〉 : {𝑥} ⊆ 𝑃𝑛(𝑋)}. 

5- The neutrosophic 𝑛𝑡ℎ-power universal set 𝑃𝑛(𝑋) is denoted by 1𝑃𝑛(𝑋) ,and it is exist if 

and only if the following conditions are holding together: 

𝑇𝑃𝑛({𝑥}) = 1𝑃𝑛(𝑋), 𝐼𝑃𝑛({𝑥}) = 1𝑃𝑛(𝑋), 𝑎𝑛𝑑 𝐹𝑃𝑛({𝑥}) = 0𝑃𝑛(𝑋). 

6- The neutrosophic 𝑛𝑡ℎ-power empty set 𝑃𝑛(𝑋)  is denoted by 0𝑃𝑛(𝑋) , and it is exist if 

and only if the following conditions are holding together: 

𝑇𝑃𝑛({𝑥}) = 0𝑃𝑛(𝑋), 𝐼𝑃𝑛({𝑥}) = 0𝑃𝑛(𝑋), 𝑎𝑛𝑑 𝐹𝑃𝑛({𝑥}) = 1𝑃𝑛(𝑋). 

7- Let 𝑃𝑛1(𝑌1) ⊆ 𝑃𝑛2(𝑌2) , given that 𝑛1 ≤ 𝑛2 , then the complementary of 𝑃𝑛1(𝑌1) 

concerning to 𝑃𝑛2(𝑌2) is defined as follow: 

𝑃𝑛1(𝑌1) ∖ 𝑃𝑛2(𝑌2) = {〈|𝑇𝑃𝑛1(𝑌1)({𝑥}) − 𝑇𝑃𝑛2(𝑌2)({𝑥})|, |𝐼𝑃𝑛1(𝑌1)({𝑥}) −

𝐼𝑃𝑛2(𝑌2)({𝑥})|, 1𝑃𝑛(𝑋) − |𝐹𝑃𝑛1(𝑌1)({𝑥}) − 𝐹𝑃𝑛2(𝑌2)({𝑥})|〉}. 

8- Clearly, the neutrosophic complement of 1𝑃𝑛(𝑋) and 0𝑃𝑛(𝑋) are defined as: 

(1𝑃𝑛(𝑋))𝑐 = 〈𝑇𝑃𝑛({𝑥}) = 0𝑃𝑛(𝑋), 𝐼𝑃𝑛({𝑥}) = 0𝑃𝑛(𝑋), 𝐹𝑃𝑛({𝑥}) = 1𝑃𝑛(𝑋)〉 = 0𝑃𝑛(𝑋), 

(0𝑃𝑛(𝑋))𝑐 = 〈𝑇𝑃𝑛({𝑥}) = 1𝑃𝑛(𝑋), 𝐼𝑃𝑛({𝑥}) = 1𝑃𝑛(𝑋), 𝐹𝑃𝑛({𝑥}) = 0𝑃𝑛(𝑋)〉 = 1𝑃𝑛(𝑋). 
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2.5 Proposition  

Let 𝑃𝑛1(𝑋), 𝑃𝑛2(𝑋), 𝑃𝑛3(𝑋), 𝑎𝑛𝑑 𝑃𝑛4(𝑋)  ⊆ 𝑁(𝑃𝑛(𝑋))  without any restrictions on the 

relations between 𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑎𝑛𝑑 𝑛 , then the following mathematical statements are true: 

i) Let 𝑃𝑛1(𝑋) ⊆  𝑃𝑛2(𝑋), 𝑎𝑛𝑑 𝑃𝑛3(𝑋) ⊆  𝑃𝑛4(𝑋), given that 𝑛1 ≤ 𝑛2 , & 𝑛3 ≤ 𝑛4, this 

implies that 𝑃𝑛1(𝑋) ∩  𝑃𝑛3(𝑋) ⊆ 𝑃𝑛2(𝑋) ∩  𝑃𝑛4(𝑋), 

ii) (𝑃𝑛1(𝑋)𝑐)𝑐 = 𝑃𝑛1(𝑋), also if 𝑃𝑛2(𝑋)𝑐 ⊆ 𝑃𝑛1(𝑋)𝑐 ⟹ 𝑃𝑛1(𝑋) ⊆  𝑃𝑛2(𝑋), 

iii) (𝑃𝑛1(𝑋) ∩  𝑃𝑛2(𝑋))𝑐 = 𝑃𝑛1(𝑋)𝑐 ∪  𝑃𝑛2(𝑋)𝑐, 

iv) (𝑃𝑛1(𝑋) ∪  𝑃𝑛2(𝑋))𝑐 = 𝑃𝑛1(𝑋)𝑐 ∩  𝑃𝑛2(𝑋)𝑐. 

 

2.6 Definition 

Let 𝑋 be a non-empty set, 𝑃𝑛(𝑋) is the 𝑛𝑡ℎ-power neutrosophic set of a set 𝑋, for integer 

𝑛 ≥ 1. If 𝛼, 𝛽, 𝛾 be real standard or non-standard subsets of ] 0− , 1+ [ , then the neutrosophic 𝑛𝑡ℎ-

power set 𝑃𝑛(𝑥𝛼,𝛽,𝛾) is called a neutrosophic 𝑛𝑡ℎ- power point, and it is defined by: 

𝑃𝑛(𝑥𝛼,𝛽,𝛾(𝑦)) = {
 〈𝛼𝑃𝑛(𝑥), 𝛽𝑃𝑛(𝑥), 𝛾𝑃𝑛(𝑥)〉,                   𝑖𝑓 𝑃𝑛(𝑥) = 𝑃𝑛(𝑦)

〈0𝑃𝑛(𝑥), 0𝑃𝑛(𝑥), 1𝑃𝑛(𝑥)〉,                   𝑖𝑓 𝑃𝑛(𝑥) ≠ 𝑃𝑛(𝑦) 
 

For 𝑥, 𝑦 ∈ 𝑋, 𝑎𝑛𝑑 𝑃𝑛(𝑥𝛼,𝛽,𝛾), 𝑃𝑛(𝑦) ⊆ 𝑃𝑛(𝑋), here  𝑃𝑛(𝑦) is called the support of 𝑃𝑛(𝑥𝛼,𝛽,𝛾). 

 

2.7 Definition  

Let 𝑃𝑛1(𝑋) ∈ 𝑁(𝑃𝑛(𝑋)) , the belonging operation of the neutrosophic 𝑛𝑡ℎ - power point 

𝑃𝑛(𝑥𝛼,𝛽,𝛾)  to 𝑃𝑛1(𝑋)  (i.e. 𝑃𝑛(𝑥𝛼,𝛽,𝛾) ∈ 𝑃𝑛1(𝑋)  ) is satisfied if and only if 𝑇𝑃𝑛1({𝑥}) ≥ 𝛼, 𝐼𝑃𝑛1({𝑥}) ≥

𝛽, 𝐹𝑃𝑛1({𝑥}) ≤ 𝛾.  

 

2.8 Definition 

A sub-collection 𝜏𝑛
∗  of neutrosophic 𝑛𝑡ℎ- power set 𝑃𝑛(𝑋) on a non-empty set 𝑋 is said to be 

Neutrosophic SuperHyper Supra Topological Space on 𝑋 if the 𝑛𝑡ℎ- power sets 0𝑃𝑛(𝑋), 1𝑃𝑛(𝑋) ∈ 𝜏𝑛
∗  , 

and 
∞           

∪ 𝑃𝑛𝑖(𝑋) ∈ 𝜏𝑛
∗

 𝑖 ∈ 𝐼            
 for {𝑃𝑛𝑖(𝑋)}𝑖=1

∞ ∈ 𝜏𝑛
∗  . Then (𝜏𝑛

∗ , 𝑃𝑛(𝑋) )  is called Neutrosophic SuperHyper 

Supra Topological Space on 𝑋. 

 

3 Neutrosophic SuperHyper Bi-Topological Spaces 

This section contains new concepts presents for the first time linking the concept of the 

neutrosophic 𝑛𝑡ℎ- power sets with the traditional neutrosophic bi-topological spaces. 
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3.3 Definition 

Let ( 𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝑃𝑛(𝑋)), 𝑎𝑛𝑑 (𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 , 𝑃𝑛(𝑋))  be two different Neutrosophic SuperHyper 

topological spaces on 𝑋 . Then (𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 , 𝑃𝑛(𝑋)) is called Neutrosophic SuperHyper Bi-

Topological space (NSHBI-TS). 

 

3.4 Definition 

Let (𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 , 𝑃𝑛(𝑋)) be a (NSHBI-TS). A collection of a neutrosophic 𝑛𝑡ℎ- power 

set 𝑁 = {〈{𝑥}: 𝑇𝑃𝑛({𝑥}), 𝐼𝑃𝑛({𝑥}), 𝐹𝑃𝑛({𝑥})〉: {𝑥} ⊆ 𝑃𝑛(𝑋)}  over 𝑃𝑛(𝑋)  is said to be a pairwise 

neutrosophic 𝑛𝑡ℎ- power open set in (𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 , 𝑃𝑛(𝑋)) if there exist a neutrosophic 𝑛𝑡ℎ- 

power open set 𝑁1 = {〈{𝑥}: 𝑇𝑃𝑛1({𝑥}), 𝐼𝑃𝑛1({𝑥}), 𝐹𝑃𝑛1({𝑥})〉: {𝑥} ⊆ 𝑃𝑛(𝑋)} in 𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 and a neutrosophic 

𝑛𝑡ℎ- power open set 𝑁2 = {〈{𝑥}: 𝑇𝑃𝑛2({𝑥}), 𝐼𝑃𝑛2({𝑥}), 𝐹𝑃𝑛2({𝑥})〉: {𝑥} ⊆ 𝑃𝑛(𝑋)} in 𝜏2
2𝑛𝑑𝑝𝑎𝑖𝑟  such that 𝑁 =

𝑁1 ∪ 𝑁2 = {〈{𝑥},   𝑇𝑃𝑛({𝑥}) = max{ 𝑇𝑃𝑛1({𝑥}), 𝑇𝑃𝑛2({𝑥})}, 𝐼𝑃𝑛({𝑥}) = max{𝐼𝑃𝑛1({𝑥}), 𝐼𝑃𝑛2({𝑥})}, 𝐹𝑃𝑛({𝑥}) =

 min {𝐹𝑃𝑛1({𝑥}), 𝐹𝑃𝑛2({𝑥})}〉: {𝑥} ⊆ 𝑃𝑛(𝑋)}. 

 

3.5 Definition 

Let (𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 , 𝑃𝑛(𝑋)) be a (SHNBI-TS). A collection of a neutrosophic 𝑛𝑡ℎ- power 

set 𝐶 = {〈{𝑥}: 𝑇𝑃𝑐({𝑥}), 𝐼𝑃𝑐({𝑥}), 𝐹𝑃𝑐({𝑥})〉: {𝑥} ⊆ 𝑃𝑛(𝑋)} over 𝑃𝑛(𝑋) is said to be a pairwise neutrosophic 

𝑛𝑡ℎ - power closed set in (𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 , 𝑃𝑛(𝑋)) if its neutrosophic complement is a pairwise 

neutrosophic 𝑛𝑡ℎ- power open set in (𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 , 𝑃𝑛(𝑋)). Clearly, a neutrosophic 𝑛𝑡ℎ- power 

set 𝐶  over 𝑃𝑛(𝑋) is a pairwise neutrosophic 𝑛𝑡ℎ- power closed set in (𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 , 𝑃𝑛(𝑋))  

if there exist a neutrosophic 𝑛𝑡ℎ- power closed set 𝐶1 = {〈{𝑥}: 𝑇𝑃𝑐1({𝑥}), 𝐼𝑃𝑐1({𝑥}), 𝐹𝑃𝑐1({𝑥})〉: {𝑥} ⊆ 𝑃𝑛(𝑋)} 

in (𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟)𝑐 ,and a neutrosophic 𝑛𝑡ℎ- power closed set 𝐶2 = {〈{𝑥}: 𝑇𝑃𝑐2({𝑥}), 𝐼𝑃𝑐2({𝑥}), 𝐹𝑃𝑐2({𝑥})〉: {𝑥} ⊆

𝑃𝑛(𝑋)}  in (𝜏2
2𝑛𝑑𝑝𝑎𝑖𝑟)𝑐  such that 𝐶 = 𝐶1 ∩ 𝐶2 = {〈{𝑥},   𝑇𝑃𝑐({𝑥}) = min{ 𝑇𝑃𝑐1({𝑥}), 𝑇𝑃𝑐2({𝑥})},

𝐼𝑃𝑐({𝑥}) = min{𝐼𝑃𝑐1({𝑥}), 𝐼𝑃𝑐2({𝑥})}, 𝐹𝑃𝑐({𝑥}) = max {𝐹𝑃𝑐1({𝑥}), 𝐹𝑃𝑐2({𝑥})}〉: {𝑥} ⊆ 𝑃𝑛(𝑋)} . Where (𝜏𝑖
𝑖𝑝𝑎𝑖𝑟)𝑐 =

{(𝑁)𝑐 ⊆ 𝑁(𝑃𝑛(𝑋)): 𝑁 ⊆ 𝜏𝑖
𝑖𝑝𝑎𝑖𝑟 , 𝑖 = 1𝑠𝑡, 2𝑛𝑑 . The family of all pairwise neutrosophic 𝑛𝑡ℎ - power 

open/closed sets in (𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 , 𝑃𝑛(𝑋))  is denoted by PN 𝑛𝑡ℎ POS in 

(𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 , 𝑃𝑛(𝑋)) / PN𝑛𝑡ℎPCS in (𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 , 𝑃𝑛(𝑋)), respectively. 

 

3.6 Theorem 

Let (𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 , 𝑃𝑛(𝑋)) be Neutrosophic SuperHyper Bi-Topological space. Then, 

1.  0𝑃𝑛(𝑥), 𝑎𝑛𝑑 1𝑃𝑛(𝑥) are pairwise neutrosophic 𝑛𝑡ℎ- power open/closed sets. 

2. An arbitrary neutrosophic union of pairwise neutrosophic 𝑛𝑡ℎ- power open sets 

is a pairwise neutrosophic 𝑛𝑡ℎ- power open set. 

3. An arbitrary neutrosophic intersection of pairwise neutrosophic 𝑛𝑡ℎ - power 

closed sets is a pairwise neutrosophic 𝑛𝑡ℎ- power closed set. 
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Proof: 

1. Let  0𝑃𝑛1(𝑥), 0𝑃𝑛2(𝑥) ⊆  𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟  respectively, and 𝑛1 + 𝑛2 = 𝑛 , 

since 0𝑃𝑛1(𝑥)⋃0𝑃𝑛2(𝑥) = 0𝑃𝑛(𝑥) , hence 0𝑃𝑛(𝑥)  is a PN 𝑛𝑡ℎ POS in 

(𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 , 𝑃𝑛(𝑋)) . Similarly, 1𝑃𝑛(𝑥)  is a PN 𝑛𝑡ℎ PCS 

in(𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 , 𝑃𝑛(𝑋)). 

2. Suppose {𝑁𝑖 = 〈{𝑥}: 𝑇𝑃𝑛𝑖({𝑥}), 𝐼𝑃𝑛𝑖({𝑥}), 𝐹𝑃𝑛𝑖({𝑥})〉: 𝑖 ∈ 𝐼} ⊆

PN𝑛𝑡ℎPOS in (𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 , 𝑃𝑛(𝑋)).  Then each 𝑁𝑖  is a pairwise 

neutrosophic 𝑛𝑡ℎ power open set for all 𝑖 ∈ 𝐼 , this implies that there exist 

𝑁𝑖
1 ∈ 𝜏1

1𝑠𝑡𝑝𝑎𝑖𝑟 and 𝑁𝑖
2 ∈ 𝜏2

2𝑛𝑑𝑡𝑝𝑎𝑖𝑟  such that 𝑁𝑖 = 𝑁𝑖
1 ∪ 𝑁𝑖

2  for all 𝑖 ∈ 𝐼 

which implies that  . 

∪ 𝑁𝑖

𝑖 ∈ 𝐼
=

∪
𝑖 ∈ 𝐼

 [𝑁𝑖
1 ∪ 𝑁𝑖

2] = [∪ 𝑁𝑖
1

𝑖 ∈ 𝐼
] ∪ [∪ 𝑁𝑖

2

𝑖 ∈ 𝐼
] 

 

Now, since 𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟  and 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟  are both Neutrosophic SuperHyper 

Topological Spaces on the neutrosophic 𝑛𝑡ℎ  power set 𝑃𝑛(𝑋) , then 

[∪ 𝑁𝑖
1

𝑖 ∈ 𝐼
] ⊆ 𝜏1

1𝑠𝑡𝑝𝑎𝑖𝑟  , and [∪ 𝑁𝑖
2

𝑖 ∈ 𝐼
] ⊆ 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 . Therefore, 
∪ 𝑁𝑖

 𝑖 ∈ 𝐼   
is a pairwise 

neutrosophic 𝑛𝑡ℎ- power open set. 

 

3. It is immediate from the definition (3.3). 

 

3.7 Corollary  

Let (𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 , 𝑃𝑛(𝑋)) be Neutrosophic SuperHyper Bi-Topological space. Then, the family 

of all pairwise neutrosophic 𝑛𝑡ℎ- power open sets is a Neutrosophic SuperHyper Supra Topological 

Space (NSHSTS) on 𝑋. This (NSHSTS) is denoted by 𝜏12
𝑠𝑢𝑝𝑟𝑎. 

 

 

3.8 Theorem 

Let (𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 , 𝑃𝑛(𝑋)) be Neutrosophic SuperHyper Bi-Topological space. Then, 

1. Every 𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 - neutrosophic 𝑛𝑡ℎ - power open set is a pairwise 

neutrosophic 𝑛𝑡ℎ- power open set, i.e. 𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 ∪ 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 ⊆ 𝜏12
𝑠𝑢𝑝𝑟𝑎. 

2. Every 𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 - neutrosophic 𝑛𝑡ℎ - power closed set is a pairwise 

neutrosophic 𝑛𝑡ℎ- power closed set, i.e. (𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟)𝑐 ∪ (𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟)𝑐 ⊆ (𝜏12
𝑠𝑢𝑝𝑟𝑎

)𝑐. 

3. If 𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 ⊆ 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 , then 𝜏12
𝑠𝑢𝑝𝑟𝑎

= 𝜏2
2𝑛𝑑𝑝𝑎𝑖𝑟  and (𝜏12

𝑠𝑢𝑝𝑟𝑎
)𝑐 = (𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟)𝑐. 

Proof. Straightforward. 
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3.9 Definition 

Let (𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 , 𝑃𝑛(𝑋))  be Neutrosophic SuperHyper Bi-Topological space, and 

𝑃𝑛(𝑋) ∈ 𝑁(𝑃𝑛(𝑋)) .The pairwise neutrosophic closure of 𝑃𝑛(𝑋) , denoted by 𝑐𝑙𝑝
𝑛(𝑃𝑛(𝑋))  , is the 

neutrosophic intersection of all pairwise neutrosophic closed supra 𝑛𝑡ℎ- power sets of  𝑃𝑛(𝑋), i.e.,  

𝑐𝑙𝑝
𝑛(𝑃𝑛(𝑋)) =∩ {𝑃𝑚(𝑋) ∈ (𝜏12

𝑠𝑢𝑝𝑟𝑎
)

𝑐
: 𝑃𝑛(𝑋) ⊆ 𝑃𝑚(𝑋)} . It is clear that 𝑐𝑙𝑝

𝑛(𝑃𝑛(𝑋))  is the smallest 

pairwise neutrosophic 𝑛𝑡ℎ- power closed set containing 𝑃𝑛(𝑋).  

 

3.10 Theorem 

Let (𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 , 𝑃𝑛(𝑋))  be Neutrosophic SuperHyper Bi-Topological space, and 

𝑃𝑛1(𝑋), 𝑃𝑛2(𝑋) ∈ 𝑁(𝑃𝑛(𝑋)) , without restrictions on the relations between 𝑛1, 𝑛2, 𝑛 . Then, the 

following mathematical statements are true: 

1. 𝑐𝑙𝑝
𝑛(0𝑃𝑛𝑖(𝑥)) = 0𝑃𝑛𝑖(𝑥),  and 𝑐𝑙𝑝

𝑛(1𝑃𝑛𝑖(𝑥)) = 1𝑃𝑛𝑖(𝑥), 𝑖 = 1,2. 

2. 𝑃𝑛(𝑋) ⊆ 𝑐𝑙𝑝
𝑛(𝑃𝑛(𝑋)). 

3. 𝑃𝑛(𝑋)  is a pairwise neutrosophic 𝑛𝑡ℎ - power closed set if and only if 

𝑐𝑙𝑝
𝑛(𝑃𝑛(𝑋)) = 𝑃𝑛(𝑋) . 

4. 𝑃𝑛1(𝑋) ⊆  𝑃𝑛2(𝑋) ⟹  𝑐𝑙𝑝
𝑛(𝑃𝑛1(𝑋)) ⊆  𝑐𝑙𝑝

𝑛(𝑃𝑛2(𝑋)). 

5. 𝑐𝑙𝑝
𝑛(𝑃𝑛1(𝑋)) ∪  𝑐𝑙𝑝

𝑛(𝑃𝑛2(𝑋)) ⊆  𝑐𝑙𝑝
𝑛(𝑃𝑛1(𝑋) ∪ 𝑃𝑛2(𝑋)). 

6. 𝑐𝑙𝑝
𝑛  [ 𝑐𝑙𝑝

𝑛(𝑃𝑛𝑖(𝑋)] = 𝑐𝑙𝑝
𝑛(𝑃𝑛𝑖(𝑋), i.e., 𝑐𝑙𝑝

𝑛(𝑃𝑛𝑖(𝑋) is a pairwise neutrosophic 𝑛𝑡ℎ - 

power closed set. 

Proof. Straightforward. 

3.11 Theorem 

Let (𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 , 𝑃𝑛(𝑋))  be Neutrosophic SuperHyper Bi-Topological space, and 𝑃𝑛1(𝑋) ∈

𝑁(𝑃𝑛(𝑋)). Then, 

𝑃𝑛1(𝑥𝛼,𝛽,𝛾) ∈ 𝑐𝑙𝑝
𝑛(𝑃𝑛1(𝑋)) ⟺ 𝑈 (𝑃𝑛1(𝑥𝛼,𝛽,𝛾)) ∩ 𝑃𝑛1(𝑋) ≠ 0𝑃𝑛1(𝑥), ∀ 𝑈 (𝑃𝑛1(𝑥𝛼,𝛽,𝛾)) ∈

𝜏12
𝑠𝑢𝑝𝑟𝑎

(𝑃𝑛1(𝑥𝛼,𝛽,𝛾)), 

Where 𝑈 (𝑃𝑛1(𝑥𝛼,𝛽,𝛾)) is any pairwise neutrosophic 𝑛𝑡ℎ- power open set contains 𝑃𝑛1(𝑥𝛼,𝛽,𝛾) , and 

𝜏12
𝑠𝑢𝑝𝑟𝑎

(𝑃𝑛1(𝑥𝛼,𝛽,𝛾)) is the family of all pairwise neutrosophic supra  𝑛𝑡ℎ- power open set contains 

𝑃𝑛1(𝑥𝛼,𝛽,𝛾). 

Proof: 

 Let 𝑃𝑛1(𝑥𝛼,𝛽,𝛾) ∈ 𝑐𝑙𝑝
𝑛(𝑃𝑛1(𝑋)) , and suppose that there exist 𝑈 (𝑃𝑛1(𝑥𝛼,𝛽,𝛾)) ∈ 𝜏12

𝑠𝑢𝑝𝑟𝑎
(𝑃𝑛1(𝑥𝛼,𝛽,𝛾)), 

such that 𝑈 (𝑃𝑛1(𝑥𝛼,𝛽,𝛾)) ∩ 𝑃𝑛1(𝑋) = 0𝑃𝑛1(𝑥). Then 𝑃𝑛1(𝑋) ⊆ ( 𝑈 (𝑃𝑛1(𝑥𝛼,𝛽,𝛾)))𝑐, thus 𝑐𝑙𝑝
𝑛(𝑃𝑛1(𝑋)) ⊆
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𝑐𝑙𝑝
𝑛 (𝑈 (𝑃𝑛1(𝑥𝛼,𝛽,𝛾)))

𝑐

= (𝑈 (𝑃𝑛1(𝑥𝛼,𝛽,𝛾)))𝑐  which implies that 𝑐𝑙𝑝
𝑛(𝑃𝑛1(𝑋)) ∩  𝑈 (𝑃𝑛1(𝑥𝛼,𝛽,𝛾)) =

0𝑃𝑛1(𝑥) , this is a contradiction. hence 𝑈 (𝑃𝑛1(𝑥𝛼,𝛽,𝛾)) ∩ 𝑃𝑛1(𝑋) ≠ 0𝑃𝑛1(𝑥). 

Conversely, assume that 𝑃𝑛1(𝑥𝛼,𝛽,𝛾) ∉ 𝑐𝑙𝑝
𝑛(𝑃𝑛1(𝑋)) , then 𝑃𝑛1(𝑥𝛼,𝛽,𝛾) ∈ (𝑐𝑙𝑝

𝑛(𝑃𝑛1(𝑋)))𝑐 . Thus, 

(𝑐𝑙𝑝
𝑛(𝑃𝑛1(𝑋)))𝑐 ∈ 𝜏12

𝑠𝑢𝑝𝑟𝑎
(𝑃𝑛1(𝑥𝛼,𝛽,𝛾)), therefore,  by hypothesis, (𝑐𝑙𝑝

𝑛(𝑃𝑛1(𝑋)))𝑐 ∩ 𝑃𝑛1(𝑋) ≠ 0𝑃𝑛1(𝑥) , 

this is a contradiction. Hence we get 𝑃𝑛1(𝑥𝛼,𝛽,𝛾) ∈ 𝑐𝑙𝑝
𝑛(𝑃𝑛1(𝑋)). 

 

3.12 Theorem 

Let (𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 , 𝑃𝑛(𝑋))  be Neutrosophic SuperHyper Bi-Topological space. A 

neutrosophic 𝑛𝑡ℎ- power set 𝑃𝑛1(𝑋) over 𝑃𝑛(𝑋) is a pairwise neutrosophic 𝑛𝑡ℎ- power closed set if 

and only if 𝑃𝑛1(𝑋) = 𝑐𝑙
𝜏1

1𝑠𝑡𝑝𝑎𝑖𝑟
𝑛 (𝑃𝑛1(𝑋)) ∩ 𝑐𝑙

𝜏2
2𝑛𝑑𝑝𝑎𝑖𝑟

𝑛 (𝑃𝑛1(𝑋)). 

Proof: 

Suppose that 𝑃𝑛1(𝑋)  is a pairwise neutrosophic 𝑛𝑡ℎ -power closed set and 𝑃𝑛1(𝑥𝛼,𝛽,𝛾) ∉

𝑃𝑛1(𝑋) . Then 𝑃𝑛1(𝑥𝛼,𝛽,𝛾) ∉ 𝑐𝑙𝑝
𝑛( 𝑃𝑛1(𝑋)) . Thus, by theorem (3.9), there exists 𝑈 (𝑃𝑛1(𝑥𝛼,𝛽,𝛾)) ∈

𝜏12
𝑠𝑢𝑝𝑟𝑎

(𝑃𝑛1(𝑥𝛼,𝛽,𝛾))  such that 𝑈 (𝑃𝑛1(𝑥𝛼,𝛽,𝛾)) ∩ 𝑃𝑛1(𝑋) = 0𝑃𝑛1(𝑥) . Again, since 𝑈 (𝑃𝑛1(𝑥𝛼,𝛽,𝛾)) ∈

𝜏12
𝑠𝑢𝑝𝑟𝑎

(𝑃𝑛1(𝑥𝛼,𝛽,𝛾)) , then there exists 𝑃𝑚1(𝑋) ∈ 𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟   and 𝑃𝑚2(𝑋) ∈ 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟  such that 

𝑈 (𝑃𝑛1(𝑥𝛼,𝛽,𝛾)) = 𝑃𝑚1(𝑋) ∪ 𝑃𝑚2(𝑋) . consequently, ( 𝑃𝑚1(𝑋) ∪ 𝑃𝑚2(𝑋)) ∩ 𝑃𝑛1(𝑋) = 0𝑃𝑛1(𝑥) , this 

implies that 𝑃𝑚1(𝑋) ∩ 𝑃𝑛1(𝑋) = 0𝑃𝑛1(𝑥) , and  𝑃𝑚2(𝑋) ∩ 𝑃𝑛1(𝑋) = 0𝑃𝑛1(𝑥) . Since 𝑃𝑛1(𝑥𝛼,𝛽,𝛾) ∈

𝑈 (𝑃𝑛1(𝑥𝛼,𝛽,𝛾)) , then either 𝑃𝑛1(𝑥𝛼,𝛽,𝛾) ∈ 𝑃𝑚1(𝑋)  or 𝑃𝑛1(𝑥𝛼,𝛽,𝛾) ∈ 𝑃𝑚2(𝑋) , this implies that either 

𝑃𝑛1(𝑥𝛼,𝛽,𝛾) ∉ 𝑐𝑙
𝜏1

1𝑠𝑡𝑝𝑎𝑖𝑟
𝑛 (𝑃𝑛1(𝑋))  or 𝑃𝑛1(𝑥𝛼,𝛽,𝛾) ∉ 𝑐𝑙

𝜏2
2𝑛𝑑𝑝𝑎𝑖𝑟

𝑛 (𝑃𝑛1(𝑋)) . Therefore, 𝑃𝑛1(𝑥𝛼,𝛽,𝛾) ∉

𝑐𝑙
𝜏1

1𝑠𝑡𝑝𝑎𝑖𝑟
𝑛 (𝑃𝑛1(𝑋)) ∩ 𝑐𝑙

𝜏2
2𝑛𝑑𝑝𝑎𝑖𝑟

𝑛 (𝑃𝑛1(𝑋)).  Thus, 𝑐𝑙
𝜏1

1𝑠𝑡𝑝𝑎𝑖𝑟
𝑛 (𝑃𝑛1(𝑋)) ∩ 𝑐𝑙

𝜏2
2𝑛𝑑𝑝𝑎𝑖𝑟

𝑛 (𝑃𝑛1(𝑋)) ⊆ 𝑃𝑛1(𝑋). On 

the other hand, we have 𝑃𝑛1(𝑋) ⊆ 𝑐𝑙
𝜏1

1𝑠𝑡𝑝𝑎𝑖𝑟
𝑛 (𝑃𝑛1(𝑋)) ∩ 𝑐𝑙

𝜏2
2𝑛𝑑𝑝𝑎𝑖𝑟

𝑛 (𝑃𝑛1(𝑋)) . Hence, 𝑃𝑛1(𝑋) =

𝑐𝑙
𝜏1

1𝑠𝑡𝑝𝑎𝑖𝑟
𝑛 (𝑃𝑛1(𝑋)) ∩ 𝑐𝑙

𝜏2
2𝑛𝑑𝑝𝑎𝑖𝑟

𝑛 (𝑃𝑛1(𝑋)). 

Conversely, suppose that 𝑃𝑛1(𝑋) = 𝑐𝑙
𝜏1

1𝑠𝑡𝑝𝑎𝑖𝑟
𝑛 (𝑃𝑛1(𝑋)) ∩ 𝑐𝑙

𝜏2
2𝑛𝑑𝑝𝑎𝑖𝑟

𝑛 (𝑃𝑛1(𝑋)) . Since, 

𝑐𝑙
𝜏1

1𝑠𝑡𝑝𝑎𝑖𝑟
𝑛 (𝑃𝑛1(𝑋))  is a neutrosophic 𝑛𝑡ℎ -power closed set in (𝜏1

1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝑃𝑛(𝑋)) , and 

𝑐𝑙
𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟
𝑛 (𝑃𝑛1(𝑋)) is a neutrosophic 𝑛𝑡ℎ -power closed set in (𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 , 𝑃𝑛(𝑋)), so, by definition 

(3.3), 𝑐𝑙
𝜏1

1𝑠𝑡𝑝𝑎𝑖𝑟
𝑛 (𝑃𝑛1(𝑋)) ∩ 𝑐𝑙

𝜏2
2𝑛𝑑𝑝𝑎𝑖𝑟

𝑛 (𝑃𝑛1(𝑋))  is a pairwise neutrosophic 𝑛𝑡ℎ - power closed set in 

(𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 , 𝑃𝑛(𝑋)), consequently, 𝑃𝑛1(𝑋) is a pairwise neutrosophic 𝑛𝑡ℎ- power closed set. 

 

3.13 Corollary 

Let (𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟 , 𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟 , 𝑃𝑛(𝑋)) be Neutrosophic SuperHyper Bi-Topological space. 

Then, 𝑐𝑙𝑝
𝑛(𝑃𝑛(𝑋)) = 𝑐𝑙

𝜏1
1𝑠𝑡𝑝𝑎𝑖𝑟

𝑛 (𝑃𝑛1(𝑋)) ∩ 𝑐𝑙
𝜏2

2𝑛𝑑𝑝𝑎𝑖𝑟
𝑛 (𝑃𝑛1(𝑋)), ∀ 𝑃𝑛1(𝑋) ∈ 𝑁(𝑃𝑛(𝑋)). 
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4 Conclusion 

The types of the topological spaces in neutrosophic theory are always changed 

depending upon the structure of the sets, in this article, the Neutrosophic SuperHyper 

Topological Spaces has been fathomed especially Neutrosophic SuperHyper Bi-Topological 

Spaces. The definitions of the neutrosophic interior and the neutrosophic closure of 𝑃𝑛(𝑋) 

have been presented. Also, the neutrosophic universal 𝑛𝑡ℎ -power set 𝑃𝑛(𝑋)  and the 

neutrosophic empty 𝑛𝑡ℎ-power set 𝑃𝑛(𝑋) were discussed. The union and the intersection 

operations have been defined. As well as, the authors presented pairwise neutrosophic 𝑛𝑡ℎ- 

power open set, pairwise neutrosophic closed 𝑛𝑡ℎ - power set, many of theorems, 

propositions and examples to support the new notion. 
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Abstract: The main focus of this article is to discuss the concept of neutrosophic sets, neutrosophic 

soft sets , neutrosophic soft matrices theory  and neutrosophic soft block matrix which are very 

useful and applicable in various situations involving uncertainties and imprecisions.  Here different 

types of neutrosophic soft block matrices are studied and some operations on it along with some 

associated properties are discussed in details. 
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1. Introduction 

In real life situations, most of the problems in economics, social science , environmental science 

and in many other cases information are vague, imprecise and insufficient. Fuzzy set [1], 

intuitionistic fuzzy set [2] etc are used as the tool to deal with such uncertainties. 

 

Later on Molodtsov[3], pointed out that these theories have their own difficulties and as such 

the novel concept of soft set theory was initiated. The theory of soft set has rich potential for solving 

problems in economics, social science and medical science etc. Maji .et.al [4, 5] have studied the 

theory of fuzzy soft set. Maji. et. al [6], have extended the theory of fuzzy soft set to intuitionistic 

fuzzy soft sets.   

 

Smarandhache [7], introduced the concept of neutrosiphic sets as a mathematical tool to deal 

with some situations involving impreciseness, inconsistencies and interminancy. It is expected that 

neutrosophic sets will produce more accurate result than those obtained by using fuzzy sets or 

intuitionistic fuzzy sets. Maji. et. al [8], have extended the theory of neutrosophic set to neutrosophic  

soft set. Maji. et. al [9] applied the theory of neutrosophic soft set in decision making process. 

 

In recent years several mathematicians have used this concept in different mathematical 

structures, which can be seen in the works of Deli et.al [10-12]. Later this very concept has been 

modified by Deli and Broumi [13] in developing the basic of neutrosophic soft matrices and its 

successful utilization in decision making process. The concept of intuitionistic neutrosophic sets was 

developed by Broumi and Smarandache [14] and some of its properties were discussed. Bera and 

Mahapatra [15] studied some algebraic structure of neutrosophic soft set. Various decision making 
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algorithms over neutrosophic soft set theory have been developed in the literature of neutrosophc 

set theory. Many researchers for example [16]have worked on applying neutrosophic sets invarious 

decision making processes. Many new development regarding neutrosophic sets and neutrosophic 

soft matrices are found in the works of [17-23] Neutrosophic soft block matrix is a neutrosophic soft 

matrix which is defined using smaller neutrosophic soft matrices. Some authors, as for example[24, 

25] have discussed neutrosophic soft block matrices. 

 

The main focus of this article is to deal with the concept of various types of neutrosophic soft 

block matrices and some operations on these matrices. The next section briefly introduces some 

definitions related to neutrosopphic set, neutrosophic soft set, neutrosophic soft matrix, 

neutrosophic soft block matrices and so on. Section 3 defines operations on neutrosophic soft 

matrices etc. Section 4 presents some special form of neutrosophic soft block matrices and some 

related properties.  

2. Preliminaries (proposed work with more details)  

Some basic definitions that are useful in subsequent sections of this article are discussed in this 

section. 

 

Definition 2.1: Neutrosophic sets (Smarandache, 2005) 

Let U be the universe of discourse, The neutrosophic set A on the universe of discourse U  is 

defined as  { ( ), ( ), ( ) : }A A AA T x I x F x x U    , where the characteristic functions 

, , : [0,1]T I F U   and  0 3T I F     ; T,I,F are neutrosophic components which defines 

the degree of membership, the degree of interminancy and the degree of non membership 

respectively. 

Definition 2.2: Neutrosophic soft set (Maji, 2013) 

Let U be an initial universe set and E is the set of parameters. Suppose P (U) denotes the collection of 

all neutrosophic subsets of U. Let A E . A pair (F, E) is called neutrosophic soft set over U where F 

is a mapping given by : ( )F E P U
 

Definition 2.3:  Neutrosophic soft Matrix (Deli.et.al, 2015) 

Let 1 2 3{ , , ,....... }mU u u u u  be the universe set and  1 2 3{ , , ,....... }nE x x x x   be the set of 

parameters. Let A E . The set (F, A) is a neutrosophic soft set over U. Then the subset of UXE is 

uniquely defined by {( , ) : , ( )}A AR u e e A u F e    which is a relation form of (F, E). Now the 

relation RA is characterized by truth membership function : [0,1]
ART U E   , interminancy 

membership function : [0,1]
ARI U E   and falsity membership function : [0,1]

ARF U E   
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where  ( , ) [0,1]
ART u e  , ( , ) [0,1]

ARI u e   and ( , ) [0,1]
ARF u e   indicates truthfulness, 

interminancy and falsity.
 

If 

=(TA(um,en), IA(um,en), FA(um,en)) and aij=(TA(ui,ej), IA(ui,ej), FA(ui,ej)) we can define a 

matrix 

11 12 1

21 22 2

1 2

...

...

: : : :

...

n

n

ij

m m mn

a a a

a a a
A

a a a

 
 
 
 
 
 

 

This is called neutrosophic soft matrix of order mxn corresponding to the neutrosophioc soft set 

(F,E) over U.

  

Definition 2.4: Triangular neutrosophic soft matrix 

Triangular neutrosophic soft matrix is a special type of square neutrosophic soft matrix. A square 

neutrosophic soft matrix is called lower triangular if all the entries (0,0,1)ija  for i j , i,j=1, 2, 

3,…..,n and upper triangular if (0,0,1)ija  for i j , i,j=1, 2, 3, ……,n. 

Definition 2.5: Toeplitz neutrosophic soft matrix 

Toeplitz neutrosophic soft matrix is a square neutrosophic soft matrix of the form  

11 11 11 12 12 12 13 13 13 14 14 14

21 21 21 11 11 11 21 21 21 13 13 13

31 31 31 21 21 21 11 11 11 21 21 21

41

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , )

(

A A A A A A A A A A A A

A A A A A A A A A A A A

A A A A A A A A A A A A

A

T I F T I F T I F T I F

T I F T I F T I F T I F
A

T I F T I F T I F T I F

T



41 41 31 31 31 21 21 21 11 11 11, , ) ( , , ) ( , , ) ( , , )A A A A A A A A A A AI F T I F T I F T I F

 
 
 
 
 
  

 

Definition 2.6:  Zero neutrosophic soft matrix 

Zero neutrosophic soft matrix is neutrosophic soft matrix in which all the entries are of the form 

(0,0,1). 

Definition 2.7: Tridiagonal neutrosophic soft matrix 

Neutrosophic soft  tridiagonal matrix is another special  neutrosophic soft matrix which has non 

zero entries in the lower diagonal, main diagonal and upper diagonal and all other entries being 

(0.0.1). That is a  Neutrosophic soft  tridiagonal matrix A has the form 

1 1

1 2 2

2 3 3

3 4

... 0

... 0

0

0 0

B C

A B C
A

A B C

A B

 
 
 
 
 
 

 where , ,i i iA B C  are non zero entries in the lower, main and upper 

diagonal respectively. 



Neutrosophic Sets and Systems, Vol. 51, 2022     49  

 

 

Mamoni Dhar, Some Basic Concepts of Neutrosophic Soft Block Matrices 

Definition 2.8:Neutrosofic soft block matrix ( Uma.et.al,2017 & Dhar, 2020) 

A neutrosophic soft block matrix or a partitioned matrix is a neutrosophic soft matrix  that is 

interpretated as having been broken into sections called blocks or submatrices. A neutrosophic soft 

block matrix can be visualized as the original neutrosophic soft matrix by drawing lines parallel to 

its rows and columns. These sub-matrices may be considered as the elements of the original 

matrices. Any neutrosophic soft matrix can be interpreted as a neutrosophic soft block matrix in one 

or more ways, with each interpretation defined by how its rows and columns are partitioned. 

For example  

 

11 11 11 12 12 12 13 13 13 14 14 14

21 21 21 22 22 22 23 23 23 24 24 24

31 31 31 32 32 32 33 33 33 34

( , , ) ( , , ) : ( , , ) ( , , )

... ... ... ...

( , , ) ( , , ) : ( , , ) ( , , )

( , , ) ( , , ) : ( , , ) ( ,

A A A A A A A A A A A A

A A A A A A A A A A A A

A A A A A A A A A A

T I F T I F T I F T I F

A

T I F T I F T I F T I F

T I F T I F T I F T



34 34, )A AI F

 
 
 
 
 
 
 
 

 

 The above neutrosophic soft matrix can be represented as   

11 12

21 22

P P
A

P P

 
  
 

 

where  

11 11 11 11 12 12 12

12 13 13 13 14 14 14

( , , ) ( , , )

( , , ) ( , , )

A A A A A A

A A A A A A

P T I F T I F

P T I F T I F

   

   

   

22 22 22

31

21 21 21

21

31 31 32 32 32

( , , ) ( , , )

( , , ) ( , , )

A A A A A A

A A A A A A

T I F T I F
P

T I F T I F

 
  
   , 

23 23
23 24 24

33 33 34 34
33 34

24

22

( , , ) ( , , )

( , , ) ( , , )

A A A A A A

A A A A A A

T I F T I F
P

T I F T I F

 
  
  

 

Then    

11 12

21 22

P P
A

P P

 
  
 

 is an example of neutrosophic soft  block matrix or neutrosophic soft partitioned 

matrix. 

So the neutrosophic soft matrix A is partitioned by the dotted lines dividing the neutrosophic soft 

matrix into neutrosophic soft sub-matrices 11P , 12P , 21P , 22P . The neutrosophic soft matrix A  can be 

partitioned in several ways. 

Definition 2.9: Square neutrosophic soft block matrix 
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If the number of rows and the number of columns of a neutrosophic soft blocks are equal then the 

matrix is said to be square neutrosophic soft block matrix. 

11 11 11 12 12 12 13 13 13 14 14 14 15 15 15 16 16 16

21 21 21 22 22 22 23 23 23 24 24 24 25 25 25

( , , ) ( , , ) : ( , , ) ( , , ) : ( , , ) ( , , )

( , , ) ( , , ) : ( , , ) ( , , ) : ( , , )

... ... .. ... ... ...

A A A A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A

T I F T I F T I F T I F T I F T I F

T I F T I F T I F T I F T I F

A 

25 25 25

33 33 33 34 34 34 35 35 35 36 36 3631 31 31 32 32 32

43 43 43 44 44 44 45 45 4541 41 41 42 42 42

( , , )

... ...

( , , ) ( , , ) : ( , , ) ( , , )( , , ) ( , , ) :

( , , ) ( , , ) : ( , ,( , , ) ( , , ) :

A A A

A A A A A A A A A A A AA A A A A A

A A A A A A A AA A A A A A

T I F

T I F T I F T I F T I FT I F T I F

T I F T I F T I FT I F T I F 46 46 46) ( , , )A A A AT I F

 
 
 
 
 
 
 
 

or  

11 12 13

21 22 23

A A A
A

A A A

 
  
 

 

 is a square fuzzy block matrix since all ijA ’s are square blocks. 

Definition 2.10: Rectangular neutrosophic soft block matrix 

If the number of rows and the number of columns of blocks are unequal then the matrix is said to be 

rectangular neutrosophic soft block matrix .For example  

11 11 11 12 12 12 13 13 13 14 14 14

21 21 21 22 22 22 23 23 23 24 24 24

31 31 31 32 32 32 33 33 33 34

( , , ) ( , , ) : ( , , ) ( , , )

... ... ... ...

( , , ) ( , , ) : ( , , ) ( , , )

( , , ) ( , , ) : ( , , ) ( ,

B B B B B B B B B B B B

B B B B B B B B B B B B

B B B B B B B B B B

T I F T I F T I F T I F

A

T I F T I F T I F T I F

T I F T I F T I F T



34 34, )B BI F

 
 
 
 
 
 
 
 

 

Is a rectangular neutrosophic soft block matrix. 

 

3. Operations on Neutrosophic Soft matrices 

3.1 Addition of neutrosophic soft matrices 

Let [( , , )]A A A

ij ij ijA T I F  , [( , , )]B B B

ij ij ijB T I F  be two neutrosophic soft matrices. Then the max-min 

product of the two neutrosophic soft matricesA and B is denoted as A B is defined as  

[max( , ),min( , ),min( , )]A B A B A B

ij ij ij ij ij ijA B T T I I F F   for all i and j. 

3.2 Max-min product of neutrosophic soft matrices 

Let [( , , )]A A A

ij ij ijA T I F  , [( , , )]B B B

ij ij ijB T I F  be two neutrosophic soft matrices. Then the max-min 

product of the two neutrosophic soft matricesA and B is denoted as AB is defined as  

[max min( , ),min max( , ),min max( , )]A B A B A B

ij ij ij ij ij ijAB T T I I F F  for all i and j. 

3.3 Transpose of neutrosophic soft matrices 
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Let [( , , )]A A A

ij ij ijA T I F   be two neutrosophic soft matrices. Then the transpose of this neutrosophic 

soft block matrix will be defined by denoted by
TA  and is defined by [( , , )]T A A A

ji ji jiA T I F
 

3.4 Addition of neutrosophic soft block matrices 

Let 

11 12

21 22

:

..... : .....

:

A A

A

A A

 
 

  
 
 

   and 

11 12

21 22

:

..... : .....

:

B B

B

B B

 
 

  
 
 

 be two neutrosophic soft block matrices in 

which the corresponding blocks are conformable for addition, then the addition of two neutrosophic 

soft block matrices can be defined as  

11 11 12 12

21 21 22 22

:

..... : .....

:

A B A B

A B

A B A B

  
 

   
     

3.5 Multiplication of neutrosophic soft block matrices 

Let ,A B  be two neutrosophic soft block matrices which can be represented by  

11 12

21 22

:

..... : .....

:

A A

A

A A

 
 

  
 
 

  , 

11 12

21 22

:

..... : .....

:

B B

B

B B

 
 

  
 
   

Then the product of two neutrosophic soft block matrices will be denoted by AB  and is defined by 

11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22

:

..... : .....

:

A B A B A B A B

AB

A B A B A B A B

  
 

  
   

 

provided that the blocks considered here are conformable for multiplication.  

3.5 Transpose of a neutrosophic soft block matrix 

Let 
11 12

21 22

P P
A

P P

 
  
   

be a neutrosophic soft block matrix, then the transpose of that neutrosophic soft block matrix is 

defined as  

11 12

21 22

T T

T

T T

P P
A

P P

 
  
   

4. Some special types of neutrosophic soft block matrices 
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In this section, the intention is to discuss about various types of neutrosophic soft block matrices and 

the associative properties. 

4.1 Neutrosophic soft block triangular matrix 

Neutrosophic soft block triangular matrix is a special type of square neutrotrosophic soft matrix. 

Neutrosophic block triangular matrices can be of two forms such as upper triangular or lower 

triangular. 

 

4.1.1  Neutrosophic Soft  Block upper triangular  matrix 

Neutrosophic soft block upper triangular matrix is a neutrosophic soft matrix of the form 

X Y
A

O W

 
  
 

where X , Y  and W  are square neutrosophic soft matrices. 

 

4.1.2 Neutrosophic Soft  Block lower triangular  matrix 

Neutrosophic soft block lower triangular matrix is a neutrosophic soft matrix of the form 

X O
A

Y W

 
  
 

where X , Y  and W   are square neutrosophic soft matrices. 

 

4.1.3 Properties of Neutrosophic Soft Block triangular matrix 

 

 Addition of two neutrosophic soft block upper triangular matrices of same order results in a 

neutrosophic soft block upper triangular matrix. 

 Product of two neutrosophic soft block upper triangular matrices is again a neutrosophic 

soft block upper triangular matrix. 

 Addition of two neutrosophic soft block lower triangular matrices results in a neutrosophic 

soft block upper triangular matrix. 

 Multiplication of two neutrosophic soft block lower triangular matrices of same order is 

again a neutrosophic soft block lower triangular matrix. 

 

4.2 Neutrosophic soft block diagonal matrix 

 

Neutrosophic soft block diagonal matrix is a square neutrosophic soft block matrix in which the 

main diagonal blocks are square neutrosophic soft matrices and all off diagonal blocks are zero 

neutrosophic soft matrices. Neutrosophic soft block diagonal matrix A has the following form 
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11

22

0 ... 0

0 ... 0

: : : :

0 0 ... nn

A

A
A

A

 
 
 
 
 
 

 where ijA is a square neutrosophic soft block matrix for all 

i,j=1,2,3,…..,n. 

 

4.3 Neutrosophic soft block quasidiagonal matrix 

It is a neutrosophic soft block matrix whose diagonal blocks are square neutrosophic soft block 

matrices of different order and off diagonal blocks are zero neutrosophic soft block matrices. Thus  

1

2

0 ... 0

0 ... 0

: : : :

0 0 ... n

D

D
A

D

 
 
 
 
 
 

 is a quasidiagonal matrix whose diagonal blocks iD , i=1,2,3,…..,n are 

square neutrosophic soft matrices of different orders. 

 

4.4 Neutrosophic soft block tridiagonal matrix 

Neutrosophic soft block tridiagonal matrix is another special  neutrosophic soft block matrix  

which is just like the neutrosophic soft block diagonal matrix, a square neutrosophic soft matrix , 

having square neutrosophic soft matrices in the lower diagonal, main diagonal and upper diagonal 

with all other blocks being zero neutrosophic soft matrices. Neutrosophic soft block tridiagonal 

matrix A has the form 

1 1

1 2 2

2 3 3

3 4

... 0

... 0

0

0 0

B C

A B C
A

A B C

A B

 
 
 
 
 
 

 where , ,i i iA B C  are square neutrosophic soft block matrices in the 

lower diagonal, main diagonal and upper diagonal respectively. 

4.4.1 Properties of Neutrosophic soft block tridiagonal matrix 

 

 Sum of two neutrosophic soft block tridiagonal matrices of same order is again a 

neutrosophic soft block tridiagonal matrix. 

Let  

1 1

1 2 2

2 3 3

3 4

... 0

... 0

0

0 0

B C

A B C
A

A B C

A B

 
 
 
 
 
 

and 

1 1

1 2 2

2 3 3

3 4

... 0

... 0

0

0 0

D E

F D E
B

F D E

F D

 
 
 
 
 
 

 

Then from the definition of addition of two neutrosopic soft block matrices it can be obtained that  
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1 1 1 1

1 1 2 2 2 2

2 2 3 3 3 3

3 3 4 4

... 0

... 0

0

0 0

B D C E

A F B D C E
A B

A F B D C E

A F B D

  
 

  
  
   
 

    

which is obviously a tridiagonal neutrosophic soft block matrix. 

 

 Product of two neutrosophic soft block tridiagonal matrices is again a neutrosophic soft 

block up tridiagonal matrix. 

 Transpose of neutrosophic soft block tridiagonal matrix is again a neutrosophic soft 

tridiagonal matrix. 

Example: Let be A  neutrosophic soft block tridiagonal matrix 

1 1

1 2 2

2 3 3

3 4

... 0

... 0

0

0 0

B C

A B C
A

A B C

A B

 
 
 
 
 
 

then 

1 1

1 2 2

2 3 3

3 4

... 0

... 0

0

0 0

T

B A

C B A
A

C B A

C B

 
 
 
 
 
 

which a neutrosophic soft block tridiagonal matrix is again 

 

4.5 Neutrosophic soft block toeplitz matrix 

 

Neutrosophic soft block tridiagonal matrix is another special neutrosophic soft block matrix, which 

contains blocks that are repeated down the diagonals of the matrix. The individual block elements of 

ijA must also be Toeplitz matrices. Neutrosophic soft block toeplitz matrix A   has the form 

11 12 13 14

21 11 12 13

31 21 11 12

41 31 21 11

A A A A

A A A A
A

A A A A

A A A A

 
 
 
 
 
 

 where ijA  are square neutrosophic soft block matrices 

respectively. 

4.5.1 Properties of neutrosophic soft block toepliz matrix 

 Addition of neutrosophic soft block toepliz matrices is again a neutrosophic soft block 

toepliz matrix provided the matrices are conformal for addition. 

 

 Transpose of a neutrosophic soft block toepliz matrix is again a neutrosophic soft block 

toepliz matrix. 

 Example: If the above toepliz matrix A is considered then 
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11 21 31 41

12 11 21 31

13 12 11 21

14 13 12 11

T

A A A A

A A A A
A

A A A A

A A A A

 
 
 
 
 
   

this is again a neutrosophic soft toplitz matrix. 

8.1.3 Transportation 

If ,A B be two neutrosophic soft block toeplitz matrices, then ( )T T TA B A B    

Let 

11 12 13 14

21 11 12 13

31 21 11 12

41 31 21 11

A A A A

A A A A
A

A A A A

A A A A

 
 
 
 
 
 

and 

11 12 13 14

21 11 12 13

31 21 11 12

41 31 21 11

B B B B

B B B B
B

B B B B

B B B B

 
 
 
 
 
 

 

Then 

11 11 12 12 13 13 14 14

21 21 11 11 12 12 13 13

31 31 21 21 11 11 12 12

41 41 31 31 21 21 11 11

A B A B A B A B

A B A B A B A B
A B

A B A B A B A B

A B A B A B A B

    
 

   
  
    
 

    

 

 

Then 

11 21 31 41

12 11 21 31

13 12 11 21

14 13 12 11

T

A A A A

A A A A
A

A A A A

A A A A

 
 
 
 
 
 

and 

11 21 31 41

12 11 21 31

13 12 11 21

14 13 12 11

T

B B B B

B B B B
B

B B B B

B B B B

 
 
 
 
 
 

 

11 11 21 21 31 31 41 41

12 21 11 11 21 21 31 31

13 13 12 12 11 11 21 21

14 14 13 13 12 12 11 11

( )T T T

A B A B A B A B

A B A A A B A B
A B A B

A B A B A B A B

A B A B A B A B

    
 

   
    
    
 

    

 

 

4.6 Neutrosophic soft Block Circulant Matrix 

 

A neutrosophic soft Block Circulant Matrix is a neutrosophic soft block matrix of the form  

0 1 1

1 0 2

1 2 0

.....

.....

: : ..... :

......

m

m m

A A A

A A A
A

A A A



 

 
 
 
 
 
 

 

where 'iA s are nxn arbitrary matrics. 

4.6.1 Properties of Neutrosophic soft Block Circulant Matrix 
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If A and B be two neutrosophic block circulant matrices then A+B  and AB is again a neutrosophic 

block circulant matrix. Again for block circulant matrices AB=BA. 

 

4.7 Direct sum of neutrosophic soft block matrices. 

 

If 
11 22 33, , ,......, rrA A A A  are square neutrosophic soft block matrices of order 

1 2 3, , ,......, rm m m m  respectively. 

Then  

1 2

11

22

11 22 33

.......

0 ... 0

0 ... 0
( , , ,......, )

: : : :

0 0 ...
r

rr

rr m m m

A

A
diag A A A A

A
  

 
 
 
 
 
  

 

is called the direct sum of the square neutrosophic soft block matrix
11 22 33, , ,......, rrA A A A  and it is 

expressed as 
11 22 33 ...... rrA A A A     of order 

1 2 3 ...... rm m m m    .   

4.7.1  Properties of direct sum 

The following algebraic properties are hold by neutrosophic soft block matrices: 

 Commutativity:  Let ,A B  be two diagonal neutrosophic soft block matrices then 

: 0

..... : .....

0 :

A

A B

B

 
 

   
 
 

    and 

: 0

..... : .....

0 :

B

B A

A

 
 

   
 
 

 

 

Thus  A B B A    and hence it can be concluded that the direct sum of two neutrosophic soft block 

matrices are not commutative. 

 

 Associativity: Let , ,A B C  be three square neutrosophic soft block matrices. Then as 

obtained above 

 

: 0

..... : ..... ( )

0 :

A

A B D say

B

 
 

   
 
 

 

Therefore  

0 0
0

( ) 0 0
0

0 0

A
D

A B C D C B
C

C

 
   

        
   

 

 where A B D   

Again 
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0 0
0

( ) 0 0
0

0 0

A
A

A B C A E B
E

C

 
   

        
   

 

 where B C E   

Hence associative laws hold for neutrosophic soft block matrices. 

4.8 Mixed sum of neutrosophic soft block matrices 

Let , , ,A B C D  be four neutrosophic soft block matrices which are conformable for addition. Then 

By the definitions of addition and direct sum of neutrosophic soft block matrices it can be obtained 

that  

: 0

..... : .....

0 :

A

A C

C

 
 

   
 
 

, 

: 0

..... : .....

0 :

B

B D

D

 
 

   
 
 

and ( ) ( )A C B D  

: 0

..... : .....

0 :

A B

C D

 
 

  
  

 

Then the following result holds: 

( ) ( ) ( ) ( )A B C D A C B D        

4.9 Multiplication of direct sum of neutrosophic soft block matrices 

If , , ,A B C D  be four neutrosophic soft block matrices which are conformable for addition and 

multiplication then the mixed multiplication of direct sum is 

( )( ) ( ) ( )A B C D AC BD     

By the definition of direct sum and multiplication of neutrosophic soft block matrices 

0 0
( )( )

0 0

0

0

A C
A B C D

B D

AC
AC BD

BD

   
      

   

 
   
 

 

 

 Transposition 

If ,A B  be two neutrosophic soft block matrices then the transportation of the direct sum of A and B 

is  

0
( )

0

T
T T T

T

A
A B A B

B

 
    

 
 

 

5.  Results 
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  In the process it is found that different types of neutrosophic soft block matrices which are 

discussed here behave in the same way as the block matrices that exist in the literature.  

6. Applications 

Neutrosophic soft matrices having been broken into sections called blocks or partitioned are 

useful for cutting down calculations in the cases of problems which involves neutrosophic soft 

matrices.  

7. Conclusions  

Different types of neutrosophic soft block matrices as triangular, tridiagonal, quasidiagonal, 

circulant, toepliz are discussed. Some operations on neutrosophic soft block matrices which are also 

discussed in this article gives a clear indication that such operations produces almost similar results 

to those of classical matrices. Future research will be in the direction of finding determinants of 

neutrosophic soft block matrices. 
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Abstract 

This article aims to introduce some modern algebraic structures as hyper super matrices. The classical 

algebra and matrices cannot process higher-dimensional information with several levels of ambiguity and 

uncertainty. Hence, it is necessary to establish such superalgebraic structures that can organize and 

classify the uncertain and incomplete information floating in parallel higher dimensions as facts, events, 

or realities. To achieve the desired goal, a particular construction of Hypersoft Matrix (HS-Matrix) and 

Subjectively Whole Hyper-SuperSoft Matrix (SWHSS-Matrix) is offered in a plithogenic Fuzzy 

environment initially, and some aggregation operators are formulated. A Local-Global-Universal 

Combined Consciousness State Ranking Model is formulated as an application. As the classification of 

non-physical phenomena like state of physical health or Consciousness has not yet been addressed in the 

area of decision making therefor the proposed model will open a new dimension of classification of the 

non-physical part of the universe in which one can select the most suitable possible reality from several 

parallel realities which would be useful in the field of artificial intelligence. This model classifies the 

accumulated states of matter bodies (subjects). And gives a possible description of the Combined-

Consciousness State of a Universe. In addition, it offers a local ranking by observing the information 

through several angles of vision, just like a human mind does, and a universal ranking by classifying the 

accumulated states. Furthermore, the final Global Ranking is achieved by constructing a percentage 

frequency-matrix and an authenticity measure of the order is offered. A numerical example is constructed 

to describe SWHSS-Matrix and LGU-Ranking Model. Some pie graphs are used to describe the individual 

states, accumulated states, and the ultimate accumulated universal state of all given subjects (a Combined 

Conscious State of Universe). 

Keywords: Subjectively-Whole-Hyper-Super-Soft-Matrix, Parallel-Dimensions, Attributive-Ranking, 

Local-Global-Universal-Ranking, Combined-Consciousness, Percentage-Frequency-Matrix, Pie-Graphs. 

1.   Introduction 

As we know, the human brain has some factors of vagueness and precariousness in its judgments and 

inferences due to multiple opinions, and the complexity of the data, as attributes events, and information 

derived from its own environments. Scientists after taking into account this basic trait of the human mind 

mailto:muhammad.saeed@umt.edu.pk
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start arguing the dire need for some different mathematics that could possibly handle this vagueness factor. 

Some of the following theories developed gradually. Fuzzy set theory by Zadeh (1965) [1] Intuitionistic 

fuzzy set (IFS) theory by k.Atanassov [2] [3]. The cloud of vagueness is further extended by F. Smarandache, 

[4][5][6]. Some more recent extensions and modernizations of the neutrosophic set are presented in [7] [8] 

[9] [10] [11] [12]. In 1999 Molodtsove [13] introduced Soft Set, a soft set is a parameterized representation 

of subsets in which one can express multiple attributes and subjects in a unique parameterized formulation. 

Some further extensions of the soft set were provided in [14] [15] [16]. Later, in 2018, F.Smarandache [17] 

[18] introduced another expanded version of Softest known as the Hypersoft-Set and the Plithogenic 

Hypersoft-Set. In these sets, he extended the function of the combination of attributes to multi attributes 

and sub-attributes. He presented the basic definitions and addressed many open problems of the 

development of new literature, such as aggregation operators and MADM techniques. We are going to 

answer some of the open issues raised by Smarandache, S.Rana and co-authors "[19] extended the 

Plithogenic Hyper-Soft Set to Plithogenic Whole-Hyper-Soft Set by accumulating the memberships and 

providing both exterior and interior states of the part of Universe/Event/Reality/Information (a 

combination of Attributes, Sub Attributes, Subjects represented). We represented the Plithogenic Fuzzy 

Hyper-Soft set and the Plithogenic Fuzzy Whole Hyper-Soft set in a novel form of matrices in the fuzzy 

environment named as Plithogenic Fuzzy Hyper-Soft Matrix (PFHS-Matrix) and Plithogenic Fuzzy Whole 

Hyper-Soft Matrix and some local operators were established. Furthermore. In the next phase, S.Rana and 

co-authors "[20] further dilated the Plithogenic Whole Hyper-Soft Set to Plithogenic 

Crisp/Fuzzy/Intuitionistic/Neutrosophic Subjective Hyper-Soft Set and represented them in the more 

dilated version of Soft-Matrix initially in the fuzzy environment termed as Plithogenic Subjective Hyper 

Super Soft-Matrix. Then developed a Local-Global Universal Subjective Ranking Model by using the new 

amplified expression of matrices. Some further literature on HyperSoft Set and Plithogency was established 

in [21-28]. In this article, in the first stage, we have further broadened those earlier introduced Plithogenic 

Fuzzy Whole Hyper Soft Set and Plithogenic Subjective Hyper-Soft Set to Plithogenic Attributive 

Subjectively Whole Hyper Soft Set (PASWHSS-Set) in the Fuzzy environment. we have formulated a new 

type of Matrix initially in a fuzzy environment named Plithogenic Subjectively Whole Hyper Super Soft 

Matrix (PSWHSS-Matrix). These advanced types of matrices are generated by the hybridization of hyper 

matrices and super matrices [29-32] These hypersoft matrices are sets/clusters of parallel layers of matrices 

representing clusters of parallel universes/ realities/ events/ information. These are such hyper-matrices 

(parallel layers of matrices) whose elements are also matrices. Thus, these matrices are tensors of rank three 

and four, respectively, having three and four indices of variations. Then later, we have formulated an LGU 

Combined-Consciousness State Ranking Model. The forte of this model is its classification of nonphysical 

phenomena. Thus, it will allow opening a new non-physical dimension of classification i.e. selecting one 

possibility out of multiple possibilities. Moreover, it offers a transparent ranking of attributes (states of 

subjects) and universes from micro-universe to macro-universe levels by observing them through 

numerous angles of vision in dissimilar environments of different ambiguity and hesitation levels. 

Furthermore, it will also furnish and formulate extreme and neutral values of these universes (sets of 

information, realities, events). This new model actually compacts the expanded Universe to a single lowest 

point. Finally, we have also anticipated producing a percentage authenticity measure of ranking, which is 

provided by using a frequency matrix. In the end, we have given an application of the Model using a 

numerical example. In this example, fuzzy linguistic scales are used to quantify the states of our subjects 

(bodies of matter known as individuals). The quantified states of subjects are attributes/sub-attributes 

known as individual fuzzy states or individual fuzzy memberships. Later, the aggregation operators are 

used to accumulate these states (subject-wise). The accumulated states are represented by fuzzy whole 

memberships. Initially, these states are accumulated at the local level using a single aggregation operator 

representing a viewpoint, and a local ordering of states would be achieved. The global ordering of states 
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would be achieved through the use of multiple aggregation operators. By the further accumulation of the 

already accumulated states, the universal states of accumulation and the universal order would be reached.  

Now the further query arises why we are specifically using hyper-Soft and Hyper-Super-Soft matrices for 

the expression of the Plithogenic Hyper-Soft Set and Plithogenic Attributive Hyper-Soft Set? The answer 

might be convincing that this Plithogenic Universe is so vast and expanded in its interior ( having Fuzzy, 

Intuitionistic Fuzzy, Neutrosophic, environments with memberships non-memberships, and 

indeterminacies) and in its exterior (managing many attributes, sub-attributes, and sub-sub-attributes 

concerning to its subjects). Therefore to organize and classify such highly scattered information we need to 

formulate some super algebraic structures like these Matrices.  

This article is organized into seven basic sections. After the (section-1) introduction, Section 2 summarises 

some related preliminaries. In Section 3 we introduce some fundamental new concepts and definitions of 

the Hypersoft set expression, the HS matrix, and the SWHSS matrix with examples in a plithogenic fuzzy 

environment. We use these new types of matrices to develop the LGU Combined-Consciousness State 

Ranking Model. While in Section 4 some local aggregation operators such as disjunction operators, 

conjunction operators, averaging operators and compliment operators for PFHS matrices are formulated. 

Section 5 describes the algorithm of the LGU Combined-Consciousness State Ranking Model in the 

plithogenic fuzzy environment In this Model, we would provide the classification of attributes (a non-

physical phenomenon or states) at the local, Global and Universal levels. We offer the Universal ranking 

by classifying these already accumulated universal states. The Local Ranking is offered by observing the 

higher dimensional information through several angles of vision or states just like a human mind which 

possesses multiple layers of thought. These thoughts undergo and change their angles in order to achieve 

a precise or accurate status but before certain complex procedures of mind are applied upon them. Finally, 

mental thoughts hold their possibly best and desired status/angels depending upon certain complex 

procedures and environments. In order to learn the transparent Global Ranking, we have applied a 

Percentage-Frequency-Matrix by accumulating the states of the human mind (several angles of vision). 

Finally, to preserve transparency and accuracy, our model also provides the authenticity measure of the 

ordering. In Section 6 Application of the LGU-Combined-Consciousness State Ranking Model is presented 

and final combined universal states are offered. In Section 7 the flow of the model from individual states 

of subjects to their combined-universal states is described by pi graphs and some conclusions and open 

problems are discussed. 

2  Preliminaries 

 

This section, narrates some fundamental useful definitions of the hyper-soft set, Hyper matrices, and 

Super matrices. 

  

Definition 2.1 [17] (Hyper-soft set) 

Let 𝑈 be the initial universe of discourse 𝑃(𝑈) the power set of 𝑈. 

let 𝑎1, 𝑎2, . . . , 𝑎𝑛 for 𝑛 ≥ 1 be 𝑛 distinct attributes, whose corresponding attribute-values are respectively the sets 

𝐴1, 𝐴2, . . . , 𝐴𝑛 with 𝐴𝑖 ∩ 𝐴𝑗 = 𝜑 for 𝑖 ≠ 𝑗 and 𝑖, 𝑗 ∈ {1,2, . . . , 𝑛}. 

Then the pair (𝐹, 𝐴1 × 𝐴 ×. . .× 𝐴𝑛) where, 

 𝐹: 𝐴1 × 𝐴 ×. . .× 𝐴𝑛 → 𝑃(𝑈),  

is called a hyper-soft set over 𝑈; 

Definition 2.2 [29] [30] (super-matrices) 
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A rectangular or square arrangements of numbers in rows and columns are known as matrices,or simply ordinary 

matrices, wheras a super-matrix is such matrix whose elements are matrices. These elements can be either scalars or 

matrices. 

𝑎 = [
𝑎11 𝑎12
𝑎21 𝑎22

], where  

𝑎11 = [
2 −4
0 1

],   𝑎12 = [
0 40
21 −12

],    

𝑎21 = [
3 −1
5 7
−2 9

],   𝑎22 = [
4 12
−17 6
3 7

] 𝑎 is a super-matrix. 

Note: The elements of super-matrices are considered as sub-matrices i.e. 𝑎11, 𝑎12, 𝑎21, 𝑎22 are submatrices of the 

super-matrix 𝑎. 

Definition 2.3 [31] [32] (Hyper-matrices) 

For 𝑛1, . . . , 𝑛𝑑 ∈ 𝑁, a function 𝑓: (𝑛1) ×...× (𝑛𝑑) → 𝐹 is a hyper-matrix, or d-hyper-matrix. Often 𝑎𝑘1...𝑘𝑑are used  

to denote the value 𝑓(𝑘1. . . 𝑘𝑑) of 𝑓 at (𝑘1. . . 𝑘𝑑) and think of 𝑓 (renamed as 𝐴) as specified by a d-dimensional 

table of values, writing 𝐴 = [𝑎𝑘1...𝑘𝑑]𝑘1...𝑘𝑑

𝑛1,...,𝑛𝑑 

 A 3-hypermatrix can be written on a (2-dimensional) piece of paper as a list of ordinary matrices, called slices. For 

example 

𝐴 = [

𝑎111 𝑎121 𝑎131 . 𝑎112 𝑎122 𝑎132
𝑎211 𝑎221 𝑎231 . 𝑎212 𝑎222 𝑎232
𝑎311 𝑎321 𝑎331 . 𝑎312 𝑎322 𝑎332

] 

 3.  Plithogenic Fuzzy HS-Matrix and Plithogenic Fuzzy SWHSS-Matrix  

This section, develops some literature about the plithogenic hypersoft set in the following manner. 

1. We introduce some basic new beliefs and definitions of expression of hypersoft set and HS-

Matrix with examples. 

2. We introduce novel HS-matrix as SWHSS-Matrix in plithogenic Fuzzy environment. 

3. We portray the compact and expanded expressions of HS-Mtricx and SWHSS-Matrix.  

To develop an understanding of the literature, we give some new definitions. 

 

Definition 3.1 ( Plithogenic Fuzzy HyperSoft-Set (PFHS-Set)): Let 𝑈𝐹 be the initial universe of discourse 𝑃(𝑈𝐹) 

the power set of 𝑈𝐹 .  𝐴𝑗
𝑘 is a combination of attributes/Sub-Attributes for some 𝑗 = 1,2,3, . . . , 𝑁 Attributes, 

𝑘 = 1,2,3, . . . , 𝐿  Sub-Attributes and 𝑥𝑖  𝑖 = 1,2,3, . . .,  𝑀  are subjects under consideration then 

(𝐹𝐹 , 𝐴1
𝑘, 𝐴2

𝑘. . . , 𝐴3
𝑘) is PFHS-Set represented by plithogenic fuzzy memberships 𝜇

𝐴𝑗
𝑘(𝑥𝑖). 

where,  𝐹𝐹: 𝐴1
𝑘 × 𝐴2

𝑘 × 𝐴3
𝑘 ×. . .× 𝐴𝑁

𝑘 →,𝑃(𝑈𝐹  ) is a mapping from a complex cross product of the attributes 

to the power set 𝑃(𝑈𝐹). This PFHS-Set is represented as 

F =

{
 
 
 
 

 
 
 
 𝑥1 (𝜇𝐴𝑗

𝑘(𝑥1)) ,

𝑥2 (𝜇𝐴𝑗
𝑘(𝑥2)) ,

.

.

.

 𝑥M (𝜇𝐴𝑗
𝑘(𝑥𝑀))

}
 
 
 
 

 
 
 
 

 

 

Definition 3.2 (Plithogenic Fuzzy HyperSoft-Matrix (PFHS-Matrix)):  

Let 𝑈𝐹  be the Fuzzy universe of discourse,  𝑃(𝑈𝐹  )  be the power set of  𝑈𝐹 ,  𝐴𝑗
𝑘  is a combination of 

attributes/sub-attributes for some 𝑗 = 1,2,3, . . . , 𝑁  attributes, 𝑘 = 1,2,3, . . . , 𝐿  sub-attributes and 𝑥𝑖  𝑖 =
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1,2,3, . . ., 𝑀 are subjects under consideration then PFHS-Matrix, 𝐹𝑖𝑗
𝑘 = [𝜇

𝐴𝑗
𝑘(𝑥𝑖)] is a mapping 𝐹𝐹: 𝐴1

𝑘 × 𝐴2
𝑘 ×

𝐴3
𝑘 ×. . .× 𝐴𝑁

𝑘 → 𝑃(𝑈𝐹) ,  from a complex cross product of the attributes to the power set 𝑃(𝑈𝐹) .,  

Where  𝜇
𝐴𝑗
𝑘(𝑥𝑖) ∈  [0,1]  are fuzzy memberships s.t 𝜇

𝐴𝑗
𝑘(𝑥𝑖) + 𝜐𝐴𝑗

𝑘(𝑥𝑖) = 1  . These Fuzzy memberships 

𝜇
𝐴𝑗
𝑘(𝑥𝑖)  are the elements of PFHS-Matrix and are assigned for the Part of 

Universe/Reality/Event/Information, by decision-makers or concerned bodies through the linguistic 

scales. For further details, see ref.  [28-31]. we may call these memberships the individual fuzzy 

memberships. 

We may write 𝐹𝑖𝑗
𝑘 simply as 𝐹.The compact form of PFHS-Matrix, is   

  𝐹 = [𝜇
𝐴𝑗
𝑘(𝑥𝑖)]                                                                         (3.1) 

And an expanded form of PFHS-Matrix, is   

                                 𝐴1
𝑘            𝐴2

𝑘   .  .  .   𝐴𝑁
𝑘   

𝐹 =

𝑥1
𝑥2
.
.
.
𝑥𝑀 [
 
 
 
 
 
 
𝜇𝐴1𝑘

(𝑥1) 𝜇
𝐴2
𝑘(𝑥1) . . . 𝜇

𝐴𝑁
𝑘 (𝑥1)

𝜇𝐴1𝑘
(𝑥2) 𝜇𝐴2𝑘

(𝑥2) . . . 𝜇𝐴𝑁(𝑥2)
. . . . . .
. . . . . .
. . . . . .
𝜇𝐴1𝑘

(𝑥𝑀) 𝜇𝐴2𝑘
(𝑥𝑀) . . . 𝜇

𝐴𝑁
𝑘 (𝑥𝑀)]

 
 
 
 
 
 

                                                        (3.2) 

Example 1:  

Consider the mapping 𝐹 defined as, 

𝐹𝐹: 𝐴1
𝑘 × 𝐴2

𝑘 × 𝐴3
𝑘 ×. . .× 𝐴𝑁

𝑘 →,𝑃(𝑈𝐹  )  

(taking some specific numeric values of 𝐴𝑗
𝑘)  

Consider 𝑇 = {𝑥1, 𝑥2, 𝑥3}, is a subset of powerset 𝑃(𝑈𝐹  ) and 𝑥𝑖  subjects for 𝑖 = 1,2,3, are  𝑥1, 𝑥2, 𝑥3. The 

associated states of these subjects are 𝐴𝑗
𝑘  Attributes/Sub-Attributes for 𝑗 = 1,2,3,4  and 𝑘 = 1,2,3 . To 

represent these states some fuzzy memberships would be assigned by the Concerned body, through  the 

five-point linguistic scale (see ref. [28-31]) T 

The set representation of information is described as PFHS-Set as, 

           𝐹𝛼(𝐴1
3, 𝐴2

1 , 𝐴3
1 , 𝐴4

2) = {

𝑥1(0.3,0.6,0.5,0.5),

𝑥2(0.4,0.4,0.3,0.1),

 𝑥3(0.6,0.3,0.4,0.7)
}                                                         (3.3) 

 

 And further organized and expressed in one layer of PFHS-Matrix 𝐹𝑖𝑗
𝛼, 

                                          𝐴1
3  𝐴2

1    𝐴3
1   𝐴4

2 

F =

𝑥1
𝑥2
𝑥3
[
0.3 0.6 0.5 0.5
0.4 0.4 0.3 0.1
0.6 0.3 0.4 0.7

]                                                           (3.4) 

 

Where 𝐴1
3   𝐴2

1   𝐴3
1    𝐴4

2  is a specific 𝛼  combination of Attributes/Sub-Attributes representing states of 

subjects 𝑥1, 𝑥2,𝑥3. 𝐹𝑖𝑗
𝛼 is representing a single layer out of multiple possible layers of PFHS-Matrix. For a 

more detailed description and applications, see [19]     

Example 2. Consider layered representation 𝐹 = [𝜇
𝐴𝑗
𝑘(𝑥𝑖)]  for 𝑘 = 1 , 𝑗  = 1,2,3,4  and 𝑖 = 1,2,3,  i.e (first 

level-layer) and for 𝑘 = 2, 𝑗 = 1,2,3,4 and 𝑖 = 1,2,3, i.e (second level-layer). let  𝑇 = {𝑥1, 𝑥2, 𝑥3} be Subjects 

in PFHS-Set associated to given attribute the PFHS-Set is represented through fuzzy memberships as 

described bellow, 
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 𝐹(𝐴1
1, 𝐴2

1 , 𝐴3
1 , 𝐴4

1) = {

𝑥1(0.3,0.6,0.3,0.5),

𝑥2(0.4,0.5,0.2,0.1),

𝑥3(0.6,0.2,0.3,0.7)
}                                                      (3.5) 

𝐹(𝐴1
2, 𝐴2

2, 𝐴3
2, 𝐴4

2) = {

𝑥1(0.5,0.4,0.2,0.6)

, 𝑥2(0.5,0.7,0.8,0.4),

𝑥3(0.7,0.6,0.5,0.9)
}                                                       (3.6) 

The matrix representation of this PFHS-Set F is described as PFHS-Matrix, 

𝑭 =

[
 
 
 
 
 [
0.3 0.6 0.3 0.5
0.4 0.5 0.2 0.1
0.6 0.2 0.3 0.7

]

[
0.5 0.4 0.2 0.6
0.5 0.7 0.8 0.4
0.7 0.6 0.5 0.9

]
]
 
 
 
 
 

                                                          (3.8) 

For further details, see ref.[20]  

Definition 3.3 (Plithogenic Fuzzy Subjectively-Whole Hyper-Super-Soft-Matrix (PFSWHSS-Matrix)): 

Let 𝑈𝐹  be the primary universe of discourse, in the Fuzzy situation and 𝑃(𝑈𝐹) be the power set of 𝑈𝐹 . Let 

𝐴1
𝑘 , 𝐴2

𝑘, . . . , 𝐴𝑁
𝑘  are 𝐴𝑗

𝑘  N distinct attributes/subattributes for = 1,2, . . . 𝑁  , 𝑘 = 1,2, . . . 𝐿  is representing 

attribute values then PFSWHSS-Matrix is, 𝐹 [
[𝜇
𝐴j
𝑘(𝑥i)]

[Ω
𝐀j
𝑘
𝑡 (𝑋)]

] is mapping  

𝐹𝐹: 𝐴1
𝑘 × 𝐴2

𝑘 ×. . .× 𝐴N
𝑘 → 𝑃(𝑈𝐹) 

we may use a compact notation of PFSWHSS-Matrix, 𝐹𝑖𝑗
𝑘𝑡 , This matrix is expressed by both individual 

fuzzy memberships 𝜇
𝐴𝑗
𝑘(𝑥𝑖)  (individual fuzzy states of subjects regarding each attribute) and the 

aggregated fuzzy memberships Ω
𝐴j
𝑘(𝑿)  (subject-wise aggregated states).  In 𝐹𝑖𝑗

𝑘𝑡  𝑡 = 1,2, …𝑂  is 

representing aggregation operators. In PFSWHSS-Matrix the fuzzy states (fuzzy memberships) of all 

given subjects are aggregated and then represented as for each attribute/sub-attribute. This PFSWHSS-

Matrix handles not only a single combination of attributes/subattributes but rather multiple combinations 

of attributes/sub-attributes out of their complex cross products or in other words. This matrix 𝐹𝑖𝑗
𝑘𝑡 , has 

four indices of variation is a soft tensor of rank 4. We may write 𝐹𝑖𝑗
𝑘𝑡 as F for the simplification of notation. 

Four types of variation are presented in this PFSWHSS matrix. The first Variations on the index 𝑖 =

1,2, . . . 𝑀 generate M rows of Matrix, the second variations on the index 𝑗 = 1,2, . . . 𝑁 generate N columns, 

and the third variations on 𝑘 = 1,2, . . . 𝐿 produces L combinations of rows and columns as parallel-layers 

of 𝑀 ×𝑁  matrices as hyperSoft Matrix. The fourth variation on 𝑡 = 1,2, . . . 𝑃  describes 𝑡ℎ𝑒 𝑃 𝑠𝑒𝑡𝑠  of 

Clusters. 

The representation of PFSWHS-Matrix in a compact form is, 

 F = [
[𝜇
𝐴j
𝑘(𝑥i)]

[Ω
𝐀j
𝑘
𝑡 (𝑋)]

] ,                                                                   (3.9) 

F = [
[𝜇𝐴𝑗

1(𝑥𝑖)]

[Ω
𝐀𝑗
1
𝑡 (𝑋)]

] represents a single Layer of SWHSS-Matrix for 𝑘 = 1 i.e an 𝛼 universe. 

F = [
[𝜇𝐴𝑗

1(𝑥𝑖)]

[Ω
𝐀𝑗
1
𝑡 (𝑋)]

] represents a single Layer of SWHSS-Matrix for 𝑘 = 2 i.e an 𝛽 universe. 
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The representation of PFSWHS-Matrix in an expanded form is, 

𝐅 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

[
 
 
 
 
 
 
𝜇𝐴11(𝑥1) 𝜇𝐴21(𝑥1) . . . 𝜇𝐴𝑁1 (𝑥1)

𝜇𝐴11(𝑥2) 𝜇𝐴21(𝑥2) . . . 𝜇𝐴𝑁1 (𝑥2)
. . . . . .
. . . . . .
. . . . . .
𝜇𝐴11(𝑥𝑀) 𝜇𝐴21(𝑥𝑀) . . . 𝜇𝐴𝑁1 (𝑥𝑀)]

 
 
 
 
 
 

[𝛀𝐀𝟏𝟏
𝟏 (𝑿) 𝛀

𝐀𝟐
𝟏
𝟏 (𝑿) . . . 𝛀

𝐀𝑵
𝟏
𝟏 (𝑿)] ]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

[
 
 
 
 
 
 
𝜇𝐴12(𝑥1) 𝜇𝐴22(𝑥1) . . . 𝜇𝐴𝑁2 (𝑥1)

𝜇𝐴12(𝑥2) 𝜇𝐴22(𝑥2) . . . 𝜇𝐴𝑁2 (𝑥2)
. . . . . .
. . . . . .
. . . . . .
𝜇𝐴12(𝑥𝑀) 𝜇𝐴22(𝑥𝑀) . . . 𝜇𝐴𝑁2 (𝑥𝑀)]

 
 
 
 
 
 

[𝛀𝐀𝟏𝟐
𝟏 (𝑿) 𝛀

𝐀𝟐
𝟐
𝟏 (𝑿) . . . 𝛀

𝐀𝑵
𝟐
𝟏 (𝑿)] ]

 
 
 
 
 
 
 

..

.

.

[
 
 
 
 
 
 
 

[
 
 
 
 
 
 
𝜇𝐴1𝐿(𝑥1) 𝜇𝐴2𝐿(𝑥1) . . . 𝜇𝐴𝑁𝑘

(𝑥1)

𝜇𝐴1𝐿(𝑥2) 𝜇𝐴2𝐿(𝑥2) . . . 𝜇𝐴𝑁𝐿
(𝑥2)

. . . . . .

. . . . . .

. . . . . .
𝜇𝐴1𝐿(𝑥𝑀) 𝜇𝐴𝐿(𝑥𝑀) . . . 𝜇𝐴𝑁𝐿

(𝑥𝑀)]
 
 
 
 
 
 

[𝛀𝐀𝟏𝑳
𝟏 (𝑿) 𝛀𝐀𝑳

𝟏 (𝑿) . . . 𝛀
𝐀𝑵
𝑳
𝟏 (𝑿)] ]

 
 
 
 
 
 
 

.

.

.

[
 
 
 
 
 
 
 

[
 
 
 
 
 
 
𝜇𝐴11(𝑥1) 𝜇𝐴21(𝑥1) . . . 𝜇𝐴𝑁1 (𝑥1)

𝜇𝐴11(𝑥2) 𝜇𝐴21(𝑥2) . . . 𝜇𝐴𝑁1 (𝑥2)
. . . . . .
. . . . . .
. . . . . .
𝜇𝐴11(𝑥𝑀) 𝜇𝐴21(𝑥𝑀) . . . 𝜇𝐴𝑁1 (𝑥𝑀)]

 
 
 
 
 
 

[𝛀𝐀𝟏𝟏
𝟐 (𝑿) 𝛀

𝐀𝟐
𝟏
𝟐 (𝑿) . . . 𝛀

𝐀𝑵
𝟏
𝟐 (𝑿)] ]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

[
 
 
 
 
 
 
𝜇𝐴12(𝑥1) 𝜇𝐴22(𝑥1) . . . 𝜇𝐴𝑁2 (𝑥1)

𝜇𝐴12(𝑥2) 𝜇𝐴22(𝑥2) . . . 𝜇𝐴𝑁2 (𝑥2)
. . . . . .
. . . . . .
. . . . . .
𝜇𝐴12(𝑥𝑀) 𝜇𝐴22(𝑥𝑀) . . . 𝜇𝐴𝑁2 (𝑥𝑀)]

 
 
 
 
 
 

[𝛀𝐀𝟏𝟐
𝟐 (𝑿) 𝛀

𝐀𝟐
𝟐
𝟐 (𝑿) . . . 𝛀

𝐀𝑵
𝟐
𝟐 (𝑿)] ]

 
 
 
 
 
 
 

..

.

.

[
 
 
 
 
 
 
 

[
 
 
 
 
 
 
𝜇𝐴1𝐿(𝑥1) 𝜇𝐴2𝐿(𝑥1) . . . 𝜇𝐴𝑁𝑘

(𝑥1)

𝜇𝐴1𝐿(𝑥2) 𝜇𝐴2𝐿(𝑥2) . . . 𝜇𝐴𝑁𝐿
(𝑥2)

. . . . . .

. . . . . .

. . . . . .
𝜇𝐴1𝐿(𝑥𝑀) 𝜇𝐴𝐿(𝑥𝑀) . . . 𝜇𝐴𝑁𝐿

(𝑥𝑀)]
 
 
 
 
 
 

[𝛀𝐀𝟏𝑳
𝟐 (𝑿) 𝛀𝐀𝑳

𝟐 (𝑿) . . . 𝛀
𝐀𝑵
𝑳
𝟐 (𝑿)] ]

 
 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                 (3.10) 

This PFSWHS-Matrix exhibits both internal and subjective external states of the universe. The internal 

state of the universe, event, or reality is reflected by individual fuzzy memberships 𝜇
𝐴𝑗
𝑘(𝑥𝑖) whilst the 

Subjectively exterior state of the universe, event, or reality is reflected through Subjectively aggregated 

memberships Ω
𝐴𝑗
𝑘(𝑋)   that is accumulated specifically for all given subjects at each attributive/sub-

attributive level. Therefore the PFSWHSS-Matrix would provide an attributive classification (non-
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physical classification) through a subject-wise accumulation of states. The subjective aggregation is 

applied to fuzzy memberships 𝜇
𝐴𝑗
𝑘(𝑥𝑖) at the index 𝑖, i.e at each specific sub-attributive level by applying 

several suitable aggregation operators. In the next section-4 for the construction of this PFSWHSS-Matrix, 

we have formulated some aggregation operators. The application of these operators and SWHSS-Matrix 

as LGU Combined-Consciousness State Ranking Model is presented in Section-5, whereas the application 

of this Whole Model is described in Sec-6, where the faculty ranking Model is represented. 

4  Local aggregation operators for the Construction of SWHSS-Matrix 

This section describes Local aggregation operators like disjunction operators, conjunction operators, 

Averaging operators, and Compliment-operator for PFHS-Matrix. By applying these local operators on 

the PFHS-Matrix the SWHSS-Matrix would be constructed. By utilizing Local disjunction, Local 

conjunction, and Local averaging operators, we would develop a combined (whole) memberships Ω
A𝑗
𝑘

𝑡 (𝑋) 

for PFSWSS-Matrix that would be presented in the last row-matrix of the. SWHSS-Matrix  

The general mathematical expression for SWHSS-Matrix 𝑭  in the plithogenic fuzzy environment is given 

below. 

 𝑭 = [

[𝝁
𝑨𝒋
𝒌(𝒙𝒊)]

[𝛀
𝐀𝒋
𝒌
𝒕 (𝑿)]

] In this Matrix the last row of cumulative memberships 𝛀
𝐀𝒋
𝒌
𝒕 (𝑿) is framed by using three 

local operators, 𝑡 = 1 is used for the Max-operator 𝑡 = 2 for Min-operator, and  𝑡 = 3 for the 𝑎𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔-

operator. Furthermore, 𝑡 = 4 is representing Compliment-operator. 

In SHWHS-Matrix    

𝑭𝐒𝒕 = [[𝝁𝑨𝒋
𝒌(𝒙𝒊)] [𝛀

𝐀𝒌
𝒕 (𝒙𝐢)]] the last column of cumulative memberships Ω𝐴𝑘(𝑥𝑖) are obtained by using 

three local operators, 𝑡 = 1 used for the Max-operator 𝑡 = 2 is used to portray the Min-operator, and  𝑡 =

3 is used for the 𝑎𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔-operator. Furthermore, 𝑡 =  4 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑙𝑖𝑚𝑒𝑛𝑡. 

These four operators are described as follows: 

4.1 Local-Disjunction-Operator for  the construction of SWHSS-Matrix: 

   ∪𝒊 (𝝁𝑨𝒋
𝒌(𝒙𝒊)) = 𝑀𝑎𝑥

𝑖
(𝜇

𝐴𝑗
𝑘(𝑥𝑖)) = Ω

A𝑗
𝑘

1 (𝑋) , for some 𝑘 = 𝑙                              (4.1) 

This Max-operator reflects the optimal state of mind of the decision-maker. 

4.2 Local-Conjunction Operator for construction of SWHSS-Matrix: 

∩𝑖 (𝜇𝐴𝑗
𝑘(𝑥𝑖)) = 𝑀𝑖𝑛

𝑖
(𝜇

𝐴𝑗
𝑘(𝑥𝑖)) = Ω

A𝑗
𝑘

2 (𝑋) , for some 𝑘 = 𝑙                               (4.2) 

This Min-operator reflects the pessimistic state of mind of the decision-maker. 

4.3 Local-Averaging-Operator for construction of SWHSS-Matrix: 

 

    Γ𝑖 (𝜇𝐴𝑗
𝑘(𝑥𝑖)) =

∑
𝑖
(𝜇

𝐴𝑗
𝑘(𝑥𝑖))

𝑀
= Ω

A𝑗
𝑘

3 (𝑋) ,  for some 𝑘 = 𝑙                                    (4.3) 

This averaging operator reflects the neutral state of mind of the decision-maker.  

4.4 Local Compliment for the construction of SWHSS-Matrix: 



Neutrosophic Sets and Systems, Vol. 51,2022                                                                                                              68 
___________________________________________________________________________________ 

S.Rana, M. Saeed, F. Smarandache, LGU-Combined-Consciousness State Model 

   𝐶𝑙𝑜𝑐(𝐹) =

{
 
 
 

 
 
 𝑀𝑎𝑥𝑖 (1 − 𝜇𝐴𝑗

𝑘(𝑥𝑖))

𝑀𝑖𝑛𝑖 (1 − 𝜇𝐴𝑗
𝑘(𝑥𝑖))

∑𝑀𝑖=1

(1−𝜇
𝐴𝑗
𝑘(𝑥𝑖))

𝑀 }
 
 
 

 
 
 

   ,   for some 𝑘 = 𝑙                               (4.4) 

5.  Algorithm of LGU Combined-Consciousness State Ranking Model  

This section, utilizes the local operators built in the previous section for the formulation of the LGU Combined-

Consciousness State Ranking Model in the Fuzzy environment. 

In this model, we would provide the classification of attributes (a nonphysical phenomenon) at the local, 

Global, and Universal levels. We have called this Model the LGU Combined-Consciousness State Ranking 

Model. Some specialties of this LGU Combined-Consciousness State Ranking Model are mentioned to 

describe why this model would be preferred over previously developed MADM models 

1. The first and most important feature of this model is that it provides a ranking of the non-

physical states of the universe. As we know, the classification of non-physical phenomena has not 

yet been addressed in the area of decision-making. This model will open a new dimension of 

classification of the non-physical part of the universe / event / reality / information, in which one 

can choose a possible reality from several parallel realities that would be useful in the field of 

artificial intelligence.  

2. The second peculiarity of this model is that it offers the classification of attributes by looking at 

them from multiple angles of visions. For example, the choice of the 𝑚𝑎𝑥 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 is an 

expression of an optimistic perspective. In contrast to this, the choice of the 𝑀𝑖𝑛-operator is an 

expression of the pessimistic point of view and the choice of the 𝑎𝑣𝑒𝑟𝑎𝑔𝑒-operator  is an 

expression of a neutral point of view. The combination of all operators in one model offers a 

transparent decision that is made from multiple perspectives  

3. This model has the potential to offer a classification of attributes in numerous environments such 

as Fuzzy, Intuitionistic, Neutrosophic, or any other suitable environment required. Each 

environment has its own ambiguity or hesitation level. By choosing a particular environment, 

this model would be expanded to work on any level of uncertainty, hesitation, or ambiguity. 

4. This attributive/state ranking model offers the ranking from micro-universe to macro-universe 

stages i.e. from inner smaller cell to outer larger universe. 

5. Primarily, this Model delivers the internal ranking of attributes (states of subjects) named "Local 

Attributive ranking" (ranking of states) (classification of attributes/states of micro-universe) 

6. On the next stage, this Model offers an exterior classification of states named "Global Attributive 

Ranking." 

7.  On a further extended level this Model offers the 3rd type of attributive ranking named 

"Universal Combined-Consciousness State Ranking (Classification of attributes of the macro-

universe) 

8. This model also offers extreme values, as extreme behaviors, and neutral values, as neutral 

behavior of universes that would be helpful to find the optimal and neutral states of all kinds of 

universes/realities/events/information from their micro- to macro levels. 

9. At the final level, it provides a precise measure of the authenticity of classification by using the 

frequency matrix. 

Initially, we consider the case of the PFSWHSS-Matrix to rank the given attributes or states of subjects. 

These subjects with their all attributes/sub attributes are considered to be one universe. 
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Later, we can generalize this Model into Plithogenic Intuitionistic, Plithogenic Neutrosophic, and other 

multiple useful required environments agreeing the state of mind of the decision-makers. 

The Algorithm of the LGU Combined-Consciousness State Ranking Model is described below, 

Step 1.  Construction of Universe:  Consider the fuzzy universe of discourse 𝑈𝐹 = {𝑥𝑖}  𝑖 = 1,2,3, . . ., 𝑀 . 

Consider some attributes/sub-attributes and subjects need to be classified where attributes/sub-attributes 

are 𝐴𝑗
𝑘 𝑗 = 1,2,3, . . . , 𝑁 and 𝑘 = 1,2, . . . , 𝐿 represents numeric values of attributes 𝐴𝑗 (parallel level layers), 

and concerned subjects are  𝑇 = {𝑥𝑖} ⊂ 𝑈𝐹  where 𝑖 can take some values from 1 to 𝑀 such that Define 

mappings 𝐹 and 𝐺 such that,    

 𝐹: 𝐴1
𝑘 × 𝐴2

𝑘 × 𝐴3
𝑘 ×. . .× 𝐴𝑁

𝑘 → 𝑃(𝑈) For some fixed 𝑘 (leve-1)                (5.1) 

 

 𝐺: 𝐴1
𝑘 × 𝐴2

𝑘 × 𝐴3
𝑘 ×. . .× 𝐴𝑁

𝑘 → 𝑃(𝑈), For some different fixed 𝑘 (level-2)          (5.2) 

Step 2.  Construction of PFHS-Matrix:  Write the data or information (fuzzy-memberships) of PFHS-Set in 

the form of PFHS-Matrix 𝐵 = [𝜇
𝐴𝑗
𝑘(𝑥𝑖)] . If there are some non-favorable attributes in the given 

Information, we may replace their memberships (𝜇
𝐴𝑗
𝑘(𝑥𝑖)) by non-membership (1 − 𝜇

𝐴𝑗
𝑘(𝑥𝑖)) while the 

neutral and favorable attributes would be displayed by their fuzzy memberships. 

Step 3.  Construction of PFSWHSS-Matrix:  By using local aggregation operators constructed in Sec. -4 

formulate PFSWHSS-Matrix given as, 

 𝐵𝐀𝑡 = [

[𝜇
𝐴𝑗
𝑘(𝑥𝑖)]

[Ω
𝐀𝑗
𝑘
𝑡 (𝑋)]

] .                                   (5.3) 

Step 4.  Local Attributive Ranking:  The Local Attributive Ranking is the ranking of the accumulated states 

of matter bodies (subjects) that would be acquired by considering cumulative memberships Ω
𝐀𝑗
𝑘
𝑡 (𝑋) of the 

last row of each layer of 𝐵𝐀𝑡 . 

The higher the membership value, the better the attribute / sub-attribute that corresponds to this 

membership. At this stage, the attributive classification of all layers or a selected layer would be provided 

according to the required situation. In addition, the process would eventually stop when the transparent 

local attributive ranking is obtained. If there are some ties or ambiguities in the local attributive ranking 

that would be eliminated in the next step of the global ranking, a more transparent ranking would be 

observed. 

Step 5.  Global Attributive Ranking: Final global attribute ordering would be provided by using the 

Frequency Matrix, "𝐹𝑖𝑗" and the percentage frequencies Matrix 𝑓𝑖𝑗
∗  by combining the states of mind of the 

decision-makers.                                                                 

𝐹𝑖𝑗 =

𝐴1
𝐴2
.
.
.
𝐴𝑁 [

 
 
 
 
 
𝑓11 𝑓12 . . . 𝑓1𝑁
𝑓21 𝑓22 . . . 𝑓2𝑁
. . . . . .
. . . . . .
. . . . . .
𝑓𝑀1 𝑓𝑀2 . . . 𝑓𝑁𝑁]

 
 
 
 
 

                                                        (5.4)a 

 

𝐹𝑖𝑗
∗ =

𝐴1
𝐴2
.
.
.
𝐴𝑁 [

 
 
 
 
 
𝑓11
∗ 𝑓12

∗ . . . 𝑓1𝑁
∗

𝑓21
∗ 𝑓22

∗ . . . 𝑓2𝑁
∗

. . . . . .

. . . . . .

. . . . . .
𝑓𝑁1
∗ 𝑓𝑁2

∗ . . . 𝑓𝑁𝑁
∗ ]
 
 
 
 
 

                                                       (5.4)b 
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Where, 𝑓𝑖𝑗
∗  is the percentage frequency measure 

𝑓𝑖𝑗
∗ =

(𝑓𝑖𝑗)

∑
𝑖
(𝑓𝑖𝑗)

× 100                                                                 (5.4)c 

In 𝐹𝑖𝑗 the values of the first column signify the frequency with which the 1st position is achieved, which 

is reached by some specific attributes. The elements of the column 2 represent the frequency of acquiring 

the second position and so on. Similarly the elements of 𝐹𝑖𝑗
∗  represent the percentage frequencies. To find 

out which attribute would be assigned the first position we consider the entries in the first column of 𝐹𝑖𝑗
∗  

the attribute corresponds to the highest value of the first column attains the first position and then we 

delete this column of the first position and the row associated with this attribute. This reduces the 

dimension of the matrix. Then, for the second position, add the remaining percentage frequencies of the 

first position into the next percentage frequencies of the second column and then look for the highest 

percentage frequency in the second column for the decision of the second position. 

Once the second position is determined, we delete the corresponding column and row of that position 

and continue the practice until the final position is allocated. 

This Percentage Frequency Matrix has a great potential to handle ties. 

Step 6. Authenticity measurement of the Global ranking: In the last step, we can check the authenticity 

by means of ratios. 

Percentage authenticity measure  of j 𝑡ℎ selected positions for 𝑖𝑡ℎ Attribute, 

 
Highest frequency of 𝑗𝑡ℎ position

Total frequency of 𝑗𝑡ℎposition
× 100       

𝑓𝑖𝑗
ᴗ =

max
𝑖
(𝑓𝑖𝑗
∗ )

∑
𝑖
(𝑓𝑖𝑗)

× 100                                                                              (5.5) 

Step 7. Final Universal States (Combined Consciousness States) and Ranking: 

The final universal states (Combined Consciousness states) of Universes as final accumulated fuzzy 

memberships 𝛀𝑘𝑡 are provided by using the disjunction operator, (𝑡 = 1) the conjunction operator, (𝑡 =

2), and the average operator (𝑡 = 3) on already cumulative memberships of the last row of SWHSS-Matrix 

𝐵𝐀𝑡 , These accumulated fuzzy memberships 𝛀𝑘𝑡  represent the final Universal State or the Combined 

Consciousness State of the universe. 

For a fixed 𝑘 and 𝑡 the universe with the greatest cumulative membership would be considered the better 

universe, and further order of the universes would be observed by arranging the 𝛀𝑘𝑡 in descending order. 

To get the final ranking of the universal states and to obtain extreme and neutral accumulated states of 

the Universe/Reality/Event/Information, we would proceed as  

Taking 𝑡 = 1,2,3 respectively on 𝛀𝑘𝑡 we would obtain the following extreme and neutral values. 

 𝛀𝑘1 = max
𝑗
Ω
𝐀𝑗
𝑘

1 (𝑋) (5.6) 

 𝛀𝑘2 = min
𝑗
[Ω

𝐀𝑗
𝑘
2 (𝑋)] (5.7) 

 𝛀𝑘3 =

∑
𝑗
[Ω
𝐀𝑗
𝑘
3 (𝑋)]

𝑁
 (5.8) 

At this level 𝛀𝑘1  and 𝛀𝑘2  would give the extreme (lowest and highest) states and 𝛀𝑘3  would give the 

neutral states of Universe/Reality/Event/Information as accumulated fuzzy memberships. 

The local order of the universes is obtained by arranging these cumulative memberships in descending 

order, and the global order is offered by using the same scenario of the frequency matrix (step-5). 
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 5.  Application of LGU Combined-Consciousness State Ranking Model 

Numerical Example: 

To achieve the purpose of non-physical classification, initially, we first develop two PFHS-Sets with 𝛼-

Combination and 𝛽-Combination of attributes, i.e., for 𝛼 and 𝛽 universes. Then we represent it as PFHS-

Matrix 𝐵, which consists of two layers that represent the mappings F and G that are used to parameterize 

a combination of attributes/subattributes. By assuming different or specific numerical values of 𝑘 , 

consider 𝛼-Combination of attributes are parameterized by mapping 𝐹 and 𝛽-Combination of attributes 

by mapping 𝐺. The overall LGU Combined-Consciousness State Ranking is described by following the 

steps in the algorithm described in Section -5.  

Step 1.  Construction of the Universe: Consider 𝑈 be the set in five candidates of the mathematics department 

and out of these five only three have participated in consciousness quantification and classification 

experiment. let T be a set of these three candidates (subjects), T = {Peter, Aina, kitty}, (𝑇 ⊂ 𝑈). The elements 

of 𝑇 are our subjects. The states of these subjects are 𝐴𝑗
𝑘 attributes quantified through the fuzzy linguistic 

scales. The classification of these attributes is required.  

These  𝐴𝑗
𝑘attributes are organized in the following manner: 

𝐴1
𝑘 = Intelligence level with numeric values, 𝑘 = 1,2 s.t 

𝐴1
1 = very intelligent, 𝐴1

2 = moderate intelligent 

𝐴2
𝑘 = Fous, with numeric values, 𝑘 = 1,2 s.t 

𝐴2
1 = Strong focus 𝐴2

2 = Weak focus 

𝐴3
𝑘 = Observation with numeric values, 𝑘 = 1,2 s.t 

𝐴3
1 = Strong observation , 𝐴3

2 = weak observation 

𝐴4
𝑘 = Expression with numeric values 𝑘 =  1,2 𝑠𝑡 

𝐴4
1 =  Strong expression, 𝐴4

2 = Weak expression 

𝐹 and 𝐺 be the plithogenic fuzzy parameterizations of the combination of their states (attributes) such that 

𝐹: 𝐴1
𝑘 × 𝐴2

𝑘 × 𝐴3
𝑘 ×. . .× 𝐴𝑁

𝑘 → 𝑃(𝑈) (choosing some of the numeric values of  𝐴𝑗
𝑘, 𝑘 = 1,2, … , 𝐿 

𝐺: 𝐴1
𝑘 × 𝐴2

𝑘 × 𝐴3
𝑘 ×. . .× 𝐴𝑁

𝑘 → 𝑃(𝑈) (choosing some other numeric values of 𝐴𝑗
𝑘, 𝑘 = 1,2, … , 𝐿 

Let these candidates of set T are our 𝑥𝑖subjects, 𝑖 = 1,2,3, and their states are attributed/sub-attribute 

represented 𝐴𝑗
𝑘 𝑗 = 1,2,3,4 and 𝑘 = 1,2. We are looking for the best-reflected attribute among the given 

Combination of attributes (case of the local universe). The local universe of subjects and attributes for first 

level 𝑘 = 1 is described as 

 𝑇 = {Peter, Aina, kitty} = {𝑥1, 𝑥2, 𝑥3}  where 𝑥1, 𝑥2, 𝑥3  represent 𝑥𝑖  subjects under consideration, initially, 

we represent the combination of states of the first level for 𝑘 = 1(combination of attributes that are 

parametrized by mapping F)   

1. Intelligence:  𝑗 = 1, 𝑘 = 1 (very intelligent) 

2. Focus: 𝑗 = 2, 𝑘 = 1 (strong focus) 

3. Observation: 𝑗 = 3, 𝑘 = 1 (strong observation)   

4. Expression: 𝑗 = 4, 𝑘 = 1 (strong expression) 

Now fuzzy memberships (fuzzy parameterization) are assigned by using fuzzy linguistic scales for details 

see ref. [33-36]. 

Let the Function 𝐹 represents the fuzzy parameterization of the given combination of states/attributes s.t., 

𝐹(𝐴1
1, 𝐴2

1 , 𝐴3
1 , 𝐴4

1) = {𝑥1(0.3,0.7,0.4,0.5), 𝑥2(0.4,0.5,0.4,0.1), 𝑥3(0.6,0.2,0.5,0.7)}            (6.1) 

let us name the combination of attributes 𝐴1
1, 𝐴2

1 , 𝐴3
1 , 𝐴4

1  as 𝛼 Combination representing the first level for 

𝑘 = 1 

Consider some other combination of states described for 𝑘 = 2 These states are parametrized by mapping 

G s.t 𝐺: 𝐴1
𝑘 × 𝐴2

𝑘 × 𝐴3
𝑘 × 𝐴4

𝑘 → 𝑃(𝑈) 



Neutrosophic Sets and Systems, Vol. 51,2022                                                                                                              72 
___________________________________________________________________________________ 

S.Rana, M. Saeed, F. Smarandache, LGU-Combined-Consciousness State Model 

The local universe of subjects and attributes for second-level 𝑘 = 2 is described below 

1. Intelligence 𝑗 = 1, 𝑘 = 2 (moderate intelligent) 

2. Focus:  𝑗 = 2, 𝑘 = 2 (weak focus) 

3. Observation: 𝑗 = 3, 𝑘 = 2 (weak observation) 

4. Expression: 𝑗 = 3, 𝑘 = 2 (weak expression) 

Let the function be G represent the fuzzy parametrization of the given combination of states/attributes s.t, 

𝐺(𝐴1
2, 𝐴2

2, 𝐴3
2, 𝐴4

2) = {𝑥1(0.5,0.0,0.2,0.6), 𝑥2(0.6,0.7,0.8,0.5), 𝑥3(0.4,0.7,0.5,0.9)}                                   

(6.2) 

let us name the combination of attributes 𝐴1
1, 𝐴2

1 , 𝐴3
1 , 𝐴4

1  as 𝛽 Combination representing the second level for 

𝑘 = 2 

Step 2.  Construction of PFHS-Matrix:  

The first layer of PFHS-Matrix 𝐵 = [𝜇
𝐴𝑗
𝑘(𝑥𝑖)] is constructed by using the parametrized states given in Eq. 

6.1 for 𝛼 combination (first level layer of PFHS-Matrix, k =1) and The second layer of PFHS-Matrix is 

constructed by using the parametrized states given in Eq. 6.2 for 𝛽 combination (second level layer of 

PFHS-Matrix, k =2)  and this information would be displayed in PFHS-Matrix as shown below. 

 𝐵 =

[
 
 
 
 
 [
0.3 0.7 0.4 0.5
0.4 0.5 0.4 0.1
0.6 0.2 0.5 0.7

]

[
0.5 0.0 0.2 0.6
0.6 0.7 0.8 0.5
0.4 0.7 0.5 0.9

]
]
 
 
 
 
 

 (6.3) 

Step 3.  Construction of PFSWHSS-Matrix:   

The PFSWHSS-Matrix 𝐵𝐀𝑡  is constructed by using Eqs. (3.10 ), (4.1), (4.2), and (4.3) for information of (6.3) 

 𝐵𝐀𝑡 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
[

0.3 0.7 0.4 0.5
0.4 0.5 0.4 0.1
0.6 0.2 0.5 0.7
[𝟎. 𝟔 𝟎. 𝟕 𝟎. 𝟓 𝟎. 𝟕]

]

[

0.5 0.0 0.2 0.6
0.6 0.7 0.8 0.5
0.4 0.7 0.5 0.9
[𝟎. 𝟔 𝟎. 𝟕 𝟎. 𝟖 𝟎. 𝟗]

]

]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
[

0.3 0.7 0.4 0.5
0.4 0.5 0.4 0.1
0.6 0.2 0.5 0.7
[𝟎. 𝟑 𝟎. 𝟐 𝟎. 𝟒 𝟎. 𝟏]

]

[

0.5 0.0 0.2 0.6
0.6 0.7 0.8 0.5
0.4 0.7 0.5 0.9
[𝟎. 𝟒 𝟎. 𝟎 𝟎. 𝟐 𝟎. 𝟓]

]

]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
[

0.3 0.7 0.4 0.5
0.4 0.5 0.4 0.1
0.6 0.2 0.5 0.7
[𝟎. 𝟒𝟑 𝟎. 𝟒𝟔 𝟎. 𝟒𝟑 𝟎. 𝟒𝟑]

]

[

0.5 0.0 0.2 0.6
0.6 0.7 0.8 0.5
0.4 0.7 0.5 0.9
[𝟎. 𝟓 𝟎. 𝟒𝟔 𝟎. 𝟓 𝟎. 𝟔𝟔]

]

]
 
 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (6.4) 

Step 4.  Local Attributive/States Ranking: 𝐵𝐀1𝛼  provides The local order of states/attributes for 𝛼 

Combination of attributes or 𝛼 -universe i.e the first level-layer is obtained by observing the whole 



Neutrosophic Sets and Systems, Vol. 51,2022                                                                                                              73 
___________________________________________________________________________________ 

S.Rana, M. Saeed, F. Smarandache, LGU-Combined-Consciousness State Model 

memberships of (6.4) for first-level 𝑘 = 1 and first aggregation operator (𝑡 = 1). See Eq.4.1 We observe 

here a tie between 𝐴2
1  (Ω𝐀21

1 (𝑋) = 0.7) and 𝐴4
1  (Ω𝐀41

1 (𝑋) = 0.7)  which would be removed in the next step of 

the Global States ranking using the Frequency-Matrix 𝐹𝑖𝑗. 

 𝐴2
1 = 𝐴4

1 ≻ 𝐴1
1 ≻ 𝐴3

1 (6.5) 

𝐵𝐀1𝛽  provides The local ordering of attributes for 𝛽  Combination of attributes or 𝛽-Universe (second 

level-layer obtained for 𝑘 = 2) See Eq. 6.4 by using the first operator 𝑡 = 1 (eq. 4.1) 

 𝐴4
2 ≻ 𝐴3

2 ≻ 𝐴2
2 ≻ 𝐴1

2 (6.6) 

𝐵𝐀2𝛼  provides the local ordering of attributes for 𝛼-Combination of attributes (𝛼-Universe) by using the 

second operator 𝑡 = 2 Eqs 6.4 and (4.2) 

 𝐴3
1 ≻ 𝐴1

1 ≻ 𝐴2
1 ≻ 𝐴4

1  (6.7) 

Similarly 

𝐵𝐀2𝛽 provides the local ordering of attributes for 𝛽 Combination of attributes (𝛽-Universe ) by using the 

second operator 𝑡 = 2 Eqs 6.4 and (4.2)  

𝐴4
2 ≻ 𝐴1

2 ≻ 𝐴3
2 ≻ 𝐴2

2 (6.8) 

𝐵𝐀3𝛼  provides the local ordering of attributes for 𝛼 Combination of attributes (𝛼-Universe) by using the 

third operator 𝑡 = 3 Eqs 6.4 and (4.3) 

 𝐴2
1 ≻ 𝐴1

1 = 𝐴3
1 = 𝐴4

1  (6.9) 

𝐵𝐀3𝛽 provides the local ordering of attributes for 𝛽 Combination of attributes (𝛽-Universe ) by using the 

third operator (𝑡 = 3) Eqs 6.4 and (4.3) 

 𝐴4
2 ≻ 𝐴1

2 = 𝐴3
2 ≻ 𝐴2

2                           (6.10) 

Step 5.  Global States/Attributive Ranking: 

The frequency matrix 𝐹𝑖𝑗 provides a final global ordering of attributes. In the frequency matrix 𝐹𝑖𝑗
𝛼 , which 

is a square matrix of frequencies of positions for first level-layer 𝛼-Universe, the columns of 𝐹𝑖𝑗
𝛼 represents 

frequencies of positions, i.e., the entries of the first column represent the frequencies of attaining the first 

position by some attributes while a row of 𝐹𝑖𝑗 represents the attributes. The 𝐹𝑖𝑗
𝛼 is constructed from Eq. 

(6.5), (6.7), (6.9), and (5.4)a, (5.4)b, (5.4)c 

𝐹𝑖𝑗
𝛼 =

𝛼
𝐴1
1

𝐴2
1

𝐴3
1

𝐴4
1 [
 
 
 
 
  𝑝1 𝑝2 𝑝3 𝑝4
0 3 0 0
2 0 1 0
1 1 1 0
1 1 0 1 ]

 
 
 
 

                                                       (6.11) 

                               

𝐹𝑖𝑗
∗𝛼 =

𝛼
𝐴1
1

𝐴2
1

𝐴3
1

𝐴4
1 [
 
 
 
 
  𝑝1 𝑝2 𝑝3 𝑝4
0 100 0 0
66.7 0 33.3 0
33.3 33.3 33.3 0
33.3 33.3 0 33.3]

 
 
 
 

                                            (6.11)a 

The Global States ranking of attributes obtained from 𝐹𝑖𝑗
∗𝛼 is given below. 

 𝐴2
1 ≻ 𝐴1

1 ≻ 𝐴3
1 ≻ 𝐴4

1  (6.12) 
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The 𝐹𝑖𝑗
𝛽

 is constructed from Eq. (6.6), (6.8), (6.10), and (5.4)a, (5.4)b, (5.4)c      

𝐹𝑖𝑗
𝛽
=

𝛽

𝐴1
2

𝐴2
2

𝐴3
2

𝐴4
2 [
 
 
 
 
  𝑝1 𝑝2 𝑝3 𝑝3
0 2 0 1
0 0 1 2
0 1 2 0
3 0 0 0 ]

 
 
 
 

                                                          (6.13) 

 

𝐹𝑖𝑗
∗𝛽
=

𝛽

𝐴1
2

𝐴2
2

𝐴3
2

𝐴4
2 [
 
 
 
 
  𝑝1 𝑝2 𝑝3 𝑝3
0 66.7 0.0 33.3
0 0.0 33.3 66.7
0 33.3 66.7 0
100 0 0 0 ]

 
 
 
 

                                                     (6.13) 

The Global States ranking of attributes obtained from 𝐹𝑖𝑗
∗𝛽

 is given below. 

 𝐴4
2 ≻ 𝐴1

2 ≻ 𝐴3
2 ≻ 𝐴2

2   (6.14) 

It is observed that the ties of local ranking are removed in the final global ranking 

Step 6. Authenticity measurement of the Global States Ranking: 

Percentage authenticity measure for first level 𝛼-universe   is obtained by using Eq. (5.5)  and (6.11)a 

Percentage authenticity of the first position for 𝐴2
1 = 66.7% 

Percentage authenticity of the second position for 𝐴1
1 = 60% 

Percentage authenticity of the third position for 𝐴3
1 = 50% 

Percentage authenticity of the fourth position for 𝐴4
1 = 100% 

Percentage authenticity measure for first level 𝛽-universe   is obtained by using (5.5) and (6.13)a 

Percentage authenticity of the first position for 𝐴4
2 = 100% 

Percentage authenticity of the second position for 𝐴1
2 = 66.7% 

Percentage authenticity of the third position for 𝐴3
2 = 66.67% 

Percentage authenticity of the fourth position for 𝐴2
2 = 66.7% 

Step 7. Final Universal States (Combined Consciousness States) and Ranking: 

we provide the final ordering of the universe by using all three aggregation operators. 

Maximum Combined Consciousness States (Universal Memberships) of 𝛼 and 𝛽 universes: 

taking 𝑘 = 1,2 for 𝛼 and 𝛽 universes and fixing 𝑡 = 1 (Max-operator) using Eqs. (6.4) and (5.6)  

 𝛀11 = 0.7, 𝛀21 = 0.9 (6.15) 

We can see by using operator 𝑡 = 1, 𝛽 universe is better than 𝛼 universe. 

Minimum Combined consciousness States (Universal Memberships) of 𝛼 and 𝛽 universes: 

Taking 𝑘 = 1,2  for 𝛼  and 𝛽  universes and fixing 𝑡 = 2  minimum universal memberships of all given 

Attributes with respect to subjects, are obtained using Eqs. (6.4) and (5.7)  respectively. 

 𝛀12 = 0.1,  𝛀22 = 0.0 (6.16) 

We observe by using the operator 𝑡 = 2, 𝛽 universe is better than 𝛼 universe. 

Neutral Combined Consciousness States (Universal Memberships) of 𝛼 and 𝛽 universes: 

similarly, taking 𝑘 = 1,2  for 𝛼  and 𝛽  universes and fixing 𝑡 = 3 , we can provide average universal 

memberships of all given subjects with respect to attributes, using Eqs. (6.4) and (5.7) 

 𝛀13 = 0.437,  𝛀23 = 0.53 (6.17) 

The Universal States ordering: By applying the frequency matrix analysis (Eqs.  6.15, 6.16, 6.17, and (5.4)a, 

(5.4)b, (5.4)c The ranking of the states of the universes is 

𝛽(universe) ≻  𝛼(universe)                                                                 (6.18) 

7. Pie graphs of the LGU Combined-Consciousness State Ranking Model 
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7.1 Pie graphs of the LGU Combined-Consciousness State Ranking Model for the 𝛼-Universe 

The pie graphs (Fig1-Fig 4) present the individual states (fuzzy memberships) of 3 subjects considering 

one attribute at a time for the 𝛼-Universe (for aggregation purposes, we use the averaging operator (t = 3) 

           
             Figure 1a (Individual states of A-1)                  Figure 2a (Individual states of A-2) 

              
       Figure 3a  (Individual states of A-3)                           Figure 4a (Individual states of A-4) 

Fig. 5 represents the aggregated states of the three subjects (  𝛼 -Universe first level of aggregation) 

represented for each attribute.  

Fig 6 is representing the aggregated state of the whole universe that is obtained by aggregating the 

previous aggregated states of fig 5 by using the averaging operator (  𝛼 -Universe second level of 

aggregation) 

            
                    Figure 5a (Aggregated states)                  Figure 6a (Universal states) 

7.2 Pie graphs of the LGU Combined-Consciousness State Ranking Model for the 𝛽-Universe  

(Fig1b-Fig 4b) pie graphs are presenting the individual states (fuzzy memberships) of 3 subjects by 

considering one attribute at a time for the 𝛽-Universe (The aggregation operator used is the averaging 

operator (t = 3) 
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0.7
0.5

0.2
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0.4

0.4
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0.5

0.1

0.7
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0.460.43

0.43

Aggregated states of x1,x2,x3 
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0.437
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       Figure 1b ( Aggregated States for A-1)        Fig 2b ( Aggregated States for A-2) 

               
     Figure 3b ( Aggregated States for A3)     Figure 4b( Aggregated States for A-4) 

Fig 5b is representing aggregated states of the three subjects (  𝛽 -Universe first level of aggregation) 

represented for each attribute.  

Fig. 6b represents the aggregated state of the entire -Universe that is obtained by aggregating the previous 

aggregated states of Fig. 5b by using the averaging operator ( 𝛽-Universe, the second level of aggregation) 

 

        
                    Figure 5b (Aggregated states)                    Figure 6b (Aggregated states) 

8. Conclusion :  

1.   We have observed the final global ordering obtained in Eq. (6.12 ) is the most frequently observed local 

ordering in all these ranking orders, which is also observed the same in the local ordering of 𝛽 universe 

in Eq. (6.14) which shows the final global State ranking is most transparent and authentic Ranking. 

2. Expressions (6.15), (6.16), (6.17) provide the highest, lowest, and average states of universes, through 

final accumulative memberships. 

3. The Ordering of universes shows that on the Global Universal level, 𝛽  universe is better than 𝛼 

universe.  
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4. these results of local and global ordering are also verified by the pie graphs 

1. Local ordering: we can observe local orders using these novel plithogenic hyper-supersoft matrices and 

local operators. Each operator reflects the state of mind of the decision-maker; for example, the Max 

operator reflects the optimal state of mind, the Min operator reflects the Passimistic state of mind, and the 

Average operator reflects the neutral state of mind.    

2.  Global ordering:  We can provide a global order by combining the results of all three rankings using the 

frequency matrix. These three rank orders are obtained from three aggregation operators that represent 

three states of the human mind. The ranking at the levels of global states will be transparent and impartial, 

taking into account three different states of the human mind 

 3. Universal ordering: We can compare the universes by applying 𝑡ℎ𝑒 𝑚𝑎𝑥 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 (𝑡 =

 1), 𝑡ℎ𝑒 𝑚𝑖𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 (𝑡 =  2) and 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 (𝑡 =  3) on cumulative memberships of the last 

row for each universe. The universe with the largest cumulative membership would be better, and further, 

a local ordering of the universes is obtained by arranging these cumulative memberships in descending 

order and the global ordering is offered by using the same scenario of the frequency matrix 

4.  Extreme Universal Memberships: We can also find out the extreme values of these universes and can 

observe these attributes in the large universe made up of several smaller parallel universes. We can choose 

from among all universes the best-reflected attribute that is best in most universes. 

5.  local and global ordering inside the universe: In this article, our focus is on the non-physical states of the 

subjects or universe. Local and global ordering We have offered a local and global ordering of states of 

subjects (Attributes, Sub-attributes) within a universe.  

6. local and global ordering of the Universe: Furthermore, a local and global ordering of states of the Universe 

is offered. The state of the universe is obtained by accumulating the states of all subjects of the given 

universe. 

7. Combined Consciousness of the Universe: The state of the universe is presented by the accumulated states 

of all its subjects. In this ranking model, the accumulated states of all subjects as a Combined 

Consciousness of the universe is offered in the form of universal memberships.  

9. Open problems:  

 Now, let us list some of the open problems that could be addressed in future research.  

• In this article, we developed the LGU Combined Consciousness State Ranking Model in the plithogenic 

fuzzy environment. 

This model can be extended to other environments, such as intuitionistic environment, neutrosophic 

environment, or any other mixed environment according to the required conditions or states of mind of 

the decision-makers. 

• In addition, some other local operators can be used in the construction of the model according to the 

requirements of the relevant authorities. 

• Attributive and subjective ranking models can be constructed using the literature developed in this 

article.  
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Abstract: With the continuous advancement of science and technology, the decision-making 

environment faced by managers is increasingly complex, which puts forward higher 

requirements for managers. Due to the complexity of the multi-attribute decision-making 

problem, it is difficult for the decision-maker to make the correct choice. In addition, due to 

the influence of the educational background and limited knowledge of the managers, it is 

impossible to evaluate with simple statistical data. In essence, the location problem of low-

carbon logistics parks is a MADM problem. Therefore, this paper establishes an optimization 

model to solve the multiple-attribute decision-making (MADM) problem with alternative 

preference and single-valued neutrosophic (SVN) information. Considering that the 

information of weight is unknown, a scientific model is built based on the minimum deviation 

method deriving the criterion weight. Furthermore, the above models and methods are 

extended to interval neutrosophic sets (INs). To verify the validity of the modified model, a 

numerical case for low-carbon logistics park site selection is taken as an example. Through 

the case study, we found that the method has strong operability and can make the most of the 

available information. 

Keywords: Multiple-attribute decision-making (MADM); single-valued neutrosophic sets 

(SVNSs); interval neutrosophic sets (INs); preference information; low-carbon logistics park 

site selection 

1. Introduction 

Decision makers (DMs) often have difficulty expressing their preferences accurately when 

presented with inaccurate, uncertain expression when solving MADM issues[1-5]. Fuzzy Sets 
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(FSs) [6]are considered to solve the MADM problems [7, 8]. Intuitionistic fuzzy sets (IFS)[9], as 

an extension, have subsequently been widely used in solving MCDM problems. Since IFSs 

consider both membership and non-membership, they are more flexible and practical than 

traditional FSs[10-14]. In some practical cases, membership, non-membership and hesitation of 

an element of IFSs may not be a specific figure. Therefore, it is extended to IVFS [15-20]. To 

represent uncertainty and inconsistency in information, Smarandache [21] introduced 

neutrosophic sets (NS) as an alternative to IFSs and IVIFSs. To facilitate practical application, 

the SVNS [22] and INS [23] were proposed as subclasses of NS, and then Ye [24] introduce`ed 

SNS, SVNS and INS. According to the literature. NS is a generalization of FS, IFS, and IVIFS. 

In practice, SNS (SVNS and INS) are ideal for the expression of incomplete and uncertain 

information in practical applications. In recent years, SNSs (ins) and SVNSs (SVNSs) is the ideal 

choice for expressing incomplete, uncertain and inconsistent information. Sahin and Kucuk 

[25] gave the introduction of entropy measure of SVNSs. And correlation coefficient of SVNSs 

and the method of using SVNSs for decision making are introduced based on the preliminary 

knowledges. In a time-neutral environment, Broumi and Smarandache [26] built the correlation 

coefficients of INSs. While Zhang, Wang and Chen [27] developed INNWA operator and 

INNWG operator. Furthermore, Ye [28-32] introduced a similarity measure between SVNSs 

and INSs. Ye [33] examined interval-neutral MADM methods based on probability degree 

sequencing and ordered weighted aggregate operators. Ye and Jun [34] proposes an interval-

neutral MADM with confidence information. Peng, Wang, Zhang and Chen [35] studied a 

transcendent approach to MADM problems with simplified neutral sets. With interval-value 

neutral sets, Zhang, Wang and Chen [36] devised a transcendent method to solve the MADM 

issues. In their paper, Tian, Zhang, Wang, Wang and Chen [37] examined the use of interval 

neutral set cross entropy. The SVNNWBM operator was proposed by Liu and Wang [38] using 

the Bonferroni mean, the WBM, and the normalized WBM. Liu, Chu, Li and Chen [39] 

combined Hamacher operator and generalized operator into NS, proposed the GNNHWA 

operator, GNNHOWA operator and GNNHHA operator. Zhao, Du and Guan [40] extended 

the GWA operator to work in line with the IVNS data. Liu and Wang [41] further proposed 

INPOWA operator. In their study, the preferred weighted average operator and priority 

weighted geometric operator for SNN [42] were then defined. Ye [43] proposed INWEA 

operator and DUNWEA operator based on exponential algorithm. Li, Liu and Chen [44] 

proposed some Heronian mean operators with SVNSs. 



Neutrosophic Sets and Systems, Vol. 51, 2022     82  

 

____________________________________________________________________________________________ 

Xinrui Xu, Dexue Deng, Cun Wei, Location Selection of Low-carbon Logistics Park Based on the Neutrosophic Numbers Multiple 

Attribute Decision Making 

 

 

Knowledge explosion, information torrent, rapid technological change, rapid social 

change, rapid economic development, and so on, this is an era of change, but also an era of 

development. With the popularization of the Internet and the rapid development of the e-

commerce industry, the way of shopping has gradually shifted from offline to online[45, 46]. 

Online shopping has become an indispensable part of contemporary people's lives, and the 

accompanying logistics system is an important part of it. support. The rapid development of 

SF Express, "Three Links and One Delivery" (Zhongtong, Shentong, Yuantong, Yunda Express), 

JD Logistics and other niche express delivery has driven economic growth, but their extensive 

logistics operations have also caused great damage to the environment. Influence. Logistics 

systems include a variety of activities, such as supplier production, transportation and 

distribution, that consume energy and emit carbon[47-50]. In the context of global warming 

and environmental deterioration, it is extremely urgent to develop low-carbon logistics[51-53]. 

Government departments have formulated a series of plans to implement them. The primary 

task of the logistics industry system from the perspective of low carbon is to carry out 

reasonable planning of logistics activities, build logistics parks and solve the problem of site 

selection of logistics parks[54-56]. The location of a low-carbon logistics park depends on 

factors such as the economic development of a certain place, market demand, low-carbon 

attributes of logistics and transportation routes, and whether carbon emissions meet 

environmental requirements[57-59]. In essence, the location problem of low-carbon logistics 

parks is a MADM problem. During the process of single valued neutral MADM with 

alternative preference information. The weights are not completely known or completely 

unknown. Nevertheless, none of the above methods are suitable for dealing with this situation. 

To overcome this limitation, it is necessary to find methods based on the minimum deviation 

method. The aim of this manuscript is to establish a method based on the least deviation 

method. We will introduce SVNSs in the next section of this paper. In Section 3, we build the 

MADM model under SVNSs, where the information about criterion weight is not completely 

known, and the attribute value and preference value of options are SVNNs. In Section 4, There 

is no complete information about criterion weight, and the attribute value and preference value 

are expressed as INNs. In Section 5, illustrative examples for low-carbon logistics park site 

selection are indicated. In Section 6, we summarize the full text. 

2. Preliminaries  
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Definition 1[60]. Assume W  be a set with an element in a fixed set W , which is denoted by

 . A NSs   in W is defined by the function of  truth-membership    , indeterminacy-

membership    and a falsity-membership function    . The functions    , 

   and    are real standard or nonstandard subsets of 0,1    , that’s, 

   : 0,1 , : 0,1W W               and   : 0,1W       . There is no 

restriction of    ,    and    , so 

     0 sup sup sup 3            . 

Definition 2[22]. Let W  be a collection in fixed set W , denoted by . A SVNSs inW is 

defined as follows: 

       , , , W                                   (1) 

Where  x ,    and     are in the value of  0,1 , that is, 

       : 0,1 , : 0,1W W      and    : 0,1W   . And the sum of    , 

   and    meets the condition      0 3           . Then a 

simplification of is represented by        , , , W            , which is a 

SVNS. 

    For a SVNS        , , , W           , the ordered triple components

      , ,        , are defined as a SVNN, and each SVNN can be expressed as

 , ,      , where      01 , 01 , 01      ， ， ， , and 0 + + 3      . 

Definition 3[61]. Set  , ,       be a SVNN, a score function   is represented: 

 
 2

3

    
 

  
 ,    0,1                     (2) 

Definition 4[61]. Set  , ,       be a SVNN, an accuracy function   is represented: 

        ,    1,1     .                        (3) 

Definition 5[61]. Let  , ,       and  , ,      be two SVNNs, 

 
 2

3

    
 

  
  and  

 2

3

    
 

  
  be the scores function, and let
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         and          be the accuracy degrees, then if        , then 

  ; if        , then 

(1) if        , then   ; (2) if        , then   . 

Definition 6[61]. Let  , ,       and  , ,        be two SVNNs, and some 

basic operations are defined: 

 

 

      
        

(1) , , ;

(2) , , ;

(3) 1 1 , , , 0;

(4) , ,1 1 , 0.

       

         

  

  

   

  

         

           

    

    

   

     

   

   

 

Based on Definition 6, the following properties are derived. 

Theorem 1[22]. Let  , ,       and  , ,        be two SVNNs, 1 2, , 0    , 

then 

 

     

 

     
 

    

1 2 1 2

2
1 1 2

1 2 1 2

(1) ;

(2)

(3) ;

(4) ;

(5) ;

(6) ;

(7) .

  

   


  

   

   

    

   

     

  

 



  

  

  

  

  

 



；

 

Definition 7[61]. Let   , , 1,2, ,            be a collection of SVNNs, and let 

SVNWA: Q Q  , if 

   

     

1 2
1

1 1 1

SVNWA , , ,

= 1 1 , ,  



   


  
  

  

  

    

  



  

 

 
  

 
  

                       (4) 

where  1 2, , ,
T

     be the weight of  1,2, ,   , and 0  , 
1

1








 , 

then SVNWA is called SVNWA operator. 
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Definition 8[25]. Let  , ,       and  , ,        be two SVNNs, then the 

Hamming distance is defined: 

   
1

,
3

d                                     (5)  

3. Models for SVN MADM issues  

(1) Let  1 2, , ,      be a discrete set of alternatives;(2) Let  1 2, , ,      be 

a set of attributes;(3) Let  1 2, , ,      be subjective preference and 

 , ,
         are SVSNs, which is subjective preference on alternative

 1,2, ,   .(4) The criterion weights is incompletely known. Let 

 1 2, , , R      be the weight of attributes, where 0  , 1,2, ,  ,

1
1







 , R  is a set of criterion weight, constructed by the following forms [62, 63], for 

  : Form 1. A weak sequence:    ; Form 2. A strict sequence:      , 0 

;Form 3. A sequence of differences:        , for     ;Form 4. A sequence 

with multiples:      , 0 1  ; Form 5. An interval form: 

, 0 1i              . Suppose that    , ,V       
   

 
   is 

SVN decision matrix,      0,1 , 0,1 , 0,1       , 0 + + 3      , 

1,2, ,  , 1,2, ,  . 

Definition 9[61]. Let    , ,V       
   

 
   is the SVN matrix,

 1 2, , ,        be the attribute values for alternative  , 1,2, ,  , then we call 

   

       
1

1 1 1

1 2, ,

= 1 1 , ,

SVNWA , , ,

  

   

     

    


  

      

    

 


  

 
    

 

 

  
             (6) 

the overall value of  , where  1 2, , ,
T

    is the criterion attributes. 
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On the premise that the attribute weight is known, we can aggregate the weighted values 

into a total value through Eq. (6). According to the overall attribute value, we can make a final 

ranking of possible solutions, and finally choose the most suitable solution. 

If the attribute weight information of the decision model is unknown, to reflect the 

subjective preference and objective information of the DM at the same time, the optimization 

decision model is established. However, there are some differences between DM's subjective 

preference and objective information. To make decision-making more scientific and reasonable, 

the selection of attribute weight vector should minimize the total deviation between objective 

information and DM subjective preference. 

For   , the deviation of alternative   to DM’s subjective preference is defined as 

follows: 

   , , 1,2, , , 1,2, ,K              .                   (7) 

Let      
1 1

, , 1,2, ,K K
 

    
 

       
 

     

Then  K   denote the deviation of   to DM’s subjective preference value  . 

According to the above analysis, we must select the criterion weight vector to minimize 

all deviations of possible solutions. To this end, we establish a linear programming model： 

 M-1
     

1 1 1 1

1

min ,

Subject to 1, 0, 1,2, ,

K K
   

   
   



 

     

   

   




 


   


 



 

where    1
,

3                        . 

If the attribute weight information is completely unknown, another programming model 

is established: 

 M-2

   

 

1 1

1 1

2

1

min

1

3

. . 1, 0, 1,2, ,

K K

s t

  

 


 

 

      
 



 

 

      

   

 

 








     



  








 

The Lagrange function is constructed as follows: 



Neutrosophic Sets and Systems, Vol. 51, 2022     87  

 

____________________________________________________________________________________________ 

Xinrui Xu, Dexue Deng, Cun Wei, Location Selection of Low-carbon Logistics Park Based on the Neutrosophic Numbers Multiple 

Attribute Decision Making 

 

 

    2

1 1 1

1
, 1

3 6
L

  

  

       
  


         

  

 
        

 
      (8) 

where   is the Lagrange multiplier. 

Differentiating Eq. (8) and setting these partial derivatives equal to zero: 

 
1

2

1

0

1 0

mL

L

  



      








      









 
       



   







            (9) 

By solving Eq. (9), we get the attribute weights: 

 

 

* 1

2

1

  

  



     


 

     


     



     





    



     
 





                    (10) 

By standardizing  * 1,2, ,    be a unit, we have 

 

 
1

1 1

  

  



     


  

     

 

     



     



 

    



    




                       (11) 

We propose a practical method to solve MADM with alternative preference and SVNs.  

(Procedure one) 

Step 1. Let    , ,V       
   

 
  be a SVN matrix,   1 2, , ,     be the 

criterion weight, where  0,1  , 1,2, ,  ,    is a set of the known weight 

information. Let  1 2, , ,      be subjective preference,  , ,
         are 

SVNNs, which are subjective preference values on alternatives  1,2, ,   . 

Step 2. By solving the model (M-1), the partially known index values of the weight information 

are obtained.  

Step 3. Utilize the weight  1 2, , ,      and Eq. (7), we obtain the   of 

 1,2, ,   . 
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Step 4. Obtain the scores    of  1,2, ,   to rank all the solutions 

 1,2, ,   . Then we calculate the     and    , and then rank the 

alternatives through     and    . 

Step 5. Rank solutions  1,2, ,    and select the best one through     and

    1,2, ,  . 

Step 6. End. 

4. Models for INS MADM problems 

Definition 10[23]. Let W  be a collection with element in fix setW , denoted by . An INSs 

 inW is defined as follows: 

       , , , W                                (12) 

where    ,    and    , which are interval values in the value of  0,1 , that is, 

       0,1 , 0,1      and    0,1   . 

        0 sup sup sup 3           .  

    For a INSs        , , , W           , the ordered triple components

      , ,        , are described as an INNs, and each INN can be expressed as

   , , , , , , ,X Y X Y X Y

                            , where

     , 01 , , 01 , , 01X Y X Y X Y

                    ， ， ， , and 0 + + 3Y Y Y

      . 

Definition 11[64]. Let  , , , , ,X Y X Y X Y

                      be an INN, a score function   

is represented: 

 
   2 2

6

X X X Y Y Y

          
 

      
 ,    0,1   .    (13) 

Definition 12[64]. Let  , , , , ,X Y X Y X Y

                      be an INN, an accuracy 

function  is represented: 

 
   

2

X Y X Y

      
 

  
 ,    1,1    .               (14) 
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Tang [64] gave an order relation between two INNs. 

Definition 13[64]. Let  , , , , ,X Y X Y X Y

                      and 

 , , , , ,X Y X Y X Y

                     be two INNs, 

 
   2 2

6

X X X Y Y Y

          
 

      
  and  

   2 2

6

X X X Y Y Y

          
 

      
  

be the scores of  and  , respectively, and let  
   

2

X Y X Y

      
 

  
  and 

 
   

2

X Y X Y

      
 

  
  be the accuracy degrees of  and  , then if 

       , then   ; if        , then 

(2) if        , then   ; (2) if        , then   . 

Definition 14[27]. Let  1 1 1 1 1 1 1, , , , ,X Y X Y X Y                 and 

 2 2 2 2 2 2 2, , , , ,X Y X Y X Y                  be two INNs, and some basic operations are 

defined: 

1 1 1 1 1 1 1 1

1 2

1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 1 1 1 1 1 1 1

1 1 1 1

, ,
(1) ;

, , ,

, ,

(2) , ,

,

X X X X Y Y Y Y

X X Y Y X X Y Y

X X Y Y

X X X X Y Y Y Y

X X X X

       
 

       

   

         

   

        
       

  

       

 

   

       

 
       

   

1 1 1 1

1 1

1

1 1 1 1

1 1 1 1

1

1 1

;

1 1 ,1 1 ,

(3) , 0;

, , ,

, , , ,

(4) ,

1 1 ,1 1

Y Y Y Y

X Y

X Y X Y

X Y X Y

X Y

 

   

  



 

   

 

 

   

   

 

 

 
 
 
 
     

     
   

  
    

      

   
       

  
     
   

0.

 

Theorem 2[27]. Let  1 1 1 1 1 1 1, , , , ,X Y X Y X Y                 and 

 2 2 2 2 2 2 2, , , , ,X Y X Y X Y                  be two INNs, 1 2, , 0    , then 
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 

     

 

     
 

    

1 2 1 2

2
1 1 2

1 2 2 1

1 2 2 1

1 2 1 2

1 2 1 2

1 1 2 1 1 2 1

1 1 1

1 1

(1) ;

(2) ;

(3) ;

(4) ;

(5) ;

(6) ;

(7) .

  

   


  

   

   

    

   

     

  

 



  

  

  

  

  

 



 

Definition 15[27]. Let   , , , , , 1, 2, ,X Y X Y X Y

                         

 1,2, ,   be a collection of INNs, and let INWA:Q Q  , if 

   

   

       

1 2
1

1 1

1 1 1 1

INWA , , ,

1 1 ,1 1 ,

=

, , ,

X Y

X Y X Y

 

   



   


 
 

 

 

   
   

   

   

    

 

   



 

   

 

  
     

  
 
    
    
    

 

   

         (15) 

where  1 2, , ,
T

     be the criterion weight, and 0  , 
1

1
n







 , then INWA is 

called INWA operator. 

Definition 16[64]. Let  1 1 1 1 1 1 1, , , , ,X Y X Y X Y                 and 

 2 2 2 2 2 2 2, , , , ,X Y X Y X Y                  be two INNs, then the normalized Hamming 

distance between  1 1 1 1 1 1 1, , , , ,X Y X Y X Y                 and 

 2 2 2 2 2 2 2, , , , ,X Y X Y X Y                 is defined: 

 
1 2 1 2 1 2

1 2

1 2 1 2 1 2

1
,

6

X X Y Y X X

Y Y X X Y Y

     
  

     

      
 
     
 

             (16) 

Let  ,  and  be presented as in section 3. Suppose that 

   , , , , ,X Y X Y X YV          
      

 

            is the INN matrix, 
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 , 0,1 ,X Y

           , 0 , 1 , , 0 , 1X Y X Y

                 , 0 + + 3Y Y Y

      , 

1,2, ,  , 1,2, ,  . The subjective preference information on alternatives is 

known, and  , , , , ,X Y X Y X Y

                           are INNs, which is subjective preference 

values on alternative  1,2, ,   . 

Definition 17[27]. Let    , , , , ,X Y X Y X YV          
      

 

            is the INN 

matrix,  1 2, , ,        be the vector of attribute values for  , 1,2, ,  , then we 

call 

 

   

   

       

1

1 1

1 1 1 1

1 2

, , , , ,

1 1 ,1 1 ,

=

, , ,

INWA , , ,

X Y X Y X Y

X Y

X Y X Y

 

   

      



 


 
 

 

 

   
   

   

   

  

     

  

 

   



 


 

   

        

 

  
     

  
 
    
    
    





 

   

           (17) 

the overall value of , where  1 2, , ,
T

    is the criterion weight. 

When the attribute weight information is completely known, aggregate all the weighted 

attribute values corresponding to each alternative into a whole using Eq. (17).  

If the decision model is difficult to obtain attribute weight, sometimes the criterion weight 

information is completely unknown. To reflect the subjective preference and objective 

information of decision-makers, an optimization model is established to obtain the weight of 

attributes. However, there are some differences between DM's subjective preference and 

objective information. To make the decision more reasonable, the selection of criterion weight 

vector is to minimize the total deviation between objective information and DM subjective 

preference. 

The least deviation method was used to calculate the difference between DM's subjective 

preference and objective information. For the   , the deviation of alternative   to DM’s 

subjective preference is described as follows: 

   , , 1,2, , , 1,2, ,K              .               (18) 
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Let      
1 1

, , 1,2, ,K K
 

    
 

       
 

     Based on the above analysis, we 

must choose weights to minimize all deviations from all alternatives. To this end, we 

establish a linear programming model: 

 M-3  
     

1 1 1 1

1

min ,

Subject to 1, 0, 1,2, ,

K K
   

   
   



 

     

   

   




 


   


 



 

where  
1

,
6

X X Y Y X X

Y Y X X Y Y

  

  

     

 

     

     
  

     

     
 
      
 

. 

By solving the model  M-3 , we get the  1 2, , ,     , which is used as attributes 

weight. 

If the information about criterion weights is completely unknown, we build another 

programming model: 

 M-4

   
1 1

1 1

2

1

min

1

6

. . 1, 0, 1,2, ,

X X Y Y X X

Y Y X X Y Y

K K

s t

  

  

 


 

 
     


 

     



 

 

     


     

   

 

 







         

       

   









 

To solve this model, we build the Lagrange function: 

  2

1 1 1

1
, 1

6 12

X X Y Y X X

Y Y X X Y Y
L

  

  

  
     

 
  

     

      
   

       

        
    
        

    (19) 

where   is the Lagrange multiplier. 

Differentiating Eq. (19) with respect to  1,2, ,   and , and setting these partial 

derivatives equal to zero,  

1

2

1

0

1 0

X X Y Y X X

Y Y X X Y Y

L

L

  

  


     


      







     


      








          
        

 


  






        (20) 
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By solving Eq. (20), we get the attribute weights: 

1
*

2

1

X X Y Y X X

Y Y X X Y Y

X X Y Y X X

Y Y X X Y Y

  

  

  

  


     


     




     


     

     

     


     

     





      
 
     
 

       
  
      
  





              (21) 

By normalizing  * 1,2, ,    be a unit, we have 

1

1 1

X X Y Y X X

Y Y X X Y Y

j X X Y Y X X

Y Y X X Y Y

w

  

  

  

  


     


     

 
     

 
     

     

     

     

     



 

      
 
     
 
      
 
     
 





                (22) 

Based on the above model, a practical method is proposed to solve INN-MADM with 

alternative preference information. The method includes the following steps:  

(Procedure two) 

Step 1. Let    , , , , ,X Y X Y X YV          
      

 

           be an INN matrix, where 

, , , , ,X Y X Y X Y

                      ，  for    with respect to   , 

 1 2, , ,     be the weight of attributes, where  0,1  , 1,2, ,  , 

which is constructed by the forms 1-5. Let  1 2, , ,      be subjective preference, 

 , , , , ,X Y X Y X Y

                           are INNs, which are subjective preference on 

alternatives  1,2, ,   . 

Step 2. By solving the model (M-3), the partially known index values of the weight is obtained. 

If the criterion weight is unknown, then we can obtain the criterion weights by Eq. (22). 

Step 3. Utilize  1 2, , ,      and Eq. (17), we obtain the   of  1,2, ,   . 

Step 4. Compute out the scores    of  1,2, ,   to rank all the alternatives 

 1,2, ,    then rank the alternatives   and   through     and

   . 
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Step 5. Rank all the alternatives  1,2, ,m    and select the best one(s) through   

and     1,2, ,  . 

Step 6. End. 

5. Case Study  

With the expansion of the e-commerce Internet, online shopping has been enthusiastically 

sought after by people, and the logistics industry has also risen rapidly. Logistics promotes 

economic growth and is increasingly prominent in the national economic status. However, as 

an indispensable part of the logistics industry, logistics parks have many difficult problems. 

Usually occupies a large scale, and the construction investment cost is high. Once completed, 

it is not easy to relocate, and today's environmental problems are becoming more and more 

serious. The basic criteria for planning and building a low-carbon logistics park It is "low 

energy consumption, high efficiency". The location problem of low-carbon logistics parks can 

be regarded as a MADM problem. Generally, multiple decision-makers give corresponding 

evaluations to a limited number of alternatives under the influence of different factors, and use 

scientific decision-making methods to evaluate the relevant ones. The evaluation information 

is processed, so as to sort the different alternatives and make a reasonable choice. In this section, 

we apply the constructed model to a real-world example, taking the low-carbon logistics park 

site selection as an example. Through market research, a panel of five possible low-carbon 

logistics park sites
 

 1,2,3,4,5    was selected. The experts selected four indexes to 

evaluate five low-carbon logistics park sites: ① 1  is transportation and warehousing 

investments; ② 2 is regional goods material turnover; ③ 3  is land use; ④ 4 is degree of 

environmental protection. Five possible low-carbon logistics park sites  1,2,3,4,5  

will use the SVNNs by the decision maker under the above four attributes, as listed in the 

following matrix. 

       

       

       

     

0.5, 0.8, 0.1 0.6, 0.3, 0.3 0.3, 0.6, 0.1 0.5,0.7,0.2

0.7, 0.2, 0.1 0.7, 0.2, 0.2 0.7, 0.2, 0.4 0.8,0.2,0.1

V= 0.6, 0.7, 0.2 0.5, 0.7, 0.3 0.5, 0.3, 0.1 0.6,0.3,0.2

0.8, 0.1, 0.3 0.6, 0.3, 0.4 0.3, 0.4, 0.2 0.5,0.6, 

       

0.1

0.6, 0.4, 0.4 0.4, 0.8, 0.1 0.7, 0.6, 0.1 0.5,0.8,0.2

 
 
 
 
 
 
 
   

DMs’ subjective preference value on alternative: 
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     

   

1 2 3

4 5

0.6,0.5,0.2 , 0.7,0.2,0.1 , 0.3,0.4,0.3

0.9,0.3,0.2 , 0.5,0.6,0.4

  

 

  

 
 

Next, developed method is used to select the best location of low-carbon logistics park. 

Case 1: Criterion weight information is known as follows: 




1 2 3

4

4 1

0.18 0.23,0.20 0.24,0.25 0.30,

0.25 0.33, 0, 1,2,3,4, 1 

   

   


      

    
 

Step 1. The single-objective programming model is obtained as follows: 

  1 2 3 4min 0.6333 0.6667 0.8333 0.7000K          

Solving this model, we get the weight of attributes:  0.2300 0.2400 0.2500 0.2800 
T

   

Step 2. Utilize the weight  1 2, , ,      and by Eq. (6), we obtain the   of the low-

carbon logistics park site  1,2, ,   . 

   

   

 

1 2

3 4

5

0.4845,0.5667,0.1581 , 0.7322,0.2000,0.1670

0.5538,0.4468,0.1854 , 0.5824,0.3040,0.2135

0.5633,0.6348,0.1670

 

 



 

 



 

Step 3. Calculate the scores    of  1,2, ,    

     

   

1 2 3

4 5

0.5866, 0.7884, 0.6406

0.6883, 0.5872

     

   

  

 
 

Step 4. Rank all the low-carbon logistics park sites  1,2,3,4,5    through     

 1,2, ,5  : 2 4 3 5 1     , and thus the most desirable low-carbon logistics park 

site is 5 . 

Case 2: When the weight is unknown, we use another method to get the optimal location 

of low-carbon logistics park. 

Step 1. Get the weight of attributes: 

 0.2235 0.2353 0.2941 0.2471 
T

   

Step 2. Utilize the  1 2, , ,      and Eq. (6), we obtain the overall values   of the 

low-carbon logistics park site  1,2, ,   . 



Neutrosophic Sets and Systems, Vol. 51, 2022     96  

 

____________________________________________________________________________________________ 

Xinrui Xu, Dexue Deng, Cun Wei, Location Selection of Low-carbon Logistics Park Based on the Neutrosophic Numbers Multiple 

Attribute Decision Making 

 

 

   

   

 

1 2

3 4

5

0.4762,0.5647,0.1537 , 0.7286,0.2000,0.1770

0.5498,0.4425,0.1794 , 0.5732,0.3031,0.2172

0.5727,0.6296,0.1618

 

 



 

 



 

Step 3. Compute out the scores    1,2, ,    of  1,2, ,   . 

     

   

1 2 3

4 5

0.5860, 0.7839, 0.6426

0.6843, 0.5938

     

   

  

 
 

Step 4. Rank all the solutions through    : 2 4 3 5 1     , and thus the most 

desirable low-carbon logistics park site is 2 . 

If the five possible low-carbon logistics park sites  1,2,3,4,5    are to be evaluated 

using the INNs, as listed in the following matrix. 

             
             
             
      

0.5, 0.6 , 0.8, 0.9 , 0.1, 0.2 0.6, 0.7 , 0.3, 0.4 , 0.3, 0.4

0.7, 0.9 , 0.2, 0.3 , 0.1, 0.2 0.7, 0.8 , 0.1, 0.2 , 0.2, 0.3

V= 0.6, 0.7 , 0.7, 0.8 , 0.2, 0.3 0.5, 0.6 , 0.7, 0.8 , 0.3, 0.4

0.8, 0.9 , 0.1, 0.2 , 0.3, 0.4 0      
             

             
          

.6, 0.7 , 0.3, 0.4 , 0.4, 0.5

0.6, 0.7 , 0.4, 0.5 , 0.4, 0.5 0.4, 0.5 , 0.8, 0.9 , 0.1, 0.2

0.3, 0.4 , 0.6, 0.7 , 0.1, 0.2 0.5, 0.6 , 0.7, 0.8 , 0.1, 0.2

0.7, 0.9 , 0.2, 0.3 , 0.4, 0.5 0.8, 0.9 , 0.2, 0.3 , 0.1,











  
             
             
             

 0.2

0.5, 0.6 , 0.3, 0.4 , 0.1, 0.2 0.6, 0.7 , 0.3, 0.4 , 0.2, 0.3

0.3, 0.4 , 0.4, 0.5 , 0.2, 0.3 0.5, 0.6 , 0.6, 0.7 , 0.1, 0.2

0.7, 0.8 , 0.6, 0.7 , 0.1, 0.2 0.5, 0.6 , 0.8, 0.9 , 0.2, 0.3











DM’s subjective preference value on alternative is: 

             

             

      

1 2

3 4

5

0.6,0.7 , 0.5,0.6 , 0.2,0.3 , 0.7,0.8 , 0.2,0.3 , 0.1,0.2

0.3,0.4 , 0.4,0.5 , 0.3,0.4 , 0.9,1.0 , 0.3,0.4 , 0.2,0.3

0.5,0.6 , 0.6,0.7 , 0.4,0.5

 

 



 

 



 

Case 1: The attribute weights are partially known, 




1 2 3

4

4 1

0.18 0.23,0.20 0.24,0.25 0.30,

0.25 0.33, 0, 1,2,3,4, 1 

   

   


      

    
 

Step 1. Establish the ingle-objective programming model: 

  1 2 3 4min 0.6500 0.7000 0.8500 0.7333K          
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Solving this model, we get the weight of attributes: 

 0.2300 0.2400 0.2500 0.2800 
T

   

Step 2. Utilize the  1 2, , ,      and Eq. (17), we obtain the   of the low-carbon 

logistics park sites  1,2, ,   . 

      

      

      

      

 

1

2

3

4

5

0.4845,0.5168 , 0.5667,0.6731 , 0.1302,0.2362

0.7322,0.8556 , 0.1693,0.2722 , 0.1670,0.2772

0.5538,0.6323 , 0.4468,0.5540 , 0.1854,0.2905

0.5824,0.6960 , 0.3040,0.4218 , 0.2135,0.3234

0.5633,0.4059 , 0.



















     6348,0.7383 , 0.1670,0.2766

Step 3. Calculate the scores    of  1,2, ,    

     

   

1 2 3

4 5

0.5658, 0.7837, 0.6183

0.6693, 0.5254

     

   

  

 
 

Step 4. Rank all the low-carbon logistics park sites  1,2,3,4,5    through scores     

 1,2, ,5  of  1,2, ,   : 2 4 3 1 5     , and most desirable alternative is

2 . 

Case 2: If attribute weights are completely unknown, we utilize an alternative approach to 

obtain the best low-carbon logistics park sites.  

Step 1. Utilize the Eq. (22) to get the weight of attributes: 

 0.2216 0.2386 0.2898 0.2500 
T

   

Step 2. Utilize the  1 2, , ,      and Eq. (17), we obtain the   of the low-carbon 

logistics park site  1,2, ,   . 

      

      

      

      

 

1

2

3

4

5

0.4774,0.5169 , 0.5633,0.6696 , 0.1300,0.2360

0.7289,0.8546 , 0.1695,0.2723 , 0.1763,0.2873

0.5499,0.6328 , 0.4431,0.5503 , 0.1802,0.2857

0.5734,0.6960 , 0.3040,0.4209 , 0.2171,0.3264

0.5714,0.4078 , 0.



















     6312,0.7346 , 0.1617,0.2712
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Step 3. Calculate the scores of  1,2, ,   . 

     

   

1 2 3

4 5

0.5659, 0.7797, 0.6206,

0.6668, 0.5301

     

   

  

 
 

Step 4. Rank all the low-carbon logistics park sites  1,2,3,4,5    through    : 

2 4 3 1 5     , and thus the most optimal low-carbon logistics park site is 2 . 

6. Conclusion  

Under the background of increasingly standardized logistics market and increasingly fierce 

market competition, there is an increasing demand for establishing and improving logistics functions 

and information-based logistics centers. In order to respond to the new needs of economic and social 

development and advocate the concept of green, low-carbon and sustainable development, low-

carbon logistics is the only way for the development of the logistics industry. The planning and 

construction of logistics parks are considered to be an important part of promoting the development 

of modern logistics. In the planning process of the logistics park, the layout and location function are 

the important basic parts that affect the overall development of the logistics park. Choosing a 

reasonable location is particularly important for building a logistics center. One of the most important 

parts of logistics park planning is the quantitative optimization of the logistics park location problem. 

In recent years, the location theory has developed rapidly, and there are many types of locations. The 

rapid development of the location theory of logistics parks is attributed to the informatization of 

today's science and technology, which provides a powerful tool for feasibility analysis and rational 

decision-making. The logistics park location problem is also regarded as a MADM problem. In this 

manuscript, we studied the SVN-MADM problem with alternative preference information. In the 

fuzzy background, the weight information of indicators is often uncertain, and based on this, the 

minimum deviation method is used to determine the weight of indicators. On the other hand, in the 

process of MADM, in order to obtain comprehensive evaluation information, The SVNWA operator 

is used to aggregate all decision information. Calculate the value of the scoring function and the 

accuracy function and rank the alternatives. On the basis of guaranteeing the validity, the calculation 

steps are relatively simple, thus realizing the operability. Furthermore, the above models and 

methods are extended to INNs. Finally, illustrative examples for low-carbon logistics park site 

selection demonstrates the extension of the model from theory to practical application. The 

constructed models and methods can be applied to other MADM problems, such as investment risk 

assessment, selection of commodity suppliers, selection of factory locations, etc. In the future 

research, we shall continue to focus on the detailed research of decision-making methods and 

98
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aggregation operators by fusing TODIM method[65-67], QUALIFLEX method [68-71], ARAS method 

[72-75], WASPAS method [76-79], Maclaurin symmetric mean (MSM) [80], Muirhead mean (MM) [81-

84] and power average (PA) [85, 86] operators to Neutrosophic numbers and propose some new 

MAGDM methods.  

Conflicts of Interest: The authors declare no conflict of interest. 
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Abstract: Road traffic management has been a serious concern in the transportation sector for many 

years now. The explosion of the number of cars along with the inability of creating new high-

capacity road infrastructures in big cities makes mitigating this danger a problem for the scientific 

research community. Traffic congestion contributes to increased pollution, economic loss, and a 

general deterioration in the quality of life. As a result, researchers are being asked to cope with the 

complexity of establishing effective and smooth traffic flow. However, as in traffic congestion 

control, real-world decision-making problems are always fraught with uncertainty and 

indeterminacy. The neutrosophic environment has been applied successfully to deal with these 

problems and recently, researchers tried to use various neutrosophic approaches to tackle the traffic 

congestion problem. This paper provides a brief overview of the most recently used neutrosophic 

techniques to handle traffic congestion and transportation problems in general. The aim of the 

investigation is to summarize the available neutrosophic traffic flow problems and their progress 

to enable future researchers to differentiate the major problems to be manipulated and identify 

conditions to be optimized. 

Keywords: Road traffic control; Intelligent Traffic Management System; Neutrosophic 

environment; Neutrosophic logic; Neutrosophic approaches. 

 

 

1. Introduction 

Transport researchers have long worked to improve traffic management on urban roads. 

Congestion is a critical issue affecting negatively road users and traffic controllers. Despite the 

important attempts and research that have been made to minimize traffic congestion, this serious 

problem continues to worsen [1]. The direct reason for this is the slow development of transportation 

systems and road capacity as well as the explosive growth of urban and rural population rates, which 

causes an increase in vehicle demand and hence the vehicles’ number on the roads. Thus, traffic 

congestion is a serious matter that should be urgently addressed in order to offer a safe and healthy 

environment for people [1].  
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In order to manage the traffic flow, the road traffic management system takes various real-time 

decisions [3]. As existing practical situation traffic flow parameters involve vagueness due to several 

uncontrolled factors so that the developed models unable to tackle such conditions [4]. For instance, 

the number of vehicles in a specific lane in real-time is always unknown precisely. Furthermore, the 

non-recurrent traffic congestion sources, which are special incidents that happen suddenly as shown 

in Figure 1, cannot be accurately managed. This gives rise for the use of fuzzy logic controllers in 

traffic management endeavor. The concept of fuzzy set, which is initialized by Zadeh in 1965 [5], has 

been widely applied in problems that include uncertainty and vagueness since it imitates human 

perception and thinking based on linguistic information. 

Neutrosophic concept was initialized by Florentin Smarandache in 1995 as an extension of the fuzzy 

logic and its derivatives. It goes beyond the fuzzy set and fuzzy logic by expressing the false 

membership information and beyond the intuitionistic fuzzy set and intuitionistic fuzzy logic by 

handling the indeterminacy of information. Neutrosophic logic is a logic in which each proposition 

is estimated to have a degree of truth (T), a degree of indeterminacy (neutrality) (I), and a degree of 

falsity (F). It can then handle the uncertainty and impreciseness related to the road traffic flow that 

the fuzzy logic may fail to properly address. 

     The forthcoming part of the study is arranged as follows. In Section 2, an introduction of the 

basic concepts that we focus on in this paper is provided. In Section 3, some of the available methods 

in the scientific literature that tackle road traffic problems based on the Neutrosophic sets are 

presented. In Section 4, a comparative analysis is provided for the different presented methods. 

Finally, section 5, introduces the main challenges and future perspectives and concludes our brief 

review. 

 

Figure 1: Non-recurrent traffic congestion sources. 

 

2. Basic concepts 

     This section introduces some of the fundamental principles covered in this paper as shown in 

Figure 2. 



Neutrosophic Sets and Systems, Vol. 51, 2022     109  

 

 

Asma Ait Ouallane et al., Towards Intelligent Road Traffic Management Based on Neutrosophic Logic: A Brief Review 

 

Figure 2: Relationship between classical, fuzzy, intuitionistic fuzzy, interval-valued intuitionistic 

fuzzy, interval neutrosophic sets, and neutrosophic sets. 

 

2.1 Fuzzy set (FS) 

When we encounter vagueness in our daily life activities fuzzy theory is the right tool to overcome 

it. It is often applicable transportation engineering and planning. In classical set theory if an element 

belongs to a set its membership degree is simply 1 and if it does not belong to a set its membership 

degree is 0. In contrast, in the theory of vagueness the degree to which the element belongs to a set is 

not clearly known, instead we use values in the interval [0,1]. This type of set is called fuzzy sets. So, 

a fuzzy set is identified by its membership degree alone.  

 

2.2 Intuitionistic fuzzy set (IFS) 

Let 𝑋  be the universe of discourse. A set A  ∈ 𝑋  that can be written in the form A =

{〈𝑋, μA  (x), υA  (x), 〉; x ∈ X is called an intuitionistic fuzzy set where, μA  (x), υA  (x) are degree of 

acceptance and degree of rejection of the element x in A respectively are each subsets of [0,1] such 

that, 0 ≤ μA  (x)  +υA  (x)  ≤ 1.In addition, for A in X , 𝜋𝐴(𝑥)  = 1 − μA  (x)  − υA  (x)  is called the 

intuitionistic fuzzy set index or the degree of indeterminacy of x∈ X and for every x ∈ X, 0 ≤ 𝜋𝐴  ≤ 1. 

 

2.3 Neutrosophic logic 

 

In Neutrosophic logic each statement has a truth degree (T), an indeterminacy degree (neutrality) (I), 

and a falsity degree(F), where T, I, F ⊆ [0, 1] and 0 ≤ T + I + F ≤ 3. The degrees T, I, F are nondependent 

to each other. 

 

2.4 Single valued neutrosophic set (SVNS) 

If in a set A every member of A has a degree of belongingness (μA  (x)), a degree of indeterminacy 

(υA  (x)) and a degree of non-belongingness (ωA  (x)), with μA  (x), υA  (x), ωA  (x) ∈ [0,1],then the set 

is a single valued  neutrosophic set and x ≡ x(μA  (x), υA  (x), ωA  (x)) is a single valued neutrosophic 

element of A such that we have the following relations between the three degrees 

0 ≤ μA  (x), υA  (x), ωA  (x) ≤ 1 and 
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0 ≤ μA  (x)+υA  (x) + ωA  (x) ≤ 3  ∀x ∈ X 

 

2.5 Interval valued neutrosophic set 

If in a set A every member of A has a degree of belongingness μA  (x), a degree of indeterminacy 

υA  (x) and a degree of non-belongingness ωA  (x), with μA  (x), υA  (x), ωA  (x) are all elements of the 

closed interval [0,1], and μA  (x) = [μA(x), μA
(x)] , υA  (x) = [υA(x), υA(x)], ωA  (x) = [ωA(x), ωA(x)] are 

respectively upper and lower degree of  belongingness , upper and lower degree of indeterminacy 

and upper and lower degree non-belongingness , then A is an interval valued  neutrosophic set.  

 

2.1 Soft Set 

 

Neutrosophic sets may be combined with other types of sets to get another hybrid structure which 

can be applicable in transport engineering. One of such type of set is a soft set which is initiated for 

the first time by Molodtsov in 1999 and defined as follows. 

Let X be a universe of discourse and P be a set of parameters. Let P (X) denote the power set of X 

and A ⊆ P. A combination (F, A) is called a soft set over X, where 𝐹 is a mapping given by F: A→P 

(X). In other words, a soft set over U is a parameterized family of subsets of the universe X. For e ∈A, 

F (e) may be considered as the set of e-approximate elements of the soft set (F, A). Clearly, a soft set 

is not a set in a classical sense. 

3. The Application of Neutrosophic Theory in Intelligent Traffic Management Systems 

This section outlines some of the suggested Neutrosophic logic-based solutions for managing traffic 

flow and transportation problems in general. Table 1 summarizes these approaches. 

 

Jun Ye introduced in [6] the neutrosophic linear equations, the neutrosophic matrix and the 

neutrosophic matrix operations relying on the Neutrosophic Numbers concept. Then, he chose the 

traffic flow case study to apply the neutrosophic linear equations system in a real scenario and 

demonstrate its efficiency in handling the indeterminacy problem of a real environment. 

 

For traffic management, El Bendadi et al. suggested in [7] two clustering strategies namely, Credal 

C-Means clustering (CCM) and Neutrosophic C-Means clustering (NCM). When overlapping items 

are found, both proposed techniques have a comparable propensity to construct a novel cluster that 

determines the imprecision object. The indeterminacy cluster is interpreted differently by each 

approach. The CCM algorithm forms a number of meta-cluster that is proportionate to the number 

of singleton clusters, while the NCM approach represents all indeterminate items with a single 

indeterminacy cluster. 

 

In [8], Muhammad Akram created a traffic-monitoring road network model based on the notion of 

bipolar neutrosophic planar graphs. The suggested approach may be used to compute and track the 

yearly accident proportion. The overall number of accidents can be reduced by monitoring and 

installing additional security measures.  
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Nagarajan et al. studied in [9] a triangular interval type-2 Schweizer, Sklar weighted arithmetic 

(TIT2SSWA) operator, a triangular interval type-2 Schweizer and Sklar weighted geometric 

(TIT2SSWG) operator based on Schweizer and Sklar triangular norms. Afterward, the validity of 

these operators was examined based on a numerical example, and then an interval neutrosophic 

Schweizer and Sklar weighted arithmetic (INSSWA) and interval neutrosophic Schweizer and Sklar 

weighted geometric (INSSWG) operators were proposed in order to extend these operators to an 

interval neutrosophic environment. Moreover, a new traffic flow approach is introduced based on 

the presented operators as well as an improved score function. The score function was used to 

analyze the traffic flow based on TIT2SSWA and INSSWA operators as well as TIT2SSWG and 

INSSWG operators. Both used methods identified the same intersection as the more congested one. 

In another paper [10], Nagarajan et al. used the Gauss Jordan method to examine the flow of traffic 

in a neutrosophic environment and under various indeterminacy ranges. 

In another paper, Nagarajan et al. proposed [11] Dombi Single valued Neutrosophic Graph and 

Dombi Interval-valued Neutrosophic Graph. Furthermore, the Cartesian product and composition of 

the suggested graphs were extracted and then verified with the numerical example. The 

Neutrosophic Controllers' importance and their use in managing traffic are theoretically emphasized. 

It has been pointed out that the triangular norms T Norm and T-Conorm can be utilized rather than 

minimum and maximum operations in control systems like traffic management systems. Finally, the 

pros and cons of some fuzzy logic methods and neutrosophic logic methods have been discussed. 

Finally, In another paper, Nagarajan et al. [12] examined the traffic flow control in a neutrosophic 

environment under diverse ranges of indeterminacy and then proposed a road traffic study based on 

Crisp, Fuzzy, and Neutrosophic. 

 

Phillip Smith introduced in [13] a Multiple Attribute Decision-Making (MADM) method for picking 

out sustainable public transportation systems under uncertainty, which means using incomplete 

information involving single-valued neutrosophic sets (SVNSs) which means in turn a generalization 

of a classical set, a fuzzy set, and an intuitionistic fuzzy set. In the context of the Public Transit 

Sustainable Mobility Analysis Tool (PTSMAT) SVNSs and SVNS connectives are demonstrated and 

used with a composite (multiple attributes) sustainability index. The results of the presented case 

study of PTSMAT for the UBC Corridor study in Vancouver, Canada are identical to those of the 

original study despite the fact that neutrosophic formalism opens a wide range of possibilities for 

recognition of uncertainty in sustainability assessment. The results of the presented case study of 

PTSMAT for the UBC Corridor study in Vancouver, Canada are similar to those obtained in the 

original study despite the fact that to recognize the uncertainty in sustainability assessment, 

neutrosophic formalism opens a wide range of possibilities. 

 

In [14], R. Sujatha et al. used Fuzzy Cognitive Map and Induced Fuzzy Cognitive Map to examine 

road traffic flow patterns at a congested intersection in Chennai, India's biggest city. 

 

A new emergency transport model that simulates emergency transport from the logistics center to 

each incident area as well as between incident locations was created by Lin Lu and Xiaochun Luo in 

[15]. The emergency transshipment problem was transformed into a multiattribute decision-making 
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problem using the SVNS concept in indeterminate and uncertain circumstances. The suggested 

technique was applied in an emergency operation scenario to rank and select effective transportation 

routes. 

In developing countries, to control traffic flow at signaled crossroads, The fixed-time traffic light 

control method is used. However, this method does not allow congested intersections to identify their 

level of congestion and therefore allows vehicles to cross the intersection. To deal with this challenge, 

road managers must set their opinions and create an intelligent automated decision-making system 

to replace them. The manager’s decision process might be analyzed utilizing the approach of Interval-

Valued Neutrosophic Soft Set (IVNSS) theory to take advantage of fuzziness in traffic flow and 

determine efficient timings and optimal phase change. Enalkachew Teshome Ayele et al. [16] 

suggested an IVNSS traffic management system that can ameliorate traffic congestion control. It 

evaluates the different phases and timings of the traffic light based on the real-time traffic density at 

the intersection rather than a fixed phase and duration. 

Under neutrosophic statistics, Muhammad Aslam created a control chart for neutrosophic 

exponentially weighted moving average (NEWMA) using recurrent sampling in [17]. To track traffic 

collisions on the highway (RTC), the author employed a NEWMA chart. The proposed NEWMA 

chart goes beyond the previously proposed control charts for tracking the RTC, according to a 

simulated study and a real-world example. According to the comparative study, the presented 

NEWMA chart might be utilized to successfully regulate RTC. The new chart will allow changes in 

accidents and injuries to be detected faster than previous charts. 

 

In [18], Rayees et al. identified four different kinds of Plithogenic hypersoft sets (PHSS) relying on 

the application-specific features number used, the type of alternatives, or the degree of attribute value 

appurtenance. These four PHSS categories cover the fuzzy and neutrosophic situations that may have 

neutrosophic applications in symmetry. They then proposed a new multi-criteria decision-making 

(MCDM) technique based on PHSS (TOPSIS) as an extension of the method for order preference by 

similarity to an ideal solution. Uncertainty complicates a variety of real-world MCDM scenarios, 

necessitating the division of each selection criterion or attribute into attribute values and the 

independent evaluation of all options against each attribute value. The suggested PHSS-based 

TOPSIS may be utilized to tackle real MCDM challenges that are precisely defined by the PHSS notion 

depending on the provided criteria. The proposed PHSS-based TOPSIS resolves a parking space 

Choosing issue in a fuzzy neutrosophic environment in a real-world application, and it is verified by 

comparing it to fuzzy TOPSIS. 

 

In [19], Simic et al. expanded the CRITIC and MABAC approaches to type-2 neutrosophic sets for the 

selection of public transportation pricing systems, and Pamucar et al. proposed in [20] a hybrid model 

that comprised fuzzy FUCOM and neutrosophic fuzzy MARCOS for assessing alternative fuel 

vehicles for sustainable road transportation in the United States. 

 

For controlling road accidents and injuries when the smoothing constant is uncertain Muhammad 

Aslam and Mohammed Albassam [21]  proposed an S2N NEWMA control chart to track road 

accidents and injuries by employing repeated sampling. The tables and control chart figures are 

generated using the neutrosophic Monte Carlo simulation. This chart identifies changes in accidents 
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and injuries quicker than prior charts, lowering and pinpointing the causes of traffic accidents and 

injuries. 

 

In [22], M. Abdel-Basset et al. stated that autonomous vehicles play an important role in the intelligent 

transportation system; nonetheless, these vehicles pose a number of risks. As a result, a novel hybrid 

model is proposed for recognizing these hazards. This process contains uncertainty and foggy data. 

The neutrosophic hypothesis is used to deal with uncertainty. The neutrosophic theory provides 

three membership functions: true, indeterminacy, and false (T, I, F). In this study, the concept of 

MCDM is combined with neutrosophic theory since autonomous vehicles have several contradictory 

criteria. First, the Analytic Hierarchy Process defines the weights of criteria (AHP). Second, to assess 

the dangers of autonomous cars, approaches such as Multi-Attributive Border Approximation Area 

Comparison (MABAC) and Preference Ranking Organization Method for Enrichment Evaluations II 

are utilized (PROMETHEE II). In the case study, ten distinct choices were used. An understanding 

and a sensitivity analysis of this process in an uncertain environment are given to demonstrate the 

robustness of the suggested model. 

 

In [23], F. Xiao et al. introduced a method that ameliorates the multi-valued neutrosophic 

MULTIMOORA method relying on prospect theory. The suggested approach is utilized to select a 

suitable subway building scheme. Firstly, Multi-valued neutrosophic sets (MVNNs) were utilized to 

offer evaluations of subway building. Secondly, the IGMVNWHM operator is added, which takes 

into account the inputs interactions. Thirdly, a new distance measure between two MVNNs is 

determined. The fourth approach is an IMVN-PT-MULTIMOORA technique. 

 

Nasrullah Khan et al. presented in this article [24] neutrosophic multiple dependent state sampling 

control chart for the neutrosophic EWMA statistic. The control chart coefficients were set by the 

neutrosophic statistical interval method for different process settings. The neutrosophic average run 

lengths and the neutrosophic standard deviation have been estimated by the Monte Carlo simulation 

to verify the efficiency of the suggested chart. A comparison of this chart with existing charts has 

been done. As result, this chart is comparatively robust in monitoring the incomplete, and unclear 

quality characteristics. However, the production process should adhere to the normal distribution, 

which represents a limitation of this study. The presented chart could be used in the chemical, 

packing, and electronic industries.         

 

In [25], Fayed et al. introduced a robust occupancy detection system that relies on a novel fusion 

approach for merging heterogeneous sensor data that significantly enhances occupancy detection 

efficiency. The suggested method is suitable for use in traffic management.  

 

Table 1. An overview of the most Neutrosophic approaches that deal with the problem of road 

traffic congestion 

Year Ref Scope Contributions and Methods 

used 

Topics 

2017 Jun Ye [6] Traffic Flow A traffic flow problem 

application example is 

 Neutrosophic Numbers and 

Their Operational Laws. 
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offered to demonstrate the 

application and efficacy of 

employing the system of 

neutrosophic linear equations 

to solve the indeterminate 

traffic flow problem. 

 Neutrosophic Linear Equations 

and Neutrosophic Matrices. 

  A Neutrosophic Linear 

Equations System Solving. 

  A Traffic Flow Problem 

Application. 

2018 El 

Bendadi 

et al. [7] 

Road Safety The Credal C-means (CCM) 

and Neutrosophic C-means 

(NCM) algorithms describe 

the credal clustering and 

neutrosophic clustering 

respectively. To demonstrate 

their behavior and efficacy, 

real-world road safety data 

were tested and their results 

compared. 

 CCM working Principle. 

 NCM working Principle. 

 Comparison of the CCM and 

NCM algorithms for different 

datasets based on different 

criteria namely, error rate, 

imprecision rate, intra class 

inertia. 

 Muham

mad 

Akram 

[8] 

Traffic 

Monitoring 

Some applications of bipolar 

neutrosophic graphs were 

described. 

 Bipolar Neutrosophic Graphs. 

 Applications to MCDM. 

 Bipolar Neutrosophic Planar 

Graphs. 

 Applications of Neutrosophic 

Planar Graphs. 

 Bipolar Neutrosophic Line 

Graphs. 

 Application of Bipolar 

Neutrosophic Line Graphs. 

2019 Nagaraja

n et al. [9] 

Traffic Flow To control traffic flow that has 

been analyzed by 

determining the intersection 

with more vehicles, an 

improved score function for 

interval neutrosophic 

numbers (INNs) is proposed. 

 

 Basic concepts of a traffic 

control system, fuzzy logic’ 

role, output methods from 

fuzzy linguistic terms and 

structure of the fuzzy control 

system. 

 Operational laws. 

 Neutrosophic perspective. 

 Traffic flow using proposed 

operators. 

 Nagaraja

n et 

al.[10] 

Traffic Flow 

Control 

MATLAB is used to 

investigate traffic flow 

control in a neutrosophic 

environment using Gauss 

Jordan method. 

 Bipolar Neutrosophic Line 

Graphs. 

 Basic concept: Single Valued 

Neutrosophic Set, Gauss 

Jordan Method. 
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 Description of the proposed 

methodology 

 Nagaraja

n et 

al.[11] 

Traffic 

Control 

Dombi Single valued 

Neutrosophic Graph and 

Dombi Interval valued 

Neutrosophic Graph have 

been suggested. As well as 

the theoretical significance of 

Neutrosophic Controllers 

and their application in traffic 

control management. 

 Basic Concepts: Graph, Fuzzy 

Graph, Dombi Fuzzy Graph, 

Single Valued Neutrosophic 

Graph, Interval Valued 

Neutrosophic Graph, 

Triangular Norms, Dombi 

Triangular Norms, Hamacher 

Triangular Norms, Dombi and 

Hamacher Triangular Norms 

Special Cases, Standard 

Products of graphs, 

Neutrosophic Controllers. 

 Proposed Dombi Interval 

Valued Neutrosophic Graph. 

 Traffic Control Comparison 

based on divers types of set 

and Graph theory. 

 Nagaraja

n et 

al.[12] 

Traffic Flow The Jordan approach is used 

in this study to evaluate 

traffic flow control in a 

neutrosophic environment. 

 Neutrosophic number. 

 Application: at analyzing the 

traffic flow 

 Phillip 

Smith 

[13] 

Transportati

on 

Sustainabilit

y 

Assessment 

A multi-attribute decision-

making method for selecting 

sustainable public 

transportation systems in the 

uncertainty, represented by 

SVNSs  and their 

connectives. 

 Neutrosophic sets. 

 Single-valued neutrosophic 

averages. 

 Score functions 

 Cross-entropy. 

 Application to sustainable 

transport. 

 R Sujatha 

et al. [14] 

Crowded 

junction  

in Chennai 

Some traffic congestion 

causes are unknown and 

indeterminate, Thus, 

Neutrosophic Cognitive 

Maps is employed in this 

paper to identify a solution. 

 Fundamental concepts of 

Fuzzy Cognitive Maps and 

Neutrosophic Cognitive Maps. 

 Description of the traffic 

congestion problem. 

 Comparison of expert’ opinion. 

2020 Lin Lu 

and 

Xiaochun 

Luo [15] 

Emergency 

Transportati

on Problem 

In confusing and uncertain 

environments, the SVNS is 

used to turn the emergency 

transshipment problem into a 

 Methods: The Basic Concept of 

Single-Valued Neutrosophic 

Set. 
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multiattribute decision-

making problem. 

 A new emergency transport 

model is presented. 

 Enalkach

ew 

Teshome 

Ayele 

[16] 

Traffic light 

Control 

To manage both phase 

change and green time 

extension / termination based 

on the traffic circumstances at 

any time, an algorithm is 

proposed in this paper. 

 Preliminary concepts: Soft Set, 

Single valued neutrosophic set, 

Interval Valued Neutrosophic 

Set. 

 The proposed two stage IVNSS 

traffic light control model and 

its verification. 

 Muham

mad 

Aslam 

[17] 

Road traffic 

crashes 

monitoring 

The suggested Neutrosophic 

Exponentially Weighted 

Moving Average (NEWMA) 

chart is used to monitor traffic 

accidents. 

 Neutrosophic EWMA chart 

using repetitive sampling. 

 Comparative study based on 

Road Traffic Crashes 

simulation data. 

 Using real-time data to 

monitor road traffic accidents. 

 Muham

mad 

Rayees 

Ahmad 

[18] 

Solve  

a parking 

problem 

In a real-world application, 

the suggested Plithogenic 

fuzzy hypersoft set (PHSS)-

based TOPSIS solves a 

parking place selection 

problem in a fuzzy 

neutrosophic environment. 

  The Four Classifications of 

PHSS. 

 The Proposed PHSS-Based 

TOPSIS Applied to a Parking 

Issue. 

2021 Simic et 

al. [19] 

Public 

transportatio

n pricing 

system 

selection 

The public transport services 

pricing is a complicated 

problem that authorities must 

handle since numerous 

elements must be observed 

when deciding on a pricing 

scheme. A two-stage hybrid 

MCDM model based on type-

2 neutrosophic numbers 

(T2NNs) is presented to offer 

researchers and practitioners 

a simple and flexible 

decision-making tool. 

_ 

  

Pamucar 

et al. [20] 

Assessment 

of alternative 

fuel vehicles 

for 

sustainable 

The goal of this research is to 

create a multi-criteria 

decision-making (MCDM) 

framework that combine 

fuzzy FUCOM and 

 AFV assessment methodology. 

 Case study in the New Jersey. 
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road 

transportatio

n 

neutrosophic fuzzy 

MARCOS for prioritizing 

various Alternative Fuel 

Vehicles (AFVs) for 

sustainable transportation. 

 Muham

mad 

Aslam 

and 

Moham

med 

Albassa

m [21] 

Reducing 

and 

identifying 

the causes of 

traffic 

accidents 

and injuries 

The use of a neutrosophic 

statistical approach for road 

safety. 

 The Proposed S2N −NEW M A 

Chart. 

 The Proposed Control Chart 

 M. 

Abdel-

Basset et 

al. [22] 

Risk 

Management 

in 

Autonomous 

Vehicles 

To represent and handle 

uncertainty and incomplete 

risk information consistently 

and reliably, the proposed 

model combines the single-

valued neutrosophic sets, the 

AHP, MABAC, and 

PROMETHEE II 

methodologies. 

 Neutrosophic linguistic 

information. 

 Suggested hybrid MCDM 

approach. 

 

 

 Fei Xiao 

et al. [23] 

Traffic flow 

and its 

application 

in a multi-

valued way 

This paper improves the 

multi-valued neutrosophic 

MULTIMOORA method. 

 Preliminaries: Multi-valued 

neutrosophic sets (MVNNs), 

Heronian Mean (HM) 

operators, The MULTIMOORA 

method, Prospect theory. 

 IGMVNWHM operator, 

Distance measure between two 

MVNNs and IMVN-PT-

MULTIMOORA method. 

 Solution framework for MVN-

MCGDM problem. 

 Nasrulla

h Khan 

[24] 

Tracking 

Traffic 

Accidents 

and Injuries 

The Use of Neutrosophic 

Exponentially Weighted 

Moving Average Statistics in 

Tracking Road Accidents and 

Injuries 

 Methodology of the Proposed 

Chart. 

 The Proposed NEWMA X‑Bar 

Control Chart Based 

on Multiple Dependent State 

Sampling. 

 The Proposed Neutrosophic 

Control Chart Simulation 

Study. 
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2022 Noha S. 

Fayed 

[25] 

Improving 

occupancy 

Detection 

system. 

The suggested approach 

addresses sensor data 

uncertainty using 

Neutrosophy. It also 

enhances reliability by 

combining data from various 

sensors. Training and testing 

time is decreased since it only 

employs one feature created 

by fusing input from many 

sensors. 

 The efficient occupancy 

detection system and its 

evaluation. 

 

 

4. Comparative Analysis 

Table 2 below gives a comparative analysis of the different neutrosophic methods used recently in 

the literature for traffic management and transportation system improvement in general, in order to 

understand each method's key role, advantages, and limitations. 

 

Table 2. Comparison of different neutrosophic methods used for traffic management. 

Types Advantages Limitations 

Neutrosophic Sets  In neutrosophic theory, we use 

neutrosophic numbers -> 𝑎 + 𝐼𝑏 

where 𝑎, 𝑏 ∈ 𝑅. 

 Addresses uncertainty as well as 

uncertainty caused by unpredictable 

environmental disturbances 

 The Neutrosophic set presents the 

degrees of membership, 

indeterminacy, and non-membership 

of the element 𝑥 ∈ S. For instance: 

𝜇(0.5,0.1,0.4) ∈ S means probability of 

50% ′𝑥′ belong to the set S 10% ′𝑥′ is 

not in S and 40% is undecided. 

 The operations are entirely different. 

 

 Calculations errors can't 

be rounded up and down. 

Interval Valued 

Neutrosophic Sets 

 Adaptability and flexibility. 

 handles more uncertainty and 

indeterminacy. 

 Calculations errors can be rounded 

up and down. 

 Can handle problems with one 

number or a group of numbers in the 

real unit interval. 

 Can't handle criterion 

incomplete weight 

information. 
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Neutrosophic 

Graphs 

 An optimized output is possible if 

the paths and the terminal points are 

uncertain. 

 

 Can’t deal with more 

uncertainty. 

Interval Valued 

Neutrosophic 

Graphs 

 Can address additional uncertainty 

discovered in terminal points 

(vertices) and paths (edges). 

 Can't handle incomplete 

criterion weight 

information. 

Dombi 

Neutrosophic 

Graphs 

 Can handle indeterminacy.  Can’t handle uncertainty 

for interval values. 

Dombi Interval 

Valued 

Neutrosophic 

Graphs 

 Can handle uncertainty well for 

interval values. 

 Can't handle incomplete 

criterion weight 

information. 

Type 2 fuzzy and 

interval 

neutrosophic 

 

 Based on a rule that fully accepts 

uncertainties. 

 Adaptability. 

 The membership functions 

are fuzzy thus 

computational complexity 

is high. 

Single valued 

neutrosophic sets 

(SVNSs) 

 Can handle uncertain and 

inconsistent information. 

 Not flexible and 

practical than interval 

valued neutrosophic 

sets 

Neutrosophic 

Cognitive Maps 

 Provide the ability to treat the relation 

between two vertices as 

indeterminate. 

 No comparative work 

has been done with 

respect to the existing 

models in relation to 

waiting time 

 Applicability for other 

types of traffic 

junction is not clear 

 

Neutrosophic 

Markov 

 Can handle the occurred 

indeterminacy in a system. 

 The neutrosophic Markov chain's 

equilibrium state demonstrates the 

ability of traffic states transitions 

accurately in order to predict the 

traffic. 

 Applicable only for T-

shaped traffic junction 

 Applicability for other 

types of traffic junction is 

not clear 
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 Regarding the stability of traffic 

states, verification of ergodicity can 

be achieved in a minimum of steps. 

Interval valued 

neutrosophic soft 

sets 

 Applied parameterization tools in 

which others techniques lack 

 The method is verified with 

numerical example 

 The model is not 

validated. 

 Other parameters like 

pedestrian movements 

and emission of pollutants 

are not considered 

5. Conclusion and Future Challenges 

For many years, road traffic control has been a major problem in the transportation field. Traffic jam 

adds to increased pollution and an overall decline in life quality. Real-world decision-making 

challenges, such as controlling traffic congestion, are always vague and indeterminate. Therefore, the 

neutrosophic environment has been effectively used to address these problems, and lately, 

researchers attempted to employ several neutrosophic techniques to address transportation 

problems.  

In this paper, we have conducted a brief review that deal with the use of neutrosophic logic in the 

field of traffic control. The review concentrated on several methods for describing and optimizing 

traffic flow. The review looked at several traffic management approaches in a neutrosophic 

environment and analyzed the benefits and limitations of the offered models. Many research 

conducted comparisons with real data sets and demonstrated the benefits of using neutrosophic sets 

and neutrosophic logic. 

According to the literature review, there are still unresolved concerns and issues that need to be 

addressed in future investigations. The issues include (i) controlling a large number of junctions at 

the same time to maintain uninterrupted traffic flow, especially during traffic jams, (ii) A comparative 

study between the developed models and the existing models should be made to test the efficiency 

of the developed model with respect to the average vehicle delay which is the major measure of 

effectiveness for the flow of traffic at traffic junction. (iii) The theory of neutrosophic sets is currently 

advancing quickly. However, there is a problem in determining membership, falsity and 

indeterminacy degrees in in traffic flow parameters. The nature of determining those degrees is 

extremely individual. The cause of these challenges might be the theory's parameterization tool's 

inadequacy. (v) No approach for analyzing the stability of neutrosophic controller systems has yet 

been created. (vi) The majority of neutrosophic logic-based results that deliver increased performance 

are simulation-based. 
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1. Introduction 

Zadeh [16] initiated fuzzy set theory in 1965 that deals with uncertainty in real life 

situations. Chang [2] designed fuzzy topology that gave a special note to the field of 

topology in 1968. Attanassov [1] in 1983, see the sights of intuitionistic fuzzy sets by 

considering both membership and non-membership of the elements. In 1997, Coker [4] 

worked on Intuitionistic fuzzy sets by extending the concepts of fuzziness and found a 

place for Intuitionistic fuzzy topological space.  

Smarandache [5] to [7] & [14] introduced Neutrosophic set which is a generalization of 

fuzzy set and intuitionistic fuzzy set.  This is a strong tool to discuss about the existence of 

incomplete, indeterminate and inconsistent information in the real life situation. 

Smarandache focused his observations en route for the degree of indeterminacy that 

directed into Neutrosophic Sets (NS). Soon after, Salama and Albowi [10] familiarized 

Neutrosophic Topological Spaces (NTS). Further, Salama, Smarandache and Valeri Kromov 
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[11] presented the continuous (Cts) functions in NTS. In [3], irresolute functions was 

introduced and analysed by Crossley and Hildebrand in Topological Spaces.  Further, Vijaya [13] 

and Santhi [12] investigated the properties of --irresolute function and contra --irresolute 

function in Generalized Topological Spaces. In addition to that, properties of -irresolute 

function and contra -irresolute function in Nano Topological Spaces was look over by 

Yuvarani and et. al., [15].  By keeping all these works as a motivation, in 2020, Raksha Ben, 

Hari Siva Annam [8] & [9] contrived N-Topological Space and deliberated its properties.   

In this disquisition, we explore our perception of N--irresolute function, 

N-semi-irresolute function, N-pre-irresolute function, contra N--irresolute function, 

contra N-semi-irresolute function, contra N-pre-irresolute function and we have scrutinized 

about some of their basic properties. At every place the novel notions have been validated with 

apposite paradigms. 

2. Prerequisites   

2.1. Definition [10] 

Let Ω be a non-empty fixed set. A NS, E = {  ω, ME (ω), IE (ω), NE (ω)  : ω ∈ Ω} where ME (ω),    

IE (ω) and NE (ω) represents the degree of membership, indeterminacy and non-membership 

functions respectively of every element ω ∈ Ω.        

2.2. Remark [10]  

A NS, E can be recognized as a structured triple E = {  ω, ME (ω), IE (ω), NE (ω)  : ω ∈ Ω} in       

] −0, 1 + [ on Ω. 

2.3. Remark [10] 

The NS, 0N and 1N in Ω is defined as  

(P1)  0N = {  ω, 0, 0, 1  : ω ∈ Ω}  

(P2) 0N = {  ω, 0, 1, 1  : ω ∈ Ω}  

(P3)  0N = {  ω, 0, 1, 0  : ω ∈ Ω} 

(P4) 0N = {  ω, 0, 0, 0  : ω ∈ Ω} 

(P5)  1N = {  ω, 1, 0, 0  : ω ∈ Ω} 

(P6)  1N = {  ω, 1, 0, 1  : ω ∈ Ω} 

(P7)  1N = {  ω, 1, 1, 0  : ω ∈ Ω} 

(P8)  1N = {  ω, 1, 1, 1  : ω ∈ Ω} 

2.4. Definition [10]  

If E = {  ME (ω), IE (ω), NE (ω)  }, then the complement of E on Ω is  

(P9)   E’ = {  ω, 1 − ME (ω), 1 - IE (ω) and 1 - NE (ω)  : ω ∈ Ω}  

(P10)   E’ = {  ω, NE (ω), IE (ω) and ME (ω)  : ω ∈ Ω}  

(P11)   E’ = {  ω, NE (ω), 1 - IE (ω) and ME (ω)  : ω ∈ Ω} 
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2.5. Definition [10]  

Let Ω be a non-empty set and let E = {  ω, ME (ω), IE (ω), NE (ω)  : ω ∈ Ω} and F = {  ω, MF (ω), IF 

(ω), NF (ω)  : ω ∈ Ω}.  Then  

(i) E ⊆ F ⇒ ME (ω) ≤ MF (ω), IE (ω) ≤ IF (ω), NE (ω) ≥ NF (ω),∀ ω ∈ Ω  

(ii) E ⊆ F ⇒ ME (ω) ≤ MF (ω), IE (ω) ≥ IF (ω), NE (ω) ≥ NF (ω),∀ ω ∈ Ω 

2.6. Definition [10]  

Let Ω be a non-empty set and E = {  ω, ME (ω), IE (ω), NE (ω)  : ω ∈ Ω}, F = {  ω, MF (ω), IF (ω),   

NF (ω)  : ω ∈ Ω} are NSs. Then,  

(P12)  E ∩ F =  ω, ME (ω) ∧ MF (ω), IE (ω) ∨ IF (ω), NE (ω) ∨ NF (ω)    

(P13)  E ∩ F =  ω, ME (ω) ∧ MF (ω), IE (ω) ∧ IF (ω), NE (ω) ∨ NF (ω)   

(P14)  E ∪ F =  ω, ME (ω) ∨ MF (ω), IE (ω) ∧ IF (ω), NE (ω) ∧ NF (ω)    

(P15)  E ∪ F =  ω, ME (ω) ∨ MF (ω), IE (ω) ∨ IF (ω), NE (ω) ∧ NF (ω)     

2.7. Definition [9] 

Let Ω ≠ ϕ. A family of Neutrosophic subsets of Ω is N-topology if it satisfies  

(Δ1)  0N ∈ N                  (Δ2)   E1 E2 ∈ N for any E1, E2 ∈ N.  

2.8. Remark [9]  

Members of N-topology are N-Open Sets (N-OS) and their complements are N-Closed Sets 

(N-CS).   

2.9. Definition [9]  

Let (Ω, N) be a N-TS and E = {  ω, ME (ω), IE (ω), NE (ω)  } be a NS in Ω. Then  

N-Closure (E) =  {F: E ⊆ F, F is N-CS} 

N-Interior (E) =  {G: G ⊆ E, G is N-OS} 

2.10. Definition [8]  

A NS, E in N-TS is said to be  

(i) N-Semi-Open Set (N-SOS) if E ⊆ N-Cl(N-Int(E)), 

(ii) N-Pre-Open Set (N-POS) if E ⊆ N-Int(N-Cl(E)), 

(iii) N-α-Open Set (N-αOS) if E ⊆ N-Int(N-Cl(N-Int(E))). 

2.11. Lemma [8]  

  Every N- αOS is N-SOS and N-POS. 

2.12. Definition [8]  

Let the function h: (Ω1, τ1) → (Ω2, τ2) is defined to be N-Cts (resp. N-SCts, N-PCts, N-αCts) if 

the inverse image of N-CS in (Ω2, τ2) is a N-CS (resp. N-SCS, N-PCS, N-αCS) in (Ω1, τ1). 

3.  N-Irresolute Functions 

3.1. Definition    

Let (Ω1, τ1) and (Ω2, τ2) be N-TSs. Then h: Ω1→ Ω2 is said to be a N-α-irresolute function 

(resp. N-semi-irresolute, N-pre-irresolute) if the inverse image of every N-αOS (resp. 

N-SOS, N-POS) in (Ω2, τ2) is an N-αOS (resp. N-SOS, N-POS) in (Ω1, τ1). 
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3.2. Example 

Let h: (Ω1, τ1) → (Ω2, τ2) be defined as h(p) = s and h(q) = r, where Ω1 = {p, q} and Ω2 = {r, s}, 

τ1 = {0N, A, B}, τ2 = {0N, C, D}.  

(i)  A =  (0.2, 0.8, 0.9), (0.1, 0.7, 0.8)  ,   B =  (0.3, 0.5, 0.6), (0.4, 0.6, 0.7)  ,  

C =  (0.1, 0.7, 0.8), (0.2, 0.8, 0.9)  ,   D =  (0.4, 0.6, 0.7), (0.3, 0.5, 0.6)  ,  

G =  (0.3, 0.7, 0.8), (0.2, 0.6, 0.7)  ,   H =  (0.2, 0.6, 0.7), (0.3, 0.7, 0.8)  .   

Here {0N, A, B, G} and {0N, C, D, H} are N-αOS of (Ω1, τ1) and (Ω2, τ2) respectively. Hence, h is a 

N-α-irresolute function. 

(ii)  A =  (0.3, 0.7, 0.8), (0.2, 0.6, 0.8)  ,   B =  (0.4, 0.6, 0.7), (0.5, 0.5, 0.6)  ,  

C =  (0.5, 0.5, 0.6), (0.4, 0.6, 0.7) >,   D =  (0.2, 0.6, 0.8), (0.3, 0.7, 0.8)  ,  

G =  (0.3, 0.7, 0.8), (0.4, 0.5, 0.7) >,   H =  (0.4, 0.5, 0.7), (0.3, 0.7, 0.8)  .  

Here {0N, A, B, G} and {0N, C, D, H} are N-SOS of (Ω1, τ1) and (Ω2, τ2) respectively. Therefore, h 

is a N-semi-irresolute function. 

(iii)  A =  (0.3, 0.8, 0.9), (0.4, 0.7, 0.6)  ,     B =  (0.4, 0.6, 0.7), (0.5, 0.6, 0.6)  ,  

C =  (0.5, 0.6, 0.6), (0.4, 0.6, 0.7)  ,      D =  (0.4, 0.7, 0.6), (0.3, 0.8, 0.9)  ,  

G =  (0.2, 0.9, 0.9), (0.3, 0.8, 0.9)  ,   H =  (0.3, 0.7, 0.8), (0.5, 0.5, 0.6)  , 

I =  (0.3, 0.8, 0.9), (0.2, 0.9, 0.9)  ,    J =  (0.5, 0.5, 0.6), (0.3, 0.7, 0.8)  .  

Here {0N, A, B, G, H} and {0N, C, D, I, J} are N-POS of (Ω1, τ1) and (Ω2, τ2) respectively and so h is 

a N-pre-irresolute function.      

3.3. Theorem  

 Let (Ω, τ) be a N-TS and E   Ω.  Then E is N-αOS iff it is N-SOS and N-POS.  

Proof: 

If E is N-αOS, then by Lemma 2.11, E is N-SOS and N-POS. Conversely if E is N-SOS 

and N-POS, then E ⊆ N-Cl(N-Int(E)) and E ⊆ N-Int(N-Cl(E)). Therefore N-Int(N-Cl(E)) ⊆ 

N-Int(N-Cl(N-Cl(N-Int(E)))) = N-Int(N-Cl(N-Int(E))). That is N-Int(N-Cl(E)) ⊆ 

N-Int(N-Cl(N-Int(E))). Also E ⊆ N-Int(N-Cl(E)) ⊆ N-Int(N-Cl(N-Int(E))) implies E ⊆ 

N-Int(N-Cl(N-Int(E))).  Thus E is N-αOS. 

3.4. Theorem  

Let h: Ω1→Ω2 be a function, where (Ω1, τ1) and (Ω2, τ2) be N-TSs.  Then the succeeding 

are equivalent. 

(i) h is N-α-irresolute. 

(ii) h-1(E) is N-αCS in (Ω1, τ1), for every N-αCS E in (Ω2, τ2). 

(iii) h(N-αCl(E))   N-αCl(h(E))   EΩ1. 

(iv) N-αCl(h-1(E))   h-1(N-αCl(E))   EΩ2. 

(v) h-1(N-αInt(E))   N-αInt(h-1(E))   EΩ2. 

(vi) h is N-α-irresolute for every ω ∈ (Ω1, τ1). 
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Proof 

(i) implies (ii) It is obvious. 

(ii) implies (iii) Let E   Ω1. In that case, N-αCl(h(E)) is a N-αCS of (Ω2, τ2). By (ii), 

h-1(N-αCl(h(E))) is a N-αCS in (Ω1, τ1), and N-αCl(E)   N-αCl(h-1h(E))   

N-αCl(h-1(N-αCl(h(E)))) = h-1(N-αCl(h(E))). So h(N-αCl(E))  N-αCl(h(E)). 

(iii) implies (iv) Let E   Ω2.  By (iii), h(N-αCl(h-1(E))) N-αCl(hh-1(E))  N-αCl(E). 

So N-αCl(h-1(E)) h-1(N-αCl(E)).  

(iv) implies (v) Let E   Ω2.  By (iv), h-1(N-αCl(Ω2-E))   N-αCl(h-1(Ω2-E)) = 

N-αCl(Ω1-   h-1(E)).  Since Ω1–N-αCl(Ω1–E) = N-αInt(E), subsequently h -1(N-αInt(E)) = 

h-1(Ω2-N-αCl(Ω2-E)) = Ω1 - h-1(N-αCl(Ω2-E))  Ω1 - N-αCl(Ω1 – h-1(E)) = N-αInt(h-1(E)). 

(v) implies (vi) Let E be any N-αOS of (Ω2, τ2), subsequently E = N-αInt(E). By (v), h-1(E) 

= h-1(N-αInt(E))   N-αInt(h-1(E))   h-1(E). So, h-1(E) = N-αInt(h-1(E)). Thus, h-1(E) is a 

N-αOS of (Ω1, τ1). Therefore, h is N-α-irresolute. 

(i) implies (vi) Let h be N-α-irresolute, ω (Ω1, τ1) and any N-αOS E of (Ω2, τ2),   

h(ω)  E. Then ωh-1(E) = N-αInt(h-1(E)). Let F = h -1(E) followed by F is a N-αOS of (Ω1, τ1) 

and so h(F) = hh-1(E)  E. Thus, h is N-α-irresolute for each ω (Ω1, τ1). 

(vi) implies (i) Let E be a N-αOS of (Ω2, τ2), ωh-1(E). Then h(ω)E.  By hypothesis 

there exists a N-αOS F of (Ω1, τ1)   ωF and h(F)E. Thus ωF h-1(h(F)) h-1(E) and 

ω  F = N-αInt(F)   N-αInt(h-1(E))   h-1(E)   N-αInt(h-1(E)). Hence h-1(E) = 

N-αInt(f-1(E)). Thus, h is N-α-irresolute. 

3.5. Theorem 

Let h: Ω1→Ω2 be a bijective function, where (Ω1, τ1) and (Ω2, τ2) be N-TSs. Then h is 

N-α-irresolute iff N-αInt(h(E)) h(N-αInt(E))   E   Ω1. 

Proof 

Let E   Ω1. By Theorem 3.4 and since h is bijective, h -1(N-αInt(h(E)))   

N-αInt(h-1(h(E))) = N-αInt(E). So, hh-1(N-αInt(h(E)))  h(N-αInt(E)). Consequently 

N-αInt(h(E))h(N-αInt(E)). 

Conversely, let E be a N-αOS of (Ω2, τ2).  Then E = N-αInt(E).  By hypothesis, 

h(N-αInt(h-1(E)))  N-αInt(h(h-1(E))) = N-αInt(E) = E implies h-1h(N-αInt(h-1(E)))h-1(E).  

Since h is bijective, N-αInt(h-1(E)) = h-1h(N-αInt(h-1(E)))h-1(E). 

Hence h-1(E) = N-αInt(h-1(E)).  So h-1(E) is N-αOS of (Ω1, τ1). Thus, h is N-α-irresolute.     

3.6. Lemma  

Let (Ω, τ) be a N-TS and EΩ. Then N-αInt(E) = E  N-Int((N-Cl(N-Int(E))), N-αCl(E) = 

E N-Cl(N-Int(N-Cl(E))). 

3.7. Lemma 

Let (Ω, τ) be a N-TS, then  

(i) N-αCl(E)   N-Cl(E)   E   Ω. 
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(ii) N-Cl(E) = N-αCl(E)   E   Ω where E is N-αOS. 

Proof 

(i) Let E   Ω. Since N-Int(E)  N-αInt(E), U–N-Int(E)U-N-αInt(E). Hence N-αCl(E) 

  N-Cl(E). 

(ii) Let E be any N-αOS of (Ω, τ), then E  N-Int(N-Cl(N-Int(E))). Then N-Cl(E) 

 N-Cl(N-Int(N-Cl(N-Int(E)))) = N-Cl(N-Int(E))   N-Cl(N-Int(N-Cl(E))). So, N-Cl(E)   E  

N-Cl(N-Int(N-Cl(E))). By Lemma 3.6, N-Cl(E)   N-αCl(E). By (i), N-αCl(E)   N-Cl(E), 

therefore N-Cl(E) = N-αCl(E). 

3.8. Theorem 

Let h: Ω1→Ω2 be a N-α-irresolute function, where (Ω1, τ1) and (Ω2, τ2) be N-TSs. Then 

N-Cl(h-1(E)) h-1(N-Cl(E)) for every N-OS E of Ω2. 

Proof 

Let E be any N-OS of Ω2. Since h is N-α-irresolute and by Lemma 3.7, N-αCl(h-1(E)) = 

N-Cl(h-1(E)). By Theorem 3.4, N-αCl(h-1(E))  h-1(N-αCl(E)) and by Lemma 3.7, 

h-1(N-αCl(E))  h-1(N-Cl(E)). Then N-αCl(h-1(E))  h-1(N-Cl(E)). Therefore 

N-Cl(h-1(E))h-1(N-Cl(E)). 

3.9. Theorem 

Let (Ω1, τ1) and (Ω2, τ2) be N-TSs and h: Ω1→Ω2 is N-semi-irresolute iff h -1(E) is N-SCS in 

Ω1,  N-SCS E of Ω2. 

Proof 

If h is N-semi-irresolute, then for every N-SOS F of Ω2, h-1(F) is N-SOS in Ω1.  If E is 

any N-SCS of Ω2, then Ω2 – E is N-SOS. As a consequence, h-1(Ω2 – E) is N-SOS but h-1(Ω2 – E) 

= Ω1–h-1(E) so that h-1(E) is N-SCS in Ω1.  

Conversely, if, for all N-SCS E of Ω2, h-1(E) is N-SCS in Ω1 and if F is any N-SOS of Ω2, 

then Ω2–F is N-SCS. Also h-1(Ω2–F) = Ω1–h-1(F) is N-SCS in Ω1. Accordingly h-1(F) is N-SOS in 

Ω1.  As a result, h is N-semi-irresolute. 

3.10. Theorem  

If h1: (Ω1, τ1) → (Ω2, τ2) is N-semi-irresolute and h2: (Ω2, τ2) → (Ω3, τ3) is  

N-semi-irresolute, then h2 h1 : (Ω1, τ1) → (Ω3, τ3) is N-semi-irresolute. 

Proof 

If E  Ω3 is N-SOS, then h2-1(E) is N-SOS in Ω2 because h2 is N-semi-irresolute. 

Consequently since h1 is N-semi-irresolute, h1-1(h2-1(E)) = (h2  h1)-1(E) is N-SOS in Ω1.  

Hence h2 h1 is N-semi-irresolute. 

3.11. Example (h2 h1 is N-semi-irresolute  h1 & h2 is N-semi-irresolute) 

Let h1: (Ω1, τ1) → (Ω2, τ2) be defined by h1(p) = s, h1(q) = r and h2: (Ω2, τ2)  → (Ω3, τ3) be 

defined by h2(r) = u and h2(s) = v where Ω1 = {p, q}, Ω2 = {r, s} and Ω3 = {u, v}. Let τ1 = {0N, A, B},      
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τ2 = {0N, C, D} and τ3 = {0N, E, F}.  Now, {0N, A, B, G}, {0N, C, D, H} and {0N, E, F, I} are N-SOS of   

(Ω1, τ1), (Ω2, τ2) and (Ω3, τ3) respectively, where 

A =  (0.3, 0.7, 0.8), (0.2, 0.6, 0.8)  ,  B =  (0.4, 0.6, 0.7), (0.5, 0.5, 0.6)  ,  

C =  (0.8, 0.4, 0.2), (0.8, 0.3, 0.3)  ,  D =  (0.6, 0.5, 0.5), (0.7, 0.4, 0.4)  , 

E =  (0.2, 0.6, 0.8), (0.3, 0.7, 0.8)  ,  F =  (0.5, 0.5, 0.6), (0.4, 0.6, 0.7)  , 

G =  (0.3, 0.7, 0.8), (0.4, 0.5, 0.7)  ,  H =  (0.7, 0.5, 0.4), (0.8, 0.3, 0.3)  ,  

    I =  (0.4, 0.5, 0.7), (0.3, 0.7, 0.8)  . 

Here, h2oh1: Ω1 → Ω3 defined by h2 h1 (p) = v and h2 h1(q) = u is N-semi-irresolute, but 

h1 and h2 are not N-semi-irresolute. 

3.12. Corollary 

Let (Ω1, τ1), (Ω2, τ2) and (Ω3, τ3) be N-TSs.  If h1: Ω1→Ω2 and h2: Ω2→Ω3 are N--irresolute 

then h2 h1: Ω1→ Ω3 is N--irresolute. 

Proof 

Let E is N-αOS in (Ω3, τ3). Since h2 is N--irresolute, h2-1(E) is N-OS in (Ω2, τ2). Also 

since h1 is N--irresolute, h1-1 (h2-1(E)) = (h2 h1)-1(E) is N-OS in (Ω1, τ1). Therefore h2 h1 is 

N--irresolute. 

3.13. Corollary  

If h1: (Ω1, τ1) → (Ω2, τ2) is N--irresolute (resp. N-semi-irresolute, N-pre-irresolute) 

and h2: (Ω2, τ2) → (Ω3, τ3) is N-Cts (resp. N-SCts, N-PCts) then h2 h1: (Ω1, τ1) → (Ω3, τ3) is 

N-Cts (resp. N-SCts, N-PCts). 

Proof 

Let E is N-OS in (Ω3, τ3). Since h2 is N-Cts (resp. N-SCts, N-PCts), h2-1(E) is N-OS 

(resp. N-SOS, N-POS) in (Ω2, τ2). Also since h1 is N--irresolute (resp. N-semi-irresolute, 

N-pre-irresolute), h1-1 (h2-1(E)) = (h2 h1)-1(E) is N-OS (resp. N-SOS, N-POS) in (Ω1, τ1). 

Therefore h2 h1 is N-Cts (resp. N-SCts, N-PCts). 

3.14. Theorem 

Let (Ω1, τ1) and (Ω2, τ2) be N-TSs.  If h: Ω1→Ω2 is N-semi-irresolute and N-pre-irresolute 

then h is N--irresolute. 

Proof 

Let E is N-αOS in (Ω2, τ2), then by Theorem 3.3, E is N-SOS and N-POS. Since h is 

N-semi-irresolute and N-pre-irresolute, h-1(E) is N-SOS and N-POS. Therefore h -1(E) is 

N-αOS. Hence h is N--irresolute. 

3.15. Theorem 

 Let (Ω1, τ1) and (Ω2, τ2) be N-TSs.  A function h: Ω1→Ω2 is N-Cts iff it is N-SCts and 

N-PCts.     

Proof 

It is clear from Theorem 3.3. 
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4. Contra N-Irresolute Functions 

4.1. Definition   

Let (Ω1, τ1) and (Ω2, τ2) be N-TSs. Then h: Ω1→Ω2 is said to be contra N-α-irresolute (resp. 

contra N-semi-irresolute, contra N-pre-irresolute) if the inverse image of every N-αOS 

(resp. N-SOS, N-POS) in (Ω2, τ2) is a N-αCS (resp. N-SCS, N-PCS) in (Ω1, τ1). 

4.2. Example 

(i) Let h: (Ω1, τ1) → (Ω2, τ2) be defined as h(s) = u and h(t) = v, where Ω1 = {s, t} and Ω2 = {u, 

v}, τ1 = {0N, A, B}, τ2 = {0N, C, D}.  

A =  (0.2, 0.8, 0.9), (0.1, 0.7, 0.8)  ,  B =  (0.3, 0.5, 0.6), (0.4, 0.6, 0.7)  ,  

C =  (0.8, 0.3, 0.1), (0.9, 0.2, 0.2)  ,  D =  (0.7, 0.4, 0.4), (0.6, 0.5, 0.3)  ,  

G =  (0.3, 0.7, 0.8), (0.2, 0.6, 0.7)  ,  H =  (0.7, 0.4, 0.2), (0.8, 0.3, 0.3)  .   

Here, {A’, B’, G’, 1N} are N-αCS of (Ω1, τ1) and {0N, C, D, H} are N-αOS of (Ω2, τ2).  

Consequently, h is contra N-α-irresolute function. 

(ii) Let h: (Ω1, τ1) → (Ω2, τ2) be defined as h(p) = v, h(q) = w and h(r) = u, where Ω1 = {p, q, 

r} and Ω2 = {u, v, w}, τ1 = {0N, A, B}, τ2 = {0N, C, D}.  

A =  (0.2, 0.6, 0.8), (0.1, 0.7, 0.9), (0.2, 0.8, 0.9)  ,  B =  (0.3, 0.4, 0.7), (0.2, 0.5, 0.8), (0.4, 0.6, 0.7)  ,  

C =  (0.9, 0.3, 0.1), (0.9, 0.2, 0.2), (0.8, 0.4, 0.2)  , D =  (0.8, 0.5, 0.2), (0.7, 0.4, 0.4), (0.7, 0.6, 0.3)  ,  

G =  (0.3, 0.5, 0.7), (0.2, 0.6, 0.9), (0.3, 0.7, 0.8)  , H =  (0.9, 0.4, 0.2), (0.8, 0.3, 0.3), (0.7, 0.5, 0.3)  .  

Here, {A’, B’, G’, 1N} are N-SCS of (Ω1, τ1) and {0N, C, D, H} are N-SOS of (Ω2, τ2).  Hence h is 

contra N-semi-irresolute function. 

(iii) Let h : (Ω1, τ1) → (Ω2, τ2) be defined as h(p) = w, h(q) = u and h(r) = v, where Ω1 = {p, q, 

r} and Ω2 = {u, v, w}, τ1 = {0N, A, B}, τ2 = {0N, C, D}.  

A =  (0.2, 0.7, 0.7), (0.3, 0.7, 0.8), (0.1, 0.8, 0.8)  ,  B =  (0.3, 0.7, 0.6), (0.4, 0.6, 0.7), (0.2, 0.7, 0.8)  ,  

C =  (0.9, 0.1, 0.1), (0.8, 0.2, 0.2), (0.8, 0.3, 0.2)  ,  D =  (0.8, 0.3, 0.2), (0.6, 0.3, 0.3), (0.7, 0.4, 0.4)  ,  

G =  (0.2, 0.8, 0.8), (0.2, 0.7, 0.8), (0.1, 0.9, 0.9)  , H =  0.8, 0.2, 0.1), (0.7, 0.3, 0.2), (0.8, 0.3, 0.3)  . 

Here, {A’, B’, G’, 1N} are N-PCS of (Ω1, τ1) and {0N, C, D, H} are N-POS of (Ω2, τ2). That's why h 

is contra N-pre-irresolute function.  

4.3. Theorem  

Let (Ω1, τ1) and (Ω2, τ2) be N-TSs. Then h: Ω1→Ω2 is contra N-α-irresolute iff for every 

N-αCS E of Ω2, h-1(E) is N-αOS in Ω1. 

Proof 

If h is contra N-α-irresolute, then for each N-αOS F of Ω2, h-1(F) is N-αCS in Ω1.  If E is 

any N-αCS of Ω2, then Ω2 – E is N-αOS. Thus h-1(Ω2 – E) is N-αCS but h-1(Ω2 – E) = Ω1 – h-1(E) 

so that h-1(E) is N-αOS in Ω1.  

Conversely, if, for all N-αCS E of Ω2, h-1(E) is N-αOS in Ω1 and if F is any N-αOS of Ω2, 

then Ω2 – F is N-αCS. Also, h-1(Ω2 – F) = Ω1 – h-1(F) is N-αOS. Thus h-1(F) is N-αCS in Ω1.  

Hence h is contra N-α-irresolute. 
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4.4. Corollary 

 Let (Ω1, τ1) and (Ω2, τ2) be N-TSs. Then h: Ω1→Ω2 is contra N-semi-irresolute (contra 

N-pre-irresolute) iff for every N-SCS (N-PCS) E of Ω2, h-1(E) is N-SOS (N-POS) in Ω1. 

Proof 

If h is contra N-semi-irresolute (contra N-pre-irresolute), then for each N-SOS (N-POS) 

F of Ω2, h-1(F) is N-SCS (N-PCS) in Ω1. If E is any N-SCS (N-PCS) of Ω2, then Ω2 – E is N-SOS 

(N-POS). Thus h-1(Ω2 – E) is N-SCS (N-PCS) but h-1(Ω2 – E) = Ω1 – h-1(E) so that h-1(E) is 

N-SOS (N-POS) in Ω1.  

Conversely, if, for all N-SCS (N-PCS) E of Ω2, h-1(E) is N-SOS (N-POS) in Ω1 and if F is 

any N-SOS (N-POS) of Ω2, then Ω2 – F is N-SCS (N-PCS). Also, h-1(Ω2 – F) = Ω1 – h-1(F) is 

N-SOS (N-POS). Thus h-1(F) is N-SCS (N-PCS) in Ω1. Hence h is contra N-semi-irresolute 

(contra N-pre-irresolute). 

4.5. Theorem  

Let (Ω1, τ1), (Ω2, τ2) and (Ω3, τ3) be N-TSs.  If h1: Ω1→Ω2 and h2: Ω2→ Ω3 are contra 

N-semi-irresolute functions, then h2 h1: Ω1→ Ω3 is N-semi-irresolute. 

Proof 

If E  Z is N-SOS, then h2-1(E) is N-SCS in Ω2 because h2 is contra N-semi-irresolute. 

Consequently, since h1 is contra N-semi-irresolute, h1-1(h2-1(E)) = (h2 h1)-1(E) is N-SOS in Ω1.  

Hence h2oh1 is N-semi-irresolute. 

4.6. Example (h2 h1 is N-semi-irresolute  h1 & h2 is contra N-semi-irresolute) 

Let h1: (Ω1, τ1) → (Ω2, τ2) be defined by h1(l) = q, h1(m) = r, h1(n) = p and h2: (Ω2, τ2) → (Ω3, τ3) 

be defined by h2(p) = v, h2(q) = w and h2(r) = u where Ω1 = {l, m, n}, Ω2 = {p, q, r} and Ω3 = {u, v, w}. 

Let τ1 = {0N, A, B}, τ2 = {0N, C, D} and τ3 = {0N, E, F}.  Here, {0N, A, B, G}, {0N, C, D, H} and {0N, E, F, I} 

are N-SOS of (Ω1, τ1), (Ω2, τ2) and (Ω3, τ3) where 

A =  (0.2, 0.6, 0.8), (0.1, 0.7, 0.9), (0.2, 0.8, 0.9)  ,  B =  (0.3, 0.4, 0.7), (0.2, 0.5, 0.8), (0.4, 0.6, 0.7)  ,  

C =  0.2, 0.8, 0.9), (0.2, 0.6, 0.8), (0.1, 0.7, 0.9)  ,  D =  0.4, 0.6, 0.7), (0.3, 0.4, 0.7), (0.2, 0.5, 0.8)  , 

E =  (0.1, 0.7, 0.9), (0.2, 0.8, 0.9), (0.2, 0.6, 0.8)  ,  F =  (0.2, 0.5, 0.8), (0.4, 0.6, 0.7), (0.3, 0.4, 0.7)  ,  

G =  (0.3, 0.5, 0.7), (0.2, 0.6, 0.9), (0.3, 0.7, 0.8)  ,  H =  (0.3, 0.7, 0.8), (0.3, 0.5, 0.7), (0.2, 0.6, 0.9)  ,  

I =  (0.2, 0.6, 0.9), (0.3, 0.7, 0.8), (0.3, 0.5, 0.7)  . 

Here, h2 h1: Ω1→ Ω3 which is defined by h2 h1(l) = w, h2 h1(m) = u and h2 h1(n) = v is 

N-semi-irresolute , but h1 and h2 are not contra N-semi-irresolute. 

4.7. Corollary 

Let (Ω1, τ1), (Ω2, τ2) and (Ω3, τ3) be N-TSs.  If h1: Ω1→Ω2 and h2: Ω2→ Ω3 are contra 

N-α-irresolute (contra N-pre-irresolute) functions, then h2 h1: Ω1→ Ω3 is a N-α-irresolute 

(N-pre-irresolute) function.   



Neutrosophic Sets and Systems, Vol. 51, 2022     132  

 

Santhi P, Yuvarani A and Vijaya S, Irresolute and its Contra Functions in Generalized Neutrosophic Topological 

Spaces 

4.8. Theorem 

Let (Ω1, τ1) and (Ω2, τ2) be N-TSs.  If h: Ω1→Ω2 is contra N--irresolute, then it is contra 

N-Cts. 

Proof 

Let E be any N-OS in Ω2. Then E is N-OS in Ω2. Since h is contra N--irresolute, h -1(E) 

is a N-CS in Ω1. It shows that h is contra N-Cts function. 

4.9. Theorem  

Let (Ω1, τ1), (Ω2, τ2) and (Ω3, τ3) be N-TSs. If h1: Ω1→Ω2 is contra N--irresolute and h2: 

Ω2→ Ω3 is contra N-Cts, then h2 h1: Ω1→ Ω3 is N-Cts. 

Proof 

Let E  Ω3 is N-OS. Since h2 is contra N-Cts, h2-1(E) is N-CS in Ω2. Consequently, 

since h1 is contra N--irresolute, h1-1(h2-1(E)) = (h2 h1)-1(E) is N-OS in Ω1, by Theorem 4.3. 

Hence h2 h1 is N-Cts. 

4.10. Corollary  

Let (Ω1, τ1), (Ω2, τ2) and (Ω3, τ3) be N-TSs, and h1: Ω1→Ω2 and h2: Ω2→ Ω3 be two functions. 

Then if h1 is contra N-semi-irresolute (contra N-pre-irresolute) and h2 is contra N-SCts 

(contra N-PCts), then h2 h1: Ω1→ Ω3 is N-SCts (N-PCts). 

4.11. Theorem 

Let (Ω1, τ1) and (Ω2, τ2) be N-TSs. If h: Ω1→Ω2 is contra N-semi-irresolute and contra 

N-pre-irresolute, then h is contra N--irresolute. 

Proof 

Let E is N-αOS in (Ω2, τ2), then by Theorem 3.3, E is N-SOS and N-POS. Since h is contra 

N-semi-irresolute and contra N-pre-irresolute, h-1(E) is N-SCS and N-PCS. Therefore h-1(E) 

is N-αCS. Hence h is contra N--irresolute. 

5. Conclusion 

In this confab, we instigated N--irresolute function, N-semi-irresolute function and 

N-pre-irresolute function on N-TS. Subsequently, we have analyzed its various 

properties. Followed by this, the new postulations of contra N--irresolute function, 

contra N-semi-irresolute function and contra N-pre-irresolute function were put forth on 

N-TS and their features were probed along with illustrations.  

N-TS idea can be further developed and extended in the actual life applications such 

as medical field, robotics, machine learning, neural networks, natural image sensing, 

speech recognition, and so on. 

In future, it provokes to apply these perceptions in further extensions of N-TS such as 

almost continuity and its unique characteristics in GN-TSs along with some separation 

axioms related to GN-TSs. Also, this concept may be extended to Intuitionistic Fuzzy and 

Neutrosophic Fixed Point Theory.  
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Abstract: The main objective of this article is to introduce the notion of minimal structure (in short 

M-structure) and grill in neutrosophic topological space (in short N-T-space). Besides, we establish 

its relation with some existing notions on different types of open sets in N-T-space, and investigate 

some basic properties of the class of M-structure and grill in NT-space. Further, we furnish some 

suitable examples of M-structure and grill via NT-space.  

Keywords: Neutrosophic Set; M-structure; Neutrosophic Topology; Neutrosophic Grill Topology. 

 

 

1. Introduction: The concept of fuzzy set (in short F-set) theory was grounded by Zadeh [29] in 1965. 

Uncertainty plays an important role in our everyday life problems. Zadeh [29] associated the 

membership value with the elements to control the uncertainty. It was not sufficient to control 

uncertainty, so Atanaosv [3] added non-membership value along with the membership value, and 

introduced the notion of intuitionistic fuzzy set (in short IF-set). Still it was difficult to handle some 

real world problems under uncertainty, in particular for problems on decision making. In order to 

overcome this difficulty, Smarandache [24] considered the elements with truth-membership, 

indeterminacy-membership and false-membership values, and grounded the idea of neutrosophic 

set (in short N-set) theory in 1998. Till now, the concept of N-set has been applied in many branches 

of science and technology. 

The notions of N-T-space was first grounded by Salama and Alblowi [22], followed by Salama 

and Alblowi [23], Iswaraya and Bageerathi [15], who studied the concept of neutrosophic semi-open 

set (in short NSO-set) and neutrosophic semi-closed set (in short NSC-set). Arokiarani et al. [2] 

studied some new notations and mappings via N-T-spaces. Iswarya and Bageerathi [15] established 
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the notion of neutrosophic semi-open sets via neutrosophic topological space. Afterwards, Rao and 

Srinivasa [21] introduced and studied neutrosophic pre-open set (in short NPO-set) and 

neutrosophic pre-closed set (in short NPC-set) via N-T-space. Das and Pramanik [7] grounded the 

notion of generalized neutrosophicx b-open set via neutrosophic topological space. Later on, Das 

and Pramanik [8] introduced the notion of neutrosophic 𝜙-open set and neutrosophic 𝜙-continuous 

function via neutrosophic topological space. Recently, Das and Tripathy [11] presented the notion of 

neutrosophic simply b-open set via neutrosophic topological space. Thereafter, Das and Tripathy 

[13] introduced the idea of pairwise neutrosophic b-open sets via N-T-space. Parimala et al. [19] 

introduced the notion of neutrosophic nano ideal topological space. Later on Parimala et al. [20] 

grounded the idea of neutrosophic 𝛼𝜓-homomorphism via neutrosophic topological spaces. 

Makai et al. [16] introduced and studied the concept of minimal structure (in short M-structure) 

via topological space. It is found to have useful applications and the notion was investigated by 

Madok [17]. The notion of minimal structure in a fuzzy topological space was introduce by 

Alimohammady and Roohi [1] and further investigated by Tripathy and Debnath [27] and others. 

In this article, we introduce the idea of minimal structure and grill via N-T-spaces. We establish 

its relation with some existing notions on several types of open sets via N-T-spaces. Besides, we 

investigate some basic properties of the class of minimal structures and grill via N-T-spaces. Further, 

we furnish some suitable examples on minimal structures and grill via N-T-spaces. 

The rest of the paper is divided into following sections: 

In section 2, we provide some definitions and results those are very useful for the preparation of 

the main results of this article. In section 3, we introduce the concept of M-structure and gril via 

NT-spaces, and proved some basic results on them. In section 4, we introduce an operator ( )* on 

M-structure via NT-spaces, and established several interesting results based on it. Finally, in section 

5, we conclude the work done in this article. 

 

2. Preliminaries & Definitions: 

In this section, we provide some existing results on neutrosophic set and neutrosophic topology 

those are relevant to main results of this article.    

Definition 2.1.[24] Suppose that Ĝ be a fixed set. Then W, an N-set over Ĝ is a set contains triplet 

having truth, indeterminacy and false membership values that can be characterized independently, 

denoted by TW, IW, FW in the unit interval [0, 1]. 

We denote the N-set W as follows: 

W = {(r, TW(r), IW(r), FW(r)): r Ĝ}, where TW(r), IW(r), FW(r) [0, 1], for all r Ĝ. 

Since, no restriction on the values of TW(r), IW(r) and FW(r) is imposed, so we have 

0  TW(r) + IW(r) + FW(r)  3, for all rĜ. 
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Example 2.1. Suppose that Ĝ={b, c} be a fixed set. Clearly, W={(b,0.4,0.8,0.7), (c,0.2,0.8,0.7)} is an N-set 

over Ĝ. 

 

Definition 2.2.[24] Suppose that W = {(r, TW(r), IW(r), FW(r)): rĜ} be an N-set over Ĝ. Then, Wc i.e., 

the complement of W is defined by Wc = {(r, 1-TW(r), 1-IW(r), 1-FW(r)): rĜ}. 

 

Example 2.2. Suppose that Ĝ={b, c} be a fixed set. Let W={(b,0.5,0.5,0.7), (c,0.5,0.7,0.8)} be an N-set 

over Ĝ. Then, the complement of W is Wc={(b,0.5,0.5,0.3), (c,0.5,0.3,0.2)}. 

 

Definition 2.3.[24] An N-set W = {(r, TW(r), IW(r), FW(r)): rĜ} is called a subset of an N-set L = {(r, 

TL(r), IL(r), FL(r)): rĜ} (i.e., WL) if and only if TW(r)  TL(r), IW(r)  IL(r), FW(r)  FL(r), for each   rĜ. 

 

Example 2.3. Suppose that Ĝ={b, c} be a fixed set. Let M={(b,0.5,0.5,0.7), (c,0.5,0.7,0.8)} and 

W={(b,0.7,0.2,0.5), (c,0.9,0.5,0.3)} be two N-sets over Ĝ. Clearly, MW. 

 

Definition 2.4.[24] Assume that W = {(r, TW(r), IW(r), FW(r)): rĜ} and L={(r, TL(r), IL(r), FL(r)): rĜ}  be 

any two N-sets over a fixed set Ĝ. Then, their intersection and union are defined as follows: 

WL = {(r, TN(r)TL(r), IN(r)IL(r), FN(r)FL(r)): rĜ}, 

WL = {(r, TN(r)TL(r), IN(r)IL(r), FN(r)FL(r)): rĜ}. 

 

Example 2.4. Suppose that Ĝ={b, c} be a fixed set. Let W={(b,0.5,0.5,0.7), (c,0.5,0.7,0.8)} and M= 

{(b,0.7,0.2,0.5), (c,0.9,0.5,0.3)} be two N-sets over Ĝ. Then, WM={(b,0.7,0.2,0.5), (c,0.9,0.5,0.3)} and 

WM={(b,0.5,0.5,0.7), (c,0.5,0.7,0.8)}. 

 

Definition 2.5.[22] The null N-set (0N) and absolute N-set (1N) over Ĝ are represented as follows: 

(i) 0N ={(r, 0, 0, 1) : rĜ};  

(ii) 0N ={(r, 0, 1, 0) : rĜ};  

(iii) 0N ={(r, 0, 1, 1) : rĜ}; 

(iv) 0N ={(r, 0, 0, 0) : rĜ}; 

(v) 1N ={(r, 1, 0, 1) : rĜ}; 

(vi) 1N ={(r, 1, 1, 0) : rĜ}; 

(vii) 1N ={(r, 1, 0, 0) : rĜ}; 

(viii) 1N ={(r, 1, 1, 1) : rĜ}. 

Clearly, 0N 1N. We have, for any N-set W, 0N   W  1N. 

Throughout the article, we will use 0N ={(r, 0, 1, 1) : rĜ} and 1N ={(r, 1, 0, 0) : rĜ}. 
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Definition 2.6.[22] Assume that Ĝ be a fixed set. Then , a family of N-sets over Ĝ is called an N-T on 

Ĝ if the following condition holds: 

(i) 0N, 1N; 

(ii) W1, W2  W1W2; 

(iii) {Wi : i}  iWi. 

Then, the pair (Ĝ, ) is called an N-T-space. If W, then W is called an neutrosophic open set (in 

short N-O-set) in (Ĝ, ), and the complement of W is called an neutrosophic closed set (in short 

N-C-set) in (Ĝ, ). 

 

Example 2.5. Suppose that W, E and Z be three N-sets over a fixed set Ĝ={p, q} such that: 

W={(p,0.7,0.5,0.7), (q,0.5,0.1,0.5): p, qĜ}; 

E={(p,0.6,0.9,0.8), (q,0.5,0.3,0.8): p, qĜ}; 

Z={(p,0.5,1.0,0.8), (q,0.4,0.4,0.9): p, qĜ}. 

Then, the collection ={0N, 1N, W, E, Z} forms a neutrosophic topology on Ĝ. Here, 0N, 1N, W, E, Z are 

NOSs in (Ĝ, ), and their complements 1N, 0N, Wc={(p,0.3,0.5,0.3), (q,0.5,0.9,0.5): p, q Ĝ}, Ec={(p,0.4,0.1, 

0.2), (q,0.5,0.7,0.2): p, q Ĝ} and Z={(p,0.5,0.0,0.2), (q,0.6,0.6,0.1): p, q Ĝ} are NCSs in (Ĝ, ). 

 

The neutrosophic interior and neutrosophic closure of an N-set are defined as follows: 

Definition 2.7.[22] Assume that  be an N-T on Ĝ. Suppose that W be an N-set over Ĝ. Then,  

(i) neutrosophic interior (in short Nint) of W is the union of all N-O-sets in (Ĝ, ) those are contained in 

W, i.e., Nint(W) = {E : E is an N-O-set in Ĝ such that EW};  

(ii) neutrosophic closure (in short Ncl) of W is the intersection of all N-C-sets in (Ĝ, ) those containing 

W, i.e., Ncl(W) = {F : F is an N-C-set in Ĝ such that WF}. 

Clearly Nint(W) is the largest N-O-set contained in W, and Ncl(W) is the smallest N-C-set 

containing W. 

 

Example 2.6. Suppose that (Ĝ, ) be an NT-space as shown in Example 2.5. Suppose that 

U={(p,0.5,0.5,0.7), (q,0.5,0.7,0.8)} be an N-set over Ĝ. Then, Nint(U)=0N and Ncl(U)={(p,0.5,0.0,0.2), 

(q,0.6,0.6,0.1)}. 

 

Proposition 2.1.[22] For any N-set B in (Ĝ, ), we have the following: 

(i) Nint(Bc) = (Ncl(B))c; 

(ii) Ncl(Bc) = (Nint(B))c. 

 

Definition 2.2.[21] Suppose that (Ĝ, ) be an N-T-space, and W be an N-set over Ĝ. Then, W is called 

(i) NSO-set if and only if W  Ncl(Nint(W)); 
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(ii) NPO-set if and only if W  Nint(Ncl(W)). 

The collection of all NSO sets and NPO sets in (Ĝ, 𝜏) are denoted by NSO(𝜏) and NPO(𝜏). 

 

Example 2.7. Suppose that Ĝ={a, b} be a fixed set. Clearly, (Ĝ, ) is an NT-space, where ={0N, 1N, {(a, 

0.3,0.3,0.4), (b,0.4,0.4,0.3): a, bĜ}, {(a,0.4,0.1,0.4), (b,0.5,0.3,0.1): a, bĜ}}. Then, the N-set Q={(a,0.6, 

0.1,0.4), (b,0.9,0.2,0.1): a, bĜ} is an NSO set, and P={(a,0.3,0.2,0.9), (b,0.3,0.3,0.4): a, bĜ} is an NPO 

set in (Ĝ, ). 

 

Definition 2.8.[2] Assume that (Ĝ, ) be an N-T-space. Then W, an N-set over Ĝ is called an 

neutrosophic b-open set (in short N-b-O-set) in (Ĝ, ) if and only if W  Nint(Ncl(W))Ncl(Nint(W)).  

An N-set G is called an neutrosophic b-closed set (in short N-b-C-set) in (Ĝ, ) if and only if its 

complement is an N-b-O-set in (Ĝ, ). The collection of all neutrosophic b-open sets in (Ĝ, 𝜏) is 

denoted by N-b-O(𝜏). 

 

Example 2.8. Suppose that (Ĝ, ) be an NT-space as shown in Example 2.7. Then, the neutrosophic 

set P={(a,0.3,0.2,0.9), (b,0.3,0.3,0.4): a, bĜ} is an neutrosophic b-open set in (Ĝ, ). 

 

3. Minimal Structure in Neutrosophic Topological Space 

In this section, we procure the notions of M-structure and grill in N-T-space. 

Definition 3.1. A family M of neutrosophic subsets of Ĝ i.e., M  P(Ĝ), where P(Ĝ) is the collection of 

all N-sets defined over Ĝ is said to be a M-structure on Ĝ if 0N and 1N belong to M. By (Ĝ, M), we 

denote the neutrosophic minimal space (in short N-M-space). The members of M are called 

neutrosophic minimal-open (in short N-m-O) subset of Ĝ. 

 

Example 3.1. Let W, E and Z be three neutrosophic sets over a fixed set Ĝ={b, c} such that: 

W={(b,0.7,0.5,0.7), (c,0.5,0.1,0.5): b, cĜ}; 

E={(b,0.6,0.9,0.8), (c,0.5,0.3,0.8): b, cĜ}; 

Z={(b,0.5,1.0,0.8), (c,0.4,0.4,0.9): b, cĜ}. 

Clearly, the collection M={0N, 1N, W, E, Z} forms a neutrosophic minimal structure on Ĝ, and the pair 

(Ĝ, M) is a neutrosophic minimal structure space.  

 

Definition 3.2. The complement of N-m-O set W is an neutrosophic m-closed set (in short N-m-C 

set) in (Ĝ, M). 

 

Example 3.2. Let us consider a neutrosophic minimal structure space as shown in Example 3.1. Here, 

0N, 1N, W, E, Z are neutrosophic minimal open sets in (Ĝ, M), and (0N)c = 1N, (1N)c = 0N, Wc = 
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{(b,0.3,0.5,0.3), (c,0.5,0.9,0.5)}, Ec ={(b,0.4,0.1,0.2), (c, 0.5,0.7,0.2)}, Zc = {(b,0.5,0.0,0.2), (c,0.6,0.6,0.1)} are 

neutrosophic minimal closed sets in (Ĝ, M). 

 

Example 3.3. From the above definitions, it is clear that NPO-sets, NSO-sets, N-α-O-sets, N-b-O-sets 

are N-m-O sets. 

 

Example 3.4. Let W, E and Z be three neutrosophic sets over a non-empty set Ĝ ={b, c} such that: 

W={(b,0.7,0.5,0.7), (c,0.5,0.5,0.1) : b, cX}; 

E={(b,0.6,0.8,0.9), (c,0.5,0.8,0.3) : b, cX}; 

Z={(b,0.5,0.8,1.0), (c,0.4,0.9,0.4) : b, cX}. 

Here, the family 𝜏={0N, 1N, W, E, Z} forms a neutrosophic topology on X, and so (Ĝ, 𝜏) is a 

neutrosophic topological space. Suppose M = 𝜏 ∪NPO(𝜏)∪NSO(𝜏)∪N-b-O(𝜏), then (Ĝ, M) is a 

neutrosophic minimal structure. Now, from the above it is clear that, every neutrosophic pre-open 

sets, neutrosophic semi-open sets, neutrosophic b-open sets in (Ĝ, 𝜏) are neutrosophic m-open sets in 

(Ĝ, M). Further, it is also seen that, every neutrosophic m-open set in (Ĝ, M) is also a neutrosophic 

pre-open set, neutrosophic semi-open set, neutrosophic b-open set in (Ĝ, 𝜏). 

 

Remark 3.1. We can define neutrosophic minimal interior (in short Nmint), neutrosophic minimal 

closure (in short Nmcl) etc. in an N-M-space as we have define in the previous section. 

 

Example 3.5. Suppose that (Ĝ, M) be a neutrosophic minimal structure space as shown in Example 

3.1. Then, the neutrosophic minimal interior of D={(b,0.2,0.6,0.4), (c,0.4,0.9,0.7)} is Nm-int(D)={(b,0,1,1), 

(c,0,1,1)}, and the neutrosophic minimal closure of D={(b,0.2,0.6,0.4), (c,0.4,0.9,0.7)} is Nm-cl(D)={(b,0.3, 

0.5,0.3), (c,0.5,0.9,0.5)} respectively. 

    

In view of the definitions given in this article, we state the following result without proof. 

Theorem 3.1. Suppose that (Ĝ, M) be an N-M-space. Then, for any N-sets S and R over Ĝ, the 

following holds: 

(i) (Nmcl(S))c= Nmcl(Sc) and (Nmint(S))c= Nmcl(Sc). 

(ii) Nmcl(S)=S if and only if S is an N-m-C set in (Ĝ, M). 

(iii) Nmint(S)=S if and only if S is an N-m-O set in (Ĝ, M). 

(iv) SR  Nmcl(S)Nmcl(R) and Nmint(S)Nmint(R). 

(v) SNmcl(S) and Nmint(S)S. 

(vi) Nmcl(Nmcl(S))=Nmcl(S) and Nmint(Nmint(S))=Nmint(S). 
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Theorem 3.2. Assume that (Ĝ, M) be an N-M-space. Suppose that M satisfies the property B. Then, 

for an neutrosophic subset S of Ĝ, the followings hold: 

(i) S M if and only if Nmint(S)=A. 

(ii) S is N-m-C set if and only if Nmcl(S)=S.  

(iii) Nmint(S) M and Nmcl(S) is an N-m-C set. 

 

Definition 3.3. An N-M-structure M on a non-empty set Ĝ is said to be have property B if the union 

of only family of neutrosophic subsets belonging M belongs to M. 

 

Example 3.6. Suppose that R, E and Y be three neutrosophic sets over a fixed set Ĝ={b, c} such that: 

R={(b,0.8,0.5,0.8), (c,0.6,0.1,0.6): b, cĜ}; 

E={(b,0.7,0.9,0.9), (c,0.6,0.3,0.9): b, cĜ}; 

Y={(b,0.6,1.0,0.9), (c,0.5,0.4,1.0): b, cĜ}. 

Here, the collection M={0N, 1N, R, E, Y} forms a N-M-structure on Ĝ, and so the pair (Ĝ, M) is a 

neutrosophic minimal structure space. Clearly, the N-M-structure on Ĝ satisfied the property B 

which was stated in Definition 3.3. 

 

Definition 3.4. An N-M-structure (Ĝ, M) satisfies the property J if the finite intersection of N-m-O 

sets is an N-m-O set.  

 

Example 3.7. Let us consider a N-M-structure M on Ĝ as shown in Example 3.6. Clearly, the 

N-M-structure M on Ĝ satisfied the property j which was stated in Definition 3.4. 

 

Remark 3.2. If a N-M-structure M on Ĝ is a neutrosophic topology on Ĝ, then M satisfied the 

property j which was stated in Definition 3.4. 

    

Definition 3.5. A family G (0NG) of N-sets over Ĝ is called a grill on Ĝ if G satisfies the following 

condition: 

(i) SG and SR  RG; 

(ii) S, R  Ĝ and SRG SG or RG. 

 

Example 3.8. Suppose that Ĝ = {b, c} be a fixed set. Then, the collection M={1N, {(b,0.9,0.0,0.0), 

(c,0.9,0.0,0.0)}, {(b,0.8,0.0,0.0), (c,0.8,0.0,0.0)}} forms a grill on Ĝ. 

 

Remark 3.3. Since 0NG, so G is not a N-M-structure on Ĝ. An N-M-structure with a grill is called as 

a neutrosophic grill minimal space (in short N-G-M-space), denoted by (Ĝ, M, G). 
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4. ( )*-Operator on Neutrosophic Minimal Structure: 

Definition 4.1. Suppose that (Ĝ, M, G) be an N-G-M-space. A function ( )*m: P(Ĝ) → P(Ĝ) called as 

neutrosophic minimal local function (N-M-L-function) is defined by  

( )*m ={xĜ: SUM, for all UM(x)}. 

Now we discuss about some properties of the neutrosophic minimal local function ()*m in (Ĝ, M, G). 

 

Definition 4.2. Assume that (Ĝ, M, G) be a N-G-M-space. Then, the boundary of a N-set S over Ĝ is 

defined by (S)*m = (S)*m  (Sc)*m. 

 

We state the following two results without prove in view of the above definitions. 

Proposition 4.1. Suppose that (Ĝ, M, G) be a N-G-M-space. Then, the following holds: 

(i) (0N)*m = 0N; 

(ii) (S)*m = 0N, if SG; 

(iii) (S)*mP  (S)*mQ, where P and Q are neutrosophic grill on Ĝ with PQ. 

 

Proposition 4.2. Suppose that P(Ĝ) be the collection of all neutrosophic sets defined over Ĝ. Assume 

that (Ĝ, M, G) be a N-G-M-space. Then, for SP(Ĝ), 

(i) (S)*m = S(S)*m; 

(ii) (S)*m = nFn, where {Fn}n is the collection of all ( )*m-closed sets in (Ĝ, M, G). 

 

Theorem 4.1. Assume that (Ĝ, M, G) be a N-G-M-space. Then, the following holds: 

(i) S, R P(Ĝ) and SR  (S)*m  (R)*m; 

(ii) For SĜ, Nmcl(S)* m  (S)* m; 

(iii) For SĜ, (S)* m is a N-m-C set; 

(iv) For SĜ, (S)* m  Nmcl(S); 

(v) For SĜ, [(S)*m] *m  (S)* m. 

Proof. (i) Assume that SR and x(S)*m. Then, for all UM, we have by definition, that USG. 

Thus by definition of neutrosophic grill we have URG. Hence, x(R)*m. Therefore, (S)*m  (R)*m. 

(ii) Assume that xNmcl(S), for some SĜ. Then by a known result there exists an UxM such that 

UxS = 0N G. Therefore, x(S)*m. Hence, we have (S)*m  Nmcl(S). 

(iii) Assume that xNmcl(S)*m and UM(x), then U(S)*m ≠ 0N. Next, let y U(S)*m. Then, we have 

yU and y(S)*m. Therefore, USG, which implies x(S)*m. 

Thus, we have Nmcl(S)*m  (S)*m. 

(iv) Suppose that SP(Ĝ). Then, we have (S)*m  Nmcl(S)*m and Nmcl(S)*m = (S)*m. Thus, we have for 

any (S)*m = Nmcl(S)*m, since Nmcl(S)*m is an N-m-C set, so (S)*m is an N-m-C set. 
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(v) Suppose that SP(Ĝ). Then from (iv) we have Nmcl(S)*m  (S)*m. Further on considering (S)*m is 

place of S, from (vi) we have ((S)*m)*m  Nmcl(S)*m. Hence, from these two inclusion we have 

((S)*m)*m  (S)*m. 

 

Theorem 4.2. Assume that (Ĝ, M, G) be a N-G-M-space. Suppose that (Ĝ, M) satisfies the property J. 

Then, the following holds: 

(i) (SR)*m = (S)*m  (R)*m, for S, R  M; 

(ii) (SR)*m  (S)*m  (R)*m, for S, R  M. 

Proof. (i) We have S  SR, R  SR. Thus, we have (S)*m  (SR)*m and (R)*m  (SR)*m. This 

implies, (S)*m  (R)*m  (SR)*m                                                         (1)  

Suppose that x (S)*m(R)*m. Therefore there exists U1, U2  M(x) such that U1SG, U2RG. This 

implies, (U1S)  (U2R)G.  

Now, U1, U2  M(x) ⇒ U1U2 M(x) and (SR)  (U1U2)  (U1S)  (U2R)G. 

Therefore, x(SR)*m. Thus, we have (SR)*m  (S)*m  (R)*m                               (2) 

From (1) and (2) we have, (SR)*m = (S)*m  (R)*m. 

(ii) We have SR  S and SR  R. This implies, (SR)*m  (S)*m and (SR)*m  (R)*m. Therefore, 

(SR)*m  (S)*m  (R)*m. 

 

Theorem 4.3. Suppose that (Ĝ, M, G) be a N-G-M-space. Assume that (Ĝ, M) satisfies the property J. 

Then, the following holds: 

(i) For WM and SĜ, W(S)*m = W(WS)*m; 

(ii) For S, R  Ĝ, [(S)*m \(R) *m] = [(S\R)*m \(R)*m]; 

(iii) For S, R  Ĝ, with RG. (SR)*m = (S)*m = (S\R)*m.        

Proof. (i) It is known that (WS)  S. 

Now, (WS)  S 

⇒ (WS)*m  (S)*m 

⇒ W(W(S))*m  W(S))*m                                                            (3) 

Assume that xW(S)*m and VM(x).  

Then, we have WVM(x) and x(S)*m implies (WV)  SG.  

Thus, (WS)  VG. Thus, we have x(WS)*m, which implies xW(WS)*m. 

Hence, (WS)*m  W(WS)*m                                                                                                         (4) 

From (3) and (4), we have W(S)*m = W(WS)*m. 

(ii) We have,  

(S)*m =[(S\R)  (SR)]*m  

         = (S\R)*m  (SR)*m     [by part (i)] 

         [(S\R)*m  (R)*m].  
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Thus, we have [(S)*m\(R)*m]  [(S\R)*m  (R)*m]. 

We have, S\R  S ⇒ (S\R)*m  (S)*m.  This implies, [(S\R)*m\(R)*m]  [(S)*m\(R)*m]. 

Hence, we have  [(S)*m\(R) *m] = [(S\R)*m\(R)*m]. 

(iii) By Theorem 4.4 (i), we have for S, R Ĝ, (SR)*m = (S)*m  (R)*m.  

Further the earlier result we have RG implies (R)*m = 0N, so (S)*m  (R)*m = (S)*m.. 

We have, S\R  S ⇒ (S\R)*m  (S)*m., by part (iii) we have, 

 [(S)*m \(R)*m]  (S\R)*m, since (R)*m = 0N implies (S) *m. (S\R)*m.  

Thus, we have (S)*m =(S\R)*m. 

 

Definition 4.3. Suppose that (Ĝ, M, G) be an N-G-M-space. Then, the mapping NclmG: P(Ĝ)P(Ĝ) is 

define by NclmG(S) = S(S)*m., for all S∈P(Ĝ). 

 

Theorem 4.4. The mapping NclmG: P(Ĝ)P(Ĝ) satisfies the Kuratowski closure axioms. 

Proof. We have, NclmG(0N) = 0N  (0N)*m = 0N  0N = 0N. By the definition of NclmG, we have for all 

S∈P(Ĝ), NclmG(S) = S  (S)*m ⊇ S. 

Further, we have 

NclmG(SR) = (SR)  (SR)*m  

                   = ((SR)  ((S)*m  (R)*m)                               [by Theorem 4.3] 

                   = (S(S)*m)  (R(R)*m) = NclmG(S)  NclmG(R). 

Suppose that S∈P(Ĝ). Then, we have  

NclmG(NclmG(S)) = NclmG(S(S)*m)  

                        = [(S(S)*m)]  [(S(S)*m]*m 

                          = [(S(S)*m)]  [(S) *m  ((S)*m)*m.]                 [by Theorem 4.3] 

                        = S(S)*m 

Hence, the mapping NclmG satisfies the Kuratowski closure axioms. 

 

5. Conclusions: In this article, we have introduced the notion of minimal structure and grill via 

N-T-spaces. Besides, we have established its relation with some existing notions on several types of 

open sets via N-T-spaces, and investigated some basic properties of the class of minimal structures 

and grill via N-T-spaces. Further, we have furnished some suitable examples on minimal structures 

and grill via N-T-spaces. In the future, it is hoped that the notion of minimal structures and grill on 

N-T-spaces can also be applied in neutrosophic supra topological space [5], quadripartitioned 

neutrosophic topological space [6], pentapartitioned neutrosophic topological space [12], 

neutrosophic bitopological space [18], neutrosophic tri-topological space [10], neutrosophic soft 

topological space [9], neutrosophic multiset topological space [14], multiset mixed topological space 

[4], etc.      
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Abstract 

 Quadripartitioned neutrosophic set is a mathematical tool, which is the extension of neutrosophic 

set and n-valued neutrosophic refined logic for dealing with real-life problems. A generalization of 

the notion of quadripartitioned neutrosophic set is introduced. The new notion is called the Interval 

Quadripartitioned Neutrosophic set (IQNS). The interval quadripartitioned neutrosophic set is 

developed by combining the quadripartitioned neutrosophic set and interval neutrosophic set. 

Several set theoretic operations of IQNSs, namely, inclusion, complement, and intersection are 

defined. Various properties of set-theoretic operators of IQNS are established. 

 Keywords: Neutrosophic set, Single valued neutrosophic set, Interval neutrosophic set, 

quadripartitioned neutrosophic set, Interval quadripartitioned neutrosophic set 

 

 

1. Introduction 

Chatterjee et al. [1] defined Quadripartitioned Single Valued Neutrosophic Set (QSVNS) by utilizing 

the concept of Single Valued Neutrosophic Set (SVNS) [2], four valued logic [3] and n- valued 

refined logic [4]  that involves degrees of truth, falsity, unknown and contradiction membership. 

Chatterjee et al. [5]  investigated interval-valued possibility quadripartitioned single valued 

neutrosophic soft sets by generalizing the possibility intuitionistic fuzzy soft set [6].  

No investigation regarding Interval Quadripartitioned Neutrosophic Set (IQNS) is reported in 

the literature. The motivation of the present work comes from the works of Chatterjee et al. [1, 5].  

The notion of IQNS is developed by combining the concept of QSVNS and Interval Neutrosophic Set 

(INS) [7]. The proposed structure is a generalization of existing theories of INS and QSVNS. 

The organization of the remainder of the paper is presented in table 1.  

 Table 1. Outline of the paper 

Section  Content  

2 Some preliminary results. 

3 The concept of IQNS and 

set-theoretic operations over IQNS 

are introduced.  

4 Conclusion and scope  of further 

research are presented. 

mailto:sura_pati@yahoo.co.in
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2. Preliminary 

Definition 2.1. Assume that a set W is fixed.   An NS [8] H over W is defined as: 

( ) ( )H H HH {w,(T (w),I w ,F w ) : w W}=  where H H HT , I ,F :W ] 0,1 [− +→  and 

( ) ( ) ( )H H H0 T w I w F w 3− + + +  . 

Definition 2.2.  Assume that a set W is fixed. An SVNS [2] H over W is defined as: 

( ) ( )H H HH {w,(T (w),I w ,F w ) : w W}=  where
H H HT ,I ,F :W [0,1]→  and 

( ) ( ) ( )H H H0 T w I w F w 3 + +  . 

Definition 2.3. Let a set W be fixed. An INS [7] H over W is defined as: 

H H HT (w), I (w),F (w)) : w W}H {(w,( =  

where for each wW, 
H H HT (w), I (w),F (w) [0,1] are the degrees of membership functions of truth, 

indeterminacy, and falsity and 

H H H H H H H H H

H H H

T (w) inf T (w),supT (w)], I (w) [inf I (w),sup I (w)]),F (w) [inf F (w),sup F (w)]and

0 supT (w) sup I (w) sup F (w) 3.

[= = =

 + + 
  

H can be expressed as: 

  
H H H H H Hinf T (w),supT (w)],[inf I (w),supI (w)]),[inf F (w),supF (w)]) : w W}H {w,([ =  

2.4.  Let a set W be fixed. A QSVNS  [1] H over W is defined as: 

H= {(w, TH(w), CH(w), UH(w), FH(w)): wW}, where for each point wW, TH(w), CH(w), UH(w), 

FH(w) [0,1]→  are the degrees of membership functions of truth, contradiction, ignorance, and 

falsity and   

0  sup TH(w) + sup CH(w) + sup UH(w) + sup FH(w) 4. 

 3. The Basic Theory of IQNSs 

Definition 3.1.  IQNS  

Let W be a fixed set. Then, an IQNS over W is denoted by H and defined as follows: 

H= {(w, TH(w), CH(w), UH(w), FH(w)): wW}, where for each point wW, TH(w), CH(w), UH(w), 

FH(w)  [0, 1] are the degrees of membership functions of truth, contradiction, ignorance, and falsity 

and  TH(w)= [inf TH(w, sup TH(w)] , CH(w) =[inf CH(w), sup CH(w)] UH,(w) = [inf UH(w), sup UH(w)],  

FH(w) = [inf FH(w), sup FH(w)] [0, 1] and 

0  sup TH(w) + sup CH(w) + sup UH(w) + sup FH(w) 4. 

 

An IQNS in R1 is illustrated in Figure 1. 
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Figure 1. Illustration of an IQNS in R1 

 

Example 3.1.  Suppose that W = [w1, w2, w3], where w1, w2, and w3 present respectively the 

capability, trustworthiness, and price. The values of w1, w2, and w3 are in [0, 1].  They are obtained 

from the questionnaire of some domain experts, their option could be degree of truth (good), 

degree of contradiction, degree of ignorance, and degree of false (poor). H1 is an IQNS of W defined 

by 

H1 = {[0.5, 0.7], [0.15, 0.2], [0.2, 0.4], [0.2, 0.3]}/w1 + {[0.55, 0.85], [0.25, 0.35], [0.15, 0.25], [0.2, 0.3]}/w2+ 

[0.65, 0.85], [0.2, 0.35], [0.1, 0.25], [0.15, 0.25]}/ w3 

H2 is an IPNS of W defined by 

H2 = {[0.6, 0.8], [0.1, 0.2], [0.1, 0.25], [0.15, 0.3]}/w1 + {[0.6, 0.9], [0.25, 0.3], [0.1, 0.2], [0.1, 0.3]}/w2+ [0.5, 

0.7], [0.1, 0.2], [0.15, 0.25], [0.1; 0.2]}/ w3 

Definition 3.2.  An IQNS H is said to be empty (null) denoted by 0̂ iff  

inf TH(w)= sup TH(w) = 0, inf CH(w)= sup CH(w) = 0, , inf UH(w) = sup UH(w)= 1, inf FH(w)= sup FH(w) 

= 1 , 

0̂ {[0,0],[0,0],[1,1],[1,1]}=  

Definition 3.3.  An IQNS H is said to be unity denoted by 1̂  iff  

inf TH(w) = sup TH(w) = 1, inf CH(w) = sup CH(w) = 1, inf UH(w) = sup UH(w) = 0,  

inf FH(w)= sup FH(w) = 0 
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1̂ {[1,1],[1,1],[0,0],[0,0]}=  

Also, we have 0 0,0,1,1 1 1,1,0,0= =and  

Definition 3.4. (Containment ) Let 1H  and 2H be any two IQNS over W, 1H  is said to be 

contained in 2H , denoted by 1 2H H iff  

for any w W ,  

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

H H H H

H H H H

H H H H

H H H H

inf T (w) inf T (w),supT (w) supT (w),

inf C (w) inf C (w),supC (w) supC (w),

inf U (w) inf U (w),sup U (w) sup U (w),

inf F (w) inf F (w),sup F (w) sup F (w),

 

 

 

 

 

Definition 3.5. Any two  IQNSs  H1  and H2 are equal iff 1 2H H and 1 2H H  

Definition 3.6. (Complement)  Let 
H H H HH {(w,T (w),C (w),U (w),F (w)) : w W}=  be an  IQNS. 

The complement of H is denoted by H  and defined as:   

H H H H H H H H

H H H H H H H H

T (w) F (w), C (w) U (w), U (w) C (w),F (w) T (w)

H {(w,[inf F (w),sup F (w)],[inf U (w),sup U (w)],[inf C (w),supC (w)], [inf T (w),supT (w)]) : w W}

   = = = =

 = 

Example 3.2 .  Consider an IQNS H of the form: 

H = {[0.35, 0.75], [0.2, 0.25], [0.2, 0.3], [0.2, 0.4]}/w1 + {[0.55, 0.85], [0.2, 0.3], [0.15, 0.25], [0.2, 0.35]}/w2+ 

[0.75, 0.85], [0.15, 0.25], [0.15, 0.25], [0.1, 0.25]}/ w3 

Then, complement of  

H == {[0.2, 0.4] , [0.2, 0.3], [0.2, 0.25], [0.35, 0.75]}/w1 + {[0.2, 0.35], [0.15, 0.25], [0.2, 0.3], [0.55, 

0.85]}/w2+ [0.1, 0.25], [0.15, 0.25], [0.15, 0.25], [0.75, 0.85]}/ w3 

Definition 3.7.( Intersection)  

The intersection of any two IQNSs H1  and H2 is an IQNS , denoted as H3 and presented as: 

H3 = H1 H2  


3 3 3 3 3 3

3 3

H H H H H H

H H

{(w,[inf T (w),supT (w)],[inf C (w),supC (w)],[inf U (w),supU w)],
[inf F (w),supF (w)]) : w W}.  

= 

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1

H H H H

H H H H

H H H H

H H H

{(w,[min(inf T (w),inf T (w)),min(supT (w),supT (w))],
[min(inf C (w),inf C (w)),min(supC (w),supC (w))],
[max(inf U (w),inf U (w))],max(supU (w),supU (w))],
[max(inf F (w),inf F (w)),max(supF (w) 

2H
,supF (w))]) : w W}

 

Example 3.3. Let H1  and H2 be the IQNSs defined in Example 3.1.  

Then, 1 2H H = {[0.5, 0.7], [0.1, 0.2], [0.2, 0.4], [0.2, 0.3]}/w1 + {[0.55, 0.85], [0.25, 0.3], [0.15, 0.25], [0.2, 

0.3]}/w2+ [0.5, 0.7], [0.1, 0.2], [0.15, 0.25], [0.15, 0.25]}/ w3 

Definition 3.8. (Union)  The union of any two IQNSs 1H  and 2H  is an IQNS denoted as H3 , and 

presented as: 
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3 3 3 3 3 3

3 3

1 2 1 2 1 2 1

H H H H H H

H H

H H

3 1 2

H H H H H

{(w,[inf T (w),supT (w)],[inf C (w),supC (w)],[inf U (w),sup U w)],

[inf F (w),sup F (w)]) : w W}.}.

{(w

H

,[max(inf T (w),inf T (w)),max(supT (w),supT (w))],[max(inf C (w),inf C (w)),

H

max(

H

supC





=

=
2

1 2 1 2 1 2 1 2

H

D D D D D D D D

(w),supC (w))],

[min(inf U (w),inf U (w)),min(sup U (w),sup U (w))],[min(inf F (w),inf F (w)),min(sup F (w),sup F (w))]) : w W}.

Example 3. 4. Let 1H  and 2H be the IQNSs in example 3.1. Then  

1 2H H = {[0.6, 0.8], [0.15, 0.2], [0.1, 0.25], [0.15, 0.3]}/w1 + {[0.6, 0.9], [0.25, 0.35], [0.1, 0.2],  

[0.1, 0.3]}/w2+ [0.65, 0.85], [0.2, 0.35], [0.1, 0.25], [0.1, 0.2]}/ w3 

 

Theorem 3.1 Let 1H  and 2H be any two IQNSs over W defined by  

i i i i i

i i i i i

H H H H H

H H H H

i

H

T (w),C (w),G (w), U (w),F (w))]) : w W},i 1,2,and

T (w),C (w),G (w), U (w),F (w))] [0,1], i 1,2.

H {(w,  =



=

=

  

Then 

 

 

Proof. (a): 

1 2 1 2

1 2 1 2

1 2 1 2

1 2

H H H H

H H H H

H H H

2

H

H H

1 max(inf T (w),inf T (w)),max(supT (w),supT (w))],

[max(inf C (w),inf C (w)),max(supC (w),supC (w))],

[min(inf U (w),inf U (w)),min(sup U (w),sup U (w))],

[min(inf F (w),inf F (w)),min(sup F

H H {(w,[ =

1 2

2 1 2 1 2 1 2 1

2 1 2 1 2

H H

H H H H H H H

H H H H H

(w),sup F (w))]) : w W}

max(inf T (w),inf T (w)),max(supT (w),supT (w))],[max(inf C (w),inf C (w)),max(supC (w),supC (w))],

[min(inf U (w),inf U (w)),min(sup U (w),sup U (w))],[min(inf F (w),inf

{w,[



=

1 2 1H H H

2 1

F (w)),min(sup F (w),sup F (w))] : w W}

H H



= 

 

Proof. (b): 

H H H H

H H H H

H H H H

H H

min(inf T (w),inf T (w)),min(supT (w),supT (w))],

[min(inf C (w),inf C (w)),min(supC (w),supC (w))],

[max(inf U (w),inf U (w)),max(sup U (w),sup U (w))],

[max(inf F (w),inf F (w)),max(sup F

H H {(w,[ =
1 2 1 2

1 2 1 2

1 2 1 2

1 2

1 2

H H

H H H H

H H H H

H H H H

H

(w),sup F (w))]) : w W}.

min(inf T (w),inf T (w)),min(supT (w),supT (w))],

[min(inf C (w),inf C (w)),min(supC (w),supC (w))],

[max(inf U (w),inf U (w)),max(sup U (w),sup U (w))],

[max(inf F (w),

{(w,[



=
1 2

2 1 2 1

2 1 2 1

2 1 2 1

2 H H Hinf F (w)),max(sup F (w),sup F (w))]) : W

H H

w }.

= 

 
1 2 1

2 1

 

Theorem 3.2. For any two IPNS, 
1 2H ,and H : 

(a) H (H H ) H  =1 1 2 1  

(b) H (H H ) H  =1 1 2 1  

Proof .(a): 

1 2 2 1

1 2 2 1

(a)H H H H

(b)H H H H

 = 

 = 
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H H H H H H H H

H H H H

H H

inf T (w),supT (w)],[inf C (w),supC (w)]),[[inf U (w),sup U (w)],[inf F (w),sup F (w)]) : w W}

min(inf T (w),inf T (w)),min(supT (w),supT (w))],

[min(inf C (w),inf C (w)),min(sup

H (H H )
{w,([

{(w,[

  =



1 1 1 1 1 1 1 1

1 2 1 2

1 2

1 1 2

H H

H H H H

H H H H

H H H H H

C (w),supC (w))],

[max(inf U (w),inf U (w)),max(sup U (w),sup U (w))],

[max(inf F (w),inf F (w)),max(sup F (w),sup F (w))]) : w W}.

inf T (w),min(inf T (w),inf T (w))),max(supT (w), min(supT ({w,([max(



=

1 2

1 2 1 2

1 2 1 2

1 1 2 1 1 H

H H H H H H

H H H H H H

H

w),supT (w)))],

inf C (w),min(inf C (w),inf C (w))),max(supC (w), min(supC (w),supC (w)))]),

[min(inf (U (w),max(inf U (w),inf U (w))), min(sup U (w),max(sup U (w),sup U (w)))],

[min(inf (F (w),ma

[max(
2

1 1 2 1 1 2

1 1 2 1 1 2

1 H H H H H

H H H H H H H H

x(inf F (w),inf F (w))), min(sup F (w),max(sup F (w),sup F (w)))]) : w W}

inf T (w),supT (w)],[inf C (w),supC (w)]),[[inf U (w),sup U (w)],[inf F (w),sup F (w)]) : w W{w, }

H

([



= 

=

1 2 1 1 2

1 1 1 1 1 1 1 1

1

 

Proof (b):  

H H H H

H H H H

H H H H

H H

inf T (w),supT (w)],[inf C (w),supC (w)]),

[ inf U (w),sup U (w)],[inf F (w),sup F (w)]) : w W}

max(inf T (w),inf T (w)),max(supT (w),supT (w))],

[max(inf C (w),inf C (w)),max(supC

H (H H )

{w,([

{(w,[

 

=

 

1 1 1 1

1 1 1 1

1 2 1 2

1 2

1 1 2

H H

H H H H

H H H H

H H H H H

(w),supC (w))],

[min(inf U (w),inf U (w)),min(sup U (w),sup U (w))],

[min(inf F (w),inf F (w)),min(sup F (w),sup F (w))]) : w W}

inf T (w),max(inf T (w),inf T (w))),min (supT (w),max(supT (w),{w,[min (



=

1 2

1 2 1 2

1 2 1 2

1 1 2 1 1 H

H H H H H H

H H H H H H

H

supT (w)))],

[min (inf C (w),max(inf C (w),inf C (w))),min (supC (w),max(supC (w),supC (w)))],

[max(inf U (w),min(inf U (w),inf U (w))),max (sup U (w),min(sup U (w),sup U (w)))],

[max(inf F (w),min(inf F

2

1 1 2 1 1 2

1 1 2 1 1 2

1 H H H H H

H H H H H H H H

(w),inf F (w))),max (sup F (w),min(sup F (w),sup F (w)))]

{ inf T (w),supT (w)],[inf C (w),supC (w)]),[[inf U (w),sup U (w)],[inf F (w),sup F (w)])w : w W,( }

H

[= 

=

1 2 1 1 2

1 1 1 1 1 1 1 1

1

Theorem 3.3.  For any IPNS H1: 

 
1 1 1

1 1 1

(a)H H H

(b) H H H

 =

 =
 

Proof. (a):  

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

H H H H H H

H H H H H H

H H H H

1 1 inf T (w),supT (w)],[inf C (w),supC (w)]),[inf U (w),sup U (w)],

[inf F (w),sup F (w)]) : w W} inf T (w),supT (w)],[inf C (w),supC (w)]),

[inf U (w),sup U (w)],[inf F (w),sup F (w)]) : w

H H {w,([

{w,([

=







1 1 1 1

1 1 1 1

1 1 1 1

1 1

H H H H

H H H H

H H H H

H H

W}

{ inf T (w),inf T (w)),max(supT (w),supT (w))],

[max(inf C (w), (inf C (w))),max(supT (w),supC (w)]),

[min(inf U (w),inf U (w)), (min(sup U (w), (sup U (w))],

[min(inf F (w),inf F (w)),min(su

w,([max(



=

1 1

1 1 1 1 1 1 1 1

H H

H H H H H H H H

1

p F (w),sup F (w))]) : w W}

inf T (w),supT (w)],[inf C (w),supC (w)]),, [inf U (w),sup U (w)],[inf F ( ({w ( w),sup F w)]) : w W}[

H



= 

=

 Proof. (b):  
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1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

H H H H H H

H H H H H H

H H H H

1 1 inf T (w),supT (w)],[inf C (w),supC (w)]),[inf U (w),sup U (w)],

[inf F (w),supF (w)]) : w W} inf T (w),supT (w)],[inf C (w),supC (w)]),

[inf U (w),sup U (w)],[inf F (w),supF (w)]) : w

H H {w,([

{w,([

=







W}

H H H H

H H H H

H H H H

H H H

min(inf T (w),inf T (w)),min(supT (w),supT (w))],

[min(inf C (w),inf C (w)),min(supC (w),supC (w))],

[max(inf U (w),inf U (w)),max(sup U (w),sup U (w))],

[max(inf F (w),inf F (w)),max(sup F (w),

{(w,[
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 H

H H H H H H H H

sup F (w))]) : w W}.

inf T (w),supT (w)],[inf C (w),supC (w)]),[inf U (w),sup U (w)],[inf F (w),sup F (w)]) : w{w, }([ W

H



== 

=

2

1 1 1 1 1 1 1 1

1

Theorem 3.4 For any IQNS 
1H ,  

 1

1

ˆ ˆ(a)H 0 0

ˆ ˆ(b)H 1 1

 =

 =
 

Proof. (a): 

1 1 1 1 1 1 1 1

1 1

1

H H H H H H H H

H

H

1

H

inf T (w),supT (w)],[inf C (w),supC (w)]),[inf U (w),sup U (w)],[inf F (w),sup F (w)]) : w W}

min(inf T (w),0),min(supT (w),0)],

[min(inf C (w),0),min(s

ˆH 0

{w,([

{[0,0],[0,0],[1,1],[1,1],[1,1]}

{(w,[



=



=



1

1 1

1 1

H

H H

H H

upC (w),0)],

[max(inf U (w),1),max(sup U (w),1)],

[max(inf F (w),1),max(sup F (w),1]) : w W}

0,0)], 0,0)],[1,1],[1,1]) : w W}

0̂

{(w,[ [



= 

=

Proof. (b): 

1 1 1 1 1 1 1 1H H H H H H H

1

Hinf T (w),supT (w)],[inf C (w),supC (w)]),[inf U (w),

}

sup U (w)],[inf F (w),supF (w)

H 1̂

{w,([

{[1,1],[1,1],[0,0],[0,0

] W

]

) : w }



= 



  

1 1 1 1 1 1

1 1

H H H H H H

H H

max(inf T (w),1),max(supT (w),1))],[max(inf C

1

(w),1),max(supC (w),1)],[min(inf U (w),0),min(sup U (w),0)],

[min(inf F (w),0)),min(sup F (w),0)]

{(w,[

{w([1,1],[1,1],[0,0],[0,0],[0,0]) : w W

) W}

ˆ

: w

}

=



=



=

 Theorem 3.5. For any IQNS 
1H ,  

 1 1

1 1

ˆ(a)H 0 H

ˆ(b)H 1 H

 =

 =
 

Proof. (a): 
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1 1 1 1 1 1 1 1

1 1 1 1

H H H H H

1

H H H

H H H H

inf T (w),supT (w)],[inf C (w),supC (w)]),[inf U (w),sup U (w)],[inf F (w),sup F (w)]) : w W}

max(inf T (w),

H

0),max(s

[

0̂

{w,(

{[0,0],[0,

upT (w),0))

,

[ ], [max

]

(in

0

f C

],[1,1 [1, }

(w),, 0),

1

max

]

{( su Cw ( p



= 



=

1 1 1 1

1 1 1 1 1 1 1 1

H H H H

H H H H H H H H

1

(w),0)],

[min(inf U (w),1),min(sup U (w),1)],[min(inf F (w),1)),min(sup F (w),1)]) : w W}

inf T (w),supT (w)],[inf C (w),supC (w)]),[inf U (w),sup U (w)],[in ){w, f F (w ,sup F ( :([ w)]) w W}

H

=





=

1 1 1 1 1 1 1 1

1 1 1 1

H H H H H H H H

H H H H

1

inf T (w),supT (w)],[inf C (w),supC (w)]),[inf U (w),sup U (w)],[inf F (w),sup F (w)]) : w W}

min(inf T (w),1),min(supT (w),1)],[min(inf C (w),1),min(supC (w)

ˆH 1

{w,([

{[1,1,[1,1,[0,0],[0,0]}

{(w,[

=

=







1 1 1 1

1 1 1 1 1 1 1 1

H H H H

H H H H H H H H

1

,1)],

[max(inf U (w),0) ,max(sup U (w),0)])[max(inf F (w),0) ,max(sup F (w),0)]) : w W}

inf T (w),supT ( ,{w,( w)],[inf C (w),supC (w)]),[inf U (w) sup U (w)],[inf F (w),sup F (w)])[ : w W

H



= 

=

Theorem 3.6. For any IQNS 
1H , 1 1(H ) H  =  

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

H H H H H H H H

H H H H H H H H

1

1

inf T (w),supT (w)],[inf C (w),supC (w)]),[inf U (w),sup U (w)],[inf F (w),sup F (w)]) : w W}

[inf F (w),sup F (w)], [inf U (w),sup U (w)],[inf C (w),supC (w)]), inf T (w),supT (w)]

Let H {w,([

H {w,( [

=

 =



1 1 1 1 1 1 1 1H1 H H H H H H H

1

) : w W}

inf T (w),supT (w)],[inf C (w),supC (w)]),[inf U (w),sup U (w)], s( uH ) {w [inf F (w), p F (w)]) : w W,([ }

H

  



=

=

Theorem 3.7.  For any two IQNSs, 1H and 2H : 

1 2 1 2

1 2 1 2

(a) (H H ) H H

(b) (H H ) H H

  = 

  = 
 

Proof. (a):  

1 2 1 2

1 2 1 2

1 2 1 2

1 2

H H H H

H H H H

H H H

2

H

H H

1 max(inf T (w),inf T (w)),max(supT (w),supT (w))],

[max(inf C (w),inf C (w)),max(supC (w),supC (w))],

[min(inf U (w),inf U (w)),min(sup U (w),sup U (w))],

[min(inf F (w),inf F (w)),min(sup F

H H {(w,[ =

1 2H H(w),sup F (w))],

 

1 2 1 2

1 2 1 2

1 2 1 2

1 2

H H H H

H H H

H

1

H

H H H H

H

2 [min(inf F (w), inf F (w)),min(sup F (w),sup F (w))],

[min(inf U (w),inf U (w)),min(sup U (w),sup U (w))],

[max(inf C (w),inf C (w)),max(supC (w),supC (w))],

max(inf F (w), inf T (w)), max(

(H H ) {(w,

[

  =

1 2H HsupT (w),supT (w))]) : w W} (1)
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1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

1 2 H H H H H H H H

H H H H H H H H

H H [inf F (w),sup F (w)], [inf U (w),sup U (w)],[inf C (w),supC (w)]), inf T (w),supT (w)]) : w W}

[inf F (w),sup F (w)], [inf U (w),sup U (w)],[inf C (w),supC (w)]), inf T (w),supT (w)])

{w,( [

{w,( [

  = 

1 2 1 2

1 2 1 2

1 2 1 2

1 2

H H H H

H H H H

H H H H

H H

: w W}

[min(inf F (w),inf F (w)),min(sup F (w),sup F (w))],

[min(inf U (w),inf U (w)),min(sup U (w),sup U (w))],

[max(inf C (w),inf C (w)),max(supC (w),supC (w))],

max(inf F ( T

{(w,

[ w),inf T (w)),max(sup



=

1 2H H(w),supT (w))]) : w W} (2)

Therefore from (1) and (2), 1 2 1 2(H H ) H H  =     

Proof. (b): 

1 2 1 2

1 2 1 2

1 2 1 2

1 2

H H H H

H H H H

H H H H

H

2

H

1 min(inf T (w),inf T (w)),min(supT (w),supT (w))],

[min(inf C (w),inf C (w)),min(supC (w),supC (w))],

[max(inf U (w),inf U (w)),max(sup U (w),sup U (w))],

[max(inf F (w),inf F (w)),max(su

(H H ) {(w,[ =

1 2

1 2 1 2

1 2 1 2

1 2 1 2

H H

H H H H

H

1

H H H

H H

2

H H

p F (w),sup F (w))]) : w W} .

[max(inf F (w),inf F (w)),max(sup F (w),sup F (w))]),

[max(inf U (w),inf U (w)),max(sup U (w),sup U (w))],

[min(inf C (w),inf C (w)),min(supC (w),supC (w))],

m

(H H ) {(w,

[





=

1 2 1 2H H H Hin(inf T (w),inf T (w)),min(supT (w),supT (w))]) : w W} (3)

 

Now 

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

H H H H H H H H

H H H H H H H

2

H

1 [inf F (w),sup F (w)], [inf U (w),sup U (w)],[inf C (w),supC (w)]), inf T (w),supT (w)]) : w W}

[inf F (w),sup F (w)], [inf U (w),sup U (w)],[inf C (w),supC (w)]), inf T (w),supT (w)])

H H {w,( [

{w,( [

=  

1 2 1 2 1 2 1 2

1 2 1 2 1 2

H H H H H H H H

H H H H H H

: w W}

inf F (w),inf F (w)),max(sup F (w)],sup F (w)], inf U (w),inf U (w)),max(sup U (w)

T

{w,([ ( ,sup U (w))],

[ min (inf C (w),inf C (w)),min (supC (w) u

max( [max

,s pC (w))],[ min (inf T (w),inf T (w)),min (sup



=

1 2H H(w),supT (w))]) : w W} (4)

Therefore, from (3) and (4), 1 2 1 2(H H ) H H  =   

Theorem 3.9.  For any two IPNS H1, H2, 

      1 2 2 1H H H H .     

Proof. 

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

2 1 2

1 2

H H H H

H H H H

H H H H

H H H H

H H H

H H
inf T (w) inf T (w),supT (w) supT (w),

inf C (w) inf C (w),supC (w) supC (w),

inf U (w) inf U (w),sup U (w) sup U (w),

inf F (w) inf F (w),sup F (w) sup F (w),

inf F (w) inf F (w),sup F (w) sup

 
 

 

 

 


 

1

2 1 2 1

2 1 2 1

2 1 2 1

H

H H H H

H H H H

H H H H

2 1

F (w),

inf U (w) inf U (w),sup U (w) sup U (w),

inf C (w) inf C (w),supC (w) supC (w)

inf T inf T , supT (w) supT (w)

H H

 

 

 


 

 

Note: Proposed IQNS can also be called as Interval Quadripartitioned Single Valued Neutrosophic 

Set ( IQSVNS). 
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4. Conclusions 

In this paper, the notion of IQNS is introduced by combining the QSVNS and INS. The notion of 

inclusion, complement, intersection, union of IQNSs are defined.  Some of the properties of IQNSs, 

are established.  In the future, the logic system based on the truth-value based IQNSs will be 

investigated and the theory can be used to solve real-life problems in the areas such as information 

fusion, bioinformatics, web intelligence, etc. Further it is hoped that the proposed IQNS is 

applicable in neutrosophic decision making [9-11]and graph theory dealing with uncertainty [12-14], 

etc. 
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Abstract: 

In this article, we procure the concept of single-valued pentapartitioned neutrosophic Lie (in 

short SVPN-Lie) algebra under single-valued pentapartitioned neutrosophic set (in short SVPN-set) 

environment. Besides, we study the notion of SVPN-Lie ideal of SVPN-Lie algebra, and produce 

several interesting results on SVPN-Lie algebra and SVPN-Lie ideal. 

 

Keywords: Lie-ideal; Lie-algebra; Neutrosophic Set; SVPN-set; SVPN-Lie ideal. 

1. Introduction:  

In nineteenth century, Sophus Lie grounded the concept of Lie groups. Sophus Lie also 

discovered the notion of Lie algebra. Thereafter, Humphreys [30] introduced the concept of 

representation theory of Lie algebra in 1972. In 2003, Coelho and Nunes [10] proposed an application 

of Lie algebra to mobile robot control. Till now, the concept of Lie theory has been applied in 

mathematics, physics, continuum mechanics, cosmology and life sciences. The problems of 

computer vision can also be solved by using the idea of Lie algebra. In 1965, Zadeh [40] grounded 

the notion of Fuzzy Set (in short FS) theory. Afterwards, Yehia [38] presented the concept of 

Fuzzy-Lie ideals and Fuzzy-Lie sub-algebra of Lie algebra in 1996. Later on, Yehia [39] also studied 

the adjoint representation of Fuzzy-Lie algebra. In 1998, Kim and Lee [31] further studied the 

Fuzzy-Lie ideals and Fuzzy-Lie sub-algebra. The notion of anti-Fuzzy-Lie ideals of Lie algebra was 

studied by Akram [1]. Later on, Akram [4] studied the concept of generalized Fuzzy-Lie sub-algebra 

in 2008. The concept of Fuzzy-Lie ideals of Lie algebra with the interval-valued membership 

function was studied by Akram [5]. In 1986, Atanassov [8] grounded the idea of Intuitionistic Fuzzy 

mailto:sumandas18842@gmail.com
mailto:2rakhaldas95@gmail.com
mailto:rakhal.mathematics@tripurauniv.in
mailto:tripathybc@gmail.com
mailto:tripathybc@yahoo.com
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Set (in short IFS) theory by introducing the idea of non-membership of a mathematical expression. 

Afterwards, Akram and Shum [7] grounded the concept of Lie algebra on IFSs. The notion of 

Intuitionistic (S, T)-Fuzzy-Lie ideals was studied by Akram [2]. In 2008, Akram [3] further 

established several results on Intuitionistic Fuzzy-Lie ideals of Lie algebra. 

In 1998, Smarandache [36] grounded the idea of neutrosophic set (in short NS) by introducing the 

indeterminacy membership function of mathematical expression. Later on, Wang et al. [37] defined 

single-valued neutrosophic set (in short SVNS) as a generalization of FS and IFS. In 2020, Das et al. 

[14] proposed a multi-criteria decision making algorithm via SVNS environment. Thereafter, Akram 

et al. [6] introduced the concept of Lie-Algebra on SVNSs in 2019. Afterwards, Das and Hassan [15] 

grounded the notion of d-ideals on NS. In 2016, Chatterjee et al. [9] presented the idea of 

single-valued quadripartitioned neutrosophic set (in short SVQN-set) be extending the notion of 

SVNS. Later on, Mallick and Pramanik [33] grounded the notion of SVPN-set by splitting the 

indeterminacy membership function into three different membership functions namely 

contradiction, ignorance and unknown membership functions. Recently, Das et al. [13] studied the 

concept of Q-Ideals on SVPN-sets. 

In this article, we procure the idea of SVPN-Lie ideal of SVPN-Lie algebra. Further, we produce 

several interesting results on SVPN-Lie algebra and SVPN-Lie ideal.  

Research gap: No investigation on SVPN-Lie algebra and SVPN-Lie ideal has been reported in 

the recent literature. 

Motivation: To explore the unexplored research, we introduce the notion of SVPN-Lie algebra 

and SVPN-Lie ideal. 

The remaining part of this article has been organized as follows: 

In section-2, we recall some basic definitions and results on SVNS, Lie algebra, Lie ideal, SVN-Lie 

algebra, SVN-Lie ideal and SVPN-set those are useful for the preparation of the main results of this 

article. Section-3 introduces the idea of SVPN-Lie algebra and SVPN-Lie ideal. In this section, we 

also formulate several interesting results on them. Section-4 represents the concluding remarks on 

the work done in this article. 

 

2. Some Relevant Results: 

Definition 2.1.[30] Assume that  be a field, and L be a vector space on . Consider an operation 

L×L → L defined by (a, b) → [a, b], for all a, b  L. Then, L is called Lie algebra if the following 

properties hold: 

(i) [a, b] is a bilinear, 

(ii) [a, a] = 0, for all a ∈ L, 

(iii) [[a, b], c] + [[b, c], a] + [[c, a], b] = 0, for all a, b, c ∈ L. 

Definition 2.2.[40] A Fuzzy Set (in short FS) W over a universe of discourse  is defined as follows: 
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W = {(, TW()) :   }, 

where TW() is the truth-membership value of each  such that 0  TW()  1. 

Definition 2.3.[38] A FS W = {(, TW()) :   L} is called a Fuzzy Lie ideal (in short F-L-Ideal) of a Lie 

algebra L if and only if the following three conditions hold: 

(i) TW(q + r) ≥ min { TW(q), TW(r)}; 

(ii) TW(αq) ≥ TW(q); 

(iii) TW([q, r]) ≥ TW(q), for all q, r∈ L, and α ∈ . 

Definition 2.4.[8] An intuitionistic fuzzy set (in short IFS) W over a fixed set  is defined as follows: 

W = {(, TW(), IW()) :   }, 

where TW, IW are the membership and non-membership functions from W to [0, 1], and so 0  TW() + 

IW()  2, for all . 

Definition 2.5.[7] An IFS W = {(q, TW(q), IW(q)) : q  L} on Lie algebra L is called an Intuitionistic 

Fuzzy Lie (in short IF-Lie) algebra if the following condition holds: 

(i) TW(q + r) ≥ min {TW(q), TW(r)} and IW(q + r) ≤ max {IW(q), IW(r)}; 

(ii) TW(αq) ≥ TW(q) and IW(αq) ≤ IW(q); 

(iii) TW([q, r]) ≥ min {TW(q), TW(r)} and IW([q, r]) ≤ max {IW(q), IW(r)}, for all q, r ∈L, and α∈. 

Definition 2.6.[37] An Single-Valued Neutrosophic Set (in short SVNS) W over  is defined as 

follows: 

W = {(, TW(), IW(), FW()) :   }, 

where TW, IW, FW are truth, indeterminacy and falsity membership mappings from W to [0, 1], and so 

0  TW() + IW() + FW()  3, for all . 

Definition 2.7.[37] Assume that Y = {(c, TY(c), IY(c), FY(c)) : c  } be an SVNS over . Then, the sets 

W(TY,)={c:TY(c)}, W(IY,)={c:IY(c)}, W(FY,)={c:FY(c)} are respectively called T-level 

-cut, I-level -cut, F-level -cut of Y.  

Definition 2.8.[6] An SVNS W={(q, TW(q), IW(q), FW(q)) : qL} over a Lie algebra L is called an 

Single-Valued Neutrosophic Lie (in short SVN-Lie) algebra if the following condition holds: 

(i) TW(q + r) ≥ min {TW(q), TW(r)}, IW(q + r) ≥ min {IW(q), IW(r)} and FW(q + r) ≤ max {FW(q), FW(r)}; 

(ii) TW(αq) ≥ TW(q), IW(αq) ≥ IW(q) and FW(αq) ≤ FW(q); 

(iii) TW([q, r]) ≥ min {TW(q), TW(r)}, IW([q, r]) ≥ min {IW(q), IW(r)} and FW([q, r]) ≤ max {FW(q), FW(r)}, for 

all q, r ∈L, and α∈. 

Example 2.1. Suppose that F = R be the set of all real number. Suppose that L = R3 = {(a, b, c) : a, b, c ∈ 

R} be the set of all three-dimensional real vectors. Then, L forms a Lie algebra. We define  

R3 × R3 → R3 

[a, b] → a × b, 

where ‘×’ is the usual cross product. Now, we define an SVNS N = (TN, IN, FN) : R3 → [0, 1] × [0, 1] × [0, 

1] by 
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TN(a, b, c) = {
0.9,   𝑎 = 𝑏 = 𝑐 = 0

0.4, 𝑎 = 𝑏 = 0, 𝑐  0
0.1, 𝑎  𝑏 𝑐 0  

, 

IN(a, b, c) = {
0.9,   𝑎 = 𝑏 = 𝑐 = 0

0.4, 𝑎 = 𝑏 = 0, 𝑐  0
0.1, 𝑎  𝑏  𝑐  0 

, 

and FN(a, b, c) = {
0.1,   𝑎 = 𝑏 = 𝑐 = 0

0.4, 𝑎 = 𝑏 = 0, 𝑐  0
0.9, 𝑎  𝑏  𝑐  0  

. 

Then, N = (TN, IN, FN) is an SVN-Lie algebra of L. 

Definition 2.9.[6] Suppose that L be a Lie algebra over a field . An SVNS W={(q, TW(q), IW(q), 

FW(q)):qL} on L is called an SVN-Lie ideal if the following conditions hold: 

(i) TW(r+q) ≥ min {TW(r), TW(q)}, IW(r+q) ≥ min {IW(r), IW(q)} and FW(r+q) ≤ max {FW(r), FW(q)}; 

(ii) TW(αq) ≥ TW(q), IW(αq) ≥ IW(q) and FW(αq) ≤ FW(q); 

(iii) TW([r, q]) ≥ TW(r), IW([r, q]) ≥ IW(r) and FW([r, q]) ≤ FW(r), for all r, q ∈L.  

Example 2.2. Suppose that F = R be the set of all real number. Suppose that L = R3 = {(a, b, c) : a, b, c ∈ 

R} be the set of all three-dimensional real vectors which forms a Lie algebra. Now, we define an 

SVNS N = (TN, IN, FN) : R3 → [0, 1] × [0, 1] × [0, 1] (‘×’ is the usual cross product) by 

TN(a, b, c) = {
0.9,   𝑎 = 𝑏 = 𝑐 = 0

0.9, 𝑎 = 𝑏 = 0, 𝑐  0
0.9, 𝑎  𝑏 𝑐 0  

, 

IN(a, b, c) = {
0.9,   𝑎 = 𝑏 = 𝑐 = 0

0.9, 𝑎 = 𝑏 = 0, 𝑐  0
0.9, 𝑎  𝑏  𝑐  0 

, 

and FN(a, b, c) = {
0.9,   𝑎 = 𝑏 = 𝑐 = 0

0.9, 𝑎 = 𝑏 = 0, 𝑐  0
0.9, 𝑎  𝑏  𝑐  0  

. 

Then, N is an SVN-Lie ideal of L. 

Remark 2.1. Every SVN-Lie algebra may not be an SVN-Lie ideal. This follows from the following 

example. 

Example 2.3. Let us consider an SVNS N = (TN, IN, FN) over the field L = R as defined in Example 2.1. 

Then, the SVNS N = {(TN(x, y, z), IN(x, y, z), FN(x, y, z)) : (x, y, z) ∈ R3} is an SVN-Lie algebra of L, but 

it is not an SVN-Lie ideal of L, because 

TN([(1, 0, 0), (0, 0, 1)]) = TN(0,−1, 0) = 0.1 ≱ 0.4 i.e., TN([(1, 0, 0), (0, 0, 1)]) ≱ TN(0, 0, 1), 

IN([(1, 0, 0), (0, 0, 1)]) = CN(0,−1, 0) = 0.1 ≱ 0.4 i.e., CN([(1, 0, 0), (0, 0, 1)]) ≱ CN(0, 0, 1), 

FN([(1, 0, 0), (0, 0, 1)]) = FN(0,−1, 0) = 0.9 ≰ 0.4 i.e., FN([(1, 0, 0), (0, 0, 1)]) ≰ FN(0, 0, 1). 

Remark 2.2.[6] Let W={(q, TW(q), IW(q), FW(q)):qL} be an SVN-Lie algebra on a Lie algebra L. Then, 

(i) TW(0) ≥ TW(q), IW(0) ≥ IW(q), FW(0) ≤ FW(q); 

(ii) TW(−q) ≥ TW(q), IW(−q) ≥ IW(q), FW(−q) ≤ FW(q), for all q ∈L. 
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Definition 2.10.[9] Suppose that  be a universal set. Then, an Single-Valued Quadripartitioned 

Neutrosophic Set (in short SVQN-set) W over  is defined as follows: 

W = {(, TW(), CW(), GW(), FW()) :   }, 

where TW(), CW(), GW() and FW() (∈[0, 1]) are the truth, contradiction, ignorance and false 

membership values of each . So, 0  TW() + CW() + GW() + FW()  4, for all . 

Definition 2.11.[9] Assume that W = {(, TW(), CW(), GW(), FW()) :   } and E = {(, TE(), CE(), 

GE(), FE()) :   } be two SVQN-sets over a fixed set . Then, 

(i) WE if and only if TW()  TE(), CW()  CE(), GW()  GE(), FW()  FE(), , 

(ii) WE = {(, max {TW(), TE()}, max {CW(), CE()}, min {GW(), GE()}, min {FW(), FE()}) : }, 

(iii) WE = {(, min {TW(), TE()}, min {CW(), CE()}, max {GW(), GE()}, max {FW(), FE()}) : }, 

(iv) Wc = {(, FW(), GW(), CW(), TW()) : }. 

Definition 2.12.[33] Suppose that  be a fixed set. Then, an Single-Valued Pentapartitioned 

Neutrosophic Set (in short SVPN-set) W over  is defined by: 

W = {(, TW(), CW(), GW(), UW(), FW()) :   }, 

where TW(), CW(), GW(), UW() and FW() (∈[0, 1]) are the truth, contradiction, ignorance, 

unknown and false membership values of each . So, 0  TW()+CW()+GW()+UW()+FW() 4, 

for all . 

Definition 2.13.[33] Assume that W={(, TW(), CW(), GW(), UW(), FW()) : } and E={(, TE(), 

CE(), GE(), UE(), FE()) : } be two SVPN-sets over a fixed set . Then, 

(i) WE if and only if TW()TE(), CW()CE(), GW()GE(), UW()UE(), FW()FE(), . 

(ii) WE = {(, max {TW(), TE()}, max {CW(), CE()}, min {GW(), GE()}, min {UW(), UE()}, min 

{FW(), FE()}) : }. 

(iii) WE = {(, min {TW(), TE()}, min {CW(), CE()}, max {GW(), GE()}, max {UW(), UE()}, max 

{FW(), FE()}) : }. 

(iv) Wc = {(, FW(), UW(), 1-GW(), CW(), TW()) : }. 

 

3. SVPN-Lie Ideal of SVPN-Lie Algebra: 

In this section, we procure the notion of SVPN-Lie ideal of SVPN-Lie algebra. Besides, we study 

different properties of SVPN-Lie ideal, and formulate several results on it.  

Definition 3.1. Let L be a Lie algebra on a field . Then, an SVPN-set W = {(, TW(), CW(), GW(), 

UW(), FW()) :   L} over L is called an SVPN-Lie algebra if the following conditions hold: 

(i) TW(+) ≥ min {TW(), TW()}, CW(+) ≥ min {CW(), CW()}, GW(+) ≤ max {GW(), GW()}, 

UW(+) ≤ max {UW(), UW()} and FW(+) ≤ max {FW(), FW()}; 

(ii) TW(α) ≥ TW(), CW(α) ≥ CW(), GW(α) ≤ GW(), UW(α) ≤ UW() and FW(α) ≤ FW(); 

(iii) TW([, ]) ≥ min {TW(), TW()}, CW([, ]) ≥ min {CW(), CW()}, GW([, ]) ≤ max {GW(), GW()}, 

UW([, ]) ≤ max {UW(), UW()} and FW([, ]) ≤ max {FW(), FW()}, for all ,  ∈L, and α ∈. 
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Example 3.1. Suppose that F = R be the set of all real number. Suppose that L = R3 = {(a, b, c): a, b, c 

∈R} be the set of all three-dimensional real vectors. Then, L forms a Lie algebra. We define  

R3 × R3 → R3 

[a, b] → a × b, 

where ‘×’ is the usual cross product. Now, we define an SVPN-set N = (TN, CN, GN, UN, FN) : R3 → [0, 

1] × [0, 1] × [0, 1] by 

TN(a, b, c) = {
0.9,   𝑎 = 𝑏 = 𝑐 = 0

0.4, 𝑎 = 𝑏 = 0, 𝑐  0
0.1, 𝑎  𝑏 𝑐 0  

, 

CN(a, b, c) = {
0.9,   𝑎 = 𝑏 = 𝑐 = 0

0.4, 𝑎 = 𝑏 = 0, 𝑐  0
0.1, 𝑎  𝑏  𝑐  0 

, 

GN(a, b, c) = {
0.1,   𝑎 = 𝑏 = 𝑐 = 0

0.4, 𝑎 = 𝑏 = 0, 𝑐  0
0.9, 𝑎  𝑏  𝑐  0  

, 

UN(a, b, c) = {
0.1,   𝑎 = 𝑏 = 𝑐 = 0
0.4, 𝑎 = 𝑏 = 0, 𝑐  0

0.9, 𝑎  𝑏  𝑐  0  
, 

and FN(a, b, c) = {
0.1,   𝑎 = 𝑏 = 𝑐 = 0

0.4, 𝑎 = 𝑏 = 0, 𝑐  0
0.9, 𝑎  𝑏  𝑐  0  

. 

Then, N = (TN, CN, GN, UN, FN) is an SVPN-Lie algebra of L. 

Definition 3.2. Let L be a Lie algebra on a field . Then, an SVPN-set W = {(, TW(), CW(), GW(), 

UW(), FW()) : } over L is called an SVPN-Lie ideal if the following condition holds: 

(i) TW(+) ≥ min {TW(), TW()}, CW(+) ≥ min {CW(), CW()}, GW(+) ≤ max {GW(), GW()}, 

UW(+) ≤ max {UW(), UW()} and FW(+) ≤ max {FW(), FW()}; 

(ii) TW(α) ≥ TW(), CW(α) ≥ CW(), GW(α) ≤ GW(), UW(α) ≤ UW() and FW(α) ≤ FW(); 

(iii) TW([, ]) ≥ TW(), CW([, ]) ≥ CW(), GW([, ]) ≤ GW(), UW([, ]) ≤ UW() and FW([, ]) ≤ FW(), 

for all , ∈L, and α∈. 

Example 3.2. Suppose that F = R be the set of all real number. Suppose that L = R3 = {(a, b, c) : a, b, c ∈ 

R} be the set of all three-dimensional real vectors which forms a Lie algebra. Now, we define an 

SVNS N = (TN, CN, GN, UN, FN) : R3 → [0, 1] × [0, 1] × [0, 1] (‘×’ is the usual cross product) by 

TN(a, b, c) = {
0.9,   𝑎 = 𝑏 = 𝑐 = 0

0.9, 𝑎 = 𝑏 = 0, 𝑐  0
0.9, 𝑎  𝑏 𝑐 0  

, 

CN(a, b, c) = {
0.9,   𝑎 = 𝑏 = 𝑐 = 0

0.9, 𝑎 = 𝑏 = 0, 𝑐  0
0.9, 𝑎  𝑏  𝑐  0 

, 
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GN(a, b, c) = {
0.9,   𝑎 = 𝑏 = 𝑐 = 0

0.9, 𝑎 = 𝑏 = 0, 𝑐  0
0.9, 𝑎  𝑏  𝑐  0  

, 

UN(a, b, c) = {
0.9,   𝑎 = 𝑏 = 𝑐 = 0
0.9, 𝑎 = 𝑏 = 0, 𝑐  0

0.9, 𝑎  𝑏  𝑐  0  
 

and FN(a, b, c) = {
0.9,   𝑎 = 𝑏 = 𝑐 = 0

0.9, 𝑎 = 𝑏 = 0, 𝑐  0
0.9, 𝑎  𝑏  𝑐  0  

. 

Then, N = (TN, CN, GN, UN, FN) is an SVPN-Lie ideal of L. 

Remark 3.1. Every SVPN-Lie algebra may not be an SVPN-Lie ideal. This follows from the following 

example. 

Example 3.3. Let N = (TN, CN, GN, UN, FN) be an SVPN-set over the field L = R as defined in Example 

3.1. Then, the SVPN-set N = {(TN(x, y, z), CN(x, y, z), GN(x, y, z), UN(x, y, z), FN(x, y, z)) : (x, y, z) ∈ R3} 

is an SVPN-Lie algebra of L, but it is not an SVPN-Lie ideal of L, because 

TN([(1, 0, 0), (0, 0, 1)]) = TN(0,−1, 0) = 0.1 ≱ 0.4 i.e., TN([(1, 0, 0), (0, 0, 1)]) ≱ TN(0, 0, 1), 

CN([(1, 0, 0), (0, 0, 1)]) = CN(0,−1, 0) = 0.1 ≱ 0.4 i.e., CN([(1, 0, 0), (0, 0, 1)]) ≱ CN(0, 0, 1), 

GN([(1, 0, 0), (0, 0, 1)]) = GN(0,−1, 0) = 0.9 ≰ 0.4 i.e., GN([(1, 0, 0), (0, 0, 1)]) ≰ GN(0, 0, 1), 

UN([(1, 0, 0), (0, 0, 1)]) = UN(0,−1, 0) = 0.9 ≰ 0.4 i.e., UN([(1, 0, 0), (0, 0, 1)]) ≰ UN(0, 0, 1) 

FN([(1, 0, 0), (0, 0, 1)]) = FN(0,−1, 0) = 0.9 ≰ 0.4 i.e., FN([(1, 0, 0), (0, 0, 1)]) ≰ FN(0, 0, 1). 

Theorem 3.1. Suppose that {Wi: i ∈ } be the family of SVPN-Lie ideals on a Lie-Algebra L. Then, 

their intersection Wi = {(, TNi
(), CNi

(), GNi
(), UNi

(), FNi
()) : L} is also an SVPN-Lie 

ideal of L. 

Proof. Suppose that {Wi ∶  i ∈ } be the family of SVPN-Lie ideals on a Lie-Algebra L. It is known 

that, Wi = {(, TNi
(), CNi

(), GNi
(), UNi

(), FNi
()) : L}.  

Now,  

(i) TNi
(+) = min {TNi

(+) : i} ≥ min {min {TNi
(), TNi

()} : i} ≥ min {TNi
(), TNi

()}, 

CNi
(+) = min {CNi

(+) : i} ≥ min {min {CNi
(), CNi

()} : i} ≥ min {CNi
(), CNi

()}, 

GNi
(+) = max {GNi

(+) : i} ≤ max {max {GNi
(), GNi

()} : i} ≤ max {GNi
(), GNi

()}, 

UNi
(+) = max {UNi

(+) : i} ≤ max {max {UNi
(), UNi

()} : i} ≤ max {UNi
(), UNi

()}, 

FNi
(+) = max {FNi

(+) : i} ≤ max {max {FNi
(), FNi

()} : i} ≤ max {FNi
(), FNi

()}. 

(ii) TNi
(α) = min {TNi

(α) : i} ≥ min {TNi
() : i} ≥ TNi

(), 

CNi
(α) = min {CNi

(α) : i} ≥ min {CNi
() : i} ≥ CNi

(), 

GNi
(α) = max {GNi

(α) : i} ≤ max {GNi
() : i} ≤ GNi

(), 

UNi
(α) = max {UNi

(α) : i} ≤ max {UNi
() : i} ≤ UNi

(), 

FNi
(α) = max {FNi

(α) : i} ≤ max {FNi
() : i} ≤ FNi

(). 

(iii) TNi
([, ]) = min {TNi

([, ]) : i} ≥ min {TNi
() : i} ≥ TNi

(), 
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CNi
([, ]) = min {CNi

([, ]) : i} ≥ min {CNi
() : i} ≥ CNi

(), 

GNi
([, ]) = max {GNi

([, ]) : i} ≤ max {GNi
() : i} ≤ GNi

(), 

UNi
([, ]) = max {UNi

([, ]) : i} ≤ max {UNi
() : i} ≤ UNi

(), 

FNi
([, ]) = max {FNi

([, ]) : i} ≤ max {FNi
() : i} ≤ FNi

(). 

Therefore, Wi = {(, TNi
(), CNi

(), GNi
(), UNi

(), FNi
()) : L} is an SVPN-Lie ideal of L. 

Theorem 3.2. Assume that W = {(, TW(), CW(), GW(), UW(), FW()) : L} be an SVPN-Lie algebra 

on a Lie algebra L. Then, 

(i) TW(0) ≥ TW(), CW(0) ≥ CW(), GW(0) ≤ GW(), UW(0) ≤ UW(), FW(0) ≤ FW(); 

(ii) TW(−) ≥ TW(), CW(−) ≥ CW(), GW(−) ≤ GW(), UW(−) ≤ UW(), FW(−) ≤ FW(), for all  ∈ L. 

Proof. The proof is so easy, so omitted. 

Lemma 3.1. Every SVPN-Lie ideal is also an SVPN-Lie algebra. 

Theorem 3.3. Suppose that W = {(, TW(), CW(), GW(), UW(), FW()) : L} be an SVPN-Lie ideal of 

a Lie-Algebra L. Then, the following holds: 

(i) TW(0) ≥ TW(), CW(0) ≥ CW(), GW(0) ≤ GW(), UW(0) ≤ UW(), FW(0) ≤ FW(); 

(ii) TW ([, ]) ≥ max{TW(), TW()}; CW ([, ]) ≥ max{CW(), CW()}; GW ([, ]) ≤ min{GW (), 

GW()}; UW([, ]) ≤ min{UW(), UW()}; FW([, ]) ≤ min{FW(), FW()}; 

(iii) TW([, ]) = TW(-[, ]) = TW([, ]); CW([, ]) = CW(-[, ]) = CW([, ]); GW([, ]) = GW(-[, ]) 

= GW([, ]); UW([, ]) = UW(-[, ]) = UW([, ]); FW([, ]) = FW(-[, ]) = FW([, ]), for all , ∈ L. 

Proof. The proofs are straightforward, so omitted. 

Definition 3.3. Assume that W = {(, TW(), CW(), GW(), UW(), FW()) : L} be an SVPN-set over a 

Lie-Algebra L. Suppose that α, β, γ, ,  ∈ [0, 1]. Then, the sets L(TW, ) = {L : TW()}, L(CW, β) = 

{L : CW()β}, L(GW, γ) = {L : GW()γ}, L(UW, ) = {L : UW()}, L(FW, ) = {L : FW()} 

are called T-level -cut, C-level -cut, G-level -cut, U-level -cut and F-level -cut of W respectively. 

Definition 3.4. Suppose that L be a Lie-Algebra. Assume that W = {(, TW(), CW(), GW(), UW(), 

FW()) : L} be an SVPN-set over L. Suppose that α, β, γ, ,  ∈ [0, 1]. Then, (α, β, γ, , )-level 

subset of W is defined by: 

L(α, β, γ, , ) = {∈L : TW() ≥ α, CW() ≥ β, GW() ≤ γ, UW() ≤ , FW() ≤ }. 

Remark 3.2. Suppose that L be a Lie-Algebra. If W = {(, TW(), CW(), GW(), UW(), FW()) : L} be 

an SVPN-set over L, then L(α, β, γ, , ) = L(TW, )  L(CW, β)  L(GW, γ)  L(UW, )  L(FW, ). 

Proposition 3.1. Suppose that L be a Lie-Algebra. An SVPN-set W = {(, TW(), CW(), GW(), UW(), 

FW()) : L} is an SVPN-Lie ideal of L if and only if L(α, β, γ, , ) is a Lie-Ideal of L for every α, β, γ, 

,  ∈ [0, 1]. 

Proof. The proof is straightforward, so omitted. 

Theorem 3.4. Let L be a Lie-Algebra. Assume that W = {(, TW(), CW(), GW(), UW(), FW()) : L} 

be an SVPN-Lie ideal of L. Let α1, β1, γ1, 1, 1, α2, β2, γ2, 2, 2 ∈ [0, 1]. Then, L(α1, β1, γ1, 1, 1) = L(α2, 

β2, γ2, 2, 2) if and only if α1 = α2, β1 = β2, γ1 = γ2, 1 = 2, 1 = 2. 
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Proof. Suppose that L be a Lie-Algebra. Let W = {(, TW(), CW(), GW(), UW(), FW()) : L} be an 

SVPN-Lie ideal of L. Let α1, β1, γ1, 1, 1, α2, β2, γ2, 2, 2 ∈ [0, 1] such that L(α1, β1, γ1, 1, 1) = L(α2, β2, 

γ2, 2, 2). Therefore, {∈L : TW() ≥ α1, CW() ≥ β1, GW() ≤ γ1, UW() ≤ 1, FW() ≤ 1} = {∈L : TW() ≥ 

α2, CW() ≥ β2, GW() ≤ γ2, UW() ≤ 2, FW() ≤ 2}. This is possible only when α1 = α2, β1 = β2, γ1 = γ2, 1 = 

2, 1 = 2. Therefore, L(α1, β1, γ1, 1, 1) = L(α2, β2, γ2, 2, 2) implies α1 = α2, β1 = β2, γ1 = γ2, 1 = 2, 1 = 2. 

Conversely, let α1 = α2, β1 = β2, γ1 = γ2, 1 = 2, 1 = 2.  

Now, L(α1, β1, γ1, 1, 1) 

= {∈L : TW() ≥ α1, CW() ≥ β1, GW() ≤ γ1, UW() ≤ 1, FW() ≤ 1} 

= {∈L : TW() ≥ α2, CW() ≥ β2, GW() ≤ γ2, UW() ≤ 2, FW() ≤ 2} 

= L(α2, β2, γ2, 2, 2) 

Therefore, α1 = α2, β1 = β2, γ1 = γ2, 1 = 2, 1 = 2 implies L(α1, β1, γ1, 1, 1) = L(α2, β2, γ2, 2, 2). 

Definition 3.5. Assume that L1 and L2 be two Lie-Algebras on a common field . Suppose that f be a 

bijective mapping from L1 to L2. If M = {(, TM(), CM(), GM(), UM(), FM()) : L} be an SVPN-set 

in L2, then f −1 (M) defined by f −1 (M) = {(, f −1 (TM()), f −1 (CM()), f −1 (GM()), f −1 (UM()), 

f −1(FM())) : L} is also an SVPN-set in L1. 

Theorem 3.5. Assume that L1 and L2 be two Lie-Algebras on a common field . Suppose that f be an 

onto homomorphism from L1 to L2. If M = {(, TM(), CM(), GM(), UM(), FM()) : L} is an 

SVPN-Lie ideal of L2, then f −1(M) = {(, f −1(TM()), f −1(CM()), f −1(GM()), f −1(UM()), f −1(FM())) 

: L} is also an SVPN-Lie ideal of L1. 

Proof. The proof is so easy, so omitted. 

Proposition 3.2. Suppose that L1 and L2 be two Lie-Algebras. Let f be an epimorphism from L1 to L2. 

If M = {(, TM(), CM(), GM(), UM(), FM()) : L} be an SVPN-Lie ideal of L2, then f −1(Mc) =

( f −1(M))c is also an SVPN-Lie ideal of L1. 

Proof. The proof is straightforward, so omitted. 

Theorem 3.6. Suppose that L1 and L2 be two Lie-Algebras. Let f be an epimorphism from L1 to L2. If 

M = {(, TM(), CM(), GM(), UM(), FM()) : L} be an SVPN-Lie ideal of L2, then f −1(M) = {(, 

f −1(TM()), f −1(CM()), f −1(GM()), f −1(UM()), f −1(FM())) : L} is also an SVPN-Lie ideal of L1. 

Proof. The proof is directly holds from Definitions 3.2 and Definition 3.5.  

Definition 3.6. Let us consider two Lie-Algebras L1 and L2. Let f be a mapping from a L1 to L2. If W = 

{(, TW(), CW(), GW(), UW(), FW()) : L} be an SVPN-set in L1, then the image of W = {(, TW(), 

CW(), GW(), UW(), FW()) : L} under f denoted by f(W) is an SVPN-set in L2, defined as follows: 

f(TW)(r)={
max u∈f−1(r)TW(u),             if  f −1(r) ≠ Ø 

0,                                                   otherwise
, for each r∈ L2 

f(CW)(r)={
max u∈f−1(r)CW(u),             if  f −1(r) ≠ Ø 

0,                                                   otherwise
, for each r∈ L2 

f(GW)(r)= {
min  u∈f−1(r)GW(u),             if  f −1(r) ≠ Ø 

1,                                                   otherwise
, for each r∈ L2, 
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f(UW)(r)= {
min  u∈f−1(r)UW(u),             if  f −1(r) ≠ Ø 

1,                                                   otherwise
, for each r∈ L2, 

f(FW)(r)= {
min u∈f−1(r)FW(u),             if  f −1(r) ≠ Ø 

1,                                                   otherwise
, for each r∈ L2. 

Theorem 3.7. Let us consider two Lie-Algebras L1 and L2. Suppose that f be an epimorphism from 

L1 to L2. If W = {(, TW(), CW(), GW(), UW(), FW()) : L} is an SVPN-Lie ideal in L1, then the 

image of W = {(, TW(), CW(), GW(), UW(), FW()) : L} i.e., f(W) is also an SVPN-Lie ideal in L2. 

Proof. The proof is directly holds from Definition 3.2 and Definition 3.6.  

Definition 3.7. Let us consider two Lie-Algebras L1 and L2. Suppose that f be an onto 

homomorphism from L1 to L2. Let M = {(, TM(), CM(), GM(), UM(), FM()) : L} be an SVPN-set 

in L2. Then, we define Lf  = { (, TM
f (), CM

f (), GM
f (), UM

f (), FM
f ()) ∶  L1} in L1 by 

TM
f () = TM(f()) , CM

f () = CM(f()) , GM
f () = GM(f()) , UM

f () = UM(f()) , FM
f () =

FM(f()), for all ∈L1. Clearly, Lf is an SVPN-set in L1. 

Theorem 3.8. Suppose that L1 and L2 be two Lie-Algebras on a common field . Assume that f be an 

onto homomorphism from L1 to L2. If M = {(, TM(), CM(), GM(), UM(), FM()) : L2} is an 

SVPN-Lie ideal of L2, then Lf  = { (, TM
f (), CM

f (), GM
f (), UM

f (), FM
f ()):L1} is also an 

SVPN-Lie ideal of L1. 

Proof. Suppose that L1 and L2 be two Lie-Algebras on a common field . Assume that ,  ∈ L1 and 

a∈ . Then, we have 

(i) TN
f ( + ) 

=TN(f( + )) 

=TN(f() + f()) 

min{TN(f()), TN(f())} 

=min{TN
f (), TN

f ()}, 

CN
f ( + ) 

=CN(f( + )) 

=CN(f() + f()) 

min{CN(f()), CN(f())} 

=min{CN
f (), CN

f ()}, 

GN
f ( + ) 

=GN(f( + )) 

=GN(f() + f()) 

max{GN(f()), GN(f())} 

=max{GN
f (), GN

f ()}, 

UN
f ( + ) 

=UN(f( + )) 

=UN(f() + f()) 
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max{UN(f()), UN(f())} 

=max{UN
f (), UN

f ()}, 

FN
f ( + ) 

=FN(f( + )) 

=FN(f() + f()) 

max{FN(f()), FN(f())} 

=max{FN
f (), FN

f ()}, 

(ii) TN
f (a) = TN(f(a)) = TN(af()) ≥ TN(f()) = TN

f (), 

CN
f (a) = CN(f(a)) = CN(af()) ≥ CN(f()) = CN

f (), 

GN
f (a) = GN(af()) = GN(af())  GN(f()) = GN

f (), 

UN
f (a) = UN(af()) = UN(af())  UN(f()) = UN

f (), 

FN
f (a) = FN(af()) = FN(af()) ≤ FN(f()) = FN

f (). 

(iii) TN
f ([, ]) = TN(f([, ])) = TN(f(), f()]) ≥ TN(f()) = TN

f (), 

CN
f ([, ]) = CN(f([, ])) = CN(f(), f()]) ≥ CN(f()) = CN

f (), 

GN
f ([, ]) = GN(f([, ])) = GN(f(), f()]) ≤ GN(f()) = GN

f (), 

UN
f ([, ]) = UN(f([, ])) = UN(f(), f()]) ≤ UN(f()) = UN

f (), 

FN
f ([, ]) = FN(f([, ])) = FN(f(), f()]) ≤ FN(f()) = FN

f (). 

Therefore, Lf = {(, TM
f (), CM

f (), GM
f (), UM

f (), FM
f ()) ∶ L1} satisfies all the conditions 

for being an SVPN-Lie ideal of L1. Hence, Lf is an SVPN-Lie ideal of L1.  

Theorem 3.9. Assume that L1 and L2 be two Lie-Algebras on a common field . Suppose that f be an 

onto homomorphism from L1 to L2. Then, Lf={(w, TM
f (w), CM

f (w), GM
f (w), UM

f (w), FM
f (w)): wL1} is 

an SVPN-Lie ideal of L1 iff M={(w, TM(w), CM(w), GM(w), UM(w), FM(w)) : wL} is an SVPN-Lie ideal 

of L2. 

Proof. The sufficiency of this theorem directly follows from the previous theorem. 

Now, we just need to prove the necessity part of this theorem. Since, the mapping f is a onto 

mapping, so for any w, q ∈ L2 there are w1, q1 ∈ L2 such that w = f(w1), q = f(q1). Therefore, 

TN(w) = TN
f (w1) , TN(q) = TN

f (q1) , CN(w) = CN
f (w1) , CN(q) = CN

f (q1) , GN(w) = GN
f (w1) , GN(q) =

GN
f (q1), UN(w) = UN

f (w1), UN(q) = UN
f (q1), FN(w) = FN

f (w1), FN(q) = FN
f (q1). 

Now,  

(i) TN(w + q) 

= TN(f(w1) + f(q1)) 

= TN(f(w1 + q1))  

= TN
f (w1 + q1) 

 min{TN
f (w1), TN

f (q1)} 

= min{TN(w), TN(q)}, 

CN(w + q) 



Neutrosophic Sets and Systems, Vol. 51, 2022 168  

 

 

Suman Das, Rakhal Das, Bimal Shil, Binod Chandra Tripathy, Lie-Algebra of Single-Valued Pentapartitioned 

Neutrosophic Set. 

= CN(f(w1) + f(q1)) 

= CN(f(w1 + q1))  

= CN
f (w1 + q1) 

 min{CN
f (w1), CN

f (q1)} 

= min{CN(w), CN(q)}, 

GN(w + q) 

= GN(f(w1) + f(q1)) 

= GN(f(w1 + q1))  

= GN
f (w1 + q1) 

 max{GN
f (w1), GN

f (q1)} 

= max{GN(w), GN(q)}, 

UN(w + q) 

= UN(f(w1) + f(q1)) 

= UN(f(w1 + q1))  

= UN
f (w1 + q1) 

 max{UN
f (w1), UN

f (q1)} 

= max{UN(w), UN(q)}, 

FN(w + q) 

= FN(f(w1) + f(q1)) 

= FN(f(w1 + q1))  

= FN
f (w1 + q1) 

 max{FN
f (w1), FN

f (q1)} 

= max{FN(w), FN(q)}. 

(ii) TN(αw)=TN(αf(w1))=TN(f(αw1))=TN
f (f(αw1))TN

f (w1)=TN(w), 

CN(αw)=CN(αf(w1))=CN(f(αw1))=CN
f (f(αw1))CN

f (w1)=CN(w), 

GN(αw)=GN(αf(w1))=GN(f(αw1))=GN
f (f(αw1))GN

f (w1)=GN(w), 

UN(αw)=UN(αf(w1))=UN(f(αw1))=UN
f (f(αw1))UN

f (w1)=UN(w), 

FN(αw)=FN(αf(w1))=FN(f(αw1))=FN
f (f(αw1))FN

f (w1)=FN(w). 

(iii) TN([w, q])=TN([f(w1), f(q1)])=TN(f([w1, q1]))=TN
f ([w1, q1])TN(w1)=TN(w), 

CN([w, q])=CN([f(w1), f(q1)])=CN(f([w1, q1]))=CN
f ([w1, q1])CN(w1)=CN(w), 

GN([w, q])=GN([f(w1), f(q1)])=GN(f([w1, q1]))=GN
f ([w1, q1])GN(w1)=GN(w), 

UN([w, q])=UN([f(w1), f(q1)])=UN(f([w1, q1]))=UN
f ([w1, q1])UN(w1)=UN(w), 

FN([w, q])=FN([f(w1), f(q1)])=FN(f([w1, q1]))=FN
f ([w1, q1])FN(w1)=FN(w), 

Therefore, Lf = {(w, TM
f (w), CM

f (w), GM
f (w), UM

f (w), FM
f (w)) ∶ wL1} satisfies all the conditions 

for being an SVPN-Lie ideal of L2. 
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Novelty:  

 

Conclusions: 

In this article, we introduced the notion of SVPN-Lie ideal of SVPN-Lie algebra. Besides, we 

formulated several interesting results on SVPN-Lie ideal and SVPN-Lie algebra. Further, we furnish 

few illustrative examples. 

In the future, we hope that based on the current study many new notions namely single-valued 

pentapartitioned neutrosophic anti-Lie ideal, single-valued pentapartitioned neutrosophic Lie 

topology can also be introduce. 
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Abstract: Multi-objective assignment problems (MOAPs) emerge in a wide range of real-world 

scenarios, from everyday activities to large-scale industrial operations. In this study, a MOAP with 

fuzzy parameters is investigated, and the fuzziness is represented by a Type-2 fuzzy logic system. 

Because the T2FLS is more efficient in dealing with the uncertainty of a decision-making process, the 

current problem's many parameters are represented by Type-2 trapezoidal fuzzy numbers 

(T2TpFNs). T2TpFNs are first reduced to Type-1 fuzzy numbers, then to crisp numbers. Finally, the 

neutrosophic compromise programming technique (NCPT) is applied to produce a problem 

compromise solution. A numerical problem is used to demonstrate the validity and applicability of 

the NCPT for the current MOAP. Furthermore, a comparison of NCPT to other techniques such as 

FPT and IFPT shows its superiority. 

Keywords: Multi-objective Optimization; Assignment Problem; Type-2 Fuzzy Logic; Neutrosophic 

Programming; Fuzzy Goal Programming; Intuitionistic Fuzzy Programming. 

 

 

1. Introduction 

An (AP) is a combinatorial discrete optimization decision making problem arising in operations 

research and project management. It is an indispensable part of human resource project management, 

one of the main project management areas. It includes selection, development and 

management/control of the project team. In literature, the assignment problem has also been called 

the maximum weight matching problem. It has a wide range of applications in many real-life projects 

related to, for instance, education [16], production planning in telecommunication [67], rail transport 

[70] and medicine [74]. A classical assignment problem deals with allocating n tasks to n agents so 

that each agent is assigned to a single task and only one agent performs each task to optimize a pre-

defined objective. This may involve maximizing efficiency or minimizing assignment cost or 

execution time of the tasks.  

Generally, a cost-minimizing assignment problem (CMAP) aims to find an assignment 

schedule that minimizes the total assignment cost. A time minimizing assignment problem (TMAP), 

also known as a bottleneck assignment problem, focuses on minimizing the overall execution time of 

all the tasks. The first polynomial-time algorithm, viz., Hungarian algorithm for solving a CMAP, was 

proposed by Kuhn [33] in 1955. Later, Ravindran and Ramaswamy [60] used the Hungarian approach 

mailto:irfii.st@amu.ac.in
mailto:aquilstat@gmail.com
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to solve a single objective bottleneck assignment problem. Various researchers have discussed a 

number of   variants of the CMAP as well as the TMAP [11,47,53,66,69,76].  Bogomolnaia and Moulin 

[11] discussed a random assignment problem with a unique solution in which probabilistic serial 

assignment has been characterized by efficiency in an ordinal sense and envy-freeness.  Maxon and 

Bhadury [47] discussed a multi-period assignment problem with repetitive tasks and tried to integrate 

a human aspect into their analysis. Nuass [53] suggested an optimizing and heuristics approach for 

solving generalized assignment problems. Sasaki [66] discussed axiomatic characterizations like 

consistency and monotonicity of the core of assignment problems in his research. Sourd [69] 

addressed a persistent assignment problem to solve scheduling problems with periodic cost 

functions. Vatow and Orden [76] discussed a personnel assignment problem.  A number of books are 

also available in the literature that discuss assignment problems and their variants thoroughly 

[12,22,51,72]. 

While making strategic planning decisions in many real-life situations related to economics, 

science and engineering, often there is a suggested need to optimize more than one objective 

simultaneously. It gives rise to multiobjective optimization problems (MOOPs). In MOOPs, the 

multiple objectives are mostly conflicting in nature, and therefore, a single optimal solution may or 

may not exist. One has to search for trade-off/compromising solution(s) that involves a loss in one of 

the objective values in return for the gains in the others.  It is easy to determine the superiority of a 

solution over the others in a single objective optimization problem, but in a MOOP, compromising 

solutions’ consistency is determined by the concept of dominance. Therefore, these compromising 

solutions form the so-called Pareto frontier of the problem and are called Pareto optimal solutions 

that give rise to non-dominated points of the problem in its criteria space.  Likewise, depending upon 

various market segments in this competitive world, a business industry might choose a strategy to as-

sign various jobs to various agents in such a way that some objectives are optimized simultaneously. 

These objectives may either involve minimizing total assignment cost or that of the overall execution 

time or both at a time. For instance, many business firms either follow low-cost strategies or follow 

better responsiveness and customer service rules. Assignment problems in which both these factors 

are taken into account become time-cost trade-off problems as the solution providing the lowest cost 

may not provide the least time as well. Such problems fall in the category of bi-

objective/multiobjective assignment problems. These problems have been investigated intensively in 

literature by many researchers [1,6,7,19,23,30,48,55,57,75,77]. Adiche et al. [1] proposed a hybrid 

algorithm for solving MOAPs. Bao et al. [6] studied the 0-1 programming method to transform and 

solve a MOAP by transforming it to a single objective assignment problem (SOAP). Geetha et al. [19] 

discussed the cost-time trade-off in a multicriteria assignment problem, whereas Hammadi [23] 

solved a MOAP using a tabu search algorithm. Yadaiah et al. [77] discussed an assignment problem 

with multiple objectives viz., time-cost-quality using the Hungarian algorithm. Furthermore, in 

several real-world optimization issues, the decision-makers are not always able to assign precise 

values to the problem's many parameters. 

Only a vague information may be available based on abrupt changes in the environmental 

conditions, sudden breakdown of machinery, changes in government policies like complete or partial 

lockdown in the concerned region (specifically, in the epidemic/pandemic scenario like Covid-19) that 

may result in sudden shortage of products with high demand or an increase in demand of the newly 

launched products etc. This vagueness may also be based on past experiences and knowledge about 

the related situations. Thus, there is uncertainty in the values of parameters which may be very large 

as well. The theory behind fuzzy techniques is based on the notion of relative graded membership, 

inspired by human perception and cognition processes. It can deal with information arising from 

cognition and computational perception that is partially true, imprecise or without sharp boundaries.  

In 1965, Lotfi A. Zadeh[80] published his first famous research paper on fuzzy sets. Since then, 

various computational optimization techniques based on fuzzy logic have been developed for pattern 

recognition and identifying, optimizing, controlling, and developing intelligent decision-making 
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systems. It can also provide an effective means for conflict resolution of multiple criteria and assess 

the available options in a better way. Later, Zadeh [81] also discussed the concept of a linguistic 

variable and its application to approximate reasoning.  

Assignment problems performed in turbulent times (e.g., economic crisis, pandemic, risks 

etc.) may also have complex parameter estimation that leads to the discussion of these problems in a 

fuzzy environment. Researchers have thoroughly discussed various SOAPs/MOAPs and their 

variants under fuzziness [9,13,14,17,25,26,33,37,38,39,40,41,42,43,44,49,59,61,65,71]. Biswas and 

Pramanik [9] discussed a MOAP in the context of military affairs with fuzzy costs as trapezoidal 

fuzzy numbers. To transform their problem into a crisp single objective assignment problem, they 

applied Yager’s ranking method. Chen [13] proposed a fuzzy assignment paradigm that treated all 

individuals as having the same abilities. De and Yadav [14] proposed an algorithm to solve a MOAP 

with exponential (nonlinear) membership using an interactive fuzzy goal programming approach 

whereas Feng and Yang [17] discussed a bi-objective assignment problem and constructed a chance-

constrained goal programming model for the problem. Huang et al. [25] discussed a fuzzy 

multicriteria decision-making approach for solving a bi-objective personnel assignment problem 

whereas Huang and Zhang [26] developed a mathematical model for a fuzzy assignment problem 

(FAP) with a set of qualification constraints. Then, they designed a tabu search algorithm based on 

fuzzy simulation to solve the problem. Kagade and Bajaj [31] solved a MOAP with cost coefficients of 

the objective functions as interval values. Li et al. [40] discussed FAPs and presented a metric 

uncertainty model of concentrated quantification value. The convergence of the solution algorithm 

developed by combining genetic algorithm and assignment problems has been analyzed using 

Markov chain theory. Lin and Wen [41] also considered an FAP with assignment costs as fuzzy 

numbers and proposed a methodology that reduces the problem, either to a linear fractional 

programming problem or to a bottleneck assignment problem. They used a labelling algorithm to 

solve the related linear fractional programming problem. Lin et al. [42] studied an FAP and 

performed advanced sensitivity analysis viz., Type II and Type III sensitivity analysis.  Type II 

sensitivity analysis determined the range of perturbation so that the optimal solution remains optimal 

whereas Type III sensitivity analysis determined the range for which the rate at which the optimal 

value function changes remains unchanged.  Liu and Gao [43] designed a genetic algorithm to solve 

the fuzzy weighted balance equilibrium multi-job assignment problem whereas Liu and Li [44] 

presented a fuzzy quadratic assignment problem with three penalty costs and developed a hybrid 

genetic algorithm to solve the problem. Mukherjee and Basu [49] proposed a fuzzy ranking method 

for solving assignment problems with fuzzy costs. Pramanik and Biswas [59] studied a MOAP in 

which time, costs and inefficiency were represented by generalized trapezoidal fuzzy numbers and 

developed a priority-based fuzzy goal programming method.  A traffic assignment based on fuzzy 

choices has been discussed by Ridwan [61].  Sakawa et al. [65] used interactive fuzzy programming 

for the linear and linear fractional programming workforce and production assignment problems. 

Tada and Ishii [71] also discussed a bi-objective FAP. For some other fuzzy models of the assignment 

problem and its variants, one may refer to the works of Gupta and Mehlavat [21], Jose and Kuriakose 

[28], Majumdar and Bhunia[46], Mukherjee and Basu [50], Nirmala and Anju [54], Pandian and 

Kavitha [56]and Thorani and Shankar [73], Yang and Liu [78], Ye and Xu [79]. 

Generally, in fuzzy optimization theory, Type-1 fuzzy set (T1FS) is employed that represents 

the uncertainty of the parameters by the membership functions which are   crisp numbers lying in the 

interval [0, 1].  From the beginning, one of the major issues with the T1FS is that it cannot handle the 

uncertainty of the parameters efficiently, specifically, in situations where there is further uncertainty 

associated with the membership functions of the parameters. There is a need to depict such 

uncertainties by fuzzy sets that have blur boundaries.  Then, a Type-2 fuzzy set (T2FS) came into 

existence. Membership functions of T2FS are three dimensional that allow some additional degrees of 

freedom to manage these uncertainties in a better way. In recent years, researchers have discussed 

various decision-making problems using T2FS [15,20,27,29,34,35,36,45,52].  The   problem studied in 



Neutrosophic Sets and Systems, Vol. 51, 2022     175  

 
Murshid Kamal, Prabhjot Kaur, Irfan Al, A Neutrosophic Compromise Programming Technique to Solve Multi-Objective 

Assignment Problem with T2TpFNs     

 

this paper is a MOAP with fuzzy parameters, represented by T2TpFNs. Firstly, a two-stage 

defuzzification process is used to convert these T2TpFNs to equivalent crisp values and then, the 

neutrosophic logic is applied to solve the problem.  The definition of neutrosophic logic and the 

related literature review is provided in the next subsection.  

1.1 Literature Review on Neutrosophic Logic 

As mentioned in the previous section, the theory behind fuzzy techniques is based on the notion of 

relative graded membership, i.e., the degree of belongingness of a parameter in an interval or a fuzzy 

set. Nevertheless, sometimes it is important to discuss the non-belongingness or non-membership of 

that parameter to cater   a more realistic scenario.  Atanassov [5] proposed a generalization of fuzzy 

sets viz, intuitionistic fuzzy logic that incorporates both the aforementioned factors.  In this approach, 

two different real numbers representing the degree of truth and degree of falsehood are associated 

with each parameter. However, a half-true expression in this logic is not always half false; there may 

be some hesitation degree as well. Many researchers have developed a number of intuitionistic fuzzy 

programming approaches which gained significant popularity among the existing multiobjective 

optimization techniques. Angelov [3,4] first discussed optimization in an intuitionistic fuzzy 

environment. Later on, various researchers discussed this technique to study assignment problems as 

well. Jose and Kuriakose [28] presented an algorithm for solving an assignment model in an 

intuitionistic fuzzy context. Mukherjee and Basu [50] solved an intuitionistic fuzzy assignment 

problem using similarity measures and score functions.  Roy et al. [63] presented a new approach for 

solving intuitionistic fuzzy multiobjective transportation problems in which supply, demand and 

transportation costs are considered as intuitionistic fuzzy numbers. But certain real-world situations 

involve another factor called indeterminacy. In such problems, the indeterministic feature of 

ambiguous data plays an essential role in making a rational decision outside the reach of intuitionistic 

fuzzy set theory. Each membership function of the neutrosophic set is precisely quantified and 

independent. One obtains better and more refined results whenever the optimization is carried out in 

a neutrosophic or generalized neutrosophic setting. Many researchers have applied neutrosophic 

logic to solve various multiobjective optimization problems [2,18,32,58,62,64,82]. Aggarwal et al. [2] 

thoroughly discussed neutrosophic modelling and control. Freen et al. [18] discussed multiobjective 

nonlinear four-valued refined neutrosophic optimization. Kamal et al. [32] considered a 

multiobjective nonlinear selective maintenance allocation of system reliability and used a 

neutrosophic fuzzy goal programming approach to get the optimal solution.  

Pintu and Tapan [58] presented a multiobjective nonlinear programming problem based on 

the neutrosophic optimization technique and discussed its application in the Riser Design problem.  

Rizk-Allah [62] also discussed a multiobjective transportation model under a neutrosophic 

environment. Şahin and Muhammed [64] studied a multicriteria neutrosophic group decision-making 

method based on TOPSIS for supplier selection. Zhang et al. [82] discussed neutrosophic interval sets 

and their applications in multicriteria decision-making problems. Next subsection discusses the 

motivation behind the present study. 

1.2 Study Motivation 

This paper aims to present an efficient algorithmic solution procedure based on neutrosophic logic for 

a MOAP with conflicting objectives viz., assignment cost and execution time in which T2TpFNs are 

used to represent these parameters. Using the output processor of T2FS these T2TpFNs are initially 

reduced to Type-1 fuzzy numbers and then to crisp numbers.   The proposed solution procedure is 

named as Neutrosophic compromise programming technique (NCPT).  The selection of T2FS for the 

present study is due to the fact that its membership functions allow some additional degrees of 

freedom to manage the uncertainties/vagueness in the parameters (here, time and cost) in a better 

way. However, the advantage of neutrosophic logic, as mentioned in the previous subsection, is that 

it offers a neutral perspective to decide the best possible compromise solution(s) of a MOOP. It is 
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shown that NCPT is the best solution technique for dealing for dealing with inaccurate, missing, and 

inconsistent information of the present MOAP when compared to the available solution techniques 

viz., fuzzy and Intuitionistic fuzzy programming techniques. This comparison has been done with the 

help of a numerical problem. LINGO software, created by LINDO Systems Inc., is used for all 

calculation-based frameworks.  

The rest of the paper is structured as follows: In Section 2, mathematical statement of the present 

MOAP is given. It explains the basic as well as the fuzzy model of the problem viz., “Model 1” and 

“Model 2”, respectively. Section 3 discusses some basic mathematical preliminaries related to fuzzy, 

intuitionistic fuzzy and neutrosophic sets. Section 4 discusses the defuzzification process of T2TpFNs. 

In Section 5, three different solution techniques that are applied to the present MOAP have been 

discussed in detail. In Section 6, some real-world applications of the present MOAP are given. The 

efficacy of the proposed NCPT solution technique for a MOAP instance is addressed in Section 7. 

Section 8 discusses the performance and outcome of the proposed solution technique. It also provides 

its comparative study with the other two solution techniques. Advantage of using the NCPT solution 

technique instead of other commonly used techniques has been addressed in Section 9. Section 10 

provides conclusion and the future aspects of the present study.   

2. Mathematical Statement of MOAP 

Nomenclature 

Indices: 

i - Index for n workers, (i=1, 2,…, n) 

j - Index for n tasks, (j=1,2,…, n) 

Decision Variable: 

ijx -Binary variable that takes the values 1 and 0 if jth taskis assigned and not assigned to ith worker, 

respectively. Equivalently,  






otherwise

woritoisassignedtaskjif
x

thth

ij
,0

ker,1
 

Parameters: 

ijc  - Assignment cost of jt h task to the ith worker 

ijt  -execution time when ith worker performs jth task 

 

Model 1: 

The mathematical formulation of a MOAP with the above-mentioned parameters is as follows: 
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In Model 1, time ( ijt
~~

) and cost ( ijc
~~ ) parameters are assumed to be T2TpFNs. 

Model 2: 
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3. Mathematical Preliminaries 

Some basic definitions of fuzzy, intuitionistic fuzzy and neutrosophic set are discussed. 

Definition 3.1 Fuzzy Set or Type I Fuzzy Set (T1FS) [10] 

A fuzzy set C
~

 is defined on the set Y  of real numbers. Its membership function )(~ y
C

  can be 

characterized as: 

  1)(0 ;1,0: ~~  yY
CC

 ,        

Thus, a T1FS can be defined as:  YyyyC
C

 :)(,(
~

~ . 

Definition 3.2 Defuzzification of T1FS [10] 

Defuzzification is a process of transforming a fuzzy inference into a crisp output. For a Type-1 fuzzy 

number (T1FN) also, there exists an associated crisp quantity which is called defuzzified form of that 

T1FN. Let ),,,(
~

4321 ccccC   be a Type-1 Trapezoidal Fuzzy Number (T1TPFN). Using probability 

density function, defuzzified value of C
~

 can be computed as:  
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Definition 3.3 Type-2 Fuzzy Set (T2FS) [10] 

Generalization of interval-valued fuzzy sets is known as T2FS, if the intervals are fuzzy. A T2FScan be 

expressed in four TIFS. . That means four membership functions of a T2FS are T1FSs, which depict the 

uncertainty of T2FS in a justified manner. Therefore, a membership function of T2FS is of the form 

])1,0([:~  Y
C

 where ])1,0([ denotes the set of all T1FSs defined on the interval [0, 1].  

Definition 3.4 Type-1 Trapezoidal Fuzzy Number (T1TPFN) [10] 

A T1TPFN ),,,(
~

4321 ccccC   on Y with the membership function can be defined as:  
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Definition 3.5 Type-2 Trapezoidal Fuzzy Number (T2TpFN) [10] 
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4. Defuzzification Technique of a T2TpFN 

Since ijc
~~  and ijt

~~
 in model 1 are assumed T2TpFN, therefore under this section, the defuzzification 

process of T2TpFNs is discussed. From definition 3.5, T2TpFN can be defined by four T1TpFNs and 

for each point of the universe of discourse of the T2TpFN, a T1TpFN corresponds as a secondary 
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membership function. Therefore, a technique that defuzzifies a T1TpFN would be sufficient to 

provide a defuzzified value of the T2TpFN. The present defuzzification technique is divided into two 

stages.  Stage-1 reduces T2TpFN into its equivalent T1TpFNs; however, Stage-2 defuzzifies these 

T1TpFNs to get the crisp values of the associated T2TpFN.   

Stage 1. 
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Stage 2. 

T1TpFNs are further defuzzified at this stage to generate the final defuzzified version of the T2TpFN 

as follows:  
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The same procedure can be followed for T2TpFNs ijt
~~

 to obtain their crisp values. 

After the above defuzzification procedure, the resultant MOAP model finally takes the form 

Model 3: 
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5. Methodology  

In this section, we discuss three different solution techniques viz., 

(i) Neutrosophic compromise programming technique 

(ii) Fuzzy programming technique 

(iii)  Intuitionistic fuzzy programming.  

The method of transforming a multiobjective optimization problem into a related single-objective 

optimization problem is also discussed for all the suggested approaches. 
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5.1 Neutrosophic Compromise Programming Technique (NCPT) 

The extended version of the fuzzy and intuitionistic fuzzy sets has been classified as a neutrosophic 

set (NS) (defined below) with an additional membership function called indeterminacy. In some 

specific real-life decision-making problems, there are many cases in which decision-makers have 

indeterminacy or unbiased reasoning in decision-making. The principles of indeterminacy often lie 

between those of Truth and Lies. Literally, neutrosophic means neutral thought or awareness of 

indeterminacy, therefore, a NS has three distinct membership features viz., truth, indeterminacy and 

falsehood. On the other hand, in a fuzzy set, we maximize the degree of membership function which 

indicates that the element belongs to that set. In contrast, in an intuitionistic fuzzy set, two types of 

membership functions viz., the degree of membership (also known as the degree of truth) and the 

degree of non-membership (also known as the degree of falsehood) of an element, are considered. To 

be more specific, an NS maximizes the degree of truth and indeterminacy while decreasing the degree 

of falsehood. A NS represents a major touchstone in a decision-making process where the decision-

maker can be entirely satisfied (with truth), partly satisfied (with indeterminacy) and dissatisfied 

(with falsehood). In any decision-making problem, these factors increase the strength of making the 

right decision or achieving an optimal solution. Since for MOOPs with conflicting objectives, the 

challenge of finding the best solution using classical approaches is a significantly complicated issue, 

the NCPT would be a useful technique for achieving the best compromise solution due to its 

aforementioned features.  

Definition 5.1   Neutrosophic Set [63] 

Let Y be the universe of discourse and Yy . A neutrosophic set (NS) P  over Y is the set of triplets 

consisting of a truth membership function )(yTP
, indeterminacy membership function )(yI P

and a 

false membership function )(yFP
, for Yy . Mathematically; 

 }|)(),(),(,{ YyyFyIyTyP PPP      

Here, )(yTP
, )(yI P

 and )(yFP
are real non-standard or standard functions with range [1,0] 

,  

i.e.,  [1,0]:)( YyTp , [1,0]:)( YyI p and [1,0]:)( YyFp .  Assume that 

  
  3)(sup)(sup)(sup0 yFyIyT ppp    

 

Now, the general formulation of a MOOP can be defined as: 

Llx
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L
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,...,2,1),()(

toSubject

)}(),...,(),({Minimize 21


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where, LlxZl ,...,3,2,1;)(  denotes the lth objective function, Mmxgm ,...,3,2,1;)(  denotes the 

constraints and x  denotes the decision variables. 
 
In 1970, Bellman and Zadeh [8] introduced the 

definitions of fuzzy decision (D), fuzzy goal (G) and fuzzy constraint (C) that are useful for solving 

any real-life optimization problems under uncertainty. Consequently, a fuzzy decision set is 

described as:     CGD    
 

On the same lines, a neutrosophic decision set ND , with neutrosophic goal set LG  and neutrosophic 

constraints mC can be defined as follows: 

  ))}(),(),(,()(){( 11 xFxIxTxCGD DDDm

M

mL

L

lN     
where 
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Here )(xTD
, )(xID

 and )(xFD
are the truth, indeterminacy and false membership functions, 

respectively, defined under the neutrosophic decision ND . 

To find the compromise solutions for a multiobjective decision making optimization issue, 

membership functions are created for each objective function and the lower and upper bounds are 

calculated as iL  and iU  respectively, by solving them individually under the stated constraints:  

 )}({max XZU l
l

l  and )}({min XZL l
l

l   for all Ll ,...,2,1            (1) 

Further, upper and lower bounds for 
thl  objectives under the NS can be determined as follows: 
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where la and lb are predetermined real values assigned by the decision-makers that lie in the 

interval (0, 1). Further, the linear membership function ))(( xZT ll of truth, ))(( xZI ll  of 

indeterminacy and ))(( xZF ll of falsity under the neutrosophic environment can be constructed as 

follows: 
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It should be noted here that LlLU ll ,...,2,1,(.)(.)  . 
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If  LlLU ll ,...,2,1,(.)(.)  , the membership value will be assumed to be 1. 

Since the development of achievement functions helps to achieve the highest level or degree 

of satisfaction based on the priorities of the decision-makers, we also define a specific achievement 

variable for each membership function. The decision-maker may establish a target in a decision-

making process to attain the maximum possible degree of satisfaction for the truth and indeterminacy 

membership functions while minimizing the degree of untruth as much as possible. After considering 

the linear membership of truth, indeterminacy and falsehood under neutrosophic nature, the 

mathematical expression of the neutrosophic compromise programming problem is given as 
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By using auxiliary parameters, the above problem P1 can be transformed into a new problem, say, P2 

as follows 

P2: 
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Here  ,   and   are the auxiliary variables for the truth, indeterminacy and false membership 

functions, respectively. Further, the above problem P2 can be expressed in the purest form as the 

problem P3 as follows 

P3: 
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 Based on the above formulations of a neutrosophic compromise programming technique, 

Model 2 of the present MOAP can be presented as a neutrosophic programming model in the 

following manner: 

Model 4: 
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The following steps will be followed to discuss the present MOAP using NCPT.  
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Step  1. Formulate a   MOAP under an uncertain environment as given by Model 2. 

Step 2. Convert each fuzzy parameter of this problem into a crisp number using the defuzzification 

method discussed in Section 4. 

Step 3. Calculate the best and worst solutions corresponding to each objective function under the 

given set of constraints using optimization software LINGO and create a payoff matrix (refer to Table 

5).  

Step 4. Determine the upper lU  and  lower lL  bound, respectively, of each objectives using equation 

(1). 

Step 5. With the help of these lU  and lL  values, find the upper and lower bound for all the 

membership functions (truth, indeterminacy and falsehood) using equations (2)-(4). 

Step 6. Construct the linear membership function for the truth, indeterminacy and falsehood using 

equations (5)-(7). 

Step 7. Construct the neutrosophic problem as problem P2 and transform it into problem P3. 

Step 8. Solve the MOAP model as Model 4 and obtain the compromise solution using the 

Optimization Software Packages LINGO 16.0. 

5.2 Fuzzy Programming Technique (FPT) 

The problems involving undefined and imprecise parameters with multiple objectives are known to 

be typical mathematical problems. The fuzzy programming technique (FPT) is an effective and 

versatile solution technique for such a problem. Zimmermann [83] developed it in 1978, specifically to 

tackle MOOPs. A fuzzy programming model aims to optimize multiple objectives simultaneously, by 

reducing deviations from the goal features. Fuzzy programming needs the decision-makers to set a 

level of expectation for each target which is challenging as several uncertainties must also be 

considered in nature.   

The general mathematical formulation of a fuzzy programming problem with l objectives and j 

constraints, with i decision variables, can be described as:  
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The following steps of the fuzzy programming technique can solve the MOAP given by Model 2. 

Step 1. Find the optimal value of each objective function of the MOAP subject to the given set of 

constraints by ignoring all other objectives (use the optimization software LINGO). 

Step 2. Calculate the best lU  and worst lL  values for each objective function separately and create a 

payoff matrix (Table 5). 

Step 3. Define the membership function for each objective using equations (8) and (9) given below 

(refer [78]). 

Membership function ))(( xZ ll for lth objective function of minimization type 
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Membership function for lth objective function of the maximization type 
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where lL  and lU  are the lower and upper bounds of the objective functions. 

Finally, the MOAP can be defined as a fuzzy programming model as  

Model 5: 
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Step 4. Solve this crisp MOAP above and obtain the compromise solution using the Optimization 

Software Package LINGO 16.0. 

5.3 Intuitionistic Fuzzy Programming Technique (IFPT) 

The intuitionistic fuzzy set theory is an alternative for defining a fuzzy set if the available knowledge 

is insufficient to describe an imprecise theory using a traditional fuzzy set. The degree of membership 

and non-membership for the objective functions and their limitations are concurrent and taken into 

account in such a way that the sum of both is either less than or equal to one.  

The general mathematical formulation of a MOOP in the context of intuitionistic fuzzy programming 

is as follows: 
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(10)

 

where ))(())(( xZandxZ llll   are the membership and non-membership functions of the lth 

objective and ,   are their aspiration levels. 

The following steps explain finding a compromise solution to the problem given by (10) using IFPT. 

Step 1.Find the optimal value of each objective function of the MOOP subject to the given set of 

constraints by ignoring all other objectives, using the optimization software LINGO.  

Step 2. Calculate the best lU  and worst lL  values for each objective function separately and create a 

payoff matrix (Table 5). 
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Step 3. Construct the membership and non-membership functions ))(())(( xZandxZ llll 
, 

respectively, of lth objective function, for all values of l, using equations (11) and (12) given as
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Now, Model 2 of the present MOAP can be defined using IFPT as follows:  

Model 6: 
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Step 4. Solve this crisp model of the present MOAP by using the Optimization Software Packages 

LINGO 16.0 and obtain a compromise solution.  

A flow chart of the proposed optimization procedure using all the techniques mentioned above is 

given in Figure 1. 
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Figure 1. Flow chart for the optimization procedure 

6.   Real-World Applications 
 

The present MOAP aims to minimize execution time and assignment cost, simultaneously. It finds its 

applications in many business scenarios where the quickest possible delivery of its product is as 

important as its financial budget. Generally, a quick mode of transportation may result in high 

Formulate the MOAP with cost 

and time parameters as T2TpFNs 

Transform these parameters into their equivalent 

crisp values using the defuzzification procedure 

Break 

FPT NCPT IFPT 

Use Lingo optimization software to 

solve the associated crisp model 

Obtain a compromise solution 
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transportation charges which mean that the objectives are conflicting in nature. So, the objective is to 

find such an assignment schedule that provides the best compromising solution to the problem. There 

may be many managerial implications of the present problem, but to quote some of them, consider 

the following real-life scenarios 

(1) In an FMCG (fast-moving consumable goods) industry, due to the limited shelf life of the 

goods, it is important to deliver the products to the destinations as soon as possible. 

However, at the same time, the supply chain management team of the industry works to 

minimize the logistics cost. Therefore,  it is important to find a  way of transporting goods to 

minimize both objectives, simultaneously.  

(2) In the commercial industry, road transportation is an extremely methodical way of hauling 

goods among various locations to improve the efficiency and growth of a business. Therefore, 

the use of heavy goods vehicles (HGVs) is an indispensable part of any business. Consider an 

industrial project of manufacturing some HGVs in minimum time and budget.   For 

manufacturing various parts of an HGV  in terms of both execution time and cost, quotations 

from various manufacturing units are taken. Then, an assignment schedule is looked for so 

that all the parts are produced in the minimum time and in the minimum budget so that a 

cost-efficient HGV is manufactured well in time. There are numerous other real-world 

situations of this kind that may give rise to the present MOAP.   
 

7.   Numerical Illustration 

Consider an industrial manufacturing problem that uses third party operations. The product that the 

industry manufactures requires four major semi-finished parts. These semi-finished parts are finished 

and assembled to form the final product by the industry itself. All of these parts can be manufactured 

by any of the four different third party manufacturing units, which have imprecise values of the 

manufacturing time and cost corresponding to each part. The industry's objective is to assign the task 

of manufacturing four semi-finished parts to four third party manufacturing units so that all the parts 

are manufactured in the minimum time and with the least financial burden.  

Here, the first objective 
1Z  denotes the total manufacturing cost (in $), and the second 

objective 
2Z denotes the total manufacturing time (in minutes) of all the four semi-finished parts. 

Table 1 shows the key attributes of the problem. The imprecise manufacturing costs and times quoted 

by all the third party manufacturing units for manufacturing each semi-finished part are given as 

T2TpFNs in Table 2 and Table 3, respectively. The two-phase defuzzification process (discussed in 

Section 4) is used to achieve a crisp value of each of these imprecise T2TpFNs. The crisp values 

corresponding to Stage 1 and Stage 2 of the defuzzification process are summarized in Table 4. Table 

5 provides the best and worst values of both the objective functions, achieved by solving each of them 

individually under a given set of constraints. 

Table 1. Main attributes of the problem 

Number of third party manufacturing units ( i ) 4 

Number of tasks ( j ) 4 

Table 2. Imprecise manufacturing costs as T2TpFNs 

1
Z  Task 1 Task 2 Task 3 Task 4 

Manufacturing 

unit  1 

[(38,40,42,46); 

(35,40,42,48); 

(32,40,42,48); 

(31,40,42,55)] 

[(43,45,46,49); 

(41,45,46,54); 

(38,45,46,56); 

(36,45,46,59)] 

[(51,53,55,58); 

(49,53,55,60); 

(46,53,55,64); 

(44,53,55,67)] 

[(65,67,69,72); 

(62,67,69,74); 

(60,67,69,78); 

(59,67,69,80)] 

Manufacturing 

unit 2 

[(35,37,39,43); 

(32,37,39,45); 

[(69,71,73,76); 

(67,71,73,80); 

[(66,68,70,74); 

(62,68,70,77); 

[(77,79,82,86); 

(74,79,82,89); 
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(29,37,39,49); 

(28,37,39,54)] 

(65,71,73,83); 

(62,71,73,85)] 

(60,68,70,81); 

(57,68,70,85)] 

(72,79,82,94); 

(68,79,82,97)] 

Manufacturing 

unit 3 

[(89,91,94,98); 

(87,91,94,102); 

(85,91,94,106); 

(83,91,94,109)] 

[(83,85,86,88); 

(82,85,86,91); 

(80,85,86,94); 

(77,85,86,98)] 

[(96,98,100,104); 

(94,98,100,107); 

(91,98,100,110); 

(88,98,100,114)] 

[(61,63,64,67); 

(58,63,64,71); 

(56,63,64,75); 

(53,63,64,79)] 

Manufacturing 

unit 4 

[(58,60,63,67); 

(56,60,63,71); 

(53,60,63,74); 

(51,60,63,78)] 

[(35,38,40,43); 

(33,38,40,44); 

(32,38,40,45); 

(30,38,40,49)] 

[(56,58,60,64); 

(54,58,60,68); 

(51,58,60,70); 

(49,58,60,74)] 

[(73,75,77,81); 

(70,75,77,84); 

(68,75,77,87); 

(65,75,77,89)] 

Table 3. Imprecise manufacturing times asT2TpFNs 

2
Z  Task 1 Task 2 Task 3 Task 4 

Manufacturing 

unit 1 

[(218,220,222,225); 

(216,220,222,227); 

(213,220,222,231); 

(210,220,222,234)] 

[(242,245,246,249); 

(240,245,246,252); 

(237,245,246,255); 

(234,245,246,259)] 

[(211,209,215,218); 

(209,213,215,220); 

(206,213,215,224); 

(203,213,215,227)] 

[(225,227,229,233); 

(224,227,229,235); 

(221,227,229,239); 

(217,227,229,244)] 

 

Manufacturing 

unit 2 

[(262,264,266,270); 

(260,264,266,273); 

(257,264,266,275); 

(254,264,266,276)] 

[(250,252,254,257); 

(248,252,254,260); 

(245,252,254,264); 

(241,252,254,267)] 

[(231,233,234,237); 

(228,233,234,240); 

226,233,234,244); 

223,233,234,247)] 

[(255,257,259,262); 

(252,257,259,264); 

(249,257,259,267); 

(247,257,259,270)] 

Manufacturing 

unit 3 

[(278,280,281,284); 

(275,280,281,286); 

(273,280,281,289); 

(270,280,281,293)] 

[(283,285,287,290); 

(280,285,287,292); 

(277,285,287,294); 

(274,285,287,298)] 

[(295,297,299,303); 

(292,297,299,306); 

(290,297,299,309); 

(287,297,299,314)] 

[(288,290,292,295); 

(285,290,292,298); 

(283,290,292,301); 

(280,290,292,303)] 

 

Manufacturing 

unit 4 

 

[(242,244,246,249); 

(240,244,246,253); 

(238,244,246,257); 

(236,244,246,261)] 

[(285,287,289,292); 

(283,287,289,295); 

(281,287,289,297); 

(279,287,289,303)] 

[(257,259,261,265); 

(255,259,261,268); 

(253,259,261,270); 

(251,259,261,274)] 

[(273,275,277,282); 

(271,275,277,285); 

(269,275,277,288); 

(267,275,277,303)] 

 

Table 4. Crisp values of the manufacturing costs and times obtained by the two-stage defuzzification 

process 

1Z  (Cost) 2Z (Time) 

ij
c  )

~~( ijcV  )
~~( ijcDV  ij

t  )
~~

( ijtV  )
~~

( ijtDV  

11
c  (41.60,41.31,41.63,42.28) 41.73 11

t  (221.29,221.30,221.63,221.64) 221.46 

12
c  (45.80,46.78,46.47,46.47) 46.35 12

t  (245.50,245.80,245.82,246.15) 245.82 

13
c  (54.29,54.30,54.63,54.96) 54.55 13

t  (214.29,214.30,214.63,214.64) 214.46 

14
c  (68.29,68.00,68.63,68.95) 68.46 14

t  (228.60,228.92,229.26,229.60) 229.09 

21
c  (38.60,38.11,38.63,39.92) 38.87 21

t  (265.60,265.93,265.63,265.00) 265.51 

22
c  (72.29,72.93,73.26,72.96) 72.83 22

t  (253.29,253.61,253.95,253.64) 253.64 

23
c  (69.60,69.31,69.95,70.28) 69.78 23

t  (233.80,233.82,233.47,234.48) 235.95 

24
c  (81.08,81.11,82.06,81.77) 81.50 24

t  (258.29,258.00,258.01,258.32) 258.20 
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31
c  (93.08,93.60,94.37,94.71) 93.93 31

t  (280.80,280.50,280.82,281.15) 280.81 

32
c  (86.31,86.56,85.79,85.81) 86.12 32

t  (286.29,286.00,285.68,286.09) 286.31 

33c  (99.60,99.43,99.95,100.28) 99.80 
32

t  (298.60,298.00,298.62,299.60) 298.94 

34
c  (63.80,64.14,64.80,65.32) 64.52 34

t  (291.29,291.31,291.63,291.32) 291.41 

41
c  (62.08,62.72,62.75,63.40) 62.73 41

t  (244.07,244.91,243.31,243.45) 243.96 

42
c  (39.00,38.88,38.68,39.20) 38.79 

42t  (287.62,287.59,287.09,289.01) 288.11 

43
c  (59.60,60.25,59.63,59.92) 59.94 43

t  (259.97,260.32,260.74,261.01) 260.50 

44
c  (76.60,76.62,76.95,76.64) 76.72 

44
t  (275.98,276.08,276.58,276.96) 276.40 

 

The T2TpFN defuzzification process is divided into two stages. In stage I, the defuzzification 

technique transforms T2TpFN to T1TpFN, and in stage II, the T1TpFNs were again used to obtain the 

defuzzified value of T2TpFN. 

Now, using the above available data in Table 2 and 3, the MOAP (Model 2) with Type 2 fuzzy 

parameters can be described as follows: 

Stage I. 
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All parameters are in T2TpFNs and are translated to a crisp value using the procedure described 

above. The crisp value is presented in Table 4 for each objective function, repetitively. After using the 

crisp value the equivalent crisp MOAP can be defined as follows: 

Using these crisp values of the manufacturing costs and manufacturing times which are obtained by 

using the two-stage defuzzification process, the present MOAP can be expressed as Model 7: 

Model 7 
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Now, each objective function is minimized subject to the given set of constraints by ignoring the other 

objective function. This provides the minimum value of each objective function and the 

corresponding value (written as Max) of the other one. These values are depicted in Table 5, which is 

called the Payoff matrix.  

Table 5. Payoff matrix 

 1
Z  (Total manufacturing cost) 2

Z  (Total manufacturing  time) 

Max 287.07 1059.49 

Min 196 995.31 

 

Thus, the  following inequalities hold for each objective function 

  49.105931.995,07.287196 21  ZZ  

8.   Results and Discussion 
 

The above MOAP is solved using three solution techniques viz., NCPT, FPT and IFPT. The best 

compromise solution obtained by each of these methods is given in Table 6. 

1. While solving Model 7 using NCPT, we find each objective function's upper and lower bounds by 

solving them separately, subject to the given constraints. Then, we designed the linear membership 

functions for truth, indeterminacy and falsehood, respectively and maximized the truth and 

indeterminacy value and minimized the false value. Using Model 4 and LINGO 16.0 optimization 

software, we obtained the optimal solution of Model 7 as 

1003.05.227.04,,98546.0,1,0,0,0

,1,0,0,00,0,1,00,1,0,0

2144434241

343332312423222114131211
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2. While solving Model 7 using FPT, we designed the linear membership functions of        both the 

objectives and maximized them. Using Model 5 and LINGO 16.0 optimization software, we obtained 

the optimal solutions of Model 7 as 

1027.02239.02,,5.0.0,1,0,0

,1,0,0,00,0,1,00,0,0,1

2144434241

343332312423222114131211





ZZxxxx

xxxxxxxxxxxx
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3. While solving Model 7 using IFPT, we first designed the linear membership and non-membership 

functions and then maximized the membership function and minimized the non-membership 

function. Using Model 6 and LINGO 16.0 optimization software, we obtained the optimal solution of 

Model 7 as 

1027.02239.02,,5.0.0,1,0,0

,1,0,0,00,0,1,00,0,0,1

2144434241

343332312423222114131211


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ZZxxxx
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From Table 6, we can easily conclude that the optimal solution of the present MOAP derived from the 

technique NCPT is more desirable and therefore, NCPT is a more suitable technique than the FPT and 

IFPT. This is due to the same reason that the fuzzy and the intuitionistic fuzzy logics are based on the 

truth function only, however, in real-world decision-making problems, the decision may result in the 

form of agreement, disagreement or the state of being unsure. Since the concept of neutrosophy 

allows the decision-makers to consider all these aspects together, NCPT performed better than the 

other techniques for the present MOAPs. Thus, the main advantage of the present study on MOAPs 

over existing literature is to solve the problem by considering degrees of truthness, falsehood, and 

indeterminacy altogether which may help the decision-maker make a better and more realistic 

decision. From Table 6, it is concluded that the best compromise solution of the present MOAP given 

by NCPT, provides the total manufacturing cost as 224.04 $ and the total manufacturing time of all 

the semi-finished parts as 1003.05 mins. To be more precise, a graphical representation of the 

compromise optimal solutions of the present MOAP, extracted from different solution approaches is 

given in Figure 2.   

Table 6. Optimal solutions obtained by NCPT, FPT and IFPT 

Objective functions 
NCPT FPT IFPT 

Decision variables 

1Min  Z  227.04 239.02 239.02 

2Min Z  1003.05 1027.02 1027.02 

11x  0 1 1 

12x  0 0 0 

13x  1 0 0 

14x  0 0 0 

21x  0 0 0 

22x  1 1 1 

23x  0 0 0 

24x  0 0 0 
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31x  0 0 0 

32x  0 0 0 

33x  0 0 0 

34x  1 1 1 

41x  0 0 0 

42x  0 0 0 

43x  0 1 1 

44x  1 0 0 

 

 
 

 

Figure 2. Comparison of objective values obtained from NCPT, FPT & IFPT 

9. Advantage and Comparison of the Proposed Work with Some Existing Ones in Literature 

 The present problem is a MOAP with conflicting objectives which is discussed under fuzziness. This 

formulation of an assignment problem caters to a more realistic scenario arising in various 

commercial situations with vague information.  

Further, in the study of MOAP under uncertainty, most of the authors like Biswas and 

Pramanik [9], Huang and Zhang [25], Jose and Kuriakose [27], Lin and Wen [36], Liu and Goa [38],  

Majumdar and Bhunia[41] and Thorani and Shankar [68]  have used the concept of Type 1 fuzzy set 

(TIFS) whose membership functions are expressed as absolute numbers.  The T1FS, in general, cannot 

handle the vagueness of the parameters efficiently as its membership functions are crisp.  In contrast 

to this, Type 2 fuzzy sets (T2FS) can model the uncertainties/vagueness of optimization problems 

more appropriately as its membership functions are also presented as fuzzy numbers. To be more 

precise, the membership functions of T1FS are two-dimensional whereas the membership functions of 

T2FS are three-dimensional. This additional degree of freedom makes it possible to model the 

vagueness/uncertainties of an optimization problem more efficiently.  So, the formulation of the 

present problem with T2TpF parameters is another advantage of the present study. 

Furthermore, De and Yadav [14], Mukherjee and Basu [44], Pramanik and Biswas [54] and 

Sakawa et al. [60] are some of the authors who discussed assignment problems in an uncertain 

environment and either used fuzzy programming techniques or used the intuitionistic fuzzy 

programming techniques. The disadvantage of these techniques is that they can only handle 

information in the context of membership and/or non-membership function of a parameter but not 
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the information related to indeterminacy or inconsistency in the parameter values. The neutrosophic 

approach discussed in this paper overcomes this limitation. In its theory, indeterminacy is quantified 

directly while the truth, indeterminacy and falsehood membership functions are independent. Since 

the present MOAP under uncertainty with T2TpF parameters is discussed using neutrosophic logic, 

this may be considered as another advantage of the present problem over existing literature. The 

efficiency of this technique over the existing ones reflects in Table 6.  

 

10.    Conclusion and Future Aspects 

The current paper uses neutrosophic logic to solve MOAP in an uncertain environment. T2TpFNs are 

used to represent all of the uncertain parameters of the MOAP. The model is then crisped using a 

two-stage defuzzification procedure that finds the crisp values of these T2TpFNs. This crisp model is 

solved by using three solution techniques viz., FPT, IFPT and NCPT.  The primary goal of this work is 

to solve the MOAP utilising NCPT and demonstrate its superiority over the others techniques 

described above. A numerical demonstration is shown that clearly shows that the NCPT outperforms 

the other two solution strategies that are also capable of dealing with uncertainty. 

The concept of neutrosophic may be included into a multiobjective transportation model in 

future study. A MOAP's stochastic model may also be explored and solved using NCPT. Fuzzy-

random or fuzzy-stochastic variations of a multiobjective assignment or transportation issue are also 

possibilities. Furthermore, the NCPT may be used in a variety of domains such as management 

science, financial management, and decision-making science, among others. 
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Abstract:  

The main purpose of this research is to propose an m-polar interval-valued neutrosophic soft set 

(mPIVNSSs) by merging the m-polar fuzzy set and interval-valued neutrosophic soft set. The 

mPIVNSSs is the most generalized form of interval-valued neutrosophic soft set. It can 

accommodate the truthiness, indeterminacy, and falsity in intervals form. We develop some 

fundamental operations for mPIVNSS such as AND Operator, OR Operator, Truth-favorite, and 

False-favorite Operators with their properties. The weighted aggregation operator for mPIVNSS is 

also established with its properties. Furthermore, the developed mPIVNSWA operator has 

demonstrated a novel decision-making methodology for mPIVNSS to solve the multi-criteria 

decision-making (MCDM) problem. Finally, the comparative analysis of the developed algorithm is 

given with the prevailing techniques.  

Keywords: multipolar interval-valued neutrosophic set; multipolar interval-valued neutrosophic 

soft set; mPIWNSWA operator; MCDM. 

 

1. Introduction 

Uncertainty plays a dynamic role in many areas of life (such as modeling, medicine, engineering, 

etc.). However, people have raised a common problem: how do we express and use the concept of 

uncertainty in mathematical modeling. Many researchers plan and endorse different methods to 

solve the difficulties that involve hesitation. First, Zadeh proposed the idea of a Fuzzy Set (FS) [1] to 

solve uncertain complications. But in some cases, fuzzy sets cannot handle this situation. To 

overcome this situation, Turksen [2] proposed the idea of interval-valued fuzzy sets (IVFS). In some 

cases, we must consider the non-member value of the object, which neither FS nor IVFS can handle. 

Atanasov planned the Intuitionistic Fuzzy Set (IFS) [3] to overcome these problems. The ideas 

proposed by Atanassov only involve under-considered data and member and non-member values. 

mailto:ranazulqarnain7777@gmail.com
mailto:imransiddique@umt.edu.pk
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However, the IFS theory cannot handle the overall incompatibility and inaccurate information. To 

solve the problem of incompatibility and incorrect information, Smarandache [4] proposed the idea 

of NS. Molodtsov [5] proposed a general mathematical tool for solving uncertain environments, 

called soft sets (SS). Maggie et al. [6] Expanded the concept of SS and presented basic operations with 

ideal properties. Maggie et al. [7] A decision-making technique was established using the operations 

they developed and used for decision-making. Ali et al. [8] Expanded the concept of SS and 

developed some new operations using their characteristics. The author [9] proved De Morgan's law 

by using different operators on the SS theory. Çağman developed the concept of soft matrix and 

Enginoglu [10]. They also introduced some basic operations of soft matrices and studied their 

required properties.  

Çağman and Enginoglu [11] extended the soft set (SS) concept with basic operations and 

attributes. They also established a decision-making (DM) technology to use the methods they 

developed to solve decision-making complexity. In [12], the authors proposed some new operations 

on soft matrices, such as soft difference product, soft finite-difference product, soft extended 

difference product, and soft extended difference product and their properties. Maji [13] put forward 

the idea of NSS with necessary operations and attributes. The concept of Possibility NSS was 

proposed by Karaaslan [14]. He also established a DM technology that uses the And product based 

on the possibility of NSS to solve the DM problem. Broumi [15] developed a generalized NSS with 

some operations and properties and applied the proposed concept to DM. Deli and Subas [16] 

extended the Single Valued neutrosophic number (SVNN) concept and provided a DM method to 

solve the MCDM problem. They also developed the idea of SVNN cut sets. Wang et al. [17] proposed 

the correlation coefficient (CC) of single-valued neutrosophic sets (SVNS) and constructed the DM 

method using the correlation measurement they developed. Ye [18] proposed the idea of a simplified 

neutrosophic set (NS), developed an aggregation operator (AO) for the simplified NS, and 

established a DM method to solve the MCDM problem using the AO he developed. Masooma et al. 

[19] combined multipolar fuzzy sets, and NS proposed multipolar neutrosophic sets and established 

various representations and operations based on examples. Zulqarnain et al. [20] introduced some 

AO and correlation coefficients for the interval value IFSS. They also extended the TOPSIS technology 

to solve the MADM problem with the relevant metrics they developed. Zulqarnain et al. [21] 

introduced Pythagorean fuzzy soft number (PFSN) operational laws. They developed AO using 

defined operational laws, such as Pythagorean fuzzy soft weighted average and geometric operators. 

They also planned a DM method to solve the MADM problem with the help of the provided operator. 

Zulqarnain et al. [22] planned the TOPSIS method in the PFSS environment based on the correlation 

coefficient. They also established a DM method to solve the MCGDM problem and used the 

developed method in green supply chain management. 

Many mathematicians have developed various similarity measures, correlation coefficients, 

aggregation operators, and decision-making applications in the past few years. Garg [23] introduced 

a weighted cosine similarity measure for intuitionistic fuzzy sets. He also constructed the MCDM 

method based on his proposed technology and used the developed method for pattern recognition 

and medical diagnosis. Garg and Kumar [24] proposed some new similarity measures to measure the 

relative strength of IFS. They also formulated the number of connections for set pair analysis (SPA) 

and developed a new similarity measure based on the defined SPA. Ruan et al. [25] Some similarity 

measures have been developed for PFS by using exponential membership and non-membership and 

their attributes and relationships. Peng and Garg [26] proposed various PFS similarity measures with 

multiple parameters. Zulqarnain et al. [27, 28] offered the generalized TOPSIS and integrated TOPSIS 

models for NS and used their proposed techniques for supplier selection in the production industry. 

Said et al. [29] Established the concept of mPNSS with attributes and operators. They also developed 
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a distance-based similarity measure and used the proposed similarity measure for decision-making 

and medical diagnosis. 

1.1 Motivation 

In this era, professionals believe that real life is moving towards multi-polarity. Therefore, there is no 

doubt that the multi-polarization of information has played a vital role in the prosperity of many 

scientific and technological fields. In neurobiology, multipolar neurons accumulate a lot of 

information from other neurons. The motivation for expanding and mixing this research work is 

gradually given throughout the manuscript. We prove that different hybrid structures containing 

fuzzy sets will be converted into mPIVNSS special permissions under any appropriate circumstances. 

The concept of the neutrosophic environment of the multipolar neutrosophic soft set is novel. We 

discuss the effectiveness, flexibility, quality, and advantages of planning work and algorithms. This 

research will be the most versatile form that can be used to incorporate data from the complications 

of daily life. In the future, current work may be extended to different types of hybrid structures and 

decision-making techniques in many areas of life. 

The structure of the following paper is organized as follows: In Section 2, we reviewed some 

basic definitions used in subsequent sequels, such as NS, SS, NSS, multi-polar neutrosophic set, and 

interval value neutrosophic soft set. Section 3 puts forward the new idea of mPIVNSS by combining 

m-pole fuzzy sets (mPFS) with interval-valued neutral soft sets, their attributes, and operations. This 

section also developed Truth-Favorite, False-Favorite, AND, and OR operators. In Section 4, the 

multi-polar interval value Neutral Soft Weighted Aggregation (mPIVNSWA) operator was 

developed using its decision-making technique. Section 5 uses the developed decision-making 

method and gives a numerical example. Finally, in Section 6, a brief comparison between the method 

we developed and the existing technology. In addition, superiority, practicality, and flexibility are 

also introduced in the same section. 

2. Preliminaries  

This section recollects some basic concepts such as the neutrosophic set, soft set, neutrosophic 

soft set, and m-polar neutrosophic soft set used in the following sequel. 

Definition 2.1 [4] Let 𝓤  be a universe and 𝓐  be an NS on 𝓤  is defined as 𝓐  = {<

𝒖,𝓾𝓐(𝒖), 𝓿𝓐(𝒖),𝔀𝓐(𝒖) > : 𝒖 ∈ 𝓤},where 𝓾, 𝓿, 𝔀: 𝓤 → ]𝟎− , 𝟏+[ and 𝟎−  ≤ 𝓾𝓐(𝒖) + 𝓿𝓐(𝒖) + 

𝔀𝓐(𝒖) ≤ 𝟑+. 

Definition 2.2 [19] Let 𝓤 be the universal set and ℘𝕽 is said to multipolar neutrosophic set if  

℘𝕽  = {(𝒖,𝓾𝜶(𝒖) , 𝓿𝜶(𝒖) ,𝔀𝜶(𝒖)): 𝒖 ∈ 𝓤, 𝜶 =  𝟏, 𝟐, 𝟑, … ,𝒎 } , where 𝓾𝜶(𝒖) , 𝓿𝜶(𝒖) , and 𝔀𝜶(𝒖) 

represents the truthiness, indeterminacy, and falsity respectively, "𝓾𝜶(𝒖) , 𝓿𝜶(𝒖) ,𝔀𝜶(𝒖) ⊆ [𝟎, 𝟏] 

and 0 ≤ 𝓾𝜶(𝒖) + 𝓿𝜶(𝒖) +𝔀𝜶(𝒖) ≤ 3, for all 𝜶 = 1, 2, 3,…, 𝒎; and 𝒖 ∈ 𝓤. 

Definition 2.3 [5] Let 𝒰 be the universal set and ℰ be the set of attributes concerning 𝒰. Let 𝒫(𝒰) 

be the power set of 𝒰 and 𝒜 ⊆ ℰ. A pair (ℱ,𝒜) is called a soft set over 𝒰, and its mapping is given 

as 

                               ℱ:𝒜 → 𝒫(𝒰) 

It is also defined as: 

                    (ℱ,𝒜) = {ℱ(ℯ) ∈ 𝒫(𝒰): ℯ ∈ ℰ, ℱ(ℯ) =  ∅ 𝑖𝑓 ℯ ≠ 𝒜}" 

2.4 Definition [5]  

Let 𝒰 be the universal set and ℰ be the set of attributes concerning 𝒰. Let 𝒫(𝒰) be the power set 

of 𝒰 and 𝒜 ⊆ ℰ. A pair (ℱ,𝒜) is called an SS over 𝒰, and its mapping is given as 

                               ℱ:𝒜 → 𝒫(𝒰) 
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It is also defined as: 

                    (ℱ,𝒜) = {ℱ(ℯ) ∈ 𝒫(𝒰): ℯ ∈ ℰ, ℱ(ℯ) =  ∅ if ℯ ≠ 𝒜} 

Definition 2.5 [13] Let 𝒰 be the universal set and ℰ  be the set of attributes concerning 𝒰. Let 𝒫(𝒰) 

be the set of neutrosophic sets over 𝒰 and 𝒜 ⊆ ℰ. A pair (ℱ,𝒜) is called a neutrosophic soft set 

over 𝒰 and its mapping is given as 

                               ℱ:𝒜 → 𝒫(𝒰) 

Definition 2.6 [30] Let 𝓤 be a universal set, then interval valued neutrosophic set can be expressed 

by the set 𝓐  = {𝒖, (𝓾𝓐(𝒖), 𝓿𝓐(𝒖),𝔀𝓐(𝒖)): 𝒖 ∈  𝓤} , where 𝓾𝓐 , 𝓿𝓐 , and 𝔀𝓐  are truth, 

indeterminacy and falsity membership functions for 𝓐 respectively, 𝓾𝓐, 𝓿𝓐, and 𝔀𝓐 ⊆ [0, 1] for 

each 𝒖 ∈  𝓤. Where    

𝓾𝓐(𝒖) = [𝓾𝓐
𝑳  (𝒖), 𝓾𝓐

𝑼  (𝒖)], 

𝓿𝓐(𝒖) = [𝓿𝓐
𝑳  (𝒖), 𝓿𝓐

𝑼  (𝒖)], and 

𝔀𝓐(𝒖) = [𝔀𝓐
𝑳  (𝒖),𝔀𝓐

𝑼  (𝒖)] 

For each point 𝒖 ∈ 𝓤, 0 ≤ 𝓾𝓐(𝒖) + 𝓿𝓐(𝒖) +𝔀𝓐(𝒖) ≤ 3 and IVN(𝓤) represent the family of all 

interval valued neutrosophic sets on 𝓤. 

Definition 2.7 [31] Let 𝓤 be a universe of discourse and 𝓔  be a set of attributes, and m-polar 

neutrosophic soft set (mPNSS) ℘𝕽 over 𝓤 defined as  

℘𝕽 = {(𝒆, {(𝒖, 𝓾𝜶(𝒖) , 𝓿𝜶(𝒖) ,𝔀𝜶(𝒖)): 𝒖 ∈ 𝓤, 𝜶 =  𝟏, 𝟐, 𝟑, … ,𝒎}): 𝒆 ∈  𝓔 }, 

where 𝓾𝜶(𝒖), 𝓿𝜶(𝒖), and 𝔀𝜶(𝒖) represent the truthiness, indeterminacy, and falsity respectively, 

𝓾𝜶(𝒖) , 𝓿𝜶(𝒖) ,𝔀𝜶(𝒖) ⊆ [𝟎, 𝟏] and 0 ≤ 𝓾𝜶(𝒖) + 𝓿𝜶(𝒖) +𝔀𝜶(𝒖) ≤ 3, for all 𝜶 = 1, 2, 3,…, 𝒎; 𝒆 

∈  𝓔  and 𝒖  ∈  𝓤. Simply an m-polar neutrosophic number (mPNSN) can be expressed as ℘  = 

{〈𝓾𝜶, 𝓿𝜶,𝔀𝜶〉}, where 0 ≤ 𝓾𝜶 + 𝓿𝜶 +𝔀𝜶 ≤ 3 and 𝜶 = 1, 2, 3,…, 𝒎. 

Definition 2.8 [32] Let 𝓤 be a universe of discourse and 𝓔 be a set of attributes, an IVNSS ℘𝕽 over 

𝓤 defined as  

℘ℜ = {(𝑒, {(𝑢, 𝓊ℜ(𝑢) , 𝓋ℜ(𝑢) ,𝓌ℜ(𝑢)): 𝑢 ∈ 𝒰, 𝛼 =  1, 2, 3, … ,𝑚}): 𝑒 ∈  ℰ },  

where 𝓾𝕽(𝒖) = [𝓾𝕽
𝓵 (𝒖), 𝓾𝕽

𝖚 (𝒖)], 𝓿𝕽(𝒖) = [𝓿𝕽
𝓵 (𝒖), 𝓿𝕽

𝖚 (𝒖)], 𝔀𝕽(𝒖) = [𝔀𝕽
𝓵 (𝒖),𝔀𝕽

𝖚 (𝒖)], represents 

the interval truthiness, indeterminacy, and falsity respectively, 𝓾𝕽(𝒖) , 𝓿𝕽(𝒖) ,𝔀𝕽(𝒖) ⊆ [𝟎, 𝟏] and 

0 ≤ 𝓾𝕽
𝖚 (𝒖) + 𝓿𝕽

𝖚 (𝒖) +𝔀𝕽
𝖚 (𝒖) ≤ 3, for each 𝒆 ∈ 𝓔 and 𝒖 ∈ 𝓤. 

3. Multi-Polar Interval Valued Neutrosophic Soft Set with Aggregate Operators and Properties 

The idea of m-pole fuzzy sets (mPFS) was proposed by Chen et al. [33] In 2014, able to deal with 

ambiguous data and ambiguous multipolar information. Smarandache [34] proposed a three-pole, 

multi-pole neutrosophic set and its graph in 2016. The membership degree of mPFS is in the interval 

[0,1]^m, representing the m criteria of the object, but mPFS cannot deal with uncertainty and false 

objects. NS is bargaining with a single choice criterion of true, false, and uncertainty. But it cannot 

deal with the multi-standard, multi-source, and multi-polar information fusion that may be selected. 

Deli et al. [31] Combining the concepts of m-polar neutrosophic set and SS, a new model of mPNSS 

was introduced. The developed mPNSS can handle m standards for each alternative. mPNSS extends 

the bipolar Zhongzhi soft set proposed by Ali et al. [35]. Deli [32] established IVNSS, which is a 

combination of IVNS[30] and SS[5]. We constructed some basic concepts of mPNSS and extended 

mPNSS to mPIVSS with various operations and attributes.  

Definition 3.1 Let 𝓤 be a universe of discourse and 𝓔 be a set of attributes, then m-polar interval-

valued neutrosophic soft set (mPIVNSS) ℘𝕽 over 𝓤 defined as  

℘ℜ = {(𝑒, {(𝑢, 𝓊𝛼(𝑢) , 𝓋𝛼(𝑢) ,𝓌𝛼(𝑢)): 𝑢 ∈ 𝒰, 𝛼 = 1,2,3, … ,𝑚}): 𝑒 ∈ ℰ},  

where 𝓊𝛼(𝑢)  = [𝓊𝛼
ℓ (𝑢), 𝓊𝛼

𝔲 (𝑢)], 𝓋𝛼(𝑢)  = [𝓋𝛼
ℓ(𝑢), 𝓋𝛼

𝔲(𝑢)], 𝓌𝛼(𝑢)  = [𝓌𝛼
ℓ(𝑢),𝓌𝛼

𝔲(𝑢)], represent the 

interval truthiness, indeterminacy, and falsity respectively, 𝓊𝛼(𝑢) , 𝓋𝛼(𝑢) ,𝓌𝛼(𝑢) ⊆ [0, 1] and 0 ≤ 
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𝓊𝛼
𝔲 (𝑢) + 𝓋𝛼

𝔲(𝑢) +𝓌𝛼
𝔲(𝑢)  ≤ 3 for all 𝛼  = 1, 2, 3,…, 𝑚 ; 𝑒  ∈  ℰ  and 𝑢  ∈  𝒰 . Simply an m-polar 

interval-valued neutrosophic soft number (mPIVNSN) can be expressed as ℘  = 

{[𝓊𝛼
ℓ (𝑢), 𝓊𝛼

𝔲 (𝑢)], [𝓋𝛼
ℓ(𝑢), 𝓋𝛼

𝔲(𝑢)], [𝓌𝛼
ℓ(𝑢),𝓌𝛼

𝔲(𝑢)]}, where 0 ≤ 𝓊𝛼
𝔲 (𝑢) + 𝓋𝛼

𝔲(𝑢) +𝓌𝛼
𝔲(𝑢) ≤ 3 and 𝛼 = 

1, 2, 3,…, 𝑚. 

Definition 3.2 Let ℘ℜ and ℘ℒ be two mPIVNSSs over 𝒰. Then, ℘ℜ is called an m-polar interval-

valued neutrosophic soft subset of ℘ℒ. If  

𝓊𝛼
ℓℜ(𝑢) ≤ 𝓊𝛼

ℓℒ(𝑢), 𝓊𝛼
𝔲ℜ(𝑢) ≤ 𝓊𝛼

𝔲ℒ(𝑢) 

𝓋𝛼
ℓℜ(𝑢) ≥ 𝓋𝛼

ℓℒ(𝑢), 𝓋𝛼
𝔲ℜ(𝑢) ≥ 𝓋𝛼

𝔲ℒ(𝑢) 

𝓌𝛼
ℓℜ(𝑢) ≥ 𝓌𝛼

ℓℒ(𝑢), 𝓌𝛼
𝔲ℜ(𝑢) ≥ 𝓌𝛼

𝔲ℒ(𝑢) 

for all 𝛼 = 1, 2, 3,⋯, 𝑚; 𝑒 ∈ ℰ and 𝑢 ∈ 𝒰. 

Definition 3.3 Let ℘ℜ and ℘ℒ be two mPIVNSSs over 𝒰. Then, ℘ℜ = ℘ℒ, if  

𝓊𝛼
ℓℜ(𝑢) ≤ 𝓊𝛼

ℓℒ(𝑢), 𝓊𝛼
ℓℒ(𝑢) ≤ 𝓊𝛼

ℓℜ(𝑢) and 𝓊𝛼
𝔲ℜ(𝑢) ≤ 𝓊𝛼

𝔲ℒ(𝑢), 𝓊𝛼
𝔲ℒ(𝑢) ≤ 𝓊𝛼

𝔲ℜ(𝑢) 

𝓋𝛼
ℓℜ(𝑢) ≥ 𝓋𝛼

ℓℒ(𝑢), 𝓋𝛼
ℓℒ(𝑢) ≥ 𝓋𝛼

ℓℜ(𝑢) and 𝓋𝛼
𝔲ℜ(𝑢) ≥ 𝓋𝛼

𝔲ℒ(𝑢), 𝓋𝛼
𝔲ℒ(𝑢) ≥ 𝓋𝛼

𝔲ℜ(𝑢) 

𝓌𝛼
ℓℜ(𝑢) ≥ 𝓌𝛼

ℓℒ(𝑢), 𝓌𝛼
ℓℒ(𝑢) ≥ 𝓌𝛼

ℓℜ(𝑢) and 𝓌𝛼
𝔲ℜ(𝑢) ≥ 𝓌𝛼

𝔲ℒ(𝑢), 𝓌𝛼
𝔲ℒ(𝑢) ≥ 𝓌𝛼

𝔲ℜ(𝑢) 

for all 𝛼 = 1, 2, 3,…, 𝑚; 𝑒 ∈ ℰ and 𝑢 ∈ 𝒰. 

Definition 3.4 Let ℘ℜ and ℘ℒ be two mPIVNSSs over 𝒰. Then,  

℘ℜ ∪ ℘ℒ= 

{(𝑒, {(

𝑢, [𝑠𝑢𝑝{𝓊𝛼
ℓℜ(𝑢), 𝓊𝛼

ℓℒ(𝑢)} , 𝑠𝑢𝑝{𝓊𝛼
𝔲ℜ(𝑢), 𝓊𝛼

𝔲ℒ(𝑢)}],

[𝑖𝑛𝑓{𝓋𝛼
ℓℜ(𝑢), 𝓋𝛼

ℓℒ(𝑢)} , 𝑖𝑛𝑓{𝓋𝛼
𝔲ℜ(𝑢), 𝓋𝛼

𝔲ℒ(𝑢)}],

 [𝑖𝑛𝑓{𝓌𝛼
ℓℜ(𝑢),𝓌𝛼

ℓℒ(𝑢)} , 𝑖𝑛𝑓{𝓌𝛼
𝔲ℜ(𝑢),𝓌𝛼

𝔲ℒ(𝑢)}]

) : 𝑢 ∈ 𝒰, 𝛼 = 1,2,3, … ,𝑚}) : 𝑒 ∈ ℰ} 

Definition 3.5 Let ℘ℜ and ℘ℒ be two mPIVNSSs over 𝒰. Then, 

℘ℜ ∩ ℘ℒ= 

{(𝑒, {(

𝑢, [𝑖𝑛𝑓{𝓊𝛼
ℓℜ(𝑢),𝓊𝛼

ℓℒ(𝑢)} , 𝑖𝑛𝑓{𝓊𝛼
𝔲ℜ(𝑢), 𝓊𝛼

𝔲ℒ(𝑢)}],

[𝑠𝑢𝑝{𝓋𝛼
ℓℜ(𝑢), 𝓋𝛼

ℓℒ(𝑢)} , 𝑠𝑢𝑝{𝓋𝛼
𝔲ℜ(𝑢), 𝓋𝛼

𝔲ℒ(𝑢)}],

 [𝑠𝑢𝑝{𝓌𝛼
ℓℜ(𝑢),𝓌𝛼

ℓℒ(𝑢)} , 𝑠𝑢𝑝{𝓌𝛼
𝔲ℜ(𝑢),𝓌𝛼

𝔲ℒ(𝑢)}]

) : 𝑢 ∈ 𝒰, 𝛼 = 1,2,3, … ,𝑚}) : 𝑒 ∈ ℰ} 

3.6 Definition 

Let ℘ℜ be an mPIVNSS over 𝒰. Then, the complement of mPIVNSS is defined as follows: 

℘ℜ
c  = 

{(e, {(u, [𝓌α
ℓ(u),𝓌α

𝔲(u)], [1 − 𝓋α
𝔲(u), 1 − 𝓋α

ℓ(u)],[𝓊α
ℓ (u), 𝓊α

𝔲 (u)]): u ∈ 𝒰, α = 1, 2, 3, … ,m}): e ∈ ℰ} 

Proposition 3.7 Let ℘ℜ and ℘ℒ be two mPIVNSSs over 𝒰. Then, 

1. (℘ℜ ∪ ℘ℒ)
𝐶= ℘ℜ

𝐶 ∩ ℘ℒ
𝐶 

2. (℘ℜ ∩ ℘ℒ)
𝐶= ℘ℜ

𝐶 ∪ ℘ℒ
𝐶 

Proof 1 As we know that 

℘ℜ = {(𝑒, {(𝑢, [𝓊𝛼
ℓℜ(𝑢), 𝓊𝛼

𝔲ℜ(𝑢)], [𝓋𝛼
ℓℜ(𝑢), 𝓋𝛼

𝔲ℜ(𝑢)], [𝓌𝛼
ℓℜ(𝑢),𝓌𝛼

𝔲ℜ(𝑢)]): 𝑢 ∈ 𝒰, 𝛼 = 1,2,3, … ,𝑚}): 𝑒 ∈ ℰ} 

and 

℘ℒ = {(𝑒, {(𝑢, [𝓊𝛼
ℓℒ(𝑢), 𝓊𝛼

𝔲ℒ(𝑢)], [𝓋𝛼
ℓℒ(𝑢), 𝓋𝛼

𝔲ℒ(𝑢)], [𝓌𝛼
ℓℒ(𝑢),𝓌𝛼

𝔲ℒ(𝑢)]): 𝑢 ∈ 𝒰, 𝛼 = 1,2,3, … ,𝑚}): 𝑒 ∈ ℰ} 

Then  

℘ℜ ∪ ℘ℒ= 

{(𝑒, {(

𝑢, [𝑠𝑢𝑝{𝓊𝛼
ℓℜ(𝑢), 𝓊𝛼

ℓℒ(𝑢)} , 𝑠𝑢𝑝{𝓊𝛼
𝔲ℜ(𝑢), 𝓊𝛼

𝔲ℒ(𝑢)}],

[𝑖𝑛𝑓{𝓋𝛼
ℓℜ(𝑢), 𝓋𝛼

ℓℒ(𝑢)} , 𝑖𝑛𝑓{𝓋𝛼
𝔲ℜ(𝑢), 𝓋𝛼

𝔲ℒ(𝑢)}],

 [𝑖𝑛𝑓{𝓌𝛼
ℓℜ(𝑢),𝓌𝛼

ℓℒ(𝑢)} , 𝑖𝑛𝑓{𝓌𝛼
𝔲ℜ(𝑢),𝓌𝛼

𝔲ℒ(𝑢)}]

) : 𝑢 ∈ 𝒰, 𝛼 = 1,2,3, … ,𝑚}) : 𝑒 ∈ ℰ} 
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we get 

(℘ℜ ∪ ℘ℒ)
𝑐 

={(𝑒, {(

𝑢, [𝑖𝑛𝑓{𝓌𝛼
ℓℜ(𝑢),𝓌𝛼

ℓℒ(𝑢)} , 𝑖𝑛𝑓{𝓌𝛼
𝔲ℜ(𝑢),𝓌𝛼

𝔲ℒ(𝑢)}],

[1 − 𝑖𝑛𝑓{𝓋𝛼
𝔲ℜ(𝑢), 𝓋𝛼

𝔲ℒ(𝑢)}, 1 − 𝑖𝑛𝑓{𝓋𝛼
ℓℜ(𝑢), 𝓋𝛼

ℓℒ(𝑢)}],

 [𝑠𝑢𝑝{𝓊𝛼
ℓℜ(𝑢), 𝓊𝛼

ℓℒ(𝑢)} , 𝑠𝑢𝑝{𝓊𝛼
𝔲ℜ(𝑢), 𝓊𝛼

𝔲ℒ(𝑢)}]

) : 𝑢 ∈ 𝒰, 𝛼 = 1,2,3, … ,𝑚}) : 𝑒 ∈ ℰ} 

Now  

℘ℜ
𝐶 = 

{(𝑒, {(𝑢, [𝓌𝛼
ℓℜ(𝑢),𝓌𝛼

𝔲ℜ(𝑢)] , [1 − 𝓋𝛼
𝔲ℜ(𝑢), 1 − 𝓋𝛼

ℓℜ(𝑢)] , [𝓊𝛼
ℓℜ(𝑢),𝓊𝛼

𝔲ℜ(𝑢)]): 𝑢 ∈ 𝒰, 𝛼 = 1,2,3, … ,𝑚}): 𝑒 ∈ ℰ} 

℘ℒ
𝐶 = 

{(𝑒, {(𝑢, [𝓌𝛼
ℓℒ(𝑢),𝓌𝛼

𝔲ℒ(𝑢)] , [1 − 𝓋𝛼
𝔲ℒ(𝑢), 1 − 𝓋𝛼

ℓℒ(𝑢)] , [𝓊𝛼
ℓℒ(𝑢), 𝓊𝛼

𝔲ℒ(𝑢)]): 𝑢 ∈ 𝒰, 𝛼 = 1,2,3, … ,𝑚}): 𝑒 ∈ ℰ} 

By using definition 3.5 

℘ℜ
𝐶 ∩ ℘ℒ

𝐶 = 

{(𝑒, {(

𝑢, [𝑖𝑛𝑓{𝓌𝛼
ℓℜ(𝑢),𝓌𝛼

ℓℒ(𝑢)} , 𝑖𝑛𝑓{𝓌𝛼
𝔲ℜ(𝑢), 𝓌𝛼

𝔲ℒ(𝑢)}],

[𝑖𝑛𝑓 {1 − 𝓋𝛼
𝔲ℜ(𝑢), 1 − 𝓋𝛼

𝔲ℒ(𝑢)}, 𝑖𝑛𝑓 {1 − 𝓋𝛼
ℓℜ(𝑢), 1 − 𝓋𝛼

ℓℒ(𝑢)}],

 [𝑠𝑢𝑝{𝓊𝛼
ℓℜ(𝑢), 𝓊𝛼

ℓℒ(𝑢)} , 𝑠𝑢𝑝{𝓊𝛼
𝔲ℜ(𝑢), 𝓊𝛼

𝔲ℒ(𝑢)}]

) : 𝑢 ∈ 𝒰, 𝛼 = 1,2,3, … ,𝑚}) : 𝑒 ∈ ℰ} 

℘ℜ
𝐶 ∩ ℘ℒ

𝐶 = 

{(𝑒, {(

𝑢, [𝑖𝑛𝑓{𝓌𝛼
ℓℜ(𝑢),𝓌𝛼

ℓℒ(𝑢)} , 𝑖𝑛𝑓{𝓌𝛼
𝔲ℜ(𝑢),𝓌𝛼

𝔲ℒ(𝑢)}],

[1 − 𝑖𝑛𝑓 {𝓋𝛼
𝔲ℜ(𝑢), 𝓋𝛼

𝔲ℒ(𝑢)}, 1 − 𝑖𝑛𝑓 {𝓋𝛼
ℓℜ(𝑢), 𝓋𝛼

ℓℒ(𝑢)}],

 [𝑠𝑢𝑝{𝓊𝛼
ℓℜ(𝑢),𝓊𝛼

ℓℒ(𝑢)} , 𝑠𝑢𝑝{𝓊𝛼
𝔲ℜ(𝑢), 𝓊𝛼

𝔲ℒ(𝑢)}]

) : 𝑢 ∈ 𝒰, 𝛼 = 1,2,3, … ,𝑚}) : 𝑒 ∈ ℰ} 

Hence 

(℘ℜ ∪ ℘ℒ)
𝑐 = ℘ℜ

𝐶  ∩  ℘ℒ
𝐶  . 

Proof 2 Similar to assertion 1. 

Definition 3.8 Let ℘ℜ and ℘ℒ be two mPIVNSSs over 𝒰. Then, their extended union is defined as 

𝓊(℘ℜ ∪𝜀 ℘ℒ) = {

[𝓊𝛼
ℓℜ(𝑢), 𝓊𝛼

𝔲ℜ(𝑢)]                                                          𝑖𝑓 𝑒 ∈ ℜ − ℒ

[𝓊𝛼
ℓℒ(𝑢), 𝓊𝛼

𝔲ℒ(𝑢)]                                                           𝑖𝑓 𝑒 ∈ ℒ − ℜ

[𝑠𝑢𝑝{𝓊𝛼
ℓℜ(𝑢), 𝓊𝛼

ℓℒ(𝑢)} , 𝑠𝑢𝑝{𝓊𝛼
𝔲ℜ(𝑢), 𝓊𝛼

𝔲ℒ(𝑢)}]  𝑖𝑓 𝑒 ∈ ℜ ∩ ℒ

 

𝓋(℘ℜ ∪𝜀 ℘ℒ) = {

[𝓋𝛼
ℓℜ(𝑢), 𝓋𝛼

𝔲ℜ(𝑢)]                                                          𝑖𝑓 𝑒 ∈ ℜ − ℒ

[𝓋𝛼
ℓℒ(𝑢), 𝓋𝛼

𝔲ℒ(𝑢)]                                                           𝑖𝑓 𝑒 ∈ ℒ − ℜ

[𝑖𝑛𝑓{𝓋𝛼
ℓℜ(𝑢), 𝓋𝛼

ℓℒ(𝑢)} , 𝑖𝑛𝑓{𝓋𝛼
𝔲ℜ(𝑢), 𝓋𝛼

𝔲ℒ(𝑢)}]   𝑖𝑓 𝑒 ∈ ℜ ∩ ℒ

 

𝓌(℘ℜ ∪𝜀 ℘ℒ) = {

[𝓌𝛼
ℓℜ(𝑢),𝓌𝛼

𝔲ℜ(𝑢)]                                                           𝑖𝑓 𝑒 ∈ ℜ − ℒ

[𝓌𝛼
ℓℒ(𝑢),𝓌𝛼

𝔲ℒ(𝑢)]                                                            𝑖𝑓 𝑒 ∈ ℒ − ℜ

[𝑖𝑛𝑓{𝓌𝛼
ℓℜ(𝑢),𝓌𝛼

ℓℒ(𝑢)} , 𝑖𝑛𝑓{𝓌𝛼
𝔲ℜ(𝑢),𝓌𝛼

𝔲ℒ(𝑢)}]  𝑖𝑓 𝑒 ∈ ℜ ∩ ℒ

 

Example 3.9 Assume 𝒰 = {𝑢1, 𝑢2} be a universe of discourse and 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4} be a set of 

attributes and ℜ = {𝑒1, 𝑒2} ⊆ 𝐸 and ℒ = {𝑒2, 𝑒3} ⊆ 𝐸. Consider 3-PIVNSSs ℘ℜ and ℘ℒ over 𝒰 can 

be represented as follows: 

℘ℜ = 

{
 
 

 
 (𝑒1, {

(𝑢1, ([. 5, .8], [. 2, .5], [. 1, .2]), ([. 3, .5], [. 1, .3], [. 2, .4]), ([. 6, .9], [. 7, .8], [. 8, 1]))

(𝑢2, ([. 2, .4], [. 3, .4], [. 1, .3]), ([. 2, .5], [. 1, .6], [. 1, .3]), ([. 8, 1], [. 6, .9], [. 6, .7]))
}) ,

(𝑒2, {
(𝑢1, ([. 3, .6], [. 1, .6], [. 3, .4]), ([0, .2], [. 1, .4], [. 3, .5]), ([. 5, .9], [. 3, .8], [. 5, .8]))

(𝑢2, ([. 2, .5], [. 2, .3], [.5, .6]), ([. 3, .5], [. 1, .5], [.5, .8]), ([. 6, .9], [. 5, .8], [.6, .9]))
})
}
 
 

 
 

 

and 
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℘ℒ = 

{
 
 

 
 (𝑒1, {

(𝑢1, ([. 4, .8], [. 3, .6], [. 2, .5]), ([. 2, .7], [. 3, .4], [. 4, .6]), ([. 7, .8], [. 4, .9], [.5, 1]))

(𝑢2, ([. 1, .6], [. 5, .7], [. 1, .2]), ([. 3, .4], [. 2, .5], [. 2, .5]), ([. 5, .9], [. 7, .8], [. 4, .6]))
}) ,

(𝑒2, {
(𝑢1, ([. 2, .7], [. 3, .5], [. 2, .6]), ([. 1, .3], [. 2, .5], [. 2, .7]), ([. 4, .9], [. 4, .7], [. 5, .8]))

(𝑢2, ([. 1, .6], [. 1, .5], [.4, .8]), ([. 3, .6], [. 3, .4], [1, 1]), ([. 5, .9], [. 3, .7], [.1, .8]))
})
}
 
 

 
 

 

Then 

℘ℜ ∪𝜀 ℘ℒ = 

{
 
 
 

 
 
 (𝑒1, {

(𝑢1, ([. 5, .8], [. 2, .5], [. 1, .2]), ([. 3, .5], [. 1, .3], [. 2, .4]), ([. 6, .9], [. 7, .8], [. 8, 1]))

(𝑢2, ([. 2, .4], [. 3, .4], [. 1, .3]), ([. 2, .5], [. 1, .6], [. 1, .3]), ([. 8, 1], [. 6, .9], [. 6, .7]))
}) ,

(𝑒2, {
(𝑢1, ([. 4, .8], [. 1, .6], [. 2, .4]), ([. 2, .7], [. 1, .4], [. 3, .5]), ([. 7, .9], [. 3, .8], [. 5, .8]))

(𝑢2, ([. 2, .6], [. 2, .3], [. 1, .2]), ([. 3, .5], [. 1, .5], [. 2, .5]), ([. 6, .9], [. 5, .8], [. 4, .6]))
}) ,

(𝑒2, {
(𝑢1, ([. 2, .7], [. 3, .5], [. 2, .6]), ([. 1, .3], [. 2, .5], [. 2, .7]), ([. 4, .9], [. 4, .7], [. 5, .8]))

(𝑢2, ([. 1, .6], [. 1, .5], [.4, .8]), ([. 3, .6], [. 3, .4], [1, 1]), ([. 5, .9], [. 3, .7], [.1, .8]))
})
}
 
 
 

 
 
 

 

Definition 3.10 Let ℘ℜ  and ℘ℒ  be two mPIVNSSs over 𝒰 . Then, their extended intersection is 

defined as 

𝓊 (℘ℜ ∩𝜀 ℘ℒ) = {

[𝓊𝛼
ℓℜ(𝑢), 𝓊𝛼

𝔲ℜ(𝑢)]                                                           𝑖𝑓 𝑒 ∈ ℜ − ℒ

[𝓊𝛼
ℓℒ(𝑢), 𝓊𝛼

𝔲ℒ(𝑢)]                                                            𝑖𝑓 𝑒 ∈ ℒ − ℜ

[𝑖𝑛𝑓{𝓊𝛼
ℓℜ(𝑢), 𝓊𝛼

ℓℒ(𝑢)} , 𝑖𝑛𝑓{𝓊𝛼
𝔲ℜ(𝑢), 𝓊𝛼

𝔲ℒ(𝑢)}]     𝑖𝑓 𝑒 ∈ ℜ ∩ ℒ

 

𝓋 (℘ℜ ∩𝜀 ℘ℒ) = {

[𝓋𝛼
ℓℜ(𝑢), 𝓋𝛼

𝔲ℜ(𝑢)]                                                          𝑖𝑓 𝑒 ∈ ℜ − ℒ

[𝓋𝛼
ℓℒ(𝑢), 𝓋𝛼

𝔲ℒ(𝑢)]                                                           𝑖𝑓 𝑒 ∈ ℒ − ℜ

[𝑠𝑢𝑝{𝓋𝛼
ℓℜ(𝑢), 𝓋𝛼

ℓℒ(𝑢)} , 𝑠𝑢𝑝{𝓋𝛼
𝔲ℜ(𝑢), 𝓋𝛼

𝔲ℒ(𝑢)}] 𝑖𝑓 𝑒 ∈ ℜ ∩ ℒ

 

𝓌 (℘ℜ ∩𝜀 ℘ℒ) = {

[𝓌𝛼
ℓℜ(𝑢),𝓌𝛼

𝔲ℜ(𝑢)]                                                             𝑖𝑓 𝑒 ∈ ℜ − ℒ

[𝓌𝛼
ℓℒ(𝑢),𝓌𝛼

𝔲ℒ(𝑢)]                                                              𝑖𝑓 𝑒 ∈ ℒ − ℜ

[𝑠𝑢𝑝{𝓌𝛼
ℓℜ(𝑢),𝓌𝛼

ℓℒ(𝑢)} , 𝑠𝑢𝑝{𝓌𝛼
𝔲ℜ(𝑢),𝓌𝛼

𝔲ℒ(𝑢)}]  𝑖𝑓 𝑒 ∈ ℜ ∩ ℒ

 

Remark 3.1 Generally, if ℘ℜ ≠ ℘0̌ and ℘ℜ ≠ ℘Ḕ, then the law of contradiction ℘ℜ ∩ ℘ℜ
𝐶  = ℘0̌ 

and the law of the excluded middle ℘ℜ ∪ ℘ℜ
𝐶 = ℘Ḕ does not hold in mPIVNSS. But in classical set 

theory law of contradiction and excluded middle always hold. 

Definition 3.11 Let ℘ℜ be an mPIVNSS over 𝒰. Then, Truth-Favorite operator on ℘ℜ is denoted by 

Δ̃℘ℜ and defined as follow: 

Δ̃℘ℜ = 

{(𝑒, {(
𝑢, [𝑖𝑛𝑓{𝓊𝛼

ℓℜ(𝑢) + 𝓋𝛼
ℓℜ(𝑢), 1} , 𝑖𝑛𝑓{𝓊𝛼

𝔲ℜ(𝑢) + 𝓋𝛼
𝔲ℜ(𝑢), 1}],

[0, 0], [0, 0], … , [0, 0], [𝓌𝛼
ℓℜ(𝑢),𝓌𝛼

𝔲ℜ(𝑢)]
) : 𝑢 ∈ 𝒰, 𝛼 = 1,2,3, … ,𝑚}) : 𝑒 ∈ ℰ} 

Proposition 3.12 Let ℘ℜ and ℘ℒ be two mPIVNSSs over 𝒰. Then, 

1. Δ̃Δ̃℘ℜ = Δ̃℘ℜ 

2. Δ̃(℘ℜ  ∪  ℘ℒ) ⊆ Δ̃℘ℜ ∪ Δ̃℘ℒ 

3. Δ̃(℘ℜ  ∩  ℘ℒ) ⊆ Δ̃℘ℜ ∩ Δ̃℘ℒ 

Proof of the above proposition is easily obtained by using definitions 3.4, 3.5, 3.11. 

Definition 3.13 Let ℘ℜ be an mPIVNSS over 𝒰. Then, the False-Favorite operator on ℘ℜ denoted 

by Δ̃℘ℜ and is defined as follows: 

𝛻̃℘ℜ = 

{(𝑒, {(
𝑢, [𝓊𝛼

ℓℜ(𝑢), 𝓊𝛼
𝔲ℜ(𝑢)], [0, 0], [0, 0], … , [0, 0],

[𝑖𝑛𝑓{𝓌𝛼
ℓℜ(𝑢) + 𝓋𝛼

ℓℜ(𝑢), 1} , 𝑖𝑛𝑓{𝓌𝛼
𝔲ℜ(𝑢) + 𝓋𝛼

𝔲ℜ(𝑢), 1}]
) : 𝑢 ∈ 𝒰, 𝛼 = 1,2,3, … ,𝑚}) : 𝑒 ∈ ℰ} 

Proposition 3.14 Let ℘ℜ and ℘ℒ be two mPIVNSSs over 𝒰. Then, 
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1. 𝛻̃𝛻̃℘ℜ = 𝛻̃℘ℜ 

2. 𝛻̃(℘ℜ ∪ ℘ℒ) ⊆ 𝛻̃℘ℜ ∪ 𝛻̃℘ℒ 

3. 𝛻̃(℘ℜ  ∩  ℘ℒ) ⊆ 𝛻̃℘ℜ ∩ 𝛻̃℘ℒ 

Proof of the above proposition is easily obtained using definitions 3.4, 3.5, 3.13. 

Definition 3.15 Let ℘ℜ  and ℘ℒ  be two mPIVNSSs over 𝒰 . Then, their AND-Operator is 

represented by ℘ℜ ˄ ℘ℒ and defined as follows: 

℘ℜ ˄ ℘ℒ = ⅂ℜ×ℒ, where 

⅂ℜ×ℒ(𝑥, 𝑦) = ℘ℜ(𝑥) ∩ ℘ℒ(𝑦) for all (𝑥, 𝑦) ∈ ℜ× ℒ. 

Definition 3.16 Let ℘ℜ and ℘ℒ be two mPIVNSSs over 𝒰. Then, their OR-Operator is represented 

by ℘ℜ ˅ ℘ℒ and defined as follows: 

℘ℜ ˅ ℘ℒ = ⅂ℜ×ℒ, where 

⅂ℜ×ℒ(𝑥, 𝑦) = ℘ℜ(𝑥) ∪ ℘ℒ(𝑦) for all (𝑥, 𝑦) ∈ ℜ× ℒ. 

Example 3.17 Reconsider example 3.9 

℘ℜ = 

{
 
 

 
 (𝑒1, {

(𝑢1, ([. 5, .8], [. 2, .5], [. 1, .2]), ([. 3, .5], [. 1, .3], [. 2, .4]), ([. 6, .9], [. 7, .8], [. 8, 1]))

(𝑢2, ([. 2, .4], [. 3, .4], [. 1, .3]), ([. 2, .5], [. 1, .6], [. 1, .3]), ([. 8, 1], [. 6, .9], [. 6, .7]))
}) ,

(𝑒2, {
(𝑢1, ([. 3, .6], [. 1, .6], [. 3, .4]), ([0, .2], [. 1, .4], [. 3, .5]), ([. 5, .9], [. 3, .8], [. 5, .8]))

(𝑢2, ([. 2, .5], [. 2, .3], [.5, .6]), ([. 3, .5], [. 1, .5], [.5, .8]), ([. 6, .9], [. 5, .8], [.6, .9]))
})
}
 
 

 
 

 

and 

℘ℒ = 

{
 
 

 
 (𝑒1, {

(𝑢1, ([. 4, .8], [. 3, .6], [. 2, .5]), ([. 2, .7], [. 3, .4], [. 4, .6]), ([. 7, .8], [. 4, .9], [.5, 1]))

(𝑢2, ([. 1, .6], [. 5, .7], [. 1, .2]), ([. 3, .4], [. 2, .5], [. 2, .5]), ([. 5, .9], [. 7, .8], [. 4, .6]))
}) ,

(𝑒2, {
(𝑢1, ([. 2, .7], [. 3, .5], [. 2, .6]), ([. 1, .3], [. 2, .5], [. 2, .7]), ([. 4, .9], [. 4, .7], [. 5, .8]))

(𝑢2, ([. 1, .6], [. 1, .5], [.4, .8]), ([. 3, .6], [. 3, .4], [1, 1]), ([. 5, .9], [. 3, .7], [.1, .8]))
})
}
 
 

 
 

 

℘ℜ ˄ ℘ℒ = 

{
 
 
 
 

 
 
 
 
(𝑒1, 𝑒2), (𝑢1, ([. 4, .8], [. 3, .6], [. 2, .5]), ([. 2, .5], [. 3, .4], [. 4, .6]), ([. 6, .8], [. 7, .9], [. 8, 1]),

(𝑢2, ([. 1, .4], [. 5, .7], [. 1, .3]), ([. 2, .4], [. 2, .6], [. 2, .5]), ([. 5, .9], [. 7, .9], [. 6, .7]),

(𝑒1, 𝑒3), (𝑢1, ([. 2, .7], [. 3, .5], [. 2, .6]), ([. 1, .3], [. 2, .5], [. 2, .7]), ([. 4, .9], [. 7, .8], [. 8, 1]),

(𝑢2, ([. 1, .4], [. 3, .5], [. 4, .8]), ([. 2, .5], [. 3, .6], [1, 1]), ([. 5, .9], [. 6, .9], [. 6, .8]),

(𝑒2, 𝑒2), (𝑢1, ([. 3, .6], [. 1, .6], [. 3, .4]), ([0, .2], [. 1, .4], [. 3, .5]), ([. 5, .9], [. 3, .8], [. 5, .8]),

(𝑢2, ([. 2, .5], [. 2, .3], [. 5, .6]), ([. 3, .5], [. 1, .5], [. 5, .8]), ([. 6, .9], [. 5, .8], [. 6, .9])),

(𝑒2, 𝑒3), (𝑢1, ([. 2, .6], [. 1, .6], [. 3, .6]), ([0, .2], [. 2, .5], [. 3, .7]), ([. 4, .9], [. 4, .8], [. 5, .8]),

(𝑢2, ([. 1, .5], [. 2, .5], [. 5, .8]), ([. 3, .5], [. 3, .5], [. 5, .8]), ([. 5, .9], [. 5, .9], [. 6, .9])) }
 
 
 
 

 
 
 
 

. 

Proposition 3.18 Let ℘ℜ, ℘ℒ, and ℘ℋ be three mPIVNSSs over 𝒰. Then, 

1. ℘ℜ ˅ ℘ℒ = ℘ℒ  ˅ ℘ℜ 

2. ℘ℜ ˄ ℘ℒ = ℘ℒ  ˄ ℘ℜ 

3. ℘ℜ ˅ (℘ℒ  ˅ ℘ℋ) = (℘ℜ ˅ ℘ℒ) ˅ ℘ℋ 

4. ℘ℜ ˄ (℘ℒ  ˄ ℘ℋ) = (℘ℜ ˄ ℘ℒ) ˄ ℘ℋ 

5. (℘ℜ ˅ ℘ℒ)
𝑐 = ℘𝑐(ℜ) ˄ ℘𝑐(ℒ) 

6. (℘ℜ ˄ ℘ℒ)
𝑐 = ℘𝑐(ℜ) ˅ ℘𝑐(ℒ) 

Proof We can prove easily by using definitions 3.15, 3.16. 

4. Weighted Aggregation Operator for m-Polar Interval Valued Neutrosophic Soft set 

Many mathematicians developed various methodologies to solve MCDM problems in the past 

few years, such as aggregation operators for different hybrid structures, CC, similarity measures, and 

decision-making applications. 
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Definition 4.1 Let ℘𝕽  = ⟨[𝓾𝜶
𝓵 (𝒖), 𝓾𝜶

𝖚(𝒖)], [𝓿𝜶
𝓵(𝒖), 𝓿𝜶

𝖚(𝒖)], [𝔀𝜶
𝓵 (𝒖),𝔀𝜶

𝖚(𝒖)]⟩ , ℘𝕽𝟏  = 

⟨[𝓾𝜶
𝓵𝕽𝟏(𝒖), 𝓾𝜶

𝖚𝕽𝟏(𝒖)], [𝓿𝜶
𝓵𝕽𝟏(𝒖), 𝓿𝜶

𝖚𝕽𝟏(𝒖)], [𝔀𝜶
𝓵𝕽𝟏(𝒖),𝔀𝜶

𝖚𝕽𝟏(𝒖)]⟩ , and ℘𝕽𝟐  = 

⟨[𝓾𝜶
𝓵𝕽𝟐(𝒖), 𝓾𝜶

𝖚𝕽𝟐(𝒖)], [𝓿𝜶
𝓵𝕽𝟐(𝒖), 𝓿𝜶

𝖚𝕽𝟐(𝒖)], [𝔀𝜶
𝓵𝕽𝟐(𝒖),𝔀𝜶

𝖚𝕽𝟐(𝒖)]⟩  are three mPIVNSNs, the basic 

operators for mPIVNSNs are defined as when 𝜹 > 0 

1. ℘ℜ1 ⊕℘ℜ2 =  

⟨
[𝓊𝛼

ℓℜ1(𝑢) + 𝓊𝛼
ℓℜ2(𝑢) − 𝓊𝛼

ℓℜ1(𝑢)𝓊𝛼
ℓℜ2(𝑢), 𝓊𝛼

𝔲ℜ1(𝑢) + 𝓊𝛼
𝔲ℜ2(𝑢) − 𝓊𝛼

𝔲ℜ1(𝑢)𝓊𝛼
𝔲ℜ2(𝑢)],

 [𝓋𝛼
ℓℜ1(𝑢)𝓋𝛼

ℓℜ2(𝑢), 𝓋𝛼
𝔲ℜ1(𝑢) 𝓋𝛼

𝔲ℜ2(𝑢)], [𝓌𝛼
ℓℜ1(𝑢)𝓌𝛼

ℓℜ2(𝑢),𝓌𝛼
𝔲ℜ1(𝑢) 𝓌𝛼

𝔲ℜ2(𝑢)]
⟩ 

2. ℘ℜ1 ⊗℘ℜ2 =  

⟨

[𝓊𝛼
ℓℜ1(𝑢)𝓊𝛼

ℓℜ2(𝑢), 𝓊𝛼
𝔲ℜ1(𝑢)𝓊𝛼

𝔲ℜ2(𝑢)],

 [𝓋𝛼
ℓℜ1(𝑢) + 𝓋𝛼

ℓℜ2(𝑢) − 𝓋𝛼
ℓℜ1(𝑢)𝓋𝛼

ℓℜ2(𝑢), 𝓋𝛼
𝔲ℜ1(𝑢) + 𝓋𝛼

𝔲ℜ2(𝑢) − 𝓋𝛼
𝔲ℜ1(𝑢)𝓋𝛼

𝔲ℜ2(𝑢)],

[𝓌𝛼
ℓℜ1(𝑢) +𝓌𝛼

ℓℜ2(𝑢) −𝓌𝛼
ℓℜ1(𝑢)𝓌𝛼

ℓℜ2(𝑢),𝓌𝛼
𝔲ℜ1(𝑢) + 𝓌𝛼

𝔲ℜ2(𝑢) −𝓌𝛼
𝔲ℜ1(𝑢)𝓌𝛼

𝔲ℜ2(𝑢)]

⟩ 

3. 𝛿℘ℜ =  

⟨[1 − (1 − 𝓊𝛼
ℓℜ(𝑢))

𝛿

, 1 − (1 − 𝓊𝛼
𝔲ℜ(𝑢))

𝛿

] , [(𝓋𝛼
ℓℜ(𝑢))

𝛿

, (𝓋𝛼
𝔲ℜ(𝑢))

𝛿

] , [(𝓌𝛼
ℓℜ(𝑢))

𝛿

, (𝓌𝛼
𝔲ℜ(𝑢))

𝛿

]⟩ 

4. (℘𝕽)
𝜹 = ⟨

[(𝓾𝜶
𝓵(𝒖))

𝜹

, (𝓾𝜶
𝖚(𝒖))

𝜹
] , [𝟏 − (𝟏 − 𝓿𝜶

𝓵𝕽(𝒖))
𝜹

, 𝟏 − (𝟏 − 𝓿𝜶
𝖚𝕽(𝒖))

𝜹

] ,

 [𝟏 − (𝟏 −𝔀𝜶
𝓵𝕽(𝒖))

𝜹

, 𝟏 − (𝟏 −𝔀𝜶
𝖚𝕽(𝒖))

𝜹

]

⟩ 

Definition 4.3 Let  ℘ℜ𝑒𝑖𝑗
 = " ⟨[𝓊𝛼𝑖𝑗

ℓℜ (𝑢), 𝓊𝛼𝑖𝑗
𝔲ℜ (𝑢)] , [𝓋𝛼𝑖𝑗

ℓℜ(𝑢), 𝓋𝛼𝑖𝑗
𝔲ℜ(𝑢)] , [𝓌𝛼𝑖𝑗

ℓℜ(𝑢),𝓌𝛼𝑖𝑗
𝔲ℜ(𝑢)]⟩  be a 

collection of mPIVNSNs, Ω𝑖  and γ𝑗 are weight vector for expert’s and parameters respectively with 

given conditions Ω𝑖  >  0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, γ𝑗  >  0, ∑ γ𝑗

𝑚
𝑗=1  = 1, where (𝑖 =  1, 2, … , 𝑛, 𝑎𝑛𝑑 𝑗 =

 1, 2, … ,𝑚). Then mPIVNSWA operator defined as 

mPIVNSWA: ∆𝑛 → ∆ defined as follows 

𝑚𝑃𝐼𝑉𝑁𝑆𝑊𝐴 (℘ℜ𝑒11
, ℘ℜ𝑒12

, … , ℘ℜ𝑒𝑛𝑘
) = ⊕𝑗=1

𝑘 γ𝑗 (⊕𝑖=1
𝑛 Ω𝑖℘ℜ𝑒𝑖𝑗

 ).       (4.1) 

Theorem 4.4 Let  ℘ℜ𝑒𝑖𝑗
 = ⟨[𝓊𝛼𝑖𝑗

ℓℜ (𝑢), 𝓊𝛼𝑖𝑗
𝔲ℜ (𝑢)] , [𝓋𝛼𝑖𝑗

ℓℜ(𝑢), 𝓋𝛼𝑖𝑗
𝔲ℜ(𝑢)] , [𝓌𝛼𝑖𝑗

ℓℜ(𝑢),𝓌𝛼𝑖𝑗
𝔲ℜ(𝑢)]⟩ be a collection 

of mPIVNSNs, where (𝑖 =  1, 2, … , 𝑛, 𝑎𝑛𝑑 𝑗 =  1, 2, … , 𝑘), the aggregated value is also an interval-

valued neutrosophic soft number, such as 

𝑚𝑃𝐼𝑉𝑁𝑆𝑊𝐴 (℘ℜ𝑒11
, ℘ℜ𝑒12

, … , ℘ℜ𝑒𝑛𝑘
)  

= ⟨

[𝟏 − ∏ (∏ (𝟏 − 𝓾𝜶𝒊𝒋
𝓵𝕽(𝒖))

Ω𝒊
𝒏
𝒊=𝟏 )

𝛄𝒋
𝒎
𝒋=𝟏 , 𝟏 − ∏ (∏ (𝟏 − 𝓾𝜶𝒊𝒋

𝖚𝕽(𝒖))
Ω𝒊

𝒏
𝒊=𝟏 )

𝛄𝒋
𝒎
𝒋=𝟏 ] ,

[ 𝟏 − (𝟏 − ∏ (∏ (𝟏 − 𝓿𝜶𝒊𝒋
𝓵𝕽(𝒖))

Ω𝒊
𝒏
𝒊=𝟏 )

𝛄𝒋
𝒎
𝒋=𝟏 ) , 𝟏 − (𝟏 − ∏ (∏ (𝟏 − 𝓿𝜶𝒊𝒋

𝖚𝕽(𝒖))
Ω𝒊

𝒏
𝒊=𝟏 )

𝛄𝒋
𝒎
𝒋=𝟏 )] ,

[𝟏 − (𝟏 − ∏ (∏ (𝟏 −𝔀𝜶𝒊𝒋
𝓵𝕽(𝒖))

Ω𝒊
𝒏
𝒊=𝟏 )

𝛄𝒋
𝒎
𝒋=𝟏 ) , 𝟏 − (𝟏 −∏ (∏ (𝟏 −𝔀𝜶𝒊𝒋

𝖚𝕽(𝒖))
Ω𝒊

𝒏
𝒊=𝟏 )

𝛄𝒋
𝒎
𝒋=𝟏 )]

⟩.  (4.2) 

Definition 4.5 Let ℘ℜ = ⟨[𝓊𝛼
ℓ (𝑢), 𝓊𝛼

𝔲 (𝑢)], [𝓋𝛼
ℓ(𝑢), 𝓋𝛼

𝔲(𝑢)], [𝓌𝛼
ℓ(𝑢),𝓌𝛼

𝔲(𝑢)]⟩ be an mPIVNSN, then the 

score, accuracy, and certainty functions for an mPIVNSN respectively defined as follows: 

1. 𝕊(℘ℜ) = 
1

6𝑚
(𝓊𝛼

ℓ (𝑢) + 𝓊𝛼
𝔲 (𝑢) + 1 − 𝓋𝛼

ℓ(𝑢) + 1 − 𝓋𝛼
𝔲(𝑢) + 1 −𝓌𝛼

ℓ(𝑢) + 1 −𝓌𝛼
𝔲(𝑢))  

2. 𝔸(℘ℜ) = 
1

4𝑚
(4 + 𝓊𝛼

ℓ (𝑢) + 𝓊𝛼
𝔲 (𝑢) −𝓌𝛼

ℓ(𝑢) −𝓌𝛼
𝔲(𝑢)) 

3. ℂ(℘ℜ) = 
1

2𝑚
(2 + 𝓊𝛼

ℓ (𝑢) + 𝓊𝛼
𝔲 (𝑢)), where 𝛼 = 1, 2,⋯, 𝑚. 
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Definition 4.6 Let ℘ℜ and ℘ℜ1  be two mPIVNSSs. Then, the comparison approach is presented as 

follows: 

1. If 𝕊(℘ℜ) > 𝕊(℘ℜ1
), then ℘ℜ is superior to ℘ℜ1

. 

2. If 𝕊(℘ℜ) = 𝕊(℘ℜ1
) and 𝔸(℘ℜ) > 𝔸(℘ℜ1

), then ℘ℜ is superior to ℘ℜ1
. 

3. If 𝕊(℘ℜ) = 𝕊(℘ℜ1
), 𝔸(℘ℜ) = 𝔸(℘ℜ1

), and ℂ(℘ℜ) > ℂ(℘ℜ1
), then ℘ℜ is superior to ℘ℜ1

. 

4. If 𝕊(℘ℜ) = 𝕊(℘ℜ1), 𝔸(℘ℜ) > 𝔸(℘ℜ1), and ℂ(℘ℜ) = ℂ(℘ℜ1), then ℘ℜ is indifferent to ℘ℜ1 , 

can be denoted as ℘ℜ~℘ℜ1 . 

5. Decision-making approach based 𝐦𝐏𝐈𝐕𝐍𝐒𝐖𝐀 for mPIVNSS 

Assume a set of “𝑠” alternatives such as 𝛽 = {𝛽1, 𝛽2, 𝛽3, … , 𝛽𝑠} for assessment under the team 

of experts such as 𝒰  = {𝓊1, 𝓊2, 𝓊3, … , 𝓊𝑛}  with weights Ω  = (Ω1, Ω1, … , Ω𝑛)
𝑇  such that Ω𝑖  >  0, 

∑ Ω𝑖
𝑛
𝑖=1  = 1. Let ℰ  = {𝑒1, 𝑒2, … , 𝑒𝑚} be a set of attributes with weights γ = (γ1, γ2, γ3, … , γ𝑚)

𝑇  be a 

weight vector for parameters such as γ𝑗 > 0, ∑ γ𝑗
𝑚
𝑗=1  = 1. The team of experts {𝓊𝑖 : 𝑖 = 1, 2,…, 𝑛} 

evaluate the alternatives {𝛽(𝑧): 𝑧 = 1, 2, …, 𝑠} under the considered parameters {e𝑗: 𝑗 = 1, 2, …, 𝑚} 

given in the form of mPIVNSNs ℒ𝑖𝑗
(𝑧)

 = (𝓊𝛼𝑖𝑗
(𝑧)
, 𝓋𝛼𝑖𝑗

(𝑧)
,𝓌𝛼𝑖𝑗

(𝑧)
), where 𝓊𝛼𝑖𝑗

(𝑧)
 = [𝓊𝛼𝑖𝑗

ℓ (𝑢), 𝓊𝛼𝑖𝑗
𝔲 (𝑢)], 𝓋𝛼𝑖𝑗

(𝑧)
 = 

[𝓋𝛼𝑖𝑗
ℓ (𝑢), 𝓋𝛼𝑖𝑗

𝔲 (𝑢)] , and 𝓌𝛼𝑖𝑗

(𝑧)
 = [𝓌𝛼𝑖𝑗

ℓ (𝑢),𝓌𝛼𝑖𝑗
𝔲 (𝑢)] , here 0 ≤  𝓊𝛼

ℓ (𝑢), 𝓊𝛼
𝔲 (𝑢) , 𝓋𝛼

ℓ(𝑢), 𝓋𝛼
𝔲(𝑢) , 

𝓌𝛼
ℓ(𝑢),𝓌𝛼

𝔲(𝑢)  ≤  1 and 0 ≤ 𝓊𝛼𝑖𝑗
𝔲 (𝑢)  +  𝓋𝛼𝑖𝑗

𝔲 (𝑢)  + 𝓌𝛼𝑖𝑗
𝔲 (𝑢)  ≤  3. So ∆𝑘  = 

([𝓊𝛼𝑖𝑗
ℓ (𝑢), 𝓊𝛼𝑖𝑗

𝔲 (𝑢)] , [𝓋𝛼𝑖𝑗
ℓ (𝑢), 𝓋𝛼𝑖𝑗

𝔲 (𝑢)] , [𝓌𝛼𝑖𝑗
ℓ (𝑢),𝓌𝛼𝑖𝑗

𝔲 (𝑢)]) for all 𝑖, 𝑗. Experts give their preferences 

for each alternative in terms of mPIVNSNs by using the mPIVNSWA operator in the form of ∆𝑘 = 

([𝓊𝛼𝑖𝑗
ℓ (𝑢), 𝓊𝛼𝑖𝑗

𝔲 (𝑢)] , [𝓋𝛼𝑖𝑗
ℓ (𝑢), 𝓋𝛼𝑖𝑗

𝔲 (𝑢)] , [𝓌𝛼𝑖𝑗
ℓ (𝑢),𝓌𝛼𝑖𝑗

𝔲 (𝑢)]) . Compute the score values for each 

alternative and analyze the ranking of the alternatives. 

5.1 Algorithm for mPIVNSWA operator 

Step 1. Develop the m-polar interval-valued neutrosophic soft matrix for each alternative. 

Step 2. Aggregate the mPIVNSNs for each alternative into a collective decision matrix ∆𝑘 by using 

the mPIVNSWA operator. 

Step 3. Compute the score value for each alternative ∆𝑘, where 𝑘 = 1,2,⋯ , 𝑠.” 

Step 4. Choose the best alternative 𝛽(𝑘). 

Step 5. Alternatives ranking. 

A flow chart of the above-presented model is given in the following Figure 1. 
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Figure 1: Flowchart of the proposed model 

5.2. Application of the Proposed Model in Decision Making 

This section utilized the developed approach based on the mPIVNSWA operator for decision-

making. 

5.2.1. Numerical Example 

A university calls for the appointment of a vacant position of associate professor. For further 

assessment, four candidates (alternatives) chooses after preliminary review such as {𝛽(1), 𝛽(2), 𝛽(3), 

𝛽(4)}. The president of the institution {has hired a team of three experts𝓊1, 𝓊2, 𝓊3} with weights 

(0.25, 0.30, 0.45)𝑇 for final scrutiny. First of all, the group of experts decides the parameters for the 

selection of the candidate, such as 𝑒1 = experience, 𝑒2 = publications, and 𝑒3 = research quality with 

weights (0.35, 0.25, 0.40)𝑇. Each expert gives preferences for each alternative in mPIVNSNs under 

the considered parameters. The developed methods to find the best alternative for the position of 

associate professor are presented in 5.1. 

5.2.2. Applications of proposed approaches. 

Assume {𝛽(1), 𝛽(2), 𝛽(3), 𝛽(4)} be a set of alternatives which are shortlisted for interview and ℰ 

= {𝑒1 = experience, 𝑒2 = publications, 𝑒3= research quality} be a set of parameters for the selection of 

associate professor. Let ℜ and ℒ ⊆ ℰ . Then we construct the 3-PIVNSS ℘ℜ(𝑒) according to the 

requirement of university management such as follows: 

Step 1. The experts will evaluate the condition in the case of mPIVNSNs. There are just four 

alternatives; parameters and a summary of their scores given in Tables 2, 3, 4, 5. 

Table 1. Construction of 3-PIVNSS of Alternatives According to Management Requirement 

℘𝕽(𝒆) 𝒆𝟏 𝒆𝟐 𝒆𝟑 

Step 1

•Develop the m-polar interval-valued neutrosophic soft 
matrix for each alternative

Step 2

•Aggregate the mPIVNSNs for each alternative into a 
collective decision matrix 

Step 3
•Compute the score value for each alternative

Step 4
•Choose the best alternative

Step 5
•Alternatives ranking
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𝓾𝟏 

([. 3, .5], [. 2, .4], [. 2, .6]), 

([. 2, .3], [. 5, .7], [. 1, .3]), 

([. 5, .6], [. 1, .3], [.4, .6]) 

([. 2, .4], [. 3, .5], [. 3, .6]), 

([. 2, .3], [. 2, .4], [. 4, .5]), 

([. 4, .6], [. 1, .3], [.2, .4]) 

([. 6, .7], [. 2, .3], [.3, .4]), 

([.4, .5], [.5, .8], [.1, .2]), 

([.1, .2], [.5, .8], [.2, .4]) 

𝓾𝟐 

([. 5, .7], [. 1, .2], [. 4, .6]), 

([. 2, .4], [. 3, .4], [. 2, .5]) 

([. 6, .8], [. 1, .2], [.3, .5]) 

([.5, .6], [.2, .3], [.3, .4]), 

([.4, .6], [.4, .5], [.3, .5]), 

([.3, .5], [.4, .5], [.1, .3]) 

([. 5, .7], [. 1, .2], [.5, .6]), 

([.2, .4], [.5, .6], [.4, .6]), 

([. 2, .4], [. 3, .4], [. 2, .5]) 

𝓾𝟑 

([. 4 .6], [. 2, .3], [. 1, .4]), 

([. 2, .5], [. 2, .3], [. 1, .6]),  

([. 3, .4], [. 2, .5], [.5, .7]) 

([.3, .5], [.4, .5], [.1, .3]), 

([.2, .4], [.7, .8], [.1, .2]), 

([.1, .2], [.7, .8], [.2, .3]) 

([. 2, .3], [. 5, .7], [. 1, .3]), 

([. 3, .4], [. 2, .5], [.5, .7]), 

([. 2, .4], [. 3, .5], [. 3, .6]) 

Construct the 3-PIVNSS ℘ℒ
(𝑡)
(𝑒) for each alternative according to experts, where 𝑡 = 1, 2, 3, 4. 

Table 2. Evaluation Report for Alternative 𝛽(1) 

℘𝓛
(𝟏)
(𝒆) 𝒆𝟏 𝒆𝟐 𝒆𝟑 

𝓾𝟏 

([.2, .4], [.4, .5], [.3, .4]), 

([.6, .7], [.1, .2], [.2, .3]),  

([.3, .4], [.4, .5], [.2, .4]) 

([.3, .4], [.4, .5], [.2, .5]), 

([.3, .6], [.2, .3], [.1, .2]), 

([.4, .6], [.2, .3], [.4, .5]) 

([.2, .4], [.4, .6], [.1, .2]), 

([.1, .3], [.6, .7], [.2, .3]), 

([.4, .5], [.2, .5], [.2, .3]) 

𝓾𝟐 

([.5, .7], [.1, .2], [.2, .4]), 

([.7, .8], [.1, .2], [.2, .4]) 

([.1, .3], [.1, .5], [.2, .5]) 

([.1, .4], [.2, .4], [.1, .2]), 

([.2, .5], [.2, .4], [.3, .5]), 

([.3, .5], [.2, .4], [.4, .6]) 

([. 5, .7], [. 1, .2], [.5, .6]), 

([.3, .5], [.3, .4], [.6, .7]), 

([. 2, .4], [. 3, .4], [. 2, .5]) 

𝓾𝟑 

([.4, .5], [.2, .5], [.1, .2]), 

([.4, .7], [.1, .2], [.1, .2]),  

([. 3, .4], [. 2, .5], [.5, .7]) 

([.6, .8], [.1, .2], [.1, .5]), 

([.2, .4], [.7, .8], [.1, .2]), 

([.5, .7], [.1, .2], [.2, .4]) 

([.5, .6], [.2, .3], [.4, .5]), 

([.3, .4], [.4, .5], [.2, .4]), 

([. 2, .4], [. 3, .5], [. 3, .6]) 

 

Table 3. Evaluation Report for Alternative 𝛽(2) 

℘𝓛
(𝟐)
(𝒆) 𝒆𝟏 𝒆𝟐 𝒆𝟑 

𝓾𝟏 

([.2, .4], [.4, .6], [.4, .5]), 

([.2, .3], [.4, .6], [.3, .5]), 

([.1, .2], [.6, .8], [.2, .5]) 

([.4, .5], [.2, .5], [.1, .2]), 

([.2, .3], [.4, .6], [.3, .5]), 

([.1, .2], [.6, .8], [.2, .5]) 

([.7, .8], [.1, .2], [.2, .3]), 

([.1, .3], [.6, .7], [.2, .5]), 

([.4, .5], [.2, .5], [.1, .2]) 

𝓾𝟐 

([.5, .7], [.1, .2], [.2, .4]), 

([.1, .3], [.6, .7], [.2, .6]) 

([.1, .4], [.2, .5], [.4, .6]) 

([.1, .4], [.2, .4], [.1, .2]), 

([.1, .2], [.2, .5], [.4, .6]), 

([.1, .4], [.2, .5], [.4, .6]) 

([.1, .4], [.2, .5], [.4, .6]), 

([.3, .4], [.2, .6], [.4, .6]), 

([. 2, .4], [. 3, .4], [. 2, .5]) 

𝓾𝟑 

([.4, .5], [.2, .5], [.1, .2]), 

([.1, .2], [.2, .5], [.4, .6]),  

([.3, .5], [.3, .5], [.6, .7]) 

([.3, .5], [.3, .5], [.6, .7]), 

([.1, .2], [.2, .5], [.4, .6]), 

([.5, .7], [.1, .2], [.2, .4]) 

([.2, .4], [.4, .5], [.6, .8]), 

([.3, .5], [.3, .5], [.6, .7]), 

([.1, .2], [.2, .5], [.4, .6]) 

Table 4. Evaluation Report for Alternative 𝛽(3) 

℘𝓛
(𝟑)
(𝒆) 𝒆𝟏 𝒆𝟐 𝒆𝟑 
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𝓾𝟏 

([.6, .7], [.1, .2], [.3, .5]), 

([.6, .8], [.1, .2], [.2, .3]), 

([.6, .7], [.3, .5], [.1, .2]) 

([.7, .8], [.1, .2], [.2, .5]), 

([.6, .7], [.1, .2], [.1, .2]), 

([.5, .8], [.1, .2], [.2, .4]) 

([.1, .3], [.6, .7], [.2, .5]), 

([.7, .8], [.1, .2], [.2, .3]), 

([.5, .7], [.3, .4], [.2, .3]) 

𝓾𝟐 

([.5, .7], [.2, .5], [.2, .3]), 

([.7, .8], [.3, .5], [.1, .3]) 

([.4, .7], [.2, .3], [.3, .7]) 

([.5, .6], [.3, .4], [.1, .2]), 

([.1, .2], [.2, .5], [.4, .6]), 

([.4, .6], [.2, .3], [.1, .2]) 

([.1, .4], [.2, .5], [.4, .6]), 

([.4, .6], [.2, .3], [.1, .2]]), 

([. 2, .4], [. 3, .4], [. 2, .5]) 

𝓾𝟑 

([.4, .6], [.2, .3], [.1, .2]), 

([.1, .2], [.2, .5], [.4, .6]),  

([.6, .8], [.1, .2], [.1, .3]) 

([.3, .5], [.3, .5], [.6, .7]), 

([.6, .8], [.1, .2], [.1, .2]), 

([.7, .8], [.1, .2], [.2, .4]) 

([.6, .8], [.3, .4], [.1, .2]), 

([.5, .7], [.1, .2], [.4, .5]), 

([.1, .2], [.2, .5], [.4, .6]) 

Table 5. Evaluation Report for Alternative 𝛽(4) 

℘𝓛
(𝟒)
(𝒆) 𝒆𝟏 𝒆𝟐 𝒆𝟑 

𝓾𝟏 

([.3, .5], [.2, .4], [.1, .2]), 

([.3, .6], [.1, .2], [.4, .7]), 

([.4, .7], [.3, .4], [.2, .3]) 

([.7, .8], [.2, .4], [.3, .5]), 

([.5, .7], [.3, .4], [.2, .4]), 

([.4, .6], [.2, .5], [.3, .4]) 

([.2, .3], [.5, .7], [.2, .4]), 

([.5, .7], [.2, .4], [.3, .5]), 

([.4, .5], [.5, .7], [.2, .4]) 

𝓾𝟐 

([.4, .7], [.3, .5], [.2, .4]), 

([.5, .8], [.3, .6], [.2, .3]) 

([.4, .6], [.2, .3], [.3, .5]) 

([.5, .8], [.3, .4], [.2, .3]), 

([.2, .4], [.2, .3], [.4, .5]), 

([.3, .5], [.2, .3], [.3, .5]) 

([.2, .4], [.2, .3], [.3, .6]), 

([.4, .6], [.2, .3], [.1, .2]]), 

([. 2, .4], [. 3, .4], [. 2, .5]) 

𝓾𝟑 

([.3, .5], [.3, .5], [.1, .2]), 

([.1, .2], [.2, .5], [.4, .6]),  

([.5, .7], [.2, .4], [.1, .3]) 

([.3, .5], [.4, .6], [.6, .7]), 

([.5, .7], [.1, .2], [.4, .5]), 

([.3, .5], [.2, .5], [.1, .3]) 

([.4, .6], [.3, .5], [.1, .2]), 

([.6, .7], [.1, .2], [.3, .5]), 

([.2, .5], [.2, .3], [.4, .6]) 

Step 2. The opinion of the experts for each alternative are aggregated by using equation 4.2. Hence, 

we get 

∆1  = ⟨[. 3144 .5379], [. 1819, .3711], [. 2437, .3752]⟩ , ∆2  = 

⟨[. 4569 .6073], [. 2813, .3947], [. 2988, .4815]⟩ , ∆3  = ⟨[. 3303 .4884], [. 3018, .4429], [. 4296, .5670]⟩ , 

and ∆4 = ⟨[. 3530 .5200], [. 2815, .4420], [. 3546, .5037]⟩. 

Step 3. Compute the score values for each alternative by using Definition 4.5 (1). 𝕊(∆1) = .2045, 𝕊(∆2) 

= .2004, 𝕊(∆3) = .1709, and 𝕊(∆4) = .1828. 

Step 4. Therefore, the ranking of the alternatives is as follows 𝕊(∆1) > 𝕊(∆2) > 𝕊(∆4) > 𝕊(∆3). So, 

𝛽(1) > 𝛽(2)  > 𝛽(4) > 𝛽(3), hence, the alternative 𝛽(1) is the most suitable alternative for the position 

of associate professor. 

6. Discussion and Comparative Analysis: 

     In the next section, we will discuss the proposed method's effectiveness, simplicity, flexibility, 

and good location. A brief comparative analysis of our proposed method and popular method. 

6.1 Comparative Studies 

This manuscript develops a new DM technology based on the mPIVNSWA operator using 

mPIVNSS. Compared with existing technologies, the developed method is more operative and 

provides appropriate results in MCDM problems. Through this scientific research and comparison, 

we realize that the results of the proposed method are more versatile than traditional methods. 

However, the DM process contains more information to deal with uncertain data than the current 
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DM method. Except that the hybrid structure of multiple FS becomes a particular case of mPIVNSS 

adds some appropriate conditions. Among them, the information related to the object can be 

displayed accurately and analytically, so mPIVNSS is an effective power tool to deal with inaccurate 

and uncertain information in the DM process. Therefore, our method is more suitable, flexible, and 

better than FS's unique and accessible hybrid structure. 

Table 6: Comparative analysis between some existing techniques and the proposed approach 

 Set Truthiness Indeterminacy Falsity Multi-polarity Loss of information 

Chen et al. [33] mPFS ✓ × × ✓ × 

Xu et al. [38] IFS ✓ × ✓ × × 

Zhang et al. [39] IFS ✓ × ✓ × ✓ 

Talebi et al. [42] mPIVIFS ✓ × ✓ ✓ ✓ 

Yager [40, 41] PFS ✓ × ✓ × × 

Naeem et al. [43] mPyFS ✓ × ✓ ✓ × 

Zhang et al. [44] INSs ✓ ✓ ✓ × × 

Ali et al. [35] BPNSS ✓ ✓ ✓ × × 

Proposed 

approach 

mPIVNSS ✓ ✓ ✓ ✓ × 

7. Conclusion 

This manuscript establishes a new hybrid structure, mPIVNSS, by combining two independent 

structure m-pole fuzzy sets and interval-valued neutrosophic soft sets. Several basic operations have 

been introduced for mPIVNSS, and their ideal characteristics have been discussed. In addition, we 

developed the algorithm of mPIVNSS and used the proposed algorithm to establish a neutrosophic 

weighted aggregation operator for m-polar interval-valued. A decision-making method was 

developed to solve the MCDM problem by using our mPIVNSWA operator. A comparative analysis 

was also carried out to prove the proposed method. Finally, the proposed technique shows higher 

stability and practicality for decision-makers in the decision-making process. Based on the results 

obtained, it can be concluded that this method is most suitable for solving the MCDM problem in 

today's life. We will apply this technique to other fields in future work, such as mathematical 

programming, cluster analysis, etc. 
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Abstract:  

The paper proposes the generalized version of the multipolar neutrosophic soft set. The 

neutrosophic soft set (NSS) is an advanced extension of the neutrosophic set, which accommodates 

the alternatives' parametrized values. This paper extends the NSS to generalized multipolar NSS 

and introduces some fundamental operations for generalized multipolar NSS with their necessary 

properties. We define the correlation coefficient (CC) and weighted correlation coefficient (WCC) 

for the generalized multi-polar neutrosophic soft set. Several desirable properties for CC and WCC 

and their relationship are derived. Finally, based on established correlation measures, a decision-

making algorithm under the neutrosophic environment is stated to tackle uncertain and vague 

information. The applicability of the proposed algorithm is demonstrated through a case study of 

the decision-making problem. A comparative analysis with several existing studies reveals the 

effectiveness of the approach.  

Keywords: multipolar neutrosophic set; generalized multipolar neutrosophic soft set; CC; WCC; 

MCDM. 

 

1. Introduction 

Uncertainty plays a dynamic role in many areas of life (such as modeling, medicine, engineering, 

etc.). However, people have raised a common question: how do we express and use the concept of 

uncertainty in mathematical modeling. Many researchers planned and endorsed different methods 

to resolve those difficulties that contain hesitation. First of all, Zadeh presented the idea of fuzzy sets 

(FS) [1] to resolve uncertain complications. But in some cases, fuzzy sets are unable to handle the 

situation. To overcome such scenarios, the idea of interval-valued fuzzy sets (IVFS) was presented by 

Turksen [2]. In some cases, we must consider the object's nonmembership value, which cannot be 

dealt with by FS nor by IVFS. To conquer such issues, Atanassov planned the intuitionistic fuzzy set 
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(IFS) [3]. The idea proposed by Atanassov involves only under-considered data and membership and 

non-membership values. However, the IFS theory cannot handle the overall incompatibility and 

inaccurate information. To solve the problem of incompatibility and incorrect information, 

Smarandache [4] proposed the idea of NS. Molodtsov [5] presented a general mathematical tool for 

addressing uncertain environments known as soft set (SS). Maji et al. [6] extended the concept of SS 

and proposed fundamental operations with their desirable properties. Maji et al. [7] established a 

decision-making technique utilizing their developed operations and used it for decision making. Ali 

et al. [8] extended the notion of SS and developed some new operations with their properties. The 

authors [9] proved De Morgan's law by using different operators for the SS theory. 

Maji [10] offered the idea of a neutrosophic soft set (NSS) with necessary operations and 

properties. The concept of the possibility NSS was developed by Karaaslan [11]. He also established 

a DM technique utilizing And-product based on the possibility NSS to solve DM issues. Broumi [12] 

created the generalized NSS with some operations and properties and used the proposed concept for 

DM. Deli and Subas [13] extended the notion of single-valued Neutrosophic numbers (SVNNs) and 

offered a DM approach to solving MCDM problems. They also developed the idea of cut sets for 

SVNNs. Wang et al. [14] presented the correlation coefficient (CC) for SVNSs and constructed a DM 

approach utilizing their developed correlation measure. Ye [15] offered the idea of simplified NSs 

and developed the aggregation operators (AOs) for simplified NSs, and established a DM 

methodology to solve MCDM problems utilizing his developed AOs. Masooma et al. [16] proposed 

a multipolar neutrosophic set by combining the multipolar fuzzy set and NS. They also established 

various characterization and operations with examples. Zulqarnain et al. [17] introduced some AOs 

and correlation coefficients for interval-valued IFSS. They also extended the TOPSIS technique using 

their developed correlation measures to solve the MADM problem. Zulqarnain et al. [18] introduced 

operational laws for Pythagorean fuzzy soft numbers (PFSNs). They developed AOs such as 

Pythagorean fuzzy soft weighted average and geometric using defined operational laws for PFSNs. 

They also planned a DM approach to solve MADM problems with the help of presented operators. 

Zulqarnain et al. [19] planned the TOPSIS methodology in the PFSS environment based on the 

correlation coefficient. They also established a DM methodology to resolve the MCGDM concerns 

and utilized the developed approach in green supply chain management. 

Many mathematicians have developed various similarity measures, correlation coefficients, 

aggregation operators, and decision-making applications in the past few years. Zulqarnain et al. [20, 

21] introduced some novel AOs for PFSS based on Einstein norms. Siddique et al. [22] proposed the 

score matrix for PFSS. Peng and Garg [23] proposed various PFS similarity measures with multiple 

parameters. Zulqarnain et al. [24, 25] presented the generalized neutrosophic TOPSIS and an 

integrated neutrosophic TOPSIS model and used their proposed techniques for supplier selection in 

the production industry. Saeed et al. [26] established the concept of mPNSS with properties and 

operators. They also developed a distance-based similarity measure and used the proposed similarity 

measure for decision-making and medical diagnosis. Zulqarnain et al. [27] developed some novel 

AOs for PFSS considering the interaction. Zulqarnain et al. [34] presented the generalized multipolar 

NSS and introduced some information measures to solve decision-making problems. They also 
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extended the concept of multipolar NSS to multipolar interval-valued NSS with basic operations and 

their desirable properties [35]. 

In this era, professionals believe that real life is moving toward multi-polarization. Therefore, 

there is no doubt that the multi-polarization of information has played an essential role in the 

prosperity of many fields of science and technology. In neurobiology, multipolar neurons accumulate 

a lot of info from other neurons. The motivation for expanding and mixing this research work is 

gradually given in the whole manuscript. We prove that under any appropriate circumstances, 

different hybrid structures containing fuzzy sets will be converted into special privileges of GmPNSS. 

The concept of the neutrosophic environment of multipolar neutrosophic soft sets is novel. We 

discuss the effectiveness, flexibility, quality, and advantages of planned work and algorithms. This 

research will be the most versatile form that can be used to merge data in daily life complications. In 

the future, current work may be extended to different types of hybrid structures and decision-making 

techniques in numerous fields of life. 

The following research is organized: In section 2, we recollected some basic definitions used in the 

subsequent sequel, such as NS, SS, NSS, and multipolar neutrosophic set. In section 3, we proposed 

the generalized version of mPNSS with its operations and introduced the idea of CC and WCC with 

their properties. Furthermore, a decision-making approach has been established based on developed 

CC. Finally, we use the developed method for decision-making in section 4. We also presented the 

comparative study of our proposed similarity measures and CC with existing techniques in section 

5. 

2. Preliminaries 

In this section, we recollect some basic concepts such as the neutrosophic set, soft set, neutrosophic 

soft set, and m-polar neutrosophic soft set used in the following sequel. 

Definition 2.1 [4]  

Let 𝓤 be a universe, and 𝓐 be an NS on 𝓤 is defined as 𝓐 = {𝒖, (𝓾𝓐(𝒖), 𝓿𝓐(𝒖),𝔀𝓐(𝒖)): 𝒖 ∈

𝓤}, where 𝓾, 𝓿, 𝔀: 𝓤 → ]𝟎−, 𝟏+[ and 𝟎− ≤ 𝓾𝓐(𝒖) + 𝓿𝓐(𝒖) + 𝔀𝓐(𝒖) ≤ 𝟑+. 

Definition 2.2 [5]  

Let 𝒰 be the universal set and ℰ be the set of attributes concerning 𝒰. Let 𝒫(𝒰) be the power set 

of 𝒰 and 𝒜 ⊆ ℰ. A pair (ℱ,𝒜) is called a soft set over 𝒰, and its mapping is given as 

ℱ:𝒜 → 𝒫(𝒰) 

It is also defined as: 

(ℱ,𝒜) = {ℱ(ℯ) ∈ 𝒫(𝒰): ℯ ∈ ℰ,ℱ(ℯ) =  ∅ 𝑖𝑓 ℯ ∉ 𝒜} 

Definition 2.3 [13]  

Let 𝒰  be the universal set and ℰ  be the set of attributes concerning 𝒰 . Let 𝒫(𝒰)  be the 

Neutrosophic values of 𝒰 and 𝒜 ⊆ ℰ. A pair (ℱ,𝒜) is called a Neutrosophic soft set over 𝒰 and 

its mapping is given as 

ℱ:𝒜 → 𝒫(𝒰) 

Definition 2.4 [19]  

Let 𝒰 be the universal set and ℰ be the set of attributes concerning 𝒰, then ℱℰ is said to multipolar 

neutrosophic set if  



Neutrosophic Sets and Systems, Vol. 51, 2022     224  

 

 

Aiyared Iampan, Rana Muhammad Zulqarnain, Imran Siddique, Hamiden Abd El-Wahed Khalifa, A Decision-Making 

Approach Based on Correlation Coefficient For Generalized multi-Polar Neutrosophic Soft Set 

ℱℰ  = {𝑢, (𝑠𝑖  •  𝓊𝑒(𝑢), 𝑠𝑖  •  𝓋𝑒(𝑢), 𝑠𝑖  •  𝓌𝑒(𝑢)): 𝑢 ∈  𝒰, 𝑒 ∈ ℰ, 𝑖 = 1, 2, 3, … .𝑚} , where 𝑠𝑖  •  𝓊ℰ , 𝑠𝑖  •

 𝓋ℰ , 𝑠𝑖  •  𝓌ℰ: 𝒰 → [0, 1], and 0 ≤ 𝑠𝑖  •  𝓊ℰ(𝑢) + 𝑠𝑖  •  𝓋ℰ(𝑢) + 𝑠𝑖  •  𝓌ℰ(𝑢) ≤ 3; 𝑖 = 1, 2, 3, … .𝑚. 𝓊𝑒 , 

𝓋𝑒, and 𝓌𝑒 represent the truth, indeterminacy, and falsity of the considered alternative. 

3. Basic Operations and Correlation Coefficient for Generalized Multi-Polar Neutrosophic Soft 

Set 

In this section, we develop the concept of GmPNSS and introduce aggregate operators on GmPNSS 

with their properties. 

Definition 3.1  

Let 𝓤 and E are universal and set of attributes respectively, and 𝓐 ⊆ E, if there exists a mapping 

Φ such as  

Φ: 𝒜 → 𝐺𝑚𝑃𝑁𝑆𝑆𝒰 

Then (Φ, 𝒜) is called GmPNSS over 𝒰 defined as follows 

𝛶𝐾  = (Φ, 𝒜) = {(𝑒, (𝑢,Φ𝒜(𝑒)(𝑢))) : 𝑒 ∈ 𝐸, 𝑢 ∈ 𝒰},  

where Φ𝒜(𝑒)  = {𝑢, (𝑠𝑖 •  𝓊𝒜(𝑒)(𝑢), 𝑠𝑖  •  𝓋𝒜(𝑒)(𝑢), 𝑠𝑖  •  𝓌𝒜(𝑒)(𝑢)) : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝑖 ∈  1, 2, 3, … ,𝑚} , 

and 

0 ≤ 𝑠𝑖  •  𝓊𝒜(𝑒)(𝑢) + 𝑠𝑖  •  𝓋𝒜(𝑒)(𝑢) + 𝑠𝑖  •  𝓌𝒜(𝑒)(𝑢) ≤ 3 for all 𝑖 ∈ 1, 2, 3,…, 𝑚; 𝑒 ∈ 𝐸 and 𝑢 ∈ 𝒰. 

Definition 3.2 

Let Υ𝒜  and Υ𝐵 are two GmPNSS over 𝒰, then Υ𝒜  is called a multi-polar neutrosophic soft subset 

of Υ𝐵. If  

𝑠𝑖  •  𝓊𝒜(𝑒)(𝑢) ≤ 𝑠𝑖  •  𝓊𝐵(𝑒)(𝑢), 𝑠𝑖  • 𝓋𝒜(𝑒)(𝑢) ≤ 𝑠𝑖  • 𝓋𝐵(𝑒)(𝑢) and 𝑠𝑖  •  𝓌𝒜(𝑒)(𝑢) ≥ 𝑠𝑖  • 𝓌𝐵(𝑒)(𝑢) 

for all 𝑖 ∈ 1, 2, 3,…, 𝑚; 𝑒 ∈ 𝐸 and 𝑢 ∈ 𝒰. 

Definition 3.3 

Let Υ𝒜  and Υ𝐵 are two GmPNSS over 𝒰, then Υ𝒜  = Υ𝐵, if  

𝑠𝑖  •  𝓊𝒜(𝑒)(𝑢) ≤ 𝑠𝑖  •  𝓊𝐵(𝑒)(𝑢), 𝑠𝑖  •  𝓊𝐵(𝑒)(𝑢) ≤ 𝑠𝑖  •  𝓊𝒜(𝑒)(𝑢) 

𝑠𝑖  •  𝓋𝒜(𝑒)(𝑢) ≤ 𝑠𝑖  •  𝓋𝐵(𝑒)(𝑢), 𝑠𝑖  •  𝓋𝐵(𝑒)(𝑢) ≤ 𝑠𝑖  •  𝓋𝒜(𝑒)(𝑢) 

𝑠𝑖  •  𝓌𝒜(𝑒)(𝑢) ≥ 𝑠𝑖  •  𝓌𝐵(𝑒)(𝑢), 𝑠𝑖  •  𝓌𝐵(𝑒)(𝑢) ≥ 𝑠𝑖  • 𝓌𝒜(𝑒)(𝑢) 

for all 𝑖 ∈ 1, 2, 3,…, 𝑚; 𝑒 ∈ 𝐸 and 𝑢 ∈ 𝒰. 

Definition 3.4  

Let 𝓕𝑨̌ = {𝒖𝒌, (𝒔𝒊  •  𝓾𝑨̌(𝒖𝒌), 𝒔𝒊  •  𝓿𝑨̌(𝒖𝒌), 𝒔𝒊  •  𝔀𝑨̌(𝒖𝒌)): 𝒖𝒌 ∈  𝓤;  𝒊 ∈  𝟏, 𝟐, 𝟑, … ,𝒎} and 

𝒢𝐵̌ = {𝑢𝑘, (𝑠𝑖  •  𝓊𝐵̌(𝑢𝑘), 𝑠𝑖  •  𝓋𝐵̌(𝑢𝑘), 𝑠𝑖  •  𝓌𝐵̌(𝑢𝑘)): 𝑢𝑘 ∈  𝒰;  𝑖 ∈  1, 2, 3, … ,𝑚} are two GmPNSS over 

a set of parameters 𝐸  = {𝓍1 , 𝓍2 , 𝓍3 , …, 𝓍𝑛 }. Then informational neutrosophic energies of two 

GmPNSS can be expressed as follows 

ℰ𝐺𝑚𝑃𝑁𝑆𝑆  (ℱ𝐴) = ∑ ∑ ((𝑠𝑖 • 𝓊𝐴𝑗(𝑢𝑘))
2

+ (𝑠𝑖 • 𝓋𝐴𝑗(𝑢𝑘))
2

+ (𝑠𝑖 • 𝓌𝐴𝑗
(𝑢𝑘))

2

)𝑡
𝑘=1

𝑧
𝑗=1  

ℰ𝐺𝑚𝑃𝑁𝑆𝑆  (𝒢𝐵̌) = ∑ ∑ ((𝑠𝑖 • 𝓊𝐵̌𝑗(𝑢𝑘))
2

+ (𝑠𝑖 • 𝓋𝐵̌𝑗(𝑢𝑘))
2

+ (𝑠𝑖 • 𝓌𝐵̌𝑗
(𝑢𝑘))

2

)𝑡
𝑘=1

𝑧
𝑗=1  

Definition 3.5  

The correlation of two GmPNSS can be presented as follows  

Ϛ𝐺𝑚𝑃𝑁𝑆𝑆(ℱ𝐴, 𝒢𝐵̌) =  
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∑ ∑ {(
𝑠𝑖 • 𝓊𝐴𝑗(𝑢𝑘)𝑠𝑖 • 𝓊𝐵̌𝑗(𝑢𝑘) + 𝑠𝑖 • 𝓋𝐴𝑗(𝑢𝑘)𝑠𝑖 • 𝓋𝐵̌𝑗(𝑢𝑘) +

𝑠𝑖 • 𝓌𝐴𝑗
(𝑢𝑘) 𝑠𝑖 • 𝓌𝐵̌𝑗

(𝑢𝑘)
) : 𝑖 ∈ 1, 2, 3, … ,𝑚. }𝑡

𝑘=1
𝑧
𝑗=1              (3.1) 

Definition 3.6  

Let  ℱ𝐴 and 𝒢𝐵̌ are two GmPNSS, then the CC between them can be defined as follows   

ℛ𝐺𝑚𝑃𝑁𝑆𝑆 (ℱ𝐴, 𝒢𝐵̌) = 
Ϛ𝐺𝑚𝑃𝑁𝑆𝑆(ℱ𝐴̌,   𝒢𝐵̌)

√ℰ𝐺𝑚𝑃𝑁𝑆𝑆(ℱ𝐴̌,ℱ𝐴̌) .  ℰ𝐺𝑚𝑃𝑁𝑆𝑆(𝒢𝐵̌,𝒢𝐵̌)
                                 (3.2) 

ℛ𝐺𝑚𝑃𝑁𝑆𝑆 (ℱ𝐴, 𝒢𝐵̌) = 

∑ ∑ (𝑠𝑖•𝓊𝐴̌𝑗
(𝑢𝑘)𝑠𝑖•𝓊𝐵̌𝑗

(𝑢𝑘)+𝑠𝑖•𝓋𝐴̌𝑗
(𝑢𝑘)𝑠𝑖•𝓋𝐵̌𝑗

(𝑢𝑘)+𝑠𝑖•𝓌𝐴̌𝑗
(𝑢𝑘) 𝑠𝑖•𝓌𝐵̌𝑗

(𝑢𝑘))
𝑡
𝑘=1

𝑧
𝑗=1

√∑ ∑ ((𝑠𝑖•𝓊𝐴̌𝑗
(𝑢𝑘))

2

+(𝑠𝑖•𝓋𝐴̌𝑗
(𝑢𝑘))

2

+(𝑠𝑖•𝓌𝐴̌𝑗
(𝑢𝑘))

2

)𝑡
𝑘=1

𝑧
𝑗=1  √∑ ∑ ((𝑠𝑖•𝓊𝐵̌𝑗

(𝑢𝑘))

2

+(𝑠𝑖•𝓋𝐵̌𝑗
(𝑢𝑘))

2

+(𝑠𝑖•𝓌𝐵̌𝑗
(𝑢𝑘))

2

)𝑡
𝑘=1

𝑧
𝑗=1

  

Proposition 3.7 

Let  ℱ𝐴  and 𝒢𝐵̌  are two GmPNSS, then the CC ℛ𝐺𝑚𝑃𝑁𝑆𝑆  (ℱ𝐴 , 𝒢𝐵̌ ) between them satisfied the 

following properties 

1. 0 ≤ ℛ𝐺𝑚𝑃𝑁𝑆𝑆 (ℱ𝐴, 𝒢𝐵̌) ≤ 1 

2. ℛ𝐺𝑚𝑃𝑁𝑆𝑆 (ℱ𝐴, 𝒢𝐵̌) = ℛ𝐺𝑚𝑃𝑁𝑆𝑆 (𝒢𝐵̌, ℱ𝐴) 

3. If  ℱ𝐴 = 𝒢𝐵̌ i. e; 𝑠𝑖 • 𝓊𝐴𝑗(𝑢𝑘) = 𝑠𝑖 • 𝓊𝐵̌𝑗(𝑢𝑘), 𝑠𝑖 • 𝓋𝐴𝑗(𝑢𝑘) = 𝑠𝑖 • 𝓋𝐵̌𝑗(𝑢𝑘), and 𝑠𝑖 • 𝓌𝐴𝑗
(𝑢𝑘) = 

𝑠𝑖 • 𝓌𝐵̌𝑗
(𝑢𝑘) for all 𝑗, 𝑘, where  𝑖 ∈  1, 2, 3, … ,𝑚, then ℛ𝐺𝑚𝑃𝑁𝑆𝑆 (ℱ𝐴, 𝒢𝐵̌) = 1. 

Proof 1  

ℛ𝐺𝑚𝑃𝑁𝑆𝑆 (ℱ𝐴, 𝒢𝐵̌) ≥ 0 is trivial, so we just need to prove that ℛ𝐺𝑚𝑃𝑁𝑆𝑆 (ℱ𝐴, 𝒢𝐵̌)  ≤ 1. 

As we know that  

Ϛ𝐺𝑚𝑃𝑁𝑆𝑆 (ℱ𝐴, 𝒢𝐵̌) = ∑ ∑ (
𝑠𝑖 • 𝓊𝐴𝑗(𝑢𝑘)𝑠𝑖 • 𝓊𝐵̌𝑗(𝑢𝑘) + 𝑠𝑖 • 𝓋𝐴𝑗(𝑢𝑘)𝑠𝑖 • 𝓋𝐵̌𝑗(𝑢𝑘) +

𝑠𝑖 • 𝓌𝐴𝑗
(𝑢𝑘) 𝑠𝑖 • 𝓌𝐵̌𝑗

(𝑢𝑘)
)𝑡

𝑘=1
𝑧
𝑗=1  

= ∑ (𝑠𝑖 • 𝓊𝐴𝑗(𝑢1)𝑠𝑖 • 𝓊𝐵̌𝑗(𝑢1) + 𝑠𝑖 • 𝓋𝐴𝑗(𝑢1)𝑠𝑖 • 𝓋𝐵̌𝑗(𝑢1) + 𝑠𝑖 • 𝓌𝐴𝑗
(𝑢1) 𝑠𝑖 • 𝓌𝐵̌𝑗

(𝑢1))
𝑧
𝑗=1   

+ ∑ (𝑠𝑖 • 𝓊𝐴𝑗(𝑢2)𝑠𝑖 • 𝓊𝐵̌𝑗(𝑢2) + 𝑠𝑖 • 𝓋𝐴𝑗(𝑢2)𝑠𝑖 • 𝓋𝐵̌𝑗(𝑢2) + 𝑠𝑖 • 𝓌𝐴𝑗
(𝑢2) 𝑠𝑖 • 𝓌𝐵̌𝑗

(𝑢2))
𝑧
𝑗=1  

+ 

⋮ 

+ ∑ (𝑠𝑖 • 𝓊𝐴𝑗(𝑢𝑡)𝑠𝑖 • 𝓊𝐵̌𝑗(𝑢𝑡) + 𝑠𝑖 • 𝓋𝐴𝑗(𝑢𝑡)𝑠𝑖 • 𝓋𝐵̌𝑗(𝑢𝑡) + 𝑠𝑖 • 𝓌𝐴𝑗
(𝑢𝑡) 𝑠𝑖 • 𝓌𝐵̌𝑗

(𝑢𝑡))
𝑧
𝑗=1  

= 

{
 
 

 
 (𝑠𝑖 • 𝓊𝐴1(𝑢1)𝑠𝑖 • 𝓊𝐵̌1(𝑢1) + 𝑠𝑖 • 𝓋𝐴1(𝑢1)𝑠𝑖 • 𝓋𝐵̌1(𝑢1) + 𝑠𝑖 • 𝓌𝐴1

(𝑢1) 𝑠𝑖 • 𝓌𝐵̌1
(𝑢1)) +

(𝑠𝑖 • 𝓊𝐴2(𝑢1)𝑠𝑖 • 𝓊𝐵̌2(𝑢1) + 𝑠𝑖 • 𝓋𝐴2(𝑢1)𝑠𝑖 • 𝓋𝐵̌2(𝑢1) + 𝑠𝑖 • 𝓌𝐴2
(𝑢1) 𝑠𝑖 • 𝓌𝐵̌2

(𝑢1)) + ⋯+

(𝑠𝑖 • 𝓊𝐴𝑧(𝑢1)𝑠𝑖 • 𝓊𝐵̌𝑧(𝑢1) + 𝑠𝑖 • 𝓋𝐴𝑧(𝑢1)𝑠𝑖 • 𝓋𝐵̌𝑧(𝑢1) + 𝑠𝑖 • 𝓌𝐴𝑧
(𝑢1) 𝑠𝑖 • 𝓌𝐵̌𝑧

(𝑢1)) }
 
 

 
 

+

{
 
 

 
 (𝑠𝑖 • 𝓊𝐴1(𝑢2)𝑠𝑖 • 𝓊𝐵̌1(𝑢2) + 𝑠𝑖 • 𝓋𝐴1(𝑢2)𝑠𝑖 • 𝓋𝐵̌1(𝑢2) + 𝑠𝑖 • 𝓌𝐴1

(𝑢2) 𝑠𝑖 • 𝓌𝐵̌1
(𝑢2)) +

(𝑠𝑖 • 𝓊𝐴2(𝑢2)𝑠𝑖 • 𝓊𝐵̌2(𝑢2) + 𝑠𝑖 • 𝓋𝐴2(𝑢2)𝑠𝑖 • 𝓋𝐵̌2(𝑢2) + 𝑠𝑖 • 𝓌𝐴2
(𝑢2) 𝑠𝑖 • 𝓌𝐵̌2

(𝑢2)) + ⋯+

(𝑠𝑖 • 𝓊𝐴𝑧(𝑢2)𝑠𝑖 • 𝓊𝐵̌𝑧(𝑢2) + 𝑠𝑖 • 𝓋𝐴𝑧(𝑢2)𝑠𝑖 • 𝓋𝐵̌𝑧(𝑢2) + 𝑠𝑖 • 𝓌𝐴𝑧
(𝑢2) 𝑠𝑖 • 𝓌𝐵̌𝑧

(𝑢2)) }
 
 

 
 

+⋯+

{
 
 

 
 (𝑠𝑖 • 𝓊𝐴1(𝑢𝑘)𝑠𝑖 • 𝓊𝐵̌1(𝑢𝑘) + 𝑠𝑖 • 𝓋𝐴1(𝑢𝑘)𝑠𝑖 • 𝓋𝐵̌1(𝑢𝑘) + 𝑠𝑖 • 𝓌𝐴1

(𝑢𝑘) 𝑠𝑖 • 𝓌𝐵̌1
(𝑢𝑘)) +

(𝑠𝑖 • 𝓊𝐴2(𝑢𝑘)𝑠𝑖 • 𝓊𝐵̌2(𝑢𝑘) + 𝑠𝑖 • 𝓋𝐴2(𝑢𝑘)𝑠𝑖 • 𝓋𝐵̌2(𝑢𝑘) + 𝑠𝑖 • 𝓌𝐴2
(𝑢𝑘) 𝑠𝑖 • 𝓌𝐵̌2

(𝑢𝑘)) + ⋯+

(𝑠𝑖 • 𝓊𝐴𝑧(𝑢𝑘)𝑠𝑖 • 𝓊𝐵̌𝑧(𝑢𝑘) + 𝑠𝑖 • 𝓋𝐴𝑧(𝑢𝑘)𝑠𝑖 • 𝓋𝐵̌𝑧(𝑢𝑘) + 𝑠𝑖 • 𝓌𝐴𝑧
(𝑢𝑘) 𝑠𝑖 • 𝓌𝐵̌𝑧

(𝑢𝑘)) }
 
 

 
 

 

= ∑ (𝑠𝑖 • 𝓊𝐴𝑗(𝑢1)𝑠𝑖 • 𝓊𝐵̌𝑗(𝑢1) + 𝑠𝑖 • 𝓊𝐴𝑗(𝑢2)𝑠𝑖 • 𝓊𝐵̌𝑗(𝑢2) + ⋯+ 𝑠𝑖 • 𝓊𝐴𝑗(𝑢𝑡)𝑠𝑖 • 𝓊𝐵̌𝑗(𝑢𝑡))
𝑧
𝑗=1  

+ ∑ (𝑠𝑖 • 𝓋𝐴𝑗(𝑢1)𝑠𝑖 • 𝓋𝐵̌𝑗(𝑢1) + 𝑠𝑖 • 𝓋𝐴𝑗(𝑢2)𝑠𝑖 • 𝓋𝐵̌𝑗(𝑢2) + ⋯+ 𝑠𝑖 • 𝓋𝐴𝑗(𝑢𝑡)𝑠𝑖 • 𝓋𝐵̌𝑗(𝑢𝑡))
𝑧
𝑗=1  

+ ∑ (𝑠𝑖 • 𝓌𝐴𝑗
(𝑢1)𝑠𝑖 • 𝓌𝐵̌𝑗

(𝑢1) + 𝑠𝑖 • 𝓌𝐴𝑗
(𝑢2)𝑠𝑖 • 𝓌𝐵̌𝑗

(𝑢2) + ⋯+ 𝑠𝑖 • 𝓌𝐴𝑗
(𝑢𝑡)𝑠𝑖 • 𝓌𝐵̌𝑗

(𝑢𝑡))
𝑧
𝑗=1  

By using Cauchy-Schwarz inequality, we get 
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(Ϛ𝐺𝑚𝑃𝑁𝑆𝑆 (ℱ𝐴, 𝒢𝐵̌))
2 ≤ 

{
 
 
 

 
 
 ∑ ((𝑠𝑖 • 𝓊𝐴𝑗(𝑢1))

2

+ (𝑠𝑖 • 𝓊𝐴𝑗(𝑢2))
2

+⋯+ (𝑠𝑖 • 𝓊𝐴𝑗(𝑢𝑡))
2

)𝑧
𝑗=1 +

∑ ((𝑠𝑖 • 𝓋𝐴𝑗(𝑢1))
2

+ (𝑠𝑖 • 𝓋𝐴𝑗(𝑢2))
2

+⋯+ (𝑠𝑖 • 𝓋𝐴𝑗(𝑢𝑡))
2

)𝑧
𝑗=1 +⋯+

∑ ((𝑠𝑖 • 𝓌𝐴𝑗
(𝑢1))

2

+ (𝑠𝑖 • 𝓌𝐴𝑗
(𝑢2))

2

+⋯+ (𝑠𝑖 • 𝓌𝐴𝑗
(𝑢𝑡))

2

)𝑧
𝑗=1

}
 
 
 

 
 
 

 × 

 

{
 
 
 

 
 
 ∑ ((𝑠𝑖 • 𝓊𝐵̌𝑗(𝑢1))

2

+ (𝑠𝑖 • 𝓊𝐵̌𝑗(𝑢2))
2

+⋯+ (𝑠𝑖 • 𝓊𝐵̌𝑗(𝑢𝑡))
2

)𝑧
𝑗=1 +

∑ ((𝑠𝑖 • 𝓋𝐵̌𝑗(𝑢1))
2

+ (𝑠𝑖 • 𝓋𝐵̌𝑗(𝑢2))
2

+⋯+ (𝑠𝑖 • 𝓋𝐵̌𝑗(𝑢𝑡))
2

)𝑧
𝑗=1 +⋯+

∑ ((𝑠𝑖 • 𝓌𝐵̌𝑗
(𝑢1))

2

+ (𝑠𝑖 • 𝓌𝐵̌𝑗
(𝑢2))

2

+⋯+ (𝑠𝑖 • 𝓌𝐵̌𝑗
(𝑢𝑡))

2

)𝑧
𝑗=1

}
 
 
 

 
 
 

 

= {∑ ∑ ((𝑠𝑖 • 𝓊𝐴𝑗(𝑢𝑡))
2

+ (𝑠𝑖 • 𝓋𝐴𝑗(𝑢𝑡))
2

+ (𝑠𝑖 • 𝓌𝐴𝑗
(𝑢𝑡))

2

)𝑡
𝑘=1

𝑧
𝑗=1 } × {∑ ∑ ((𝑠𝑖 • 𝓊𝐵̌𝑗(𝑢𝑡))

2

+𝑡
𝑘=1

𝑧
𝑗=1

(𝑠𝑖 • 𝓋𝐵̌𝑗(𝑢𝑡))
2

+ (𝑠𝑖 • 𝓌𝐵̌𝑗
(𝑢𝑡))

2

)} 

= ℰ𝐺𝑚𝑃𝑁𝑆𝑆  (ℱ𝐴) ∙ ℰ𝐺𝑚𝑃𝑁𝑆𝑆  (𝒢𝐵̌) 

Therefore, (Ϛ𝐺𝑚𝑃𝑁𝑆𝑆  (ℱ𝐴, 𝒢𝐵̌))
2 ≤ ℰ𝐺𝑚𝑃𝑁𝑆𝑆  (ℱ𝐴) ∙ ℰ𝐺𝑚𝑃𝑁𝑆𝑆  (𝒢𝐵̌). Hence, by using Definition 3.6, we 

get   

ℛ𝐺𝑚𝑃𝑁𝑆𝑆 (ℱ𝐴, 𝒢𝐵̌) ≤ 1, so 0 ≤ ℛ𝐺𝑚𝑃𝑁𝑆𝑆 (ℱ𝐴, 𝒢𝐵̌) ≤ 1. 

Proof 2 The proof is obvious. 

Proof 3  

As we know that  

ℛ𝐺𝑚𝑃𝑁𝑆𝑆 (ℱ𝐴, 𝒢𝐵̌) = 

∑ ∑ (𝑠𝑖•𝓊𝐵̌𝑗
(𝑢𝑘)𝑠𝑖•𝓊𝐵̌𝑗

(𝑢𝑘)+𝑠𝑖•𝓋𝐵̌𝑗
(𝑢𝑘)𝑠𝑖•𝓋𝐵̌𝑗

(𝑢𝑘)+𝑠𝑖•𝓌𝐵̌𝑗
(𝑢𝑘) 𝑠𝑖•𝓌𝐵̌𝑗

(𝑢𝑘))
𝑡
𝑘=1

𝑧
𝑗=1

√∑ ∑ ((𝑠𝑖•𝓊𝐵̌𝑗
(𝑢𝑘))

2

+(𝑠𝑖•𝓋𝐵̌𝑗
(𝑢𝑘))

2

+(𝑠𝑖•𝓌𝐵̌𝑗
(𝑢𝑘))

2

)𝑡
𝑘=1

𝑧
𝑗=1  √∑ ∑ ((𝑠𝑖•𝓊𝐵̌𝑗

(𝑢𝑘))

2

+(𝑠𝑖•𝓋𝐵̌𝑗
(𝑢𝑘))

2

+(𝑠𝑖•𝓌𝐵̌𝑗
(𝑢𝑘))

2

)𝑡
𝑘=1

𝑧
𝑗=1

 

As we know that 𝑠𝑖 • 𝓊𝐴𝑗(𝑢𝑘) = 𝑠𝑖 • 𝓊𝐵̌𝑗(𝑢𝑘), 𝑠𝑖 • 𝓋𝐴𝑗(𝑢𝑘) = 𝑠𝑖 • 𝓋𝐵̌𝑗(𝑢𝑘), and 𝑠𝑖 • 𝓌𝐴𝑗
(𝑢𝑘) = 𝑠𝑖 •

𝓌𝐵̌𝑗
(𝑢𝑘), for all 𝑗, 𝑘, so by using Definition 3.6, we have 

ℛ𝐺𝑚𝑃𝑁𝑆𝑆 (ℱ𝐴, 𝒢𝐵̌) = 

∑ ∑ ((𝑠𝑖•𝓊𝐵̌𝑗
(𝑢𝑘))

2

+(𝑠𝑖•𝓋𝐵̌𝑗
(𝑢𝑘))

2

+(𝑠𝑖•𝓌𝐵̌𝑗
(𝑢𝑘))

2

)𝑡
𝑘=1

𝑧
𝑗=1

√∑ ∑ ((𝑠𝑖•𝓊𝐵̌𝑗
(𝑢𝑘))

2

+(𝑠𝑖•𝓋𝐵̌𝑗
(𝑢𝑘))

2

+(𝑠𝑖•𝓌𝐵̌𝑗
(𝑢𝑘))

2

)𝑡
𝑘=1

𝑧
𝑗=1  √∑ ∑ ((𝑠𝑖•𝓊𝐵̌𝑗

(𝑢𝑘))

2

+(𝑠𝑖•𝓋𝐵̌𝑗
(𝑢𝑘))

2

+(𝑠𝑖•𝓌𝐵̌𝑗
(𝑢𝑘))

2

)𝑡
𝑘=1

𝑧
𝑗=1

 

Hence  

ℛ𝐺𝑚𝑃𝑁𝑆𝑆 (ℱ𝐴, 𝒢𝐵̌) = 1. 

Definition 3.8 

Let  ℱ𝐴 and 𝒢𝐵̌ are two GmPNSS, then the CC between them also can be defined as follows   

ℛ𝐺𝑚𝑃𝑁𝑆𝑆
1  (ℱ𝐴, 𝒢𝐵̌) = 

Ϛ𝐺𝑚𝑃𝑁𝑆𝑆(ℱ𝐴̌,   𝒢𝐵̌)

𝑚𝑎𝑥{ℰ𝐺𝑚𝑃𝑁𝑆𝑆(ℱ𝐴̌,ℱ𝐴̌),ℰ𝐺𝑚𝑃𝑁𝑆𝑆(𝒢𝐵̌,𝒢𝐵̌)}
                              (3.3) 

ℛ𝐺𝑚𝑃𝑁𝑆𝑆
1 (ℱ𝐴, 𝒢𝐵̌) = 

∑ ∑ (𝑠𝑖•𝓊𝐴̌𝑗
(𝑢𝑘)𝑠𝑖•𝓊𝐵̌𝑗

(𝑢𝑘)+𝑠𝑖•𝓋𝐴̌𝑗
(𝑢𝑘)𝑠𝑖•𝓋𝐵̌𝑗

(𝑢𝑘)+𝑠𝑖•𝓌𝐴̌𝑗
(𝑢𝑘) 𝑠𝑖•𝓌𝐵̌𝑗

(𝑢𝑘))
𝑡
𝑘=1

𝑧
𝑗=1

𝑚𝑎𝑥

{
 
 

 
 ∑ ∑ ((𝑠𝑖•𝓊𝐴̌𝑗

(𝑢𝑘))

2

+(𝑠𝑖•𝓋𝐴̌𝑗
(𝑢𝑘))

2

+(𝑠𝑖•𝓌𝐴̌𝑗
(𝑢𝑘))

2

)𝑡
𝑘=1

𝑧
𝑗=1 ,

∑ ∑ ((𝑠𝑖•𝓊𝐵̌𝑗
(𝑢𝑘))

2

+(𝑠𝑖•𝓋𝐵̌𝑗
(𝑢𝑘))

2

+(𝑠𝑖•𝓌𝐵̌𝑗
(𝑢𝑘))

2

)𝑡
𝑘=1

𝑠
𝑗=1

}
 
 

 
 

 

Proposition 3.9 

Let  ℱ𝐴  and 𝒢𝐵̌  are two GmPNSS, then the CC ℛ𝐺𝑚𝑃𝑁𝑆𝑆
1  (ℱ𝐴 , 𝒢𝐵̌ ) between them satisfied the 

following properties. 

1. 0 ≤ ℛ𝐺𝑚𝑃𝑁𝑆𝑆
1  (ℱ𝐴, 𝒢𝐵̌) ≤ 1 

2. ℛ𝐺𝑚𝑃𝑁𝑆𝑆
1  (ℱ𝐴, 𝒢𝐵̌) = ℛ𝐺𝑚𝑃𝑁𝑆𝑆

1  (𝒢𝐵̌, ℱ𝐴) 
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3. If  ℱ𝐴 = 𝒢𝐵̌ i. e; 𝑠𝑖 • 𝓊𝐴𝑗(𝑢𝑘) = 𝑠𝑖 • 𝓊𝐵̌𝑗(𝑢𝑘), 𝑠𝑖 • 𝓋𝐴𝑗(𝑢𝑘) = 𝑠𝑖 • 𝓋𝐵̌𝑗(𝑢𝑘), and 𝑠𝑖 • 𝓌𝐴𝑗
(𝑢𝑘) = 

𝑠𝑖 • 𝓌𝐵̌𝑗
(𝑢𝑘) for all 𝑗, 𝑘, where  𝑖 ∈  1, 2, 3, … ,𝑚, then ℛ𝐺𝑚𝑃𝑁𝑆𝑆

1  (ℱ𝐴, 𝒢𝐵̌) = 1. 

Proof  

We can prove easily according to Definition 3.7. 

It is important to anticipate the weight of IVNSS for functional determinations. When a decision-

maker alleviates a distinct weight for each object in the universe of discourse, the result of the purpose 

may be distinctive. So, it is necessary to consider the weights before making a decision. Let ὡ = {ὡ1, 

ὡ2, ὡ3,…, ὡ𝑚} be a weight vector for experts such as ὡ𝑘 > 0, ∑ ὡ𝑘
𝑚
𝑘=1  = 1 and δ = {δ1, δ2, δ3,…, 

δ𝑛} be a weight vector for parameters such as δ𝑖 > 0, ∑ δ𝑖
𝑛
𝑖=1  = 1. By extending definitions 3.6, 3.8, 

the notion of WCC has been developed in the following. 

Definition 3.10  

For two GmPNSS ℱ𝐴 and 𝒢𝐵̌, the WCC between them can be defined as follows   

ℛ𝐺𝑊𝑚𝑃𝑁𝑆𝑆 (ℱ𝐴, 𝒢𝐵̌) = 
Ϛ𝐺𝑚𝑃𝑁𝑆𝑆(ℱ𝐴̌,   𝒢𝐵̌)

√ℰ𝐺𝑚𝑃𝑁𝑆𝑆(ℱ𝐴̌,ℱ𝐴̌) ℰ𝐺𝑚𝑃𝑁𝑆𝑆(𝒢𝐵̌,𝒢𝐵̌)
                   (3.4) 

ℛ𝐺𝑊𝑚𝑃𝑁𝑆𝑆 (ℱ𝐴, 𝒢𝐵̌) = 
∑ δ𝑗(∑ ὡ𝑘(𝑠𝑖•𝓊𝐴̌𝑗

(𝑢𝑘)𝑠𝑖•𝓊𝐵̌𝑗
(𝑢𝑘)+𝑠𝑖•𝓋𝐴̌𝑗

(𝑢𝑘)𝑠𝑖•𝓋𝐵̌𝑗
(𝑢𝑘)+𝑠𝑖•𝓌𝐴̌𝑗

(𝑢𝑘) 𝑠𝑖•𝓌𝐵̌𝑗
(𝑢𝑘))

𝑡
𝑘=1 )𝑧

𝑗=1

(

 
 
 √∑ δ𝑗(∑ ὡ𝑘((𝑠𝑖•𝓊𝐴̌𝑗

(𝑢𝑘))

2

+(𝑠𝑖•𝓋𝐴̌𝑗
(𝑢𝑘))

2

+(𝑠𝑖•𝓌𝐴̌𝑗
(𝑢𝑘))

2

)𝑡
𝑘=1 )𝑧

𝑗=1

√∑ δ𝑗(∑ ὡ𝑘((𝑠𝑖•𝓊𝐵̌𝑗
(𝑢𝑘))

2

+(𝑠𝑖•𝓋𝐵̌𝑗
(𝑢𝑘))

2

+(𝑠𝑖•𝓌𝐵̌𝑗
(𝑢𝑘))

2

)𝑡
𝑘=1 )𝑧

𝑗=1
)

 
 
 

 

 

Definition 3.11  

Let  ℱ𝐴 and 𝒢𝐵̌ are two GmPNSS, then the WCC between them can be defined as follows   

ℛ𝐺𝑊𝑚𝑃𝑁𝑆𝑆
1  (ℱ𝐴, 𝒢𝐵̌) = 

Ϛ𝐺𝑚𝑃𝑁𝑆𝑆(ℱ𝐴̌,   𝒢𝐵̌)

𝑚𝑎𝑥{ℰ𝐺𝑚𝑃𝑁𝑆𝑆(ℱ𝐴̌,ℱ𝐴̌),ℰ𝐺𝑚𝑃𝑁𝑆𝑆(𝒢𝐵̌,𝒢𝐵̌)}
                  (3.5) 

ℛ𝐺𝑊𝑚𝑃𝑁𝑆𝑆
1 (ℱ𝐴, 𝒢𝐵̌) = 

∑ δ𝑗(∑ ὡ𝑘(𝑠𝑖•𝓊𝐴̌𝑗
(𝑢𝑘)𝑠𝑖•𝓊𝐵̌𝑗

(𝑢𝑘)+𝑠𝑖•𝓋𝐴̌𝑗
(𝑢𝑘)𝑠𝑖•𝓋𝐵̌𝑗

(𝑢𝑘)+𝑠𝑖•𝓌𝐴̌𝑗
(𝑢𝑘) 𝑠𝑖•𝓌𝐵̌𝑗

(𝑢𝑘))
𝑡
𝑘=1 )𝑧

𝑗=1

𝑚𝑎𝑥

{
 
 

 
 ∑ δ𝑗(∑ ὡ𝑘((𝑠𝑖•𝓊𝐴̌𝑗

(𝑢𝑘))

2

+(𝑠𝑖•𝓋𝐴̌𝑗
(𝑢𝑘))

2

+(𝑠𝑖•𝓌𝐴̌𝑗
(𝑢𝑘))

2

)𝑡
𝑘=1 )𝑧

𝑗=1 ,

∑ δ𝑗(∑ ὡ𝑘((𝑠𝑖•𝓊𝐵̌𝑗
(𝑢𝑘))

2

+(𝑠𝑖•𝓋𝐵̌𝑗
(𝑢𝑘))

2

+(𝑠𝑖•𝓌𝐵̌𝑗
(𝑢𝑘))

2

)𝑡
𝑘=1 )𝑧

𝑗=1
}
 
 

 
 

 

If we consider ὡ = {
1

𝑡
, 
1

𝑡
,…, 

1

𝑡
} and δ = {

1

𝑧
, 
1

𝑧
,…, 

1

𝑧
}, then ℛ𝐺𝑊𝑚𝑃𝑁𝑆𝑆 (ℱ𝐴, 𝒢𝐵̌) and ℛ𝐺𝑊𝑚𝑃𝑁𝑆𝑆

1 (ℱ𝐴, 𝒢𝐵̌) 

are reduced to ℛ𝐺𝑚𝑃𝑁𝑆𝑆  (ℱ𝐴, 𝒢𝐵̌) and ℛ𝐺𝑚𝑃𝑁𝑆𝑆
1 (ℱ𝐴, 𝒢𝐵̌) respectively defined in 3.6 and 3.8. 

Proposition 3.12  

Let  ℱ𝐴  and 𝒢𝐵̌  are two GmPNSS, then the CC ℛ𝐺𝑊𝑚𝑃𝑁𝑆𝑆  (ℱ𝐴 , 𝒢𝐵̌ ) between them satisfied the 

following properties 

1. 0 ≤ ℛ𝐺𝑊𝑚𝑃𝑁𝑆𝑆 (ℱ𝐴, 𝒢𝐵̌) ≤ 1 

2. ℛ𝐺𝑊𝑚𝑃𝑁𝑆𝑆 (ℱ𝐴, 𝒢𝐵̌) = ℛ𝐺𝑊𝑚𝑃𝑁𝑆𝑆 (𝒢𝐵̌, ℱ𝐴) 

3. If  ℱ𝐴 = 𝒢𝐵̌ i. e; 𝑠𝑖 • 𝓊𝐴𝑗(𝑢𝑘) = 𝑠𝑖 • 𝓊𝐵̌𝑗(𝑢𝑘), 𝑠𝑖 • 𝓋𝐴𝑗(𝑢𝑘) = 𝑠𝑖 • 𝓋𝐵̌𝑗(𝑢𝑘), and 𝑠𝑖 • 𝓌𝐴𝑗
(𝑢𝑘) = 

𝑠𝑖 • 𝓌𝐵̌𝑗
(𝑢𝑘) for all 𝑗, 𝑘, where  𝑖 ∈  1, 2, 3, … ,𝑚, then ℛ𝐺𝑊𝑚𝑃𝑁𝑆𝑆 (ℱ𝐴, 𝒢𝐵̌) = 1. 

Proof  

Similar to Proposition 3.7. 

4. Application of Correlation Coefficient of GmPNSS for Decision Making 

In this section, we proposed the algorithm for GmPNSS by using developed CC. We also used the 

proposed method for decision-making in real-life problems. 

4.1. Algorithm for Correlation Coefficient of GmPNSS 

Step 1. Pick out the set containing parameters. 

Step 2. Construct the GmPNSS according to experts. 
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Step 3. Find the informational neutrosophic energies of any two GmPNSS. 

Step 4. Calculate the correlation between two GmPNSS by using the following formula 

Ϛ𝐺𝑚𝑃𝑁𝑆𝑆(ℱ𝐴, 𝒢𝐵̌) = ∑ ∑ (
𝑠𝑖 • 𝓊𝐴𝑗(𝑢𝑘)𝑠𝑖 • 𝓊𝐵̌𝑗(𝑢𝑘) + 𝑠𝑖 • 𝓋𝐴𝑗(𝑢𝑘)𝑠𝑖 • 𝓋𝐵̌𝑗(𝑢𝑘) +

𝑠𝑖 • 𝓌𝐴𝑗
(𝑢𝑘) 𝑠𝑖 • 𝓌𝐵̌𝑗

(𝑢𝑘): 𝑖 ∈ 1, 2, 3, … ,𝑚.
)𝑡

𝑘=1
𝑧
𝑗=1  

Step 5. Calculate the CC between any two GmPNSS by using the following formula 

ℛ𝐺𝑚𝑃𝑁𝑆𝑆 (ℱ𝐴, 𝒢𝐵̌) = 
Ϛ𝐺𝑚𝑃𝑁𝑆𝑆(ℱ𝐴̌,   𝒢𝐵̌)

√ℰ𝐺𝑚𝑃𝑁𝑆𝑆(ℱ𝐴̌,ℱ𝐴̌) .  ℰ𝐺𝑚𝑃𝑁𝑆𝑆(𝒢𝐵̌,𝒢𝐵̌)
 

Step 6. Pick the most suitable alternate with a supreme correlation value 

Step 7. Analyze the results. 

The graphical representation of the proposed model is given in the following Figure 1. 

 

Figure 1: Flowchart of the proposed model 

4.2. Problem Formulation and Application of CC for GmPNSS in Decision Making 

Department of the scientific discipline of some universities 𝑈 will have one scholarship for the post-

doctorate position. Several scholars apply to get a scholarship but referable probabilistic along with 

CGPA (cumulative grade points average), simply four scholars call for enrolled for undervaluation 

such as 𝑆 = {𝑆1, 𝑆2, 𝑆3, 𝑆4 } be a set of selected scholars call for the interview. The president of the 

university hires a committee of four experts 𝑋  = {𝑋1 , 𝑋2 , 𝑋3 , 𝑋4} for the selection post-doctoral 

scholar. First of all, the committee decides the set of parameters such as 𝐸 = {𝓍1, 𝓍2, 𝓍3}, where 𝓍1, 

𝓍2, and 𝓍3 represents the research papers, research quality, and communication skills for selecting 

post-doctoral scholars. The experts evaluate the scholars under defined parameters and forward the 

evaluation performa to the university's president. Finally, the university president scrutinizes the one 

best scholar based on the expert’s evaluation for the post-doctoral scholarship. 

4.3. Application of GmPNSS For Decision Making 

Step 1
•Choose the set of parameters

Step 2
•Construct the GmPNSS in experts opinion

Step 3

• Compute the informational neutrosophic energies of 
GmPNSS

Step 4
•Compute the correlation among GmPNSS

Step 5
•Calculate the CC between any two GmPNSS

Step 6

•Pick the most suitable alternate with supreme 
correlation value

Step 7
•Analyze the alternatives ranking
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Assume 𝑆 = {𝑆1, 𝑆2, 𝑆3, 𝑆4} be a set of scholars who are shortlisted for interview and  𝐸 = {𝓍1 = 

research paper, 𝓍2 = research quality, 𝓍3 = interview} be a set of parameters for the selection of 

scholarship. Let ℱ  and 𝒢  ⊆  𝐸 . Then we construct the G3-PNSS Φℱ(𝓍)  according to the 

requirement of the scientific discipline department. 

Table 1. Construction of G3-PNSS of all Scholars According to Department Requirement 

𝚽𝓕(𝔁) 𝔁𝟏 𝔁𝟐 𝔁𝟑 

𝐗𝟏 (.82,.55,.63),(.55,.46,.28),(.43,.38,.60) (.43,.68,.86),(.47,.67,.56),(.42,.51,.33) (.73,.48,.53),(.87,.43,.77),(.76,.53,.62) 

𝐗𝟐 (.50,.62,.52),(.93,.57,.80),(.66,.48,.52) (.77,.54,.81),(.75,.54,.72),(.53,.54,.69) (.64,.48,.59),(.32,.58,.22),(.94,.64,.62) 

𝐗𝟑 (.29,.25,.41),(.73,.34,.32),(.64,.44,.56) (.36,.45,.27),(.47,.65,.21),(.61,.37,.39) (.57,.25,.41),(.72,.55,.29),(.64,.31,.34) 

𝐗𝟒 (.91,.50,.16),(.30,.24,.63),(.16,.55,.20) (.69,.52,.61),(.37,.44,.23),(.46,.37,.29) (.39,.35,.67),(.47,.24,.32),(.40,.71,.56) 

Now we will construct the G3-PNSS  φ𝒢
𝑡  according to four experts, where 𝑡 = 1, 2, 3, 4. 

Table 2. G3-PNSS Evaluation Report According to Experts of 𝑆1 

𝛗𝓖
𝟏  𝔁𝟏 𝔁𝟐 𝔁𝟑 

𝐗𝟏 (.13,.15,.22),(.89,.78,.83),(.77,.82,.91) (.91,.50,.16),(.30,.24,.63),(.16,.55,.20) (.69,.52,.61),(.37,.44,.23),(.46,.37,.29) 

𝐗𝟐 (.79,.84,.93),(.36,.18,.26),(.21,.24,.16) (.39,.35,.67),(.47,.24,.32),(.40,.71,.56) (.76,.62,.41),(.36,.49,.79),(.53,.59,.91) 

𝐗𝟑 (.07,.23,.32),(.12,.18,.20),(.74,.79,.88) (.70,.22,.11),(.67,.43,.53),(.41,.57,.49) (.87,.58,.66),(.77,.22,.56),(.57,.33,.29) 

𝐗𝟒 (.23,.12,.17),(.25,.16,.22),(.14,.16,.18) (.74,.62,.66),(.67,.41,.93),(.85,.67,.99) (.27,.29,.61),(.71,.43,.21),(.47,.70,.89) 

Table 3. G3-PNSS Evaluation Report According to Experts of 𝑆2 

𝛗𝓖
𝟐  𝔁𝟏 𝔁𝟐 𝔁𝟑 

𝐗𝟏 (.16,.20,.27),(.83,.87,.89),(70,.75,.86) (.91,.50,.16),(.30,.24,.63),(.16,.55,.20) (.69,.52,.61),(.37,.44,.23),(.46,.37,.29) 

𝐗𝟐 (.13,.21,.24),(.18,.20,.20),(.70,.84,.90) (.39,.35,.67),(.47,.24,.32),(.40,.71,.56) (.76,.62,.41),(.36,.49,.79),(.53,.59,.91) 

𝐗𝟑 (.20,.16,.27),(.29,.17,.26),(.14,.15,.12) (.70,.22,.11),(.67,.43,.53),(.41,.57,.49) (.87,.58,.66),(.77,.22,.56),(.57,.33,.29) 

𝐗𝟒 (.88,.81,.90),(.40,.20,.26),(.22,.27,.17) (.74,.62,.66),(.67,.41,.93),(.85,.67,.99) (.27,.29,.61),(.71,.43,.21),(.47,.70,.89) 

Table 4. G3-PNSS Evaluation Report According to Experts of 𝑆3 

𝛗𝓖
𝟑  𝔁𝟏 𝔁𝟐 𝔁𝟑 

𝐗𝟏 (.77,.49,.61),(.71,.43,.21),(.47,.40,.69) (.47,.59,.76),(.67,.62,.56),(.57,.43,.29) (.70,.54,.61),(.79,.44,.63),(.61,.41,.51) 

𝐗𝟐 (.60,.32,.32),(.77,.49,.83),(.76,.32,.59) (.76,.62,.61),(.56,.49,.79),(.53,.59,.81) (.69,.62,.67),(.57,.74,.43),(.86,.47,.79) 

𝐗𝟑 (.60,.22,.21),(.67,.43,.53),(.49,.57,.49) (.29,.72,.41),(.30,.66,.29),(.56,.32,.39) (.74,.52,.66),(.67,.41,.93),(.85,.47,.59) 

𝐗𝟒 (.74,.26,.37),(.49,.41,.63),(.44,.35,.32) (.41,.66,.51),(.39,.27,.36),(.41,.51,.21) (.60,.16,.47),(.31,.17,.24),(.54,.35,.24) 

Table 5. G3-PNSS Evaluation Report According to Experts of 𝑆4 

𝛗𝓖
𝟒  𝔁𝟏 𝔁𝟐 𝔁𝟑 
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𝐗𝟏 (.23,.13,.22),(.31,.25,.43),(.19,.22,.27) (.43,.68,.86),(.47,.67,.56),(.42,.51,.33) (.82,.55,.63),(.55,.46,.28),(.43,.38,.60) 

𝐗𝟐 (.10,.13,.11),(.91,.84,.69),(.31,.30,.28) (.27,.29,.61),(.71,.43,.21),(.47,.70,.89) (.50,.62,.52),(.93,.57,.80),(.66,.48,.52) 

𝐗𝟑 (.70,.22,.11),(.67,.43,.53),(.41,.57,.49) (.70,.22,.11),(.67,.43,.53),(.41,.57,.49) (.36,.45,.27),(.47,.65,.21),(.61,.37,.39) 

𝐗𝟒 (.45,.16,.27),(.91,.67,.23),(.64,.88,.10) (.67,.81,.17),(.21,.54,.71),(.41,.54,.21) (.20,.76,.47),(.39,.17,.46),(.41,.53,.22) 

Solution by Using Developed Algorithm 

Now, by using Tables 1, 2, 3, 4, and 5, we can find the correlation coefficient for each alternative by 

using equation 3.2 given as ℛ𝐺𝑚𝑃𝑁𝑆𝑆 (Φℱ , φ𝒢
1) = .8374, ℛ𝐺𝑚𝑃𝑁𝑆𝑆 (Φℱ , φ𝒢

2) = .7821, ℛ𝐺𝑚𝑃𝑁𝑆𝑆 (Φℱ , φ𝒢
3) = 

.9462, and ℛ𝐺𝑚𝑃𝑁𝑆𝑆  (Φℱ , φ𝒢
4 ) = .9422. This shows that ℛ𝐺𝑚𝑃𝑁𝑆𝑆  (Φℱ , φ𝒢

3 ) > ℛ𝐺𝑚𝑃𝑁𝑆𝑆  (Φℱ , φ𝒢
4 ) > 

ℛ𝐺𝑚𝑃𝑁𝑆𝑆 (Φℱ , φ𝒢
1) > ℛ𝐺𝑚𝑃𝑁𝑆𝑆  (Φℱ , φ𝒢

2). Hence 𝑆3 is the best scholar for a postdoctoral position.  

5. Result Discussion and Comparative Analysis 

In the subsequent section, we will debate the suggested method's effectiveness, simplicity, flexibility, 

and good position. A brief comparative analysis has been presented among our proposed and 

prevailing approaches. 

5.1 Advantages and Superiority of Proposed Approach 

This manuscript has developed a novel DM technique based on CC utilizing GmPNSS. The 

developed approach is more operative and delivers the appropriate results in MCDM problems 

comparative to existing techniques. Through this scientific research and comparison, we have 

realized that the suggested approach's outcomes are more general than conventional methods. 

However, compared to the current DM method, the DM process contains more information to deal 

with uncertain data. In addition to the fact that the hybrid structure of multiple FSs becomes a 

particular case of GmPNSS, add some appropriate conditions. Among them, the information 

associated with the object may be displayed precisely and analytically, so GmPNSS is an effective 

power tool to cope with imprecise and uncertain information in the DM process. Hence, our approach 

is more suitable, pliable, and better than FS's distinctive, accessible hybrid structures. 

Table 6: Comparative analysis between some existing techniques and the proposed approach 

 Set Truthiness Indeterminacy Falsity Multi-

polarity 

Loss of 

information 

Chen et al. [28] mPFS ✓ × × ✓ × 

Xu et al. [29] IFS ✓ × ✓ × × 

Zhang et al. [30] IFS ✓ × ✓ × ✓ 

Ali et al. [31] BPNSS ✓ ✓ ✓ × × 

Proposed 

approach 

GmPNSS ✓ ✓ ✓ ✓ × 

It turns out to be a contemporary problem. Why do we particularize novel algorithms according to 

the present novel structure? Several indications indicate that the recommended methodology can be 

exceptional compared to other existing methods. We remember that IFS, picture fuzzy set, FS, 

hesitant fuzzy set, NS, and different fuzzy sets have been restricted by the hybrid structure and 

cannot provide complete information regarding the situation. But our m-polarity model GmPNSS 

can be most suitable for MCDM because it can deal with truthiness, indeterminacy, and falsity. Due 

to the exaggerated multipolar neutrosophy, those three degrees have been independent of each other 

and furnish many information regarding alternative specifications. The similarity measures of other 

available hybrid structures are converted into a particular case of mPIVNSS. The comparative 
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analysis with some prevailing techniques is listening above Table 6. Therefore, the model is more 

versatile and can quickly solve complications comparative to intuitionistic, neutrosophy, hesitation, 

image, and ambiguity substitution. The similarity measure established for GmPNSS becomes better 

than the existing similarity measure for MCDM.  

5.2 Discussion 

Chen et al. [28] multi-polar information of fuzzy sets deals with the membership value of the objects; 

the multi-polar fuzzy set cannot handle the circumstances when the objects have indeterminacy and 

falsity information. Xu et al. [29] and Zhang et al. [30] IFS only deal with the membership and non-

membership values of the alternatives. These techniques cannot deal with the multi-polar 

information and indeterminacy of the alternative. Ali et al. [24] dealt with the truthiness, 

indeterminacy, and falsity grades for substitutes, but these techniques cannot manage multiple data. 

Instead, our established technique is an innovative method that can handle various information 

alternatives. But, on the other hand, the strategy we have progressed is about truth, indeterminacy, 

and the falsity of other options. So, the methodology we have offered is very efficient and will provide 

better outcomes for experts through additional information. 

5.3 Comparative analysis 

In this article, we propose a novel algorithm. First, an algorithm is proposed based on the correlation 

coefficient for GmPNSS. Next, utilize the developed algorithm to solve practical problems in real-life, 

that is, to select a postdoctoral position. The obtained results show that the proposed technique is 

effective and beneficial. Finally, the ranking of all alternatives using the existing methodologies gives 

the same final decision, that is, the position of "postdoctoral" is selected as S3. All rankings are also 

calculated by applying existing methods with the same case study. The proposed method is also 

compared with other existing methods, Saeed et al. [26], Riaz et al. [16, 32], and Mohd Kamal et al. 

[33]. But these techniques cannot manage multiple data. Instead, our established technique is an 

innovative method that can handle various information alternatives. But, on the other hand, the 

strategy we have progressed is about truth, indeterminacy, and the falsity of alternatives. So, the 

methodology we have offered is very efficient and will provide better outcomes for experts through 

additional information. 

Table 7. Comparison Between mPNSS and GmPNSS Techniques 

Method Alternative final Ranking Optimal Choice 

Riaz et al. [16] S3 > S2 > S1 > S4 S3 

Saeed et al. [26] S3 > S4 > S2 > S1 S3 

Riaz et al. [32] S3 > S2 > S1 > S4 S3 

Mohd Kamal et al. [33] S3 > S4 > S2 > S1 S3 

Proposed Approach S3 > S4 > S1 > S2 S3 

6. Conclusion 

In this manuscript, a novel hybrid structure has been established by GmPNSS by extending the 

mPNSS. We have developed the CC and WCC with their properties in the content of GmPNSS. A 

novel algorithm for GmPNSS utilizing our developed measure has been constructed to solve MCDM 

problems. A comparative analysis was also performed to demonstrate the proposed method. 
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Through comparative analysis, it is observed that the proposed technique exhibited higher steadiness 

and pragmatism for decision-makers in the DM process. Based on the results obtained, it is concluded 

that this method is most suitable for solving the MCDM problem in today's life. We will apply these 

techniques to other fields in future work, such as mathematical programming, cluster analysis, etc. 

This research article has pragmatic boundaries and can be immensely helpful in real-life dimensions: 

including the medical profession, pattern recognition, economics, etc. 
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Abstract: In today's scenario transportation problem [TP] is the prominent area of optimization. In the 

present paper, a TP in a neutrosophic environment, known as a neutrosophic transportation problem 

[NTP] is introduced with interval-valued trapezoidal neutrosophic numbers [IVTrNeNs]. To maintain 

physical distance among the industrialists and researchers during the covid-19 pandemic, the interval-

valued fuzzy numbers [IVFNs] in place of crisp numbers are very much essential to address the 

hesitation and uncertainty in real-life situations. IVTrNeN is the generalization of single-valued 

neutrosophic numbers [SVNeN], which are used as the cost, the demand, and the supply to transport 

the necessary equipment, medicines, food products, and other relevant items from one place to another 

to save the human lives in a covid-19 pandemic. A Neutrosophic set, which has uncertainty, 

inconsistency, and incompleteness information is the abstract principle of crisp, fuzzy, and intuitionistic 

fuzzy sets. Here we suggest some numerical problems for better execution of the neutrosophic 

transportation problem [NTP], to understand the practical applications of interval-valued neutrosophic 

numbers [IVNeNs]. In the last, we compare our results and a conclusion is given in support of our 

proposed result methodology with IVTrNeNs. 
 

Keywords: Interval–valued trapezoidal neutrosophic number, De-neutrosophication, neutrosophic 

transportation problem. 

 

1. Introduction  

In the current scenario of covid-19, the role of a neutrosophic optimization technique in TP has 

fascinated awareness of their high efficiency, accuracy, and adaptability that gives high standard real-

life outcomes. Neutrosophic optimization has been extremely searched in industrial, management, 

engineering, and health sectors. Zadeh in 1965 introduced the mathematical formula of fuzzy set FS [1] 

by which the researchers try to check the ambiguity or uncertainty in engineering, industrial, and 

management problems [2, 3]. In realistic problems, the FS was not perfect to observe the uncertainty 

and hesitation. To encompass this problem, Atanassov extended the FS and introduced a set with 

membership and non-membership degrees, called an intuitionistic fuzzy set IFS [4]. For more detailed 

applications of IFS, please (see [5-10] and references therein). Atanassov and Gargov generalized the 

IFS by introducing the interval-valued IFS to strengthen the attitude of grasp uncertainty and hesitation 

in IFS [11]. To solve the real-world problems with inconsistent information or contain indeterminacy in 

data the FS and IFS are not sufficient. To rectify such problems, Smarandache in 1988 introduced the 

neutrosophic set [NS] [12], by which the inconsistent information is in the form of truth-membership, 

indeterminacy-membership, and falsity-membership degrees respectively.  For practical applications 
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and some technical references in real-world problems, NSs are difficult to apply, so the notion of a 

single-valued neutrosophic set [SVNeS] was imported by Wang et. al. in 2010 [13]. The idea of SVNeS is 

more suitable and effective in solving many real-life problems of decision-makers that contain 

uncertainty in data by using fuzzy numbers and intuitionistic fuzzy numbers.  Since in the real world, 

there exists stipulated and non-stipulated knowledge, so to overcome such problems Samaranache 

introduced the neutrosophic number [NN] [14, 15]. In 2016, Ye. proposed de-neutrosophic and 

possibility degree ranking methods for the application of NNs [16]. Samrandache in 2015, proposed the 

interval function to describe the stipulated and non-stipulated issues in real-world problems [17]. For 

more uncertain linear programming problems (see [18-29] and references therein).  
In real-life optimization problems, the TP shows high execution and due to its clarity and minimum 

cost, it is a noted optimization technique in the current scenario.  The basic theme of a TP is to find a 

direct connection between source and destination in minimum time with minimum cost. Hitchcock 

introduced the initial basic structure of TP and developed a special mathematical module for the basic 

results of TP by the simplex method [30]. For more recent development in fuzzy transportation problem 

[FTP] (see [31-47] and references therein).  
The IFS theory can handle the problems of incomplete information but not the indeterminate and 

inconsistent information that exists in the transportation modal. The TP with inconsistent information 

or indeterminate data i.e. in fuzzy numbers or intuitionistic fuzzy numbers cannot be handled in the 

current structure. To resolve such issues, the NTP is the best option with indeterminacy and 

inconsistent information by truth, indeterminacy, and falsity membership degree function. Many 

researchers formulated efficient mathematical models in various uncertain environments. We proposed 

the NTP of type-4, with all entries such as cost, demand, and supply termed as IVTrNeNs, which 

include membership, indeterminacy, and non-memberships degree function. The more real-world 

developments in the field of neutrosophic optimization problems (see [48-63] and references therein).  
For the solution of NTP, the first one will change it into a crisp transportation problem [CTP] by 

converting the cost, demand, and supply, which are in IVTrNeNs into crisp values with the help of the 

introduced ranking method. For unbalanced CTP or NTP, here we use Vogel’s approximation method 

[VAM] and minimum row-column method [MRCM] to solve these by excel solver and then compare 

our results [46]. The paper is well organized in several sections such as the introduction of the present 

paper with some earlier research are given, the basics concepts of FS, IFS, and NS are discussed and 

reviewed, introduce the ranking function, score function, and de-neutrosophication to convert 

neutrosophic values into crisp values and vice-versa. Here we proposed CTP & NTP of type-4, their 

solution by existing and MRCM, comparison, and the conclusion for future aspects of research work.   
 

2. Preliminaries 

 

Definition 2.1 ([39]):  A FS A of a non empty set X is defined as  
A

A = x,μ x / x X( )  where 

→
A

μ x : X( ) [0,1]  is the membership function. 

 

Definition 2.2: A fuzzy number on the universal set R is a convex, normalized fuzzy set A , where the 

membership function →
A

μ x : X( ) [0,1]  is continuous, strictly increasing on [a, b] and strictly decreasing 

on [c, d] , = 1,
A

μ x( )  for all   x b, c , where   a b c d  and = 0,
A

μ x( )  for all (   )    x - ,a d, . 

 

Definition 2.3 ([52]): A trapezoidal fuzzy number (TrFN) denoted as A = (a,b,c,d) , with its 

membership function A
μ x( )  on R, is given by  
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( ) ( )

( ) ( )











A

x - a b - a

=
d - x d - c

,         a x < b

,                           b x < c
x

,        c < x d

,                         

μ

for

1 for

for

0 other ise

)

w

(                     

If  b = c in TrFN = ( )A a,b,c,d , then it becomes TFN ( )A = a,b,c . 

 

Definition 2.4: An IFS in a non-empty set X is denoted by IA and defined as   = , , : ,I I

I

A A
A x x X  

where → [0,1]I IA A
μ ,ν : X , are denoted as degree of membership and degree of non-membership 

functions respectively. The function   1 1I IA A
h(x) = - μ - ν ,  x X  called the degree of hesitancy in IA . 

 

The single valued neutrosophic numbers [SVNN] introduced by Deli and Suba [64] in 2014.  

 

Definition 2.5:  A SVNS is denoted and defined as { ( ) ( ) ( ) }
N N N

N A A A
A = x,T x ,I x ,F x / x X ,  where for each 

generic point x in X, ( )
NA

T x  called truth membership function, ( )
NA

I x  called indeterminacy 

membership function and ( )
NA

F x  called falsity membership function in [0,1]  and  

 ( ) ( ) ( )
N N NA A A

T x +0 I x + F x 3 . For continuous SVNS =  ( ), ( )  (,  /  ,  ) 
N N N

N

N A A A

A

T x I x F x xA x X . For 

discrete values, SVNS can be written as 
=

=
1

 ,       .( ), ( ) ( ) / ,
N N N

N iA A A

n

i i i i
i

T x I x F xA x Xx     

               
                            Fig. 1: Neutrosophic set 

 

Definition 2.6 ([15]):  Let x be a generic element of a non empty set X.  A neutrosophic number N
A  in 

X is defined as =   { , ( ), ( ), ( ) / },
N N N

N A A A
A x T x I x F x x X     ( ),

NA
T x  ( )

NA
I x  and ( )

NA
F x  belongs − +] 0,1 [

where − +→: ]0 ,1 [
NA

T X , − +→: ]0 ,1 [
NA

I X  and − +→: ]0 ,1 [
NA

F X   are functions of truth-membership, 

indeterminacy membership and falsity-membership in N
A  respectively with 

( ) ( ) + (0 ) 3
N N NA A A

T x I x F x .− + +   

 

Definition 2.7 ([17]):  Let X be a nonempty set.  Then an interval-valued neutrosophic set [IVNS] IV
NA  

of X is defined as: 

   U U U     
     


N N N N N N

L LIV
N A A A A A A

L= x; T ,T , I , I , F ,F :A       x X  



Neutrosophic Sets and Systems, Vol. 51, 2022                                                                                                       237 
___________________________________________________________________________________ 

___________________________________________________________________________________________ 

Rajesh Kumar Saini*1 Atul Sangal2 and Ashik Ahirwar3, A Novel Approach by using Interval-Valued Trapezoidal 

Neutrosophic Numbers in Transportation Problem 
 
 

 where U 
 N NA A

LT ,T , U 
 N N

L

A A
I , I  and [0,1]U  

 N NA A

LF ,F   x X.  ( )inf ,
N NA A

LT = T ( )sup
N NA A

T = TU ; 

( )inf ,
N NA A

LI = I ( )sup
N NA A

I = IU  and ( )inf ,
N NA A

LF = F ( ).U

N NA A
F = Fsup   

           
Fig. 2: Interval-valued neutrosophic set 

 

Definition 2.8:  Let   U U U     
    


N N N N N N

L LIV
N A A A A A A

L= x; T ,T , I ,A    I , F F x X, :  be IVNS, then  

(i) IV
NA  is empty if 0, 1 1U U U= =

N N N N N NA A A A

L L

A

L

A
T = T I = I = ,F = F ,  x X.  

(ii) let 0 ,0,1,1x=    and ,1,0,0 .x   

 

The interval-valued numbers and their operational properties are most valuable to survey for 

interval-valued neutrosophic numbers [IVNeNs]. Here we are given some impotent operations & facts 

about Interval valued numbers. 

 

Definition 2.9 ([65]):  An interval on R  is defined as R  L R L R= a ,a = a : a a a ,aA [ ] { } , where La in left 

limit and Ra  is the right limit of A, it may also be defined as R  c w c w c w= a ,a = a : a - a a a + a ,aA { } , 

where 
( )

2

+R L

c

a a
a =  in centre 

( )

2

−
=

R L

w

a a
a  is width of A. 

 

Definition 2.10 ([66, 67): Let  L U L UA x = a ,a x : a x a( ) [ ] = { } , then A x( ) is called an interval number. 

A x( )  is positive interval if 0 .L Ua x a    Let L UA x = a ,a( ) [ ]  and L UB x = b ,b( ) [ ]  be two interval 

numbers, then the following operational properties are holds: 

(i) ; L L U UA = B   a = b ,  a = b    

(ii) [ ];= L L U UA + B   a + b ,  a + b [ ];U= L U LA - B   a - b ,  a - b  

(iii) };max }];  L L L U U L U U L L L U U L U UA B   min a b ,  a b ,a b ,  a b  a b ,  a b ,a b ,  a b[ { {  

(iv)    L UA = a , a[ ],  > 0.  

 

Definition 2.11 ([35]): The interval-valued trapezoidal neutrosophic number [IVTrNeN]) is a special 

case of NS on the real line R. Let 
1 2 3 4
, , ,a a a a R such that 

1 2 3 4
a a a a   then  

( ) L U L U L U
1 2 3 4 a a a a a a

a = a ,a ,a ,a ; u ,u , v ,v , w ,w ,     
     IV IV IV IV IV IV

N N N N N N

IV

N  

is IVTrNeN, where L U

a a
u ,u 
 IV IV

N N

are upper and lower bound of the truth-membership degree function 

a
u ,IV

N

L U

a a
v ,v 
 IV IV

N N

 are upper and lower bound of the indeterminacy-membership degree function 
a

v IV
N

 and 
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L U

a a
w ,w 
 IV IV

N N

 are the upper and lower bound of the falsity-membership degree function 
a

w IV
N

 in [0,1] 

respectively, whose truth-membership ( )IV
Na

T x , indeterminacy-membership ( )IV
Na

I x , and a falsity-

membership ( )IV
Na

F x  are defined as follows: 

1
1 2

2 1

2 3

4
3 4

4 3

1 4

,   for ,

,                   for ,

,   for ,

0,            for  and  

)

.

(

IV
N

IV
N

IV
N

IV
N

a

a

a

a

x a
u a x a

a a

u a x a

a x
u a x a

a a

x a x a

T x

  −
   

−  
  

= 
 −

    − 
  

 

2 1

1 2

2 1

2 3

3 4

3 4

4 3

1 4

( )
,   for ,

,                             for ,

( )
,   for ,

1,                     for  and  

)

.

(

IV
N

IV
N

IV
N

IV
N

a

a

a

a

a x v x a
a x a

a a

v a x a

x a v a x
a x a

a a

x a

I

x

x

a

 − + −
  

−


 
= 

− + −
 

−
  

                                                                               

2 1

1 2

2 1

2 3

3 4

3 4

4 3

1 4

( )
,   for ,

,                           for ,

( )
,   for ,

1,                     for  a

)

d  .

(

n

IV
N

IV
N

IV
N

IV
N

a

a

a

a

a x w x a
a x a

a a

w a x a

x a w a x
a x a

a a

x a x

F x

a

 − + −
  

−


 
= 

− + −
 

−
  

 

when      
  


  1

), (0 IV IV IV IV IV IV
N N N N N N

IV L U L U L U

N 1 2 3 4 a a a a a a
   a = a ,a ,a ,a ; u ,u , v ,v , w ,wa ,  is called positive IVTrNeN, 

denoted by 0IV

N
a  , and if 

4
0,a then IV

N
a  becomes a negative IVTrNeN, denoted by 0.IV

N
a   If =

2 3
,a a

then IVTrNeN is reduces interval-valued triangular neutrosophic number [IVTriNeN], denoted as 

( ) .IV IV IV IV IV IV
N N N N N N

IV L U L U L U

N 1 2 3 a a a a a a
a = a ,a ,a ; u ,u , v ,v , w ,w     

     
 

 

On the basis of [8, 41, 58], we will take here the twelve components of IVTrNeNs i.e. 

( )  ( )  ( ) 1
1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
, , , ; , , , , ; , , , , ;IV IV IV

N N N

IV

N a a a
a = a b c d u e f g h v l m n p w 

  
  guided as     

1 1 1 1 1
l e a m f

     
1 1 1 1 1 1 1

b n g c p h d .  

 
Fig. 3: Interval-valued trapezoidal neutrosophic number 

 

2.1.      Operational Laws on IVTrNeNs 

 

Let ( )  ( )  ( ) 1
1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
, , , ; , , , , ; , , , , ;IV IV IV

N N N

IV

N a a a
a = a b c d u e f g h v l m n p w 

  
 and  
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( )  ( )  ( ) 2
2 2 2

2 2 2 2 2 2 2 2 2 2 2 2
, , , ; , , , , ; , , , , ;IV IV IV

N N N

IV

N a a a
a = a b c d u e f g h v l m n p w 

  
 be two IVTrNeNs with 

twelve components, where 
1 1 1

,L U

a a a
u u u =

  
IV LIV U IV
N N N

; 
2 2 2

,L U

a a a
u u u =

  
IV LIV U IV
N N N

; 
1 1 1

,L U

a a a
v v v =

  
IV LIV U IV
N N N

;
2 2 2

,L U

a a a
v v v =

  
IV LIV U IV
N N N

; 

and 
1 1 1

,L U

a a a
w w w =

  
IV LIV U IV
N N N

;
2 2 2

,L U

a a a
w w w =

  
IV LIV U IV
N N N

 , then the following operations hold: 

 

Addition of IVTrNeNs:  

                            

( ) 
( ) 
( ) 

1 2

1 2
1 2

1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

, , , ; ,

, , , ; ,

, , , ;

IV IV
N N

IV IV
N N

IV IV
N N

a a

IV IV

N N a a

a a

a a b b c c d d u u

a a = e e f f g g h h v v

l l m m n n p p w w

 
+ + + + 

 
 
 + + + + + 
 
 

+ + + +  
 

 

Negative of IVTrNeN:  

                        ( )  ( )  ( ) 2
2 2 2

2 2 2 2 2 2 2 2 2 2 2 2
, , , ; , , , , ; , , , , ;IV IV IV

N N N

IV

N a a a
a = d c b a u h g f e v p n m l w 

− − − − − − − − − − − − −
  

 

Subtraction of IVTrNeNs:  

            

( ) 
( ) 
( ) 

1 2

1 2
1 2

1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

, , , ; ,

, , , ; ,

, , , ;

IV IV
N N

IV IV
N N

IV IV
N N

a a

IV IV

N N a a

a a

a d b c c b d a u u

a a = e h f g g f h e v v

l p m n n m p l w w

 
− − − − 

 
 
 − − − − − 
 
 

− − − −  
 

 

Scalar multiplication of SVTrNeN: 

            
( )  ( )  ( ) 
( )  ( )  ( ) 

1 1 1

1

1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

, , , ; , , , , ; , , , , ;  if 0

, , , ; , , , , ; , , , , ; if 0

IV IV IV
N N N

IV IV IV
N N N

a a a
IV

N

a a a

λa λb λc λd u λe λf λg λh v λl λm λn λp w    λ

λ.a =

λd λc λb λa u λh λg λf λe v λp λn λm λl w   λ

 
  

 
 
  

 

Multiplication of IVTrNeNs:  

         

( ) ( ) ( )
             
          1 2 1 2 1 2

1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2

. , . , . , . ; . , . , . , . . , . , . , .
,

, , if 0, 0, 0, 0, 0, 0

. , .

IV IV IV IV IV IV
N N N N N Na a a a a a

IV IV

N N

a a b b c c d d e e f f g g h h ; l l m m n n p p
  

u u  v v w w     d d h h p p

a d b c
a .a =

( ) ( ) ( )

( )

             
          1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1

, . , . ; . , . , . , . . , . , . , .
,

, , if 0, 0, 0, 0, 0, 0

. , . , . , . ; . , . ,

IV IV IV IV IV IV
N N N N N Na a a a a a

c b d a e h f g g f h e ; l p m n n m p l

u u  v v w w     d d h h p p

d d c c b b a a h h g g f( ) ( )

 
 
 
 
 
 
 
 
 
 
 
 

              
            1 2 1 2 1 2

2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2

. , . . , . , . , .
,

, , if 0, 0, 0, 0, 0, 0IV IV IV IV IV IV
N N N N N Na a a a a a

f e e ; p p n n m m l l

u u  v v w w     d d h h p p

 

Inverse of SVTrNeN:       

         

1 1 1

1

1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
, , , ; , , , ; , , , ; , , ,

if 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,1
( )

1 1 1 1 1 1
, , , ; ,

IV IV IV
N N Na a a

IV

N IV

N

u v w
d c b a h g f e p n m l

  a b c d e f g h l m n p
a

a

a b c d e

−

     
     
     

           
= =

 
 
  1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1
, , ; , , , ; , , ,

if 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.

IV IV IV
N N Na a a

u v w
f g h l m n p

  a b c d e f g h l m n p

 
 
 
 
 
 

    
    
    

             
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Division of SVTrNeNs:    

   

1 2 1 2 1 2

1

2

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 2 1 2 1 2

2

1

, , , ; , , , ; , , , ; , , ,

if 0, 0, 0, 0, 0, 0,

,

IV IV IV IV IV IV
N N N N N Na a a a a a

IV

N

IV

N

a b c d e f g h l m n p
u u  v v w w

d c b a h g f e p n m l

    d d h h p p

d c
a

d
a

                                  

     

= 1 2 1 2 1 2

2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1

1 2 1 2 1 2

2 2 2 2

1 1 1 1

, , ; , , , ; , , , ; , , ,

if 0, 0, 0, 0, 0, 0,

, , , ;

IV IV IV IV IV IV
N N N N N Na a a a a a

b a h g f e p n m l
u u  v v w w

c b a h g f e p n m l

  d d h h p p

d c b a h

a b c d

                                  

     

 
 
  1 2 1 2 1 2

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

1 2 1 2 1 2

, , , ; , , , ; , , ,

if 0, 0, 0, 0, 0, 0

IV IV IV IV IV IV
N N N N N Na a a a a a

g f e p n m l
u u  v v w w

e f g h l m n p

  d d h h p p

 
 
 
 
 
 
  
 
 
 
                               
 

       

     

   wher  ( ) ( )
1 2

min ,minIV IV LIV LIV UIV UIV
N N N N N N1 2 1 2

L L U U

a a a a a a
u u u ,u u ,u 

 =
  

,  ( ) ( )
1 2

max ,maxIV IV LIV LIV UIV UIV
N N N N N N1 2 1 2

L L U U

a a a a a a
v v v ,v v ,v 

 =
  

  

and  ( ) ( )
1 2

max ,max .IV IV LIV LIV UIV UIV
N N N N N N1 2 1 2

L L U U

a a a a a a
w w w ,w w ,w 

 =
  

 

 

Example 2.1.1:  let =
1

(7,11,16,21);[0.6,0.8]

(6,10,15,20);[0.3,0.4]

(5,9,14,19);[0.4,0.6]

IV

N
a  and =

2

(6,11,13,20);[0.7,0.8]

(5,10,12,18);[0.4,0.5]

(3,8,11,16);[0.5,0.6]

IV

N
a  be two IVTrNeNs, 

then         + =
1 2

(13,22,29,41);[0.6,0.8]

(11,20,27,38);[0.4,0.5]

(8,17,25,35);[0.5,0.6]

IV IV

N N
a a ,  

− −

− = − −

− −
1 2

( 13, 2,5,15);[0.6,0.8]

( 13, 2,5,15);[0.4,0.5]

( 11, 2,6,16);[0.5,0.6]

IV IV

N N
a a  

=
1 2

(42,121,208,420);[0.6,0.8]

. (30,100,180,360);[0.4,0.5]

(15,72,154,304);[0.5,0.6]

IV IV

N N
a a ,  =1

2

(0.35,0.85,1.45,3.50);[0.6,0.8]

(0.33,0.83,1.50,4.00);[0.4,0.5]

(0.31,0.81,1.75,6.33);[0.5,0.6]

IV

N

IV

N

a

a
 

                   =
1

(35,55,80,105);[0.6,0.8]

5 (30,50,75,100);[0.3,0.4]

(25,45,70,95);[0.4,0.6]

IV

N
a  

 

3.      Score and Accuracy functions of IVTrNeNs 

 

Definition 3.1:  Sahin [69] used the score function concept to find comparison between two IVTrNeNs. 

Greater of score function value demonstrate the greater of IVTrNeN. According the base of [70] the 

score and accuracy functions of an IVTrNeN IV

N
a can be defined as follows: 

               
( ) ( )

( )
( )

 + + + + − + + +
 =  + − − − −
 − + + + 

1 1 1 1 1 1 1 1

1 1 1 1

81
( ) 2

12
LIV UIV LIV UIV LIV UIV
N N N N N N

IV L U L U L U

N a a a a a a

a b c d e f g h
S a u + u v v w w

l m n p
 

( ) [0,1]IV

N
S a  . The accuracy function ( ) [ 1,1]IV

N
A a  −  is defined as: 

( ) ( )= + + + − − − −  + − − − −
1 1 1 1 1 1 1 1

1
( ) 2

4
LIV UIV LIV UIV LIV UIV
N N N N N N

IV L U L U L U

N a a a a a a
A a a b c d l m n p u + u v v w w  

 

Definition 3.2 Let 
1

IV

N
a  and 

2

IV

N
a  be any two IVTrNeNs, then one has the following comparison: 

(a) If 
1 2 1 2

( ) ( )     IV IV IV IV

N N N N
S a S a a a    

(b) If  
1 2

( )  ( )IV IV

N N
S a S a=  with 

1 2 1 2
( ) ( )IV IV IV IV

N N N N
A a A a     a a , 

1 2 1 2
( ) ( )IV IV IV IV

N N N N
A a A a     a a  and 



Neutrosophic Sets and Systems, Vol. 51, 2022                                                                                                       241 
___________________________________________________________________________________ 

___________________________________________________________________________________________ 

Rajesh Kumar Saini*1 Atul Sangal2 and Ashik Ahirwar3, A Novel Approach by using Interval-Valued Trapezoidal 

Neutrosophic Numbers in Transportation Problem 
 
 

          = =
1 2 1 2

( ) ( ) .thenIV IV IV IV

N N N N
A a A a     a a   

 

Example 3.1. Let 
1

(7,11,16,21),(6,10,15,20),(5,9,14,19);[0.6,0.8],[0.3,0.4],[0.4,0.6]IV

N
a = and 

            
2

(6,11,13,20),(5,10,12,18),(3,8,11,16);[0.7,0.8],[0.4,0.5],[0.5,0.6]IV

N
a = be two SVTrNeNs, then 

the score and accuracy function = −
1

( ) 4.95833IV

N
S a , =

1
( ) 5.1IV

N
A a  and = −

2
( ) 9.375IV

N
S a , =

2
( ) 4.875IV

N
A a .  

Here 
1 2

( ) ( )IV IV

N N
S a S a  and 

1 2
( ) ( )IV IV

N N
A a A a implies that 

1 2

IV IV

N N
a a .  

 

4.   Neutrosophic Transportation Problem [NTP] and its Mathematical formulation 

 

In a TP, if at least one parameter such as cost, demand, or supply is in form of neutrosophic 

numbers, then TP is termed as NTP. An NTP has neutrosophic availabilities and neutrosophic demand 

but the crisp cost is classified as NTP of type-1, if NTP has crisp availabilities and crisp demand but 

neutrosophic cost, is classified as NTP of type-2. If all the specifications of TP such as cost, demand, and 

availabilities are a combination of crisp, triangular, or trapezoidal neutrosophic numbers, then it is 

classified as NTP of type-3. In last if all the specifications of TP must be in neutrosophic numbers form, 

then TP is said to be NTP of type-4 or fully NTP. 
 

4.1    Mathematical Formulation of NTP  

 

In TP if uncertainty occurs in cost, demand or supply then it is more difficult to find the strict way 

and time. During the current scenario of covid-19, it is very important for transporting the drugs and 

medical equipment from one source to another destination in an unchallenging way. Keeping in mind 

for social distancing the IVTrNeS has a deep concern and special features. To maintain this type of 

impreciseness in cost to a transferred product from ith sources to jth destination or uncertainty in 

supply and demand, the decision-maker introduces NTP with IVTrNeNs. Here we discuss NTP of 

type-4 with IVTrNeNs in cost, supply and demand.  

Let the cost and number of units and assumptions and constraints in NTP be defined as IVTrNeNs 

that are transported from ith sources to jth destination. In the formulation of NTP the following 

assumptions and constraints are required: 

m  total number of source point 

n  total number of destination point 

i  table of source (for all m)  

j  table of destination (for all n) 

IV

ij
x  number of transported neutrosophic unites from ith source to jth destination 

IV

ij
c  Neutrosophic cost of one unit transported from ith source to jth destination 

a IV

ij  available neutrosophic supply quantity from ith source 

b IV

ij  required neutrosophic demand quantity to  jth destination 

IV L U

ij ij ij
c c ,c =

   crisp cost of one unit quantity 

IV L U

ij ij ij
x x ,x =

   number of transported crisp unites from ith source to jth destination 

IV L U

i i i
a a ,a =    available crisp supply quantity from ith source 

IV L U

j j j
b b ,b =

   required crisp demand quantity to  jth destination 
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For balance of NTP 
0 0

m n
IV IV

i j
i j

a a
= =

=   i.e. total supply is equal to total demand. The objective of this 

NTP model is to minimize the cost of transported product. The mathematical formulation of NTP with 

uncertain transported units, cost, demand and supply is as follows: 

0 0

cMinimum   
m n

IV IV IV

ij ij
i j

x
= =

=Z  

( )
0

Subject to              1,  2,  3,  . . . , soua , rces ,
n

IV IV

ij i
j

i mx
=

  =  

                  ( )
0

,      1,  2,  3,  . . . , destination ,b  
n

IV IV

ij j
j

x j
=

 = n  

                         1,  2,  3,  . . . , ,0    1,  2,  3,  . . . , .,IV

ij
i m jx  = = n  

where   

 

( )

( )

( )

  
   


 =    

 
  

( ) , ( ) , ( ) , ( ) ; ,

( ) , ( ) , ( ) , ( ) ,

( ) , ( ) , ( ) , ( )

IV IV
ij ij

IV IV
ij ij

IV IV
ij ij

IV IV IV IV L U

ij ij ij ij c c

IV IV IV IV IV L U

ij ij ij ij ij c c

IV IV IV IV L U

ij ij ij ij c c

c a c b c c c d u ,u

c c e c f c g c h v ,v

c l c m c n c p w ,w





 


 
 
  

,   

( )

( )

( )

  
   


 =    

 
  

( ) , ( ) , ( ) , ( ) ; ,

( ) , ( ) , ( ) , ( ) ,

( ) , ( ) , ( ) , ( )

IV IV
ij ij

IV IV
ij ij

IV IV
ij ij

IV IV IV IV L U

ij ij ij ij c c

IV IV IV IV IV L U

ij ij ij ij ij c c

IV IV IV IV L U

ij ij ij ij c c

x a x b x c x d u ,u

x x e x f x g x h v ,v

x l x m x n x p w ,w

 
 
 
  
  
  
    

t

 

 

( )

( )

( )

  
   

  =    

 
  

a( ) ,a( ) ,a( ) ,a( ) ; ,

a a( ) ,a( ) ,a( ) ,a( ) ,

a( ) ,a( ) ,a( ) ,a( )

IV IV
ij ij

IV IV
ij ij

IV IV
ij ij

IV IV IV IV L U

ij ij ij ij c c

IV IV IV IV IV L U

i ij ij ij ij c c

IV IV IV IV L U

ij ij ij ij c c

a b c d u ,u

e f g h v ,v

l m n p w ,w







 
 
  

,       

( )

( )

( )

  
   

  =    

 
  

b( ) ,b( ) ,b( ) ,b( ) ; ,

b b( ) ,b( ) ,b( ) ,b( ) ,

b( ) ,b( ) ,b( ) ,b( )

IV IV
ij ij

IV IV
ij ij

IV IV
ij ij

IV IV IV IV L U

ij ij ij ij c c

IV IV IV IV IV L U

j ij ij ij ij c c

IV IV IV IV L U

ij ij ij ij c c

a b c d u ,u

e f g h v ,v

l m n p w ,w

 
 
 

 
  
  
    

t

 

 

4.2.    Steps for Balancing of NTP by Existing Method 

 

The total transportation cost does not depends on the mode of transportation and distance, also the 

framework of the problem will be denoted by either crisp or IVTrNeNs. For solution of NTP, first we 

convert all IVTrNeNs into crisp values by using score function and so the NTP converted into simple 

TP. After balancing by existing method, the following steps are required for solution of NTP:  

  

Step 4.2.1: To change the each neutrosophic cost c IV

ij  neutrosophic supply aIV

i
 and neutrosophic 

demand b IV

j  of NTP in cost matrix into crisp values by using score function ( )IV

N
S a .  

Step 4.2.2: For balance TP, verify that the sum of demands is equal to the sum of supply i.e. If 

= = = =

     
0 0 0 0

a b or  a b        ,
m n m n

IV IV IV IV

i j i j
i j i j

i j  the one can make sure to balance the TP, as 

0 0

  a  b ,,
m n

IV IV

i j
i j

i j
= =

=   , by adding a row or column with zero entries in cost matrix.   

Step 4.2.3: Verify that the sum of demands is greater than the supply in each row and the sum of 

supplies are greater than the demand in each column, if ok go on step 4.2.4, otherwise go 

on step 4.2.2 

Step 4.2.4: Here we use the excel solver to solve the TP and obtained optimal solution.  
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4.3.   Steps for Balancing of NTP by MRCM  

 

For balance the unbalance NTP, we use minimum row column method [MRCM] introduced by 

Saini [45] as follows: 

Step 4.3.1. Convert neutrosophic cost c IV

ij  neutrosophic supply aIV

i
and neutrosophic demand b IV

j  of 

NTP in cost matrix to crisp values by using score function ( )IV

N
S a .  

Step 4.3.2 If NTP is unbalance i.e. 
0 0

  a or  b , ,
m n

IV IV

i j
i j

i j
= =

     than we find 

     and excess supply,
(( 1) ( 1)

0 0

            a a b b  
m n

IV IV IV IV

ii m i j n j
i j

+ +
= =

= =  
  

or        and excess demand.
( 1) (( 1)

10

          b b a a
n

IV IV IV IV

j n j ii m i

m

j i
+

= =
+

= =  
 

The unit transportation costs are taken as follows: 

( 1) ( 1)1 1
      min   ,  1 ,           min   ,  1 ,

i n ij m j ijj n i

IV IV I

m

V IVc c i m c c j n
+ +

   
=   =    

and
( 1)( 1)

 ,  1 ,  1 ,          0.IV IV IV

ij ji m n
c c i m j n c

+ +
=     =  

Step 4.3.3 Obtain optimal solution of NTP by excel solver. Let the neutrosophic optimal solution 

obtained be ,  1 1,  1 1.
i

V

j

Ix i m j n  +   +  

Step 4.3.4  By assuming 
'

1
 0I

m

V

+
 =  and using the relation  

' ' '  IV I

i

V

j

V I

ij
  =   for basic variables, find the 

values of all the dual variables 
' ,  1I

i

V i m     and  ' ,   1 1, IV

j
j n   +   

Step 4.3.5. According to MRCM, 
'

i

I

i

IV V =   and '

j

I

j

IV V =   for  1 ,1i m j n    , obtain only central 

rank zero duals.  

 

5. Numerical Example  

 

Let us consider a NTP of type-4 with three container (sources) say 
1

M , 
2

M , 
3

M  in which medical 

equipment are initially stored and ready to transport in three different destinations (cities), say 
1

C ,
2

C ,  

3
C with unit transportation cost, demand and supply are as IVTrNeN. The input data of NTP with 

IVTrNeNs is given in table 1: 

 

Table 1 
1

M  
2

M  
3

M  Supply 

1
C  (7,12,21.5,28);[0.7,0.9],

(4,10,17.5,25);[0.4,0.5],

(2,8,15.5,22);[0.3,0.4]

 
(7,11,15,19);[0.6,0.8]

(5,8,12,15);[0.4,0.5]

(3,5,7,11);[0.2,0.3]

 
5,10,14,19.5);[0.5,0.6],

(3,7.5,10,15);[0.4,0.6],

(1,4,7,10);[0.3,0.4]

 
(9,19,28,34);[0.7,0.8],

(7,12,19,24);[0.4,0.5],

(3,8,11,16);[0.2,0.4]

 

2
C  (5,11,16.5,21);[0.6,0.7],

(3,8,12,16);[0.3,0.5],

(0,3,9.5,12);[0.2,0.4]

 
−

(2,4,7.5,10);[0.6,0.7],

(1,3,6.5,9);[0.3,0.5],

( 1,2,5,7);[0.2,0.3]

 
−

(3,6,11,16);[0.7,0.9],

(1,5,9,14);[0.4,0.5],

( 3,2,6,12);[0.3,0.4]

 
,

,

8,14,25,35);[0.7,0.8]

(4,10,18,28);[0.3,0.5]

(1,8,14,22);[0.3,0.4]

 

3
C  (6,14,21,28);[0.8,0.9],

(4,11,18,25);[0.4,0.6],

(2,8,15,22);[0.3,0.4]

 
−

(4,8.5,14,17);[0.6,0.8],

(2,6.5,11,15);[0.4,0.5],

( 2,2,7,11);[0.2,0.3]

 
−

(5,10,14,20);[0.7,0.9],

(3,8,9,15);[0.3,0.5],

( 1,5,7,12);[0.2,0.4]

 
(14,22,30,39);[0.6,0.8],

(12,18,25,34);[0.3,0.5],

(8,15,23,31);[0.2,0.4]

 

Demand 
,

(10, 20, 28, 35);[0.7,0.9],

(4,12, 22.5, 29);[0.4,0.5]

(-1,7,12,19);[0.3,0.4],

 
,

,

6,12,23,33);[0.7,0.8]

(4,10,19,28);[0.4,0.5]

(2,8,15,24);[0.2,0.4]

 
(12,18, 25, 33);[0.7,0.9],

(9,16, 23, 30);[0.4,0.5],

(5,14, 20, 27);[0.3,0.4]

 
 

 

With the help of score function, the cost, demand and supply of NTP i.e. in IVTrNeNs are convert 

into the crisp numbers as follows: 
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= −
11

( ) 4.58333IVS c ,  = −
12

( ) 1IVS c , = −
13

( ) 0.11667IVS c , = −
1

( ) 0.33333IVaS , = −
21

( ) 0.31667IVS c , 

= −
22

( ) 0.16667IVS c , = −
23

( ) 0.333333IVcS ,  = −
2

( ) 2.50IVS a ,  = −
31

( ) 4.66667IVS c ,  = −
32

( ) 0.16667IVS c , 

= −
33

( ) 0.183333IVcS ,  

= −
3

( ) 8.83334IVaS ,  = −
1

( ) 0.58333IVbS ,  = −
2

( ) 4.66667IVbS , = −
3

( ) 8.0IVS b  

 

The unbalance TP with crisp values shown in table 2: 

Table 2 
1

M  
2

M  
3

M  Supply 

1
C  -4.58333 -1 -0.11667 -0.33333 

2
C  -0.31667 -0.16667 -0.33333 -2.50 

3
C  -4.66667 -0.16667 -0.18333 -8.83334 

Demand -0.58333 -4.66667 -8.0  

In table 2,  
=

= −
0

a 11.6667,
m

IV

i
i

 
=

=−
0

b 13.25
n

IV

j
j

, i.e. 
= =

− = 
0 0

b a 1.58300,
m n

IV IV

j i
i j

 this shows that NTP is 

unbalanced. The balance TP and  the solution of NTP in crisp form by excel solver shown in table 3 and 

table 4 respectively as follows: 

Table 3 
1

M  
2

M  
3

M  
4

M  Supply 

1
C  -4.58333 -1 -0.11667 0 -0.33333 

2
C  -0.31667 -0.16667 -0.33333 0 -2.50 

3
C  -4.66667 -0.16667 -0.18333 0 -8.83334 

Demand -0.58333 -4.66667 -8.0 1.58300  

 

Table 4 
1

M  
2

M  
3

M  
4

M  Supply 

1
C  1.91667 -3.83333 - 1.583 -0.33333 

2
C  -2.5 - - - -2.50 

3
C  - -0.83334 -8 - -8.83334 

Demand -0.58333 -4.66667 -8.0 1.58300  

 

The optimal solution of NTP in crisp form is = −2.55419.
CTP

Z  The solution of NTP with IVTrNeNs 

shown in table 5: 

Table 5 
1

M  
2

M  
3

M  
4

M  Supply 

1
C  (-25,-5,14,27);[0.7,0.9],

(-24,-6,12.5,25);[0.3,0.5],

(-23,-7,4,18);[0.3,0.4]

 
− −

− −

− −

( 71, 14,49,104);[0.7,0.8]

( 62, 12,43.5,88);[0.3,0.5]

( 60, 11,27,74);[0.2,0.4]

 - (-70,-21,33,80);[0.6,0.8],

(-64,-24.5,24,69);[0.3,0.5],

(-58,-16,19,63);[0.2,0.4]

 
(9,19,28,34);[0.7,0.8],

(7,12,19,24);[0.4,0.5],

(3,8,11,16);[0.2,0.4]

 

2
C  ,

,

8,14,25,35);[0.7,0.8]

(4,10,18,28);[0.3,0.5]

(1,8,14,22);[0.3,0.4]

 - - - ,

,

8,14,25,35);[0.7,0.8]

(4,10,18,28);[0.3,0.5]

(1,8,14,22);[0.3,0.4]

 

3
C  - − −

− −

− −

( 19, 3,12,27);[0.7,0.9],

( 18, 5,9,25);[0.3,0.5],

( 19, 5,9,26);[0.2,0.4]

 
(12,18, 25, 33);[0.7,0.9],

(9,16, 23, 30);[0.4,0.5],

(5,14, 20, 27);[0.3,0.4]

 - (14,22,30,39);[0.6,0.8],

(12,18,25,34);[0.3,0.5],

(8,15,23,31);[0.2,0.4]

 

Demand 
,

(10, 20, 28, 35);[0.7,0.9],

(4,12, 22.5, 29);[0.4,0.5]

(-1,7,12,19);[0.3,0.4],

 
,

,

6,12,23,33);[0.7,0.8]

(4,10,19,28);[0.4,0.5]

(2,8,15,24);[0.2,0.4]

 
(12,18, 25, 33);[0.7,0.9],

(9,16, 23, 30);[0.4,0.5],

(5,14, 20, 27);[0.3,0.4]
 

(-70,-21,33,80);[0.6,0.8],

(-64,-24.5,24,69);[0.3,0.5],

(-58,-16,19,63);[0.2,0.4]

  



Neutrosophic Sets and Systems, Vol. 51, 2022                                                                                                       245 
___________________________________________________________________________________ 

___________________________________________________________________________________________ 

Rajesh Kumar Saini*1 Atul Sangal2 and Ashik Ahirwar3, A Novel Approach by using Interval-Valued Trapezoidal 

Neutrosophic Numbers in Transportation Problem 
 
 

                

= +

(7,12,21.5,28);[0.7,0.9], (-25,-5,14,27);[0.7,0.9], (7,11,15,19);[0.6,0.8]

(4,10,17.5,25);[0.4,0.5], . (-24,-6,12.5,25);[0.3,0.5], (5,8,12,15);[0.4,0.5]

(2,8,15.5,22);[0.3,0.4] (-23,-7,4,18);[0.3,0.4] (3
NTP

Z

− −

− −

− −

+

( 71, 14,49,104);[0.7,0.8]

. ( 62, 12,43.5,88);[0.3,0.5]

,5,7,11);[0.2,0.3] ( 60, 11,27,74);[0.2,0.4]

(-70,-21,33,80);[0.6,0.8], (0,0,0,0);[0.6,0.8],

(-64,-24.5,24,69);[0.3,0.5], . (0

(-58,-16,19,63);[0.2,0.4]

+

+

(5,11,16.5,21);[0.6,0.7], 8,14,25,35);[0.7,0.8],

,0,0,0);[0.3,0.5], (3,8,12,16);[0.3,0.5], . (4,10,18,28);[0.3,0.5],

(0,0,0,0);[0.2,0.4] (0,3,9.5,12);[0.2,0.4] (1,8,14,22);[0.3,0.4]

(4,8.5,14,17);[0.6,0.8],

(

− −

− − +

− − − −

( 19, 3,12,27);[0.7,0.9], (5,10,14,20);[0.7,0.9], (12,18,25,33);[0

2,6.5,11,15);[0.4,0.5], . ( 18, 5,9,25);[0.3,0.5], (3,8,9,15);[0.3,0.5], .

( 2,2,7,11);[0.2,0.3] ( 19, 5,9,26);[0.2,0.4] ( 1,5,7,12);[0.2,0.4]

.7,0.9],

(9,16,23,30);[0.4,0.5],

(5,14,20,27);[0.3,0.4]

  

i.e.   =  −

(-648,94.5,1966.5,4586);[0.6,0.9],

(-403,19.5,1262.75,3218);[0.3,0.5], 7.07292

(-193,-27,587,2084);[0.2,0.3]
NTP

Z  

 

Now we balance the unbalance CTP in table 2 by MRCM, the balance CTP with crisp numbers shown 

in table 6 as follows: 

Table 6 
1

M  
2

M  
3

M  
4

M  Supply 

1
C  -4.58333 -1 -0.11667 -4.58333 -0.33333 

2
C  -0.31667 -0.16667 -0.33333 -0.33333 -2.50 

3
C  -4.66667 -0.16667 -0.18333 -4.66667 -8.83334 

4
C  -4.66667 -1 -0.33333 0 -11.6667 

Demand -0.58333 -4.66667 -8.0 -10.0834  

 

The solution of balance CTP as in table 7 

Table 7 
1

M  
2

M  
3

M  
4

M  Supply 

1
C  10.75001 -4.66667 -8 1.5833 -0.33333 

2
C  -2.5 0 0 0 -2.50 

3
C  -8.83334 0 0 0 -8.83334 

4
C  0 0 0 -11.6667 -11.6667 

Demand -0.58333 -4.66667 -8.0 -10.0834  

 

The cost = −
( )

8.91364
CTP MRCM

Z .  

The solution of corresponding balanced NTP shown in table 8 as follows: 

Table 8 
1

M  
2

M  
3

M  
4

M  Supply 

1
C  (-64,-35,-8,13);[0.7,0.9],

(-48,-31,-5.5,13);[0.4,0.5],

(-54,-30,-11,10);[0.3,0.4]

 
,

,

6,12,23,33);[0.7,0.8]

(4,10,19,28);[0.4,0.5]

(2,8,15,24);[0.2,0.4]

 
(12,18, 25, 33);[0.7,0.9],

(9,16, 23, 30);[0.4,0.5],

(5,14, 20, 27);[0.3,0.4]

 
(-147,-49,61,157);[0.7,0.9],

(-127,-46.5,46,132);[0.4,0.5],

(-115,-33,36,120);[0.3,0.4]

 
(9,19,28,34);[0.7,0.8],

(7,12,19,24);[0.4,0.5],

(3,8,11,16);[0.2,0.4]

 

2
C  ,

,

8,14,25,35);[0.7,0.8]

(4,10,18,28);[0.3,0.5]

(1,8,14,22);[0.3,0.4]

 - - - ,

,

8,14,25,35);[0.7,0.8]

(4,10,18,28);[0.3,0.5]

(1,8,14,22);[0.3,0.4]

 

3
C  (14,22,30,39);[0.6,0.8],

(12,18,25,34);[0.3,0.5],

(8,15,23,31);[0.2,0.4]

 - - - (14,22,30,39);[0.6,0.8],

(12,18,25,34);[0.3,0.5],

(8,15,23,31);[0.2,0.4]

 

4
C  - - - (31,55,83,108);[0.6,0.8],

(23,40,62,86);[0.3,0.5],

(12,31,48,69);[0.2,0.4]

 
(31,55,83,108);[0.6,0.8],

(23,40,62,86);[0.3,0.5],

(12,31,48,69);[0.2,0.4]

 

Demand 
,

(10, 20, 28, 35);[0.7,0.9],

(4,12, 22.5, 29);[0.4,0.5]

(-1,7,12,19);[0.3,0.4],

 
,

,

6,12,23,33);[0.7,0.8]

(4,10,19,28);[0.4,0.5]

(2,8,15,24);[0.2,0.4]

 
(12,18, 25, 33);[0.7,0.9],

(9,16, 23, 30);[0.4,0.5],

(5,14, 20, 27);[0.3,0.4]

 
(-39, 34,116,188);[0.7,0.9],

(-41,15.5,86,155);[0.4,0.5],

(-46,15,67,132);[0.3,0.4]
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= +
( )

(-64,-35,-8,13);[0.7,0.9], (7,12,21.5,28);[0.7,0.9], 6,12,23,33);[0.7,0.8],

(-48,-31,-5.5,13);[0.4,0.5], . (4,10,17.5,25);[0.4,0.5], (4,10,19,28)

(-54,-30,-11,10);[0.3,0.4] (2,8,15.5,22);[0.3,0.4]
NTP MRCM

Z +

(7,11,15,19);[0.6,0.8] (12,18,25,33);[0.7,0.9], 5,10,14,19.5);[0.5,0.6],

;[0.4,0.5], . (5,8,12,15);[0.4,0.5] (9,16,23,30);[0.4,0.5], . (3,7.5,10

(2,8,15,24);[0.2,0.4] (3,5,7,11);[0.2,0.3] (5,14,20,27);[0.3,0.4]

+ +

,15);[0.4,0.6],

(1,4,7,10);[0.3,0.4]

(-147,-49,61,157);[0.7,0.9], (7,12,21.5,28);[0.7,0.9], 8,14

(-127,-46.5,46,132);[0.4,0.5], . (4,10,17.5,25);[0.4,0.5],

(-115,-33,36,120);[0.3,0.4] (2,8,15.5,22);[0.3,0.4]

+

,25,35);[0.7,0.8], (5,11,16.5,21);[0.6,0.7], (14,22,30,39);[0.6,0.8],

(4,10,18,28);[0.3,0.5], . (3,8,12,16);[0.3,0.5], (12,18,25,34);[0.3,0.5],

(1,8,14,22);[0.3,0.4] (0,3,9.5,12);[0.2,0.4] (8,15,23,31);[0.2,0

+

(6,14,21,28);[0.8,0.9],

. (4,11,18,25);[0.4,0.6],

.4] (2,8,15,22);[0.3,0.4]

(31,55,83,108);[0.6,0.8], (0,0,0,0);[0.6,0.8],

(23,40,62,86);[0.3,0.5], . (0,0,0,0);[0.3,0.5],

(12,31,48,69);[0.2,0.4] (0,0,0,0);[0.2,0.4]

 

=  −
( )

(-1230,-234,3221,7857.5);[0.6,0.9],

(-593,-297,1832.75,5793);[0.3,0.5], 13.810

(-311,-264,1110.5,4340);[0.2,0.3]
NTP MRCM

Z  

 

6. Comparative Study 

 

To maintain physical distance during Covid-19 pandemic, we introduced here some advanced 

version of neutrosophic numbers such as IVTrNeNs, which provides the better results in real life for 

uncertainty and hesitation in place of crisp numbers.  For practical application of NTP type-4, the 

minimum cost of unbalanced CTP and NTP obtained by VAM and MRCM is summarized in table 9. It 

is also clear from the table 9, that minimum cost of unbalanced CTP and NTP obtained by using MRCM 

is far better than the existing method VAM. In figure 4, the bar graph represents the minimum cost of 

CTP and NTP and their comparison for better one.  

 

  Table 9:  Comparative Study 

Balance of CTP by existing method  Balance of CTP by MRCM 

= −2.55419
CTP

Z   = −
( )

8.91364
CTP MRCM

Z  

Balance of NTP by existing method  Balance of NTP by MRCM 

=

(-648,94.5,1966.5,4586);[0.6,0.9],

(-403,19.5,1262.75,3218);[0.3,0.5],

(-193,-27,587,2084);[0.2,0.3]
NTP

Z

 −7.07292  

 

=
( )

(-1230,-234,3221,7857.5);[0.6,0.9],

(-593,-297,1832.75,5793);[0.3,0.5],

(-311,-264,1110.5,4340);[0.2,0.3]
NTP MRCM

Z  

 −13.810  

 

     
                                                            Figure 3: Comparison of results by chart 
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8.  Result and discussion  

 

In this present study the optimal transportation crisp cost and optimal transportation neutrosophic 

cost of unbalanced NTP using MRCM is minimum than the existing method in [30]. It is also verified 

that in de-neutrosophication, the crisp values before and after conversion from neutrosophic to crisp 

and crisp to neutrosophic  are different. For the real life applications one can find the degree of result.  

The best of minimum neutrosophic cost of unbalanced NTP is 

=
( )

(-1230,-234,3221,7857.5);[0.6,0.9],

(-593,-297,1832.75,5793);[0.3,0.5],

(-311,-264,1110.5,4340);[0.2,0.3]
NTP MRCM

Z   i.e. total minimum transportation cost lies between  -

1230 to 7857.5 in the interval [0.6, 0.9] for level of truthfulness, -593 to 5793 in the interval [0.3, 0.5]  for 

level of indeterminacy and -311 to 4340 in the interval [0.2, 0.3] for level of falsity. 100
IVaN

T
u , 100

IVaN

I
v , 

and 100
IVaN

F
w  represents the degree of truthfulness, degree of indeterminacy and degree of falsity 

respectively. Thus  

for -1230

for
( )

for 3221 7857.5

          x ,

                                         - x ,
x

      x ,

        

 +
  − 

− 

 
=

 −
  

− 

1230
[0.6,0.9], 234

1230 234

[0.6,0.9], 234 3221

7857.5
[0.6,0.9],

7857.5 3221

0,

IVaN

T

x

u
x

for otherwise.                                             











   

for - 593

for - 297 1832.75
( )

            x ,

                                                         x ,
x

  

− − + +
  −

−

 
=

− + −

−

( 297 ) ( 593)[0.3,0.5]
, 297

593 297
[0.3,0.5],

( 1832.75) (5793 )[0.3,0.5]
,

5793 1832.75

IVaN

I

x x

v
x x

for 1832.75

for otherwise.

   x ,

                                                                    






  




5793

0,

  

for - 311 -264

for - 264 1110.5
( )

for

          x ,

                                                       x ,
x

      

− − + +
 

−

 
=

− + −

−

( 264 ) ( 311)[0.2,0.3]
,

311 264
[0.2,0.3],

( 1110.5) (4340 )[0.2,0.3]
,

4340 1110.5

IVaN

F

x x

w
x x

1110.5 4340

for otherwise.

x ,

                                                                   






  


0,

 

where x denotes the total cost.  

Table 10 

Degree
→


x
 

-500 0 2000 3000 4000 5000  7000 

100
IVaN

T
u   

[43.976, 5.964] [60, 90] [60, 90] [60, 90] [49.919, 74.879] [36.978, 55.467] [11.097, 16.645] 

100
IVaN

I
v  

[78.007, 84.290] [30, 50] [32.969, 52.124] [50.632, 64.737] [68.307, 77.362] [85.983, 89.987] - 

100
IVaN

F
w  

- [20, 30] [42.034, 49.280] [66.806, 70.956] [91.577, 92.630] 

 

- - 
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Figure 3: Degree of truthfulness, indeterminacy and falsity 

 

The total neutrosophic cost from the range of -1230 to 7857.5 for truthfulness, -593 to 5793 for 

indeterminacy and -311to 4340 for falsity  are concluded by degree of truthfulness, degree of 

indeterminacy and degree of falsity to schedule the transportation cost and budget allocation.  

 

9. Conclusions and Novelty 

 

Today in society, the concept of neutrosophic numbers is well linked to handling uncertainty or 

vagueness in applied mathematical modeling. The current research paper is the study of unbalanced 

CTP & NTP by introducing a new balancing approach MRCM to obtain an optimal solution where all 

parameters and values of TP are as IVTrNeNs. The proposed ranking function provides a more 

practical structure and considers the various characteristics of TP in a neutrosophic environment. Such 

a type of transportation problem with  IVTrNeNs and their comparison between the two methods are 

not introduced earlier, and we hope that in the future, the proposed MRCM will be more applicable to 

the multilevel programming problem, unbalanced multi-attribute transportation problem, and multi-

level assignment problems. The existing analysis will be a landmark for TP’s with generalization by 

considering the pick value of truth, indeterminacy, and falsity functions and for schedule 

transportation cost and budget allocation for the total neutrosophic cost, that concluded by a degree of 

truthfulness, degree of indeterminacy, and degree of falsity. 

 

Acknowledgement: My sincere thanks to Professor Mohamed Abdel Baset, who gave me some useful 

suggestions to modify our paper as of international repute. 
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 Abstract:  This article concerns with the neutrosophic vague soft graphs for treating neutrosophic 

vague soft information by employing the theory of neutrosophic vague soft sets with graphs. Operations 

like Cartesian product, cross product, lexicographic product, strong product and composition of 

neutrosophic vague soft graphs are established. The proposed concepts are explained with examples.  
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1  Introduction 

 Nowadays, the great success of neutrosophic sets in modelling natural phenomena is that its 

efficiency to hold incomplete data, and handling of indeterminate information. It is the base of 

neutrosophic logic, a multiple value logic that generalizes the fuzzy logic that carries with paradoxes, 

contradictions, antitheses, antinomies, invented by the author Smarandache [8, 21, 22]. For example, 

suppose there are hundred patients to check a pandemic during testing. In that time, there are thirty 

patients having positive, fifty will have negative, and twenty are undecided or yet to come. By employing 

the neutrosophic concepts it can be expressed as 𝑥(0.3,0.2,0.5). Hence the neutrosophic field arises to 

hold the indeterminacy data more accurately. It generalizes many concepts from the philosophical 

viewpoint. The single-valued neutrosophic set is the generalization of intuitionistic fuzzy sets and is used 

expediently to deal with real-world problems, especially in decision support [23]. The computation of 

belief in that element (truth), they disbelieve in that element (falsehood) and the indeterminacy part of 

that element with the sum of these three components are strictly less than 1. Neutrosophic set and related 

notions have shown applications in many different fields. In the definition of single valued neutrosophic 

set, the indeterminacy value is quantified explicitly and truth-membership, indeterminacy membership, 

and false-membership are defined completely independent with the sum of these values lies between 0 

and 3 (see [21]-[23]). The indeterminacy function is considered as an individual term and each element 𝑥 

is characterized by a truth-membership function 𝒯𝐴(𝑥), an indeterminacy membership function ℐ𝐴(𝑥) 

and a falsity-membership function ℱ𝐴(𝑥), each of that from the non-standard unit interval ]0−, 1+[. 

Despite the neutrosophic indeterminacy is independent of the truth and falsity-membership values, but it 

is more general than the hesitation margin of intuitionistic fuzzy sets. It’s not sure whether the 

indeterminacy values relevant to a particular element correspond to hesitant values about its belonging 

or not belonging to it. In another way, if a person identifies an indeterminacy membership ℐ𝐴(𝑥) with a 

specific event 𝑥, it becomes difficult to understand whether the person’s degree of uncertainty regarding 

the event’s occurrence is ℐ𝐴(𝑥) or whether the person’s degree of uncertainty regarding the event’s 

non-occurrence is ℐ𝐴(𝑥). As a result, some authors prefer to model the indeterminacy’s behaviour in the 

same way they similar to truth-membership, others may prefer to model it, in the same way, they similar 

to falsity-membership. Wang et al. [23] initiated the concept of a single-valued neutrosophic set and 
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provide its various properties. 

Molodtsov [20] successfully proposed a completely new theory namely soft set theory by using 

classical sets in 1999 and after that, there has been a rapid development of interest in soft sets and their 

various applications [7, 9]. This theory provides a parametrized point of view for uncertainty modelling 

and soft computing. Vague sets are considered as a particular case of context-dependent fuzzy sets. 

Vague sets are studied by Gau and Buehrer [24] as an extension of fuzzy set theory. Neutrosophic soft 

rough graphs with applications are established in [5]. Neutrosophic soft relations and neutrosophic 

refined relations with their properties are studied in [8, 18]. Recently, the generalization of neutrosophic 

graphs are developed in [25]. Also, neutrosophic soft graphs, neutrosophic graphs, co-neutrosophic 

graphs,single valued neutrosophic graphs are established in [2, 10, 12]. Neutrosophic vague set is first 

invented by the author in [6]. In [3], the authors studied the notion of neutrosophic vague soft expert set 

as a combination of soft expert set and neutrosophic vague set to the substantial improvement in decision 

making. Also, the neutrosophic vague soft set is studied by him [4] with application in decision making 

problems. In [2], the certain notions, including neutrosophic soft graphs, strong neutrosophic soft graphs, 

complete neutrosophic soft graphs are discussed. Neutrosophic vague graphs are introduced in [15]. 

Intuitionistic bipolar neutrosophic set and its application to graphs are established in [16]. Motivated by 

papers [2, 4, 6, 15, 17], we introduce the concept of operations on neutrosophic vague soft graphs. The 

major contributions of this work are as follows:   

    • In this paper, we present a novel frame work for handling neutrosophic vague soft 

information by combining the theory of neutrosophic vague soft sets with graphs.  

    • The operations on neutrosophic vague soft graphs are established and this manuscript 

makes the first attempt in this domain. Some basic definitions regarding to neutrosophic vague graphs 

are explained with example.  

    • Results on the Cartesian product, cross product, lexicographic product, strong product and 

composition of neutrosophic vague graph are illustrated with examples.  

    • The validity of the developed method is verifying in multi-attribute decision-making 

method based on neutrosophic vague soft graphs. 

    • Finally, a conclusion is elaborated with future direction.  

The paper is organised as follows: Some elementary definitions and results are provided in 

Section 2. Operations on neutrosophic vague soft graphs with example are established in Section 3. In 

Section 4, the multi-attribute decision making method is solved for neutrosophic vague soft graphs, in 

that, the solving procedure is based on the score function 𝑆𝑖𝑗  [25]. Finally, the advantages and limitations 

of the proposed concepts are given. 

 

2  Preliminaries 

 In this section, basic definitions and example are given.  

Definition 2.1 [20] Let 𝒰 be the universe of discourse and 𝒫 be the universe of all possible parameters related to 

the objects in 𝒰. Each parameters are considered to be attributes, characteristics of objects in 𝒰. The pair (𝒰, 𝒫) is 

also known as a soft universe. The power set of 𝒰 is dentoted as 𝜌(𝒰)  

 

Definition 2.2 [20] A pair (𝐹, 𝐴) is called soft set over 𝒰, where 𝐴 ⊆ 𝑃, 𝐹 is a set- valued function 𝐹: 𝐴 →

𝜌(𝒰). In other words, a soft set over 𝒰 is a parametrized family of subsets of 𝒰. 

By means of parametrization, a soft set produces a series of approximate descriptions of a 

complicated object being perceived from various points of view. It is apparent that a soft set 𝐹𝐴 = (𝐹, 𝐴) 

over a universe 𝒰. For any parameter 𝜖 ∈ 𝐴, the subset 𝐹(𝜖) ⊆ 𝒰 may be interpreted as the set of 𝜖- 

approximate elements.  
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Definition 2.3 [19] Let 𝒰 be an initial universe and 𝑃 be a set of parameters. Consider 𝐴 ⊆ 𝑃. Let 𝑝(𝒰) denotes 

the set of all neutrosophic sets of 𝒰. The collection of (𝐹, 𝐴) is termed to be neutrosophic soft set over 𝒰, where 𝐹 

is a mapping given by 𝐹: 𝐴 → 𝑃(𝒰).  

 

Definition 2.4 [24] A vague set 𝐴 on a non empty set 𝑋 is a pair (𝑇𝐴 , 𝐹𝐴), where 𝑇𝐴: 𝑋 → [0,1] and 𝐹𝐴: 𝑋 →

[0,1] are true membership and false membership functions, respectively, such that  

 0 ≤ 𝑇𝐴(𝑥) + 𝐹𝐴(𝑦) ≤ 1 for any 𝑥 ∈ 𝑋.  

 Let 𝑋 and 𝑌 be two non-empty sets. A vague relation 𝑅 of 𝑋 to 𝑌 is a vague set 𝑅 on 𝑋 × 𝑌 that is 

𝑅 = (𝑇𝑅 , 𝐹𝑅), where 𝑇𝑅: 𝑋 × 𝑌 → [0,1], 𝐹𝑅: 𝑋 × 𝑌 → [0,1] and satisfy the condition:  

 0 ≤ 𝑇𝑅(𝑥, 𝑦) + 𝐹𝑅(𝑥, 𝑦) ≤ 1 for any 𝑥, 𝑦 ∈ 𝑋.  

  

Definition 2.5 [7] Let 𝐺∗ = (𝑉, 𝐸) be a graph. A pair 𝐺 = (𝐽, 𝐾) is called a vague graph on 𝐺∗, where 𝐽 =

(𝑇𝐽, 𝐹𝐽) is a vague set on 𝑉 and 𝐾 = (𝑇𝐾 , 𝐹𝐾) is a vague set on 𝐸 ⊆ 𝑉 × 𝑉 such that for each 𝑥𝑦 ∈ 𝐸,  

 𝑇𝐾(𝑥𝑦) ≤ min(𝑇𝐽(𝑥), 𝑇𝐽(𝑦)) and 𝐹𝐾(𝑥𝑦) ≥ max(𝑇𝐽(𝑥), 𝐹𝐽(𝑦)).   

 

Definition 2.6 [21] Let 𝑋 be a space of points (objects), with generic elements in 𝑋 denoted by 𝑥. A single valued 

neutrosophic set 𝐴 in 𝑋 is characterised by truth-membership function 𝑇𝐴(𝑥), indeterminacy-membership function 

𝐼𝐴(𝑥) and falsity-membership-function 𝐹𝐴(𝑥), 

For each point 𝑥 in 𝑋, 𝑇𝐴(𝑥), 𝐹𝐴(𝑥), 𝐼𝐴(𝑥) ∈ [0,1]. Also  

 𝐴 = {𝑥, 𝑇𝐴(𝑥), 𝐹𝐴(𝑥), 𝐼𝐴(𝑥)} and 0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3.  

 

Definition 2.7 [1] A single valued neutrosophic graph is defined as a pair 𝐺 = (𝐽, 𝐾) where  

(i) 𝑉 = {𝑣1, 𝑣2, . . , 𝑣𝑛} such that 𝑇𝐽: 𝑉 → [0,1], 𝐼𝐽: 𝑉 → [0,1] and 𝐹𝐽: 𝑉 → [0,1] denote the degree of 

truth-membership function, indeterminacy function and falsity-membership function, respectively and  

 0 ≤ 𝑇𝐽(𝑣) + 𝐼𝐽(𝑣) + 𝐹𝐽(𝑣) ≤ 3,  

 (ii) 𝐸 ⊆ 𝑉 × 𝑉 where 𝑇𝐾: 𝐸 → [0,1], 𝐼𝐾: 𝐸 → [0,1] and 𝐹𝐾: 𝐸 → [0,1] are such that  
 𝑇𝐾(𝑢𝑣) ≤ min{𝑇𝐽(𝑢), 𝑇𝐽(𝑣)}, 

𝐼𝐾(𝑢𝑣) ≤ min{𝐼𝐽(𝑢), 𝐼𝐽(𝑣)}, 

𝐹𝐾(𝑢𝑣) ≤ max{𝐹𝐽(𝑢), 𝐹𝐽(𝑣)}, 

and 0 ≤ 𝑇𝐾(𝑢𝑣) + 𝐼𝐾(𝑢𝑣) + 𝐹𝐾(𝑢𝑣) ≤ 3, ∀𝑢𝑣 ∈ 𝐸.  

 

Definition 2.8 [21]  A Neutrosophic set 𝐴  is contained in another neutrosophic set 𝐵 , (i.e) 𝐴 ⊆ 𝐵  if ∀𝑥 ∈

𝑋, 𝑇𝐴(𝑥) ≤ 𝑇𝐵(𝑥), 𝐼𝐴(𝑥) ≥ 𝐼𝐵(𝑥)and 𝐹𝐴(𝑥) ≥ 𝐹𝐵(𝑥).  

 

Definition 2.9 [6] A Neutrosophic Vague Set 𝐴𝑁𝑉 (NVS in short) on the universe of discourse 𝑋 written as  

 𝐴𝑁𝑉 = {〈𝑥, 𝑇̂𝐴𝑁𝑉
(𝑥), 𝐼𝐴𝑁𝑉

(𝑥), 𝐹̂𝐴𝑁𝑉
(𝑥)〉, 𝑥 ∈ 𝑋},  

whose truth-membership, indeterminacy membership and falsity-membership functions are defined as  

 𝑇̂𝐴𝑁𝑉
(𝑥) = [𝑇−(𝑥), 𝑇+(𝑥)], 𝐼𝐴𝑁𝑉

(𝑥) = [𝐼−(𝑥), 𝐼+(𝑥)]and 𝐹̂𝐴𝑁𝑉
(𝑥) = [𝐹−(𝑥), 𝐹+(𝑥)], 

where 𝑇+(𝑥) = 1 − 𝐹−(𝑥), 𝐹+(𝑥) = 1 − 𝑇−(𝑥), and 0 ≤ 𝑇−(𝑥) + 𝐼−(𝑥) + 𝐹−(𝑥) ≤ 2.  

  

Definition 2.10 [6] The complement of NVS 𝐴𝑁𝑉 is denoted by 𝐴𝑁𝑉
𝑐  and it is defined by  

 𝑇̂𝐴𝑁𝑉
𝑐 (𝑥) = [1 − 𝑇+(𝑥),1 − 𝑇−(𝑥)], 

 𝐼𝐴𝑁𝑉
𝑐 (𝑥) = [1 − 𝐼+(𝑥),1 − 𝐼−(𝑥)], 

 𝐹̂𝐴𝑁𝑉
𝑐 (𝑥) = [1 − 𝐹+(𝑥),1 − 𝐹−(𝑥)]. 

  

Definition 2.11 [6] Let 𝐴𝑁𝑉 and 𝐵𝑁𝑉 be two NVSs of the universe 𝑈. If for all 𝑢𝑖 ∈ 𝑈,  

 𝑇̂𝐴𝑁𝑉
(𝑢𝑖) ≤ 𝑇̂𝐵𝑁𝑉

(𝑢𝑖), 𝐼𝐴𝑁𝑉
(𝑢𝑖) ≥ 𝐼𝐵𝑁𝑉

(𝑢𝑖), 𝐹̂𝐴𝑁𝑉
(𝑢𝑖) ≥ 𝐹̂𝐵𝑁𝑉

(𝑢𝑖).  
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Then, the NVSs, 𝐴𝑁𝑉 are included in 𝐵𝑁𝑉, denoted by 𝐴𝑁𝑉 ⊆ 𝐵𝑁𝑉 where 1 ≤ 𝑖 ≤ 𝑛.  

  

Definition 2.12 [6] The union of two NVSs 𝐴𝑁𝑉 and 𝐵𝑁𝑉 is an NVSs, 𝐶𝑁𝑉, written as 𝐶𝑁𝑉 = 𝐴𝑁𝑉 ∪ 𝐵𝑁𝑉, whose 

truth membership function, indeterminacy-membership function and false-membership function are related to those 

of 𝐴𝑁𝑉 and 𝐵𝑁𝑉 by  

 𝑇̂𝐶𝑁𝑉
(𝑥) = [max(𝑇𝐴𝑁𝑉

− (𝑥), 𝑇𝐵𝑁𝑉
− (𝑥)), max(𝑇𝐴𝑁𝑉

+ (𝑥), 𝑇𝐵𝑁𝑉
+ (𝑥))] 

 𝐼𝐶𝑁𝑉
(𝑥) = [min(𝐼𝐴𝑁𝑉

− (𝑥), 𝐼𝐵𝑁𝑉
− (𝑥)), min(𝐼𝐴𝑁𝑉

+ (𝑥), 𝐼𝐵𝑁𝑉
+ (𝑥))] 

 𝐹̂𝐶𝑁𝑉
(𝑥) = [min(𝐹𝐴𝑁𝑉

− (𝑥), 𝐹𝐵𝑁𝑉
− (𝑥)), min(𝐹𝐴𝑁𝑉

+ (𝑥), 𝐹𝐵𝑁𝑉
+ (𝑥))]. 

  

Definition 2.13 [6] The intersection of two NVSs, 𝐴𝑁𝑉 and 𝐵𝑁𝑉 is an NVSs 𝐶𝑁𝑉, written as 𝐶𝑁𝑉 = 𝐴𝑁𝑉 ∩ 𝐵𝑁𝑉 , 

whose truth-membership function, indeterminacy-membership function and false-membership function are related 

to those of 𝐴𝑁𝑉 and 𝐵𝑁𝑉 by  

 𝑇̂𝐶𝑁𝑉
(𝑥) = [min(𝑇𝐴𝑁𝑉

− (𝑥), 𝑇𝐵𝑁𝑉
− (𝑥)), min(𝑇𝐴𝑁𝑉

+ (𝑥), 𝑇𝐵𝑁𝑉
+ (𝑥))] 

 𝐼𝐶𝑁𝑉
(𝑥) = [max(𝐼𝐴𝑁𝑉

− (𝑥), 𝐼𝐵𝑁𝑉
− (𝑥)), max(𝐼𝐴𝑁𝑉

+ (𝑥), 𝐼𝐵𝑁𝑉
+ (𝑥))] 

 𝐹̂𝐶𝑁𝑉
(𝑥) = [max(𝐹𝐴𝑁𝑉

− (𝑥), 𝐹𝐵𝑁𝑉
− (𝑥)), max(𝐹𝐴𝑁𝑉

+ (𝑥), 𝐹𝐵𝑁𝑉
+ (𝑥))]. 

  

Definition 2.14 [19] Let 𝒰 be a universe, E a set of parameters and 𝐴 ⊆ 𝐸. A collection of pairs (𝐹, 𝐴) is called a 

neutrosophic vague soft set (NVSS) over 𝒰 where 𝐹 is a mapping given by 𝐹: 𝐴 → 𝑁𝑉(𝒰) and 𝑁𝑉(𝒰) denotes 

the set of all neutrosophic vague subsets of 𝒰 .  

  

Definition 2.15 [2] A neutrosophic soft graph 𝐺 = (𝐺∗, 𝐽, 𝐾, 𝑅) is an ordered four tuple if it satisfies the following 

conditions:   

    • 𝐺∗ = (𝑉, 𝐸) is a simple graph,  

    • 𝑅 is a non-empty set of parameters,  

    • (𝐽, 𝑅) is a neutrosophic soft set over 𝑉,  

    • (𝐾, 𝑅) is a neutrosophic soft set over 𝐸,  

    • (𝐽(𝑒), 𝐾(𝑒)) is a neutrosophic graph of 𝐺∗, that is,  

  
 𝑇𝐾(𝑒)(𝑎𝑏) ≤ min{𝑇𝐽(𝑒)

− (𝑎), 𝑇𝐽(𝑒)
− (𝑏)}, 

 𝐼𝐾(𝑒)(𝑎𝑏) ≤ min{𝐼𝐽(𝑒)
− (𝑎), 𝐼𝐽(𝑒)

− (𝑏)}, 

 𝐹𝐾(𝑒)(𝑎𝑏) ≤ max{𝐹𝐽(𝑒)
− (𝑎), 𝐹𝐽(𝑒)

− (𝑏)} 

 such that, 
0 ≤ 𝑇𝐾(𝑒)(𝑎𝑏) + 𝐼𝐾(𝑒)(𝑎𝑏) + 𝑇𝐾(𝑒)(𝑎𝑏) ≤ 3 ∀𝑒 ∈ 𝑅, 𝑎, 𝑏 ∈ 𝑉. 

For convenience, the neutrosophic graph (𝐽(𝑒), 𝐾(𝑒)) is denoted by 𝐻(𝑒). A neutrosophic vague 

soft graph is a parametrized family of neutrosophic graphs.  

  

Definition 2.16 [15] Let 𝐺∗ = (𝑅, 𝑆) be a graph. A pair 𝐺 = (𝐴, 𝐵) is called a neutrosophic vague graph (NVG) 

on 𝐺∗ or a neutrosophic vague graph where 𝐴 = (𝑇̂𝐴, 𝐼𝐴, 𝐹̂𝐴) is a neutrosophic vague set on 𝑅 and 𝐵 = (𝑇̂𝐵 , 𝐼𝐵 , 𝐹̂𝐵) 

is a neutrosophic vague set 𝑆 ⊆ 𝑅 × 𝑅 where  

 (1)𝑅 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} such that 𝑇𝐴
−: 𝑅 → [0,1], 𝐼𝐴

−: 𝑅 → [0,1], 𝐹𝐴
−: 𝑅 → [0,1] satisfies the condition 

𝐹𝐴
− = [1 − 𝑇𝐴

+], and 𝑇𝐴
+: 𝑅 → [0,1], 𝐼𝐴

+: 𝑅 → [0,1], 𝐹𝐴
+: 𝑅 → [0,1] which satisfies the condition 𝐹𝐴

+ = [1 − 𝑇𝐴
−],  

 denote the degrees of truth membership, indeterminacy membership and falsity membership of 

the element 𝑣𝑖 ∈ 𝑅, and  
 0 ≤ 𝑇𝐴

−(𝑣𝑖) + 𝐼𝐴
−(𝑣𝑖) + 𝐹𝐴

−(𝑣𝑖) ≤ 2 
 0 ≤ 𝑇𝐴

+(𝑣𝑖) + 𝐼𝐴
+(𝑣𝑖) + 𝐹𝐴

+(𝑣𝑖) ≤ 2. 

 (2) 𝑆 ⊆ 𝑅 × 𝑅 where  
 𝑇𝐵

−: 𝑅 × 𝑅 → [0,1], 𝐼𝐵
−: 𝑅 × 𝑅 → [0,1], 𝐹𝐵

−: 𝑅 × 𝑅 → [0,1] 
 𝑇𝐵

+: 𝑅 × 𝑅 → [0,1], 𝐼𝐵
+: 𝑅 × 𝑅 → [0,1], 𝐹𝐵

+: 𝑅 × 𝑅 → [0,1] 
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 denote the degrees of truth membership, indeterminacy membership and falsity membership of the 

element 𝑣𝑖 , 𝑣𝑗 ∈ 𝑆, respectively and such that,  

 0 ≤ 𝑇𝐵
−(𝑣𝑖𝑣𝑗) + 𝐼𝐵

−(𝑣𝑖𝑣𝑗) + 𝐹𝐵
−(𝑣𝑖𝑣𝑗) ≤ 2 

 0 ≤ 𝑇𝐵
+(𝑣𝑖𝑣𝑗) + 𝐼𝐵

+(𝑣𝑖𝑣𝑗) + 𝐹𝐵
+(𝑣𝑖𝑣𝑗) ≤ 2, 

 such that  
 𝑇𝐵

−(𝑣𝑖𝑣𝑗) ≤ min{𝑇𝐴
−(𝑣𝑖), 𝑇𝐴

−(𝑣𝑗)} 

 𝐼𝐵
−(𝑣𝑖𝑣𝑗) ≤ min{𝐼𝐴

−(𝑣𝑖), 𝐼𝐴
−(𝑣𝑗)} 

 𝐹𝐵
−(𝑣𝑖𝑣𝑗) ≤ max{𝐹𝐴

−(𝑣𝑖), 𝐹𝐴
−(𝑣𝑗)}, 

 and similarly  
 𝑇𝐵

+(𝑣𝑖𝑣𝑗) ≤ min{𝑇𝐴
+(𝑣𝑖), 𝑇𝐴

+(𝑣𝑗)} 

 𝐼𝐵
+(𝑣𝑖𝑣𝑗) ≤ min{𝐼𝐴

+(𝑣𝑖), 𝐼𝐴
+(𝑣𝑗)} 

 𝐹𝐵
+(𝑣𝑖𝑣𝑗) ≤ max{𝐹𝐴

+(𝑣𝑖), 𝐹𝐴
+(𝑣𝑗)}. 

   

Example 2.17 Consider a neutrosophic vague graph 𝐺 = (𝐴, 𝐵) such that 𝐴 = {𝑎, 𝑏, 𝑐} and 𝐵 = {𝑎𝑏, 𝑏𝑐, 𝑐𝑎} are 

defined by 

𝑎̂ = 𝑇[0.5,0.5], 𝐼[0.4,0.3], 𝐹[0.5,0.5],        𝑏̂ = 𝑇[0.4,0.6], 𝐼[0.7,0.3], 𝐹[0.4,0.6], 
𝑐̂ = 𝑇[0.4,0.4], 𝐼[0.5,0.3], 𝐹[0.6,0.6] 

where 𝑎̂, 𝑏̂, 𝑐̂ are the neutrosophic vague sets on 𝐴. Now, 𝑎̂ = (𝑎−, 𝑎+), 𝑏̂ = (𝑏−, 𝑏+), 𝑐̂ = (𝑐−, 𝑐+). 
𝑎− = (0.5,0.4,0.4), 𝑏− = (0.4,0.7,0.4), 𝑐− = (0.4,0.5,0.6) 

𝑎+ = (0.5,0.3,0.5), 𝑏+ = (0.6,0.3,0.6), 𝑐+ = (0.4,0.3,0.6). 

 

  
𝐹𝑖𝑔𝑢𝑟𝑒 1 NEUTROSOPHIC VAGUE GRAPH  

   

Definition 2.18 A partial neutrosophic vague subgraph of netrosophic vague graph 𝐺 = (𝐴, 𝐵) is a neutrosophic 

vague graph 𝐺∗ = (𝑉′, 𝐸′) such that   

    • 𝑉′ ⊆ 𝑉 where 𝑇̂𝐴
′(𝑣𝑖) ≤ 𝑇̂𝐴(𝑣𝑖), 𝐼𝐴

′ (𝑣𝑖) ≤ 𝐼𝐴(𝑣𝑖) and 𝐹̂𝐴
′(𝑣𝑖) ≥ 𝐹̂𝐴(𝑣𝑖) for all 𝑣𝑖 ∈ 𝑉.  

    • 𝐸′ ⊆ 𝐸 where 𝑇̂𝐵
′ (𝑣𝑖 , 𝑣𝑗) ≤ 𝑇̂𝐵(𝑣𝑖 , 𝑣𝑗), 𝐼𝐵

′ (𝑣𝑖 , 𝑣𝑗) ≤ 𝐼𝐵(𝑣𝑖 , 𝑣𝑗) and 𝐹̂𝐵
′ (𝑣𝑖 , 𝑣𝑗) ≥ 𝐹̂𝐵(𝑣𝑖 , 𝑣𝑗) for all 

(𝑣𝑖 , 𝑣𝑗) ∈ 𝐸.  

 

3  Operations on Neutrosophic Vague Soft Graphs 

 In this section, the results on operations of neutrosophic vague soft graphs with example are 

established. 

Let 𝒰 be an initial universe and 𝑃 be the set of all parameters. 𝑃(𝒰) denotes the set of all 

neutrosophic vague soft sets of 𝒰. Let 𝐴 be a subset of 𝑃. A pair (𝐹, 𝐴) is called a neutrosophic vague 

soft set over 𝒰. Let 𝑃(𝑉) denotes the set of all neutrosophic vague sets of 𝑉 and 𝑃(𝐸) denotes the set of 

all neutrosophic vague sets of 𝐸.  
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Definition 3.1 A neutrosophic vague soft graph 𝐺 = (𝐺∗, 𝐽, 𝐾, 𝑅)  is an ordered four tuple if it satisfies the 

following conditions:   

    • 𝐺∗ = (𝑉, 𝐸) is a simple graph,  

    • 𝑅 is a non-empty set of parameters,  

    • (𝐽, 𝑅) is a neutrosophic vague soft set over 𝑉,  

    • (𝐾, 𝑅) is a neutrosophic vague soft set over 𝐸,  

    • (𝐽(𝑒), 𝐾(𝑒)) is a neutrosophic vague graph of 𝐺∗, that is,  

  
 𝑇𝐾(𝑒)

− (𝑎𝑏) ≤ min{𝑇𝐽(𝑒)
− (𝑎), 𝑇𝐽(𝑒)

− (𝑏)}, 

 𝐼𝐾(𝑒)
− (𝑎𝑏) ≤ min{𝐼𝐽(𝑒)

− (𝑎), 𝐼𝐽(𝑒)
− (𝑏)}, 

 𝐹𝐾(𝑒)
− (𝑎𝑏) ≤ max{𝐹𝐽(𝑒)

− (𝑎), 𝐹𝐽(𝑒)
− (𝑏)} 

 𝑇𝐾(𝑒)
+ (𝑎𝑏) ≤ min{𝑇𝐽(𝑒)

+ (𝑎), 𝑇𝐽(𝑒)
+ (𝑏)}, 

 𝐼𝐾(𝑒)
+ (𝑎𝑏) ≤ min{𝐼𝐽(𝑒)

+ (𝑎), 𝐼𝐽(𝑒)
+ (𝑏)}, 

 𝐹𝐾(𝑒)
+ (𝑎𝑏) ≤ max{𝐹𝐽(𝑒)

+ (𝑎), 𝐹𝐽(𝑒)
+ (𝑏)} 

 such that, 
0 ≤ 𝑇𝐾(𝑒)

− (𝑎𝑏) + 𝐼𝐾(𝑒)
− (𝑎𝑏) + 𝐹𝐾(𝑒)

− (𝑎𝑏) ≤ 2, 

0 ≤ 𝑇𝐾(𝑒)
+ (𝑎𝑏) + 𝐼𝐾(𝑒)

+ (𝑎𝑏) + 𝐹𝐾(𝑒)
+ (𝑎𝑏) ≤ 2,    ∀𝑒 ∈ 𝑅, 𝑎, 𝑏 ∈ 𝑉. 

For the convenience, the neutrosophic vague graph (𝐽(𝑒), 𝐾(𝑒))  is denoted by 𝐻(𝑒) . A 

neutrosophic vague soft graph is a parametrized family of neutrosophic vague graphs. 

 

Definition 3.2 Let 𝐺1 = (𝐽1, 𝐾1, 𝑅) and 𝐺2 = (𝐽2, 𝐾2, 𝑆) be two neutrosophic vague soft graphs of 𝐺∗. Then 𝐺1 is 

neutrosophic vague soft subgraph of 𝐺2 if   

    • 𝑅 ⊆ 𝑆.  

    • 𝐻1(𝑒) partial neutrosophic vague subgraph of 𝐻2(𝑒) for all 𝑒 ∈ 𝑅.  

  

Example 3.3 Consider a simple graph 𝐺∗ = (𝑉, 𝐸) such that 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and  
 𝐸 = {𝑣1𝑣2, 𝑣1𝑣3, 𝑣1𝑣4, 𝑣2𝑣4, 𝑣3𝑣4}. 

Let 𝑅 = {𝑒1, 𝑒2} be a set of parameters and let (𝐽, 𝑅) be a neutrosophic vague soft set over 𝑉  with 

neutrosophic approximation function 𝐽: 𝑅 → 𝜌(𝑉) defined by  
𝐽(𝑒1) = 𝑣̂1 = 𝑇[0.4,0.4], 𝐼[0.3,0.4], 𝐹[0.6,0.6],        𝑣̂2 = 𝑇[0.3,0.7], 𝐼[0.3,0.5], 𝐹[0.3,0.7], 

𝑣̂3 = 𝑇[0.5,0.6], 𝐼[0.4,0.2], 𝐹[0.4,0.5],        𝑣̂4 = 𝑇[0.8,0.3], 𝐼[0.5,0.6], 𝐹[0.7,0.2] 
𝐽(𝑒1) = 𝑣1

− = (0.4,0.3,0.6), 𝑣2
− = (0.3,0.3,0.3), 𝑣3

− = (0.5,0.4,0.4), 𝑣4
− = (0.8,0.5,0.7) 

𝐽(𝑒1) = 𝑣1
+ = (0.4,0.4,0.6), 𝑣2

+ = (0.7,0.5,0.7), 𝑣3
+ = (0.6,0.2,0.5), 𝑣4

+ = (0.2,0.6,0.2). 
 𝐽(𝑒2) = 𝑣̂1 = 𝑇[0.5,0.4], 𝐼[0.4,0.5], 𝐹[0.6,0.5],        𝑣̂2 = 𝑇[0.4,0.6], 𝐼[0.5,0.6], 𝐹[0.4,0.6], 

𝑣̂3 = 𝑇[0.6,0.6], 𝐼[0.4,0.4], 𝐹[0.4,0.4],        𝑣̂4 = 𝑇[0.7,0.3], 𝐼[0.6,0.3], 𝐹[0.7,0.3] 
𝐽(𝑒2) = 𝑣1

− = (0.5,0.4,0.6), 𝑣2
− = (0.3,0.3,0.3), 𝑣3

− = (0.5,0.4,0.4), 𝑣4
− = (0.8,0.5,0.7) 

𝐽(𝑒2) = 𝑣1
+ = (0.4,0.5,0.5), 𝑣2

+ = (0.7,0.5,0.7), 𝑣3
+ = (0.6,0.2,0.5), 𝑣4

+ = (0.3,0.6,0.2). 

Let (𝐾, 𝑅) be a neutrosophic vague soft set over 𝐸 with neutrosophic approximation function 

𝐾: 𝑅 → 𝜌(𝐸) defined by  
𝐾(𝑒1) = {(𝑣1𝑣2)− = (0.3,0.2,0.5)−, (𝑣1𝑣2)+ = (0.3,0.3,0.6)+, (𝑣1𝑣3)− = (0.4,0.3,0.4)−, (𝑣1𝑣3)+

= (0.3,0.2,0.5)+, (𝑣1𝑣4)− = (0.3,0.3,0.5)−, (𝑣1𝑣4)+ = (0.1,0.2,0.3)+} 
𝐾(𝑒2) = {(𝑣1𝑣2)− = (0.4,0.3,0.5)−, (𝑣1𝑣2)+ = (0.3,0.1,0.4)+, (𝑣1𝑣3)− = (0.2,0.2,0.5)−, (𝑣1𝑣3)+

= (0.3,0.5,0.7)+, (𝑣1𝑣4)− = (0.4,0.3,0.6)−, (𝑣1𝑣4)+ = (0.3,0.2,0.5)+}. 

Clearly, 𝐻(𝑒1) = (𝐽(𝑒1), 𝐾(𝑒1))  and 𝐻(𝑒2) = (𝐽(𝑒2), 𝐾(𝑒2))  are neutrosophic vague graphs 

corresponding to the parameters 𝑒1 and 𝑒2 respectively as shown in Figure 2  
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𝐹𝑖𝑔𝑢𝑟𝑒 2: Neutrosophic vague soft graph  

   

  

Definition 3.4 The neutrosophic vague soft graph 𝐺1 = (𝐺∗, 𝐽1, 𝐾1, 𝐴) is called spanning neutrosophic vague soft 

subgraph of 𝐺 = (𝐺∗, 𝐽, 𝐾, 𝐵) if   

    • 𝐴 ⊂ 𝐵.  

    • 𝑇̂𝐽1(𝑒)(𝑣) = 𝑇̂𝐽(𝑒)(𝑣), 𝐼𝐽1(𝑒)(𝑣) = 𝐼𝐽(𝑒)(𝑣) 𝐹̂𝐽1(𝑒)(𝑣) = 𝐹̂𝐽(𝑒)(𝑣) for all 𝑒 ∈ 𝐴, 𝑣 ∈ 𝑉.  

  

Definition 3.5 Let 𝐺1 = (𝐽1, 𝐾1, 𝑅) and 𝐺2 = (𝐽2, 𝐾2, 𝑆) be two neutrosophic vague soft graphs of 𝐺1
∗ = (𝑉1, 𝐸1) 

and 𝐺2
∗ = (𝑉2, 𝐸2), respectively. The Cartesian product of 𝐺1 and 𝐺2 is 𝐺 = 𝐺1 × 𝐺2 = (𝐽, 𝐾, 𝑅 × 𝑆), where (𝐽 =

𝐽1 × 𝐽2, 𝑅 × 𝑆) is a neutrosophic vague soft set over 𝑉 = 𝑉1 × 𝑉2, (𝐾 = 𝐾1 × 𝐾2, 𝑅 × 𝑆) is a neutrsophic vague soft 

set over 𝐸 = {((𝑢, 𝑣1), (𝑢, 𝑣2)): 𝑢 ∈ 𝑉1, (𝑣1, 𝑣2) ∈ 𝐸2} ∪ {((𝑢1, 𝑣), (𝑢2, 𝑣)): 𝑣 ∈ 𝑉2, (𝑢1, 𝑢2) ∈ 𝐸1} such that,  

 (𝑖) 𝑇̂𝐽(𝑎,𝑏)(𝑢, 𝑣) = 𝑇̂𝐽1(𝑎)(𝑢) ∧ 𝑇̂𝐽2(𝑏)(𝑣), 

 𝐼𝐽(𝑎,𝑏)(𝑢, 𝑣) = 𝐼𝐽1(𝑎)(𝑢) ∧ 𝐼𝐽2(𝑏)(𝑣), 

 𝐹̂𝐽(𝑎,𝑏)(𝑢, 𝑣) = 𝐹̂𝐽1(𝑎)(𝑢) ∨ 𝐹̂𝐽2(𝑏)(𝑣), 

 ∀(𝑢, 𝑣) ∈ 𝑉, (𝑎, 𝑏) ∈ 𝑅 × 𝑆. 
 (𝑖𝑖)𝑇 ̂𝐾(𝑎,𝑏)((𝑢, 𝑣1), (𝑢, 𝑣2)) = 𝑇̂𝐽1(𝑎)(𝑢) ∧ 𝑇̂𝐾2(𝑏)(𝑣1, 𝑣2), 

 𝐼𝐾(𝑎,𝑏)((𝑢, 𝑣1), (𝑢, 𝑣2)) = 𝐼𝐽1(𝑎)(𝑢) ∧ 𝐼𝐾2(𝑏)(𝑣1, 𝑣2), 

 𝐹̂𝐾(𝑎,𝑏)((𝑢, 𝑣1), (𝑢, 𝑣2)) = 𝐹̂𝐽1(𝑎)(𝑢) ∨ 𝐹̂𝐾2(𝑏)(𝑣1, 𝑣2), 

 ∀𝑢 ∈ 𝑉1, (𝑣1, 𝑣2) ∈ 𝐸2. 
 (𝑖𝑖𝑖) 𝑇̂𝐾(𝑎,𝑏)((𝑢1, 𝑣), (𝑢2, 𝑣)) = 𝑇̂𝐽2(𝑎)(𝑣) ∧ 𝑇̂𝐾2(𝑏)(𝑢1, 𝑢2), 

 𝐼𝐾(𝑎,𝑏)((𝑢1, 𝑣), (𝑢2, 𝑣)) = 𝐼𝐽2(𝑎)(𝑣) ∧ 𝐼𝐾2(𝑏)(𝑢1, 𝑢2), 

 𝐹̂𝐾(𝑎,𝑏)((𝑢1, 𝑣), (𝑢2, 𝑣)) = 𝐹̂𝐽2(𝑎)(𝑣) ∨ 𝐹̂𝐾2(𝑏)(𝑢1, 𝑢2), 

 ∀𝑣 ∈ 𝑉2, (𝑢1, 𝑢2) ∈ 𝐸1. 

  

Theorem 3.6 The Cartesian product of two neutrosophic vague soft graphs is a neutrosophic vague soft graph.  

  

Proof. Let 𝐺1 = (𝐽1, 𝐾1, 𝑅) and 𝐺2 = (𝐽2, 𝐾2, 𝑆) be two neutrosophic vague soft graphs of 𝐺1
∗ = (𝑉1, 𝐸1) and 

𝐺2
∗ = (𝑉2, 𝐸2), respectively. Let 𝐺 = 𝐺1 × 𝐺2 = (𝐽, 𝐾, 𝑅 × 𝑆) be the Cartesian product of 𝐺1  and 𝐺2 . We 

claim that 𝐺 = (𝐽, 𝐾, 𝑅 × 𝑆) is a neutrosophic vague soft graph and (𝐻, 𝑅 × 𝑆) = {(𝐽1 × 𝐽2)(𝑎𝑖 , 𝑏𝑗), (𝐾1 ×

𝐾2)(𝑎𝑖 , 𝑏𝑗)} ∀𝑎𝑖 ∈ 𝑅, 𝑏𝑗 ∈ 𝑆 for 𝑖 = 1,2, . . . , 𝑚, 𝑗 = 1,2, . . . , 𝑛 are neutrosophic vague graphs of 𝐺. 

Consider,  

 𝑇̂𝐾(𝑎𝑖,𝑏𝑗)
((𝑢, 𝑣1), (𝑢, 𝑣2)) = min{𝑇̂𝐽1(𝑎𝑖)(𝑢), 𝑇̂𝐾2(𝑏𝑗)(𝑣1, 𝑣2)} 

 for 𝑖 = 1,2, . . , 𝑚, 𝑗 = 1,2, . . . 𝑛 
 ≤ min{𝑇̂𝐽1(𝑎𝑖)(𝑢), min{𝑇̂𝐽2(𝑏𝑗)(𝑣1), 𝑇̂𝐽2(𝑏𝑗)(𝑣2)}} 
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 = min{min{𝑇̂𝐽1(𝑎𝑖)(𝑢), 𝑇̂𝐽2(𝑏𝑗)(𝑣1)}, min{𝑇̂𝐽1(𝑎𝑖)(𝑢), 𝑇̂𝐽2(𝑏𝑗)(𝑣2)}} 

 𝑇̂𝐾(𝑎𝑖,𝑏𝑗)
((𝑢, 𝑣1), (𝑢, 𝑣2)) ≤ min{(𝑇̂𝐽1(𝑎𝑖) × 𝑇̂𝐽2(𝑏𝑗))(𝑢, 𝑣1), (𝑇̂𝐽1(𝑎𝑖) × 𝑇̂𝐽2(𝑏𝑗))(𝑢, 𝑣2)} 

 for 𝑖 = 1,2, . . . 𝑚, 𝑗 = 1,2, . . . , 𝑛, 

  

 𝐼𝐾(𝑎𝑖,𝑏𝑗)
((𝑢, 𝑣1), (𝑢, 𝑣2)) = min{𝐼𝐽1(𝑎𝑖)(𝑢), 𝐼𝐾2(𝑏𝑗)(𝑣1, 𝑣2)} 

 for𝑖 = 1,2, . . , 𝑚, 𝑗 = 1,2, . . . 𝑛 
 ≤ min{𝐼𝐽1(𝑎𝑖)(𝑢), min{𝐼𝐽2(𝑏𝑗)(𝑣1), 𝐼𝐽2(𝑏𝑗)(𝑣2)}} 

 = min{min{𝐼𝐽1(𝑎𝑖)(𝑢), 𝐼𝐽2(𝑏𝑗)(𝑣1)}, min{𝐼𝐽1(𝑎𝑖)(𝑢), 𝐼𝐽2(𝑏𝑗)(𝑣2)}} 

 𝐼𝐾(𝑎𝑖,𝑏𝑗)
((𝑢, 𝑣1), (𝑢, 𝑣2)) ≤ min{(𝐼𝐽1(𝑎𝑖) × 𝐼𝐽2(𝑏𝑗))(𝑢, 𝑣1), (𝐼𝐽1(𝑎𝑖) × 𝐼𝐽2(𝑏𝑗))(𝑢, 𝑣2)} 

 for𝑖 = 1,2, . . . 𝑚, 𝑗 = 1,2, . . . , 𝑛, 

  

 𝐹̂𝐾(𝑎𝑖,𝑏𝑗)
((𝑢, 𝑣1), (𝑢, 𝑣2)) = max{𝐹̂𝐽1(𝑎𝑖)(𝑢), 𝐼𝐾2(𝑏𝑗)(𝑣1, 𝑣2)} 

 for𝑖 = 1,2, . . , 𝑚, 𝑗 = 1,2, . . . 𝑛 
 ≤ max{𝐹̂𝐽1(𝑎𝑖)(𝑢), max{𝐹̂𝐽2(𝑏𝑗)(𝑣1), 𝐹̂𝐽2(𝑏𝑗)(𝑣2)}} 

 = max{max{𝐹̂𝐽1(𝑎𝑖)(𝑢), 𝐹̂𝐽2(𝑏𝑗)(𝑣1)}, max{𝐹̂𝐽1(𝑎𝑖)(𝑢), 𝐹̂𝐽2(𝑏𝑗)(𝑣2)}} 

 𝐹̂𝐾(𝑎𝑖,𝑏𝑗)
((𝑢, 𝑣1), (𝑢, 𝑣2)) ≤ max{(𝐹̂𝐽1(𝑎𝑖) × 𝐹̂𝐽2(𝑏𝑗))(𝑢, 𝑣1), (𝐹̂𝐽1(𝑎𝑖) × 𝐹̂𝐽2(𝑏𝑗))(𝑢, 𝑣2)} 

 for𝑖 = 1,2, . . . 𝑚, 𝑗 = 1,2, . . . , 𝑛, 

 Similarly,  

 𝑇̂𝐾(𝑎𝑖,𝑏𝑗)
((𝑢1, 𝑣), (𝑢2, 𝑣)) ≤ min{(𝑇̂𝐽1(𝑎𝑖) × 𝑇̂𝐽2(𝑏𝑗))(𝑢1, 𝑣), (𝑇̂𝐽1(𝑎𝑖) × 𝑇̂𝐽2(𝑏𝑗))(𝑢2, 𝑣)} 

 for𝑖 = 1,2, . . . 𝑚, 𝑗 = 1,2, . . . , 𝑛, 

  

 𝐼𝐾(𝑎𝑖,𝑏𝑗)
((𝑢1, 𝑣), (𝑢2, 𝑣)) ≤ min{(𝐼𝐽1(𝑎𝑖) × 𝐼𝐽2(𝑏𝑗))(𝑢1, 𝑣), (𝐼𝐽1(𝑎𝑖) × 𝐼𝐽2(𝑏𝑗))(𝑢2, 𝑣)} 

 for𝑖 = 1,2, . . . 𝑚, 𝑗 = 1,2, . . . , 𝑛, 

  

 𝐹̂𝐾(𝑎𝑖,𝑏𝑗)
((𝑢1, 𝑣), (𝑢2, 𝑣)) ≤ max{(𝐹̂𝐽1(𝑎𝑖) × 𝐹̂𝐽2(𝑏𝑗))(𝑢1, 𝑣), (𝐹̂𝐽1(𝑎𝑖) × 𝐹̂𝐽2(𝑏𝑗))(𝑢2, 𝑣)} 

 for𝑖 = 1,2, . . . 𝑚, 𝑗 = 1,2, . . . , 𝑛, 

 Hence 𝐺 = (𝐽, 𝐾, 𝑅 × 𝑆) is a neutrosophic vague soft graph.  

  

Definition 3.7 The cross product of 𝐺1 and 𝐺2 is defined as a neutrosophic vague soft graphs of 𝐺 = 𝐺1 ⊚ 𝐺2 =

(𝐽, 𝐾, 𝑅 × 𝑆), where (𝐽, 𝑅 × 𝑆) is a neutrosophic vague soft set over 𝑉 = 𝑉1 × 𝑉2, (𝐾, 𝑅 × 𝑆) is a neutrsophic vague 

soft set over 𝐸 = {((𝑢1, 𝑣1), (𝑢2, 𝑣2)): (𝑢1, 𝑢2) ∈ 𝐸1, (𝑣1, 𝑣2) ∈ 𝐸2} such that  

 (𝑖)𝑇̂𝐽(𝑎,𝑏)(𝑢, 𝑣) = 𝑇̂𝐽1(𝑎)(𝑢) ∧ 𝑇̂𝐽2(𝑏)(𝑣), 

 𝐼𝐽(𝑎,𝑏)(𝑢, 𝑣) = 𝐼𝐽1(𝑎)(𝑢) ∧ 𝐼𝐽2(𝑏)(𝑣), 

 𝐹̂𝐽(𝑎,𝑏)(𝑢, 𝑣) = 𝐹̂𝐽1(𝑎)(𝑢) ∨ 𝐹̂𝐽2(𝑏)(𝑣), 

 ∀(𝑢, 𝑣) ∈ 𝑉, (𝑎, 𝑏) ∈ 𝑅 × 𝑆. 

  

 (𝑖𝑖)𝑇̂𝐾(𝑎,𝑏)((𝑢1, 𝑣1), (𝑢2, 𝑣2)) = 𝑇̂𝐾1(𝑎)(𝑢1, 𝑢2) ∧ 𝑇̂𝐾2(𝑏)(𝑣1, 𝑣2), 

 𝐼𝐾(𝑎,𝑏)((𝑢1, 𝑣1), (𝑢2, 𝑣2)) = 𝐼𝐾1(𝑎)(𝑢1, 𝑢2) ∧ 𝐼𝐾2(𝑏)(𝑣1, 𝑣2), 

 𝐹̂𝐾(𝑎,𝑏)((𝑢1, 𝑣1), (𝑢2, 𝑣2)) = 𝐹̂𝐾1(𝑎)(𝑢1, 𝑢2) ∨ 𝐹̂𝐾2(𝑏)(𝑣1, 𝑣2), 

 ∀(𝑢1, 𝑢2) ∈ 𝐸1, (𝑣1, 𝑣2) ∈ 𝐸2. 

 𝐻(𝑎, 𝑏) = 𝐻1(𝑎) ⊚ 𝐻2(𝑏) for all (𝑎, 𝑏) ∈ 𝑅 × 𝑆 are neutrosophic vague graphs of 𝐺.  

  

Theorem 3.8 The cross product of two neutrosophic vague soft graphs is a neutrosophic vague soft graph.  

  

Proof. Let 𝐺1 = (𝐽1, 𝐾1, 𝑅) and 𝐺2 = (𝐽2, 𝐾2, 𝑆) be two neutrosophic vague soft graphs of 𝐺1
∗ = (𝑉1, 𝐸1) and 

𝐺2
∗ = (𝑉2, 𝐸2), respectively. Let 𝐺 = 𝐺1 ⊚ 𝐺2 = (𝐽, 𝐾, 𝑅 × 𝑆) be the cross product of 𝐺1 and 𝐺2. We claim 
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that 𝐺 = (𝐽, 𝐾, 𝑅 × 𝑆) is a neutrosophic vague soft graph and (𝐻, 𝑅 × 𝑆) = {𝐽1 ⊚ 𝐽2(𝑎𝑖 , 𝑏𝑗), 𝐾1 ⊚ 𝐾2(𝑎𝑖 , 𝑏𝑗)} 

∀𝑎𝑖 ∈ 𝑅, 𝑏𝑗 ∈ 𝑆 for 𝑖 = 1,2, . . . , 𝑚, 𝑗 = 1,2, . . . , 𝑛 are neutrosophic vague graphs of 𝐺. 

Consider,  

 𝑇̂𝐾(𝑎𝑖,𝑏𝑗)
((𝑢1, 𝑣1), (𝑢2, 𝑣2)) = min{𝑇̂𝐾1(𝑎𝑖)(𝑢1, 𝑢2), 𝑇̂𝐾2(𝑏𝑗)(𝑣1, 𝑣2)} 

 for𝑖 = 1,2, . . , 𝑚, 𝑗 = 1,2, . . . 𝑛 
 ≤ min{{𝑇̂𝐽1(𝑎𝑖)(𝑢1), 𝑇̂𝐽1(𝑎𝑖)(𝑢2)}, min{𝑇̂𝐽2(𝑏𝑗)(𝑣1), 𝑇̂𝐽2(𝑏𝑗)(𝑣2)}} 

 = min{min{𝑇̂𝐽1(𝑎𝑖)(𝑢1), 𝑇̂𝐽2(𝑏𝑗)(𝑣1)}, min{𝑇̂𝐽1(𝑎𝑖)(𝑢2), 𝑇̂𝐽2(𝑏𝑗)(𝑣2)}} 

 𝑇̂𝐾(𝑎𝑖,𝑏𝑗)
((𝑢1, 𝑣1), (𝑢2, 𝑣2)) ≤ min{(𝑇̂𝐽1(𝑎𝑖) ⊚ 𝑇̂𝐽2(𝑏𝑗))(𝑢1, 𝑣1), (𝑇̂𝐽1(𝑎𝑖) ⊚ 𝑇̂𝐽2(𝑏𝑗))(𝑢2, 𝑣2)} 

 for𝑖 = 1,2, . . . 𝑚, 𝑗 = 1,2, . . . , 𝑛, 

  

 𝐼𝐾(𝑎𝑖,𝑏𝑗)
((𝑢1, 𝑣1), (𝑢2, 𝑣2)) = min{𝐼𝐾1(𝑎𝑖)(𝑢1, 𝑢2), 𝐼𝐾2(𝑏𝑗)(𝑣1, 𝑣2)} 

 for𝑖 = 1,2, . . , 𝑚, 𝑗 = 1,2, . . . 𝑛 
 ≤ min{{𝐼𝐽1(𝑎𝑖)(𝑢1), 𝐼𝐽1(𝑎𝑖)(𝑢2)}, min{𝐼𝐽2(𝑏𝑗)(𝑣1), 𝐼𝐽2(𝑏𝑗)(𝑣2)}} 

 = min{min{𝐼𝐽1(𝑎𝑖)(𝑢1), 𝐼𝐽2(𝑏𝑗)(𝑣1)}, min{𝐼𝐽1(𝑎𝑖)(𝑢2), 𝐼𝐽2(𝑏𝑗)(𝑣2)}} 

 𝐼𝐾(𝑎𝑖,𝑏𝑗)
((𝑢1, 𝑣1), (𝑢2, 𝑣2)) ≤ min{(𝐼𝐽1(𝑎𝑖) ⊚ 𝐼𝐽2(𝑏𝑗))(𝑢1, 𝑣1), (𝐼𝐽1(𝑎𝑖) ⊚ 𝐼𝐽2(𝑏𝑗))(𝑢2, 𝑣2)} 

 for𝑖 = 1,2, . . . 𝑚, 𝑗 = 1,2, . . . , 𝑛, 

  

 𝐹̂𝐾(𝑎𝑖,𝑏𝑗)
((𝑢1, 𝑣1), (𝑢2, 𝑣2)) = min{𝐹̂𝐾1(𝑎𝑖)(𝑢1, 𝑢2), 𝐹̂𝐾2(𝑏𝑗)(𝑣1, 𝑣2)} 

 for𝑖 = 1,2, . . , 𝑚, 𝑗 = 1,2, . . . 𝑛 
 ≤ min{{𝐹̂𝐽1(𝑎𝑖)(𝑢1), 𝐹̂𝐽1(𝑎𝑖)(𝑢2)}, min{𝐹̂𝐽2(𝑏𝑗)(𝑣1), 𝐹̂𝐽2(𝑏𝑗)(𝑣2)}} 

 = min{min{𝐹̂𝐽1(𝑎𝑖)(𝑢1), 𝐹̂𝐽2(𝑏𝑗)(𝑣1)}, min{𝐹̂𝐽1(𝑎𝑖)(𝑢2), 𝐹̂𝐽2(𝑏𝑗)(𝑣2)}} 

 𝐹̂𝐾(𝑎𝑖,𝑏𝑗)
((𝑢1, 𝑣1), (𝑢2, 𝑣2)) ≤ min{(𝐹̂𝐽1(𝑎𝑖) ⊚ 𝐹̂𝐽2(𝑏𝑗))(𝑢1, 𝑣1), (𝐹̂𝐽1(𝑎𝑖) ⊚ 𝐹̂𝐽2(𝑏𝑗))(𝑢2, 𝑣2)} 

 for𝑖 = 1,2, . . . 𝑚, 𝑗 = 1,2, . . . , 𝑛, 

 Hence 𝐺 = (𝐽, 𝐾, 𝑅 × 𝑆) is a neutrosophic vague soft graph.  

  

Definition 3.9 The lexicographic product of 𝐺1 and 𝐺2 is defined as a neutrosophic vague soft graphs of 𝐺 =

𝐺1 ⊙ 𝐺2 = (𝐽, 𝐾, 𝑅 × 𝑆), where (𝐽, 𝑅 × 𝑆) is a neutrosophic vague soft set over 𝑉 = 𝑉1 × 𝑉2, (𝐾, 𝑅 × 𝑆) is a 

neutrosophic vague soft set over 𝐸 = {((𝑢, 𝑣1), (𝑢, 𝑣2)): 𝑢 ∈ 𝑉1, (𝑣1, 𝑣2) ∈ 𝐸2} ∪ {((𝑢1, 𝑣1), (𝑢2, 𝑣2)): (𝑢1, 𝑢2) ∈

𝐸1, (𝑣1, 𝑣2) ∈ 𝐸2} such that  

 (𝑖)𝑇̂𝐽(𝑎,𝑏)(𝑢, 𝑣) = 𝑇̂𝐽1(𝑎)(𝑢) ∧ 𝑇̂𝐽2(𝑏)(𝑣), 

 𝐼𝐽(𝑎,𝑏)(𝑢, 𝑣) = 𝐼𝐽1(𝑎)(𝑢) ∧ 𝐼𝐽2(𝑏)(𝑣), 

 𝐹̂𝐽(𝑎,𝑏)(𝑢, 𝑣) = 𝐹̂𝐽1(𝑎)(𝑢) ∨ 𝐹̂𝐽2(𝑏)(𝑣), ∀(𝑢, 𝑣) ∈ 𝑉, (𝑎, 𝑏) ∈ 𝑅 × 𝑆. 

 (𝑖𝑖)𝑇̂𝐾(𝑎,𝑏)((𝑢, 𝑣1), (𝑢, 𝑣2)) = 𝑇̂𝐽1(𝑎)(𝑢) ∧ 𝑇̂𝐾2(𝑏)(𝑣1, 𝑣2), 

 𝐼𝐾(𝑎,𝑏)((𝑢, 𝑣1), (𝑢, 𝑣2)) = 𝐼𝐽1(𝑎)(𝑢) ∧ 𝐼𝐾2(𝑏)(𝑣1, 𝑣2), 

 𝐹̂𝐾(𝑎,𝑏)((𝑢, 𝑣1), (𝑢, 𝑣2)) = 𝐹̂𝐽1(𝑎)(𝑢) ∨ 𝐹̂𝐾2(𝑏)(𝑣1, 𝑣2), ∀𝑢 ∈ 𝑉1, (𝑣1, 𝑣2) ∈ 𝐸2. 

 (𝑖𝑖𝑖)𝑇̂𝐾(𝑎,𝑏)((𝑢1, 𝑣1), (𝑢2, 𝑣2)) = 𝑇̂𝐾1(𝑎)(𝑢1, 𝑢2) ∧ 𝑇̂𝐾2(𝑏)(𝑣1, 𝑣2), 

 𝐼𝐾(𝑎,𝑏)((𝑢1, 𝑣1), (𝑢2, 𝑣2)) = 𝐼𝐾1(𝑎)(𝑢1, 𝑢2) ∧ 𝐼𝐾2(𝑏)(𝑣1, 𝑣2), 

 𝐹̂𝐾(𝑎,𝑏)((𝑢1, 𝑣1), (𝑢2, 𝑣2)) = 𝐹̂𝐾1(𝑎)(𝑢1, 𝑢2) ∨ 𝐹̂𝐾2(𝑏)(𝑣1, 𝑣2), ∀(𝑢1, 𝑢2) ∈ 𝐸1, (𝑣1, 𝑣2) ∈ 𝐸2. 

 𝐻(𝑎, 𝑏) = 𝐻1(𝑎) ⊙ 𝐻2(𝑏) for all (𝑎, 𝑏) ∈ 𝑅 × 𝑆 are neutrosophic vague graphs of 𝐺.  

  

Theorem 3.10 The lexicographic product of two neutrosophic vague soft graphs is a neutrosophic vague soft graph.  

  

Proof. Similar to the proof of Theorem 3.8.  

  

Definition 3.11 The strong product of 𝐺1 and 𝐺2 is defined as a neutrosophic vague soft graphs of 𝐺 = 𝐺1 ⊗

𝐺2 = (𝐽, 𝐾, 𝑅 × 𝑆), where (𝐽, 𝑅 × 𝑆) is a neutrosophic vague soft set over 𝑉 = 𝑉1 × 𝑉2, (𝐾, 𝑅 × 𝑆) is a neutrsophic 
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vague soft set over 𝐸 = {((𝑢, 𝑣1), (𝑢, 𝑣2)): (𝑢) ∈ 𝑉1, (𝑣1, 𝑣2) ∈ 𝐸2} ∪ {((𝑢1, 𝑣), (𝑢2, 𝑣)): (𝑣) ∈ 𝑉2, (𝑢1, 𝑢2) ∈ 𝐸1},∪

{((𝑢1, 𝑣1), (𝑢2, 𝑣2)): (𝑢1, 𝑢2) ∈ 𝐸1, (𝑣1, 𝑣2 ∈ 𝐸2)} such that  

 (𝑖)    𝑇̂𝐽(𝑎,𝑏)(𝑢, 𝑣) = 𝑇̂𝐽1(𝑎)(𝑢) ∧ 𝑇̂𝐽2(𝑏)(𝑣), 

 𝐼𝐽(𝑎,𝑏)(𝑢, 𝑣) = 𝐼𝐽1(𝑎)(𝑢) ∧ 𝑇̂𝐽2(𝑏)(𝑣), 

 𝐹̂𝐽(𝑎,𝑏)(𝑢, 𝑣) = 𝐹̂𝐽1(𝑎)(𝑢) ∨ 𝑇̂𝐽2(𝑏)(𝑣), ∀(𝑢, 𝑣) ∈ 𝑉, (𝑎, 𝑏) ∈ 𝑅 × 𝑆. 

 (𝑖𝑖)    𝑇̂𝐾(𝑎,𝑏)((𝑢, 𝑣1), (𝑢, 𝑣2)) = 𝑇̂𝐽1(𝑎)(𝑢) ∧ 𝑇̂𝐾2(𝑏)(𝑣1, 𝑣2), 

 𝐼𝐾(𝑎,𝑏)((𝑢, 𝑣1), (𝑢, 𝑣2)) = 𝐼𝐽1(𝑎)(𝑢) ∧ 𝐼𝐾2(𝑏)(𝑣1, 𝑣2), 

 𝐹̂𝐾(𝑎,𝑏)((𝑢, 𝑣1), (𝑢, 𝑣2)) = 𝐹̂𝐽1(𝑎)(𝑢) ∨ 𝐹̂𝐾2(𝑏)(𝑣1, 𝑣2), ∀𝑢 ∈ 𝑉1, (𝑣1, 𝑣2) ∈ 𝐸2. 

 (𝑖𝑖𝑖)    𝑇̂𝐾(𝑎,𝑏)((𝑢1, 𝑣), (𝑢2, 𝑣)) = 𝑇̂𝐽2(𝑏)(𝑣) ∧ 𝑇̂𝐾2(𝑎)(𝑢1, 𝑢2), 

 𝐼𝐾(𝑎,𝑏)((𝑢1, 𝑣), (𝑢2, 𝑣)) = 𝐼𝐽2(𝑏)(𝑣) ∧ 𝐼𝐾2(𝑎)(𝑢1, 𝑢2), 

 𝐹̂𝐾(𝑎,𝑏)((𝑢1, 𝑣), (𝑢2, 𝑣)) = 𝐹̂𝐽2(𝑏)(𝑣) ∨ 𝐹̂𝐾2(𝑎)(𝑢1, 𝑢2), ∀𝑣 ∈ 𝑉2, (𝑢1, 𝑢2) ∈ 𝐸1. 

 (𝑖𝑣)    𝑇̂𝐾(𝑎,𝑏)((𝑢1, 𝑣1), (𝑢2, 𝑣2)) = 𝑇̂𝐾1(𝑎)(𝑢1, 𝑢2) ∧ 𝑇̂𝐾2(𝑏)(𝑣1, 𝑣2), 

 𝐼𝐾(𝑎,𝑏)((𝑢1, 𝑣1), (𝑢2, 𝑣2)) = 𝐼𝐾1(𝑎)(𝑢1, 𝑢2) ∧ 𝐼𝐾2(𝑏)(𝑣1, 𝑣2), 

 𝐹̂𝐾(𝑎,𝑏)((𝑢1, 𝑣1), (𝑢2, 𝑣2)) = 𝐹̂𝐾1(𝑎)(𝑢1, 𝑢2) ∨ 𝐹̂𝐾2(𝑏)(𝑣1, 𝑣2), ∀(𝑢1, 𝑢2) ∈ 𝐸1, (𝑣1, 𝑣2) ∈ 𝐸2. 

 𝐻(𝑎, 𝑏) = 𝐻1(𝑎) ⊗ 𝐻2(𝑏) for all (𝑎, 𝑏) ∈ 𝑅 × 𝑆 are neutrosophic vague graphs of 𝐺.  

  

Theorem 3.12 The strong product of two neutrosophic vague soft graphs is a neutrosophic vague soft graph.  

  

Proof. Similar to the proof of Theorem 3.8.  

  

Definition 3.13 The composition of 𝐺1 and 𝐺2 is defined as a a neutrosophic vague soft graphs of 𝐺 = 𝐺1[𝐺2] =

(𝐽, 𝐾, 𝑅 × 𝑆) , where (𝐽, 𝑅 × 𝑆) is a neutrosophic vague soft set over 𝑉 = 𝑉1 × 𝑉2, (𝐾, 𝑅 × 𝑆)  is a neutrosophic 

vague soft set over 𝐸 = {((𝑢, 𝑣1), (𝑢, 𝑣2)): 𝑢 ∈ 𝑉1, (𝑣1, 𝑣2) ∈ 𝐸2} ∪ {((𝑢1, 𝑣), (𝑢2, 𝑣)): 𝑣 ∈ 𝑉2, (𝑢1, 𝑢2) ∈ 𝐸1} ∪

{((𝑢1, 𝑣1), (𝑢2, 𝑣2)): (𝑢1, 𝑢2) ∈ 𝐸1, (𝑣1 ≠ 𝑣2)} such that  

 (𝑖)𝑇̂𝐽(𝑎,𝑏)(𝑢, 𝑣) = 𝑇̂𝐽1(𝑎)(𝑢) ∧ 𝑇̂𝐽2(𝑏)(𝑣), 

 𝐼𝐽(𝑎,𝑏)(𝑢, 𝑣) = 𝐼𝐽1(𝑎)(𝑢) ∧ 𝐼𝐽2(𝑏)(𝑣), 

 𝐹̂𝐽(𝑎,𝑏)(𝑢, 𝑣) = 𝐹̂𝐽1(𝑎)(𝑢) ∨ 𝐹̂𝐽2(𝑏)(𝑣), 

 ∀(𝑢, 𝑣) ∈ 𝑉, (𝑎, 𝑏) ∈ 𝑅 × 𝑆. 
 (𝑖𝑖)𝑇̂𝐾(𝑎,𝑏)((𝑢, 𝑣1), (𝑢, 𝑣2)) = 𝑇̂𝐽1(𝑎)(𝑢) ∧ 𝑇̂𝐾2(𝑏)(𝑣1, 𝑣2), 

 𝐼𝐾(𝑎,𝑏)((𝑢, 𝑣1), (𝑢, 𝑣2)) = 𝐼𝐽1(𝑎)(𝑢) ∧ 𝐼𝐾2(𝑏)(𝑣1, 𝑣2), 

 𝐹̂𝐾(𝑎,𝑏)((𝑢, 𝑣1), (𝑢, 𝑣2)) = 𝐹̂𝐽1(𝑎)(𝑢) ∨ 𝐹̂𝐾2(𝑏)(𝑣1, 𝑣2), 

 ∀𝑢 ∈ 𝑉1, (𝑣1, 𝑣2) ∈ 𝐸2. 
 (𝑖𝑖𝑖)𝑇̂𝐾(𝑎,𝑏)((𝑢1, 𝑣), (𝑢2, 𝑣)) = 𝑇̂𝐽2(𝑏)(𝑣) ∧ 𝑇̂𝐾2(𝑎)(𝑢1, 𝑢2), 

 𝐼𝐾(𝑎,𝑏)((𝑢1, 𝑣), (𝑢2, 𝑣)) = 𝐼𝐽2(𝑏)(𝑣) ∧ 𝐼𝐾2(𝑎)(𝑢1, 𝑢2), 

 𝐹̂𝐾(𝑎,𝑏)((𝑢1, 𝑣), (𝑢2, 𝑣)) = 𝐹̂𝐽2(𝑏)(𝑣) ∨ 𝐹̂𝐾2(𝑎)(𝑢1, 𝑢2), 

 ∀𝑣 ∈ 𝑉2, (𝑢1, 𝑢2) ∈ 𝐸1. 
 (𝑖𝑣)𝑇̂𝐾(𝑎,𝑏)((𝑢1, 𝑣1), (𝑢2, 𝑣2)) = 𝑇̂𝐾1(𝑎)(𝑢1, 𝑢2) ∧ 𝑇̂𝐽2(𝑎)(𝑣1) ∧ 𝑇̂𝐽2(𝑏)(𝑣2), 

 𝐼𝐾(𝑎,𝑏)((𝑢1, 𝑣1), (𝑢2, 𝑣2)) = 𝐼𝐾1(𝑎)(𝑢1, 𝑢2) ∧ 𝐼𝐽2(𝑎)(𝑣1) ∧ 𝐼𝐽2(𝑏)(𝑣2), 

 𝐹̂𝐾(𝑎,𝑏)((𝑢1, 𝑣1), (𝑢2, 𝑣2)) = 𝐹̂𝐾1(𝑎)(𝑢1, 𝑢2) ∨ 𝐹̂𝐽2(𝑎)(𝑣1) ∨ 𝐹̂𝐽2(𝑏)(𝑣2), 

 ∀(𝑢1, 𝑢2) ∈ 𝐸1, 𝑤ℎ𝑒𝑟𝑒𝑣1 ≠ 𝑣2. 

 𝐻(𝑎, 𝑏) = 𝐻1(𝑎)[𝐻2(𝑏)] for all (𝑎, 𝑏) ∈ 𝑅 × 𝑆 are neutrosophic vague graphs of 𝐺.  

  

Theorem 3.14 The composition product of two neutrosophic vague soft graphs is a neutrosophic vague soft graph.  

 Proof. Similar to the proof of Theorem 3.8.  
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Application to Decision-making problem: 

 

Neutrosophic vague soft set has several applications in decision making problems and used to deal with 

uncertainties from our different real-life problems. In this section we apply the concept of neutrosophic 

vague soft sets in a decision-making problem to its graphs and then construct an algorithm for the 

selection of optimal object based upon given set of information. Suppose that 𝑉 = {ℎ1, ℎ2, ℎ3, ℎ4, ℎ5} be the 

set of five institutions under consideration on which Mr. Z is going to join for his studies on the basis of 

wishing parameters with 0.5-degree risk value on his risk preferece, with the attributes set 𝐴 = {𝑒1 =

𝑁𝐼𝑅𝐹 𝑟𝑎𝑛𝑘𝑖𝑛𝑔, 𝑒2 = 𝐼𝑜𝐸 𝐼𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛, 𝑒3 = 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦}.  

(𝐹, 𝐴) is the neutrosophic vague soft set on 𝑉 which describe the value of the students based upon the 

given parameters 𝑒1 = 𝑁𝐼𝑅𝐹 𝑟𝑎𝑛𝑘𝑖𝑛𝑔, 𝑒2 = 𝐼𝑜𝐸 𝐼𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛, 𝑒3 = 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦, respectively. 

 
𝐹(𝑒1) = {(ℎ1, (0.3,0.4,0.6)𝑙  (0.4,0.5,0.7)𝑟), (ℎ2, (0.4,0.5,0.5)𝑙(0.5,0.6,0.6)𝑟), (ℎ3, (0.4,0.3,0.5)𝑙(0.5,0.4,0.6)𝑟) 

(ℎ4, (0.3,0.2,0.3)𝑙(0.7,0.3,0.7)𝑟), (ℎ5, (0.4,0.3,0.5)𝑙(0.5,0.4,0.6)𝑟)} 
𝐹(𝑒2) = {(ℎ1, (0.4,0.4,0.5)𝑙  (0.5,0.5,0.6)𝑟), (ℎ2, (0.4,0.5,0.5)𝑙(0.5,0.6,0.6)𝑟), (ℎ3, (0.3,0.2,0.5)𝑙(0.5,0.3,0.7)𝑟) 

(ℎ4, (0.3,0.2,0.5)𝑙(0.5,0.3,0.7)𝑟), (ℎ5, (0.3,0.3,0.6)𝑙(0.4,0.4,0.7)𝑟)} 
𝐹(𝑒3) = {(ℎ1, (0.2,0.4,0.7)𝑙  (0.3,0.5,0.8)𝑟), (ℎ2, (0.3,0.3,0.6)𝑙(0.4,0.4,0.7)𝑟), (ℎ3, (0.2,0.4,0.6)𝑙(0.4,0.4,0.8)𝑟) 

(ℎ4, (0.2,0.3,0.6)𝑙(0.4,0.3,0.8)𝑟), (ℎ5, (0.3,0.4,0.6)𝑙(0.4,0.4,0.7)𝑟)} 

 

The neutrosophic vague soft graphs 𝐺 = (𝐹, 𝐾, 𝐴) corresponding to the parameters 𝑒𝑖 for 𝑖 = 1,2,3 are 

shown in Figure 4.1  
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Figure 4.1 Neutrosophic vague soft graphs 

Table 1 Tabular representation of the Neutrosophic vague soft graph in example 4.1 

 𝑒1 𝑒2 𝑒3 

ℎ1 (0.3,0.4,0.6)𝑙  (0.4,0.5,0.7)𝑟 (0.4,0.4,0.5)𝑙  (0.5,0.5,0.6)𝑟 (0.2,0.4,0.7)𝑙  (0.3,0.5,0.8)𝑟 
ℎ2 (0.4,0.5,0.5)𝑙  (0.5,0.6,0.6)𝑟 (0.4,0.5,0.5)𝑙  (0.5,0.6,0.6)𝑟 (0.3,0.3,0.6)𝑙  (0.4,0.4,0.7)𝑟 
ℎ3 (0.4,0.3,0.5)𝑙  (0.5,0.4,0.6)𝑟 (0.3,0.4,0.4)𝑙  (0.6,0.6,0.7)𝑟 (0.2,0.4,0.6)𝑙  (0.4,0.5,0.8)𝑟 
ℎ4 (0.3,0.2,0.3)𝑙  (0.7,0.3,0.7)𝑟 (0.3,0.2,0.5)𝑙  (0.5,0.3,0.7)𝑟 (0.2,0.3,0.6)𝑙  (0.4,0.3,0.8 )𝑟 
ℎ5 (0.4,0.3,0.5)𝑙  (0.5,0.4,0.6)𝑟 (0.3,0.3,0.6)𝑙  (0.4,0.4,0.7)𝑟 (0.3,0.4,0.6)𝑙  (0.4,0.4,0.7)𝑟 
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Table 2 The grade based on Neutrosophic vague soft graph in example 4.1 

 𝑒1 𝑒2 𝑒3 𝐺𝑚𝑖𝑛 

ℎ1 2 2 1 1 
ℎ2 2 2 2 2 
ℎ3 2 2 1 1 
ℎ4 3 2 2 2 
ℎ5 2 2 2 2 

 

Table 3. The resultant neutrosophic vague soft graphs in example 4.1 

The score function 𝑆𝑖𝑗   based on neutrosophic vague soft graph 

 𝑒1 𝑒2 𝑒3 

ℎ2 < 2,0.45,0.55,0.55, −0.65 > < 2,0.45,0.55,0.55,0.55, −65 > < 2,0.35,0.35,0.65, −0.65 > 

ℎ4 < 3,0.35,0.25,0.55, −0.45 > < 2,0.55,0.25,0.6, −0.50 > < 2,0.3,0.3,0.7, −0.7 > 
ℎ5 < 2,0.45,0.35,0.65, −0.55 > < 2,0.35,0.35,0.65, −0.65 > < 2,0.35,0.4,0.65, −0.75 > 

 

Table 4. Comparison table for Grade function and Score function, based on 𝑒1 

 ℎ2 ℎ4 ℎ5 ℎ𝑘 (min) 

ℎ2 < 0,0 > < −1, −20 > < 0, −10 > < −1, −20 > 
ℎ4 < 1,20 > < 0,0 > < 0,10 > < 0,10 > 
ℎ5 < 0,10 > < −1, −10 > < 0,0 > < −1, −10 > 

 

Table 5. Comparison table for grade function and score function based on 𝑒1 without ℎ2 

 ℎ4 ℎ5 ℎ𝑘(min) 

ℎ4 < 0,0 > < 1,10 > < 1,10 > 
ℎ5 < −1, −10 > < 0,0 > < −1, −10 > 

 

We get  ℎ2, ℎ4, ℎ5 attributes. Similarly, we can get ℎ4, ℎ2, ℎ5 under the attributes 𝑒2 and ℎ2, ℎ5, ℎ4 under 

the attributes 𝑒3. 

Finally, compute the ranking of the research objects under all attributes. Suppose the decision maker 

assigns weights to each attribute, 𝑎1 = 0.2, 𝑎2 = 0.3, 𝑎3 = 0.1. And we can get 𝐴3 > 𝐴2 > 𝐴1 from table 6. 

We consider ℎ2 is the first superior object, ℎ4 is the second superior object and ℎ5 is the third superior 

object under the 𝐸. Therefore, Mr. Z will selected particular institution ℎ2. 

Table 6. The ranking of the objects under all attributes. 

 𝑒1 . 0.2 𝑒2 . 0.3 𝑒3 . 0.1 𝐴𝑖 

ℎ2 1 2 1 0.9 

ℎ4 2 1 3 1 

ℎ5 3 3 2 1.7 

 

Advantages and Limitations: 

1. The proposed application is more significant, since it has the method of solving based on the idea of 

probability in grade function. 

2. The developed method is utilised for solving practical decision making problems containing 

vagueness. 

3. The addressed graphs can be extended to the bipolar environment. 

4.The challenging one is to handle the vagueness in the application viewpoint of big data. If the 

indeterminate membership function has the huge data, then it is difficult to handle. This leads to have a 
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massive calculation in the decision-making problems. 

 

Conclusion 

 Vague sets and neutrosophic soft sets provide a powerful tool to represent the data with uncertain 

information and have fruitful applications. In this work, neutrosophic vague soft graphs have been 

developed. This helps the decision-makers more sufficient for taking their input best suit to their domain 

of reference. Hence, the proposed graphs and their operations have enough capabilities to address the 

related dependability on the imprecise information. Further, the authors will aim to develop this research 

to the isomorphic properties of the proposed concepts in future.  
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Abstract:  The quadripartitioned neutrosophic set is the partition of indeterminacy function of the 

neutrosophic set into contradiction part and ignorance part. In this work, the concept of 

quadripartitioned neutrosophic graph structures and its properties are invented. The strong, tree, 

𝜙 − permutation and 𝜙 − complement of quadripartitioned neutrosophic graph structure are 

investigated. The operations like Cartesian Product, cross product, lexicographic product, composition in 

graph structures and join operations are established.   

Keywords: Quadripartitioned neutrosophic graph, quadripartitioned neutrosophic graph structure, 𝜙 

permutation, 𝜙 complement, Operations  

 
—————————————————————————————————————————-  

1. Introduction 

The intuitionistic fuzzy sets represent a novel component in the fuzzy sets, namely a 

non-membership function. However, some limits only allow for the storage of incomplete data when 

interpreting the degree of true and false membership functions, but the handling of indeterminate data is 

still possible. Can we look at an example where ten patients are being tested for a pandemic? Three 

patients will have a positive result, five will have a negative result, and two will be uncertain or have yet 

to be determined throughout that period. It can be stated as 𝑥(0.3,0.2,0.5) using neutrosophic notions. 

Using the neutrosophic set, one can classify the environment as cold as truth, moderate as indeterminacy, 

and hot as false for a clear comprehension. As a result, the neutrosophic field emerges to hold the 

indeterminacy data. From a philosophical standpoint, it generalises the aforementioned sets. The 

single-valued neutrosophic set is a generalisation of intuitionistic fuzzy sets that can be utilised to solve 

real-world problems, particularly in decision support. The sum of the three components of belief in that 

element (truth), disbelief in that element (falsehood), and the indeterminacy part of that element is strictly 

less than 1. Smarandache [36, 38] and references therein propose neutrosophic sets as the foundation of 

neutrosophic logic, a multiple value logic that generalises fuzzy logic and deals with paradoxes, 

contradictions, antitheses, and antinomies. 

In the situation of neutrosophic sets, indeterminacy is considered as a distinct concept, and each 
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component is defined by a truth-membership function, an indeterminacy membership 

 function, and a falsity-membership function, all of which are obtained from the non-standard 

unit interval ]0−, 1+[. Ignoring the fact that neutrosophic indeterminacy is independent of truth and 

falsity-membership values, it is more general than the hesitation margin of intuitionistic fuzzy sets. It is 

unclear whether the indeterminacy values relevant to a specific element correspond to hesitant values 

about its belonging or non-belonging to it. As a result, some authors prefer to model the indeterminacy’s 

behaviour in the same way they similar to truth-membership, others may prefer to model it in the same 

way they similar to falsity-membership. Wang et al. [43] initiated the concept of a single valued 

neutrosophic set and provide its various properties. It has been widely applied in various fields, such as 

information fusion in which data are combined from different sensors [10], control theory [1], image 

processing [12], medical diagnosis [42], decision making [41], and graph theory [4, 8, 15-18, 25, 35], etc. 

When the indeterminacy portion of the netrosophic set is divided into two parts, we get four components: 

‘Contradiction’ (both true and false) and ‘Unknown’ (neither true nor false), that is 𝕋, ℂ, 𝕌 and 𝔽 which 

defines a new set called ‘quadripartitioned single valued neutrosophic set’, introduced by Chatterjee., et 

al. [11]. This study is completely based on “Belnap’s four valued logic" [9] and Smarandache’s “Four 

Numerical valued neutrosophic logic" [39]. By employing the concept of Quadripartitioned neutrosophic 

set, this paper presents the quadripartitioned neutrosophic graphs structure. Operations on single-valued 

neutrosophic graph structures are studied in [2, 6]. Motivated by the above mentioned works, to the best 

of authors’ knowledge, there is no work reported on the concepts of quadripartioned single valued 

neutrosophic graphs with application. The major contributions in this work are foregrounded as follows:   

    1.  The notions of Quadripartitioned Neutrosophic Graph Structure (QNGS) and its 

properties are introduced.  

    2.  In addition, the complete, strong and complement of QNGS are defined.  

    3.  Furthermore, the 𝜙 −permutation and 𝜙 −complement of QNGS are investigated. The 

proposed concepts are illustrated with examples.  

    4.  The operations like Cartesian Product, cross product, lexicographic product, composition 

in graph structures and join operations are established.  

 2. Preliminaries  

Definition 2.1 A graph structure 𝔊 = (𝒫, ℜ1, ℜ2, . . ℜ𝑛) consists of a non-empty set 𝒱 together with relation 

ℜ1, ℜ2, . . . , ℜ𝔫 on 𝒫 which are mutually disjoint such that each ℜ𝑖, 1 ≤ 𝑖 ≤ 𝑛, is symmetric and irreflexive.  

  

Definition 2.2 A neutrosophic set 𝒩 on a universal set 𝒫 is an object of the form 

𝒩 = {(𝑝, 𝔗𝒩(𝑝), ℑ𝒩(𝑝), 𝔉𝒩(𝑝): 𝑝 ∈ 𝒫)} , where 𝒯𝒩 , ℐ𝒩 , ℱ𝒩: 𝒫 →  ]0−, 1+[  and 0− ≤
𝔗𝒩(𝑝), ℑ𝒩(𝑝), 𝔉𝒩(𝑝) ≤ 3+.  

  

Definition 2.3 A single valued neutrosophic set 𝒩 on a universal set 𝒫 is an object of the form 

𝒩 = {(𝑝, 𝔗𝒩(𝑝), ℑ𝒩(𝑝), 𝔉𝒩(𝑝): 𝑝 ∈ 𝒫)} , where 𝒯𝒩 , ℐ𝒩 , ℱ𝒩: 𝒫 → [0,1]  and 0 ≤
𝔗𝒩(𝑝), ℑ𝒩(𝑝), 𝔉𝒩(𝑝) ≤ 3.  

 

Definition 2.4 [3] A neutrosophic graph is defined as a pair 𝐺∗ = (𝑉, 𝐸) where  

(i) 𝑉 = {𝑣1, 𝑣2, . . , 𝑣𝑛} such that 𝒯𝐴: 𝑉 → [0,1], ℐ𝐴: 𝑉 → [0,1] and ℱ𝐴: 𝑉 → [0,1] denote the degree of 

truth-membership function, indeterminacy function and falsity-membership function, respectively and  
 0 ≤ 𝒯𝐴(𝑣) + ℐ𝐴(𝑣) + ℱ𝐴(𝑣) ≤ 3, ∀    𝑣 ∈ 𝑉.  

 (ii) 𝐸 ⊆ 𝑉 × 𝑉 where 𝒯𝐵: 𝐸 → [0,1], ℐ𝐵: 𝐸 → [0,1] and ℱ𝐵: 𝐸 → [0,1] are such that  
 𝒯𝐵(𝑢𝑣) ≤ min{𝑇𝐴(𝑢), 𝑇𝐴(𝑣)}, 
ℐ𝐵(𝑢𝑣) ≤ min{𝐼𝐴(𝑢), 𝐼𝐴(𝑣)}, 

ℱ𝐵(𝑢𝑣) ≤ max{𝐹𝐴(𝑢), 𝐹𝐴(𝑣)}, 

∀𝑢, 𝑣 ∈ 𝑉.  
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 For more details about the following definitions and results, see the article [11].  

Definition 2.5 Let 𝒳 be a non-empty set. A quadripartitioned neutrosopohic set (QSVNS) 𝒜 over ℛ 

characterizes each elements 𝑥 in 𝒳 by a truth membership function 𝒯𝒜 , a contradiction membership function 𝒞𝒜 , 

an ignorance membership function 𝒰𝒜  and a false membership function ℱ𝒜  such that for each 𝑥 ∈

ℛ, 𝒯𝒜 , 𝒞𝒜 , 𝒰𝒜 , ℱ𝒜 ∈ [0,1] and 0 ≤ 𝒯𝒜(𝑟) + 𝒞𝒜(𝑟) + 𝒰𝒜(𝑟) + ℱ𝒜(𝑟) ≤ 4.  

Remark 2.6 A QSVNS 𝔄 , can be decomposed to yields two SVNS say, 𝔄𝑡  and 𝔄𝑓  where the respective 

membership functions of both these sets are defined as  
 𝒯𝔄𝑡

(𝑟) = 𝒯𝔄(𝑟) = 𝒯𝔄𝑓
(𝑟) 

 ℐ𝔄𝑡
(𝑟) = 𝒞𝔄(𝑟),    ℐ𝔄𝑓

(𝑟) = 𝒰𝔄(𝑟) 

 ℱ𝔄𝑡
(𝑟) = ℱ𝔄(𝑟) = ℱ𝔄𝑓

(𝑟),    ∀𝑟 ∈ ℛ. 

 In this respect to needs to be stated that while performing set-theoretic operations over these SVNS, 

behavior of ℐ𝔄𝑡
 is treated similar to that of 𝒯𝔄𝑡

 while the behavior of ℐ𝔄𝑓
 is modeled in a way similar to 

that of ℱ𝔄𝑓
.  

Definition 2.7 A QSVNS is said to be an absolute QSVNS, denoted by 𝔄, if its is membership values are 

respectively defined as 𝒯𝔄(𝑟) = 1, 𝒞𝔄(𝑟) = 1 , 𝒰𝔄(𝑟) = 0 and ℱ𝔄(𝑟) = 0.  

  

Definition 2.8 Consider two QSVNS 𝔄 and 𝔅, over ℛ. 𝔄 is said to be contained in 𝔅, denoted by 𝔄 ⊆ 𝔅 if, 

and only, if 𝒯𝔄(𝑟) ≤ 𝒯𝔅(𝑟), 𝒞𝔄(𝑟) ≤ 𝒞𝔅(𝑟), 𝒰𝔄(𝑟) ≥ 𝒰𝔅(𝑟) and ℱ𝔄(𝑟) ≥ ℱ𝔅(𝑟).  

  

Definition 2.9 The complement of a QSVNS 𝔄, is denoted by 𝔄𝑐 and is defined as 

𝔄𝑐 = ∑𝑛
𝑖=1 〈ℱ𝔄(𝑟𝑖), 𝒰𝔄(𝑟𝑖), 𝒞𝔄(𝑟𝑖), 𝒯𝔄(𝑟𝑖)〉,    ∀𝑟𝑖 ∈ ℛ. 

i.e. 𝒯𝔄𝑐(𝑟𝑖) = ℱ𝔄(𝑟𝑖),    𝒞𝔄𝑐(𝑟𝑖) = 𝒰𝔄(𝑟𝑖) 

𝒰𝔄𝑐(𝑟𝑖) = 𝒞𝔄(𝑟𝑖),    ℱ𝔄𝑐(𝑟𝑖) = 𝒯𝔄(𝑟𝑖), ∀𝑟𝑖 ∈ ℛ.  

  

Definition 2.10 The union of two QSVNS 𝔄 and 𝔅 is denoted by 𝔄 ∪ 𝔅 and is defined as  
 𝔄 ∪ 𝔅 = ∑𝑛

𝑖=1 〈𝒯𝔄(𝑟𝑖) ∨ 𝒯𝔅(𝑟𝑖), 𝒞𝔄(𝑟𝑖) ∨ 𝒞𝔅(𝑟𝑖) 
 𝒰𝔄(𝑟𝑖) ∧ 𝒰𝔅(𝑟𝑖), ℱ𝔄(𝑟𝑖) ∧ ℱ𝔅(𝑟𝑖)〉/ℛ. 

  

Definition 2.11 The intersection of two QSVNS 𝔄 and 𝔅 is denoted by 𝔄 ∩ 𝔅 and is defined as  
 𝔄 ∩ 𝔅 = ∑𝑛

𝑖=1 〈𝒯𝔄(𝑟𝑖) ∧ 𝒯𝔅(𝑟𝑖), 𝒞𝔄(𝑟𝑖) ∧ 𝒞𝔅(𝑟𝑖) 
 𝒰𝔄(𝑟𝑖) ∨ 𝒰𝔅(𝑟𝑖), ℱ𝔄(𝑟𝑖) ∨ ℱ𝔅(𝑟𝑖)〉/ℛ 

  
 
3. Quadripartitioned Neutrosophic Graph structure 

 

Definition 3.1 Let ℝ be a non-empty set and 𝔼1, 𝔼2, . . . , 𝔼𝑛 relation on ℝ. 𝔊 = (𝔄, 𝔅1, 𝔅2, . . . , 𝔅𝑛) is called a 

quadripartioned neutrosophic graph structure if  
 𝔄 = {𝑛, 𝕋𝑖(𝑙), ℂ𝑖(𝑙), 𝕌𝑖(𝑙), 𝔽𝑖(𝑙): 𝑛 ∈ ℝ}  

 is a quadripartitioned neutrosophic set on ℝ and  
 𝔅𝑖 = {(𝑘, 𝑙), 𝕋(𝑘, 𝑙), 𝕀(𝑘, 𝑙), 𝕌(𝑘, 𝑙), 𝔽(𝑘, 𝑙): 𝑛 ∈ 𝔼𝑖}  

 is a quadripartitioned neutrosophic set on 𝔼𝑖 such that  
 𝕋𝑖(𝑘, 𝑙) ≤ min{𝕋(𝑘), 𝕋(𝑙)}, 
ℂ𝑖(𝑘, 𝑙) ≤ min{ℂ(𝑘), ℂ(𝑙)}, 
𝕌𝑖(𝑘, 𝑙) ≤ max{𝕌(𝑘), 𝕌(𝑙)}, 
𝔽𝑖(𝑘, 𝑙) ≤ max{𝔽(𝑘), 𝔽(𝑙)},  

∀𝑚, 𝑛 ∈ ℝ. 
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0 ≤ 𝕋𝑖(𝑘, 𝑙) + ℂ𝑖(𝑘, 𝑙) + 𝕌𝑖(𝑘, 𝑙) + 𝔽𝑖(𝑘, 𝑙) ≤ 4. for all (𝑘, 𝑙) ∈ 𝔼𝑖  

 where ℝ  and 𝔼𝑖  (𝑖 = 1,2, . . . , 𝑛)  are underlying vertex and underlying 𝑖 -edge sets of 𝔾 , 

respectively.  

  

Example 3.2 Let 𝔊∗ = (ℝ, 𝔼1, 𝔼2) be a graph structure 𝔊 = {𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞5, 𝑞6}, 𝔼1 =

{𝑞1𝑞6, 𝑞2𝑞3, 𝑞3𝑞4, 𝑞4𝑞5}, 𝔼2 = {𝑞1𝑞2, 𝑞5𝑞6, 𝑞4𝑞6, 𝑞1𝑞3}. Now we can define quadripartitioned neutrosophic sets 

𝔄, 𝔅1, 𝔅2 on ℝ, 𝔼1, 𝔼2 respectively,  
 𝐿𝑒𝑡    𝔄 = {(𝑞1, 0.3,0.7,0.7,0.4), (𝑞2, 0.4,0.7,0.6,0.6), (𝑞3, 0.4,0.4,0.3,0.2) 
 (𝑞4, 0.5,0.6,0.7,0.4), (𝑞5, 0.3,0.4,0.7,0.8), (𝑞6, 0.4,0.3,0.4,0.3)} 
 𝔅1 =

{(𝑞1𝑞6, 0.2,0.1,0.4,0.3), (𝑞2𝑞3, 0.3,0.4,0.5,0.5), (𝑞3𝑞4, 0.3,0.3,0.5,0.1), (𝑞4𝑞5, 0.3,0.4,0.7,0.4)} 
 𝔅2 =

{(𝑞1𝑞2, 0.3,0.2,0.6,0.3), (𝑞5𝑞6, 0.2,0.3,0.3,0.2), (𝑞4𝑞6, 0.3,0. ,0.6,0.2), (𝑞1𝑞3, 0.2,0.2,0.2,0.2)} 

 By direct calculation, it is easy to show that 𝔊 = (𝔄, 𝔅1, 𝔅2) is a QNGS of 𝔊∗ is shown in figure 1  

  

 

  
 

Figure  1: QUADRIPARTITIONED NEUTROSOPHIC GRAPH STRUCTURE 
  

  
Definition 3.3 Let 𝔊 = (𝔄, 𝔅1, 𝔅2, . . , 𝔅𝑛) be a QNGS of 𝔊∗. If ℋ = (𝔄′, 𝔅1

′ , 𝔅2
′ , . . . , 𝔅𝑛

′ ) is a QNGS of 𝔊∗ 

such that 

 
 𝕋′(𝑙) ≤ 𝕋(𝑙), ℂ′(𝑙) ≤ ℂ(𝑙), 𝕌′(𝑙) ≥ 𝕌(𝑙), 𝔽′(𝑙) ≥ 𝔽(𝑙) 

for all 𝑛 ∈ ℝ,  
 𝕋𝑖

′(𝑘, 𝑙) ≤ 𝕋𝑖(𝑘, 𝑙), ℂ𝑖
′(𝑘, 𝑙) ≤ ℂ𝑖(𝑘, 𝑙), 𝕌𝑖

′(𝑘, 𝑙) ≥ 𝕌𝑖(𝑘, 𝑙), 𝔽𝑖
′(𝑘, 𝑙) ≥ 𝔽𝑖(𝑘, 𝑙) 

for all 𝑚, 𝑛 ∈ 𝔼𝑖 , where 𝑖 = 1,2, . . . , 𝑛.  Then ℋ  is called a quadripartitioned neutrosophic subgraph 

structure of QNGS 𝔾.  

  

Example 3.4 Consider a graph structure 𝔊∗ = (ℝ, 𝔼1, 𝔼2) and let (𝔄, 𝔅1, 𝔅2) be quadripartitioned neutrosophic 

subsets of (ℝ, 𝔼1, 𝔼2) respectively, such that  
 𝔄 = {(𝑛1, 0.8,0.6,0.5,0.4), (𝑛2, 0.7,0.6,0.5,0.4), (𝑛3, 0.6,0.8,0.4,0.4), (𝑛4, 0.5,0.5,0.3,0.4)} 
 𝔅1 = {(𝑛1𝑛2, 0.6,0.5,0.4,0.3), (𝑛2𝑛4, 0.3,0.3,0.4,0.3)}, 
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 𝔅2 = {(𝑛3𝑛4, 0,4,0.3,0.3,0.3), (𝑛1𝑛4, 0.4,0.4,0.5,0.3)} 

 Direct calculations show that 𝔊 = (𝔄, 𝔅1, 𝔅2) is a QNGS of 𝔊∗ as presented in Figure 3.  

 

  
 

Figure  2: QUADRIPARTITIONED NEUTROSOPHIC GRAPH STRUCTURE 
  

   

 

  
 

Figure  3: QUADRIPARTITIONED NEUTROSOPHIC SUBGRAPH STRUCTURE 
  

   
Definition 3.5 A QNGS ℋ = (𝔄′, 𝔅1

′ , 𝔅2
′ , . . . , 𝔅𝑛

′ ) is called an induced subgraph structure of 𝔊 by a subset ℛ of 

𝒳 if  
 
 𝕋′(𝑙) = 𝕋(𝑙), ℂ′(𝑙) = ℂ(𝑙), 𝕌′(𝑙) = 𝕌(𝑙), 𝔽′(𝑙) = 𝔽(𝑙) 

for all 𝑛 ∈ 𝔼,  
 𝕋𝑖

′(𝑘, 𝑙) = 𝕋𝑖(𝑘, 𝑙), ℂ𝑖
′(𝑘, 𝑙) = ℂ𝑖(𝑘, 𝑙), 𝕌𝑖

′(𝑘, 𝑙) = 𝕌𝑖(𝑘, 𝑙), 𝔽𝑖
′(𝑘, 𝑙) = 𝔽𝑖(𝑘, 𝑙) 

for all 𝑚, 𝑛 ∈ 𝔼𝑖, where 𝑖 = 1,2, . . . , 𝑛.  

 
Definition 3.6 A QNGS ℋ = (𝔄′, 𝔅1

′ , 𝔅2
′ , . . . , 𝔅𝑛

′ ) is said to be a spanning subgraph structure of 𝔊 when 𝔄′ =

𝔄 and 

 
 𝕋𝑖

′(𝑘, 𝑙) ≤ 𝕋𝑖(𝑘, 𝑙), ℂ𝑖
′(𝑘, 𝑙) ≤ ℂ𝑖(𝑘, 𝑙), 𝕌𝑖

′(𝑘, 𝑙) ≥ 𝕌𝑖(𝑘, 𝑙), 𝔽𝑖
′(𝑘, 𝑙) ≥ 𝔽𝑖(𝑘, 𝑙) 
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𝑖 = 1,2, . . . , 𝑛.  

  

Definition 3.7 Let 𝔊 = (𝔄, 𝔅1, 𝔅2, . . . , 𝔅𝑛) be an QNGS of 𝔊∗. Then 𝑘𝑙 ∈ 𝔼𝑖 is called 𝔅𝑖 edge if 𝕋𝑖(𝑘, 𝑙) > 0 

or ℂ𝑖(𝑘, 𝑙) > 0 or 𝕌𝑖(𝑘, 𝑙) > 0 or 𝔽𝑖(𝑘, 𝑙) > 0 all the four conditions hold. Consequently, support of 𝔅𝑖 is 

defined as: 
𝑠𝑢𝑝𝑝(𝔅𝑖) = {𝑘𝑙 ∈ 𝔅𝑖: 𝕋𝑖(𝑘, 𝑙) > 0} ∪ {𝑘𝑙 ∈ 𝔅𝑖 : ℂ𝑖(𝑘, 𝑙) > 0} ∪ {𝑘𝑙 ∈ 𝔅𝑖: 𝕌𝑖(𝑘, 𝑙) > 0} ∪ {𝑘𝑙 ∈

𝔅𝑖: 𝔽𝑖(𝑘, 𝑙) > 0}, 𝑖 = 1,2, . . . , 𝑛.  

 

Definition 3.9 𝔅𝑖 −path in a QNGS 𝔊 = (𝔄, 𝔅1, 𝔅2, . . . , 𝔅𝑛) is a sequence of different nodes 𝑛1, 𝑛2, . . . , 𝑛𝑚 

(except choice that 𝑛𝑚 = 𝑛1) in 𝒳, such that 𝑛𝑗−1𝑛𝑗 is a quadripartitioned neutrosophic 𝔅𝑖-edge, for all 𝑗 =

2, … , 𝑚.  

  

Definition 3.10 A QNGS 𝔊 = (𝔄, 𝔅1, 𝔅2, . . . , 𝔅𝑛) is called 𝔅𝑖- strong for some 𝑖 ∈ {1,2,3, . . . 𝑛} if 

 
 𝕋𝑖(𝑘, 𝑙) = min{𝕋(𝑘), 𝕋(𝑙)}, 
 ℂ𝑖(𝑘, 𝑙) = min{ℂ(𝑘), ℂ(𝑙)}, 
 𝕌𝑖(𝑘, 𝑙) = max{𝕌(𝑘), 𝕌(𝑙)}, and 
 𝔽𝑖(𝑘, 𝑙) = max{𝔽(𝑘), 𝔽(𝑙)}, ∀𝑚𝑛 ∈ 𝑠𝑢𝑝𝑝(𝔅𝑖). 

 Further, QNGS 𝔊 is said to be strong if it is 𝔅𝑖- strong for all 𝑖 ∈ {1,2, . . . , 𝑛. }  

 

Definition 3.11 A QNGS 𝔊 = (𝔄, 𝔅1, 𝔅2, . . , 𝔅𝑛) is said to be complete if 𝔊 is a strong QNGS, 𝑠𝑢𝑝𝑝(𝔅𝑖) ≠ 𝜙 

for all 𝑖 = 1,2, . . . , 𝑛 and for all pair of nodes 𝑘, 𝑙 ∈ 𝒳, 𝑘𝑙 is a 𝔅𝑖 edge for some 𝑖.  

 

Definition 3.12 Let 𝔊 = (𝔄, 𝔅1, 𝔅2, . . , 𝔅𝑛) be a QNGS. Now truth strength, contradiction strength, ignorance 

strength and false strength of a 𝔅𝑖-path 𝑃𝔅𝑖
= 𝑛1, 𝑛2, . . . , 𝑛𝑚 are denoted by 𝑇. 𝑃𝔅𝑖

, 𝐶. 𝑃𝔅𝑖
, 𝑈. 𝑃𝔅𝑖

 and 𝐹. 𝑃𝔅𝑖
, 

respectively, and defined as  

 𝑇. 𝑃𝔅𝑖
= ∧

𝑗=2

𝑚
[𝕋𝔅𝑖

𝑃 (𝑛𝑗−1𝑛𝑗)], 

 𝐶. 𝑃𝔅𝑖
= ∧

𝑗=2

𝑚
[ℂ𝔅𝑖

𝑃 (𝑛𝑗−1𝑛𝑗)], 

 𝑈. 𝑃𝔅𝑖
= ∨

𝑗=2

𝑚
[𝕌𝔅𝑖

𝑃 (𝑛𝑗−1𝑛𝑗)], 

 𝐹. 𝑃𝔅𝑖
= ∨

𝑗=2

𝑚
[𝔽𝔅𝑖

𝑃 (𝑛𝑗−1𝑛𝑗)]. 

  

Definition 3.13 Suppose 𝔊 = (𝔄, 𝔅1, 𝔅2, . . , 𝔅𝑛) is a QNGS. Then   

    1.  𝔅𝑖- truth strength of connectedness between 𝑚 and 𝑛 is defined as: 𝕋𝔅𝑖

∞ (𝑘𝑙) =

∨
𝑗≥1

{𝕋𝔅𝑖

𝑗
(𝑘𝑙)} such that 𝕋𝔅𝑖

𝑗
(𝑘𝑙) = (𝕋𝔅𝑖

𝑗−1
∘ 𝕋𝔅𝑖

1 )(𝑘𝑙) for 𝑗 ≥ 2 and  

𝕋𝔅𝑖

2 (𝑘𝑙) = (𝕋𝔅𝑖

1 ∘ 𝕋𝔅𝑖

1 )(𝑘𝑙) =∨
𝑧

(𝕋𝐵𝑖

1 (𝑚𝑧) ∧ 𝕋𝐵𝑖

1 (𝑧𝑛)).  

    2.  𝔅𝑖- contradiction strength of connectedness between 𝑚 and 𝑛 is defined as: ℂ𝔅𝑖

∞ (𝑘𝑙) =

∨
𝑗≥1

{ℂ𝔅𝑖

𝑗
(𝑘𝑙)} such that ℂ𝔅𝑖

𝑗
(𝑘𝑙) = (ℂ𝔅𝑖

1 ∘ ℂ𝔅𝑖

1 )(𝑘𝑙) for 𝑗 ≥ 2 and  

ℂ𝔅𝑖

2 (𝑘𝑙) = (ℂ𝔅𝑖

1 ∘ ℂ𝔅𝑖

1 )(𝑘𝑙) =∨𝑧 (ℂ𝐵𝑖

1 (𝑚𝑧) ∧ ℂ𝐵𝑖

1 (𝑧𝑛)).  

    3.  𝔅𝑖- ignorance strength of connectedness between 𝑚 and 𝑛 is defined as: 𝕌𝔅𝑖

∞ (𝑘𝑙) =

∧
𝑗≥1

{𝕌𝔅𝑖

𝑗
(𝑘𝑙)} such that 𝕌𝔅𝑖

𝑗
(𝑘𝑙) = (𝕌𝔅𝑖

1 ∘ 𝕌𝔅𝑖

1 )(𝑘𝑙) for 𝑗 ≥ 2 and  

𝕌𝔅𝑖

2 (𝑘𝑙) = (𝕌𝔅𝑖

1 ∘ 𝕌𝔅𝑖

1 )(𝑘𝑙) =∧
𝑧

(𝕌𝐵𝑖

1 (𝑚𝑧) ∨ 𝕌𝐵𝑖

1 (𝑧𝑛)).  

    4.  𝔅𝑖- false strength of connectedness between 𝑚 and 𝑛 is defined as: 𝔽𝔅𝑖

∞ (𝑘𝑙) =

∧
𝑗≥1

{𝔽𝔅𝑖

𝑗
(𝑘𝑙)} such that 𝔽𝔅𝑖

𝑗
(𝑘𝑙) = (𝔽𝔅𝑖

1 ∘ 𝔽𝔅𝑖

1 )(𝑘𝑙) for 𝑗 ≥ 2 and  

𝔽𝔅𝑖

2 (𝑘𝑙) = (𝔽𝔅𝑖

1 ∘ 𝔽𝔅𝑖

1 )(𝑘𝑙) =∧
𝑧

(𝔽𝐵𝑖

1 (𝑚𝑧) ∨ 𝔽𝐵𝑖

1 (𝑧𝑛)).  
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Definition 3.14 A QNGS 𝔊 = (𝔄, 𝔅1, 𝔅2, . . . , 𝔅𝑛) is a 𝔅𝑖-cycle if  
 (𝑠𝑢𝑝𝑝(𝔄), 𝑠𝑢𝑝𝑝(𝔅1), 𝑠𝑢𝑝𝑝(𝔅2), . . . , 𝑠𝑢𝑝𝑝(𝔅𝑛))isa𝔅𝑖 − cycle. 

  
Definition 3.15 A QNGS 𝔊 = (𝔄, 𝔅1, 𝔅2, . . . , 𝔅𝑛) is a 𝔅𝑖-cycle (for some 𝑖) if 𝔊 is a 𝔅𝑖-cycle, no unique 

𝔅𝑖-edge 𝑘𝑙 belongs to 1 𝔊 with  
 𝕋𝐵𝑖

(𝑘𝑙) = min{𝕋𝐵𝑖
(𝑟𝑠): 𝑟𝑠 ∈ 𝔼𝑖 = supp(𝔅𝑖)}, 

 ℂ𝐵𝑖
(𝑘𝑙) = min{ℂ𝐵𝑖

(𝑟𝑠): 𝑟𝑠 ∈ 𝔼𝑖 = supp(𝔅𝑖)}, 

 𝕌𝐵𝑖
(𝑘𝑙) = max{ℂ𝐵𝑖

(𝑟𝑠): 𝑟𝑠 ∈ 𝔼𝑖 = supp(𝔅𝑖)}, 

 𝔽𝐵𝑖
(𝑘𝑙) = max{𝔽𝐵𝑖

(𝑟𝑠): 𝑟𝑠 ∈ 𝔼𝑖 = supp(𝔅𝑖)}. 

  

Definition 3.16 Let 𝔊 = (𝔄, 𝔅1, 𝔅2, . . . , 𝔅𝑛) be a QNGS and 𝑞 be a node in 𝔊. Let (𝔄′, 𝔅1
′ , 𝔅2

′ , . . . , 𝔅𝑛
′ ) be a 

QNGS induced by 𝒳\{𝑞} such that, for all 𝑚 ≠ 𝑞, 𝑜 ≠ 𝑞,  
 𝕋𝐴′(𝑞) = ℂ𝐴′(𝑞) = 0 = 𝕌𝐴′(𝑞) = 𝔽𝐴′(𝑞), 
 𝕋𝐵𝑖

′(𝑞𝑚) = ℂ𝐵𝑖
′(𝑞𝑚) = 0 = 𝕌𝐵𝑖

′(𝑞𝑚) = 𝔽𝐵𝑖
′(𝑞𝑚), ∀    edges    𝑞𝑚 ∈ 𝔊 

 𝕋𝐴′(𝑚) = 𝕋𝐴(𝑚), ℂ𝐴′(𝑚) = ℂ𝐴(𝑚), 𝕌𝐴′(𝑚) = 𝕌𝐴(𝑚), 𝔽𝐴′(𝑚) = 𝔽𝐴(𝑚), 
 𝕋𝐵𝑖

′(𝑚𝑜) = 𝕋𝐵𝑖
(𝑚𝑜), ℂ𝐵𝑖

′(𝑚𝑜) = ℂ𝐵𝑖
(𝑚𝑜), 𝕌𝐵𝑖

′(𝑚𝑜) = 𝕌𝐵𝑖
(𝑚𝑜), 𝔽𝐵𝑖

′(𝑚𝑜) = 𝔽𝐵𝑖
(𝑚𝑜). 

 Now 𝑞 is quadripartitioned neutrosophic 𝔅𝑖 cut vertex for some 𝑖 if  

 
 𝕋𝐵𝑖

∞ (𝑚𝑜) > 𝕋
𝐵𝑖

′
∞ (𝑚𝑜), ℂ𝐵𝑖

∞ (𝑚𝑜) > ℂ
𝐵𝑖

′
∞ (𝑚𝑜), 𝕌𝐵𝑖

∞ (𝑚𝑜) > 𝕌
𝐵𝑖

′
∞ (𝑚𝑜), 𝔽𝐵𝑖

∞ (𝑚𝑜) > 𝔽
𝐵𝑖

′
∞ (𝑚𝑜) 

for some 𝑚, 𝑜 ∈ 𝒳\{𝑞}. Note that 𝑞 is a   

    • 𝔅𝑖- 𝕋 quadripartitioned neutrosophic cut node if 𝕋𝐵𝑖

∞ (𝑚𝑜) > 𝕋
𝐵𝑖

′
∞ (𝑚𝑜). 

 

    • 𝔅𝑖- ℂ quadripartitioned neutrosophic cut node if ℂ𝐵𝑖

∞ (𝑚𝑜) > ℂ
𝐵𝑖

′
∞ (𝑚𝑜). 

 

    • 𝔅𝑖- 𝕌 quadripartitioned neutrosophic cut node if 𝕌𝐵𝑖

∞ (𝑚𝑜) > 𝕌
𝐵𝑖

′
∞ (𝑚𝑜). 

 

    • 𝔅𝑖- 𝔽 quadripartitioned neutrosophic cut node if 𝔽𝐵𝑖

∞ (𝑚𝑜) > 𝔽
𝐵𝑖

′
∞ (𝑚𝑜).  

  

Definition 3.17 Suppose 𝔊 = (𝔄, 𝔅1, 𝔅2, . . . , 𝔅𝑛) be a QNGS and 𝑘𝑙 be 𝔅𝑖-edge. Let (𝔄′, 𝔅1
′ , 𝔅2

′ , . . . , 𝔅𝑛
′ ) be a 

quadripartitioned neutrosophic graph spanning subgraph structure of 𝔊 with for all lines 𝑘𝑙 ≠ 𝑟𝑠,  
 𝕋𝐵𝑖

′(𝑘𝑙) = ℂ𝐵𝑖
′(𝑘𝑙) = 0 = 𝕌𝐵𝑖

′(𝑘𝑙) = 𝔽𝐵𝑖
′(𝑘𝑙), 

 𝕋𝐵𝑖
′(𝑟𝑠) = 𝕋𝐵𝑖

(𝑟𝑠), ℂ𝐵𝑖
′(𝑟𝑠) = ℂ𝐵𝑖

(𝑟𝑠), 𝕌𝐵𝑖
′(𝑟𝑠) = 𝕌𝐵𝑖

(𝑟𝑠), 𝔽𝐵𝑖
′(𝑟𝑠) = 𝔽𝐵𝑖

(𝑟𝑠). 

 Then 𝑘𝑙 is quadripartitioned neutrosophic 𝔅𝑖-bridge if  

 
 𝕋𝐵𝑖

∞ (𝑚𝑜) > 𝕋
𝐵𝑖

′
∞ (𝑚𝑜), ℂ𝐵𝑖

∞ (𝑚𝑜) > ℂ
𝐵𝑖

′
∞ (𝑚𝑜), 𝕌𝐵𝑖

∞ (𝑚𝑜) > 𝕌
𝐵𝑖

′
∞ (𝑣𝑤), 𝔽𝐵𝑖

∞ (𝑚𝑜) > 𝔽
𝐵𝑖

′
∞ (𝑚𝑜) 

for some 𝑚, 𝑜 ∈ 𝒳. Note 𝑘𝑙 is a   

    • 𝔅𝑖- 𝕋 quadripartitioned neutrosophic bridge if 𝕋𝐵𝑖

∞ (𝑚𝑜) > 𝕋
𝐵𝑖

′
∞ (𝑚𝑜). 

 

    • 𝔅𝑖- ℂ quadripartitioned neutrosophic bridge if ℂ𝐵𝑖

∞ (𝑚𝑜) > ℂ
𝐵𝑖

′
∞ (𝑚𝑜). 

 

    • 𝔅𝑖- 𝕌 quadripartitioned neutrosophic bridge if 𝕌𝐵𝑖

∞ (𝑚𝑜) > 𝕌
𝐵𝑖

′
∞ (𝑚𝑜). 

 

    • 𝔅𝑖- 𝔽 quadripartitioned neutrosophic bridge if 𝔽𝐵𝑖

∞ (𝑚𝑜) > 𝔽
𝐵𝑖

′
∞ (𝑚𝑜).  
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Definition 3.18 A QNGS 𝔊 = (𝔄, 𝔅1, 𝔅2, . . . , 𝔅𝑛) is a 𝔅𝑖 tree if  
 (𝑠𝑢𝑝𝑝(𝔄), 𝑠𝑢𝑝𝑝(𝔅𝑖), 𝑠𝑢𝑝𝑝(𝔅2, . . . , 𝑠𝑢𝑝𝑝(𝔅𝑛)) 

is a 𝔅𝑖-tree. In otherwords, 𝔊 is a 𝔅𝑖-tree provided a subgraph of 𝔊 induced by 𝑠𝑢𝑝𝑝(𝔅𝑖) produces a 

tree.  

  

Definition 3.19 A QNGS 𝔊 = (𝔄, 𝔅1, 𝔅2, . . . , 𝔅𝑛) is a 𝔅𝑖- tree if 𝔊 has a quadripartitioned neutrosophic 

spanning subgraph structure ℋ = (𝔄′, 𝔅1
′ , 𝔅2

′ , . . . , 𝔅𝑛
′ ) with for every 𝔅𝑖-edges 𝑘𝑙 not belongs to ℋ, ℋ is a 𝔅𝑖

′- 

tree,  
 𝕋𝐵𝑖

∞ (𝑘𝑙) < 𝕋
𝐵𝑖

′
∞ (𝑘𝑙), ℂ𝐵𝑖

∞ (𝑘𝑙) < ℂ
𝐵𝑖

′
∞ (𝑘𝑙), 𝕌𝐵𝑖

∞ (𝑘𝑙) > 𝕌
𝐵𝑖

′
∞ (𝑘𝑙), 𝔽𝐵𝑖

∞ (𝑘𝑙) > 𝔽
𝐵𝑖

′
∞ (𝑘𝑙) 

In particular, 𝔊 is a:   

    • 𝔅𝑖- 𝕋 quadripartitioned neutrosophic tree if 𝕋𝐵𝑖

∞ (𝑘𝑙) < 𝕋
𝐵𝑖

′
∞ (𝑘𝑙). 

 

    • 𝔅𝑖- ℂ quadripartitioned neutrosophic tree if ℂ𝐵𝑖

∞ (𝑘𝑙) < ℂ
𝐵𝑖

′
∞ (𝑘𝑙). 

 

    • 𝔅𝑖- 𝕌 quadripartitioned neutrosophic tree if 𝕌𝐵𝑖

∞ (𝑘𝑙) > 𝕌
𝐵𝑖

′
∞ (𝑘𝑙). 

 

    • 𝔅𝑖- 𝔽 quadripartitioned neutrosophic bridge if 𝔽𝐵𝑖

∞ (𝑘𝑙) > 𝔽
𝐵𝑖

′
∞ (𝑘𝑙).  

  

  

Definition 3.20 A QNGS 𝔊1 = (𝔄1, 𝔅11, 𝔅12, . . . , 𝔅1𝑛) of the graph structure 𝔊1
∗ = (ℝ1, 𝔼11, 𝔼12, . . . , 𝔼1𝑛) is 

isomorphic to QNGS 𝔊2 = (𝔄2, 𝔅21, 𝔅22, . . . , 𝔅2𝑛) of graph structure 𝔊2
∗ = (ℝ2, 𝔼21, 𝔼22, . . . , 𝔼2𝑛) if 𝑓: ℝ1 →

ℝ2 is a bijection and the conditions below are fulfilled:  
 𝕋𝐴1

(𝑘) = 𝕋𝐴2
(𝑓(𝑘)), ℂ𝐴1

(𝑘) = ℂ𝐴2
(𝑓(𝑘)), 𝕌𝐴1

(𝑘) = 𝕌𝐴2
(𝑓(𝑘)), 𝔽𝐴1

(𝑘) = 𝔽𝐴2
(𝑓(𝑘)), 

 for all 𝑚 ∈ ℝ1 and  
 𝕋𝐵1𝑖

(𝑘𝑙) = 𝕋𝐵2𝜙(𝑖)
(𝑓(𝑘)𝑓(𝑙)), ℂ𝐵1𝑖

(𝑘𝑙) = ℂ𝐵2𝜙(𝑖)
(𝑓(𝑘)𝑓(𝑙)), 

 𝕌𝐵1𝑖
(𝑘𝑙) = 𝕌𝐵2𝜙(𝑖)

(𝑓(𝑘)𝑓(𝑙)), 𝔽𝐵1𝑖
(𝑘𝑙) = 𝔽𝐵2𝜙(𝑖)

(𝑓(𝑘)𝑓(𝑙)), 

 for all 𝑘𝑙 ∈ 𝔼1𝑖 and 𝑖 = 1,2, . . , 𝑛.  

  

Definition 3.21 A QNGS 𝔊1 = (𝔄1, 𝔅11, 𝔅12, . . . , 𝔅1𝑛) of the graph structure 𝔊1
∗ = (ℝ1, 𝔼11, 𝔼12, . . . , 𝔼1𝑛) is 

identical to QNGS 𝔊2 = (𝔄2, 𝔅21, 𝔅22, . . . , 𝔅2𝑛) of graph structure 𝔊2
∗ = (ℝ2, 𝔼21, 𝔼22, . . . , 𝔼2𝑛) if 𝑓: ℝ1 → ℝ2 

is a bijection and the conditions below are fulfilled:  
 𝕋𝐴1

(𝑘) = 𝕋𝐴2
(𝑓(𝑘)), ℂ𝐴1

(𝑘) = ℂ𝐴2
(𝑓(𝑘)), 𝕌𝐴1

(𝑘) = 𝕌𝐴2
(𝑓(𝑘)), 𝔽𝐴1

(𝑘) = 𝔽𝐴2
(𝑓(𝑘)), 

 for all 𝑚 ∈ ℝ1 and  
 𝕋𝐵1𝑖

(𝑘𝑙) = 𝕋𝐵2𝑖
(𝑓(𝑘)𝑓(𝑙)), ℂ𝐵1𝑖

(𝑘𝑙) = ℂ𝐵2
(𝑓(𝑘)𝑓(𝑙)), 

 𝕌𝐵1𝑖
(𝑘𝑙) = 𝕌𝐵2𝑖

(𝑓(𝑘)𝑓(𝑙)), 𝔽𝐵1𝑖
(𝑘𝑙) = 𝔽𝐵2𝑖

(𝑓(𝑘)𝑓(𝑙)), 

 for all 𝑘𝑙 ∈ 𝔼1𝑖 and 𝑖 = 1,2, . . , 𝑛.  

  

Definition 3.22 Let 𝔊1 = (𝔄1, 𝔅11, 𝔅12, . . . , 𝔅1𝑛) be a QNGS and 𝜙 −permutation on 𝔅1, 𝔅2, . . , 𝔅𝑛 and on 

{1,2, . . . , 𝑛} defined by 𝜙(𝔅𝑖) = 𝔅𝑗  if and only if 𝜙(𝑖) = 𝑗 for every 𝑖. If 𝑘𝑙 ∈ 𝔅𝑖 for some 𝑖 and  

 𝕋
𝔅𝑖

𝜙(𝑘𝑙) = 𝕋𝔄(𝑘) ∧ 𝕋𝔄(𝑙) − ∨
𝑗≠1

𝕋𝜙(𝔹𝑗)(𝑘𝑙) 

 ℂ
𝔅𝑖

𝜙(𝑘𝑙) = ℂ𝔄(𝑘) ∧ ℂ𝔄(𝑙) − ∨
𝑗≠1

ℂ𝜙(𝔅𝑗)(𝑘𝑙) 

 𝕌
𝔅𝑖

𝜙(𝑘𝑙) = 𝕌𝔄(𝑘) ∨ 𝕌𝔄(𝑙) − ∧
𝑗≠1

𝕌𝜙(𝔹𝑗)(𝑘𝑙) 
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 𝔽
𝔹𝑖

𝜙(𝑘𝑙) = 𝔽𝔄(𝑘) ∨ 𝔽𝔄(𝑙) − ∧
𝑗≠1

𝔽𝜙(𝔹𝑗)(𝑘𝑙), 𝑖 = 1,2, . . . , 𝑛, 

 then 𝑘𝑙 ∈ 𝔅𝑘
𝜙

, where 𝑘 is selected such that  

 𝕋
𝔹𝑘

𝜙(𝑘𝑙) ≥ 𝕋
𝔅𝑖

𝜙(𝑘𝑙), 

 ℂ
𝔅𝑘

𝜙(𝑘𝑙) ≥ ℂ
𝔅𝑖

𝜙(𝑘𝑙), 

 𝕌
𝔅𝑘

𝜙(𝑘𝑙) ≥ 𝕌
𝔅𝑖

𝜙(𝑘𝑙), 

 𝔽
𝔅𝑘

𝜙(𝑘𝑙) ≥ 𝔽
𝔅𝑖

𝜙(𝑘𝑙). 

 then quadripartitined neutrosophic graph structure (𝔄, 𝔅1
𝜙

, 𝔅2
𝜙

, . . . , 𝔅𝑛
𝜙

) is called 𝜙- complement of 𝔊 

and dentoted by 𝔊𝜙𝑐  

  

Proposition 3.23 𝜙-complement of a QNGS 𝔊 = (𝔄, 𝔅1, 𝔅2, . . . , 𝔅𝑛) is always a strong QNGS. Further, if 

𝜙(𝑖) = 𝑘, where 𝑖, 𝑘 ∈ {1,2, . . . , 𝑛} then for all 𝔅𝑘-edges in quadripartitioned neutrosophic graphic structure 

(𝔄, 𝔅1, 𝔅2, . . . , 𝔅𝑛) become 𝔅𝑖
𝜙

-edges in (𝔄𝜙, 𝔅1
𝜙

, 𝔅2
𝜙

, . . . , 𝔅𝑛
𝜙

).  

  

Proof. We know that,  
 𝕋

𝔅𝑖
𝜙(𝑘𝑙) = 𝕋𝔄(𝑘) ∧ 𝕋𝔄(𝑙) − ∨

𝑗≠𝑖
𝕋𝜙(𝔹𝑗)(𝑘𝑙), 

 ℂ
𝔅𝑖

𝜙(𝑘𝑙) = ℂ𝔄(𝑘) ∧ ℂ𝔄(𝑙) − ∨
𝑗≠𝑖

ℂ𝜙(𝔹𝑗)(𝑘𝑙), 

 𝕌
𝔅𝑖

𝜙(𝑘𝑙) = 𝕌𝔄(𝑘) ∨ 𝕌𝔄(𝑙) − ∧
𝑗≠𝑖

𝕌𝜙(𝔹𝑗)(𝑘𝑙), 

 𝔽
𝔅𝑖

𝜙(𝑘𝑙) = 𝔽𝔄(𝑘) ∨ 𝔽𝔄(𝑙) − ∧
𝑗≠𝑖

𝔽𝜙(𝔹𝑗)(𝑘𝑙), 

 for 𝑖 ∈ 1,2, . . . , 𝑛 . Due to the expression of truthness in 𝜙 -complement, 𝕋𝔄(𝑘) ∧ 𝕋𝔄(𝑙) ≥ 0 , 

∨
𝑗≠𝑖

𝕋𝜙(𝔹𝑗)(𝑘𝑙) ≥ 0 and 𝕋𝔅𝑖
(𝑘𝑙) ≤ 𝕋𝔄(𝑘) ∧ 𝕋𝔄(𝑙), for all 𝔅𝑖, now ∨

𝑗≠𝑖
𝕋𝜙(𝔹𝑗)(𝑘𝑙) ≤ 𝕋𝔄(𝑘) ∧ 𝕋𝔄(𝑙) 

which implies that 

 
 𝕋𝔄(𝑘) ∧ 𝕋𝔄(𝑙) − ∨

𝑗≠𝑖
𝕋𝜙(𝔹𝑗)(𝑘𝑙) ≥ 0 

Hence, 𝕋
𝔅𝑖

𝜙(𝑘𝑙) ≥ 0 for every 𝑖. Further, 𝕋
𝔅𝑖

𝜙(𝑘𝑙) attains its maximum provided ∨𝑗≠𝑖 𝕋𝜙(𝔹𝑗)(𝑘𝑙) ≥ 0 is 

zero. Clearly, when 𝜙(𝔅𝑖) = 𝔅𝑘 and 𝑘𝑙 is a 𝔅𝑘-edge then ∨𝑗≠𝑖 𝕋𝜙(𝔹𝑗)(𝑘𝑙) gets zero value. So 

𝕋
𝔅𝑖

𝜙(𝑘𝑙) = 𝕋𝔄(𝑘) ∧ 𝕋𝔄(𝑙), for some (𝑘𝑙) ∈ 𝔅𝑘, 𝜙(𝔅𝑖) = 𝔅𝑘  

Similarly, we have 

ℂ
𝔅𝑖

𝜙(𝑘𝑙) = ℂ𝔄(𝑘) ∧ ℂ𝔄(𝑙), for some (𝑘𝑙) ∈ 𝔅𝑘, 𝜙(𝔅𝑖) = 𝔅𝑘  

𝕌
𝔅𝑖

𝜙(𝑘𝑙) = ℂ𝔄(𝑘) ∨ 𝕌𝔄(𝑙), for some (𝑘𝑙) ∈ 𝔅𝑘, 𝜙(𝔅𝑖) = 𝔅𝑘  

𝔽
𝔅𝑖

𝜙(𝑘𝑙) = 𝔽𝔄(𝑘) ∨ 𝔽𝔄(𝑙), for some (𝑘𝑙) ∈ 𝔅𝑘, 𝜙(𝔅𝑖) = 𝔅𝑘. 

Likewise, the expression of falsity in 𝜙- complement: 

 
 𝔽𝔄(𝑘) ∨ 𝔽𝔄(𝑙) ≥ 0, ∧

𝑗≠𝑖
𝔽𝜙(𝔅𝑗)(𝑘𝑙) ≥ 0𝑎𝑛𝑑𝔽𝔅𝑖(𝑘𝑙) ≤ 𝔽𝔄(𝑘) ∨ 𝔽𝔄(𝑙)∀𝔅𝑖 

Then  
 ∧

𝑗≠1
𝔽𝜙(𝔅𝑗)(𝑘𝑙) ≤ 𝔽𝔄(𝑘) ∨ 𝔽𝔄(𝑙) 

yields,  
 𝔽𝔄(𝑘) ∨ 𝔽𝔄(𝑙) − ∧

𝑗≠𝑖
𝔽𝜙(𝔅𝑗)(𝑘𝑙) ≥ 0 

Therefore, 𝕋
𝔅𝑖

𝜙(𝑘𝑙)  is non-negative for all 𝑖 . Morevoer, 𝕋
𝔅𝑖

𝜙(𝑘𝑙)  reaches its maximum when 

∧
𝑗≠𝑖

𝔽𝜙(𝔅𝑗)(𝑘𝑙) becomes zero. It is clear that when 𝜙(𝔅𝑖) = 𝔅𝑘 and 𝑘𝑙 is a 𝔅𝑘 edge then ∧𝑗≠𝑖 𝔽𝜙(𝔅𝑗)(𝑘𝑙) 

gets zero value. So  
 𝔽

𝔅𝑖
𝜙(𝑘𝑙) = 𝔽𝔄(𝑘) ∨ 𝔽𝔄(𝑙)    𝑓𝑜𝑟    (𝑘𝑙) ∈ 𝔅𝑘 , 𝜙(𝔅𝑖) = 𝔅𝑘 
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Definition 3.24 Let 𝔊 = (𝔄, 𝔅1, 𝔅2, . . . , 𝔅𝑛) be a QNGS and 𝜙 be a permutation on {1,2, . . . , 𝑛} then   

    • If 𝔊 is isomorphic to 𝔊𝜙𝑐, then 𝔊 is called self-complementary.  

    • If 𝔊 is identical to 𝔊𝜙𝑐, then 𝔊 is called strong-self-complementary.  

  

  

Definition 3.25 Suppose 𝔊 = (𝔄, 𝔅1, 𝔅2, . . . , 𝔅𝑛) be a QNGS. Then   

    • If 𝔊 is isomorphic to 𝔊𝜙𝑐, for all permutation 𝜙 on {1,2, . . . , 𝑛}, then 𝔊 is totally self 

complementary.  

    • If 𝔊 is identical to 𝔊𝜙𝑐, for all permutation 𝜙 on {1,2, . . . , 𝑛}, then 𝔊 is totally strong self 

complementary.  

  

Remark 3.26 All strong QNGSs are self complementary or totally self-complementary QNGSs.  

  

Theorem 3.27A QNGSs is totally self-complementary if and only if it is strong QNGS.  

  

Proof. Consider a strong QNGS 𝔊 and permutation 𝜙 on {1,2, . . . , 𝑛}. In the view of Proposition 3.22, 𝜙- 

complement of a QNGS 𝔊 = (𝔄, 𝔅1, 𝔅2, . . . , 𝔅𝑛) is always a strong QNGS. Moreover, if 𝜙(𝑖) = 𝑘, here 

𝑖, 𝑘 ∈ {1,2, . . . , 𝑛} , then every 𝔅𝑘  lines in QNGSs (𝔄, 𝔅1, 𝔅2, . . . , 𝔅𝑛)  becomes 𝔅𝑖
𝜙

-edges in 

(𝔄𝜙, 𝔅1
𝜙

, 𝔅2
𝜙

, . . . , 𝔅𝑛
𝜙

). It yields  
 𝕋𝔅𝑘

(𝑘𝑙) = 𝕋𝔄(𝑘) ∧ 𝕋𝔄(𝑙) = 𝕋
𝔅𝑖

𝜙(𝑘𝑙) 

 
 ℂ𝔅𝑘

(𝑘𝑙) = ℂ𝔄(𝑘) ∧ ℂ𝔄(𝑙) = ℂ
𝔅𝑖

𝜙(𝑘𝑙) 

 
 𝕌𝔅𝑘

(𝑘𝑙) = 𝕌𝔄(𝑘) ∨ 𝕌𝔄(𝑙) = 𝕌
𝔅𝑖

𝜙(𝑘𝑙) 

 
 𝔽𝔅𝑘

(𝑘𝑙) = 𝔽𝔄(𝑘) ∨ 𝔽𝔄(𝑙) = 𝔽
𝔅𝑖

𝜙(𝑘𝑙) 

Thus, in identity mapping 𝑓: 𝒳 → 𝒳, 𝔊 and 𝔊𝜙 are isomorphic with  
 𝕋𝔄(𝑘) = 𝕋𝔄(𝑓(𝑘)), ℂ𝔄(𝑘) = ℂ𝔄(𝑓(𝑘)), 

 
 𝕌𝔄(𝑘) = 𝕌𝔄(𝑓(𝑘)), 𝔽𝔄(𝑘) = 𝔽𝔄(𝑓(𝑘)), 

𝕋𝔅𝑘
(𝑘𝑙) = 𝕋

𝔅𝑘
𝜙(𝑓(𝑘)𝑓(𝑙)) = 𝕋

𝔅𝑘
𝜙(𝑘𝑙), ℂ𝔅𝑘

(𝑘𝑙) = ℂ
𝔅𝑘

𝜙(𝑓(𝑘)𝑓(𝑙)) = ℂ
𝔅𝑘

𝜙(𝑘𝑙), 

𝕌𝔅𝑘
(𝑘𝑙) = 𝕌

𝔅𝑘
𝜙(𝑓(𝑘)𝑓(𝑙)) = 𝕌

𝔅𝑘
𝜙(𝑘𝑙), 𝔽𝔅𝑘

(𝑘𝑙) = 𝔽
𝔅𝑘

𝜙(𝑓(𝑘)𝑓(𝑙)) = 𝔽
𝔅𝑘

𝜙(𝑘𝑙), 

for all 𝑘𝑙 ∈ ℰ𝑘 , 𝜙−1(𝑘) = 𝑖 and 𝑘 = 1, , . . . , 𝑛. It holds for all permutation 𝜙 on {1,2, . . . , 𝑛}. Thus, 

𝔊 is totally self-complementary QNGS. Conversely, suppose for all permutation 𝜙 on {1,2, . . , 𝑛} 𝔊 is 

isomorphic to 𝔊𝜙. Then according to the definition of isomorphism of QNGSs and 𝜙 -complement of 

QNGS,  
 𝕋𝔅𝑘

(𝑘𝑙) = 𝕋
𝔅𝑘

𝜙(𝑓(𝑘)𝑓(𝑙)) = 𝕋𝔄(𝑓(𝑘)) ∧ 𝕋𝔄(𝑓(𝑙)) = 𝕋𝔄(𝑘) ∧ 𝕋𝔄(𝑙) 

 ℂ𝔅𝑘
(𝑘𝑙) = ℂ

𝔅𝑘
𝜙(𝑓(𝑘)𝑓(𝑙)) = ℂ𝔄(𝑓(𝑘)) ∧ ℂ𝔄(𝑓(𝑙)) = ℂ𝔄(𝑘) ∧ ℂ𝔄(𝑙) 

 𝕌𝔅𝑘
(𝑘𝑙) = 𝕌

𝔅𝑘
𝜙(𝑓(𝑘)𝑓(𝑙)) = 𝕌𝔄(𝑓(𝑘)) ∨ 𝕌𝔄(𝑓(𝑙)) = 𝕌𝔄(𝑘) ∨ 𝕌𝔄(𝑙) 

 𝔽𝔅𝑘
(𝑘𝑙) = 𝔽

𝔅𝑘
𝜙(𝑓(𝑘)𝑓(𝑙)) = 𝔽𝔄(𝑓(𝑘)) ∨ 𝔽𝔄(𝑓(𝑙)) = 𝔽𝔄(𝑘) ∨ 𝔽𝔄(𝑙). 

 for all 𝑘𝑙 ∈ ℰ𝑘 and 𝑘 = 1,2, . . , 𝑛. Hence, 𝔊 is strong QNGS.  

  

Remark 3.28 All self-complementary QNGS is totally self-complementary.  
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Theorem3.39If 𝔊∗ = (𝒳, ℰ1, ℰ2, . . . , ℰ𝑛) is totally strong self-complementary QNGS and 𝐴 = 〈𝕋𝔄, ℂ𝔄, 𝕌𝔄, 𝔽𝔄〉 is 

a quadripartitioned neutrosophic subset of 𝒳 here 𝕋𝔄, ℂ𝔄, 𝕌𝔄, 𝔽𝔄 are constant value functions, then a strong 

QNGS of 𝔊∗ with quadripartitioned neutrosophic node set 𝔄 is always a totally strong self-complementary 

QNGS.  

  

Proof. Let the four constants be 𝑝, 𝑞, 𝑟, 𝑠 ∈ [0,1], such that 𝕋𝔄(𝑘) = 𝑝  ℂ𝔄(𝑘) = 𝑞, 𝕌𝔄(𝑘) = 𝑟, 𝔽𝔄(𝑘) = 𝑠 for 

all 𝑚 ∈ 𝒳. Because 𝔊∗ is totally self-complementary strong QNGS, hence there exists a bijection 𝑓: 𝒳 →

𝒳 for permutation 𝜙−1 on {1,2, . . . , 𝑛}, with for any 𝔼𝑘- edge (𝑘𝑙), (𝑓(𝑘)𝑓(𝑙)) [an 𝔼𝑖-line in 𝔊∗] is an 𝔼𝑘 

line in 𝔊∗𝜙−1𝑐. Thus, for all 𝔅𝑘- edge (𝑘𝑙), (𝑓(𝑘)𝑓(𝑙)) [an 𝔅𝑖-edge in 𝔊] is a 𝔅𝑘
𝜙

- edge in 𝔊∗𝜙−1𝑐. Further, 

𝔊 is strong QNGS. Hence  
 𝕋𝔄(𝑘) = 𝑝 = 𝕋𝔄(𝑓(𝑘)), ℂ𝔄(𝑘) = 𝑞 = ℂ𝔄(𝑓(𝑘)), 
 𝕌𝔄(𝑘) = 𝑟 = 𝕌𝔄(𝑓(𝑘)), 𝔽𝔄(𝑘) = 𝑠 = 𝔽𝔄(𝑓(𝑘)), ∀𝑚 ∈ 𝒳, 

 

 
 𝕋𝔅𝑘

(𝑘𝑙) = 𝕋𝔄(𝑘) ∧ 𝕋𝔄(𝑙) = 𝕋𝔄(𝑓(𝑘)) ∧ 𝕋𝔄(𝑓(𝑙)) = 𝕋
𝔅𝑖

𝜙(𝑓(𝑘)𝑓(𝑙)) 

 ℂ𝔅𝑘
(𝑘𝑙) = ℂ𝔄(𝑘) ∧ ℂ𝔄(𝑙) = 𝕋𝔄(𝑓(𝑘)) ∧ ℂ𝔄(𝑓(𝑙)) = ℂ

𝔅𝑖
𝜙(𝑓(𝑘)𝑓(𝑙)) 

 𝕌𝔅𝑘
(𝑘𝑙) = 𝕌𝔄(𝑘) ∨ 𝕌𝔄(𝑙) = 𝕌𝔄(𝑓(𝑘)) ∨ 𝕌𝔄(𝑓(𝑙)) = 𝕌

𝔅𝑖
𝜙(𝑓(𝑘)𝑓(𝑙)) 

 𝔽𝔅𝑘
(𝑘𝑙) = 𝔽𝔄(𝑘) ∨ 𝔽𝔄(𝑙) = 𝔽𝔄(𝑓(𝑘)) ∨ 𝔽𝔄(𝑓(𝑙)) = 𝔽

𝔅𝑖
𝜙(𝑓(𝑘)𝑓(𝑙)). 

 for every 𝑘𝑙 ∈ 𝔼𝑖  and 𝑖 = 1,2, . . . 𝑛 . This leads to 𝔊  is self complementary strong QNGS. All 

permutation 𝜙  and 𝜙−1  on {1,2, . . , 𝑛}  fulfils the above arguments, hence 𝔊  is totally strong 

self-complementary QNGS. Converse of the theorem may not be true.  

  

Definition 3.40 Let 𝔊𝑛1 = (𝔔1, 𝔔11, 𝔔12, . . . . 𝔔1𝑛) and 𝔊𝑛2 = (𝔔2, 𝔔21, 𝔔22, . . . . 𝔔2𝑛) be QNGS. The Cartesian 

product of 𝔊1 and 𝔊2 denoted by 
𝔊𝑛1 × 𝔊𝑛2 = (𝔔1 × 𝔔2, 𝔔11 × 𝔔21, 𝔔12 × 𝔔22, . . . , 𝔔1𝑛 × 𝔔2𝑛),  

is defined by the following:  
 (𝑖)    𝕋𝔔1×𝔔2(𝑟𝑠) = (𝕋𝔔1 × 𝕋𝔔2)(𝑟𝑠) = 𝕋𝔔1(𝑟) ∧ 𝕋𝔔2(𝑠). 
 ℂ𝔔1×𝔔2(𝑟𝑠) = (ℂ𝔔1 × ℂ𝔔2)(𝑟𝑠) = ℂ𝔔1(𝑟) ∧ ℂ𝔔2(𝑠). 
 𝕌𝔔1×𝔔2(𝑟𝑠) = (𝕌𝔔1 × 𝕌𝔔2)(𝑟𝑠) = 𝕌𝔔1(𝑟) ∨ 𝕌𝔔2(𝑠). 
 𝔽𝔔1×𝔔2(𝑟𝑠) = (𝔽𝔔1 × 𝔽𝔔2)(𝑟𝑠) = 𝔽𝔔1(𝑟) ∨ 𝔽𝔔2(𝑠). 
 ∀𝑟𝑠 ∈ 𝑆1 × 𝑆2. 

  
 (𝑖𝑖)    𝕋(𝔔1𝑖×𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = (𝕋𝔔1𝑖

× 𝕋𝔔2𝑖
)(𝑟𝑠1)(𝑟𝑠2) = 𝕋𝑄1(𝑟) ∧ 𝕋𝑄2𝑖(𝑠1𝑠2) 

 ℂ(𝔔1𝑖×𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = (ℂ𝔔1𝑖
× ℂ𝔔2𝑖

)(𝑟𝑠1)(𝑟𝑠2) = ℂ𝑄1(𝑟) ∧ ℂ𝑄2𝑖(𝑠1𝑠2) 

 𝕌(𝔔1𝑖×𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = (𝕌𝔔1𝑖
× 𝕌𝔔2𝑖

)(𝑟𝑠1)(𝑟𝑠2) = 𝕌𝑄1(𝑟) ∨ 𝕌𝑄2𝑖(𝑠1𝑠2) 

 𝔽(𝔔1𝑖×𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = (𝔽𝔔1𝑖
× 𝔽𝔔2𝑖

)(𝑟𝑠1)(𝑟𝑠2) = 𝔽𝑄1(𝑟) ∨ 𝔽𝑄2𝑖(𝑠1𝑠2) 

 ∀𝑟 ∈ 𝑆1, 𝑠1𝑠2 ∈ 𝑆2𝑖 , 

  
 (𝑖𝑖𝑖)    𝕋(𝔔1𝑖×𝔔2𝑖)(𝑟1𝑠)(𝑟2𝑠) = (𝕋𝔔1𝑖

× 𝕋𝔔2𝑖
)(𝑟1𝑠)(𝑟2𝑠) = 𝕋𝑄2(𝑠) ∧ 𝕋𝑄1𝑖(𝑟1𝑟2) 

 ℂ(𝔔1𝑖×𝔔2𝑖)(𝑟1𝑠)(𝑟2𝑠) = (ℂ𝔔1𝑖
× ℂ𝔔2𝑖

)(𝑟1𝑠)(𝑟2𝑠) = ℂ𝑄2(𝑠) ∧ ℂ𝑄1𝑖(𝑟1𝑟2) 

 𝕌(𝔔1𝑖×𝔔2𝑖)(𝑟1𝑠)(𝑟2𝑠) = (𝕌𝔔1𝑖
× 𝕌𝔔2𝑖

)(𝑟1𝑠)(𝑟2𝑠) = 𝕌𝑄2(𝑠) ∨ 𝕌𝑄1𝑖(𝑟1𝑟2) 

 𝔽(𝔔1𝑖×𝔔2𝑖)(𝑟1𝑠)(𝑟2𝑠) = (𝔽𝔔1𝑖
× 𝔽𝔔2𝑖

)(𝑟1𝑠)(𝑟2𝑠) = 𝔽𝑄2(𝑠) ∨ 𝔽𝑄1𝑖(𝑟1𝑟2) 

 ∀𝑠 ∈ 𝑆2, 𝑟1𝑟2 ∈ 𝑆1𝑖 . 

  

  

Theorem 3.41 The Cartesian product 𝔊𝑛1 × 𝔊𝑛2 = (𝔔1 × 𝔔2, 𝔔11 × 𝔔21, 𝔔12 × 𝔔22, . . . , 𝔔1𝑛 × 𝔔2𝑛) of two 

QNGS of the GS 𝔊1 and 𝔊2 is a QNGs of 𝔊1 × 𝔊2.  
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Proof. According to the definition of Cartesian product there are two cases: 

Case1: when 𝑟 ∈ 𝑆1, 𝑟1𝑟2 ∈ 𝑆2𝑖 

 
 𝕋(𝔔1𝑖×𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = 𝕋𝑄1(𝑟) ∧ 𝕋𝑄2𝑖(𝑠1𝑠2) 

 ≤ 𝕋𝑄1(𝑟) ∧ [𝕋𝑄2(𝑠1) ∧ 𝕋𝑄2(𝑠2)] 

 = [𝕋𝑄1(𝑟) ∧ 𝕋𝑄2(𝑠1)] ∧ [𝕋𝑄1(𝑟) ∧ 𝕋𝑄2(𝑠2)] 

 = 𝕋(𝑄1×𝑄2)(𝑟𝑠1) ∧ 𝕋(𝑄1×𝑄2)(𝑟𝑠2). 

  
 ℂ(𝔔1𝑖×𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = ℂ𝑄1(𝑟) ∧ ℂ𝑄2𝑖(𝑠1𝑠2) 

 ≤ ℂ𝑄1(𝑟) ∧ [ℂ𝑄2(𝑠1) ∧ ℂ𝑄2(𝑠2)] 

 = [ℂ𝑄1(𝑟) ∧ ℂ𝑄2(𝑠1)] ∧ [ℂ𝑄1(𝑟) ∧ ℂ𝑄2(𝑠2)] 

 = ℂ(𝑄1×𝑄2)(𝑟𝑠1) ∧ ℂ(𝑄1×𝑄2)(𝑟𝑠2). 

  
 𝕌(𝔔1𝑖×𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = 𝕌𝑄1(𝑟) ∨ 𝕌𝑄2𝑖(𝑠1𝑠2) 

 ≤ 𝕌𝑄1(𝑟) ∨ [𝔽𝑄2(𝑠1) ∨ 𝕌𝑄2(𝑠2)] 

 = [𝕌𝑄1(𝑟) ∨ 𝕌𝑄2(𝑠1)] ∨ [𝕌𝑄1(𝑟) ∨ 𝕌𝑄2(𝑠2)] 

 = 𝕌(𝑄1×𝑄2)(𝑟𝑠1) ∨ 𝕌(𝑄1×𝑄2)(𝑟𝑠2). 

  
 𝔽(𝔔1𝑖×𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = 𝔽𝑄1(𝑟) ∨ 𝔽𝑄2𝑖(𝑠1𝑠2) 

 ≤ 𝔽𝑄1(𝑟) ∨ [𝔽𝑄2(𝑠1) ∨ 𝔽𝑄2(𝑠2)] 

 = [𝔽𝑄1(𝑟) ∨ 𝔽𝑄2(𝑠1)] ∨ [𝔽𝑄1(𝑟) ∨ 𝔽𝑄2(𝑠2)] 

 = 𝔽(𝑄1×𝑄2)(𝑟𝑠1) ∨ 𝔽(𝑄1×𝑄2)(𝑟𝑠2). 

 for 𝑟𝑠1, 𝑟𝑠2 ∈ 𝑆1 × 𝑆2. 

Case 2: when 𝑟 ∈ 𝑆2, 𝑠1𝑠2 ∈ 𝑆1𝑖 

 
 𝕋(𝔔1𝑖×𝔔2𝑖)(𝑠1𝑟)(𝑠2𝑟) = 𝕋𝑄2(𝑟) ∧ 𝕋𝑄1𝑖(𝑟1𝑟2) 

 ≤ 𝕋𝑄2(𝑟) ∧ [𝕋𝑄1(𝑠1) ∧ 𝕋𝑄2(𝑠2)] 

 = [𝕋𝑄2(𝑟) ∧ 𝕋𝑄1(𝑠1)] ∧ [𝕋𝑄2(𝑟) ∧ 𝕋𝑄1(𝑠2)] 

 = 𝕋(𝑄1×𝑄2)(𝑠1𝑟) ∧ 𝕋(𝑄1×𝑄2)(𝑠2𝑟). 

  
 ℂ(𝔔1𝑖×𝔔2𝑖)(𝑠1𝑟)(𝑠2𝑟) = ℂ𝑄2(𝑟) ∧ ℂ𝑄1𝑖(𝑟1𝑟2) 

 ≤ ℂ𝑄2(𝑟) ∧ [ℂ𝑄1(𝑠1) ∧ ℂ𝑄2(𝑠2)] 

 = [ℂ𝑄2(𝑟) ∧ ℂ𝑄1(𝑠1)] ∧ [ℂ𝑄2(𝑟) ∧ ℂ𝑄1(𝑠2)] 

 = ℂ(𝑄1×𝑄2)(𝑠1𝑟) ∧ ℂ(𝑄1×𝑄2)(𝑠2𝑟). 

  
 𝕌(𝔔1𝑖×𝔔2𝑖)(𝑠1𝑟)(𝑠2𝑟) = 𝕌𝑄2(𝑟) ∨ 𝕌𝑄1𝑖(𝑟1𝑟2) 

 ≤ 𝕌𝑄2(𝑟) ∨ [𝕌𝑄1(𝑠1) ∨ 𝕌𝑄2(𝑠2)] 

 = [𝕌𝑄2(𝑟) ∧ 𝕌𝑄1(𝑠1)] ∨ [𝕌𝑄2(𝑟) ∧ 𝕌𝑄1(𝑠2)] 

 = 𝕌(𝑄1×𝑄2)(𝑠1𝑟) ∨ 𝕌(𝑄1×𝑄2)(𝑠2𝑟). 

 

 
 𝔽(𝔔1𝑖×𝔔2𝑖)(𝑠1𝑟)(𝑠2𝑟) = 𝔽𝑄2(𝑟) ∨ 𝔽𝑄1𝑖(𝑟1𝑟2) 

 ≤ 𝔽𝑄2(𝑟) ∨ [𝔽𝑄1(𝑠1) ∨ 𝔽𝑄2(𝑠2)] 

 = [𝔽𝑄2(𝑟) ∧ 𝔽𝑄1(𝑠1)] ∨ [𝔽𝑄2(𝑟) ∧ 𝔽𝑄1(𝑠2)] 

 = 𝔽(𝑄1×𝑄2)(𝑠1𝑟) ∨ 𝔽(𝑄1×𝑄2)(𝑠2𝑟). 

 for 𝑠1𝑟, 𝑠2𝑟 ∈ 𝑆1𝑆2. 

Hence Proved.  
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Definition 3.42 Let 𝔊𝑛1 = (𝔔1, 𝔔11, 𝔔12, . . . . 𝔔1𝑛) and 𝔊𝑛2 = (𝔔2, 𝔔21, 𝔔22, . . . . 𝔔2𝑛) be QNGS. The cross 

product of 𝔊1 and 𝔊2 denoted by 
𝔊𝑛1 ⋆ 𝔊𝑛2 = (𝔔1 ⋆ 𝔔2, 𝔔11 ⋆ 𝔔21, 𝔔12 ⋆ 𝔔22, . . . , 𝔔1𝑛 ⋆ 𝔔2𝑛),  

is defined by the following:  
 (𝑖)    𝕋𝔔1⋆𝔔2(𝑟𝑠) = (𝕋𝔔1 ⋆ 𝕋𝔔2)(𝑟𝑠) = 𝕋𝔔1(𝑟) ∧ 𝕋𝔔2(𝑠). 
 ℂ𝔔1⋆𝔔2(𝑟𝑠) = (ℂ𝔔1 ⋆ ℂ𝔔2)(𝑟𝑠) = ℂ𝔔1(𝑟) ∧ ℂ𝔔2(𝑠). 
 𝕌𝔔1⋆𝔔2(𝑟𝑠) = (𝕌𝔔1 ⋆ 𝕌𝔔2)(𝑟𝑠) = 𝕌𝔔1(𝑟) ∨ 𝕌𝔔2(𝑠). 
 𝔽𝔔1⋆𝔔2(𝑟𝑠) = (𝔽𝔔1 ⋆ 𝔽𝔔2)(𝑟𝑠) = 𝔽𝔔1(𝑟) ∨ 𝔽𝔔2(𝑠). 
 ∀𝑟𝑠 ∈ 𝑆1 ⋆ 𝑆2. 

  
 (𝑖𝑖)    𝕋(𝔔1𝑖⋆𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (𝕋𝔔1𝑖

⋆ 𝕋𝔔2𝑖
)(𝑟1𝑠1)(𝑟2𝑠2) = 𝕋𝑄1𝑖(𝑟1𝑟2) ∧ 𝕋𝑄2𝑖(𝑠1𝑠2) 

 ℂ(𝔔1𝑖⋆𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (ℂ𝔔1𝑖
⋆ ℂ𝔔2𝑖

)(𝑟1𝑠1)(𝑟2𝑠2) = ℂ𝑄1𝑖(𝑟1𝑟2) ∧ ℂ𝑄2𝑖(𝑠1𝑠2) 

 𝕌(𝔔1𝑖⋆𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (𝕌𝔔1𝑖
⋆ 𝕌𝔔2𝑖

)(𝑟1𝑠1)(𝑟2𝑠2) = 𝕌𝑄1𝑖(𝑟1𝑟2) ∨ 𝕌𝑄2𝑖(𝑠1𝑠2) 

 𝔽(𝔔1𝑖⋆𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (𝔽𝔔1𝑖
⋆ 𝔽𝔔2𝑖

)(𝑟1𝑠1)(𝑟2𝑠2) = 𝔽𝑄1𝑖(𝑟1𝑟2) ∨ 𝔽𝑄2𝑖(𝑠1𝑠2) 

 ∀𝑟1𝑟2 ∈ 𝑆1𝑖 , 𝑠1𝑠2 ∈ 𝑆2𝑖 , 

  

  

Theorem 3.43 The cross product 𝔊𝑛1 ⋆ 𝔊𝑛2 = (𝔔1 ⋆ 𝔔2, 𝔔11 ⋆ 𝔔21, 𝔔12 ⋆ 𝔔22, . . . , 𝔔1𝑛 ⋆ 𝔔2𝑛) of two QNGS of 

the GS 𝔊1 and 𝔊2 is a QNGs of 𝔊1 ⋆ 𝔊2.  

  

Proof. For all 𝑟1𝑠1, 𝑟2𝑠2 ∈ 𝑆1 ⋆ 𝑆2 

 
 𝕋(𝔔1𝑖⋆𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (𝕋𝔔1𝑖

⋆ 𝕋𝔔2𝑖
)(𝑟1𝑠1)(𝑟2𝑠2) = 𝕋𝑄1𝑖(𝑟1𝑟2) ∧ 𝕋𝑄2𝑖(𝑠1𝑠2) 

 ≤ [𝕋𝑄1(𝑟1) ∧ 𝕋𝑄1(𝑟2)] ∧ [𝕋𝑄2(𝑠1) ∧ 𝕋𝑄2(𝑠2)] 

 = [𝕋𝑄1(𝑟1) ∧ 𝕋𝑄2(𝑠1)] ∧ [𝕋𝑄1(𝑟2) ∧ 𝕋𝑄2(𝑠2)] 

 = 𝕋(𝔔1⋆𝔔2)(𝑟1𝑠1) ∧ 𝕋(𝔔1⋆𝔔2)(𝑟2𝑠2), 

 

 
 ℂ(𝔔1𝑖⋆𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (ℂ𝔔1𝑖

⋆ ℂ𝔔2𝑖
)(𝑟1𝑠1)(𝑟2𝑠2) = ℂ𝑄1𝑖(𝑟1𝑟2) ∧ ℂ𝑄2𝑖(𝑠1𝑠2) 

 ≤ [ℂ𝑄1(𝑟1) ∧ ℂ𝑄1(𝑟2)] ∧ [ℂ𝑄2(𝑠1) ∧ ℂ𝑄2(𝑠2)] 

 = [ℂ𝑄1(𝑟1) ∧ ℂ𝑄2(𝑠1)] ∧ [ℂ𝑄1(𝑟2) ∧ ℂ𝑄2(𝑠2)] 

 = ℂ(𝔔1⋆𝔔2)(𝑟1𝑠1) ∧ ℂ(𝔔1⋆𝔔2)(𝑟2𝑠2), 

 

 
 𝕌(𝔔1𝑖⋆𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (𝕌𝔔1𝑖

⋆ 𝕌𝔔2𝑖
)(𝑟1𝑠1)(𝑟2𝑠2) = 𝕌𝑄1𝑖(𝑟1𝑟2) ∨ 𝕌𝑄2𝑖(𝑠1𝑠2) 

 ≤ [𝕌𝑄1(𝑟1) ∨ 𝕌𝑄1(𝑟2)] ∨ [𝕌𝑄2(𝑠1) ∨ 𝕌𝑄2(𝑠2)] 

 = [𝕌𝑄1(𝑟1) ∨ 𝕌𝑄2(𝑠1)] ∨ [𝕌𝑄1(𝑟2) ∨ 𝕌𝑄2(𝑠2)] 

 = 𝕌(𝔔1⋆𝔔2)(𝑟1𝑠1) ∨ 𝕌(𝔔1⋆𝔔2)(𝑟2𝑠2), 

 

 
 𝔽(𝔔1𝑖⋆𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (𝔽𝔔1𝑖

⋆ 𝔽𝔔2𝑖
)(𝑟1𝑠1)(𝑟2𝑠2) = 𝔽𝑄1𝑖(𝑟1𝑟2) ∨ 𝔽𝑄2𝑖(𝑠1𝑠2) 

 ≤ [𝔽𝑄1(𝑟1) ∨ 𝔽𝑄1(𝑟2)] ∨ [𝔽𝑄2(𝑠1) ∨ 𝔽𝑄2(𝑠2)] 

 = [𝔽𝑄1(𝑟1) ∨ 𝔽𝑄2(𝑠1)] ∨ [𝔽𝑄1(𝑟2) ∨ 𝔽𝑄2(𝑠2)] 

 = 𝔽(𝔔1⋆𝔔2)(𝑟1𝑠1) ∨ 𝔽(𝔔1⋆𝔔2)(𝑟2𝑠2), 

 for 𝑖 ∈ 1,2, . . . , 𝑛. This gives required result.  

 

 

Definition 3.44 Let 𝔊𝑛1 = (𝔔1, 𝔔11, 𝔔12, . . . . 𝔔1𝑛) and 𝔊𝑛2 = (𝔔2, 𝔔21, 𝔔22, . . . . 𝔔2𝑛) be QNGS. The 

lexicographic product of 𝔊1 and 𝔊2 denoted by 
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𝔊𝑛1 • 𝔊𝑛2 = (𝔔1 • 𝔔2, 𝔔11 • 𝔔21, 𝔔12 • 𝔔22, . . . , 𝔔1𝑛 • 𝔔2𝑛),  

is defined by the following:  
 (𝑖)    𝕋𝔔1•𝔔2(𝑟𝑠) = (𝕋𝔔1 • 𝕋𝔔2)(𝑟𝑠) = 𝕋𝔔1(𝑟) ∧ 𝕋𝔔2(𝑠). 
 ℂ𝔔1•𝔔2(𝑟𝑠) = (ℂ𝔔1 • ℂ𝔔2)(𝑟𝑠) = ℂ𝔔1(𝑟) ∧ ℂ𝔔2(𝑠). 
 𝕌𝔔1•𝔔2(𝑟𝑠) = (𝕌𝔔1 • 𝕌𝔔2)(𝑟𝑠) = 𝕌𝔔1(𝑟) ∨ 𝕌𝔔2(𝑠). 
 𝔽𝔔1•𝔔2(𝑟𝑠) = (𝔽𝔔1 • 𝔽𝔔2)(𝑟𝑠) = 𝔽𝔔1(𝑟) ∨ 𝔽𝔔2(𝑠). 

 ∀𝑟𝑠 ∈ 𝑆1 • 𝑆2.  
 (𝑖𝑖)    𝕋(𝔔1𝑖•𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = (𝕋𝔔1𝑖

• 𝕋𝔔2𝑖
)(𝑟𝑠1)(𝑟𝑠2) = 𝕋𝑄1(𝑟) ∧ 𝕋𝑄2𝑖(𝑠1𝑠2) 

 ℂ(𝔔1𝑖•𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = (ℂ𝔔1𝑖
• ℂ𝔔2𝑖

)(𝑟𝑠1)(𝑟𝑠2) = ℂ𝑄1(𝑟) ∧ ℂ𝑄2𝑖(𝑠1𝑠2) 

 𝕌(𝔔1𝑖•𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = (𝕌𝔔1𝑖
• 𝕌𝔔2𝑖

)(𝑟𝑠1)(𝑟𝑠2) = 𝕌𝑄1(𝑟) ∨ 𝕌𝑄2𝑖(𝑠1𝑠2) 

 𝔽(𝔔1𝑖•𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = (𝔽𝔔1𝑖
• 𝔽𝔔2𝑖

)(𝑟𝑠1)(𝑟𝑠2) = 𝔽𝑄1(𝑟) ∨ 𝔽𝑄2𝑖(𝑠1𝑠2) 

 ∀𝑟 ∈ 𝑆1, 𝑠1𝑠2 ∈ 𝑆2𝑖 , 

  
 (𝑖𝑖𝑖)    𝕋(𝔔1𝑖•𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (𝕋𝔔1𝑖

• 𝕋𝔔2𝑖
)(𝑟1𝑠1)(𝑟2𝑠2) = 𝕋𝑄1𝑖(𝑟1𝑟2) ∧ 𝕋𝑄2𝑖(𝑠1𝑠2) 

 ℂ(𝔔1𝑖•𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (ℂ𝔔1𝑖
• ℂ𝔔2𝑖

)(𝑟1𝑠1)(𝑟2𝑠2) = ℂ𝑄1𝑖(𝑟1𝑟2) ∧ ℂ𝑄2𝑖(𝑠1𝑠2) 

 𝕌(𝔔1𝑖•𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (𝕌𝔔1𝑖
• 𝕌𝔔2𝑖

)(𝑟1𝑠1)(𝑟2𝑠2) = 𝕌𝑄1𝑖(𝑟1𝑟2) ∨ 𝕌𝑄2𝑖(𝑠1𝑠2) 

 𝔽(𝔔1𝑖•𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (𝔽𝔔1𝑖
• 𝔽𝔔2𝑖

)(𝑟1𝑠1)(𝑟2𝑠2) = 𝔽𝑄1𝑖(𝑟1𝑟2) ∨ 𝔽𝑄2𝑖(𝑠1𝑠2) 

 ∀𝑟1𝑟2 ∈ 𝑆1𝑖 , 𝑠1𝑠2 ∈ 𝑆2𝑖 ,  

  

Theorem 3.45 The lexicographic product 𝔊𝑛1 • 𝔊𝑛2 = (𝔔1 • 𝔔2, 𝔔11 • 𝔔21, 𝔔12 ⋆ 𝔔22, . . . , 𝔔1𝑛 • 𝔔2𝑛) of two 

QNGS of the GS 𝔊1 and 𝔊2 is a QNGs of 𝔊1 • 𝔊2.  

  

Proof. According to the definition of lexicographic product there are two cases: 

Case 1: when 𝑟 ∈ 𝑆1, 𝑠1𝑠2 ∈ 𝑆2𝑖 

 
 𝕋(𝔔1𝑖•𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = 𝕋𝑄1(𝑟) ∧ 𝕋𝑄2𝑖(𝑠1𝑠2) 

 ≤ 𝕋𝑄1(𝑟) ∧ [𝕋𝑄2(𝑠1) ∧ 𝕋𝑄2(𝑠2)] 

 = [𝕋𝑄1(𝑟) ∧ 𝕋𝑄2(𝑠1)] ∧ [𝕋𝑄1(𝑟) ∧ 𝕋𝑄2(𝑠2)] 

 = 𝕋(𝑄1•𝑄2)(𝑟𝑠1) ∧ 𝕋(𝑄1•𝑄2)(𝑟𝑠2). 

  
 ℂ(𝔔1𝑖•𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = ℂ𝑄1(𝑟) ∧ ℂ𝑄2𝑖(𝑠1𝑠2) 

 ≤ ℂ𝑄1(𝑟) ∧ [ℂ𝑄2(𝑠1) ∧ ℂ𝑄2(𝑠2)] 

 = [ℂ𝑄1(𝑟) ∧ ℂ𝑄2(𝑠1)] ∧ [ℂ𝑄1(𝑟) ∧ ℂ𝑄2(𝑠2)] 

 = ℂ(𝑄1•𝑄2)(𝑟𝑠1) ∧ ℂ(𝑄1•𝑄2)(𝑟𝑠2). 

  
 𝕌(𝔔1𝑖•𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = 𝕌𝑄1(𝑟) ∨ 𝕌𝑄2𝑖(𝑠1𝑠2) 

 ≤ 𝕌𝑄1(𝑟) ∨ [𝕌𝑄2(𝑠1) ∨ 𝕌𝑄2(𝑠2)] 

 = [𝕌𝑄1(𝑟) ∨ 𝕌𝑄2(𝑠1)] ∨ [𝕌𝑄1(𝑟) ∨ 𝕌𝑄2(𝑠2)] 

 = 𝕌(𝑄1•𝑄2)(𝑟𝑠1) ∨ 𝕌(𝑄1•𝑄2)(𝑟𝑠2). 

  
 𝔽(𝔔1𝑖•𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = 𝔽𝑄1(𝑟) ∨ 𝔽𝑄2𝑖(𝑠1𝑠2) 

 ≤ 𝔽𝑄1(𝑟) ∨ [𝔽𝑄2(𝑠1) ∨ 𝔽𝑄2(𝑠2)] 

 = [𝔽𝑄1(𝑟) ∨ 𝔽𝑄2(𝑠1)] ∨ [𝔽𝑄1(𝑟) ∨ 𝔽𝑄2(𝑠2)] 

 = 𝔽(𝑄1•𝑄2)(𝑟𝑠1) ∨ 𝔽(𝑄1•𝑄2)(𝑟𝑠2). 

 for 𝑟𝑠1, 𝑟𝑠2 ∈ 𝑆1 • 𝑆2. 

Case 2: For all 𝑟1𝑠1, 𝑟2𝑠2 ∈ 𝑆1 • 𝑆2 

 
 𝕋(𝔔1𝑖•𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (𝕋𝔔1𝑖

• 𝕋𝔔2𝑖
)(𝑟1𝑠1)(𝑟2𝑠2) = 𝕋𝑄1𝑖(𝑟1𝑟2) ∧ 𝕋𝑄2𝑖(𝑠1𝑠2) 

 ≤ [𝕋𝑄1(𝑟1) ∧ 𝕋𝑄1(𝑟2)] ∧ [𝕋𝑄2(𝑠1) ∧ 𝕋𝑄2(𝑠2)] 
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 = [𝕋𝑄1(𝑟1) ∧ 𝕋𝑄2(𝑠1)] ∧ [𝕋𝑄1(𝑟2) ∧ 𝕋𝑄2(𝑠2)] 

 = 𝕋(𝔔1•𝔔2)(𝑟1𝑠1) ∧ 𝕋(𝔔1•𝔔2)(𝑟2𝑠2), 

 

 
 ℂ(𝔔1𝑖•𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (ℂ𝔔1𝑖

• ℂ𝔔2𝑖
)(𝑟1𝑠1)(𝑟2𝑠2) = ℂ𝑄1𝑖(𝑟1𝑟2) ∧ ℂ𝑄2𝑖(𝑠1𝑠2) 

 ≤ [ℂ𝑄1(𝑟1) ∧ ℂ𝑄1(𝑟2)] ∧ [ℂ𝑄2(𝑠1) ∧ ℂ𝑄2(𝑠2)] 

 = [ℂ𝑄1(𝑟1) ∧ ℂ𝑄2(𝑠1)] ∧ [ℂ𝑄1(𝑟2) ∧ ℂ𝑄2(𝑠2)] 

 = ℂ(𝔔1•𝔔2)(𝑟1𝑠1) ∧ ℂ(𝔔1•𝔔2)(𝑟2𝑠2), 

 

 
 𝕌(𝔔1𝑖•𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (𝕌𝔔1𝑖

• 𝕌𝔔2𝑖
)(𝑟1𝑠1)(𝑟2𝑠2) = 𝕌𝑄1𝑖(𝑟1𝑟2) ∨ 𝕌𝑄2𝑖(𝑠1𝑠2) 

 ≤ [𝕌𝑄1(𝑟1) ∨ 𝕌𝑄1(𝑟2)] ∨ [𝕌𝑄2(𝑠1) ∨ 𝕌𝑄2(𝑠2)] 

 = [𝕌𝑄1(𝑟1) ∨ 𝕌𝑄2(𝑠1)] ∨ [𝕌𝑄1(𝑟2) ∨ 𝕌𝑄2(𝑠2)] 

 = 𝕌(𝔔1•𝔔2)(𝑟1𝑠1) ∨ 𝕌(𝔔1•𝔔2)(𝑟2𝑠2), 

 

 
 𝔽(𝔔1𝑖•𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (𝔽𝔔1𝑖

• 𝔽𝔔2𝑖
)(𝑟1𝑠1)(𝑟2𝑠2) = 𝔽𝑄1𝑖(𝑟1𝑟2) ∨ 𝔽𝑄2𝑖(𝑠1𝑠2) 

 ≤ [𝔽𝑄1(𝑟1) ∨ 𝔽𝑄1(𝑟2)] ∨ [𝔽𝑄2(𝑠1) ∨ 𝔽𝑄2(𝑠2)] 

 = [𝔽𝑄1(𝑟1) ∨ 𝔽𝑄2(𝑠1)] ∨ [𝔽𝑄1(𝑟2) ∨ 𝔽𝑄2(𝑠2)] 

 = 𝔽(𝔔1•𝔔2)(𝑟1𝑠1) ∨ 𝔽(𝔔1•𝔔2)(𝑟2𝑠2), 

 for 𝑖 ∈ 1,2, . . . , 𝑛. This gives required result.  

  
Definition 3.46 Let 𝔊𝑛1 = (𝔔1, 𝔔11, 𝔔12, . . . . 𝔔1𝑛) and 𝔊𝑛2 = (𝔔2, 𝔔21, 𝔔22, . . . . 𝔔2𝑛) be QNGS. The strong 

product of 𝔊1 and 𝔊2 denoted by 
𝔊𝑛1 ⊠ 𝔊𝑛2 = (𝔔1 ⊠ 𝔔2, 𝔔11 ⊠ 𝔔21, 𝔔12 ⊠ 𝔔22, . . . , 𝔔1𝑛 ⊠ 𝔔2𝑛),  

is defined by the following:  
 (𝑖)    𝕋𝔔1⊠𝔔2(𝑟𝑠) = (𝕋𝔔1 ⊠ 𝕋𝔔2)(𝑟𝑠) = 𝕋𝔔1(𝑟) ∧ 𝕋𝔔2(𝑠). 
 ℂ𝔔1⊠𝔔2(𝑟𝑠) = (ℂ𝔔1 ⊠ ℂ𝔔2)(𝑟𝑠) = ℂ𝔔1(𝑟) ∧ ℂ𝔔2(𝑠). 
 𝕌𝔔1⊠𝔔2(𝑟𝑠) = (𝕌𝔔1 ⊠ 𝕌𝔔2)(𝑟𝑠) = 𝕌𝔔1(𝑟) ∨ 𝕌𝔔2(𝑠). 
 𝔽𝔔1⊠𝔔2(𝑟𝑠) = (𝔽𝔔1 ⊠ 𝔽𝔔2)(𝑟𝑠) = 𝔽𝔔1(𝑟) ∨ 𝔽𝔔2(𝑠). 
 ∀𝑟𝑠 ∈ 𝑆1 ⊠ 𝑆2. 

  
 (𝑖𝑖)    𝕋(𝔔1𝑖⊠𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = (𝕋𝔔1𝑖

⊠ 𝕋𝔔2𝑖
)(𝑟𝑠1)(𝑟𝑠2) = 𝕋𝑄1(𝑟) ∧ 𝕋𝑄2𝑖(𝑠1𝑠2) 

 ℂ(𝔔1𝑖⊠𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = (ℂ𝔔1𝑖
⊠ ℂ𝔔2𝑖

)(𝑟𝑠1)(𝑟𝑠2) = ℂ𝑄1(𝑟) ∧ ℂ𝑄2𝑖(𝑠1𝑠2) 

 𝕌(𝔔1𝑖⊠𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = (𝕌𝔔1𝑖
⊠ 𝕌𝔔2𝑖

)(𝑟𝑠1)(𝑟𝑠2) = 𝕌𝑄1(𝑟) ∨ 𝕌𝑄2𝑖(𝑠1𝑠2) 

 𝔽(𝔔1𝑖⊠𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = (𝔽𝔔1𝑖
⊠ 𝔽𝔔2𝑖

)(𝑟𝑠1)(𝑟𝑠2) = 𝔽𝑄1(𝑟) ∨ 𝔽𝑄2𝑖(𝑠1𝑠2) 

 ∀𝑟 ∈ 𝑆1, 𝑠1𝑠2 ∈ 𝑆2𝑖 , 

  
 (𝑖𝑖𝑖)    𝕋(𝔔1𝑖⊠𝔔2𝑖)(𝑟1𝑠)(𝑟2𝑠) = (𝕋𝔔1𝑖

⊠ 𝕋𝔔2𝑖
)(𝑟1𝑠)(𝑟2𝑠) = 𝕋𝑄2(𝑠) ∧ 𝕋𝑄1𝑖(𝑟1𝑟2) 

 ℂ(𝔔1𝑖⊠𝔔2𝑖)(𝑟1𝑠)(𝑟2𝑠) = (ℂ𝔔1𝑖
⊠ ℂ𝔔2𝑖

)(𝑟1𝑠)(𝑟2𝑠) = ℂ𝑄2(𝑠) ∧ ℂ𝑄1𝑖(𝑟1𝑟2) 

 𝕌(𝔔1𝑖⊠𝔔2𝑖)(𝑟1𝑠)(𝑟2𝑠) = (𝕌𝔔1𝑖
⊠ 𝕌𝔔2𝑖

)(𝑟1𝑠)(𝑟2𝑠) = 𝕌𝑄2(𝑠) ∨ 𝕌𝑄1𝑖(𝑟1𝑟2) 

 𝔽(𝔔1𝑖⊠𝔔2𝑖)(𝑟1𝑠)(𝑟2𝑠) = (𝔽𝔔1𝑖
⊠ 𝔽𝔔2𝑖

)(𝑟1𝑠)(𝑟2𝑠) = 𝔽𝑄2(𝑠) ∨ 𝔽𝑄1𝑖(𝑟1𝑟2) 

 ∀𝑠 ∈ 𝑆2, 𝑟1𝑟2 ∈ 𝑆1𝑖 . 

  
 (𝑖𝑣)    𝕋(𝔔1𝑖⊠𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (𝕋𝔔1𝑖

⊠ 𝕋𝔔2𝑖
)(𝑟1𝑠1)(𝑟2𝑠2) = 𝕋𝑄1𝑖(𝑟1𝑟2) ∧ 𝕋𝑄2𝑖(𝑠1𝑠2) 

 ℂ(𝔔1𝑖⊠𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (ℂ𝔔1𝑖
⊠ ℂ𝔔2𝑖

)(𝑟1𝑠1)(𝑟2𝑠2) = ℂ𝑄1𝑖(𝑟1𝑟2) ∧ ℂ𝑄2𝑖(𝑠1𝑠2) 

 𝕌(𝔔1𝑖⊠𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (𝕌𝔔1𝑖
⊠ 𝕌𝔔2𝑖

)(𝑟1𝑠1)(𝑟2𝑠2) = 𝕌𝑄1𝑖(𝑟1𝑟2) ∨ 𝕌𝑄2𝑖(𝑠1𝑠2) 

 𝔽(𝔔1𝑖⊠𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (𝔽𝔔1𝑖
⊠ 𝔽𝔔2𝑖

)(𝑟1𝑠1)(𝑟2𝑠2) = 𝔽𝑄1𝑖(𝑟1𝑟2) ∨ 𝔽𝑄2𝑖(𝑠1𝑠2) 

 ∀𝑟1𝑟2 ∈ 𝑆1𝑖 , 𝑠1𝑠2 ∈ 𝑆2𝑖 , 
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Theorem 3.47 The strong product 𝔊𝑛1 ⊠ 𝔊𝑛2 = (𝔔1 ⊠ 𝔔2, 𝔔11 ⊠ 𝔔21, 𝔔12 ⊠ 𝔔22, . . . , 𝔔1𝑛 ⊠ 𝔔2𝑛) of two 

QNGS of the GS 𝔊1 and 𝔊2 is a QNGs of 𝔊1 ⊠ 𝔊2.  

  

Proof. According to the definition of strong product there are three cases: 

Case1: when 𝑟 ∈ 𝑆1, 𝑠1𝑠2 ∈ 𝑆2𝑖 

 
 𝕋(𝔔1𝑖⊠𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = 𝕋𝑄1(𝑟) ∧ 𝕋𝑄2𝑖(𝑠1𝑠2) 

 ≤ 𝕋𝑄1(𝑟) ∧ [𝕋𝑄2(𝑠1) ∧ 𝕋𝑄2(𝑠2)] 

 = [𝕋𝑄1(𝑟) ∧ 𝕋𝑄2(𝑠1)] ∧ [𝕋𝑄1(𝑟) ∧ 𝕋𝑄2(𝑠2)] 

 = 𝕋(𝑄1⊠𝑄2)(𝑟𝑠1) ∧ 𝕋(𝑄1⊠𝑄2)(𝑟𝑠2). 

  
 ℂ(𝔔1𝑖⊠𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = ℂ𝑄1(𝑟) ∧ ℂ𝑄2𝑖(𝑠1𝑠2) 

 ≤ ℂ𝑄1(𝑟) ∧ [ℂ𝑄2(𝑠1) ∧ ℂ𝑄2(𝑠2)] 

 = [ℂ𝑄1(𝑟) ∧ ℂ𝑄2(𝑠1)] ∧ [ℂ𝑄1(𝑟) ∧ ℂ𝑄2(𝑠2)] 

 = ℂ(𝑄1⊠𝑄2)(𝑟𝑠1) ∧ ℂ(𝑄1⊠𝑄2)(𝑟𝑠2). 

  
 𝕌(𝔔1𝑖⊠𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = 𝕌𝑄1(𝑟) ∨ 𝕌𝑄2𝑖(𝑠1𝑠2) 

 ≤ 𝕌𝑄1(𝑟) ∨ [𝔽𝑄2(𝑠1) ∨ 𝕌𝑄2(𝑠2)] 

 = [𝕌𝑄1(𝑟) ∨ 𝕌𝑄2(𝑠1)] ∨ [𝕌𝑄1(𝑟) ∨ 𝕌𝑄2(𝑠2)] 

 = 𝕌(𝑄1⊠𝑄2)(𝑟𝑠1) ∨ 𝕌(𝑄1⊠𝑄2)(𝑟𝑠2). 

  
 𝔽(𝔔1𝑖⊠𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = 𝔽𝑄1(𝑟) ∨ 𝔽𝑄2𝑖(𝑠1𝑠2) 

 ≤ 𝔽𝑄1(𝑟) ∨ [𝔽𝑄2(𝑠1) ∨ 𝔽𝑄2(𝑠2)] 

 = [𝔽𝑄1(𝑟) ∨ 𝔽𝑄2(𝑠1)] ∨ [𝔽𝑄1(𝑟) ∨ 𝔽𝑄2(𝑠2)] 

 = 𝔽(𝑄1⊠𝑄2)(𝑟𝑠1) ∨ 𝔽(𝑄1⊠𝑄2)(𝑟𝑠2). 

 for 𝑟𝑠1, 𝑟𝑠2 ∈ 𝑆1 ⊠ 𝑆2. 

Case 2: when 𝑟 ∈ 𝑆2, 𝑠1𝑠2 ∈ 𝑆1𝑖 

 
 𝕋(𝔔1𝑖⊠𝔔2𝑖)(𝑠1𝑟)(𝑠2𝑟) = 𝕋𝑄2(𝑟) ∧ 𝕋𝑄1𝑖(𝑠1𝑠2) 

 ≤ 𝕋𝑄2(𝑟) ∧ [𝕋𝑄1(𝑠1) ∧ 𝕋𝑄2(𝑠2)] 

 = [𝕋𝑄2(𝑟) ∧ 𝕋𝑄1(𝑠1)] ∧ [𝕋𝑄2(𝑟) ∧ 𝕋𝑄1(𝑠2)] 

 = 𝕋(𝑄1⊠𝑄2)(𝑠1𝑟) ∧ 𝕋(𝑄1⊠𝑄2)(𝑠2𝑟). 

  
 ℂ(𝔔1𝑖⊠𝔔2𝑖)(𝑠1𝑟)(𝑠2𝑟) = ℂ𝑄2(𝑟) ∧ ℂ𝑄1𝑖(𝑠1𝑠2) 

 ≤ ℂ𝑄2(𝑟) ∧ [ℂ𝑄1(𝑠1) ∧ ℂ𝑄2(𝑠2)] 

 = [ℂ𝑄2(𝑟) ∧ ℂ𝑄1(𝑠1)] ∧ [ℂ𝑄2(𝑟) ∧ ℂ𝑄1(𝑠2)] 

 = ℂ(𝑄1⊠𝑄2)(𝑠1𝑟) ∧ ℂ(𝑄1⊠𝑄2)(𝑠2𝑟). 

  
 𝕌(𝔔1𝑖⊠𝔔2𝑖)(𝑠1𝑟)(𝑠2𝑟) = 𝕌𝑄2(𝑟) ∨ 𝕌𝑄1𝑖(𝑠1𝑠2) 

 ≤ 𝕌𝑄2(𝑟) ∨ [𝕌𝑄1(𝑠1) ∨ 𝕌𝑄2(𝑠2)] 

 = [𝕌𝑄2(𝑟) ∧ 𝕌𝑄1(𝑠1)] ∨ [𝕌𝑄2(𝑟) ∧ 𝕌𝑄1(𝑠2)] 

 = 𝕌(𝑄1⊠𝑄2)(𝑠1𝑟) ∨ 𝕌(𝑄1⊠𝑄2)(𝑠2𝑟). 

 

 
 𝔽(𝔔1𝑖⊠𝔔2𝑖)(𝑠1𝑟)(𝑠2𝑟) = 𝔽𝑄2(𝑟) ∨ 𝔽𝑄1𝑖(𝑠1𝑠2) 

 ≤ 𝔽𝑄2(𝑟) ∨ [𝔽𝑄1(𝑠1) ∨ 𝔽𝑄2(𝑠2)] 

 = [𝔽𝑄2(𝑟) ∧ 𝔽𝑄1(𝑠1)] ∨ [𝔽𝑄2(𝑟) ∧ 𝔽𝑄1(𝑠2)] 
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 = 𝔽(𝑄1⊠𝑄2)(𝑠1𝑟) ∨ 𝔽(𝑄1⊠𝑄2)(𝑠2𝑟). 

 for 𝑠1𝑟, 𝑠2𝑟 ∈ 𝑆1 ⊠ 𝑆2. 

Case 3: For all 𝑟1𝑟2 ∈ 𝑆1𝑖 , 𝑠1𝑠2 ∈ 𝑆2𝑖 

 
 𝕋(𝔔1𝑖⊠𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (𝕋𝔔1𝑖

⊠ 𝕋𝔔2𝑖
)(𝑟1𝑠1)(𝑟2𝑠2) = 𝕋𝑄1𝑖(𝑟1𝑟2) ∧ 𝕋𝑄2𝑖(𝑠1𝑠2) 

 ≤ [𝕋𝑄1(𝑟1) ∧ 𝕋𝑄1(𝑟2)] ∧ [𝕋𝑄2(𝑠1) ∧ 𝕋𝑄2(𝑠2)] 

 = [𝕋𝑄1(𝑟1) ∧ 𝕋𝑄2(𝑠1)] ∧ [𝕋𝑄1(𝑟2) ∧ 𝕋𝑄2(𝑠2)] 

 = 𝕋(𝔔1⊠𝔔2)(𝑟1𝑠1) ∧ 𝕋(𝔔11⊠𝔔2)(𝑟2𝑠2), 

 

 
 ℂ(𝔔1𝑖⊠𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (ℂ𝔔1𝑖

⊠ ℂ𝔔2𝑖
)(𝑟1𝑠1)(𝑟2𝑠2) = ℂ𝑄1𝑖(𝑟1𝑟2) ∧ ℂ𝑄2𝑖(𝑠1𝑠2) 

 ≤ [ℂ𝑄1(𝑟1) ∧ ℂ𝑄1(𝑟2)] ∧ [ℂ𝑄2(𝑠1) ∧ ℂ𝑄2(𝑠2)] 

 = [ℂ𝑄1(𝑟1) ∧ ℂ𝑄2(𝑠1)] ∧ [ℂ𝑄1(𝑟2) ∧ ℂ𝑄2(𝑠2)] 

 = ℂ(𝔔1⊠𝔔2)(𝑟1𝑠1) ∧ ℂ(𝔔11⊠𝔔2)(𝑟2𝑠2), 

 

 
 𝕌(𝔔1𝑖⊠𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (𝕌𝔔1𝑖

⊠ 𝕌𝔔2𝑖
)(𝑟1𝑠1)(𝑟2𝑠2) = 𝕌𝑄1𝑖(𝑟1𝑟2) ∨ 𝕌𝑄2𝑖(𝑠1𝑠2) 

 ≤ [𝕌𝑄1(𝑟1) ∨ 𝕌𝑄1(𝑟2)] ∨ [𝕌𝑄2(𝑠1) ∨ 𝕌𝑄2(𝑠2)] 

 = [𝕌𝑄1(𝑟1) ∨ 𝕌𝑄2(𝑠1)] ∨ [𝕌𝑄1(𝑟2) ∨ 𝕌𝑄2(𝑠2)] 

 = 𝕌(𝔔1⊠𝔔2)(𝑟1𝑠1) ∨ 𝕌(𝔔11⊠𝔔2)(𝑟2𝑠2), 

 

 
 𝔽(𝔔1𝑖⊠𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (𝔽𝔔1𝑖

⊠ 𝔽𝔔2𝑖
)(𝑟1𝑠1)(𝑟2𝑠2) = 𝔽𝑄1𝑖(𝑟1𝑟2) ∨ 𝔽𝑄2𝑖(𝑠1𝑠2) 

 ≤ [𝔽𝑄1(𝑟1) ∨ 𝔽𝑄1(𝑟2)] ∨ [𝔽𝑄2(𝑠1) ∨ 𝔽𝑄2(𝑠2)] 

 = [𝔽𝑄1(𝑟1) ∨ 𝔽𝑄2(𝑠1)] ∨ [𝔽𝑄1(𝑟2) ∨ 𝔽𝑄2(𝑠2)] 

 = 𝔽(𝔔1⊠𝔔2)(𝑟1𝑠1) ∨ 𝔽(𝔔11⊠𝔔2)(𝑟2𝑠2), 

 for 𝑖 ∈ 1,2, . . . , 𝑛. This gives required result.  

 
Definition 3.48 Let 𝔊𝑛1 = (𝔔1, 𝔔11, 𝔔12, . . . . 𝔔1𝑛) and 𝔊𝑛2 = (𝔔2, 𝔔21, 𝔔22, . . . . 𝔔2𝑛) be QNGS. The 

composition product of 𝔊1 and 𝔊2 denoted by 
𝔊𝑛1 ∘ 𝔊𝑛2 = (𝔔1 ∘ 𝔔2, 𝔔11 ∘ 𝔔21, 𝔔12 ∘ 𝔔22, . . . , 𝔔1𝑛 ∘ 𝔔2𝑛),  

is defined by the following:  
 (𝑖)    𝕋𝔔1∘𝔔2(𝑟𝑠) = (𝕋𝔔1 ∘ 𝕋𝔔2)(𝑟𝑠) = 𝕋𝔔1(𝑟) ∧ 𝕋𝔔2(𝑠). 
 ℂ𝔔1∘𝔔2(𝑟𝑠) = (ℂ𝔔1 ∘ ℂ𝔔2)(𝑟𝑠) = ℂ𝔔1(𝑟) ∧ ℂ𝔔2(𝑠). 
 𝕌𝔔1∘𝔔2(𝑟𝑠) = (𝕌𝔔1 ∘ 𝕌𝔔2)(𝑟𝑠) = 𝕌𝔔1(𝑟) ∨ 𝕌𝔔2(𝑠). 
 𝔽𝔔1∘𝔔2(𝑟𝑠) = (𝔽𝔔1 ∘ 𝔽𝔔2)(𝑟𝑠) = 𝔽𝔔1(𝑟) ∨ 𝔽𝔔2(𝑠). 
 ∀𝑟𝑠 ∈ 𝑆1 ∘ 𝑆2. 

  
 (𝑖𝑖)    𝕋(𝔔1𝑖∘𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = (𝕋𝔔1𝑖

∘ 𝕋𝔔2𝑖
)(𝑟𝑠1)(𝑟𝑠2) = 𝕋𝑄1(𝑟) ∧ 𝕋𝑄2𝑖(𝑠1𝑠2) 

 ℂ(𝔔1𝑖∘𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = (ℂ𝔔1𝑖
∘ ℂ𝔔2𝑖

)(𝑟𝑠1)(𝑟𝑠2) = ℂ𝑄1(𝑟) ∧ ℂ𝑄2𝑖(𝑠1𝑠2) 

 𝕌(𝔔1𝑖∘𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = (𝕌𝔔1𝑖
∘ 𝕌𝔔2𝑖

)(𝑟𝑠1)(𝑟𝑠2) = 𝕌𝑄1(𝑟) ∨ 𝕌𝑄2𝑖(𝑠1𝑠2) 

 𝔽(𝔔1𝑖∘𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = (𝔽𝔔1𝑖
∘ 𝔽𝔔2𝑖

)(𝑟𝑠1)(𝑟𝑠2) = 𝔽𝑄1(𝑟) ∨ 𝔽𝑄2𝑖(𝑠1𝑠2) 

 ∀𝑟 ∈ 𝑆1, 𝑠1𝑠2 ∈ 𝑆2𝑖 , 

  
 (𝑖𝑖𝑖)    𝕋(𝔔1𝑖∘𝔔2𝑖)(𝑟1𝑠)(𝑟2𝑠) = (𝕋𝔔1𝑖

∘ 𝕋𝔔2𝑖
)(𝑟1𝑠)(𝑟2𝑠) = 𝕋𝑄2(𝑠) ∧ 𝕋𝑄1𝑖(𝑟1𝑟2) 

 ℂ(𝔔1𝑖∘𝔔2𝑖)(𝑟1𝑠)(𝑟2𝑠) = (ℂ𝔔1𝑖
∘ ℂ𝔔2𝑖

)(𝑟1𝑠)(𝑟2𝑠) = ℂ𝑄2(𝑠) ∧ ℂ𝑄1𝑖(𝑟1𝑟2) 

 𝕌(𝔔1𝑖∘𝔔2𝑖)(𝑟1𝑠)(𝑟2𝑠) = (𝕌𝔔1𝑖
∘ 𝕌𝔔2𝑖

)(𝑟1𝑠)(𝑟2𝑠) = 𝕌𝑄2(𝑠) ∨ 𝕌𝑄1𝑖(𝑟1𝑟2) 

 𝔽(𝔔1𝑖∘𝔔2𝑖)(𝑟1𝑠)(𝑟2𝑠) = (𝔽𝔔1𝑖
∘ 𝔽𝔔2𝑖

)(𝑟1𝑠)(𝑟2𝑠) = 𝔽𝑄2(𝑠) ∨ 𝔽𝑄1𝑖(𝑟1𝑟2) 

 ∀𝑠 ∈ 𝑆2, 𝑟1𝑟2 ∈ 𝑆1𝑖 . 
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 (𝑖𝑣)    𝕋(𝔔1𝑖∘𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (𝕋𝔔1𝑖

∘ 𝕋𝔔2𝑖
)(𝑟1𝑠1)(𝑟2𝑠2) = 𝕋𝑄1𝑖(𝑟1𝑟2) ∧ 𝕋𝑄2(𝑠1) ∧ 𝕋𝑄2(𝑠2) 

 ℂ(𝔔1𝑖∘𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (ℂ𝔔1𝑖
∘ ℂ𝔔2𝑖

)(𝑟1𝑠1)(𝑟2𝑠2) = ℂ𝑄1𝑖(𝑟1𝑟2) ∧ ℂ𝑄2(𝑠1) ∧ ℂ𝑄2(𝑠2) 

 𝕌(𝔔1𝑖∘𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (𝕌𝔔1𝑖
∘ 𝕌𝔔2𝑖

)(𝑟1𝑠1)(𝑟2𝑠2) = 𝕌𝑄1𝑖(𝑟1𝑟2) ∨ 𝕌𝑄2(𝑠1) ∨ 𝕌𝑄2(𝑠2) 

 𝔽(𝔔1𝑖∘𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (𝔽𝔔1𝑖
∘ 𝔽𝔔2𝑖

)(𝑟1𝑠1)(𝑟2𝑠2) = 𝔽𝑄1𝑖(𝑟1𝑟2) ∨ 𝔽𝑄2(𝑠1) ∨ 𝔽𝑄2(𝑠2) 

 ∀𝑟1𝑟2 ∈ 𝑆1𝑖 , 𝑠1𝑠2 ∈ 𝑆2𝑖suchthat𝑠1 ≠ 𝑠2. 

  

  

Theorem 3.49 The Composition product 𝔊𝑛1 ∘ 𝔊𝑛2 = (𝔔1 ∘ 𝔔2, 𝔔11 ∘ 𝔔21, 𝔔12 ∘ 𝔔22, . . . , 𝔔1𝑛 ∘ 𝔔2𝑛) of two 

QNGS of the GS 𝔊1 and 𝔊2 is a QNGs of 𝔊1 ∘ 𝔊2.  

  

Proof. According to the definition of composition product there are three cases: 

Case1: when 𝑟 ∈ 𝑆1, 𝑠1𝑠2 ∈ 𝑆2𝑖 

 
 𝕋(𝔔1𝑖∘𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = 𝕋𝑄1(𝑟) ∧ 𝕋𝑄2𝑖(𝑠1𝑠2) 

 ≤ 𝕋𝑄1(𝑟) ∧ [𝕋𝑄2(𝑠1) ∧ 𝕋𝑄2(𝑠2)] 

 = [𝕋𝑄1(𝑟) ∧ 𝕋𝑄2(𝑠1)] ∧ [𝕋𝑄1(𝑟) ∧ 𝕋𝑄2(𝑠2)] 

 = 𝕋(𝑄1∘𝑄2)(𝑟𝑠1) ∧ 𝕋(𝑄1∘𝑄2)(𝑟𝑠2). 

  
 ℂ(𝔔1𝑖∘𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = ℂ𝑄1(𝑟) ∧ ℂ𝑄2𝑖(𝑠1𝑠2) 

 ≤ ℂ𝑄1(𝑟) ∧ [ℂ𝑄2(𝑠1) ∧ ℂ𝑄2(𝑠2)] 

 = [ℂ𝑄1(𝑟) ∧ ℂ𝑄2(𝑠1)] ∧ [ℂ𝑄1(𝑟) ∧ ℂ𝑄2(𝑠2)] 

 = ℂ(𝑄1∘𝑄2)(𝑟𝑠1) ∧ ℂ(𝑄1∘𝑄2)(𝑟𝑠2). 

  
 𝕌(𝔔1𝑖∘𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = 𝕌𝑄1(𝑟) ∨ 𝕌𝑄2𝑖(𝑠1𝑠2) 

 ≤ 𝕌𝑄1(𝑟) ∨ [𝔽𝑄2(𝑠1) ∨ 𝕌𝑄2(𝑠2)] 

 = [𝕌𝑄1(𝑟) ∨ 𝕌𝑄2(𝑠1)] ∨ [𝕌𝑄1(𝑟) ∨ 𝕌𝑄2(𝑠2)] 

 = 𝕌(𝑄1∘𝑄2)(𝑟𝑠1) ∨ 𝕌(𝑄1∘𝑄2)(𝑟𝑠2). 

  
 𝔽(𝔔1𝑖∘𝔔2𝑖)(𝑟𝑠1)(𝑟𝑠2) = 𝔽𝑄1(𝑟) ∨ 𝔽𝑄2𝑖(𝑠1𝑠2) 

 ≤ 𝔽𝑄1(𝑟) ∨ [𝔽𝑄2(𝑠1) ∨ 𝔽𝑄2(𝑠2)] 

 = [𝔽𝑄1(𝑟) ∨ 𝔽𝑄2(𝑠1)] ∨ [𝔽𝑄1(𝑟) ∨ 𝔽𝑄2(𝑠2)] 

 = 𝔽(𝑄1∘𝑄2)(𝑟𝑠1) ∨ 𝔽(𝑄1∘𝑄2)(𝑟𝑠2). 

 for 𝑟𝑠1, 𝑟𝑠2 ∈ 𝑆1 ∘ 𝑆2. 

Case 2: when 𝑟 ∈ 𝑆2, 𝑠1𝑠2 ∈ 𝑆1𝑖 

 
 𝕋(𝔔1𝑖∘𝔔2𝑖)(𝑠1𝑟)(𝑠2𝑟) = 𝕋𝑄2(𝑠) ∧ 𝕋𝑄1𝑖(𝑠1𝑠2) 

 ≤ 𝕋𝑄2(𝑟) ∧ [𝕋𝑄1(𝑠1) ∧ 𝕋𝑄2(𝑠2)] 

 = [𝕋𝑄2(𝑟) ∧ 𝕋𝑄1(𝑠1)] ∧ [𝕋𝑄2(𝑟) ∧ 𝕋𝑄1(𝑠2)] 

 = 𝕋(𝑄1∘𝑄2)(𝑠1𝑟) ∧ 𝕋(𝑄1∘𝑄2)(𝑠2𝑟). 

  
 ℂ(𝔔1𝑖∘𝔔2𝑖)(𝑠1𝑟)(𝑠2𝑟) = ℂ𝑄2(𝑠) ∧ ℂ𝑄1𝑖(𝑠1𝑠2) 

 ≤ ℂ𝑄2(𝑟) ∧ [ℂ𝑄1(𝑠1) ∧ ℂ𝑄2(𝑠2)] 

 = [ℂ𝑄2(𝑟) ∧ ℂ𝑄1(𝑠1)] ∧ [ℂ𝑄2(𝑟) ∧ ℂ𝑄1(𝑠2)] 

 = ℂ(𝑄1∘𝑄2)(𝑠1𝑟) ∧ ℂ(𝑄1∘𝑄2)(𝑠2𝑟). 

  
 𝕌(𝔔1𝑖∘𝔔2𝑖)(𝑠1𝑟)(𝑠2𝑟) = 𝕌𝑄2(𝑠) ∨ 𝕌𝑄1𝑖(𝑠1𝑠2) 

 ≤ 𝕌𝑄2(𝑟) ∨ [𝕌𝑄1(𝑠1) ∨ 𝕌𝑄2(𝑠2)] 

 = [𝕌𝑄2(𝑟) ∧ 𝕌𝑄1(𝑠1)] ∨ [𝕌𝑄2(𝑟) ∧ 𝕌𝑄1(𝑠2)] 
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 = 𝕌(𝑄1∘𝑄2)(𝑠1𝑟) ∨ 𝕌(𝑄1∘𝑄2)(𝑠2𝑟). 

 

 
 𝔽(𝔔1𝑖∘𝔔2𝑖)(𝑠1𝑟)(𝑠2𝑟) = 𝔽𝑄2(𝑠) ∨ 𝔽𝑄1𝑖(𝑠1𝑠2) 

 ≤ 𝔽𝑄2(𝑟) ∨ [𝔽𝑄1(𝑠1) ∨ 𝔽𝑄2(𝑠2)] 

 = [𝔽𝑄2(𝑟) ∧ 𝔽𝑄1(𝑠1)] ∨ [𝔽𝑄2(𝑟) ∧ 𝔽𝑄1(𝑠2)] 

 = 𝔽(𝑄1∘𝑄2)(𝑠1𝑟) ∨ 𝔽(𝑄1∘𝑄2)(𝑠2𝑟). 

 for 𝑠1𝑟, 𝑠2𝑟 ∈ 𝑆1𝑆2. 

Case 3: For all 𝑟1𝑟2 ∈ 𝑆1𝑖 , 𝑠1𝑠2 ∈ 𝑆2 such that 𝑠1 ≠ 𝑠2  
 𝕋(𝔔1𝑖∘𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (𝕋𝔔1𝑖

∘ 𝕋𝔔2𝑖
)(𝑟1𝑠1)(𝑟2𝑠2) = 𝕋𝑄1𝑖(𝑟1𝑟2) ∧ 𝕋𝑄2(𝑠1) ∧ 𝕋𝑄2(𝑠2) 

 ≤ [𝕋𝑄1(𝑟1) ∧ 𝕋𝑄1(𝑟2)] ∧ 𝕋𝑄2(𝑠1) ∧ 𝕋𝑄2(𝑠2) 

 = [𝕋𝑄1(𝑟1) ∧ 𝕋𝑄2(𝑠1)] ∧ [𝕋𝑄1(𝑟2) ∧ 𝕋𝑄2(𝑠2)] 

 = 𝕋(𝔔1∘𝔔2)(𝑟1𝑠1) ∧ 𝕋(𝔔1∘𝔔2)(𝑟2𝑠2) 

 

 
 ℂ(𝔔1𝑖∘𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (ℂ𝔔1𝑖

∘ ℂ𝔔2𝑖
)(𝑟1𝑠1)(𝑟2𝑠2) = ℂ𝑄1𝑖(𝑟1𝑟2) ∧ ℂ𝑄2(𝑠1) ∧ ℂ𝑄2(𝑠2) 

 ≤ [ℂ𝑄1(𝑟1) ∧ ℂ𝑄1(𝑟2)] ∧ ℂ𝑄2(𝑠1) ∧ ℂ𝑄2(𝑠2) 

 = [ℂ𝑄1(𝑟1) ∧ ℂ𝑄2(𝑠1)] ∧ [ℂ𝑄1(𝑟2) ∧ ℂ𝑄2(𝑠2)] 

 = ℂ(𝔔1∘𝔔2)(𝑟1𝑠1) ∧ ℂ(𝔔1∘𝔔2)(𝑟2𝑠2) 

 

 
 𝕌(𝔔1𝑖∘𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (𝕌𝔔1𝑖

∘ 𝕌𝔔2𝑖
)(𝑟1𝑠1)(𝑟2𝑠2) = 𝕌𝑄1𝑖(𝑟1𝑟2) ∨ 𝕌𝑄2(𝑠1) ∨ 𝕌𝑄2(𝑠2) 

 ≤ [𝕌𝑄1(𝑟1) ∨ 𝕌𝑄1(𝑟2)] ∨ 𝕌𝑄2(𝑠1) ∨ 𝕌𝑄2(𝑠2) 

 = [𝕌𝑄1(𝑟1) ∨ 𝕌𝑄2(𝑠1)] ∨ [𝕌𝑄1(𝑟2) ∨ 𝕌𝑄2(𝑠2)] 

 = 𝕌(𝔔1∘𝔔2)(𝑟1𝑠1) ∨ 𝕌(𝔔1∘𝔔2)(𝑟2𝑠2) 

  
 𝔽(𝔔1𝑖∘𝔔2𝑖)(𝑟1𝑠1)(𝑟2𝑠2) = (𝔽𝔔1𝑖

∘ 𝔽𝔔2𝑖
)(𝑟1𝑠1)(𝑟2𝑠2) = 𝔽𝑄1𝑖(𝑟1𝑟2) ∨ 𝔽𝑄2(𝑠1) ∨ 𝔽𝑄2(𝑠2) 

 ≤ [𝔽𝑄1(𝑟1) ∨ 𝔽𝑄1(𝑟2)] ∨ 𝔽𝑄2(𝑠1) ∨ 𝔽𝑄2(𝑠2) 

 = [𝔽𝑄1(𝑟1) ∨ 𝔽𝑄2(𝑠1)] ∨ [𝔽𝑄1(𝑟2) ∨ 𝔽𝑄2(𝑠2)] 

 = 𝔽(𝔔1∘𝔔2)(𝑟1𝑠1) ∨ 𝔽(𝔔1∘𝔔2)(𝑟2𝑠2) 

 for 𝑟1𝑠1, 𝑟2𝑠2 ∈ 𝑆1 ∘ 𝑆2. Hence proved.  

  
Definition 3.50 Let 𝔊𝑛1 = (𝔔1, 𝔔11, 𝔔12, . . . . 𝔔1𝑛) and 𝔊𝑛2 = (𝔔2, 𝔔21, 𝔔22, . . . . 𝔔2𝑛) be QNGS. The union of 

𝔊1 and 𝔊2 denoted by 
𝔊𝑛1 ∪ 𝔊𝑛2 = (𝔔1 ∪ 𝔔2, 𝔔11 ∪ 𝔔21, 𝔔12 ∪ 𝔔22, . . . , 𝔔1𝑛 ∪ 𝔔2𝑛), 

is defined by the following:  
 (𝑖)    𝕋(𝔔1∪𝔔2)(𝑟) = (𝕋𝔔1

∪ 𝕋𝔔2
)(𝑟) = 𝕋𝑄1(𝑟) ∨ 𝕋𝑄2(𝑟) 

 𝕌(𝔔1∪𝔔2)(𝑟) = (𝕌𝔔1
∪ 𝕌𝔔2

)(𝑟) = 𝕌𝑄1(𝑟) ∨ 𝕌𝑄2(𝑟) 

 ℂ(𝔔1∪𝔔2)(𝑟) = (ℂ𝔔1
∪ ℂ𝔔2

)(𝑟) = ℂ𝑄1(𝑟) ∧ ℂ𝑄2(𝑟) 

 𝔽(𝔔1∪𝔔2)(𝑟) = (𝔽𝔔1
∪ 𝔽𝔔2

)(𝑟) = 𝔽𝑄1(𝑟) ∧ 𝔽𝑄2(𝑟), 

 ∀𝑟 ∈ 𝑆1 ∪ 𝑆2, 

  
 (𝑖𝑖)    𝕋(𝔔1𝑖∪𝔔2𝑖)(𝑟𝑠) = (𝕋𝔔1𝑖

∪ 𝕋𝔔2𝑖
)(𝑟𝑠) = 𝕋𝑄1𝑖(𝑟𝑠) ∨ 𝕋𝑄2𝑖(𝑟𝑠) 

 ℂ(𝔔1𝑖∪𝔔2𝑖)(𝑟𝑠) = (ℂ𝔔1𝑖
∪ ℂ𝔔2𝑖

)(𝑟𝑠) = ℂ𝑄1𝑖(𝑟𝑠) ∨ ℂ𝑄2𝑖(𝑟𝑠) 

 𝕌(𝔔1𝑖∪𝔔2𝑖)(𝑟𝑠) = (𝕌𝔔1𝑖
∪ 𝕌𝔔2𝑖

)(𝑟𝑠) = 𝕌𝑄1𝑖(𝑟𝑠) ∧ 𝕌𝑄2𝑖(𝑟𝑠) 

 𝔽(𝔔1𝑖∪𝔔2𝑖)(𝑟𝑠) = (𝔽𝔔1𝑖
∪ 𝔽𝔔2𝑖

)(𝑟𝑠) = 𝔽𝑄1𝑖(𝑟𝑠) ∧ 𝔽𝑄2𝑖(𝑟𝑠), 

 for all (𝑟𝑠) ∈ 𝑆1𝑖 ∪ 𝑆2𝑖 .  

  

Theorem 3.51 The union 𝔊𝑛1 ∪ 𝔊𝑛2 = (𝔔1 ∪ 𝔔2, 𝔔11 ∪ 𝔔21, 𝔔12 ∪ 𝔔22, . . . , 𝔔1𝑛 ∪ 𝔔2𝑛) of two QNGS of the 
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GS 𝔊1 and 𝔊2 is a QNGs of 𝔊1 ∪ 𝔊2.  

  

Proof. Let 𝑟1𝑟2 ∈ 𝑆1𝑖 ∪ 𝑆2𝑖. Here we consider two cases: 

Case 1: when 𝑟1𝑟2 ∈ 𝑆1, then according to Definition 3.39, 𝕋𝔔2
(𝑟1) = 𝕋𝔔2

(𝑟2) = 𝕋𝔔2𝑖
(𝑟1𝑟2) = 0 

ℂ𝔔2
(𝑟1) = ℂ𝔔2

(𝑟2) = ℂ𝔔2𝑖
(𝑟1𝑟2) = 0 

𝕌𝔔2
(𝑟1) = 𝕌𝔔2

(𝑟2) = 𝕌𝔔2𝑖
(𝑟1𝑟2) = 1 

𝔽𝔔2
(𝑟1) = 𝔽𝔔2

(𝑟2) = 𝔽𝔔2𝑖
(𝑟1𝑟2) = 1, so  

 𝕋(𝔔1𝑖∪𝔔2𝑖)(𝑟1𝑟2) = 𝕋𝑄1𝑖(𝑟1𝑟2) ∨ 𝕋𝑄2𝑖(𝑟1𝑟2) 

 = 𝕋𝑄1𝑖(𝑟1𝑟2) ∨ 0 

 ≤ [𝕋𝑄1(𝑟1) ∧ 𝕋𝑄1(𝑟2)] ∨ 0 

 = [𝕋𝑄1(𝑟1) ∨ 0] ∧ [𝕋𝑄1(𝑟2) ∨ 0] 

 = [𝕋𝑄1(𝑟1) ∨ 𝕋𝑄2(𝑟1)] ∧ [𝕋𝑄1(𝑟2) ∨ 𝕋𝑄2(𝑟2)] 

 = 𝕋(𝔔1∪𝔔2)(𝑟1) ∧ 𝕋(𝔔1∪𝔔2)(𝑟2) 

 

 
 ℂ(𝔔1𝑖∪𝔔2𝑖)(𝑟1𝑟2) = ℂ𝑄1𝑖(𝑟1𝑟2) ∨ ℂ𝑄2𝑖(𝑟1𝑟2) 

 = ℂ𝑄1𝑖(𝑟1𝑟2) ∨ 0 

 ≤ [ℂ𝑄1(𝑟1) ∧ ℂ𝑄1(𝑟2)] ∨ 0 

 = [ℂ𝑄1(𝑟1) ∨ 0] ∧ [ℂ𝑄1(𝑟2) ∨ 0] 

 = [ℂ𝑄1(𝑟1) ∨ ℂ𝑄2(𝑟1)] ∧ [ℂ𝑄1(𝑟2) ∨ ℂ𝑄2(𝑟2)] 

 = ℂ(𝔔1∪𝔔2)(𝑟1) ∧ ℂ(𝔔1∪𝔔2)(𝑟2) 

  
 𝕌(𝔔1𝑖∪𝔔2𝑖)(𝑟1𝑟2) = 𝕌𝑄1𝑖(𝑟1𝑟2) ∧ 𝕌𝑄2𝑖(𝑟1𝑟2) 

 = 𝕌𝑄1𝑖(𝑟1𝑟2) ∨ 1 

 ≤ [𝕌𝑄1(𝑟1) ∨ 𝕌𝑄1(𝑟2)] ∧ 1 

 = [𝕌𝑄1(𝑟1) ∧ 1] ∨ [𝕌𝑄1(𝑟2) ∧ 1] 

 = [𝕌𝑄1(𝑟1) ∧ 𝕌𝑄2(𝑟1)] ∨ [𝕌𝑄1(𝑟2) ∧ 𝕌𝑄2(𝑟2)] 

 = 𝕌(𝔔1∪𝔔2)(𝑟1) ∨ 𝕌(𝔔1∪𝔔2)(𝑟2) 

 

 
 𝔽(𝔔1𝑖∪𝔔2𝑖)(𝑟1𝑟2) = 𝔽𝑄1𝑖(𝑟1𝑟2) ∧ 𝔽𝑄2𝑖(𝑟1𝑟2) 

 = 𝔽𝑄1𝑖(𝑟1𝑟2) ∨ 1 

 ≤ [𝔽𝑄1(𝑟1) ∨ 𝔽𝑄1(𝑟2)] ∧ 1 

 = [𝔽𝑄1(𝑟1) ∧ 1] ∨ [𝔽𝑄1(𝑟2) ∧ 1] 

 = [𝔽𝑄1(𝑟1) ∧ 𝔽𝑄2(𝑟1)] ∨ [𝔽𝑄1(𝑟2) ∧ 𝔽𝑄2(𝑟2)] 

 = 𝔽(𝔔1∪𝔔2)(𝑟1) ∨ 𝔽(𝔔1∪𝔔2)(𝑟2) 

 For 𝑟1𝑟2 ∈ 𝑆1 ∪ 𝑆2. 

Case 2: when 𝑟1𝑟2 ∈ 𝑆2, then according to Definition 3.39, 𝕋𝔔1
(𝑟1) = 𝕋𝔔1

(𝑟2) = 𝕋𝔔1𝑖
(𝑟1𝑟2) = 0 

ℂ𝔔1
(𝑟1) = ℂ𝔔1

(𝑟2) = ℂ𝔔1𝑖
(𝑟1𝑟2) = 0 

𝕌𝔔1
(𝑟1) = 𝕌𝔔1

(𝑟2) = 𝕌𝔔1𝑖
(𝑟1𝑟2) = 1 

𝔽𝔔1
(𝑟1) = 𝔽𝔔1

(𝑟2) = 𝔽𝔔1𝑖
(𝑟1𝑟2) = 1, so  

 𝕋(𝔔1𝑖∪𝔔2𝑖)(𝑟1𝑟2) = 𝕋𝑄1𝑖(𝑟1𝑟2) ∨ 𝕋𝑄2𝑖(𝑟1𝑟2) 

 = 𝕋𝑄2𝑖(𝑟1𝑟2) ∨ 0 

 ≤ [𝕋𝑄2(𝑟1) ∧ 𝕋𝑄2(𝑟2)] ∨ 0 

 = [𝕋𝑄2(𝑟1) ∨ 0] ∧ [𝕋𝑄2(𝑟2) ∨ 0] 

 = [𝕋𝑄1(𝑟1) ∨ 𝕋𝑄2(𝑟1)] ∧ [𝕋𝑄1(𝑟2) ∨ 𝕋𝑄2(𝑟2)] 

 = 𝕋(𝔔1∪𝔔2)(𝑟1) ∧ 𝕋(𝔔1∪𝔔2)(𝑟2) 

 

 



Neutrosophic Sets and Systems, Vol. 51, 2022     289  

 

 
S. Satham Hussain, Hossein Rashmonlou, Mofidnakhaei F, R Jahir Hussain, Sankar Sahoo and Said Broumi, Quadripartitioned 

Neutrosophic Graph Structures 

 ℂ(𝔔1𝑖∪𝔔2𝑖)(𝑟1𝑟2) = ℂ𝑄1𝑖(𝑟1𝑟2) ∨ ℂ𝑄2𝑖(𝑟1𝑟2) 

 = ℂ𝑄2𝑖(𝑟1𝑟2) ∨ 0 

 ≤ [ℂ𝑄2(𝑟1) ∧ ℂ𝑄2(𝑟2)] ∨ 0 

 = [ℂ𝑄2(𝑟1) ∨ 0] ∧ [ℂ𝑄2(𝑟2) ∨ 0] 

 = [ℂ𝑄1(𝑟1) ∨ ℂ𝑄2(𝑟1)] ∧ [ℂ𝑄1(𝑟2) ∨ ℂ𝑄2(𝑟2)] 

 = ℂ(𝔔1∪𝔔2)(𝑟1) ∧ ℂ(𝔔1∪𝔔2)(𝑟2) 

  
 𝕌(𝔔1𝑖∪𝔔2𝑖)(𝑟1𝑟2) = 𝕌𝑄1𝑖(𝑟1𝑟2) ∧ 𝕌𝑄2𝑖(𝑟1𝑟2) 

 = 𝕌𝑄2𝑖(𝑟1𝑟2) ∨ 1 

 ≤ [𝕌𝑄2(𝑟1) ∨ 𝕌𝑄2(𝑟2)] ∧ 1 

 = [𝕌𝑄2(𝑟1) ∧ 1] ∨ [𝕌𝑄2(𝑟2) ∧ 1] 

 = [𝕌𝑄1(𝑟1) ∧ 𝕌𝑄2(𝑟1)] ∨ [𝕌𝑄1(𝑟2) ∧ 𝕌𝑄2(𝑟2)] 

 = 𝕌(𝔔1∪𝔔2)(𝑟1) ∨ 𝕌(𝔔1∪𝔔2)(𝑟2) 

 

 
 𝔽(𝔔1𝑖∪𝔔2𝑖)(𝑟1𝑟2) = 𝔽𝑄1𝑖(𝑟1𝑟2) ∧ 𝔽𝑄2𝑖(𝑟1𝑟2) 

 = 𝔽𝑄2𝑖(𝑟1𝑟2) ∨ 1 

 ≤ [𝔽𝑄2(𝑟1) ∨ 𝔽𝑄2(𝑟2)] ∧ 1 

 = [𝔽𝑄2(𝑟1) ∧ 1] ∨ [𝔽𝑄2(𝑟2) ∧ 1] 

 = [𝔽𝑄1(𝑟1) ∧ 𝔽𝑄2(𝑟1)] ∨ [𝔽𝑄1(𝑟2) ∧ 𝔽𝑄2(𝑟2)] 

 = 𝔽(𝔔1∪𝔔2)(𝑟1) ∨ 𝔽(𝔔1∪𝔔2)(𝑟2) 

 For 𝑟1𝑟2 ∈ 𝑆1 ∪ 𝑆2. Hence Proved.  

 

Theorem 3.52 Let 𝔊 = (𝑆1 ∪ 𝑆2, 𝑆11 ∪ 𝑆21, 𝑆12 ∪ 𝑆22, . . . . 𝑆1𝑛 ∪ 𝑆2𝑛) to be union of two GSs 𝔊1 =

(𝑆1, 𝑆11, 𝑆12, . . . , 𝑆1𝑛) and 𝔊2 = (𝑆2, 𝑆21, 𝑆22, . . . , 𝑆2𝑛). Then every QNGS 𝔊 = (𝔔, 𝔔1, 𝔔2, . . . . 𝔔𝑛) of 𝔊 is union 

of two QNGs 𝔊𝑛1 and 𝔊𝑛2 of GS 𝔊1 and 𝔊2, respectively,  

  

Proof. First we define 𝔔1, 𝔔2, 𝔔1𝑖 and 𝔔2𝑖 for 𝑖 ∈ 1,2, . . . , 𝑛 as 

 
 𝕋𝑄1(𝑟) = 𝕋𝑄(𝑟), ℂ𝑄1(𝑟) = ℂ𝑄(𝑟), 𝕌𝑄1(𝑟) = 𝕌𝑄(𝑟), 𝔽𝑄1(𝑟) = 𝔽𝑄(𝑟), if𝑟 ∈ 𝑆1 

 𝕋𝑄2(𝑟) = 𝕋𝑄(𝑟), ℂ𝑄1(𝑟) = ℂ𝑄(𝑟), 𝕌𝑄1(𝑟) = 𝕌𝑄(𝑟), 𝔽𝑄1(𝑟) = 𝔽𝑄(𝑟), if𝑟 ∈ 𝑆2. 

  
 𝕋𝑄1𝑖(𝑟1𝑟2) = 𝕋𝑄𝑖(𝑟1𝑟2), ℂ𝑄1𝑖(𝑟1𝑟2) = ℂ𝑄𝑖(𝑟1𝑟2), 𝕌𝑄1𝑖(𝑟1𝑟2) = 𝕌𝑄𝑖(𝑟1𝑟2), 𝔽𝑄1𝑖(𝑟1𝑟2) = 𝔽𝑄𝑖(𝑟1𝑟2),

if  𝑟1𝑟2 ∈ 𝑆1𝑖 , 

  
 𝕋𝑄2𝑖(𝑟1𝑟2) = 𝕋𝑄𝑖(𝑟1𝑟2), ℂ𝑄2𝑖(𝑟1𝑟2) = ℂ𝑄𝑖(𝑟1𝑟2), 𝕌𝑄2𝑖(𝑟1𝑟2) = 𝕌𝑄𝑖(𝑟1𝑟2), 𝔽𝑄2𝑖(𝑟1𝑟2) = 𝔽𝑄𝑖(𝑟1𝑟2),

if  𝑟1𝑟2 ∈ 𝑆2𝑖 , 

 Then 𝔔 = 𝔔1 ∪ 𝔔2 and 𝔔𝑖 = 𝔔1𝑖 ∪ 𝔔2𝑖, 𝑖 ∈ 1,2, . . . , 𝑛. 

Now for 𝑟1𝑟2 ∈ 𝑆𝑘𝑖 , 𝑘 = 1,2, 𝑖 = 1,2, . . . , 𝑛  
 𝕋𝑄𝑘𝑖(𝑟1𝑟2) = 𝕋𝑄1𝑖(𝑟1𝑟2) ≤ 𝕋𝑄1(𝑟1) ∧ 𝕋𝑄1(𝑟2) = 𝕋𝑄𝑘(𝑟1) ∧ 𝕋𝑄𝑘(𝑟2) 

 ℂ𝑄𝑘𝑖(𝑟1𝑟2) = ℂ𝑄1𝑖(𝑟1𝑟2) ≤ ℂ𝑄1(𝑟1) ∧ ℂ𝑄1(𝑟2) = ℂ𝑄𝑘(𝑟1) ∧ ℂ𝑄𝑘(𝑟2) 

 𝕌𝑄𝑘𝑖(𝑟1𝑟2) = 𝕌𝑄1𝑖(𝑟1𝑟2) ≤ 𝕌𝑄1(𝑟1) ∨ 𝕌𝑄1(𝑟2) = 𝕌𝑄𝑘(𝑟1) ∨ 𝕌𝑄𝑘(𝑟2) 

 𝔽𝑄𝑘𝑖(𝑟1𝑟2) = 𝔽𝑄1𝑖(𝑟1𝑟2) ≤ 𝔽𝑄1(𝑟1) ∨ 𝔽𝑄1(𝑟2) = 𝔽𝑄𝑘(𝑟1) ∨ 𝔽𝑄𝑘(𝑟2). 

 i. e  

𝔊𝑛𝑘 = (𝔔𝑘 , 𝔔𝑘1, . . . . 𝔔𝑘𝑛)   isaQNGS   of   𝔊𝑘, 𝑘 = 1,2.  Thus 𝔊𝑛𝑘 = 𝔔, 𝔔1, 𝔔3, . . . . , 𝔔𝑛 , a QNG of 

𝔊 = 𝔊1 ∪ 𝔊2 is union of two QNGSs 𝔊𝑛1 and 𝔊𝑛2.  

  

Definition 3.53 Let 𝔊𝑛1 = (𝔔1, 𝔔11, 𝔔12, . . . . 𝔔1𝑛) and 𝔊𝑛2 = (𝔔2, 𝔔21, 𝔔22, . . . . 𝔔2𝑛) be QNGS and let 𝑆1 ∩

𝑆2 = ∅. The join of 𝔊𝑛1 and 𝔊𝑛2, denoted by 
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𝔊𝑛1 + 𝔊𝑛2 = (𝔔1 + 𝔔2, 𝔔11 + 𝔔21, 𝔔12 + 𝔔22, . . . , 𝔔1𝑛 + 𝔔2𝑛),  

is defined by following:  
 (𝑖)    𝕋(𝔔1+𝔔2)(𝑟) = 𝕋(𝔔1∪𝔔2)(𝑟) 

 ℂ(𝔔1+𝔔2)(𝑟) = ℂ(𝔔1∪𝔔2)(𝑟) 

 𝕌(𝔔1+𝔔2)(𝑟) = 𝕌(𝔔1∪𝔔2)(𝑟) 

 𝔽(𝔔1+𝔔2)(𝑟) = 𝔽(𝔔1∪𝔔2)(𝑟) 

 ∀    𝑟 ∈ 𝑆1 ∪ 𝑆2, 

  
 (𝑖𝑖)    𝕋(𝔔11+𝔔2𝑖)(𝑟𝑠) = 𝕋(𝔔1𝑖∪𝔔2𝑖)(𝑟𝑠) 

 ℂ(𝔔11+𝔔2𝑖)(𝑟𝑠) = ℂ(𝔔1𝑖∪𝔔2𝑖)(𝑟𝑠) 

 𝕌(𝔔11+𝔔2𝑖)(𝑟𝑠) = 𝕌(𝔔1𝑖∪𝔔2𝑖)(𝑟𝑠) 

 𝔽(𝔔11+𝔔2𝑖)(𝑟𝑠) = 𝔽(𝔔1𝑖∪𝔔2𝑖)(𝑟𝑠) 

 ∀    𝑟𝑠 ∈ 𝑆1𝑖 ∪ 𝑆2𝑖 , 

  
 (𝑖𝑖𝑖)    𝕋(𝔔1𝑖+𝔔2𝑖)(𝑟𝑠) = (𝕋𝔔1𝑖

+ 𝕋𝔔2𝑖
)(𝑟𝑠) = 𝕋𝑄1(𝑟) ∧ 𝕋𝑄2(𝑠) 

 ℂ(𝔔1𝑖+𝔔2𝑖)(𝑟𝑠) = (ℂ𝔔1𝑖
+ ℂ𝔔2𝑖

)(𝑟𝑠) = ℂ𝑄1(𝑟) ∧ ℂ𝑄2(𝑠) 

 𝕌(𝔔1𝑖+𝔔2𝑖)(𝑟𝑠) = (𝕌𝔔1𝑖
+ 𝕌𝔔2𝑖

)(𝑟𝑠) = 𝕌𝑄1(𝑟) ∨ 𝕌𝑄2(𝑠) 

 𝔽(𝔔1𝑖+𝔔2𝑖)(𝑟𝑠) = (𝔽𝔔1𝑖
+ 𝔽𝔔2𝑖

)(𝑟𝑠) = 𝔽𝑄1(𝑟) ∨ 𝔽𝑄2(𝑠) 

 ∀    𝑟 ∈ 𝑆1, 𝑠 ∈ 𝑆2. 

  

  
Theorem 3.54 The join 𝔊𝑛1 + 𝔔𝑛2 = (𝔔1 + 𝔔2, 𝔔11 + 𝔔21, 𝔔12 + 𝔔22, . . . , 𝔔1𝑛 + 𝔔2𝑛) of two QNG of the GSS 

𝔊 and 𝔊2 is a QNG of 𝔊1 + 𝔊2.  

  

Proof. Let 𝑟1𝑟2 ∈ 𝑆1𝑖 + 𝑆2𝑖. Here we consider three cases: 

Case 1: when 𝑟1𝑟2 ∈ 𝑆1, then according to definition 3.40 
𝕋𝔔2

(𝑟1) = 𝕋𝔔2
(𝑟2) = 𝕋𝔔2𝑖

(𝑟1𝑟2) = 0 

ℂ𝔔2
(𝑟1) = ℂ𝔔2

(𝑟2) = ℂ𝔔2𝑖
(𝑟1𝑟2) = 0 

𝕌𝔔2
(𝑟1) = 𝕌𝔔2

(𝑟2) = 𝕌𝔔2𝑖
(𝑟1𝑟2) = 1 

𝔽𝔔2
(𝑟1) = 𝔽𝔔2

(𝑟2) = 𝔽𝔔2𝑖
(𝑟1𝑟2) = 1, so  

 𝕋(𝔔1𝑖+𝔔2𝑖)(𝑟1𝑟2) = 𝕋𝑄1𝑖(𝑟1𝑟2) ∨ 𝕋𝑄2𝑖(𝑟1𝑟2) 

 = 𝕋𝑄1𝑖(𝑟1𝑟2) ∨ 0 

 ≤ [𝕋𝑄1(𝑟1) ∧ 𝕋𝑄1(𝑟2)] ∨ 0 

 = [𝕋𝑄1(𝑟1) ∨ 0] ∧ [𝕋𝑄1(𝑟2) ∨ 0] 

 = [𝕋𝑄1(𝑟1) ∨ 𝕋𝑄2(𝑟1)] ∧ [𝕋𝑄1(𝑟2) ∨ 𝕋𝑄2(𝑟2)] 

 = 𝕋(𝔔1+𝔔2)(𝑟1) ∧ 𝕋(𝔔1+𝔔2)(𝑟2) 

 

 
 ℂ(𝔔1𝑖+𝔔2𝑖)(𝑟1𝑟2) = ℂ𝑄1𝑖(𝑟1𝑟2) ∨ ℂ𝑄2𝑖(𝑟1𝑟2) 

 = ℂ𝑄1𝑖(𝑟1𝑟2) ∨ 0 

 ≤ [ℂ𝑄1(𝑟1) ∧ ℂ𝑄1(𝑟2)] ∨ 0 

 = [ℂ𝑄1(𝑟1) ∨ 0] ∧ [ℂ𝑄1(𝑟2) ∨ 0] 

 = [ℂ𝑄1(𝑟1) ∨ ℂ𝑄2(𝑟1)] ∧ [ℂ𝑄1(𝑟2) ∨ ℂ𝑄2(𝑟2)] 

 = ℂ(𝔔1+𝔔2)(𝑟1) ∧ ℂ(𝔔1+𝔔2)(𝑟2) 

  
 𝕌(𝔔1𝑖+𝔔2𝑖)(𝑟1𝑟2) = 𝕌𝑄1𝑖(𝑟1𝑟2) ∧ 𝕌𝑄2𝑖(𝑟1𝑟2) 

 = 𝕌𝑄1𝑖(𝑟1𝑟2) ∨ 1 

 ≤ [𝕌𝑄1(𝑟1) ∨ 𝕌𝑄1(𝑟2)] ∧ 1 

 = [𝕌𝑄1(𝑟1) ∧ 1] ∨ [𝕌𝑄1(𝑟2) ∧ 1] 
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 = [𝕌𝑄1(𝑟1) ∧ 𝕌𝑄2(𝑟1)] ∨ [𝕌𝑄1(𝑟2) ∧ 𝕌𝑄2(𝑟2)] 

 = 𝕌(𝔔1+𝔔2)(𝑟1) ∨ 𝕌(𝔔1+𝔔2)(𝑟2) 

 

 
 𝔽(𝔔1𝑖+𝔔2𝑖)(𝑟1𝑟2) = 𝔽𝑄1𝑖(𝑟1𝑟2) ∧ 𝔽𝑄2𝑖(𝑟1𝑟2) 

 = 𝔽𝑄1𝑖(𝑟1𝑟2) ∨ 1 

 ≤ [𝔽𝑄1(𝑟1) ∨ 𝔽𝑄1(𝑟2)] ∧ 1 

 = [𝔽𝑄1(𝑟1) ∧ 1] ∨ [𝔽𝑄1(𝑟2) ∧ 1] 

 = [𝔽𝑄1(𝑟1) ∧ 𝔽𝑄2(𝑟1)] ∨ [𝔽𝑄1(𝑟2) ∧ 𝔽𝑄2(𝑟2)] 

 = 𝔽(𝔔1+𝔔2)(𝑟1) ∨ 𝔽(𝔔1+𝔔2)(𝑟2) 

 For 𝑟1𝑟2 ∈ 𝑆1 + 𝑆2. 

Case 2: when 𝑟1𝑟2 ∈ 𝑆2, then according to Definition 3.40, 𝕋𝔔1
(𝑟1) = 𝕋𝔔1

(𝑟2) = 𝕋𝔔1𝑖
(𝑟1𝑟2) = 0 

ℂ𝔔1
(𝑟1) = ℂ𝔔1

(𝑟2) = ℂ𝔔1𝑖
(𝑟1𝑟2) = 0 

𝕌𝔔1
(𝑟1) = 𝕌𝔔1

(𝑟2) = 𝕌𝔔1𝑖
(𝑟1𝑟2) = 1 

𝔽𝔔1
(𝑟1) = 𝔽𝔔1

(𝑟2) = 𝔽𝔔1𝑖
(𝑟1𝑟2) = 1, so  

 𝕋(𝔔1𝑖+𝔔2𝑖)(𝑟1𝑟2) = 𝕋𝑄1𝑖(𝑟1𝑟2) ∨ 𝕋𝑄2𝑖(𝑟1𝑟2) 

 = 𝕋𝑄2𝑖(𝑟1𝑟2) ∨ 0 

 ≤ [𝕋𝑄2(𝑟1) ∧ 𝕋𝑄2(𝑟2)] ∨ 0 

 = [𝕋𝑄2(𝑟1) ∨ 0] ∧ [𝕋𝑄2(𝑟2) ∨ 0] 

 = [𝕋𝑄1(𝑟1) ∨ 𝕋𝑄2(𝑟1)] ∧ [𝕋𝑄1(𝑟2) ∨ 𝕋𝑄2(𝑟2)] 

 = 𝕋(𝔔1+𝔔2)(𝑟1) ∧ 𝕋(𝔔1+𝔔2)(𝑟2) 

 

 
 ℂ(𝔔1𝑖+𝔔2𝑖)(𝑟1𝑟2) = ℂ𝑄1𝑖(𝑟1𝑟2) ∨ ℂ𝑄2𝑖(𝑟1𝑟2) 

 = ℂ𝑄2𝑖(𝑟1𝑟2) ∨ 0 

 ≤ [ℂ𝑄2(𝑟1) ∧ ℂ𝑄2(𝑟2)] ∨ 0 

 = [ℂ𝑄2(𝑟1) ∨ 0] ∧ [ℂ𝑄2(𝑟2) ∨ 0] 

 = [ℂ𝑄1(𝑟1) ∨ ℂ𝑄2(𝑟1)] ∧ [ℂ𝑄1(𝑟2) ∨ ℂ𝑄2(𝑟2)] 

 = ℂ(𝔔1+𝔔2)(𝑟1) ∧ ℂ(𝔔1+𝔔2)(𝑟2) 

  
 𝕌(𝔔1𝑖+𝔔2𝑖)(𝑟1𝑟2) = 𝕌𝑄1𝑖(𝑟1𝑟2) ∧ 𝕌𝑄2𝑖(𝑟1𝑟2) 

 = 𝕌𝑄2𝑖(𝑟1𝑟2) ∨ 1 

 ≤ [𝕌𝑄2(𝑟1) ∨ 𝕌𝑄2(𝑟2)] ∧ 1 

 = [𝕌𝑄2(𝑟1) ∧ 1] ∨ [𝕌𝑄2(𝑟2) ∧ 1] 

 = [𝕌𝑄1(𝑟1) ∧ 𝕌𝑄2(𝑟1)] ∨ [𝕌𝑄1(𝑟2) ∧ 𝕌𝑄2(𝑟2)] 

 = 𝕌(𝔔1+𝔔2)(𝑟1) ∨ 𝕌(𝔔1+𝔔2)(𝑟2) 

 

 
 𝔽(𝔔1𝑖+𝔔2𝑖)(𝑟1𝑟2) = 𝔽𝑄1𝑖(𝑟1𝑟2) ∧ 𝔽𝑄2𝑖(𝑟1𝑟2) 

 = 𝔽𝑄2𝑖(𝑟1𝑟2) ∨ 1 

 ≤ [𝔽𝑄2(𝑟1) ∨ 𝔽𝑄2(𝑟2)] ∧ 1 

 = [𝔽𝑄2(𝑟1) ∧ 1] ∨ [𝔽𝑄2(𝑟2) ∧ 1] 

 = [𝔽𝑄1(𝑟1) ∧ 𝔽𝑄2(𝑟1)] ∨ [𝔽𝑄1(𝑟2) ∧ 𝔽𝑄2(𝑟2)] 

 = 𝔽(𝔔1+𝔔2)(𝑟1) ∨ 𝔽(𝔔1+𝔔2)(𝑟2) 

 For 𝑟1𝑟2 ∈ 𝑆1 + 𝑆2. 

Csse3: 𝑟1 ∈ 𝑆1, 𝑟2 ∈ 𝑆2, then according to definition 3.42,  
 𝕋(𝔔1𝑖+𝔔2𝑖)(𝑟1𝑟2) = 𝕋𝑄1(𝑟1) ∧ 𝕋𝑄2(𝑟2) 

 = [𝕋𝑄1(𝑟1) ∨ 0] ∧ [𝕋𝑄2(𝑟2) ∨ 0] 

 = [𝕋𝑄1(𝑟1) ∨ 𝕋𝑄2(𝑟1)] ∧ [𝕋𝑄2(𝑟2) ∨ 𝕋𝑄1(𝑟2)] 
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 = 𝕋(𝔔1+𝔔2)(𝑟1) ∧ 𝕋(𝔔1+𝔔2)(𝑟2) 

  
 ℂ(𝔔1𝑖+𝔔2𝑖)(𝑟1𝑟2) = ℂ𝑄1(𝑟1) ∧ ℂ𝑄2(𝑟2) 

 = [ℂ𝑄1(𝑟1) ∨ 0] ∧ [ℂ𝑄2(𝑟2) ∨ 0] 

 = [ℂ𝑄1(𝑟1) ∨ ℂ𝑄2(𝑟1)] ∧ [ℂ𝑄2(𝑟2) ∨ ℂ𝑄1(𝑟2)] 

 = ℂ(𝔔1+𝔔2)(𝑟1) ∧ ℂ(𝔔1+𝔔2)(𝑟2) 

 

 
 𝕌(𝔔1𝑖+𝔔2𝑖)(𝑟1𝑟2) = 𝕌𝑄1(𝑟1) ∨ 𝕌𝑄2(𝑟2) 

 = [𝕌𝑄1(𝑟1) ∧ 0] ∨ [𝕌𝑄2(𝑟2) ∧ 0] 

 = [𝕌𝑄1(𝑟1) ∧ 𝕌𝑄2(𝑟1)] ∨ [𝕌𝑄2(𝑟2) ∧ 𝕌𝑄1(𝑟2)] 

 = 𝕌(𝔔1+𝔔2)(𝑟1) ∨ 𝕌(𝔔1+𝔔2)(𝑟2) 

 

 
 𝔽(𝔔1𝑖+𝔔2𝑖)(𝑟1𝑟2) = 𝔽𝑄1(𝑟1) ∨ 𝔽𝑄2(𝑟2) 

 = [𝔽𝑄1(𝑟1) ∧ 0] ∨ [𝔽𝑄2(𝑟2) ∧ 0] 

 = [𝔽𝑄1(𝑟1) ∧ 𝔽𝑄2(𝑟1)] ∨ [𝔽𝑄2(𝑟2) ∧ 𝔽𝑄1(𝑟2)] 

 = 𝔽(𝔔1+𝔔2)(𝑟1) ∨ 𝔽(𝔔1+𝔔2)(𝑟2) 

 For 𝑟1𝑟2 ∈ 𝑆1 + 𝑆2. Hence proved.  

  

Theorem 3.55 Let 𝔊 = (𝑆1 + 𝑆2, 𝑆11 + 𝑆21, 𝑆12 + 𝑆22, . . . . 𝑆1𝑛 + 𝑆2𝑛) to be join of two GSs 𝔊1 =

(𝑆1, 𝑆11, 𝑆12, . . . , 𝑆1𝑛) and 𝔊2 = (𝑆2, 𝑆21, 𝑆22, . . . , 𝑆2𝑛). Then every strong QNGS 𝔊 = (𝔔, 𝔔1, 𝔔2, . . . . 𝔔𝑛) of 𝔊 is 

join of two strong QNGs 𝔊𝑛1 and 𝔊𝑛2 of GS 𝔊1 and 𝔊2, respectively,  

  

Proof. First we define 𝔔𝑘 and 𝔔𝑘𝑖 for 𝑘 = 1,2 and 𝑖 = 1,2, . . . , 𝑛 as:  
 𝕋𝔔𝑘

(𝑟) = 𝕋𝑄(𝑟), ℂ𝔔𝑘
(𝑟) = ℂ𝑄(𝑟), 𝕌𝔔𝑘

(𝑟) = 𝕌𝑄(𝑟), 𝔽𝔔𝑘
(𝑟) = 𝔽𝑄(𝑟),    if    𝑟 ∈ 𝑆𝑘 

 𝕋𝔔𝑘𝑖
(𝑟1𝑟2) = 𝕋𝑄𝑖

(𝑟1𝑟2), ℂ𝔔𝑘𝑖
(𝑟1𝑟2) = ℂ𝑄𝑖

(𝑟1𝑟2), 𝕌𝔔𝑘𝑖
(𝑟1𝑟2) = 𝕌𝑄𝑖

(𝑟1𝑟2), 𝔽𝔔𝑘𝑖
(𝑟1𝑟2) =

𝔽𝑄𝑖
(𝑟1𝑟2),    if    𝑟1𝑟2 ∈ 𝑆𝑘𝑖  

 Now for 𝑟1𝑟2 ∈ 𝑆𝑘𝑖 , 𝑘 = 1,2, 𝑖 = 1,2, . . . , 𝑛  
 𝕋𝔔𝑘𝑖

(𝑟1𝑟2) = 𝕋𝑄𝑖
(𝑟1𝑟2) = 𝕋𝑄(𝑟1) ∧ 𝕋𝑄(𝑟2) = 𝕋𝔔𝑘

(𝑟1) ∧ 𝕋𝔔𝑘
(𝑟2) 

 ℂ𝔔𝑘𝑖
(𝑟1𝑟2) = ℂ𝑄𝑖

(𝑟1𝑟2) = ℂ𝑄(𝑟1) ∧ ℂ𝑄(𝑟2) = ℂ𝔔𝑘
(𝑟1) ∧ ℂ𝔔𝑘

(𝑟2) 

 𝕌𝔔𝑘𝑖
(𝑟1𝑟2) = 𝕌𝑄𝑖

(𝑟1𝑟2) = 𝕌𝑄(𝑟1) ∨ 𝕌𝑄(𝑟2) = 𝕌𝔔𝑘
(𝑟1) ∨ 𝕌𝔔𝑘

(𝑟2) 

 𝔽𝔔𝑘𝑖
(𝑟1𝑟2) = 𝔽𝑄𝑖

(𝑟1𝑟2) = 𝔽𝑄(𝑟1) ∨ 𝔽𝑄(𝑟2) = 𝔽𝔔𝑘
(𝑟1) ∨ 𝔽𝔔𝑘

(𝑟2). 

 (i.e) 𝔊𝑛𝑘 = (𝔔𝑘, 𝔔𝑘1, 𝔔𝑘2, . . . , 𝔔𝑘𝑛) is a strong QNGS of 𝔊𝑘, 𝑘 = 1,2. 

Moreover, 𝔊𝑛 is join of 𝔊𝑛1 and 𝔊𝑛2 as shown: Using Definition 3.39 and 3.42, 𝑄 = 𝑄1 ∪ 𝑄2 =

𝑄1 + 𝑄2 and 𝔔𝑖 = 𝔔1𝑖 ∪ 𝔔2𝑖 = 𝔔1𝑖 + 𝔔2𝑖, ∀𝑟1𝑟2 ∈ 𝑆1𝑖 ∩ 𝑆2𝑖. 

when 𝑟1𝑟2 ∈ 𝑆1𝑖 + 𝑆2𝑖     (𝑆1𝑖 ∪ 𝑆2𝑖), (i.e) 𝑟1 ∈ 𝑆1 and 𝑟2 ∈ 𝑆2  
 𝕋𝔔𝑖

(𝑟1𝑟2) = 𝕋𝑄(𝑟1) ∧ 𝕋𝑄(𝑟2) = 𝕋𝑄𝑘(𝑟1) ∧ 𝕋𝑄𝑘(𝑟2) = 𝕋𝔔1𝑖+𝔔2𝑖
(𝑟1𝑟2) 

 ℂ𝔔𝑖
(𝑟1𝑟2) = ℂ𝑄(𝑟1) ∧ ℂ𝑄(𝑟2) = ℂ𝑄𝑘(𝑟1) ∧ ℂ𝑄𝑘(𝑟2) = ℂ𝔔1𝑖+𝔔2𝑖

(𝑟1𝑟2) 

 𝕌𝔔𝑖
(𝑟1𝑟2) = 𝕌𝑄(𝑟1) ∨ 𝕌𝑄(𝑟2) = 𝕌𝑄𝑘(𝑟1) ∨ 𝕌𝑄𝑘(𝑟2) = 𝕌𝔔1𝑖+𝔔2𝑖

(𝑟1𝑟2) 

 𝔽𝔔𝑖
(𝑟1𝑟2) = 𝔽𝑄(𝑟1) ∨ 𝔽𝑄(𝑟2) = 𝔽𝑄𝑘(𝑟1) ∨ 𝔽𝑄𝑘(𝑟2) = 𝔽𝔔1𝑖+𝔔2𝑖

(𝑟1𝑟2) 

 Calculation are similar when 𝑟1 ∈ 𝑆2, 𝑟2 ∈ 𝑆1. It is true when 𝑖 = 1,2, . . . , 𝑛. Complete the proof.  

 
4.  Conclusions  

In this work, the concept of quadripartitioned neutrosophic graph structure and its properties 

have been discussed. The strong, tree, 𝜙 − permutation and 𝜙 − complement of quadripartitioned 

neutrosophic graph structure have been studied. The operations like Cartesian Product, cross product, 

lexicographic product, composition in graph structures and join operations are established. In future, the 
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authors will extend this proposed concept to some applications in decision making and bipolar 

environment. Wiener index of QNGSs will be studied based on [21, 22]. The proposed concepts are also 

extended to bipolar QNGSs, interval QNGSs, single valued neutrosophic quadripartitioned hypergraphs 

and in soft QNGSs. 
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Abstract: We presented in this paper a new concept of sets that we launched it neutrosophic axial 

sets . These sets are considered as generalization of neutrosophic sets . The union relationships , 

intersection, union , belonging and other concepts were built on these sets , then we created two 

different concepts of points . Also we studied many important properties and basic theories about 

axial sets theory. 

Keywords: neutrosophic sets; fuzzy sets;  SƝĄ-points ; ƝĄ-sets ; union relationships. 

 

1. Introduction 

The neutrosophic sets [1] are the important and influential topic in human life in direct way. It’s 

considered to be one of the applied and pure topics at the same time . 

Also it contributes  to quantum leaps in the field of electronics , software and other sciences as well 

as in various engineering branches . Where Salama, A., FlorentinSmarandache, and Valeri Kromov 

who were the researchers first to know these sets in [2,3]. Researchers and scientists have taken it 

upon them and solves to develop and work on it . On the other hand , these sets are considered to be 

a development to the second type of fuzzy sets , which the researcher Zadeh , L. A.  know in 1965 [ 4 

] introduced. At the same time , the fuzzy sets are generalized into so-called the soft sets which were 

defined in [ 5- 7] and attributed to Molodtsov [ 8 ]. There are many researchers who worked in this 

field and remind them of [ 9- 12 ]. 

      In 2019  Abdulsada, D.A., Al-Swidi, L.A.A.  defined a new concept of sets and called it the 

center sets , for more information , you can review the papers [ 13- 15] , and the pillar of construction 

is proximity spaces by . A. Naimpally and . D. Warrack [16], where we combined the proximity 

space with the i-topological space by Al Talkany, A.Y.K.M., AL-Swidi, L.A.A [ 17]  to produce the 

i-topological proximity space in 2020 [ 18, 19 ]. These ideas can be generalized on the topic of 

neutrosophic. 

2. The Neutrosophic Axial Set theory 
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2.1. Definition Let X be any set , the set of the form ƝĄA =  { < 𝐴, A 1, A2 > ;  𝐴 ∩  Ai = ∅ , i = 1,2 } is 

called neutrosophic axial set , where A be any subset of X , and the sets A 1, A2  are called the parts 

of < 𝐴, A 1, A2 > For example , if we take 𝑋 =  𝑅  the real numbers ,then ƝĄ𝐴 =  { <

 ( 1 , 2 ), 𝐴1 , 𝐴2 > ;  (1 , 2 )  ∩  𝐴𝑖 = ∅ , 𝑖 = 1,2 } where  

𝐴𝑖 = {

∅  𝑜𝑟 𝑑𝑖𝑠𝑐𝑟𝑒𝑡 𝑠𝑒𝑡 𝑖𝑛 𝑅
(1,2)⁄

[2, 𝑥)                        𝑓𝑜𝑟  𝑥 ≥ 2 

(𝑦 , 1]                     𝑓𝑜𝑟  𝑦 ≤ 1

 

2.2. Definition 

I- Let 𝑋 be any non-empty set , the neutrosophic point (ƝĄ-point ) are of the forms ƝPA
∅ = <

 𝐴 , ∅ , ∅ > , Ɲ𝑃𝐴 = <  ∅ , 𝐴 , ∅ > and  

Ɲ𝑃𝐴 = <  ∅ , ∅ , 𝐴 > , for any proper non-empty subset 𝐴 of  . 

 

II- The singular neutrosophic point (𝑆ƝĄ-point )  of any  ƝĄ-set ƝĄ𝐴  is denoted by 𝑆𝐴 = <

 𝐴 , 𝐴 1, 𝐴2 > , where 𝐴 ∩  𝐴𝑖 = ∅ where 𝑖 = 1,2 , so 𝑆𝐴 ∈  ƝĄ𝐴 ( where ∈  is the notion of classical 

belongs to ) . 

So we can claim the number of ƝĄ-points of any non-empty universal set 𝑋 is |X|. (|P(X)/{∅, X}| 

where |𝑋| the number of elements of 𝑋.  

 

Also from |𝑋| of above definition any ƝĄ-set is the classical union of its 𝑆ƝĄ-points and any 

𝑆ƝĄ-point of any  ƝĄ-set is neutrosophic set , but the converse is not true . 

 

2.3. Definition 

I- The empty ƝĄ-set with respect to the subset A of X is denoted by ƝĄA
∅   is of the form 

ƝĄA
∅ = { <  ∅ , A1, A2 > ;  𝑤ℎ𝑒𝑟𝑒 𝐴 ∩  𝐴𝑖 = ∅  𝑖 = 1,2  } .  

For example , if 𝑋 =  { 𝑎 , 𝑏  , 𝑐 } , then ƝĄ{a,b}
∅ =  { <  ∅ , ∅ , ∅ >  , <  ∅, {𝑐}, {𝑐}  > , <  ∅ , {𝑐} , ∅ >  , <

 ∅ , ∅ , {𝑐}  >  }. 

 

II- The null ƝĄ-set with respect to a subset 𝐴 of  , which denoted by ƝƝĄ𝐴 is of form ƝƝĄ𝐴 =

 { <  𝐴 , ∅ , ∅ >  } . 

 

2.4. Definition 

I- The ƝĄ-sum between two  𝑆ƝĄ-points 𝑆𝐴 and 𝑆𝐵  is denoted by the notion ⨁Ɲ  which is 

defined by 𝑆𝐴⨁Ɲ𝑆𝐵 = {< 𝐴 ∪ 𝐵, 𝐶1 ∪ 𝐷1, 𝐶2 ∪ 𝐷2 > , where 𝐶𝑖 ∩ 𝐴 = ∅    𝑎𝑛𝑑 𝐷𝑖 ∩ 𝐵 = ∅ , 𝑖 = 1,2 } . So 

from this definition we claim that every 𝑆ƝĄ-point is ƝĄ-sum of two or more than two  , but every   

ƝĄ-point is 𝑆ƝĄ-point . 
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II- The 𝑆ƝĄ-point 𝑆𝐴 is called interlaced with respect to ƝĄ-set ƝĄ𝐵 , if 𝑆𝐴 ∈  ƝĄ𝐵  there exist 

𝑆𝐵 ∈  ƝĄ𝐵   such that Ai ⊑  Bi , SA =< 𝐴, A1, A2 >   , SB =< 𝐵, B1, B2 > 𝑖 =  1 , 2 .If any ƝĄ-point of 

the forms ƝPA
∅  , Ɲ𝑃𝐴  and Ɲ𝑃𝐴  belong to ƝĄ-set ƝĄ𝐵 , if 𝐴 is a part of some 𝑆ƝĄ-point of 

ƝĄ𝐵 .So that we easily show that , 𝑆𝐵 ∈  ƝĄ𝐵   iff 𝑆𝐵 ∈Ɲ  ƝĄ𝐵 . 

 

III- The   ƝĄ-set ƝĄ𝐴 is said to be interlaced set with one of the ƝĄ-set ƝĄ𝐵 which is denoted by 

ƝĄ𝐴 <Ɲ  ƝĄ𝐵  iff  for each SA =< 𝐴, A1, A2 >     ∈ ƝĄ𝐵  there exist 𝑆𝐵 =< 𝐵, 𝐵1, 𝐵2>∈  ƝĄ𝐵  with 

the condition  Ai ⊑  Bi, 𝑖 =  1 , 2 . Clearly every ƝĄ -set is interlaced set of ƝĄ∅  , also  ƝĄ𝑋  is 

interlaced set of any ƝĄ-set. 

 

2.5. Note 

If A ⊏ B , then  ƝĄB <Ɲ ƝĄA . Because , for every  𝑆ƝĄ-point𝑆𝐵 =< 𝐵, B1, B2 >∈ƝĄB  that is B ∩

Bi = ∅  and A ⊏ B  imply that A ∩ Bi = ∅  for 𝑖 =  1 , 2  , thus 𝑆𝐵  ∈  ƝĄ𝐴  , which satisfy the 

condition of interlaced set .Two ƝĄ-sets ƝĄA and ƝĄBare called intertwind sets which is denoted 

by ƝĄA ≈Ɲ ƝĄB  iff  ƝĄ𝐴 <Ɲ  ƝĄ𝐵  and ƝĄ𝐵 <Ɲ  ƝĄ𝐴 .  

 

2.6. Proposition 

Let 𝑋 be any sets and 𝐴 , 𝐵 are subsets of 𝑋. 𝐴 = 𝐵 iff ƝĄA ≈Ɲ ƝĄB . 

Proof . 

Assume that  =  𝐵 , so by (Note 2.5) , we get that ƝĄA ≈Ɲ ƝĄB. Conversely , if possible that 𝐴 ≠  𝐵  

. 

Case 1 . If  𝐴 ∩  𝐵 =  ∅ , then each 𝑆𝐴 =< 𝐴, 𝐴1, 𝐴2 >     ∈ ƝĄ𝐴 and since each subset 𝐶 of 𝑋 with 

𝐶 ∩  𝐵 =  ∅ there is no 𝑆ƝĄ-points in ƝĄ𝐵 which satisfy the condition of interlaced set , so ƝĄ𝐴 is 

not interlaced set of ƝĄ𝐵 . Similarly that ƝĄ𝐵 is not interlaced set of ƝĄ𝐴 , which contradiction 

with  ƝĄ𝐴 ≈Ɲ ƝĄ𝐵 . 

 

Case 2. If 𝐴 ∩  𝐵 ≠  ∅ , that is there exist a point 𝑥 in 𝐴 and not in 𝐵 or the point 𝑦 in 𝐵 but not 

in  𝐴  , so 𝑆𝐵 = <  𝐵 , { 𝑥 } , { 𝑥 }  > ∈  ƝĄ𝐵  imply that no 𝑆ƝĄ -points in ƝĄ𝐴  which satisfy the 

condition of interlaced set , hence ƝĄ𝐵 , similarly if we take 𝑦 ∈ 𝐵 and 𝑦 is not in 𝐴 , which 

contradiction with ƝĄA ≈Ɲ ƝĄB . Therefore we get =  𝐵 . 

 

2.7.Definition 

The ƝĄ- complement of any ƝĄ-set ƝĄA which is denoted by (ƝĄA)𝑐 and of the form (ƝĄA)𝑐 =

 ƝĄ𝐴𝑐. Now we give the notions of union , intersection of ƝĄ - sets . 
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2. 8. Definition 

The ƝĄ – union of two ƝĄ-sets ƝĄA and ƝĄB , which is denoted by ƝĄA ∪Ɲ ƝĄB and is of the 

form ƝĄA ∪Ɲ ƝĄB = { < 𝐴 ∪ 𝐵, A1 ∩ B1, A2 ∩ B2 > ; ∀< 𝐴, A1, A2 >∈ ƝĄA, < 𝐵, B1, B2 >∈ ƝĄB }  .Also 

for the same away we defined that  for any collection{ƝĄAi
; i ∈ II } of ƝĄ - sets , the ƝĄ-union of 

this collection is of form (⋃ Ai∈II i
)Ɲ = { < ⋃ Ai, Cj1

∩ Cj2i∈II , Dj1
∩ Dj2

>; ∀j1 , j2 ∈ II} where SAj1
=<

Aj1
, Cj1

, Dj1
>and  SBj2

=< Bj2
, Cj2

, Dj2
> . 

 

The ƝĄ – intersection of two ƝĄ-sets ƝĄA and ƝĄB , which is denoted by ƝĄA ∩Ɲ ƝĄB and is of 

the form ƝĄA ∩Ɲ ƝĄB = { < 𝐴 ∩ 𝐵, A1 ∩ B1, A2 ∩ B2 > ; ∀< 𝐴, A1, A2 >∈ ƝĄA, < 𝐵, B1, B2 >∈ ƝĄB } . 

Also for the same away we defined that  for any collection {ƝĄAi
; i ∈ II }  of ƝĄ  – sets , the 

ƝĄ-intersection of this collection is of form (⋂ Ai∈II i
)Ɲ = { < ⋂ Ai∈II i

, Ci1
∩ Ci2

, Di1
∩ Di2

>; ∀i1 , i2 ∈ II} 

where SAi1
=< Ai1

, Ci1
, Di1

>and  SBi2
=< Bi2

, Ci2
, Di2

> . 

The ƝĄ –participating of two ƝĄ-sets ƝĄA and ƝĄB , which is denoted by ƝĄA  ⋒ ƝĄB = ƝĄA∩B. 

 

It is easy to show that the commutative and associative properties for the ƝĄ – union, ƝĄ – 

intersection and ƝĄ –participating are satisfied . 

 

2.9. Proposition 

For any set 𝑋 and any subsets 𝐴 , 𝐵 , that is ƝĄA ∪Ɲ ƝĄB =  ƝĄA∪B. 

Proof .  

For any  𝑆ƝĄ-point S𝐷 ∈  ƝĄ𝐴 ∪Ɲ ƝĄ𝐵 , which of the form 𝑆𝐷 =< 𝐴 ∩ 𝐵, A1 ∩ B1, A2 ∩ B2 > , with 

SA =< 𝐴, A1, A2 > ∈ ƝĄA, SB =< 𝐵, B1, B2 > ∈ ƝĄB  . Thus  𝑆𝐷 ∈ ƝĄA∪B  , because that  (A ∪ B) ∩

(Ai ∩ Bi) =( A ∩ (Ai ∩ Bi))  ∪( B ∩ (Ai ∩ Bi)) = ∅ . 

Conversely , now let SA∪B  ∈ ƝĄA∪B  , if possible that SA∪B ∉ ƝĄA ∪Ɲ ƝĄB  , since SA∪B = < A ∪

B, 𝐷1 , 𝐷2 > with (A ∪ B) ∩ 𝐷𝑖 = ∅ , 𝑓𝑜𝑟 𝑖 =  1 , 2. But ∅ =(A ∪ B) ∩ 𝐷𝑖 = ( 𝐴 ∩  𝐷𝑖 )  ∪ (𝐵 ∩  𝐷𝑖) , 

imply that 𝐴 ∩ 𝐷𝑖 = ∅ , B ∩ 𝐷𝑖 = ∅ , so we have <  𝐴 , 𝐷1  , 𝐷2 > ∈ ƝĄ𝐴 and <  𝐵 , 𝐷1  , 𝐷2 > ∈ ƝĄ𝐵  

, also SA∪B =< A ∪ B , 𝐷1 , 𝐷2 > = <  𝐴 ∪ 𝐵 , 𝐷1 ∩  𝐷1 , 𝐷2 ∩ 𝐷2 >∈ ƝĄA ∪Ɲ ƝĄB  , which is a 

contradiction .  

From this proposition we can prove easily the following corollary. 

 

2.10 .Corollary 

1. ƝĄA ∪Ɲ ƝĄAc =  ƝĄX . 

2. ƝĄA ∪Ɲ ƝĄA =  ƝĄA . 

3. ƝĄA ∪Ɲ ƝĄX = ƝĄX. 
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2.11. Remark 

For any set 𝑋 and subset 𝐴 of 𝑋 we have  ƝĄA ∩Ɲ ƝĄX = ƝƝĄA = { ƝPA
∅} , because  ƝĄA ∩Ɲ ƝĄX =

 { <  𝐴 ∩ X, ∅ ∩ A1 , ∅ ∩ A2 > ; for each < 𝐴, A1, A2 > ∈ ƝĄA} = { <  𝐴 , ∅ , ∅ > }  = { Ɲ𝑃𝐴
∅}  =  ƝƝĄ𝐴. 

 

2.12. Remark 

Let 𝑋  be any set with ƝĄA  and ƝĄB  are  ƝĄ  – sets on 𝑋 . If ƝĄA <Ɲ ƝĄB  , then 

( ƝĄ𝐴 ∩Ɲ ƝĄ𝐵 )  <Ɲ ƝĄA  also ( ƝĄ𝐴 ∩Ɲ ƝĄ𝐵 )  <Ɲ ƝĄ𝐵 because for any < 𝐴 ∩ 𝐵, C1 ∩ D1,C2 ∩ D2 > ∈

ƝĄA from the fact <  𝐴 , 𝐶1 , 𝐶2 > ∈ ƝĄ𝐴and  A ∩ Ci ∩ Di = ∅  , for 𝑖 =  1 , 2.from above (Remark 

2.12.) and( Note 2.5.) we have the following proposition . 

 

2. 13. proposition 

1-  ( ƝĄA ∩Ɲ ƝĄB) <Ɲ ƝĄA∩B . 

2- ( ƝĄA ∩Ɲ ƝĄB) ≈Ɲ ƝĄA. 

3-  If ƝĄA <Ɲ ƝĄB and ƝĄB <Ɲ ƝĄC , then ƝĄA <Ɲ ƝĄC . 

4- If ⊑  𝐵 , then ƝĄA ∩Ɲ ƝĄB ≈Ɲ ƝĄB . 

 

Proof (4). 

By (Note 2 . 5) and Remark (2 .12) we have  (ƝĄA ∩Ɲ ƝĄB) <Ɲ ƝĄB . Now let us < 𝐵, D1,D2 > ∈ ƝĄB 

, so 𝐵 ∩ 𝐷𝑖 = ∅  , but 𝐴 ⊑  𝐵 , then 𝐴 ∩ 𝐷𝑖 = ∅for 𝑖 =  1,2 , then < 𝐴, D1,D2 >=< 𝐴 ∩ 𝐵, D1,D2 >∈

 ƝĄA ∩Ɲ ƝĄB . So we get  the result . 

 

2. 14. Proposition 

For any ƝĄ – points  ƝPD , ƝpD ∈Ɲ ƝĄA which satisfy that , there exist a part 𝐶 of some 𝑆 ƝĄ – 

point of ƝĄB such that 𝐷 ⊑ 𝐶  iff ƝĄA <Ɲ ƝĄB . 

 

Proof. 

Let 𝑆𝐴 = <  𝐴 , 𝐶1 , 𝐶2 > ∈ ƝĄ𝐴 , then ƝĄ – points  ƝPC1
 and ƝPC2 are in ƝĄA , so by assumption 

, there exist  parts  𝐷1  , 𝐷2 of 𝑆 ƝĄ – points in  ƝĄB with 𝐶𝑖 ⊑  𝐷𝑖 and  𝐵 ∩ Di = ∅   , 𝑖 =  1 , 2  

, so < 𝐵, D1,D2 > ∈ ƝĄB , this imply that ƝĄA <Ɲ ƝĄB . 

Conversely , let ƝĄA <Ɲ ƝĄB   and let  ƝPD ∈Ɲ ƝĄA  , then the 𝑆 ƝĄ  – point <  𝐴, 𝐷 , ∅ > , <

 𝐴 , ∅ , 𝐷 >  or <  𝐴 , 𝐷 , 𝐷 >  are in ƝĄA , then there exist <  𝐵 , 𝐶1 , ∅ >. Such that 𝐷 ⊑  𝐶1 with 

ƝPC1
∈ ƝĄB or <   𝐵, ∅ , 𝐶2 >  such that 𝐷 ⊑  𝐶2 with ƝPC2 ∈ ƝĄB or <  𝐵 , 𝐻1 , 𝐻2 > ∈ ƝĄ𝐵 with 

𝐷 ⊑  𝐻𝑖 , so ƝPD1
 and ƝPD2 ∈ ƝĄB . 

 

3. Conclusions 
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1.  After an extensive study of these sets and spaces , we did this research establishing the basic 

structures for generalizing the neutrosophic sets , and under the name neutrosophicsets  . Therefore 

, we can put the identification of the topological spaces on it , by taking a family of these  ƝĄ – sets 

that achieve the following ; ƝĄ𝑋  , ƝĄ∅  belong it , second is closed under the finite ƝĄ  – 

intersection , finally is must be closed under  ƝĄ – union for any subfamily of it . 

2. Also we can study their properties and characteristics , as well as define the functions on there to 

give as a good suggestions to work . Then , we can modify the various open sets and further study 

can be continued with this concept. For example , we can modify in the papers [ 20- 28] . 

 

Acknowledgments:The authors remain thankful to the referee for his helpful suggestions and comments. 
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Abstract. The objective of the study is to find out the relationship between the disease and the symptoms seen with the 

patient and diagnose the disease that impacted the patient using single valued neutrosophic set. Innovative method [sine   

exponential measure] is devised in single valued neutrosophic set and some of its properties are discussed herein. Utiliza-

tion of medical diagnosis was commenced with using prescribed procedures to identify a person suffering       from 

the disease for a considerable period. The result showed that the proposed method was free from shortcomings that affect 

the existing methods and found to be more accurate in diagnosing the diseases. It was concluded that the technique adopted 

in this study were more reliable and easier to handle medical diagnosis problems.

 

Keywords: Sine Exponential; Neutrosophic; Medical Diagnosis; Single Valued Neutrosophic 

 

1 Introduction 

Kumbakonam is a thickly populated town. Although underground drainage system is available here, it is yet to 

cover all the houses in the town. So, open drainage system continues to be in practice in different places of the 

town. Further this town is racing fast towards total sanitation in all spheres. As a result, Kumbakonam continues 

to be a repository of all new kinds of diseases. This created an urge to carry out research in the medical field. By 

introducing innovative methods in the research, the diseases can be diagnosed  instantly and infallibly. 

Mathematical principles play a vital role in solving the real life problems in engineering, medical sciences, 

social sciences, economics and so on. These problems are having no definite data and they are mostly imprecise 

in character. We are therefore employing probability theory, fuzzy set theory, rough set theory etc., in Mathematics 

to find solutions to these problems. In the same way, fuzzy logic techniques have been integrated with conventional 

clinical decision in healthcare industry. As clinicians find it hard to have a fool proof diagnosis, they are initiating 

certain steps without any guidance from the experts. Neutrosophic set which is a generalized set possesses all 

attributes necessary to encode medical knowledge base and capture medical inputs. 

The law of average has been applied in Medical diagnosis combining the information of which most of them 

are quantifiable derived through various sources and the inconsistent data derived through intuitive thought  and 

the whole process offers low intra and inter personal consistency. So contradictions, inconsistency, indeterminacy 

and fuzziness should be accepted as unavoidable as they are integrated in the behavior of biological systems as 

well as in their characterization. To model an expert doctor it is imperative that it should not disallow uncertainty 
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as it would be then inapt to capture fuzzy or incomplete knowledge that might lead to the danger of fallacies due 

to misplaced precision. As medical diagnosis contains lots of uncertainties and increased volume of information 

available to physicians from new medical technologies, the process of classifying different sets of symptoms under 

a single name of disease becomes difficult.  

In 1965, Fuzzy set theory was firstly given by Zadeh[1] which is applied in many real applications to handle 

uncertainty. Sometimes membership function itself is uncertain and hard to be defined by a crisp value. So the 

concept of interval valued fuzzy sets was proposed to capture the uncertainty of grade of membership. In 1986, 

Atanassov[2] introduced the intuitionistic fuzzy sets which consider both truth-membership and falsity-

membership. Edward Samuel and Narmadhagnanam[3] proposed the tangent inverse distance and sine similarity 

measure of intuitionistic fuzzy sets and apply them in medical diagnosis.Kozae et al [4 ]applied intuitionistic fuzzy 

sets in corona covid-19 determination.Rajkalpana et al [ 5]applied intuitionistic fuzzy set and its operators  in 

medical diagnosis.Shinoj and John [6] extended the concept of fuzzy multi sets by introducing intuitionistic fuzzy 

multi sets. Rajarajeswari and Uma [7,8] proposed few methods among intuitionistic fuzzy  multi sets. Edward 

Samuel and Narmadhagnanam[9] proposed sine inverse distance  of intuitionistic fuzzy    multi sets and apply 

them in medical diagnosis Later on, intuitionistic fuzzy sets were extended to the interval valued intuitionistic 

fuzzy sets. Intuitionistic fuzzy sets and interval valued intuitionistic fuzzy sets can only handle incomplete 

information not the indeterminate information and inconsistent information which exists commonly in belief 

systems. So, Neutrosophic set (generalization of fuzzy sets, intuitionistic fuzzy sets and so on) defined by 

FlorentinSmarandache[10] has capability to deal with uncertainty, imprecise, incomplete and inconsistent 

information which exists in real world from philosophical point of view.In 1982, Pawlak[11] introduced the 

concept of rough set, as a formal tool for modeling and processing incomplete information in information systems. 

There are two basic elements in rough set theory, crisp set and equivalence relation, which constitute the 

mathematical basis of rough sets. The basic idea of rough set is based upon the approximation of sets by a pair of 

sets known as the lower approximation and the upper approximation of a set. Here, the lower and upper 

approximation operators are based on equivalence relation. Nanda and Majumdar [12] examined fuzzy rough sets. 

Broumi et al [13] introduced rough neutrosophic sets. SurapatiPramanik and KalyanMondal [14,15] introduced 

cosine and cotangent similarity measures of rough neutrosophic sets. Pramanik et al [16] introduced correlation 

coefficient of rough neutrosophic sets. Edward Samuel and Narmadhagnanam [17-20] proposed few methods 

among rough neutrosophic sets and applied it in medical diagnosis.Neutrosophic set is applied to different areas 

including decision making by many researchers[21-27]. Mohana and  Mohanasundari[28] proposed similarity 

measures of single valued neutrosophic rough sets. Tuhin Bera and Nirmal KumarMahapatra[29] applied 

generalised single valued neutrosophic number in neutrosophic linear programming. Ulucay et al [30] proposed a  

new approach for multi-attribute decision-making problems in bipolar neutrosophic sets. Wang et al[31] proposed 

the single valued neutrosophic set.PinakiMajumdar and S.K.Samanta [32]proposed the similarity and entropy of 

neutrosophic sets. Jun Ye[33] proposed the cotangent similarity measure of single valued neutrosophic sets. 

   Broumi et al[34] proposed  single valued (2N+1) sided polygonal neutrosophic  numbers and single valued (2N) 

sided polygonal  neutrosophic numbers. Li et al [35] Slope stability assessment method using the arctangent and 

tangent similarity measure of neutrosophic numbers. Edward Samuel and Narmadhagnanam [36,37] introduced 

cosine logarithmic  distance and tangent  inverse  similarity measure  among single valued neutrosophic sets and 

applied it in medical diagnosis.. Harish Garg and Nancy[38] proposed new distance measure of  single valued 

neutrosophic sets. Chai et al[39]proposed new similarity measures of single valued neutrosophic sets. Shan Ye 

and Jun Ye [40] introduced the concept of single valued neutrosophic multi sets.  Edward Samuel and 

Narmadhagnanam [41] introduced cosine exponential  distance  among single valued neutrosophic multi sets and 

applied it in medical diagnosis. In 2013[42], Florentin Smarandache extended the classical neutrosophic logic to 

n-valued refined neutrosophic logic, by refining each neutrosophic component T,I,F into respectively, 

T1,T2,..,Tm,I1,I2,...,Ip and F1,F2,..,Fr. The concept of neutrosophic refined sets is a generalization of fuzzy multisets 

and intuitionistic fuzzy multi sets. In 2014,Broumi and Smarandache[43]  extended the improved cosine similarity 

of single valued neutrosophic set proposed by Ye[44] to the case of neutrosophic refined sets. Edward Samuel and 

Narmadhagnanam [45-47] introduced few methods in neutrosophic refined sets and applied it in medical diagnosis. 
Broumi et al [48] generalise the concept of n-valued neutrosophic sets to the case of n-valued interval neutrosophic 

sets. Edward Samuel and Narmadhagnanam [49-51]  introduced many methods in n-valued interval neutrosophic 

sets and applied it in medical diagnosis. The proposed method had more accuracy than the others and they could 

handle the limitations and drawbacks of the previous works well. This study discovers the relationship between 

the symptoms found within patients and set of diseases. This study will help the researcher to find out the diseases 
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accurately that impacted the patients. The method employed is free from the limitations that are commonly found 

in other studies. Without such limitations, in this study a new theory on image processing, cluster analysis etc., has 

been developed. 

   Rest of the article is structured as follows. In Section 2, we briefly present the basic definitions. Section 3 deals 

with proposed definition  and some of its properties. Sections 4, 5 and 6 deal with methodology,algorithm and case 

study related to medical diagnosis respectively. Conclusion is given in Section 7. 

   

 

 

2 Preliminaries 

2.1 Definition[52] 

Let 𝑋 be a Universe of discourse,with a generic element in 𝑋 denoted by 𝑥, the neutrosophicset(NS) 𝐴 is an 

object having the form 

      XxxFxIxTxA AAA  ,,,:  

where the functions define   1,0:,, XFIT respectively the degree of membership(or Truth), the degree  

of indeterminacy and the degree of non-membership(or Falsehood) ofthe element 𝑥 ∈ 𝑋 to the set 𝐴 with the 

condition  

0 )()()( xxx FIT AAA
  3

 

 

2.2 Definition[31] 

Let X be a space of points (objects) with a generic element in X  denoted by x . A single valued 

neutrosophic set A  in X is characterized by truth membership function AT , indeterminacy function AI and falsity 

membership function AF .For each point x in X , 

       1,0,, xFxIxT
AAA  

When X  is continuous, a SVNS A  can be written as  

      
x

XxxxFxIxTA ,/,,  

 When X is discrete, a SVNS A can be written as 

      XxxxFxIxTA
ii

n

i
iii




,/,,
1  

 

3 Proposed definition 

3.1 Definition 

Let 
     
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

n
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i

xFxIxT

x
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1 ,,
 and 

     
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i

xFxIxT

x
B

1 ,,
 be two single valued  neutrosophic sets in

 
n

xxxX ,...,,
21


, 

then the sine exponential  measure is defined as 

(1) 

 

Proposition 1 

(i)   0, BASEM SVNS
 

(ii)    ABSEMBASEM SVNSSVNS ,,   

 (iii)If CBA  then    BASEMCASEM SVNSSVNS ,,  &    CBSEMCASEM SVNSSVNS ,,   
Proof 

(i) We know that, the truth-membership function, indeterminacy –membership function and falsity–membership 

function in single valued  neutrosophic sets are within  .1,0   

Hence   0, BASEM SVNS  

(ii)We know that, 

            
 



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 
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       iAiBiBiA xTxTxTxT 
 

       iAiBiBiA xIxIxIxI 
 

       iAiBiBiA xFxFxFxF   

 

Hence    ABSEMBASEM SVNSSVNS ,,   

 

(iii) We know that, 

     
iCiBiA xTxTxT 

 

        
     

iCiBiA xIxIxI   

     
iCiBiA xFxFxF   

       CBA   
Hence, 

       iCiAiBiA xTxTxTxT 
 

       iCiAiBiA xIxIxIxI 
 

       
iCiAiBiA xFxFxFxF 

 
       

iCiAiCiB xTxTxTxT 
 

       
iCiAiCiB xIxIxIxI 

 
       

iCiAiCiB xFxFxFxF 
 

Here, the sine exponential measure is a decreasing function 

      BASEMCASEM SVNSSVNS ,,  &    CBSEMCASEM SVNSSVNS ,,   

 

4. Methodology 

In this section, we present an application of single valued neutrosophic set  in medical diagnosis. In a given 

pathology, Suppose S is a set of symptoms, D  is a set of diseases and P is a set of patients and let Q be a single 

valued neutrosophic relation from the set of patients to the symptoms.i.e., )( SPQ    and R  be a single valued 

neutrosophic relation from the set of symptoms to the diseases i.e., )( DSR  and  then the methodology involves 

three main jobs: 

1. Determination of symptoms. 

2. Formulation of medical knowledge based on single valued neutrosophic sets. 

3. Determination of diagnosis on the basis of new computation technique of single valued neutrosophic sets. 

5. Algorithm 

Step 1 : The symptoms of the patients are given to obtain the patient symptom relation Q and are noted in Table 1. 

Step 2 : The medical knowledge relating the symptoms with the set of diseases under consideration are given to 

obtain the symptom - disease relation R and are noted in Table 2. 

Step 3 : The Computation T ( relation between patients and diseases) is found using (1) between Table 1 & Table 2 

and are noted in Table 3 

Step 4:  Finally, we select the maximum value from Table 3 of each row for possibility of the patient affected with 

the respective disease and then we conclude that the patient Pk is suffering from the disease Dr. 

 

6. Case study [53] 

In this section, an example adapted from Gulfam Shahzadi,Muhammad Akram and Arsham Borumand Saied (An 

application of single valued neutrosophic sets in medical diagnosis) is used. 
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Let there be three patients 𝑃=(Ali,Hamza,Imran) and the set of symptoms S={Temperature,Insulin, Blood Pressure, 

Blood Platelets, Cough}.The Single valued neutrosophic relation 𝑄(𝑃 → 𝑆) is given as in Table 1.Let the set of 

diseases 𝐷 = {Diabetes, Dengue, Tuberculosis}.The Single valued neutrosophic relation𝑅(𝑆 → 𝐷) is given as in 

Table 2. 

𝑄 Temperature Insulin Blood Pressure Blood Platelets Cough 

Ali (0.8,0.1,0.1) (0.2,0.2,0.6) (0.4,0.2,0.4) (0.8,0.1,0.1) (0.3,0.3,0.4) 

Hamza (0.6,0.2,0.2) (0.9,0.0,0.1) (0.1,0.1,0.8) (0.2,0.1,0.7) (0.5,0.1,0.4) 

Imran  (0.4,0.2,0.4) (0.2,0.1,0.7) (0.1,0.2,0.7) (0.3,0.1,0.6) (0.8,0.0,0.2) 

Table 1:Patient-symptom relation(using step 1) 

 

 

R Diabetes Dengue Tuberculosis 

Temperature (0.2,0.0,0.8) (0.9,0.0,0.1) (0.6,0.2,0.2) 

Insulin (0.9,0.0,0.1) (0.0,0.2,0.8) (0.0,0.1,0.9) 

Blood Pressure (0.1,0.1,0.8) (0.8,0.1,0.1) (0.4,0.2,0.4) 

Blood Platelets (0.1,0.1,0.8) (0.9,0.0,0.1) (0.0,0.2,0.8) 

Cough (0.1,0.1,0.8) (0.1,0.1,0.8) (0.9,0.0,0.1) 

Table 2: Symptom-Disease relation (Using step 2) 

 

T Diabetes Dengue Tuberculosis 

Ali 0.3201 0.5900 0.4962 

Hamza 0.6287 0.3217 0.4991 

Imran 0.4547 0.3531 0.6031 

Table 3: Sine exponential measure(Using step 3 and step 4) 

 

7 Conclusion 

Our propounded techniques are most decisive to hold the problems related to medical diagnosis competently. 

The proposed approaches can find more implementation in other areas such as decision making, cluster analysis 

etc. 
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Abstract: In this paper, the solution of a first-order linear non-homogeneous fuzzy differential equation with an 

initial condition is described in a neutrosophic environment. For this purpose, using triangular neutrosophic 

numbers, the neutrosophic analytical method, and the fourth-order Runge-Kutta numerical method have been 

introduced for solving fuzzified first order differential equation. We also observed solutions at the (α,β,γ)-cut 

with varied time scales. In addition, the error between the analytical and numerical solution obtained on the 

(α,β,γ)-cut is evaluated and illustrated using tables with varying time. A good amount of agreement is seen 

using closed form and numerical solutions. 
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1. Introduction 

We are often faced with many ambiguous situations because of the limited, vague and uncertain 

knowledge available in our daily lives. It becomes impossible to depict and characterize any 

phenomenon in precise manner. In order to deal with these circumstances, Zadeh proposed fuzzy 

set theory in 1965 [1]. In numerous situations, we all employ intellectual terms such as "easy," "hard," 

"extremely easy," "very hard," and so on. These are ambiguous words, and the information derived 

from them differs in many ways. In fuzzy set theory, each intellectual word is assigned a 

membership grade, and all of these intellectual forms may then be simply fitted into the fuzzy 

environment. Basically, fuzzy set theory allows each element of a set "𝐴" to have a specific degree of 

membership, represented by 𝜇𝐴(𝑥), which denotes that each element 𝑥 of set 𝐴 has a membership 

value lying in the closed interval [0, 1]. When we want to fit distinct intellectual words into a fuzzy 

set then we assign a numerical value to them between 0 and 1, and call them fuzzy numbers. Chang 

and Zadeh developed fuzzy numbers in 1972 [2], while Dubois and Prade studied generalization of 

fuzzy numbers in 1978 [3]. 

In practice, we normally consider the membership value, although this is insufficient. In such cases, 

the non-membership value must also be taken into account. But fuzzy sets are established solely for 

membership values, they do not take non-membership values into account. Atanassov presented the 
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intuitionistic fuzzy set (IFS) in 1986 [4-5], which is an extension of fuzzy sets that encompassed both 

situations. Because it contains information that belongs to the set as well as information that does not 

belong to the set, intuitionistic fuzzy sets are regarded as an extension of fuzzy sets. 

In the real-life uncertainty, there is also the possibility of a different situation, known as 

indeterminacy. When the knowledge on which items belong to the set and do not belong to the set is 

insufficient, a neutral state condition known as indeterminacy arises. In order to comprehend this 

scenario in real life, Florentin Smarandache was the first to establish neutrosophic set theory which 

consider truth value, indeterminate value, and false value in 2006 [6]. In Neutrosophic set, grade of 

membership of Truth values (T), Indeterminate values (I) and False values (F) has been defined 

within the non-standard interval -]0,1[+. Non-standard intervals of the neutrosophic set theory 

works good in the concept of philosophy. In reality if we deal with engineering and science 

problems it is impossible to fit data in the non-standard interval. To solve such problems, Wang et al.  

created single-valued Neutrosophic sets by considering the unit interval [0,1] in its standard form in 

2010 [7]. Furthermore, many researchers, including Aal SIA et al., Deli and Subas , and Chakraborty 

et al. have defined single-valued neutrosophic number [8-10]. Similarly, Ye defined Trapezoidal 

Neutrosophic numbers and its application in the field of decision-making [11]. Using this approach, 

lots of work is going on by considering several real-life issues (see for instance [12-20]). For example, 

Abdel-Basset et al. presented type-2 neutrosophic numbers for decision making problems, results on 

recent pandemic COVID-19, supply chain model, industrial and management problems. Similar 

applications and other generalization of the theory are discussed in the research articles, viz; [16-21].      

Researchers must use certain methodologies, particularly differential equations, in order to initiate a 

discussion about modelling any phenomena and study its behaviour. In the modelling of any 

phenomenon, the data we receive is incomplete, imprecise, and uncertain., Kaleva proposed fuzzy 

differential equations to better grasp such ambiguity in real life in 1986 [22]. To develop the area of 

fuzzy differential equation some researchers extended the concept of calculus in fuzzy environment. 

Dubois & Prade, Goetschel & Voxman, Puri & Ralescu and others pioneered the fuzzy derivative 

and its extended theory [23-26]. They solved an initial value problem for a first order differential 

equation by employing the notion of fuzzy derivatives. Similarly, Buckley et al. proposed the 

solution of an nth order ordinary differential equation using fuzzy initial conditions [27-28]. The 

generalized Hukuhara differentiability for fuzzy-valued functions plays the most important role in 

the development of the fuzzy differential equation, which was presented by Bede and Seikkala 

[29-31]. There are many methods available in the literature to solve fuzzy differential equations, such 

as analytical, semi-analytical, and numerical methods, which have been used by various researchers, 

for example, Nieto et al. and Ghazanfari et al. who used Numerical method, namely Euler 

approximation and Runge-Kutta method of order 4 for solving first order linear fuzzy differential 

equations [32-33]. Lots of works have been done for the development of FDE (see for instance 

[34-39]). Because intuitionistic fuzzy set is a generalization of fuzzy set, fuzzy differential equation is 

likewise generalized to an intuitionistic environment. Researchers Ben et al. and many others have 

discussed analytical and numerical techniques for the solution of Intuitionistic fuzzy differential 

equation [40-41].  
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In this paper, we describe how to solve differential equations in a neutrosophic setting using 

calculus features of the neutrosophic set, which was discussed by Smarandache in 2015 [42]. He was 

first introduced neutrosophic derivative which is an extension of fuzzy derivative. Neutrosophic 

derivative has new type of the granular derivative (gr-derivative) which was introduced by Son et 

al. [43]. Also, he gave the gr-partial derivative of neutrosophic-valued several variable functions and 

investigated the if and only if condition for the existence of gr-derivative of neutrosophic-valued 

function. In the recent time, a lot of effort is done in the neutrosophic environment to describe many 

real-life occurrences using differential equations. For example, Sumanthi et al. has discussed the 

solution of neutrosophic differential equation using trapezoidal neutrosophic numbers, Parikh and 

Sahni discussed about the second order differential using Sumudu transform in neutrosophic 

environment, Moi discussed boundary value problem for second order differential equation in 

neutrosophic environment, and many other researchers discussed similar problems [44-47]. In this 

study, we addressed theory for the solution of first order differential equations using numerical 

approach, namely, Runge Kutta of 4th order in neutrosophic environment, which was inspired by 

these researches. 

1.1 Motivation:  

Our review of the literature revealed that there has been little research on Neutrosophic differential 

equations. Thus, there is a lot of scope for progress in this area. So, in order to proceed in this 

direction, we must first define the basic theory of first-order differential equations in a neutrosophic 

environment. As a result, the development of a technique for finding a solution to a differential 

equation, which has previously been done in a classical and fuzzy environment, has prompted us to 

consider similar forms of expansion in a neutrosophic environment. 

1.2 Uniqueness of paper 

This research article presents the theory of first order neutrosophic initial value problems in order to 

find a solution to a first order differential equation in a neutrosophic environment. The aims of this 

paper are as follows:  

 To define fundamental preliminary concept in the neutrosophic environment. 

 To offer an analytical approach for solving first-order differential equations using triangular 

neutrosophic numbers. 

 To propose a numerical approach for solving first-order differential equations using 

triangular neutrosophic numbers. 

 To solve the problem using both analytical and numerical methods, and to obtain the 

solution using neutrosophic triangular number. 

 Interpret the solution obtained using analytical and numerical method and calculate the 

difference between them. 

1.3 Structure of the paper  

The structure of the paper is as follow: In Section 2, certain mathematical preliminaries are provided, 

which is relevant to our study. The development of a first order differential equation employing 

neutrosophic triangular numbers, lemma, and theorems is covered in Section 3, which includes both 

analytical and numerical theory. In Section 4, the neutrosophic initial-value problem is established 
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and validated using a classical solution. Section 5 contains the results and discussions which is 

depicted graphically. Finally, a brief conclusion about this article has been given in Section 6. 

2. Mathematical Preliminaries 

Definition 2.1 Fuzzy set [3]: A membership function A(x) is defined on an element x in the 

universal set X, for every x  X, which can also be expressed as 𝜇𝐴(𝑥) ∈ [0,1]. The fuzzy set A is 

defined as,  𝐴 =  {(𝑥, 𝜇𝐴(𝑥))|∀𝑥 ∈ 𝑋}. 

Definition 2.2 α-level of Fuzzy set [3]: The α-level of set A is defined as  𝐴𝛼 = {𝜇𝐴(𝑥) ≥ 𝛼, 𝛼 ∈

[0, 1]}, where x ϵ X.  This set includes all the elements of X with membership values in A that are 

greater than or equal to α. 

Definition 2.3 Intuitionistic fuzzy set (IFS) [2]: An Intuitionistic fuzzy set B over universal set of X 

is represented by 𝐵 = {(𝑥, 𝜇𝐵(𝑥), 𝑣𝐵(𝑥))|∀𝑥 ∈ 𝑋}, where value 𝜇𝐵(𝑥) represent membership value of 

𝑥 in 𝐵, and value 𝑣𝐵(𝑥) represent non-membership value of 𝑥 in 𝐵. 

Definition 2.4 α, β - level of Intuitionistic Fuzzy set [2]: For any Intuitionistic fuzzy set B with the 

𝛼, β-level set which is defined as i.e., 𝐵𝛼,β  = {𝑥: 𝜇𝐵(𝑥) ≥ 𝛼, 𝑣𝐵(𝑥) ≤ 𝛽, ∀𝑥 ∈ 𝑋, 𝛼, 𝛽 ∈ [0,1]} with α + β ≤ 

1, where X is universal set. 

Definition 2.5 Neutrosophic set (NS) [6]:  A neutrosophic set defined as N = {TN(x), IN(x), FN(x): |∀𝑥 

∈ X}, where TN(x), IN(x), FN(x) are from universal set X →] −0, 1+ [ , which represents the truth 

membership grade (TN(x)), indeterminacy membership grade (IN(x)), and false membership grade 

(FN(x)) of the element x ∈ X, with the condition −0 ≤ TN(x) + IN(x) + FN(x) ≤ 3+. 

Definition 2.6 Single-Valued Neutrosophic Set (SVNS) [6]: Let N be any single-valued 

Neutrosophic Set which is defined as N= {TN(x), IN(x), FN(x): ∀𝑥 ∈ X}, where TN(x), IN(x), FN(x) are 

from universal set X → [0,1] represents the truth membership (TN(x)), indeterminacy membership 

(IN(x)), and false membership (FN(x)) of the element x ∈ X, with the condition 0 ≤ TN(x) + IN(x) + FN(x) 

≤ 3. 

Definition 2.7 Neutrosophic Number [6]: A neutrosophic set N defined over the universal single 

valued set of real numbers R is said to be neutrosophic number if it has the following properties: 

1) N is normal: if ∃ 𝑥0 ∈ 𝑅, such that TN (𝑥0) =1 (IN (𝑥0) = FN (𝑥0) = 0). 

2) N is convex set for the truth function TN(x), i.e., TN (𝜇𝑥1 + (1 − 𝜇)𝑥2) ≥ min (TN (𝑥1), TN (𝑥2)), 

∀𝑥1, 𝑥2 ∈ R, μ ∈ [ 0,1]. 

3) N is concave set for the indeterminacy function (IN(x)) and false function (FN(x)), 

i.e., IN (𝜇𝑥1 + (1 − 𝜇)𝑥2) ≥ max (IN (𝑥1), IN (𝑥2)), ∀𝑥1, 𝑥2  ∈ R, μ ∈ [ 0,1], FN (𝜇𝑥1 + (1 − 𝜇)𝑥2) ≥ max 

(FN (𝑥1), FN (𝑥2)), ∀𝑥1, 𝑥2∈ R, μ ∈ [0,1]. 

Definition 2.8 (α, β, γ)-level of Neutrosophic set [46]: A neutrosophic set with (α, β, γ)-level of X is 

denoted by G (α,β,γ), where α,β,γ ∈ [0,1], and is defined as G(α,β,γ) ={TN(x), IN(x), FN(x): ∀𝑥 ∈ X, 

TN(x) ≥ α, IN(x) ≤ β, FN(x) ≤ γ}, where 0 ≤ α + β + γ ≤ 3. 

Definition 2.9 Triangular Neutrosophic Number [46]: Let N be a single valued neutrosophic set 

(SVNS) having Truth 𝑇𝑁(𝑥) , Indeterminacy 𝐼𝑁(𝑥)  and False 𝐹𝑁(𝑥)  membership function over 

universal set X, then the triangular neutrosophic number is defined as 
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𝑇𝑁(𝑥) =

{
 
 

 
 (
𝑥 − 𝑎

𝑏 − 𝑎
)    𝑓𝑜𝑟  𝑎 ≤ 𝑥 < 𝑏

1          𝑓𝑜𝑟  𝑥 = 𝑏

(
𝑐 − 𝑥

𝑐 − 𝑏
)    𝑓𝑜𝑟  𝑏 < 𝑥 ≤ 𝑐

0                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐼𝑁(𝑥) =

{
 
 

 
 (
𝑏 − 𝑥

𝑏 − 𝑎
)    𝑓𝑜𝑟  𝑎 ≤ 𝑥 < 𝑏

0          𝑓𝑜𝑟  𝑥 = 𝑏

(
𝑥 − 𝑏

𝑐 − 𝑏
)    𝑓𝑜𝑟  𝑏 < 𝑥 ≤ 𝑐

1                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐹𝑀(𝑥) =

{
 
 

 
 (
𝑏 − 𝑥

𝑏 − 𝑎
)    𝑓𝑜𝑟  𝑎 ≤ 𝑥 < 𝑏

0,          𝑓𝑜𝑟  𝑥 = 𝑏

(
𝑥 − 𝑐

𝑐 − 𝑏
)    𝑓𝑜𝑟  𝑏 < 𝑥 ≤ 𝑐

1                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where 𝑎 ≤ 𝑏 ≤ 𝑐 and 𝑎, 𝑏, 𝑐 ∈ 𝑅 . Triangular neutrosophic number are denoted as 𝑁𝑇〈(𝑎, 𝑏, 𝑐)〉 

where the truth membership function (TN (x)) increases in a linear way for x ∈ [𝑎, 𝑏] and decrease in a 

linear form for x ∈ [𝑏, 𝑐] for IN (x) and FN (x) inverse behavior is seen from the truth membership for x 

∈ [𝑎, 𝑏] and for x ∈ [𝑏, 𝑐] which is depicted in figure 1. 

 

  (a) TM(x) as triangular form                          (b) IM(x) and FM(x) as triangular form 

Figure 1: Graph of Triangular Neutrosophic Number. 

Definition 2.10 (α, β, γ)-cut of a Triangular Neutrosophic Number [46]: A Triangular neutrosophic 

set with (α, β, γ)-cut is denoted by ATN(α,β,γ) , where α, β, γ ∈ [0,1], and is defined as ATN(α,β,γ) = 

{TN(x), IN(x), FN(x): TN(x) ≥ α, IN(x) ≤ β, FN(x) ≤ γ, x ∈ X }. Here 0 ≤  α +  β +  γ ≤  3 and    

ATN(α,β,γ)= [(𝑎 + 𝛼(𝑏 − 𝑎)), (𝑐 − 𝛼(𝑐 − 𝑏))], 

[(𝑏 − 𝛽(𝑏 − 𝑎)), (𝑏 + 𝛽(𝑐 − 𝑏))], 

[(𝑏 − 𝛾(𝑏 − 𝑎)), (𝑏 + 𝛾(𝑐 − 𝑏))]. 

 

3. Ordinary Differential Equation of First Order with initial value in form of Triangular 

Neutrosophic numbers 

Let us consider a linear non-homogeneous ordinary differential equation of first order,  

                              
𝑑𝑦(𝑡)

𝑑𝑡
= 𝑝𝑦(𝑡) + 𝜀 ,  𝑦(𝑡0) = 𝑦0                                   (1) 
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where 𝑦 is a dependent variable, 𝑡 is a independent variable, p and 𝜀 are constant and 𝑡0 is the 

initial value of the parameter 𝑡. 

Here, we consider initial value in the form of neutrosophic environment, so we have  

𝑦𝑇(𝑡0) = [𝑎 + 𝛼(𝑏 − 𝑎), 𝑐 − 𝛼(𝑐 − 𝑏)] 

𝑦𝐼(𝑡0) = [𝑏 − 𝛽(𝑏 − 𝑎), 𝑏 + 𝛽(𝑐 − 𝑏)] 

𝑦𝐹(𝑡0) = [𝑏 − 𝛾(𝑏 − 𝑎), 𝑏 + 𝛾(𝑐 − 𝑏)] 

where 𝑦𝑇(𝑡0), 𝑦𝐼(𝑡0), and 𝑦𝐹(𝑡0) represents truth, indeterminacy and false membership respectively. 

 

Case 1: When the coefficient 𝑝 in differential equation (1) is positive (𝑝 > 0), and taking (α, β, γ)-cut, 

the modified differential equation (1) in neutrosophic environment can be written as 

𝑑 ([𝑦𝑇(𝑡, α), 𝑦𝑇(𝑡, α)] ;   [𝑦𝐼(𝑡, β), 𝑦𝐼(𝑡, β)] ; [𝑦𝐹(𝑡, γ), 𝑦𝐹(𝑡, γ)]) 

𝑑𝑡

= 𝑝 ([𝑦𝑇(𝑡, α), 𝑦𝑇(𝑡, α)] ;  [𝑦𝐼(𝑡, β), 𝑦𝐼(𝑡, β)] ; [𝑦𝐹(𝑡, γ), 𝑦𝐹(𝑡, γ)]) + [𝜀, 𝜀]; [𝜀, 𝜀]; [𝜀, 𝜀] 

with the initial condition  

𝑦(𝑡0, α, β, γ) = ([𝑦𝑇(𝑡0, α), 𝑦𝑇(𝑡0, α)] ;   [𝑦𝐼(𝑡0, β), 𝑦𝐼(𝑡0, β)] ; [𝑦𝐹(𝑡0, γ), 𝑦𝐹(𝑡0, γ)]). 

Solving equation (1) analytically in neutrosophic environment and using initial condition, we 

obtained the solution for T, I and F as  

              𝑦𝑇(𝑡0, α) = −
𝜀

𝑝
+ (

𝜀

𝑝
+ 𝑎 + 𝛼(𝑏 − 𝑎)) 𝑒𝑝(𝑡−𝑡0)                                                                               (2) 

             𝑦𝑇(𝑡0, α) = −
𝜀

𝑝
+ (

𝜀

𝑝
+ 𝑐 − 𝛼(𝑐 − 𝑏)) 𝑒𝑝(𝑡−𝑡0)                                        (3) 

              𝑦𝐼(𝑡0, β) = −
𝜀

𝑝
+ (

𝜀

𝑝
+ 𝑏 − β(𝑏 − 𝑎)) 𝑒𝑝(𝑡−𝑡0)                                       (4) 

              𝑦𝐼(𝑡0, β) = −
𝜀

𝑝
+ (

𝜀

𝑝
+ 𝑏 + β(𝑐 − 𝑏)) 𝑒𝑝(𝑡−𝑡0)                                        (5) 

              𝑦𝐹(𝑡0, γ) = −
𝜀

𝑝
+ (

𝜀

𝑝
+ 𝑏 − γ(𝑏 − 𝑎)) 𝑒𝑝(𝑡−𝑡0)                                                                                (6) 

              𝑦𝐹(𝑡0, γ) = −
𝜀

𝑝
+ (

𝜀

𝑝
+ 𝑏 + γ(𝑐 − 𝑏)) 𝑒𝑝(𝑡−𝑡0)                                                                                (7) 

where 𝑦𝑇(𝑡0, α) and 𝑦𝑇(𝑡0, α)  represents solution in the form of lower and upper bound of truth 

value respectively. Similarly, 𝑦𝐼(𝑡0, β),  𝑦𝐼(𝑡0, β) , 𝑦𝐹(𝑡0, γ) and 𝑦𝐹(𝑡0, γ)  represents solution in the 

form of lower and upper bound of indeterminacy and false value respectively. 

If 𝜀 = 0 , then the solution of the differential equation reduced to, 

𝑦𝑇(𝑡0, α) = (𝑎 + 𝛼(𝑏 − 𝑎))𝑒𝑝(𝑡−𝑡0)     

𝑦𝑇(𝑡0, 𝛼) = (𝑐 − 𝛼(𝑐 − 𝑏))𝑒𝑝(𝑡−𝑡0)     

𝑦𝐼(𝑡0, 𝛽) = (𝑏 − 𝛽(𝑏 − 𝑎))𝑒𝑝(𝑡−𝑡0)  

𝑦𝐼(𝑡0, 𝛽) = (𝑏 + 𝛽(𝑐 − 𝑏))𝑒
𝑝(𝑡−𝑡0)  

𝑦𝐹(𝑡0, 𝛾) = (𝑏 − 𝛾(𝑏 − 𝑎))𝑒
𝑝(𝑡−𝑡0)   

𝑦𝐹(𝑡0, 𝛾) = (𝑏 + 𝛾(𝑐 − 𝑏))𝑒
𝑝(𝑡−𝑡0)   
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Case: 2 When the coefficient 𝑝 in differential equation (1) is negative (i.e 𝑝 =  −𝑚 and 𝑚 > 0), and 

taking (α, β, γ)-cut, the modified differential equation (1) in neutrosophic environment can be 

written as 

𝑑 ([𝑦𝑇(𝑡, α), 𝑦𝑇(𝑡, α)] ;   [𝑦𝐼(𝑡, β), 𝑦𝐼(𝑡, β)] ; [𝑦𝐹(𝑡, γ), 𝑦𝐹(𝑡, γ)]) 

𝑑𝑡

= 𝑝 ([𝑦𝑇(𝑡, α), 𝑦𝑇(𝑡, α)] ;  [𝑦𝐼(𝑡, β), 𝑦𝐼(𝑡, β)] ; [𝑦𝐹(𝑡, γ), 𝑦𝐹(𝑡, γ)]) + [𝜀, 𝜀]; [𝜀, 𝜀]; [𝜀, 𝜀] 

with initial condition  

𝑦(𝑡0, α, β, γ) = ([𝑦𝑇(𝑡0, α), 𝑦𝑇(𝑡0, α)] ;   [𝑦𝐼(𝑡0, β), 𝑦𝐼(𝑡0, β)] ; [𝑦𝐹(𝑡0, γ), 𝑦𝐹(𝑡0, γ)]) 

where 𝑡0 is the initial value of the parameter t. 

Solving equation (1) analytically in neutrosophic environment and using initial condition, we 

obtained the solution for T, I and F as 

[𝑦𝑇(𝑡0, 𝛼), 𝑦𝑇(𝑡0, 𝛼)]

=
1

2
((𝑎 + 𝛼(𝑏 − 𝑎)) − (𝑐 − 𝛼(𝑏 − 𝑎))𝑒𝑚(𝑡−𝑡0) +

1

2
(((𝑎 + 𝛼(𝑏 − 𝑎)) − (𝑐 − 𝛼(𝑏 − 𝑎))

−
2𝜀

𝑚
)𝑒−𝑚(𝑡−𝑡0) +

𝜀

𝑚
                                                                                                                      (8) 

[𝑦𝐼(𝑡0, 𝛽), 𝑦𝐼(𝑡0, 𝛽)]

=
1

2
((𝑏 − 𝛽(𝑏 − 𝑎)) − (𝑏 + 𝛽(𝑐 − 𝑏))) 𝑒𝑚(𝑡−𝑡0)

+
1

2
((𝑏 − 𝛽(𝑏 − 𝑎)) + (𝑏 + 𝛽(𝑐 − 𝑏)) −

2𝜀

𝑚
)𝑒−𝑚(𝑡−𝑡0) +

𝜀

𝑚
                                          (9) 

 

[𝑦𝐹(𝑡0, γ), 𝑦𝐹(𝑡0, γ)] =

=
1

2
((𝑏 − γ(𝑏 − 𝑎)) − (𝑏 + γ(𝑐 − 𝑏))) 𝑒𝑚(𝑡−𝑡0)

+
1

2
((𝑏 − γ(𝑏 − 𝑎)) + (𝑏 + γ(𝑐 − 𝑏)) −

2𝜀

𝑚
) 𝑒−𝑚(𝑡−𝑡0) +

𝜀

𝑚
                                           (10) 

 

If  𝜀 = 0  in equation (1) then the solution of the differential equation from the above equation is 

given as,  

[𝑦𝑇(𝑡0, α), 𝑦𝑇(𝑡0, α)]

=
1

2
((𝑎 + 𝛼(𝑏 − 𝑎)) − (𝑐 − 𝛼(𝑏 − 𝑎))) 𝑒𝑚(𝑡−𝑡0)

+
1

2
((𝑎 + 𝛼(𝑏 − 𝑎)) + (𝑐 − 𝛼(𝑏 − 𝑎))) 𝑒−𝑚(𝑡−𝑡0) 
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[𝑦𝐼(𝑡0, β), 𝑦𝐼(𝑡0, β)]

=
1

2
((𝑏 − β(𝑏 − 𝑎)) − (𝑏 + β(𝑐 − 𝑏))) 𝑒𝑚(𝑡−𝑡0)

+
1

2
((𝑏 − β(𝑏 − 𝑎)) + (𝑏 + β(𝑐 − 𝑏))) 𝑒−𝑚(𝑡−𝑡0) 

[𝑦𝐹(𝑡0, γ), 𝑦𝐹(𝑡0, γ)]

=
1

2
((𝑏 − γ(𝑏 − 𝑎)) − (𝑏 + γ(𝑐 − 𝑏))) 𝑒𝑚(𝑡−𝑡0)

+
1

2
((𝑏 − γ(𝑏 − 𝑎)) + (𝑏 + γ(𝑐 − 𝑏))) 𝑒−𝑚(𝑡−𝑡0)    

 

3.1 Solution of First Order Differential Equation with initial value in the form of Triangular 

Neutrosophic numbers using Runge-Kutta method of 4th order 

Let us consider a linear non-homogeneous ordinary differential equation of first order  

                            
𝑑𝑦(𝑡)

𝑑𝑡
= 𝑝𝑦(𝑡) + 𝜀 ,  𝑦(𝑡0) = 𝑦0                                     (11)                                                          

where 𝑦 is dependent variable, 𝑡 is independent variable, p and 𝜀 are constant and 𝑡0 is the initial 

value of the parameter 𝑡. 

Here, we consider initial value in form of neutrosophic environment and we have 

𝑦𝑇(𝑡0) = [𝑎 + 𝛼(𝑏 − 𝑎), 𝑐 − 𝛼(𝑐 − 𝑏)] 

𝑦𝐼(𝑡0) = [𝑏 − 𝛽(𝑏 − 𝑎), 𝑏 + 𝛽(𝑐 − 𝑏)] 

𝑦𝐹(𝑡0) = [𝑏 − 𝛾(𝑏 − 𝑎), 𝑏 + 𝛾(𝑐 − 𝑏)] 

where 𝑦𝑇(𝑡0), 𝑦𝐼(𝑡0), and 𝑦𝐹(𝑡0) represents truth, indeterminacy and false membership respectively. 

Fuzzy numerical solution of the given differential equation denoted as 

𝑦(𝑡𝑛)𝑇,𝐼,𝐹 = [𝑦(𝑡𝑛)𝑇 , 𝑦 (𝑡𝑛)𝑇 , 𝑦(𝑡𝑛)𝐼 , 𝑦 (𝑡𝑛)𝐼, 𝑦(𝑡𝑛)𝐹  , 𝑦 (𝑡𝑛)𝐹] 

where 𝑦(𝑡𝑛)𝑇 = [𝑦(𝑡𝑛)𝑇  , 𝑦 (𝑡𝑛)𝑇 ]  , 𝑦(𝑡𝑛)𝐼 = [ 𝑦(𝑡𝑛)𝐼 , 𝑦 (𝑡𝑛)𝐼 ] , 𝑦(𝑡𝑛)𝐹 = [𝑦(𝑡𝑛)𝐹  , 𝑦 (𝑡𝑛)𝐹  ]   

represents function of truth , indeterminacy and false membership respectively. 

Solving equation (11) numerically in neutrosophic environment and using initial condition, we 

obtained the solution for T, I and F as  

                      𝑦(𝑡𝑛+1)𝑇 = 𝑦(𝑡𝑛)𝑇  + ∑ 𝑃𝑗  𝑘𝑗,1(𝑡𝑛, 𝑦(𝑡𝑛)𝑇)
4
𝑗=1                                (12) 

                      𝑦(𝑡𝑛+1)𝑇 = 𝑦(𝑡𝑛)𝑇  + ∑ 𝑃𝑗  𝑘𝑗,2(𝑡𝑛, 𝑦(𝑡𝑛)𝑇)  
4
𝑗=1                               (13) 

                      𝑦(𝑡𝑛+1)𝐼 = 𝑦(𝑡𝑛)𝐼  + ∑ 𝑃𝑗  𝑘𝑗,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐼)
4
𝑗=1                                 (14) 

                      𝑦(𝑡𝑛+1)𝐼 = 𝑦(𝑡𝑛)𝐼  + ∑ 𝑃𝑗  𝑘𝑗,2(𝑡𝑛, 𝑦(𝑡𝑛)𝐼)  
4
𝑗=1                                (15) 

                      𝑦(𝑡𝑛+1)𝐹 = 𝑦(𝑡𝑛)𝐹  + ∑ 𝑃𝑗  𝑘𝑗,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐹)
4
𝑗=1                                (16) 

                      𝑦(𝑡𝑛+1)𝐹 = 𝑦(𝑡𝑛)𝐹  + ∑ 𝑃𝑗  𝑘𝑗,2(𝑡𝑛, 𝑦(𝑡𝑛)𝐹)  
4
𝑗=1                               (17) 

where the 𝑃𝑗 ’s are constants. Then 𝑘𝑗,1, 𝑘𝑗,2  for j =1, 2, 3, 4 are defined as follow for truth, 

indeterminacy and false membership respectively: 
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First we obtained equation for the truth membership, which are denoted as  𝑘𝑗,1(𝑡𝑛, 𝑦(𝑡𝑛)𝑇) , 

𝑘𝑗,2(𝑡𝑛, 𝑦(𝑡𝑛)𝑇), where j =1, 2, 3, 4, and u is function which is defined as {𝑢 𝜖 [𝑦′(𝑡𝑛)𝑇 , 𝑦 ′ (𝑡𝑛)𝑇 ]}. 

The coefficients 𝑘1,1(𝑡𝑛, 𝑦(𝑡𝑛)𝑇), 𝑘4,2(𝑡𝑛, 𝑦(𝑡𝑛)𝑇)are defined as 

 

             𝑘1,1(𝑡𝑛, 𝑦(𝑡𝑛)𝑇) = min ℎ{ 𝑦(𝑡𝑛, 𝑢)/𝑢𝜖 ( 𝑝𝑦(𝑡𝑛)𝑇 + 𝜀 , 𝑝𝑦 (𝑡𝑛)𝑇 + 𝜀)}                 (18-a) 

             𝑘1,2(𝑡𝑛, 𝑦(𝑡𝑛)𝑇) = max ℎ{ 𝑦(𝑡𝑛, 𝑢)/𝑢𝜖 ( 𝑝𝑦(𝑡𝑛)𝑇 + 𝜀 , 𝑝𝑦 (𝑡𝑛)𝑇 + 𝜀)}                 (18-b) 

            𝑘2,1(𝑡𝑛, 𝑦(𝑡𝑛)𝑇) = min ℎ{ 𝑦(𝑡𝑛 +
ℎ

2
, 𝑢)/𝑢𝜖 ((𝑞1,1(𝑡𝑛, 𝑦(𝑡𝑛))), (𝑞1,2(𝑡𝑛, 𝑦(𝑡𝑛)))) }       (18-c) 

  𝑘2,2(𝑡𝑛, 𝑦(𝑡𝑛)𝑇) = max ℎ{ 𝑦(𝑡𝑛 +
ℎ

2
, 𝑢)/𝑢𝜖 ((𝑞1,1(𝑡𝑛, 𝑦(𝑡𝑛))), (𝑞1,2(𝑡𝑛, 𝑦(𝑡𝑛))))}        (18-d) 

 𝑘3,1(𝑡𝑛, 𝑦(𝑡𝑛)𝑇) = min ℎ{ 𝑦(𝑡𝑛 +
ℎ

2
, 𝑢)/𝑢𝜖 ((𝑞2,1(𝑡𝑛, 𝑦(𝑡𝑛))), (𝑞2,2(𝑡𝑛, 𝑦(𝑡𝑛)))}          (18-e) 

          𝑘3,2(𝑡𝑛, 𝑦(𝑡𝑛)𝑇) = max ℎ{ 𝑦(𝑡𝑛 +
ℎ

2
, 𝑢)/𝑢𝜖 ((𝑞2,1(𝑡𝑛, 𝑦(𝑡𝑛))), (𝑞2,2(𝑡𝑛, 𝑦(𝑡𝑛)))}           (18-f) 

         𝑘4,1(𝑡𝑛, 𝑦(𝑡𝑛)𝑇) = min ℎ{ 𝑦(𝑡𝑛 +
ℎ

2
, 𝑢)/𝑢𝜖 ((𝑞3,1(𝑡𝑛, 𝑦(𝑡𝑛))), (𝑞3,2(𝑡𝑛, 𝑦(𝑡𝑛)))}            (18-g) 

      𝑘4,2(𝑡𝑛, 𝑦(𝑡𝑛)𝑇) = max ℎ{ 𝑦(𝑡𝑛 +
ℎ

2
, 𝑢)/𝑢𝜖 (((𝑞3,1(𝑡𝑛, 𝑦(𝑡𝑛))), (𝑞3,2(𝑡𝑛, 𝑦(𝑡𝑛)))}             (18-h) 

In above equations, we define 𝑞𝑗,1(𝑡𝑛, 𝑦(𝑡𝑛))), 𝑞𝑗,2(𝑡𝑛, 𝑦(𝑡𝑛))) for j =1, 2, 3 as follows, 

𝑞1,1(𝑡𝑛, 𝑦(𝑡𝑛)) = 𝑦(𝑡𝑛)𝑇 +
ℎ

2
𝑘1,1(𝑡𝑛, 𝑦(𝑡𝑛)𝑇) 

𝑞1,2(𝑡𝑛, 𝑦(𝑡𝑛)) = 𝑦(𝑡𝑛)𝑇 +
ℎ

2
𝑘1,2(𝑡𝑛, 𝑦(𝑡𝑛)𝑇) 

𝑞2,1(𝑡𝑛, 𝑦(𝑡𝑛)) = 𝑦(𝑡𝑛)𝑇 +
ℎ

2
𝑘2,1(𝑡𝑛, 𝑦(𝑡𝑛)𝑇) 

𝑞2,2(𝑡𝑛, 𝑦(𝑡𝑛)) = 𝑦(𝑡𝑛)𝑇 +
ℎ

2
𝑘2,2 (𝑡𝑛, 𝑦(𝑡𝑛)𝑇) 

𝑞3,1(𝑡𝑛, 𝑦(𝑡𝑛)) = 𝑦(𝑡𝑛)𝑇 +
ℎ

2
𝑘3,1(𝑡𝑛, 𝑦(𝑡𝑛)𝑇) 

𝑞3,2(𝑡𝑛, 𝑦(𝑡𝑛)) = 𝑦(𝑡𝑛)𝑇 +
ℎ

2
𝑘3,2(𝑡𝑛, 𝑦(𝑡𝑛)𝑇) 

 

Secondly, we obtained equation for the intederminancy membership which are denoted as 

 𝑘𝑗,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐼) , 𝑘𝑗,2(𝑡𝑛, 𝑦(𝑡𝑛)𝐼) , where j = 1, 2, 3, 4, and u is function which is defined as 

{𝑢 𝜖 [𝑦′(𝑡𝑛)𝐼  , 𝑦 ′ (𝑡𝑛)𝐼 ]}. Thus, 

     𝑘1,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐼) = min ℎ{ 𝑦(𝑡𝑛, 𝑢)/𝑢𝜖 ( 𝑝𝑦(𝑡𝑛)𝐼 + 𝜀 , 𝑝𝑦 (𝑡𝑛)𝐼 + 𝜀)}                    (19-a) 

         𝑘1,2(𝑡𝑛, 𝑦(𝑡𝑛)𝐼) = max ℎ{ 𝑦(𝑡𝑛, 𝑢)/𝑢𝜖  ( 𝑝𝑦(𝑡𝑛)𝐼 + 𝜀 , 𝑝𝑦 (𝑡𝑛)𝐼 + 𝜀)}                    (19-b) 

       𝑘2,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐼) = min ℎ{ 𝑦(𝑡𝑛 +
ℎ

2
, 𝑢)/𝑢𝜖  ((𝑟1,1(𝑡𝑛, 𝑦(𝑡𝑛))), (𝑟1,2(𝑡𝑛, 𝑦(𝑡𝑛)))}             (19-c) 
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        𝑘2,2(𝑡𝑛, 𝑦(𝑡𝑛)𝐼) = max ℎ{ 𝑦(𝑡𝑛 +
ℎ

2
, 𝑢)/𝑢𝜖 ((𝑟1,1(𝑡𝑛, 𝑦(𝑡𝑛))), (𝑟1,2(𝑡𝑛, 𝑦(𝑡𝑛)))}            (19-d) 

        𝑘3,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐼) = min ℎ{ 𝑦(𝑡𝑛 +
ℎ

2
, 𝑢)/𝑢𝜖 ((𝑟2,1(𝑡𝑛, 𝑦(𝑡𝑛))), (𝑟2,2(𝑡𝑛, 𝑦(𝑡𝑛)))}            (19-e) 

       𝑘3,2(𝑡𝑛, 𝑦(𝑡𝑛)𝐼) = max ℎ{ 𝑦(𝑡𝑛 +
ℎ

2
, 𝑢)/𝑢𝜖 ((𝑟2,1(𝑡𝑛, 𝑦(𝑡𝑛))), (𝑟2,2(𝑡𝑛, 𝑦(𝑡𝑛)))}            (19-f) 

      𝑘4,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐼) = min ℎ{ 𝑦(𝑡𝑛 +
ℎ

2
, 𝑢)/𝑢𝜖 ((𝑟3,1(𝑡𝑛, 𝑦(𝑡𝑛))), (𝑟3,2(𝑡𝑛, 𝑦(𝑡𝑛)))}             (19-g) 

       𝑘4,2(𝑡𝑛, 𝑦(𝑡𝑛)𝐼) = max ℎ{ 𝑦(𝑡𝑛 +
ℎ

2
, 𝑢)/𝑢𝜖 ((𝑟3,1(𝑡𝑛, 𝑦(𝑡𝑛))), (𝑟3,2(𝑡𝑛, 𝑦(𝑡𝑛)))             (19-h) 

In above equations, we define 𝑟𝑗,1(𝑡𝑛, 𝑦(𝑡𝑛))), 𝑟𝑗,2(𝑡𝑛, 𝑦(𝑡𝑛))) for j =1, 2, 3 as follows, 

𝑟1,1(𝑡𝑛, 𝑦(𝑡𝑛)) = 𝑦(𝑡𝑛)𝐼 +
ℎ

2
𝑘1,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐼) 

𝑟1,1(𝑡𝑛, 𝑦(𝑡𝑛)) = 𝑦(𝑡𝑛)𝐼 +
ℎ

2
𝑘1,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐼) 

𝑟1,2(𝑡𝑛, 𝑦(𝑡𝑛)) = 𝑦(𝑡𝑛)𝐼 +
ℎ

2
𝑘1,2(𝑡𝑛, 𝑦(𝑡𝑛)𝐼) 

𝑟2,1(𝑡𝑛, 𝑦(𝑡𝑛)) = 𝑦(𝑡𝑛)𝐼 +
ℎ

2
𝑘2,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐼) 

𝑟2,2(𝑡𝑛, 𝑦(𝑡𝑛)) = 𝑦(𝑡𝑛)𝐼 +
ℎ

2
𝑘2,2 (𝑡𝑛, 𝑦(𝑡𝑛)𝐼) 

𝑟3,1(𝑡𝑛, 𝑦(𝑡𝑛)) = 𝑦(𝑡𝑛)𝐼 +
ℎ

2
𝑘3,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐼) 

𝑟3,2(𝑡𝑛, 𝑦(𝑡𝑛)) = 𝑦(𝑡𝑛)𝐼 +
ℎ

2
𝑘3,2(𝑡𝑛, 𝑦(𝑡𝑛)𝐼) 

Lastly, we obtained equation for the false membership which are denoted as  𝑘𝑗,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐹) , 

𝑘𝑗,2(𝑡𝑛, 𝑦(𝑡𝑛)𝐹), where j = 1, 2, 3, 4, and u is function which is defined as {𝑢 𝜖 [𝑦′(𝑡𝑛)𝐹  , 𝑦 ′ (𝑡𝑛)𝐹  ]}. 

Thus, 

 𝑘1,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐹) = min ℎ{ 𝑦(𝑡𝑛, 𝑢)/𝑢𝜖 ( 𝑝𝑦(𝑡𝑛)𝐹 + 𝜀 , 𝑝𝑦 (𝑡𝑛)𝐹 + 𝜀) }                 (20-a) 

 𝑘1,2(𝑡𝑛, 𝑦(𝑡𝑛)𝐹) = max ℎ{ 𝑦(𝑡𝑛, 𝑢)/𝑢𝜖  ( 𝑝𝑦(𝑡𝑛)𝐹 + 𝜀 , 𝑝𝑦 (𝑡𝑛)𝐹 + 𝜀) }                  (20-b) 

𝑘2,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐹) = min ℎ{ 𝑦(𝑡𝑛 +
ℎ

2
, 𝑢)/𝑢𝜖 ((𝑠1,1(𝑡𝑛, 𝑦(𝑡𝑛))), (𝑠1,2(𝑡𝑛, 𝑦(𝑡𝑛)))}            (20-c) 

𝑘2,2(𝑡𝑛, 𝑦(𝑡𝑛)𝐹) = max ℎ{ 𝑦(𝑡𝑛 +
ℎ

2
, 𝑢)/𝑢𝜖 ((𝑠1,1(𝑡𝑛, 𝑦(𝑡𝑛))), (𝑠1,2(𝑡𝑛, 𝑦(𝑡𝑛)))}         (20-d) 

𝑘3,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐹) = min ℎ{ 𝑦(𝑡𝑛 +
ℎ

2
, 𝑢)/𝑢𝜖 ((𝑠2,1(𝑡𝑛, 𝑦(𝑡𝑛))), (𝑠2,2(𝑡𝑛, 𝑦(𝑡𝑛)))}           (20-e) 

𝑘3,2(𝑡𝑛, 𝑦(𝑡𝑛)𝐹) = max ℎ{ 𝑦(𝑡𝑛 +
ℎ

2
, 𝑢)/𝑢𝜖 ((𝑠2,1(𝑡𝑛, 𝑦(𝑡𝑛))), (𝑠2,2(𝑡𝑛, 𝑦(𝑡𝑛)))}          (20-f) 

𝑘4,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐹) = min ℎ{ 𝑦(𝑡𝑛 +
ℎ

2
, 𝑢)/𝑢𝜖 ((𝑠3,1(𝑡𝑛, 𝑦(𝑡𝑛))), (𝑠3,2(𝑡𝑛, 𝑦(𝑡𝑛))) }         (20-g) 
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𝑘4,2(𝑡𝑛, 𝑦(𝑡𝑛)𝐹) = max ℎ{ 𝑦(𝑡𝑛 +
ℎ

2
, 𝑢)/𝑢𝜖 ((𝑠3,1(𝑡𝑛, 𝑦(𝑡𝑛))), (𝑠3,2(𝑡𝑛, 𝑦(𝑡𝑛)))}           (20-h) 

 

In the above equations, we define 𝑠𝑗,1(𝑡𝑛, 𝑦(𝑡𝑛))), 𝑠𝑗,2(𝑡𝑛, 𝑦(𝑡𝑛))) for j =1, 2, 3 as follows, 

𝑠1,1(𝑡𝑛, 𝑦(𝑡𝑛)) = 𝑦(𝑡𝑛)𝐹 +
ℎ

2
𝑘1,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐹) 

𝑠1,1(𝑡𝑛, 𝑦(𝑡𝑛)) = 𝑦(𝑡𝑛)𝐹 +
ℎ

2
𝑘1,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐹) 

𝑠1,2(𝑡𝑛, 𝑦(𝑡𝑛)) = 𝑦(𝑡𝑛)𝐹 +
ℎ

2
𝑘1,2(𝑡𝑛, 𝑦(𝑡𝑛)𝐹) 

𝑠2,1(𝑡𝑛, 𝑦(𝑡𝑛)) = 𝑦(𝑡𝑛)𝐹 +
ℎ

2
𝑘2,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐹) 

𝑠2,2(𝑡𝑛, 𝑦(𝑡𝑛)) = 𝑦(𝑡𝑛)𝐹 +
ℎ

2
𝑘2,2 (𝑡𝑛, 𝑦(𝑡𝑛)𝐹) 

𝑠3,1(𝑡𝑛, 𝑦(𝑡𝑛)) = 𝑦(𝑡𝑛)𝐹 +
ℎ

2
𝑘3,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐹) 

𝑠3,2(𝑡𝑛, 𝑦(𝑡𝑛)) = 𝑦(𝑡𝑛)𝐹 +
ℎ

2
𝑘3,2(𝑡𝑛, 𝑦(𝑡𝑛)𝐹) 

From the equations 18-(a to h), 19-(a to h) and 20-(a to h) we obtained the solution as follows, 

𝑦(𝑡𝑛+1)𝑇 = 𝑦(𝑡𝑛)𝑇  +
1

6
[ 𝑘1,2(𝑡𝑛, 𝑦(𝑡𝑛)𝑇) + 2𝑘2,2(𝑡𝑛, 𝑦(𝑡𝑛)𝑇) + 2𝑘3,2(𝑡𝑛, 𝑦(𝑡𝑛)𝑇) + 𝑘4,2(𝑡𝑛, 𝑦(𝑡𝑛)𝑇)]  (21) 

𝑦(𝑡𝑛+1)𝑇 = 𝑦(𝑡𝑛)𝑇  +
1

6
[ 𝑘1,2(𝑡𝑛, 𝑦(𝑡𝑛)𝑇) + 2𝑘2,2(𝑡𝑛, 𝑦(𝑡𝑛)𝑇) + 2𝑘3,2(𝑡𝑛, 𝑦(𝑡𝑛)𝑇) + 𝑘4,2(𝑡𝑛, 𝑦(𝑡𝑛)𝑇)]  (22) 

𝑦(𝑡𝑛+1)𝐼 = 𝑦(𝑡𝑛)𝐼  +
1

6
[ 𝑘1,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐼) + 2𝑘2,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐼) + 2𝑘3,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐼) + 𝑘4,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐼)]     (23) 

𝑦(𝑡𝑛+1)𝐼 = 𝑦(𝑡𝑛)𝐼  +
1

6
[ 𝑘1,2(𝑡𝑛, 𝑦(𝑡𝑛)𝐼) + 2𝑘2,2(𝑡𝑛, 𝑦(𝑡𝑛)𝐼) + 2𝑘3,2(𝑡𝑛, 𝑦(𝑡𝑛)𝐼) + 𝑘4,2(𝑡𝑛, 𝑦(𝑡𝑛)𝐼)]    (24) 

𝑦(𝑡𝑛+1)𝐹 = 𝑦(𝑡𝑛)𝐹  +
1

6
[ 𝑘1,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐹) + 2𝑘2,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐹) + 2𝑘3,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐹) + 𝑘4,1(𝑡𝑛, 𝑦(𝑡𝑛)𝐹)]  (25) 

𝑦(𝑡𝑛+1)𝐹 = 𝑦(𝑡𝑛)𝐹  +
1

6
[ 𝑘1,2(𝑡𝑛, 𝑦(𝑡𝑛)𝐹) + 2𝑘2,2(𝑡𝑛, 𝑦(𝑡𝑛)𝐹) + 2𝑘3,2(𝑡𝑛, 𝑦(𝑡𝑛)𝐹) + 𝑘4,2(𝑡𝑛, 𝑦(𝑡𝑛)𝐹)]  (26) 

where 𝑦(𝑡𝑛+1)𝑇 = [𝑦(𝑡𝑛+1)𝑇 , 𝑦(𝑡𝑛+1)𝑇]  represent solution in the form of truth membership. 

Similarly, 𝑦(𝑡𝑛+1)𝐼 = [𝑦(𝑡𝑛+1)𝐼 , 𝑦(𝑡𝑛+1)𝐼] , 𝑦(𝑡𝑛+1)𝐹 = [𝑦(𝑡𝑛+1)𝐹 , 𝑦(𝑡𝑛+1)𝐹  represents solution for 

indeterminacy and false membership respectively.   

The approximate solutions for 𝑡𝑛, 0 ≤ 𝑡 ≤ 𝑁 are denoted by 

𝑦(𝑡𝑛)𝑇,𝐼,𝐹 = [𝑦(𝑡𝑛)𝑇 , 𝑦 (𝑡𝑛)𝑇 , 𝑦(𝑡𝑛)𝐼 , 𝑦 (𝑡𝑛)𝐼,𝑦(𝑡𝑛)𝐹  , 𝑦 (𝑡𝑛)𝐹]. 

The solution is calculated using grid points  𝑎 = 𝑡0 ≤ 𝑡1 ≤ 𝑡2… ≤ 𝑡𝑛 = 𝑏 and ℎ =
𝑏−𝑎

𝑁
= 𝑡𝑛+1 − 𝑡𝑛 

                            𝑦(𝑡𝑛+1)𝑇 = 𝑦(𝑡𝑛)𝑇  +
1

6
𝑦[(𝑡𝑛, 𝑦(𝑡𝑛)𝑇)]                              (27) 
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                            𝑦(𝑡𝑛+1)𝑇 = 𝑦(𝑡𝑛)𝑇  +
1

6
𝑦[(𝑡𝑛, 𝑦(𝑡𝑛)𝑇)]                              (28) 

                            𝑦(𝑡𝑛+1)𝐼 = 𝑦(𝑡𝑛)𝐼  +
1

6
𝑦[(𝑡𝑛, 𝑦(𝑡𝑛)𝐼)]                               (29) 

                            𝑦(𝑡𝑛+1)𝐼 = 𝑦(𝑡𝑛)𝐼  +
1

6
𝑦[(𝑡𝑛, 𝑦(𝑡𝑛)𝐼)]                               (30) 

                           𝑦(𝑡𝑛+1)𝐹 = 𝑦(𝑡𝑛)𝐹  +
1

6
𝑦[(𝑡𝑛, 𝑦(𝑡𝑛)𝐹)]                               (31) 

                           𝑦(𝑡𝑛+1)𝐹 = 𝑦(𝑡𝑛)𝐹  +
1

6
𝑦[(𝑡𝑛, 𝑦(𝑡𝑛)𝐹)]                               (32) 

where 𝑦(𝑡𝑛)𝑇 = [𝑦(𝑡𝑛)𝑇  , 𝑦 (𝑡𝑛)𝑇 ]  , 𝑦(𝑡𝑛)𝐼 = [ 𝑦(𝑡𝑛)𝐼 , 𝑦 (𝑡𝑛)𝐼 ] , and 𝑦(𝑡𝑛)𝐹 = [𝑦(𝑡𝑛)𝐹  , 𝑦 (𝑡𝑛)𝐹  ]   

represents function of truth, indeterminacy, and false membership respectively. 

 

4. Numerical Example: 

In order to validate our development of theoretical approach we have performed numerical studies. 

In validation section, we summarize the results of these tests and compare the results with classical 

solution as well as fuzzy analytical solution and also discuss the error between them. So, for that we 

consider generalized Fuzzy initial value problem, which is 𝑦′(𝑡) = 𝑦(𝑡), 𝑦(0) = 1 and we find the 

solution for 𝑦 at t=1. 

Solution: We apply classical method, analytical method and numerical method in an neutrosophic 

environment and then compare the solution as well as error between different method. 

 

Method-1 Classical method 

Given equation is 𝑦′(𝑡) = 𝑦(𝑡), 𝑦(0) = 1  

Solving first order linear differntial eqution with initial condition we get following equation, 

𝑦(𝑡) = 𝑒𝑡 

For t=1, the solution of y(t) is 2.7183 upto four decimal places. 

 

 

Method-2 Fuzzified Analytical method 

Let us consider differential equation 𝑦′(𝑡) = 𝑦(𝑡) with initial values for truth, indeterminancy,and 

false membership given in the form of tringular neutrosophic numbers, 

𝑦𝑇(0) = [𝛼, 2 − 𝛼], 𝑦𝐼(0) = [1 − 0.5𝛽, 1 + 0.5𝛽],     𝑦𝐹(0) = [1 − 0.25𝛾, 1 + 0.25𝛾] 

Solving differential equation 𝑦′(𝑡) = 𝑦(𝑡) with proposed fuzzified analytical theory (section 3 case 1 

equations (2) to (7)), we get the following solution, 

     𝑦(𝑡)𝑇𝛼 = 𝛼𝑒
𝑡                   𝑦(𝑡)𝑇𝛼 = (2 − 𝛼)𝑒𝑡 

𝑦(𝑡)𝐼𝛽 = (1 − 0.5𝛽)𝑒𝑡              𝑦(𝑡)𝐼𝛽 = (1 + 0.5𝛽)𝑒𝑡 

𝑦(𝑡)𝐹𝛾 = (1 − 0.25𝛾)𝑒𝑡             𝑦(𝑡)𝐹𝛾 = (1 + 0.25𝛾)𝑒𝑡 

 

Method-3 Fuzzy Numerical method 
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Let us consider differential equation 𝑦′(𝑡) = 𝑦(𝑡) with initial values for truth, indeterminancy,and 

false membership which is in the form of tringular neutrosophic numbers as, 

𝑦(0)𝑇 = [𝛼, 2 − 𝛼], 𝑦(0)𝐼 = [1 − 0.5𝛽, 1 + 0.5𝛽], 𝑦(0)𝐹 = [1 − 0.25𝛾, 1 + 0.25𝛾] 

Solving differential equation 𝑦′(𝑡) = 𝑦(𝑡) by proposed Runge kutta method of 4 th order (section 3.1 

case -1 equations (27) to (32)), we get following solutions, 

y(t1)Tα = α +
1

6
(
41α

4
)                                          (33) 

y(t1)Tα = (2 − α) +
1

6
(
82−41α

4
)                 (34) 

y(t1)Iβ = (1 − 0.5β) +
1

6
(10.25 − 0.8541β)                                   (35) 

y(t1)Iβ = (1 + 0.5β) +
1

6
(10.25 + 0.8541β)                                   (36) 

                   y(t1)Fγ = (1 − 0.25γ) +
1

6
(10.25 − 2.5625γ)                                  (37) 

y(t1)Fγ = (1 + 0.25γ) +
1

6
(10.25 + 2.5625γ)                                  (38) 

5. Numerical observation 

                     Table :1  Solution of y(t) using RK 4th order at t=0.1 and h=0.1 

(𝜶, 𝜷, 𝜸) −

𝒄𝒖𝒕 

Lower bound of 

Truth value at 

t=0.1 

 𝒚(𝒕𝟎)𝑻𝜶 

Upper bound of 

Truth value at 

t=0.1 

𝒚(𝒕𝟎)𝑻𝜶 

Lower bound of 

Indeterminacy 

value at t=0.1 

𝒚(𝒕𝟎)𝑰𝜷 

Upper bound of 

Indeterminacy 

value at t=0.1 

𝒚(𝒕𝟎)𝑰𝜷 

Lower bound 

of Falsity 

value at t=0.1 

𝒚(𝒕𝟎)𝑭𝜸 

Upper bound of 

Falsity value at 

t=0.1 

𝒚(𝒕𝟎)𝑭𝜸 

0 0.0000000000 2.2103416667 1.1051708333 1.1051708333 1.1051708333 1.1051708333 

0.2 0.2210341667 1.9893075000 0.9946537500 1.2156879167 1.0499122917 1.1604293750 

0.4 0.4420683333 1.7682733333 0.8841366667 1.3262050000 0.9946537500 1.2156879167 

0.6 0.6631025000 1.5472391667 0.7736195833 1.4367220833 0.9393952083 1.2709464583 

0.8 0.8841366667 1.3262050000 0.6631025000 1.5472391667 0.8841366667 1.3262050000 

1 1.1051708333 1.1051708333 0.5525854167 1.6577562500 0.8288781250 1.3814635417 

 

Table :2 Solution of y(t) using RK 4th order at t=0.5 and h=0.1 

(𝜶, 𝜷, 𝜸) −

𝒄𝒖𝒕 

Lower bound of 

Truth value at 

t=0.5 

𝒚(𝒕𝟎.𝟓)𝑻𝜶 

Upper bound of 

Truth value at 

t=0.5 

𝒚(𝒕𝟎.𝟓)𝑻𝜶 

Lower bound of 

Indeterminacy 

value at t=0.5 

𝒚(𝒕𝟎.𝟓)𝑰𝜷 

Upper bound of 

Indeterminacy 

value at t=0.5 

𝒚(𝒕𝟎.𝟓)𝑰𝜷 

Lower bound of 

Falsity value at 

t=0.5 

𝒚(𝒕𝟎.𝟓)𝑭𝜸 

Upper bound of 

Falsity value at 

t=0.5 

𝒚(𝒕𝟎.𝟓)𝑭𝜸 

0 0.0000000000 3.6442359242 1.8221179621 1.8221179621 1.8221179621 1.8221179621 

0.2 0.3644235924 3.2798123318 1.6399061659 2.0043297583 1.7310120640 1.9132238602 

0.4 0.5967296960 2.9153887393 1.4576943697 2.1865415545 1.6399061659 2.0043297583 

0.6 1.0932707773 2.5509651469 1.2754825735 2.3687533507 1.5488002678 2.0954356564 

0.8 1.1934593921 2.1865415545 1.0932707773 2.5509651469 1.4576943697 2.1865415545 
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1 1.8221179621 1.8221179621 0.9110589810 2.7331769431 1.3665884716 2.2776474526 

 

Table :3 Solution of y(t) using RK 4th order at t=1 and h=0.1 

(𝜶, 𝜷, 𝜸) −

𝒄𝒖𝒕 

Lower bound of 

Truth value at t=1 

𝒚(𝒕𝟏)𝑻𝜶 

Upper bound of 

Truth value at 

t=1 

𝒚(𝒕𝟏)𝑻𝜶 

Lower bound of 

Indeterminacy 

value at t=1 

𝒚(𝒕𝟏)𝑰𝜷 

Upper bound of 

Indeterminacy 

value at t=1 

𝒚(𝒕𝟏)𝑰𝜷 

Lower bound of 

Falsity value at 

t=1 

𝒚(𝒕𝟏)𝑭𝜸 

Upper bound of 

Falsity value at 

t=1 

𝒚(𝒕𝟏)𝑭𝜸 

0 0.0000000000 5.4365594883 2.7182797441 2.7182797441 2.7182797441 2.7182797441 

0.2 0.4919202828 4.8929035394 2.4464517697 2.9901077185 2.5823657569 2.8541937313 

0.4 0.8902158253 4.3492475906 2.1746237953 3.2619356930 2.4464517697 2.9901077185 

0.6 1.6309678465 3.8055916418 1.9027958209 3.5337636674 2.3105377825 3.1260217058 

0.8 1.7804316506 3.2619356930 1.6309678465 3.8055916418 2.1746237953 3.2619356930 

1 2.7182797441 2.7182797441 1.3591398721 4.0774196162 2.0387098081 3.3978496802 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Solution of y(t) at t=0.1. 
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Figure 3: Solution of y(t) at t=0.5. 

 

Figure 4: Solution of y(t) at t=1. 
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The results obtained from the calculation of equations (33) to (38) are shown in tables 1 to 3 

respectively, for different (, ,γ)-cut values with respect to the step size h= 0.2. It is clearly seen from 

the table 1 that the value of truth membership y(t)T = [y(t0)Tα, y(t0)Tα] for lower bound increases 

and the upper bound decreases. Similarly for indeterminacy, given by 𝑦(𝑡)𝐼 = [𝑦(𝑡0)𝐼𝛽 , 𝑦(𝑡0)𝐼𝛽]) and 

false membership (𝑦(𝑡)𝐹 = [𝑦(𝑡0)𝐹𝛾 , 𝑦(𝑡0)𝐹𝛾]) for lower bound decreases and for the upper bound 

increases (depicted in the tables 2 and 3 respectively). In addition, from table 3, we observed that 

value of lower and upper bound of truth membership for (, ,γ)-cut, when equal to 1 is 

2.7182797441 and value of lower and upper bound for indeterminacy (𝑦(𝑡)𝐼 = [𝑦(𝑡0)𝐼𝛽 , 𝑦(𝑡0)𝐼𝛽]) and 

false membership (𝑦(𝑡)𝐹 = [𝑦(𝑡0)𝐹𝛾, 𝑦(𝑡0)𝐹𝛾]) at (, ,γ)-cut when equal to 0 are 2.7182797441, which 

match with exact solution. The graphs for various values for truth, indeterminacy and falsity with 

(,,γ)-cut are shown in figures 2, 3 and 4 respectively for different values of t (time). As the -cut 

value increases and ,γ-cut values decrease solution approaches to the exact solution. 

 

Table :4  Error Between RK 4th order and exact solution. 

 

Furthermore, table 4 represents error between exact solution and solution obtained from 

Runge-Kutta 4th order. From the table 4, it is clearly seen that the exact solution at t=1 is 2.718281828 

and on the other hand solution at t=1 is 2.718279744 using Runge-Kutta 4th order in neutrosophic 

environment for truth membership at (, ,γ)-cut equal to 1 and the error between them is 

0.00000208432.  

 

6. Conclusion 

In this paper, the first order ordinary differential equation using neutrosophic numbers with initial 

conditions have been solved. We have developed theory in a neutrosophic environment 

supplemented with an example showing the solution for first-order linear homogeneous differential 

equation both using analytical and numerical approach. For generalization, the (,,) - cut values 

t(time) Exact solution 

Approximate solution by RK 4th 

order method where step size 

h=0.1 

Error Between exact solution and 

solution find by RK 4th order 

0.1 1.105170918 1.105170833 0.00000008467 

0.2 1.221402758 1.221402571 0.00000018731 

0.3 1.349858808 1.349858497 0.00000031052 

0.4 1.491824698 1.491824240 0.00000045756 

0.5 1.648721271 1.648720639 0.00000063210 

0.6 1.822118800 1.822117962 0.00000083830 

0.7 2.013752707 2.013751627 0.00000108087 

0.8 2.225540928 2.225539563 0.00000136520 

0.9 2.459603111 2.459601414 0.00000169738 

1 2.718281828 2.718279744 0.00000208432 
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are used for the neutrosophic numbers. Thus, to show the effectiveness of proposed method it has 

been applied to general example where the solution is given in terms of the truth, indeterminacy and 

falsity membership grade. We have shown the results in the form of tables for different (,,) - cut 

values and the graphs are also drawn. The results obtained are also discussed in details. Also, we 

have shown the growth of error between exact solution and approximate solution which are 

represented by tabulated values. This will promote the future study on higher order differential 

equations with neutrosophic numbers using numerical method which will help to decrease the 

error. 
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Abstract: In this paper, we shall study some new concepts of weakly neutrosophic crisp separation axioms, 

which are called “neutrosophic crisp -separation and neutrosophic crisp semi--separation axioms” such as 

neutrosophic crisp -𝑇𝑖 and neutrosophic crisp semi--𝑇𝑖 , ∀ 𝑖 = 0, 1, … , 4. Moreover, we shall study the 

relationship between usual neutrosophic crisp separation axioms and these kinds of weakly neutrosophic crisp 
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1. Introduction 

A. A. Salama et al. [1] give a concept of neutrosophic crisp topological space (briefly NCTS). A. 

A. Salama [2] provided some classes of neutrosophic crisp nearly open sets. A. H. M. Al-Obaidi et al. 

[3,4] give concepts of weakly neutrosophic crisp functions. Md. Hanif PAGE et al. [5] examined the 

view of neutrosophic generalized homeomorphism. Q. H. Imran et al. [6-8] established neutrosophic 

semi- -open sets, new types of weakly neutrosophic crisp continuity and new concepts of 

neutrosophic crisp open sets. R. Dhavaseelan et al. [9] examined the view of neutrosophic 

𝛼𝑚 -continuity. R. K. Al-Hamido et al. [10] tendered the interpretation of neutrosophic crisp 

semi--closed sets. A. B. Al-Nafee et al. [11] demonstrated the principle of separation axioms in 

neutrosophic crisp topological spaces. R. K. Al-Hamido et al. [12] provided neutrosophic crisp semi 

separation axioms. The objective of this paper is to study some new concepts of weakly neutrosophic 

crisp separation axioms, which are called “neutrosophic crisp -separation and neutrosophic crisp 

semi--separation axioms” such as neutrosophic crisp -𝑇𝑖  and neutrosophic crisp semi--𝑇𝑖 , ∀ 𝑖 =

0, 1, … , 4. Moreover, we shall study the relationship between usual neutrosophic crisp separation 

axioms and these kinds of weakly neutrosophic crisp separation axioms. 

2. Preliminaries 

Throughout this paper, (𝒮, 𝜁) and (ℐ, 𝜂)  (or simply 𝒮  and ℐ) always mean NCTSs. The 

complement of a neutrosophic crisp open set (briefly NC-OS) is called a neutrosophic crisp closed 
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mailto:smarand@unm.edu
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set (briefly NC-CS) in (𝒮, 𝜁). For a NCS 𝔅 in a NCTS (𝒮, 𝜁), 𝑁𝐶𝑐𝑙(𝔅), 𝑁𝐶𝑖𝑛𝑡(𝔅) and 𝔅𝑐 denote 

the NC-closure of 𝔅, the NC-interior of 𝔅 and the NC-complement of 𝔅 respectively. 

Definition 2.1 [1]:  

For any nonempty under-consideration set 𝒮, a neutrosophic crisp set (in short NCS) 𝔅 is an object 

holding the establish 𝔅 = 〈𝔅1, 𝔅2, 𝔅3〉 where 𝔅1, 𝔅2 and 𝔅3 are mutually disjoint sets included in 

𝒮.  

Definition 2.2:  

A NC-subset 𝔅 of a NCTS (𝒮, 𝜁) is said to be: 

(i) neutrosophic crisp -open set (in short NC-OS) [2] if 𝔅 ⊑ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝔅))). The family 

of all NC -OSs of 𝒮  is denoted by 𝑁𝐶𝑂(𝒮) . The complement of NC -OS is called a 

neutrosophic  crisp -closed set (in short NC-CS). The family of all NC-CSs of 𝒮 is denoted 

by 𝑁𝐶𝐶(𝒮). 

(ii) neutrosophic crisp semi--open set (in short NCS-OS) [10] if there exists a NC-OS 𝔇 in 𝒮 

such that 𝔇 ⊑ 𝔅 ⊑ 𝑁𝐶𝑐𝑙(𝔇) or equivalently if 𝔅 ⊑ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝔅)))). The family 

of all NCS -OSs of 𝒮  is denoted by 𝑁𝐶S𝑂(𝒮) . The complement of NCS -OS is called a 

neutrosophic crisp semi--closed set (in short NCS-CS). The family of all NCS-CSs of 𝒮 is 

denoted by 𝑁𝐶S𝐶(𝒮). 

Example 2.3: 

Let 𝒮 = {𝓀1, 𝓀2, 𝓀3, 𝓀4} . Then 𝜁 = {∅𝒩 , 〈{𝓀1}, ∅, ∅〉, 〈{𝓀2}, ∅, ∅〉, 〈{𝓀1, 𝓀2}, ∅, ∅〉, 〈{𝓀1, 𝓀2, 𝓀3}, ∅, ∅〉, 𝒮𝒩} 

is a NCTS. The family of all NC-OSs of 𝒮 is : 𝑁𝐶𝑂(𝒮) = 𝜁⨆〈{𝓀1, 𝓀2, 𝓀4}, ∅, ∅〉.  

The family of all NCS -OSs of 𝒮  is : 𝑁𝐶S𝑂(𝒮) = 𝑁𝐶𝑂(𝒮)⨆{〈{𝓀1, 𝓀3}, ∅, ∅〉, 〈{𝓀1, 𝓀4}, ∅, ∅〉, 

〈{𝓀2, 𝓀3}, ∅, ∅〉, 〈{𝓀2, 𝓀4}, ∅, ∅〉, 〈{𝓀1, 𝓀3, 𝓀4}, ∅, ∅〉, 〈{𝓀2, 𝓀3, 𝓀4}, ∅, ∅〉}. 

Remark 2.4 [10,14]:  

In a NCTS (𝒮, 𝜁), then the following statements hold, and the opposite of each statement is not true:  

(i) Every NC-OS (resp. NC-CS) is a NC-OS (resp. NC-CS) and NCS-OS (resp. NCS-CS). 

(ii) Every NC-OS (resp. NC-CS)  is a NCS-OS (resp. NCS-CS). 

Definition 2.5: 

(i) The NC-interior of a NCS 𝔅 of a NCTS (𝒮, 𝜁) is the union of all NC-OSs contained in 𝔅 and 

is denoted by 𝑁𝐶𝑖𝑛𝑡(𝔅)[3]. 

(ii) The NCS-interior of a NCS 𝔅 of a NCTS (𝒮, 𝜁) is the union of all NCS-OSs contained in 𝔅 

and is denoted by 𝑁𝐶S𝑖𝑛𝑡(𝔅)[10]. 

Definition 2.6:  

(i) The NC-closure of a NCS 𝔅 of a NCTS (𝒮, 𝜁) is the intersection of all NC-CSs containing 𝔅 

and is denoted by 𝑁𝐶𝑐𝑙(𝔅)[3]. 

(ii) The NCS-closure of a NCS 𝔅 of a NCTS (𝒮, 𝜁) is the intersection of all NCS-CSs containing 

𝔅 and is denoted by 𝑁𝐶S𝑐𝑙(𝔅)[10]. 

Theorem 2.7: 

Let (𝒮, 𝜁) and (ℐ, 𝜂) be two NCTSs. If 𝔅 ∈ 𝑁𝐶𝑂(𝒮)(resp. 𝔅 ∈ 𝑁𝐶S𝑂(𝒮)), 𝔇 ∈ 𝑁𝐶𝑂(ℐ)(resp. 𝔇 ∈

𝑁𝐶S𝑂(ℐ)), then 𝔅 × 𝔇 ∈ 𝑁𝐶𝑂(𝒮 × ℐ) (resp. 𝔅 × 𝔇 ∈ 𝑁𝐶S𝑂(𝒮 × ℐ)). 

Proof: 

Since 𝔅 ⊑ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝔅))), 𝔇 ⊑ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝔇))).  

Hence 𝔅 × 𝔇 ⊑ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝔅))) × 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝔇))) = 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝔅 × 𝔇))). 
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Therefore 𝔅 × 𝔇 ⊑ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝔅 × 𝔇))) ⟹ 𝔅 × 𝔇 ∈ 𝑁𝐶𝑂(𝒮 × ℐ). The second case is 

similar. ▪ 

Corollary 2.8: 

Let (𝒮, 𝜁) and (ℐ, 𝜂) be two NCTSs. If 𝔅 ∈ 𝑁𝐶𝐶(𝒮)(resp. 𝔅 ∈ 𝑁𝐶S𝐶(𝒮)), 𝔇 ∈ 𝑁𝐶𝐶(ℐ)(resp. 𝔇 ∈

𝑁𝐶S𝐶(ℐ)), then 𝔅 × 𝔇 ∈ 𝑁𝐶𝐶(𝒮 × ℐ) (resp. 𝔅 × 𝔇 ∈ 𝑁𝐶S𝐶(𝒮 × ℐ)). 

Proof: 

The proof of this is similar to that of theorem (2.6). ▪ 

Proposition 2.9 [10]:  

For any NC-subset 𝔅 of a NCTS (𝒮, 𝜁), then: 

(i) 𝑁𝐶𝑖𝑛𝑡(𝔅) ⊑ 𝑁𝐶𝑖𝑛𝑡(𝔅) ⊑ 𝑁𝐶S𝑖𝑛𝑡(𝔅) ⊑ 𝑁𝐶S𝑐𝑙(𝔅) ⊑ 𝑁𝐶𝑐𝑙(𝔅) ⊑ 𝑁𝐶𝑐𝑙(𝔅). 

(ii) 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶S𝑖𝑛𝑡(𝔅)) = 𝑁𝐶S𝑖𝑛𝑡(𝑁𝐶𝑖𝑛𝑡(𝔅)) = 𝑁𝐶𝑖𝑛𝑡(𝔅). 

(iii) 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶S𝑖𝑛𝑡(𝔅)) = 𝑁𝐶S𝑖𝑛𝑡(𝑁𝐶𝑖𝑛𝑡(𝔅)) = 𝑁𝐶𝑖𝑛𝑡(𝔅). 

(iv) 𝑁𝐶𝑐𝑙(𝑁𝐶S𝑐𝑙(𝔅)) = 𝑁𝐶S𝑐𝑙(𝑁𝐶𝑐𝑙(𝔅)) = 𝑁𝐶𝑐𝑙(𝔅). 

(v) 𝑁𝐶𝑐𝑙(𝑁𝐶S𝑐𝑙(𝔅)) = 𝑁𝐶S𝑐𝑙(𝑁𝐶𝑐𝑙(𝔅)) = 𝑁𝐶𝑐𝑙(𝔅). 

(vi) 𝑁𝐶S𝑐𝑙(𝔅) = 𝔅⨆𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝔅)))). 

(vii) 𝑁𝐶S𝑖𝑛𝑡(𝔅) = 𝔅⨅𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝔅)))). 

(viii) 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝔅)) ⊑ 𝑁𝐶S𝑖𝑛𝑡(𝑁𝐶S𝑐𝑙(𝔅)) 

Definition 2.10 [1]:  

Let 𝜌: (𝒮, 𝜁) ⟶ (ℐ, 𝜂) be a function, then 𝜌 is said to be NC-continuous (in short NC-CF) iff ∀ 𝔅 

NC-OS in ℐ, then 𝜌−1(𝔅) is a NC-OS in 𝒮. 

Definition 2.11 [13]:  

Let 𝜌: (𝒮, 𝜁) ⟶ (ℐ, 𝜂) be a function, then 𝜌 is said to be NC-continuous (in short NC-CF) iff ∀ 𝔅 

NC-OS in ℐ, then 𝜌−1(𝔅) is a NC-OS in 𝒮. 

Definition 2.12 [10]:  

Let 𝜌: (𝒮, 𝜁) ⟶ (ℐ, 𝜂) be a function, then 𝜌 is said to be: 

(i) NC
∗
-continuous (in short NC

∗
-CF) iff ∀ 𝔅 NC-OS in ℐ, then 𝜌−1(𝔅) is a NC-OS in 𝒮. 

(ii) NC
∗∗

-continuous (in short NC
∗∗

-CF) iff ∀ 𝔅 NC-OS in ℐ, then 𝜌−1(𝔅) is a NC-OS in 𝒮. 

Definition 2.13 [10]:  

Let 𝜌: (𝒮, 𝜁) ⟶ (ℐ, 𝜂) be a function, then 𝜌 is said to be: 

(i) NCS-continuous (in short NCS-CF) iff ∀ 𝔅 NC-OS in ℐ, then 𝜌−1(𝔅) is a NCS-OS in 𝒮. 

(ii) NCS∗
-continuous (in short NCS∗

-CF) iff ∀ 𝔅 NCS-OS in ℐ, then 𝜌−1(𝔅) is a NCS-OS in 𝒮. 

(iii) NCS∗∗
-continuous (in short NCS∗∗

-CF) iff ∀ 𝔅 NCS-OS in ℐ, then 𝜌−1(𝔅) is a NC-OS in 𝒮. 

3. Some New Concepts of Weakly Neutrosophic Crisp Separation Axioms 

Definition 3.1: 

(i) A NCTS (𝒮, 𝜁) is said to be a NC-𝑇0-space if for each pair of distinct neutrosophic crisp points 

in (𝒮, 𝜁) there exists NC-OS of (𝒮, 𝜁) containing one neutrosophic crisp point but not the other. 

(ii) A NCTS (𝒮, 𝜁) is said to be a NCS-𝑇0-space if for each pair of distinct neutrosophic crisp points 

in (𝒮, 𝜁) there exists  NCS-OS of (𝒮, 𝜁) containing one neutrosophic crisp point but not the 

other. 
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Theorem 3.3: 

A NCTS (𝒮, 𝜁) is NC -𝑇0 -space (NCS -𝑇0 -space respectively) iff 𝑁𝐶𝛼𝑐𝑙(< {𝓊}, ∅, ∅ >) ≠ 𝑁𝐶𝛼𝑐𝑙(<

{𝓋}, ∅, ∅ >) (𝑁𝐶𝑆𝛼𝑐𝑙(< {𝓊}, ∅, ∅ >) ≠ 𝑁𝐶𝑆𝛼𝑐𝑙(< {𝓋}, ∅, ∅ >) receptively) for each 𝓊 ≠ 𝓋 in 𝒮. 

Proof: 

 Let 𝑁𝐶𝛼𝑐𝑙(< {𝓊}, ∅, ∅ >) ≠ 𝑁𝐶𝛼𝑐𝑙(< {𝓋}, ∅, ∅ >) , ∀𝓊 ≠ 𝓋 ∈ 𝒮 . Hence 𝑁𝐶𝛼𝑐𝑙(< {𝓊}, ∅, ∅ >) ⋢

𝑁𝐶𝛼𝑐𝑙(< {𝓋}, ∅, ∅ >)  or 𝑁𝐶𝛼𝑐𝑙(< {𝓋}, ∅, ∅ >) ⋢ 𝑁𝐶𝛼𝑐𝑙(< {𝓊}, ∅, ∅ >) . Suppose that 𝑁𝐶𝛼𝑐𝑙(<

{𝓊}, ∅, ∅ >) ⋢ 𝑁𝐶𝛼𝑐𝑙(< {𝓋}, ∅, ∅ >)  ⟹ 𝓊 ∉ 𝑁𝐶𝛼𝑐𝑙(< {𝓋}, ∅, ∅ >) ⟹ 𝓊 ∈ (𝑁𝐶𝛼𝑐𝑙(< {𝓋}, ∅, ∅ >))𝑐 

but (𝑁𝐶𝛼𝑐𝑙(< {𝓋}, ∅, ∅ >))𝑐  is a NC -OS and 𝓋 ∉ (𝑁𝐶𝛼𝑐𝑙(< {𝓋}, ∅, ∅ >))𝑐 . Therefore 𝒮  is a 

NC-𝑇0-space. 

 Let 𝒮  be a NC -𝑇0 -space, ∀𝓊 ≠ 𝓋 ∈ 𝒮 . Hence there exists a NC -OS 𝔅 in 𝒮  such that 𝓊 ∈

𝔅, 𝓋 ∉ 𝔅  or 𝓊 ∉ 𝔅, 𝓋 ∈ 𝔅 . Then 𝔅𝑐  is a NC -CS and 𝓊 ∉ 𝔅𝑐 , 𝓋 ∈ 𝔅𝑐 . Therefore 𝓊 ∉ 𝑁𝐶𝛼𝑐𝑙(<

{𝓋}, ∅, ∅ >) (since 𝓊 ∉ 𝔅𝑐). Hence 𝑁𝐶𝛼𝑐𝑙(< {𝓊}, ∅, ∅ >) ⋢ 𝑁𝐶𝛼𝑐𝑙(< {𝓋}, ∅, ∅ >). The second case is 

similar. ▪ 

Theorem 3.4: 

If (𝒮, 𝜁)  is a NC - 𝑇0 -space ( NCS - 𝑇0 -space respectively), then 𝑁𝐶𝛼𝑖𝑛𝑡(𝑁𝐶𝛼𝑐𝑙(< {𝓊}, ∅, ∅ >))⨅ 

𝑁𝐶𝛼𝑖𝑛𝑡(𝑁𝐶𝛼𝑐𝑙(< {𝓋}, ∅, ∅ >)) = ∅𝒩  ( 𝑁𝐶𝑆𝛼𝑖𝑛𝑡(𝑁𝐶𝑆𝛼𝑐𝑙(< {𝓊}, ∅, ∅ >))⨅𝑁𝐶𝑆𝛼𝑖𝑛𝑡(𝑁𝐶𝑆𝛼𝑐𝑙(<

{𝓋}, ∅, ∅ >)) = ∅𝒩  receptively), ∀𝓊 ≠ 𝓋 in 𝒮. 

Proof: 

Let (𝒮, 𝜁) be a NC-𝑇0-space. Then there exists a NC-OS 𝔅 such that 𝓊 ∈ 𝔅, 𝓋 ∉ 𝔅 or 𝓊 ∉ 𝔅, 𝓋 ∈

𝔅. If 𝓊 ∈ 𝔅, 𝓋 ∉ 𝔅 ⟹ 𝓊 ∉ 𝔅𝑐 , 𝓋 ∈ 𝔅𝑐 . Thus 𝑁𝐶𝛼𝑖𝑛𝑡(𝑁𝐶𝛼𝑐𝑙(< {𝓋}, ∅, ∅ >)) ⊑ 𝑁𝐶𝛼𝑐𝑙(< {𝓋}, ∅, ∅ >) 

⊑ 𝔅𝑐 = 𝑁𝐶𝛼𝑐𝑙(𝔅𝑐)  (since 𝔅𝑐  is a NC -CS). Hence 𝑁𝐶𝛼𝑖𝑛𝑡(𝑁𝐶𝛼𝑐𝑙(< {𝓋}, ∅, ∅ >)) ⊑ 𝔅𝑐 ⟹ 

𝑁𝐶𝛼𝑖𝑛𝑡(𝑁𝐶𝛼𝑐𝑙(< {𝓋}, ∅, ∅ >))⨅𝔅 = ∅𝒩 . Therefore, 𝓊 ∈ 𝔅 ⊑ (𝑁𝐶𝛼𝑖𝑛𝑡(𝑁𝐶𝛼𝑐𝑙(< {𝓋}, ∅, ∅ >)))𝑐 . 

Hence 𝑁𝐶𝛼𝑐𝑙(< {𝓊}, ∅, ∅ >) ⊑ (𝑁𝐶𝛼𝑖𝑛𝑡(𝑁𝐶𝛼𝑐𝑙(< {𝓋}, ∅, ∅ >)))𝑐 ⟹  𝑁𝐶𝛼𝑖𝑛𝑡(𝑁𝐶𝛼𝑐𝑙(< {𝓊}, ∅, ∅ >)) 

⊑ (𝑁𝐶𝛼𝑖𝑛𝑡(𝑁𝐶𝛼𝑐𝑙(< {𝓋}, ∅, ∅ >)))
𝑐

⟹ 𝑁𝐶𝛼𝑖𝑛𝑡(𝑁𝐶𝛼𝑐𝑙(< {𝓊}, ∅, ∅ >))⨅𝑁𝐶𝛼𝑖𝑛𝑡(𝑁𝐶𝛼𝑐𝑙(<

{𝓋}, ∅, ∅ >)) = ∅𝒩 . The second case is similar. ▪ 

Remark 3.5: 

(i) Every NC-𝑇0-space is a NC-𝑇0-space and NCS-𝑇0-space. 

(ii) Every NC-𝑇0-space is a NCS-𝑇0-space. 

Remark 3.6: 

(i) NC-𝑇0 (NCS-𝑇0 respectively) property is a NC
∗

 (NCS∗
 respectively) topological property. 

(ii) NC-𝑇0 (NCS-𝑇0 respectively) property is a NC
∗∗

 (NCS∗∗
 respectively) topological property. 

(iii) NC-𝑇0 is a NC-hereditary property. 

Proposition 3.7: 

(i) Let (𝒮, 𝜁) and (ℐ, 𝜂) be NC-𝑇0-spaces if and only if 𝒮 × ℐ is a NC-𝑇0-space. 

(ii) If (𝒮, 𝜁) and (ℐ, 𝜂) are NCS-𝑇0-spaces, then 𝒮 × ℐ is a NCS-𝑇0-space. 

Proof: 

(i)  Let 𝒮 and ℐ be NC-𝑇0-spaces. Let (𝓊1, 𝓋1) ≠ (𝓊2, 𝓋2) in 𝒮 × ℐ. Then 𝓊1 ≠ 𝓊2 in 𝒮 ⟹ there 

exists 𝔅1 ∈ 𝑁𝐶𝑂(𝒮) such that 𝓊1 ∈ 𝔅1, 𝓊2 ∉ 𝔅1 or 𝓊1 ∉ 𝔅1, 𝓊2 ∈ 𝔅1.  

Also 𝓋1 ≠ 𝓋2 in ℐ ⟹ there exists 𝔅2 ∈ 𝑁𝐶𝑂(ℐ) such that 𝓋1 ∈ 𝔅2, 𝓋2 ∉ 𝔅2 or 𝓋1 ∉ 𝔅2, 𝓋2 ∈ 𝔅2.  

Then (𝓊1, 𝓋1) ∈ 𝔅1 × 𝔅2, (𝓊2, 𝓋2) ∉ 𝔅1 × 𝔅2 or (𝓊1, 𝓋1) ∉ 𝔅1 × 𝔅2, (𝓊2, 𝓋2) ∈ 𝔅1 × 𝔅2.  

But 𝔅1 × 𝔅2 ∈ 𝑁𝐶𝑂(𝒮 × ℐ) (since by theorem (2.6)). Hence 𝒮 × ℐ is a NC-𝑇0-space.  
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 Let 𝒮 × ℐ  be a NC -𝑇0 -space, to prove that 𝒮  and ℐ  are NC - 𝑇0 -spaces. Since 𝒮 × ℐ  is a 

NC - 𝑇0 -space, then 𝒮 ×< {𝓋0}, ∅, ∅ >  and < {𝓊0}, ∅, ∅ >× ℐ  are NC - 𝑇0 -spaces (since NC - 𝑇0 

property is a NC -hereditary). Hence 𝒮  and ℐ  are NC -𝑇0 -spaces. The proof (ii) is evident for 

others. ▪ 

Definition 3.8: 

(i) A NCTS (𝒮, 𝜁) is said to be a NC-𝑇1-space if for each pair of distinct NC- points 𝓊 and 𝓋 of 

𝒮, there exist two NC-OSs 𝔅 and 𝔇 containing 𝓊 and 𝓋 respectively, such that 𝓊 ∈ 𝔅, 𝓋 ∈

𝔇. 

(ii) A NCTS (𝒮, 𝜁) is said to be a NCS-𝑇1-space if for each pair of distinct NC-points 𝓊 and 𝓋 of 

𝒮 , there exist two NCS-OSs 𝔅 and 𝔇 containing 𝓊  and 𝓋  respectively, such that 𝓊 ∈ 𝔅, 

𝓋 ∈ 𝔇. 

Proposition 3.9: 

A NCTS (𝒮, 𝜁) is NC-𝑇1-space (NCS-𝑇1-space respectively) if and only if < {𝓊}, ∅, ∅ > is a NC-CS 

(NCS-CS respectively), ∀𝓊 ∈ 𝒮. 

Proof: 

 Let 𝒮 be a NC-𝑇1-space. Let 𝓌 ∈ 𝒮, to prove that < {𝓌}, ∅, ∅ > is a NC-CS. Let 𝓊 ∈ (<

{𝓌}, ∅, ∅ >)𝑐 ⟹ 𝓊 ≠ 𝓌 in 𝒮. Hence there exists a NC-OS 𝔅 such that 𝓊 ∈ 𝔅, 𝓌 ∉ 𝔅 or 𝓊 ∉ 𝔅, 𝓌 ∈

𝔅. If 𝓊 ∈ 𝔅, 𝓌 ∉ 𝔅 ⟹ 𝓊 ∈ 𝔅 ⊑ (< {𝓌}, ∅, ∅ >)𝑐 ⟹ (< {𝓌}, ∅, ∅ >)𝑐 is a NC-OS ⟹ < {𝓌}, ∅, ∅ > is 

a NC-CS. 

 Let < {𝓌}, ∅, ∅ > be a NC-CS, ∀𝓌 ∈ 𝒮, to prove that 𝒮 is a NC-𝑇1-space. Let 𝓊 ≠ 𝓋 in 𝒮. 

Hence < {𝓊}, ∅, ∅ >, < {𝓋}, ∅, ∅ >  are NC -CSs ⟹ (< {𝓊}, ∅, ∅ >)𝑐 , (< {𝓋}, ∅, ∅ >)𝑐  are NC -OSs 

and 𝓋 ∈ (< {𝓊}, ∅, ∅ >)𝑐 , 𝓊 ∉ (< {𝓊}, ∅, ∅ >)𝑐 , 𝓊 ∈ (< {𝓋}, ∅, ∅ >)𝑐 , 𝓋 ∉ (< {𝓋}, ∅, ∅ >)𝑐 . Therefore 

𝒮 is a NC-𝑇1-space. The second case is similar. ▪ 

Remark 3.10: 

(i) Every NC-𝑇1-space is a NC-𝑇1-space and NCS-𝑇1-space. 

(ii) Every NC-𝑇1-space is a NCS-𝑇1-space. 

(iii) Every NC-T1-space is a NC-T0-space. 

(iv) Every NCS-𝑇1-space is a NCS-𝑇0-space. 

Remark 3.11: 

(i) NC-𝑇1 (NCS-𝑇1 respectively) property is a NC
∗

 (NCS∗
 respectively) topological property. 

(ii) NC-𝑇1 (NCS-𝑇1 respectively) property is a NC
∗∗

 (NCS∗∗
 respectively) topological property. 

(iii) NC-𝑇1 property is a NC-hereditary property. 

Proposition 3.12: 

(i) Let 𝒮 and ℐ be NC-𝑇1-spaces if and only if 𝒮 × ℐ is a NC-𝑇1-space. 

(ii) If 𝒮 and ℐ are NCS-𝑇1-spaces, then 𝒮 × ℐ is a NCS-𝑇1-space. 

Proof: 

The proof of this is similar to that of proposition (3.7). ▪ 

Definition 3.13: 

(i) A NCTS (𝒮, 𝜁) is said to be a NC-𝑇2-space if for each pair of distinct NC-points 𝓊 and 𝓋 in 𝒮, 

there exist two NC-OSs 𝔇1 and 𝔇2 such that 𝓊 ∈ 𝔇1, 𝓋 ∈ 𝔇2 and 𝔇1⨅𝔇2 = ∅𝒩 . 

(ii) A NCTS (𝒮, 𝜁) is said to be a NCS-𝑇2-space if for each pair of distinct NC-points 𝓊 and 𝓋 in 𝒮, 

there exist two NCS-OSs 𝔇1 and 𝔇2 such that 𝓊 ∈ 𝔇1, 𝓋 ∈ 𝔇2 and 𝔇1⨅𝔇2 = ∅𝒩 . 
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Proposition 3.14: 

If (𝒮, 𝜁) is a NC-𝑇2-space (NCS-𝑇2-space respectively), then 𝔅 = {(𝓊, 𝓋): 𝓊 = 𝓋, 𝓊, 𝓋 ∈ 𝒮} is a NC-

CS (NCS-CS respectively).  

Proof: 

Let 𝒮 be a NC-𝑇2-space, to prove that 𝔅 is a NC-CS. Let (𝓊, 𝓋) ∈ 𝔅𝑐 = 𝒮 × 𝒮 − 𝔅. Hence 𝓊 ≠ 𝓋 

in 𝒮 ⟹ there exist 𝔇1, 𝔇2 ∈ 𝑁𝐶𝑂(𝒮) such that 𝓊 ∈ 𝔇1 , 𝓋 ∈ 𝔇2  and 𝔇1⨅𝔇2 = ∅𝒩  (since 𝒮 is a 

NC-𝑇2-space). Hence 𝔇1 × 𝔇2 ∈ 𝑁𝐶𝑂(𝒮 × 𝒮) by theorem (2.7) (𝓊, 𝓋) ∈ 𝔇1 × 𝔇2 ⊑ 𝔅𝑐 , hence 𝔅𝑐 

is a NC-OS. Therefore 𝔅 is a NC-CS. The second case is similar. ▪ 

Remark 3.15: 

(i) Every NC-𝑇2-space is a NC-𝑇2-space and NCS-𝑇2-space. 

(ii) Every NC-𝑇2-space is a NCS-𝑇2-space. 

(iii) Every NC-𝑇2-space is a NC-𝑇1-space. 

(iv) Every NCS-𝑇2-space is a NCS-𝑇1-space. 

Remark 3.16: 

(i) NC-𝑇2 (NCS-𝑇2 respectively) property is a NC
∗

 (NCS∗
 respectively) topological property. 

(ii) NC-𝑇2 (NCS-𝑇2respectively) property is a NC
∗∗

 (NCS∗∗
 respectively) topological property. 

(iii) NC-𝑇2 property is a NC-hereditary property. 

Proposition 3.17: 

(i) Let 𝒮 and ℐ be NC-𝑇2-spaces if and only if 𝒮 × ℐ is a NC-𝑇2-space. 

(ii) If 𝒮 and ℐ are NCS-𝑇2-spaces, then 𝒮 × ℐ is a NCS-𝑇2-space. 

Proof: 

The proof of this is similar to that of proposition (3.12). ▪ 

Proposition 3.18: 

(i) If 𝜌, 𝜇: 𝒮 ⟶ ℐ are NC
∗
-CF and ℐ is a NC-𝑇2-space, then the NC-set 𝔅 = {𝓊: 𝓊 ∈ 𝒮, 𝜌(𝓊) = 𝜇(𝓊)} 

is a NC-CS.  

(ii) If 𝜌, 𝜇: 𝒮 ⟶ ℐ are NC-CF and ℐ is a NC-𝑇2-space, then the NC-set 𝔅 = {𝓊: 𝓊 ∈ 𝒮, 𝜌(𝓊) = 𝜇(𝓊)} is 

a NC-CS. 

Proof: 

(i) If 𝓊 ∉ 𝔅 ⟹ 𝓊 ∈ 𝔅𝑐 ⟹  𝜌(𝓊) ≠ 𝜇(𝓊) in ℐ. Hence there exist two NC-OSs 𝔇1 and 𝔇2 in ℐ such 

that 𝜌(𝓊) ∈ 𝔇1, 𝜇(𝓊) ∈ 𝔇2 and 𝔇1⨅𝔇2 = ∅𝒩  (since ℐ is a NC-𝑇2-space). But 𝜌−1(𝔇1), 𝜇−1(𝔇2) ∈

𝑁𝐶𝑂(𝒮) (since 𝜌, 𝜇 are NC
∗
-CF). Therefore, 𝓊 ∈ 𝜌−1(𝔇1) and 𝓊 ∈ 𝜇−1(𝔇2). Hence 𝓊 ∈

𝜌−1(𝔇1)⨅𝜇−1(𝔇2). Let 𝔘 = 𝜌−1(𝔇1)⨅𝜇−1(𝔇2) ∈ 𝑁𝐶𝑂(𝒮). To prove 𝔘 ⊑ 𝔅𝑐 , i.e., 𝔘⨅𝔅 = ∅𝒩. 

Suppose that 𝔘⨅𝔅 ≠ ∅𝒩 ⟹ ∃𝓋 ∈ 𝔘⨅𝔅 ⟹ 𝓋 ∈ 𝔘 and 𝓋 ∈ 𝔅, i.e., 𝓋 ∈ 𝜌−1(𝔇1) and 𝓋 ∈ 𝜇−1(𝔇2) and 

𝓋 ∈ 𝔅. Hence 𝜌(𝓋) ∈ 𝔇1, 𝜇(𝓋) ∈ 𝔇2 and 𝓋 ∈ 𝔅. Therefore 𝜌(𝓋) = 𝜇(𝓋) (since 𝓋 ∈ 𝔅). Hence  

𝔇1⨅𝔇2 ≠ ∅𝒩  which is a contradiction. Therefore 𝔘 ⊑ 𝔅𝑐 ⟹ 𝔅𝑐 ∈ 𝑁𝐶𝑂(𝒮) ⟹ 𝔅 is a NC-CS. The 

proof (ii) is evident for others. ▪ 

4. Some New Concepts of Weakly Neutrosophic Crisp Regularity 

Definition 4.1: 

Let (𝒮, 𝜁)  be a NCTS, then 𝒮 is said to be: 

(i) NC-regular (NCS-regular respectively) if every 𝓊 ∈ 𝒮 and every 𝒬 NC-CS such that 𝓊 ∉ 𝒬,  
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there exist two NC-OSs (NCS-OSs respectively) 𝔅 and 𝔇 such that 𝓊 ∈ 𝔅, 𝒬 ⊑ 𝔇 and 𝔅⨅𝔇 =

∅𝒩. 

(ii) NC
∗
-regular (NCS∗

-regular respectively) if every 𝓊 ∈ 𝒮 and every 𝒬 NC-CS (NCS-CS 

respectively) such that 𝓊 ∉ 𝒬, there exist two NC-OSs (NCS-OSs respectively) 𝔅 and 𝔇 such 

that 𝓊 ∈ 𝔅, 𝒬 ⊑ 𝔇 and 𝔅⨅𝔇 = ∅𝒩. 

(iii) NC
∗∗

-regular (NCS∗∗
-regular respectively) if every 𝓊 ∈ 𝒮 and every 𝒬 NC-CS (NCS-CS 

respectively) such that 𝓊 ∉ 𝒬, there exist two NC-OSs 𝔅 and 𝔇 such that 𝓊 ∈ 𝔅, 𝒬 ⊑ 𝔇 and 

𝔅⨅𝔇 = ∅𝒩 . 

Remark 4.2: 

The following diagram shows the relation between the different types of weakly NC-regular and 

weakly NC-regular (NCS-regular respectively) spaces: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem 4.3: 

Let (𝒮, 𝜁) be a NCTS, then: 

(i) 𝒮 is a NC-regular if and only if for each 𝔅 NC-OS containing 𝓊, there exists 𝔇 NC-OS 

containing 𝓊 such that 𝓊 ∈ 𝔇 ⊑ 𝑁𝐶𝛼𝑐𝑙(𝔇) ⊑ 𝔅. 

(ii) 𝒮 is a NC
∗
-regular if and only if for each 𝔅 NC-OS contains 𝓊, there exists 𝔇 NC-OS contains 

𝓊 such that 𝓊 ∈ 𝔇 ⊑ 𝑁𝐶𝛼𝑐𝑙(𝔇) ⊑ 𝔅. 

(iii) 𝒮 is a NC
∗∗

-regular if and only if for each 𝔅 NC-OS contains 𝓊, there exists 𝔇 NC-OS contains 

𝓊 such that 𝓊 ∈ 𝔇 ⊑ 𝑁𝐶𝑐𝑙(𝔇) ⊑ 𝔅. 

Proof: 

(i)  Let 𝒮 be a NC-regular space and let 𝔅 be a NC-OS containing 𝓊. Hence 𝔅𝑐 is a NC-CS and 

𝓊 ∉ 𝔅𝑐 . Then there exist 𝔇1, 𝔇2  NC -OSs in 𝒮  such that 𝓊 ∈ 𝔇1 , 𝔅𝑐 ⊑ 𝔇2  and 𝔇1⨅𝔇2 = ∅𝒩  

(since  𝒮  is a NC -regular space). Hence 𝓊 ∈ 𝔇1 ⊑ 𝔇2
𝑐 ⊑ 𝔅  (since 𝔇1⨅𝔇2 = ∅𝒩 ⟹ 𝔇1 ⊑ 𝔇2

𝑐 ). 

Therefore 𝓊 ∈ 𝔇1 ⊑ 𝑁𝐶𝛼𝑐𝑙(𝔇1) ⊑ 𝑁𝐶𝛼𝑐𝑙(𝔇2
𝑐) ⊑ 𝑁𝐶𝛼𝑐𝑙(𝔅) . Therefore 𝓊 ∈ 𝔇1 ⊑ 𝑁𝐶𝛼𝑐𝑙(𝔇1) ⊑

𝔇2
𝑐 ⊑ 𝔅. The implies that 𝓊 ∈ 𝔇1 ⊑ 𝑁𝐶𝛼𝑐𝑙(𝔇1) ⊑ 𝔅, where 𝔇1 is a NC-OS. 

NC
∗∗

-regular NC-regular 

NC-regular 

NC
∗
-regular 

NCS∗∗
-regular NCS-regular 

NC-regular 

NCS∗
-regular 

Fig. 4.1 



Neutrosophic Sets and Systems, Vol. 51, 2022     337  

 

 

Qays Hatem Imran, Ali H. M. Al-Obaidi, Florentin Smarandache and Md. Hanif PAGE, On Some New Concepts of Weakly 

Neutrosophic Crisp Separation Axioms 

 Let 𝒬 be a NC-CS such that 𝓊 ∉ 𝒬 ⟹ 𝒬𝑐 is a NC-OS contains 𝓊. Hence there exists 𝔇 NC-OS 

contains 𝓊 such that 𝓊 ∈ 𝔇 ⊑ 𝑁𝐶𝛼𝑐𝑙(𝔇) ⊑ 𝒬𝑐. We get 𝒬 ⊑ (𝑁𝐶𝛼𝑐𝑙(𝔇))𝑐, so it is (𝑁𝐶𝛼𝑐𝑙(𝔇))𝑐 is a 

NC -OS and contains 𝒬 . Now, to prove 𝔇⨅(𝑁𝐶𝛼𝑐𝑙(𝔇))𝑐 = ∅𝒩 . Since 𝔇 ⊑ 𝑁𝐶𝛼𝑐𝑙(𝔇) , but 

𝑁𝐶𝛼𝑐𝑙(𝔇)⨅(𝑁𝐶𝛼𝑐𝑙(𝔇))𝑐 = ∅𝒩  ⟹  𝔇⨅(𝑁𝐶𝛼𝑐𝑙(𝔇))𝑐 = ∅𝒩 . Hence 𝒮  is a NC -regular space. The 

proofs (ii), (iii) are evident for others. ▪ 

Theorem 4.4: 

Let (𝒮, 𝜁) be a NCTS, then: 

(i) 𝒮 is a NCS∗
-regular if and only if for each 𝔅 NCS-OS contains 𝓊, there exists 𝔇 NCS-OS 

contains 𝓊 such that 𝓊 ∈ 𝔇 ⊑ 𝑁𝐶𝑆𝛼𝑐𝑙(𝔇) ⊑ 𝔅. 

(ii) 𝒮 is a NCS∗∗
-regular if and only if for each 𝔅 NCS-OS contains 𝓊, there exists 𝔇 NC-OS 

contains 𝓊 such that 𝓊 ∈ 𝔇 ⊑ 𝑁𝐶𝑐𝑙(𝔇) ⊑ 𝔅. 

Proof:  

The proof of this is similar to that of theorem (4.3). ▪ 

Theorem 4.5: 

Let (𝒮, 𝜁) be a NCTS, then: 

(i) 𝒮 is a NC
∗
-regular if and only if 𝓊 ∉ 𝒬 where 𝒬 is a NC-CS, there exist two NC-OSs 𝔅 and 𝔇 

such that 𝓊 ∈ 𝔅, 𝒬 ⊑ 𝔇 and 𝑁𝐶𝛼𝑐𝑙(𝔅)⨅𝑁𝐶𝛼𝑐𝑙(𝔇) = ∅𝒩 . 

(ii) 𝒮 is a NC
∗∗

-regular if and only if for each 𝒬 NC-CS, such that 𝓊 ∉ 𝒬, there exist two NC-OSs 𝔅 

and 𝔇 such that 𝓊 ∈ 𝔅, 𝒬 ⊑ 𝔇 and 𝑁𝐶𝑐𝑙(𝔅)⨅𝑁𝐶𝑐𝑙(𝔇) = ∅𝒩. 

Proof: 

(i) Let 𝒮 be a NC
∗
-regular space and let 𝒬 be a NC-CS, such that 𝓊 ∉ 𝒬. Then there exist two NC-

OSs 𝒰 and 𝒱 such that 𝓊 ∈ 𝒰, 𝒬 ⊑ 𝒱 and 𝒰⨅𝒱 = ∅𝒩. Therefore 𝒰 is a NC-OS containing 𝓊 in 𝒮, 

where 𝒮 is a NC
∗
-regular space. Then there exists 𝔅 NC-OS containing 𝓊 such that 𝓊 ∈ 𝔅 ⊑

𝑁𝐶𝛼𝑐𝑙(𝔅) ⊑ 𝒰 (since by theorem (4.3) (ii)). Hence 𝑁𝐶𝛼𝑐𝑙(𝔅) ⊑ 𝒰. Also, 𝒬 ⊑ 𝒱 ⊑ 𝑁𝐶𝛼𝑐𝑙(𝒱), but 

𝑁𝐶𝛼𝑐𝑙(𝒱) ⊑ (𝑁𝐶𝛼𝑐𝑙(𝒰))𝑐 (since 𝒰⨅𝒱 = ∅𝒩 ⟹ 𝒱 ⊑ 𝒰𝑐 ⟹ 𝑁𝐶𝛼𝑐𝑙(𝒱) ⊑ 𝑁𝐶𝛼𝑐𝑙(𝒰𝑐)). Hence 𝒬 ⊑ 𝒱 ⊑

𝑁𝐶𝛼𝑐𝑙(𝒱) ⊑ 𝑁𝐶𝛼𝑐𝑙(𝒰𝑐) = 𝒰𝑐 (since 𝒰𝑐 is a NC-CS). Suppose that 𝒱 = 𝔇, hence 𝒬 ⊑ 𝔇 ⊑

𝑁𝐶𝛼𝑐𝑙(𝔇) ⊑ 𝒰𝑐 ⟹ 𝑁𝐶𝛼𝑐𝑙(𝔇) ⊑ 𝒰𝑐. Since 𝒰⨅𝒰𝑐 = ∅𝒩, hence 𝑁𝐶𝛼𝑐𝑙(𝔅)⨅𝑁𝐶𝛼𝑐𝑙(𝔇) = ∅𝒩 (since 

𝑁𝐶𝛼𝑐𝑙(𝔅) ⊑ 𝒰 and 𝑁𝐶𝛼𝑐𝑙(𝔇) ⊑ 𝒰𝑐). The other side is clear. The proof (ii) is evident for others. ▪ 

Theorem 4.6: 

Let (𝒮, 𝜁) be a NCTS, then: 

(i) 𝒮 is a NCS∗
-regular if and only if 𝓊 ∉ 𝒬, where 𝒬 is a NCS-CS, there exist two NCS-OSs 𝔅 and 

𝔇 such that 𝓊 ∈ 𝔅, 𝒬 ⊑ 𝔇 and 𝑁𝐶𝑆𝛼𝑐𝑙(𝔅)⨅𝑁𝐶𝑆𝛼𝑐𝑙(𝔇) = ∅𝒩 . 

(ii) 𝒮 is a NCS∗∗
-regular if and only if 𝓊 ∉ 𝒬, where 𝒬 is a NCS-CS, there exist two NC-OSs 𝔅 and 

𝔇 such that 𝓊 ∈ 𝔅, 𝒬 ⊑ 𝔇 and 𝑁𝐶𝑐𝑙(𝔅)⨅𝑁𝐶𝑐𝑙(𝔇) = ∅𝒩. 

Proof: 

The proof of this is similar to that of theorem (4.5). ▪ 

Remark 4.7: 

(i) NC-regular property is a NC
∗∗

-topological property. 

(ii) NC
∗
-regular property is a NC

∗
-topological property. 

(iii) NC
∗∗

-regular property is a NC
∗∗

-topological property. 

(iv) NCS-regular property is a NCS∗∗
-topological property. 

(v) NCS∗
-regular property is a NCS∗

-topological property. 
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(vi) NCS∗∗
-regular property is a NCS∗∗

-topological property. 

Proposition 4.8: 

(i) If 𝒮 × ℐ is a NC
∗∗

-regular, then both 𝒮 and ℐ are NC
∗∗

-regular spaces. 

(ii) If 𝒮 × ℐ is a NCS∗∗
-regular, then both 𝒮 and ℐ are NCS∗∗

-regular spaces. 

Proof: 

(i) Suppose that 𝒮 × ℐ is a NC
∗∗

-regular, to prove that 𝒮 and ℐ are NC
∗∗

-regular spaces. 

Let 𝒰  and 𝒱  be two NC -OSs in 𝒮  and ℐ  containing 𝓊  and 𝓋  respectively. Hence (𝓊, 𝓋) ∈

𝒰 × 𝒱 where 𝒰 × 𝒱 is a NC-OS in 𝒮 × ℐ (by theorem (2.7)). Hence there exists NC-OS 𝒦 in 𝒮 × ℐ 

such that (𝓊, 𝓋) ∈ 𝒦 ⊑ 𝑁𝐶𝑐𝑙(𝒦) ⊑ 𝒰 × 𝒱  (since  𝒮 × ℐ  is a NC
∗∗

-regular). Then there exist two 

NC -OSs  𝔅  and 𝔇  in 𝒮  and ℐ  such that (𝓊, 𝓋) ∈ 𝔅 × 𝔇 ⊑ 𝑁𝐶𝑐𝑙(𝔅 × 𝔇) = 𝑁𝐶𝑐𝑙(𝔅) × 𝑁𝐶𝑐𝑙(𝔇) ⊑

𝒰 × 𝒱. Hence 𝓊 ∈ 𝔅 ⊑ 𝑁𝐶𝑐𝑙(𝔅) ⊑ 𝒰 ⟹ 𝒮 is a NC
∗∗

-regular space. Also, 𝓋 ∈ 𝔇 ⊑ 𝑁𝐶𝑐𝑙(𝔇) ⊑ 𝒱 ⟹ 

ℐ is a NC
∗∗

-regular space. The proof (ii) is evident for others. ▪ 

Theorem 4.9: 

If (𝒮, 𝜁) is a NC
∗
-regular (NC

∗∗
-regular respectively), then 𝜁 = NCO(𝒮). 

Proof: 

It is clear that 𝜁 ⊑ NCO(𝒮). Let 𝔅 be a NC-OS in 𝒮 containing 𝓊. Then there exists a NC-OS 𝔇 

containing 𝓊 such that 𝓊 ∈ 𝔇 ⊑ 𝑁𝐶𝑐𝑙(𝔇) ⊑ 𝔅 (𝒮 is a NC
∗
-regular). Therefore 𝑁𝐶𝑖𝑛𝑡(𝔇) ⊑

𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝔇)) ⊑ 𝔅. Thus 𝓊 ∈ 𝔇 ⊑ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝔇)) ⊑ 𝔅 (since by proposition (2.9)). Hence 𝔅 is 

a NC-OS ⟹ NCO(𝒮) ⊑ 𝜁. Therefore 𝜁 = NCO(𝒮). ▪ 

Proposition 4.10: 

(i) If 𝜌: 𝒮 ⟶ ℐ is a NC-CF and 𝒮 is a NC
∗
-regular, then 𝜌 is a NC-CF. 

(ii) If 𝜌: 𝒮 ⟶ ℐ is a NC-CF and ℐ is a NC
∗
-regular, then 𝜌 is a NC

∗
-CF. 

(iii) If 𝜌: 𝒮 ⟶ ℐ is a NC
∗
-CF and 𝒮 is a NC

∗
-regular, then 𝜌 is a NC

∗∗
-CF. 

Proof: 

(i) Let 𝜌: 𝒮 ⟶ ℐ be a NC-CF, to prove that 𝜌 is a NC-CF. 

Let 𝔅  be a NC -OS in ℐ , then 𝜌−1(𝔅)  is a NC -OS in 𝒮  (since 𝜌  is a NC -CF). But 𝒮  is a 

NC
∗
-regular space (by hypothesis). Hence 𝜌−1(𝔅)  is a NC -OS in 𝒮  (since by theorem (4.9)). 

Therefore 𝜌 is a NC-CF. The proofs (ii), (iii) are evident for others. ▪ 

Definition 4.11: 

Let (𝒮, 𝜁)  be a NCTS, then 𝒮 is said to be: 

(i) NC-𝑇3-space if 𝒮 is a NC-𝑇1-space and NC-regular space. 

(ii) NC
∗
-𝑇3-space if 𝒮 is NC-𝑇1-space and NC

∗
-regular space. 

(iii) NC
∗∗

-𝑇3-space if 𝒮 is NC-𝑇1-space and NC
∗∗

-regular space. 

Definition 4.12: 

Let (𝒮, 𝜁)  be a NCTS, then 𝒮 is said to be: 

(i) NCS-𝑇3-space if 𝒮 is a NCS-𝑇1-space and NCS-regular space. 

(ii) NCS∗
-𝑇3-space if 𝒮 is NCS-𝑇1-space and NCS∗

-regular space. 

(iii) NCS∗∗
-𝑇3-space if 𝒮 is NCS-𝑇1-space and NCS∗∗

-regular space. 

Remark 4.13: 

(i) NC
∗
-𝑇3 (NCS∗

-𝑇3 respectively) property is a NC
∗

 (NCS∗
 respectively) topological property. 

(ii) NC
∗∗

-𝑇3 (NCS∗∗
-𝑇3 respectively) property is a NC

∗∗
 (NCS∗∗

 respectively) topological property. 

Remark 4.14: 
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(i) Every NC-𝑇3-space is a NC-𝑇3-space and NCS-𝑇3-space. 

(ii) Every NC-𝑇3-space is a NCS-𝑇3-space. 

(iii) Every NC
∗∗

- 𝑇3 -space ( NCS∗∗
- 𝑇3 -space respectively) is a NC

∗
- 𝑇3 -space ( NCS∗

- 𝑇3 -space, 

respectively). 

(iv) Every NC
∗

- 𝑇3 -space ( NCS∗
- 𝑇3 -space respectively) is a NC - 𝑇2 -space ( NCS - 𝑇2 -space, 

respectively). 

Proposition 4.15: 

𝒮 × ℐ is a NC
∗∗

-𝑇3-space if and only if both 𝒮 and ℐ are NC
∗∗

-𝑇3-spaces. 

Proof: 

Follow directly from proposition (3.12) part (i) and proposition (4.8) part (i). ▪ 

5. Some New Concepts of Weakly Neutrosophic Crisp Normality 

Definition 5.1: 

Let (𝒮, 𝜁)  be a NCTS, then 𝒮 is said to be: 

(i) NC-normal (NCS-normal respectively) if for every two NC-CSs 𝒬1 and 𝒬2 such that 𝒬1⨅𝒬2 =

∅𝒩There exist two NC-OSs (NCS-OSs respectively) 𝔅 and 𝔇 such that 𝒬1 ⊑ 𝔅 and 𝒬2 ⊑ 𝔇 and 

𝔅⨅𝔇 = ∅𝒩 . 

(ii) NC
∗
-normal (NCS∗

-normal respectively) if for every two NC-CSs (NCS-CSs respectively) 𝒬1 

and 𝒬2 such that 𝒬1⨅𝒬2 = ∅𝒩There exist two NC-OSs (NCS-OSs respectively) 𝔅 and 𝔇 such 

that 𝒬1 ⊑ 𝔅 and 𝒬2 ⊑ 𝔇 and 𝔅⨅𝔇 = ∅𝒩. 

(iii) NC
∗∗

-normal (NCS∗∗
-normal respectively) if for every two NC-CSs (NCS-CSs respectively) 𝒬1 

and 𝒬2 such that 𝒬1⨅𝒬2 = ∅𝒩, there exist two NC-OSs 𝔅 and 𝔇 such that 𝒬1 ⊑ 𝔅 and 𝒬2 ⊑ 𝔇 

and 𝔅⨅𝔇 = ∅𝒩. 

Remark 5.2: 

The following diagram shows the relation between the different types of weakly NC-normal and 

weakly NC-normal (NCS-normal respectively) spaces: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem 5.3: 

NC
∗∗

-normal NC-normal 

NC-normal 

NC
∗
-normal 

NCS∗∗
-normal NCS-normal 

NC-normal 

NCS∗
-normal 

Fig. 5.1 
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Let (𝒮, 𝜁) be a NCTS, then: 

(i) 𝒮 is a NC-normal space if and only if for every NC-CS 𝒬 and every NC-OS 𝔅 containing 𝒬, 

there exists NC-OS say 𝔇, such that 𝒬 ⊑ 𝔇 ⊑ 𝑁𝐶𝛼𝑐𝑙(𝔇) ⊑ 𝔅. 

(ii) 𝒮 is a NC
∗
-normal space if and only if for every NC-CS 𝒬 and every NC-OS 𝔅 containing 𝒬, 

there exists NC-OS say 𝔇, such that 𝒬 ⊑ 𝔇 ⊑ 𝑁𝐶𝛼𝑐𝑙(𝔇) ⊑ 𝔅. 

(iii) 𝒮 is a NC
∗∗

-normal space if and only if for every NC-CS 𝒬 and every NC-OS 𝔅 containing 𝒬, 

there exists NC-OS say 𝔇, such that 𝒬 ⊑ 𝔇 ⊑ 𝑁𝐶𝑐𝑙(𝔇) ⊑ 𝔅. 

Proof: 

(i)  Let 𝒮 be a NC-normal space. Let 𝒬 ⊑ 𝔅, where 𝒬 is a NC-CS and 𝔅 is a NC-OS ⟹ 𝒬⨅𝔅𝑐 = ∅𝒩 , 

where 𝔅𝑐 is a NC-CS. Hence there exist two NC-OSs 𝔇1, 𝔇2 such that 𝒬 ⊑ 𝔇1 and 𝔅𝑐 ⊑ 𝔇2 and 

𝔇1⨅𝔇2 = ∅𝒩  (since 𝒮 is a NC-normal space). Therefore 𝒬 ⊑ 𝔇1 ⊑ 𝔇2
𝑐 ⊑ 𝔅 ⟹ 𝑁𝐶𝛼𝑐𝑙(𝒬) ⊑

𝑁𝐶𝛼𝑐𝑙(𝔇1) ⊑ 𝑁𝐶𝛼𝑐𝑙(𝔇2
𝑐) = 𝔇2

𝑐 ⊑ 𝔅. Hence 𝒬 ⊑ 𝔇1 ⊑ 𝑁𝐶𝛼𝑐𝑙(𝔇1) ⊑ 𝔅, where 𝔇1 is a NC-OS in 𝒮. 

 To prove 𝒮 is a NC-normal space. Let 𝒬1 and 𝒬2 be NC-CSs in 𝒮 such that 𝒬1⨅𝒬2 = ∅𝒩. Hence 

𝒬1 ⊑ 𝒬2
𝑐, where 𝒬2

𝑐 is a NC-OS. Then there exists a NC-OS 𝔇 such that 𝒬1 ⊑ 𝔇 ⊑ 𝑁𝐶𝛼𝑐𝑙(𝔇) ⊑ 𝒬2
𝑐 

(by hypothesis). Hence 𝒬1 ⊑ 𝔇, 𝒬2 ⊑ (𝑁𝐶𝛼𝑐𝑙(𝔇))𝑐. On the other hand 𝑁𝐶𝛼𝑐𝑙(𝔇)⨅(𝑁𝐶𝛼𝑐𝑙(𝔇))
𝑐

=

∅𝒩. Hence 𝔇⨅(𝑁𝐶𝛼𝑐𝑙(𝔇))
𝑐

= ∅𝒩  (since 𝔇 ⊑ 𝑁𝐶𝛼𝑐𝑙(𝔇)). Therefore 𝒮 is a NC-normal space. The 

proofs (ii), (iii) are evident for others. ▪ 

Theorem 5.4: 

Let (𝒮, 𝜁) be a NCTS, then: 

(i) 𝒮 is a NCS-normal space if and only if for every NC-CS 𝒬 and every NC-OS 𝔅 containing 𝒬, 

there exists NCS-OS say 𝔇, such that 𝒬 ⊑ 𝔇 ⊑ 𝑁𝐶𝑆𝛼𝑐𝑙(𝔇) ⊑ 𝔅. 

(ii) 𝒮 is a NCS∗
-normal space if and only if for every NCS-CS 𝒬 and every 𝔅 NCS-OS 𝔅 containing 

𝒬, there exists NC-OS say 𝔇, such that 𝒬 ⊑ 𝔇 ⊑ 𝑁𝐶𝑆𝛼𝑐𝑙(𝔇) ⊑ 𝔅. 

(iii) 𝒮 is a NCS∗∗
-normal space if and only if for every NCS-CS 𝒬 and every NCS-OS 𝔅 containing 

𝒬, there exists NC-OS say 𝔇, such that 𝒬 ⊑ 𝔇 ⊑ 𝑁𝐶𝑐𝑙(𝔇) ⊑ 𝔅. 

Proof: 

(i)  Let 𝒮 be a NCS-normal space. Let 𝒬 ⊑ 𝔅, where 𝒬 is a NC-CS and 𝔅 is a NC-OS ⟹ 𝒬⨅𝔅𝑐 =

∅𝒩, where 𝔅𝑐 is a NC-CS. Hence there exist two NCS-OSs 𝔇1, 𝔇2 such that 𝒬 ⊑ 𝔇1 and 𝔅𝑐 ⊑ 𝔇2 and 

𝔇1⨅𝔇2 = ∅𝒩  (since 𝒮 is a NCS-normal space). Therefore 𝒬 ⊑ 𝔇1 ⊑ 𝔇2
𝑐 ⊑ 𝔅 ⟹ 𝑁𝐶𝑆𝛼𝑐𝑙(𝒬) ⊑

𝑁𝐶𝑆𝛼𝑐𝑙(𝔇1) ⊑ 𝑁𝐶𝑆𝛼𝑐𝑙(𝔇2
𝑐) ⊑ 𝑁𝐶𝑆𝛼𝑐𝑙(𝔅). Hence 𝒬 ⊑ 𝔇1 ⊑ 𝑁𝐶𝑆𝛼𝑐𝑙(𝔇1) ⊑ 𝔅, where 𝔇1 is a NCS-OS 

in 𝒮. 

 To prove 𝒮 is a NCS-normal space. Let 𝒬1 and 𝒬2 be NC-CSs in 𝒮, such that 𝒬1⨅𝒬2 = ∅𝒩 . Hence 

𝒬1 ⊑ 𝒬2
𝑐, where 𝒬2

𝑐 is a NC-OS. Then there exists a NCS-OS 𝔇 such that 𝒬1 ⊑ 𝔇 ⊑ 𝑁𝐶𝑆𝛼𝑐𝑙(𝔇) ⊑ 𝒬2
𝑐 

(by hypothesis). Hence 𝒬1 ⊑ 𝔇, 𝒬2 ⊑ (𝑁𝐶𝑆𝛼𝑐𝑙(𝔇))𝑐. On the other hand 𝑁𝐶𝑆𝛼𝑐𝑙(𝔇)⨅(𝑁𝐶𝑆𝛼𝑐𝑙(𝔇))
𝑐

=

∅𝒩. Hence 𝔇⨅(𝑁𝐶𝑆𝛼𝑐𝑙(𝔇))
𝑐

= ∅𝒩  (since 𝔇 ⊑ 𝑁𝐶𝑆𝛼𝑐𝑙(𝔇)). Therefore 𝒮 is a NCS-normal space. The 

proofs (ii), (iii) are evident for others. ▪ 

Remark 5.5: 

(i) NC-normal property is a NC
∗∗

-topological property. 

(ii) NC
∗
-normal property is a NC

∗
-topological property. 

(iii) NC
∗∗

-normal property is a NC
∗∗

-topological property. 

(iv) NCS-normal property is a NCS∗
-topological property. 

(v) NCS∗
-normal property is a NCS∗

-topological property. 
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(vi) NCS∗∗
-normal property is a NCS∗∗

-topological property. 

Proposition 5.6: 

(i) If 𝒮 × ℐ is a NC
∗∗

-normal space, then both 𝒮 and ℐ are NC
∗∗

-normal spaces. 

(ii) If 𝒮 × ℐ is a NCS∗∗
-normal space, then both 𝒮 and ℐ are NCS∗∗

-normal spaces. 

Proof:  

(i) Suppose that 𝒮 × ℐ is a NC
∗∗

-normal space, to prove that 𝒮 and ℐ are NC
∗∗

-normal spaces. 

Let 𝔅1 and 𝔅2 be two NC-OSs in 𝒮 and ℐ respectively, such that 𝒬1 ⊑ 𝔅1 and 𝒬2 ⊑ 𝔅2, where 

𝒬1  and 𝒬2  are NC -CSs in 𝒮  and ℐ  respectively. Hence 𝒬1 × 𝒬2 ⊑ 𝔅1 × 𝔅2  where 𝒬1 × 𝒬2  is a 

NC-CS and 𝔅1 × 𝔅2 is a NC-OS in 𝒮 × ℐ (by theorem (2.7) and corollary (2.8)). But 𝒮 × ℐ is a 

NC
∗∗

-normal space. Then there exists a NC-OS say 𝔇 in 𝒮 × ℐ such that 𝒬1 × 𝒬2 ⊑ 𝔇 ⊑ 𝑁𝐶𝑐𝑙(𝔇) ⊑

𝔅1 × 𝔅2. Then there exist NC-OSs 𝒰1 and 𝒰2 in 𝒮 × ℐ such that 𝒬1 × 𝒬2 ⊑ 𝒰1 × 𝒰2 ⊑ 𝑁𝐶𝑐𝑙(𝒰1 ×

𝒰2) = 𝑁𝐶𝑐𝑙(𝒰1) × 𝑁𝐶𝑐𝑙(𝒰2) ⊑ 𝔅1 × 𝔅2 . Hence 𝒬1 ⊑ 𝒰1 ⊑ 𝑁𝐶𝑐𝑙(𝒰1) ⊑ 𝔅1 ⟹ 𝒮  is a NC
∗∗

-normal 

space. Also, 𝒬2 ⊑ 𝒰2 ⊑ 𝑁𝐶𝑐𝑙(𝒰2) ⊑ 𝔅2 ⟹ ℐ is a NC
∗∗

-normal space. The proof (ii) is evident for 

others. ▪ 

Definition 5.7: 

Let (𝒮, 𝜁)  be a NCTS, then 𝒮 is said to be: 

(i) NC-𝑇4-space if 𝒮 is a NC-𝑇1-space and NC-normal space. 

(ii) NC
∗
-𝑇4-space if 𝒮 is NC-𝑇1-space and NC

∗
-normal space. 

(iii) NC
∗∗

-𝑇4-space if 𝒮 is NC-𝑇1-space and NC
∗∗

-normal space. 

Definition 5.8: 

Let (𝒮, 𝜁)  be a NCTS, then 𝒮 is said to be: 

(i) NCS-𝑇4-space if 𝒮 is a NCS-𝑇1-space and NCS-normal space. 

(ii) NCS∗
-𝑇4-space if 𝒮 is NCS-𝑇1-space and NCS∗

-normal space. 

(iii) NCS∗∗
-𝑇4-space if 𝒮 is NCS-𝑇1-space and NCS∗∗

-normal space. 

Remark 5.9: 

(i) NC-𝑇4 (NCS-𝑇4 respectively) property is a NC
∗∗

 (NCS∗∗
 respectively) topological property. 

(ii) NC
∗
-𝑇4 (NCS∗

-𝑇4 respectively) property is a NC
∗

 (NCS∗
 respectively) topological property. 

(iii) NC
∗∗

-𝑇4 (NCS∗∗
-𝑇4 respectively) property is a NC

∗∗
 (NCS∗∗

 respectively) topological property. 

Remark 5.10: 

(i) Every NC-𝑇4-space is a NC-𝑇4-space and NCS-𝑇4-space. 

(ii) Every NC-𝑇4-space is a NCS-𝑇4-space. 

(iii) Every NC
∗∗

-𝑇4-space is a NC
∗
-𝑇4-space and NCS-𝑇4-space. 

(iv) Every NC
∗

- 𝑇4 -space ( NCS∗
- 𝑇4 -space respectively) is a NC

∗
- 𝑇3 -space ( NCS∗

- 𝑇3 -space, 

respectively). 

(v) Every NC
∗∗

-𝑇4 -space (NCS∗∗
-𝑇4 -space respectively) is a NC

∗∗
-𝑇3 -space (NCS∗∗

-𝑇3 -space, 

respectively). 

Remark 5.11: 

The following diagram explains the relationships between usual NC-separation axioms, NC-

separation axioms and NCS-separation axioms: 
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Also, we have the following diagram: 

 

 

 

 

 

 

 

6. Conclusions 

         We have provided some new concepts of weakly neutrosophic crisp separation axioms. Some 

characterizations have been provided to illustrate how far topological structures are conserved by 

the new neutrosophic crisp notion defined. Furthermore, some new concepts of weakly 

neutrosophic crisp regularity are also studied. The study demonstrated some new concepts of 

weakly neutrosophic crisp normality and proved some of their related attributes.  

 

NC-𝑇0 

NC-𝑇1 

NC-𝑇2 

NC-𝑇4 

NC-𝑇3 

NCS-𝑇0 

NCS-𝑇3 

NCS-𝑇2 

NCS-𝑇4 

NCS-𝑇1 

NC-𝑇0 

NC-𝑇3 

NC-𝑇2 

NC-𝑇4 

NC-𝑇1 

NC-𝑇4 

NC
∗∗

-𝑇4 

NC
∗
-𝑇4 

NC-𝑇4 

NC
∗∗

-𝑇3 

NC
∗
-𝑇3 

NC-𝑇3 

NC-𝑇3 

NC-𝑇4 

NCS∗∗
-𝑇4 

NCS∗
-𝑇4 

NCS-𝑇4 

NCS∗∗
-𝑇3 

NCS∗
-𝑇3 

NCS-𝑇3 

NC-𝑇3 

Fig. 5.2 



Neutrosophic Sets and Systems, Vol. 51, 2022     343  

 

 

Qays Hatem Imran, Ali H. M. Al-Obaidi, Florentin Smarandache and Md. Hanif PAGE, On Some New Concepts of Weakly 

Neutrosophic Crisp Separation Axioms 

Funding: There is no external grant for this work. 

Acknowledgments: The authors are appreciative to the Referees for their constructive comments. 

Conflicts of Interest: There are no conflicts of interest declared by the authors. 

References 

[1] A. A. Salama, F. Smarandache and V. Kroumov, Neutrosophic crisp sets and neutrosophic crisp 

topological spaces. Neutrosophic Sets and Systems, 2(2014), 25-30. 

[2] A. A. Salama, Basic structure of some classes of neutrosophic crisp nearly open sets & possible 

application to GIS topology. Neutrosophic Sets and Systems, 7(2015), 18-22. 

[3] A. H. M. Al-Obaidi and Q. H. Imran, On new types of weakly neutrosophic crisp open mappings. Iraqi 

Journal of Science, vol.62, No.8, (2021), 2660-2666. 

[4] A. H. M. Al-Obaidi, Q. H. Imran and M. M. Abdulkadhim, On new types of weakly neutrosophic crisp 

closed functions. Communicated. 

[5] Md. Hanif PAGE and Q. H. Imran, Neutrosophic generalized homeomorphism. Neutrosophic Sets and 

Systems, 35(2020), 340-346. 

[6] Q. H. Imran, F. Smarandache, R. K. Al-Hamido and R. Dhavaseelan, On neutrosophic semi--open sets. 

Neutrosophic Sets and Systems, 18(2017), 37-42. 

[7] Q. H. Imran, R. K. Al-Hamido and A. H. M. Al-Obaidi, On new types of weakly Neutrosophic crisp 

continuity. Neutrosophic Sets and Systems, 38(2020), 179-187. 

[8] Q. H. Imran, K. S. Tanak and A. H. M. Al-Obaidi, On new concepts of neutrosophic crisp open sets. 

Journal of Interdisciplinary Mathematics, 25(2)(2022), 563-572.  

[9] R. Dhavaseelan, R. Narmada Devi, S. Jafari and Q. H. Imran, Neutrosophic 

𝛼𝑚-continuity. Neutrosophic Sets and Systems, 27(2019), 171-179. 

[10] R. K. Al-Hamido, Q. H. Imran, K. A. Alghurabi and T. Gharibah, On neutrosophic crisp semi--closed 

sets. Neutrosophic Sets and Systems, 21(2018), 28-35.   

[11] A. B. Al-Nafee, R. K. Al-Hamido and F. Smarandache, Separation axioms in neutrosophic crisp 

topological spaces. Neutrosophic Sets and Systems, 25(2019).  

[12] R. K. Al-Hamido, Luai Salha and Taleb Gharibah, Neutrosophic crisp semi separation axioms in 

neutrosophic crisp topological spaces. International Journal of Neutrosophic Science, 6(1)(2020), 32-40.  

[13]  A. A. Salama, I. M. Hanafy, H. Elghawalby and M. S. Dabash, Some GIS Topological Concepts via 

Neutrosophic Crisp Set Theory. New Trends in Neutrosophic Theory and Applications, 2016. 

[14] W. Al-Omeri, Neutrosophic crisp sets via neutrosophic crisp topological spaces NCTS. Neutrosophic 

Sets and Systems, 13(2016), 96-104. 

 

Received: Feb 5, 2022. Accepted: April 22, 2022. 

http://fs.unm.edu/NSS/Neutrosophic%20alpha-m-continuity.pdf
http://fs.unm.edu/NSS/Neutrosophic%20alpha-m-continuity.pdf


                                    Neutrosophic Sets and Systems, Vol. 51, 2022 
University of New Mexico  

 

Souhail Dhouib, Novel Heuristic for New Pentagonal Neutrosophic Travelling Salesman Problem 

 

 

Novel Heuristic for New Pentagonal Neutrosophic Travelling 
Salesman Problem 

 

 

Souhail Dhouib * 

OLID laboratory, 

Higher Institute of Industrial Management, 

University of Sfax, Tunisia 

* Correspondence: dhouib.matrix@gmail.com. 

 

Abstract: This paper presents a new variant of Travelling Salesman Problem (TSP) and its first 

resolution. In literature there is not any research work that has presented the TSP under pentagonal 

fuzzy neutrosophic environment yet. TSP is a critical issue for manufacturing companies where all 

cities need to be visited only once except the starting city with a minimal cost. In real life, 

information provided (cost, time … etc.) are generally uncertain, indeterminate or inconsistent 

that’s why in this paper parameters of the TSP are presented as neutrosophic pentagonal fuzzy 

numbers. To solve this problem, the novel heuristic Dhouib-Matrix-TSP1 (DM-TSP1) is applied 

using a ranking function in order to transform the fuzzy set to crisp data and range function to 

select cities. To prove the efficiency of the proposed DM-TSP1 in solving the new variant of TSP, we 

create novel benchmark instances. Then, a stepwise application of DM-TSP1 is illustrated in details. 

Keywords: Fuzzy Optimization Techniques; Neutrosophic Applications; Travelling Salesman 

Problem; Operational Research; Combinatorial optimization; Dhouib-Matrix Optimization 

Methods, Dhouib-Matrix-TSP1. 

 

 

1. Introduction 

In real life, data of industrial companies are most of the time uncertain. That’s why these data 

can be suitably presented by the neutrosophic concept in which the imprecision, the uncertainty and 

the indetermination are flexibly explored. This philosophy was firstly announced by Smarandache 

in [1] via three membership functions: Truth (T), Indeterminacy (I) and Falsity (F) with values 

belonging to ]-0,1+[. 

In literature, few research papers deal with combinatorial optimization under pentagonal 

neutrosophic number. In fact, Chakraborty et al. studied the Transportation Problem under single 

value pentagonal neutrosophic numbers for all parameters (supply, demand and transportation 

cost) in [2]. Also, Das and Chakraborty optimized the linear programming problem with pentagonal 

neutrosophic environment [3]. Radhika and Prakash considered the Assignment Problems with 

pentagonal neutrosophic number using a new magnitude ranking function for defuzzification [4]. 

Das unraveled the Transportation Problem where all parameters are presented using pentagonal 

neutrosophic numbers [5]. Then, Chakraborty hackled the networking problem in single valued 
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pentagonal neutrosophic environment and introduced a new score function for defuzzification [6]. 

In addition, Chakraborty et al. studied the mobile communication system under pentagonal 

neutrosophic domain with multi-criteria group decision-making problem [7]. Besides, Chakraborty 

designed a job-sequencing model in pentagonal neutrosophic area [8]. Kane et al. involved the 

pentagonal and hexagonal fully fuzzy Transportation Problems [9]. 

To the best of our knowledge, in literature there is no research work which solved the 

Travelling Salesman Problem (TSP) under pentagonal fuzzy neutrosophic environment. In fact, 

many applications of TSP with five numbers of variable for each of the three components T, I and F 

can be found in real life such as the useful of pentagonal membership functions under multi 

objective environment. Also, the representation of verbal phrase with five different information and 

even the dynamic variation of the information with time can be presented by five membership 

functions. 

From the above discussion carried on pentagonal neutrosophic problems, there are no current 

methods for solving pentagonal TSP under Neutrosophic condition. Thus, we generate new 

benchmark instances for pentagonal TSP with adapting the novel heuristic Dhouib-Matrix-TSP1 

(DM-TSP1) to solve this problem. Correspondingly, this paper presents also the first application of 

DM-TSP1 on pentagonal domain. 

Hence, this paper supports the theory and practical efficiency with several novel contributions 

which can be enumerated as follows: 

 First resolution of TSP under pentagonal neutrosophic domain 

 Introduce new instances for the pentagonal neutrosophic TSP 

 Enhancing the novel heuristic DM-TSP1 

 Step wise application of DM-TSP1 

This paper is structured as follows: section 2 introduces one of the most important problems in 

operational research: the TSP. Section 3 presents the concept of the pentagonal neutrosophic 

environment. Section 4 presents the proposed novel heuristic DM-TSP1. Section 5 illustrates several 

numerical examples in order to clarify the application of optimization technique DM-TSP1. Finally, 

section 6 concludes the manuscript with the presentation of the future works. 

2. The Travelling Salesman Problem  

Materials and Methods should be described with sufficient details to allow others to replicate 

and build on published results. Please note that publication of your manuscript implicates that you 

must make all materials, data, computer code, and protocols associated with the publication 

available to readers. Please disclose at the submission stage any restrictions on the availability of 

materials or information. New methods and protocols should be described in detail while 

well-established methods can be briefly described and appropriately cited. 

In real-world, the Travelling Salesman Problem (TSP) is extensively used. It deals with 

generating the shortest round between all nodes (cities, customers, suppliers, … etc.) namely the 

Hamiltonian cycle: each node is visited only once except the starting node which will be also the last 

visited node. The TSP is mathematically formulated as described in Equation 1.  

Minimize: 

1 1

n n

ij ij
i j

t x
 


 
(1) 

Subject to: 



Neutrosophic Sets and Systems, Vol. 51, 2022     346  

 

 

Souhail Dhouib, Novel Heuristic for New Pentagonal Neutrosophic Travelling Salesman Problem 

1
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n
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n
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ij

x i n

x j n

x or i n n





 

 

  





 

(2) 

The binary variable xij is used to indicate either city i is connected to city j (then xij = 1) or city i 

and j are not connected (xij = 0). The parameter t represents the time (cost, distance, … etc.) while tij 

represents the time between city i and city j. 

Panwar and Deep proposed the Grey Wolf metaheuristic for the symmetric TSP [10]. Gunduz 

and Aslan developed the stochastic Jaya algorithm in order to solve the TSP [11].  

Mosayebi et al. generated a new type of hybrid TSP with Scheduling Problem in order to 

minimize the time of completion of the last job [12]. Wang and Han combined the Symbiotic 

Organisms Search with the Ant Colony Optimization algorithms to optimize the standard TSP [13]. 

Krishna et al. designed a new optimization method for the TSP namely the Spotted Hyena-based 

Rider Optimization by integrating the Rider Optimization with the Spotted Hyena Optimizer 

methods [14]. 

Çakir et al. integrated the Dijkstra algorithm with the Minimum Vertex Degree method in order 

to find the minimal transportation network [15]. Hu et al. designed a Bidirectional Graph Neural 

Network as an element of Deep Learning to solve the TSP [16]. Pandiri and Singh adapted the 

Artificial Bee Colony metaheuristic for the generalized covering TSP [17]. Luo et al. developed a 

Multi-start Tabu Search metaheuristic for Multi-visit TSP with Multi-drones [18]. Cavani et al. used 

the Branch-and-Cut technique for TSP with multiple drones for last-mile delivery [19]. Pereira et al. 

integrated the Branch-and-Cut with Valid Inequalities method for pickup and delivery TSP with 

multiple stacks [20]. Huerta et al. proposed a new spatial representation of nodes in TSP and used the 

Anytime Automatic Algorithm [21]. Hougardy et al. computed for the metric TSP an approximative 

ratio of the 2-Opt method [22]. Baniasadi et al. presented an application on two modern logistic 

problems with a description of how to transform the clustered generalized TSP to classical TSP [23]. 

Chen et al. introduced the Branch-and-Price algorithm for a multiple TSP [24].  

3. Preliminaries 

Several definitions and basic concepts are presented in this section in order to introduce the 

fuzzy and neutrosophic concepts. 

Definition 1: 

Let X be a space of points with its generic elements denoted by x. The neutrosophic set N has the 

form { : ( ), ( ), ( ) , }N N NN x T x I x F x x X     where the functions T, I, F: ] 0,1 [X   verifying 

the condition 0 ( ) ( ) ( ) 3N N NT x I x F x     . 

Definition 2: 

Obviously the pentagonal neutrosophic number 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5( , , , , ),( , , , , ),( , , , , );( , , ) ,  with , , [0,1],NN t t t t t f f f f f i i i i i p q r p q r     presents 

three membership functions: Truth (T), Indeterminacy (I) and Falsity (F) defined by: 
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Here is an example of a graphical representation (see Figure 1) for a pentagonal neutrosophic 

number (2,4,8,10,11), (1,2,5,9,11), (3,7,9,12,13);1,0,0NN    . 
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Figure 1. Graphical representation of the neutrosophic pentagonal fuzzy set. 

Definition 3: 

Let define 
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5( , , , , );( , , , , );( , , , , )NN t t t t t f f f f f i i i i i    as a pentagonal 

neutrosophic number. From [2], the score and accuracy functions can be described as follows: 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5( ) 2 3
5 5 5

N t t t t t i i i i i f f f f f
S N

            
    
 

, (3) 

1 2 3 4 5 1 2 3 4 5( )
5 5

N t t t t t f f f f f
AC N

        
  
 

, (4) 

Definition 4: 

To define the order between several pentagonal neutrosophic numbers, the score and accurate 

functions can be agreeably used. Let us assume two arbitrary pentagonal neutrosophic numbers 
N

aN  and 
N

bN  where:  

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5( , , , , ),( , , , , ),( , , , , )N

a a a a a a a a a a a a a a a aN t t t t t i i i i i f f f f f   , 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5( , , , , ),( , , , , ),( , , , , )N

b b b b b b b b b b b b b b b bN t t t t t i i i i i f f f f f   . 

The first step is to compute the score function for each number, so ( )N

aS N  and ( )N

bS N  

verify: 

1. if ( ) ( )N N

a bS N S N , then 
N N

a aN N  

2. if ( ) ( )N N

a bS N S N , then 
N N

a aN N  

3. if ( ) ( )N N

a bS N S N , then: 

a. if ( ) ( )N N

a bAC N AC N , then 
N N

a aN N   

b. if ( ) ( )N N

a bAC N AC N , then 
N N

a aN N  

c. if ( ) ( )N N

a bAC N AC N , then 
N N

a aN N  
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Here is a numerical example that illustrates the previous order definition between two 

pentagonal numbers: 

(4,5,6,7,9),(1,3,5,6,7),(0,1,2,3,4)N

aN    then ( ) 0.60N

aS N   

(5,6,7,8,9),(0,1,2,3,4),(3,4,5,6,7)N

bN    then ( ) 0.67N

bS N   

if ( ) ( ) then N N N N

a b a bS N S N N N   

4. The Novel Heuristic Dhouib-Matrix-TSP1 (DM-TSP1) 

The novel deterministic heuristic Dhouib-matrix-TSP1 (DM-TSP1) was firstly designed by 

Dhouib in order to rapidly find an initial basic feasible solution for the TSP [25]. Then, it was 

followed by a stochastic version entitled Dhouib-Matrix-TSP2 in [26]. Also, an application of those 

two methods on automobile industry was presented in [27]. Furthermore, an application of these 

methods on TSP under uncertain environment was illustrated with triangular fuzzy numbers in [28], 

trapezoidal fuzzy numbers in [29] and octagonal fuzzy numbers in [30]. Moreover, the TSP was 

solved with DM-TSP1 under intuitionistic environment in [31] and with neutrosophic area in 

[32,33,34]. Besides, a new metaheuristic entitled Dhouib-Matrix-3 (DM3) was invented in [35] and a 

novel multi-start metaheuristic namely Dhouib-Matrix-4 (DM4) was introduced in [36]. 

The heuristic DM-TSP1 is composed of four steps (see Figure 2) where step 1 and step 4 are 

executed once. Nevertheless, step 2 and step 3 are repeated n iterations (n is the number of cities). 

DM-TSP1 is characterized by its flexibility to use different descriptive statistical metrics (Dhouib, 

2021g). In this current research work, we will use the range (max-min) metric. 

 
Figure 2. The flowchart of the proposed DM-TSP1. 

In this paper, all parameters of the TSP are presented as pentagonal neutrosophic number. So, 

the function described in Equation 3 is used to convert these numbers into crisp numbers. Besides, 

the four steps can be started: 

Step1: Compute the range function (max-min) for each row and write it on the right-hand side 

of the matrix. Next, find the minimal range and select its row. Then, select the smallest element in 

this row which will specify the two first cities x and y to be inserted in the list List-cities {x, y}. Finally, 

discard the respected columns of city x and city y. 

Step 2: Find the minimal element for city x and for city y and select the smallest distance which 

will indicate city z. 

Step 3: Add city z to the list List-cities and discard its column. Next, if there is no column go to 

step 4 otherwise go to step 2. 

Step 4: Modify the realizable solution in List-cities in order to generate a cycle (the starting city 

in the cycle has to be also the last one). First, to ensure that the starting city will be at the first 

position, translate all the cities (one by one) before the starting one at the end of the list. Second, 

duplicate the starting city at the last position. 

5. Application of DM-TSP1 heuristic in Neutrosophic Pentagonal Travelling Salesman Problem  
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This section will describe the stepwise application of the novel heuristic DM-TSP1 on 

pentagonal neutrosophic TSP. We generate two new instances because in literature there is not any 

work that solved this problem under pentagonal neutrosophic environment. 

5.1. Illustration example 1 

Let consider a travel salesman who needs to generate a Hamiltonian cycle between 5 cities 

namely A, B, C, D and E (each city is visited only once except the starting city which will also be the 

last visited city). The estimated time between all cities is presented as pentagonal neutrosophic number as 

presented in table 1. 

Table 1. The pentagonal neutrosophic time between 5 cities. 

 A B C D E 

A   

<5,7,8,9,11; 

2,3,4,5,6; 

0,1,2,3,4> 

<11,13,14,15,16; 

2,4,6,8,10; 

1,3,5,7,9> 

<7,8,9,10,11; 

2,3,4,5,6; 

0,2,3,4,5> 

<11,12,13,14,15; 

3,4,6,8,9; 

1,2,3,4,5> 

B 

<5,7,8,9,11; 

2,3,4,5,6; 

0,1,2,3,4> 
  

<10,11,12,13,14; 

1,2,3,4,5; 

6,7,8,9,10> 

<8,9,10,11,13; 

3,5,6,8,9; 

1,2,4,5,6> 

<5,7,8,9,14; 

3,4,5,6,7; 

0,1,2,3,4> 

C 

<11,13,14,15,16; 

2,4,6,8,10; 

1,3,5,7,9> 

<10,11,12,13,14; 

1,2,3,4,5; 

6,7,8,9,10> 
  

<5,9,11,13,14; 

4,6,7,8,9; 

1,2,3,4,5> 

<7,8,9,14,15; 

0,1,2,3,4; 

2,3,4,5,6> 

D 

<7,8,9,10,11; 

2,3,4,5,6; 

0,2,3,4,5> 

<8,9,10,11,13; 

3,5,6,8,9; 

1,2,4,5,6> 

<5,9,11,13,14; 

4,6,7,8,9; 

1,2,3,4,5> 
  

<8,9,14,15,16 

1,2,3,5,7; 

2,5,6,7,8> 

E 

<11,12,13,14,15; 

3,4,6,8,9; 

1,2,3,4,5> 

<5,7,8,9,14; 

3,4,5,6,7; 

0,1,2,3,4> 

<7,8,9,14,15; 

0,1,2,3,4; 

2,3,4,5,6> 

<8,9,14,15,16 

1,2,3,5,7; 

2,5,6,7,8> 
  

At first, convert the pentagonal neutrosophic number to crisp number through to Equation (3). 

Figure 3 depicts the generated crisp time matrix. 

1.33 1.60 1.40 2.00

1.33 1.00 0.80 1.20

1.60 1.00 0.87 2.20

1.40 0.80 0.87 1.73

2.00 1.20 2.20 1.73

 
 

 
 
 

 
  

 

Figure 3. The crisp time matrix. 

Now, DM-TSP1 can start by computing the range function (max-min) for each row (See figure 

4). 

 
Figure 4. Compute the range (max-min) of each row. 

Apparently, the minimal range is 0.53, so we look for the minimal element in the second row: it 

is 0.80 at position d24. Thus, city 2 and city 4 are inserted in List-cities {2-4} and their corresponding 

columns are discarded (see figure 5). 
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Figure 5. Discard columns 2 and 4. 

Besides, find the smallest element between row 2 and row 4 which is 0.87 at position d43. Then, 

insert city 3 at the last position (after city 4) in List-cities {2-4-3} and discarded its corresponding 

column (see Figure 6). 

 
Figure 6. Discard column 3. 

Next, find the smallest element between row 2 and row 3 which is 1.20 at position d52; then, 

insert city 5 before city 2 in List-cities {5-2-4-3} and discard its corresponding column (see Figure 7). 

 
Figure 7. Discard column 5. 

Find the smallest element between row 3 and row 5 which is 1.60 at position d13, insert city 1 

after city 3 in List-cities {5-2-4-3-1} and discard its corresponding column (see Figure 8). 

 
Figure 8. Discard column 1. 

Obviously, all columns are discarded and a tour is generated. The final step is to generate a 

cycle starting and ending by city 1. So, translate city by city, from the left to the right until city 1 will 

become at the first position: {1-5-2-4-3}. Finally, add city one at the last position in order to generate a 

cycle: {1-5-2-4-3-1}. Thus, the optimal solution generated using DM-TSP1 is: 

24 43 52 31 151;  1;  1;  1;  1x x x x x     . With a total crisp cost 

0.80 0.87 1.20 1.60 2.00 6.47z       . Consequently, the minimal pentagonal neutrosophic 

cost is: 40,50,56,62,72;15,23,30,38,44;4,10,17,23,29Nz   . The graphical representation 

of the optimal solution obtained by DM-TSP1 is depicted in Figure 9. 
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Figure 9. Graphical representation of the optimal neutrosophic solution. 

Thus, the decision maker can deduce the minimal pentagonal neutrosophic cost with its truth, 

indeterminacy and falsity degrees. The truth membership function for the generated solution is 

denoted by Equation 5. 
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 (5) 

Similarly, the indeterminacy membership function is presented by Equation 6. 
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 (6) 
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Also, the falsity membership function is presented by Equation 7. 
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 (7) 

3.2. Illustration example 2 

Let consider a second numerical example for a travel salesman man who needs to generate a 

Hamiltonian cycle between 6 cities namely A, B, C, D, E and F (see Table 2). 

Table 2. The pentagonal neutrosophic time between 6 cities 

 A B C D E F 

A   

<10,11,12,13,14; 

4,5,6,7,9; 

2,5,6,8,12> 

<19,21,24,27,30; 

8,9,14,17,18; 

6,7,8,9,10> 

<4,5,6,7,8; 

0,1,2,3,4; 

0,1,1,2,3> 

<15,22,23,26,29; 

5,7,9,11,15; 

5,6,8,9,15> 

<7,11,12,16,17; 

2,4,5,6,7; 

1,5,8,9,11> 

 

B 

<10,11,12,13,14; 

4,5,6,7,9; 

2,5,6,8,12> 
  

<9,10,15,18,19; 

5,6,7,8,9; 

1,2,6,8,12> 

<6,13,14,15,16; 

4,5,8,9,11; 

0,3,5,6,7> 

<1,6,11,16,21; 

3,4,5,6,7; 

1,2,3,4,5> 

<9,16,17,18,25; 

3,4,6,11,12; 

2,3,4,5,6> 

C 

<19,21,24,27,30; 

8,9,14,17,18; 

6,7,8,9,10> 

<9,10,15,18,19; 

5,6,7,8,9; 

1,2,6,8,12> 
  

<9,10,15,18,19; 

5,6,7,8,9; 

1,2,6,8,12> 

<5,7,14,15,16; 

5,6,7,8,9; 

0,1,2,3,4> 

<13,16,17,21,27; 

7,9,10,11,12; 

2,5,6,7,8> 

D 

<4,5,6,7,8; 

0,1,2,3,4; 

0,1,1,2,3> 

<6,13,14,15,16; 

4,5,8,9,11; 

0,3,5,6,7> 

<9,10,15,18,19; 

5,6,7,8,9; 

1,2,6,8,12> 
  

<11,13,15,24,25; 

3,4,6,13,14; 

2,5,8,11,14> 

<14,17,21,22,23; 

3,4,6,11,21; 

1,3,7,9,16> 

E 

<15,22,23,26,29; 

5,7,9,11,15; 

5,6,8,9,15> 

<1,6,11,16,21; 

3,4,5,6,7; 

1,2,3,4,5> 

<5,7,14,15,16; 

5,6,7,8,9; 

0,1,2,3,4> 

<11,13,15,24,25; 

3,4,6,13,14; 

2,5,8,11,14> 
  

<8,9,11,17,19; 

2,3,4,10,11; 

1,3,4,5,7> 

F 

<7,11,12,16,17; 

2,4,5,6,7; 

1,5,8,9,11> 

 

<9,16,17,18,25; 

3,4,6,11,12; 

2,3,4,5,6> 

<13,16,17,21,27; 

7,9,10,11,12; 

2,5,6,7,8> 

<14,17,21,22,23; 

3,4,6,11,21; 

1,3,7,9,16> 

<8,9,11,17,19; 

2,3,4,10,11; 

1,3,4,5,7> 
  

At first convert the pentagonal neutrosophic number to crisp number using Equation (3). The 

generated crisp matrix is presented in Figure 10. 
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0.40 1.67 1.53 2.33 1.00

0.40 1.13 1.07 1.67 2.60

1.67 1.13 2.00 1.47 1.80

1.53 1.07 2.00 1.20 1.73

2.33 1.67 1.47 1.20 1.60

1.00 2.60 1.80 1.73 1.60

 
 


 
 
 

 
 
   

 

Figure 10. The crisp time matrix. 

Next, compute the range function (max-min) for each row (see figure 11). 

 
Figure 11. Compute the range of each row. 

The minimal range is 0.87, so we look for the minimal element in the third row: it is 1.13 at 

position d32. Thus, city 3 and city 2 are inserted in List-cities {3-2} and their corresponding columns 

are discarded (see Figure 12). 

 
Figure 12. Discard columns 2 and 3. 

Besides, find the smallest element between row 3 and row 2 which is 0.40 at position d21. Then, 

insert city 1 at the last position (after city 2) in List-cities {3-2-1} and discarded its corresponding 

column (see Figure 13). 

 
Figure 13. Discard column 1. 

Next, find the smallest element between row 3 and row 1 which is 1.00 at position d16; then, 

insert city 6 after city 1 in List-cities {3-2-1-6} and discard its corresponding column (see Figure 4). 
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Figure 14. Discard column 6.  

Succeeding, find the smallest element between rows 3 and 6 which is 1.47 at position d35; then, 

insert city 5 before city 3 in List-cities {5-3-2-1-6} and discard its corresponding column (see Figure 

15). 

 
Figure 15. Discard column 5. 

Subsequent, select the smallest element between rows 5 and row 6 which is 1.20 at position d54, 

insert city 4 before city 5 in List-cities {4-5-3-2-1-6} and discard its corresponding column (see Figure 

16). 

 
Figure 16. Discard column 4.  

The final step is to generate a cycle starting and ending by city 1. So, translate city by city, from 

the left to the right until city 1 will become at the first position: {1-6-4-5-3-2}. Finally, add city one at 

the last position in order to generate a cycle: {1-6-4-5-3-2-1}. 

Thus, the optimal solution generated using DM-TSP1 is: 

32 21 16 53 45 641;  1;  1;  1;  1; 1x x x x x x      . With a total crisp cost 

1.13 0.40 1.00 1.47 1.20 1.73 6.93z        . Consequently, the minimal pentagonal 

neutrosophic cost is: 56,69,89,108,114;22,29,37,53,69;7,21,37,48,69Nz   . The 

graphical representation of the optimal solution obtained by DM-TSP1 is depicted in Figure 17. 
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Figure 17. Graphical representation of the optimal neutrosophic solution. 

All examples presented in this section are presented as type-1 neutrosophic number. For next 

research, the proposed constructive heuristic DM-TSP1 can be as well employed to optimize TSP 

under type-2 neutrosophic number which is an advancement of neutrosophic number presented in 

[37]. 

5. Conclusions 

The neutrosophic concept is a new philosophy and representing the Travelling Salesman 

Problem (TSP) under pentagonal neutrosophic environment has not been earlier considered by any 

other author in the literature. Consequently, in this paper we describe the first resolution of the TSP 

with pentagonal neutrosophic number using the novel heuristic Dhouib-Matrix-TSP1 (DM-TSP1). 

Viewing that there is no instance for this problem; so, we generate novel instances. The method 

DM-TSP1 has been demonstrated by a suitable numerical example. Furthermore, DM-TSP1 easily 

generates the optimal Hamiltonian cycle after only n iterations, where n is the number of cities. As 

future work, the DM-TSP1 will be improvised for optimizing the TSP under type-2 neutrosophic 

domain. 
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Abstract: 

In this paper, we introduce the notion of continuity via neutrosophic minimal structure space. 

Besides, we introduce the notion of product minimal space in neutrosophic topological space. 

Further, we investigate some basic properties of Nm–continuity in neutrosophic minimal structure 

space, such as composition of Nm–continuous functions, product of Nm–continuous functions in 

product neutrosophic minimal structure space. 

Keywords: Neutrosophic Set; Neutrosophic Topology; Minimal Structure; Neutrosophic Pre-Open Set; 

Neutrosophic Semi-Open Set; mN-Continuity; Neutrosophic Product Space. 

________________________________________________________________________________________ 

1. Introduction: 

The existing theory of Cantor’s crisp set theory was not sufficient to handle most of the problems 

in the real life situation. Uncertainty plays an important role in our everyday life problems. Then, 

L.A. Zadeh introduced notion of fuzzy set in the year 1965 to overcome the uncertainty situation on 

considering the membership of truthiness. This is considered as an important generalization of the 

two valued logic. Still the introduction of fuzzy sets was not sufficient to control the uncertainty. K. 

Atanaosv in the year 1986 considered non-membership value together with the membership value. 

He introduced the notion of intuitionistic set. Smarandache [24] realised that the existing tools are 

not sufficient to find solutions to all types of problems on uncertainty. He then considered the 

elements with truth membership, false membership and indeterministic membership values, and 

introduced the notion of neutrosophic set. The concept of neutrosophic set has been applied in many 

branches of science and technology. Das et al. [5] have studied algebraic operations neutrosophic 

fuzzy matrices. Das and Tripathy [6] have investigated different properties of neutrosophic multiset 

mailto:runu.dhar@gmail.com
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topological space. Das et al. [4] have applied the concept of neutrosophic sets for the solution of 

decision making problems. 

The notion of neutrosophic topological space was introduced by Salama and Alblowi [21]. 

Salama and Alblowi [22] further studied the notion of generalized neutrosophic set and generalized 

neutrosophic topological space. Later on, Iswaraya and Bageerathi [10], Arokiarani et al. [2], 

Parimala et al. [17], Parimala et al. [18], Rao and Srinivasa [19], Salama et al. [23], Das and Tripathy 

[9] and others introduced different notions of open sets in neutrosophic topological space. Recently, 

Tripathy and Das [27] introduced the notion of b-locally open sets in neutrosophic topological space. 

The notion of b-locally open sets in bitopological space was introduced and investigated by Tripathy 

and Sarma [32]. In 2013, Tripathy and Sarma [33] studied the notion of weakly b-continuous 

functions in bitopological space. In 2020, Das and Tripathy [7] introduced the concept of pairwise 

neutrosophic b-open set via neutrosophic bitopological space. Later on, Tripathy and Das [26] 

defined pairwise neutrosophic b-continuous functions via neutrosophic bitopological space. 

The notion of minimal structure in topological space was introduced by Maki et al. [12]. 

Thereafter, it was investigated by many others from different aspects. The notion of minimal 

structure in a fuzzy topological space was introduce by Alimohammady and Roohi [1], and further 

investigated by Tripathy and Debnath [28] and others. 

Continuity on topological spaces is a very fundamental concept. It plays an important role and 

has successfully been applied in different areas of research in science and technology. Different 

types of continuity on topological spaces and fuzzy topological spaces has been investigated by Ray 

and Tripathy [20], Tripathy and Ray [29-31], Tripathy and Sarma [33] and others.  

In this article we introduce the notion of continuity in minimal structure spaces in neutrosophic 

topological space and investigate its different properties. 

The rest of the paper is divided into following sections: 

Section 2 is on the preliminaries and definitions. All the existing definitions have been procured 

in this section those are very useful for the preparation of the main results of this article. Section 3 

introduces mappings between neutrosophic sets, and some basic results have been proved. Section 4 

is on ccontinuity in neutrosophic minimal structure spaces. Finally, in section 5, we conclude the 

work done in this article. 

 

2. Materials and Methods (proposed work with more details):  

In this section we procure some basic definitions and notations those will be used throughout this 

article. 

Definition 2.1.[24] Let X be a universal set. A neutrosophic set A in X is a set contains triplet having 

truthness, falseness and indeterminacy membership values that can be characterized independently, 

denoted by TA, FA, IA in [0,1]. The neutrosophic set A is denoted as follows: 
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A = {(x, TA(x), IA(x), FA(x)): xX, and TA(x), IA(x), FA(x) [0, 1]}. Since, no restriction on the values of 

TA(x), IA(x) and FA(x) is imposed, so we have 0 TA(x) + IA(x) + FA(x)  3. 

Example 2.1. Let X={n1, n2} be a non-empty fixed set. Clearly, W={(n1,0.4,0.7,0.8), (n2,0.2,0.7,0.8)} is a 

neutrosophic set over X. 

Definition 2.2.[24] The null and full neutrosophic set over a nonempty set X are denoted by 0N and 

1N, given by  

(i) 0N={(x, 0, 1, 1) : xX}; 

(ii) 1N={(x, 1, 0, 0) : xX}. 

There are also other representations of 0N and 1N. One may refer to the references cited in the article. 

Clearly, 0N1N. We have, for any neutrosophic set A, 0NA1N. 

Definition 2.3.[24] Let A = {(x, TA(x), IA(x), FA(x)): xX} be a neutrosophic set over X, then the 

complement of A is defined by Ac={(x, 1-TA(x), 1-IA(x), 1-FA(x)) : xX}. 

Example 2.2. Let X={n1, n2} be a non-empty set. Let W={(n1,0.5,0.7,0.5), (n2,0.5,0.8,0.7)} be a 

neutrosophic set over X. Then, the complement of W is Wc={(n1,0.5,0.3,0.5), (n2,0.5,0.2,0.3)}. 

Definition 2.4.[24] A neutrosophic set A = {(x, TA(x), IA(x), FA(x)): xX} is contained in the other 

neutrosophic set B = {(x, TB(x), IB(x), FB(x)): xX} (i.e., AB) if and only if TA(x) TB(x), IA(x) IB(x), 

FA(x) FB(x), for each xX. 

Example 2.3. Let X={n1, n2} be a non-empty set. Let W={(n1,0.5,0.7,0.5), (n2,0.5,0.8,0.7)} and 

M={(n1,0.7,0.5,0.2), (n2,0.9,0.3,0.5)} be two neutrosophic sets over X. Then, WM. 

Definition 2.5.[24] If A = {(x, TA(x), IA(x), FA(x)): xX} and B = {(x, TB(x), IB(x), FB(x)): xX} are any two 

neutrosophic sets over X, then A B and AB is defined by 

AB ={(x,TA(x)V TB(x), IA(x)IB(x), FA(x)FB (x)): xX}, 

and AB ={(x, TA(x) TB(x), IA(x)VIB(x), FA(x)VFB (x)): xX}. 

Example 2.4. Let X={n1, n2} be a non-empty set. Let W={(n1,0.5,0.7,0.5), (n2,0.5,0.8,0.7)} and M= 

{(n1,0.7,0.5,0.2), (n2,0.9,0.3,0.5)} be two neutrosophic sets over X. Then, WM={(n1,0.7,0.5,0.2), 

(n2,0.9,0.3,0.5)} and WM={(n1,0.5,0.7,0.5), (n2,0.5,0.8,0.7)}. 

The notion of neutrosophic topological space is defined as follows: 

Definition 2.6.[21] Let X be a non-empty set and  be the collection of neutrosophic subsets of X then 

 is said to be a neutrosophic topology (in short NT) on X if the following properties holds: 

(i) 0N, 1N, 

(ii) U1, U2  U1U2, 

(iii) iui, for every {ui: i } . 

Then, (X, ) is called a neutrosophic topological space (in short NTS) over X. The members of  are 

called neutrosophic open sets (in short NOS). A neutrosophic set D is called neutrosophic closed set 

(in short NCS) if and only if Dc is a neutrosophic open set. 

Example 2.5. Let W, E and Z be three neutrosophic sets over a fixed set X={p, q, r} such that: 

W={(p,0.7,0.7,0.5), (q,0.5,0.5,0.1), (r,0.9,0.6,0.7): p, q, rX}; 
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E={(p,0.6,0.8,0.9), (q,0.5,0.8,0.3), (r,0.4,0.7,0.8): p, q, rX}; 

Z={(p,0.5,0.8,1.0), (q,0.4,0.9,0.4), (r,0.3,0.7,1.0): p, q, rX}. 

Then, the collection ={0N, 1N, W, E, Z} forms a neutrosophic topology on X. Here, 0N, 1N, W, E, Z 

are NOSs in (X, ), and their complements 1N, 0N, Wc={(p,0.3,0.3,0.5), (q,0.5,0.5,0.9), (r,0.1,0.4,0.3): p, q, 

rX}, Ec={(p,0.4,0.2,0.1), (q,0.5,0.2,0.7), (r,0.6,0.3,0.2): p, q, rX} and Z={(p,0.5,0.2,0.0), (q,0.6,0.1,0.6), 

(r,0.7,0.3,0.0): p, q, rX} are NCSs in (X, ). 

The notion of neutrosophic interior and neutrosophic closure of a neutrosophic set is defined as 

follows: 

Definition 2.7.[21] Let (X, ) be a NTS and U be a NS in X. Then the neutrosophic interior (in short 

Nint) and neutrosophic closure (in short Ncl) of U are defined by  

Nint(U) = {E : E is a NOS in X and EU}, 

and Ncl(U) = {F : F is a NCS in X and UF}. 

Example 2.6. Let us consider a neutrosophic topological space as shown in Example 2.5. Let 

U={(p,0.5,0.7,0.5), (q,0.5,0.8,0.7), (r,0.3,0.7,1.0)} be a neutrosophic set over X. Then, Nint(U)=0N and 

Ncl(U)={(p,0.5,0.2,0.0), (q,0.6,0.1,0.6), (r,0.7,0.3,0.0)}. 

Remark 2.1.[21] Clearly Nint(U) is the largest neutrosophic open set over X which is contained in U 

and Ncl(U) is the smallest neutrosophic closed set over X which contains U.  

Definition 2.8.[2] Let (X, ) be a neutrosophic topological space and G be a neutrosophic set over X. 

Then G is called, 

(i) Neutrosophic semi-open (in short NSO) set if and only if GNcl(Nint(G)); 

(ii) Neutrosophic pre-open (in short NPO) set if and only if GNint(Ncl(G)). 

The collection of all NSO sets and NPO sets in (X, 𝜏) are denoted by NSO(𝜏) and NPO(𝜏). 

Example 2.7. Let X={a, b} be a non-empty set. Clearly, (X, ) is a neutrosophic topological space, 

where ={0N, 1N, {(a,0.3,0.4,0.3), (b,0.4,0.3,0.4): a, bX}, {(a,0.4,0.4,0.1), (b,0.5,0.1,0.3): a, bX}}. Then, the 

neutrosophic set Q={(a,0.6,0.4,0.1), (b,0.9,0.1,0.2): a, bX} is a NSO set and P={(a,0.3,0.9,0.2), 

(b,0.3,0.4,0.3): a, bX} is a NPO set in (X, ). 

Definition 2.9.[2] A neutrosophic set G is called a neutrosophic b-open set in a NTS (X, ) if and only 

if GNint(Ncl(G))Ncl(Nint(G)). A neutrosophic set H is said to be neutrosophic b-closed set if its 

complement Hc is a neutrosophic b-open. The collection of all neutrosophic b-open sets in (X, 𝜏) is 

denoted by N-b-O(𝜏). 

Example 2.8. Let (X, ) be a neutrosophic topological space as shown in Example 2.7. Then, the 

neutrosophic set P={(a,0.3,0.9, 0.2), (b,0.3,0.4,0.3): a, bX} is a neutrosophic b-open set in (X, ). 

Definition 2.10.[27] Let (X, ) be a neutrosophic topological space. A neutrosophic set G is said to be 

a neutrosophic locally open (in short NLO) set if G= HK, where H is a neutrosophic open set and K 

is a neutrosophic closed set in X. 
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Example 2.9. Let (X, ) be a neutrosophic topological space as shown in Example 2.5. Then, the 

neutrosophic set R={(p,0.7,0.2,0.0), (q,0.6,0.1,0.1), (r,0.9,0.3,0.0): p, q, rX} is a neutrosophic locally open 

set in (X, ). 

 

3. Mappings Between Neutrosophic Sets: 

In this section, we prove some results on mappings between neurosophic subsets. 

Proposition 3.1. Let f:XY be a mapping, and {Ui : i} be a family of neurosophic subsets of Y, then 

we have 

(i) f-1(i Ui) = i f-1(Ui). 

(ii) f-1(i Ui) = i f-1(Ui). 

Proof. The proofs are so easy, so omitted. 

Theorem 3.2. If fi: XiYi and Ui be neutrosophic sets of Y for i = 1, 2, then  

(f1xf2)-1(U1xU2) = f1-1(U1) x f2-1(U2).   

Proof. Let fi: XiYi be mappings for i = 1, 2. Let U1 = {(T1, F1, I1)(x1) : x1 X1} and U2 {(T2, F2, I2)(x2) : x2 

X2} be neutrosophic subsets in Y1 and Y2 respectively. Then we have for (x1, x2) in X1xX2, we have 

(f1xf2)-1(T1xT2) (x1, x2) = (T1xT2) (f1(x1), f2(x2)) 

                  = min {T1f1(x1), T2 f2(x2)} 

                  = min {f1-1(T1(x1)), f2-1(T2(x2))} 

                  = (f1-1(T1), f2-1(T2)) (x1, x2). 

Following the above argument, we can show that 

(f1xf2)-1(F1xF2) (x1, x2) = (f1-1(F1), f2-1(F2)) (x1, x2) 

and (f1xf2)-1(I1xI2) (x1, x2) = (f1-1(I1), f2-1(I2)) (x1, x2). 

 

4. Continuity in Minimal Structure Neutrosophic Topological Space: 

In this section we introduce the notion of continuous maps between minimal structures in 

neutrosophic topological spaces. We procure the following definitions on neutrosophic minimal 

structre spaces from the article by Pal et al. [15]. 

Definition 4.1. A family M of neutrosophic subsets of X if M  P(X), where P(X) denotes the power 

set of X is said to be a neutrosophic minimal structure on X if 0N and 1N belong to M. Then, the pair 

(X, M) is called a nutrosophic minimal space. 

Example 4.1. Let W, E and Z be three neutrosophic sets over a fixed set X={p, q, r} such that: 

W={(p,0.7,0.7,0.5), (q,0.5,0.5,0.1), (r,0.9,0.6,0.7): p, q, rX}; 

E={(p,0.6,0.8,0.9), (q,0.5,0.8,0.3), (r,0.4,0.7,0.8): p, q, rX}; 

Z={(p,0.5,0.8,1.0), (q,0.4,0.9,0.4), (r,0.3,0.7,1.0): p, q, rX}. 

Clearly, the collection M={0N, 1N, W, E, Z} forms a neutrosophic minimal structure on X, and the pair 

(X, M) is a neutrosophic minimal structure space.  
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Remark 4.1. Eevery NTS is a nutrosophic minimal structure space. But every nutrosophic minimal 

structure space may not be a NTS in general. This follows from the following example. 

Example 4.2. Let W, E and Z be three neutrosophic sets over a fixed set X={p, q, r} such that: 

W={(p,0.5,0.7,0.5), (q,0.5,0.9,0.1), (r,0.9,0.6,0.7): p, q, rX}; 

E={(p,0.6,0.6,0.9), (q,0.5,0.8,0.3), (r,0.4,0.7,0.8): p, q, rX}; 

Z={(p,0.5,0.5,1.0), (q,0.4,0.7,0.4), (r,1.0,0.7,1.0): p, q, rX}. 

Clearly, the collection M={0N, 1N, W, E, Z} forms a neutrosophic minimal structure on X, and the pair 

(X, M) is a neutrosophic minimal structure space. But (X, M) is not a NTS.  

Definition 4.2. Let (X, M) be a neutrosophic minimal structure space. If EM, then E is called a 

neutrosophic m-open set, and its complement is called a neutrosophic m-closed set in (X, M). 

Example 4.3. Let us consider a neutrosophic minimal structure space (X, M) as shown in Example 

4.1. Clearly, 0N, 1N, W, E, Z are neutrosophic m-open sets in (X, M), and their complements 1N, 0N, 

Wc={(p,0.3,0.3,0.5), (q,0.5,0.5,0.9), (r,0.1,0.4,0.3): p, q, rX}, Ec={(p,0.4,0.2,0.1), (q,0.5,0.2,0.7), 

(r,0.6,0.3,0.2): p, q, rX} and Z={(p,0.5,0.2,0.0), (q,0.6,0.1,0.6), (r,0.7,0.3,0.0): p, q, rX} are neutrosophic 

m-closed sets in (X, M). 

 

The notion of neutrosophic minimal interior and neutrosophic minimal closure of a neutrosophic 

set in a neutrosophic minimal structure space is defined as follows: 

Definition 4.3. Let (X, M) be a neutrosophic minimal structure space, and U be a neutrosophic set 

over X. Then, the neutrosophic minimal interior (in short Nm-int) and neutrosophic minimal closure 

(in short Nm-cl) of U are defined as follows:  

Nm-int(U) = {E : E is a neutrosophic m-open set in X and EU}, 

and Nm-cl(U) = {F : F is a neutrosophic m-closed set in X and UF}. 

Example 4.4. Let (X, M) be a neutrosophic minimal structure space as defined in Example 4.1. Then, 

the neutrosophic minimal interior and neutrosophic minimal closure of U={(p,0.2,0.4,0.6), (q,0.4,0.7, 

0.9), (r,0.0,0.5,0.4)} are Nm-int(U)={(p,0,1,1), (q,0,1,1), (r,0,1,1)} and Nm-cl(U)={(p,0.3,0.3,0.5), (q,0.5,0.5,0.9), 

(r,0.1,0.4,0.3)} respectively. 

Exzample 4.5. From the above definitions, it is clear that every neutrosophic pre-open sets, 

neutrosophic semi-open sets, neutrosophic b-open sets are neutrosophic m-open sets. 

Example 4.6. Let W, E and Z be three neutrosophic sets over a non-empty set X={p, q} such that: 

W={(p,0.7,0.7,0.5), (q,0.5,0.5,0.1) : p, qX}; 

E={(p,0.6,0.8,0.9), (q,0.5,0.8,0.3) : p, qX}; 

Z={(p,0.5,0.8,1.0), (q,0.4,0.9,0.4) : p, qX}. 

Here, the family 𝜏={0N, 1N, W, E, Z} forms a neutrosophic topology on X, and so (X, 𝜏) is a 

neutrosophic topological space. Suppose M = 𝜏 ∪NPO(𝜏)∪NSO(𝜏)∪N-b-O(𝜏), then (X, M) is a 

neutrosophic minimal structure. Now, from the above it is clear that, every neutrosophic pre-open 
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sets, neutrosophic semi-open sets, neutrosophic b-open sets in (X, 𝜏) are neutrosophic m-open sets in 

(X, M). Further, it is also seen that, every neutrosophic m-open set in (X, M) is also a neutrosophic 

pre-open set, neutrosophic semi-open set, neutrosophic b-open set in (X, 𝜏). 

Definition 4.4. The function f: (X,M1)⟶ (Y,M2) is said to be minimal continuous (in short mN 

continuous) if f-1(U) is an m-open set, where U is any m-open set in M2 . 

Definition 4.5. Let (X, M) be a minimal structure on the neutrosophic set X. Let (X, ) and (Y, ) be 

neutrosophic topological spaces. Then the mapping f: (X, )(Y, ) is said to be weakly 

m-continuous if for each neutrosophic point x0 and each neutrosophic open set V with f(x0)V, there 

exists a neutrosophic open set U such that x0U and f(U)  Ncl(V). 

We state the following result without proof, in view of the above definition: 

Proposition 4.1. Let f: (X,M1)⟶ (Y,M2) and g: (X,M2)⟶ (Y,M3) be Nm–continuous functions. Then the 

composition function gof : (X,M1)⟶ (Y,M3) is Nm–continuous. 

Theorem 4.1. Let (Y,M2) be a minimal space and f: X ⟶(Y,M2) be a function. Then there is a weaker 

minimal structure M1 on X for which f is Nm– continuous. 

Proof: Let X and Y be non-empty sets and M2 be a minimal structure on Y. Let f: X ⟶(Y,M2) be a 

function. Let M1  P (X) be defined by M1 ={f -1(V) : VM2 }. Hence (X, M1) is a minimal structure on 

X. From the definition of Nm–continuity and construction of M1, it follows that f: (X,M1)⟶ (Y,M2) is 

Nm–continuous. Further by the definition of weaker minimal structure and construction of M1, it 

follows that M1 is a weaker minimal structure on X. 

We state the following result without proof. 

Proposition 4.2. Let (X,M) be a minimal space and Y X, then (Y,M⋂Y) is a minimal structure on Y. 

Further for (X, M⋂Y) there is a weaker minimal structure space.  

Theorem 4.2. Let minimal (X,M1) be a minimal structure and Y X. Then there is a weakest minimal 

structure on Y say M2 such the map if : (Y,M2) ⟶(X,M1⋂Y) is Nm–continuous. 

Proof: In view of the above Theorem 4.2 on considering the identity map we can have the map if to 

be Nm– continuous.  

Remark 4.2. The above result is true for the inclusion map i : (Y,M2) ⟶(X,M1). In this case M2 is 

called as the induced minimal structure on Y. 

Theorem 4.3. Let Y X and f:(X,M1)⟶ (Z,N1) be Nm–continuous. Then f|Y:(Y,M2) ⟶(Z,N1⋂f(y)) is 

m-continuous, where Y is endowed with M2, induced minimal structure. 

Proof: By the above remark and theorem 4.1, we have f|Y = foi (or foif ) and hence f|Y is Nm– 

continuous. 

Theorem 4.4. Let {(Xi, Mi) : i} be a family of minimal spaces, , where  being the index set and {fi 

:X⟶( Xi, Mi) : i } be a family of Nm–continuous functions. Then there is a weakest minimal 

structure M on X such that fi’s are Nm –continuous.  
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Proof: Let {(Xi, Mi) : i}, where  is the index set be a family of minimal spaces and {fi :X⟶( Xi, Mi) : 

i} be a family functions. Let Ei =f -1(Mi) = {f -1(V) : VMi} for i. Consider M =iEi. Then (X, M) is 

a minimal structure on X by definition. Further from the construction of M, it is clear that fi :(X, M) 

⟶( Xi, Mi) are Nm–continuous. Since we have considered the union while considering the minimal 

structure M on X, so it will include all other minimal structures on X, so it is the weakest minimal 

structure on X. 

Theorem 4.5. Let {fi: X⟶( Xi, Mi) : i} be a family of Nm–continuous functions, where, (Xi, Mi) are 

minimal spaces. Let the minimal structure M in X be generated by {fi : i}. Then the function f : 

(Y,N)⟶ (X,M) is Nm–continuous if and only if fiof is Nm–continuous function for all i. 

Proof: Let {fi: X⟶(Xi, Mi) : i} be a family of Nm–continuous functions and  

f : (Y,N)⟶ (X,M) be Nm–continuous then by proposition 4.1, fiof is Nm– continuous. 

Next, let fiof be Nm–continuous functions for each i, but f is not Nm–continuous. Thus we have 

BM such that f-1(B)  N. Then we have the following possibilities: 

(i) There exist i0 and 
0i

B  Mi0 such that B = )(
00

1

ii Bf  .  

(ii) For every i and every BiMi, B )(
00

1

ii Bf  . 

Consider case (i), we have B = )(
00

1

ii Bf  , implies ))((
00

11

ii Bff 
= )()(

00

1

ii Bff  . Thus, for 
0i

B  

Mi0, we have )()(
00

1

ii Bff   N, which shows that ffi 
0

is not Nm–continuous. Hence we 

arrive at a contradiction. Thus our supposition is wrong. 

Next, consider the case (ii), we have f-1(0N,X)=0N,Y  and f-1(1N,X) = 1N,Y , which leads to B(0N,Y, 1N,Y) . 

Hence M \{ B} is a minimal structure on X. Thus for each i, fi:(X, M \{B})⟶( Xi, Mi), we have fiof : 

(Y, N )⟶(Xi, Mi) is mN – continuous for each i,. This leads to a contradiction to the choice of the 

minimal structure M on X. Thus, f is Nm–continuous, whenever fiof  is Nm–continuous for each i. 

Remark 4.3. Let {(Xi, Mi), i} be a family of minimal structures, then the product space is defined 

by Πi Xi . It can be easily verify that (Πi Xi , Πi Mi ) is a minimal structure on Πi Xi . Further M = 

Πi𝝙 Mi  is the weakest minimal structure on Πi Xi . 

One can easily verify that for each j, the canonical projection πj : Πi Xi⟶Xj  is Nm–continuous. 

 

In view of the above theorem and remark, we formulate the following results. 

Proposition 4.3. Let {(Xi, Mi), i } be a family of minimal spaces and X = Πi Xi exists. 

Proposition 4.4. Let {(Xi, Mi), i} be a family of minimal spaces and X = Πi𝝙 Xi . Let the minimal 

structure on X be generated by Πi𝝙 Xi . Let f : (Y,N)⟶ (X,M) be a function. Then f is Nm-continuous 

if and only if πiof  is Nm–continuous for all i. 
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The following result is a consequence of above results. 

Corollary 4.1. Let f : (X,M)⟶ (Y,N) and g: (X,M)⟶(Z, Q) be Nm–continuous functions. Then the 

function f xg :(X,M) ⟶(YxZ, N x Q) defined by (fxg)(x)=(f(x), g(x)) is Nm-continuous. 

 

5. Conclusion:  

In this article, we have introduced the notion of continuity and product minimal space in 

neutrosophic minimal structure spaces. Besides, we have investigated some basic properties of Nm–

continuity in neutrosophic minimal structure spaces, such as composition of Nm–continuous 

functions, product of Nm–continuous functions in product neutrosophic topological space etc. It is 

hoped that, these kind of notions can also be investigated in the field of Neutrosophic Multiset 

Topological Space [6], Neutrosophic Bitopological Space [7], Pentapartitioned Neutrosophic 

Topological Space [8], Neutrosophic Complex Topological Space [11], Generalized Neutrosophic 

Topological Space [22], etc.       
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Abstract: The paper aims to obtain a computational algorithm to solve a geometric 

Programming Problem by weighted sum method with equal priority in imprecise condition 

i.e. in Fuzzy, Intuitionistic Fuzzy and Neutrosophic field. A contrasting study of optimal 

solution among three has been prescribed to show the efficiency of this method. Numerical 

example and an application Gravel Box Design Problem is presented to compare different 

designs. Proposed method is determined by maximizing the truth and indeterminacy 

membership degree and minimizing the negative membership degree. 

 

Keywords: Geometric Programming, Fuzzy, Intuitionistic Fuzzy, Neutrosophic sets, Gravel 

Box Design Problem.  

 

1. Introduction 

         Geometric programming is an advanced method to solve a nonlinear programming 

problem. It has certain benefits over the other optimization methods. The concept of fuzzy 

sets (FS) was launched by Zadeh in 1965 [1]. Since the fuzzy sets and fuzzy logic have been 

applied in many real applications to maintain uncertainty. The conventional fuzzy sets uses 

single real value  [0, 1] to represents the truth membership function of a fuzzy set. 

In some applications we should consider not only the truth membership supported by the 

evident but also the falsity membership against by the evident. That is out of the scope of 

mailto:mepintudas@yahoo.com
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fuzzy sets and interval valued fuzzy sets. However in reality, it may not always be true that 

the degree of non-membership of an element in a fuzzy set is equal to 1 minus the 

membership degree because there may be some negative degree. In 1986, Atanassov [3], [5] 

introduced the intuitionistic fuzzy sets (IFS) which is a modification of fuzzy sets. The 

intuitionistic fuzzy sets consider both truth membership and falsity membership. 

Intuitionistic fuzzy sets can only handle incomplete information not the indeterminate 

information and inconsistent information. In IFS, sum of membership-degree and 

non-membership degree of a vague parameter is less than unity. Therefore a certain amount 

of incomplete information or indeterminacy arises in an intuitionistic fuzzy set. It cannot 

handle all types of uncertainties successfully in different real physical problems. Hence 

further modification of fuzzy set as well as intuitionistic fuzzy sets are need. In neutrosophic 

sets (NS) indeterminacy is clarified explicitly and truth membership, indeterminacy 

membership and falsity membership are not dependent. Neutrosophy was launched by 

Florentin Smarandache in 1995 [4] which is actually generalization of different types of FS 

and IFS. The term “neutrosophy” means advance information of neutral thought. This neutral 

concepts make the differece between NS and other sets like FS, IFS.  

Fuzzy representation is analyzed by a single variable: degree of truth μ, while the degree of 

falsity ν has a defect value calculated by negative formula: ν = 1- μ, and the degree of 

neutrality has a defect value that is σ =0.   

Intuitionistic fuzzy representation is described by two explicit variables: degree of truth μ 

and degree of falsity ν, while the degree of neutrality has a defect value that is σ = 0. 

Atanassov considered the incomplete variant taking into account that μ + ν ≤ 1.    

Neutrosophic representation of information is described by three parameters: degree of truth 

μ, degree of falsity ν, and degree of neutrality σ.  

              Intuitionistic fuzzy set is a device in formating real life problem like sale 

analysis, new product marketing, financial services, negotiation process, portfolio 

optimization, psychological investigation etc. Since there is a fair chance of the existence of a 

non-null hesitation part at each moment of evaluation of an unknown object (Szmidt and 

Kacprzyk, 1997, 2001). Atanassov (1999, 2012) carried out rigorous research based on the 

theory and applications of intuitionistic fuzzy sets. Geometric programming has been applied 

to simple riser problems by R.C. Creese [13] using Chvorinov’s rule. In the last 20 yrs fuzzy 

geometric programming has received rapid development in the theory and application. In 

2002, B.Y. Cao [11] published the first monograph of fuzzy geometric programming as 

applied optimization series (vol 76), fuzzy geometric programming by Kluwer academy 

publishing (the present spinger), the book gives a detailed exposition to theory and 

application of   fuzzy geometric programming. In 1990 R. k. verma [14] has studied fuzzy 

programming technique to solve geometric programming problems. Recently a paper 
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multi-objective geometric programming problem based on intuitionistic fuzzy geometric 

programming technique is published by Pintu Das et al. [15]. Multi-objective non-linear 

programming problem based on Neutrosophic Optimization Technique and its application in 

Riser Design Problem is published by Pintu Das et al. [16]. In our uncertain life a 

decision-maker has to allow to handle indeterminacy or neutral thoughts in decision-making 

process. Neutrosophic optimization technique is limited in application to design 

optimization. The motivation of the present study is to explain computational procedure for 

solving Geometric Programming Problem in imprecise environment (i.e. Fuzzy, 

Intuitionistic Fuzzy, Neutrosophic) and as an application “Gravel Box Design” problem is 

represented. A contrasting study of optimal solution among three has been prescribed to 

show the efficiency of this method. Numerical example and an application Gravel Box 

Design Problem is presented to compare different designs. Proposed method is determined 

by maximizing the truth and indeterminacy membership degree and minimizing the negative 

membership degree.  

 

 

2.      Geometric Programming  

Geometric programming (GP) is an advanced method to solve the special class of non-linear 

programming problems subject to linear or non-linear restriction. The original mathematical 

development of this method used the arithmetic–geometric mean inequality relationship 

between sums and products of real numbers. In 1967 Duffin, Peterson and Zener made a 

beginning stone to solve vast range of engineering problems by   basic theories of geometric 

programming in the book “Geometric Programming” [12]. Beightler and Phillips gave a 

full account of whole modern theory of geometric programming and numerous examples of 

successful applications of geometric programming to real-world problems in their book 

“Applied Geometric Programming” [6]. The study of GP by Duffin et al. (1967) deals with 

the problem associating only a positive coefficient for the component cost terms. However, 

many real world problems comprise of positive as well as negative coefficients for the cost 

terms. GP method has some advantages. The advantage is that it is sometimes simple to solve 

the dual problem than primal. 

 

3. Posynomial Geometric Programming Problem 

 

 Primal Problem 

A single objective posynomial geometric programming problem can be written as  
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 Minimize                                                       (1) 

 subject to  

( ) ≤ 1                 (j=1,2,……..,m) 

> 0                    (i=1,2,……...,n)  

Where ( ) =  

Where  (> 0) and     i =1, 2,……,n; k=1,2,……… ;         

                                           j = 0, 1, 2, ……,m ; are real.  

 ≡ . 

 

    Dual Problem  

The dual programming of (1) is as follows 

Maximize d ( ) =                                     (2) 

subject to  

 = 1                             (Normality condition) 

 = 0                   (Orthogonality condition) 

 =  ≥ 0,  ≥ 0 

i = 1,2,…………n; k= 1,2,…………… ,  = 1 

 

4. Signomial Geometric Programming Problem 

 

 Primal Problem 
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A single objective signomial geometric programming problem can be formulated as  

Min                                                                             (3) 

Subject to  

( ) ≤    (j=1,2,……..,m) 

 > 0        (i=1,2,……...,n)  

Where ( ) =                 (j = 0,1,2,……….,m) 

  =  1    (j = 2,3, …………m.),  =  1      (j=0,1,2,……….,m);        

k=1,2,………,  

 ≡ . 

 

  Dual Problem  

The dual problem of (3) is as follows 

Maximize d ( )=                          (4) 

subject to  

 =                              (Normality condition) 

 = 0                     (Orthogonality condition) 

            i = 1,2,……..n. 

Where   =  1    (j = 2,3, …………m.),  =  1      (j=1,2,……….m); 

K= 1,2,…………   and  = 1 

 =  1 
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 =  ≥ 0,  ≥ 0 

j = 1,2,…………m; k= 1,2………….  . 

 

5.  Fuzzy Geometric Programming (FGP) 

A geometric programming problem with fuzzy objective can be written as 

( )                     (5)  

Subject to    ( ) ⪍ bj                     j=1,2,…………..,m 

                          0                 

Here the symbol    “ ” denotes a flexible version of “Minimize”. Similarly the 

symbol “⪍” denotes a fuzzy version of   “ ”. These fuzzy requirements may be determined 

by taking membership functions   µj (  ( )) (j= 0,1,2,……..m) from the decision maker for 

all functions  (j=0,1,2,……..m) by taking account of the rate of increased membership 

functions. It is, in general strictly monotone decreasing linear or non-linear functions with 

respect to  (j = 0, 1, 2,……..,m). Here for simplicity, linear membership functions are 

considered. The linear membership functions can be presented by 

 

µj (  ( )) =  

                      for j= 0,1,2,3,…………m. 
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Figure-1: Membership function of a minimization-type           

objective function 

The problem (5) reduces to FGP when (t) and  are signomial and posynomial 

functions. 

Based on fuzzy decision making of bellman and zadeh (1972), we may write  

i) µ D ( *) = max (min µj ( ( )))        (Max-min operator)             (6)         

subject to     µj (  ( )) =  

                         (j= 0,1,2,3,…………,m.) 

                              0                             

ii) µD (
*) = max( )   (Max-additive operator)           (7) 

    subject to     µj (  ( )) =  

        (j= 0,1,2,3,…………m.) 



Neutrosophic Sets and Systems, Vol. 51, 2022     378  

 

__________________________________________________________________________________________________ 

Pintu Das. Geometric Programming in Imprecise Domain with Application     

 

                           0                             

iii) µ D ( *) = max ( )   (Max - product operator)      (8) 

  subject to     µj (  ( )) =  

   (j= 0, 1, 2, 3,…………,m.) 

                       0    

Here for    (j=0,1,2,…………m) are numerical weights determined by a decision making 

unit . For normalized weights   =1 

For equal priority of objective and constraint goals,   =1 and   [0, 1]. For equal 

priority of objective and constraint goals,  = 1       (j=0,1,2,…………,m).    

 

6.  Numerical Example 

Let us take a fuzzy posynomial geometric programming problem as  

 ( ) =                                      (9) 

Here objective goal is 57.87 with tolerance 2.91 

1  =  6.75 (with tolerance 0.19) 

2( ) =  1 

> 0. 

Here, linear membership functions for the fuzzy objective and constraint goals are  

 

µ1 ( 1 ) =   
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µ0 ( 0 ) =  

 

 Based on the max-additive operator (7), FGP (9) reduces to  

Maximize  =  +  

      subject to  1  

                      > 0  

Neglecting the constant term in the above model we have the following crisp geometric 

programming 

Minimize V ( ) = 5.263  + 0.687  

subject to  1  

                > 0  

Here D.D = 4 (2+1) = 1 

The DP of this GP is 

Max d ( ) =  × 

 

Such that      w01+ w02 =1,              

                 W01 – 2w02+w11=0,     

  2w01 3w02+w12=0,       
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So   , ,  

Max d ( 01) =  × 

  

Subject to    0 < < 1 

For optimality,   = 0 

5.263(1 )( )(3- ) = 0.687  

=0.7035507, = 0.2964493, = 1.296449, = 2.296449. 

= 0.360836, = 0.6391634 

= 58.82652, = 6.783684. 

 

7. Intuitionistic Fuzzy Geometric Programming  

Let us consider the intuitionistic fuzzy geometric programming problem as 

                                                                   (10)                            

Subject to ( ) ⪍i                      j=1,2,…………..,m 

            0      

Here the symbol “⪍i” denotes the intuitionistic fuzzy type of “ ”.        

Now for Intuitionistic fuzzy geometric programming linear membership and 

non-membership functions can be prescribed as follows. 
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 ( ( )) =  

                      for j= 0,1,2,3,…………,m.  

 

 (  ( )) =  

                      for j= 0,1,2,3,…………,m.  

 

 

Figure-2: Membership and non-membership functions of a minimization-type 

objective function. 

 

Now an intuitionistic fuzzy geometric programming problem (10) with membership and 

non-membership function can be written as  

Maximize  (  ( ))                                        (11) 
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Minimize  (  ( ))  

        for j = 0,1,2,………..,m. 

Considering equal priority on all membership and non-membership functions of (11) and 

using weighted sum method the above optimization problem reduces to  

Maximize  =  

 subject to  0  

The above problem is equivalent to  

Min =  

            subject to 0                                      (12) 

Where  ( ) =  

Where  (> 0) and     (i=1,2,…….n; k=1,2,………, ; j=0,1,2,…….,m ;) are real.  

 ≡ .  

The posynomial geometric programming problem (12) can be solved by usual geometric 

programming technique. 

 

8. Numerical Example 

Let us consider an intuitionistic geometric programming problem with intuitionistic fuzzy 

goal as 

  ( ) =   

Here objective goal is 57.87 with tolerance 2.91 

 ( ) =  6.75 (with tolerance 0.19) 

 ( ) =  1   
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                 > 0 

Here, linear membership and non-membership functions for the fuzzy objective and 

constraint goals are  

 

µ0 ( ( )) =  

 

µ1 (  ( )) =  

 

ν0 ( ( )) =  

 

ν1 (  ( )) =  

 

Minimize     ( + )  + ( + )  

              subject to  1  

                             > 0  

Minimize V ( ) = 14.354  + 1.828  

Subject to  1  

               > 0  
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Here DD = 4 (2+1) = 1 

The DP of this GP is 

Max d ( ) =  × 

 

such that        w01+ w02 =1,              

                    w01 – 2w02+w11=0,     

  2w01  3w02+w12=0,       

So   , ,  

Max d ( 01) =  × 

  

Subject to    0 < < 1 

For optimality,   = 0 

14.354(1 ) ( ) (3 ) = 1.828  

= 0.6454384, = 0.3545616, = 1.3545616, = 2.3545616 

= 0.365197, = 0.63348027 

58.62182,  6.795091 

 

9.  Neutrosophic Geometric Programming 
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Let us consider a neutrosophic geometric programming problem with neutrosophic objective 

goal as  

                                                                (13)                            

Subject to ( ) ⪍n                      j=1,2,…………..,m 

             0      

Here the symbol “⪍n” denotes the Neutrosophic variant of “ ”. Now for Neutrosophic 

geometric programming linear Truth membership (simply membership), Falsity membership 

(simply non-membership) and Indeterminacy membership functions can be presented as 

follows. 

 (  ( )) =  

                      for j= 0,1,2,3,…………,m.  

 

 (  ( )) =  

                      for j= 0,1,2,3,…………m.  

 

 (  ( )) =  
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                      for j= 0,1,2,3,…………,m.  

Figure-3: Truth membership, Falsity membership and Indeterminacy membership 

functions of a minimization-type objective function. 

 

Now Neutrosophic geometric programming problem (13) with Truth membership, Falsity 

membership and Indeterminacy membership functions can be written as  

Maximize  (  ( ))                                         (14) 

Minimize  (  ( ))  

Maximize  (  ( )) 

subject to  0 

  for j = 0,1,2,………..,m. 

Using weighted-sum method and giving equal priority on all Truth membership, Falsity 

membership and Indeterminacy membership functions the above problem (14) becomes  

Maximize  =  

 subject to  0  
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The above problem is similar to  

Min =  

            Subject to  0                                       (15) 

Where ( ) =  

Where  (> 0) and     (i=1,2,…….,n; k=1,2,………, ; j=0,1,2,…….,m ;) are real.  

 ≡ .  

By usual geometric programming technique the posynomial geometric programming 

problem (15) can be solved  

 

10. Numerical Example 

Let us take a neutrosophic geometric programming problem with neutrosophic objective goal 

as 

  ( )  =   

Here objective goal is 57.87 with tolerance 2.91 

 ( )   =  6.75 (with tolerance 0.19) 

 ( )  =  1   

                 > 0.  

Here, linear Truth membership, Falsity membership and Indeterminacy membership 

functions for the fuzzy objective and constraint goals are   

 

µ0 ( ( )) =  
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µ1 (  ( )) =  

 

ν0 ( ( )) =   

 

ν1 (  ( )) =  

 

σ0 ( ( )) =  

 

σ1 (  ( )) =  

 

 

using truth, indeterminacy, falsity membership functions above problem can be formulated 

as  

Minimize V ( ) = 22.046  + 3.057132  

subject to  1  

                > 0  

Here DD = 4 (2+1) = 1 

The DP of this GP is 
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Max d ( ) =  × 

 

such that      01+ 02 =1,              

                  01 – 2 02+ 11=0,     

                 2 01  3 02+ 12=0,       

So   , ,  

Max d ( 01) =  ×

  

Subject to    0 < < 1 

For optimality,   = 0 

22.046(1 ) ( ) (3 ) = 3.057132  

= 0.6260958, = 0.3739042, = 1.3739042, = 2.3739042 

 = 0.366588, = 0.633411 

= 58.56211,  = 6.799086 

 

 

11. Application of Neutrosophic Geometric Programming in Gravel Box Design 

Problem  

 

Gravel Box Problem:    A sum of 800 cubic-meters of gravel is to be carried across a river 

on a barrage. A box (with an open top) is to be made for this occasion. After the whole gravel 
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has been carried, the box is to be rejected. The transport cost per round trip of barrage of box 

is Rs 1 and the cost of substances of the ends of the box are Rs20/m2 and the cost of 

substances of other two sides and bottom are Rs 10/m2 and Rs 80/m2. Find the size of the box 

that is to be made for this occasion and the total optimal cost.       

 

                            Figure -4:  Gravel box design 

Let length =x1 m, breadth = 2 m, height = 3 m. The area of the end of the gravel box = 2 3 

m2. Area of the sides = 1 3 m
2. Area of the bottom = 1 2 m

2 .The volume of the gravel 

box= 1 2 3    m
3.  Transport cost: Rs   .   Material cost: 40 2 3.      

 So the geometric programming problem is 

Min  

such that  = .  

  > 0.  
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Here objective goal is 90 (with truth-flexibility 8, falsity-flexibility 5, and 

indeterminacy-flexibility 5)  

and constrained goal  

 4 (with truth- flexibility 0.9, falsity- flexibility 0.5, indeterminacy- 

flexibility 0.6)  

 

= 2.4775, = 1.1271, = 0.5635 

 = 76.237, = 4.5856. 

 

 

12.   Conclusion: 

In respect of contrasting the Neutrosophic geometric programming method with Fuzzy, 

Intuitionistic fuzzy geometric programming method, we also got the solution of the given 

numerical problem by Fuzzy and Intuitionistic fuzzy optimization method. The aims of the 

present study is to give the constructive algorithm for geometric programming method in 

imprecise conditions for obtaining optimal solutions to a single-objective non-linear 

programming problem.  
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Abstract: The main focus of this paper is to introduce the notion of single valued pentapartitioned 

neutrosophic off set / over set / under set. Besides, we establish several operations on single valued 

pentapartitioned neutrosophic off sets / over sets / under sets. Besides, we furnish some suitable 

examples to validate the results established in this article. Further, we establish some interesting 

results on single valued pentapartitioned neutrosophic off set / over set / under set. 

Keywords: Neutrosophic Set; SV-PN-Set; SV-PN-off-set; SV-PN-over-set; SV-PN-under-set. 

________________________________________________________________________________________ 

1. Introduction: In 1965, Zadeh [33] grounded the concept of fuzzy set, where every element has 

membership values between 0 and 1. Afterwards, Atanassov [1] introduced the notion of 

intuitionistic fuzzy set as an extension of fuzzy set. In 1998, Smarandache [27] presented the concept 

of neutrosophic set (in short N-S) by extending the idea of fuzzy set and intuitionistic fuzzy set to 

deal with the uncertainty events having indeterminacy. In every N-S, each member has three 

independent components namely truth, indeterminacy and false membership values. Later on, 

Wang et al. [32] grounded the notion of single valued neutrosophic set (in short SV-N-S), which is 

basically a subclass of N-S. One can use SV-N-S to represent indeterminate and incomplete 

information which makes trouble to take decision (or in selection) in the real world. Thereafter, 

many researchers of different countries used the notion of SV-N-S in their model (or algorithm) in 

the different branches of real world such as medical diagnosis, educational problem, social 

problems, decision-making problems, conflict resolution, image processing, etc. In 2013, 

Smarandache [28] introduced the idea of n-valued refined neutrosophic logic, and applied this 

notion in physics. In 2016, Smarandache [29] grounded a new concept of neutrosophic over-set, 

neutrosophic under-set, neutrosophic off-set, and studied their various properties. 

In the year 2020, Mallick and Pramanik [25] grounded the idea of single valued pentapartitioned 

neutrosophic set by splitting the indeterminacy into three independent components namely 

contradiction, ignorance and unknown-membership, and studied several properties of them. In 

2021, Das and Tripathy [17] grounded the notion of pentapartitioned neutrosophic topological space 

and formulated several results on it. Afterwards, Das et al. [12] established an MADM strategy based 
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on tangent similarity measure. Later on, Majumder et al. [24] presented a cosine similarity measure 

based MADM strategy under the single valued pentapartitioned neutrosophic set environment. 

Recently, Das et al. [13] established a MADM strategy using grey relational analysis method under 

the single valued pentapartitioned neutrosophic set environment. 

In this article, we introduce the notion of single valued pentapartitioned neutrosophic off set / 

over set / under set. Besides, we establish several operations on single valued pentapartitioned 

neutrosophic off sets / over sets / under sets. Besides, we furnish some suitable examples to validate 

the results established in this article. Further, we establish some interesting results on single valued 

pentapartitioned neutrosophic off set / over set / under set. 

Research gap: No investigation on single valued pentapartitioned neutrosophic over-set / 

under-set / off-set has been reported in the recent literature. 

Motivation: To fill the research gap, we introduce and study the notion of single valued 

pentapartitioned neutrosophic over-set/under-set/off-set. 

 

The remaining part of this article has been divided into following three sections: 

In section 2, we recall some basic definitions and properties related to N-Ss, single valued 

neutrosophic over-sets / under-sets / off-sets and single valued pentapartitioned neutrosophic sets. 

In section 3, we introduce the notion of single valued pentapartitioned neutrosophic over-set / 

under-set / off-set, and study some of their basic properties. In this section, we also formulated 

several interesting results on single valued pentapartitioned neutrosophic over-set / under-set / 

off-set. In section 4, we conclude the word done in this article. 

 

2. Some Relevant Results: 

In this section, we give some relevant definitions and results for our study of the main results of 

this paper. 

The notion of N-S was defined by Smarandache [27] in the following way: 

Assume that L be a non-empty set. Then D, an N-S over L is defined by: 

D={(,TD(),ID(),FD()):L}, where TD, ID, FD are the truth, indeterminacy and false membership 

functions from the whole set L to [0, 1] respectively. So, 0  TD() + ID() + FD()  3, for each L. 

 

The notions of neutrosophic over-set, neutrosophic under-set, and neutrosophic off-set was also 

grounded by Smarandache [29] in the year 2016, and defined as follows: 

Let L be a universal set. Then, a single valued neutrosophic over set D over L is defined by: 

D={(,TD(),ID(),FD()):L}, such that at least one member in D has at least one of the neutrosophic 

component that is greater than 1. Here, TD, ID, FD : L[0, Ň] are the truth, indeterminacy, and false 

membership functions respectively such that 0 < 1 < Ň, and Ň is the over-limit of D. 

For example, D={(a,0.2,0.3,1.5), (b,0.9,1.3,0.2), (c,0.2,0.1,0.6)} is an neutrosophic over set defined over 

L. But K={(a,0.3,0.5,0.9), (b,0.8,0.4,0.9), (c,0.2,0.5,0.5)} is not an neutrosophic over set defined over L. 

 

Let L be a universal set. Then, a single valued neutrosophic under set Y over L is defined by: 
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Y={(,TY(),IY(),FY()):L}, such that at least one member in Y has at least one of the neutrosophic 

component that is smaller than 0. That is, the truth, indeterminacy, and false membership functions 

TY, IY, FY are defined from L to [Ň, 1] such that Ň < 0 < 1, and Ň is said to be the under-limit of Y. 

For example, Y={(a,0.2,-0.3,0.9), (b,-0.5,0.2,-0.2), (c,0.2,-0.1,0.6)} is an neutrosophic under-set defined 

over L. But Z={(a,0.3,0.5,0.9), (b,0.8,0.4,0.9), (c,0.2,0.5,0.5)} is not an neutrosophic under-set defined 

over L. 

 

A single valued neutrosophic off-set K over a fixed set L is defined by: 

K={(,TK(),IK(),FK()):L}, such that some members of K has at least one of the neutrosophic 

component that is smaller than 0 and at least one of the neutrosophic component that is greater than 

1. That is, the truth, indeterminacy, and false membership functions TK, IK, FK are defined from L to 

[Ň, Ñ] such that Ň < 0 < 1 < Ñ. Here, Ň and Ñ are said to be the under-limit and over-limit of K 

respectively. 

For example, K={(a,0.2,-0.3,1.6), (b,-0.5,0.2,0.2), (c,1.3,0.1,0.6)} is an neutrosophic off set defined 

over L. But L={(a,0.3,1.5,0.9), (b,0.8,0.4,0.9), (c,0.2,0.5,-0.5)} is not an neutrosophic off set defined over 

L. 

Recently, Mallick and Pramanik [14] grounded the idea of pentapartitioned neutrosophic set (in 

short PNS) by extending the notions of N-S. 

Suppose that L be a fixed set. Then D, a PNS over L is defined as follows: 

D={(,TD(),CD(),RD(),UD(),FD()):L}, where TD, CD, RD, UD, FD: L[0, 1] are the truth, 

contradiction, ignorance, unknown and false membership functions respectively. So, 

0TD()+CD()+RD()+UD()+FD()5. 

Let X={(,TX(),CX(),RX(),UX(),FX()):L} and Y={(,TY(),CY(),RY(), UY(),FY()):L} be 

two PNSs over L. Then, 

(i) XY  TX()TY(), CX()CY(), RX()RY(), UX()UY(), FX()FY(), for all L. 

(ii) XY={(, max{TX(), TY()}, max{CX(), CY()}, min{RX(), RX()}, min{UX(), UX()}, min{FX(), 

FX()}):L}. 

(iii) Xc={(,TX(),CX(),1-RX(),UX(),FX()):L}. 

(iv) XY={(, min{TX(), CY()}, min{CX(), CY()}, max{RX(), RX()}, max{UX(), UX()}, max{FX(), 

FX()}):L}. 

 

3. Pentapartitioned Neutrosophic Off-set / Over-set / Under-set: 

In this section, we introduce the notions of pentapartitioned neutrosophic off-set (in short 

PN-off-S) / pentapartitioned neutrosophic under-set (in short PN-under-S) / pentapartitioned 

neutrosophic over-set (in short PN-over-S). Then, we formulate and study some interesting results 

on them. 

Definition 3.1. Let L be a universal set. Then D, a PN-over-S over L is defined by: 

D={(,TD(),CD(),GD(),UD(),FD()):L}, such that at least one member in D has at least one of the 

pentapartitioned neutrosophic component that is greater than 1 and no member has 

pentapartitioned neutrosophic components that are less than zero. Here, TD, CD, GD, UD, FD : L[0, 
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Ň] are the truth, contradiction, ignorance, unknown and false membership functions respectively 

such that 1 < Ň, and Ň is said to be the over-limit of D. 

Example 3.1. Assume that L={a, b, c} be a fixed set. Then, D={(a,0.3,0.6,1.2,0.5,0.3), (b,1.1,1.3,0.2,0.3, 

0.5), (c,1.2,0.6,0.9,0.3,0.4)} is a PN-over-S defined over L. But K={(a,0.1,0.4,0.4,0.6,0.8), (b,0.9,0.5,0.8,0.6, 

0.8), (c,0.1,0.6,0.7,0.8,0.9)} is not a PN-over-S defined over L. 

The pictorial representation of Example 3.1 is given as follows: 

 

 

 

Definition 3.2. Suppose that L be a fixed universal set. Then Y, a PN-under-S over L is defined by: 

Y={(,TY(),CY(),GY(),UY(),FY()):L}, such that at least one member in Y has at least one of the 

neutrosophic component that is smaller than 0 and no member has pentapartitioned neutrosophic 

components that are greater than one. That is, the truth, contradiction, ignorance, unknown, and 

false membership functions TY, CY, GY,UY, FY are defined from L to [Ň,1] such that Ň<0, and Ň is said 

to be the under-limit of Y. 

Example 3.2. Assume that L={a, b, c} be a fixed set. Then, Y={(a,0.6,0.2,0.5,-0.3,-0.9), (b,-0.3,0.5,-0.2, 

0.5,0.2), (c,0.5,-0.2,0.3,0.1,-0.6)} is a PN-under-S over L. But Z={(a,0.3,0.2,0.8,0.5,0.9), (b,0.9,0.8,0.5,0.4, 

0.9), (c,0.2,0.5,0.3,0.5,0.5)} is not a PN-under-S over L. 

The pictorial representation of Example 3.2 is given as follows: 
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Definition 3.3. Assume that L be a fixed non-empty set. Then K, a PN-off-S over L is defined by: 

K={(,TK(),CK(),GK(),UK(),FK()):L}, such that some members of K has at least one of the 

pentapartitioned neutrosophic component that is smaller than 0 and at least one of the 

pentapartitioned neutrosophic component that is greater than 1. That is, the truth, contradiction, 

ignorance, unknown, and false membership functions TK, CK, GK, UK, FK are defined from L to [Ň, Ñ] 

such that Ň < 0 < 1 < Ñ. Here, Ň and Ñ are called the under-limit and over-limit of K respectively. 

Example 3.3. Assume that L={a, b, c} be a fixed set. Then, K={(a,1.3,0.5,0.2,-0.6,1.1), (b,-0.4,1.2,0.6, 

0.3,-0.5), (c,-0.9,0.5,1.3,-0.1,0.6)} is a PN-off-S defined over L. But L={(a,0.3,0.3,0.4,0.4, 0.9), 

(b,0.9,0.4,0.1,0.2,0.3), (c,0.6,0.4,0.4,0.3,0.3)} is not a PN-off-S defined over L. 

The pictorial representation of Example 3.3 is given as follows: 

 

 

 

Definition 3.4. Assume that L be a fixed set. Then, null PN-over-S (0P) and the absolute PN-over-S 

(1P) over L is defined by: 

(i) 0P = {(,0,Ñ,Ñ,Ñ,0): L}; 

(ii) 1P = {(,Ñ,0,0,0,Ñ): L}. 

Definition 3.5. Assume that L be a fixed set. Then, null PN-under-S (0P) and the absolute 

PN-under-S (1P) over L is defined by: 

(i) 0P = {(,Ň,1,1,1,Ň): L}; 

(ii) 1P = {(,1,Ň,Ň,Ň,1): L}. 

Definition 3.6. Assume that L be a fixed set. Then, null PN-off-S (0P) and the absolute PN-off-S (1P) 

over L is defined by: 

(i) 0P = {(,Ň,Ñ,Ñ,Ñ,Ň): L}; 

(ii) 1P = {(,Ñ,Ň,Ň,Ň,Ñ): L}. 

Definition 3.7. Assume that K={(,TK(),CK(),RK(),UK(),FK()):L} and Y={(,TY(),CY(),RY(), 

UY(),FY()):L} be two PN-over-Ss / PN-under-Ss / PN-off-Ss. Then, the intersection and union of 

K and Y is defined by 

(i) KY={(, min{TK(),TY()}, max{CK(), CY()}, max{RK(), RY()}, max{UK(), UY()}, min{FK(), 

FY()): L}; 
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(ii) KY={(, max{TK(), TY()}, min{CK(), CY()}, min{RK(), RY()}, min{UK(), UY()}, max{FK(), 

FY()): L}. 

Example 3.4. Assume that, L={c, d} be a fixed set. Suppose that K={(c,0.9,0.8,1.3,0.4,1.5), (d,0.2,1.3,1.7, 

0.2,0.9)} and Y={(c,0.6,0.3,1.6,1.2,0.8), (d,0.8,0.3,0.8,1.5,0.7)} be two PN-over-Ss over L. Then, 

(i) KY={(c,0.6,0.8,1.6,1.2,0.8), (d,0.2,1.3,1.7,1.5,0.7)}; 

(ii) KY={(c,0.9,0.3,1.3,0.4,1.5), (d,0.8,0.3,0.8,0. 2,0.9)}. 

Example 3.5. Assume that, L={c, d} be a fixed set. Suppose that K={(c,0.6,0.6,-0.2,0.5,-0.9), (d,0.5,-0.5, 

0.4,0.6,-0.1)} and Y={(c,-0.4,0.7,0.5,0.4,-0.8), (d,0.8,-0.5,-0.3,0.5,0.8)} be two PN-under-Ss over L. Then, 

(i) KY={(c,-0.4,0.7,0.5,0.5,-0.9), (d,0.5,-0.5,0.4,0.6,-0.1)}; 

(ii) KY={(c,0.6,0.6,-0.2,0.4,-0.8), (d,0.8,-0.5,-0.3,0.5,0.8)}. 

Example 3.6. Assume that, L={c, d} be a universe of discourse. Let K={(c,0.8,-0.6,0.7,0.6,1.1), 

(d,1.5,-0.2, 0.9,0.7,0.4)} and Y={(c,1.8,0.9,-0.9,0.7,1.2), (d,0.1,0.7,1.5,-0.6,0.9)} be two PN-off-Ss. Then, 

(i) KY={(c,0.8,0.9,0.7,0.7,1.1), (d,0.1,0.7,1.5,0.7,0.4)}; 

(ii) KY={(c,1.8,-0.6,-0.9,0.6,1.2), (d,1.5,-0.2,0.9,-0.6,0.9)}. 

Definition 3.8. Let K and Y be two PN-off-Ss / PN-under-Ss / PN-over-Ss over L. Then, 

(i) KY if and only if TK()TY(), CK()CY(), RK()RY(), UK()UY(), FK()FY(),L; 

(ii) Kc={(,1-TK(),1-CK(),1-RK(),1-UK(),1-FK()):L}. 

Example 3.7. Suppose that L={c, d} be a non-empty set. Assume that K={(c,1.5,1.9,0.9,0.9,0.5), (d,1.7, 

1.3,1.3,0.4,0.3)} and Y={(c,1.6,1.2,0.8,0.3,0.6), (d,1.8,0.8,1.2,0.3,0.9)} be two  PN-over-Ss. Then, KY, 

and Kc={(c,-0.5,-0.9,0.1,0.1,0.5), (d,-0.7,-0.3,-0.3,0.6,0.7)} and Yc={(c,-0.6,-0.2,0.2,0.7,0.4), (d,-0.8,0.2,-0.2, 

0.7,0.1)}. 

Example 3.8. Suppose that L={c, d} be a non-empty set. Assume that K={(c,0.8,0.7,-0.8,0.3,0.9) (d,-0.9, 

0.8,-0.2,0.3,-0.1)} and Y={(c,0.9,-0.5,-0.9,0.1,0.9), (d,0.7,0.5,-0.3,-0.5,0.1)}  be two PN-under-Ss over L. 

Then, KY, and Kc={(c,0.2,0.3,1.8,0.7,0.1), (d,1.9,0.2,1.2,0.7,1.1)} and Yc={(c,0.1,1.5,1.9,0.9,0.1), (d,0.3, 

0.5,1.3,1.5,0.9)}. 

Example 3.9. Suppose that L={c, d} be a non-empty set. Assume that K={(c,0.8,-0.7,1.5,0.6,1.5), (d,1.7, 

0.5,-0.1,0.3,0.5)} and Y={(c,0.8,-0.8,0.9,0.5,1.7), (d,1.8,0.2,-0.5,0.2,0.8)} be two PN-off-Ss over L. Then, 

KY, and Kc={(c,0.2,1.7,-0.5,0.4,-0.5), (d,-0.7,0.5,1.1,0.7,0.5)} and Yc={(c,0.2,1.8,0.1,0.5,-0.7), (d,-0.8,0.8, 

1.5,0.8,0.2)}. 

Proposition 3.1. Assume that K and Y be two PN-off-Ss / PN-under-Ss / PN-over-Ss over L. Then, 

(i) KY=YK; 

(ii) KY=YK. 

Proof. It is known that, KY = {(, max(TK(), TY()), min(CK(), CY()), min(RK(), RY()), 

min(UK(), UY()),max(FK(), FY()): L} = {(, max(TY(), TK()), min(CY(), CK()), min(RY(), 

RK()), min(UY(), UK()), max(FY(), FK()): L} = YK. 

Therefore, KY = YK. 

Similarly, it can be established that KY = YK. 

Proposition 3.2. Let K1, K2 and K3 be three PN-off-Ss / PN-under-Ss / PN-over-Ss over L. Then, 

K1(K2K3) = (K1K2)K3 and K1(K2K3) = (K1K2)K3. 
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Proof. Suppose that, iK1(K2K3). Therefore, 

i K1  {(i, max(TK2(i),TK3(i)), min(CK2(i),CK3(i)), min(RK2(i),RK3(i)), min(UK2(i), UK3(i)), 

max(FK2(i), FK3(i)): i L} 

i {(i, max(TK1 (i),TK2 (i),TK3 (i)), min(CK1 (i),CK2 (i),CK3 (i)), min(RK1 (i),RK2 (i),RK3 (i)), 

min(UK1(i),UK2(i),UK3(i)), max(FK1(i),FK2(i),FK3(i)): i L}  

i {(i, max(TK1 (i),TK2 (i)), min(CK1 (i),CK2 (i)), min(RK1 (i),RK2 (i)), min(UK1 (i),UK2 (i)), 

max(FK1(i),FK2(i)): i L}  K3 

i(K1  K2) K3 

K1(K2  K3) (K1  K2)K3                                                                                                            (1) 

Assume that, i (K1K2) K3. Therefore, 

i {(i, max( TK1 (i),TK2 (i)), min( CK1 (i), CK2 (i)), min(RK1 (i),RK2 (i)), min(UK1 (i),UK2 (i)), 

max(FK1(i),FK2(i)): i L}  K3 

i {(i, max(TK1 (i),TK2 (i),TK3 (i)), min(CK1 (i),CK2 (i),CK3 (i)), min(RK1
(i),RK2 (i),RK3 (i)), 

min(UK1(i),UK2(i),UK3(i)), max(FK1(i),FK2(i),FK3(i)) : i L}  

i K1  {(i, max(TK2(i),TK3(i)), min(CK2(i),CK3(i)), min(RK2(i),RK3(i)), min(UK2(i),UK3(i)), 

max(FK2(i),FK3(i)) : i L}  

i K1  (K2 K3) 

(K1K2) K3 K1  (K2 K3)                         (2) 

From eqs (1) and (2), we have, K1(K2  K3)=(K1  K2) K3. 

Similarly, it can be established that, K1(K2K3)= (K1K2) K3. 

Proposition 3.3. Let K1, K2 and K3 be three PN-off-Ss / PN-under-Ss / PN-over-Ss over L. Then, 

K1(K2K3) = (K1K2)(K1K3) and K1(K2K3) = (K1K2)(K1K3). 

Proof. Suppose that i K1(K2K3). Therefore, 

i K1  {(i, min(TK2(i),TK3(i)), max(CK2(i),CK3(i)), max(RK2(i),RK3(i)), max(UK2(i), UK3(i)), 

min(FK2(i), FK3(i)): i L} 

 i {(i, max(TK1 (i), min(TK2 (i),TK3 (i))), min(CK1 (i), max(CK2 (i),CK3 (i))), min(RK1 (i), 

max(RK2(i),RK3(i))), min(UK1(i), max(UK2(i),UK3(i))), max(FK1(i), min(FK2(i), FK3(i))): i L} 

 i {(i, max(TK1 (i),TK2 (i)), min(CK1 (i),CK2 (i)), min(RK1 (i),RK2 (i)), min(UK1 (i), UK2 (i)), 

max(FK1(i), FK2(i)): i L}  {(i, max(TK1(i),TK3(i)), min(CK1(i),CK3(i)), min(RK1(i),RK3(i)), 

min(UK1(i), UK3(i)), max(FK1(i), FK3(i)): i L} 

 i(K1K2)(K1K3) 

 K1(K2  K3)  (K1K2)(K1K3)                                                            (1) 

Assume that, i(K1K2)(K1K3). Therefore, 

i {(i, max( TK1 (i),TK2 (i)), min( CK1 (i),CK2 (i)), min(RK1 (i),RK2 (i)), min(UK1 (i), UK2 (i)), 

max(FK1(i), FK2(i)): i L}  {(i, max(TK1 (i),TK3 (i)), min(CK1(i),CK3 (i)), min(RK1 (i),RK3 (i)), 

min(UK1(i), UK3(i)), max(FK1(i), FK3(i)): i L} 

 i {(i, max(TK1 (i), min(TK2 (i),TK3 (i))), min(CK1 (i), max(CK2 (i),CK3 (i))), min(RK1 (i), 

max(RK2(i),RK3(i))), min(UK1(i), max(UK2(i),UK3(i))), max(FK1(i), min(FK2(i), FK3(i))): i L} 

i K1(K2  K3) 



Neutrosophic Sets and Systems, Vol. 51, 2022 400  

 

 

Bimal Shil, Rakhal Das, Suman Das, Single Valued Pentaparitioned Neutrosophic Off-Set / Over-Set / Under-Set. 

 

(K1K2)(K1K3)  K1(K2  K3)                           (2) 

From eqs. (1) and (2), we have K1(K2  K3) = (K1K2)(K1K3). 

Similarly, it can be established that, K1(K2K3) = (K1K2)(K1K3). 

Proposition 3.4. Let K1 be a PN-off-Ss / PN-under-Ss / PN-over-Ss over L. Then, K1 K1
c  = 0PN. 

Proof: Suppose that, iK1K1
c . This implies, 

i{(i, TK1 (i), CK1 (i), RK1 (i), UK1 (i), FK1 (i)): iL}  {(i, 1-TK1 (i), 1-CK1 (i), 1-RK1 (i), 

1-UK1(i), 1-FK1(i)): iL} 

 i{(i, min(TK1 (i), 1-TK1 (i)), max(CK1 (i), 1-CK1 (i)), max(RK1 (i), 1-RK1 (i)), max(UK1 (i), 

1-UK1(i)), min(FK1(i), 1-FK1(i))): iL} 

 i 0PN 

Therefore, K1K1
c 0PN                  (3) 

Again, consider i 0PN 

i {min(TK1 (i),(1-TK1 (i)), max(CK1 (i),UK1 (i)), max(RK1 (i),(1-RK1 (i)), max(UK1 (i),CK1 (i)), 

min(FK1(i),(1-FK1(i))} 

i {TK1(i),CK1(i),RK1(i),UK1(i),FK1(i)}{(1-TK1(i)),UK1(i),(1-RK1(i)),CK1(i),(1-FK1(i))} 

i K1 K1
c . 

Therefore, 0PN  K1 K1
c                   (4) 

From the equation (3) and (4) we can conclude that, 

K1 K1
c  = 0PN 

Proposition 3.5. Let K1 and K2 be two PN-off-Ss / PN-under-Ss / PN-over-Ss over L. Then, 

(i) (K1K2)
c=K1

CK2
C 

(ii) (K1K2)
c=K1

CK2
C 

Proof: Suppose that, i((K1K2)
c  

i {max(TK1(i),TK2(i)), min(CK1(i),CK2(i)), min(RK1(i),RK2(i)), min(UK1(i),UK2(i)), max  

(FK1(i),FK2(i))}c  

i {min((1-TK1 (i)),(1-TK2 (i))), max(UK1 (i),UK2 (i)), max((1-RK1 (i)),(1-RK2 (i))), max(CK1 (i), 

CK2(i)), min((1-FK1(i)),(1-FK2(i)))} 

i {(1-TK1 (i)), CK1 (i),(1-RK1 (i)),UK1 (i),(1- FK1 (i))}{(1-TK2 (i)), CK2 (i),(1-RK2 (i)),UK2 (i), 

(1-FK1(i))}. 

i K1
CK2

C 

(K1K2)
cK1

CK2
C                                                                            (5) 

Assume that, i K1
CK2

C 

i {(1- TK1 (i)), CK1 (i),(1- RK1 (i)), UK1 (i),(1- FK1 (i))}{(1- TK2 (i)), CK2 (i),(1- RK2 (i)), UK2 (i), 

(1-FK1(i))} 

i {min((1-TK1 (i)),(1-TK2 (i))), max(UK1 (i),UK2 (i)), max((1-RK1 (i)),(1-RK2 (i))), max(CK1 (i), 

CK2(i)), min ((1-FK1(i)),(1-FK2(i)))} 

i {max(TK1(i),TK2(i)), min(CK1(i),CK2(i)), min(RK1(i),RK2(i)), min(UK1(i),UK2(i)), max  

(FK1(i),FK2(i))}c  

i (K1K2)
c

 



Neutrosophic Sets and Systems, Vol. 51, 2022 401  

 

 

Bimal Shil, Rakhal Das, Suman Das, Single Valued Pentaparitioned Neutrosophic Off-Set / Over-Set / Under-Set. 

 

Therefore, (K1K2)
cK1

CK2
C.                                                                  (6) 

From the equation (5) and (6) we can conclude that, 

(K1K2)
c= K1

CK2
C. 

Assume that, i (K1K2)
c  

i {min(TK1 (i),TK2 (i)), max(CK1 (i),CK2 (i)), max(RK1 (i),RK2 (i)), max(UK1 (i),UK2 (i)), min  

(FK1(i),FK2(i))}c 

i {max((1-TK1 (i)),(1-TK2 (i))), min(UK1 (i),UK2 (i)), min((1-RK1 (i)),(1-RK2 (i))), max(CK1 (i), 

CK2(i)), max((1-FK1(i)),(1-FK2(i)))} 

i {(1-TK1 (i)),UK1 (i),(1-RK1 (i)), CK1 (i),(1- FK1 (i))}{(1-TK2 (i)),UK2 (i),(1-RK2 (i)), CK2 (i), 

(1-FK1(i))} 

i (K1
CK2

C) 

Therefore, (K1K2)
cK1

CK2
C                                                                   (7) 

Assume that, i (K1
CK2

C) 

i {(1- TK1 (i)), UK1 (i),(1- RK1 (i)), CK1 (i),(1- FK1 (i))}{(1- TK2 (i)), UK2 (i),(1- RK2 (i)), CK2 (i), 

(1-FK1(i))} 

i {max((1-TK1 (i)),(1-TK2 (i))), min(UK1 (i),UK2 (i)), min((1-RK1 (i)),(1-RK2 (i))), max(CK1 (i), 

CK2(i)), max((1-FK1(i)),(1-FK2(i)))} 

i {min(TK1 (i),TK2 (i)), max(CK1 (i),CK2 (i)), max(RK1 (i),RK2 (i)), max(UK1 (i),UK2 (i)), min  

(FK1(i),FK2(i))}c 

i (K1K2)
c  

Therefore, (K1
CK2

C)  (K1K2)
c                                                                                                            (8) 

From eq. (7) and eq. (8), we can conclude that (K1K2)
c= K1

CK2
C. 

 

6. Conclusions: In this article, we have introduced the notion of single valued pentapartitioned 

neutrosophic over-set / under-set / off-set. Besides, we have studied several properties on them. In 

the future, we hoped that the notion of some algebraic structures like Groups, Field, etc. can be easily 

applied to the proposed sets. Furthermore, the notion of proposed sets can also be applied to real life 

decision making problems [5, 12, 13, 19, 22, 24, etc.]. 

 

Conflict of Interest: The authors declare that they have no conflict of interest. 

Authors Contribution: All the authors have equal contribution for the preparation of this article. 

 

References: 

1. Atanassov, K. (1986). Intuitionistic fuzzy set. Fuzzy Sets and Systems, 20, 87-96. 

2. Das, S. (2021). Neutrosophic Supra Simply Open Set and Neutrosophic Supra Simply Compact 

Space. Neutrosophic Sets and Systems, 43, 105-113. 

3. Das, S., Das, R., & Granados, C. (2021). Topology on Quadripartitioned Neutrosophic Sets. 

Neutrosophic Sets and Systems, 45, 54-61. 

4. Das, S., Das, R., Granados, C., & Mukherjee, A. (2021). Pentapartitioned Neutrosophic Q-Ideals 

of Q-Algebra. Neutrosophic Sets and Systems, 41, 52-63. 



Neutrosophic Sets and Systems, Vol. 51, 2022 402  

 

 

Bimal Shil, Rakhal Das, Suman Das, Single Valued Pentaparitioned Neutrosophic Off-Set / Over-Set / Under-Set. 

 

5. Das, S., Das, R., & Tripathy, B.C. (2020). Multi-criteria group decision making model using 

single-valued neutrosophic set. LogForum, 16 (3), 421-429. 

6. Das, S., Das, R., & Tripathy, B.C. (In Press). Topology on Rough Pentapartitioned Neutrosophic 

Set. Iraqi Journal of Science. 

7. Das, S., & Hassan, A.K. (2021). Neutrosophic d-Ideal of Neutrosophic d-Algebra. Neutrosophic 

Sets and Systems, 46, 246-253. 

8. Das, S., & Pramanik, S. (2020). Generalized neutrosophic b-open sets in neutrosophic topological 

space. Neutrosophic Sets and Systems, 35, 522-530. 

9. Das, S., & Pramanik, S. (2020). Neutrosophic Φ-open sets and neutrosophic Φ-continuous 

functions. Neutrosophic Sets and Systems, 38, 355-367. 

10. Das, S., & Pramanik, S. (2020). Neutrosophic simply soft open set in neutrosophic soft 

topological space. Neutrosophic Sets and Systems, 38, 235-243. 

11. Das, S., & Pramanik, S. (2021). Neutrosophic Tri-Topological Space. Neutrosophic Sets and 

Systems, 45, 366-377. 

12. Das, S., Shil, B., & Tripathy, B.C. (2021). Tangent Similarity Measure Based MADM-Strategy 

under SVPNS-Environment. Neutrosophic Sets and Systems, 43, 93-104. 

13. Das, S., Shil, B., & Pramanik, S. (In Press). SVPNS-MADM strategy based on GRA in SVPNS 

Environment. Neutrosophic Sets and Systems. 

14. Das, R., Smarandache, F., & Tripathy, B.C. (2020). Neutrosophic Fuzzy Matrices and Some 

Algebraic Operations. Neutrosophic Sets and Systems, 32, 401-409. 

15. Das, R., & Tripathy, B.C. (2020). Neutrosophic Multiset Topological Space. Neutrosophic Sets and 

Systems, 35, 142-152. 

16. Das, S., & Tripathy, B.C. (2020). Pairwise neutrosophic-b-open set in neutrosophicbitopological 

spaces. Neutrosophic Sets and Systems, 38, 135-144. 

17. Das, S., & Tripathy, B.C. (2021). Pentapartitioned Neutrosophic Topological Space. Neutrosophic 

Sets and Systems, 45, 121-132. 

18. Das, S., & Tripathy, B.C. (In Press). Neutrosophic simply b-open set in neutrosophic topological 

spaces. Iraqi Journal of Science. 

19. Mahapatra, T., Ghorai, G., & Pal, M. (2020). Fuzzy fractional coloring of fuzzy graph with its 

application. Journal of Ambient Intelligence and Humanized Computing, 11, 5771-5784. 

20. Mahapatra, T., & Pal, M. (2021). An investigation on m-polar fuzzy threshold graph and its 

application on resource power controlling system. Journal of Ambient Intelligence and Humanized 

Computing. https://doi.org/10.1007/s12652-021-02914-6. 

21. Mahapatra, T., Sahoo, S., Ghorai, G., & Pal, M. (2021). Interval-valued m-polar fuzzy planar 

graph and its application. Artificial Intelligence Review, 54, 1649-1675. 

https://doi.org/10.1007/s12652-021-02914-6


Neutrosophic Sets and Systems, Vol. 51, 2022 403  

 

 

Bimal Shil, Rakhal Das, Suman Das, Single Valued Pentaparitioned Neutrosophic Off-Set / Over-Set / Under-Set. 

 

22. Mahapatra, R., Samanta, S., Pal, M., & Xin, Q. (2020). Link Prediction in Social Networks by 

Neutrosophic Graph. International Journal of Computational Intelligence Systems, 13(1), 1699-1713. 

23. Mahapatra, R., Samanta, S., & Pal, M. (2020). Generalized neutrosophic planar graphs and its 

application. Journal of Applied Mathematics and Computing, 13(1), 1699-1713. 

24. Majumder, P., Das, S., Das, R., & Tripathy, B.C. (2021). Identification of the Most Significant Risk 

Factor of COVID-19 in Economy Using Cosine Similarity Measure under SVPNS-Environment. 

Neutrosophic Sets and Systems, 46, 112-127. 

25. Mallick, R., & Pramanik, S. (2020). Pentapartitioned neutrosophic set and its properties. 

Neutrosophic Sets and Systems, 36, 184-192. 

26. Mukherjee, A., & Das, R. (2020). Neutrosophic Bipolar Vague Soft Set and Its Application to 

Decision Making Problems. Neutrosophic Sets and Systems, 32, 410-424. 

27. Smarandache, F. (1998). A unifying field in logics, neutrosophy: neutrosophic probability, set 

and logic. Rehoboth, American Research Press. 

28. Smarandache, F. (2013). n-Valued Refined Neutrosophic Logic and Its Application to Physics. 

PROGRESS IN PHYSICS, 4, 143-146. 

29. Smarandache, F. (2016). Operators on Single Valued Neutrosophic Over sets, Neutrosophic 

Under sets, and Neutrosophic Off sets. Journal of Mathematics and Informatics, 5, 63-67. 

30. Tripathy, B.C., & Das, R. (In Press). Mustiset Mixed Topological Space. Transactions of A. 

Razmadze Mathematical Institute. 

31. Tripathy, B.C., & Das, S. (2021). Pairwise Neutrosophic b-Continuous Function in Neutrosophic 

Bitopological Spaces. Neutrosophic Sets and Systems, 43, 82-92. 

32. Wang, H., Smarandache, F., Zhang, Y.Q., & Sunderraman, R. (2010). Single valued neutrosophic 

sets. Multispace and Multistructure, 4, 410-413. 

33. Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8, 338-353. 

 

Received: July 23, 2022.  Accepted: September 25, 2022. 

 

 

 

 

 

 



Neutrosophic Sets and Systems, Vol. 51, 2022 
University of New Mexico 

 

Srila Dey, Rama Debbarma, Binod Chandra Tripathy, Suman Das, Priyanka Majumder, Single-Valued 

Pentapartitioned Neutrosophic Exponential Similarity Measure under SVPNS Environment and Its Application 

in the Selection of Bacteria. 

 

 

 

 

 

 

Single-Valued Pentapartitioned Neutrosophic Exponential Similarity Measure under 

SVPNS Environment and Its Application in the Selection of Bacteria   

Srila Dey1, Rama Debbarma2, Binod Chandra Tripathy3, Suman Das4, and Priyanka Majumder5 

1,2Civil Engineering Department, National Institute of Technology Agartala, 799046, Tripura, India. 

3,4Department of Mathematics, Tripura University, Agartala, 799022, Tripura, India. 

5Department of Basic Science and Humanities (Mathematics), Techno College of Engineering Agartala, Tripura, India. 

E-mail: 1srilaagt10@gmail.com, 2ramadebbarma@gmail.com, 3tripathybc@yahoo.com, tripathybc@gmail.com, 

4sumandas18842@gmail.com, dr.suman1995@yahoo.com, and 5majumderpriyanka94@yahoo.com 

*Correspondence: sumandas18842@gmail.com 

 

Abstract: The purpose of this paper is to introduce a novel similarity measure, the single-valued 

pentapartitioned neutrosophic exponential similarity measure (SVPNESM), and the single-valued 

pentapartitioned neutrosophic weighted exponential similarity measure (SVPNWESM) under the 

single-valued pentapartitioned neutrosophic set (SVPNS) environment for selecting bacteria on 

concrete mortar to improve compressive strength and to reduce water absorption, porosity and 

chloride permeability. In order to improve the properties of concrete, bacteria must fulfill 

requirements such as increased compressive strength, decreased water absorption capacities, 

reduced porosity, decreased chloride permeability etc. A novel approach for selecting suitable 

bacteria in concrete mortar is presented in this study based on such requirements. In this study, 

suitable bacteria is selected from four bacteria for concrete mortar based on 4 criteria with fixed 

bacteria concentrations of 105. Based on this study, Bacillus subtitles is selected among four 

alternatives as suitable. Furthermore, the proposed MADM method is shown to be well suited to 

this problem after it has been compared with two existing methods. 

Keywords: SVPNS; SVPNESM; SVPNWESM; MADM. 

________________________________________________________________________________________ 

1. Introduction:  

The concept of fuzzy set (FS) was first grounded by Zadeh [48] in the year 1965 to deal with 

different real world problems having uncertainty. In a FS, each element has a membership value lies 

in the interval [0, 1]. Afterwards, Atanassov [3] felt that the non-membership of a mathematical 

expression has also plays a vital role in solving the problems having uncertainty, and established the 
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concept of intuitionistic fuzzy set (IFS) by generalizing the notion of FS. In every IFS, each element 

has both membership and non-membership values lies in the interval [0, 1]. Till now, many 

researchers around the globe applied the concept of FS, IFS and their extensions in the area of 

theoretical research and practical research. Many times, uncertainty events will also have some 

indeterminacy part, which can’t be expressed by using the idea of crisp set, FS and IFS. Keep in 

mind, Smarandache [42] grounded the idea of neutrosophic set (NS) by generalizing the concept of 

FS and IFS to deal with the uncertainty events having indeterminacy. In an NS, each element has 

truth, indeterminacy and false membership values respectively lies in the interval [0, 1]. In 2010, 

Wang et al. [44] introduced the idea of single-valued neutrosophic set (SVNS) by extending the 

notion of NS. The notion of SVNS is more effective in dealing with the uncertainty events having 

indeterminate information. Till now, many mathematicians around the globe used the notion of 

SVNS and their extensions in theoretical [5-6, 10-16, 43] as well as in the several branches of this real 

world such as weaver selection [18], location selection [33-34], medical diagnosis [19, 35-36], fault 

diagnosis [45-46], and other decision making problems [4, 21-22, 24, 28-31, 47]. 

The concept of single-valued pentapartitioned neutrosophic set (SVPNS) was grounded by 

Mallick and Pramanik [27] by dividing the indeterminacy membership function into three 

independent membership function namely contradiction membership function, ignorance 

membership function and unknown membership function. Later on, Das et al. [7] grounded the 

notion of single-valued pentapartitioned neutrosophic Q-ideals of single-valued pentapartitioned 

neutrosophic Q-algebra. In 2021, Das et al. [9] established the single-valued pentapartitioned 

neutrosophic tangent similarity measure of similarities between the SVPNSs under SVPNS 

environment, and proposed a MADM technique under the SVPNS environment. In 2021, Das et al. 

[8] proposed a MADM technique based on grey relational analysis under the SVPNS environment. 

Later on, Das and Tripathy [17] extended the notion of topology on SVPNSs, and grounded the 

concept of pentapartitioned neutrosophoic topological space. Thereafter, Majumder et al. [26] 

established an MADM strategy based on cosine similarity measure under the SVPNS environment 

for the selection of most significant risk factor of COVID-19 in economy. Recently, Radha and Mary 

[37] introduced the idea of pentapartitioned neutrosophic pythagorean soft set as an extension of 

quadripartitioned neutrosophic pythagorean soft set.   

The rest of this article has been designed as follows: 

Section-2 presents several basic definitions and operations on SVPNSs those are very useful for 

developing the main results of this paper. Section 3 represents the concept of SVPNESM and 

SVPNWESM of similarities between two SVPNSs . A MADM strategy using SVPNWESM under the 

SVPNS environment is discussed in section-4. In section-5 the proposed MADM strategy is applied 

to a real world problem.  Finally, in section 6, a comparative study has been conducted to validate 
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the results obtained from the proposed method. In section-7, wrap up the work presented in this 

article. 

List of abbreviations are shown in below:  

 

 

 

 

 

 

 

 

 

 

2. Some Relevant Definitions: 

In this section some basic definitions and results are described . 

Assume that V be a universe of discourse. Then A, a SVPNS [27] over V is defined by: 

           , , , , , :A A A A AA t t t t t t t V     . 

Here, 
A , 

A , 
A , 

A
and 

A
are the truth, contradiction, ignorance, unknown and false 

membership functions from V to the unit interval [0, 1] respectively i.e.,  A t ,  A t ,  A t , 

 A t and    0, 1A t  , for each t V . So,          0 1A A A A At t t t t       , for each 

t V . 

The absolute SVPNS (1PN) [27] and the null SVPNS (0PN) over a fixed set V are defined as follows: 

(i)  ,1,1,0,0,01 ( ) :PN t t V  , 

(ii)  ,0,0,1,1,10 ( ) :PN t t V  . 

Let            , , , , , :A A A A AA t t t t t t t V     and            , , , , , :B B B B BB t t t t t t t V    
 

be any two [27] SVPNSs over V. Then, 

(i) A  B if and only if    A Bt t   ,    A Bt t  ,    A Bt t   ,    A Bt t ,    A Bt t , 

for all t V . 

 (ii)            , , ,1 , , :c

A A A A AA t t t t t t t V     ; 

Short Terms 

Single-Valued Neutrosophic Set SVNS 

Multi-Attribute Decision Making MADM 

Single-Valued Pentapartitioned Neutrosophic Set SVPNS 

Single-Valued Pentapartitioned Neutrosophic Exponential 

Similarity Measure 

SVPNESM 

Single-Valued Pentapartitioned Neutrosophic Weighted 

Exponential Similarity Measure 

SVPNWCSM 

Decision Matrix DM 

Positive Ideal Alternative PIA 
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                            ,max , ,max , ,min , ,min , ,min , :A B A B A B A B A BA B t t t t t t t t t t t t Viii         

                            ,min , ,min , ,max , ,max , ,max , :A B A B A B A B A BA B t t t t t t t t t t t ti Vv         

Example 2.1. Suppose that A = {(p, 0.6, 0.1, 0.3, 0.4, 0.5), (q, 0.9, 0.1, 0.2, 0.2, 0.1)} and B = {(p, 0.9, 0.2, 

0.2, 0.1, 0.4), (q, 1.0, 0.3, 0.1, 0.2, 0.1)} be two SVPNSs over a universe of discourse V = {p, q}. Then, 

(i) A  B; 

(ii) Ac = {(p, 0.5, 0.4, 0.7, 0.1, 0.6), (q, 0.1, 0.2, 0.8, 0.1, 0.9)} and Bc = {(p, 0.4, 0.1, 0.8, 0.2, 0.9), (q, 0.1, 0.2, 

0.9, 0.3, 1.0)}; 

(iii) A  B = {(p, 0.9, 0.2, 0.2, 0.1, 0.4), (q, 1.0, 0.3, 0.1, 0.2, 0.1)}; 

(iv) A  B = {(p, 0.6, 0.1, 0.3, 0.4, 0.5), (q, 0.9, 0.1, 0.2, 0.2, 0.1)}. 

3. Single-Valued Pentapartitioned Neutrosophic Exponential Similarity Measure: 

The notion of SVPNESM is discussed in the current section. This notion depends on similarities 

between two SVPNSs. In this section, some basic results on SVPNESM and SVPNWESM are 

discussed. 

Definition 3.1. Suppose that A and B be two SVPNSs over a fixed set V such as 

           , , , , , :A A A A AA t t t t t t t V     an            , , , , , :B B B B BB t t t t t t t V     . Then, 

the SVPNESM of similarities between A and B is denoted by  ,SVPNESMP A B and is defined by: 

 
                   

2

1
, ..................(1)A B A B A B A B A Bt t t t t t t t t t

t V

SVPNESMP A B e
n

             



 

Theorem 3.1. Let  ,SVPNESMP A B  be the SVPNESM between the SVPNSs A and B. Then, the 

following holds: 

1)  0 , 1SVPNESMP A B  ; 

2)    , ,SVPNESM SVPNESMP A B P B A ; 

3)  , 1SVPNESMP A AB B   . 

Proof. 

1) Since     0A Bt t    ,     0A Bt t   ,     0A Bt t   ,     0A Bt t  and 

    0A Bt t 
 

for all t V then from (1)  , 0SVPNESMP A B   



Neutrosophic Sets and Systems, Vol. 51, 2022 408  

 

 

Srila Dey, Rama Debbarma, Binod Chandra Tripathy, Suman Das, Priyanka Majumder, Single-Valued 

Pentapartitioned Neutrosophic Exponential Similarity Measure under SVPNS Environment and Its Application 

in the Selection of Bacteria. 

Also, since exponential function is monotonically decreasing for all values in the set  0  , so 

from the equation (1) it is clear that  , 1SVPNESMP A B  . 

Hence,  0 , 1SVPNESMP A B 

 

2) From the equation (1), 

 
                   

                   

 

2

2

1
,

1

,

A B A B A B A B A B

B A B A B A B A B A

t t t t t t t t

SVPNESM

SVPNES

t t

t V

t t t t t t

M

t t t t

t V

P A B e
n

e
n

P B A

             



             











  

Hence    , ,SVPNESM SVPNESMP A B P B A  

3) Let us assume that A and B be two SVPNSs over V such that A=B. This implies, 

    0A Bt t   ,     0A Bt t   ,     0A Bt t   ,     0A Bt t  and     0A Bt t  , 

for all t V . Therefore,     0A Bt t    ,     0A Bt t   ,     0A Bt t   , 

    0A Bt t  and     0A Bt t  for all t V . Hence, from (1), 

  01 1
, 1 1

t

SVPNE

V

SM

t V

n
P A B e

n n n 

     . 

Conversely, let  , 1SVPNESMP A B  . This implies,     0A Bt t    ,     0A Bt t   , 

    0A Bt t   ,     0A Bt t  and     0A Bt t  for all t V . Therefore, 

   A Bt t   ,    A Bt t  ,    A Bt t   ,    A Bt t and    A Bt t , for all t V . 

Hence, A =B. 

Theorem 3.2. If A, B and C be three SVPNSs over U such that A  B C, then

   , ,SVPNESM SVPNESMP A B P A C    , ,SVPNESM SVPNESMP B C P A C . 

Proof. Assume that A, B and C be three SVPNSs over a fixed set V such that A  B  C. Therefore, 

   A Bt t   ,    A Bt t  ,    A Bt t   ,    A Bt t ,    A Bt t ,    A Bt t   , 

   A Ct t  ,    A Ct t   ,    A Ct t ,    A Ct t , for all t V . 

We have,  
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       A B A Ct t t t     ,        A B A Ct t t t    ,        A B A Ct t t t   , 

       A B A Ct t t t    

Therefore,  

 
                   

                   

 

2

2

1
,

1

,

A B A B A B A B A B

A C A C A C A C A C

t t t t t t t t

SVPNESM

SVPNES

t t

t V

t t t t t t

M

t t t t

t V

P A B e
n

e
n

P A C

             



             











  

Hence,    , ,SVPNESM SVPNESMP A B P A C  

Further, 

       B C A Ct t t t       ,        B C A Ct t t t    ,        B C A Ct t t t   , 

       B C A Ct t t t    

Therefore,  

 
                   

                   

 

2

2

1
,

1

,

B C B C B C B C B C

A C A C A C A C A C

t t t t t t t t

SVPNESM

SVPNES

t t

t V

t t t t t t

M

t t t t

t V

P B C e
n

e
n

P A C

             



             











  

Hence,    , ,SVPNESM SVPNESMP B C P A C
.
 

Definition 3.2. Let us consider two SVPNSs A and B over a fixed set V such as 

           , , , , , :A A A A AA t t t t t t t V     and

 

           , , , , , :B B B B BB t t t t t t t V     . 

Then, the single valued pentapartitioned neutrosophic weighted exponential similarity measure 

(SVPNWESM) of the similarities between two SVPNSs A and B is defined as follows: 

 
                   

2

1
, ..................(2)A B A B A B A B A Bt t t t t t t t t t

tSVPNWESM

t V

P A B w e
n

             



 
 

where, 1t

t V

w


  

In view of the above theorems, the two following two propositions can be formulated. 

Proposition 3.1. If  ,SVPNWESMP A B be the single valued pentapartitioned neutrosophic weighted 

sine similarity measure of similarities between the SVPNSs A and B. Then, 
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1)  0 , 1SVPNWESMP A B  ; 

2)    , ,SVPNWESM SVPNWESMP A B P B A ; 

3)  , 1SVPNWESMP A B iff A B  . 

Proposition 3.2. If A, B and C be three SVPNSs over U such that A  B C, then

   , ,SVPNWESM SVPNWESMP A B P A C
,    , ,SVPNWESM SVPNWESMP B C P A C . 

4. MADM Strategy Using SVPNWESM under SVPNS Environment: 

In this section, an attempt is made to propose a MADM model under the SVPNS environment 

using the SVPNWESM. 

In a MADM problem, let us consider two sets  1 2 3, , ,..., nE      and  1 2 3, , ,..., mF      of 

all possible alternatives and attributes respectively. Then, a decision maker can give their evaluation 

information for each alternative  1,2,...,i i m   with respect to the each attribute  1,2,...,j j k 

by a SVPNS. By using the decision maker’s whole evaluation information, a decision matrix (DM) 

can be formed. 

The steps of the proposed MADM strategy are discussed below. Figure 1 represents the flow 

chart of the proposed MADM strategy. 

 

Step-1. Formation of DM by using SVPNS. 

Suppose, the decision maker gives their evaluation information by using the SVPNS 

           , , , , , , , , , ,
i j ij i j ij i j ij i j ij i j ij i jK               for each alternative  1,2,...,i i m 

with respect to the attributes  1,2,...,j j k  , where 

            , , , , , , , , , ,ij i j ij i j ij i j ij i j ij i j i j               (say)  1,2,..., and 1,2,...,i m j k   

indicates the evaluation information of alternatives  1,2,...,i i m  with respect to the attribute

 1,2,...,j j k  . 

The decision matrix (DM) can be expressed as follows: 

     

     

     

1 2

1 1 1 1 2 1

2 2 1 2 2 2

1 2

, , ,

, , ,

, , ,

k

k

k

m m m m k

  

      

      

      

 
 
 
 
 
 
 
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Step-2. Determination of the Weights for Each Attribute. 

In every MADM strategy, the determination of weights for every attributes is an important task. 

If the information of attributes’ weight is completely unknown, then the decision maker can use the 

compromise function to calculate the weights for each attribute. 

The compromise function of j for each j is defined as follows: 

         
1

3 , , , , , 5..................(3)
m

j ij i j ij i j ij i j ij i j ij i j

i

          


       
  . Then, the 

weight of the j-th attribute is defined by 

1

..................(4)
j

j k

j

j

w








  

Here, 
1

1
k

j

j

w


  

 

Step-3. Selection of the Positive Ideal Alternative (PIA). 

In this step, the decision maker can form the PIA by using the maximum operator for all the 

attributes. 

The positive ideal alternative (PIA)   is defined as follows: 

 1 2 3, , ,..., ..................(5)k          

        
     

Where, max , : 1,2,..., ,max , : 1,2,..., ,min , : 1,2,..., ,

min , : 1,2,..., ,min , : 1,2,..., ..................(6), 1,2,...,

j ij i j ij i j ij i j

ij i j ij i j

i m i m i m

i m i m j k

      

   

       

  

 

 

Step-4. Determination of the SVPNWESM between the PIA and  1,2,...,
i

K i m  . 

In this step, the SVPNWESM between the decision elements from the decision matrix and the PIA 

is calculated by using eq. (2). 

 

Step-5. Ranking Order of the Alternatives. 

Finally, the ranking order of alternatives is determined based on the ascending order of 

SVPNWESM between the PIA and the decision elements from the decision matrix. The alternative 

associated with the highest SVPNWESM value is the most suitable alternatives. 
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The flowchart of the proposed MADM-strategy is given as follows: 

 

 

 

Figure- 1: Proposed MADM-Strategy 

5. Application of the Proposed MADM Strategy for Selecting Suitable Bacteria in Concrete 

Mortar under the SVPNS Environment: 

The calcite producing bacterium has been used in this research work to study its effect on 

strength and permeation properties of concrete. The calcite produced by the bacteria in the concrete 

pores, densities the matrix which results not only in improvement of compressive strength but also 

reduces the pore size, thereby, improving the permeation properties. Further, the rate of calcite 

precipitation is dependent upon the type of bacteria and the concentration of the bacteria. 

Bio mineralization process depends on the types of bacteria. Selection of bacteria is a key factor in 

the bio mineralization process. Bacteria must fulfill some of the requirements for improving the 

properties of concrete. It must be able to adjust to alkaline atmosphere in concrete for the production 

of calcium carbonate, it should produce copious amount of calcium carbonate without being affected 
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by calcium ion concentration, it must be able to withstand high pressure and should be oxygen 

brilliant to consume much oxygen and minimize corrosion of steel. 

The selection of the bacteria is depend on the survive capability of bacteria in the alkaline 

environment. Shewanella species bacterium able to survive up to 6 to 7 days inside the concrete, 

due to calcite precipitation and clogging of pores inside the concrete matrix. This life span and 

pathogenic property are the disadvantages of using as self-healing agent for a longer period. 

Generally, researchers used some alkali-resistant, calcite precipitating, ureolytic bacteria of the 

Bacillus genus like Bacillus subtillis, Bacillus sphaericus, Bacillus cereus, Bacillus magaterium etc. 

[1-2, 19-20, 23, 25, 32, 38-40]. 

From literature review it is concluded that these bacteria could survive up to hundreds of years 

without nutrients and can able to withstand environmental chemicals, high mechanical stresses as 

well as ultraviolet radiations [41]. Generally, in case of ureolytic process, urea generates a huge 

amount of CO2 and urea produces ammonia, which has a foul smell. So that to reveal from this 

situation researchers to investigate the calcite precipitating, alkali-resistant non-ureolytic bacteria. 

Afterwards the study showed aerobic alkaliphilic spore forming bacteria in concrete lead to the 

precipitation of CaCO3. Table 1 represents the list of bacteria used to concrete mortar base on 

compressive strength, water absorption capacities, porosity, chloride permeability as output. 

Table 1: List of Bacteria and Their Effect on Concrete Mortar 

Bacteria Concentratio

n ( 1 ) 

Material  

( 2 ) 

Compressive 

strength(28 

days) ( 3 ) 

Water 

absorption 

reduction 

(28 days) 

 ( 4 ) 

Porosity 

reduction 

(28 days)  

( 5 ) 

Chloride 

permeability 

reduction 

(28 days)  

( 6 ) 

Bacillus 

sphaericus  

( 1 )[20] 

10^5 Mortar 18.30% 89.00% 45.00% 10.00% - 

40.00% 

Bacillus cohnii 

(Nonureolytic) 

( 2 ) [40] 

10^5 Mortar 26.23%    

Bacillus 

subtilis ( 3 ) 

[32] 

10^5 Mortar 27.00%  

(54 Map) 

23.00%   

S. pasteurii  

( 4 ) [38] 

10^5 Mortar 22.00%  

(28 Map) 

13.00%   

 

 

The decision hierarchy of the current MADM problem is given below: 
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Figure- 2: Decision Hierarchy of the Current MADM-Problem 

 

Figure-2 represents decision hierarchy of the Current MADM-Problem and steps involve in the 

current MADM problem is presented as follows: 

By using the evaluation information for all alternatives given by the decision makers, prepare the 

decision matrix in Table-2.  

Table-2: Decision Matrix 

 1  2  3  4  5  6  

1  (0.8,0.2,0.3,0.1,0.2)  (0.9,0.1,0.1,0.0,0.1) (0.6,0.2,0.4,0.2,0.3) (0.8,0.1,0.2,0.0,0.2)  (0.8,0.1,0.2,0.2,0.2) (0.9,0.1,0.1,0.1,0.1) 

2  (0.9,0.1,0.2,0.0,0.1) (0.7,0.2,0.3,0.2,0.2)  (0.7,0.1,0.1,0.1,0.3) (0.9,0.0,0.1,0.2,0.1) (0.8,0.2,0.1,0.1,0.2)  (0.9,0.0,0.1,0.0,0.1) 

3  (0.9,0.1,0.2,0.0,0.1)  (0.7,0.0,0.3,0.2,0.2) (0.9,0.0,0.1,0.0,0.1) (0.9,0.0,0.1,0.1,0.1)  (0.9,0.0,0.1,0.0,0.1) (0.9,0.0,0.1,0.1,0.1) 

4  (0.8,0.1,0.1,0.1,0.1) (0.8,0.0,0.2,0.1,0.1)  (0.8,0.1,0.2,0.0,0.1) (0.8,0.2,0.2,0.0,0.2) (0.7,0.2,0.2,0.1,0.3)  (0.8,0.1,0.2,0.1,0.2) 

 

Now, by using the eq. (5) & eq. (6), the PIA (  ) is formed for the decision matrix is shown in 

Table-3: 

 

 

Table-3: Positive Ideal Alternative 

 1  2  3  4  5  6  

Selection of Bacteria 

Concentration Porosity 

reduction 

(28 days) 

Chloride 

permeabilit

y 

reduction 

(28 days) 

Material Compressiv

e strength  

(28 days) 

Water 

absorption 

reduction  

(28 days) 

Bacillus sphaericus Bacillus cohnii 

(Nonureolytic) 

Bacillus subtilis S. pasteurii 
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1  (0.8,0.2,0.3,0.1,0.2)  (0.9,0.1,0.1,0.0,0.1) (0.6,0.2,0.4,0.2,0.3) (0.8,0.1,0.2,0.0,0.2)  (0.8,0.1,0.2,0.2,0.2) (0.9,0.1,0.1,0.1,0.1) 

2  (0.9,0.1,0.2,0.0,0.1) (0.7,0.2,0.3,0.2,0.2)  (0.7,0.1,0.1,0.1,0.3) (0.9,0.0,0.1,0.2,0.1) (0.8,0.2,0.1,0.1,0.2)  (0.9,0.0,0.1,0.0,0.1) 

3  (0.9,0.1,0.2,0.0,0.1)  (0.7,0.0,0.3,0.2,0.2) (0.9,0.0,0.1,0.0,0.1) (0.9,0.0,0.1,0.1,0.1)  (0.9,0.0,0.1,0.0,0.1) (0.9,0.0,0.1,0.1,0.1) 

4  (0.8,0.1,0.1,0.1,0.1) (0.8,0.0,0.2,0.1,0.1)  (0.8,0.1,0.2,0.0,0.1) (0.8,0.2,0.2,0.0,0.2) (0.7,0.2,0.2,0.1,0.3)  (0.8,0.1,0.2,0.1,0.2s) 

j


 
(0.9,0.2,0.1,0.0,0.1) (0.9,0.2,0.1,0.0,0.1) (0.9,0.2,0.1,0.0,0.1) (0.9,0.2,0.1,0.0,0.1) (0.9,0.2,0.1,0,0.1) (0.9,0.1,0.1,0,0.1) 

 

Weights of the attributes are obtained by using the eq. (3) & eq. (4). The weights of the attribute are 

w1 = 0.1710526, w2 = 0.1602871, w3 = 0.1602871, w4 = 0.1698565, w5 = 0.1662679, w6 = 0.1722488. 

By using the eq. (2), obtained SVPNWESM of similarities between the PIA and the decision 

elements from the decision matrix as follows: 

 1,SVPNWESM I    0.1928416, 

 2 ,SVPNWESM I    0.2077046, 

 3 ,SVPNWESM I    0.2141489, 

 4 ,SVPNWESM I    0.2044531. 

The ascending order of the SVPNWESM of similarities between the PIS and the decision elements 

from the decision matrix is as follows:

       3 2 4 1, , , ,SVPNWESM I SVPNWESM I SVPNWESM I SVPNWESM I          

6. Comparative Study:  

To verify the proposed result based on the SVPNWESM, an investigation has been conducted for 

the purpose of comparison with the existing MADM techniques [9, 26]. From the comparative 

Table-4, it is observed that the existing methods support the same performance as per the proposed 

method for best attribute. According to the Table-4 it is clear that the weighted values of all attribute 

are much closed for two existing methods. In case of proposed technique the weighted values of all 

attribute is not closed compare to existing tool, it helps to take better decision for considering 

attributes. So the proposed method is more effective compare to considering MADM methods. 
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Table-4: Comparative Study 

 

 

 

 

 

 

 

 

 

 

 

 

7. Conclusions: In this article, a novel MADM is proposed for selecting suitable bacteria in concrete 

mortar based on compressive strength, water absorption capacities, porosity, chloride permeability 

etc. The ranking order Ѳ1 < Ѳ4 < Ѳ2 < Ѳ3 is derived by the proposed method. It is obvious from the 

ranking order generated by the new method that alternative Ѳ3 is the best among all alternatives. A 

comparison of the results obtained by the new MADM method is performed using different existing 

methods. Based on all methods, alternative Ѳ3 i.e., Bacillus subtilis is the best alternative, and 

therefore, it is concluded that the proposed method is well suited for solving such a problem. 

The main limitation of this paper is that it compares alternatives based on a fixed concentration of 

bacteria. In future work, the effect of different concentrations of bacteria will be tested after selecting 

the most suitable bacteria from among the four alternatives discussed in this paper. 

Further, it is hoped that, the proposed MADM technique can also be used in solving other 

decision-making problems such as weaver selection [18], location selection [33-34], medical 

diagnosis [19, 35-36], fault diagnosis [45-46], etc. 
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Abstract: Aggregation operators can be used to combine and synthesise a finite number of numerical 

values into a single numerical value. Many areas, including decision-making, expert systems, risk 

analysis, and image processing, rely heavily on aggregating functions. In real-world situations, the 

neutrosophic set can manage the uncertainties associated with information from any 

decision-making challenge, whereas the fuzzy set and intuitionistic set cannot. The term "bipolarity" 

refers to the propensity of the human mind to weigh pros and drawbacks when thinking through 

decisions. Triangular norms are aggregation operators in a variety of fields, including fuzzy set 

theory, probability and statistics, and decision sciences. Thus, the individual assessments in this 

paper's study of and approach to multi-criteria decision-making (MCDM) problems that use bipolar 

neutrosophic numbers as the individual evaluations. Frank operational laws of bipolar neutrosophic 

numbers, bipolar neutrosophic Frank weighted geometric aggregation (BNFWGA) and the bipolar 

neutrosophic frank ordered weighted geometric aggregation (BNFOWGA) operators have been 

developed with its desirable properties. Additionally, the suggested aggregation operators have 

been used in the selection of bridges. The outcomes demonstrate the applicability and validity of the 

suggested approach. Comparative analysis has been performed using the current approach. 
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NS Neutrosophic Set 

IFS Intuitionistic fuzzy set 

IVIFS Interval-valued intuitionistic fuzzy set 

INS Interval neutrosophic set 

SVNS Single valued neutrosophic set 

MCDM Multi criteria decision making 

BNS Bipolar neutrosophic set 

MAGDM Multi attribute group decision making 

BNNs Bipolar neutrosophic numbers 

BNFWGA Bipolar neutrosophic frank aggregation weighted 

geometric aggregation 

BNFOWGA Bipolar neutrosophic ordered weighted 

geometric aggregation  

 

Keywords: Bipolar neutrosophic set, Frank Triangular Norms, Operational Laws, Aggregation 

Operators, Decision Making 

________________________________________________________________________________ 

1. Introduction 

 A newly established model typically fixes the flaws of prior models in fuzzy theory. Because 

ambiguity and uncertainty present challenges in many real-world situations, routine mathematics is 

not always available. Many methods, including statistical hypothesis, probability, and fuzzy set 

hypothesis, have been presented as alternatives to traditional models and to guard against 

weaknesses in order to handle such difficulties. The majority of these mathematical alternatives, 

regrettably, have drawbacks and shortcomings of their own. Most words are in fact ambiguous and 

cannot be quantified, for instance, authentic and best-known. The authors of [1] started thinking 

about the chance based on the participation function that awards a membership grade in [0, 1] to 

handle such muddled and ambiguous information. Fuzzy sets are unable to handle the difficult 

issue since they only have one membership degree. Presented the intuitionistic fuzzy set (IFS) 

concept in [2]. IFS is used to provide an extremely flexible description of uncertain information. IFS 

offers degrees that are both membership- and non-membership-based. Introduced the idea of an 

intuitive fuzzy set with interval values in [3]. [4] developed the idea of a neutrosophic set (NS). NS 

includes membership, non-membership, and indeterminacy membership functions to define 

incompletes, inconsistent, and uncertain information. In order to adapt NS to real-world 

decision-making scenarios, [5, 6] introduced the interval Neutrosophic set (INS) and single valued 

Neutrosophic set (SVNS) concepts. Bipolar fuzzy sets are a generalization of fuzzy sets that were 

created by [7, 8]. The bipolar fuzzy relations study, in which each tuple is connected to a pair of 
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satisfaction degrees, was first presented in [9]. Two applications for bipolar fuzzy sets in groups 

called the bipolar fuzzy groups and the norm have been introduced in [10]. 

 

A popular area of research in fuzzy theory of decision analysis is the study of fuzzy multi-attribute 

group decision-making. A sequence of judgments made in a fuzzy environment, which is usually 

ambiguous or uncertain, give decision information in the process of choosing the best possible 

options in terms of several criteria. Gaining a comprehensive understanding of the data is crucial for 

information fusion, particularly when making difficult decisions. Aggregation functions are one of 

the most efficient and simple methods for obtaining the aggregated result, although there are other 

methods as well. An n-tuple of data can be condensed into a single output using an aggregate 

function, which uses non-decreasing functions and keeps the output in the same set as the input. [11] 

In situations where all attribute values were defined as intuitionistic fuzzy numbers or 

interval-valued intuitionistic fuzzy numbers, aggregation functions were employed to handle 

dynamic multi-attribute decision-making in [11]. 

On the premise that the decision makers' criteria or preferences are unrelated and that the 

aggregating operators—defined by the independence axiom—are linear operators based on additive 

measures, multiple aggregation processes have been implemented in [12,13]. According to [14], real 

decision-making issues show the occurrence of unique dependencies or interactions between 

criteria. Decision-makers are typically invited from the same or related fields for a choice dilemma. 

They have a comparable social status, a similar level of knowledge, and similar tastes. Their 

arbitrary preferences can be demonstrated to exhibit nonlinearity. As a result, both the mutually 

preferred independence of these criteria and the independence of decision-makers are 

compromised. Advanced neutrosophic planar graph concepts and their applications were 

introduced in [15]. In [16], it was suggested to utilize a neutrosophic graph to predict linkages in 

social networks. A novel method of link prediction using the rsm index was developed by the 

authors of [17]. Radio fuzzy graphs and used radio k-colouring graphs to assign frequencies in radio 

stations introduced in [18]. [19] investigated the edge colouring of fuzzy graphs; chromatic index 

and the strong chromatic index have been proposed with its related properties in [19]. The colouring 

of directed fuzzy graphs based on the influence of relationship was proposed in [20]. Bipolar 

Neutrosophic TOPSIS was introduced in [21] as a method for resolving Multi Attribute 

Decision-Making (MADM) issues in a bipolar Neutrosophic fuzzy environment. In [22], methods 

based on Frank Choquet Bonferroni Mean Operators were developed to address MADM difficulties 

in a bipolar Neutrosophic fuzzy environment. [23, 24] discussed a few aggregation operators on 

different models. 

The lattice of closed interval-valued fuzzy sets has been extended using Frank t-norms-based 

extension operations, which were proposed in [25]. These operations have been given the necessary 
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and sufficient conditions to form a complete algebraic structure. [26] developed an analytical 

hierarchy process method for multi-attribute decision-making issues based on a logarithmic 

regression function and presented the idea of a triangular interval type-2 fuzzy set. [27] used 

arithmetic procedures like union and intersection between interval fuzzy linguistic numbers and 

Multi Attribute Group Decision Making problems to create a probabilistic linguistic framework. [28] 

a new signed distances-based linear assignment technique for MAGDM issues with fuzzy set 

information was created, and it was then applied to locate a landfill. [29] suggested a MAGDM and 

the idea of a trapezoidal interval type-2 fuzzy soft set. According to the aforementioned data, the 

research contribution based on bipolarity is relatively minimal, which is why we applied the concept 

in our research. MATLAB can be used to lessen the time complexity. The rest of the essay is 

organized as follows. Section 2 presents the fundamental antecedents. Section 3 established the 

Frank Aggregation operators' operating laws for bipolar neutrosophic numbers (BNNs). We go into 

great detail on BNFWGA and BNFOWGA, as well as their attributes, in Section 4. On the basis of 

bipolar neutrosophic Frank aggregation operations, we propose a number of comprehensive MCDM 

techniques in Section 5. The presented principles are applied to extend comprehensive techniques in 

Section 6. The proposed aggregation operators are used in section 7 to resolve the decision-making 

problem for choosing the best bridge. The comparative analysis and current methods have been 

discussed in Section 8. Section 9 provides the conclusion of the current study along with future 

directions. 

 

 2. Basic Concepts 

For a better understanding, basic definitions pertaining to the current work are provided in this 

section. 

Definition 2.1: Bipolar Neutrosophic Set (BNS) [30] 

 Let U be a fixed set. Then BNS can be defined as follows.  

           ( ) , , , , , / },N N N N N NN u u u u u u u u U              

Where        , , : 0,1N N Nu u u U      and        , , : 1,0 .N N Nu u u U      The 

positive membership degrees      , ,N N Nu u u    are the truth membership, indeterminacy 

membership degree and falsity membership degree of an element u U  corresponding to BNSN 

and the negative membership degrees      , ,N N Nu u u    denote the truth membership 

degree, indeterminacy membership degree and falsity membership degree of an element u U  to 

some implicit counter property corresponding to a BNSN. 

In particular, if ‘U’ has only one element, then  
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            ( ) , , , , , },N N N N N NN u u u u u u u             is called bipolar neutrosophic 

numbers (BNN).  

Definition 2.2 : Algebraic operations of BNNs [30] 

Let 1 1 1 1 1 1 1, , , , ,N              and 2 2 2 2 2 2 2, , , , ,N            
be two BNNs. Then 

algebraic operations are defined as follows: 

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2(1) , , , , ( ), ( )N N                                             

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2(2) , , , ( ), , )N N                                            

               1 1 1 1 1 1 1(3) . 1 (1 ) , , , , 1 1 , 1 1 0 ,
l l l l l

ll N l                      

             1 1 1 1 1 1 1(4) ,1 1 ,1 1 , 1 1 , , ( 0)
l l l l l l

l l                         

Definition 2.3: Score and accuracy function of BNNs [26]  

Let 1 1 1 1 1 1 1, , , , ,N            
be BNN. Then the score function s(aleph1),accuracy function 

 1a N  and certainty function 

c(aleph1) are defined as: 

   1 1 1 1 1 1
1

1 1 1

6
s N

               
  ………………..(1) 

      1 1 1 1 1a N          ………………..(2) 

  1 1 1c N      …………………….(3) 

Definition 2.4: Properties on Bipolar Neutrosophic Sets [30] 

Let 1 1 1 1 1 1 1, , , , ,N            
 

And 2 2 2 2 2 2 2, , , , ,N            
 

Be two BNNs therefore 

(1) If    1 2 1 2,s N s N thenN N   . 
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(2) If        1 2 1 2 1 2& ,s N s N a N a N thenN N   . 

(3) If            1 2 1 2 1 2 1 2& & ,s N s N a N a N c N c N thenN N     

(4) If            1 2 1 2 1 2 1 2& & ,s N s N a N a N c N c N thenN N    

 

 

Definition 2.5: Frank Triangular Norms [27] 

The sum and product of Frank triangular norms are defined as follows. 

  
   

1 21 1

2

1 2 1 2

1 1
1 log 1 1 , 0,1

1
F 

 




   
           
 
  …………………(4)

 

  
   

1 2

2

1 2 1 2

1 1
log 1 1 , 0,1

1
F 

 




   
          
 
  ……………(5) 

3. Operational Laws of Frank Triangular Norms for Bipolar Neutrosophic Numbers: 

In this section, Operational laws are proposed using Frank triangular norms for BNNs.  

Definition 3.1: Let 
1 1 1 1 1 1 1, , , , ,            and 

2 2 2 2 2 2 2, , , , ,            be two 

BNNs and 1  . Then the operational laws are as follows.  

(i). Addition: 
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        

     

  

1 2 1 2 1 2

1 1 1 2

1 2

1 1

1 2
1 1

1 1 1 1 1 1
1 log 1 log 1 , log 1 ,

1 1 1

1 1 1 1
log 1 , log 1 ,

1 1

1 1
log 1

1

F

     

  

 

 

 



     

  

   

 

 



     

   

 

 

 

 

          
          
            
     

      
     
       
   

   

 




  

     

1 2

1 2 1 21 1

1 1
1 log 1 ,

1

1 1 1 1
log 1 1 log 1

1 1

 



 

 



   

 

 

   

 

   












     
      
       
   

                           

(ii). Multiplication:

  1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

2 1 1

2 1 1

1 2

1 1
log 1 ,

1

1 log log ,
1 1

1 log log .
1 1

F

 



       

 

 

 



       

 

       

 

 

       

       

    

       

  
  
  
 

        
           

        
               

  
  

  

  

1 2 1 2

1 2

1 2

1 11 1 1 1
log 1 1, log 1 ,

11 1

1 1
log 1

1

   

 
 



   

 

 



   

 

 

 

 

 
















      
      
       
   

   
    
     

 

(iii). Multiplication by an ordinary number: 

 

 
 

 
 

 
 

 
 

 
 

 
 

1 1

1 1

1 1

1

1 1

1 1 1
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(iv)  Power Operation: 
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Theorem 3.2: 

Let 
1 1 1 1 1 1 1, , , , ,            and 

2 2 2 2 2 2 2, , , , ,            be two BNNs and  

1 2, , 0l l l  . Then the following properties can be proven easily 

(a) 1 2 2 1F F        

(b) 1 2 2 1F F        

(c)  1 2 2 1. . .F F F F Fl l l        

(d)  1 2 1 2

l ll
F FF

F F

 

        

(e)  1 2 1 1 2 2 1. . .F F F Fl l l l       

(f) 

  1 21 2

1 2 2

l ll l
F FF


 

     

4. Bipolar Neutrosophic Frank Weighted Geometric Aggregation Operator 

In this section, we proposed bipolar neutrosophic Frank weighted geometric aggregation 

(BNFWGA) and the bipolar neutrosophic Frank ordered weighted geometric aggregation 

(BNFOWGA) operators and discussed different properties. 

Definition 4.1:  

Let  , , , , , 1,2,3......j j j j j j j j n              be a family of BNN’s. 

A mapping BNFWGA: 
'U U  is called BNFWGA operator, if it satisfies 
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n n
j

nF F F

BNFWGA N N N N N

N N N



 





  

 

   

 

 and  1 2 3, , ..........
T

n      be the weight vector of  , 0,1j j  &
1

1.j

j




  

Theorem 4.1 : 

Let  , , , , , 1,2,3......j j j j j j j j n              be a family of BNN’s and 

 1 2 3, , ..........
T

n      be the weight vector of  , 0,1j j  &
1

1.j

j




 Then, the value 

aggregated using BNFWGA operator is still a BNN i.e).   

 1 2 3 1 2, , ......... .......
j j j

F F F

n nF F FBNFWGA N N N N N N N
  

  

     

   

   

   
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 
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
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 
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
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 
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 

    
         
    


 
      

 


             
    

 

 

 

 …………………..(6) 

Proof: 

By mathematical induction we prove the result. 

Case (1): When n=2  

Based on the Definition 4.1, the following result can be obtained

 
1 2

1 2 1 2,
F F

FBNFWGA N N N N
 

 

   

 

   

   

   

1 1

1 1

1 1

1

1 1 ( )
1

log 1 1 ,1 log 1 1 ,

1 log 1 1 , log 1 1 1,

log 1 1 , log 1 1
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N


 
 

 
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
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 
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 




  

 

    
            

    

          
   

    
         

   

 



Neutrosophic Sets and Systems, Vol. 51, 2022 

 429  

 

 

M. Lathamaheswari, S. Sudha, Said Broumi and Florentin Smarandache, Bipolar Neutrosophic Frank Aggregation Operator and its application in 
Multi Criteria Decision Making Problem 

 

   

   

   

2 2
2 2

1
2 2

2 2

2 2
2 2

1

1 1 ( )
2

log 1 1 ,1 log 1 1 ,

1 log 1 1 , log 1 1 1,

log 1 1 , log 1 1

F

N


 
 

 

 


 

 


 

 

 

 

 

 

 




  

 

    
            

    

          
   

    
         

   

 

   

   

   

1 2

2 2
1

1 1

2 2
1 1 ( )

1 2

1 1

2 2

1 1

log 1 1 ,1 log 1 ,

1 log 1 , log 1 1 1,

log 1 1 , log 1 1 , ( 0)

j j
j j

j j
F F

j j

j j
j j

j j

F

j j

j j

N N
 

 
 



 




 


 

 

 

  

 

 

 



 

    

 

 

 

  
      
  


 
       

 


             
    

 

 

 

 

Case (ii): When n=s  

Using equation (6), the following result can be obtained. 
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Case (iii) When n=s+1 then following result can be obtained:
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Thus the following result can be obtained. 
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Therefore, the theorem is true for n=s+1.  

Hence the theorem.  

Example 4.1: Let 

1
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be three BNNs and let weight vector of BNNs jN  1,2,3j   be  
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are the weight of jN  1,2,3j  such that 
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1j

j



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Then by above theorem 
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    1 2 3, , 1.0,0.0391,0.2474, 0.3072, 1.0, 1.0BNFWGA N N N      

The BNFWGA operator has the following properties: 

(1) Idomopotency: 

Let all the BNN’s be  , , , , , 1,2,3....j j j j j j jN N j n              where 

 1 2 3, , ..........
T

n    
be the weight vector of 

 . 0,1j jN    and 
3

1

1j

j




  then  

 1 2 3, , ......... jN N N N NBNFWGA   

(2) Monotonicity: Let jN  1,2,3....j n   and 
'

jN  1,2,3....j n be two families of 

BNNs, where  1 2 3, , ..........
T

n    
be the weight vector of jN and 

'

jN ,  0,1j   

and 
1

1j

j




 . For all ‘j’ if 
'

j jN N then 

 1 2 3, , ......... jB W N N NF GA NN   
' ' ' '

1 2 3, , ......... jN N NFWGA NBN  
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(3) Boundedness: Let  , , , , , 1,2,3....j j j j j j jN N j n             be a family of 

BNNs. Where  1 2 3, , ..........
T

n    
be the weight vector of jN ,  0,1j  and 

3

1

1j

j




 , Therefore we have  

     1 2 3, ,.......... . .. , ,........., , .. .... . ..jB NB N NNFWGA N N N NFWGA BNFWGA N N NN
     



where  , , , , ,
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    

 

Proof: Since  , , , , , 1,2,3....j j j j j j jN N j n             then, the following result can be 

obtained by using Equation (6). The following result can be obtained 

 

   

   

   
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
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 
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  
      
  


 
      
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
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     

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      

      
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, , , , , N             holds 
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(1) The property is obvious based on the equation (6). 

(2) Let , , , , , , , , , ,
N N N N N N N N N N N N

N and N                  

 
                    

There are following inequalities: 
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Hence  

     1 2 3, ,.......... . .. , ,........., , .. .... . ..jB NB N NNFWGA N N N NFWGA BNFWGA N N NN
     



holds. 

 

5. Bipolar Neutrosophic Frank Ordered Weighted Geometric Aggregation (BNFOWGA) 

Operator 

This section proposes the BNFOWGA operator and describes its properties in detail. 

 

Definition 5.1:  

Let  , , , , , 1,2,3......j j j j j j j j n              be a family of BNNs. 

 A mapping BNFOWGA: 
'U U  is called BNDWGA operator, if it satisfies, 
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Where  is permutation that orders the elements 
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(1) (2) (3) ( )........... nN N N N        

 and  1 2 3, , ..........
T

n      be the weight vector of  , 0,1j j  &
1

1.j

j




  

Theorem 5.1: 

Let  , , , , , 1,2,3......j j j j j j j j n              be a family of BNN’s and 
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n      be the weight vector of  , 0,1j j  &
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


  Then, the value 

aggregated by using bipolar neutrosophic Frank ordered weighted geometric average operator is 

still a BNN 
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Proof: 

If n=2, using  Frank operations  for bipolar neutrosophic numbers, the following result can be 

obtained  
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If k=s then,  
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If k=s+1 then there is following result: 
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Hence the theorem true for r=s+1. Thus the result  
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holds for all n. 

Example 5.1: Let 

1

2

3

0.5,0.7,0.3, 0.6, 0.2, 0.6

0.2,0.5,0.5, 0.8, 0.4, 0.3
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N

N

    

    

    

be three BNNs and let weight vector of 

BNNs kN  1,2,3k   be 1 2 3

1 3 1 1 3 1
, , , , ,

8 8 2 8 8 2

T

   
 

    
 
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1
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k




 . Then by above theorem
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3
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
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    1 2 3, , 1.0,0.125,0.2520, 0.0652, 1.0, 1.0BNFOWGA N N N     . 

The BNFOWGA operator has the following properties: 

(4) Idomopotency: 

Let all the BNN’s be  , , , , , 1,2,3....n k k k k k kN N k n              where 

 1 2 3, , ..........
T

n    
be the weight vector of 

 . 0,1k kN    and
1

1k

k




  then  
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 1 2 3, , ......... kN N N N NBNFWGA  . 

(5) Monotonicity: Let kN  1,2,3....k n   and 
'

jN  1,2,3....j n be two families of 

BNNs, where  1 2 3, , ..........
T

n    
be the weight vector of kN and 

'

kN ,  0,1k   

and 
1

1k

k




 . For all ‘j’ if 
'

j jN N then 

 1 2 3, , ......... kB W N N NF GA NN   
' ' ' '

1 2 3, , ......... kN N NFWGA NBN . 

(6) Boundedness: Let   , , , , , 1,2,3....k k k k k k jN N k n             be a family of 

BNNs. Where  1 2 3, , ..........
T

n    
be the weight vector of kN ,  0,1k  and 

3

1

1k

k




 , Therefore we have  
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     
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Proof: 

(3) Since  , , , , , 1,2,3....j j j j j j jN N j n             then, the following result can 

be obtained by using Equation (1)The following result can be obtained 
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 , , , , , N             holds 

(4) The property is obvious based on the equation (6). 

(5) Let , , , , , , , , , ,
N N N N N N N N N N N N
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 
                   . 
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                   

         



  

. 

Hence  

     1 2 3, ,......... . ... , ,... ......, , ... .. . ...jB N NN NNFOWGA N N N BNFOWGA BNFOWGA N NN
     



holds for all ‘n’. 
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6. Model for MCDM Using Bipolar Neutrosophic Information 

 

Using the BNFWGA and BNFOWGA operators that are suggested, two comprehensive MCDM 

approaches are expanded in this section. 

For MCDM model with bipolar neutrosophic fuzzy information, Let  1 2 3, , ....... nA A A A A  be 

the set of alternatives and  1 2 3, , ....... nC C C C C be a set of attributes. 

Let  1 2 3, , ..........
T

n    
be the weight to attribute KC .   

Suppose that       , , , , , 1,2,3..... 1,2,.....jk jk jk jk jk jk jk
s rs r

N N j s k r        



       is 

BNN decision matrix, where , ,jk jk jk    indicates the truth membership degree, indeterminacy 

membership degree and falsity membership degree of alternative jA  under attribute KC with 

respect to positive preferences and , ,jk jk jk    indicates the truth membership degree, 

indeterminacy membership degree and falsity membership degree of alternative jA  under 

attribute KC with respect to negative preferences. We have conditions 

 , , , , ,& 0,1jk jk jk jk jk jk            such that 0 , , , , , 6jk jk jk jk jk jk             for 

  1,2,3..... 1,2,.....j s k r  . 

6.1 Proposed Algorithm using BNFOWGA operator to solve MCDM problem 

Step 1 Collect information on the bipolar neutrosophic evaluation  

Step 2 Calculate score and the accuracy values of collected information. 

The score values  jks N  and accuracy values  jka N of alternatives jA  

can be calculated by using Equations (1) and (2). 

Step 3 The compression method in Definition 4.1 to reorder information on evaluation under each 

attribute. The comparison method is used to reorder  jkN .  

Step 4 Derive the collective BNN  1,2,.....jN j s  for the alternative  1,2,.....jA j s  

Method (1) . 
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Utilize BNFWGA operator to calculate the collective BNN for each alternative, then 

 1 2 3
1

, , .........
k

F
n

j j j j jn jk
k

N BNFWGA N N N N N





   .

 

 

 

 

 

 

 

1 2 ( )1

1

1

1

1

1

1 ( )

1

1

, .....

log 1 1 ,

1 log 1 1 ,

1 log 1 1 ,

log 1 1 1,

log 1 1 ,

log 1

k

k
jk

k
jk

k
jk

k
jk

k
jk

n
j jn jkk

n

k

n

k

n

k

n

k

s

k

N BNFWGA N N N N


































































 









  

 
   

 

 
   

 

 
   

 


 
   

 

 
   

 

 











 
1

1 , ( 0)
k

jk

s

k
























  

    
  



 

 Where  1 2 3, , ..........
T

n    
is the weight vector such that 

 0,1k   and 
1

1
n

k

k




  

Method (2). 

Utilize BNFOWGA operator to calculate the collective BNN for each alternative, then 

 1 2 ( )1, .....
k

n
j jl jlkN BNFOWGA N N N N







    

   

   

   

1

1 1

1 1 ( )

1 1

1 1

log 1 1 ,1 log 1 1 ,

1 log 1 1 , log 1 1 1,

log 1 1 , log 1 1 , ( 0)

l l
jl jl

l l
jl jl

l l
jl jl

n n

l k

n n

k k

s s

k k

 
 

 

 


 

 


 

 

 

  

 

 

 



 

  

 

 

 

    
         

   
    

          
   

    
          
    

 

 

 

 

Where  is permutation that orders the elements:        1 2 3 .........j j j jnN N N N     
 

Where 
 1 2 3, , ..........

T

n    
is the weight vector such that 

 0,1l   and 
1

1
n

l

l




 . 

Step 5: Calculate the score values   1,2,3........js N j s  of BNNs   1,2,3........jN j s to 

rank all the alternatives  1,2,3........jA j s and then select favorable one. If score values of BNNs 
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&j kN N are equal, then we calculate accuracy values    &j ka N a N of BNNs &j kN N  

respectively and then rank the alternatives &j lA A as accuracy values    &j ka N a N  

Step 6 Rank all the alternatives  1,2,3........jA j s and select favorable one. 

Step 7 End 

 

7. Bridge Management to avoid traffic congestion using proposed Algorithm 

 

The best solution to a bridge management problem from Amin Amini & Navid Nikraz [32] is 

discovered in this part in order to prevent traffic jams. To determine the optimum path that avoids 

traffic jams. Additionally, parametric analysis and comparison analysis are performed to confirm the 

adaptability and efficiency of the suggested algorithm to address the problem of decision-making. 

People who reside in and travel through affected neighbourhoods, as well as on state routes, are 

greatly affected by traffic jams. The behaviour of road users, the safety of the road and bridge 

infrastructure conditions and characteristics, and vehicles interact continuously to form the traffic 

process. People that are delayed are late for key daily tasks including work, school, appointments, 

and other things. When clients and consumers have trouble contacting them, business suffers. When 

ambulances, rescue teams, and fire vehicles are unable to drive on their usual routes, routine 

incidents can quickly become life-threatening. Therefore, our programme was created to determine 

the optimum path while taking into consideration three factors: connectivity in a single lane, 

avoiding traffic incidents, and saving time for human resources. Consider three bridges 1 2 3, ,A A A . 

Based on the recommendations of the experts group in terms of three criteria, the roads departments 

chose to construct the bridge in order to reduce traffic namely multiple road connection in single 

lane  1C , avoid road accidents  2C , time saver for human resources  3C .  

Using the proposed algorithm bridge selection has been done as follows: 

Step1: Collect information on bipolar neutrosophic evaluation 

The information collected from expert discussion on evaluation is given in Table1 

 

Table 1: Bipolar-neutrosophic evaluation information under  

 
1C  2C  3C  

1A  
(0.5,0.7,0.2,-0.7,-0.3,-0.6) (0.4,0.4,0.5,-0.7,-0.8,-0.4) (0.7,0.7,0.5,-0.8,-0.7-0.6) 
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2A  
(0.9,0.7,0.5,-0.7,-0.7,-0.1) (0.7,0.6,0.8,-0.7,-0.5,-0.1) (0.9,0.4,0.6,-0.1,-0.7,-0.5) 

3A  
(0.3,0.4,0.2,-0.6,-0.3,-0.7) (0.2,0.2,0.2,-0.4,-0.7,-0.4) (0.9,0.5,0.5,-0.6,-0.5,-0.2) 

 

 

Step 2: Calculate Score and accuracy values of collected information. 

For each alternative jA the attribute kC ,the score values  jks N and the accuracy values  

 jka N can be calculated based on Equation (1) and Equation (2). The Score values  jks N  and 

the accuracy values  jka N  are shown in Tables 2 and 3 respectively. 

Table 2: Score values  jks N
 

 

 

 
1C  2C  3C  

1A  
0.4067 0.5000 0.5000 

2A  
0.4667 0.3667 0.6667 

3A  
0.5167 0.5833 0.5000 

Table 2: Accuracy Values  jka N  

 
1C  2C  3C  

1A  
0.2000 -0.4000 0 

2A  
-0.2000 -0.7000 0.7000 

3A  
0.2000 0 0 

Step 3: Reorder information on evaluation under each attribute 

The comparison method in Definition 4.1 is used to reorder jkN
 

Table 4 reordering bipolar neutrosophic evaluation information by using comparison method based 

on Definition 4.1 
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1C  2C  3C  

1A  
(0.7,0.7,0.5,-0.8,-0.7-0.6) (0.4,0.4,0.5,-0.7,-0.8,-0.4) (0.5,0.7,0.2,-0.7,-0.3,-0.6) 

2A  
(0.9,0.4,0.6,-0.1,-0.7,-0.5) 0.5,0.2,0.7,-0.5,-0.1,-0.9) (0.9,0.7,0.5,-0.7,-0.7,-0.1) 

3A  
(0.2,0.2,0.2,-0.4,-0.7,-0.4) (0.3,0.4,0.2,-0.6,-0.3,-0.7) (0.9,0.5,0.5,-0.6,-0.5,-0.2) 

Table 5: Score values  jks N  

 
1C  2C  3C  

1A  
0.5000 0.5000 0.4067 

2A  
0.6667 0.5167 0.4667 

3A  
0.5833 0.5167 0.5000 

Table 6: Accuracy Values  jka N  

 
1C  2C  3C  

1A  
0 -0.4000 0.2000 

2A  
0.7000 0.2000 -0.2000 

3A  
0 0.2000 0 

Step 4: Derive the collective BNN  1,2,3...jN j s for the alternative  1,2,3...jA j s Method 

1 BNFWGA operator using Eqn(8) and supporting 7    to calculate the collective BNN for each 

alternative, then 

 

1

2

3

0.1301,0.6857,0.6345, 0.7517, 0.2494, 0.4480

0.5735,0.6795,0.7665, 0.6913, 0.1301, 0.1038

0.1301,0.6857,0.6345, 0.7517, 0.2494, 0.4480

N

N

N

   

   

   

 

The value of BNN by power operation when 7   

 0.7168,0.2758,0.2858, 0.2968, 0.6981, 0.6484    
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Method (2) Utilize BNFOWGA operator using Eq (9) and supporting 7    to calculate the 

collective BNN for each alternative, then 

1

2

3

0.1301,0.6857,0.6345, 0.78414, 0.2512, 0.4480

0.5493,0.6357,0.7496, 0.6569, 0.1193, 0.1193

0.2160,0.4527,0.4264, 0.5661, 0.2506, 0.2335

N

N

N

   

   

   
 

The value is 0.7100,0.2758,0.2668, 0.2739, 0.6343, 0.6529    

Step 5: Calculate the score values  js N  1,2,3jA j  of BNNs jN  1,2,3j  for each 

alternatives  1,2,3jA j   1,2,3kA k  . The score values  jks N are calculated using Equation 

(2) 

Method 1 The following score values are obtained by using the BNFWGA operation 

     1 2 30.2875 : 0.2783: 0.3751s N s N s N    

Method 2 The following score values are obtained by using the BNFOWGA operation

     1 2 30.2875 : 0.2910 : 0.3758s N s N s N    

Step 6: Rank all the alternatives  1,2,3jA j  and select favorable one. 

The alternative can be ranked in descending order based on the comparison method, and favorable 

alternative can be selected. 

Method 1 The following ranking order based on score values is obtained by using BNFWGA 

operator: 

3 2 1A A A  Thus 3A  is favorable. 

Method 2 The following ranking order based on the score values is obtained by using BNFOWGA 

operator: 3 2 1A A A  Thus 3A  is favorable. 

Step 7: End 

 

8. Comparative Analysis 

To demonstrate the soundness of the suggested work, this section contrasts and compares it to the 

current approaches. 

Table: 7 Ranking Orders obtained by Different Methods. 

Methods Rankings 
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A  [22] 3 2 1A A A   

G [22]
 

3 2 1A A A   

BNDGA Operator 7   [33] 
3 2 1A A A   

BNDOGA Operator 7   [33] 
3 2 1A A A   

FBNCGBM operator (s,t=1)[21] 
3 2 1A A A   

FBNCOGBM operator (s,t=1)[21] 
3 2 1A A A   

FATTT2FFAAOWA 7  [] 2 1 3A A A   

FATTT2FFAAFWA 7  [33] 2 3 1A A A   

BNFWGA Operator 7   
3 2 1A A A   

BNFOWGA Operator 7   
3 2 1A A A   

 

Table: 8 Characteristic Comparison of different methods. 

 

Methods Flexible measure 

easier 

A  [18] 
No 

G [18]
 No 

BNDGA Operator 7   [29] No 

BNDOGA Operator 7   [29] No 

FBNCGBM operator (s,t=1)[22] No 

FBNCOGBM operator (s,t=1)[22] No 

FATTT2FFAAOWA 7  [31] 
Yes 

FATTT2FFAAFWA 7  [31] 
Yes 

BNFWGA Operator 7   Yes 

BNFOWGA Operator 7   No 
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In G  , BNDGA and BNDOGA methods, the proposed method based on proposed BNFWGA 

operator does not consider the interaction and interrelation among attributes. In contrast to ,A G  , 

FATTT2FFAAOWA  7  and FATTT2FFAAFWA  7  methods, the proposed BNFWGA 

operator choose the appropriate parameters according to the preferences of Decision Makings. In 

similar to FBNCGBM operator (s,t=1) and FBNCOGBM operator (s,t=1), BNFWGA Operator  for

7  , BNFOWGA Operator for 7  , the proposed BNFWGA operators can select the 

appropriate parameters according to preferences of the decision making.  

In G  , BNDGA and BNDOGA methods, the proposed method based on proposed BNFOWGA 

operator does not consider the interaction and interrelation among attributes. In contrast to ,A G  , 

FATTT2FFAAOWA  7  and FATTT2FFAAFWA  7  methods, the proposed BNFOWGA 

operator selects the relevant settings in accordance with Decision Makings' preferences. In similar to 

FBNCGBM operator (s,t=1) and FBNCOGBM operator (s,t=1), BNFWGA Operator 7   , 

BNFOWGA Operator 7  the proposed BNFWGA operators can select the appropriate 

parameters according to preferences of the decision makings. Therefore, based on the proposed 

BNFWGA operator, the proposed technique may be used for decision-making. As a result, the 

suggested operators are more dependable and adaptable. These suggested strategies can be used in 

practice MCDM situations for decision-making based on the suggested operators and their 

requirements. 

 

9. Conclusion 

The tendency of the human mind to think about both positive and negative impacts when making 

decisions is referred to as bipolarity. A generalization of fuzzy, intuitionistic, and neutrosophic sets, 

the bipolar neutrosophic set enables it to handle ambiguous information in the decision-making 

process with higher adaptability. As a result, the operational laws of the proposed aggregation 

operation for both BNFWGA and BNFOWGA have been investigated and given in this study 

utilising Frank triangular norms in a bipolar neutrosophic environment. The use of the BNFWGA 

and BNFOWGA operators' proposed method to the MCDM bridge selection problem demonstrated 

its viability and cogency, and the suggested principles were used to choose the best bridge for 

reducing traffic congestion. Additionally, a comparison of the new method with the old method has 

been conducted. In the future, aggregation operators may be created employing a variety of 

triangular norms in different neutrosophic contexts. 
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1. Introduction 

Neutrosophic statistics as an extension of classical statistics was introduced by Smarandache [2]. 

Neutrosophic statistics is applied when the data is in the interval and has imprecise observations. 

Smarandache [37] provided a detailed discussion on the application of neutrosophic statistics. 

Smarandache [37] proved that neutrosophic statistics is more efficient than classical statistics and 

interval statistics. Smarandache [37] provided responses to questions of Woodall et al. [1] related to 

neutrosophic methodology. More applications of neutrosophic statistics can be seen in [3-5]. 

In this paper, we will address some important questions raised by Woodall et al. [1]. We provided 

the responses to some important questions/comments related to neutrosophic statistical process 

monitoring (NSPM)  

2 Some Comments/Questions   

In this section, we selected some important questions/comments from Woodall et al. [1] and 

provided the responses.  

2.1 Neutrosophic Sample Size 

The control charts using the fuzzy-based approach have been used for decades. These control charts 

are designed when uncertainty is found in sample size, data, and control chart parameters. Jean [6] 

presented a detailed discussion on the determination of the sample size for a control chart. Gülbay 

and Kahraman [7] proposed the control chart for imprecise data. Engin et al. [8] argued that the 

determination of sample size is a problem in attribute control charts. Moheb Alizadeh et al. [9] 

proposed control when observations in each sample are a canonical fuzzy number. Turanoğlu et al. 

[10] presented the sampling plan when the sample size is fuzzy. Yimnak and Intaramo [11] designed 

a standard deviation control chart when uncertainty (fuzziness) is found in sample size. Haridy et al. 

[12] contradicted the common belief that the sample size for X-bar and R chart or X-bar and standard 

deviation should be between [4, 6]. Hesamian et al. [13] proposed the exponentially weighted 

moving average (EWMA) control chart when the random variable is fuzzy. Zhou et al. [14] proposed 

control chart by considering the fuzzy sample number. Yalçın and Kaya [15] presented the analysis 

using the process capability index using a neutrosophic sample [90, 100]. More information on such 
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as the control chart can be seen in [16] and [17]. Control charts using neutrosophic statistics are the 

extension of control charts using a fuzzy-based approach. Under the neutrosophic framework, the 

neutrosophic sample size is fixed before the sample is collected. Like the fuzzy theory, neutrosophic 

theory is workable under uncertainty where the decision-makers are uncertain about the sample size 

before the sample is collected. In addition, neutrosophic statistics reduce to classical statistics when 

the decision-makers are curtained about the sample before the sample is collected. Chen et al. [3] and 

Chen et al. [4] showed the efficiency of neutrosophic statistics over classical statistics.    

2.2 Extreme Amount of Imprecision in Attribute Control Charts  

In the attribute control chart, during the simulation, it was observed that there is a high jump in 

average run length while changing the other parameters slightly. Therefore, in attribute control 

charts, it is expected a high indeterminacy to meet the given conditions.   

   

2.3 Neutrosophic Sample Size in Acceptance sampling Plan 

Aslam [18] and Aslam [19] determined the neutrosophic parameters of sampling plans. The real data 

used in Aslam [18] and Aslam [19] is assumed to have neutrosophic numbers. Therefore, fixed 

sample size is selected from the indeterminate interval of the sample size. The neutrosophic sample 

size in the interval can be applied using the same lines when two data sets having neutrosophic 

numbers are available. The neutrosophic theory is flexible and can be modified according to the 

situation and underlying studies.      

2.4 Neutrosophic Control Limits Multiplier   

The development of control limits using the fuzzy-based approach can be seen in [20-22]. The 

smoothing constant (lambda) is expressed in intervals having the range between 0 and 1. Hunter [23] 

suggested that the smoothing parameter should be selected from 0.20 to 0.3. On the other hand, 

Montgomery [24] recommended selecting the values of the smoothing parameter from 0.05 to 0.25. 

The determination of the smoothing parameter is an important issue in designing the control charts; 

see [25-26]. Therefore, the decision-makers are not always sure about the value of the smoothing 

constant to be selected in designing the control chart. In addition, as neutrosophic statistics was 

applied for the interval data, therefore, it would be justifiable to express the parameters in intervals 

rather than the exact value. The control charts using neutrosophic statistics are designed when 

uncertainty is found in the smoothing parameter or moving average span. Note that all neutrosophic 

parameters of the control chart are fixed in advance. Therefore, it is important to study the behavior 

of control charts when uncertainty is found in observations or any parameters of the control charts.         

2.5 Approximation in EWMA Control Charts   

The use of approximations in the evaluation of the average run length of EWMA charts was 

provided, for example, by [27-29]. More information can be seen in Ziegel [30]. Using the 

approximation of Aslam et al. [31], it is found that the values of average run length (ARL) are close to 

Lucas and Saccucci [32] for the larger values of smoothing constant (lambda). It is not recommended 

to apply the approximation using the ARL=1/p for EWMA control charts. This type of 

approximation should be used for Shewhart control charts only.       

2.6 Efficiency of Control Charts using Repetitive Sampling    

Aslam et al. [33] found that the average sample number for the control chart using repetitive 

sampling is almost similar to the sample size.  It means that the number of repetitions is quite small 
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(almost close to one). But, from the comparative study of the control chart using repetitive sampling 

and the control chart using single sampling, the average run length for the control chart using 

repetitive sampling is smaller than the average run length obtained from the control chart using the 

single sampling when the average sample number is equal to the competitor chart using single. By 

increasing the sample size to get smaller values of average run length cannot be encouraged.  

2.6 Equivalence of Multiple Dependent State Sampling and Runs-Rule  

Recently, Woodall et al. [34] showed that multiple dependent state sampling (MDSS) is equivalent to 

a run-rule chart. Aslam et al. [35] proposed control chart using MDSS when the process is in-control 

and by following the assumption of MDSS. Designing the MDSS by following [34] has less 

significant chance that (i+1) samples are in intermediate region and will not be efficient as the 

approach adopted by Woodall et al. [34]. As suggested by Riaz et al. [36] “In real applications, 

having a wider indecisive zone may not be very practical, and hence we have chosen the indecisive 

regions of practical worth”.  

3 Concluding Remarks 

In this paper, we addressed some questions raised by Woodall et al. [1] on the application of control 

charts using neutrosophic statistics. From the study, it is concluded that like the fuzzy-based 

approach, the control charts using neutrosophic statistics can be designed and applied in an 

uncertain environment.  
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Abstract: This article aims to introduce a unique hypersoft time-based matrix model that organizes and 

classifies higher-dimensional information scattered in numerous forms and vague appearances varying 

on specific time levels. Classical matrices as rank-2 tensors single-handedly relate equations and variables 

across rows and columns are a limited approach to organizing higher-dimensional information. This 

Plithogenic Crisp Time Leveled Hypersoft Matrix (PCTLHS-Matrix) model is designed to sort the higher 

dimensional information flowing in parallel time layers as a combined view of events. This matrix has 

several parallel layers of time. The time-based level cuts as time layers are introduced to present an 

explicit view of information on certain required time levels as a separate reality. The sub-layers are 

formulated as sub-level cuts that represent a partial view of the event or reality. Further subdividing these 

sub-levels creates sub-sub-level cuts, which are the smallest focused partial view of the event, serving the 

purpose of zooming. These Level cuts are utilized to construct local aggregation operators for PCTLHS-

Matrix. And the concept of timelessness is introduced by unifying the time levels of the universe. This 

means all attributes that exist in various time levels are merged to exist in a unified time called the unified 

time layer. In this way, the attributes are focused and the layers of time are merged as if there is no time. 

The particular types of time layers are unified by local operators to introduce the concept of timelessness 

that is obtained by unifying time levels. Finally, for a precise description of the model, a numerical 

example is constructed by assuming a classification of various health states with COVID-19 patients in a 

hospital. 

Intuitionistic Fuzzy / Neutrosophic / and other fuzzy-extension IndetermSoft Set & IndetermHyperSoft 

Set are presented together with their applications.  

Keywords: : PCTLHS-Matrix; Time-Layers, Level-Cuts; Sub-Level Cuts; Sub-Sub- Level Cuts; Combined 

Event-View, Separate event-view; Partial event view; Aggregation-Operators. 
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1. Introduction 

The discipline of modeling and decision-making in an uncertain and vague environment consisting of 

higher-dimensional information is an incredible task. To enhance the field modeling and decision-making 

in an uncertain and vague universe, the field of fuzzy theory was developed by Zadeh [1] in 1965. Later, in 

1986, K. Atanassov [2] further expanded this state of vagueness by introducing intuition or hesitation into 

decision-making structures called intuitionistic fuzzy set theory (IFS). The three states of the human mind 

were represented by the level of membership, the level of non-membership, and the level of hesitation in 

IFS theory. In addition, K. Atanassov [3] introduced an interval-valued fuzzy set (IVFS) in 1999, which is 

another form of IFS (memberships and nonmemberships packed in unit intervals). Later, F. Smarandache 

[4-6] introduced neutrosophy by extending hesitation as an independent indeterminate neutral factor. 

Molodtsove formulated a soft set in 1999 [7-10], he expanded the theory of wage by considering multiple 

attributes parameterized by subjects.  In 2018 [11] Smarandache introduced the Hypersoft set and the 

Plithogenic Hypersoft set earlier, giving the plithogenicy theory [12]. In these sets, he extended the 

attributes to the values of the attributes called sub-attributes and parametrized the subjects by several 

attributes and sub-attributes. By introducing the Hypersoft set and the Plithogenic Hypersoft set, he 

opened some problems in exploring these sets such as constructing aggregation operators and decision-

making models.  

Shazia et al [13], explored and extended these sets and addressed the problems opened by Smarandache. 

In addition, they introduced the plithogenic Fuzzy Whole Hypersoft Set (PFWHSS) and formulated a 

matrix representation form named  Plithogenic Fuzzy Whole Hypersoft-Matrix. They developed some local 

aggregation operators for the plithogenic Fuzzy Hypersoft set (PFHSS). This matrix was developed for a 

specific combination of attributes and sub-attributes. The application of this matrix has been provided in 

the form of a decision-making model referred to as the Plithogenic Frequency Matrix Multi-Attribute 

Decision-Making technique. Later, Shazia et al [14] extended the Plithogenic Whole Hypersoft Matrix to a 

generalized form of the Matrix called the Plithogenic Subjective Hyper-Super-Soft Matrix. 

It was a superior matrix to its previously developed matrix which has a greater capacity for expressing the 

variations of certain connected attributive levels. These attribute levels are presented as matrix layers. The 

application of this matrix is provided in the form of a new ranking model called the Plithogenic Subjective 

Local-Global Universal Ranking Model. 
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This model has provided a physical classification of the Universe (a combination of subjects with attributes). 

Later, in this research field, the hypersoft set expanded, and some MADM techniques and operators are 

developed. Saqlain, Saeed,  et al [15] discussed the Generalization of TOPSIS for Neutrosophic Hypersoft 

set using Accuracy Function and its Application. Saqlain, et al [16] constructed some Aggregate Operators 

of Neutrosophic Hypersoft Set. Quek, et al [17] introduced Entropy Measures for Plithogenic Sets and 

Applications in Multi-Attribute Decision Making. Saqlain Smarandache [18] formulated octagonal 

neutrosophic numbers and discussed their different representations, properties, graphs, and de-

eutrophication with the application of personnel selection. International Journal of Neutrosophic Science. 

Rahman et al,  [19] developed a multi-attribute decision-support system that is based on aggregations of 

Interval-Valued Complex Neutrosophic Hypersoft Set. Saeed, Muhammad, and Atiqe Ur Rahman [20] 

constructed an optimal supplier selection model via a decision-making algorithmic technique that is based 

on a single-valued neutrosophic fuzzy hypersoft Set. Ihsan, Muhammad, Atiqe Ur Rahman, and 

Muhammad Saeed [21] discussed a single-valued neutrosophic hypersoft expert set with application in 

decision making. Saeed, Muhammad, et al. [22] formulated the model of the prognosis of allergy-based 

diseases using Pythagorean fuzzy hypersoft mapping structures and recommended medication. Rahman, 

Atiqe Ur, et al. [23]  developed decision-making algorithmic techniques based on aggregation operations 

and similarity measures of possibility intuitionistic fuzzy hypersoft sets. 

This current article provides a further upgraded plithogenic Model. In this model, a new time-level 

variation has been introduced. This model is programmed with a magnified angle of vision to cope with 

scattered time-dependent information of the plithogenic Universe in a crisp environment. First, a three-

dimensional expanded view of the PCTLHS matrix is presented to show the Plithogenic Crisp Time Lined 

Hypersoft Set. This PCTLHS The matrix is a third-rank tensor representing three types of variation; it 

consists of several matrix layers, each layer being a second-rank tensor expressed in the Crisp environment. 

Furthermore, this PCTLHS matrix represents multiple parallel universes or parallel realities. By using this 

connected-matrix expression, one can grasp and categorize all the information at a glimpse, i.e., the 

information from a crowd of people assigned to a combination of attributes and observed at different time 

levels. Therefore, it is obvious that the matrix expression is the most appropriate expression to represent 

the multidimensional data compared to the classical set expression. This new model would help to enhance 

and broaden the field of decision-making and artificial intelligence. After a detailed description, specific 

types of level cuts are constructed on the variation indices. These level cuts are named K-level cuts obtained 

by splitting the PCTLHS-Matrix at one of the three given variation indices. Further, these K-level cuts 

would provide a structure for viewing each event or reality separately and serve as the projection of higher-

dimensional events in the lower-dimensional universe. Additionally, these K-level cuts are further broken 

down into sub-level cuts by splitting the matrix layer at either of the two remaining variation indices, i.e: J, 

I. While these sub-level cuts offer the projection of the previous lower dimension into a further lower 

dimension and provide an interior view of the expanded universe, this view may be called an implicit 

expanded universal view. 
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At a later stage from these sub-level cuts, sub-sub-level cuts are constructed by dividing the sub-level cuts 

(row or column of a given layer of the PCTLHS matrix) at the second variation index of the matrix and then 

further at the third variation index of the matrix. After applying all splits at indices the outcomes would be 

reflected as points. It is obvious that these level cuts, sublevel cuts, and sub-sub-level cuts serve to program 

zoom-in functions to look at an inside view of the event. This can be considered as a contraction of the 

expanded higher-dimensional universe. However, the sub-sub level cuts provide a contracted picture of 

the smallest part of single or multiple universes. In this way, the expanded universe of matrix layers could 

possibly be contracted at a single point. Similarly, by reversing the process, one can extend the same point 

to other higher dimensions of rows, columns, matrix, matrix layers, and clusters of matrix layers. In the 

final phase, plithogenic aggregation operators are developed and used to elaborate the activity of these 

different types of level cuts based on variation indices. These operators are plithogenic disjunction 

operators, plithogenic conjunction operators, plithogenic average operators, and vice versa. For a more 

precise and lucid explanation of the model, a numerical example related to the classification of COVID-19 

patients and their health states in a hospital at two different time levels.  

2. Prelimneries 

This section summarizes some basic definitions of Soft Sets, Hypersoft Sets, Crisp Hypersoft Sets, 

Plithogenic Hypersoft Sets, Plithogenic Crisp Hypersoft Sets. These definitions would help expand the 

theory of plithogecy. 

Definition 2.1 [7] ( Soft Set) 

Let 𝑼 be the initial Universe of discourse, and 𝑬 be a set of parameters or attributes with respect to 𝑼 let 

𝑷(𝑼) denote the power set of 𝑼, and 𝑨 ⊆ 𝑬 is a set of attributes. Then pair (𝑭, 𝑨), where 𝑭: 𝑨 ⟶ 𝑷(𝑼) is 

called Soft Set over 𝑼. , In other words, a soft set (𝑭, 𝑨) over 𝑼 is a parameterized family of subsets of 𝑼. 

Fore 𝒆 ∈ 𝑨, 𝑭(𝒆) may be considered as a set of 𝒆 elements or 𝒆 approximate elements 

(𝑭, 𝑨) = {(𝑭(𝒆) ∈ 𝑷(𝑼): 𝒆 ∈ 𝑬, 𝑭(𝒆) = 𝝋𝐢𝐟𝒆 ∉ 𝑨}                                   (2.1) 

Definition 2.2 [11] (Hypersoft set) 

Let 𝑼 be the initial Universe of discourse 𝑷(𝑼) the power set of 𝑼. 

let 𝒂𝟏, 𝒂𝟐, . . . , 𝒂𝒏 for 𝒏 ≥ 𝟏 be 𝒏 distinct attributes, whose corresponding attributes values are respectively 

the sets 𝑨𝟏, 𝑨𝟐, . . . , 𝑨𝒏 with 𝑨𝒊 ∩ 𝑨𝒋 = 𝝋 for 𝒊 ≠ 𝒋 and 𝒊, 𝒋 ∈ {𝟏, 𝟐, . . . , 𝒏}. 

Then the pair (𝑭, 𝑨𝟏 × 𝑨 ×. . .× 𝑨𝒏) where, 

 𝑭: 𝑨𝟏 × 𝑨 ×. . .× 𝑨𝒏 → 𝑷(𝑼),                                                                  (2.2) 

is called a Hypersoft set over 𝑼 

Definition 2.3 [11] (plithogenic Crisp Hypersoft set) 

Let 𝑼𝒄 be the initial Crisp Universe of discourse 𝑷(𝑼𝒄) the power set of 𝑼. Let 𝒂𝟏, 𝒂𝟐, . . . , 𝒂𝒏 for 𝒏 ≥ 𝟏 be 𝒏 

distinct attributes, whose corresponding attributes values are respectively the sets 𝑨𝟏, 𝑨𝟐, . . . , 𝑨𝒏 with 𝑨𝒊 ∩

𝑨𝒋 = 𝝋 for 𝒊 ≠ 𝒋 and 𝒊, 𝒋 ∈ {𝟏, 𝟐, . . . , 𝒏}. Then 

{ 𝑭𝒄, 𝑨𝟏 × 𝑨𝟐 ×. . .× 𝑨𝒏} is called plithogenic Crisp Hypersoft set over 𝑼𝒄                           where, 𝑭𝒄: 𝑨𝟏 × 𝑨 ×

. . .× 𝑨𝒏 → 𝑷(𝑼𝒄),  
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Definition 2.4 [24][25] [26] (super-matrices) 

A square or rectangular arrangements of numbers in rows and columns are matrices we shall call them as 

simple matrices while a super-matrix is one whose elements are themselves matrices with elements that 

can be either scalars or other matrices. 

𝒂 = [
𝒂𝟏𝟏 𝒂𝟏𝟐

𝒂𝟐𝟏 𝒂𝟐𝟐
], where  

𝒂𝟏𝟏 = [
𝟐 −𝟒
𝟎 𝟏

],   𝒂𝟏𝟐 = [
𝟎 𝟒𝟎
𝟐𝟏 −𝟏𝟐

],    

𝒂𝟐𝟏 = [
𝟑 −𝟏
𝟓 𝟕
−𝟐 𝟗

],   𝒂𝟐𝟐 = [
𝟒 𝟏𝟐
−𝟏𝟕 𝟔
𝟑 𝟕

] 𝒂 is a super-matrix. 

Note: The elements of super-matrices are called sub-matrices i.e. 𝒂𝟏𝟏, 𝒂𝟏𝟐, 𝒂𝟐𝟏, 𝒂𝟐𝟐 are submatrices of the 

super-matrix 𝒂. 

in this example, the order of super-matrix 𝒂 is 𝟐 × 𝟐 and order of sub-matrices 𝒂𝟏𝟏 is 𝟐 × 𝟐, 𝒂𝟏𝟐 is 𝟐 × 𝟐 

𝒂𝟐𝟏 is 𝟑 × 𝟐 and order of sub-matrix 𝒂𝟐𝟐 is 𝟑 × 𝟐, we can see that the order of super-matrix doesn’t tell us 

about the order of its sub-matrices. 

Definition 2.5 [27] (Hypermatrices) 

For 𝒏𝟏, . . . , 𝒏𝒅 ∈ 𝑵, a function 𝒇: (𝒏𝟏) ×...× (𝒏𝒅) → 𝑭 is a hypermatrix, also called an order-d hypermatrix 

or d-hypermatrix. We often just write 𝒂𝒌𝟏...𝒌𝒅
to denote the value 𝒇(𝒌𝟏. . . 𝒌𝒅) of 𝒇 at (𝒌𝟏. . . 𝒌𝒅) and think of 

𝒇 (renamed as 𝑨) as specified by a d-dimensional table of values, writing 𝑨 = [𝒂𝒌𝟏...𝒌𝒅
]
𝒌𝟏...𝒌𝒅

𝒏𝟏,...,𝒏𝒅 

 A 3-hypermatrix may be conveniently written down on a (2-dimensional) piece of paper as a list of usual 

matrices, called slices. For example 

𝑨 = [𝒂𝒊𝒋𝒌] = [

𝒂𝟏𝟏𝟏 𝒂𝟏𝟐𝟏 𝒂𝟏𝟑𝟏 . 𝒂𝟏𝟏𝟐 𝒂𝟏𝟐𝟐 𝒂𝟏𝟑𝟐

𝒂𝟐𝟏𝟏 𝒂𝟐𝟐𝟏 𝒂𝟐𝟑𝟏 . 𝒂𝟐𝟏𝟐 𝒂𝟐𝟐𝟐 𝒂𝟐𝟑𝟐

𝒂𝟑𝟏𝟏 𝒂𝟑𝟐𝟏 𝒂𝟑𝟑𝟏 . 𝒂𝟑𝟏𝟐 𝒂𝟑𝟐𝟐 𝒂𝟑𝟑𝟐

] 

3.  Plithogenic Crisp Time-Leveled Hypersoft Matrix 

 

Definition 3.1 (Plithogenic Crisp Time leveled Hypersoft Matrix): 

  

Let 𝑼𝑪(𝑿) be the Crisp universe of discourse,  𝑷(𝑼𝑪 )  be the power set of 𝑼𝑪 ,  𝑨𝒋
𝒌  is a combination of 

attributes sub-attributes for some 𝑗 = 1,2,3, . . . , 𝑁  attributes, 𝑘 = 1,2,3, . . . , 𝐿  time-leveled-attributes and 

𝑥𝑖  𝑖 = 1,2,3, . . ., 𝑀  subjects under consideration then Plithogenic Crisp Time-Leveled Hypersoft-Matrix 

(PCTLHS-Matrix), is a mapping 𝐶 from the cross product of attributes / time-leveled-attributes on the 

power set of universe 𝑃(𝑈𝐶) represented in matrix form. This mapping 𝐶  and its matrix form in the 

plithogenic crisp environment is described below in Eq.3.1 and Eq.3.2 respectively, 

 

𝐹: 𝐴1
𝑘 × 𝐴2

𝑘 × 𝐴3
𝑘 ×. . .× 𝐴𝑁

𝑘 → 𝑃(𝑼𝑪)                                                  (3.1)   

 

𝐹 = [𝜇
𝐴𝑗

𝑘(𝑥𝑖)]                                                                    (3.2)  

 s.t   𝜇
𝐴𝑗

𝑘(𝑥𝑖) ∈  {0. 1}, are crisp states as memberships either “0” or “1”, 
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𝜇
𝐴𝑗

𝑘(𝑥𝑖)  are crisp memberships for given 𝑥𝑖  subjects regarding each given 𝐴𝑗
𝑘  attributes / time-leveled-

attributes where, 𝐴𝑗
𝑘  is a combination of attributes / time leveled-attributes for some 𝑗 = 1,2,3, . . . , 𝑁 

attributes, 𝑘 = 1,2,3, . . . , 𝐿 time levels associated to 𝑥𝑖  𝑖 = 1,2,3, . . ., 𝑀 subjects under consideration. 

Or in simple words a Plithogenic Crisp Hypersoft Set, represented in the matrix form is called Plithogenic 

Crisp Time Lined Hypersoft Matrix, (PCTLHS-Matrix). 

This matrix has three possible expanded forms or views described in Crisp environments. 

3.2  PCTLHS-Matrix as a Tensor: 

As we know, all matrices in the real vector space are rank-2 tensors, similar to how the PCTLHS matrix 

with its three variation indices is a rank 3 tensor. The PCTLHS matrix contains layers of ordinary matrices 

called matrix layers or Level cuts (plane slices). 

𝑨 = [𝑨𝒊𝒋𝒌] is an example of PCTLHS-Matrix. Index i refers to variations in rows used to represent subjects 

under consideration 𝑗 specifies a variation in columns used to represent attributes of subjects, and  𝑘 

provides variations of layers of rows and columns used to represent the attributes on specific time levels 

(varying matrix layers as clusters of rows and columns). Similarly [𝑨𝒋𝒌𝒊] is interpreted as the index 𝑗 

referred to variation of rows 𝑘 gives a variation of columns, and 𝑖 offers a variation of clusters of rows 

and columns.  

3.3 Level Cuts, Sub-Level Cuts, and Sub-Sub-Level Cuts of PCTLHS-Matrix 

We may define Level Cuts, Sub-Level Cuts, and Sub-Sub-Level Cuts by specifying the variation indices 

𝑖, 𝑗, 𝑘 for their positive integer values. 

3.3.1 Level Cuts: Level Cuts are sub-matrices (first level splits) of PCTLHS-Matrix that can be further 

described as parallel matrix layers. The PCTLHS-Matrix is generated by uniting these matrix layers. These 

level cuts of PCTLHS-Matrix are obtained by assigning a specific integer value to one of the three variation 

indexes at a time.  

The level cuts are of three types according to three types of views of the PCTLHS-Matrix i.e 𝑖-Level Cuts, 𝑗-

Level Cuts, 𝑘-Level Cuts the detailed mathematical description of 𝑘-Level Cuts is described in section 4. 

3.3.2 Sub-Level Cuts:  Sub-Level Cuts are Level Cuts of Level Cuts (second splits applied over first splits) 

of PCTLHS-Matrix that are columns or rows of the Sub-Matrix or a Layer-Matrix. The Sub-Level Cuts are 

obtained by assigning a specific integer value to one of the two variation indices of a parallel layer (Sub-

Matrix) of PCHS-Matrix. The detailed description and construction of sub-level cuts are presented in sec 

4. 

3.3.3 Sub-Sub-Level Cuts:  The Sub-Sub-Level Cuts are obtained by assigning a specific Integer value to a 

variation index of sub-Level Cut (the third level splits over second splits). The Sub-Sub-Level Cut is one 

Specific element (point) of the Sub-Level Cut (Column or Row). These Level Cuts, Sub-Level Cuts, and 

Sub-Sub-Level Cuts are images of the higher dimensional Universe in the lower dimensional Universe 

and can be used as tools for getting images and transformations. 

The detailed organization of these level cuts, sub-level cuts, and sub-sub-level cuts are described in the 

next section with the specific time based view of the PCTLHS-Matrix. 

The utilization of these Cuts is that one can contract the expanded dimension of PCTLHS-Matrix to a 

Matrix, then to a row or column matrix, and then further to a single point. However, the reverse procedure 

would provide an expansion of the Universe in a similar manner. In PCHs-Matrix three types of variation 

indices are introduced on Crisp memberships 𝝁
𝑨𝒋

𝒌(𝒙𝒊) . For example, in the Universe of subjects attributes 

and sub-attributes, one may consider the first variation on the index  𝒊 that is referred to as subjects 

representing 𝑴 rows of an 𝑴 × 𝑵 Sub-Matrix of an 𝑴 × 𝑵 × 𝑳 PCHS-Matrix. The second variation on 𝒋 is 

used to specify attributes representing 𝑵 columns of a Sub-Matrix of an 𝑴 × 𝑵 × 𝑳 Hs-Matrix. A third 
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variation on 𝒌 is introduced to express attributive levels and is represented in the form of 𝑳 layers or 𝑳 

level-Cuts of 𝑴 × 𝑵 × 𝑳 PCHS-Matrix.  

 

4. Three-dimensional view and a front-to-back view of PCTLHS-Matrix 

 
Figure 1 (Three-dimensional view of PCTLHS-Matrix) 

The three-dimensional indexed-based PCTLHS-Matrix and level cuts, sub-level cuts, and Sub-Sub-Level 

Cuts are described below: 

𝐴 =

[
 
 
 
 
 
 
𝜇𝐴1

𝐾(𝑥1) 𝜇𝐴2
𝐾(𝑥1) . . . 𝜇𝐴𝑁

𝐾(𝑥1)

𝜇𝐴1
𝐾(𝑥2) 𝜇𝐴2

𝐾(𝑥2) . . . 𝜇
𝐴𝑁

𝑘 (𝑥2)
. . . . . .
. . . . . .
. . . . . .
𝜇

𝐴𝑁
𝑘 (𝑥𝑀) 𝜇

𝐴𝑁
𝑘 (𝑥𝑀) . . . 𝜇𝐴𝑁

𝐾(𝑥𝑀)]
 
 
 
 
 
 

                                                                                 (4.1)a 

 

 
Figure 2 (front-to-back view of the matrix)  

front-to-back view of PCTLHS-Matrix is described in Eq. (4.1)a figure 2  

Front to back view of PCTLHS-Matrix in a more expanded form is described in Eq. (4.1)b as, 
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𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
𝜇𝐴1

1(𝑥1) 𝜇𝐴2
1(𝑥1) . . . 𝜇𝐴𝑁

1 (𝑥1)

𝜇𝐴1
1(𝑥2) 𝜇𝐴2

1(𝑥2) . . . 𝜇𝐴𝑁
1 (𝑥2)

. . . . . .

. . . . . .

. . . . . .
𝜇𝐴1

1(𝑥𝑀) 𝜇𝐴2
1(𝑥𝑀) . . . 𝜇𝐴𝑁

1 (𝑥𝑀)]
 
 
 
 
 
 

[
 
 
 
 
 
 
𝜇𝐴1

2(𝑥1) 𝜇𝐴2
2(𝑥1) . . . 𝜇𝐴𝑁

2 (𝑥1)

𝜇𝐴1
2(𝑥2) 𝜇𝐴2

2(𝑥2) . . . 𝜇𝐴𝑁
2 (𝑥2)

. . . . . .

. . . . . .

. . . . . .
𝜇𝐴1

2(𝑥𝑀) 𝜇𝐴2
2(𝑥𝑀) . . . 𝜇𝐴𝑁

2 (𝑥𝑀)]
 
 
 
 
 
 

.

.

.

[
 
 
 
 
 
 
𝜇𝐴1

𝐿(𝑥1) 𝜇𝐴2
𝐿(𝑥1) . . . 𝜇

𝐴𝑁
𝑘 (𝑥1)

𝜇𝐴1
𝐿(𝑥2) 𝜇𝐴2

𝐿(𝑥2) . . . 𝜇𝐴𝑁
𝐿 (𝑥2)

. . . . . .

. . . . . .

. . . . . .
𝜇𝐴1

𝐿(𝑥𝑀) 𝜇𝐴𝐿(𝑥𝑀) . . . 𝜇𝐴𝑁
𝐿 (𝑥𝑀)]

 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                        (4.1)b 

 

4.1 𝑘-Level Cuts 𝐴[𝑘] of PCTLHS-Matrix: 

 
Figure 3 (level cuts sub-level cuts and sub-sub-level cuts) 

k-Level Cuts of PCTLHS-Matrix are front-to-back k-splits of the matrix obtained by varying the index 

stepwise. These are the  𝑳 number of front-to-back Matrix layers of 𝑀 × 𝑁 × 𝐿 PCTLHS-Matrix. Each layer 

is an 𝑀 × 𝑁 Matrix as described in Figure 3. L number of 𝑘 − 𝑙𝑒𝑣𝑒𝑙 cuts ( 𝐴[𝑘]) of PCTLHS-Matrix in the 

general contracted form are described in the matrix form by specifying 𝑘 = 𝑙  , 

                        𝐴[1] = [𝜇𝐴𝑗
1(𝑥𝑖)] , 𝐴[2] = [𝜇𝐴𝑗

2(𝑥𝑖)] , … , 𝐴[𝑀] = [𝜇𝐴𝑗
𝐿(𝑥𝑖)]  

𝑖 = 1,2, . . . , 𝑀,  𝑗 = 1,2, . . . , 𝑁  and 𝑘 = 1,2,3, . . . , 𝐿   

𝑘-Level Cuts of PHCTLHS-Matrix in the expanded form are described underneath in Eq. (4.2) 



Neutrosophic Sets and Systems, Vol. 51, 2022                                                                                                                     463 

 Shazia Rana, Muhammad Saeed,PCTLHS-Matrix, Time-based Level Cuts, Operators, and unified time-layer health state Model 

𝐴[𝐾] =

[
 
 
 
 
 
 
𝜇𝐴1

𝑘(𝑥1) 𝜇
𝐴2

𝑘(𝑥1) . . . 𝜇
𝐴𝑁

𝑘 (𝑥1)

𝜇𝐴1
𝑘(𝑥2) 𝜇

𝐴2
𝑘(𝑥2) . . . 𝜇

𝐴𝑁
𝑘 (𝑥2)

. . . . . .

. . . . . .

. . . . . .
𝜇𝐴1

𝑘(𝑥𝑀) 𝜇𝐴2
𝑘(𝑥𝑀) . . . 𝜇

𝐴𝑁
𝑘 (𝑥𝑀)]

 
 
 
 
 
 

                                                                             (4.2) 

 𝑘-Level Cuts 𝐴[𝑘] of PCTLHS-Matrix in the expanded form are given below in EQs. (4.3), (4.4), and (4.5). 

𝐴[1] =

[
 
 
 
 
 
 
𝜇𝐴1

1(𝑥1) 𝜇𝐴2
1(𝑥1) . . . 𝜇𝐴𝑁

1 (𝑥1)

𝜇𝐴1
1(𝑥2) 𝜇𝐴2

1(𝑥2) . . . 𝜇𝐴𝑁
1 (𝑥2)

. . . . . .

. . . . . .

. . . . . .
𝜇𝐴1

1(𝑥𝑀) 𝜇𝐴2
1(𝑥𝑀) . . . 𝜇𝐴𝑁

1 (𝑥𝑀)]
 
 
 
 
 
 

                                                                            (4.3) 

𝐴[2] =,

[
 
 
 
 
 
 
𝜇𝐴1

2(𝑥1) 𝜇𝐴2
2(𝑥1) . . . 𝜇𝐴𝑁

2 (𝑥1)

𝜇𝐴1
2(𝑥2) 𝜇𝐴2

2(𝑥2) . . . 𝜇𝐴𝑁
2 (𝑥2)

. . . . . .

. . . . . .

. . . . . .
𝜇𝐴1

2(𝑥𝑀) 𝜇𝐴2
2(𝑥𝑀) . . . 𝜇𝐴𝑁

2 (𝑥𝑀)]
 
 
 
 
 
 

                                                                            (4.4) 

𝐴[𝐿] =

[
 
 
 
 
 
 
𝜇𝐴1

𝐿(𝑥1) 𝜇𝐴2
𝐿(𝑥1) . . . 𝜇

𝐴𝑁
𝑘 (𝑥1)

𝜇𝐴1
𝐿(𝑥2) 𝜇𝐴2

𝐿(𝑥2) . . . 𝜇𝐴𝑁
𝐿 (𝑥2)

. . . . . .

. . . . . .

. . . . . .
𝜇𝐴1

𝐿(𝑥𝑀) 𝜇𝐴𝐿(𝑥𝑀) . . . 𝜇𝐴𝑁
𝐿 (𝑥𝑀)]

 
 
 
 
 
 

                                                                            (4.5) 

4.2  𝑘𝑖-Sub-Level Cuts: For 𝑘-Level Cuts further offer 𝑖-splits (row-wise splits) by specifying 𝑖 and varying 𝑗   

𝑘𝑖 -Sub-Level Cuts that are obtained. These are rows of  𝑀 × 𝑁  Matrix Layer that are obtained by 

specifying 𝑘 = 𝑙, 𝑖 = 𝑚,  .and varying 𝑗 = 1,2… 𝑁 

𝐴[𝑙𝑚] = [𝜇𝐴1
𝑙 (𝑥m) 𝜇𝐴2

𝑙 (𝑥m) . . . 𝜇
𝐴𝑁

𝑙 (𝑥m)]                                     (4.6)   

4.3   𝑘𝑗-Sub-Level Cuts: For 𝑘-Level Cuts further provide 𝑗-splits (column-wise splits)  by specifying 𝑗 and 

varying 𝑖 𝑘𝑗-Sub-Level Cuts are obtained. These are columns of 𝑀 × 𝑁 Matrix Layer that are obtained by 

specifying 𝑘 = 𝑙, 𝑗 = 𝑛, and varying 𝑖 = 1,2…𝑀 

𝐴[𝑙𝑛] =

[
 
 
 
 
 
 
𝜇𝐴𝑛

𝑙 (𝑥1)

𝜇𝐴𝑛
𝑙 (𝑥2)
.
.
.

𝜇𝐴𝑛
𝑙 (𝑥𝑀)]

 
 
 
 
 
 

                                                                                    (4.7) 

4.4   𝑘𝑖𝑗
-Sub-Sub-Level Cuts 𝐴

[𝑘𝑖𝑗
]
: For Specific 𝑘𝑖-Sub-Level Cuts further specifying 𝑗 𝐴

[𝑘𝑖𝑗
]
 Sub-Sub-Level 

Cuts are obtained. These are elements of rows of 𝑀 × 𝑁 Matrix Layer that are obtained by specifying 𝑘 =

𝑙, 𝑖 = 𝑚,  .and varying 𝒋 = 1,2… 𝑁 . 

𝐴[𝑛𝑚𝑙
] = [𝜇𝐴𝑛

𝑙 (𝑥𝑚)]                                                                                            (4.8) 

It observed that 𝑘𝑖𝑗
-Sub-Sub-Level Cuts 𝐴

[𝑘𝑖𝑗
]

 and 𝑘𝑗𝑖
-Sub-Sub-Level Cuts 𝐴

[𝑘𝑗𝑖
]  are identical i.e  

𝐴[𝑛𝑚𝑙
] = [𝜇𝐴𝑛

𝑙 (𝑥𝑚)] 
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Note: It is obvious that by following the division procedure mentioned above, one would zoom into 

the given PCTLHS matrix. The first split would provide a zoom into the layer of the matrix, then zoom 

into the column or row, then next zoom into the element of the column or row. And the reverse process 

can serve as a zoom-out function. In this way one can approach the smallest unit of the extended 

universe. 

 

5.   COVID-19 Patients unified time-based health state Model 

The mathematical modeling of the organization and analysis of information and observations of some 

patients with COVID-19 symptoms is described in the given example. 

Example 5.1 

Considering 𝑈𝑃𝐶 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6}  representing six patients (vaccinated) who presented to the 

hospital with symptoms of COVID-19. Description of an investigation case of a doctor who examined 

three of them for four symptoms (attributes) These symptoms are observed and organized as doctor visits 

at two specific times, considered as symptoms observed at two distinct time levels (time leveled 

attributes). Patients under observation are recognized as subjects (material bodies). The observations of 

the visits are expressed in the Crisp environment and analyzed using Plithogenic Crisp-Time-Leveled 

Hyper-Soft-Matrix. 

 𝑙𝑒𝑡 𝑇 = {𝑥1, 𝑥2, 𝑥3} ⊂ 𝑈𝐶 be the set of these three patients considered by a doctor for examination. 

Let the attributes be 𝐴𝑗
𝑘; 𝑗 = 1,2,3,4 with Time Leveled-attributes 𝑘 = 1, 2 are described as, 

 𝐴1
𝑘 = Fever with numeric values, 𝑘 = 1 , 2 representing first-time level and second-time level states of 

attributes 

  𝐴1
1 = State of fever at the first visit, 𝐴1

2 = State of fever at the second visit 

𝐴2
𝑘 = Dry cough, with numeric values, 𝑘 = 1,2 

 𝐴2
1 = Condition of cough at the first visit, 𝐴2

2 = Condition of cough at the second visit 

𝐴3
𝑘 = Breathing difficulty with numeric values, 𝑘 = 1,2 

 𝐴3
1 = Breathing difficulty level at first visit, 

 𝐴3
2 = Breathing difficulty level at first visit, 

𝐴4
𝑘 = Sickness record,   with numeric values 𝑘 = 1,2 

 𝐴4
1 =  Sickness state at first visit,)  𝐴4

2 = Sickness state at second visit. 

In the next two subsections, this information now consisted of symptoms (attributes) of patients (subjects) 

observed at two stages, as two levels of time are organized and presented in two ways. One as a set, i.e. 

PCTLHS set and the other as a connected matrix of two matrices, that is the PCTLHS matrix. 

 

5.1 Plithogenic Crisp Time-Leveled Hypersoft set (PCTLHS-Set) representation: 

Let the Function 𝐴 is reflecting given attributes/Time leveled-attributes as described below, 

𝑨: 𝐴1
𝑘 × 𝐴2

𝑘 × 𝐴3
𝑘 × 𝐴4

𝑘 → 𝑃(𝑈𝐶) 

S.t    𝑨(𝐴1
1 , 𝐴2

1 , 𝐴3
1 , 𝐴4

1) = {𝑥1, 𝑥2, 𝑥3}                                                                                   (5.1) 

be a Time-leveled hypersoft set. Consider  𝐴1
1, 𝐴2

1 , 𝐴3
1 , 𝐴4

1  a combination of attributes at the first visit level 

(𝛼 combination)  

𝑨(𝐴1
2, 𝐴2

2, 𝐴3
2, 𝐴4

2) = {𝑥1, 𝑥2, 𝑥3}                                                                                   (5.2) 

𝐴1
2, 𝐴2

2, 𝐴3
2, 𝐴4

2 a combination of attributes at the second visit level ( 𝛽 combination)  

The Individual Crisp memberships are assigned to 𝑨 = {𝑥1, 𝑥2, 𝑥3} according to the doctor's opinion and 

then represented in PCTLHS-Set 𝐴={𝑥1, 𝑥2, 𝑥3}. the opinion of the physician represented in the PCTLHS-

Set as Crisp memberships i.e if the given symptom is present membership is one if not present 

membership is zero.    
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𝑨 = {𝑥1 (𝜇𝐴𝑗
1(𝑥1)), 𝑥2 (𝜇𝐴𝑗

1(𝑥2)), 𝑥3(𝜇𝐴𝑗
1(𝑥3))}  as 𝜇

𝐴𝑗
𝑘(𝑥𝑖) for 𝑖 = 1,2,3 and 𝑗 = 1,2, 3, 4 in 𝑨 (these plithogenic 

crisp memberships reflect whether the 𝐴𝑗
𝑘 attribute is present ( 𝜇

𝐴𝑗
𝑘(𝑥𝑖) = 1 ) in 𝑥𝑖 subject or not present ( 

𝜇
𝐴𝑗

𝑘(𝑥𝑖) = 0 ) associated to time leveled 𝛼-combination of attributes. 

 𝐴(𝛼) = 𝐴(𝐴1
1, 𝐴2

1 , 𝐴3
1 , 𝐴4

1) = {

𝑥1(1,0,1,1),

𝑥2(1,1,1,1),

𝑥3(1,0,0,1)
}                                                                         (5.3) 

The first visit information is organized as PCTLHS-Set would produce the first level of the PCTLHS 

Matrix. 

  

Regarding the second visit ( second level of time) of patients for 𝛽 -combination of attributes, the 

information is now presented as a PCTLHS Set 

𝐴(𝛽) = 𝐴(𝐴1
1, 𝐴2

1 , 𝐴3
1 , 𝐴4

1) = {

𝑥1(0,0,0,0),

𝑥2(0,1,0,0),

𝑥3(1,0,1,0)
}                                                                       (5.4)    

5.2 PCTLHS -Matrix representation: Let A be the representation matrix for PCTLHS-Set. The rows of the 

matrix represent 𝑥1, 𝑥2, 𝑥3 (physical bodies or subjects) and columns represent (the non-Physical aspect of 

subjects) 𝐴1
𝑘 , 𝐴2

𝑘, 𝐴3
𝑘 , 𝐴4

𝑘 Attributes. 

This information is organized in the form of PCTLHS-Matrix A as, 

𝐹 =

[
 
 
 
 
 [

1 0 1 1
1 1 1 1
1 1 0 1

]

[
0 0 0 0
0 1 0 0
1 0 1 0

]
]
 
 
 
 
 

                                                                           (5.5)          

This PCTLHS-Matrix consists of two layers for the first layer, it is interpreted that patient 𝑥1 has a fever 

without a dry cough at the first visit but feels suffocation and nausea. Patient 𝑥2 suffers from a fever with 

a dry cough, fits of suffocation, and nausea. Patient 𝑥3  has a fever with a dry cough, no difficulty 

breathing, but nausea. During the second visit, while the patient 𝑥1 has all symptoms resolved, patient 𝑥2 

only feels difficulty in breathing, and patient 𝑥3 suffers from fever and difficulty breathing. One can see 

clearly by using this connected matrix expression, we can see and classify all the information at a glance, 

i.e. the information from a group of patients assigned to a combination of attributes and observed at 

different time levels. Therefore, it is obvious that the matrix expression is the more appropriate expression 

to represent the multidimensional data as compared to the classical Set expression. 

𝐴 = [𝜇
𝐴𝑗

𝑘(𝑥𝑖)] 𝑖 = 1,2,3  𝑗 = 1,2,3,4, and 𝑘 = 1,2  

This ( 𝑨 ) is a PCTLHS-Matrix of rank 3 and order (𝑖 × 𝑗 × 𝑘) = (3 × 4 × 2) 

The front-to-back view of this PCTLHS-Matrix consists of two parallel layers of ordinary 3 × 4  ordered 

matrices. These layers when separated are called k-level cuts described as underneath, 

 

5.3 𝑘-Level Cuts 𝐴[𝑘] of PCTLHS-Matrix 

 

   𝐴 =

[
 
 
 
 
 [

1 0 1 1
1 1 1 1
1 1 0 1

]

[
0 0 0 0
0 1 0 0
1 0 1 0

]
]
 
 
 
 
 

                                                                                               (5.6) 
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Eq. (5.6) represents a front-to-back view of PHS-Matrix in Crisp environment for 𝑖 = 1,2,3  𝑗 = 1,2,3,4 

and 𝑘 = 1,2 . This 3 × 4 × 2  hyper matrix has two 3 × 4 Matrices as two front-to-back layers. These layers 

are separated to construct k-level cuts (time-wise level cuts). 

The two 𝑘-Level Cuts of PCTLHS-Matrix (eq. (5.6) ) are given below, which serves to focus the time levels 

first. 

𝐴[𝑘=1] = [
1 0 1 1
1 1 1 1
1 1 0 1

]  𝐴[𝑘=2] = [
0 0 0 0
0 1 0 0
1 0 1 0

] 

5.4 𝑘𝑖-Sub-Level Cuts: Sub-layers of PCTLHS-Matrix obtained by specifying 𝑘 = 1, 𝑖 = 1, and varying 𝑗 =

1,2,3,4 are given below as 𝑘𝑖-Sub-Level Cuts as rows of the matrix layers. 

𝐴[11] = [1 0 1 1], 𝐴[12] = [1 1 1 1], 𝐴[13] = [1 1 0 1] 

𝐴[21] = [0 0 0 0], 𝐴[22] = [0 1 0 0], 𝐴[23] = [1 0 1 0] 

For example the description of 𝐴[21] = [0 0 0 0] is that by the second visit to the first patient, all four 

symptoms are clear. 

5.5 𝑘𝑗-Sub-Level Cuts: Sub-layers of PCTLHS-Matrix obtained by specifying 𝑘 = 1, 𝑗 = 1, respectively, and 

varying 𝑖 = 1,2,3, are given below as 𝑘𝑗-Sub-Level Cuts as columns of the matrix layers.  

 

𝐴[11] = [
1
1
1
] , 𝐴[12] = [

0
1
1
] , 𝐴[13] = [

1
1
0
] , 𝐴[14] = [

1
1
1
] , 𝐴[21] = [

0
0
1
] , 𝐴[22] = [

0
1
0
] , 𝐴[23] = [

0
0
1
] 

For example the given 𝐴[13] describes that at the first time level state of the third symptom is described 

individually in all three patients.   

5.6 kji
Sub-Sub-Level Cut: For a given 𝑘𝑗 -Sub-Level Cuts after specifying the time and attribute 

respectively our final focus is the patient (subject) i.e specifying finally 𝑖 = 𝑚 we get 𝑘𝑗𝑖
Sub-Sub-Level Cut 

for a fixed 𝑘𝑗-Sub-Level Cuts. 𝐴[𝑙𝑛𝑚] is obtained by specifying 𝑘 = 𝑙, 𝑗 = 𝑛 respectively, and finally 𝑖 = 𝑚. 

This sub-sub level cut is the smallest unit of the matrix that is the single element as described below, 

 

 𝐴[𝑘𝑗𝑖
]
: 𝐴[111] = [1] 𝐴[121] = [0] 𝐴[231] = [0] 

For example 𝐴[231] = [0] represents the condition of the first patient for the third symptom at the second 

time level. 

Example 5.2 

 

𝐵 =

[
 
 
 
 
 [

1 0 0
1 1 1
0 0 1

]

[
0 0 1
0 1 1
1 1 0

]
]
 
 
 
 
 

                                                                                    (5.7) 

Is a 3 × 3 × 2 PCTLHS-Matrix with two attribute time levels.  

 𝑖 = 1,2,3 𝑗 = 1,2,3 and 𝑘 = 1,2 

A Front to back view of PCTLHS-Matrix with two 𝑘-level cuts, each level cut is a 3 × 3 Matrix is given 

below in Eq. (5.9) 

𝐵 =

[
 
 
 
 
 [

1 0 0
1 1 1
0 0 1

]

[
0 0 1
0 1 1
1 1 0

]
]
 
 
 
 
 

                                                                                 (5.9) 

𝑘 − 𝑙𝑒𝑣𝑒𝑙 𝑐𝑢𝑡𝑠 𝑜𝑓 𝐵 are 𝐵[𝑘] 
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𝐵[1] = [
1 0 0
1 1 1
0 0 1

] , 𝐵[2] = [
0 0 1
0 1 1
1 1 0

] 

 

6   Local Aggregation Operators of 𝒌 − 𝑳𝒆𝒗𝒆𝒍 𝑪𝒖𝒕𝒔 

Operations of PCTLHS-Matrix are the basic set laws of union, intersection, average, and compliment that 

is defined by using k-level cuts. After using these operations cumulative memberships Ω
𝐀𝑗

𝑘
𝑡 (𝑥𝑖)  are 

obtained by combining corresponding memberships of k-level cuts (time-based level cuts). These local 

operators serve to unify the time levels of the universe. This means that all attributes that are present in 

different time levels are considered as present in a unified single time level being reflected from many 

entities of the universe. In this way, attributes are focused and time levels are merged as there is no time, 

therefore, these special types of k-level cuts and their local operators introduce the concept of no time that 

is obtained by the unification of time levels by using aggregation operators. Three local operators are 

formulated and described, 𝑡 = 1 used for max -operator 𝑡 = 2 used for min-operator, and 𝑡 = 3 used for 

the 𝑎𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔-operator. These three operators are described as under, 

 

6.1 Union of 𝑘 − 𝐿𝑒𝑣𝑒𝑙 𝐶𝑢𝑡𝑠: The union between front to back parallel layers is defined as 

 

∪𝑘 [𝜇
𝐴𝑗

𝑘(𝑥𝑖)] = 𝑀𝑎𝑥
𝑘

(𝜇
𝐴𝑗

𝑘(𝑥𝑖)) = [Ω𝐴𝑗
(𝑥𝑖)]                                                        (6.1) 

[Ω
𝐴𝑗

𝑘(x)]  is the cumulated layer of highest memberships considered as the Extreme front level layer. 

Example 6.1: For Matrix A given in Ex-1 ∪ (𝑨[𝒌])) is 

[
1 0 1 1
1 1 1 1
1 1 0 1

]  ∪ [
0 0 0 0
0 1 0 0
1 0 1 0

] = [
1 0 1 1
1 1 1 1
1 1 1 1

] 

 

6.2 Intersection of 𝒋 − 𝐋𝐞𝐯𝐞𝐥 𝐂𝐮𝐭𝐬:  The intersection between front to back parallel layers is defined below, 

∩ [𝜇
𝐴𝑗

𝑘(𝑥𝑖)] = 𝑀𝑖𝑛
𝑘

(𝜇
𝐴𝑗

𝑘(𝑥𝑖)) = [Ω𝐴𝑗
(𝑥𝑖)]                                                         (6.2) 

[Ω
𝐴𝑗

𝑘(x)]  is the cumulated layer of lowest memberships considered as the Extreme back level layer. 

Example 6.2: For Matrix A given in Ex-1 ∪ (𝑨[𝒌])) is 

[
1 0 1 1
1 1 1 1
1 1 0 1

] ∩ [
0 0 0 0
0 1 0 0
1 0 1 0

] = [
0 0 0 0
0 1 0 0
1 0 0 0

] 

This lowest back level layer is reflecting the accumulated lowest state of symptoms throughout the two 

time-levels.  

6.3   Average of 𝑘 − 𝐿𝑒𝑣𝑒𝑙 𝐶𝑢𝑡𝑠: This is the average between front to back parallel layers is defined below, 

Γ [𝜇
𝐴𝑗

𝑘(𝑥𝑖)] = (Ω𝐴𝑗
(𝑥𝑖)) such that 

(Ω𝐴𝑗
(𝑥𝑖)) =

[
 
 
 
 
 
 

1 𝑖𝑓 ∑

(𝜇
𝐴𝑗

𝑘(𝑥𝑖))

𝑁

𝐿
𝑗=1 ≥ 0.5

0 𝑖𝑓 ∑

(𝜇
𝐴𝑗

𝑘(𝑥𝑖))

𝑁

𝐿
𝑗=1 < 0.5

                                                          (6.3) 

[Ω
𝐴𝑗

𝑘(x)]  is the cumulated layer of average memberships considered as the interior level layer. 

Example 6.3: For Matrix A given in Ex-1 ∪ (𝑨[𝒌])) is 
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[
1 0 1 1
1 1 1 1
1 1 0 1

] Γ [
0 0 0 0
0 1 0 0
1 0 1 0

] = [
1 0 1 1
1 1 1 1
1 1 1 1

] 

This average middle-level layer is reflecting the accumulated average state of symptoms throughout the 

two distinct time levels.  

 

6.4 Compliment of 𝑘 − 𝐿𝑒𝑣𝑒𝑙 𝐶𝑢𝑡𝑠: The complement of each membership of the k-Level Cut is defined in eq 

(5.3)d 

 

C(𝐴[𝑘]) = [1 − 𝜇
𝐴𝑗

𝑘(𝑥𝑖)]                                                                      (6.4) 

Example 6.4: Compliments of k-Level Cuts of 𝐴 are, 

C(𝐴[1]) = [
0 1 0 0
0 0 0 0
0 0 1 0

] , C(𝐴[2]) = [
1 1 1 1
1 0 1 1
0 1 0 1

] 

7.  Conclusion & Analysis 

7.1 Conclusions 

1. We can portray an extensive indeterminable Plithogenic Universe by using PCTLHS-Matrix. 

2. We can display Multiple-dimensional views of the Universe (subjects versus attributes and time 

lined-attributes) By considering all possible views of the PCTLHS-Matrix 

3. We can classify and analyze the universe explicitly and implicitly through level cuts, sublevel cuts, 

and sub-sub-level cuts. 

4. The PCTLHS -Matrix provides the broader Exterior and interior view of displaying all possible 

Events (realities) together. 

5. The Level Cuts of PCTLHS-Matrix Portray an explicit event or reality at an instance 

6. Choosing the level cut based on the Variation index (𝑖, 𝑗, 𝑘) Provides a view of reality or events 

from multiple angles of vision. 

7. We can analyze the Universe by choosing the best possible reality out of multiple possible realities 

with the help of level cuts and operators. This fact would be helpful in the development of artificial 

intelligence programs. 

8. The disjunction operator, i.e., the 𝑀𝑎𝑥 − 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 Provides the optimist view of the reality. 

9. The conjunction operator, i.e., the 𝑀𝑖𝑛 − 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 Provides the pessimist view of the reality 

10. The Averaging operator Provides a neutral view of the reality. 

11. The Complement operator depicts the inverted reflection of the event or reality.  

12. These local aggregation operators that are designed for k-level cuts introduce the concept of 

timelessness by unifying the time levels of the universe. This means that all attributes that exist in 

different time levels are merged and considered to exist in a unified single time level. In this way, 

attributes are focused, and time layers are merged as if there is no time for them.  

7.2 Comparisons of former fuzzy extensions and models: 

This section describes a brief comparison of previous and recent fuzzy extensions. 

The soft set is an improved and extended version of the fuzzy set since it handles numerous attributes at 

the same time regardless of the fuzzy set, which only holds one attribute at a time. 

Hypersoft Set is a superior extension of Soft Set because it can adapt multidimensional information by 

handling various attributes and their values as sub-attributes simultaneously. 

Plithogenic Hypersoft Set The Plithogenic Hypersoft Set manages multiple attributes and their values 

(sub-attributes) simultaneously and beyond by observing each attribute separately therefore it is a more 



Neutrosophic Sets and Systems, Vol. 51, 2022                                                                                                                     469 

 Shazia Rana, Muhammad Saeed,PCTLHS-Matrix, Time-based Level Cuts, Operators, and unified time-layer health state Model 

inovative version as compared to the Hypersoft Set, Soft set, and Fuzzy Set. It manages detailed 

information in a single structure. The spectator can precieve the state of element x (subject) by observing 

each attribute separately.  

Plithogenic Fuzzy Whole Hypersoft-Set/Matrix (PFWHS-Set/Matrix) is a more aplicable choice 

compared to the previously mentioned extensions as it manages the states of subjects 

(attributes/sub-attributes) at the isolated level for each attribute/sub-attribute (the case of 

Plithogenic Hypersoft Set) and also at the combined level for merged attributes as a whole (the case 

of hypersoft set). Therefore, it is an extended and a hybrid version of the hypersoft set and 

plithogenic hypersoft set. By using PFWHS-Set/Matrix, one can observe a more transparent inner 

perception (case of a single state representation) or outer view (case of a combined state 

representation) of the information/facts/events. 

The Plithogenic Subjective Hyper-Super-Soft Matix (PSHSS-Matrix) It is a generalized and an advanced 

form of the PFWHS-Matrix, as it has a higher capability to manage numerous connected attributes/sub-

attributes separately and as a whole by considering connected attribute / sub-attribute levels. 

Plithogenic Time-Leveled Hypersoft-Matrix (PTLHS-Matrix) is a unique case of the previous mentioned 

form (PSHSS-Matrix). It can manage time-based connected attributes. It is more suitable than other 

extended fuzzy sets mentioned (Soft Set, Hypersoft, Plithogenic Hypersoft Set, PFWHS Set / Matrix 

PSHSS Matrix) for the subsequent valid reasons. 

1. Most of the variations in this universe are time-dependent like weather graphs, stock exchange, 

website ratings, etc. Therefore, it is of great help if this PCTLHS-Matrix is used to manage the 

scattered time-varying piece of information. 

2. It manages several attributes sub-attributes interiorly such that each attribute has many 

values varying in the flow of time called time-based attributes.  

3. By using PCTLHS-Matrix one can organize and classify multidimensional information into 

the shape of connected matrix layers as hypermatrices. 

4. The matrix expression is the most applicable expression to represent multidimensional 

information compared to the classic set expression.  

5. The observer can see the information down to its innermost level through level cuts, sub-

level cuts, and sub-level cuts of PCTLHS-Matrix. 

6. PCTLHS-Matrix offers a broader view of multi-dimensional information by viewing the 

entire universe as a hypersoft time-leveled matrix. Therefore, the observer can see and 

analyze the whole universe externally at a single glance.  

7. The level cuts offers the observer to focus on one required piece of information that is 

displayed as a single matrix layer of PTLHS-Matrix. Whereas the other information can 

vary in the flow of time being displayed as other matrix layers.  

8. The sub-level cuts can focus on required information that is displayed as a single column 

or row of the given layer (sub-matrix) of PTLHS-Matrix. 

9. The sub-sub-level cuts can focus on one required information that is displayed as a single 

element of the sub-matrix of PTLHS-Matrix. 

10.  The Sub-Level Cuts offer the representation of the previous lower dimension in the further 

lower dimension and enable us to sneak in an inside view of the expanded universe, i.e 

after explicitly focusing on a subject through an i-level cut (single level of the layered 

matrix) our next focus is on that subject's (patient's) attribute (a particular symptom) 

through the sub-level cut (row or column of one layer of the multi-layered matrix). 
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11. It also offers the unification of the information by applying the aggregation operators, in 

this way all the extended information of the universe that is represented as a matrix having 

multiple layers can be transformed into a single layer of the matrix. 

 

Open problems: 

Now, let us list some of the open problems that might be addressed in future research. 

  

 In this article, we have portrayed the Plithognic Hypersoft Matrix in a Crisp Environment. 

 The expression of this matrix in other environments like Fuzzy, intuitionistic, and neutrosophic, 

or any mixed or combined environment, i.e., containing several environments, would provide the 

variation of fuzziness levels of reflected events. 

 One can extend this model in other environments like intuitionistic environment, Neutrosophic 

environment, or any other mixed environment according to required conditions. 

 By introducing these Level Cuts, we have provided the concept of contracting the expanded 

dimension of PCTLHS-Matrix to a single point (serving as a zoom-in function. 

 Moreover, some other kinds of the local operator can be provided for unification purposes 

according to the requirement of the concerned bodies. 

The operations and properties of these hypersoft matrices need to be explored. 
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Abstract. The concepts of similarity measures and entropy have practical applications in computational in-

telligence, machine learning, image processing, neural networks, medical diagnosis, and decision analysis. An

interval-valued neutrosophic set (IVNS) is strong model for modeling and handling uncertainties by using inde-

pendent intervals of truthness, indeterminacy, and untruth. We introduce new similarity measures, entropy and

inclusion relation for interval-valued neutrosophic sets (IVNSs). We introduce new inclusion relation named

as type-f for ordering of interval neutrosophic sets. Additionally, a robust multi-attribute decision-making

(MADM) method is developed by making use of proposed measures of similarity for IVNSs. A practical appli-

cation for ranking of alternatives with newly developed MADM approach is illustrated by a numerical example

for the car selection. The validity and superiority of new similarity measures with existing approaches is also

given with the help of a comparison analysis.

Keywords: Similarity measure; entropy;interval-valued neutrosophic set; multi-attribute decision-making.

—————————————————————————————————————————-

1. Introduction

Zadeh [23] advanced his significant idea of fuzzy sets in 1965 to deal with various styles of un-

certainties. From that time, it has been used prevalently in so many areas. Theory of fuzzy set

is a more developed version of crisp set theory. By using fuzzy numbers or linguistic numbers

which have numerical representation of inaccurate information, new mathematical methods

have been developed for modeling the uncertain structure of today’s problems. There is not a

single model in fuzzy set theory, it means that many options can be reached considering the

features of the system to be modeled by using various extensions of fuzzy sets. Since the prob-

lems encountered in life and human thoughts are too complex to be limited, fuzzy numbers
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have been inadequate at the decision-making stage such as problems involving vague or incom-

plete information. In this way, a fuzzy set’s extension have been proposed by Atanassov [1]

as intuitionistic fuzzy sets (IFS) in 1986 that include the degrees of membership and non-

membership. It means that an IFS A = {< a, µA(a), λA(a) >: a ∈ X} has been established by

two mappings µA(a), λA(a) : X → [0, 1] named as membership function and non-membership

function, respectively, with the restriction 0 ≤ µA(a) + λA(a) ≤ 1, a ∈ X. Later on IFSs

extended towards interval-valued intuitionistic fuzzy sets (for brief: IVFSs) by Atanassov and

G.Gargov [2], Turksen [15], and Gorzalczany [4]. IVIFSs have been used by these authors in

the fields of signal processing, approximate inference, and controller, etc. Smarandache [12]

initiated the notion of neutrosophic sets which consider indeterminate/uncertain information

in today’s problems and incorporated not only membership and non-membership grades, but

also indeterminacy grades assigned each component of the discourse universe with is limita-

tion that the sum of three independent grades chosen in the interval [0, 3]. Later on, Wang

et al. [17,18] defined the notion of single valued neutrosophic set (SVNS) and interval neutro-

sophic set (INS). Besides, in [10] the definitions of fuzzy neutrosophic soft (FNS) σ-algebra,

FNS-measure and FNS-outer measure are established considering the concepts of soft sets and

neutrosophic sets. Additionally, illustrative examples are given in [10]. Saqlain et al. [11]

suggested an algorithm involving neutrosophic soft set for decision making problems.

Ye [19] has created neutrosophic linguistic variables as well as any new assemblage operators

for interval-valued neutrosophic linguistic data. A new MADM application is also suggested

by [19]. Recently, Jun [20] proposed new similarity methods for neutrosophic sets of inter-

val values by using and Hamming distances an developed an application of these measures

in MADM problems. Additionally, Simsek and Kirisci [14], and Kirisci [6] defined the neu-

trosophic contraction mapping and established a fixed point theorem in neutrosophic metric

spaces. Similarity measures have been successfully used in various fields, for instance; pat-

tern recognition, image processing, medical diagnosis, decision-making, etc. Majumdar and

Samanta [8] suggested a membership degree-based similarity measure between SVNSs. The

cosine similarity measure and weighted cosine similarity measure of IVFSs with risk preference

were described by Ye [22].

The remainder of this paper is structured as follows: Firstly, fundamental definitions are

given about neutrosophic set theory such as interval-valued neutrosophic set, inclusion rela-

tions. After, type-f inclusion relation for INS is defined. In section 3, we propose the idea

of similarity measures and entropy for interval-valued neutrosophic sets. Section 4 provides

the numerical example to indicate how the calculation, correction and suitability of similarity

measures were done. Finally in Section 5, a comparative study is given and some conclusions

are outlined.
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2. Preliminaries

In this section, we review some basic ideas of NSs, IVNSs, and distance measures.

Any variable of is called an interval number and is represented by u. Find the following:

E = {u = [u`, ur] : u`, ur ∈ R, u` ≤ ur}. For u, v ∈ E, we have u = v ⇔ u` = v`, ur = vr. Define

the fundamental functions of addition + : E× E→ E, multiplication of scalars · : R× E→ E
and product · : R× E→ E, respectively, as follows:

+(u, v) = u+ v = [u` + vr, ur + vr],

αu =

{
[αu`, αur], α ≥ 0

[αur, αu`], α < 0,

·(u, v) = u · v = [minR,maxR], R = {u`v`, u`vr, urv`, urvr}.

Any two random elements (interval number) in E may not always be compared using the start

and end points. A second way of comparing the interval numbers is given below:

Let u = [u`, ur] ∈ E. Then B(u) = max{|a − a′| : a, a′ ∈ u} = ur − u` is called the length of

interval number u. By using the property of B(u), the ordering of two interval numbers u and

v can be defined as

u ≤ v ⇔ B(u) ≤ B(v)

A fuzzy set F is a function F : X → I on the universe X, where I = [0, 1]. The set of α

levels (α-cut) [F ]α, and the support of the set F are given as follows:

[F ]α = {a ∈ X : F (x) ≥ α}, α ∈ (0, 1];

supp[F ] = {a ∈ X : A(a) > 0}.

Definition 2.1. [13] A NS, N over universe X can be given by

N =
{

[a, (tN (a), iN (a), fN (a))] : a ∈ X
}

where tN (a), iN (a), fN (a) are standard or non-standard subsets of ]`0, 1r[ which represent

truth-function, indeterminacy, and untruth-function of a ∈ N , respectively.

Definition 2.2. [18] A single-valued neutrosophic set (SVNS) on the universe X is defined

as

A =
{
< x, tA(a), iA(a), fA(a) >: a ∈ X

}
tA(a), iA(a), fA(a) ∈ [0, 1] indicate the degree of truthness, degree of indeterminacy, and degree

of untruth, respectively.
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Definition 2.3. [17] Given a set X with generic elements showed by a. A neutrosophic set

of interval values Ñ (IVNS Ñ) is described by an interval truth-membership function t
Ñ

(a) =

[t
Ñ `
, t
Ñ r

], an interval indeterminacy-membership function i
Ñ

(a) = [i
Ñ `
, i
Ñ r

], and an interval

untruth-membership function f
Ñ

(a) = [f
Ñ `
, f
Ñ r

] for each x ∈ X and t
Ñ

(a), i
Ñ

(a), f
Ñ

(a) ⊂
[0, 1]. An IVNS Ñ can be represented as

Ñ = {[a,
(
t
Ñ

(a), i
Ñ

(a), f
Ñ

(a)
)
] : a ∈ X}.

Additionally, complement of Ñ will be given as

Ñ c = {[a,
(
t
Ñc(a), i

Ñc(a), f
Ñc(a)

)
] : x ∈ X}

where t
Ñc(a) = f

Ñc(a), i
Ñc(a) = [1− i

Ñ r
(a), 1− i

Ñ `
(a)].

Inclusion relation is a fundamental to give definitions of union and intersection operations on

any sets. In literature, there are two suggestions of the inclusion relation of neutrosophic sets.

First inclusion definition for neutrosophic sets is introduced by Smarandache (see [25], [26]),

it’s referred to it as a inclusion relationship of type-1 and represented by ⊆1; second is the

type-2 inclusion relation, which is demonstrated by ⊆ 2. Now, we give definitions of these

inclusion relations as in the following, respectively:

Definition 2.4. [12] A single valued neutrosophic set N is included in the other single valued

neutrosophic set M , it means that N ⊆1 M ⇔ tN (a) ≤ tM (a), iN (a) ≥ iM (a), fN (a) ≥ fM (a)

for any a ∈ X.

Definition 2.5. [18] SVNS, N is included in the other SVNS, M , it means that N ⊆2 M ⇔
tN (a) ≤ tM (a), iN (a) ≤ iM (a), fN (a) ≥ fM (a) for any a ∈ X.

Smarandache [17] proposes an original description relation for the interval neutrosophic set

as follows:

Definition 2.6. An interval neutrosophic set Ñ is included in the other interval neutrosophic

set M̃ , it means that Ñ ⊆1 M̃ ⇔ t
Ñ `

(a) ≤ t
M̃ `(a), t

Ñ r
(a) ≤ t

M̃ r(a), i
Ñ `

(a) ≥ i
M̃ `(a), i

Ñ r
(a) ≥

i
M̃ r(a), f

Ñ `
(a) ≥ f

M̃ `(a), f
Ñ r

(a) ≥ f
M̃ r(a) for any a ∈ X.

Now, we give new definition named type-f inclusion relation:

Definition 2.7. Let u = ([u1`, u1r], [u2`, u2r], [u3`, u3r]) and v = ([v1`, v1r], [v2`, v2r], [v3`, v3r])

be the interval neutrosophic values. We can say u ≤f v if and only if any conditions is satisfied

given as in the following:

(1) Bt(u) ≤ Bt(v) and Bf (u) ≥ Bf (v)

(2) Bt(u) = Bt(v) and Bf (u) > Bf (v)

(3) Bt(u) = Bt(v) and Bf (u) = Bf (v) and Bi(u) ≥ Bi(v).
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By this way, the inclusion relation Ñ ⊆f M̃ between interval neutrosophic sets Ñ and M̃ is

satisfied if and only if one of the following three conditions exist:

(1) Bt(Ñ) ≤ Bt(M̃) and Bf (Ñ) ≥ Bf (M̃)

(2) Bt(Ñ) = Bt(M̃) and Bf (Ñ) > Bf (M̃)

(3) Bt(Ñ) = Bt(M̃) and Bf (Ñ) = Bf (M̃) and Bi(Ñ) ≥ Bi(M̃).

3. Similarity and Entropy of Interval Neutrosophic Sets

In this section, firstly, we give definition of similarity measure between interval neutrosophic

values by means of [20].

Definition 3.1. (See [20]) Letting S : D × D → [0, 1] is similarity between interval neutro-

sophic values u and v if S has the following properties;

(1) 0 ≤ S(u, v) ≤ 1;

(2) S(u, v) = 1⇔ u = v;

(3) S(u, v) = S(v, u)

(4) If u ≤ v ≤ z, then S(u, z) ≤ S(u, v), S(u, z) ≤ S(v, z) for all u, v, z ∈ D

= {u : u = ([u1`, u1r], [u2`, u2r], [u3`, u3r])} .

Now, we introduce new similarity by considering ⊆f as given below.

Definition 3.2. Let u = ([u1`, u1r], [u2`, u2r], [u3`, u3r]) and v = ([v1`, v1r], [v2`, v2r], [v3`, v3r]).

Then the similarity measure of u and v is defined by

S(u, v) = 1− max {|u2r − v2r|, |u2` − v2`|}
2

(1)

in the case [u1`, u1r] = [v1`, v1r] and [u3`, u3r] = [v3`, v3r] and

S(u, v) =
1

2
− 1

4
{max {|u1r − v1r|, |u1` − v1`|}+ max {|u1r − v1r|, |u1` − v1`|}} (2)

otherwise.

Theorem 3.3. The values S(u, v) defined by (1) and (2) are similarity measure between u

and v.

Proof. Let u = ([u1`, u1r], [u2`, u2r], [u3`, u3r]) , v = ([v1`, v1r], [v2`, v2r], [v3`, v3r]) ∈ D. If we

choose [u1`, u1r] = [v1`, v1r] and [u3`, u3r] = [v3`, v3r]; then 0.5 ≤ S(u, v) ≤ 1. In otherwise,

0 ≤ S(u, v) ≤ 0.5.

(1) It is clear that 0 ≤ S(u, v) ≤ 1,

(2) S(u, v) = 1⇔ u = v,

(3) S(u, v) = S(v, u) is clearly satisfied,

(4) Let u, v, z ∈ D and u ≤ v ≤ z, then the following cases hold:
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(a) [u1`, u1r] < [v1`, v1r], [u3`, u3r] ≥ [v3`, v3r] and [v1`, v1r] < [z1`, z1r], [v3`, v3r] ≥
[z3`, z3r]. From here, [u1`, u1r] < [v1`, v1r] < [z1`, z1r], [u3`, u3r] ≥ [v3`, v3r] ≥
[z3`, z3r].

(b) [u1`, u1r] < [v1`, v1r], [u3`, u3r] ≥ [v3`, v3r] and [v1`, v1r] = [z1`, z1r], [v3`, v3r] >

[z3`, z3r]. From here, [u1`, u1r] < [v1`, v1r] = [z1`, z1r], [u3`, u3r] ≥ [v3`, v3r] >

[z3`, z3r].

(c) [u1`, u1r] < [v1`, v1r], [u3`, u3r] ≥ [v3`, v3r] and [v1`, v1r] = [z1`, z1r], [v3`, v3r] =

[z3`, z3r], [v2`, v2r] ≥ [z2`, z2r]. From here, [u1`, u1r] < [v1`, v1r] =

[z1`, z1r], [u3`, u3r] ≥ [v3`, v3r] = [z3`, z3r], [v2`, v2r] ≥ [z2`, z2r].

(d) [u1`, u1r] = [v1`, v1r], [u3`, u3r] > [v3`, v3r] and [v1`, v1r] < [z1`, z1r], [v3`, v3r] ≥
[z3`, z3r]. From here, [u1`, u1r] = [v1`, v1r] < [z1`, z1r], [u3`, u3r] > [v3`, v3r] ≥
[z3`, z3r].

(e) [u1`, u1r] = [v1`, v1r], [u3`, u3r] > [v3`, v3r] and [v1`, v1r] = [z1`, z1r], [v3`, v3r] >

[z3`, z3r]. From here, [u1`, u1r] = [v1`, v1r] = [z1`, z1r], [u3`, u3r] > [v3`, v3r] >

[z3`, z3r].

(f) [u1`, u1r] = [v1`, v1r], [u3`, u3r] > [v3`, v3r] and [v1`, v1r] = [z1`, z1r], [v3`, v3r] =

[z3`, z3r], [v2`, v2r] ≥ [z2`, z2r]. From here, [u1`, u1r] = [v1`, v1r] =

[z1`, z1r], [u3`, u3r] > [v3`, v3r] = [z3`, z3r], [v2`, v2r] ≥ [z2`, z2r].

(g) [u1`, u1r] = [v1`, v1r], [u3`, u3r] = [v3`, v3r], [u2`, u2r] ≥ [v2`, v2r] and [v1`, v1r] <

[z1`, z1r], [v3`, v3r] ≥ [z3`, z3r]. From here, [u1`, u1r] = [v1`, v1r] <

[z1`, z1r], [u3`, u3r] = [v3`, v3r] ≥ [z3`, z3r], [u2`, u2r] ≥ [v2`, v2r].

(h) [u1`, u1r] = [v1`, v1r], [u3`, u3r] = [v3`, v3r], [u2`, u2r] ≥ [v2`, v2r] and [v1`, v1r] =

[z1`, z1r], [v3`, v3r] > [z3`, z3r]. From here, [u1`, u1r] = [v1`, v1r] =

[z1`, z1r], [u3`, u3r] = [v3`, v3r] > [z3`, z3r].

(i) [u1`, u1r] = [v1`, v1r], [u3`, u3r] = [v3`, v3r], [u2`, u2r] ≥ [v2`, v2r] and [v1`, v1r] =

[z1`, z1r], [v3`, v3r] = [z3`, z3r], [v2`, v2r] ≥ [z2`, z2r]. From here, [u1`, u1r] =

[v1`, v1r] = [z1`, z1r], [u3`, u3r] = [v3`, v3r] = [z3`, z3r], [u2`, u2r] ≥ [v2`, v2r] ≥
[z2`, z2r].

Finally, in all cases it is deduced that S(u, z) ≤ S(u, v), S(u, z) ≤ S(v, z).

Consequently, it is deduced that S(u, v) is similarity on u and v.

Fuzziness is significant topic in neutrosophic sets and there exist soo many ways to measure

this fuzziness. Here, firstly we give definition of entropy for interval neutrosophic value then

construct original entropy for neutrosophic value u.

Definition 3.4. [7] If E has the following properties, E : D→ [0, 1] is an entropy of interval

neutrosophic value:
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(1) E(u) = 0⇔ [u1`, u1r] = [0, 0] or [1, 1] and [u3`, u3r] = [0, 0] or [1, 1];

(2) E(u) = 1⇔ [u1`, u1r] = [u2`, u2r] = [u3`, u3r] = [0.5, 0.5];

(3) E(u) = E(uc);

(4) Let u, v ∈ D then vc = ([v3`, v3r], [1− v2r, 1− v2`], [v1`, v1r]) and E(u) ≤ E(v) if

u ≤f v when v ≤f vc or v ≤f u when vc ≤f v.

Definition 3.5. Let u = ([u1`, u1r], [u2`, u2r], [u3`, u3r]). Then the entropy for u is defined by

E(u) =

{
1− |u2r+u2`−1|2 , [u1`, u1r] = [u3`, u3r] = [12 ,

1
2 ]

1
2 −

1
2 {max{|u1` − u3`|, |u1r − u3r|}} , otherwise.

(3)

Theorem 3.6. E(u) introduced as (3) isn entropy for u.

Proof. If [u1`, u1r] = [u3`, u3r] = [12 ,
1
2 ], then it is easy to see that 1

2 ≤ E(u) ≤ 1. In other case,

0 ≤ E(u) ≤ 1
2 .

(1) E(u) = 0⇔ 1
2 −

1
2 {max{|u1` − u3`|, |u1r − u3r|}} = 0

⇔ 1 = max{|u1` − u3`|, |u1r − u3r|}
⇔ [u1`, u1r] = [0, 0] or [1, 1], [u3`, u3r] = [1, 1] or [0, 0].

(2) E(u) = 1⇔ [u1`, u1r] = [u2`, u2r] = [u3`, u3r] = [12 ,
1
2 ].

(3) E(u) = E(uc) = is clearly satisfied.

(4) Let u, v ∈ D and vc = ([v3`, v3r], [1− v2r, 1− v2`], [v1`, v1r]). If u ≤f v when v ≤f vc

or v ≤f u when vc ≤f v then E(u) ≤ E(v).

This completes the proof.

3.1. Definition of Similarity and Entropy of INSs

In [21], similarity and entropy measure definitions of interval neutrosophic values expanded

to interval neutrosophic sets. Now, we introduce this definition as follows, respectively.

Definition 3.7. (See [21]) Let M,N be two interval neutrosophic sets. Then, S is called

similarity measure between M and N , if the following properties are satisfied:

(1) 0 ≤ S(M,N) ≤ 1;

(2) S(M,N) = 1⇔M = N ;

(3) S(M,N) = S(N,M)

(4) If M ⊆ N ⊆ P , then S(M,P ) ≤ S(M,N), S(M,P ) ≤ S(B,P ) for all M,N,P ∈ INSs.

Definition 3.8. (See [21]) Let M be an interval neutrosophic set, then we give the definition

E as interval neutrosophic sets’ entropy if E contains the following assertions:

(1) E(M) = 0⇔ Bt(M) = [0, 0] or [1, 1], Bf (M) = [0, 0] or [1, 1];

(2) E(M) = 1⇔ Bt(M) = Bi(M) = Bf (M) = [0.5, 0.5];
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(3) E(M) = E(M c);

(4) Let M,N are two INSs, E(M) ≤ E(N) if M ⊆f N when N ⊆f N c, or N ⊆f M when

N c ⊆f N .

In addition to above definitions, [21] gain the literature similarity and entropy concepts

of two neutrosophic sets. It means that similarity measure of interval neutrosophic values is

carried on the interval neutrosophic sets as showed in the following definition.

Definition 3.9. [21]

S(M,N) =
1

n

n∑
i=1

s(M(xi), N(xi))

where X = {x1, x2, ..., xn} is a NS and s : D ×D → [0, 1] is similarity of INS for M,N ⊆ X.

And

E(M) =
1

n

n∑
i=1

e(M(xi)), e : D→ [0, 1].

4. Multi-attribute Decision-making

Ye [20] employs a multi-attribute decision-making process for single valued neutrosophic

sets. First we discuss the Hamming distance, Euclidean distance, and measure of similarities

for INSs developed by Ye [20].

(1) The Hamming Distance:

d1(A,B) = 1
6

∑n
i=1(|tA`(ui)−tB`(ui)|+|tAr(ui)−tBr(ui)|+|iA`(ui)−iB`(ui)|+|iAr(ui)−

iBr(ui)|+ |fA`(ui)− fB`(ui)|+ |fAr(ui)− fBr(ui)|).
(2) The Euclidean Distance:

d2(A,B) = 1
6

∑n
i=1 (tA`(ui)− tB`(ui))2 + (tAr(ui)− tBr(ui))2 + (iA`(ui)− iB`(ui))2 +

(iAr(ui)− iBr(ui))2 + (fA`(ui)− fB`(ui))2 + (fAr(ui)− fBr(ui))2.
(3) Similarity Measure:

S1(A,B) = 1− 1
6

∑n
i=1(|tA`(ui)− tB`(ui)|+ |tAr(ui)− tBr(ui)|+ |iA`(ui)− iB`(ui)|+

|iAr(ui)− iBr(ui)|+ |fA`(ui)− fB`(ui)|+ |fAr(ui)− fBr(ui)|).
(4) Similarity Measure:

S2(A,B) = 1 − 1
6

∑n
i=1 (tA`(ui)− tB`(ui))2 + (tAr(ui)− tBr(ui))2 +

(iA`(ui)− iB`(ui))2+(iAr(ui)− iBr(ui))2+(fA`(ui)− fB`(ui))2+(fAr(ui)− fBr(ui))2.

Next we give a numerical example for MADM and a comparison analysis of Ye’s methods,

Wang’s method with our proposed MADM method.
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4.1. Numerical Example

Let {M1,M2,M3,M4} be the set of cars (alternatives), and {P1, P2, P3} be the set criterion

for the selection of a suitable car, where P1 is fuel compatibility and performance, M2 is resale

value and affordability, M3 is safety and ride.

Let us consider the following interval neutrosophic set

M = (([0.7, 0.8], [0.1, 0.2], [0.1, 0.3]) , ([0.8, 0.9], [0, 0.1], [0.2, 0.4]), ([0.6, 0.8], [0.1, 0.2], [0.3, 0.6]))

as a model option for the selection of a best car under given criterion.

The alternatives are evaluated under the given criterion and the interval neutrosophic decision

matrix is computed and it is given in Table 1, where the columns represent the criteria and

the rows represent the alternatives.

First we calculate similarity measure values by using proposed similarity measures under in-

terval neutrosophic set as given below:

Sz(M1,M) = 0.408, Sz(M2,M) = 0.425, Sz(M1,M) = 0.366, Sz(M4,M) = 0.4.

Hence,

S(M2,M) � S(M1,M) � S(M4,M) � S(M3,M)

That is,

M2 �M1 �M4 �M3

Here M2 is the best choice for selecting a car.

Now we consider the similarity measure values by means of [20] as given below.([
max
i

(t`Mi(xi)) ,max
i

(trMi(xi))

]
,

[
min
i

(i`Mi(xi)) ,min
i

(irMi(xi))

]
,

[
min
i

(f`Mi(xi)) ,min (frMi(xi))

])
.

Secondly, we use Ye’s method and obtain the following results:

S1(M1,M) = 0.55, S1(M2,M) = 0.7, S1(M3,M) = 0.4, S1(M4,M) = 0.6

S2(M1,M) = 0.881, S2(M2,M) = 0.92, S2(M3,M) = 0.823, S2(M4,M) = 0.886.

Hence, it is deduced that

S2(M2,M) � S2(M4,M) � S2(M1,M) � S2(M3,M)

That is,

M2 �M4 �M1 �M3

Thus and so, M2 is the most suitable alternative.
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Lastly, we calculate similarity measure by taking into account Yang et al. [21] method and

determine the best option also as below:

S(M1,M) = 0.420, S(M2,M) = 0.445, S(M1,M) = 0.375, S(M4,M) = 0.416.

We have following results,

S(M2,M) � S(M1,M) � S(M4,M) � S(M3,M)

That is,

M2 �M1 �M4 �M3

Finally, M2 is the best option for car selection. As shown in Table 2, the suggested MADM

method is compared to established MADM methods. It can be noted in the comparison Table

2, the selected alternative given by any one proposed method acknowledges the authenticity

and the efficacy of the existing methodology.

5. Conclusion

The concept of interval neutrosophic set (INS) is a strong model for MADM. We intro-

duced new similarity measures, entropy, and inclusion relation named as type-f for interval

neutrosophic sets (INSs). Then we developed robust MADM method for car selection by us-

ing proposed similarity measures for INSs. Meanwhile, a practical application for ranking of

alternatives with newly developed MADM approach is illustrated by a numerical example. We

computed similarity measures by our proposed method and compared the results with existing

methods of Ye [20] and Yang et al. [21]. The validity and superiority of new similarity measures

with existing approaches is also given with the help of a comparison analysis. Finally, it is

deduced that proposed similarity measure and inclusion relations are more efficient, impressive

and suitable.
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Abstract. In this paper, we introduce and define a new version of a neutrosophic vector space. Indeed, this
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1. Introduction

After Zadeh [16] introduced fuzzy sets, this fundamental concept has been generalized for a

variety of purposes. Atanassov [4,5] first proposed the concept of intuitionistic fuzzy sets (IFSs)

in 1986. The notion of a neutrosophic set (NS) was introduced by Smarandache [14,15]. As a

generalization of the fuzzy and intuitionistic sets, the theory of neutrosophic sets is expected

to play an important role in modern mathematics in general. Since 2005, the concept of the

neutrosophic set has gotten a lot of attention [7, 9, 11–13], and it has a lot of applications

[1, 2, 6, 10].

Additionally, a number of works have been published by researchers to extend the classi-

cal and fuzzy mathematical notions to the context of neutrosophic fuzzy mathematics. The

difficulty in such generalizations lies in how to choose the most rational generalization among

many available approaches. The concept of a neutrosophic vector space was introduced in [3].

In this study, we provide a new definition of the neutrosophic vector space, which represents

the rational generalization of the fuzzy vector space. Also, we study the purely algebraic

properties of neutrosophic vector spaces. Furthermore, we establish the idea of a neutrosophic

basis and show that it exists in a large class of neutrosophic vector spaces.
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The work is conceived as follows. In Section 2, some basic concepts in our study are recorded.

Section 3 is devoted to introducing the new definition for a neutrosophic vector space as an

extension of fuzzy vector space. Also, we introduced and studied some of the concepts. The

conclusion remarks are reached in section 4.

In order to clarify the picture, we present here the following standard notation. V will

denote a vector space over any field K.

2. Basic concepts

In this section, we will go over certain definitions and outcomes that will be used in the

next section.

Definition 2.1. [8] Let V be a vector space over K. A fuzzy vector space is the pair V = (V, µ)

with the property that ∀a, b ∈ R and u, v ∈ V , we have

µ(au+ bv) > µ(u) ∧ µ(v),

where µ : V → [0, 1].

Definition 2.2. [15] Let N be the universe set. A neutrosophic set N on N (NS N ) is defined

as:

N = {< a, µ(a), γ(a), ζ(a) > |a ∈ N} .

where µ, γ, ζ : N → [0, 1].

Definition 2.3. [8] A set A is said to be upper well ordered if for all non-empty subsets

B ⊂ A, supB ∈ B

Definition 2.4. [8] A subset A ⊂ [0, 1] is said to have an increasing monotonic limit x ∈ [0, 1]

if and only if x is a limit of a monotonically increasing sequence in A.

Proposition 2.5. [8] A set A ⊂ [0, 1] is without any increasing monotonic limits iff it is

upper well ordered.

Proposition 2.6. [8] All upper well ordered subsets of [0, 1] are countable.

3. Main result

In this section, we present a new definition of a neutrosophic vector space and give examples.

Also, we derive some properties concerning this definition. In addition, we define neutrosophic

linear independence and investigate certain properties. Lastly, the neutrosophic basis and

dimension are defined and studied.

Definition 3.1. Neutrosohic vector space is a quaternary V = (V, µ, γ, ζ) where V is a vector

space over arbitrary field K with
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µ : V → [0, 1],

γ : V → [0, 1],

ζ : V → [0, 1],

with the following properties

µ(au+ bv) ≥ µ(u) ∧ µ(v),

γ(au+ bv) ≤ γ(u) ∨ γ(v),

ζ(au+ bv) ≤ ζ(u) ∨ ζ(v),

where u, v ∈ V and a, b ∈ K.

Example 3.2. Let R2 be a vector space over a field R, then V = (R2, µ, γ, ζ) is a neutrosophic

vector space over a field R, where

µ(s, t) =


1 if s = t = 0
1
2 if s = 0, t ∈ R− {0}
1
4 if s ∈ R, t = 0

γ(s, t) =


1
4 if s = t = 0
1
2 if s = 0, t ∈ R− {0}
3
4 if s ∈ R, t = 0

ζ(s, t) =


1
3 if s = t = 0
1
2 if s = 0, t ∈ R− {0}
5
6 if s ∈ R, t = 0

Proposition 3.3. If V = (V, µ, γ, ζ) is a neutrosophic vector space over a field K, then

(i) µ(au) = µ(u), ∀a ∈ K− {0}.
(ii) γ(au) = γ(u), ∀a ∈ K− {0}.

(iii) ζ(au) = ζ(u), ∀a ∈ K− {0}.
(iv) If u, v ∈ V and µ(u) > µ(v), then µ(u+ v) = µ(v).

(v) If u, v ∈ V and γ(u) < γ(v), then γ(u+ v) = γ(v).

(vi) If u, v ∈ V and ζ(u) < ζ(v), then ζ(u+ v) = ζ(v).

Proof. We prove only (v) since the remainder are well-known.

Since γ(u) < γ(v) we have γ(v) ≤ γ(u + v). Also, γ[(u + v) − v] = γ(u) ≤ γ(u + v) ∨ γ(v).

Since γ(u) < γ(v) we have γ(u+ v) ≤ γ(u). Consequently γ(u+ v) = γ(v).

Proposition 3.4. Let V = (V, µ, γ, ζ) be a neutrosophic vector space over K with µ(u) 6= µ(v),

γ(u) 6= γ(v) and ζ(u) 6= ζ(v), then

µ(u+ v) = µ(u) ∧ µ(v),

γ(u+ v) = γ(u) ∨ γ(v),
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ζ(u+ v) = ζ(u) ∨ ζ(v),

where u, v ∈ V.

Proof. It is clear from Proposition 3.3.

Proposition 3.5. Let V = (V, µ, γ, ζ) be a neutrosophic vector space over a field K, then

(i) µ(0) = supu∈V µ(u) = sup[µ(V )].

(ii) γ(0) = infu∈V γ(u) = inf[γ(V )].

(iii) ζ(0) = infu∈V ζ(u) = inf[ζ(V )].

Proof. We prove only (ii) since (i) and (iii) are well-known.

Let u ∈ V, then γ(0) = γ(0u) ≤ γ(u).

Definition 3.6. Let W be a subspace of a vector space V . Then (W,µW , γW , ζW ) is called

neutrosophic subspace of a neutrosophic vector (V, µ, γ, ζ) if the following conditions are sat-

isfied:

(i) µW (x− y) ≥ µW (x) ∧ µW (y).

(ii) µW (cx) = µW (x).

(iii) γW (x− y) ≤ γW (x) ∨ γW (y).

(iv) γW (cx) = γW (x).

(v) ζW (x− y) ≤ ζW (x) ∨ ζW (y).

(vi) ζW (cx) = ζW (x).

Definition 3.7. Let V 1 = (V, µ1, γ1, ζ1) and V 2 = (V, µ2, γ2, ζ2) be two neutrosophic vector

spaces over K, then

(i) The intersection of V 1 and V 2 define as follows: V 1 ∩V 2 = (V, µ1 ∧µ2, γ1 ∨ γ2, ζ1 ∨ ζ2)
(ii) The sum of V 1 and V 2 define as follows: V 1 + V 2 = (V, µ1 + µ2, γ1 + γ2, ζ1 + ζ2),

where (µ1 +µ2)(a) = sup{µ1(a)∧µ2(a− v)}, (γ1 + γ2)(a) = inf{γ1(a)∨ γ2(a− v)},
(ζ1 + ζ2)(a) = inf{ζ1(a) ∨ ζ2(a− v)} and a = u+ v.

Proposition 3.8. Let W i = (V, µi, γi, ζi) be a set of family neutrosophic subspaces over a field

K with i ∈ I = 1, 2, ..., n, then ∩i∈IW i is a neutrosophic vector space over a field K.

Proposition 3.9. Let W i = (V, µi, γi, ζi) be a set of family neutrosophic subspaces over a field

K with i ∈ I = 1, 2, ..., n, then
∑n

i=1W i is a neutrosophic vector space over a field K.

Proof. We use contradiction to prove this result. Firstly, assume that

(µ1 + µ2 + ...+ µn)(x+ y) < (µ1 + µ2 + ...+ µn)(x) ∧ (µ1 + µ2 + ...+ µn)(y).
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Thus, there exists u1+u2+ ...+un+1 and v1+v2+ ...+vn+1 such that for all z1+z2+ ...+zn+1

we have
µ1(z1) ∧ µ2(z2) ∧ ... ∧ µn(x+ y − z1 − z2 − ...− zn) < [µ1(u1) ∧ µ2(u2) ∧ ... ∧ µn(x− u1 − u2 − ...− un)]

∧ [µ1(v1) ∧ µ2(v2) ∧ ... ∧ µn(y − v1 − v2 − ...− vn)]→ (?)

but

[µ1(u1)∧µ2(u2)∧...∧µn(x−u1−u2−...−un)]∧[µ1(v1)∧µ2(v2)∧...∧µn(y−v1−v2−...−vn)] =

µ1(u1)∧µ1(v1)∧µ2(u2)∧µ2(v2)∧ ...∧µn(x−u1−u2− ...−un)]∧µn(y−v1−v2− ...−vn) ≤
µ1(u1 ∧ v1) ∧ µ1(u2 ∧ v2) ∧ .... ∧ µn(x+ y − u1 − v1 − u2 − v2...− un − vn).

Therefore, there exists zi = ui + vi for which (?) is false, this we have a contradiction and

therefore (µ1 + µ2 + ...+ µn)(x+ y) ≥ (µ1 + µ2 + ...+ µn)(x) ∧ (µ1 + µ2 + ...+ µn)(y).

Secondly, suppose that

(γ1 + γ2 + ...+ γn)(x+ y) > (γ1 + γ2 + ...+ γn)(x) ∨ (γ1 + γ2 + ...+ γn)(y).

Thus, there exists u1+u2+ ...+un+1 and v1+v2+ ...+vn+1 such that for all z1+z2+ ...+zn+1

we have
γ1(z1) ∨ γ2(z2) ∨ ... ∨ γn(x+ y − z1 − z2 − ...− zn) > [γ1(u1) ∨ γ2(u2) ∨ ... ∨ γn(x− u1 − u2 − ...− un)]

∨ [γ1(v1) ∨ γ2(v2) ∨ ... ∨ γn(y − v1 − v2 − ...− vn)]→ (??)

but

[γ1(u1)∨γ2(u2)∨...∨γn(x−u1−u2−...−un)]∨[γ1(v1)∨γ2(v2)∨...∨γn(y−v1−v2−...−vn)] =

γ1(u1)∨γ1(v1)∨γ2(u2)∨γ2(v2)∨ ...∨γn(x−u1−u2− ...−un)]∨γn(y− v1− v2− ...− vn) ≥
γ1(u1 ∨ v1) ∨ γ1(u2 ∨ v2) ∨ .... ∨ γn(x+ y − u1 − v1 − u2 − v2...− un − vn).

Therefore, there exists zi = ui + vi for which (??) is false, this we have a contradiction and

therefore (γ1 + γ2 + ...+ γn)(x+ y) ≤ (γ1 + γ2 + ...+ γn)(x)∨ (γ1 + γ2 + ...+ γn)(y). Similarly,

we find (γ1 + γ2 + ...+ γn)(x+ y) ≤ (γ1 + γ2 + ...+ γn)(x) ∨ (γ1 + γ2 + ...+ γn)(y).

Now, we proceed to characterize the neutrosophic linear independence.

3.1. Neutrosophic linear independence

Definition 3.10. Let V = (V, µ, γ, ζ) be a neutrosophic vector space over a field K. We say

that a finite set of vectors {ui}ni=1 is a neutrosophic linear independence in V iff {ui}ni=1 is

linear independence in V and ∀ {ai}ni=1 ⊂ K,

µ(
n∑
i=1

aiui) =
n∧
i=1

µ(aiui),

γ(

n∑
i=1

aiui) =

n∨
i=1

γ(aiui),

ζ(
n∑
i=1

aiui) =
n∨
i=1

ζ(aiui).
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A set of vectors is neutrosophic linearly independent in V if all finite subsets of it are

neutrosophic linearly independent in V .

Example 3.11. Let V be a neutrosophic vector space which define in Example 3.20. The set

of vectors {x = (2, 0), y = (−2, 1)} is linearly independent. Also, it easy to checked

µ(x) = µ(y) and µ(x+ y) > µ(x),

γ(x) = γ(y) and γ(x+ y) < γ(x),

ζ(x) = ζ(y) and ζ(x+ y) < ζ(x).

This set is not neutrosophic linearly independent in V .

Proposition 3.12. If V = (V, µ, γ, ζ) is a neutrosophic vector space over a field K, then any

set of vectors {xi}ni=1 ⊂ V − {0} which has distinct µ, γ, ζ-values is linearly and neutrosophic

linearly independent.

Proof. We use mathematical induction to prove this proposition. By [8], µ-values are linearly

and neutrosophic linearly independent. We now show that γ-values are both linearly and

neutrosophic linearly independent. In the case n = 1 we find the statement is true. Also,

suppose that the statement is true for n. Assume that {xi}n+1
i=1 is a set of vectors in V \{0}

with distinct γ-values. According to the inductive hypothesis we have {xi}ni=1 is neutrosophic

linearly independent. Suppose that {xi}n+1
i=1 is not linearly independent and thus xn+1 =∑

i∈S aixi where S ⊂ {1, . . . , n}, S 6= ∅ and for all i ∈ S, ai 6= 0. Then

γ (xn+1) =
∨
ε

γ (aixi) =
∨
ε

γ (xi)

and hence γ (xn+1) ∈ {γ (xi)}ni=1 . This contradicts the fact that {xi}n+1
i=1 has distinct γ-values.

Therefore {xi}n+1
i=1 is linearly independent. Finally Propositions 3.3 (ii), 3.4 and 3.5 (ii) clearly

show that {xi}n+1
i=1 is neutrosophic linearly independent.

We conclude this section by providing definitions of the neutrosophic base and dimension

and looking at some properties.

3.2. Neutrosophic basis and dimension

Definition 3.13. The linearly independent basis for V is the neutrosophic basis of a neutro-

sophic vector space V = (V, µ, γ, ζ) over a field K.

The following theorem illustrates how a neutrosophic basis may be used to create a large

class of neutrosophic vector spaces.
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Theorem 3.14. Let V be a vector space with basis B = {vℵ}ℵ∈I , constants µ0, γ0, ζ0 ∈ (0, 1]

and any sets of constants {µℵ}ℵ∈I , {γℵ}ℵ∈I , {ζℵ}ℵ∈I ⊂ (0, 1] such that µ0 ≥ µℵ, γ0 ≥ γℵ, ζ0 ≥
ζℵ ∀ ℵ ∈ I. Define

µ(u) =
N∧
i=1

µ(vℵi) =
N∧
i=1

µℵi and µ(0) > µ0,

γ(u) =

N∨
i=1

γ(vℵi) =

N∨
i=1

γℵi and γ(0) > γ0,

ζ(u) =
N∨
i=1

ζ(vℵi) =
N∨
i=1

ζℵi and ζ(0) > ζ0,

where u ∈ V with u =
∑N

i=1 civℵi and µ, γ, ζ is well-defined. We assert that V = (V, µ, γ, ζ)

neutrosophic vector space with basis B.

Proof. Let u,w ∈ V − {0}, then we can write u, w in a unique formula

u =
∑

i∈C∪Du

civℵi ,

w =
∑

i∈C∪Dw

divℵi ,

where C ∩ Du = φ, C ∩ Dw = φ and ci, di ∈ R − {0}. Suppose that a, b ∈ R − {0} and

au + bw 6= 0. Let Z = {i ∈ C : aci + bdi = 0} and N = C − {Z}. Now, the proof boils down

to showing that

µ(au+ bw) ≥ µ(u) ∧ µ(w), (3.21)

γ(au+ bw) ≤ γ(u) ∨ γ(w), (3.22)

ζ(au+ bw) ≤ ζ(u) ∨ ζ(w), (3.23)

we prove only 3.23 and 3.23, since 3.21 see [8]. Now,

γ(au+ bw) = γ(
∑
i∈C

(aci + bdi)vi +
∑
i∈Du

acivi +
∑
i∈Dw

bdivi)

= γ(

N∑
i

(aci + bdi)vi +
∑
i∈Du

acivi +
∑
i∈Dw

bdivi)
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All of the coefficients according to the above linear combination are non-zero, and thus by

definition of γ we have

γ(au+ bw) =

(∨
i∈N

γ (vℵi)

)
∨

( ∨
i∈Du

γ (vℵi)

)
∨

( ∨
i∈Dw

γ (vℵi)

)

=

(∨
i∈N

γℵi

)
∨

( ∨
i∈Du

γℵi

)
∨

( ∨
i∈Dw

γℵi

)
=

∨
i∈N∪Du∪Dw

γℵi

≤
∨

i∈C∪Du∪Dw

γℵi =

( ∨
i∈C∪Du

γℵi

)
∨

( ∨
i∈C∪Dw

γℵi

)

Therefore if a, b 6= 0 and au+bw 6= 0 then γ(au+bw) ≤ γ(u)∨γ(w). In case you do au+bw = 0,

since γ(0) = µ0 ≤ inf γ(B) we must have γ(au+ bw) = γ(0) ≤ γ(u) ∨ γ(w).

Without giving up generality, in the case where a or b is zero we may say a = 0, then

γ(0u+ bw) = γ(bw) ≤ γ(u) ∨ γ(bw) ≤ γ(u) ∨ γ(w).

Lemma 3.15. Let V = (V, µ, γ, ζ) be a neutrosophic vector space over a field K with

µ(V ), γ(V ), ζ(V ) are upper well ordered and let U be a proper subspace of V , then ∃ u ∈
V/Usuch that

µ(u+ v) = µ(u) ∧ µ(v)

γ(u+ v) = γ(u) ∨ γ(v)

ζ(u+ v) = ζ(u) ∨ ζ(v)

where v ∈ V.

Proof. We only prove γ(u + v) = γ(u) ∨ γ(v). Since γ(V ) is upper well ordered we can find

u ∈ V/U such that γ(u) = inf [γ(V/U)]. Now, if γ(u) 6= γ(v) then γ(u) ∨ γ(v) = γ(u + v) by

Proposition 3.4. If γ(u) = γ(v) then γ(u + v) ≤ γ(u) ∨ γ(v). Also, since u + v ∈ V/U and

γ(u) = inf [γ(V/U)] we have γ(u+ v) ≥ γ(u) ∨ γ(v) and thus γ(u) ∨ γ(v) = γ(u+ v).

Lemma 3.16. Let V = (V, µ, γ, ζ) be a neutrosophic vector space over a field K with

µ(V ), γ(V ), ζ(V ) are upper well ordered and let U be a proper subspace of V . Assume that

B is a neutrosophic basis for U , then there exists w ∈ V \U such that B∗ = B ∪ {w} is a

neutrosophic basis for W = (W = 〈B∗〉 , µW , γW , ζW ), where 〈B∗〉 is the vector space spanned

by B∗.
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Proof. Suppose that w ∈ V \U such that µ(w) = sup[µ(V \U)], γ(w) = inf[γ(V \U)],

and ζ(w) = inf[ζ(V \U)], then by Lemma 3.15, we have w is neutrosophic linearly inde-

pendent from B. Assume that B∗ = B ∪ {w}. Obvious B∗ is a neutrosophic basis for

W = (W = 〈B∗〉 , µW , γW , ζW ).

Theorem 3.17. Let V = (V, µ, γ, ζ) be a neutrosophic vector space over K which

µ(V ), γ(V ), ζ(V ) are upper well ordered, then V has a neutrosophic basis.

Proof. Suppose that V = (V, µ, γ, ζ) is a neutrosophic vector space over K which

µ(V ), γ(V ), ζ(V ) are upper well ordered. Let ϑ = {B ⊂ V | B is neutrosophic linearly

independent }. We find ϑ is partial order by set inclusion. Assume that χ is a totally or-

dered subset of ϑ and let A =
⋃
B∈χB. Obviously, A is an upper bound for C. Assume

a1, . . . , an ∈ A. Then there exist Bα(1), . . . , Bα(n) ∈ χ such that ai ∈ Bα(i). Since χ is totally

ordered, one of the sets, say Bα(k), is a super set of the others. Hence a1, . . . , an ∈ Bα(k). Since

Bα(k) is neutrosophic linearly independent a1, . . . , an are neutrosophic linearly independent.

Thus A is upper bound of χ in ϑ. By Zorn’s Lemma, there exists a maximal element B∗

in ϑ. Suppose that 〈B∗〉 = U is a proper subspace of V then by Lemma 3.15, there exists

w ∈ V \U such that B∗ ∪ {w} = B+ is a neutrosophic basis for W = (W,µW , γW , ζW ). This

contradicts the fact that B∗ is a maximal element in ϑ. Thus we must have 〈B∗〉 = V and B∗

is a neutrosophic basis for V .

Corollary 3.18. Let V = (V, µ, γ, ζ) be a neutrosophic vector space over a field K with V

finite dimensional, then V has a neutrosophic basis.

Proof. Suppose that µ(V ), γ(V ) and ζ(V ) are finite and therefore upper well ordered since V

is finite dimensional. Thus, V has a neutrosophic basis, according to Theorem 3.17.

In what follows, we define the dimension of neutrosophic vector spaces.

Definition 3.19. Let V = (V, µ, γ, ζ) be a neutrosophic vector space over a field K, then we

define the dimension of a neutrosophic space to be

dim(V ) = (dim V, sup
x a base for V

(
∑
v∈x

µ(v)), inf
x a base for V

(
∑
v∈x

γ(v)), inf
x a base for V

(
∑
v∈x

ζ(v))).

There is no doubt that the dimension is a function from the class of all neutrosophic vector

spaces to [0,∞[. Only when dim(V ) = e < ∞ does a neutrosophic vector space have a finite

dimension.

A. Elrawy, The neutrosophic vector spaces- another approach

Neutrosophic Sets and Systems, Vol. 51, 2022                                                                               492



Example 3.20. Let R2 be a vector space over a field R. It is easily checked that V =

(R2, µ, γ, ζ) is a neutrosophic vector space over a field R, where

µ(s, t) =


1 if s = t = 0
1
3 if s = t, s ∈ R− {0}
1
5 otherwise

γ(s, t) =


1
15 if s = t = 0
1
6 if s = t, s ∈ R− {0}
1
3 other wise

ζ(s, t) =


1
9 if s = t = 0
1
2 if s = t, s ∈ R− {0}
1
3 otherwise

It is also easy to check that dim(R2, µ, γ, ζ) = (2, 8
15 ,

3
6 ,

5
6).

4. Conclusions

Recently, it is important and applicable to study neutrosophic sets in the mathematical

branch. In this paper, the author has made redefined the concept of neutrosophic vector space

as an extension of the definition of fuzzy vector space. Furthermore, this definition was studied

in order to define and study linear independence, basis, and dimension. The dimension of a

class of neutrosophic vector space will be taken up by the author for future research. As

a fuzzy vector space, we couldnt find an example of a neutrosophic vector space without a

neutrosophic basis or prove that all neutrosophic vector spaces have one. It is, in my opinion,

a difficult problem, and this is an open problem for the next research. However, there is a

simple condition that a neutrosophic vector space must satisfy in order to have a neutrosophic

basis.
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Abstract. The idea of an interval complex neutrosophic soft set (I-CNSS) emerges from the interval neutro-

sophic soft set (I-NSS) by the extension of its three membership functions (T, I, F) from real space to complex

space (unit disc) to better handle uncertainties, vagueness, indeterminacy, and imprecision of information in the

periodic nature. The novelty of I-CNSS lies in its more significant range of activity compared to CNS. Measures

of similarity and distance are important tools that can be used to solve many problems in real life. Hence, this

paper presents some interval complex neutrosophic soft similarities based on Hamming and Euclidean distances

of I-CNSSs to deal with real-life problems that include uncertain information such as decision-making issues

and medical diagnosis stats. Firstly, this paper reviews the definition of an interval complex neutrosophic soft

set. Secondly, we defined distance Hamming measures and distance Euclidean measures on I-CNSSs . Next, the

axiomatic definition of similarity measures based on Hamming and Euclidean distances of I-CNSSs is proposed.

Moreover, a numerical example is given and relations between these measures are introduced and verified.

Meanwhile, some applications are given to show how similarity can be used to help the user in making decisions

and making medical diagnoses. Finally, a comparison of some current approaches is used to back up this study.

Keywords: similarity measure; decision making; interval complex neutrosophic soft set;distance measure.

—————————————————————————————————————————-

1. Introduction

The idea of a complex fuzzy set (CFS) was established by Ramot [1] as a generalization of

traditional fuzzy set theory [2] from real numbers to complex plane (unit disc) to represent

the uncertain information that exists in two dimensions. The enormous success of this idea
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has brought about the building up of many extensions of CFSs, such as complex intuitionistic

fuzzy sets (CIFSs) [3], complex multi-fuzzy sets (CMFSs) [4], complex vague sets (CVSs) [5],

complex hesitant fuzzy sets (CHFSs) [6] and interval-valued complex intuitionistic fuzzy sets

(I-VCIFSs) [7] which have been introduced and examined in several fields in our life, such

as decision-making, image restoration and medical diagnosis. Ali and Smarandache [8] intro-

duced a new model knowing a complex neutrosophic set where the three membership functions

T,I,F instead of being real-valued functions with a range of [0,1] is replaced by a complex-

valued functions of the form T = tA(x).ejµA(x),I = iA(x).ejβA(x) and F = fA(x).ejℵA(x) with(
j =
√
−1
)

and µA(x), βA(x),ℵA(x) are periodic functions.To make the CNS more flexible

and adaptable to cover vague periodic information in real-life problems, Ali and Smarandache

again generalize the CNS idea to interval complex neutrosophic sets (I-CNSs) [9], which are

characterized by the degrees of three complex membership functions that are characterized by

interval values. Researchers utilized CNS and ICNS in different application areas and intro-

duce new contributions, such as Broumi et al. [10] presented some of the potential properties

and theorems with a multi-criteria decision-making process on bipolar complex neutrosophic

sets. Quek et al. [11] introduced a new approach to neutrosophic graphs named complex

neutrosophic graphs. Al-Quran et al. [12] investigated the relation between CNSs depending

on the cartesian product of CNSs. Dat et al. [13] provided the connotation of a linguistic

ICNS number, which is categorised independently by three membership functions linguistic

variables for multiple attribute group decision-making (MGDM). All the existing mentioned

theories work in several fields of life without considering the parameterization factor during the

analysis. Consequently, these models lack parametrization tools to handle uncertainties and

ambiguous issues in parameterized form. To cope with such challenges, Molodtsov (1999) [14]

benchmarked and identified the theory of soft sets (SS) to handle uncertainty and vagueness

by providing a general mathematical tool that can represent the problem parameters in a more

wide and more complete form. A soft set is a set-valued map that provides a rough description

of the things under consideration depending on several parameters. Since its inception, soft

set has been studied and extended by researchers to several different hybrid models. First of

all, Maji et al.employed the soft set theory with FSs and IFSs and introduced new notions of

the fuzzy soft set (FSS) [15] and intuitionistic fuzzy soft set (IFSS) [16]. Thus, the hybridiza-

tion process of soft set theory with the other uncertainty concepts created many hybrid fuzzy

structures, such as interval fuzzy soft set [17], interval-valued intuitionistic fuzzy soft set [18],

neutrosophic soft set [19], interval neutrosophic soft set [20] Q-neutrosophic soft set [21, 22],

etc. are introduced. Later, in order to incorporate the advantages of complex numbers into

the concept of soft sets, fuzzy sets, and their generalizations, Thirunavukarasu et al. [23] devel-

oped the complex fuzzy soft set and tested it in decision making problems. Selvachandran and
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Singh [24] extended the CFSSs theory and established a new vision which is known as interval-

valued complex fuzzy soft sets (I-VCFSs). Kumar and Bajaj [25] introduced the concept of

complex intuitionistic fuzzy soft sets, while Selvachandran et al. [26] proposed the concept of

complex vague soft sets and defined several distance measures between these sets. Broumi et

al. [27] presented the notion of CNSSs with their essential properties. Following that, these

uncertainty sets have been actively used to address uncertainty in a variety of decision-making

problems [28]- [35]. Recently, Al-Sharqi et al. [36] developed a hybrid model of complex neu-

trosophic sets with soft sets in an interval setting called the interval complex neutrosophic soft

set (ICNSS). An ICNSS is defined by a complex interval-valued truth membership function

which represents uncertainty with periodicity, complex interval-valued indeterminacy member-

ship function which represents indeterminacy with periodicity, and a complex interval-valued

falsity membership function which represents falsity with periodicity. This notion handles the

neutrosophic environment data in a periodic manner, while the interval neutrosophic soft set

provides a parameterization tool to handle the neutrosophic environment data. In addition,

Al-Sharqi et al. also kept building on the idea of ICNSS by combining it with other mathe-

matical techniques to solve problems with uncertainty more efficiently [37], [38].

Similarity measures are an important tool in fuzzy set theory and its hybrid structures. This

tool indicates the degree of similarity between two objects in a fuzzy environment. Various

similarity measures of fuzzy sets and their extensions have been offered and they have been

successfully applied in solving real-world problems such as decision making [39], [40], medical

diagnosis [41], [42], and pattern recognition [43], [44]. In neutrosophic environment, Broumi

and Smarandache [45] introduced the concept of similarity of NSs. Jun Ye [46] proposed the

concept of similarity measures between interval neutrosophic sets. Following that, Mukherjee

and Sarkar [47] studied several similarity measures on interval neutrosophic soft sets with an

application in pattern recognition. Abu Qamar and Hassan [48] applied similarity and entropy

tools to Q-NSS and they examined these tools in decision-making problems and a medical di-

agnosis.The development of the uncertainty sets under the similarity measures environment

mentioned above is not restricted to the real field but developed in the complex field. Recently,

researchers [49]- [51] made noteworthy additions to the literature on similarity measures envi-

ronments by using hybridized models to handle the uncertainty of periodic data, where time

plays a vital role in describing it. Following this trend and to make our concept (ICNSS)

more useful in modeling some problems in real life, in this article the Hamming and Euclidean

distances between two interval complex neutrosophic soft sets (ICNS sets) are defined and

similarity measures between two ICNS sets based on these distances are presented. Similarity

measures between two ICNS sets based on a set theoretic approach are also proposed in this

article. An application in decision-making and medical diagnosis methods is established based
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on the proposed similarity measures. The rest of this paper is organized in the following way:

In Section 2, we recall the fundamental concepts related to interval complex neutrosophic soft

sets. In Section 3, we develop some similarity measures of interval complex neutrosophic soft

sets based on the distance measures: Hamming distance and Euclidean distance. In Section

4, we apply these similarity measures to a decision-making problem and a medical diagnosis

with interval-valued complex neutrosophic soft information.A detailed comparison between

the tools used in this work and other existing tools in section 5. Finally, the conclusions are

offered in Section 6.

2. Preliminaries

Now, in this current section, we recapitulate the idea of soft set(SS) [14],neutrosophic set

(NS) [52, 53], interval neutrosophic set (INS) [54], complex neutrosophic set [8] and show an

overview of the I-CNSS model [36].

2.1. Neutrosophic Set (NS)

Definition 2.1. [52, 53] A N is a neutrosophic set (NS) on universe of a non-empty uni-

verse V and defined as N = {〈v, TN (v), IN (v), FN (v)〉},where TN (v), IN (v), FN (v) are truth

,indeterminacy and falsity memberships respectively, such that 0 ≤ TN (v)+IN (v)+FN (v) ≤ 3.

2.2. Interval-Neutrosophic Set (INS)

Definition 2.2. [54]. An INS A defined on V is given by:

A = v, T̃A(v), ĨA(v), F̃A(v)
{( )

: v ∈ V
}

where,

T̃A(v) =
[
p̃LA(v), p̃UA(v)

]
˜⊆ [0, 1],IA(v) =

[
q̃LA(v), q̃UA(v)

]
⊆ [0, 1] and F̃A(v) =

[
r̃LA(v), r̃UA(v)

]
⊆

[0, 1] represent the interval truth membership, interval indeterminacy membership, and interval

non-membership degrees such that 0− ≤ T̃A(v) + ĨA(v) + F̃A(v) ≤ 3+ for all v ∈ V .

2.3. Complex Neutrosophic Set (CNS)

Definition 2.3. [8] Let V be an initial universe, E be a set of parameters and A ⊂ E. Let

P (V ) denote the complex neutrosophic power set of V . Then, a pair
(
S̈, A

)
is dubbed a

complex neutrosophic set (CNS) on V , where ddotF defined as a mapping F̃ : A → P (V )

such that

S̈ (v) = α,
{ (^

T S̈(α) (v) ,
^

I S̈(α) (v) ,
^

F S̈(α) (v)
)

: α ∈ A ⊂ E, v ∈ V
}

,
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where
^

T S̈(α) (v),
^

I S̈(α) (v) and
^

F S̈(α) (v) are complex truth-membership function, complex

indeterminacy-membership function and complex false-membership function and defined as

bellow:
^

T S̈(α) (v) =
^
p S̈(α) (v) .e

j2π
^
µ S̈(α)(v)

,
^

I S̈(α) (v) =
^
q S̈(α) (v) .e

j2π
^
ω S̈(α)(v)

and
^

F S̈(α) (v) =
^
r S̈(α) (v) .e

j2π
^
Φ S̈(α)(v)

.

Where,
^
p S̈(α) (v),

^
q S̈(α) (v) and

^
r S̈(α) (v) indicate to amplitude terms and e

j2π
^
µ S̈(α)(v)

,e
j2π

^
ω S̈(α)(v)

and

e
j2π

^
Φ S̈(α)(v)

indicate to phase terms.

2.4. Soft Set (SS)

Definition 2.4. [14] Let V be an initial universe and E be a set of parameters.Then, a pair(
F̃ , E

)
is dubbed a soft set on V , where F̃ defined as a mapping F̃ : E → P (V ) such that

P (V ) denotes the power of parameters set in V .

2.5. Interval-Complex Neutrosophic Soft Set (I-CNSS)

Faisal et al. [36] introduced the idea of I-CNSS by combined both concepts SS and INS

under complex setting to address two-dimensional indeterminate and incompatible data in

periodic nature.

Definition 2.5. [36].An I-CNSS
(
Ĝ, A

)
defined on V is a set given by:(

Ĝ, A
)

=
{〈
α,

_

T Ĝ(α) (v) ,
_

I Ĝ(α) (v) ,
_

F Ĝ(α) (v)
〉

: α ∈ A ⊆ E, v ∈ V
}

.

Where,
_

ˆ
ˆT Ĝ(α) (v) = pG(α) (v) .e

jµG(α)(v)
,
_

ˆ
ˆI Ĝ(α) (v) = qG(α) (v) .e

jωG(α)(v)
,

_

ˆ
ˆ

ˆ ˆ ˆ

ˆ

F Ĝ(α) (v) = rG(α) (v) .e
jΦG(α)(v)

.

And the amplitude interval terms pG(α) (v),qG(α) (v),rG(α) (v) can be write as

pG(α) (v) =
[
pL
Ĝ(α)

(v) , pU
Ĝ(α)

(v)
]

ˆqG(α) (v) =
[
qL
Ĝ(α)

(v) , qU
Ĝ(α)

(v)
]

ˆrG(α) (v) =
[
rL
Ĝ(α)

(v) , rU
Ĝ(α)

(v)
]

ˆ ˆ ˆ

ˆ

and for the phases interval terms µG(α) (v),ωG(α) (v),ΦG(α) (v) can be write as

µG(α) (v) =
[
µL
Ĝ(α)

(v) , µU
Ĝ(α)

(v)
]

ˆωG(α) (v) =
[
ωL
Ĝ(α)

(v) , ωU
Ĝ(α)

(v)
]

ˆΦG(α) (v) =
[
ΦL
Ĝ(α)

(v) , ΦU
Ĝ(α)

(v)
]
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where pL
Ĝ(α)

(v) , qL
Ĝ(α)

(v) , rL
Ĝ(α)

(v) , pU
Ĝ(α)

(v) , qU
Ĝ(α)

(v) , rU
Ĝ(α)

(v),

µL
Ĝ(α)

(v) , ωL
Ĝ(α)

(v) , ΦL
Ĝ(α)

(v) , µU
Ĝ(α)

(v) , ωU
Ĝ(α)

(v) ,and ΦU
Ĝ(α)

(v) represent the lower and upper

bound of amplitude interval terms and phases interval terms respectively.

3. Similarity measures based on distance measures between I-CNSSs

Now, first we present several distances in the interval-complex neutrosophic soft sets (I-

CNSSs) case and support it with some numerical examples. Second, based on the proposed

distance measures between I-CNSSs, we give the following definition of similarity measures:

Definition 3.1. Assume that ξ =
(
Ĝ, A

)
, ξ̄ =

(
K̂, A

)
and ¯̄̄ξ =

(
L̂, A

)
are an interval-complex

neutrosophic soft sets (I-CNSSs) on universe of discourse V . A function d : I − CNSS (V )×
I − CNSS (V ) → [0, 1]is called distance measure I-CNSS(V) if d fulfill the following three

axioms:

(1) d
(
ξ, ξ̄
)
≥ 0 and d

(
ξ, ξ̄
)

= 0 if and only if ξ = ξ̄.

(2) d
(
ξ, ξ̄
)

= d
(
ξ̄, ξ
)
.

(3) d
(
ξ, ¯̄̄ξ
)
≤ d

(
ξ, ξ̄
)

+ d
(
ξ̄, ¯̄̄ξ
)
.(triangle inequality)

Definition 3.2. If V = {v1, v2, ..., vn}is a nonempty universal set, A = {α1, α2, ..., αm}being

a parameters set. Then for all ξ =
(
Ĝ, A

)
, ξ̄ =

(
K̂, B

)
are a I-CNSSs(V) and d a distance

measure between I-CNSSs for all αi ∈ E. Then, the diverse distances between two I-CNSSs ξ

and ξ̄ are defined as follows:

(1) The Hamming distance measure:

dH
I−CNSS

(
ξ, ξ̄
)

=

1
12

n∑
j=1

m∑
i=1

{∣∣∣∣pLG(αi)
(vj)− pLK(αi)

(vj)
∣∣∣∣+∣∣∣∣pUG(αi)

(vj)− pUK(αi)
(vj)

∣∣∣∣+∣∣∣∣qLG(αi)
(vj)− qLK(αi)

(vj)
∣∣∣∣+∣∣∣∣qUG(αi)

(vj)− qUK(αi)
(vj)

∣∣∣∣+∣∣∣∣rLG(αi)
(vj)− rLK(αi)

(vj)
∣∣∣∣+∣∣∣∣rUG(αi)

(vj)− rUK(αi)
(vj)

∣∣∣∣ +

1
2π

(∣∣∣∣µLG(αi)
(vj)− µLK(αi)

(vj)
∣∣∣∣+
∣∣∣∣µUG(αi)

(vj)− µUK(αi)
(vj)

∣∣∣∣ +
∣∣∣∣ϕLG(αi)

(vj)− ϕLK(αi)
(vj)

∣∣∣∣+∣∣∣∣ϕUG(αi)
(vj)− ϕUK(αi)

(vj)
∣∣∣∣+

∣∣∣∣ωLG(αi)
(vj)− ωLK(αi)

(vj)
∣∣∣∣+
∣∣∣∣ωUG(αi)

(vj)− ωUK(αi)
(vj)

∣∣∣∣)}
(2) The normalized Hamming distance measure:

dNHI−CNSS
(
ξ, ξ̄
)

=
dHI−CNSS(ξ,ξ̄)

mn .

(3) The Euclidean distance measure:

dE
I−CNSS

(
ξ, ξ̄
)

={
1
12

n∑
j=1

m∑
i=1

[∣∣∣∣pLG(αi)
(vj)− pLK(αi)

(vj)
∣∣∣∣2 +

∣∣∣∣pUG(αi)
(vj)− pUK(αi)

(vj)
∣∣∣∣2+

∣∣∣∣qLG(αi)
(vj)− qLK(αi)

(vj)
∣∣∣∣2+
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(vj)− qUK(αi)

(vj)
∣∣∣∣2 +

∣∣∣∣rLG(αi)
(vj)− rLK(αi)

(vj)
∣∣∣∣2 +

∣∣∣∣rUG(αi)
(vj)− rUK(αi)

(vj)
∣∣∣∣2 +

1
(2π)2

(∣∣∣∣µLG(αi)
(vj)− µLK(αi)

(vj)
∣∣∣∣2 +

∣∣∣∣µUG(αi)
(vj)− µUK(αi)

(vj)
∣∣∣∣2+
∣∣∣∣ϕLG(αi)

(vj)− ϕLK(αi)
(vj)

∣∣∣∣2+∣∣∣∣ϕUG(αi)
(vj)− ϕUK(αi)

(vj)
∣∣∣∣2+
∣∣∣∣ωLG(αi)

(vj)− ωLK(αi)
(vj)

∣∣∣∣2+
∣∣∣∣ωUG(αi)

(vj)− ωUK(αi)
(vj)

∣∣∣∣2)]} 1
2

(4) The normalized Euclidean distance measure:

dNE
I−CNSS

(
ξ, ξ̄
)

=
dE
I−CNSS (ξ,ξ̄)
√
mn

.

Based on these distance measures, the following properties clearly hold:

(a) 0 ≤ dH
I−CNSS

(
ξ, ξ̄
)
≤ mn.

(b) 0 ≤ dNH
I−CNSS

(
ξ, ξ̄
)
≤ 1.

(c) 0 ≤ dE
I−CNSS

(
ξ, ξ̄
)
≤
√
mn.

(d) 0 ≤ dNE
I−CNSS

(
ξ, ξ̄
)
≤ 1.

Theorem 3.3. All the distance measures on I-CNSSs which are given in Definition 3.2 are

distance functions of I-CNSSs.

Proof. It is clear that all the distance measures presented in Definition 3.2 fulfil the mentioned

conditions in Definition 3.1. Thus, tracking brevity, we only go to prove condition (3) (triangle

inequality) for the Hamming distance measure.

Let ξ, ξ̄ and ¯̄̄ξ be three I-CNSSs and for Hamming distance measure, we have:

dHI−CNSS
(
ξ, ξ̄
)

+dHI−CNSS

(
ξ̄, ¯̄̄ξ
)

=

1
12

n∑
j=1

m∑
i=1

{∣∣∣∣pL
Ĝ(αi)

(vj)− pLK̂(αi)
(vj)

∣∣∣∣ +
∣∣∣∣pU
Ĝ(αi)

(vj)− pUK̂(αi)
(vj)

∣∣∣∣ +
∣∣∣∣qL
Ĝ(αi)

(vj)− qLK̂(αi)
(vj)

∣∣∣∣ +∣∣∣∣qU
Ĝ(αi)

(vj)− qUK̂(αi)
(vj)

∣∣∣∣+∣∣∣∣rL
Ĝ(αi)

(vj)− rLK̂(αi)
(vj)

∣∣∣∣+ ∣∣∣∣rU
Ĝ(αi)

(vj)− rUK̂(αi)
(vj)

∣∣∣∣+

1
2π

(∣∣∣∣µL
Ĝ(αi)

(vj)− µLK̂(αi)
(vj)

∣∣∣∣+
∣∣∣∣µU
Ĝ(αi)

(vj)− µUK̂(αi)
(vj)

∣∣∣∣ +
∣∣∣∣ϕL
Ĝ(αi)

(vj)− ϕLK̂(αi)
(vj)

∣∣∣∣
+
∣∣∣∣ϕU
Ĝ(αi)

(vj)− ϕUK̂(αi)
(vj)

∣∣∣∣ +
∣∣∣∣ωL
Ĝ(αi)

(vj)− ωLK̂(αi)
(vj)

∣∣∣∣+
∣∣∣∣ωU
Ĝ(αi)

(vj)− ωUK̂(αi)
(vj)

∣∣∣∣)} +

1
12

n∑
j=1

m∑
i=1

{∣∣∣∣pL
K̂(αi)

(vj)− pLL̂(αi)
(vj)

∣∣∣∣+ ∣∣∣∣pU
K̂(αi)

(vj)− pUL̂(αi)
(vj)

∣∣∣∣+ ∣∣∣∣qL
K̂(αi)

(vj)− qLL̂(αi)
(vj)

∣∣∣∣ +∣∣∣∣qU
K̂(αi)

(vj)− qUL̂(αi)
(vj)

∣∣∣∣+∣∣∣∣rL
K̂(αi)

(vj)− rLL̂(αi)
(vj)

∣∣∣∣+∣∣∣∣rU
K̂(αi)

(vj)− rUL̂(αi)
(vj)

∣∣∣∣+
1

2π

(∣∣∣∣µL
K̂(αi)

(vj)− µLL̂(αi)
(vj)

∣∣∣∣+
∣∣∣∣µU
K̂(αi)

(vj)− µUL̂(αi)
(vj)

∣∣∣∣ +
∣∣∣∣ϕL
K̂(αi)

(vj)− ϕLL̂(αi)
(vj)

∣∣∣∣ +∣∣∣∣ϕU
K̂(αi)

(vj)− ϕUL̂(αi)
(vj)

∣∣∣∣+
∣∣∣∣ωL
K̂(αi)

(vj)− ωLL̂(αi)
(vj)

∣∣∣∣+
∣∣∣∣ωU
K̂(αi)

(vj)− ωUL̂(αi)
(vj)

∣∣∣∣)}
= 1

12

n∑
j=1

m∑
i=1

{∣∣∣∣pL
Ĝ(αi)

(vj)− pLK̂(αi)
(vj)

∣∣∣∣+ ∣∣∣∣pL
K̂(αi)

(vj)− pLL̂(αi)
(vj)

∣∣∣∣+...+ ∣∣∣∣rL
Ĝ(αi)

(vj)− rLK̂(αi)
(vj)

∣∣∣∣
+
∣∣∣∣rU
K̂(αi)

(vj)− rUL̂(αi)
(vj)

∣∣∣∣++ 1
2π

(∣∣∣∣µL
Ĝ(αi)

(vj)− µLK̂(αi)
(vj)

∣∣∣∣+
∣∣∣∣µL
K̂(αi)

(vj)− µLL̂(αi)
(vj)

∣∣∣∣+ ...+∣∣∣∣ωL
Ĝ(αi)

(vj)− ωLK̂(αi)
(vj)

∣∣∣∣+
∣∣∣∣ωU
K̂(αi)

(vj)− ωUL̂(αi)
(vj)

∣∣∣∣)}≥ 1
12

n∑
j=1

m∑
i=1

{∣∣∣∣pL
Ĝ(αi)

(vj)− pLL̂(αi)
(vj)

∣∣∣∣+
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Ĝ(αi)

(vj)− pUL̂(αi)
(vj)

∣∣∣∣ +
∣∣∣∣qL
Ĝ(αi)

(vj)− qLL̂(αi)
(vj)

∣∣∣∣ +
∣∣∣∣qU
Ĝ(αi)

(vj)− qUL̂(αi)
(vj)

∣∣∣∣ +∣∣∣
rL
Ĝ(αi)

(vj)− rLL̂(αi)
(vj)

∣∣∣∣+ ∣∣∣∣rU
Ĝ(αi)

(vj)− rUL̂(αi)
(vj)

∣∣∣∣
+ 1

2π

(∣∣∣∣µL
Ĝ(αi)

(vj)− µLL̂(αi)
(vj)

∣∣∣∣+
∣∣∣∣µU
Ĝ(αi)

(vj)− µUL̂(αi)
(vj)

∣∣∣∣+ ∣∣∣∣ϕL
Ĝ(αi)

(vj)− ϕLL̂(αi)
(vj)

∣∣∣∣
+
∣∣∣∣ϕU
Ĝ(αi)

(vj)− ϕUL̂(αi)
(vj)

∣∣∣∣+
∣∣∣∣ωL
Ĝ(αi)

(vj)− ωLL̂(αi)
(vj)

∣∣∣∣+
∣∣∣∣ωU
Ĝ(αi)

(vj)− ωUL̂(αi)
(vj)

∣∣∣∣)}
= dHI−CNSS

(
ξ, ¯̄̄ξ
)

Now, we will introduce the concept of a similarity measure between I-CNSSs. We can look

into ambiguous data in interval-complex neutrosophic soft sets by using these measures.

Definition 3.4. Assume that ξ =
(
Ĝ, A

)
, ξ̃ =

(
K̂, A

)
and

˜̃̃
ξ =

(
L̂, A

)
are an interval-complex

neutrosophic soft sets (I-CNSSs) on universe of discourse V . A function S : I − CNSS (V )×
I − CNSS (V ) → [0, 1]is called similarity measure between I-CNSSs if S fulfill the following

axioms:

(S1) 0 ≤ S
(
ξ, ξ̃
)
≤ 1,

(S2) S
(
ξ, ξ̃
)

= 1if and only if ξ = ξ̃,

(S3) S
(
ξ, ξ̃
)

= S
(
ξ̃, ξ
)
,

(S4) Ifξ ⊆ ξ̃ ⊆ ˜̃̃
ξ,then S

(
ξ,

˜̃̃
ξ
)
≤ min

{
S
(
ξ, ξ̃
)
, S
(
ξ̃,

˜̃̃
ξ
)}

.

Distance and similarity measures are related concepts in mathematics. Thus, we can use

the proposed distances in definition 3.2 to describe similarity measures between I-CNSSs. As

a result, we can provide several measures of similarity between I-CNSSs, as shown below.

• SHI−CNSS
(
ξ, ξ̃
)

= 1
1+dHI−CNSS(ξ,ξ̃)

.

• SNHI−CNSS
(
ξ, ξ̃
)

= 1
1+dNHI−CNSS(ξ,ξ̃)

.

• SEI−CNSS
(
ξ, ξ̃
)

= 1
1+dEI−CNSS(ξ,ξ̃)

.

• SNEI−CNSS
(
ξ, ξ̃
)

= 1
1+dNEI−CNSS(ξ,ξ̃)

.

Example 3.5. Let ξ =
(
Ĝ, A

)
and ξ̃ =

(
K̂, A

)
be two I-CNSSs on V = {v1, v2}and defined

as follows:

ξ =

{{
α1,

(
〈[0.4,0.6].ej2π[0.5,0.6],[0.1,0.7].ej2π[0.1,0.3],[0.3,0.5].ej2π[0.8,0.9]〉

v1

)
,(

[0.2,0.4].ej2π[0.3,0.6],[0.1,0.1].ej2π[0.7,0.9],[0.5,0.9].ej2π[0.2,0.5]

v2

)}}
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and,

ξ̃ =

{{
α1,

(
〈[0.2,0.7].ej2π[0.7,0.8],[0.4,0.9].ej2π[0.3,0.5],[0.6,0.8].ej2π[0.5,0.6]〉

v1

)
,(

[0.15,0.52].ej2π[0.1,0.3],[0,0.5].ej2π[0.6,0.8],[0.3,0.3].ej2π[0.6,0.7]

v2

)}}

Now, by Definition 3.2, we have the following results:

dH
I−CNSS

(
ξ, ξ̃
)

=

1
12 (|0.4− 0.2|+ |0.6− 0.7|+ |0.1− 0.4|+ |0.7− 0.9|+ |0.3− 0.6|+ |0.5− 0.8|+
1

2π (|0.5π − 0.7π|+ |0.6π − 0.8π|+ |0.1π − 0.3π|+ |0.3π − 0.5π|+ |0.8π − 0.5π|+ |0.9π − 0.6π|))
+ 1

12 (|0.2− 0.15|+ |0.4− 0.52|+ |0.1− 0|+ |0.1− 0.5|+ |0.5− 0.3|+ |0.9− 0.3|+
1

2π (|0.3π − 0.1π|+ |0.6π − 0.3π|+ |0.7π − 0.6π|+ |0.9π − 0.8π|+ |0.2π − 0.6π|+ |0.5π − 0.7π|))
= 0.350

and

dNHI−CNSS

(
ξ, ξ̃
)

= 0.350
4 = 0.0875

dE
I−CNSS

(
ξ, ξ̃
)

=

1
12

1

((
|0.4− 0.2|2 + |0.6− 0.7|2 + |0.1− 0.4|2 + |0.7− 0.9|2+ |0.3− 0.6|2 + |0.5− 0.8|2+

4π2

(
|0.5π − 0.7π|2 + |0.6π − 0.8π|2+ |0.1π − 0.3π|2+|0.3π − 0.5π|2+ |0.8π − 0.5π|2 + |0.9π − 0.6π|2

))
+ 1

12

(
|0.2− 0.15|2 + |0.4− 0.52|2 + |0.1− 0|2 + |0.1− 0.5|2+ |0.5− 0.3|2 + |0.9− 0.3|2 +

1
4π2

(
|0.3π − 0.1π|2+ |0.6π − 0.3π|2+|0.7π − 0.6π|2+|0.9π − 0.8π|2+ |0.2π − 0.6π|2 + |0.5π − 0.7π|2

))) 1
2

= 0.209

. and

dNEI−CNSS

(
ξ, ξ̃
)

= 0.209
2 = 0.1045

Now, by Equations in definition 3.4, respectively, we get the similarity between two I-CNSSs

as following:

SHI−CNSS
(
ξ, ξ̄
)

= 1
1+0.350 = 0.741, SNHI−CNSS

(
ξ, ξ̄
)

= 1
1+0.0875 = 0.919.

SEI−CNSS
(
ξ, ξ̄
)

= 1
1+0.209 = 0.827, SNEI−CNSS

(
ξ, ξ̄
)

= 1
1+0.1045 = 0.905.

Nonetheless, in practice, a different weight may have been assigned to the different sets. i.e,

∃wi ≥ 0, i = 1, 2, ...m, and
m∑
i=1

wi = 1,for each element vi ∈ V.Therefore, in this work, we will

propose the weighted Hamming and Euclidean distance measures for I-CNSSs.
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• The weighted Hamming distance measure:

dwH
I−CNSS

(
ξ, ξ̃
)

=

1
12

n∑
j=1

m∑
i=1

wi

{∣∣∣∣pLG(αi)
(vj)− pLK(αi)

(vj)
∣∣∣∣+ ∣∣∣∣pUG(αi)

(vj)− pUK(αi)
(vj)

∣∣∣∣+ ∣∣∣∣qLG(αi)
(vj)− qLK(αi)

(vj)
∣∣∣∣

+
∣∣∣∣qUG(αi)

(vj)− qUK(αi)
(vj)

∣∣∣∣+∣∣∣∣rLG(αi)
(vj)− rLK(αi)

(vj)
∣∣∣∣+ ∣∣∣∣rUG(αi)

(vj)− rUK(αi)
(vj)

∣∣∣∣ +

1
2π

(∣∣∣∣µLG(αi)
(vj)− µLK(αi)

(vj)
∣∣∣∣+
∣∣∣∣µUG(αi)

(vj)− µUK(αi)
(vj)

∣∣∣∣+ ∣∣∣∣ϕLG(αi)
(vj)− ϕLK(αi)

(vj)
∣∣∣∣+∣∣∣∣ϕUG(αi)

(vj)− ϕUK(αi)
(vj)

∣∣∣∣+
∣∣∣∣ωLG(αi)

(vj)− ωLK(αi)
(vj)

∣∣∣∣+
∣∣∣∣ωUG(αi)

(vj)− ωUK(αi)
(vj)

∣∣∣∣)}
and

• The normalized weighted Hamming distance measure:

dnwHI−CNSS

(
ξ, ξ̃
)

=
dwHI−CNSS(ξ,ξ̄)

mn .

• The weighted Euclidean distance measure:

dwE
I−CNSS

(
ξ, ξ̃
)

={
1
12

n∑
j=1

m∑
i=1

wi

[∣∣∣∣pLG(αi)
(vj)− pLK(αi)

(vj)
∣∣∣∣2 +

∣∣∣∣pUG(αi)
(vj)− pUK(αi)

(vj)
∣∣∣∣2+

∣∣∣∣qLG(αi)
(vj)− qLK(αi)

(vj)
∣∣∣∣2+∣∣∣∣qUG(αi)

(vj)− qUK(αi)
(vj)

∣∣∣∣2+
∣∣∣∣rLG(αi)

(vj)− rLK(αi)
(vj)

∣∣∣∣2 +
∣∣∣∣rUG(αi)

(vj)− rUK(αi)
(vj)

∣∣∣∣2 +

1
(2π)2

(∣∣∣∣µLG(αi)
(vj)− µLK(αi)

(vj)
∣∣∣∣2 +

∣∣∣∣µUG(αi)
(vj)− µUK(αi)

(vj)
∣∣∣∣2+
∣∣∣∣ϕLG(αi)

(vj)− ϕLK(αi)
(vj)

∣∣∣∣2+∣∣∣∣ϕUG(αi)
(vj)− ϕUK(αi)

(vj)
∣∣∣∣2+
∣∣∣∣ωLG(αi)

(vj)− ωLK(αi)
(vj)

∣∣∣∣2+
∣∣∣∣ωUG(αi)

(vj)− ωUK(αi)
(vj)

∣∣∣∣2)]} 1
2

• The normalized weighted Euclidean distance measure:

dnwEI−CNSS

(
ξ, ξ̃
)

=
dwEI−CNSS(ξ,ξ̄)

mn .

Also, the similarity measure on weighted Hamming and Euclidean distance measures for I-

CNSSs defined as following:

• SwHI−CNSS
(
ξ, ξ̃
)

= 1
1+dwHI−CNSS(ξ,ξ̄)

.

• SwnHI−CNSS

(
ξ, ξ̃
)

= 1
1+dnwHI−CNSS(ξ,ξ̄)

.
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• SwEI−CNSS
(
ξ, ξ̃
)

= 1
1+dwEI−CNSS(ξ,ξ̄)

.

• SwnEI−CNSS

(
ξ, ξ̃
)

= 1
1+dwnEI−CNSS(ξ,ξ̄)

.

Theorem 3.6. If S be the similarity measure between two I-CNSSs ξ, ξ̃.Then,

1. S
(
ξ, ξ̃
)

= S
(
ξ̃, ξ
)

.

2. 0 ≤ S
(
ξ, ξ̃
)
≤ 1.

3. 0 ≤ S
(
ξ, ξ̃
)

= 0 iff ξ = ξ̃.

Proof. Immediately follows from definitions 3.4.

4. Applications

I-CNSS is a hybrid tool for modeling two-dimensional information of a periodic nature in

our everyday lives. In this section, we introduce some practical examples of I-CNSSs to show

that the proposed similarity measures play an important role in solving some real-life problems

such as decision-making problems and medical diagnosis.

4.1. Similarity Measures of I-CNSSs Applied to Medical Diagnosis

In this current subsection, we developed an algorithm based on the Hamming similarity

measure of two I-CNS sets to evaluate the possibility that a sick person having related symp-

toms is suffering from typhoid. This algorithm depends on data described by two I-CNSS

models, and it is built with the assistance of a medicinal master person. where the first I-

CNSS indicates illness, and the second I-CNSS indicates the ill person. Then we find the

similarity measure of these two I-CNS sets. We also think that the person may have typhoid

if the similarity measure between these two I-CNS sets is greater than or equal to 0.6, which

can be fixed with the help of a medical professional.

4.1.1. Algorithm

Step 1: Construct a model I-CNSS over the universe V for illness, which may be developed

with the aid of a medical expert person.

Step 2: Build I-CNSS over the universe V for the patient person by helping a medical expert

person.

Step 3: Compute Hamming distance between the model I-CNSS for illness and the I-CNSS

for the patient person.

Step 4: Compute similarity Hamming measure between the I-CNSS for illness and the I-CNSS

for the patient person.
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Step 5: If the similarity Hamming measure between two I-CNSSs is greater than or equal to

0.6, then the person may possibly be suffering from typhoid, while if the similarity Hamming

measure between two I-CNSSs is less than 0.6, then the person may not possibly be suffering

from typhoid.

Now, we give a numerical example that shows a way out of these diagnosis problems from a

scientific point of view. This is done to show how the above-proposed algorithm can be used

to tell a patient if they have typhoid or not.

Example 4.1. Let V = {v1 = typhoid, v2 = not typhoid}, and

E = {α1 = flu, α2 = headache, α3 = body pain} be set of parameters which consist of

symptoms of typhoid disease.

Step 1: Construct the model I-CNSS for typhoid:

ξ ={{
α1,

(
〈[0.3,0.4].ej2π[0.4,0.5],[0.4,0.5].ej2π[0.2,0.3],[0.6,0.7].ej2π[0.1,0.2]〉

v1

)
,(

〈[0.6,0.7].ej2π[0.2,0.3],[0.2,0.3].ej2π[0.6,0.7],[0.1,0.2].ej2π[0.6,0.8]〉
v2

)}
,{

α2,

(
〈[0.3,0.4].ej2π[0.7,0.8],[0.0,0.3].ej2π[0.4,0.6],[0.3,0.4].ej2π[0.4,0.5]〉

v1

)
,(

〈[0.5,0.6].ej2π[0.2,0.3],[0.5,0.6].ej2π[0.1,0.2],[0.0,0.1].ej2π[0.2,0.4]〉
v2

)}
,{

α3,

(
〈[0.4,0.6].ej2π[0.5,0.6],[0.1,0.7].ej2π[0.1,0.3],[0.3,0.5].ej2π[0.8,0.9]〉

v1

)
,(

[0.6,0.7].ej2π[0.4,0.6],[0.1,0.1].ej2π[0.7,0.9],[0.5,0.9].ej2π[0.2,0.5]

v2

)}}
Step 2: Create two models of I-CNSS for patients X and Y, respectively, as:

ξ̃ ={{
α1,

(
〈[0.3,0.45].ej2π[0.35,0.5],[0.3,0.5].ej2π[0.25,0.35],[0.5,0.7].ej2π[0.1,0.2]〉

v1

)
,(

〈[0.2,0.4].ej2π[0.6,0.7],[0.05,0.3].ej2π[0.5,0.7],[0.3,0.4].ej2π[0.6,0.65]〉
v2

)}
,{

α2,

(
〈[0.05,0.2].ej2π[0.4,0.5],[0.1,0.2].ej2π[0.5,0.7],[0.1,0.3].ej2π[0.3,0.3]〉

v1

)
,(

〈[0.25,0.4].ej2π[0.5,0.6],[0.6,0.6].ej2π[0.2,0.25],[0.25,0.3].ej2π[0.4,0.8]〉
v2

)}
,{

α3,

(
〈[0.2,0.5].ej2π[0.4,0.5],[0,0.3].ej2π[0.14,0.2],[0.1,0.3].ej2π[0.5,0.7]〉

v1

)
,(

[0.3,0.5].ej2π[0.2,0.4],[0.2,0.2].ej2π[0.3,0.5],[0.6,0.7].ej2π[0.3,0.6]

v2

)}}
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˜̃̃
ξ ={{

α1,

(
〈[0.8,0.9].ej2π[0.3,0.6],[0.3,0.7].ej2π[0.4,0.6],[0.2,0.3].ej2π[0.4,0.5]〉

v1

)
,(

〈[0.1,0.5].ej2π[0.2,0.4],[0,0.3].ej2π[0.3,0.3],[0.2,0.3].ej2π[0.2,0.5]〉
v2

)}
,{

α2,

(
〈[0.5,0.6].ej2π[0.4,0.4],[0.1,0.2].ej2π[0.2,0.3],[0.2,0.4].ej2π[0.1,0.4]〉

v1

)
,(

〈[0.1,0.3].ej2π[0.5,0.6],[0.4,0.4].ej2π[0.1,0.2],[0.3,0.5].ej2π[0.2,0.5]〉
v2

)}
,{

α3,

(
〈[0.3,0.6].ej2π[0.2,0.3],[0.1,0.1].ej2π[0.3,0.4],[0.4,0.5].ej2π[0.4,0.6]〉

v1

)
,(

[0.6,0.6].ej2π[0.3,0.2],[0.1,0.4].ej2π[0.2,0.4],[0.3,0.5].ej2π[0.2,0.6]

v2

)}}
In ξ̄ and

˜̃̃
ξ above, which are based on the physician’s report, the amplitude term of the lower

and upper bounds of the complex interval truth membership function denotes the strength and

intensity of the symptoms that the patient suffers, and the phase term of the lower and upper

bounds of the complex interval truth membership function denotes the period of the symp-

toms. At the same time, the amplitude term of the lower and upper bounds of the complex

interval indeterminacy membership function means the inability to indeterminate these symp-

toms during the period mentioned in the phase term. The lower and upper bounds of the

complex interval falsity membership function denote the absence of these symptoms during

the period mentioned in the phase term of the lower and upper bounds of the complex interval

falsity membership function. Here it is necessary to point out that the values of the amplitude

term closer to 1 describe heavy symptoms, and values of the amplitude term closer to zero

represent moderate symptoms. The period of the phase term is defined as weeks, so for values

equal to 1, the period will be maximum.

Step 3:Based on Definition 3.2, the Hamming distance between ξand ξ̃is 0.725 while between

ξand
˜̃̃
ξis 0.821.

Step 4:Based on Definition 3.4, the similarity Hamming measure between ξand ξ̃is 0.579 while

between ξand
˜̃̃
ξis 0.549.

Step 4:Here SHI−CNSS

(
ξ, ξ̃
)
≺ 0.6and SHI−CNSS

(
ξ,

˜̃̃
ξ
)
≺ 0.6 that means both patients X and

Y may possibly suffer from no typhoid.

Remark 4.2. In case no such conclusion can be drawn with the given information then we

need to reassess all the symptoms with the help of expert and then repeat all the steps proposed

in I-CNSSM-algorithm
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4.2. Similarity Measures of I-CNSSs Applied to Multicriteria Decision Making

In this section, we developed an algorithm based on similarity measures of interval complex

neutrosophic soft sets as defined in definition 3.4 for possible application in multicriteria deci-

sion making.

4.2.1. Algorithm

Step 1: Construct a model I-CNSS ξ = (K,A) over the universe V depends on the opinion

of one of the experts and the customer satisfaction rate.

Step 2: Compute the distance measured between the optimality choice
(
[1, 1] .e2π[1,1]

)
and

αi(fori = 1, 2, 3) with the weighting vector w.

Step 3: Compute similarity measure for all the distances we got in Step 2:.

Step 4: Analyze the result and the decision is to select the alternative which has the highest

similarity to the optimality of I-CNSS.

Example 4.3. Suppose a customer wishes to buy a new computer for his personal usage.

There are four computers (four alternatives) that can be represented by V = {v1, v2, v3, v4}, a

customer can pick out one of them. The customer considers three features (attributes) in his

choice, namely performance, service, and price, which can be represented by A = {α1, α2, α3}
respectively with the weight vectors w = {0.3, 0.3, 0.4}. To help the customer choose the right

apparatus, we will apply the proposed algorithm.

Step 1: Construct the model I-CNSS for the opinion of one of the experts and the customer

satisfaction rate:

ξ ={{
α1,

(
〈[0.8,0.9].e2π[0.7,0.8],[0.2,0.3].e2π[0.1,0.2],[0.2,0.4].e2π[0.2,0.3]〉

v1

)
,

(
〈[0.4,0.65].ej2π[0.55,0.7],[0.1,0.4].ej2π[0.15,0.4],[0.4,0.6].ej2π[0.2,0.25]〉

v2

)
,

(
〈[0.3,0.7].ej2π[0.6,0.8],[0.4,0.5].ej2π[0.3,0.6],[0.5,0.8].ej2π[0.6,0.64]〉

v3

) (
〈[0.2,0.4].ej2π[0.6,0.7],[0.05,0.3].ej2π[0.5,0.7],[0.3,0.4].ej2π[0.6,0.65]〉

v4

)}
,

{
α2,

(
〈[0.5,0.6].ej2π[0.4,0.5],[0.1,0.2].ej2π[0.5,0.7],[0.1,0.3].ej2π[0.3,0.3]〉

v1

)
,

(
〈[0.3,0.45].ej2π[0.35,0.5],[0.3,0.5].ej2π[0.25,0.35],[0.5,0.7].ej2π[0.1,0.2]〉

v2

)
(
〈[0.2,0.5].ej2π[0.25,0.3],[0.4,0.7].ej2π[0.45,0.5],[0.3,0.6].ej2π[0.2,0.35]〉

v3

) (
〈[0.25,0.4].ej2π[0.5,0.6],[0.6,0.6].ej2π[0.2,0.25],[0.25,0.3].ej2π[0.4,0.8]〉

v4

)}
,

{
α3,

(
〈[0.2,0.5].ej2π[0.4,0.5],[0,0.3].ej2π[0.14,0.2],[0.1,0.3].ej2π[0.5,0.7]〉

v1

)
,

(
〈[0.6,0.6].ej2π[0.3,0.6],[0.33,0.4].ej2π[0.51,0.61],[0.4,0.8].ej2π[0.2,0.5]〉

v2

)
,

(
〈[0.3,0.45].ej2π[0.35,0.5],[0.4,0.5].ej2π[0.18,0.5],[0.6,0.9].ej2π[0.3,0.5]〉

v3

)
,
(

[0.3,0.5].ej2π[0.2,0.4],[0.2,0.2].ej2π[0.3,0.5],[0.6,0.7].ej2π[0.3,0.6]

v4

)}}
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In I-CNSS model ξ = (K,A)the interval complex neutrosophic soft values clar-

ify the expert opinion about the attributes of all alternatives. For instance, in

the interval-complex neutrosophic soft value of the alternative v1 under α1 attribute

[0.8, 0.9] .e2π[0.7,0.8], [0.2, 0.3] .e2π[0.1,0.2], [0.2, 0.4] .e2π[0.2,0.3] the truth interval membership func-

tion [0.8, 0.9] .e2π[0.7,0.8]show that the expert here means that the performance of the computer

v1 is marked by an amplitude interval value of 0.8 to 0.9, and this percentage confirms that

this computer is characterized by high performance, while the phase interval value of 0.7 to 0.8

indicate that the customer satisfied degree between 70% to 80% . While the indeterminacy in-

terval membership function [0.2, 0.3] .e2π[0.1,0.2] reveal that the expert cannot determine if this

computer has high performance or not by degree between 0.2 to 0.3, and the phase interval

value indicates the degree of confusion of the customer for this device between 10% to 20%.

Also, for the falsity interval membership function [0.2, 0.4] .e2π[0.2,0.3] show that the expert is

unsatisfied with this device by a degree ranging from 0.2 to 0.4, and the customer is unsatisfied

by a degree of 20% to 30%.

Step 2: Compute the distance measured between the optimality choice
(
[1, 1] .e2π[1,1]

)
and

αi(for i=1,2,3) with the weighting vector w = {0.3, 0.3, 0.4} and obtain the results as shown

in Table 1.

Table 1. Distance Measures results

Vi dH dE dnH dnE dnwH dnwE

v1 1.439 0.863 0.119 0.253 0.4848 0.253

v2 1.268 0.760 0.105 0.223 0.418 0.228

v3 1.166 0.699 0.097 0.205 0.388 0.203

v4 1.357 0.814 0.113 0.239 0.453 0.236

Step 3:Compute similarity measure for all the distances we got in Table 1.

Table 2. Similarity Measures results

Vi SH SE SnH SnE SnwH SnwE

v1 0.410 0.536 0.893 0.798 0.673 0.798

v2 0.440 0.568 0.904 0.817 0.705 0.814

v3 0.461 0.588 0.911 0.829 0.720 0.831

v4 0.424 0.551 0.898 0.807 0.688 0.809
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Table 3. Ordering of the given alternatives.

Ordering.

SH v3 �v2 �v4 �v1
SE v3 �v2 �v4 �v1
SnH v3 �v2 �v4 �v1
SnE v3 �v2 �v4 �v1
SnwH v3 �v2 �v4 �v1
SnwE v3 �v2 �v4 �v1

Step 4: From Table 3, we analyse the similarity values in Table 2, which we got based on the

distance measures given in Table 1. Clearly, the most useful alternative is v3, which is the one

with the highest similarity to the ideal choice.

5. Comparison with Existing Models/Methods in Literature

This work is based on the similarity measures of interval-complex neutrosophic soft sets

(I-CNSSs) and employs these measures to solve some real-life applications such as decision

making and medical diagnosis under uncertainty. In this section, we compare the I-CNSS

model to other similar models in the literature based on the characteristics in Table 4.

Table 4. Characteristic comparison of the I-CNSS with other variants.

Methods Uncertainty Three membership function Parameterization Interval form Periodicity

[52] T T F F F

[55] T F T T F

[20] T T T T F

[50] T F T F T

Our model:I-CNSS T T T T T

On the other hand, compared with INSSM [20], which used the INSS setting to describe

the decision-making information, our suggested I-CNSS is a new approach created to concep-

tualize uncertainty issues that have two dimensions. From Example 4.1, it can be noted that

the concept of INSS cannot cover the factors affecting the problem (symptoms severity and

period of symptoms) in two stages simultaneously. Because it is not adapted to deal with

two-dimensional issues, i.e., it doesn’t have enough tools to do that. But the I-CNSS model

can put the phase and amplitude terms together and can be used to represent these two vari-

ables together. So, we can say that the INSSM can’t directly handle the problem given above

with two-dimensional information in this way. Otherwise, we can say that the INSS model is a

particular case of our model I-CNSS and can be conceptualized in the form of I-CNSS. In other

words, the INSS is an I-CNSS with phase terms equal to zero. For example, the INSS. On the
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other hand, we can say that the INSS model is a particular case of our model I-CNSS and can

be conceptualized in the form of I-CNSS. In other words, the INSS is an I-CNSS with phase

terms equal to zero. For example, the INSS ([0.3, 0.7] , [0.1, 0.4] , [0.5, 0.6]) can be represented

as
(
[0.3, 0.7] .ej2π[0,0], [0.1, 0.4] .ej2π[0,0], [0.5, 0.6] .ej2π[0,0]

)
employing I-CNSS. Furthermore, our

approach I-CNSS, is appropriate for other methods such as interval intuitionistic fuzzy soft

problems, since interval intuitionistic fuzzy soft sets are a particular case of INSS and I-CNSS.

For example, the interval intuitionistic fuzzy soft value ([0.3, 0.3] , [0.5, 0.5]) can be written as

([0.3, 0.3] , [0.5, 0.5] , [0.2, 0.2]) employing INSS and hence can be written as(
[0.3, 0.3] .ej2π[0,0], [0.5, 0.5] .ej2π[0,0], [0.2, 0.2] .ej2π[0,0]

)
using I-CNSS, since the sum of the de-

grees of lower and upper interval true membership, lower and upper interval nonmembership,

and lower and upper interval indeterminacy membership of an interval intuitionistic fuzzy

value is equal to ([1, 1]) .Note that the lower and upper interval indeterminacy degree in an

interval intuitionistic fuzzy set is provided by default. It cannot be defined alone, unlike the

interval neutrosophic set, where the lower and upper interval indeterminacy membership are

determined independently and quantified explicitly.As for the CVSS model [50], this model

is based on a vague set model and also misses indeterminacy membership. Therefore, it is

difficult for this model to deal with the data of the problem entirely like our proposed model.

5.1. Pros of I-CNSS model

Based on all of the above, our proposed method has particular advantages. Firstly, the main

feature of I-CNSS is the presence of a phase and its membership in the form of an interval. Re-

searchers realized that the time period is an important factor along with the membership value

so that decision-makers can make the real decision, and it is more reliable and more acceptable

than the other existing theories in which there is no scope for considering time-period. So,

this new concept provides more scope for the decision-makers to make real decisions with more

feasibility. Secondly, a practical formula is utilised to convert the I-CNSVs (complex stats) to

the INSVs (real stats), which sustains the entirety of the original data without diminishing

or distorting them. Thirdly, our technique allows for decision-making using a simple compu-

tational procedure that does not require the use of directed operations on complex numbers.

Finally, the I-CNSS that is used in our approach has the capability to handle the imprecise,

indeterminate, inconsistent, and incomplete information that is captured by the amplitude

terms and phase terms simultaneously. As a result, the proposed method is capable of dealing

with more uncertain data.
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• Established on all that is mentioned in this comparison, we see that the similarity

measures based on I-CNSS that are given in this work are more effective in dealing

with uncertainty issues than other concepts mentioned in the literature.

6. Conclusion

Al-Sharqi et al. [36] established the idea of ICNSS as a substantial and essential general-

ization of the soft set to deal with the uncertain, inconsistent, and incomplete information

in periodic data. In this paper, we have proposed several distance measures in the case of

the interval complex neutrosophic soft sets, which are very helpful in dealing with the two-

dimensional data in some real-world applications. Based on these distance measures, we

introduced an axiomatic definition of similarity measure to measure the degree of fuzzy infor-

mation in interval complex neutrosophic soft sets. Moreover, a numerical example is given,

and relations between this similarity measure and these distances are introduced and verified.

In addition, a proposed algorithm based on these measures has been built and applied in some

daily life applications like decision-making problems and medical diagnoses. Finally, a com-

parison between the existing methods and I-CNSS was given, and some features of I-CNSS

were revealed. In future possible research, we can extend from soft to hypersoft set [56] (by

transforming the function F into a multi-attribute function). We also want to combine these

measures with other kinds of algebraic structures, such as group structures [57]- [59], ring

structures [60]- [62], and topological structures [63]- [65].
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Abstract. The aim of this paper is to extend the concept of hyperideals to the SuperHyperAlgebras. In

this paper, we introduce the concept of 2-SuperHyperLeftAlmostSemihypergroups which is a generalization of

LA-semihypergroups. Furthermore, we define and study 2-SuperHyper-LA-subsemihypergroups, SuperHyper-

Left(Right)HyperIdeals and SuperHyperHyperIdeals of 2-SuperHyperLeftAlmostSemihypergroups, and related

properties are investigated. We give an example to show that in general these two notions are different. Finally,

we show that every SuperHyperRightHyperIdeal of 2-SuperHyper-LA-semihypergroup S with pure left identity

is SuperHyperHyperIdeal.

Keywords: SuperHyperAlgebra; LA-subsemihypergroup; 2-SuperHyperLeftAlmostSemihypergroup; Super-
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—————————————————————————————————————————-

1. Introduction

The concept of left almost semihypergroups (LA-semihypergroups), which is a generalization

of LA-semigroups and semihypergroups, was introduced by Hila and Dine [9] in 2011. They

defined the concept of hyperideals and bi-hyperideals in LA-semihypergroups. Until now,

LA-semihypergroups have been applied to many fields [2, 4–6, 13, 16, 18]. In 2013, Yaqoob et

al. [17] have characterized intra-regular LA-semihypergroups by using the properties of their

left and right hyperideals and investigated some useful conditions for an LA-semihypergroup to

become an intra-regular LA-semihypergroup. In 2014, Amjad et al. [1] generalized the concepts

of locally associative LA-semigroups to hypergroupoids and studied several properties. They

defined the concept of locally associative LA-semihypergroups and characterized a locally

associative LA-semihypergroup in terms of (m,n)-hyperideals. In 2016, Khan et al. [10] proved

that an LA-semigroup S is 0(0, 2)-bisimple if and only if S is right 0-simple. In 2018, Azhar

et al. [3] applied the notion of (∈,∈ ∨qk)-fuzzy sets to LA-semihypergroups. They introduced
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the notion of (∈,∈ ∨qk)-fuzzy hyperideals in an ordered LA-semihypergroup and then derived

their basic properties. In 2019, Gulistan et al. [8] presented a new definition of generalized

fuzzy hyperideals, generalized fuzzy bi-hyperideals and generalized fuzzy normal bi-hyperideals

in an ordered LA-semihypergroup. They characterized ordered LA-semihypergroups by the

properties of their (∈γ ,∈γ ∨qδ)-fuzzy hyperideals, (∈γ ,∈γ ∨qδ)-fuzzy bi-hyperideals and (∈γ

,∈γ ∨qδ)-fuzzy normal bi-hyperideals. In 2021, Suebsung et al. [12] have introduced the notion

of left almost hyperideals, right almost hyperideals, almost hyperideals and minimal almost

hyperideals in LA-semihypergroups. In 2022, Nakkhasen [11] characterized intra-regular LA-

semihyperrings by the properties of their hyperideals.

In this paper, we extend the concept of hyperideals to the SuperHyperAlgebras. In this

paper, we introduce the concept of 2-SuperHyperLeftAlmostSemihypergroups which is a gen-

eralization of LA-semihypergroups. Furthermore, we define and study 2-SuperHyper-LA-

subsemihypergroups, SuperHyperLeft(Right)HyperIdeals and SuperHyperHyperIdeals of 2-

SuperHyperLeftAlmostSemihypergroups, and related properties are investigated. We give an

example to show that in general these two notions are different. Finally, we show that every

SuperHyperRightHyperIdeal of 2-SuperHyper-LA-semihypergroup S with pure left identity is

SuperHyperHyperIdeal.

2. Preliminaries and Basic Definitions

In this section, we give some basic definitions and properties of left almost semihypergroups

and classical-type Binary SuperHyperOperations that are required in this study.

Recall that a mapping ◦ : S×S → P∗(S), where P∗(S) denotes the family of all non empty

subsets of S, is called a hyperoperation on S. An image of the pair (x, y) is denoted by

x ◦ y. The couple (S, ◦) is called a hypergroupoid.

Let x be an elements of a non empty set of S and let A,B be two non empty subsets of S.

Then we denote A ◦B =
∪

a∈A,b∈B
a ◦ b, x ◦B = {x} ◦B and A ◦ x = A ◦ {x}.

In 2011, Hila and Dine [9] introduced the concept and notion of left almost semihypergroup

as a generalization of semigroups, LA-semigroups and semihypergroups.

Definition 2.1. [9] A hypergroupoid (S, ◦) is called a left almost semihypergroup (LA-

semihypergroup) if ◦ is left invertive law, that is (x ◦ y) ◦ z = (z ◦ y) ◦x for every x, y, z ∈ S.

Clearly, every LA-semihypergroup is LA-semigroup. If (S, ◦) is an LA-semihypergroup,

then
∪

a∈x◦y
a ◦ z =

∪
b∈z◦y

b ◦ x for all x, y, z ∈ S.

The concept of classical-type binary SuperHyperOperation was introduced by Smarandache

[14,15].
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Definition 2.2. [14, 15] Let Pn
∗ (S) be the nth-powerset of the set S such that none of

P(S),P2(S), . . . ,Pn(S) contain the empty set. A classical-type binary SuperHyperOp-

eration •n is defined as follows:

•n : S × S → Pn
∗ (S)

where Pn
∗ (S) is the nth-power set of the set S, with no empty set.

An image of the pair (x, y) is denoted by x •n y. The couple (S, •n) is called a 2-

SuperHyperGroupoid.

The following is an example of Examples of classical-type binary SuperHyperOperation (or

2-SuperHyperGroupoid).

Example 2.3. [14] Let S = {a, b} be a finite discrete set. Then its power set, with-

out the empty-set ∅, is: P(S) = {a, b, S} and P2(S) = P2 (P(S)) = P2 ({a, b, S}) =

{a, b, S, {a, S} , {b, S} , {a, b, S}}. The classical-type binary SuperHyperOperation defined as

follows, •2 : S × S → P2
∗ (S)

•2 a b

a {a, S} {b, S}
b a {a, b, S}

Then (S, •2) is a 2-SuperHyperGroupoid and is not a hypergroupoid.

3. 2-SuperHyperLeftAlmostSemihypergroups

In this section, we generalize this concept in left almost semihypergroup and introduce Su-

perHyperLeft(Right)HyperIdeals of 2-SuperHyper-LA-semihypergroups and study their prop-

erties.

The 2-SuperHyperLeftAlmostSemihypergroups is generated with the help of left almost

semihypergroups and classical-type binary SuperHyperOperations. So we can say that 2-

SuperHyperLeftAlmostSemihypergroup is the generalization of previously defined concepts

related to binary SuperHyperOperations. We consider the SuperHyperLeftAlmostSemihyper-

group as follows.

Definition 3.1. A 2-SuperHyperGroupoid (S, •n) is called a n-

SuperHyperLeftAlmostSemihypergroup (2-SuperHyper-LA-semihypergroup) if it

satisfies the SuperHyperLeftInvertive law; (x •n y) •n z = (z •n y) •n x for all x, y, z ∈ S.

The following is an example of a 2-SuperHyper-LA-semihypergroup S.

Example 3.2. Let S = {a, b} be a finite discrete set. The classical-type binary SuperHyper-

Operation defined as follows, •2 : S × S → P2
∗ (S)
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•2 a b

a {a, S} b

b {b, S} {a, b, S}
Then, as is easily seen, (S, •2) is a 2-SuperHyper-LA-semihypergroup. Since

(a •2 a) •2 b = {a, S} •2 a
= (a •2 a) ∪ (S •2 a)
= {a, S} ∪

∪
x∈S

x •2 a

= {a, S} ∪ (a •2 a) ∪ (b •2 a)
= {a, S} ∪ {a, S} ∪ {b, S}
= {a, b, S}
̸= b

= a •2 b
= a •2 (a •2 b) ,

we have •2 is not Strong SuperHyperAssociativity.

Theorem 3.3. Every 2-SuperHyper-LA-semihypergroup S satisfies the SuperHyperMedial

law, that is, for all a, b, c, d ∈ S, (a •n b) •n (c •n d) = (a •n c) •n (b •n d).

Proof. Let a, b, c and d be any elements of S. Then we have

(a •n b) •n (c •n d) = ((c •n d) •n b) •n a

= ((b •n d) •n c) •n a

= (a •n c) •n (b •n d) .

This completes the proof.

Theorem 3.4. If S is a 2-SuperHyper-LA-semihypergroup, then (a •n b)2 = a2 •n b2 for all

a, b ∈ S.

Proof. Let a and b be any elements of S. Then by Theorem 3.3,

(a •n b)2 = (a •n b) •n (a •n b)

= (a •n a) •n (b •n b)

= a2 •n b2.

An element e of a 2-SuperHyper-LA-semihypergroup S is called left identity (resp., pure

left identity) if for all a ∈ N (S), a ∈ e •n a (resp., a = e •n a). The following is an example

of a pure left identity element in 2-SuperHyper-LA-semihypergroups.
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Example 3.5. 1. Let S = {a, b} be a finite discrete set. The classical-type binary SuperHy-

perOperation defined as follows, •2 : S × S → P2
∗ (S)

•2 a b

a a {a, b, S}
b {b, S} S

Then, as is easily seen, (S, •2) is a 2-SuperHyper-LA-semihypergroup with left identity a.

2. Let S = {a, b} be a finite discrete set. The classical-type binary SuperHyperOperation

defined as follows, •2 : S × S → P2
∗ (S)

•2 a b

a a b

b b S

Then, as is easily seen, (S, •2) is a 2-SuperHyper-LA-semihypergroup with pure left identity

a.

Theorem 3.6. A 2-SuperHyper-LA-semihypergroup S with pure left identity e satisfies the

SuperHyperParamedial law, that is, for all a, b, c, d ∈ S, (a •n b) •n (c •n d) = (d •n c) •n
(b •n a).

Proof. Let a, b, c and d be any elements of S. Then we have

(a •n b) •n (c •n d) = [(e •n a) •n b] •n (c •n d)

= [(b •n a) •n e] •n (c •n d)

= [(c •n d) •n e] •n (b •n a)

= [(e •n d) •n c] •n (b •n a)

= (d •n c) •n (b •n a) .

This completes the proof.

The following may be noted from the above definitions.

Lemma 3.7. If S is a 2-SuperHyper-LA-semihypergroup with pure left identity, then a •n
(b •n c) = b •n (a •n c) holds for all a, b, c ∈ S.

Proof. Let a, b and c be any elements of S. Then by Theorem 3.3,

a • (b •n c) = (e •n a) • (b •n c)

= (e •n b) • (a •n c)

= b •n (a •n c) .

This completes the proof.

Now, we give the concept of 2-SuperHyperLeftAlmostSemihypergroups (2-SuperHyper-LA-

subsemihypergroup) of 2-SuperHyper-LA-semihypergroups.
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Definition 3.8. A nonempty subset A of a 2-SuperHyper-LA-semihypergroup S is called 2-

SuperHyperLeftAlmostSemihypergroup (2-SuperHyper-LA-subsemihypergroup)

if A •n A ⊆ A.

The following may be noted from the above definitions.

Proposition 3.9. Let A and B be two 2-SuperHyper-LA-subsemihypergroups of a 2-

SuperHyper-LA-semihypergroup S. If A ∩ B ̸= ∅, then A ∩ B is a 2-SuperHyper-LA-

subsemihypergroup of S.

Proof. Let A and B be two 2-SuperHyper-LA-subsemihypergroups of S such that A∩B ̸= ∅.
Then have that

(A ∩B) •2 (A ∩B) = [A •n (A ∩B)] ∩ [B •n (A ∩B)]

= (A •n A) ∩ (A •n B) ∩ (B •n A) ∩ (B •n B)

⊆ (A •n A) ∩ (B •n B)

⊆ A ∩B,

and so A ∩B is a 2-SuperHyper-LA-subsemihypergroup of S.

Now we mention some special class of 2-SuperHyper-LA-subsemihypergroups in a 2-

SuperHyper-LA-semihypergroup.

Definition 3.10. A nonempty subset L of a 2-SuperHyper-LA-semihypergroup S is called

SuperHyperLeft(Right)HyperIdeal if

S •n L ⊆ L (R •n S ⊆ R).

A nonempty subset I of S is called a SuperHyperHyperIdeal of S if it is both a SuperHy-

perLeft and a SuperHyperRightHyperIdeal of S.

Proposition 3.11. Let N (S) be a 2-SuperHyper-LA-semihypergroup with pure left identity.

Then the following properties hold.

(1) If L is a SuperHyperLeftHyperIdeal of S, then S •n L = L.

(2) If N (R) is a SuperHyperRightHyperIdeal of S, then R •n S = R.

(3) S •n S = S.

Proof. 1. Since L is a SuperHyperLeftHyperIdeal of S, we have S •n L ⊆ L. On the other

hand, let a be an element of S such that a ∈ L. Then we have a = e •n a ∈ S •n L and hence

S •n L = L.
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2. Since R is a SuperHyperRightHyperIdeal of S, we have R •n S ⊆ R. On the other hand,

let a be an element of S such that a ∈ R. Then we have

a = e •n a

= (e •n e) •n a

= (a •n e) •n e

⊆ (R •n S) •n S

⊆ R •n S.

Therefore we obtain that R ⊆ R •n S and hence R •n S = R.

3. The proof is similar to the proof of (2).

By applying the above definition, we state the following result.

Theorem 3.12. Let S be a 2-SuperHyper-LA-semihypergroup with pure left identity. Then

the following properties hold.

(1) If x is an element of S, then x •n S is a SuperHyperLeftHyperIdeal of S.

(2) If x is an element of S, then S •n x is a SuperHyperLeftHyperideal of S.

(3) If x is an element of S, then S •n x ∪ x •n S is a SuperHyperRightHyperIdeal of S.

Proof. 1. Let x be an element of S. By Lemma 3.7 and Proposition 3.11 (3), we have

S •n [x •n S] = x •n [S •n S]

= x •n S.

Therefore we obtain that x •n S is a SuperHyperLeftHyperIdeal of S.

2. Let x be an element of S. By Theorem 3.6 and Proposition 3.11 (3), we have

S •n (S •n x) = (S •n S) •n (S •n x)

= (x •n S) •n (S •n S)

= [(S •n S) •n S] •n x

= S •n x.

Therefore we obtain that S •n x is a SuperHyperLeftHyperIdeal of S.

3. Let x be an element of S. By Theorem 3.6, Lemma 3.7 and Proposition 3.11 (3), we

have
(S •n x ∪ x •n S) •n S = [(S •n x) •n S] ∪ [(x •n S) •n S]

= [(S •n x) •n (S •n S)] ∪ [(S •n S) •n x]

= [(S •n S) •n (x •n S)] ∪ (S •n x)

= [x •n ((S •n S) •n S)] ∪ (S •n x)

= S •n x ∪ x •n S.

Therefore we obtain that S •n x ∪ x •n S is a SuperHyperRightHyperIdeal of S.

For that, we need the following theorem.

P. Yiarayong, On 2-SuperHyperLeftAlmostSemihypergroups

Neutrosophic Sets and Systems, Vol. 51, 2022                                                                              522



Theorem 3.13. Let S be a 2-SuperHyper-LA-semihypergroup with pure left identity. Then

the following properties hold.

(1) If x is an element of S, then x2 •n S is a SuperHyperHyperIdeal of S.

(2) If x is an element of S, then S •n x2 is a SuperHyperHyperIdeal of S.

(3) If x is an element of S, then S •n x ∪ x •n S is a SuperHyperHyperIdeal of S.

Proof. 1. Let x be an element of N (S). By Theorem 3.12 (1), we have that x2 •n S is a

SuperHyperLeftHyperIdeal of N (S). Since(
x2 •n S

)
•n S = (S •n S) •n x2

= x2 •n (S •n S)

= x2 •n S,

we have x2•nS is a SuperHyperRightHyperIdeal of S and so x2•nS is a SuperHyperHyperIdeal

of S.

2. The proof is similar to the proof of (1).

3. Let x be an element of S. By Theorem 3.12 (3), we have that S •n x ∪ x •n S is a

SuperHyperRightHyperIdeal of N (S). By Theorem 3.6, Lemma 3.7 and Proposition 3.11 (3),

we have

S •n (S •n x ∪ x •n S) = [S •n (S •n x)] ∪ [S •n (x •n S)]

= [(S •n S) •n (S •n x)] ∪ [x •n (S •n S)]

= [(x •n S) •n (S •n S)] ∪ (x •n S)

= [((S •n S) •n S) •n x] ∪ (x •n S)

= S •n x ∪ x •n S.

Therefore we obtain that S •n x ∪ x •n S is a SuperHyperLeftHyperIdeal of S and hence

S •n x ∪ x •n S is a SuperHyperHyperIdeal of S.

Theorem 3.14. Every SuperHyperRightHyperIdeal of 2-SuperHyper-LA-semihypergroup S

with pure left identity is SuperHyperHyperIdeal.

Proof. Let R be a SuperHyperRightHyperIdeal of S. By Theorem 3.6, Lemma 3.7 and Propo-

sition 3.11 (3), we have

S •n R = (S •n S) •n R

= (R •n S) •n S

⊆ R •n S

⊆ R.

Therefore we obtain that R is a SuperHyperLeftHyperIdeal of S and hence R is a SuperHy-

perHyperIdeal of S.
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Abstract. Single-valued neutrosophic set is being extensively used in solving real-life problems. Recently

neutrosophic topological space was developed based on redefined single-valued neutrosophic set operations.

The purpose of this article is to investigate some covering properties of these neutrosophic topological spaces.
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countably compact ; Single-valued Neutrosophic set.

—————————————————————————————————————————-

1. Introduction

In the year 1965, Zadeh [34] introduced the concept of a fuzzy set. But after some decades

a new branch of philosophy, acknowledged as Neutrosophy, was developed and studied by

Florentin Smarandache [22–24]. Smarandache [24] proved that the neutrosophic set was a

generalization of the intuitionistic fuzzy set which was developed by K.Atanassov [1] in 1986

as an extension of a fuzzy set. Like an intuitionistic fuzzy set, an element in a neutrosophic

set has the degree of membership and the degree of non-membership but it has another grade

of membership known as the degree of indeterminacy and one very important point about the

neutrosophic set is that all three neutrosophic components are independent of one another.

After Smarandache had introduced the concept of neutrosophy, it was studied by many

researchers [7, 11, 29, 32]. In the year 2002, Smarandache [23] introduced the notion of neu-

trosophic topology on the non-standard interval. Lupiáñez [16–18] studied and investigated

many properties of neutrosophic topological spaces. In the year 2012, Salama & Alblowi [25]

introduced neutrosophic topological space as a generalization of intuitionistic fuzzy topological

space developed by D.Coker [9] in 1997. Salma et.al. [26–28] studied generalized neutrosophic
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topological space, neutrosophic filters, and neutrosophic continuous functions. In the year

2016, Karatas and Kuru [15] redefined the single-valued neutrosophic set operations and intro-

duced neutrosophic topology and then investigated some important properties of neutrosophic

topological spaces. Later, various aspects of neutrosophic topology were developed by many

researchers [2, 8, 12,30,31].

Neutrosophy, due to the fact of its flexibility and effectiveness, is attracting researchers

throughout the world and is very useful not only in the development of science and technology

but also in various other fields. For instance, Abdel-Basset et.al. [3–5] studied the applications

of neutrosophic theory in a number of scientific fields. In 2014, Pramanik and Roy [19] studied

the conflict between India and Pakistan over Jammu-Kashmir through neutrosophic game

theory. Works on medical diagnosis [13,33], decision-making problems [4,5], image processing

[14], etc. were also done in a neutrosophic environment. Recently some studies on COVID-

19 [6, 10] had been done with the help of neutrosophic theory.

There are still many concepts to be developed in connection with neutrosophic topological

spaces. Very recently Ray and Dey [20] introduced the idea of neutrosophic points on single-

valued neutrosophic sets and studied various properties. The authors [21] also studied the

relation of quasi-coincidence for neutrosophic sets. In this article, we investigate some covering

properties of neutrosophic topological spaces.

2. Preliminaries

In this section we confer some basic concepts which will be helpful in the later sections.

2.1. Definition: [22]

Let X be the universe of discourse. A neutrosophic set A over X is defined as A =

{⟨x, TA(x), IA(x),FA(x)⟩ : x ∈ X}, where the functions TA, IA,FA are real standard or non-

standard subsets of ]−0, 1+[, i.e., TA : X → ]−0, 1+[, IA : X → ]−0, 1+[, FA : X → ]−0, 1+[

and −0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

The neutrosophic set A is characterized by the truth-membership function TA,
indeterminacy-membership function IA, falsehood-membership function FA.

2.2. Definition: [32]

Let X be the universe of discourse. A single-valued neutrosophic set A over X is defined as

A = {⟨x, TA(x), IA(x),FA(x)⟩ : x ∈ X}, where TA, IA,FA are functions from X to [0, 1] and

0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

The set of all single valued neutrosophic sets over X is denoted by N (X).

Throughout this article, a neutrosophic set (NS, for short) will mean a single-valued neu-

trosophic set.
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2.3. Definition: [15]

Let A,B ∈ N (X). Then

(i) (Inclusion): If TA(x) ≤ TB(x), IA(x) ≥ IB(x),FA(x) ≥ FB(x) for all x ∈ X then A is

said to be a neutrosophic subset of B and which is denoted by A ⊆ B.

(ii) (Equality): If A ⊆ B and B ⊆ A then A = B.

(iii) (Intersection): The intersection of A and B, denoted by A ∩B, is defined as A ∩B =

{⟨x, TA(x) ∧ TB(x), IA(x) ∨ IB(x),FA(x) ∨ FB(x)⟩ : x ∈ X}.
(iv) (Union): The union of A and B, denoted by A∪B, is defined as A∪B = {⟨x, TA(x)∨

TB(x), IA(x) ∧ IB(x),FA(x) ∧ FB(x)⟩ : x ∈ X}.
(v) (Complement): The complement of the NS A, denoted by Ac, is defined as Ac =

{⟨x,FA(x), 1− IA(x), TA(x)⟩ : x ∈ X}
(vi) (Universal Set): If TA(x) = 1, IA(x) = 0,FA(x) = 0 for all x ∈ X then A is said to be

neutrosophic universal set and which is denoted by X̃.

(vii) (Empty Set): If TA(x) = 0, IA(x) = 1,FA(x) = 1 for all x ∈ X then A is said to be

neutrosophic empty set and which is denoted by ∅̃.

2.4. Definition: [25]

Let {Ai : i ∈△} ⊆ N (X), where △ is an index set. Then

(i) ∪i∈△Ai = {⟨x,∨i∈△TAi(x),∧i∈△IAi(x),∧i∈△FAi(x)⟩ : x ∈ X}.
(ii) ∩i∈△Ai = {⟨x,∧i∈△TAi(x),∨i∈△IAi(x),∨i∈△FAi(x)⟩ : x ∈ X}.

2.5. Definition: [20]

Let N (X) be the set of all neutrosophic sets over X. An NS P = {⟨x, TP (x), IP (x),FP (x)⟩ :
x ∈ X} is called a neutrosophic point (NP, for short) iff for any element y ∈ X, TP (y) =

α, IP (y) = β,FP (y) = γ for y = x and TP (y) = 0, IP (y) = 1,FP (y) = 1 for y ̸= x, where

0 < α ≤ 1, 0 ≤ β < 1, 0 ≤ γ < 1. A neutrosophic point P = {⟨x, TP (x), IP (x),FP (x)⟩ : x ∈ X}
will be denoted by P x

α,β,γ or P < x, α, β, γ > or simply by xα,β,γ . For the NP xα,β,γ , x will be

called its support. The complement of the NP P x
α,β,γ will be denoted by (P x

α,β,γ)
c or by xcα,β,γ .

2.6. Theorem: [28]

Let f : X → Y be a function. Also let A,Ai ∈ N (X), i ∈ I and B,Bj ∈ N (Y ), j ∈ J . Then

the following hold.

(i) A1 ⊆ A2 ⇔ f(A1) ⊆ f(A2), B1 ⊆ B2 ⇔ f−1(B1) ⊆ f−1(B2).

(ii) A ⊆ f−1(f(A)) and if f is injective then A = f−1(f(A)).

(iii) f−1(f(B)) ⊆ B and if f is surjective then f−1(f(B)) = B.

S.Dey & G.C.Ray, Covering properties in NTS



Neutrosophic Sets and Systems, Vol. 51, 2022 528

(iv) f−1(∪Bj) = ∪f−1(Bj) and f−1(∩Bj) = ∩f−1(Bj).

(v) f(∪Ai) = ∪f(Ai), f(∩Ai) ⊆ ∩f(Ai) and if f is injective then f(∩Ai) = ∩f(Ai).

(vi) f−1(∅̃Y ) = ∅̃X , f−1(Ỹ ) = X̃.

(vii) f(∅̃X) = ∅̃Y , f(X̃) = Ỹ if f is surjective.

2.7. Definition: [28]

Let X and Y be two non-empty sets and f : X → Y be a function. Also let A ∈ N (X) and

B ∈ N (Y ). Then

(1) Image of A under f is defined by

f(A) = {⟨y, f(TA)(y), f(IA)(y), (1− f(1−FA))(y)⟩ : y ∈ Y }, where

f(TA)(y) =

sup{TA(x) : x ∈ f−1(y)} if f−1(y) ̸= ∅

0 if f−1(y) = ∅

f(IA)(y) =

inf{IA(x) : x ∈ f−1(y)} if f−1(y) ̸= ∅

1 if f−1(y) = ∅

(1− f(1−FA))(y) =

inf{FA(x) : x ∈ f−1(y)} if f−1(y) ̸= ∅

1 if f−1(y) = ∅

(2) Pre-image of B under f is defined by

f−1(B) = {⟨x, f−1(TB)(x), f−1(IB)(x), f−1(FB)(x)⟩ : x ∈ X}

2.8. Definition: [15]

Let τ ⊆ N (X). Then τ is called a neutrosophic topology on X if

(i) ∅̃ and X̃ belong to τ .

(ii) An arbitrary union of neutrosophic sets in τ is in τ .

(iii) The intersection of any two neutrosophic sets in τ is in τ .

If τ is a neutrosophic topology on X then the pair (X, τ) is called a neutrosophic topological

space (NTS, for short) over X. The members of τ are called neutrosophic open sets in X. If

for a neutrosophic set A, Ac ∈ τ then A is said to be a neutrosophic closed set in X.

2.9. Definition: [30]

Let (X, τ) and (Y, σ) be two neutrosophic topological spaces and f : X → Y be a function.

Then

(i) f is called a neutrosophic open function if f(G) ∈ σ for all G ∈ τ

(ii) f is called a neutrosophic continuous function if f−1(G) ∈ τ for all G ∈ σ.
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3. Main Results

3.1. Definition :

Let (X, τ) be a neutrosophic topological space. A subcollection B of τ is called a neu-

trosophic base (or simply, base) for τ iff for each A ∈ τ , there exists a subcollection

{Ai : i ∈ ∆} ⊆ B such that A = ∪{Ai : i ∈△}, where △ is an index set.

A subcollection B∗ of τ is called a neutrosophic subbase (or simply, subbase) for τ iff the

finite intersection of members of B∗ forms a neutrosophic base for τ .

3.2. Definition :

An NTS (X, τ) is said to satisfy the second axiom of countability or is said to be neutrosophic

CII (or simply, CII) space iff τ has a countable neutrosophic base, i.e., an NTS (X, τ) is said

to be CII space iff there exists a countable subcollection B of τ such that every member of τ

can be expressed as the union of some members of B.

3.3. Definition :

Let (X, τ) be an NTS. A collection {Gλ : λ ∈ ∆} of neutrosophic closed sets of X is said

to have the finite intersection property (FIP, in short) iff every finite subcollection {Gλk
: k =

1, 2, · · · , n} of {Gλ : λ ∈ ∆} satisfies the condition
⋂n

k=1Gλk
̸= ∅̃, where △ is an index set.

3.4. Definition :

Let (X, τ) be an NTS and A ∈ N (X). A collection C = {Gλ : λ ∈△} of neutrosophic open

sets of X is called a neutrosophic open cover (NOC, in short) of A if A ⊆ ∪λ∈△Gλ. We then

say C covers A. In particular, C is said to be an NOC of X iff X̃ = ∪λ∈△Gλ.

Let C be an NOC of the NS A and C ′ ⊆ C. Then C ′ is called a neutrosophic open subcover

(NOSC, in short) of C if C ′ covers A.

An NOC of A is said to be countable (resp. finite) if it consists of a countable (resp. finite)

number of neutrosophic open sets.

3.5. Definition :

An NS A in an NTS (X, τ) is said to be neutrosophic compact set iff every NOC of A has

a finite NOSC. In particular, the space X is said to be neutrosophic compact space iff every

NOC of X has a finite NOSC.

3.6. Definition :

An NTS (X, τ) is said to be neutrosophic countably compact space iff every countable NOC

of X has a finite NOSC.
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3.7. Definition :

An NTS (X, τ) is said to be neutrosophic Lindelöf iff every NOC of X has a countable

NOSC.

3.8. Example :

Let X = {1, 2}, A = {⟨1, 1, 0, 0⟩, ⟨2, 0, 1, 1⟩}, B = {⟨1, 0, 1, 1⟩, ⟨2, 1, 0, 0⟩} and τ =

{X̃, ∅̃, A,B}. Clearly (X, τ) is an NTS. It is clear that (X, τ) is neutrosophic compact, neu-

trosophic countably compact as well as neutrosophic Lindelöf.

3.9. Example :

Let X = {a, b} and Gn = {⟨a, n
n+1 ,

1
n+2 ,

1
n+3⟩, ⟨b,

n+1
n+2 ,

1
n+3 ,

1
n+4⟩}, n ∈ N = {1, 2, 3, · · · }

and τ = {X̃, ∅̃} ∪ {Gn : n ∈ N}. Clearly (X, τ) is an NTS. Also it is easy to see that

∪n∈NGn = X̃. Therefore {Gn : n ∈ N} is an NOC of X. Now G1 = {⟨a, 12 ,
1
3 ,

1
4⟩, ⟨b,

2
3 ,

1
4 ,

1
5⟩},

G2 = {⟨a, 23 ,
1
4 ,

1
5⟩, ⟨b,

3
4 ,

1
5 ,

1
6⟩}, G3 = {⟨a, 34 ,

1
5 ,

1
6⟩, ⟨b,

4
5 ,

1
6 ,

1
7⟩} and so on. Clearly G1∪G2 = G2,

G1 ∪G3 = G3 and G1 ∪G2 ∪G3 = G3. So, for any finite subcollection {Gnk
: nk ∈ M , M is a

finite subset of N} of {Gn : n ∈ N}, we have
⋃

nk
Gnk

= Gm ̸= X̃, where m = max{nk : nk ∈
M}. Therefore (X, τ) is not a neutrosophic compact space.

3.10. Theorem :

Finite union of neutrosophic compact sets is neutrosophic compact.

Proof: Very obvious.

3.11. Theorem :

Let (X, τ) be an NTS. An NS A = {⟨x, TA(x), IA(x),FA(x)⟩ : x ∈ X} in X is neutrosophic

compact iff for every collection C = {Gλ : λ ∈△} of neutrosophic open sets of X satisfying

TA(x) ≤
∨

λ∈△ TGλ
(x), 1 − IA(x) ≤

∨
λ∈△(1 − IGλ

(x)) and 1 − FA(x) ≤
∨

λ∈△(1 − FGλ
(x)),

there exists a finite subcollection {Gλk
: k = 1, 2, 3, ..., n} such that TA(x) ≤

∨n
k=1 TGλk

(x),

1− IA(x) ≤
∨n

k=1(1− IGλk
(x)) and 1−FA(x) ≤

∨n
k=1(1−FGλk

(x)).

Proof: Necessary Part : Let C = {Gλ : λ ∈△} of neutrosophic open sets of X satisfying

TA(x) ≤
∨

λ∈△ TGλ
(x), 1−IA(x) ≤

∨
λ∈△(1−IGλ

(x)) and 1−FA(x) ≤
∨

λ∈△(1−FGλ
(x)). Now

1−IA(x) ≤
∨

λ∈△(1−IGλ
(x)) ⇒ 1−IA(x) ≤ 1−IGβ

(x) for some β ∈△ ⇒ IA(x) ≥ IGβ
(x) ⇒

IA(x) ≥
∧

λ∈△ IGλ
(x). Similarly 1 − FA(x) ≤

∨
λ∈△(1 − FGλ

(x)) ⇒ FA(x) ≥
∧

λ∈△FGλ
(x).

Therefore A ⊆ ∪λ∈△Gλ, i.e., C is an NOC of A. Since A is compact, so C has a finite

NOSC {Gλk
: k = 1, 2, 3, · · · , n}. Therefore A ⊆ ∪n

k=1Gλk
. Then TA(x) ≤

∨n
k=1 TGλk

(x),

IA(x) ≥
∧n

k=1 IGλk
(x) and FA(x) ≥

∧n
k=1FGλk

(x). Now IA(x) ≥
∧n

k=1 IGλk
(x) ⇒ IA(x) ≥

IGλm
(x) for some m, 1 ≤ m ≤ n ⇒ 1 − IA(x) ≤ 1 − IGλm

(x), 1 ≤ m ≤ n ⇒ 1 − IA(x) ≤
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k=1(1 − IGλk

(x)). Similarly we can show that FA(x) ≥
∧n

k=1FGλk
(x) ⇒ 1 − FA(x) ≤∨n

k=1(1 − FGλk
(x)). Thus TA(x) ≤

∨n
k=1 TGλk

(x), 1 − IA(x) ≤
∨n

k=1(1 − IGλk
(x)) and 1 −

FA(x) ≤
∨n

k=1(1−FGλk
(x)).

Sufficient Part : Let C = {Gλ : λ ∈△} be an NOC of A. Then A ⊆ ∪λ∈△Gλ, i.e.,

TA(x) ≤
∨

λ∈△ TGλ
(x), IA(x) ≥

∧
λ∈△ IGλ

(x) and FA(x) ≥
∧

λ∈△FGλ
(x). Now IA(x) ≥∧

λ∈△ IGλ
(x) ⇒ IA(x) ≥ IGα(x) for some α ⇒ 1 − IA(x) ≤ 1 − IGα(x) ⇒ 1 − IA(x) ≤∨

λ∈△(1− IGλ
(x)). Similarly FA(x) ≥

∧
λ∈△FGλ

(x) ⇒ 1−FA(x) ≤
∨

λ∈△(1−FGλ
(x)). Thus

the collection C satisfies the condition TA(x) ≤
∨

λ∈△ TGλ
(x), 1− IA(x) ≤

∨
λ∈△(1− IGλ

(x))

and 1 − FA(x) ≤
∨

λ∈△(1 − FGλ
(x)). By the hypothesis, there exists a finite subcollection

{Gλk
: k = 1, 2, 3, ..., n} such that TA(x) ≤

∨n
k=1 TGλk

(x), 1 − IA(x) ≤
∨n

k=1(1 − IGλk
(x))

and 1 − FA(x) ≤
∨n

k=1(1 − FGλk
(x)). Now 1 − IA(x) ≤

∨n
k=1(1 − IGλk

(x)) ⇒ 1 − IA(x) ≤
1 − IGλm

(x) for some m ⇒ IA(x) ≥ IGλm
(x) ⇒ IA(x) ≥

∧n
k=1 IGλk

(x). Similarly we shall

have FA(x) ≥
∧n

k=1FGλk
(x). Therefore A ⊆ ∪n

k=1Gλk
, i.e., the NOC C of A has a finite

NOSC {Gλk
: k = 1, 2, 3, · · · , n}. Thus A is neutrosophic compact.

Hence proved.

3.12. Theorem :

Let (X, τ) be an NTS. Then X is neutrosophic compact iff for every collection C = {Gλ :

λ ∈△} of neutrosophic open sets of X satisfying
∨

λ∈△ TGλ
(x) = 1,

∨
λ∈△(1− IGλ

(x)) = 1 and∨
λ∈△(1 − FGλ

(x)) = 1, there exists a finite subcollection {Gλk
: k = 1, 2, 3, ..., n} such that∨n

k=1 TGλk
(x) = 1,

∨n
k=1(1− IGλk

(x)) = 1 and
∨n

k=1(1−FGλk
(x)) = 1.

Proof: Immediate from 3.11.

3.13. Theorem :

Let β be a neutrosophic base for an NTS (X, τ). Then X is neutrosophic compact iff every

NOC of X by the members of β has a finite NOSC.

Proof: Necessary Part : Obvious.

Sufficient Part : Let β = {Bα : α ∈△} be the neutrosophic base. Also let C = {Gλ : λ ∈△}
be an NOC of X. Then each member Gλ of C is the union of some members of β and the

totality of such members of β is evidently an NOC of X. By the hypothesis, this collection

of members of β has a finite NOSC D = {Bαj : j = 1, 2, 3, · · · , n}, say. Clearly for each

Bαj in D, we can find a Gλj
in C such that Bαj ⊆ Gλj

. Therefore the finite subcollection

{Gλj
: j = 1, 2, 3, · · · , n} of C is an NOC of X. Therefore X is neutrosophic compact.

3.14. Theorem :

If the NTS (X, τ) is CII then neutrosophic compactness and neutrosophic countably com-

pactness are equivalent.
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Proof: First we show that if (X, τ) is neutrosophic compact then it is neutrosophic count-

ably compact. Let A = {Ai : i ∈△} be a countable NOC of X. Since X is compact, so A has a

finite NOSC. Therefore X is neutrosophic countably compact. Next we show that if (X, τ) is

neutrosophic countably compact then it is neutrosophic compact. Let A = {Ai : i ∈△} be any

NOC of X. Since X is CII , so there exists a countable base B = {Bn : n = 1, 2, 3, · · · } for τ .

Then each Ai ∈ A can be expressed as the union of some members of B. Let Ai =
⋃i0

k=1Bnk
,

where Bnk
∈ B and i0 may be infinity. Clearly B0 = {Bnk

} is an NOC of X. Also B0 is

countable as B0 ⊆ B. Since X is countably compact, so B0 has a finite NOSC B1, say. Since

by construction, each member of B1 is contained in one member Ai, so these Ai’s form a finite

subfamily of A and certainly a cover of X. Thus the NOC A of X has a finite NOSC. Therefore

X is neutrosophic compact. Hence Proved.

3.15. Theorem :

If the NTS (X, τ) is CII then it is neutrosophic Lindelöf.

Proof: Let A = {Ai : i ∈△} be an NOC of X. Since X is CII , so there exists a countable

base B = {Bn : n = 1, 2, 3, · · · } for τ . Then each Ai ∈ A can be expressed as the union of some

members of B. Let Ai =
⋃i0

k=1Bnk
, where Bnk

∈ B and i0 may be infinity. Let B0 = {Bnk
}.

Then B0 is an NOC of X. Also B0 is countable as B0 ⊆ B. By construction, each member of

B0 is contained in one Ai . So, these Ai’s form a countable NOSC of A. Thus the NOC A of

X has a countable NOSC. Therefore X is neutrosophic Lindelöf. Hence proved.

3.16. Theorem :

An NTS (X, τ) is neutrosophic compact iff every collection of neutrosophic closed sets with

the FIP has a non-empty intersection.

Proof: Necessary part : Let A = {Ni : i ∈△} be an arbitrary collection of neutrosophic

closed sets with the FIP. We show that ∩i∈△Ni ̸= ∅̃. On the contrary, suppose that ∩i∈△Ni = ∅̃.
Then (∩i∈△Ni)

c = (∅̃)c ⇒ ∪i∈△N
c
i = X̃. Therefore B = {N c

i : Ni ∈ A} is an NOC of X and

so B has a finite NOSC {N c
i1
, N c

i2
, ..., N c

ik
}, say. Then ∪k

j=1N
c
ij
= X̃ ⇒ ∩k

j=1Nij = ∅̃, which is

a contradiction as A has FIP. Therefore ∩i∈△Ni ̸= ∅̃.
Sufficient part : Let C = {Gi : i ∈△} be an NOC of X. Suppose that C has no finite NOSC.

Then for every finite subcollection {Gi1 , Gi2 , ..., Gik} of C, we have ∪k
j=1Gij ̸= X̃ ⇒ ∩k

j=1G
c
ij
̸=

∅̃. Therefore {Gc
i : Gi ∈ C} is a collection of neutrosophic closed sets having the FIP. By the

assumption, ∩i∈△G
c
i ̸= ∅̃ ⇒ ∪i∈△Gi ̸= X̃. This implies that C is not an NOC of X, which is a

contradiction. Therefore C must have a finite NOSC. Therefore X is neutrosophic compact.

Hence proved.

S.Dey & G.C.Ray, Covering properties in NTS



Neutrosophic Sets and Systems, Vol. 51, 2022 533

3.17. Theorem :

Let (X, τ1) and (Y, τ2) be two NTSs and let f : X → Y be a neutrosophic continuous

function. If A is neutrosophic compact in (X, τ1) then f(A) is neutrosophic compact in (Y, τ2).

Proof: Let B = {Gλ : λ ∈△} be an NOC of f(A), where Gλ = {⟨y, TGλ
(y), IGλ

(y),

FGλ
(y)⟩ : y ∈ Y }. Then f(A) ⊆ ∪λ∈△Gλ ⇒ f−1(f(A)) ⊆ f−1(∪λ∈△Gλ) ⇒ f−1(f(A)) ⊆

∪λ∈∆f
−1(Gλ) ⇒ A ⊆ ∪λ∈∆f

−1(Gλ)[∵ A ⊆ f−1(f(A))]. Since Gλ is open in Y , so f−1(Gλ)

is open in X as f is continuous. Therefore C = {f−1(Gλ) : λ ∈ ∆} is an NOC of A.

Since A is compact, so C has a finite NOSC {f−1Gλ1 , f
−1Gλ2 , · · · , f−1Gλn}. Therefore A ⊆

∪n
i=1f

−1(Gλi
) ⇒ f(A) ⊆ f(∪n

i=1f
−1(Gλi

)) ⇒ f(A) ⊆ ∪n
i=1f(f

−1(Gλi
)) ⇒ f(A) ⊆ ∪n

i=1Gλi
.

Thus the NOC B of f(A) has a finite NOSC. Therefore f(A) is neutrosophic compact. Hence

proved.

3.18. Theorem :

Let (X, τ1) and (Y, τ2) be two NTSs and let f : X → Y is a neutrosophic continuous onto

function. If (X, τ1) is neutrosophic compact then (Y, τ2) is neutrosophic compact.

Proof: Since f is onto, so f(X̃) = Ỹ . Let B = {Gλ : λ ∈ ∆} be an NOC of Y , where Gλ =

{⟨y, TGλ
(y), IGλ

(y),FGλ
(y)⟩ : y ∈ Y }. Then ∪λ∈△Gλ = Ỹ ⇒ f−1(∪λ∈∆Gλ) = f−1(Ỹ ) ⇒

∪λ∈∆f
−1(Gλ) = X̃. Since Gλ is open in Y , so f−1(Gλ) is open in X as f is continuous.

Therefore C = {f−1(Gλ) : λ ∈ ∆} is an NOC of X. Since X is compact, so C has a finite

NOSC {f−1Gλ1 , f
−1Gλ2 , · · · , f−1Gλn}. Therefore ∪n

i=1f
−1(Gλi

) = X̃ ⇒ f(∪n
i=1f

−1(Gλi
)) =

f(X̃) ⇒ ∪n
i=1f(f

−1(Gλi
)) = Ỹ ⇒ ∪n

i=1Gλi
= Ỹ .. Thus the NOC B of Y has a finite NOSC.

Therefore Y is neutrosophic compact. Hence proved.

3.19. Theorem :

Let (X, τ1) and (Y, τ2) be two NTSs and let f : X → Y is a neutrosophic continuous

onto function. If X is neutrosophic countably compact then Y is also neutrosophic countably

compact.

Proof: Since f is onto, so f(X̃) = Ỹ . Let A = {Gλ : λ ∈ ∆} be a countable NOC of Y ,

where Gλ = {⟨y, TGλ
(y), IGλ

(y),FGλ
(y)⟩ : y ∈ Y }. Then ∪λ∈△Gλ = Ỹ ⇒ f−1(∪λ∈∆Gλ) =

f−1(Ỹ ) ⇒ ∪λ∈∆f
−1(Gλ) = X̃. Since Gλ is open in Y , so f−1(Gλ) is open in X as f is

continuous. Therefore C = {f−1(Gλ) : λ ∈ ∆} is an NOC of X. Obviously C is count-

able as A is countable. Again since X is neutrosophic countably compact, so C has a finite

NOSC {f−1Gλ1 , f
−1Gλ2 , · · · , f−1Gλn}. Therefore ∪n

i=1f
−1(Gλi

) = X̃ ⇒ f(∪n
i=1f

−1(Gλi
)) =

f(X̃) ⇒ ∪n
i=1f(f

−1(Gλi
)) = Ỹ ⇒ ∪n

i=1Gλi
= Ỹ . Thus A has a finite NOSC. Hence Y is

neutrosophic countably compact.

S.Dey & G.C.Ray, Covering properties in NTS



Neutrosophic Sets and Systems, Vol. 51, 2022 534

3.20. Theorem :

Let (X, τ1) and (Y, τ2) be two NTSs and let f : X → Y is a neutrosophic continuous onto

function. If X is neutrosophic Lindelöf then Y is also neutrosophic Lindelöf.

Proof: Since f is onto, so f(X̃) = Ỹ . Let A = {Ai : i ∈△}, be an NOC of Y . Then

Ỹ =
⋃

i∈△Ai ⇒ f−1(Ỹ ) = f−1(
⋃

i∈△Ai) ⇒ X̃ =
⋃

i∈△ f−1(Ai) ⇒ {f−1(Ai) : i ∈△} is an

NOC of X. Since X is neutrosophic Lindelöf, so {f−1(Ai) : i ∈△} has a countable NOSC

B = {f−1(Aik) : k = 1, 2, 3, . . .}. Therefore X̃ =
⋃i0

k=1 f
−1(Aik), where i0 may be infinity.

This gives f(X̃) = f [
⋃i0

k=1 f
−1(Aik)] ⇒ Ỹ =

⋃i0
k=1[f(f

−1(Aik)] ⇒ Ỹ =
⋃i0

k=1Aik ⇒ {Aik : k =

1, 2, 3, · · · } an NOC of Y . Since B is countable, so {Aik : k = 1, 2, 3, · · · } is also countable.

Therefore the NOCA of Y has a countable NOSC {Aik : k = 1, 2, 3, · · · }, i.e., Y is neutrosophic

Lindelöf. Hence proved.

3.21. Theorem : (Alexander subbase lemma)

Let β be a subbase of an NTS (X, τ). ThenX is neutrosophic compact iff for every collection

of neutrosophic closed sets chosen from βc having the FIP, there is a non-empty intersection.

Proof: Necessary part : Immediate.

Sufficient Part : On the contrary, let us suppose that X is not compact. Then there

exists a collection C = {Gi : i ∈ I}, where Gi = {⟨x, TGi(x), IGi(x),FGi(x)⟩ : x ∈ X}, of
neutrosophic closed sets of X having the FIP such that ∩i∈△Gi = ∅̃. The collection of all such

collections C can be arranged in an order by using the classical inclusion(⊆) and the collection

will certainly have an upper bound. Therefore by Zorn’s lemma, there will be a maximal

collection of all the collections C. Let M = {Mj : j ∈ J} be the maximal collection, where

Mj = {⟨x, TMj (x), IMj (x),FMj (x)⟩ : x ∈ X}. This collection M has the following properties :

(i) ∅̃ /∈ M (ii) P ∈ M, P ⊆ Q ⇒ Q ∈ M (iii) P,Q ∈ M ⇒ P ∩Q ∈ M (iv) ∩(M∩ βc) = ∅̃.
Clearly the property (iv) delivers a contradiction to the hypothesis. Therefore X is compact.

Hence proved.

3.22. Definition :

An NTS (X, τ) is said to be neutrosophic locally compact iff for every NP xα,β,γ in X, there

exists neutrosophic τ -open set G such that xα,β,γ ∈ G and G is neutrosophic compact in X.

3.23. Theorem :

Every neutrosophic compact space is neutrosophic locally compact space.

Proof: Let (X, τ) be a neutrosophic compact space and let xα,β,γ be an NP in X. Since X

is neutrosophic compact and since X̃ is a neutrosophic open set containing xα,β,γ , so, X is a

neutrosophic locally compact space.
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3.24. Remark :

Every neutrosophic locally compact space need not be neutrosophic compact space. We

establish it by the following example.

LetX = N = {1, 2, 3, · · · }. For n ∈ N, we defineGn = {⟨x, TGn(x), IGn(x),FGn(x) : x ∈ X},
where TGn(x) = 1, IGn(x) = 0,FGn(x) = 0 if x ≤ n and TGn(x) = 0, IGn(x) = 1,FGn(x) = 1

if x > n. Let τ be the set consisting of ∅̃, X̃ and the neutrosophic sets Gn, n ∈ N. Obviously

(X, τ) is an NTS and it is also clear that (X, τ) is a neutrosophic locally compact space but

not a neutrosophic compact space.

3.25. Theorem :

Let f be a neutrosophic continuous function from a neutrosophic locally compact space

(X, τ) onto an NTS (Y, σ). If f is neutrosophic open function then (Y, σ) is also neutrosophic

locally compact space.

Proof: Let yp,q,r be any NP in Y . Also let xα,β,γ be an NP in X such that xα,β,γ ∈
f−1(yp,q,r). Then f(xα,β,γ) = yp,q,r. Since xα,β,γ ∈ X, and X neutrosophic locally compact,

so there exists a τ -open set G such that xα,β,γ ∈ G and G is neutrosophic compact in X.

Now xα,β,γ ∈ G ⇒ f(xα,β,γ) ∈ f(G) ⇒ yp,q,r ∈ f(G). Since f is neutrosophic continuous

and G is neutrosophic compact in X, so f(G) is neutrosophic compact in Y . Again since f

is a neutrosophic open function, so is f(G) is a σ-open set. Thus for any any NP yp,q,r in Y ,

there exists a σ-open set f(G) such that yp,q,r ∈ f(G) and f(G) is neutrosophic compact in

Y . Therefore (Y, σ) is neutrosophic locally compact space.

4. Conclusions :

In this article, we have defined neutrosophic compactness, neutrosophic countably compact-

ness, neutrosophic Lindelöfness and investigated various covering properties. Especially we

have shown that if a neutrosophic topological space is neutrosophic CII then neutrosophic

compactness and neutrosophic countably compactness are equivalent. We have proved that

the neutrosophic compactness is preserved under neutrosophic continuous function. We have

also stated and proved the neutrosophic version of “Alexander subbase lemma”. Lastly, we

have defined neutrosophic locally compact space and put forward two propositions with proofs.

Hope that the findings in this article will assist the research fraternity to move forward for the

development of different aspects of neutrosophic topology.
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Abstract. Pythagorean neutrosophic soft set (PNSS set) is a new approach towards decision making under

uncertainty. The PNSS set has much stronger abilities than the neutrosophic soft set and the Pythagorean

fuzzy soft set. In this paper, we discuss aggregated operations for aggregating the PNSS decision matrix.

The TOPSIS and VIKOR methods are strong approaches for multi criteria group decision making (MCGDM),

which is various extensions of neutrosophic soft sets. In this approach, we propose a score function based on

aggregating TOPSIS and VIKOR methods to the PNSS-positive ideal solution and the PNSS-negative ideal

solution. Also, the TOPSIS and VIKOR methods provide the weights of decision-making. Afterward, a revised

closeness is introduced to identify the optimal alternative.

Keywords: Pythagorean neutrosophic soft set, MCGDM, TOPSIS, VIKOR, aggregation operator.

—————————————————————————————————————————-

1. Introduction

The classic article of 1965, Zadeh proposed fuzzy set theory [39]. According to this definition

a fuzzy set is a function described by a membership value . It takes degrees in real unit interval.

But, later it has been seen that this definition is inadequate by considering not only the degree

of membership but also the degree of non-membership. Neutrosophic set is a generalization

of the fuzzy set and intuitionistic fuzzy set, where the truth-membership, indeterminacy-

membership, and falsity-membership are represented independently. Atanassov [3] described

a set that is called an intuitionistic fuzzy set to handle mentioned ambiguity. Since this set

has some problems in applications, Smarandache [31] introduced neutrosophy to deal with

M.Palanikumar, K. Arulmozhi, MCGDM based on TOPSIS and VIKOR using Pythagorean neutrosophic

soft with aggregation operators
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the problems that involves indeterminate and inconsistent information. Yager [38] as being

introduced by the concept of Pythagorean fuzzy sets. It has been extended from intuitionistic

fuzzy sets and is distinguished by the requirement that the square sum of their degrees of

membership and non-membership not exceed unity. A neutrosophic set is used to tackle

uncertainty using the truth, indeterminacy, and falsity membership grades by Smarandache

[30]. The theory of soft sets was proposed by [15]. Maji et al. proposed the concepts of the

fuzzy soft set [13] and the intuitionistic fuzzy soft set [14]. These two theories are applied

to solve various decision making problems. In recent years, Peng et al. [29]have extended

the fuzzy soft set to the Pythagorean fuzzy soft set. Smarandache et al. [5, 10] discussed the

concept of Pythagorean neutrosophic set approach. A decision-making (DM) problem is the

process of finding the best optional alternatives. In almost all such problems, the multiplicity

of criteria for judging the alternatives is pervasive. That is, for many such problems, the

decision maker wants to solve a multiple criteria decision making (MCDM) problem. A survey

of the MCDM methods has been presented by Hwang and Yoon [7]. A MCDM problem can

be expressed in matrix format as:

Dn×m =



C1 C2 . . . Cm

A1 a11 a12 . . . a1m

A2 a21 a22 . . . a2m
...

...
...

. . .
...

An an1 an2 . . . anm


where A1, A2, ..., An are possible alternatives among which decision makers must choose,

C1, C2, ..., Cm are criteria with which alternative performance is measured, aij is the rating

of alternative Ai in relation to criterion Cj .

Many researchers have studied the TOPSIS and VIKOR methods for decision mak-

ing problems, including Adeel et al. [1], Akram and Arshad [2], Boran et al. [4], Eraslan

and Karaaslan [6], Peng and Dai [28], Xu and Zhang [36] and Zhang and Xu [40]. In 2021,

Zulqarnain discussed the TOPSIS technique as it applies to interval valued intuitionistic fuzzy

soft sets (IVIFSS) information, where the mechanisms are assumed in terms of IVIFSNs. To

measure the degree of dependency of IVIFSS’s, [41] discussed a new correlation coefficient for

IVIFSS’s and examined some properties of the developed correlation coefficient. To achieve

the goal accurately, the TOPSIS technique may be extended to solve MADM problems. The

basic idea of TOPSIS is rather straightforward. It simultaneously considers the distances to

both positive ideal solutions (PIS) and negative ideal solutions (NIS), and a preference order

is ranked according to their relative closeness and a combination of these two distance mea-

sures. The VIKOR method focuses on ranking and selecting from a set of alternatives, and

determining compromise solutions for a problem with conflicting criteria, which can help the
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decision makers reach a final decision [16,17]. Opricovic and Tzeng [18] suggested using fuzzy

logic for the VIKOR method. Tzeng et al. [33] used and compared the VIKOR and TOPSIS

methods in solving a public transportation problem. Newly, Pythagorean fuzzy logical with

real life applications discussed many authors [8, 9, 32, 34, 35, 37]. Recently, Palanikumar et al.

discussed various field of applications including algebraic structures [11,12,19–27].

2. Preliminaries

Definition 2.1. [5] Let U be a non-empty set of the universe. A neutrosophic set A in U
is an object having the following form : A = {u, σTA (u), σIA(u), σFA (u)|u ∈ U}, where σTA (u),

σIA(u) σFA (u) represents the degree of truth membership, degree of indeterminacy membership

and degree of falsity membership of A respectively. The mapping σTA , σ
I
A, σ

F
A : U→ [0, 1] and

0 ≤ σTA (u) + σIA(u) + σFA (u) ≤ 3.

Definition 2.2. [10] Let U be a non-empty set of the universe, Pythagorean neutrosophic set

(PNSS) A in U is an object having the following form : A = {u, σTA (u), σIA(u), σFA (u)|u ∈ U},
where σTA (u), σIA(u) σFA (u) represents the degree of truth membership, degree of indeterminacy

membership and degree of falsity membership of A respectively. The mapping σTA , σ
I
A, σ

F
A :

U → [0, 1] and 0 ≤ (σTA (u))2 + (σIA(u))2 + (σFA (u))2 ≤ 2. Since A = (σTA , σ
I
A, σ

F
A ) is called a

Pythagorean neutrosophic number(PNSN).

Definition 2.3. The score function for any PNSN A = (σTA , σ
I
A, σ

F
A ) is defined as S(A) =

σ2T
A − σ2I

A − σ2F
A , where −1 ≤ S(A) ≤ 1.

3. MCGDM based on PNSS sets

Definition 3.1. Let U be a non-empty set of the universe and E be a set of parameter. The

pair (∆, A) or ∆A is called a Pythagorean neutrosophic soft set (PNSS set) on U if A v E

and ∆ : A→ PNSU, where PNSU is represent the aggregate of all Pythagorean neutrosophic

subsets of U. (ie) ∆A =

{(
e,
{

u(
σT∆A

(u),σI∆A
(u),σF∆A

(u)
)}) : e ∈ A, u ∈ U

}
.

Remark 3.2. If we write aij = σT∆A
(ej)(ui), bij = σI∆A

(ej)(ui) and cij = σF∆A
(ej)(ui), where

i = 1, 2, ...,m and j = 1, 2, ..., n then the PNSS set ∆A may be represented in matrix form as

∆A = [(aij , bij , cij)]m×n =


(a11, b11, c11) (a12, b12, c12) . . . (a1n, b1n, c1n)

(a21, b21, c21) (a22, b22, c22) . . . (a2n, b2n, c2n)
...

...
. . .

...

(am1, bm1, cm1) (am2, bm2, cm2) . . . (amn, bmn, cmn)


This matrix is called Pythagorean neutrosophic soft matrix (PNSSM).
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Definition 3.3. The cardinal set of the PNSS set ∆A over U is a PNSS set over E and

is defined as c∆A =

{
e(

σTcδA
(e),σIcζA

(e),σFcϕA (e)
) : e ∈ E

}
, where σTcδA , σIcζA and σFcϕA are

mapping from E to unit interval respectively, where σTcδA(e) = |δA(e)|
|U| , σIcζA(e) = |ζA(e)|

|U|

and σFcϕA(e) = |ϕA(e)|
|U| where |δA(e)|, |ζA(e)| and |ϕA(e)| denote the scalar cardinalities of

the PNSS sets δA(e), ζA(e) and ϕA(e)respectively, and |U| represents cardinality of the uni-

verse U. The collection of all cardinal sets of PNSS sets of U is represented as cPNSU. If

A ⊆ E = {ei : i = 1, 2, ..., n}, then c∆A ∈ cPNSU may be represented in matrix form

as [(a1j , b1j , c1j)]1×n = [(a11, b11, c11), (a12, b12, c12), ..., (a1n, b1n, c1n)], where (a1j , b1j , c1j) =

µc∆A
(ej), for j = 1, 2, ..., n. This matrix is termed as cardinal matrix of c∆A of E.

Definition 3.4. Let ∆A ∈ PNSU and c∆A ∈ cPNSU. The PNSS set aggregation operator

PNSSagg : cPNSU × PNSU → PNSS(U, E) is defined as

PNSSagg(c∆A,∆A) =

{
u

µ∆∗
A

(u) : u ∈ U

}
=

{
u(

σT
δ∗
A

(u),σI
ζ∗
A

(u),σF
ϕ∗
A

(u)

) : u ∈ U

}
. This collec-

tion is called aggregate Pythagorean neutrosophic set of PNSS set ∆A. The degree of truth

membership σTδ∗A
(u) : U → [0, 1] by σTδ∗A

(u) = 1
|E|
∑

e∈E

(
σTcδA(e), σTδA(e)

)
(u), degree of inde-

terminacy membership σIζ∗A
(u) : U → [0, 1] by σIζ∗A

(u) = 1
|E|
∑

e∈E

(
σIcζA(e), σIζA(e)

)
(u) and

degree of falsity membership σFϕ∗A
(u) : U → [0, 1] by σFϕ∗A

(u) = 1
|E|
∑

e∈E
(
σFcϕA(e), σFϕA(e)

)
(u).

The set PNSSagg(c∆A,∆A) is expressed in matrix form as

[(ai1, bi1, ci1)]m×1 =


(a11, b11, c11)

(a21, b21, c21)
...

(am1, bm1, cm1)


where [(ai1, bi1, ci1)] = µ∆∗A

(ui), for i = 1, 2, ...,m. This matrix is called PNSS aggregate

matrix of PNSSagg(c∆A,∆A) over U.

Definition 3.5. Let A = (σTij , σ
I
ij , σ

F
ij ) ∈ PNSSMm×n, then the choice matrix of PNSSM A

is given by C (A) =

[(∑n
j=1(σTij)

2

n ,
∑n
j=1(σIij)

2

n ,
∑n
j=1(σFij)

2

n

)]
m×1

∀i when weights are equal.

Definition 3.6. Let A = (σTij , σ
I
ij , σ

F
ij ) ∈ PNSSMm×n, then the weighted choice matrix

of PNSSM A is given by Cw(A) =

[(∑n
j=1 wj(σ

T
ij)

2∑
wj

,
∑n
j=1 wj(σ

I
ij)

2∑
wj

,
∑n
j=1 wj(σ

F
ij)

2∑
wj

)]
m×1

∀i where

wj > 0 are weights (means weights are unequal).

Theorem 3.7. Let ∆A be a PNSS set. Suppose that M∆A
,Mc∆A

,M∗∆A
are matrices of

∆A, c∆A,∆
∗
A respectively, then M∆A

× MT
c∆A

= M∗∆A
× |E|, where MT

c∆A
is the transpose

of Mc∆A
.
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Proof. The proof follows Definition 3.3 and Definition 3.4.

We can make a MCGDM based on PNSS sets by the following algorithms:

Algorithm-I

Step 1: Construct PNSS set ∆A over the universal U.

Step 2: Compute the cardinalities and find the cardinal set c∆A of ∆A .

Step 3: Find aggregate PNSS set ∆∗A of ∆A.

Step 4: Compute the value of score function by S(u) = σ2T
u − σ2I

u − σ2F
u , ∀u ∈ U.

Step 5: Compute S(u) is maximum is the best alternative.

Example 3.8. Suppose that an automobile company produces ten different types of cars

U = {C1, C2, ..., C10} and lets a set of parameters E = {e1, e2, ..., e5} represent fuel economy,

acceleration, top speed, ride comfort, and good power steering, respectively. Suppose that a

customer has to decide which car purchase ? Following the discussion, each car is evaluated

using a subset of parameters A = {e1, e2, e4} ⊆ E. We apply the above algorithm as follows.

Step-1: We Construct PNSS set ∆A of U is defined as below:

∆A =

{(
e1,
{

C1
(0.55,0.75,0.6) ,

C4
(0.8,0.7,0.65) ,

C7
(0.7,0.75,0.55) ,

C9
(0.9,0.5,0.8) ,

C10
(0.65,0.6,0.6)

})
,(

e2,
{

C2
(0.6,0.75,0.5) ,

C3
(0.65,0.55,0.8) ,

C5
(0.55,0.65,0.6) ,

C8
(0.65,0.7,0.7) ,

C10
(0.5,0.8,0.55)

})
,(

e4,
{

C3
(0.75,0.7,0.7) ,

C4
(0.5,0.6,0.75) ,

C6
(0.6,0.65,0.8) ,

C8
(0.7,0.75,0.7) ,

C9
(0.9,0.55,0.7)

})}
.

Step-2: The cardinal set of ∆A as c∆A =
{

e1
(0.36,0.33,0.32) ,

e2
(0.295,0.345,0.315) ,

e4
(0.345,0.325,0.365)

}
.

Step-3: The aggregate PNSS set ∆∗A of ∆A is M∆∗A
=

M∆A
×MT

c∆A
|E|

=
1

5





0.55 0 0 0 0

0 0.6 0 0 0

0 0.65 0 0.75 0

0.8 0 0 0.5 0

0 0.55 0 0 0

0 0 0 0.6 0

0.7 0 0 0 0

0 0.65 0 0.7 0

0.9 0 0 0.9 0

0.65 0.5 0 0 0





0.36

0.295

0

0.345

0


,



0.75 0 0 0 0

0 0.75 0 0 0

0 0.55 0 0.7 0

0.7 0 0 0.6 0

0 0.65 0 0 0

0 0 0 0.65 0

0.75 0 0 0 0

0 0.7 0 0.75 0

0.5 0 0 0.55 0

0.6 0.8 0 0 0





0.33

0.345

0

0.325

0


,
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

0.6 0 0 0 0

0 0.5 0 0 0

0 0.8 0 0.7 0

0.65 0 0 0.75 0

0 0.6 0 0 0

0 0 0 0.8 0

0.55 0 0 0 0

0 0.7 0 0.7 0

0.8 0 0 0.7 0

0.6 0.55 0 0 0





0.32

0.315

0

0.365

0





=





0.0396

0.0354

0.0901

0.0921

0.03245

0.0414

0.0504

0.08665

0.1269

0.0763



,



0.0495

0.05175

0.08345

0.0852

0.04485

0.04225

0.0495

0.09705

0.06875

0.0948



,



0.0384

0.0315

0.1015

0.09635

0.0378

0.0584

0.0352

0.0952

0.1023

0.07305





.

Hence, ∆∗A =
{

C1
(0.0396, 0.0495, 0.0384) ,

C2
(0.0354, 0.05175, 0.0315) ,

C3
(0.0901, 0.08345, 0.1015) ,

C4
(0.0921, 0.0852, 0.09635) ,

C5
(0.03245, 0.04485, 0.0378) ,

C6
(0.0414, 0.04225, 0.0584) ,

C7
(0.0504, 0.0495, 0.0352) ,

C8
(0.08665, 0.09705, 0.0952) ,

C9
(0.1269, 0.06875, 0.1023) ,

C10
(0.0763, 0.0948, 0.07305)

}
.

Step-4: The values of the score function S(Ci) for each element of U are tabulated as follows.

Car S(Ci)

C1 −0.00236

C2 −0.00242

C3 −0.00915

C4 −0.00806

C5 −0.00239

C6 −0.00348

C7 −0.00115

C8 −0.01097

C9 0.00091

C10 −0.0085

Figure 1 Graphical representation using MCGDM based on PNSS.

Step 5: Since maxi S(Ci) = 0.00091 which corresponds to C9. Therefore in this case the most

suitable car C9 for the customer would be purchased.
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Algorithm-II

Step-1: Construct Pythagorean neutrosophic soft matrix (PNSS matrix)

on the basis of the parameters.

Step-2: Case-I (Equal weights) Compute the choice matrix for the positive membership,

neutral membership and negative membership of PNSS matrix.

Case-II (Unequal weights) Compute the choice matrix for the positive membership,

neutral membership and negative membership of PNSS matrix.

Step-3: Choose alternative with maximum score value.

Case-I: By Example 3.8,

C (A) =





0.0605

0.072

0.197

0.178

0.0605

0.072

0.098

0.1825

0.324

0.1345



,



0.1125

0.1125

0.1585

0.17

0.0845

0.0845

0.1125

0.2105

0.1105

0.2



,



0.072

0.05

0.226

0.197

0.072

0.128

0.0605

0.196

0.226

0.1325





Score value =

Car S(Ci)

C1 −0.01418

C2 −0.00997

C3 −0.03739

C4 −0.03603

C5 −0.00866

C6 −0.01834

C7 −0.00671

c8 −0.04942

C9 0.04169

C10 −0.03947

Case-II: Weights (wj) = {0.16, 0.19, 0.25, 0.22, 0.18}.
By Example 3.8,

Cw(A) =





0.0484

0.0684

0.204025

0.1574

0.057475

0.0792

0.0784

0.188075

0.3078

0.1151



,



0.09

0.106875

0.165275

0.1576

0.080275

0.09295

0.09

0.21685

0.10655

0.1792



,



0.0576

0.0475

0.2294

0.19135

0.0684

0.1408

0.0484

0.2009

0.2102

0.115075





Score value =

Car S(Ci)

C1 −0.00908

C2 −0.009

C3 −0.03831

C4 −0.03668

C5 −0.00782

C6 −0.02219

C7 −0.0043

C8 −0.05201

C9 0.0392

C10 −0.03211
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Algorithm-III

Step-1: Obtain the aggregated Pythagorean neutrosophic weighted averaging

(PNSWA) numbers C (A) =
(∑n

j=1wjσ
T
ij ,
∑n

j=1wjσ
I
ij ,
∑n

j=1wjσ
F
ij

)
.

Step-2: Compute the score function of S(Ci).
Step-3: Select the optimal alternative by maxi S(Ci) value.

Weights (wj) = {0.16, 0.19, 0.25, 0.22, 0.18}.
By Example 3.8,

C (A) =





0.088

0.114

0.2885

0.238

0.1045

0.132

0.112

0.2775

0.342

0.199



,



0.12

0.1425

0.2585

0.244

0.1235

0.143

0.12

0.298

0.201

0.248



,



0.096

0.095

0.306

0.269

0.114

0.176

0.088

0.287

0.282

0.2005





Score value =

Car S(Ci)

C1 −0.01587

C2 −0.01634

C3 −0.07723

C4 −0.07525

C5 −0.01733

C6 −0.034

C7 −0.0096

C8 −0.09417

C9 −0.00296

C10 −0.0621

3.1. Analysis for PNSS-Methods:

Analysis of final ranking as follows:

Methods Ranking of alternatives Optimal alternatives

Algorithm− I C8 ≤ C3 ≤ C4 ≤ C6 ≤ C2 ≤ C5 ≤ C1 ≤ C7 ≤ C10 ≤ C9 C9
Algorithm− II Case− (i) C8 ≤ C10 ≤ C3 ≤ C4 ≤ C6 ≤ C1 ≤ C2 ≤ C5 ≤ C7 ≤ C9 C9
Algorithm− II Case− (ii) C8 ≤ C3 ≤ C4 ≤ C10 ≤ C6 ≤ C1 ≤ C2 ≤ C5 ≤ C7 ≤ C9 C9

Algorithm− III C8 ≤ C3 ≤ C4 ≤ C10 ≤ C6 ≤ C5 ≤ C2 ≤ C1 ≤ C7 ≤ C9 C9

Therefore most suitable car C9 for the customer would be purchased.

4. MCGDM based on PNSS-TOPSIS aggregating operator

Algorithm-IV (PNSS-TOPSIS)

Step-1: Assume that D = {Di : i ∈ N} is a finite set of decision makers/experts, C =

{zi : i ∈ N} is the finite collection of alternatives and D = {ei : i ∈ N} is a finite family of

parameters/criterion.

Step-2: By selecting the linguistic terms and constructing weighted parameter matrix P can
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be written as

P = [wij ]n×m =



w11 w12 . . . w1m

w21 w22 . . . w2m

...
...

. . .
...

wi1 wi2 . . . wim

...
...

. . .
...

wn1 wn2 . . . wnm


Where wij is the weight assigned by the expert Di to the alternative Pj by considering

linguistic variables.

Step-3: Construct weighted normalized decision matrix using the following

N̂ = [n̂ij ]n×m =



n̂11 n̂12 . . . n̂1m

n̂21 n̂22 . . . n̂2m
...

...
. . .

...

n̂i1 n̂i2 . . . n̂im
...

...
. . .

...

n̂n1 n̂n2 . . . n̂nm


where n̂ij =

wij√∑n
i=1 w

2
ij

is the normalized criteria rating and obtaining the weighted vector

W = (m1,m2, ...,mm), where mi = wi√∑n
l=1 wli

is the relative weight of the jth criterion and

wj =
∑n
i=1 n̂ij
n .

Step-4: Construct PNSS decision matrix can be calculate as follows

Di = [xijk]l×m =



xi11 xi12 . . . xi1m

xi21 xi22 . . . xi2m
...

...
. . .

...

xij1 xij2 . . . xijm
...

...
. . .

...

xil1 xil2 . . . xilm


Where xijk is a PNSS element for ith decision maker so that Di for each i. Then obtain the

aggregating matrix A = D1+D2+...+Dn
n = [yjk]l×m.

Step-5: Find the weighted PNSS decision matrix by

Y = [zjk]l×m =



z11 z12 . . . z1m

z21 z22 . . . z2m
...

...
. . .

...

zj1 zj2 . . . zjm
...

...
. . .

...

zl1 zl2 . . . zlm


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Where zjk = mk × yjk.
Step-6: Calculate PNSSV-PIS and PNSSV-NIS. Now,

PNSSV-PIS = [z+
1 , z

+
2 , ..., z

+
l ] = {(∨kzjk,∧kzjk,∧kzjk) : k = 1, 2, ...,m} and PNSSV-PIS =

[z−1 , z
−
2 , ..., z

−
l ] = {(∧kzjk,∨kzjk,∨kzjk) : k = 1, 2, ...,m}, where ∨ stands for PNSS union and

∧ represents PNSS intersection.

Step-7: Compute PNSS-Euclidean distances of each alternative from PNSSV-PIS and

PNSSV-NIS. Now, (d+
j )2 =

∑m
k=1

{
(σT+
jk − σ

T+
j )2 + (σI+jk − σ

I+
j )2 + (σF+

jk − σ
F+
j )2

}
and

(d−j )2 =
∑m

k=1

{
(σT−jk − σ

T−
j )2 + (σI−jk − σ

I−
j )2 + (σF−jk − σ

F−
j )2

}
, where j = 1, 2, ..., n.

Step-8: Calculate the relative closeness of each alternative to the ideal solution by C∗(zj) =
d−j

d+
j +d−j

∈ [0, 1].

Step-9: The rank of alternatives in decreasing or increasing order of their relative closeness

coefficients. The bigger C∗(zj), the more desirable alternative zj .

Step-10: The best alternative is the one with the highest relative closeness to the ideal

solution.

Example 4.1. Assume that a firm plans to invest some money in stock exchange by purchasing

some shares of best five companies. In order to minimize the risk factor, they decide to invest

their money 30%, 25%, 20%, 15% and 10% in accordance with the top ranked five companies.

Step-1: Assume that D = {Di : i = 1, 2, 3, 4, 5} is a finite set of decision makers/experts,

C = {zi : i = 1, 2, ..., 10} is the collection of companies/alternatives and D = {ei : i =

1, 2, ..., 5} is a finite family of parameters/criterion, where e1 = Momentum, e2 = Value, e3 =

Growth, e4 = Volatility, e5 = Quality.

Step-2: Forms a Linguistic terms for judging alternatives as given below:

Linguistic terms Fuzzy weights

V ery Good Testing(V GT ) 0.95

Good Testing(GT ) 0.80

Average Testing(AT ) 0.65

Poor Testing(PT ) 0.50

V ery Poor Testing(V PT ) 0.35

Construct weighted parameter matrix

P = [wij ]5×5

=



GC V GC PC V PC AC

AC GC V PC PC GC

PC AC V GC V GC V PC

V GC PC AC GC PC

AC V PC V GC GC V PC


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=



0.8 0.95 0.5 0.35 0.65

0.65 0.8 0.35 0.5 0.8

0.5 0.65 0.95 0.95 0.35

0.95 0.5 0.65 0.8 0.5

0.65 0.35 0.95 0.8 0.35


Where wij is the weight provided by the specialist Di to each parameter Pj .

Step-3: The normalized weighted decision matrix is

N̂ = [n̂ij ]5×5

=



0.4926 0.6214 0.3101 0.219 0.5208

0.4002 0.5233 0.2171 0.3128 0.641

0.3079 0.4251 0.5892 0.5943 0.2804

0.585 0.327 0.4031 0.5005 0.4006

0.4002 0.2289 0.5892 0.5005 0.2804


.

And weighted vector is W = (0.1231, 0.1308, 0.124, 0.1251, 0.1603).

Step-4: The aggregated decision matrix A can be written as

A =
D1 + D2 + D3 + D4 + D5

5

=



(0.78, 0.48, 0.7) (0.7, 0.45, 0.6) (0.68, 0.6, 0.65) (0.65, 0.75, 0.9) (0.78, 0.57, 0.6)

(0.8, 0.7, 0.9) (0.65, 0.75, 0.85) (0.64, 0.66, 0.64) (0.69, 0.8, 0.67) (0.68, 0.81, 0.7)

(0.75, 0.65, 0.75) (0.72, 0.68, 0.42) (0.72, 0.87, 0.45) (0.74, 0.7, 0.59) (0.62, 0.56, 0.85)

(0.8, 0.95, 0.62) (0.9, 0.8, 0.65) (0.85, 0.8, 0.41) (0.81, 0.8, 0.56) (0.9, 0.69, 0.75)

(0.8, 0.55, 0.95) (0.55, 0.65, 0.9) (0.62, 0.61, 0.68) (0.69, 0.54, 0.67) (0.68, 0.62, 0.7)

(0.84, 0.83, 0.62) (0.9, 0.8, 0.45) (0.9, 0.43, 0.73) (0.83, 0.49, 0.8) (0.9, 0.68, 0.45)

(0.79, 0.65, 0.75) (0.75, 0.55, 0.65) (0.78, 0.65, 0.55) (0.65, 0.75, 0.9) (0.8, 0.57, 0.6)

(0.75, 0.7, 0.68) (0.76, 0.7, 0.42) (0.8, 0.43, 0.43) (0.47, 0.8, 0.85) (0.83, 0.5, 0.55)

(0.85, 0.61, 0.74) (0.66, 0.58, 0.65) (0.7, 0.62, 0.78) (0.4, 0.9, 0.64) (0.58, 0.77, 0.6)

(0.9, 0.55, 0.65) (0.63, 0.62, 0.8) (0.69, 0.72, 0.55) (0.83, 0.6, 0.49) (0.62, 0.49, 0.78)


= [yjk]10×5

Step-5: The weighted PNSS decision matrix Y can be written as Y = mk × yjk =

(0.0961, 0.0591, 0.0862) (0.0916, 0.0589, 0.0785) (0.0843, 0.0744, 0.0806) (0.0813, 0.0938, 0.1126) (0.125, 0.0913, 0.0962)

(0.0985, 0.0862, 0.1108) (0.085, 0.0981, 0.1112) (0.0794, 0.0819, 0.0794) (0.0863, 0.1001, 0.0838) (0.109, 0.1298, 0.1122)

(0.0924, 0.08, 0.0924) (0.0942, 0.089, 0.0549) (0.0893, 0.1079, 0.0558) (0.0926, 0.0876, 0.0738) (0.0994, 0.0897, 0.1362)

(0.0985, 0.117, 0.0764) (0.1177, 0.1047, 0.085) (0.1054, 0.0992, 0.0509) (0.1013, 0.1001, 0.0701) (0.1442, 0.1106, 0.1202)

(0.0985, 0.0677, 0.117) (0.0719, 0.085, 0.1177) (0.0769, 0.0757, 0.0843) (0.0863, 0.0676, 0.0838) (0.109, 0.0994, 0.1122)

(0.1034, 0.1022, 0.0764) (0.1177, 0.1047, 0.0589) (0.1116, 0.0533, 0.0905) (0.1039, 0.0613, 0.1001) (0.1442, 0.109, 0.0721)

(0.0973, 0.08, 0.0924) (0.0981, 0.0719, 0.085) (0.0967, 0.0806, 0.0682) (0.0813, 0.0938, 0.1126) (0.1282, 0.0913, 0.0962)

(0.0924, 0.0862, 0.0837) (0.0994, 0.0916, 0.0549) (0.0992, 0.0533, 0.0533) (0.0588, 0.1001, 0.1064) (0.133, 0.0801, 0.0881)

(0.1047, 0.0751, 0.0911) (0.0863, 0.0759, 0.085) (0.0868, 0.0769, 0.0967) (0.05, 0.1126, 0.0801) (0.0929, 0.1234, 0.0962)

(0.1108, 0.0677, 0.08) (0.0824, 0.0811, 0.1047) (0.0856, 0.0893, 0.0682) (0.1039, 0.0751, 0.0613) (0.0994, 0.0785, 0.125)


= [zjk]10×5.
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Step-6: We find PNSSV-PIS and PNSSV-NIS can be written as

z+ PNSSV − PIS

z+1 (0.125, 0.0589, 0.0785)

z+2 (0.109, 0.0819, 0.0794)

z+3 (0.0994, 0.08, 0.0549)

z+4 (0.1442, 0.0992, 0.0509)

z+5 (0.109, 0.0676, 0.0838)

z+6 (0.1442, 0.0533, 0.0589)

z+7 (0.1282, 0.0719, 0.0682)

z+8 (0.133, 0.0533, 0.0533)

z+9 (0.1047, 0.0751, 0.0801)

z+10 (0.1108, 0.0677, 0.0613)

z− PNSSV −NIS

z−1 (0.0813, 0.0938, 0.1126)

z−2 (0.0794, 0.1298, 0.1122)

z−3 (0.0893, 0.1079, 0.1362)

z−4 (0.0985, 0.117, 0.1202)

z−5 (0.0719, 0.0994, 0.1177)

z−6 (0.1034, 0.109, 0.1001)

z−7 (0.0813, 0.0938, 0.1126)

z−8 (0.0588, 0.1001, 0.1064)

z−9 (0.05, 0.1234, 0.0967)

z−10 (0.0824, 0.0893, 0.125)

Step-7: We found PNSS euclidean distances of each alternative from PNSSV-PIS and PNSSV-

NIS.

Alternative (zi) d+i d−i

z1 0.0979 0.0906

z2 0.0899 0.0964

z3 0.0979 0.1446

z4 0.1166 0.1174

z5 0.0863 0.0859

z6 0.1282 0.1025

z7 0.0983 0.0851

z8 0.1408 0.1381

z9 0.0906 0.1217

z10 0.0937 0.1101

Step-8: We calculate closeness coefficients of each alternative from PNSSV-PIS and PNSSV-

NIS.

Alternative (zi) C∗
i

z1 0.4807

z2 0.5174

z3 0.5962

z4 0.5017

z5 0.4988

z6 0.4444

z7 0.4639

z8 0.4951

z9 0.5734

z10 0.5404
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Step-9: The order of the alternatives for C∗i is z3 ≥ z9 ≥ z10 ≥ z2 ≥ z4 ≥ z5 ≥ z8 ≥ z1 ≥
z7 ≥ z6.

Figure 2 Graphical representation using MCGDM based on TOPSIS.

Step-10: The above ranking, it conclude that the firm should z3 invest 30%, z9 invest 25%,

z10 invest 20%, z2 invest 15% and z4 invest 10%.

5. MCGDM based on PNSS-VIKOR aggregating operator

Algorithm-V (PNSS-VIKOR)

Step-1: Assume that D = {Di : i ∈ N} is a finite set of decision makers/experts, C =

{zi : i ∈ N} is the finite collection of alternatives and D = {ei : i ∈ N} is a finite family of

parameters/criterion.

Step-2: By selecting the linguistic terms and constructing weighted parameter matrix P can

be written as

P = [wij ]n×m =



w11 w12 . . . w1m

w21 w22 . . . w2m

...
...

. . .
...

wi1 wi2 . . . wim

...
...

. . .
...

wn1 wn2 . . . wnm


Where wij is the weight assigned by the expert Di to the alternative Pj by considering

linguistic variables.

Step-3: Construct weighted normalized decision matrix using the following

N̂ = [n̂ij ]n×m =



n̂11 n̂12 . . . n̂1m

n̂21 n̂22 . . . n̂2m
...

...
. . .

...

n̂i1 n̂i2 . . . n̂im
...

...
. . .

...

n̂n1 n̂n2 . . . n̂nm


where n̂ij =

wij√∑n
i=1 w

2
ij

is the normalized criteria rating and obtaining the weighted vector

W = (m1,m2, ...,mm), where mi = wi√∑n
l=1 wli

is the relative weight of the jth criterion and

wj =
∑n
i=1 n̂ij
n .
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Step-4: Construct PNSS decision matrix can be calculated as

Di = [xijk]l×m =



xi11 xi12 . . . xi1m

xi21 xi22 . . . xi2m
...

...
. . .

...

xij1 xij2 . . . xijm
...

...
. . .

...

xil1 xil2 . . . xilm


Where xijk is a PNSS element for ith decision maker so that Di for each i. Then obtain the

aggregating matrix A = D1+D2+...+Dn
n = [yjk]l×m.

Step-5: Construct the weighted PNSS decision matrix by

Y = [zjk]l×m =



z11 z12 . . . z1m

z21 z22 . . . z2m
...

...
. . .

...

zj1 zj2 . . . zjm
...

...
. . .

...

zl1 zl2 . . . zlm


Where zjk = mk × yjk.
Step-6: Calculate the values of PNSSV-PIS and PNSSV-NIS. Now, PNSSV-PIS =

[z+
1 , z

+
2 , ..., z

+
l ] = {(∨kzjk,∧kzjk,∧kzjk) : j = 1, 2, ..., l} and PNSSV-PIS = [z−1 , z

−
2 , ..., z

−
l ] =

{(∧kzjk,∨kzjk,∨kzjk) : j = 1, 2, ..., l}, where ∨ stands for PNSS union and ∧ represents PNSS

intersection.

Step-7: Find the values of utility Si, individual regret Ri and compromise Qi, where Si =∑m
j=1mj

(
d(zij ,z

+
j )

d(z+
j ,z
−
j )

)
, Ri = maxmj=1mj

(
d(zij ,z

+
j )

d(z+
j ,z
−
j )

)
and Qi = κ

(
Si−S−

S +−S−

)
+ (1−κ)

(
Ri−R−

R+−R−

)
.

Where S + = maxi Si, S − = mini Si, R+ = maxi Ri and R− = mini Ri. The real number

κ is called a coefficient of decision mechanism. The role of κ is that if compromise solution is

to be selected by majority if κ > 0.5; for consensus if κ = 0.5 and κ < 0.5 represents veto. Let

mj represents the weight of the jth criteria.

Step-8: The rank of choices and derive compromise solution. Arrange Si, Ri and Qi in

increasing order to make these three ranking lists. The alternative zα will be declared com-

promise solution if it ranks the best in Qi (having least value) and satisfies the following two

requirements simultaneously:

[C − 1] acceptable: If zα and zβ represent top alternatives in Qi, then Q(zβ)−Q(zα) ≥ 1
n−1 ,

where n is the number of parameters.

[C − 2] acceptable: The alternative zα should be best ranked by Si and /or Ri.

If above two conditions are not met simultaneously, then there exist multiple compromise so-

lutions:
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(i) If only condition C − 1 is satisfied, then both alternatives zα and zβ are called the compro-

mise solutions:

(ii) If condition C − 1 is not satisfied, then the alternatives zα, zβ,..., zζ are called the com-

promise solutions, where zζ is founded by Q(zζ)−Q(zα) ≥ 1
n−1 .

Example 5.1. We resolve Example 4.1 using VIKOR method. The first five steps are the

same as in Example 4.1. So we start with step 6.

Step-6: We compute PNSSV-PIS and PNSSV-NIS are listed as follows.

z+ PNSSV − PIS

z+1 (0.1108, 0.0591, 0.0764)

z+2 (0.1177, 0.0589, 0.0549)

z+3 (0.1116, 0.0533, 0.0509)

z+4 (0.1039, 0.0613, 0.0613)

z+5 (0.1442, 0.0785, 0.0721)

z− PNSSV −NIS

z−1 (0.0924, 0.117, 0.117)

z−2 (0.0719, 0.1047, 0.1177)

z−3 (0.0769, 0.1079, 0.0967)

z−4 (0.05, 0.1126, 0.1126)

z−5 (0.0929, 0.1298, 0.1362)

Step-7: Taking κ = 0.5, we found that the values of utility Si, individual regret Ri and

compromise Qi for each alternative zi.

Alternative (z) Si Ri Qi

z1 0.2972 0.0897 0.2208

z2 0.457 0.1225 0.9271

z3 0.3763 0.1309 0.7881

z4 0.4024 0.0997 0.5843

z5 0.4104 0.1189 0.7732

z6 0.3065 0.0737 0.1049

z7 0.3031 0.0897 0.2364

z8 0.2666 0.1033 0.2591

z9 0.4212 0.1196 0.8079

z10 0.3184 0.1148 0.4958

Step-8: The rank of alternatives for Qi: z6 ≤ z1 ≤ z7 ≤ z8 ≤ z10 ≤ z4 ≤ z5 ≤ z3 ≤ z9 ≤ z2.

Now, Q(z1)−Q(z6) = 0.1159 6≥ 1
4 . Thus, the condition C-1 is not satisfied. Further Q(z10)−

Q(z6) = 0.3909 ≥ 1
4 . Therefore, we decide z6, z1, z7, z8, z10 are multiple compromise solutions.

Hence the firm should invest 30% on z6, 25% on z1, 20% on z7, 15% on z8 and 10% on z10.
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Figure 3 Graphical representation using MCGDM based on VIKOR.

6. Analysis and discussion

We used the above example to analyse the two methods in the literature. The ranking

results of all ten alternatives were obtained using these two approaches. These two methods

assume a scale component for each criterion. The normalisation approach is different in these

two methods. The TOPSIS method utilises a vector normalisation approach and the VIKOR

method utilises a linear normalisation approach. The TOPSIS method uses “n”- dimensional

Euclidean distance that by itself could constitute some balance between total and individual

contentment, but the VIKOR method uses a different way by which weight “κ” is introduced.

The major difference between the two methods is in the aggregation function. We can find

the ranking of values using an aggregating function. The best ranked alternative by VIKOR

is closest to the ideal solution. However, the best ranked alternative by TOPSIS is the one

using the ranking index, which does not mean the closest to the ideal solution. Hence, the

advantage of the VIKOR method gives a compromise solution.

7. Conclusion:

In this communication, we studied various properties of PNSSS and PNSSM that occur

in investment decision making. We proposed the first four algorithms, followed by MCGDM

under PNSS. The last two algorithms are based on PNSS linguistic TOPSIS and VIKOR ap-

proaches using aggregation operators. Again, we interact with the PNSS aggregation operator

and score function values based on some technique. Also, we made use of various sorts of

statistical charts to imagine the rankings of different alternatives under consideration. We

have analyzed an application of the new approach in a DM problem regarding the selection

of particulars where we can see the different conclusions obtained by using different types of

aggregation operators.
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Abstract: Clustering research is an important field in machine learning, pattern recognition and 

other fields. The neutrosophic set characterizes the data through true membership functions, 

indeterminate membership functions and false membership functions. Data clustering using 

neutrosophic set has become one of the current research hotspots. In this paper, first, a new 

definition of data uncertainty in a neutrosophic set is proposed in this paper based on the density 

of data. Next, a clustering model based on the uncertainty value of neutrosophic set data is 

proposed by considering the main cluster (true membership) and the noise cluster (false 

membership) in the data set. The model takes into account the distance of the data points to the 

cluster centers and the indeterminacy value of each data point, and then minimizes the proposed 

cost function by the method of Lagrangian multipliers. The true membership value and false 

membership value of each data point can be obtained. Finally, the effectiveness of the method is 

demonstrated by experiments on the various datasets. Experimental results show that the cost 

function has more accurate membership degree when dealing with boundary points and outliers, 

and outperforms existing clustering methods on datasets. 

Keywords: neutrosophic set; data indeterminacy; clustering algorithm 

 

 

1. Introduction 

Clustering is to divide data into disjoint groups, each of which satisfies two rules: Objects are 

similar (or related) to each other within the same group (minimizing intra-cluster distance), and at 

the same time different (or unrelated) to other groups (maximizing inter-cluster distance). Data 

clustering is an important field in machine learning and has a wide range of applications in 

computer vision, image processing, medicine, geology, and pattern recognition [1-6]. 

In k-type clustering, the clustering method represented by k-means [7] is hard clustering, and 

k-means makes each data point belong to exactly one cluster. It divides the data into k clusters by 

minimizing the intra-cluster squared distance and the main disadvantage is that it cannot ensure a 

global minimum variance. K-medoid is a variant of k-means that computes the median of each 

cluster for its cluster center. One of the strongest assumptions in median-based clustering models is 

that objects must belong to one (and only one) cluster. However, Krishnapuram proposed the fuzzy 

k-center clustering algorithm (FKM) [8]. The essential difference between FKM and k-means is that 

FKM allows each data point to have membership in all clusters, rather than a single cluster with 

different memberships. Kannan [9] proposed a robust kernel-based FKM by combining normed 
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kernel function and center initialization algorithm. Reference[10] introduced adaptive spatial 

information theory fuzzy clustering into traditional FKM to improve robustness. 

Different from the hard clustering, the fuzzy clustering allows each object to be assigned to all 

clusters with different degrees of membership. FCM [11] is the most typical fuzzy clustering 

algorithm. But FCM has four major problems: 1) It just minimizes the variance within the class and 

does not consider the variance between clusters like the k-means algorithm does. 2) The result of 

clustering depends largely on the initialization. 3) It is sensitive to noise, and the membership degree 

of noise points may be high. 4) It is also sensitive to the type of distance metric and cannot 

distinguish between equally likely and equally less likely data points. Krishnapuram and Keller 

proposed a new possibility c-means (PCM) [12]. However, it is sensitive to cluster center 

initialization, requires additional parameters to be tuned, and may generate overlapping clusters. 

Reference [13] proposed a robust sparse fuzzy k-means algorithm (RSFKM), which introduced a 

robust function to deal with outliers and noise points to enhance the robustness and sparsity of the 

FCM algorithm. Reference [14] proposed a variant of fuzzy clustering and hard clustering called 

relational fuzzy c-means. In recent years, many clustering methods have been developed based on 

different theories [15-17]. 

The neutrosophic theory [18] was first proposed by Smarandache in 1995. Picture fuzzy set is a 

standardized form of neutrosophic set. Thong [19] proposed an picture fuzzy clustering 

algorithm(FC-PFS). This algorithm needs to calculate three matrices of the same scale, and the 

clustering effect is not good for high-dimensional data. Li [20] proposed a single-valued 

neutrosophic clustering algorithm based on Tsallis entropy maximization in the framework of 

picture fuzzy set clustering and single-valued neutropenic set. The algorithm showed good results 

in image segmentation. Another the algorithms are based on the original neutrosophic set 

framework. For example, Guo [21] proposed the neutrosophic c-means clustering algorithm (NCM) 

based on the neutrosophic set and FCM, which can effectively distinguish the sample points, 

boundary points and outliers in the cluster. The true membership is not affected by noise, which 

effectively solves the problem that the FCM algorithm cannot detect abnormal data points. Rashno 

[22] proposed a neutrosophic clustering algorithm based on data indeterminacy, which can 

effectively separate boundary points and noise points. Ye [23] proposed a single-valued 

neutrosophic minimum spanning tree clustering algorithm (SVNMST) by defining a generalized 

single-valued neutrosophic set distance measure, which showed great superiority in the clustering 

of single-valued neutrosophic observation data. Kandasamy [24] proposed a dual-valued 

neutrosophic minimum spanning tree clustering algorithm (DVNMST) to cluster data represented 

by dual-valued neutrosophic information. All previous methods deal with boundaries and outliers 

directly in the cost function. This paper mainly deals with boundary points and outliers by 

proposing an indeterminate set (I) in the NS set, and expressing this set as a new clustering cost 

function. The rest of the paper is organized as follows. Section II reviews the FKM algorithm and the 

NS set. Section III presents the proposed method(INCA). Section IV presents the experimental 

results of the method on scatter and real datasets. Finally, Section V concludes the paper. 

2. Related Algorithms  

2.1 Definition of NS 

X is a set of objects, x is an element in X, and the neutrosophic set A on X can be expressed as 

 [ ,( ( ), ( ), ( ))] |A A AA x T x I x F x x X  , (1) 

where  
A

T x is the true value of the object,  
A

I x is the indeterminate value,  
A

F x is the false 

value. They belongs to the standard and non-standard subsets in ]0 ,1 [  , namely 
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( ), ( ), ( ) : ]0 ,1 [A A AT x I x F x X   . The sum of ( ), ( ), ( )A A AT x I x F x has no limit, so there is 

0 sup ( ) sup ( ) sup ( ) 3A A AT x I x F x      . 

2.2 FKM 

The FKM algorithm is a clustering algorithm based on the median of objects, and its objective 

function is as follows 

 
1 1

min
n n

h

FKM ij ij

i j

Z d e
 

 , (2) 

 

 

   

1

1

. .  1, 1, , ;

      ;      ;

     [0,1], , 1, , , ;
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s t e i n

e e e k
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e j n


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  

 

   

  




 

(3) 

where
ije is the representation of the data object 

io  to the cluster center
jo (if 

jo is not the cluster 

center, then 
ije ), and h is the fuzzy factor. The fuzzy factor is a hyperparameter that represents the 

expected degree of overlap between the clusters to be found. When h → 1+, data objects are often 

assigned to a cluster, the clustering is very clear. When h → ∞, objects tend to be evenly distributed 

in each cluster. The final membership value for each non-cluster center and each cluster center is 1/k. 

Given a set of known cluster centers (selected from sample points), the membership of each 

object to the selected cluster center can be found by computing the following expression: 

 1/ 1

| 1

1

tt

hij

ij

t e it

e
d

d






 
 
 


, 

(4) 

2.3 NCM 

The neutrosophic c-means (NCM) [10] defines the true membership, false membership and  

indeterminate membership of the data. NCM can handle boundary points and outliers contained in 

the dataset itself . Solve the following convex optimization problem: 

       
2 2 2

1 2  max 3

1 1 1 1

, ,
N C N N

m m m

ij i j i i i i

i j i i

J T I F T x c I x c F   
   

       , (5) 

where m is a constant. , ,ij i iT I F
 

are the membership value belongs to the determinate clusters, 

boundary regions and noise datasets. Define 0 , , 1ij i iT I F   , satisfying the following constraints:                  

1

1
C

ij i i

j

T I F


   , (6) 

For each data point i, the cluster centeris ci max calculated using
ijT with the largest and second 

largest value:     
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max
2

pi qi

i

c c
c


 , (7) 

1,2,...

1,2,...

arg max( )

arg max( )

i ij

j C

j ij

j pi j C

p T

q T



  






  

(8) 

3. INCA  

3.1 Characterization of indeterminacy 

A new clustering method is proposed in this paper, which can cluster data containing outliers 

and boundary points. The basic idea is to combine the FCM algorithm with the neutrosophic set. 

First, we define the indeterminate for each data point through Euclidean distance, and use the 

uncertainty in the neutrosophic set to describe it. 

 

   
1,    0

,      
0,    0

i ij c

j

x
d d x

x
  


   
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 , (9) 

 
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ij sj I

i
i

j ij s

d I

d I



  

 
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(10) 

 :i

s k iI k   

 

(11) 

1
i

i i

I
 


 (12) 

where
i is the local density of the i-th data sample and

i is the distance attribute of the i-th data 

sample. If a point is denser than its neighbors and has a relatively large distance from the more 

dense point, the point is considered to be within the main cluster and should have less uncertainty. 

Instead, the point has a larger indeterminate value. This idea makes the uncertainty close to 1 for 

noise points and close to 0 for the points within the main cluster. Lower uncertainty is assigned to 

the points in dense regions and not vice versa. As shown in Figure 1, points 1 and 18 in the left figure 

are the cluster centers of the two clusters. It can be seen from the right figure that the values 

of
i and

i of the two points are large, so the indeterminate value is small. The indeterminate values 

of 11, 14 and 16 points are relatively large. 

 
(a) 

 
(b) 

Figure 1. The distribution of data points, 
i and

i (a) data points; (b)
i and

i  
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3.2 Model 

In INCA, the determinate and indeterminate membership of the main cluster and noise points is 

considered. Set A is the union of determinate clusters and indeterminate clusters, 

; 1,2, ,iA C R i k  ; where
iC and R represent determinate clusters and indeterminate clusters I, 

and is the union operator. In clustering applications,
iC and R represent the membership degree of 

the true set and the false set. Therefore,
iC and R are the union of true and false set in the NS set. We 

hope that a smaller distance
2

i jx c corresponds to a larger true membership
ijT and a smaller false 

membership
iF . It indicates that the data points

ix are easily divided into the corresponding 

clusters
jc . A larger distance

2

i jx c corresponds to a smaller true membership
ijT and a larger false 

membership
iF . It indicates that the data points are not easily divided into the corresponding 

clusters
jc . The objective function of the proposed algorithm is: 

      
2

2

1 22
1 1 1 1

, 1 i j

n n n n
m m x x

i j i ij i i

i j i j

L T F x x I T I F e 
 

   

     , (13) 

where
ijT and

iF are the membership of the data i to the main cluster j and the membership of the 

noise cluster. For each data point, the following conditions are simultaneously met: 

 
1

. .  1,    1, ,
n

ij i

j

s t T F i n


    , (14) 

The decision variable   , 1,2,ijT i j n is the membership degree that assigns the data object i 

to the cluster center j (if the data point j is not a cluster center, 0ijT  ). To comply with the constraints 

of NS theory, constraints (14) are defined. As can be seen from the above model, there are two 

conditions for data point i to have the highest membership degree to the cluster j: a) the distance of 

data point i to cluster center j is less than the distance to other cluster centers. b) The data point i 

should have a small indeterminacy. Similarly, there are two conditions for data point i to have the 

highest membership to a noisy cluster: a) it has the largest sum distance from all main clusters. b) 

The data point i should have a large indeterminacy. 

3.3 Model solution 

The Lagrangian function of the model is: 

      
2

2

1 22
1 1 1 1

1 1

, 1

                 1

i j

n n n n
m m x x

i j i ij i i

i j i j

n n

i ij i

i j

L T F x x I T I F e

T F
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

 

   

 

    

 
  

 

 

 

, (15) 

To minimize the Lagrange objective function, we use the following operations: 

 
2

1

1 ' ' 2
'

m m

i ij i j i

ij

L
m I T x c

T
 

  


, (16) 
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(17) 

The norm is specifified as the Euclidean norm. Let
'

0
ij

L

T





and 0

i

L

F





, then: 
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(19) 

Let

1
1m

i Ktemp
m

  
 

 
, 
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  , (20) 

Therefore: 

 
2
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' 1 ' 2

m
mm

ij i i jT Ktemp I x c
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

  , (21) 
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 
 ,

 
(22) 

The above equations allow the formulation of INCA algorithm. It can be summarized in the 

following steps: 

INCA algorithm: 

input：X、n、k、D 

output：T, F; 

1：randomly select k centers; 

2：Calculate T using Equation (21); 

3：Calculate F using Equation(22); 

4：Calculate the value of the objective function
1;Z  

5：Select k centers by exhaustive method; 

6：Calculate T2; 

7：Calculate F2; 

8：Calculate the value of the objective function
2 ;Z  

      9：Compare the values of
1Z and

2Z , if
2 1Z Z , go back to step 5. 

If 
2 1Z Z , assign the center of

1Z to
2Z ,

2T to T,
2F to F and 

the end. 

The time complexity of INCA is divided into two parts. The first part is the calculation of the 

memberships T and F. It is related to the sample dimension, the number of samples and the number 
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of categories, and needs to traverse all the data points in the data. If the dimension of the given 

dataset is m, the number of sample points is n, and the number of clusters is c, the algorithm 

complexity is O(n2mc+n2m). The second part is the exhaustive optimization process, which needs to 

iteratively calculate the memberships T and F, so the complexity of this part of the algorithm is 

O[n!(n2mc+n2m)]. The overall algorithm complexity of this paper is O[n!(n2mc+n2m)]. We can see that 

the computational complexity is very high when m and n are large. 

4. Results  

4.1. Datasets 

The performance of INCA is evaluated on artificial datasets and real datasets. The proposed 

method is compared with INCM [22], FC-PFS [19], RFKM [13], NCM [21], and FKM [8] methods. In 

the experiment of the exhaustive clustering center, we only extract the same proportion of sample 

points from each class, and appropriately reduce the running time of the algorithm. 

The parameter dc of the uncertainty calculation part is set by the method in the article [25]. In 

the cost function of INCA, the parameters are configured as
1 21.3, 1, 2.m      

In this section, three types of datasets are used to evaluate the performance of INCA. The first is 

the diamond dataset, including the X19 and X24 scatter datasets proposed by Guo [25], and a scatter 

dataset we designed. In these datasets, border points between the main clusters and outliers far from 

the main clusters are considered. It is easy to see how the clustering method is affected by the main 

points in each dataset. The second is the UCI dataset, which includes higher-dimensional and 

larger-scale datasets. There are mainly dermatology, pima, TOX-171, votel, ecoli, iris, ionosphere 

and vote.  

4.2. Results 

4.2.1. Artificial datasets 

The X19 dataset has three clusters in Figure 2, points 1-5, 7-11 and 13-17 are points in the main 

cluster, points 6 and 12 are boundary points, points 18 and 19 are noise points. Figure 3 shows the 

clustering results of INCA. The memberships calculated by INCA and the FKM are counted in Table 

1. Although INCA and FKM assign the same cluster label to all points, INCA assigns the points(e.g. 

5, 7, 11, 12) with higher indeterminate membership in their corresponding clusters. Data point 5 has 

the same distance between the main and border clusters, but it belongs to the main cluster. FKM 

cannot distinguish point 5 as a boundary or a main cluster. INCA solves this problem, and the 

membership of point 5 assigned to the main cluster is 0.67, while the FKM is 0.36. Figure 4 visually 

depicts the membership of INCA and the FKM algorithm. 
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          Figure 2. X19                              Figure 3. Clustering results of INCA on X19 

 
(a) 

 
(b) 

Figure 4. Membership calculated by FKM and INCA on X19 

Table 1.  Clustering results of X19 

 FKM INCA 

U1 U2 U3 T1 T2 T3 F  

1 0.2844 0.3259 0.3897 0.8122 0.0478 0.1400 0  

2 0.2974 0.3469 0.3556 0.5882 0.1176 0.2941 0  

3 0.2821 0.3313 0.3865 0.7944 0.0467 0.1589 0  

4 0 0 1 1 0 0 0  

5 0.2843 0.3462 0.3695 0.6762 0.0638 0.2601 0  

6 0.2868 0.3704 0.3429 0.4545 0.0910 0.4545 0 boundary  

7 0.2819 0.4099 0.3082 0.2470 0.1107 0.6422 0  

8 0.3068 0.3865 0.3068 0.25 0.25 0.5 0  

9 0 1 0 0.1429 0.1429 0.7143 0  

10 0.3158 0.3684 0.3158 0 0 0 1  

11 0.3082 0.4099 0.2819 0.1107 0.2470 0.6422 0  

12 0.3429 0.3704 0.2868 0.0910 0.4545 0.4545 0 boundary 

13 0.3695 0.3462 0.2843 0.0638 0.6762 0.2601 0  

14 0.3556 0.3469 0.2974 0.1176 0.5882 0.2941 0  

15 0.3865 0.3313 0.2821 0.0467 0.7944 0.1589 0  

16 1 0 0 0 1 0 0  

17 0.3897 0.3259 0.2844 0.0478 0.8122 0.1400 0  

18 0.3304 0.3287 0.3409 0 0 0 1  

19 0.3437 0.3289 0.3274 0 0 0 1  

We also conduct more experiments, using the four-class X24 shown in Fig. 5 to compare INCA 

and FKM. Data points 6, 12 and 18 are boundaries and 24 is an outlier. Fig. 6 presents the clustering 

results of INCA. Table 2 lists the results of INCA and FKM. The first five data points belong to a 

main cluster because their T4 values are higher for the other clusters (T2, T3 and T4). It can also be 

inferred that similar observations data points 6, 12 and 18 are ambiguous because there are two 

highest T values. The last data point 24 was inferred as an outlier. Fig. 7 visually depicts the degree 

of membership. 
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Figure 5. X24Figure 6. Clustering results of INCA on X24 

 
(a) 

 
(b) 

Figure 7. Membership calculated by FKM and INCA on X24 

Table 2. Clustering results of X24 

 FKM INCA 

U1 U2 U3 U4 T1 T2 T3 T4 F  

1 0.0106 0.0687 0.0279 0.8929 0.0106 0.0219 0.0691 0.8984 0  

2 0 0    0 1 0 0 0 1 0  

3 0.0064 0.0542 0.0188 0.9207 0.0064 0.0142 0.0544 0.9250 0  

4 0.0203 0.1842 0.0589 0.7366 0.0216 0.0457 0.1554 0.7772 0  

5 0.0130 0.1572 0.0437 0.7861 0.0130 0.0318 0.1592 0.7959 0  

6 0.0222 0.4444 0.0889 0.4444 0.0227 0.0619 0.4577 0.4577 0 boundary 

7 0.0183 0.7409 0.0926 0.1482 0.0187 0.0591 0.7685 0.1537 0  

8 0.0360 0.5843 0.2337 0.1461 0 0 1 0 0  

9 0.0132 0.8435 0.0937 0.0496 0.0136 0.0519 0.8826 0.0519 0  

10 0 1 0 0 0.0427 0.1368 0.6838 0.1368 0  

11 0.0252 0.6181 0.3091 0.0476 0.0304 0.1519 0.7593 0.0584 0  

12 0.0221 0.1594 0.7969 0.0215 0.0595 0.4405 0.4405 0.0595 0 boundary 

13 0 0 1 0 0.0584 0.7593 0.1519 0.0304 0  

14 0.0942 0.0801 0.8007 0.0250 0 1 0 0 0  

15 0.0550 0.0517 0.8797 0.0135 0.0519 0.8826 0.0519 0.0136 0  

16 0.0925 0.0983 0.7861 0.0231 0.1657 0.6628 0.1325 0.0340 0  

17 0.2698 0.0934 0.6071 0.0296 0.1537 0.7685 0.0591 0.0187 0  

18 0.6281 0.0679 0.2791 0.0249 0.4577 0.4577 0.0619 0.0227 0 boundary 

19 0.9168 0.0183 0.0573 0.0075 0.7959 0.1592 0.0318 0.0130 0  
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20 1 0 0 0 0.9250 0.0544 0.0142 0.0064 0  

21 0.9433 0.0139 0.0363 0.0065 0.7461 0.1865 0.0467 0.0207 0  

22 0.9426 0.0147 0.0363 0.0064 1 0 0 0 0  

23 0.9562 0.0117 0.0266 0.0056 0.8984 0.0691 0.0219 0.0106 0  

24 0.6499 0.1098 0.1805 0.0597 0 0 0 0 1  

In this paper, a dataset is constructed as shown in Fig. 8. The dataset contains 83 data points, 

including 2 outliers and 3 boundary points. INCA can accurately distinguish main cluster points, 

boundary points and outlier points, as shown in Fig. 9. Data points 41 and 42 are outliers (blue 

circles in Figure 8), data points 61, 69 and 70 are boundary points (magenta circles in Figure 8), and 

the rest belong to the main cluster. Figure 10 visually depicts membership. 

 

   Figure 8. dataset 1                 Figure 9. Clustering results of INCA on dataset 1 

 
 

Figure 10. Membership calculated by FKM and INCA on dataset 1 

4.2.2. Real dataset 

To further evaluate the proposed clustering method, the UCI dataset is considered a standard 

dataset in the field of machine learning. In this study, the "dermatology", "pima", "TOX-171", "vowel", 

"ecoli", "iris" and "vote" datasets were selected among other UCI datasets. Table 3 summarizes the 

number of features, classes, and samples in each data. These datasets are used for traditional 

clustering methods such as FKM, RSFKM, FC-PFS, NCM and INCM. 

Table 3. Datasets 

Datasets No. of instance No. of feature No. of class 

dermatology 366 34 6 

pima 768 8 2 

TOX-171 171 5748 4 
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vowel 528 10 11 

ecoli 336 343 8 

iris 150 4 3 

vote 435 16 2 

Table 4 summarizes the accuracy of the proposed method and the FKM, RSFKM, FC-PFS, INCM 

and NCM methods. The accuracy rates of the proposed method on the "dermatology", "pima", 

"TOX-171", "vowel", "ecoli", "iris" and "vote" datasets were 82.24%, 74.35%, 51.46%, 40.15%, 76.79%, 

98.00% and 84.60%. The accuracy of INCA is higher or second than other comparison algorithms. 

Table 5 summarizes the mutual information of INCA and FKM, RSFKM, FC-PFS, INCM and NCM 

methods. The mutual information of INCA is higher or second than other comparison algorithms. 

Table 4. ACC of the different datasets 

 dermatology pima TOX-171 vowel ecoli iris vote 

INCM 0.5314 0.6510 0.3918 0.2708 0.6875 0.9466    0.8000 

FC-PFS 0.5027 0.6589 0.3977 0.2321 0.6250 0.8933 0.8138 

RSFKM 0.8689  0.6602 0.2632 0.2746  0.6518 0.9267 0.8253 

NCM 0.5000 0.6302   0.2865 0.2348  0.6280  0.9000   0.8138 

FKM  0.6995    0.6563 0.4912 0.3655 0.6280  0.8933 0.8230 

INCA 0.8224 0.7435 0.5146 0.4015 0.7679 0.9800 0.8460 

Table 5. NMI of the different datasets 

 dermatology pima TOX-171 vowel ecoli iris vote 

INCM 0.0117 0.0022 0.0685 0.2341 0.4867 0.8081 0.2918 

FC-PFS 0.3193 0.0317 0.0722 0.2063 0.2614 0.7501 0.3333 

RSFKM 0.8477 0.0267  0.0000 0.3027   0.3247 0.7933 0.3644 

NCM 0.1998   0.0521 0.0231 0.2168   0.2711 0.7540 0.3297 

FKM 0.6070 0.0294  0.2178 0.3915 0.4625 0.7515  0.3359 

INCA 0.7240 0.0092 0.2248 0.3933 0.5895 0.9187 0.3636 

Figure 11 shows the average accuracy of different algorithms. It can be seen that the average 

accuracy of INCA is higher than that of other comparison algorithms. 

 

Figure 11. Average accuracy of different algorithms 
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4.3. Parameter analysis 

In this section, the influence of parameters on the clustering results is analyzed. For this task, the 

Iris was selected for parameter evaluation. In each step, one parameter is changed and the others are 

fixed. Table 6 reports the results of the clustering methods for different parameter values. In each 

column, one parameter is considered to have 7 different quantities, while the other parameters are 

considered to be fixed and the quantities are in the fourth row. Each row in the table is a combination 

of parameters, and the fourth row is the best combination we chose in our experiments. The reasons 

for this choice will be discussed in detail in the following chapters. 

Based on (13) each data point depends on two factors, namely the distance from the data to the 

cluster center and the uncertainty of the data, both of which influence each other. The parameter m 

determines the weighting effect of these factors. If m increases, 
1 i ijI T and  2 1 i iI F  are used more 

for membership assignments for main clusters and boundary points, respectively, and vice versa. By 

reducing m, the distance to the cluster center is a more important factor for membership assignment, 

which is almost the same as FKM. This parameter is 2 in this paper.  

The parameters
1 and

2  are based on equation (18), on the one hand an increase in
1 leads to a 

decrease in
ijT and an increase in

iF , which means that the cost function pays more attention to the F 

set (boundary points) and reduces the accuracy. On the other hand, a smaller number of
1 has 

positive and negative effects on the main and border clusters, respectively.
1 1  is configured, 

which is the best balance between the main cluster and the border cluster. The parameter
2 has the 

same effect in equation (19). Figure 12 shows the effect of different parameter combinations on the 

clustering results. 

Table 6. Parameter sensitivity analysis 

m 1  2  

m=1.3 

ACC=0.9667 

1 0.3   

ACC=0.9533 

2 0.5   

ACC=0.9667 

m=1.5 

ACC=0.9533 

1 0.6   

ACC=0.9267 

2 1.1   

ACC=0.9400 

m=1.8 

ACC=0.8800 

1 0.7   

ACC=0.9533 

2 1.5   

ACC=0.9400 

m=2 

ACC=0.9800 

1 1   

ACC=0.9667 

2 2   

ACC=0.9800 

m=2.5 

ACC=0.9300 

1 1.5   

ACC=0.9200 

2 3   

ACC=0.9567 

m=3 

ACC=0.9600 

1 2   

ACC=0.9600 

2 4   

ACC=0.9600 

m=4 

ACC=0.9400 

1 3   

ACC=0.9600 

2 5   

ACC=0.9400 
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Figure 12. Parameter sensitivity analysis 

In this section, the advantages and disadvantages of the proposed method are discussed. Border 

points and outliers are not considered in methods such as FKM. For example X19: 5, 7, 11, 13 and X24: 

5, 7, 11, 13, 17, 19 are not assigned to the main cluster with a high degree of certainty. The reason is 

that such points are located at the same distance from the center of the main cluster and the center of 

the boundary cluster.For boundary points, such as X19: 6, 12 and X24: 6, 12, 18, the distances 

between the two main clusters are equal, but they are forcibly divided into one of the main clusters, 

which does not meet the actual situation and requirements. 

From the above experiments, it can be seen that INCA is robust and the main cluster centers are 

not forced away from the boundary points. The experimental results show that INCA is more 

suitable for partitioning data, especially fuzzy and unclear data. Traditional methods only describe 

the degree of each cluster. For some samples in the boundary between different clusters, it is difficult 

to determine which group it belongs to. The method proposed in this paper aims to deal with these 

shortcomings of traditional partitioning methods. 

5. Conclusions 

The cost function in the neutrosophic set is proposed. Two types of clusters are considered in 

the proposed cost function, including main clusters and noise clusters. Experiments on different 

datasets show that INCA can not only deal with outliers and boundary points, but also outperform 

the comparative methods in both scatter data clustering and real datasets with these shortcomings of 

traditional partitioning methods. 
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Abstract. In psychology and sociology fields, the information is either dependent or independent and some-

times requires combinations of both. The existing structures like the fuzzy set, intuitionistic fuzzy set, and

Pythagorean set have limitations when the information requires combinations of dependent and independent

components. To overcome these limitations, we introduce the concept of a simplified intuitionistic neutrosophic

hypersoft set. We present some properties of the correlation coefficient, weighted correlation coefficient, and

aggregation operators on a simplified intuitionistic hypersoft set. Finally, we develop an algorithm and illustrate

with a case study for identifying the leader; who can bring changes to society in the socio-political context.

Keywords: neutrosophic set; intuitionistic set; soft set; hypersoft set.

————————————————————————————————————————

1. Introduction

Zadeh [32] defined the concept of fuzzy set (FS). The membership value of each element in

FS is specified by a real number from the closed interval of [0,1]. Atanassov [5] proposed the

notion of an intuitionistic fuzzy set (IFS), an extension of FS. In IFS, the elements possess both

membership and non-membership values such that their sum does not exceed unity. Smaran-

dache [22] presented the concept of neutrosophic set (NS), characterized by the values of truth,

indeterminacy, and falsity grades for each element of the set. Later, Wang et al. [27] proposed

the notion of single-valued NS (SVNS) with a restricted condition for the membership values

to overcome the constraints faced in NS. Molodtsov [15] introduced the concept of a soft set

to deal with uncertainties. Smarandache [24] presented the concept of hypersoft set (HSS)

V.Chinnadurai, A.Bobin and D.Cokilavany, SINHSS TOPSIS method based on correlation coefficient
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to overcome the restriction faced in the soft set. Smarandache [23] proposed the concept of

degree of dependence and the degree of independence between the components of the FS and

NS. Also, for the first time, Smarandache [25] presented the concept of neutrosociology. Chin-

nadurai and Bobin [8], [9] introduced the concepts of the simplified intuitionistic neutrosophic

soft set (SINSS) and interval-valued intuitionistic neutrosophic soft set (IVINSS) and studied

some of their properties. In SINSS and IVINSS, the membership grades of truth and falsity

are dependent on each other such that their sum cannot exceed one and the membership grade

of indeterminacy is independent with a value less than or equal to one. Hence, in SINSS and

IVINSS the sum of the membership grades cannot exceed two.

Khan et al. [14] introduced a programming language to solve multi-objective multi-product

production planning problems. Smarandache [26] extended for the second time the nonstan-

dard analysis by adding the left monad closed to the right, and right monad closed to the left.

New theorems, better notations for monads and binads, and examples of nonstandard neu-

trosophic operations were discussed. Akram et al. [3] introduced the notion of hesitant fuzzy

N-soft sets and used it in decision-making problems. Abdel-Basset et al. [1] presented the con-

cept of type -2 neutrosophic numbers and presented a real case study using the technique of

order of preference by similarity to ideal solution (TOPSIS). Abdel-Basset et al. [2] combined

the neutrosophic analytical network process (ANP) method and the ViseKriterijumska Op-

timizacija I Kompromisno Resenje (VIKOR) method for solving supplier chain management

problems. Arora and Harish [4] studied the properties of aggregation operators on IFS. Ayele

et al. [6] proposed a method for traffic signal control using an interval-valued neutrosophic

soft set. Ejegwa et al. [10] used intuitionistic fuzzy correlation measure and programming lan-

guage in the medical diagnosis field. Harish and Rishu [12] proposed TOPSIS method based

on correlation measures on IFS to solve multi-criteria decision-making (MCDM) problems.

Jana and Pal [13] presented the concept of aggregation operators on SVNS for solving MCDM

problems. Naeem and Riaz [17] introduced Pythagorean fuzzy soft sets and established some

of their algebraic properties. Naeem et al. [18] compared TOPSIS, VIKOR, and generalized

aggregation operators models and showed that all the three techniques rendered the same

optimal choice. Riaz et al. [20] presented an investment strategic decision making problem to

illustrate the application of the Pythagorean m -Polar Fuzzy Weighted Aggregation operators

and demonstrated its effectiveness. Naeem et al. [19] discussed an application of Pythagorean

m-polar fuzzy sets in the decision-making problem for selecting an appropriate mode of ad-

vertisement by using the TOPSIS method. Zulqarnain et al. [33] introduced the concept of

intuitionistic fuzzy HSS and used the TOPSIS method based on correlation coefficient (CC).

Zulqarnain et al. [34] studied the fundamental operations of interval-valued neutrosophic HSS.

Muhammad et al. [16] defined aggregation operators on neutrosophic HSS and studied some
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properties. Saqlain et al. [21] presented the concepts of single neutrosophic HSS and multi-

valued neutrosophic HSS. They used tangent similarity measures to solve MCDM problems.

The main aim of the present study is to rank the alternatives of simplified intuitionistic

neutrosophic hypersoft sets (SINHSS) by using aggregation operators and also by using the

TOPSIS method based on CC. To the best of our knowledge, research on SINHSS is confined

to its theory and related development and applications. Therefore, we examine and provide

a suitable solution to the decision-makers in ranking the alternatives. We present a MCDM

approach based on TOPSIS, and the effectiveness of this method is demonstrated through the

selection of a leader who influences society in a socio-political context. To prove the efficacy

of the proposed method, a comparative analysis between the proposed and existing method is

illustrated with examples. Thus, the SINHSS is a robust tool to predict uncertainties when

the membership grades of truth and falsity are dependent on each other.

The manuscript consists of the following sections. Section 2 briefs on existing definitions.

Section 3, 4 and 5 introduces the concept of SINHSS and discusses some properties of CC

and weighted CC of SINHSS. Section 6 deals with the simplified intuitionistic neutrosophic

hypersoft weighted average operator(SINHSWAO) and simplified intuitionistic neutrosophic

hypersoft weighted geometric operator (SINHSWGO). Section 7 highlights the combination of

CC with the TOPSIS method. Section 8 shows the significance of the proposed method with

comparative analysis. Section 9 ends with a conclusion.

2. Preliminaries

We present some of the basic definitions required for this study. Let us consider the following

notations throughout this study unless otherwise specified. Let V be the universe and v ∈ V,

P (V) be the power set of V, N represents natural numbers, and SU represent the collection of

simplified intuitionistic neutrosophic sets (SINS) over V.

Definition 2.1. [8] A SINS in V is of the form Ω = {〈v, TΩ(v), IΩ(v),FΩ(v)〉}, where

TΩ(v), IΩ(v),FΩ(v) : V → [0, 1], are the membership values of truth, indeterminacy and

falsity of the element v ∈ V respectively, such that 0 ≤ TΩ(v) + FΩ(v) ≤ 1 and 0 ≤
TΩ(v) + IΩ(v) + FΩ(v) ≤ 2.

Definition 2.2. [24] Let ∆1,∆2, ...,∆k, be distinct attribute sets, whose corresponding sub-

attributes are ∆1 = {λ11, λ12, ..., λ1f} ,∆2 = {λ21, λ22, ..., λ2g} , ...,∆k = {λk1, λk2, ..., λkh},
where 1 ≤ f ≤ p, 1 ≤ g ≤ q, 1 ≤ h ≤ r and p, q, r ∈ N, such that ∆i ∩ ∆j = ∅, for

each i, j ∈ {1, 2, ..., k} and i 6= j. Then the Cartesian product of the distinct attribute sets

∆1 ×∆2 × ...×∆k = ∆̃ = {λ1f × λ2g × ...× λkh}, represent a collection of multi- attributes.

A pair (Ω, ∆̃) is called a hypersoft set (HSS) over V, where Ω : ∆̃ → P (V). HSS can be

represented as (Ω, ∆̃) =
{

(λ̃,Ω(λ̃))|λ̃ ∈ ∆̃,Ω(λ̃) ∈ P (V)
}
.
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3. Simplified intuitionistic neutrosophic hypersoft set

We present the notion of simplified intuitionistic neutrosophic hypersoft set (SINHSS). Also,

we discuss some basic properties of correlation coefficient (CC) and weighted CC (WCC) on

SINHSS.

Definition 3.1. A pair (Ω, ∆̃) is called a SINHSS over V, where Ω : ∆̃ → SU . SINHSS

can be represented as (Ω, ∆̃) =
{

(λ̃,Ω(λ̃))|λ̃ ∈ ∆̃,Ω(λ̃) ∈ SU ∈ [0, 1]
}

, where Ω(λ̃) ={〈
v, TΩ(λ̃)(v), IΩ(λ̃)(v),FΩ(λ̃)(v)

〉
|v ∈ V

}
, TΩ(λ̃)(v), IΩ(λ̃)(v) and FΩ(λ̃)(v) represent the mem-

bership values of truth, indeterminacy and falsity, such that 0 ≤ TΩ(λ̃)(v) + FΩ(λ̃)(v) ≤
1 and 0 ≤ TΩ(λ̃)(v) + IΩ(λ̃)(v) + FΩ(λ̃)(v) ≤ 2.

Example 3.2. Let V = {v1, v2, v3} be a set of sociologists responsible to evaluate a leader, the

role of the leader is to bring socio-political changes to society. Let ∆1, ∆2 and ∆3 be distinct

attribute sets whose corresponding sub-attributes are represented as ∆1 = leader attributes =

{λ11 = personality variables, λ12 = cognitive ability and skills, λ13 = sense making},
∆2 = leader behavior = {λ21 = setting sub culture, λ22 = conflict management}, ∆3 =

group behaviors = {λ31 = living the sub culture}. Then ∆̃ = ∆1 × ∆2 × ∆3 be distinct at-

tribute sets, such as

∆̃ = ∆1 ×∆2 ×∆3 = {λ11, λ12, λ13} × {λ21, λ22} × {λ31} .

=

{
(λ11, λ21, λ31), (λ11, λ22, λ31), (λ12, λ21, λ31), (λ12, λ22, λ31), (λ13, λ21, λ31), (λ13, λ22, λ31)

}
.

=

{
λ̃1, λ̃2, λ̃3, λ̃4, λ̃5, λ̃6

}
.

A SINHSS (Ω, ∆̃) is a collection of subsets of V, given by the sociologists for a leader based

on the description in Table 1.

Table 1. Shows leadership skills of a leader in SINHSS (Ω, ∆̃) form.

V λ̃1 λ̃2 λ̃3 λ̃4 λ̃5 λ̃6

v1 〈0.4, 0.9, 0.5〉 〈0.2, 0.5, 0.7〉 〈0.8, 0.9, 0.1〉 〈0.7, 0.9, 0.2〉 〈0.1, 0.4, 0.3〉 〈0.9, 0.9, 0.1〉
v2 〈0.2, 0.8, 0.5〉 〈0.6, 0.2, 0.4〉 〈0.7, 0.4, 0.2〉 〈0.4, 0.5, 0.4〉 〈0.3, 0.4, 0.2〉 〈0.5, 0.2, 0.1〉
v3 〈0.4, 0.4, 0.4〉 〈0.3, 0.3, 0.3〉 〈0.2, 0.1, 0.7〉 〈0.5, 0.5, 0.5〉 〈0.4, 1.0, 0.6〉 〈0.4, 0.8, 0.4〉

4. Correlation coefficient for SINHSS

Let (Ω1, ∆̃1) =
{

(vi, TΩ1(λ̃k)(vi), IΩ1(λ̃k)(vi),FΩ1(λ̃k)(vi))|vi ∈ V
}

and (Ω2, ∆̃2) ={
(vi, TΩ2(λ̃k)(vi), IΩ2(λ̃k)(vi),FΩ2(λ̃k)(vi))|vi ∈ V

}
be two SINHSS over V.

Definition 4.1. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two SINHSS. Then the simplified intuitionistic

neutrosophic informational energies of (Ω1, ∆̃1) and (Ω2, ∆̃2) are represented as
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Φ(Ω1, ∆̃1) =
m∑
k=1

n∑
i=1

[
(TΩ1(λ̃k)(vi))

2 + (IΩ1(λ̃k)(vi))
2 + (FΩ1(λ̃k)(vi))

2

]
(1)

Φ(Ω2, ∆̃2) =
m∑
k=1

n∑
i=1

[
(TΩ2(λ̃k)(vi))

2 + (IΩ2(λ̃k)(vi))
2 + (FΩ2(λ̃k)(vi))

2

]
. (2)

Definition 4.2. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two SINHSS. Then the correlation measure

between (Ω1, ∆̃1) and (Ω2, ∆̃2) is defined as

CM((Ω1, ∆̃1), (Ω2, ∆̃2)) =

m∑
k=1

n∑
i=1

[
(TΩ1(λ̃k)(vi)) ∗ (TΩ2(λ̃k)(vi)) + (IΩ1(λ̃k)(vi)) ∗ (IΩ2(λ̃k)(vi))

+ (FΩ1(λ̃k)(vi)) ∗ (FΩ2(λ̃k)(vi))

]
.

(3)

Proposition 4.3. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two SINHSS. Then,

(i) CM((Ω1, ∆̃1), (Ω1, ∆̃1)) = Φ(Ω1, ∆̃1)

(ii) CM((Ω2, ∆̃2), (Ω2, ∆̃2)) = Φ(Ω2, ∆̃2).

Proof. Straight forward

Definition 4.4. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two SINHSS. Then, the CC between (Ω1, ∆̃1)

and (Ω2, ∆̃2) is given as

CC((Ω1, ∆̃1), (Ω2, ∆̃2)) =
CM((Ω1, ∆̃1), (Ω2, ∆̃2))√

Φ(Ω1, ∆̃1)
√

Φ(Ω2, ∆̃2)
(4)

Example 4.5. Let the values of (Ω1, ∆̃1) be as in Table 1 and the values of (Ω2, ∆̃2) be as in

Table 2.

Table 2. Shows leadership skills of a leader in SINHSS (Ω2, ∆̃2) form.

V λ̃1 λ̃2 λ̃3 λ̃4 λ̃5 λ̃6

v1 〈0.2, 0.8, 0.5〉 〈0.6, 0.2, 0.4〉 〈0.7, 0.4, 0.2〉 〈0.4, 0.5, 0.4〉 〈0.3, 0.4, 0.2〉 〈0.5, 0.2, 0.1〉
v2 〈0.4, 0.4, 0.4〉 〈0.3, 0.3, 0.3〉 〈0.2, 0.1, 0.7〉 〈0.5, 0.5, 0.5〉 〈0.4, 1.0, 0.6〉 〈0.4, 0.8, 0.4〉
v3 〈0.4, 0.9, 0.5〉 〈0.2, 0.5, 0.7〉 〈0.8, 0.9, 0.1〉 〈0.7, 0.9, 0.2〉 〈0.1, 0.4, 0.3〉 〈0.9, 0.9, 0.1〉

Then, CC((Ω1, ∆̃1), (Ω2, ∆̃2)) = 0.7738.

Proposition 4.6. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two SINHSS. Then, the following CC prop-

erties hold:

(i) 0 ≤ CC((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1;
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(ii) CC((Ω1, ∆̃1), (Ω2, ∆̃2)) = CC((Ω2, ∆̃2), (Ω1, ∆̃1));

(iii) If (Ω1, ∆̃1) = (Ω2, ∆̃2), then CC((Ω1, ∆̃1), (Ω2, ∆̃2)) = 1.

Proof. (i) Obviously, CC((Ω1, ∆̃1), (Ω2, ∆̃2)) ≥ 0. Now, we present the proof of

CC((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1.

CM((Ω1, ∆̃1), (Ω2, ∆̃2))

=
m∑
k=1

n∑
i=1

[
(TΩ1(λ̃k)(vi)) ∗ (TΩ2(λ̃k)(vi)) + (IΩ1(λ̃k)(vi)) ∗ (IΩ2(λ̃k)(vi)) + (FΩ1(λ̃k)(vi)) ∗ (FΩ2(λ̃k)(vi))

]
.

=
m∑
k=1

[(
(TΩ1(λ̃k)(v1)) ∗ (TΩ2(λ̃k)(v1)) + (IΩ1(λ̃k)(v1)) ∗ (IΩ2(λ̃k)(v1)) + (FΩ1(λ̃k)(v1)) ∗ (FΩ2(λ̃k)(v1))

)
+

(
(TΩ1(λ̃k)(v2)) ∗ (TΩ2(λ̃k)(v2)) + (IΩ1(λ̃k)(v2)) ∗ (IΩ2(λ̃k)(v2)) + (FΩ1(λ̃k)(v2)) ∗ (FΩ2(λ̃k)(v2))

)
+ ...

+

(
(TΩ1(λ̃k)(vn)) ∗ (TΩ2(λ̃k)(vn)) + (IΩ1(λ̃k)(vn)) ∗ (IΩ2(λ̃k)(vn)) + (FΩ1(λ̃k)(vn)) ∗ (FΩ2(λ̃k)(vn))

)]
.

By applying Cauchy-Schwarz inequality, we get

CM ((Ω1, ∆̃1), (Ω2, ∆̃2))2

≤
m∑
k=1

[{
(TΩ1(λ̃k)(v1))2 + (TΩ1(λ̃k)(v2))2 + ...+ (TΩ1(λ̃k)(vn))2

}
+

{
(IΩ1(λ̃k)(v1))2 + (IΩ1(λ̃k)(v2))2+

...+ (IΩ1(λ̃k)(vn))2

}{
(FΩ1(λ̃k)(v1))2 + (FΩ1(λ̃k)(v2))2 + ...+ (FΩ1(λ̃k)(vn))2

}]
×

m∑
k=1

[{
(TΩ2(λ̃k)(v1))2 + (TΩ2(λ̃k)(v2))2 + ...+ (TΩ2(λ̃k)(vn))2

}
+

{
(IΩ2(λ̃k)(v1))2 + (IΩ2(λ̃k)(v2))2+

...+ (IΩ2(λ̃k)(vn))2

}{
(FΩ2(λ̃k)(v1))2 + (FΩ2(λ̃k)(v2))2 + ...+ (FΩ2(λ̃k)(vn))2

}]
.

CM ((Ω1, ∆̃1), (Ω2, ∆̃2))2

≤
m∑
k=1

n∑
i=1

[
(TΩ1(λ̃k)(vi))

2 + (IΩ1(λ̃k)(vi))
2 + (FΩ1(λ̃k)(vi))

2

]
×

m∑
k=1

n∑
i=1

[
(TΩ2(λ̃k)(vi))

2+

(IΩ2(λ̃k)(vi))
2 + (FΩ2(λ̃k)(vi))

2

]
.

⇒ CM ((Ω1, ∆̃1), (Ω2, ∆̃2))2 ≤ Φ(Ω1, ∆̃1)× Φ(Ω2, ∆̃2).

⇒ CM ((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤
√

Φ(Ω1, ∆̃1)×
√

Φ(Ω2, ∆̃2).

⇒ CM ((Ω1,∆̃1),(Ω2,∆̃2))√
Φ(Ω1,∆̃1)×

√
Φ(Ω2,∆̃2)

≤ 1.

By using Definition 4.4, we get CC((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1.

Hence, 0 ≤ CC((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1.

Proof. (ii) Straight forward.
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Proof. (iii) CC((Ω1, ∆̃1), (Ω2, ∆̃2)) = CM ((Ω1,∆̃1),(Ω2,∆̃2))√
Φ(Ω1,∆̃1)×

√
Φ(Ω2,∆̃2)

.

Since, (Ω1, ∆̃1) = (Ω2, ∆̃2).

CC((Ω1, ∆̃1), (Ω2, ∆̃2))

=

∑m
k=1

∑n
i=1

[
(TΩ2(λ̃k)(vi))

2 + (IΩ2(λ̃k)(vi))
2 + (FΩ2(λ̃k)(vi))

2

]
√∑m

k=1

∑n
i=1

[
(TΩ2(λ̃k)(vi))

2 + (IΩ2(λ̃k)(vi))
2 + (FΩ2(λ̃k)(vi))

2

]

×

√√√√ m∑
k=1

n∑
i=1

[
(TΩ2(λ̃k)(vi))

2 + (IΩ2(λ̃k)(vi))
2 + (FΩ2(λ̃k)(vi))

2

]
.

⇒ CC((Ω1, ∆̃1), (Ω2, ∆̃2)) = 1.

Definition 4.7. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two SINHSS. Then, the CC between (Ω1, ∆̃1)

and (Ω2∆̃2) is defined as

C̃C((Ω1, ∆̃1), (Ω2, ∆̃2)) =
CM((Ω1, ∆̃1), (Ω2, ∆̃2))

max
{

Φ(Ω1, ∆̃1),Φ(Ω2, ∆̃2)
} . (5)

C̃C((Ω1, ∆̃1), (Ω2, ∆̃2))

=

∑m
k=1

∑n
i=1

[
(TΩ1(λ̃k)(vi)) ∗ (TΩ2(λ̃k)(vi)) + (IΩ1(λ̃k)(vi)) ∗ (IΩ2(λ̃k)(vi)) + (FΩ1(λ̃k)(vi)) ∗ (FΩ2(λ̃k)(vi))

]
max

{∑m
k=1

∑n
i=1

[
(TΩ1(λ̃k)(vi))

2 + (IΩ1(λ̃k)(vi))
2 + (FΩ1(λ̃k)(vi))

2

]
,

m∑
k=1

n∑
i=1

[
(TΩ2(λ̃k)(vi))

2 + (IΩ2(λ̃k)(vi))
2 + (FΩ2(λ̃k)(vi))

2

]}
.

Proposition 4.8. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two SINHSS. Then, the following CC prop-

erties hold:

(i) 0 ≤ C̃C((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1;

(ii) C̃C((Ω1, ∆̃1), (Ω2, ∆̃2)) = C̃C((Ω2, ∆̃2), (Ω1, ∆̃1));

(iii) If (Ω1, ∆̃1) = (Ω2, ∆̃2), then C̃C((Ω1, ∆̃1), (Ω2, ∆̃2)) = 1.
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Proof. (i) Obviously, C̃C((Ω1, ∆̃1), (Ω2, ∆̃2)) ≥ 0. Now, we present the proof of

C̃C((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1. CM((Ω1, ∆̃1), (Ω2, ∆̃2))

=

m∑
k=1

n∑
i=1

[
(TΩ1(λ̃k)(vi)) ∗ (TΩ2(λ̃k)(vi)) + (IΩ1(λ̃k)(vi)) ∗ (IΩ2(λ̃k)(vi))

+ (FΩ1(λ̃k)(vi)) ∗ (FΩ2(λ̃k)(vi))

]
.

=
m∑
k=1

[(
(TΩ1(λ̃k)(v1)) ∗ (TΩ2(λ̃k)(v1)) + (IΩ1(λ̃k)(v1)) ∗ (IΩ2(λ̃k)(v1)) + (FΩ1(λ̃k)(v1)) ∗ (FΩ2(λ̃k)(v1))

)
+

(
(TΩ1(λ̃k)(v2)) ∗ (TΩ2(λ̃k)(v2)) + (IΩ1(λ̃k)(v2)) ∗ (IΩ2(λ̃k)(v2)) + (FΩ1(λ̃k)(v2)) ∗ (FΩ2(λ̃k)(v2))

)
+ ...

+

(
(TΩ1(λ̃k)(vn)) ∗ (TΩ2(λ̃k)(vn)) + (IΩ1(λ̃k)(vn)) ∗ (IΩ2(λ̃k)(vn)) + (FΩ1(λ̃k)(vn)) ∗ (FΩ2(λ̃k)(vn))

)]
.

By applying Cauchy-Schwarz inequality, we get

CM ((Ω1, ∆̃1), (Ω2, ∆̃2))

≤
{ m∑
k=1

[{
(TΩ1(λ̃k)(v1))2 + (TΩ1(λ̃k)(v2))2 + ...+ (TΩ1(λ̃k)(vn))2

}
+

{
(IΩ1(λ̃k)(v1))2 + (IΩ1(λ̃k)(v2))2+

...+ (IΩ1(λ̃k)(vn))2

}{
(FΩ1(λ̃k)(v1))2 + (FΩ1(λ̃k)(v2))2 + ...+ (FΩ1(λ̃k)(vn))2

}]
×

m∑
k=1

[{
(TΩ2(λ̃k)(v1))2 + (TΩ2(λ̃k)(v2))2 + ...+ (TΩ2(λ̃k)(vn))2

}
+

{
(IΩ2(λ̃k)(v1))2 + (IΩ2(λ̃k)(v2))2+

...+ (IΩ2(λ̃k)(vn))2

}{
(FΩ2(λ̃k)(v1))2 + (FΩ2(λ̃k)(v2))2 + ...+ (FΩ2(λ̃k)(vn))2

}]} 1
2

.

CM ((Ω1, ∆̃1), (Ω2, ∆̃2))

≤
{ m∑
k=1

n∑
i=1

[
(TΩ1(λ̃k)(vi))

2 + (IΩ1(λ̃k)(vi))
2 + (FΩ1(λ̃k)(vi))

2

]
×

m∑
k=1

n∑
i=1

[
(TΩ2(λ̃k)(vi))

2+

(IΩ2(λ̃k)(vi))
2 + (FΩ2(λ̃k)(vi))

2

]} 1
2

.

≤
{(

max

{ m∑
k=1

n∑
i=1

[
(TΩ1(λ̃k)(vi))

2 + (IΩ1(λ̃k)(vi))
2 + (FΩ1(λ̃k)(vi))

2

]
×

m∑
k=1

n∑
i=1

[
(TΩ2(λ̃k)(vi))

2+

(IΩ2(λ̃k)(vi))
2 + (FΩ2(λ̃k)(vi))

2

]})2} 1
2

.

= max

{ m∑
k=1

n∑
i=1

[
(TΩ1(λ̃k)(vi))

2 + (IΩ1(λ̃k)(vi))
2 + (FΩ1(λ̃k)(vi))

2

]
×

m∑
k=1

n∑
i=1

[
(TΩ2(λ̃k)(vi))

2+

(IΩ2(λ̃k)(vi))
2 + (FΩ2(λ̃k)(vi))

2

]}
.
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⇒ CM ((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ max

{
Φ(Ω1, ∆̃1)× Φ(Ω2, ∆̃2)

}
.

⇒ CM ((Ω1,∆̃1),(Ω2,∆̃2))

max

{
Φ(Ω1,∆̃1)×Φ(Ω2,∆̃2)

} ≤ 1.

By using Definition 4.7, we get C̃C((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1.

Hence, 0 ≤ C̃C((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1.

Proofs of (ii) and (iii) are same as in Proposition 4.6.

5. Weighted correlation coefficient for SINHSS

We present the concept of weighted correlation coefficient (WCC) for SINHSS. WCC fa-

cilitates decision-makers (DMs) to provide different weights for each alternative. Consider

D = {D1,D2, ...,Dm} and W = {W1,W2, ...,Wn} as weight vectors for alternatives and ex-

perts, respectively, such that Dk,Wi > 0 and
m∑
k=1

Dk = 1,
n∑
i=1
Wi = 1.

Definition 5.1. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two SINHSS. Then, the WCC between (Ω1, ∆̃1)

and (Ω2, ∆̃2) is defined as

CCW ((Ω1, ∆̃1), (Ω2, ∆̃2)) =
CM((Ω1, ∆̃1), (Ω2, ∆̃2))√

Φ(Ω1, ∆̃1)
√

Φ(Ω2, ∆̃2)
(6)

CCW ((Ω1, ∆̃1), (Ω2, ∆̃2))

=

m∑
k=1

Dk
(

n∑
i=1
Wi

[
TΩ1(λ̃k)(vi) ∗ TΩ2(λ̃k)(vi) + IΩ1(λ̃k)(vi) ∗ IΩ2(λ̃k)(vi) + FΩ1(λ̃k)(vi) ∗ FΩ2(λ̃k)(vi)

])
√

m∑
k=1
Dk
(

n∑
i=1
Wi

[
(TΩ1(λ̃k)(vi))

2 + (IΩ1(λ̃k)(vi))
2 + (FΩ1(λ̃k)(vi))

2

])

×

√√√√ m∑
k=1

Dk
( n∑
i=1

Wi

[
(TΩ2(λ̃k)(vi))

2 + (IΩ2(λ̃k)(vi))
2 + (FΩ2(λ̃k)(vi))

2

])
.

If D =
{

1
m ,

1
m , ...,

1
m ,
}

and W =
{

1
n ,

1
n , ...,

1
n ,
}

, then WCC given in Eq.(6) reduces to CC as

in Eq.(4).

Example 5.2. Let the values of (Ω1, ∆̃1) be as in Table 1 and the values of (Ω2, ∆̃2) be as in

Table 2.

Then, CCW ((Ω1, ∆̃1), (Ω2, ∆̃2)) = 0.7903.

Proposition 5.3. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two SINHSS. Then, the following WCC prop-

erties hold:

(i) 0 ≤ CCW ((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1;

(ii) CCW ((Ω1, ∆̃1), (Ω2, ∆̃2)) = CCW ((Ω2, ∆̃2), (Ω1, ∆̃1));

(iii) If (Ω1, ∆̃1) = (Ω2, ∆̃2), then CCW ((Ω1, ∆̃1), (Ω2, ∆̃2)) = 1.
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Proof. Similar to Proposition 4.6.

Definition 5.4. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two SINHSS. Then, the WCC between (Ω1, ∆̃1)

and (Ω2∆̃2) is defined as

˜CCW ((Ω1, ∆̃1), (Ω2, ∆̃2)) =
CM((Ω1, ∆̃1), (Ω2, ∆̃2))

max
{

Φ(Ω1, ∆̃1),Φ(Ω2, ∆̃2)
} . (7)

˜CCW ((Ω1, ∆̃1), (Ω2, ∆̃2))

=

m∑
k=1
Dk
(

n∑
i=1
Wi

[
(TΩ1(λ̃k)(vi)) ∗ (TΩ2(λ̃k)(vi)) + (IΩ1(λ̃k)(vi)) ∗ (IΩ2(λ̃k)(vi)) + (FΩ1(λ̃k)(vi)) ∗ (FΩ2(λ̃k)(vi))

])
max

{
m∑
k=1
Dk
(

n∑
i=1
Wi

[
(TΩ1(λ̃k)(vi))

2 + (IΩ1(λ̃k)(vi))
2 + (FΩ1(λ̃k)(vi))

2

])
,

m∑
k=1

Dk
( n∑
i=1

Wi

[
(TΩ2(λ̃k)(vi))

2 + (IΩ2(λ̃k)(vi))
2 + (FΩ2(λ̃k)(vi))

2

])}
.

If D =
{

1
m ,

1
m , ...,

1
m ,
}

and W =
{

1
n ,

1
n , ...,

1
n ,
}

, then WCC given in Eq.(7) reduces to CC as

in Eq.(5).

Proposition 5.5. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two SINHSS. Then, the following WCC prop-

erties hold:

(i) 0 ≤ ˜CCW ((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1;

(ii) ˜CCW ((Ω1, ∆̃1), (Ω2, ∆̃2)) = ˜CCW ((Ω2, ∆̃2), (Ω1, ∆̃1));

(iii) If (Ω1, ∆̃1) = (Ω2, ∆̃2), then ˜CCW ((Ω1, ∆̃1), (Ω2, ∆̃2)) = 1.

Proof. Similiar to Proposition 4.6.

6. Aggregation operators for SINHSS

We now present the concept of simplified intuitionistic neutrosophic hypersoft weighted

average operator(SINHSWAO) and simplified intuitionistic neutrosophic hypersoft weighted

geometric operator (SINHSWGO) by using operational laws. Let κ represent the collection of

simplified intuitionistic neutrosophic hypersoft numbers (SINHSNs).

6.1. Operational laws for SINHSS

Definition 6.1. Let Ωe11 = (T11, I11,F11) and Ωe12 = (T12, I12,F12) be two SINHSS and β a

positive integer. Then,

(i) Ωe11 ⊕ Ωe12 = 〈T11 + T12 − T11T12, I11 + I12 − I11I12,F11F12〉 ;
(ii) Ωe11 ⊗ Ωe12 = 〈T11T12, I11I12,F11 + F12 −F11F12〉 ;
(iii) βΩe11 =

〈[
(1− (1− T11)β, (1− (1− I11)β, (F11)β

]〉
;

(iv) (Ωe11)β =
〈[

(T11)β, (I11)β, (1− (1−F11)β
]〉

.
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6.2. Simplified intuitionistic neutrosophic hypersoft weighted average operator

Definition 6.2. Let Dk and Wi be weight vectors for alternatives and experts, respectively,

such that Dk,Wi > 0 and
m∑
k=1

Dk = 1,
n∑
i=1
Wi = 1 and Ωeik = (Tik, Iik,Fik) be a SINHSN,

where i = {1, 2, ...n}, k = {1, 2, ...m}. Then, A : κn → κ, SINHSWAO is represented as

A(Ωe11 ,Ωe12 , ...,Ωenm) =
m⊕
k=1

Dk
( n⊕

i=1

WiΩeik

)
.

Theorem 6.3. Let Ωeik = (Tik, Iik,Fik) be a SINHSN, where i = {1, 2, ...n}, k = {1, 2, ...m}.
Then, the aggregated value of SINHSWAO is also a SINHSN, which is given by

A(Ωe11 ,Ωe12 , ...,Ωenm ) =

〈
1−

m∏
k=1

( n∏
i=1

(
1− Tik

)Wi)Dk
, 1−

m∏
k=1

( n∏
i=1

(
1− Iik

)Wi)Dk
,

m∏
k=1

( n∏
i=1

(
Fik
)Wi)Dk〉

.

Proof. If n = 1, then W1 = 1. By using Definition 6.1, we get

A(Ωe11 ,Ωe12 , ...,Ωe1m) =
m⊕
k=1

DkΩe1k .

=

〈
1−

m∏
k=1

( 1∏
i=1

(
1− Tik

)Wi
)Dk

, 1−
m∏
k=1

( 1∏
i=1

(
1− Iik

)Wi
)Dk

,
m∏
k=1

( 1∏
i=1

(
Fik
)Wi

)Dk〉
.

If m = 1, then D1 = 1. By using Definition 6.2, we get

A(Ωe11 ,Ωe21 , ...,Ωen1) =
n⊕
i=1

WiΩei1 .

=

〈
1−

1∏
k=1

( n∏
i=1

(
1− Tik

)Wi
)Dk

, 1−
1∏

k=1

( n∏
i=1

(
1− Iik

)Wi
)Dk

,
1∏

k=1

( n∏
i=1

(
Fik
)Wi

)Dk〉
.

Hence, the results hold for n = 1 and m = 1.

Now, if m = l1 + 1 and n = l2, then,

A(Ωe11 ,Ωe12 , ...,Ωel2(l1+1)
) =

l1+1⊕
k=1

Dk
( l2⊕

i=1

WiΩeik

)
.

=

〈
1−

l1+1∏
k=1

( l2∏
i=1

(
1− Tik

)Wi
)Dk

, 1−
l1+1∏
k=1

( l2∏
i=1

(
1− Iik

)Wi
)Dk

,

l1+1∏
k=1

( l2∏
i=1

(
Fik
)Wi

)Dk〉
.

Similarly, if m = l1, n = l2 + 1, then,

A(Ωe11 ,Ωe12 , ...,Ωe(l2+1)l1
) =

l1⊕
k=1

Dk
( l2+1⊕

i=1

WiΩeik

)
.

=

〈
1−

l1∏
k=1

( l2+1∏
i=1

(
1− Tik

)Wi
)Dk

, 1−
l1∏
k=1

( l2+1∏
i=1

(
1− Iik

)Wi
)Dk

,

l1∏
k=1

( l2+1∏
i=1

(
Fik
)Wi

)Dk〉
.
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Now, if m = l1 + 1, n = l2 + 1, then,

A(Ωe11 ,Ωe12 , ...,Ωe(l2+1)(l1+1)
)

=

l1+1⊕
k=1

Dk
( l2+1⊕

i=1

WiΩeik

)
.

=

l1+1⊕
k=1

Dk
( l2⊕

i=1

WiΩeik

) l1+1⊕
k=1

Dk
(
Wl2+1Ωe(l2+1)k

)
.

A(Ωe11 ,Ωe12 , ...,Ωe(l2+1)(l1+1)
)

=

〈
1−

l1+1∏
k=1

( l2∏
i=1

(
1− Tik

)Wi
)Dk

⊕ 1−
l1+1∏
k=1

((
1− T(l2+1)k

)W(l2+1)
)Dk

,

1−
l1+1∏
k=1

( l2∏
i=1

(
1− Iik

)Wi
)Dk

⊕ 1−
l1+1∏
k=1

((
1− I(l2+1)k

)W(l2+1)
)Dk

,

l1+1∏
k=1

( l2∏
i=1

(
Fik
)Wi

)Dk
⊕
l1+1∏
k=1

((
F(l2+1)k

)W(l2+1)
)Dk〉

.

=

〈
1−

l1+1∏
k=1

( l2+1∏
i=1

(
1− Tik

)Wi
)Dk

, 1−
l1+1∏
k=1

( l2+1∏
i=1

(
1− Iik

)Wi
)Dk

,

l1+1∏
k=1

( l2+1∏
i=1

(
Fik
)Wi

)Dk〉
.

Hence, the results hold for n = l2 + 1 and m = l1 + 1.

Therefore, by induction method, the result is true ∀ m,n ≥ 1.

Since

0 ≤ Tik + Fik ≤ 1 and 0 ≤ Iik ≤ 1.

⇔ 1−
m∏
k=1

( n∏
i=1

(
1− Tik

)Wi
)Dk

+
m∏
k=1

( n∏
i=1

(
Fik
)Wi

)Dk
≤ 1

and1−
m∏
k=1

( n∏
i=1

(
1− Iik

)Wi
)Dk

≤ 1.

⇔ 1−
m∏
k=1

( n∏
i=1

(
1− Tik

)Wi
)Dk

+

m∏
k=1

( n∏
i=1

(
1− Tik

)Wi
)Dk

≤ 1

and 1−
m∏
k=1

( n∏
i=1

(
1− Iik

)Wi
)Dk

≤ 1.

⇔ 1−
m∏
k=1

( n∏
i=1

(
1− Tik

)Wi
)Dk

+
m∏
k=1

( n∏
i=1

(
1− Tik

)Wi
)Dk

+ 1−
m∏
k=1

( n∏
i=1

(
1− Iik

)Wi
)Dk

≤ 2.

Therefore, the aggregated value given by SINHSWAO is also a SINHSN.

Example 6.4. Let us consider the same values mentioned in Example 3.2. Also, let Wi =

{0.50, 0.30, 0.20} and Dk = {0.14, 0.13, 0.23, 0.20, 0.18, 0.12} be the weight of sociologists and
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attributes, respectively. Then,

A(Ωe11 ,Ωe12 , ...,Ωe36)

=

〈
1−

6∏
k=1

( 3∏
i=1

(
1− Tik

)Wi
)Dk

, 1−
6∏

k=1

( 3∏
i=1

(
1− Iik

)Wi
)Dk

,
6∏

k=1

( 3∏
i=1

(
Fik
)Wi

)Dk〉
.

= 〈0.55, 1.00, 0.27〉 .

6.3. Simplified intuitionistic neutrosophic hypersoft weighted geometric operator

Definition 6.5. Let Dk and Wi be weight vectors for alternatives and experts, respectively,

such that Dk,Wi > 0 and
m∑
k=1

Dk = 1,
n∑
i=1
Wi = 1 and Ωeik = (Tik, Iik,Fik) be a SINHSN,

where i = {1, 2, ...n}, k = {1, 2, ...m}. Then, G : κn → κ, SINHSWGO is defined as

G(Ωe11 ,Ωe12 , ...,Ωenm) =
m⊗
k=1

( n⊗
i=1

(
Ωeik

)Wi
)Dk

.

Theorem 6.6. Let Ωeik = (Tik, Iik,Fik) be a SINHSN, where i = {1, 2, ...n}, k = {1, 2, ...m}.
Then, the aggregated value of SINHSWGO is also a SINHSN, which is given by

G(Ωe11 ,Ωe12 , ...,Ωenm ) =

〈
m∏
k=1

( n∏
i=1

(
Tik
)Wi)Dk

,
m∏
k=1

( n∏
i=1

(
Iik
)Wi)Dk

, 1−
m∏
k=1

( n∏
i=1

(
1−Fik

)Wi)Dk〉
.

Proof. Similar to Theorem 6.3.

Example 6.7. Let us consider the same values mentioned in Example 3.2 and the weight of

sociologists and attributes be as in Example 6.4. Then,

G(Ωe11 ,Ωe12 , ...,Ωe36)

=

〈
6∏

k=1

( 3∏
i=1

(
Tik
)Wi

)Dk
,

6∏
k=1

( 3∏
i=1

(
Iik
)Wi

)Dk
, 1−

6∏
k=1

( 3∏
i=1

(
1−Fik

)Wi
)Dk〉

.

= 〈0.40, 0.52, 0.37〉 .

7. MCDM problems based on TOPSIS and CC method

TOPSIS method helps to find the best alternative based on minimum and maximum distance

from the neutrosophic positive ideal solution (NPIS) and neutrosophic negative ideal solution

(NNIS). Also, when TOPSIS method is combined with CC instead of similarity measures, it

provides reliable results for predicting the closeness coefficients. We present an algorithm and

a case study to illustrate the SINHSS TOPSIS method based on CC.
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7.1. Algorithm to solve MCDM problems with SINHSS data based on TOPSIS and CC method

Let A =
{
A1,A2, ...,Ax

}
be a set of selected leaders aspiring to bring in socio-political

changes to society and V = {v1, v2, ..., vn} be a set of sociologists responsible to evaluate the

leaders with weights Wi = (W1,W2, ...,Wn), such that Wi > 0 and
n∑
i=1
Wi = 1. Let ∆̃ ={

λ̃1, λ̃2, ..., λ̃m

}
be a set of multi-valued sub-attributes with weights Dk = (D1,D2, ...,Dm),

such that Dk > 0 and
m∑
k=1

Dk = 1. The evaluation of leaders At, (t = 1, 2, ..., x) performed by

the sociologists vi, (i = 1, 2, ..., n) based on the multi-valued sub-attributes λ̃k, (k = 1, 2, ...,m)

are given in SINHSS form and represented as Ωt
ik =

〈
T tik, Itik,F tik

〉
, such that 0 ≤ T tik +F tik ≤ 1

and 0 ≤ T tik + Itik + F tik ≤ 2 ∀ i, k.

Step 1. Construct the matrix for each multi-valued sub-attributes in SINHSS form as below:

[At, ∆̃]n×m = [At]n×m =

λ̃1 λ̃2 . . . λ̃m



v1

〈
T t11, It11,Ft11

〉 〈
T t12, It12,Ft12

〉
. . .

〈
T t1m, It1m,Ft1m

〉 〉
v2

〈
T t21, It21,Ft21

〉 〈
T t22, It22,Ft22

〉
. . .

〈
T t2m, It2m,Ft2m

〉 〉
...

...
...

. . .
...

vn
〈
T tn1, Itn1,Ftn1

〉 〈
T tn2, Itn2,Ftn2

〉
. . .

〈
T tnm, Itnm,Ftnm

〉 〉
Step 2. Obtain the weighted decision matrix for each multi-valued sub-attributes,

[Ãtik]n×m

=

〈
1−

m∏
k=1

( n∏
i=1

(
1− Tik

)Wi
)Dk

, 1−
m∏
k=1

( n∏
i=1

(
1− Iik

)Wi
)Dk

,

m∏
k=1

( n∏
i=1

(
Fik
)Wi

)Dk〉
=
〈
T̃ik, Ĩik, F̃ik

〉
.

Step 3. Determine the NPIS and NNIS for weighted SINHSS as below:

Ã+ =
〈
T̃ +, Ĩ+, F̃+

〉
n×m

=
〈
T̃ (∨ij), Ĩ(∧ij), F̃ (∧ij)

〉
and

Ã− =
〈
T̃ −, Ĩ−, F̃−

〉
n×m

=
〈
T̃ (∧ij), Ĩ(∧ij), F̃ (∨ij)

〉
,

where ∨ij = arg maxt

{
ϕtij

}
and ∧ij = arg mint

{
ϕtij

}
.

Step 4. Determine the CC for each alternative from NPIS and NNIS.

χt = CC(Ãt, Ã+) =
CM(Ãt, Ã+)√

Φ(Ãt) ∗
√

(ΦÃ+)
and

λt = CC(Ãt, Ã−) =
CM(Ãt, Ã−)√

Φ(Ãt) ∗
√

Φ(Ã−)

Step 5. Compute the closeness coefficient of neutrosophic ideal solution as below:

εt =
1− λt

2− χt − λt
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Step 6. Arrange the εt values in descending order and determine the rank of the alternatives

At, (t = 1, 2, ..., x). The one with the maximum value is the best alternative.

7.2. Application based on TOPSIS and CC method

Let A =
{
A1,A2,A3,A4

}
be a set of leaders aspiring to bring in socio-

political changes with their leadership skills and ∆1 and ∆2 be distinct attribute

sets whose corresponding sub-attributes are represented as ∆1 = leader attributes =

{λ11 = personality variables, λ12 = cognitive ability and skills}, ∆2 = leader behaviors =

{λ21 = setting sub culture, λ22 = conflict management}. Then ∆̃ = ∆1 × ∆2 be distinct at-

tribute sets, such as

∆̃ = ∆1 ×∆2 = {λ11, λ12} × {λ21, λ22} .

=

{
(λ11, λ21), (λ11, λ22), (λ12, λ21), (λ12, λ21)

}
.

=

{
λ̃1, λ̃2, λ̃3, λ̃4

}
with weights Dk = (0.20, 0.25, 0.30, 0.25).

An expert team selects a set of sociologists and provides the weightage depending on their

tenure and knowledge. Let V = {v1, v2, v3, v4} be a set of sociologists responsible to evaluate

the leaders with weights Wi = (0.35, 0.15, 0.30, 0.20). This study aims to find a leader who

can bring major socio-political changes in a larger way to society.

Step 1. ConstructA1, A2, A3 andA4 matrices for each multi-valued sub-attributes in SINHSS

form.

Table 3. Representation of values in SINHSS form for A1.

A1 λ̃1 λ̃2 λ̃3 λ̃4

v1 〈0.65, 0.92, 0.34〉 〈0.55, 0.48, 0.25〉 〈0.78, 0.88, 0.21〉 〈0.23, 0.24, 0.35〉
v2 〈0.55, 0.72, 0.24〉 〈0.65, 0.56, 0.25〉 〈0.55, 0.77, 0.12〉 〈0.43, 0.45, 0.45〉
v3 〈0.63, 0.87, 0.35〉 〈0.45, 0.76, 0.35〉 〈0.67, 0.55, 0.32〉 〈0.41, 0.67, 0.55〉
v4 〈0.53, 0.79, 0.45〉 〈0.67, 0.34, 0.31〉 〈0.57, 0.66, 0.42〉 〈0.32, 0.87, 0.53〉

Table 4. Representation of values in SINHSS form for A2.

A2 λ̃1 λ̃2 λ̃3 λ̃4

v1 〈0.74, 0.27, 0.24〉 〈0.69, 0.43, 0.25〉 〈0.54, 0.22, 0.12〉 〈0.32, 0.67, 0.24〉
v2 〈0.44, 0.95, 0.54〉 〈0.79, 0.56, 0.15〉 〈0.66, 0.33, 0.31〉 〈0.42, 0.78, 0.15〉
v3 〈0.35, 0.85, 0.45〉 〈0.57, 0.32, 0.25〉 〈0.53, 0.44, 0.21〉 〈0.52, 0.89, 0.43〉
v4 〈0.45, 0.76, 0.35〉 〈0.82, 0.78, 0.16〉 〈0.64, 0.55, 0.24〉 〈0.34, 0.91, 0.61〉
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Table 5. Representation of values in SINHSS form for A3.

A3 λ̃1 λ̃2 λ̃3 λ̃4

v1 〈0.65, 0.78, 0.34〉 〈0.65, 0.78, 0.21〉 〈0.65, 0.65, 0.23〉 〈0.63, 0.34, 0.19〉
v2 〈0.45, 0.55, 0.42〉 〈0.54, 0.88, 0.19〉 〈0.58, 0.45, 0.33〉 〈0.53, 0.47, 0.25〉
v3 〈0.55, 0.76, 0.35〉 〈0.75, 0.33, 0.24〉 〈0.46, 0.35, 0.45〉 〈0.23, 0.78, 0.34〉
v4 〈0.35, 0.45, 0.24〉 〈0.58, 0.44, 0.25〉 〈0.74, 0.25, 0.19〉 〈0.45, 0.81, 0.17〉

Table 6. Representation of values in SINHSS form for A4.

A4 λ̃1 λ̃2 λ̃3 λ̃4

v1 〈0.81, 0.46, 0.12〉 〈0.35, 0.45, 0.24〉 〈0.23, 0.32, 0.42〉 〈0.54, 0.93, 0.45〉
v2 〈0.64, 0.56, 0.14〉 〈0.59, 0.65, 0.34〉 〈0.33, 0.43, 0.52〉 〈0.45, 0.48, 0.38〉
v3 〈0.54, 0.76, 0.23〉 〈0.63, 0.76, 0.26〉 〈0.12, 0.54, 0.72〉 〈0.56, 0.79, 0.41〉
v4 〈0.76, 0.45, 0.16〉 〈0.67, 0.88, 0.31〉 〈0.18, 0.65, 0.45〉 〈0.66, 0.58, 0.34〉

Step 2. Obtain Ã1, Ã2, Ã3 and Ã4, the weighted matrices for each multi-valued sub-

attributes.

Table 7. Representation of weighted values in SINHSS form for Ã1.

Ã1 λ̃1 λ̃2 λ̃3 λ̃4

v1 〈0.0709, 0.1621, 0.9273〉 〈0.0675, 0.0557, 0.8858〉 〈0.1470, 0.1996, 0.8489〉 〈0.0227, 0.0238, 0.9123〉
v2 〈0.0237, 0.0375, 0.9581〉 〈0.0387, 0.0304, 0.9494〉 〈0.0353, 0.0640, 0.9090〉 〈0.0209, 0.0222, 0.9705〉
v3 〈0.0580, 0.1153, 0.9390〉 〈0.0439, 0.1016, 0.9243〉 〈0.0950, 0.0694, 0.9026〉 〈0.0388, 0.0798, 0.9562〉
v4 〈0.0298, 0.0606, 0.9686〉 〈0.0540, 0.0206, 0.9432〉 〈0.0494, 0.0627, 0.9493〉 〈0.0191, 0.0970, 0.9688〉

Table 8. Representation of weighted values in SINHSS form Ã2 .

Ã2 λ̃1 λ̃2 λ̃2 λ̃4

v1 〈0.0900, 0.0218, 0.9050〉 〈0.0975, 0.0480, 0.8858〉 〈0.0784, 0.0258, 0.8005〉 〈0.0332, 0.0925, 0.8827〉
v2 〈0.0173, 0.0860, 0.9817〉 〈0.0569, 0.0304, 0.9314〉 〈0.0474, 0.0179, 0.9487〉 〈0.0203, 0.0552, 0.9314〉
v3 〈0.0256, 0.1076, 0.9533〉 〈0.0614, 0.0286, 0.9013〉 〈0.0657, 0.0509, 0.8690〉 〈0.0536, 0.1526, 0.9387〉
v4 〈0.0237, 0.0555, 0.9589〉 〈0.0822, 0.0730, 0.9125〉 〈0.0595, 0.0468, 0.9180〉 〈0.0206, 0.1135, 0.9756〉

Step 3. Determine the NPIS and NNIS from the weighted matrices, Ã1, Ã2 , Ã3 and Ã4.

Ã+ =

λ̃1 λ̃2 λ̃3 λ̃4


v1 〈0.1098, 0.0218, 0.8621〉 〈0.0975, 0.0480, 0.8724〉 〈0.1470, 0.0258, 0.8005〉 〈0.0834, 0.0238, 0.8648〉
v2 〈0.0302, 0.0237, 0.9428〉 〈0.0569, 0.0304, 0.9314〉 〈0.0474, 0.0179, 0.9090〉 〈0.0280, 0.0222, 0.9314〉
v3 〈0.0580, 0.0821, 0.9156〉 〈0.0988, 0.0286, 0.8985〉 〈0.0950, 0.0381, 0.8690〉 〈0.0598, 0.0798, 0.9223〉
v4 〈0.0555, 0.0237, 0.9294〉 〈0.0822, 0.0206, 0.9125〉 〈0.0777, 0.0172, 0.9052〉 〈0.0526, 0.0425, 0.9153〉
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Table 9. Representation of weighted values in SINHSS form for Ã3 .

Ã3 λ̃1 λ̃2 λ̃3 λ̃4

v1 〈0.0709, 0.1006, 0.9273〉 〈0.0878, 0.1241, 0.8724〉 〈0.1044, 0.1044, 0.8571〉 〈0.0834, 0.0358, 0.8648〉
v2 〈0.0178, 0.0237, 0.9744〉 〈0.0287, 0.0765, 0.9397〉 〈0.0383, 0.0266, 0.9514〉 〈0.0280, 0.0236, 0.9494〉
v3 〈0.0468, 0.0821, 0.9390〉 〈0.0988, 0.0296, 0.8985〉 〈0.0540, 0.0381, 0.9307〉 〈0.0195, 0.1074, 0.9223〉
v4 〈0.0171, 0.0237, 0.9446〉 〈0.0425, 0.0286, 0.9331〉 〈0.0777, 0.0172, 0.9052〉 〈0.0295, 0.0797, 0.9153〉

Table 10. Representation of weighted values in SINHSS form for Ã4 .

Ã4 λ̃1 λ̃2 λ̃3 λ̃4

v1 〈0.1098, 0.0423, 0.8621〉 〈0.0370, 0.0510, 0.8827〉 〈0.0271, 0.0397, 0.9130〉 〈0.0657, 0.2076, 0.9326〉
v2 〈0.0302, 0.0244, 0.9428〉 〈0.0329, 0.0387, 0.9604〉 〈0.0179, 0.0250, 0.9711〉 〈0.0222, 0.0243, 0.9644〉
v3 〈0.0456, 0.0821, 0.9156〉 〈0.0719, 0.1016, 0.9040〉 〈0.0115, 0.0676, 0.9709〉 〈0.0598, 0.1105, 0.9354〉
v4 〈0.0555, 0.0237, 0.9294〉 〈0.0540, 0.1006, 0.9432〉 〈0.0119, 0.0611, 0.9533〉 〈0.0526, 0.0425, 0.9475〉

Ã− =

λ̃1 λ̃2 λ̃3 λ̃4


v1 〈0.0709, 0.0218, 0.9273〉 〈0.0370, 0.0480, 0.8858〉 〈0.0271, 0.0258, 0.9130〉 〈0.0227, 0.0238, 0.9326〉
v2 〈0.0173, 0.0218, 0.9817〉 〈0.0287, 0.0304, 0.9604〉 〈0.0179, 0.0179, 0.9711〉 〈0.0203, 0.0222, 0.9705〉
v3 〈0.0256, 0.0237, 0.9533〉 〈0.0439, 0.0286, 0.9243〉 〈0.0115, 0.0381, 0.9709〉 〈0.0195, 0.0798, 0.9562〉
v4 〈0.0171, 0.0237, 0.9686〉 〈0.0425, 0.0206, 0.9432〉 〈0.0119, 0.0172, 0.9533〉 〈0.0191, 0.0425, 0.9756〉

Step 4. Determine the CC for the alternatives by using the values of NPIS and NNIS.

χ1 = 0.9968, χ2 = 0.9981, χ3 = 0.9983 and χ4 = 0.9962.

λ1 = 0.9961, λ2 = 0.9975, λ3 = 0.9979 and λ4 = 0.9975.

Step 5. Compute the closeness coefficient of neutrosophic ideal solution as below.

ε1 = 0.5493, ε2 = 0.5682, ε3 = 0.5526 and ε4 = 0.3968.

Step 6. Arrange the values in descending order.

ε2 > ε3 > ε1 > ε4.

⇒ A2 > A3 > A1 > A4.

Hence, A2 is the best leader among the group and can play a significant role in bringing

socio-political changes to society.

8. Comparative Analysis

We compare existing TOPSIS methods with the proposed method. Also, we provide ex-

amples to show the advantage of the TOPSIS method based on CC instead of distance or

similarity measures.
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Example 8.1. Consider the SINHSS values mentioned in Table 10. By applying the existing

neutrosophic simplified TOPSIS method discussed in Elhassouny and Smarandache [11],

A1 = A2 = A3 = A4 = 0.47.

Hence, it is not possible to identify the best alternative.

By applying the proposed method,

A4 = 0.58,A3 = 0.56,A2 = 0.51 and A1 = 0.48

Hence, the best alternative is A4.

Table 11. Representation of values in SINHSS form for Ai.

Ai λ̃1 λ̃2 λ̃3 λ̃4 λ̃5 λ̃6

A1 〈0.55, 0.89, 0.34〉 〈0.46, 0.87, 0.25〉 〈0.62, 0.54, 0.11〉 〈0.23, 0.91, 0.35〉 〈0.55, 0.77, 0.24〉 〈0.63, 0.44, 0.21〉
A2 〈0.65, 0.87, 0.24〉 〈0.72, 0.56, 0.12〉 〈0.45, 0.56, 0.12〉 〈0.25, 0.93, 0.45〉 〈0.44, 0.95, 0.54〉 〈0.78, 0.57, 0.15〉
A3 〈0.76, 0.85, 0.14〉 〈0.57, 0.76, 0.24〉 〈0.67, 0.55, 0.32〉 〈0.58, 0.67, 0.55〉 〈0.42, 0.75, 0.45〉 〈0.57, 0.54, 0.25〉
A4 〈0.53, 0.65, 0.45〉 〈0.71, 0.69, 0.11〉 〈0.57, 0.66, 0.33〉 〈0.42, 0.87, 0.54〉 〈0.55, 0.89, 0.14〉 〈0.69, 0.56, 0.16〉

Example 8.2. Consider the SINHSS values mentioned in Table 11. By applying the existing

TOPSIS method discussed in Biswas et al. [7],

A1 = A2 = A3 = A4 = 0.48.

Hence, it is not possible to identify the best alternative.

By applying the proposed method,

A3 = 0.57,A2 = 0.54,A4 = 0.51 and A1 = 0.06

Hence, the best alternative is A3.

Table 12. Representation of values in SINHSS form for Ai.

Ai λ̃1 λ̃2 λ̃3 λ̃4 λ̃5 λ̃6

A1 〈0.45, 0.79, 0.45〉 〈0.34, 0.34, 0.65〉 〈0.47, 0.54, 0.52〉 〈0.52, 0.23, 0.42〉 〈0.41, 0.77, 0.49〉 〈0.35, 0.44, 0.61〉
A2 〈0.65, 0.85, 0.24〉 〈0.66, 0.88, 0.12〉 〈0.45, 0.56, 0.12〉 〈0.47, 0.93, 0.24〉 〈0.44, 0.95, 0.54〉 〈0.78, 0.57, 0.15〉
A3 〈0.76, 0.85, 0.14〉 〈0.57, 0.76, 0.24〉 〈0.67, 0.55, 0.32〉 〈0.71, 0.88, 0.23〉 〈0.52, 0.75, 0.45〉 〈0.59, 0.54, 0.21〉
A4 〈0.53, 0.65, 0.45〉 〈0.71, 0.69, 0.11〉 〈0.57, 0.66, 0.33〉 〈0.42, 0.83, 0.54〉 〈0.42, 0.79, 0.14〉 〈0.49, 0.56, 0.34〉

Example 8.3. Consider the SINHSS values mentioned in Table 13. By combining the existing

neutrosophic simplified TOPSIS method discussed in Elhassouny and Smarandache [11], with

the similarity measures given in Table 12, it is not possible to identify the best alternative.

However, by using the proposed method, the best alternative is identified for all the cases, as

shown in Table 14.
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Table 13. Framework of existing similarity measures.

Existing similarity measures

SJ (ψ1, ψ2) [28]= 1
n

n∑
i=1

J̃
(T 2
ψ1

(ui)+I2ψ1
(ui)+F2

ψ1
(ui))+(T 2

ψ2
(ui)+I2ψ2

(ui)+F2
ψ2

(ui))−J̃
,

where J̃ = Tψ1
(ui)Tψ2

(ui) + Iψ1
(ui)Iψ2

(ui) + Fψ1
(ui)Fψ2

(ui).

SD(ψ1, ψ2) [28]= 1
n

n∑
i=1

2(Tψ1
(ui)Tψ2

(ui)+Iψ1
(ui)Iψ2

(ui)+Fψ1
(ui)Fψ2

(ui))

(T 2
ψ1

(ui)+I2ψ1
(ui)+F2

ψ1
(ui))+(T 2

ψ2
(ui)+I2ψ2

(ui)+F2
ψ2

(ui))
.

S1(ψ1, ψ2) [29]= 1
n

n∑
i=1

cos
[
π
2

max(|Tψ1
(ui)− Tψ2

(ui)|, |Iψ1
(ui)− Iψ2

(ui)|, |Fψ1
(ui)−Fψ2

(ui)|)
]
.

S2(ψ1, ψ2) [29]= 1
n

n∑
i=1

cos
[
π
6

(|Tψ1
(ui)− Tψ2

(ui)|+ |Iψ1
(ui)− Iψ2

(ui)|+ |Fψ1
(ui)−Fψ2

(ui)|)
]
.

S3(ψ1, ψ2) [30]= 1
n

n∑
i=1

tan
[
π
4

max(|Tψ1
(ui)− Tψ2

(ui)|, |Iψ1
(ui)− Iψ2

(ui)|, |Fψ1
(ui)−Fψ2

(ui)|)
]
.

S4(ψ1, ψ2) [30]= 1
n

n∑
i=1

tan
[
π
12

(|Tψ1
(ui)− Tψ2

(ui)|+ |Iψ1
(ui)− Iψ2

(ui)|+ |Fψ1
(ui)−Fψ2

(ui)|)
]
.

S5(ψ1, ψ2) [31]= 1
n

n∑
i=1

cot
[
π
4

+ π
4

max(|Tψ1
(ui)− Tψ2

(ui)|, |Iψ1
(ui)− Iψ2

(ui)|, |Fψ1
(ui)−Fψ2

(ui)|)
]
.

S6(ψ1, ψ2) [31]= 1
n

n∑
i=1

cot
[
π
4

+ π
6

(|Tψ1
(ui)− Tψ2

(ui)|+ |Iψ1
(ui)− Iψ2

(ui)|+ |Fψ1
(ui)−Fψ2

(ui)|)
]
.

Table 14. Representation of values in SINHSS form for Ai.

Ai λ̃1 λ̃2 λ̃3 λ̃4 λ̃5 λ̃6

A1 〈0.55, 0.89, 0.34〉 〈0.46, 0.87, 0.25〉 〈0.62, 0.54, 0.11〉 〈0.23, 0.91, 0.35〉 〈0.55, 0.77, 0.24〉 〈0.63, 0.44, 0.21〉
A2 〈0.65, 0.87, 0.24〉 〈0.72, 0.56, 0.12〉 〈0.45, 0.56, 0.12〉 〈0.25, 0.93, 0.45〉 〈0.44, 0.95, 0.54〉 〈0.78, 0.57, 0.15〉
A3 〈0.76, 0.85, 0.14〉 〈0.57, 0.76, 0.24〉 〈0.67, 0.55, 0.32〉 〈0.58, 0.67, 0.55〉 〈0.42, 0.75, 0.45〉 〈0.57, 0.38, 0.25〉
A4 〈0.53, 0.65, 0.45〉 〈0.71, 0.69, 0.11〉 〈0.57, 0.66, 0.33〉 〈0.42, 0.87, 0.54〉 〈0.55, 0.89, 0.14〉 〈0.69, 0.46, 0.16〉

Table 15. Comparison of existing similarity measures with proposed method.

Unable to rank using existing similarity measures Able to rank using Proposed method

SJ (ψ1, ψ2) [28]⇒ A1 = A2 = A3 = A4 = 0.50 A4 = 0.58, > A3 = 0.56, > A2 = 0.51, > A1 = 0.50.

SD(ψ1, ψ2) [28]⇒ A1 = A2 = A3 = A4 = 0.50 A4 = 0.58, > A3 = 0.56, > A2 = 0.51, > A1 = 0.50.

S1(ψ1, ψ2) [29]⇒ A1 = A2 = A3 = A4 = 0.50 A4 = 0.58, > A3 = 0.56, > A2 = 0.51, > A1 = 0.50.

S2(ψ1, ψ2) [29]⇒ A1 = A2 = A3 = A4 = 0.50 A4 = 0.58, > A3 = 0.56, > A2 = 0.51, > A1 = 0.50.

S3(ψ1, ψ2) [30]⇒ A1 = A2 = A3 = A4 = 0.50 A4 = 0.58, > A3 = 0.56, > A2 = 0.51, > A1 = 0.50.

S4(ψ1, ψ2) [30]⇒ A1 = A2 = A3 = A4 = 0.50 A4 = 0.58, > A3 = 0.56, > A2 = 0.51, > A1 = 0.50.

S5(ψ1, ψ2) [31]⇒ A1 = A2 = A3 = A4 = 0.50 A4 = 0.58, > A3 = 0.56, > A2 = 0.51, > A1 = 0.50.

S6(ψ1, ψ2) [31]⇒ A1 = A2 = A3 = A4 = 0.50 A4 = 0.58, > A3 = 0.56, > A2 = 0.51, > A1 = 0.50.
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9. Conclusions

Existing theories fail to handle the information when each component is interrelated. To

overcome this limitation, we establish the properties of a simplified intuitionistic neutrosophic

hypersoft set. We propose an application based on the TOPSIS method to identify a leader in a

socio-political context. We apply CC instead of the usual distance or similarity measures in the

TOPSIS method to understand the closeness coefficients in a better way. We have presented

a comparative study between the proposed method and the existing TOPSIS method to prove

the reliability of the proposed model. The proposed concept may be extended to algebraic

structures, N soft set, and other hybrid structures. Apart from the theoretical dimension, the

discussed concepts may be implemented to real-world challenges in fields such as psychology,

economics, pattern recognition, artificial intelligence, and many more.
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Abstract. In multi-criteria decision-making problems, we may have to deal with numbers that are in inter-

val forms, like those of membership, non-membership grades and indeterminacy grades representing unique

attributes of elements. When decision-makers come across such an environment, the decisions are harder to

make and the most significant factor is that we need to combine these interval numbers to generate a single

real number, which can be done using aggregation operators or score functions. To overcome this hindrance,

we introduce the notion of interval-valued intuitionistic neutrosophic hypersoft set. This eventually helps the

decision-maker to collect the data with no misconceptions. The primary aim of this study is to establish some

operational laws for interval-valued intuitionistic neutrosophic hypersoft set. Also, we present the fundamen-

tal properties of two aggregation operators, interval-valued intuitionistic neutrosophic weighted average and

interval-valued intuitionistic neutrosophic weighted geometric operators. Also, we propose an algorithm for the

technique of order of preference by similarity to ideal solution (TOPSIS) method based on correlation coeffi-

cients to choose a suitable employee among the alternative using Leipzig leadership model in an organization

for an upcoming new project. Finally, we present a comparative study with existing similarity measures to

show the effectiveness of the proposed method.

Keywords: interval-valued neutrosophic set; intuitionistic set; hypersoft set.

————————————————————————————————————————

1. Introduction

Zadeh introduced the concept of fuzzy set (FS) [32] and FS has been widely used in various

fields. The idea of intuitionistic FS (IFS) was presented by Atanassov [3], an extension of

FS. Smarandache [24] developed the notion of the neutrosophic set (NS) characterized by the

values of truth, indeterminacy, and falsity grades for each element of the set. Later, Wang et

al. [27], [28] proposed the concepts of single-valued NS (SVNS) and interval-valued NS with
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a restricted condition for the membership values to overcome the constraints faced in NS.

Chinnadurai et al. [9] discussed a solution to find out unique ranking among the alternatives.

Chinnadurai and Bobin [10] proposed a concept to identify the profit and gains in decision-

making problems by using Prospect theory. Chinnadurai and Bobin [11] introduced the concept

of single valued neutrosophic N soft set. Also, Chinnadurai and Bobin [12] established the

properties of interval-valued neutrosophic N soft set. Molodtsov [16] introduced the idea

of the soft set (SS) to deal with uncertainties. Smarandache [25] presented the notion of the

hypersoft set (HSS) to overcome the restriction faced in SS. Saeed [22] briefed the fundamental

concepts of HSS. Ihsan et al. [21] used a hypersoft expert set for the recruitment process in

MCDM problems.

Selvachandran et al. [23] presented a modified TOPSIS deviation method of SVNS. Wang

and Chen [29] proposed a TOPSIS method, in which they got the optimal weights of at-

tributes using linear programming of interval-valued IFS. Wang and Wan [30] investigated

group decision making with interval-valued IFS. Nabeeh et al. [18] contributed to the per-

sonnel selection process among different alternatives by combining the analytical hierarchy

method with the TOPSIS. Abdel-Basset et al. [1] combined type 2 NS and TOPSIS for sup-

plier selection. Abdel-Basset et al. [2] proposed the use of bipolar neutrosophic numbers in the

TOPSIS method for selecting smart medical devices. Endalkachew Teshome Ayele et al. [4]

presented a method for traffic signal control using an interval-valued neutrosophic soft set.

Christianto and Smarandache [13] proposed the idea of a third-way leadership model, a blend

of hard-style and soft-style leadership. Harish et al. [14] used a combination of TOPSIS and

Choquet integral method in hesitant FS to solve multi-criteria decision-making (MCDM) prob-

lems. Rana Muhammad Zulqarnain et al. [54] introduced the concept of intuitionistic fuzzy

HSS and used the TOPSIS method based on correlation coefficient (CC). Rana Muhammad

Zulqarnain et al. [55] studied the fundamental operations of interval-valued neutrosophic HSS.

Saqlain Muhammad et al. [17] defined aggregation operators on neutrosophic HSS and studied

some properties.

Rahman et al. [19] extended the concept of HSS to complex FS, complex IFS, and complex

NS. Zulqarnain et al. [45] developed the TOPSIS method in a fuzzy environment and used it

in the medical staff recruitment process. Zulqarnain et al. [46] established the concept of gen-

eralized TOPSIS method to solve MCDM problems. Zulqarnain and Dayan [43] presented a

method for choosing the best criteria by using the fuzzy TOPSIS method. Zulqarnain et al. [44]

proposed an idea for predicting diabetes using TOPSIS analysis. Zulqarnain et al. [34] used the

TOPSIS method based on correlation coefficient and aggregation operators under intuitionistic

fuzzy hypersoft set (IFHSS) environment. Zulqarnain et al. [39] used aggregation operators

A.Bobin and V.Chinnadurai, IVINHSS TOPSIS method based on correlation coefficient

Neutrosophic Sets and Systems, Vol. 51, 2022                                                                              593



in the IFHSS environment to solve MCDM problems. Zulqarnain [48] developed a new TOP-

SIS method based on the correlation coefficient of interval-valued intuitionistic fuzzy soft sets

in MCDM problems. Zulqarnain [53] established aggregation operators under Pythagorean

fuzzy soft environment to solve MCDM problems. Zulqarnain et al. [50] developed aggrega-

tion operators of Pythagorean fuzzy soft sets for selecting green supplier chain management.

Zulqarnain [49] discussed an application towards green supply chain management by using

Pythagorean fuzzy soft set. Zulqarnain et al. [37] developed the concept of Pythagorean fuzzy

hypersoft set (PFHSS). Zulqarnain et al. [47] discussed an idea of solving MCDM problems by

using the generalized neutrosophic TOPSIS method. Zulqarnain et al. [38] used the concept of

PFHSS in selecting the antivirus mask during the pandemic. Zulqarnain et al. [41] presented

an application for solving MCDM problems using neutrosophic hypersoft matrices.

Zulqarnain et al. [42] discussed MCDM problems using the aggregation operators in the

PFHSS environment. Zulqarnain [51] discussed an integrated TOPSIS model in a neutrosophic

environment. Zulqarnain [52] proposed algorithms for a generalized multi-polar neutrosophic

soft set to solve medical diagnoses. Zulqarnain et al. [33] proposed the generalized aggregate

operators on neutrosophic HSS (NHSS) such as extended union, extended intersection, OR-

operation, AND operation, etc., and established their properties. Samad et al. [40] extended

the TOPSIS method based on correlation coefficient under NHSS environment in selecting

an effective hand sanitizer during the pandemic. Rahman et al. [20] developed the concept

of neutrosophic parametrized hypersoft set theory to solve MCDM problems. Zulqarnain et

al. [35] discussed the concepts of the decision-making approach based on correlation coefficient

under interval-valued neutrosophic hypersoft set (IVNHSS). Zulqarnain et al. [36] presented

the fundamental operations on IVHSS and established their properties. Smarandache [26]

proposed the notion of dependence and independence between the components of the FS and

NS. Chinnadurai and Bobin [7], [8] defined the concepts of simplified intuitionistic neutrosophic

SS (SINSS) and interval-valued intuitionistic neutrosophic SS (IVINSS) and studied some of

their properties. In SINSS and IVINSS, the membership grades of truth and falsity depend on

each other such that their sum cannot exceed one and the membership grade of indeterminacy

is independent with a value less than or equal to one. Hence, in SINSS and IVINSS, the sum

of the membership grades cannot exceed two.

All the above mentioned fuzzy hybrid sets cannot accommodate the membership grades of

truth and falsity, which depend on each other such that their sum cannot exceed one and

the membership grade of indeterminacy is independent with a value less than or equal to

one. Therefore, to solve this problem, in this article, we present some aggregation operators

for IVINHSS. We develop an algorithm to solve the decision-making problem based on the

established operators. We have presented a numerical example to ensure the practicality of
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the developed algorithm. The main aim of the present study is to rank the alternatives based

on interval-valued intuitionistic neutrosophic hypersoft set (IVINHSS) data using aggregation

operators and also making use of the TOPSIS method based on CC. To the best of our knowl-

edge, research on IVINHSS is confined to its theory and related development and applications.

Therefore, the new method proposed in this paper can examine and provide a suitable solution

to the decision-makers in ranking the alternatives. We present an MCDM approach based on

TOPSIS, and the effectiveness of this method is showed through the selection of a suitable

employee who can lead the project successfully. To prove the efficacy of the proposed method,

a comparative analysis between the proposed and existing similarity measures (SMs) is given.

Thus, the IVINHSS is a robust tool to predict uncertainties when the grades are in interval

form for all truth, falsity, and indeterminacy grades for all the attributes.

The manuscript comprises the following sections. Section 2 briefs on existing definitions.

Section 3 introduces the concept of IVINHSS and discusses some properties of CC and weighted

CC of IVINHSS. Section 4 deals with the interval-valued intuitionistic neutrosophic hypersoft

weighted average operator (IVINHSWAO) and interval-valued intuitionistic neutrosophic hy-

persoft weighted geometric operator (IVINHSWGO). Section 5 highlights the combination of

CC with the TOPSIS method. Section 6 shows the significance of the proposed method with

comparative analysis. Section 7 ends with a conclusion.

2. Preliminaries

We present some of the basic definitions required for this study. Let us consider the following

notations throughout this study unless otherwise specified. Let V be the universe and vi ∈ V,

P (V) be the power set of V, N represents natural numbers, C[0, 1] denotes the set of all

closed sub intervals of [0,1] and NU represent the collection of interval-valued intuitionistic

NS (IVINS) over V.

Definition 2.1. [32] A fuzzy set (FS) is a set of the form F =
{

(v, TF (v)) : v ∈ V
}

, where

TF : V → [0, 1] defines the degree of membership of the element v ∈ V.

Definition 2.2. [3] An intuitionistic FS (IFS) is an object of the form C =
{

(v, TC(v),FC(v)) :

v ∈ V
}

, where TC : V → [0, 1] and FC : V → [0, 1] define the degree of membership and degree of

non-membership of the element v ∈ V, respectively and for every v ∈ V, 0 ≤ TC(v)+FC(v) ≤ 1,

where πC(v) = 1− TC(v)−FC(v) represents the degree of hesitancy.

Definition 2.3. [27] A single valued neutrosophic set (SVNS) is an object of the form

N =
{〈
v, TN(v), IN(v),FN(v)

〉
: v ∈ V

}
, where TN : V → [0, 1], IN : V → [0, 1] and FN :

V → [0, 1] represent the degree of truth membership, degree of indeterminacy membership

and degree of falsity membership of the element v ∈ V, respectively and for every v ∈ V,
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0 ≤ TN(v) + IN(v) + FN(v) ≤ 3. NU denote the set of all single valued neutrosophic subsets

of V.

Definition 2.4. [28] An interval valued neutrosophic set (IVNS) is a set of the form R ={〈
v, [TR(v), TR(v)], [IR(v), IR(v)], [FR(v),FR(v)]

〉
: v ∈ V

}
. IVNS can be represented as

R =
{〈
v, T̃R(v), ĨR(v), F̃R(v)

〉
: v ∈ V

}
, where T̃R : V → C[0, 1], ĨR : V → C[0, 1] and F̃R :

V → C[0, 1] represent the degree of truth membership, degree of indeterminacy membership

and degree of falsity membership in closed sub-intervals of the element v ∈ V, respectively

and for every v ∈ V, 0 ≤ TR(v) + IR(v) + FR(v) ≤ 3. RU denote the set of all interval valued

neutrosophic subsets of V.

Definition 2.5. [8] An IVINS in V is an object of the form Ω = {〈v, αΩ(v), βΩ(v), γΩ(v)〉},
where αΩ(v) : V → C[0, 1], βΩ(v) : V → C[0, 1] and γΩ(v) : V → C[0, 1]. αΩ(v), βΩ(v)

and γΩ(v) are closed sub intervals of [0,1], representing the membership grades of truth, in-

determinacy and falsity of the element v ∈ V. The lower and upper ends of αΩ(v), βΩ(v)

and γΩ(v) are denoted, respectively by αΩ(v), αΩ(v), β
Ω

(v), βΩ(v), and γ
Ω

(v), γΩ(v), where

0 ≤ αΩ(v) + γΩ(v) ≤ 1 and αΩ(v), β
Ω

(v), γ
Ω

(v) ≥ 0, 0 ≤ αΩ(v) + βΩ(v) + γΩ(v) ≤ 2, ∀ v ∈ V.

Definition 2.6. [16] A pair (Ω, E) is called a soft set (SS) over V, if Ω : E → P(V). Then for

any p ∈ E , Ω(p) = 1 is equivalent to v ∈ Ω(p) and Ω(p) = 0 is equivalent to v /∈ Ω(p). Thus a

SS is not a set, but a parameterized family of subsets of V.

Definition 2.7. [25] Let ∆1,∆2, ...,∆k, be distinct attribute sets, whose corresponding sub-

attributes are ∆1 = {λ11, λ12, ..., λ1f} ,∆2 = {λ21, λ22, ..., λ2g} , ...,∆k = {λk1, λk2, ..., λkh},
where 1 ≤ f ≤ p, 1 ≤ g ≤ q, 1 ≤ h ≤ r and p, q, r ∈ N, such that ∆i ∩ ∆j = ∅, for

each i, j ∈ {1, 2, ..., k} and i 6= j. Then the Cartesian product of the distinct attribute sets

∆1 ×∆2 × ...×∆k = ∆̃ = {λ1f × λ2g × ...× λkh}, represent a collection of multi- attributes.

A pair (Ω, ∆̃) is called a hypersoft set (HSS) over V, where Ω : ∆̃ → P (V). HSS can be

represented as (Ω, ∆̃) =
{

(λ̃,Ω(λ̃))|λ̃ ∈ ∆̃,Ω(λ̃) ∈ P (V)
}
.

3. Interval-valued intuitionistic neutrosophic hypersoft set

We present the notion of interval-valued intuitionistic neutrosophic hypersoft set (IVINHSS).

Also, we discuss some basic properties of correlation coefficient (CC) and weighted CC (WCC)

on IVINHSS.

Definition 3.1. A pair (Ω, ∆̃) is called an IVINHSS over V, where Ω : ∆̃ → NU . IV-

INHSS can be represented as (Ω, ∆̃) =
{

(λ̃,Ω(λ̃))|λ̃ ∈ ∆̃,Ω(λ̃) ∈ NU ∈ C[0, 1]
}

, where Ω(λ̃) ={〈
v, αΩ(λ̃)(v), βΩ(λ̃)(v), γΩ(λ̃)(v)

〉
|v ∈ V

}
, where αΩ(λ̃)(v) : V → C[0, 1], βΩ(λ̃)(v) : V → C[0, 1]

and γΩ(λ̃)(v) : V → C[0, 1]. αΩ(λ̃)(v), βΩ(λ̃)(v) and γΩ(λ̃)(v) are closed sub intervals of
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[0,1], representing the membership grades of truth, indeterminacy and falsity. The lower

and upper ends of αΩ(λ̃)(v), βΩ(λ̃)(v) and γΩ(λ̃)(v) are denoted, respectively by αΩ(λ̃)(v),

αΩ(λ̃)(v), β
Ω(λ̃)

(v), βΩ(λ̃)(v), and γ
Ω(λ̃)

(v), γΩ(λ̃)(v), where 0 ≤ αΩ(λ̃)(v) + γΩ(λ̃)(v) ≤ 1 and

αΩ(λ̃)(v), β
Ω(λ̃)

(v), γ
Ω(λ̃)

(v) ≥ 0, 0 ≤ αΩ(λ̃)(v) + βΩ(λ̃)(v) + γΩ(λ̃)(v) ≤ 2.

Example 3.2. Let V = {v1, v2, v3} be a set of managers who evaluate an em-

ployee based on the Leipzig leadership model for an upcoming project. Let ∆1,

∆2, ∆3 and ∆4 be distinct attribute sets whose corresponding sub-attributes are rep-

resented as ∆1 = purpose = {λ11 = achieve goals}, ∆2 = entrepreneurial spirit =

{λ21 = quick decision, λ22 = logical decision},
∆3 = responsibility = {λ31 = inspire and motivate, λ32 = time management} and ∆4 =

effectiveness = {λ41 = successful accomplishment}. Then ∆̃ = ∆1 × ∆2 × ∆3 × ∆4 is the

distinct attribute set given by

∆̃ = ∆1 ×∆2 ×∆3 ×∆4 = {λ11} × {λ21, λ22} × {λ31, λ32} × {λ41} .

=

{
(λ11, λ21, λ31, λ41), (λ11, λ21, λ32, λ41), (λ11, λ22, λ31, λ41), (λ11, λ22, λ32, λ41)

}
.

=

{
λ̃1, λ̃2, λ̃3, λ̃4

}
.

An IVINHSS (Ω, ∆̃) is a collection of subsets of V, given by the managers for each employee

based on the description in Table 1.

Table 1. Shows leadership skills of an employee in IVINHSS (Ω, ∆̃) form.

V λ̃1 λ̃2 λ̃3 λ̃4

v1 〈[0.3, 0.4], [0.7, 0.8], [0.2, 0.3]〉 〈[0.2, 0.4], [0.5, 0.6], [0.5, 0.6]〉 〈[0.6, 0.7], [0.2, 0.1], [0.1, 0.2]〉 〈[0.3, 0.4], [0.4, 0.5], [0.2, 0.3]〉
v2 〈[0.2, 0.4], [0.8, 0.9], [0.1, 0.3]〉 〈[0.6, 0.7], [0.5, 0.6], [0.2, 0.3]〉 〈[0.4, 0.5], [0.4, 0.6], [0.1, 0.2]〉 〈[0.2, 0.5], [0.5, 0.6], [0.2, 0.4]〉
v3 〈[0.1, 0.2], [0.5, 0.7], [0.2, 0.3]〉 〈[0.3, 0.4], [0.6, 0.7], [0.2, 0.4]〉 〈[0.2, 0.3], [0.1, 0.3], [0.6, 0.7]〉 〈[0.2, 0.3], [0.6, 0.8], [0.4, 0.6]〉

3.1. Correlation coefficient for IVINHSS

Let the two IVINHSS over V be as given below.

(Ω1, ∆̃1) =
{

(vi, [αΩ1(λ̃k)(vi), αΩ1(λ̃k)(vi)], [βΩ1(λ̃k)
(vi), βΩ1(λ̃k)(vi)], [γΩ1(λ̃k)

(vi), γΩ1(λ̃k)(vi)]
}
,

(Ω2, ∆̃2) =
{

(vi, [αΩ2(λ̃k)(vi), αΩ2(λ̃k)(vi)], [βΩ2(λ̃k)
(vi), βΩ2(λ̃k)(vi)], [γΩ2(λ̃k)

(vi), γΩ2(λ̃k)(vi)]
}
.

Definition 3.3. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two IVINHSS. Then the interval-valued in-

tuitionistic neutrosophic informational energies of (Ω1, ∆̃1) and (Ω2, ∆̃2) are represented as

Φ(Ω1, ∆̃1) =

m∑
k=1

n∑
i=1

[
(αΩ1(λ̃k)(vi))

2 + (β
Ω1(λ̃k)

(vi))
2 + (γ

Ω1(λ̃k)
(vi))

2

+ (αΩ1(λ̃k)(vi))
2 + (βΩ1(λ̃k)(vi))

2 + (γΩ1(λ̃k)(vi))
2

]
, (1)
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Φ(Ω2, ∆̃2) =

m∑
k=1

n∑
i=1

[
(αΩ2(λ̃k)(vi))

2 + (β
Ω2(λ̃k)

(vi))
2 + (γ

Ω2(λ̃k)
(vi))

2

+ (αΩ2(λ̃k)(vi))
2 + (βΩ2(λ̃k)(vi))

2 + (γΩ2(λ̃k)(vi))
2

]
. (2)

Definition 3.4. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two IVINHSS. Then the correlation measure

between (Ω1, ∆̃1) and (Ω2, ∆̃2) is defined as

CM((Ω1, ∆̃1), (Ω2, ∆̃2)) =
m∑
k=1

n∑
i=1

[
(αΩ1(λ̃k)(vi)) ∗ (αΩ2(λ̃k)(vi)) + (β

Ω1(λ̃k)
(vi)) ∗ (β

Ω2(λ̃k)
(vi))

+ (γ
Ω1(λ̃k)

(vi)) ∗ (γ
Ω2(λ̃k)

(vi)) + (αΩ1(λ̃k)(vi)) ∗ (αΩ2(λ̃k)(vi))

+ (βΩ1(λ̃k)(vi)) ∗ (βΩ2(λ̃k)(vi)) + (γΩ1(λ̃k)(vi)) ∗ (γΩ2(λ̃k)(vi))

]
. (3)

Proposition 3.5. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two IVINHSS. Then,

(i) CM((Ω1, ∆̃1), (Ω1, ∆̃1)) = Φ(Ω1, ∆̃1)

(ii) CM((Ω2, ∆̃2), (Ω2, ∆̃2)) = Φ(Ω2, ∆̃2).

Proof. Straight forward

Definition 3.6. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two IVINHSS. Then, the CC between (Ω1, ∆̃1)

and (Ω2, ∆̃2) is given by

CC((Ω1, ∆̃1), (Ω2, ∆̃2)) =
CM((Ω1, ∆̃1), (Ω2, ∆̃2))√

Φ(Ω1, ∆̃1)
√

Φ(Ω2, ∆̃2)
(4)

Proposition 3.7. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two IVINHSS. Then, the following CC prop-

erties hold:

(i) 0 ≤ CC((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1;

(ii) CC((Ω1, ∆̃1), (Ω2, ∆̃2)) = CC((Ω2, ∆̃2), (Ω1, ∆̃1));

(iii) If (Ω1, ∆̃1) = (Ω2, ∆̃2), then CC((Ω1, ∆̃1), (Ω2, ∆̃2)) = 1.

Proof. (i)Obviously, CC((Ω1, ∆̃1), (Ω2, ∆̃2)) ≥ 0. Now, we present the proof of

CC((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1.

CM((Ω1, ∆̃1), (Ω2, ∆̃2))

=
m∑
k=1

n∑
i=1

[
(αΩ1(λ̃k)(vi)) ∗ (αΩ2(λ̃k)(vi)) + (β

Ω1(λ̃k)
(vi)) ∗ (β

Ω2(λ̃k)
(vi)) + (γ

Ω1(λ̃k)
(vi)) ∗ (γ

Ω2(λ̃k)
(vi))

+ (αΩ1(λ̃k)(vi)) ∗ (αΩ2(λ̃k)(vi)) + (βΩ1(λ̃k)(vi)) ∗ (βΩ2(λ̃k)(vi)) + (γΩ1(λ̃k)(vi)) ∗ (γΩ2(λ̃k)(vi))

]
.
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=

m∑
k=1

[(
(αΩ1(λ̃k)(v1)) ∗ (αΩ2(λ̃k)(v1)) + (β

Ω1(λ̃k)
(v1)) ∗ (β

Ω2(λ̃k)
(v1)) + (γ

Ω1(λ̃k)
(v1)) ∗ (γ

Ω2(λ̃k)
(v1))

+ (αΩ1(λ̃k)(v1)) ∗ (αΩ2(λ̃k)(v1)) + (βΩ1(λ̃k)(v1)) ∗ (βΩ2(λ̃k)(v1)) + (γΩ1(λ̃k)(v1)) ∗ (γΩ2(λ̃k)(v1))

)
+

(
(αΩ1(λ̃k)(v2)) ∗ (αΩ2(λ̃k)(v2)) + (β

Ω1(λ̃k)
(v2)) ∗ (β

Ω2(λ̃k)
(v2)) + (γ

Ω1(λ̃k)
(v2)) ∗ (γ

Ω2(λ̃k)
(v2))+

(αΩ1(λ̃k)(v2)) ∗ (αΩ2(λ̃k)(v2)) + (βΩ1(λ̃k)(v2)) ∗ (βΩ2(λ̃k)(v2)) + (γΩ1(λ̃k)(v2)) ∗ (γΩ2(λ̃k)(v2))

)
+ ...

+

(
(αΩ1(λ̃k)(vn)) ∗ (αΩ2(λ̃k)(vn)) + (β

Ω1(λ̃k)
(vn)) ∗ (β

Ω2(λ̃k)
(vn)) + (γ

Ω1(λ̃k)
(vn)) ∗ (γ

Ω2(λ̃k)
(vn))+

(αΩ1(λ̃k)(vn)) ∗ (αΩ2(λ̃k)(vn)) + (βΩ1(λ̃k)(vn)) ∗ (βΩ2(λ̃k)(vn)) + (γΩ1(λ̃k)(vn)) ∗ (γΩ2(λ̃k)(vn))

)]
.

By applying Cauchy-Schwarz inequality, we get

CM ((Ω1, ∆̃1), (Ω2, ∆̃2))2

≤
m∑
k=1

[{
(αΩ1(λ̃k)(v1))2 + (αΩ1(λ̃k)(v2))2 + ...+ (αΩ1(λ̃k)(vn))2

}
+

{
(β

Ω1(λ̃k)
(v1))2 + (β

Ω1(λ̃k)
(v2))2

+ ...+ (β
Ω1(λ̃k)

(vn))2

}
+

{
(γ

Ω1(λ̃k)
(v1))2 + (γ

Ω1(λ̃k)
(v2))2 + ...+ (γ

Ω1(λ̃k)
(vn))2

}
+{

(αΩ1(λ̃k)(v1))2 + (αΩ1(λ̃k)(v2))2 + ...+ (αΩ1(λ̃k)(vn))2

}
+

{
(βΩ1(λ̃k)(v1))2 + (βΩ1(λ̃k)(v2))2

+ ...+ (βΩ1(λ̃k)(vn))2

}
+

{
(γΩ1(λ̃k)(v1))2 + (γΩ1(λ̃k)(v2))2 + ...+ (γΩ1(λ̃k)(vn))2

}]
×

m∑
k=1

[{
(αΩ2(λ̃k)(v1))2 + (αΩ2(λ̃k)(v2))2 + ...+ (αΩ2(λ̃k)(vn))2

}
+

{
(β

Ω2(λ̃k)
(v1))2 + (β

Ω2(λ̃k)
(v2))2+

...+ (β
Ω2(λ̃k)

(vn))2

}
+

{
(γ

Ω2(λ̃k)
(v1))2 + (γ

Ω2(λ̃k)
(v2))2 + ...+ (γ

Ω2(λ̃k)
(vn))2

}
+

{
(αΩ2(λ̃k)(v1))2

+ (αΩ2(λ̃k)(v2))2 + ...+ (αΩ2(λ̃k)(vn))2

}
+

{
(βΩ2(λ̃k)(v1))2 + (βΩ2(λ̃k)(v2))2+

...+ (βΩ2(λ̃k)(vn))2

}
+

{
(γΩ2(λ̃k)(v1))2 + (γΩ2(λ̃k)(v2))2 + ...+ (γΩ2(λ̃k)(vn))2

}]
.

CM ((Ω1, ∆̃1), (Ω2, ∆̃2))2

≤
m∑
k=1

n∑
i=1

[
(αΩ1(λ̃k)(vi))

2 + (β
Ω1(λ̃k)

(vi))
2 + (γ

Ω1(λ̃k)
(vi))

2 + (αΩ1(λ̃k)(vi))
2 + (βΩ1(λ̃k)(vi))

2

+ (γΩ1(λ̃k)(vi))
2

]
×

m∑
k=1

n∑
i=1

[
(αΩ2(λ̃k)(vi))

2 + (β
Ω2(λ̃k)

(vi))
2 + (γ

Ω2(λ̃k)
(vi))

2 + (αΩ2(λ̃k)(vi))
2

+ (βΩ2(λ̃k)(vi))
2 + (γΩ2(λ̃k)(vi))

2

]
.

⇒ CM ((Ω1, ∆̃1), (Ω2, ∆̃2))2 ≤ Φ(Ω1, ∆̃1)× Φ(Ω2, ∆̃2).

⇒ CM ((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤
√

Φ(Ω1, ∆̃1)×
√

Φ(Ω2, ∆̃2).

⇒ CM ((Ω1,∆̃1),(Ω2,∆̃2))√
Φ(Ω1,∆̃1)×

√
Φ(Ω2,∆̃2)

≤ 1.

By using Definition 3.5, we get CC((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1.

Hence, 0 ≤ CC((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1.

Proof. (ii) Straight forward.

Proof. (iii) CC((Ω1, ∆̃1), (Ω2, ∆̃2)) = CM ((Ω1,∆̃1),(Ω2,∆̃2))√
Φ(Ω1,∆̃1)×

√
Φ(Ω2,∆̃2)

.

Since, (Ω1, ∆̃1) = (Ω2, ∆̃2).
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CC((Ω1, ∆̃1), (Ω2, ∆̃2))

=

m∑
k=1

n∑
i=1

[
(αΩ2(λ̃k)(vi))

2 + (β
Ω2(λ̃k)

(vi))
2 + (γ

Ω2(λ̃k)
(vi))

2 + (αΩ2(λ̃k)(vi))
2 + (βΩ2(λ̃k)(vi))

2 + (γΩ2(λ̃k)(vi))
2

]
√√√√ m∑
k=1

n∑
i=1

[
(αΩ2(λ̃k)(vi))

2 + (β
Ω2(λ̃k)

(vi))2 + (γ
Ω2(λ̃k)

(vi))2 + (αΩ2(λ̃k)(vi))
2 + (βΩ2(λ̃k)(vi))

2 + (γΩ2(λ̃k)(vi))
2

]
×√√√√ m∑

k=1

n∑
i=1

[
(αΩ2(λ̃k)(vi))

2 + (β
Ω2(λ̃k)

(vi))2 + (γ
Ω2(λ̃k)

(vi))2 + (αΩ2(λ̃k)(vi))
2 + (βΩ2(λ̃k)(vi))

2 + (γΩ2(λ̃k)(vi))
2

]
.

⇒ CC((Ω1, ∆̃1), (Ω2, ∆̃2)) = 1.

Definition 3.8. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two IVINHSS. Then, the CC between (Ω1, ∆̃1)

and (Ω2∆̃2) is defined as

C̃C((Ω1, ∆̃1), (Ω2, ∆̃2)) =
CM((Ω1, ∆̃1), (Ω2, ∆̃2))

max
{

Φ(Ω1, ∆̃1),Φ(Ω2, ∆̃2)
} . (5)

C̃C((Ω1, ∆̃1), (Ω2, ∆̃2))

=

m∑
k=1

n∑
i=1

[
(αΩ1(λ̃k)(vi)) ∗ (αΩ2(λ̃k)(vi)) + (β

Ω1(λ̃k)
(vi)) ∗ (β

Ω2(λ̃k)
(vi)) + (γ

Ω1(λ̃k)
(vi)) ∗ (γ

Ω2(λ̃k)
(vi))

+ (αΩ1(λ̃k)(vi)) ∗ (αΩ2(λ̃k)(vi)) + (βΩ1(λ̃k)(vi)) ∗ (βΩ2(λ̃k)(vi)) + (γΩ1(λ̃k)(vi)) ∗ (γΩ2(λ̃k)(vi))

]
max

{ m∑
k=1

n∑
i=1

[
(αΩ1(λ̃k)(vi))

2 + (β
Ω1(λ̃k)

(vi))
2 + (γ

Ω1(λ̃k)
(vi))

2 + (αΩ1(λ̃k)(vi))
2 + (βΩ1(λ̃k)(vi))

2 + (γΩ1(λ̃k)(vi))
2

]
,

m∑
k=1

n∑
i=1

[
(αΩ2(λ̃k)(vi))

2 + (β
Ω2(λ̃k)

(vi))
2 + (γ

Ω2(λ̃k)
(vi))

2 + (αΩ2(λ̃k)(vi))
2 + (βΩ2(λ̃k)(vi))

2 + (γΩ2(λ̃k)(vi))
2

]}
.

Proposition 3.9. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two IVINHSS. Then, the following CC prop-

erties hold:

(i) 0 ≤ C̃C((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1;

(ii) C̃C((Ω1, ∆̃1), (Ω2, ∆̃2)) = C̃C((Ω2, ∆̃2), (Ω1, ∆̃1));

(iii) If (Ω1, ∆̃1) = (Ω2, ∆̃2), then C̃C((Ω1, ∆̃1), (Ω2, ∆̃2)) = 1.

Proof. (i) Obviously, C̃C((Ω1, ∆̃1), (Ω2, ∆̃2)) ≥ 0. Now, we present the proof of

C̃C((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1.

CM((Ω1, ∆̃1), (Ω2, ∆̃2))
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=

m∑
k=1

n∑
i=1

[
(αΩ1(λ̃k)(vi)) ∗ (αΩ2(λ̃k)(vi)) + (β

Ω1(λ̃k)
(vi)) ∗ (β

Ω2(λ̃k)
(vi)) + (γ

Ω1(λ̃k)
(vi)) ∗ (γ

Ω2(λ̃k)
(vi))

+ (αΩ1(λ̃k)(vi)) ∗ (αΩ2(λ̃k)(vi)) + (βΩ1(λ̃k)(vi)) ∗ (βΩ2(λ̃k)(vi)) + (γΩ1(λ̃k)(vi)) ∗ (γΩ2(λ̃k)(vi))

]
.

=
m∑
k=1

[(
(αΩ1(λ̃k)(v1)) ∗ (αΩ2(λ̃k)(v1)) + (β

Ω1(λ̃k)
(v1)) ∗ (β

Ω2(λ̃k)
(v1)) + (γ

Ω1(λ̃k)
(v1)) ∗ (γ

Ω2(λ̃k)
(v1))

+(αΩ1(λ̃k)(v1)) ∗ (αΩ2(λ̃k)(v1)) + (βΩ1(λ̃k)(v1)) ∗ (βΩ2(λ̃k)(v1)) + (γΩ1(λ̃k)(v1)) ∗ (γΩ2(λ̃k)(v1))

)
+

(
(αΩ1(λ̃k)(v2)) ∗ (αΩ2(λ̃k)(v2)) + (β

Ω1(λ̃k)
(v2)) ∗ (β

Ω2(λ̃k)
(v2)) + (γ

Ω1(λ̃k)
(v2)) ∗ (γ

Ω2(λ̃k)
(v2))

+(αΩ1(λ̃k)(v2)) ∗ (αΩ2(λ̃k)(v2)) + (βΩ1(λ̃k)(v2)) ∗ (βΩ2(λ̃k)(v2)) + (γΩ1(λ̃k)(v2)) ∗ (γΩ2(λ̃k)(v2))

)
+ ...

+

(
(αΩ1(λ̃k)(vn)) ∗ (αΩ2(λ̃k)(vn)) + (β

Ω1(λ̃k)
(vn)) ∗ (β

Ω2(λ̃k)
(vn)) + (γ

Ω1(λ̃k)
(vn)) ∗ (γ

Ω2(λ̃k)
(vn))

+(αΩ1(λ̃k)(vn)) ∗ (αΩ2(λ̃k)(vn)) + (βΩ1(λ̃k)(vn)) ∗ (βΩ2(λ̃k)(vn)) + (γΩ1(λ̃k)(vn)) ∗ (γΩ2(λ̃k)(vn))

)]
.

By applying Cauchy-Schwarz inequality, we get

CM ((Ω1, ∆̃1), (Ω2, ∆̃2))

≤
{ m∑
k=1

[{
(αΩ1(λ̃k)(v1))2 + (αΩ1(λ̃k)(v2))2 + ...+ (αΩ1(λ̃k)(vn))2

}
+

{
(β

Ω1(λ̃k)
(v1))2+

(β
Ω1(λ̃k)

(v2))2 + ...+ (β
Ω1(λ̃k)

(vn))2

}
+

{
(γ

Ω1(λ̃k)
(v1))2 + (γ

Ω1(λ̃k)
(v2))2 + ...+ (γ

Ω1(λ̃k)
(vn))2

}
+

{
(αΩ1(λ̃k)(v1))2 + (αΩ1(λ̃k)(v2))2 + ...+ (αΩ1(λ̃k)(vn))2

}
+

{
(βΩ1(λ̃k)(v1))2+

(βΩ1(λ̃k)(v2))2 + ...+ (βΩ1(λ̃k)(vn))2

}
+

{
(γΩ1(λ̃k)(v1))2 + (γΩ1(λ̃k)(v2))2 + ...+ (γΩ1(λ̃k)(vn))2

}]
×

m∑
k=1

[{
(αΩ2(λ̃k)(v1))2 + (αΩ2(λ̃k)(v2))2 + ...+ (αΩ2(λ̃k)(vn))2

}
+

{
(β

Ω2(λ̃k)
(v1))2 + (β

Ω2(λ̃k)
(v2))2+

...+ (β
Ω2(λ̃k)

(vn))2

}
+

{
(γ

Ω2(λ̃k)
(v1))2 + (γ

Ω2(λ̃k)
(v2))2 + ...+ (γ

Ω2(λ̃k)
(vn))2

}
+

{
(αΩ2(λ̃k)(v1))2 + (αΩ2(λ̃k)(v2))2 + ...+ (αΩ2(λ̃k)(vn))2

}
+

{
(βΩ2(λ̃k)(v1))2 + (βΩ2(λ̃k)(v2))2+

...+ (βΩ2(λ̃k)(vn))2

}
+

{
(γΩ2(λ̃k)(v1))2 + (γΩ2(λ̃k)(v2))2 + ...+ (γΩ2(λ̃k)(vn))2

}]} 1
2

.

CM ((Ω1, ∆̃1), (Ω2, ∆̃2))

≤
{ m∑
k=1

n∑
i=1

[
(αΩ1(λ̃k)(vi))

2 + (β
Ω1(λ̃k)

(vi))
2 + (γ

Ω1(λ̃k)
(vi))

2 + (αΩ1(λ̃k)(vi))
2 + (βΩ1(λ̃k)(vi))

2

+ (γΩ1(λ̃k)(vi))
2

]
×

m∑
k=1

n∑
i=1

[
(αΩ2(λ̃k)(vi))

2 + (β
Ω2(λ̃k)

(vi))
2 + (γ

Ω2(λ̃k)
(vi))

2 + (αΩ2(λ̃k)(vi))
2

+ (βΩ2(λ̃k)(vi))
2 + (γΩ2(λ̃k)(vi))

2

]} 1
2

.

≤
{(

max

{ m∑
k=1

n∑
i=1

[
(αΩ1(λ̃k)(vi))

2 + (β
Ω1(λ̃k)

(vi))
2 + (γ

Ω1(λ̃k)
(vi))

2 + (αΩ1(λ̃k)(vi))
2+

(βΩ1(λ̃k)(vi))
2 + (γΩ1(λ̃k)(vi))

2

]
×

m∑
k=1

n∑
i=1

[
(αΩ2(λ̃k)(vi))

2 + (β
Ω2(λ̃k)

(vi))
2 + (γ

Ω2(λ̃k)
(vi))

2+

(αΩ2(λ̃k)(vi))
2 + (βΩ2(λ̃k)(vi))

2 + (γΩ2(λ̃k)(vi))
2

]})2} 1
2

.
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= max

{ m∑
k=1

n∑
i=1

[
(αΩ1(λ̃k)(vi))

2 + (β
Ω1(λ̃k)

(vi))
2 + (γ

Ω1(λ̃k)
(vi))

2 + (αΩ1(λ̃k)(vi))
2 + (βΩ1(λ̃k)(vi))

2

+ (γΩ1(λ̃k)(vi))
2

]
×

m∑
k=1

n∑
i=1

[
(αΩ2(λ̃k)(vi))

2 + (β
Ω2(λ̃k)

(vi))
2 + (γ

Ω2(λ̃k)
(vi))

2 + (αΩ2(λ̃k)(vi))
2+

(βΩ2(λ̃k)(vi))
2 + (γΩ2(λ̃k)(vi))

2

]}
.

⇒ CM ((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ max

{
Φ(Ω1, ∆̃1)× Φ(Ω2, ∆̃2)

}
.

⇒ CM ((Ω1,∆̃1),(Ω2,∆̃2))

max

{
Φ(Ω1,∆̃1)×Φ(Ω2,∆̃2)

} ≤ 1.

By using Definition 3.8, we get C̃C((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1.

Hence, 0 ≤ C̃C((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1.

Proofs of (ii) and (iii) are same as in Proposition 3.6.

3.2. Weighted correlation coefficient for IVINHSS

We present the concept of weighted correlation coefficient (WCC) for IVINHSS. WCC fa-

cilitates decision-makers (DMs) to provide different weights for each alternative. Consider

D = {D1,D2, ...,Dm} and W = {W1,W2, ...,Wn} as weight vectors for alternatives and ex-

perts, respectively, such that Dk,Wi > 0 and
m∑
k=1

Dk = 1,
n∑
i=1
Wi = 1.

Definition 3.10. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two IVINHSS. Then, the WCC between

(Ω1, ∆̃1) and (Ω2, ∆̃2) is defined as

CCW ((Ω1, ∆̃1), (Ω2, ∆̃2)) =
CM((Ω1, ∆̃1), (Ω2, ∆̃2))√

Φ(Ω1, ∆̃1)
√

Φ(Ω2, ∆̃2)
(6)

CCW ((Ω1, ∆̃1), (Ω2, ∆̃2))

=

m∑
k=1

Dk
( n∑
i=1

Wi

[
αΩ1(λ̃k)(vi) ∗ αΩ2(λ̃k)(vi) + β

Ω1(λ̃k)
(vi) ∗ βΩ2(λ̃k)

(vi) + γ
Ω1(λ̃k)

(vi) ∗ γΩ2(λ̃k)
(vi)

+ αΩ1(λ̃k)(vi) ∗ αΩ2(λ̃k)(vi) + βΩ1(λ̃k)(vi) ∗ βΩ2(λ̃k)(vi) + γΩ1(λ̃k)(vi) ∗ γΩ2(λ̃k)(vi)

])
√√√√ m∑
k=1

Dk
( n∑
i=1

Wi

[
(αΩ1(λ̃k)(vi))

2 + (β
Ω1(λ̃k)

(vi))2 + (γ
Ω1(λ̃k)

(vi))2 + (αΩ1(λ̃k)(vi))
2 + (βΩ1(λ̃k)(vi))

2 + (γΩ1(λ̃k)(vi))
2

])

×

√√√√ m∑
k=1

Dk
( n∑
i=1

Wi

[
(αΩ2(λ̃k)(vi))

2 + (β
Ω2(λ̃k)

(vi))2 + (γ
Ω2(λ̃k)

(vi))2 + (αΩ2(λ̃k)(vi))
2 + (βΩ2(λ̃k)(vi))

2 + (γΩ2(λ̃k)(vi))
2

])
.

If D =
{

1
m ,

1
m , ...,

1
m ,
}

and W =
{

1
n ,

1
n , ...,

1
n ,
}

, then WCC given in Eq.(6) reduces to CC as

in Eq.(4).

Proposition 3.11. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two IVINHSS. Then, the following WCC

properties hold:

(i) 0 ≤ CCW ((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1;
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(ii) CCW ((Ω1, ∆̃1), (Ω2, ∆̃2)) = CCW ((Ω2, ∆̃2), (Ω1, ∆̃1));

(iii) If (Ω1, ∆̃1) = (Ω2, ∆̃2), then CCW ((Ω1, ∆̃1), (Ω2, ∆̃2)) = 1.

Proof. Similar to Proposition 3.6.

Definition 3.12. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two IVINHSS. Then, the WCC between

(Ω1, ∆̃1) and (Ω2∆̃2) is defined as

˜CCW ((Ω1, ∆̃1), (Ω2, ∆̃2)) =
CM((Ω1, ∆̃1), (Ω2, ∆̃2))

max
{

Φ(Ω1, ∆̃1),Φ(Ω2, ∆̃2)
} . (7)

˜CCW ((Ω1, ∆̃1), (Ω2, ∆̃2))

=

m∑
k=1

Dk
( n∑
i=1

Wi

[
(αΩ1(λ̃k)(vi)) ∗ (αΩ2(λ̃k)(vi)) + (β

Ω1(λ̃k)
(vi)) ∗ (β

Ω2(λ̃k)
(vi)) + (γ

Ω1(λ̃k)
(vi)) ∗ (γ

Ω2(λ̃k)
(vi))

+ (αΩ1(λ̃k)(vi)) ∗ (αΩ2(λ̃k)(vi)) + (βΩ1(λ̃k)(vi)) ∗ (βΩ2(λ̃k)(vi)) + (γΩ1(λ̃k)(vi)) ∗ (γΩ2(λ̃k)(vi))

])
max

{ m∑
k=1

Dk
( n∑
i=1

Wi

[
(αΩ1(λ̃k)(vi))

2 + (β
Ω1(λ̃k)

(vi))
2 + (γ

Ω1(λ̃k)
(vi))

2 + (αΩ1(λ̃k)(vi))
2 + (βΩ1(λ̃k)(vi))

2 + (γΩ1(λ̃k)(vi))
2

])
,

m∑
k=1

Dk
( n∑
i=1

Wi

[
(αΩ2(λ̃k)(vi))

2 + (β
Ω2(λ̃k)

(vi))
2 + (γ

Ω2(λ̃k)
(vi))

2 + (αΩ2(λ̃k)(vi))
2 + (βΩ2(λ̃k)(vi))

2 + (γΩ2(λ̃k)(vi))
2

])}
.

If D =
{

1
m ,

1
m , ...,

1
m ,
}

and W =
{

1
n ,

1
n , ...,

1
n ,
}

, then WCC given in Eq.(7) reduces to CC as

in Eq.(5).

Proposition 3.13. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two IVINHSS. Then, the following WCC

properties hold:

(i) 0 ≤ ˜CCW ((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1;

(ii) ˜CCW ((Ω1, ∆̃1), (Ω2, ∆̃2)) = ˜CCW ((Ω2, ∆̃2), (Ω1, ∆̃1));

(iii) If (Ω1, ∆̃1) = (Ω2, ∆̃2), then ˜CCW ((Ω1, ∆̃1), (Ω2, ∆̃2)) = 1.

Proof. Similiar to Proposition 3.6.

4. Aggregation operators for IVINHSS

We now present the concept of interval-valued intuitionistic neutrosophic hypersoft weighted

average operator(IVINHSWAO) and interval-valued intuitionistic neutrosophic hypersoft

weighted geometric operator (IVINHSWGO) by using operational laws. Let κ represent the

collection of interval-valued intuitionistic neutrosophic hypersoft numbers (IVINHSNs).
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4.1. Operational laws for IVINHSS

Definition 4.1.

Let Ωe11 =
〈
[α11, α11], [β

11
, β11], [γ

11
, γ11]

〉
and Ωe12 =

〈
[α12, α12], [β

12
, β12], [γ

12
, γ12]

〉
be two

IVINHSS and δ a positive integer. Then,

(i) Ωe11 ⊕ Ωe12 =
〈
[α11 + α12 − α11α12, α11 + α12 − α11α12], [β

11
+ β

12
− β

11
β

12
, β11 + β12 −

β11β12], [γ
11
γ

12
, γ11γ12]

〉
;

(ii) Ωe11 ⊗ Ωe12 =
〈
[α11α12, α11α12], [β

11
β

12
, β11β12], [γ

11
+ γ

12
− γ

11
γ

12
, γ11 + γ12 − γ11γ12]

〉
;

(iii) δΩe11 =
〈
[(1− (1−α11)δ, (1− (1−α11)δ], [(1− (1−β

11
)δ, (1− (1−β11)δ], [(γ

11
)δ, (γ11)δ]

〉
;

(iv) (Ωe11)δ =
〈
[(α11)δ, (α11)δ], [(β

11
)δ, (β11)δ], [(1− (1− γ

11
)δ, (1− (1− γ11)δ]

〉
.

4.2. Interval-valued intuitionistic neutrosophic hypersoft weighted average operator

Definition 4.2. Let Dk and Wi be weight vectors for alternatives and experts, respectively,

such that Dk,Wi > 0 and
m∑
k=1

Dk = 1,
n∑
i=1
Wi = 1 and Ωeik =

〈
[αik, αik], [βik, βik], [γik, γik]

〉
be an IVINHSN, where i = {1, 2, ...n}, k = {1, 2, ...m}. Then, A : κn → κ, IVINHSWAO is

represented as

A(Ωe11 ,Ωe12 , ...,Ωenm) =
m⊕
k=1

Dk
( n⊕

i=1

WiΩeik

)
.

Theorem 4.3. Let Ωeik =
〈
[αik, αik], [βik, βik], [γik, γik]

〉
be an IVINHSN, where i =

{1, 2, ...n}, k = {1, 2, ...m}. Then, the aggregated value of IVINHSWAO is also an IVINHSN,

which is given by

A(Ωe11 ,Ωe12 , ...,Ωenm)

=

〈[
1−

m∏
k=1

( n∏
i=1

(
1− αik

)Wi
)Dk

, 1−
m∏
k=1

( n∏
i=1

(
1− αik

)Wi
)Dk

]
,

[
1−

m∏
k=1

( n∏
i=1

(
1− β

ik

)Wi
)Dk

,

1−
m∏
k=1

( n∏
i=1

(
1− βik

)Wi
)Dk

]
,

[ m∏
k=1

( n∏
i=1

(
γ
ik

)Wi
)Dk

,

m∏
k=1

( n∏
i=1

(
γik

)Wi
)Dk

,

]〉
.

Proof. If n = 1, then W1 = 1. By using Definition 4.1, we get

A(Ωe11 ,Ωe12 , ...,Ωe1m) =
⊕m

k=1DkΩe1k .

=

〈[
1−

m∏
k=1

( 1∏
i=1

(
1− αik

)Wi
)Dk

, 1−
m∏
k=1

( 1∏
i=1

(
1− αik

)Wi
)Dk

]
,

[
1−

m∏
k=1

( 1∏
i=1

(
1− β

ik

)Wi
)Dk

,

1−
m∏
k=1

( 1∏
i=1

(
1− βik

)Wi
)Dk

]
,

[ m∏
k=1

( 1∏
i=1

(
γ
ik

)Wi
)Dk

,
m∏
k=1

( 1∏
i=1

(
γik

)Wi
)Dk

]〉
.

If m = 1, then D1 = 1. By using Definition 4.2, we get

A(Ωe11 ,Ωe21 , ...,Ωen1) =
⊕n

i=1WiΩei1 .

=

〈[
1−

1∏
k=1

( n∏
i=1

(
1− αik

)Wi
)Dk

, 1−
1∏
k=1

( n∏
i=1

(
1− αik

)Wi
)Dk

]
,

[
1−

1∏
k=1

( n∏
i=1

(
1− β

ik

)Wi
)Dk

,

1−
1∏
k=1

( n∏
i=1

(
1− βik

)Wi
)Dk

]
,

[ 1∏
k=1

( n∏
i=1

(
γ
ik

)Wi
)Dk

,

1∏
k=1

( n∏
i=1

(
γik

)Wi
)Dk

]〉
.

A.Bobin and V.Chinnadurai, IVINHSS TOPSIS method based on correlation coefficient

Neutrosophic Sets and Systems, Vol. 51, 2022                                                                              604



Hence, the results hold for n = 1 and m = 1.

Now, if m = l1 + 1 and n = l2, then,

A(Ωe11 ,Ωe12 , ...,Ωel2(l1+1)
) =

⊕l1+1
k=1 Dk

(⊕l2
i=1WiΩeik

)
.

=

〈[
1−

l1+1∏
k=1

( l2∏
i=1

(
1− αik

)Wi
)Dk

, 1−
l1+1∏
k=1

( l2∏
i=1

(
1− αik

)Wi
)Dk

]
,

[
1−

l1+1∏
k=1

( l2∏
i=1

(
1− β

ik

)Wi
)Dk

,

1−
l1+1∏
k=1

( l2∏
i=1

(
1− βik

)Wi
)Dk

]
,

[ l1+1∏
k=1

( l2∏
i=1

(
γ
ik

)Wi
)Dk

,

l1+1∏
k=1

( l2∏
i=1

(
γik

)Wi
)Dk

]〉
.

Similarly, if m = l1, n = l2 + 1, then,

A(Ωe11 ,Ωe12 , ...,Ωe(l2+1)l1
) =

⊕l1
k=1Dk

(⊕l2+1
i=1 WiΩeik

)
.

=

〈[
1−

l1∏
k=1

( l2+1∏
i=1

(
1− αik

)Wi
)Dk

, 1−
l1∏
k=1

( l2+1∏
i=1

(
1− αik

)Wi
)Dk

]
,

[
1−

l1∏
k=1

( l2+1∏
i=1

(
1− β

ik

)Wi
)Dk

,

1−
l1∏
k=1

( l2+1∏
i=1

(
1− βik

)Wi
)Dk

]
,

[ l1∏
k=1

( l2+1∏
i=1

(
γ
ik

)Wi
)Dk

,

l1∏
k=1

( l2+1∏
i=1

(
γik

)Wi
)Dk

]〉
.

Now, if m = l1 + 1, n = l2 + 1, then,

A(Ωe11 ,Ωe12 , ...,Ωe(l2+1)(l1+1)
)

=

l1+1⊕
k=1

Dk
( l2+1⊕
i=1

WiΩeik

)
.

=

l1+1⊕
k=1

Dk
( l2⊕
i=1

WiΩeik

) l1+1⊕
k=1

Dk
(
Wl2+1Ωe(l2+1)k

)
.

A(Ωe11 ,Ωe12 , ...,Ωe(l2+1)(l1+1)
)

=

〈[
1−

l1+1∏
k=1

( l2∏
i=1

(
1− αik

)Wi
)Dk

, 1−
l1+1∏
k=1

( l2∏
i=1

(
1− αik

)Wi
)Dk

]
⊕
[
1−

l1+1∏
k=1

((
1− α(l2+1)k

)W(l2+1)
)Dk

,

1−
l1+1∏
k=1

((
1− α(l2+1)k

)W(l2+1)
)Dk

]
,

[
1−

l1+1∏
k=1

( l2∏
i=1

(
1− β

ik

)Wi
)Dk

, 1−
l1+1∏
k=1

( l2∏
i=1

(
1− βik

)Wi
)Dk

]

⊕
[
1−

l1+1∏
k=1

((
1− β

(l2+1)k

)W(l2+1)
)Dk

, 1−
l1+1∏
k=1

((
1− β(l2+1)k

)W(l2+1)
)Dk

]
,

[ l1+1∏
k=1

( l2∏
i=1

(
γ
ik

)Wi
)Dk

,

l1+1∏
k=1

( l2∏
i=1

(
γik

)Wi
)Dk

,

]
⊕
[ l1+1∏
k=1

((
γ

(l2+1)k

)W(l2+1)
)Dk

,

l1+1∏
k=1

((
γ(l2+1)k

)W(l2+1)
)Dk

〉
.

=

〈[
1−

l1+1∏
k=1

( l2+1∏
i=1

(
1− αik

)Wi
)Dk

, 1−
l1+1∏
k=1

( l2+1∏
i=1

(
1− αik

)Wi
)Dk

]
,

[
1−

l1+1∏
k=1

( l2+1∏
i=1

(
1− β

ik

)Wi
)Dk

,

1−
l1+1∏
k=1

( l2+1∏
i=1

(
1− βik

)Wi
)Dk

]
,

[ l1+1∏
k=1

( l2+1∏
i=1

(
γ
ik

)Wi
)Dk

,

l1+1∏
k=1

( l2+1∏
i=1

(
γik

)Wi
)Dk

]〉
.

Hence, the results hold for n = l2 + 1 and m = l1 + 1.

Therefore, by induction method, the result is true ∀ m,n ≥ 1.

Since
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0 ≤ αik + γik ≤ 1 and 0 ≤ βik ≤ 1.

⇔ 1−
m∏
k=1

( n∏
i=1

(
1− αik

)Wi
)Dk

+ 1−
m∏
k=1

( n∏
i=1

(
1− αik

)Wi
)Dk

+

m∏
k=1

( n∏
i=1

(
γ
ik

)Wi
)Dk

+

m∏
k=1

( n∏
i=1

(
γik

)Wi
)Dk

≤ 1 and 1−
m∏
k=1

( n∏
i=1

(
1− β

ik

)Wi
)Dk

+ 1−
m∏
k=1

( n∏
i=1

(
1− βik

)Wi
)Dk

≤ 1.

⇔ 1−
m∏
k=1

( n∏
i=1

(
1− αik

)Wi
)Dk

+ 1−
m∏
k=1

( n∏
i=1

(
1− αik

)Wi
)Dk

+
m∏
k=1

( n∏
i=1

(
1− αik

)Wi
)Dk

+

m∏
k=1

( n∏
i=1

(
1− αik

)Wi
)Dk

≤ 1 and 1−
m∏
k=1

( n∏
i=1

(
1− β

ik

)Wi
)Dk

+ 1−
m∏
k=1

( n∏
i=1

(
1− βik

)Wi
)Dk

≤ 1.

⇔ 1−
m∏
k=1

( n∏
i=1

(
1− αik

)Wi
)Dk

+ 1−
m∏
k=1

( n∏
i=1

(
1− αik

)Wi
)Dk

+
m∏
k=1

( n∏
i=1

(
1− αik

)Wi
)Dk

+

m∏
k=1

( n∏
i=1

(
1− αik

)Wi
)Dk

+ 1−
m∏
k=1

( n∏
i=1

(
1− β

ik

)Wi
)Dk

+ 1−
m∏
k=1

( n∏
i=1

(
1− βik

)Wi
)Dk

≤ 2.

Therefore, the aggregated value given by IVINHSWAO is also an IVINHSN.

Example 4.4. Let us consider the same values mentioned in Example 3.2. Also, let Wi =

{0.25, 0.35, 0.40} and Dk = {0.30, 0.20, 0.40, 0.10} be the weight of managers and attributes,

respectively. Then,

A(Ωe11 ,Ωe12 , ...,Ωe34)

=

〈[
1−

4∏
k=1

( 3∏
i=1

(
1− αik

)Wi
)Dk

,

[
1−

4∏
k=1

( 3∏
i=1

(
1− αik

)Wi
)Dk

]
,

[
1−

4∏
k=1

( 3∏
i=1

(
1− β

ik

)Wi
)Dk

,

[
1−

4∏
k=1

( 3∏
i=1

(
1− βik

)Wi
)Dk

]
,

[ 4∏
k=1

( 3∏
i=1

(
γ
ik

)Wi
)Dk

,

[ 4∏
k=1

( 3∏
i=1

(
γik

)Wi
)Dk

]〉
.

= 〈[0.32, 0.45], [0.49, 0.64], [0.20, 0.34]〉 .

4.3. Interval-valued intuitionistic neutrosophic hypersoft weighted geometric operator

Definition 4.5. Let Dk and Wi be weight vectors for alternatives and experts, respectively,

such that Dk,Wi > 0 and
m∑
k=1

Dk = 1,
n∑
i=1
Wi = 1 and Ωeik = (αik, βik, γik) be an IVINHSN,

where i = {1, 2, ...n}, k = {1, 2, ...m}. Then, G : κn → κ, IVINHSWGO is defined as

G(Ωe11 ,Ωe12 , ...,Ωenm) =

m⊗
k=1

( n⊗
i=1

(
Ωeik

)Wi
)Dk

.

Theorem 4.6. Let Ωeik =
〈
[αik, αik], [βik, βik], [γik, γik]

〉
be an IVINHSN, where i =

{1, 2, ...n}, k = {1, 2, ...m}. Then, the aggregated value of IVINHSWGO is also an IVINHSN,

which is given by

G(Ωe11 ,Ωe12 , ...,Ωenm)

=

〈[ m∏
k=1

( n∏
i=1

(
αik

)Wi
)Dk

,

m∏
k=1

( n∏
i=1

(
αik

)Wi
)Dk

,

]
,

[ m∏
k=1

( n∏
i=1

(
β
ik

)Wi
)Dk

,

m∏
k=1

( n∏
i=1

(
βik

)Wi
)Dk

,

]
,

[
1−

m∏
k=1

( n∏
i=1

(
1− γ

ik

)Wi
)Dk

, 1−
m∏
k=1

( n∏
i=1

(
1− γik

)Wi
)Dk

]〉
.
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Proof. Similar to Theorem 4.3.

Example 4.7. Let us consider the same values mentioned in Example 3.2 and the weight of

managers and attributes be as in Example 4.4. Then,

G(Ωe11 ,Ωe12 , ...,Ωe34)

=

〈[ 4∏
k=1

( 3∏
i=1

(
αik

)Wi
)Dk

,

4∏
k=1

( 3∏
i=1

(
αik

)Wi
)Dk

]
,

[ 4∏
k=1

( 3∏
i=1

(
β
ik

)Wi
)Dk

,

4∏
k=1

( 3∏
i=1

(
βik

)Wi
)Dk

]
,

[
1−

4∏
k=1

( 3∏
i=1

(
1− γ

ik

)Wi
)Dk

, 1−
4∏
k=1

( 3∏
i=1

(
1− γik

)Wi
)Dk

]〉
.

= 〈[0.26, 0.40], [0.37, 0.50], [0.28, 0.41]〉 .

5. MCDM problems based on TOPSIS and CC method

TOPSIS method helps to find the best alternative based on minimum and maximum dis-

tance from the interval-valued intuitionistic neutrosophic positive ideal solution (IVINPIS)

and interval-valued intuitionistic neutrosophic negative ideal solution (IVINNIS). Also, when

TOPSIS method is combined with CC instead of similarity measures, it provides reliable re-

sults for predicting the closeness coefficients. We present an algorithm and a case study to

illustrate the IVINHSS TOPSIS method based on CC.

5.1. Algorithm to solve MCDM problems with IVINHSS data based on TOPSIS and CC method

Let A =
{
A1,A2, ...,Ax

}
be a set of selected employees and V = {v1, v2, ..., vn} be a set

of managers responsible to evaluate the employees with weights Wi = (W1,W2, ...,Wn), such

that Wi > 0 and
n∑
i=1
Wi = 1. Let ∆̃ =

{
λ̃1, λ̃2, ..., λ̃m

}
be a set of multi-valued sub-attributes

with weights Dk = (D1,D2, ...,Dm), such that Dk > 0 and
m∑
k=1

Dk = 1. The evaluation of

employees At, (t = 1, 2, ..., x) performed by the managers vi, (i = 1, 2, ..., n) based on the

multi-valued sub-attributes λ̃k, (k = 1, 2, ...,m) are given in IVINHSS form and represented as

Ωt
ik =

〈
[αik, αik], [βik, βik], [γik, γik]

〉
, such that 0 ≤ αtik+γtik ≤ 1 and 0 ≤ αtik+β

t
ik+γtik ≤ 2 ∀

i, k. The managing experts aid to accommodate the multi-sub attributes values in IVINHSS

form.

Step 1. Construct the matrix for each multi-valued sub-attributes in IVINHSS form as

below:
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[At, ∆̃]n×m = [At]n×m

=

λ̃1 λ̃2 . . . λ̃m



v1

〈
[αt11, α

t
11], [βt

11
, β
t
11], [γt

11
, γt11]

〉 〈
[αt12, α

t
12], [βt

12
, β
t
12], [γt

12
, γt12]

〉
. . .

〈
[αt1m, α

t
1m], [βt

1m
, β
t
1m], [γt

1m
, γt1m]

〉 〉
v2

〈
[αt21, α

t
21], [βt

21
, β
t
21], [γt

21
, γt21]

〉 〈
[αt22, α

t
22], [βt

22
, β
t
22], [γt

22
, γt22]

〉
. . .

〈
[αt2m, α

t
2m], [βt

2m
, β
t
2m], [γt

2m
, γt2m]

〉 〉
...

...
...

. . .
...

vn
〈

[αtn1, α
t
n1], [βt

n1
, β
t
n1], [γt

n1
, γtn1]

〉 〈
[αtn2, α

t
n2], [βt

n2
, β
t
n2], [γt

n2
, γtn2]

〉
. . .

〈
[αtnm, α

t
nm], [βt

nm
, β
t
nm], [γt

nm
, γtnm]

〉 〉

Step 2. Obtain the weighted decision matrix for each multi-valued sub-attributes,

[Ãtik]n×m

=

〈[
1−

m∏
k=1

( n∏
i=1

(
1− αik

)Wi
)Dk

, 1−
m∏
k=1

( n∏
i=1

(
1− αik

)Wi
)Dk

]
,

[
1−

m∏
k=1

( n∏
i=1

(
1− β

ik

)Wi
)Dk

,

1−
m∏
k=1

( n∏
i=1

(
1− βik

)Wi
)Dk

]
,

[ m∏
k=1

( n∏
i=1

(
γ
ik

)Wi
)Dk

,

m∏
k=1

( n∏
i=1

(
γik

)Wi
)Dk

]〉

=

〈[
α̃ik, α̃ik

]
,

[
β̃
ik
, β̃ik

]
,

[
γ̃
ik
, γ̃ik

]〉
.

Step 3. Determine the IVINPIS and IVINNIS for weighted IVINHSS as below:

Ã+ =

〈[
α̃+, α̃

+
]
,

[
β̃

+
, β̃

+
]
,

[
γ̃+, γ̃

+
]〉

n×m
=

〈[
α̃(∨ij), α̃

(∨ij)
]
,

[
β̃

(∧ij)
, β̃

(∧ij)
]
,

[
γ̃(∧ij), γ̃

(∧ij)
]〉

,

Ã− =

〈[
α̃−, α̃

−
]
,

[
β̃
−
, β̃
−
]
,

[
γ̃−, γ̃

−
]〉

n×m
=

〈[
α̃(∧ij), α̃

(∧ij)
]
,

[
β̃

(∧ij)
, β̃

(∧ij)
]
,

[
γ̃(∨ij), γ̃

(∨ij)
]〉

,

where ∨ij = arg maxt

{
ϕtij

}
and ∧ij = arg mint

{
ϕtij

}
.

Step 4. Determine the CC for each alternative from IVINPIS and IVINNIS.

χt = CC(Ãt, Ã+) =
CM(Ãt, Ã+)√

Φ(Ãt) ∗
√

(ΦÃ+)
and

λt = CC(Ãt, Ã−) =
CM(Ãt, Ã−)√

Φ(Ãt) ∗
√

Φ(Ã−)

Step 5. Compute the closeness coefficient of neutrosophic ideal solution as below:

εt =
1− λt

2− χt − λt

Step 6. Arrange the εt values in descending order and determine the rank of the alternatives

At, (t = 1, 2, ..., x). The one with the maximum value is the suitable employee to lead the new

project.

The graphical representation of the proposed method is given in Figure 1:
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Figure 1. Flowchart of the proposed method

5.2. Application based on TOPSIS and CC method

Let A =
{
A1,A2,A3,A4

}
be a set of employees and let V = {v1, v2, v3} be a set of man-

agers who evaluate the employees based on the Leipzig leadership model for an upcoming

project with weights Wi = (0.35, 0.15, 0.30, 0.20). Let ∆1, ∆2, ∆3 and ∆4 be distinct at-

tribute sets whose corresponding sub-attributes are represented as ∆1 = purpose =
{
λ11 =

achieve goals
}

, ∆2 = entrepreneurial spirit =
{
λ21 = quick decision, λ22 = logical decision

}
,

∆3 = responsibility =
{
λ31 = inspire and motivate, λ32 = time management

}
and ∆4 =

effectiveness =
{
λ41 = successful accomplishment

}
. Then ∆̃ = ∆1 × ∆2 × ∆3 × ∆4 is the

distinct attribute set given by

∆̃ = ∆1 ×∆2 ×∆3 ×∆4 = {λ11} × {λ21, λ22} × {λ31, λ32} × {λ41} .

=

{
(λ11, λ21, λ31, λ41), (λ11, λ21, λ32, λ41), (λ11, λ22, λ31, λ41), (λ11, λ22, λ32, λ41)

}
.

=

{
λ̃1, λ̃2, λ̃3, λ̃4

}
with weights Dk = (0.20, 0.25, 0.30, 0.25).

This study aims to find an employee who can successfully lead the project.

Step 1. Construct A1, A2, A3 and A4 matrices for each multi-valued sub-attributes in

IVINHSS form.

Table 2. Representation of values in IVINHSS form for A1.

A1 λ̃1 λ̃2 λ̃3

v1 〈[0.43, 0.55], [0.91, 0.95], [0.31, 0.36]〉 〈[0.43, 0.52], [0.58, 0.81], [0.12, 0.21]〉 〈[0.67, 0.71], [0.77, 0.81], [0.19, 0.29]〉
v2 〈[0.32, 0.45], [0.71, 0.78], [0.22, 0.29]〉 〈[0.54, 0.63], [0.34, 0.44], [0.15, 0.24]〉 〈[0.45, 0.48], [0.62, 0.72], [0.25, 0.35]〉
v3 〈[0.29, 0.53], [0.81, 0.89], [0.31, 0.41]〉 〈[0.37, 0.41], [0.66, 0.71], [0.29, 0.35]〉 〈[0.49, 0.51], [0.49, 0.59], [0.39, 0.42]〉
v4 〈[0.34, 0.43], [0.61, 0.82], [0.42, 0.53]〉 〈[0.48, 0.59], [0.31, 0.42], [0.21, 0.41]〉 〈[0.42, 0.47], [0.57, 0.61], [0.39, 0.45]〉
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A1 λ̃4

v1 〈[0.15, 0.19], [0.49, 0.51], [0.32, 0.34]〉
v2 〈[0.24, 0.29], [0.65, 0.72], [0.51, 0.55]〉
v3 〈[0.33, 0.39], [0.94, 0.98], [0.44, 0.45]〉
v4 〈[0.48, 0.49], [0.78, 0.84], [0.26, 0.34]〉

Table 3. Representation of values in IVINHSS form for A2.

A2 λ̃1 λ̃2 λ̃3

v1 〈[0.61, 0.65], [0.25, 0.35], [0.22, 0.31]〉 〈[0.44, 0.59], [0.59, 0.71], [0.11, 0.12]〉 〈[0.44, 0.51], [0.42, 0.45], [0.21, 0.25]〉
v2 〈[0.39, 0.41], [0.91, 0.99], [0.41, 0.59]〉 〈[0.59, 0.64], [0.66, 0.76], [0.21, 0.31]〉 〈[0.54, 0.62], [0.31, 0.36], [0.32, 0.38]〉
v3 〈[0.32, 0.42], [0.82, 0.88], [0.41, 0.49]〉 〈[0.48, 0.54], [0.21, 0.37], [0.29, 0.32]〉 〈[0.49, 0.54], [0.49, 0.59], [0.25, 0.29]〉
v4 〈[0.34, 0.44], [0.66, 0.77], [0.33, 0.38]〉 〈[0.69, 0.74], [0.68, 0.79], [0.19, 0.21]〉 〈[0.58, 0.66], [0.69, 0.71], [0.33, 0.34]〉

A2 λ̃4

v1 〈[0.21, 0.28], [0.57, 0.59], [0.41, 0.43]〉
v2 〈[0.28, 0.31], [0.67, 0.68], [0.57, 0.61]〉
v3 〈[0.41, 0.46], [0.77, 0.81], [0.23, 0.29]〉
v4 〈[0.21, 0.29], [0.69, 0.71], [0.44, 0.49]〉

Table 4. Representation of values in IVINHSS form for A3.

A3 λ̃1 λ̃2 λ̃3

v1 〈[0.55, 0.56], [0.68, 0.78], [0.32, 0.37]〉 〈[0.48, 0.55], [0.68, 0.87], [0.11, 0.28]〉 〈[0.51, 0.54], [0.55, 0.62], [0.30, 0.32]〉
v2 〈[0.42, 0.46], [0.45, 0.55], [0.41, 0.48]〉 〈[0.39, 0.45], [0.81, 0.91], [0.29, 0.31]〉 〈[0.47, 0.49], [0.35, 0.42], [0.21, 0.42]〉
v3 〈[0.53, 0.55], [0.66, 0.76], [0.24, 0.42]〉 〈[0.51, 0.65], [0.38, 0.42], [0.24, 0.29]〉 〈[0.32, 0.34], [0.31, 0.41], [0.35, 0.41]〉
v4 〈[0.31, 0.43], [0.35, 0.45], [0.14, 0.29]〉 〈[0.35, 0.48], [0.31, 0.49], [0.31, 0.38]〉 〈[0.63, 0.64], [0.22, 0.32], [0.15, 0.21]〉

A3 λ̃4

v1 〈[0.51, 0.53][0.41, 0.44][0.21, 0.24]〉
v2 〈[0.42, 0.43][0.45, 0.49][0.32, 0.34]〉
v3 〈[0.05, 0.12][0.65, 0.69][0.45, 0.49]〉
v4 〈[0.21, 0.26][0.72, 0.79][0.22, 0.23]〉

Table 5. Representation of values in IVINHSS form for A4.

A4 λ̃1 λ̃2 λ̃3

v1 〈[0.61, 0.71], [0.36, 0.55][0.09, 0.21]〉 〈[0.31, 0.39], [0.67, 0.77], [0.29, 0.39]〉 〈[0.27, 0.34], [0.17, 0.27], [0.32, 0.35]〉
v2 〈[0.44, 0.54], [0.46, 0.66][0.12, 0.25]〉 〈[0.41, 0.57], [0.87, 0.92], [0.39, 0.41]〉 〈[0.39, 0.41], [0.39, 0.41], [0.41, 0.49]〉
v3 〈[0.34, 0.44], [0.66, 0.77][0.33, 0.39]〉 〈[0.53, 0.64], [0.64, 0.77], [0.21, 0.28]〉 〈[0.14, 0.15], [0.49, 0.59], [0.62, 0.68]〉
v4 〈[0.52, 0.66], [0.35, 0.49][0.14, 0.25]〉 〈[0.47, 0.56], [0.41, 0.45], [0.27, 0.34]〉 〈[0.25, 0.29], [0.46, 0.66], [0.31, 0.34]〉

A4 λ̃4

v1 〈[0.37, 0.39], [0.81, 0.91], [0.49, 0.51]〉
v2 〈[0.41, 0.42], [0.38, 0.42], [0.29, 0.31]〉
v3 〈[0.52, 0.59], [0.65, 0.69], [0.23, 0.29]〉
v4 〈[0.31, 0.36], [0.42, 0.51], [0.61, 0.62]〉
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Step 2. Obtain Ã1, Ã2, Ã3 and Ã4, the weighted matrices for each multi-valued sub-

attributes.

Table 6. Representation of weighted values in IVINHSS form for Ã1.

Ã1 λ̃1 λ̃2

v1 〈[0.0386, 0.0062], [0.1552, 0.0229], [0.9213, 0.9922]〉 〈[0.0480, 0.0071], [0.0731, 0.0625], [0.8307, 0.0529]〉
v2 〈[0.0116, 0.0014], [0.0365, 0.0036], [0.9556, 0.9972]〉 〈[0.0287, 0.0029], [0.0155, 0.0053], [0.9314, 0.0635]〉
v3 〈[0.0204, 0.0031], [0.0949, 0.0090], [0.9322, 0.9964]〉 〈[0.0341, 0.0027], [0.0778, 0.0290], [0.9114, 0.0956]〉
v4 〈[0.0165, 0.0019], [0.0370, 0.0057], [0.9659, 0.9980]〉 〈[0.0322, 0.0037], [0.0184, 0.0051], [0.9250, 0.1197]〉

Ã1 λ̃3 λ̃4

v1 〈[0.1099, 0.0143], [0.1430, 0.0745], [0.8400, 0.0904]〉 〈[0.0142, 0.0021], [0.0573, 0.0273][0.9052, 0.0913]〉
v2 〈[0.0266, 0.0023], [0.0427, 0.0139], [0.9396, 0.1162]〉 〈[0.0103, 0.0010], [0.0387, 0.0116][0.9751, 0.1737]〉
v3 〈[0.0589, 0.0044], [0.0589, 0.0251], [0.9188, 0.1414]〉 〈[0.0296, 0.0026], [0.1903, 0.0887][0.9403, 0.1301]〉
v4 〈[0.0322, 0.0032], [0.0494, 0.0104], [0.9451, 0.1591]〉 〈[0.0322, 0.0028], [0.0730, 0.0169][0.9349, 0.0955]〉

Table 7. Representation of weighted values in IVINHSS form for Ã2.

Ã2 λ̃1 λ̃2

v1 〈[0.0638, 0.0134], [0.0200, 0.0055], [0.8995, 0.9852]〉 〈[0.0495, 0.0142], [0.0751, 0.0062], [0.8244, 0.0284]〉
v2 〈[0.0148, 0.0016], [0.0697, 0.0136], [0.9737, 0.9985]〉 〈[0.0329, 0.0038], [0.0397, 0.0246], [0.9432, 0.0864]〉
v3 〈[0.0229, 0.0025], [0.0978, 0.0097], [0.9480, 0.9968]〉 〈[0.0479, 0.0045], [0.0176, 0.0113], [0.9114, 0.0874]〉
v4 〈[0.0165, 0.0020], [0.0423, 0.0049], [0.9567, 0.9969]〉 〈[0.0569, 0.0056], [0.0554, 0.0164], [0.9204, 0.0549]〉

Ã2 λ̃3 λ̃4

v1 〈[0.0591, 0.0136], [0.0556, 0.0036], [0.8489, 0.0747]〉 〈[0.0205, 0.0053], [0.0712, 0.0045], [0.9250, 0.1188]〉
v2 〈[0.0344, 0.0043], [0.0166, 0.0093], [0.9501, 0.1304]〉 〈[0.0123, 0.0014], [0.0408, 0.0197], [0.9792, 0.2049]〉
v3 〈[0.0589, 0.0054], [0.0589, 0.0259], [0.8828, 0.0929]〉 〈[0.0388, 0.0036], [0.1044, 0.0398], [0.8957, 0.0780]〉
v4 〈[0.0508, 0.0054], [0.0679, 0.0156], [0.9357, 0.1125]〉 〈[0.0118, 0.0015], [0.0569, 0.0131], [0.9598, 0.1488]〉

Table 8. Representation of weighted values in IVINHSS form for Ã3.

Ã3 λ̃1 λ̃2

v1 〈[0.0544, 0.0089], [0.0767, 0.0164], [0.9234, 0.9893]〉 〈[0.0557, 0.0109], [0.0949, 0.0384], [0.8244, 0.0731]〉
v2 〈[0.0163, 0.0021], [0.0178, 0.0026], [0.9737, 0.9977]〉 〈[0.0184, 0.0025], [0.0604, 0.0107], [0.9547, 0.0864]〉
v3 〈[0.0443, 0.0071], [0.0627, 0.0126], [0.9180, 0.9924]〉 〈[0.0521, 0.0116], [0.0353, 0.0086], [0.8985, 0.0756]〉
v4 〈[0.0148, 0.0017], [0.0171, 0.0018], [0.9244, 0.9964]〉 〈[0.0214, 0.0025], [0.0184, 0.0029], [0.9432, 0.1046]〉

Ã3 λ̃3 λ̃4

v1 〈[0.0722, 0.0126], [0.0805, 0.0221], [0.8813, 0.1014]〉 〈[0.0606, 0.0103], [0.0452, 0.0111], [0.8724, 0.0614]〉
v2 〈[0.0282, 0.0033], [0.0192, 0.0030], [0.9322, 0.1472]〉 〈[0.0203, 0.0023], [0.0222, 0.0030], [0.9582, 0.0962]〉
v3 〈[0.0342, 0.0056], [0.0329, 0.0099], [0.9099, 0.1353]〉 〈[0.0039, 0.0015], [0.0758, 0.0182], [0.9419, 0.1432]〉
v4 〈[0.0580, 0.0046], [0.0148, 0.0020], [0.8925, 0.0633]〉 〈[0.0118, 0.0012], [0.0617, 0.0067], [0.9271, 0.0587]〉
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Table 9. Representation of weighted values in IVINHSS form for Ã4.

Ã4 λ̃1 λ̃2

v1 〈[0.0638, 0.0157], [0.0308, 0.0102], [0.8449, 0.9803]〉 〈[0.0320, 0.0079], [0.0925, 0.0113], [0.8974, 0.0992]〉
v2 〈[0.0173, 0.0027], [0.0184, 0.0038], [0.9384, 0.9953]〉 〈[0.0196, 0.0037], [0.0737, 0.0116], [0.9654, 0.1165]〉
v3 〈[0.0247, 0.0029], [0.0627, 0.0073], [0.9357, 0.9954]〉 〈[0.0551, 0.0063], [0.0738, 0.0228], [0.8896, 0.0740]〉
v4 〈[0.0290, 0.0063], [0.0171, 0.0039], [0.9244, 0.9920]〉 〈[0.0313, 0.0060], [0.0261, 0.0026], [0.9367, 0.0916]〉

Ã4 λ̃3 λ̃4

v1 〈[0.0326, 0.0080], [0.0194, 0.0030], [0.8873, 0.1035]〉 〈[0.0397, 0.0079], [0.1353, 0.0184], [0.9395, 0.1399]〉
v2 〈[0.0220, 0.0028], [0.0220, 0.0030], [0.9607, 0.1727]〉 〈[0.0196, 0.0024], [0.0178, 0.0026], [0.9547, 0.0834]〉
v3 〈[0.0135, 0.0013], [0.0589, 0.0167], [0.9579, 0.2738]〉 〈[0.0536, 0.0055], [0.0758, 0.0182], [0.8957, 0.0770]〉
v4 〈[0.0172, 0.0030], [0.0363, 0.0056], [0.9322, 0.1089]〉 〈[0.0184, 0.0033], [0.0269, 0.0031], [0.9756, 0.2004]〉

Step 3. Determine the IVINPIS and IVINNIS from the weighted matrices, Ã1, Ã2 , Ã3 and

Ã4.

Table 10. Representation of IVINPIS (Ã+) from the weighted matrices.

Ã+ λ̃1 λ̃2

v1 〈[0.0638, 0.0157], [0.0200, 0.0055], [0.8449, 0.9803]〉 〈[0.0557, 0.0142], [0.0731, 0.0062], [0.8244, 0.0284]〉
v2 〈[0.0173, 0.0027], [0.0178, 0.0026], [0.9384, 0.9953]〉 〈[0.0329, 0.0038], [0.0155, 0.0053], [0.9314, 0.0635]〉
v3 〈[0.0443, 0.0071], [0.0627, 0.0073], [0.9180, 0.9924]〉 〈[0.0551, 0.0116], [0.0176, 0.0086], [0.8896, 0.0740]〉
v4 〈[0.0290, 0.0063], [0.0171, 0.0018], [0.9244, 0.9920]〉 〈[0.0569, 0.0060], [0.0184, 0.0026], [0.9204, 0.0549]〉

Ã+ λ̃3 λ̃4

v1 〈[0.1099, 0.0143], [0.0194, 0.0030], [0.8400, 0.0747]〉 〈[0.0606, 0.0103], [0.0452, 0.0045], [0.8724, 0.0614]〉
v2 〈[0.0344, 0.0043], [0.0166, 0.0030], [0.9322, 0.1162]〉 〈[0.0203, 0.0024], [0.0178, 0.0026], [0.9547, 0.0834]〉
v3 〈[0.0589, 0.0056], [0.0329, 0.0099], [0.8828, 0.0929]〉 〈[0.0536, 0.0055], [0.0758, 0.0182], [0.8957, 0.0770]〉
v4 〈[0.0580, 0.0054], [0.0148, 0.0020], [0.8925, 0.0633]〉 〈[0.0322, 0.0033], [0.0269, 0.0031], [0.9271, 0.0587]〉

Table 11. Representation of IVINPIS (Ã−) from the weighted matrices.

Ã− λ̃1 λ̃2

v1 〈[0.0386, 0.0062], [0.0200, 0.0055], [0.9234, 0.9922]〉 〈[0.0320, 0.0071], [0.0731, 0.0062], [0.8974, 0.0992]〉
v2 〈[0.0116, 0.0014], [0.0178, 0.0026], [0.9737, 0.9985]〉 〈[0.0184, 0.0025], [0.0155, 0.0053], [0.9654, 0.1165]〉
v3 〈[0.0204, 0.0025], [0.0178, 0.0026], [0.9480, 0.9968]〉 〈[0.0341, 0.0027], [0.0176, 0.0086], [0.9114, 0.0956]〉
v4 〈[0.0148, 0.0017], [0.0171, 0.0018], [0.9659, 0.9980]〉 〈[0.0214, 0.0025], [0.0176, 0.0026], [0.9432, 0.1197]〉

Ã− λ̃3 λ̃4

v1 〈[0.0326, 0.0080], [0.0194, 0.003], [0.8873, 0.1035]〉 〈[0.0142, 0.0021], [0.0452, 0.0045], [0.93950.1399]〉
v2 〈[0.0220, 0.0023], [0.0166, 0.003], [0.9607, 0.1727]〉 〈[0.0103, 0.0010], [0.0178, 0.0026], [0.97920.2049]〉
v3 〈[0.0135, 0.0013], [0.0166, 0.003], [0.9579, 0.2738]〉 〈[0.0039, 0.0015], [0.0178, 0.0026], [0.94190.1432]〉
v4 〈[0.0172, 0.0030], [0.0148, 0.002], [0.9451, 0.1591]〉 〈[0.0118, 0.0012], [0.0269, 0.0031], [0.97560.2004]〉
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Step 4. Determine the CC for the alternatives by using the values of IVINPIS and IVINNIS.

χ1 = 0.9968, χ2 = 0.9984, χ3 = 0.9988 and χ4 = 0.9968.

λ1 = 0.9957, λ2 = 0.9972, λ3 = 0.9971 and λ4 = 0.9984.

Step 5. Compute the closeness coefficient of neutrosophic ideal solution as below.

ε1 = 0.5733, ε2 = 0.6364, ε3 = 0.7073 and ε4 = 0.3333.

Step 6. Arrange the values in descending order.

ε3 > ε2 > ε1 > ε4.

⇒ A3 > A2 > A1 > A4.

Hence, A3 is the best among the group who can lead the project successfully.

6. Comparative Analysis

We combine the proposed interval-valued intuitionistic neutrosophic TOPSIS method with

existing SMs to show the reliability, validity and effectiveness of the proposed TOPSIS method

based on CC.

Example 6.1. Consider the same IVINHSS values and weights mentioned in Section 5.2. We
now combine the proposed TOPSIS method, with the SMs given below to rank the alternatives.
(i) SY (Ω1,Ω2) [5]

= 1−
1

n

n∑
i=1

wj

[
|αΩ1(qi)

(vj)− αΩ2(qi)
(vj)|+ |αΩ1(qi)

(vj)− αΩ2(qi)
(vj)|+ |βΩ1(qi)

(vj)− βΩ2(qi)
(vj)|

+ |βΩ1(qi)
(vj)− βΩ2(qi)

(vj)|+ |γΩ1(qi)
(vj)− γΩ2(qi)

(vj)|+ |γΩ1(qi)
(vj)− γΩ2(qi)

(vj)|
]
.

(ii) ST (Ω1,Ω2) [6]

=

n∑
i=1

(min(αΩ1(qi)
(vj), αΩ2(qi)

(vj)) +min(αΩ1(qi)
(vj), αΩ2(qi)

(vj)) +min(β
Ω1(qi)

(vj), βΩ2(qi)
(vj))

+min(βΩ1(qi)
(vj), βΩ2(qi)

(vj)) +min(γ
Ω1(qi)

(vj), γΩ2(qi)
(vj)) +min(γΩ1(qi)

(vj), γΩ2(qi)
(vj))

)
n∑
i=1

(max(αΩ1(qi)
(vj), αΩ2(qi)

(vj)) +max(αΩ1(qi)
(vj), αΩ2(qi)

(vj)) +max(β
Ω1(qi)

(vj), βΩ2(qi)
(vj))

+max(βΩ1(qi)
(vj), βΩ2(qi)

(vj)) +max(γ
Ω1(qi)

(vj), γΩ2(qi)
(vj)) +max(γΩ1(qi)

(vj), γΩ2(qi)
(vj))

) ,

(iii) SH(Ω1,Ω2) [6]

=
1

6

n∑
i=1

wj

[
|αΩ1(qi)

(vj)− αΩ2(qi)
(vj)|+ |αΩ1(qi)

(vj)− αΩ2(qi)
(vj)|+ |βΩ1(qi)

(vj)− βΩ2(qi)
(vj)|

+ |βΩ1(qi)
(vj)− βΩ2(qi)

(vj)|+ |γΩ1(qi)
(vj)− γΩ2(qi)

(vj)|+ |γΩ1(qi)
(vj)− γΩ2(qi)

(vj)|
]
.

(iv) SE(Ω1,Ω2) [6]

=

( n∑
i=1

wj

[
|αΩ1(qi)

(vj)− αΩ2(qi)
(vj)|2 + |αΩ1(qi)

(vj)− αΩ2(qi)
(vj)|2 + |β

Ω1(qi)
(vj)− βΩ2(qi)

(vj)|2

+ |βΩ1(qi)
(vj)− βΩ2(qi)

(vj)|2 + |γ
Ω1(qi)

(vj)− γΩ2(qi)
(vj)|2 + |γΩ1(qi)

(vj)− γΩ2(qi)
(vj)|2

]) 1
2

.
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(v) SC1
(Ω1,Ω2) [31]

=
1

n

n∑
i=1

Cos

[
π

4

(
|αΩ1(qi)

(vj)− αΩ2(qi)
(vj)| ∨ |βΩ1(qi)

(vj)− βΩ2(qi)
(vj)| ∨ |γΩ1(qi)

(vj)− γΩ2(qi)
(vj)|

+ |αΩ1(qi)
(vj)− αΩ2(qi)

(vj)| ∨ |βΩ1(qi)
(vj)− βΩ2(qi)

(vj)| ∨ |γΩ1(qi)
(vj)− γΩ2(qi)

(vj)|
)]
.

(vi) SC2 (Ω1,Ω2) [31]

=
1

n

n∑
i=1

Cos

[
π

12

(
|αΩ1(qi)

(vj)− αΩ2(qi)
(vj)|+ |αΩ1(qi)

(vj)− αΩ2(qi)
(vj)|+ |βΩ1(qi)

(vj)− βΩ2(qi)
(vj)|

+ |βΩ1(qi)
(vj)− βΩ2(qi)

(vj)|+ |γΩ1(qi)
(vj)− γΩ2(qi)

(vj)|+ |γΩ1(qi)
(vj)− γΩ2(qi)

(vj)|
)]
.

Table 12. Comparison of existing similarity measures with proposed method.

Determination of rank using existing similarity measures

SY (ψ1, ψ2) [5]⇒ A1 = A4 = 0.50 and A2 = A3 = 0.49

ST (ψ1, ψ2) [6]⇒ A1 = A4 = 0.50 and A2 = A3 = 0.49

SC1
(ψ1, ψ2) [31]⇒ A1 = A2 = A3 = A4 = 0.50

SC2 (ψ1, ψ2) [31]⇒ A1 = A2 = A3 = A4 = 0.50

Analysis : From Table 12, it is evident that, when SMs of SY (ψ1, ψ2) [5], ST (ψ1, ψ2) [6],

SC1(ψ1, ψ2) [31] and SC2(ψ1, ψ2) [31] are used in the proposed TOPSIS method instead of CC,

it is not possible to identify the best alternative. However, the best alternative is identified

in the proposed method when CC is used. Hence, it is evident that the proposed TOPSIS

method based on CC is more reliable and effective than SMs.

7. Conclusions

In this work, we have introduced the notion of IVINHSS and established some of its proper-

ties. The aim of this research is to introduce new operational laws for IVINHSS. Also, we have

presented the aggregation operators for IVINHSS by using the operational laws and established

some of their properties. We have proposed aggregation operators and an application based on

the TOPSIS method to identify a suitable employee, who can handle the project successfully

using the Leipzig leadership model. To study the closeness coefficients, we have applied CC

instead of SMs in the proposed TOPSIS method. We have presented a comparative study

between the proposed method and the existing SMS to prove the reliability of the proposed

model. In the future, we can extend this structure to several aggregate operators, combine

IVINHSS with N soft set and in various decision-making problems.

Funding: This research received no external funding.
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—————————————————————————————————————————-

1. Introduction

In 1965, L.Zadeh introduced the concept of fuzzy sets and fuzzy logic. It is an important con-

cept in handling uncertainity in real life where each element has a membership functions [22].

In 1986, Attanassov proposed the concept of intuitionistic fuzzy sets, which is a generaliza-

tion of fuzzy sets [10]. Intuitionstic fuzzy sets are characterized by the membership function

and non-membership function with each element, whereas in real life we need to handle the

incompleteness and indeterminancy. In this context, Smarandache applied neutrosophic set

theory to solve real world practical problems. Smarandache’s neutrosophic set theory focused

on medical, engineering fields, social science etc. [5,7], Neutrosophic sets are characterized by

membership, indeterminancy and non-membership functions [8, 21].

In 2012, Salama and Alblowi defined neutrosophic topological space by using neutrosophic

sets [14]. Further researchers have carried out to investigate the various properties of neutro-

sophic sets in different fields [2–4, 6].In 1970, Steen and Seebach [20] introduced the notion

of hyperconnectedness in topological spaces. Several researchers examined the properties of

hyperconnectedness in general topology [1,11,12,15,17,18]. Jayasree chakraborty, Baby bhat-

tacharya and Arnab paul defined fuzzy hyperconnectedness in fuzzy topological space [9].
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Recently Sasikala.D and Deepa.M introduced semi j-hyperconnected space using semi j-open

sets [16]. This paper communicates the role of hyperconnectedness in the field of neutrosophic

topological spaces. We ideate a new class of sets called neutrosophic semi j-open set and

neutrosophic semi j-closed set exercised with theorems and appropriate examples. Also we

proposed the novel space namely neutrosophic semi j-hyperconnected space by neutrosophic

semi j-open sets and analyses the essential characteristics of this space.

Throughout this paper neutrosophic topological space [X , τ ] is simply denoted by X .

2. Preliminaries

Definition 2.1. [13] Let X be a non empty set. A neutrosophic set P is an object having

the form P = {< x, λP (x), µP (x), νP (x) >: x ∈ X} where λP (x), µP (x) and νP (x) represents

the degree of membership function, the degree of indeterminancy and the degree of non mem-

bership function respectively of each element x ∈ X to the set P. It is simply denoted by

P =< λP (x), µP (x), νP (x) >.

Definition 2.2. [14] Let P =< λP (x), µP (x), νP (x) > be a neutrosophic set on X , then

the complement of the set P can be defined by the following three kinds as

(i)C[P ] = {x, 1− λP (x), 1− µP (x), 1− νP (x) >: x ∈ X}.
(ii)C[P ] = {x, νP (x), µP (x), λP (x) >: x ∈ X}.
(iii)C[P ] = {x, νP (x), 1− µP (x), λP (x) >: x ∈ X}.

Proposition 2.3. [14] For any neutrosophic set P, the following conditions hold:

(i) 0N ⊆ P, 0N ⊆ 0N .

(ii) P ⊆ 1N , 1N ⊆ 1N .

Definition 2.4. [14] Let τ be a collection of all neutrosophic subsets on X . Then τ is

called a neutrosophic topology on X if the following conditions hold.

(i) 0N , 1N ∈ τ .

(ii) union of any numbers of neutrosophic sets in τ also belongs to τ .

(iii) intersection of any two of neutrosophic sets in τ also belongs to τ .

Then the pair (X , τ) is called neutrosophic topological space. A neutrosophic set Q is

neutrosophic closed if and only if complement of Q is neutrosophic open.

Definition 2.5. [13] Let X be neutrosophic topological space and P =<

λP (x), µP (x), νP (x) > be a neutrosophic set in X . Then the neutrosophic closure and neutro-

sophic interior of P are defined by

Ncl[P ] = ∩{M : M is a neutrosophic closed set in X and P ⊆ M}.
Nint[P ] = ∪{N : N is a neutrosophic open set in X and N ⊆ P}.

It follows that Ncl[P ] is neutrosophic closed set and Nint[P ] is a neutrosophic open set in
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X .

(i) P is neutrosophic open set if and only if P = Nint[P ].

(ii) P is neutrosophic closed set if and only if P = Ncl[P ].

Proposition 2.6. [13] For any neutrosophic set P in X we have

(i) Ncl(C[P ]) = C(Nint[P ]).

(ii) Nint(C[P ]) = C(Ncl[P ]).

Definition 2.7. [21] A neutrosophic set P in a neutrosophic topological space X is called

(i) Neutrosophic semiopen set if P ⊆ Ncl[Nint[P ]].

(ii) Neutrosophic preopen set if P ⊆ Nint[Ncl[P ]].

(iii) Neutrosophic regular open set if P = Nint[Ncl[P ]].

(iv) Neutrosophic j-open set if P ⊆ Nint[Npcl[P ]].

Definition 2.8. [4] A neutrosophic subset P in a neutrosophic topological space X is called

(i) neutrosophic dense if Ncl[P ] = 1N .

(ii) neutrosophic nowhere dense if Nint[Ncl[P ]] = 0N .

Proposition 2.9. [13] Let X be a neutrosophic topological space and P , Q be two neutro-

sophic subsets in X . Then the following conditions hold:

(i) Nint[P ] ⊆ P .

(ii) P ⊆ Ncl[P ].

(iii) P ⊆ Q =⇒ Nint[P ] ⊆ Nint[Q].

(iv) P ⊆ Q =⇒ Ncl[P ] ⊆ Ncl[Q].

(v) Nint[Nint[P ]] = Nint[P ].

(vi) Ncl[Ncl[P ]] = Ncl[P ].

(vii) Nint[P ∩Q] = Nint[P ] ∩Nint[Q].

(viii) Ncl[P ∪Q] = Ncl[P ] ∪Ncl[Q].

(ix) Nint[0N ] = 0N .

(x) Nint[1N ] = 1N .

(xi) Ncl[0N ] = 0N .

(xii) Ncl[1N ] = 1N .

(xiii) P ⊆ Q =⇒ C[Q] ⊆ C[P ].

(xiv) Ncl[P ∩Q] ⊆ Ncl[P ] ∩Ncl[Q].

(xv) Nint[P ∪Q] ⊇ Nint[P ] ∪Nint[Q].

Definition 2.10. [19] A topological space X is said to be hyperconnected if every non empty

open subset of X is dense in X .
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3. Neutrosophic semi j-open sets

In this part, we define a new set namely neutrosophic semi j-open set in neutrosophic

topological spaces. Also some of its basic properties are discussed.

Definition 3.1. Let P be a neutrosophic subset of a neutrosophic topological space X . Then

P is said to be neutrosophic semi j-open set of X if and only if P ⊆ Ncl[Nint[Npcl[P ]]].

Example 3.2. Let X = {s, t, r} and the neutrosophic subsets P , Q, R and S in X as follows,

P = {< s, 0.4, 0.3, 0.8 >,< t, 0.5, 0.2, 0.6 >,< r, 0.4, 0.2, 0.6 >; s, t, r ∈ X},
Q = {< s, 0.3, 0.4, 0.5 >,< t, 0.6, 0.4, 0.6 >,< r, 0.3, 0.4, 0.6 >; s, t, r ∈ X},
R = {< s, 0.4, 0.4, 0.5 >,< t, 0.6, 0.4, 0.6 >,< r, 0.4, 0.4, 0.6 >; s, t, r ∈ X},
S = {< s, 0.3, 0.3, 0.8 >,< t, 0.5, 0.2, 0.6 >,< r, 0.3, 0.2, 0.6 >; s, t, r ∈ X}.
Then τ = {0N , P,Q,R, S, 1N} is a neutrosophic topological space X .

Let E = {< s, 0.4, 0.4, 0.5 >,< t, 0.5, 0.4, 0.7 >,< r, 0.4, 0.4, 0.7 >; s, t, r ∈ X} be a neu-

trosophic subset in X , then Ncl[Nint[Npcl[E]]] = {< s, 0.5, 0.6, 0.5 >,< t, 0.6, 0.6, 0.6 >,<

r, 0.6, 0.6, 0.4 >; s, t, r ∈ X} Therefore E ⊆ Ncl[Nint[Npcl[E]]]. Hence E is a neutrosophic

semi j-open set.

Theorem 3.3. Let {Pα : α ∈ ∆} be a collection of neutrosophic semi j-open sets in neutro-

sophic topological space X . Then
⋃

α∈∆
Pα is also neutrosophic semi j-open in X .

Proof. Since Pα is neutrosophic semi j-open set in X . Then Pα ⊆ Ncl[Nint[Npcl[Pα]]].⋃
α∈∆

Pα ⊆
⋃

α∈∆
Ncl[Nint[Npcl[Pα]]] ⊆ Ncl[Nint[Npcl[

⋃
α∈∆

Pα]]]. Hence
⋃

α∈∆
Pα is also neu-

trosophic semi j-open set in X .

Remark 3.4. The intersection of any two neutrosophic semi j-open sets of neutrosophic

topological space X need not be a neutrosophic semi j-open set as verified by the following

example.

Example 3.5. Let X = {s, t} and the neutrosophic subsets P , Q, R and S in X as follows,

P = {< s, 0.2, 0.1, 0.8 >,< t, 0.3, 0.1, 0.4 >; s, t ∈ X},
Q = {< s, 0.1, 0.2, 0.5 >,< t, 0.4, 0.3, 0.4 >; s, t ∈ X},
R = {< s, 0.2, 0.2, 0.5 >,< t, 0.4, 0.3, 0.4 >; s, t ∈ X},
S = {< s, 0.1, 0.1, 0.8 >,< t, 0.3, 0.1, 0.4 >; s, t ∈ X}.
Then τ = {0N , P,Q,R, S, 1N} is a neutrosophic topological space X .

Let E = {< s, 0.9, 0.1, 0.6 >,< t, 0.3, 0.2, 0.6 >; s, t ∈ X} and

F = {< s, 0.6, 0.7, 0.3 >,< t, 0.5, 0.7, 0.4 >; s, t ∈ X} be the neutrosophic subsets in

X . Then Ncl[Nint[Npcl[E]]] = 1N and Ncl[Nint[Npcl[F ]]] = 1N . This implies E ⊆
Ncl[Nint[Npcl[E]]] and F ⊆ Ncl[Nint[Npcl[F ]]]. Here E ∩ F = {< s, 0.6, 0.1, 0.6 >,<
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t, 0.3, 0.2, 0.6 >; s, t ∈ X}.Therefore E and F are neutrosophic semi j-open sets and E ∩ F is

not neutrosophic semi j-open set in X .

Theorem 3.6. In a neutrosophic topological space X , let P be a neutrosophic semi j-open set

and P ⊆ Q ⊆ Ncl[P ]. Then Q is also a neutrosophic semi j-open set in X .

Proof. Since P is neutrosophic semi j-open in X . Then P ⊆ Ncl[Nint[Npcl[P ]]]. Ncl[P ] ⊆
Ncl[Ncl[Nint[[Npcl[P ]]]]. Using proposition 2.9, Ncl[P ] ⊆ Ncl[Nint[Npcl[P ]]]. By hy-

pothesis P ⊆ Q ⊆ Ncl[P ], then Q ⊆ Ncl[Nint[Npcl[P ]]]. We have P ⊆ Q, therefore

Ncl[Nint[Npcl[P ]]] ⊆ Ncl[Nint[Npcl[Q]]], which implies Q ⊆ Ncl[Nint[Npcl[Q]]]. Hence

Q is a neutrosophic semi j-open set in X .

Theorem 3.7. In a neutrosophic topological space X , every neutrosophic j-open set is neu-

trosophic semi j-open.

Proof. Let P be a neutrosophic j-open set in X . Then P ⊆ Nint[Npcl[P ]], Ncl[P ] ⊆
Ncl[Nint[Npcl[P ]]]. We know that P ⊆ Ncl[P ]. Therefore P ⊆ Ncl[Nint[Npcl[P ]]]. Hence

P is a neutrosophic semi j-open set in X .

Remark 3.8. Converse of the above theorem need not be true as shown in the following

example.

Example 3.9. Let X = {s, t} and the neutrosophic subsets P and Q in X as follows,

P = {< s, 0.2, 0.2, 0.5 >,< t, 0.4, 0.3, 0.4 >; s, t ∈ X},
Q = {< s, 0.1, 0.1, 0.8 >,< t, 0.3, 0.1, 0.4 >; s, t ∈ X}.
Then τ = {0N , P,Q, 1N} is a neutrosophic topological space on X .

Let R = {< s, 0.2, 0.1, 0.6 >,< t, 0.4, 0.4, 0.5 >; s, t ∈ X}. Nint[Npcl[R]] = P , this implies

R ⊈ P . and Ncl[Nint[Npcl[R]]] = PC . Therefore R ⊆ PC . Hence R is neutrosophic semi

j-open but not neutrosophic j-open.

Theorem 3.10. Every neutrosophic open sets in X is neutrosophic semi j-open.

Proof. Let P be a neutrosophic open sets in X . Then P = Nint[P ]. We know that

Nint[P ] ⊆ P ⊆ Ncl[P ] and Npcl[P ] ⊆ Ncl[P ]. This implies P ⊆ Npcl[P ] ⊆ Ncl[P ].

Using proposition 2.9,

=⇒ Nint[P ] ⊆ Nint[Npcl[P ]] ⊆ Nint[Ncl[P ]]

=⇒ Ncl[Nint[P ]] ⊆ Ncl[Nint[Npcl[P ]]] ⊆ Ncl[Nint[Npcl[P ]]]

=⇒ Ncl[P ] ⊆ Ncl[Nint[Npcl[P ]]]

=⇒ P ⊆ Ncl[Nint[Npcl[P ]]].

Hence P is neutrospohic semi j-open.
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Remark 3.11. Converse of the above theorem need not be true as shown in the following

example.

Example 3.12. Consider X = {s} and the neutrosophic subsets P and Q as follows

P = {< s, 0.4, 0.5, 0.3 >; s ∈ X},
Q = {< s, 0.1, 0.5, 0.5 >; s ∈ X}.
Then τ = {0N , P,Q, 1N} is a neutrosophic topological space X .

Here R = {< s, 0.3, 0.6, 0.5 >; s ∈ X} is neutrosophic semi j-open but not neutrosophic open.

4. Neutrosophic semi j-closed sets

Definition 4.1. A neutrosophic subset S of a neutrosophic topological space X is said to be

neutrosophic semi j-closed set if and only if Nint[Ncl[Npint[S]]] ⊆ S.

Example 4.2. Let X = {s1, s2, s3} and the neutrosophic subsets Q1, Q2 and Q3 as follows

Q1 = {< s1, 0.6, 0.5, 0.6 >,< s2, 0.7, 0.4, 0.4 >,< s3, 0.6, 0.4, 0.4 >; s1, s2, s3 ∈ X},
Q2 = {< s1, 0.7, 0.6, 0.3 >,< s2, 0.8, 0.6, 0.4 >,< s3, 0.6, 0.6, 0.4 >; s1, s2, s3 ∈ X},
Q3 = {< s1, 0.6, 0.5, 0.4 >,< s2, 0.7, 0.5, 0.4 >,< s3, 0.6, 0.5, 0.4 >; s1, s2, s3 ∈ X}.
Then τ = {0N , Q1, Q2, Q3, 1N} is a neutrosophic topological space X . Put F =

{< s1, 0.5, 0.4, 0.5 >,< s2, 0.6, 0.5, 0.3 >,< s3, 0.4, 0.4, 0.3 >; s1, s2, s3 ∈ X}. Then

Nint[Ncl[Npint[F ]]] ⊆ F . Therefore F is a neutrosophic semi j-closed set in X .

Theorem 4.3. Take S be a neutrosophic subset of X , then S is neutrosophic semi j-closed if

and only if C(S) is neutrosophic semi j-open.

Proof. Assume S is neutrosophic semi j-closed set in X . Then Nint[Ncl[Npint[S]]] ⊆
S, taking compliments on both sides, we obtain C[S] ⊆ C[Nint[Ncl[Npint[S]]]] =

Ncl[Nint[Npcl[C[S]]]] using proposition 2.6. Hence C[S] is neutrosophic semi j-open set

in X . Conversely assume C[S] is a neutrosophic semi j-open set in X . Then C[S] ⊆
Ncl[Nint[Npcl[C[S]]]]. We obtain C[Ncl[Nint[Npcl[C[S]]]]] ⊆ C[C[S]] by taking compli-

ments on both sides. This implies Nint[Ncl[Npint[S]]] ⊆ S. Hence S is a neutrosophic semi

j-closed set in X .

Theorem 4.4. Let {Sα : α ∈ ∆} be a family of neutrosophic semi j-closed set in X . Then

arbitrary intersection of neutrosophic semi j-closed sets is also neutrosophic semi j-closed.

Proof. Let {Sα : α ∈ ∆} be a family of neutrosophic semi j-closed sets in X and Pα = {Sα}c.
Then {Sα : α ∈ ∆} is a family of neutrosophic semi j-open sets in X . Using theorem 3.3⋃
α∈∆

Pα is neutrosophic semi j-open. Then {
⋃

α∈∆
Pα}C is neutrosophic semi j-closed which

implies
⋂

α∈∆
Pα

c is neutrosophic semi j-closed. Hence
⋂

α∈∆
Sα is neutrosophic semi j-closed.
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Theorem 4.5. In a neutrosophic topological space X , every neutrosophic j-closed set is also

neutrosophic semi j-closed.

Proof. Let S be a neutrosophic j-closed set in X . Then Ncl[Npint[S]] ⊆ S.

Nint[Ncl[Npint[S]]] ⊆ Nint[S]. We know that Nint[S] ⊆ S, therefore Nint[Ncl[Npint[S]]]⊆
S. Hence S is neutrosophic semi j-closed.

Remark 4.6. Converse of the above theorem need not be true, as verified by the following

example.

Example 4.7. Let X = {t1, t2, t3} and the neutrosophic subsets Q1, Q2 as follows,

Q1 = {< t1, 0.2, 0.5, 0.4 >,< t2, 0.2, 0.4, 0.5 >,< t3, 0.1, 0.0, 0.5 >; t1, t2, t3 ∈ X},
Q2 = {< t1, 0.3, 0.4, 0.5 >,< t2, 0.4, 0.3, 0.2 >,< t3, 0.2, 0.3, 0.4 >; t1, t2, t3 ∈ X}.
Put τ = {0N , Q1, Q2, Q1 ∪ Q2, 1N}. Let G = {< t1, 0.4, 0.5, 0.4 >,< t2, 0.3, 0.4, 0.2 >,<

t3, 0.3, 0.4, 0.5 >; t1, t2, t3 ∈ X}. Then G is a neutrosophic semi j-closed but not neutrosophic

j-closed. Since Nint[Ncl[Npint[G]]] = Q1 ⊆ G, but Ncl[Npint[G]] = [Q1 ∪Q2]
c ⊈ G.

Theorem 4.8. In a neutrosophic topological space X , every neutrosophic closed set is neutro-

sophic semi j-closed.

Proof. Let S be neutrosophic closed set in X . Then S = Ncl[S]. We know that Nint[S] ⊆
Npint[S]. Ncl[Nint[S]] ⊆ Ncl[Npint[S]] ⊆ Ncl[S]. It follows that Nint[Ncl[Nint[S]]] ⊆
Nint[Ncl[Npint[S]]]. Hence S is a semi j-closed in X .

Remark 4.9. The converse of the above theorem may not be true, as shown by the following

example. In example 4.7, Ncl[G] ̸= G. This implies G is neutrosophic semi j-closed set but

not neutrosophic closed set.

From the above results, we have the following indications: But the converse of the above

indications need not be true as shown by 4.7 and 4.9.
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5. Neutrosophic hyperconnected space

Definition 5.1. A neutrosophic topological space X , is said to be neutrosophic hypercon-

nected if for every non empty neutrosophic open subsets of X is neutrosophic dense in X .

Example 5.2. Consider X = {s1, s2} with τ = {0N , 1N , P1, P2, P3, P4} where

P1 = {< s1, 0.2, 0.4, 0.3 >,< s2, 0.5, 0.1, 0.4 >, s1, s2 ∈ X},
P2 = {< s1, 0.1, 0.5, 0.6 >,< s2, 0.4, 0.2, 0 >, s1, s2 ∈ X},
P3 = {< s1, 0.2, 0.5, 0.3 >,< s2, 0.5, 0.2, 0 >, s1, s2 ∈ X},
P4 = {< s1, 0.1, 0.4, 0.6 >,< s2, 0.4, 0.1, 0.4 >, s1, s2 ∈ X}.
Here every non empty neutrosophic open sets P1, P2, P3, P4, 1N are neutrosophic dense in X .

ie.,

Ncl[P1] = 1N ,

Ncl[P2] = 1N ,

Ncl(P3) = 1N ,

Ncl(P4) = 1N ,

Ncl(1N ) = 1N .

Therefore X is neutrosophic hyperconnected space.

Definition 5.3. A neutrosophic topological space X is called as neutrosophic extremely dis-

connected if the neutrosophic closure of each neutrosophic open set is neutrosophic open in

X .

Theorem 5.4. In a neutrosophic topological space X , every neutrosophic hyperconnected space

is neutrosophic extremely disconnected.

Proof. Let us take X be neutrosophic hyperconnected. Then for any neutrosophic open set

P , Ncl[P ] = 1N . This implies that Ncl[P ] is neutrosophic open. Therefore X is neutrosophic

extremely disconnected.

Remark 5.5. The following example shows that the converse of the above theorem need not

be true.

Example 5.6. Let X = {s} with τ = {0N , P1, P2, P3, P4, 1N} where

P1 = {< s, 0.5, 0.3, 0.2 >; s ∈ X},
P2 = {< s, 0.2, 0.3, 0.5 >; s ∈ X},
P3 = {< s, 0.3, 0.3, 0.5 >; s ∈ X},
P4 = {< s, 0.5, 0.3, 0.5 >; s ∈ X}.
Here Ncl[P1] = {< s, 0.5, 0.3, 0.2 >; s ∈ X},

Ncl[P2] = {< s, 0.2, 0.3, 0.5 >; s ∈ X},
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Ncl(P3) = {< s, 0.5, 0.3, 0.5 >; s ∈ X},
Ncl(P4) = {< s, 0.5, 0.3, 0.5 >; s ∈ X}.

This example shows that [X , τ ] is neutrosophic extremely disconnected. SinceNcl[P1], Ncl[P2],

Ncl(P3) and Ncl(P4) are neutrosophic open but not neutrosophic dense . Therefore, X is not

neutrosophic hyperconnected.

Theorem 5.7. In a neutrosophic topological space X , the following properties are equivalent.

(a) X is neutrosophic hyperconnected.

(b) In X , the only neutrosophic regular open sets are 0N and 1N .

Proof. (a) =⇒ (b)

Let X be a neutrosophic hyperconnected space. If P is a non-empty neutrosophic regular

open set, then by the definition P = Nint[Ncl[P ]]. This implies that [Nint[Ncl[P ]]]c =

[1N − Nint[Ncl[P ]]] = Ncl[1N − Ncl[P ]] = Ncl(P c) = P c ̸= 1N . Since P ̸= 0N . This is a

contradiction to the assumption. Hence the only neutrosophic regular open sets in X are 0N

and 1N .

(b) =⇒ (a)

Assume that 0N and 1N are the only neutrosophic regular open subsets in X . Suppose that

X is not neutrosophic hyperconnected. Then there exist a non empty neutrosophic open

subset P of X such that Ncl[P ] ̸= 1N . This implies Ncl[Nint[P ]] ̸= 1N . Therefore, we have

Ncl[Nint[P ]] = 0N . This gives Ncl[P ] = 0N . Since P ̸= 0N . It contradicts our assumption

that X is not neutrosophic hyperconnected . Hence X is neutrosophic hyperconnected space.

Theorem 5.8. A neutrosophic topological space X is neutrosophic hyperconnected if and only

if for every neutrosophic subset of X is either neutrosophic dense or neutrosophic nowhere

dense.

Proof. Suppose X be a neutrosophic hyperconnected space and let P be any neutrosophic

subset of X such that P ⊆ 1N . Assume P is not neutrosophic nowhere dense. Then

Ncl[1N −Ncl[P ]] = 1N − [Nint[Ncl[P ]]] ̸= 1N . Since Nint[Ncl[P ]] ̸= 0N . This implies that

Ncl[Nint[Ncl[P ]]] = 1N . Since Ncl[Nint[Ncl[P ]]] = 1N ⊆ Ncl[P ]. Therefore, Ncl[P ] = 1N .

Hence P is neutrosophic dense set.

For the converse part, let P1 be any non empty neutrosophic open set in X , then

P1 ⊂ Nint[Ncl[P1]]. This implies that P1 is not neutrosophic nowhere dense set. By the

hypothesis, P1 is neutrosophic dense set.
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Proposition 5.9. If X be a neutrosophic hyperconnected space, then the intersection of any

two neutrosophic semi open sets is also neutrosophic semi open.

Proof. Let P1 and P2 be the two non empty neutrosophic semi open sets in a neutrosophic

hyperconnected space X . Then, we have P1 ⊆ Ncl[Nint[P1]] and P2 ⊆ Ncl[Nint[P2]]. It

follows that, Ncl[P1] = Ncl[Nint[P1]] = 1N and Ncl[P2] = Ncl[Nint[P2]]] = 1N , where P1

and P2 are two non empty neutrosophic semi open sets in a neutrosophic hyperconnected space.

Also we have P1 ∧P2 ̸= 0N . Therefore, Ncl[Nint[P1 ∧P2]] = Ncl[Nint[P1]]∧Ncl[Nint[P2]] =

1N . This implies P1∧P2 ⊆ Ncl[Nint[P1]]∧Ncl[Nint[P2]] = Ncl[Nint[P1∧P2]]. Hence P1∧P2

is neutrosophic semi open set.

6. Neutrosophic semi j-hyperconnected spaces

Definition 6.1. A neutrosophic subset P of X is said to be neutrosophic semi j-interior of P if

the union of all neutrosophic semi j-open sets of X contained in P . It is denoted by Nintsj [P ].

A neutrosophic subset Q of X is said to be neutrosophic semi j-closure of Q if the intersection

of all neutrosophic semi j-closed sets of X containing Q. It is denoted by Nclsj [Q].

Example 6.2. Consider X = {s1, s2, s3} and the neutrosophic subsets S1, S2, S3 in X as

follows,

S1 = {< s1, 0.3, 0.4, 0.3 >,< s2, 0.6, 0.2, 0.4 >,< s3, 0.5, 0.2, 0.3 >; s1, s2, s3 ∈ X},
S2 = {< s1, 0.2, 0.6, 0.5 >,< s2, 0.4, 0.2, 0.3 >,< s3, 0.2, 0.3, 0.1 >; s1, s2, s3 ∈ X},
S3 = {< s1, 0.3, 0.6, 0.3 >,< s2, 0.6, 0.2, 0.3 >,< s3, 0.5, 0.3, 0.1 >; s1, s2, s3 ∈ X}.
Take τ = {0N , S1, S2, S3, 1N}. For this 0N , 1N , S1, S2, S1 ∪ S2, S1 ∪ S3, S2 ∪ S3 are the

neutrosophic semi j-open sets and 0N , 1N , Sc
1, Sc

2, (S1 ∪ S2)
c, (S1 ∪ S3)

c, (S2 ∪ S3)
c are

the neutrosophic semi j-closed sets. Put T = {< s1, 0.5, 0.6, 0.2 >,< s2, 0.7, 0.3, 0.3 >,<

s3, 0.6, 0.4, 0.2; s1, s2, s3X >} is a neutrosophic subset in X . Then we have Nintsj(T ) = S1

and Nclsj(T ) = 1N .

Definition 6.3. A neutrosophic topological space X is said to be neutrosophic semi j-

hyperconnected space if for each nonempty neutrosophic semi j-open subset A of X is neutro-

sophic semi j-dense in X . ie., Nclsj(A) = 1N for every A in X .

Example 6.4. Let X = {s1, s2, s3} and the neutrosophic subsets P1, P2, P3 in X as follows,

P1 = {< s1, 0.1, 0.3, 0.2 >,< s2, 0.4, 0.1, 0.3 >,< s3, 0.3, 0.1, 0.2 >; s1, s2, s3 ∈ X},
P2 = {< s1, 0.1, 0.4, 0.5 >,< s2, 0.3, 0.1, 0.0 >,< s3, 0.2, 0.0, 0.1 >; s1, s2, s3 ∈ X},
P3 = {< s1, 0.2, 0.4, 0.2 >,< s2, 0.4, 0.1, 0.0 >,< s3, 0.3, 0.1, 0.0 >; s1, s2, s3 ∈ X}.
Put τ = {0N , P1, 1N}. Then the collection of neutrosophic semi j-open sets are 0N , 1N ,

P1 ∪ P2 and P1 ∪ P3 i.e.,P1 ⊆ Ncl[Nint[Npcl[P1]]], P1 ∪ P2⊆Ncl[Nint[Npcl[P1 ∪ P2]]] and
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P1 ∪ P3 ⊆ Ncl[Nint[Npcl[P1 ∪ P2]]]. Here every non empty neutrosophic semi j-open sets are

neutrosophic semi j-dense in X . i.e., Nclsj [P1] = 1N , Nclsj [P1∪P2] = 1N , Nclsj [P1∪P3] = 1N

and Nclsj [1N ]. Therefore a neutrosophic topological space τ = {0N , P1, 1N} is neutrosophic

semi j-hyperconnected space.

Theorem 6.5. In a neutrosophic topological space, every neutrosophic hyperconnected space

is neutrosophic semi j-hyperconnected.

Proof. Let X be a neutrosophic hyperconnected space and P be a neutrosophic open subset

of X . Then Ncl[P ] = 1N . This implies that Nint[Ncl[P ]] = 1N . Therefore P is neutrosophic

preopen. PC is neutrosophic preclosed. Since every neutrosophic open set is neutrosophic

preopen and its complement is neutrosophic preclosed. It follows that Npcl[P ] = Ncl[P ] = 1N

which implies Ncl[Nint[Npcl[P ]]] = 1N . Therefore P is neutrosophic semi j-open =⇒
Nclsj [P ] = 1N for any neutrosophic open set in X . Hence X is neutrosophic semi j-

hyperconnected space.

Definition 6.6. Let X be a neutrosophic topological space and P be a neutrosophic semi

j-open set of X . Then

(a) P is said to be neutrosophic semi j-regular open set if and only if

P = Nintsj [Nclsj [P ]].

(b) P is said to be neutrosophic semi j-regular closed set if and only if

Nclsj [Nintsj [P ]] = P .

Theorem 6.7. Let X be a neutrosophic topological space, then each of the following statements

are equivalent.

(a) X is neutrosophic semi j-hyperconnected.

(b) X has no two proper neutrosophic semi j-regular open or proper semi j-regular closed

subset.

(c) Let P and Q be the proper disjoint neutrospohic semi j-open subsets in X , then X does

not have P and Q such that Nclsj [P ] ∪Q = P ∪Nclsj [Q] = 1N .

(d) X has no proper semi j-closed subset S and T such that X = S ∪ T and Nintsj ∩ T =

S ∩Nintsj(T ) = 0N .

Proof. (a) =⇒ (b) Let 0N ̸= P be neutrosophic semi j-regular open subset in X . Then

P = Nintsj [Nclsj [P ]]. Since X is a neutrosophic semi j-hyperconnected space. then

Nclsj [P ] = 1N . This implies P = 1N . Clearly P is not a proper neutrosophic semi

j-regular open subset of X . Similarly X cannot have a proper neutrosophic semi j-regular

closed subset.

(b) =⇒ (c) Suppose P and Q are the neutrosophic subsets in X and P ∩Q = 0N such that
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Nclsj [P ] ∪Q = P ∪Nclsj [Q] = 1N . This implies 0N ̸= Nclsj [P ] is the neutrosophic semi

j-regular closed set in X . Since P ∩Q = 0N and Nclsj [P ] ∩Q = 0N =⇒ Nclsj [P ] ̸= 1N

which implies X has a proper neutrosophic semi j-regular closed subset P . This contradicts

(b).

(c) =⇒ (d) Suppose, there exist two proper neutrosophic semi j-closed subset 0N ̸= S

and 0N ̸= T in X such that X = S ∪ T , Nintsj(S) ∩ T = S ∩ Nintsj(T ) = 0N . Then

P = 1N − S, Q = 1N − T are the two non-empty neutrosophic semi j-open sets. Then

Nclsj [P ] ∪ Q = Nclsj(1N − S) ∪ Q = [1N − Nintsj(S)] ∪ Q = 1N . =⇒ Nclsj [P ] ∪ Q =

P ∪Nclsj [Q] = 1N which contradicts (c).

(d) =⇒ (a) Suppose there exist a proper neutrosophic semi j-open set 0N ̸= P of

X such that Nclsj [P ] ̸= 1N . Then Nintsj [Nclsj [P ]] ̸= 1N . Take S = Nclsj [P ] and

T = 1N −Nintsj [Nclsj [P ]]. This implies S ∪ T = Nclsj [P ] ∪ [1N −Nintsj [Nclsj [P ]]] =

Nclsj [P ]∪Nclsj [1N−Nclsj [P ]] =⇒ Nclsj [P ]∪Nclsj [C(S)] =⇒ S∪C(S) = 1N . Since S

is neutrosophic semi j-closed set. Then Nintsj [Nclsj [P ]] ∩ [1N −Nintsj [Nclsj [P ]]] = 0N .

=⇒ Nclsj [P ] ∩ Nintsj [1N − Nintsj [Nclsj [P ]]] = S ∩ NintsjNclsj [1N − Ncl[P ]] = S ∩
NintsjNclsj [C(S)] = S ∩ C(S) = 0N . Since C(S) is neutrosophic semi j-open. Thus

X has two proper neutrosophic semi j-closed sets S and T such that X = S ∪ T and

NintsjS ∩ T = S ∩NintsjC[T ] = 0N . This is a contradiction to (d).

Theorem 6.8. In a neutrosophic semi j-hyperconnected space X . Let 0N ̸= P and 0N ̸= Q

be the two neutrosophic semi j-open subsets in X , then P ∩Q is also non-empty.

Proof. Suppose P ∩ Q = 0N , for any 0N ̸= P and 0N ̸= Q neutrosophic semi j-open sets in

X . Then Nclsj [P ] ∩Q = 0N . This implies P is not neutrosophic semi j-dense. We have P is

neutrosophic semi j-open then P ⊆ Ncl[Nint[Npcl[P ]]] and P is not neutrosophic semi j-dense

which is a contradiction to our assumption that P ∩Q = 0N . Hence P ∩Q ̸= 0N .

Theorem 6.9. In a neutrosophic semi j-hyperconnected space, intersection of any two neu-

trosophic semi j-open sets are neutrosophic semi j-open.

Proof. Let 0N ̸= P , 0N ̸= Q be the two neutrosophic semi j-open sets in a neutrosophic semi

j-hyperconnected space X . Then P ⊆ Ncl[Nint[Npcl[P ]]] and Q ⊆ Ncl[Nint[Npcl[P ]]].

We have Nclsj [P ] = 1N and Nclsj = 1N . This implies Ncl[Nint[Npcl[P ]]] =

Ncl[Nint[Npcl[Q]]] = 1N , also we have P ∩ Q ̸= 0N using proposition 2.9. It follows that

P ∩Q ⊆ Ncl[Nint[Npcl[P ]]]∩Ncl[Nint[Npcl[Q]]] = Ncl[Nint[Npcl[P ∩Q]]] = 1N . Therefore

P ∩Q ⊆ Ncl[Nint[Npcl[P ∩Q]]] = 1N . Hence P ∩Q is also neutrosophic semi j-open.
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7. Conclusion

The characteristics of neutrosophic semi j-open sets, neutrosophic semi j-closed sets, neutro-

sophic hyperconnectedness and neutrosophic semi j-hyperconnectedness are discussed in this

paper. Nowadays neutrosophic sets have began to play a vital role by helping in the analysis

of real life situations. In future, neutrosophic hyperconnected spaces will assist in determining

solutions in each situations where indeterminancy occurs as the main crisis.
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Abstract. Currently most signalized intersections in almost all developing countries use fixed time traffic controllers or

pre-timed traffic lights. But as a real life situation, in addition to uncertainty and impreciseness there is also indeterminacy

in traffic signal control constraints due to various factors like unawareness of the problem, inaccurate and imperfect data

and poor forecasting in addition to uncertainty in the constraints. To overcome these interval valued neutrosophic soft

set traffic signal control model at four way isolated signalized intersections has been developed. The main aim of this

research is to validate the IVNSS traffic signal control model and compare it with fixed time traffic signal control model

using MATLAB simulation tool. Vehicle delay at the junction is used as a measure of effectiveness. The simulation

is conducted for seven consecutive days from Monday up to Sunday for eight hours to reflect the different traffic flow

conditions. The simulated delay model results are analysed under 5 different scenarios. And results showed that in case

of heavy traffic conditions vehicle delay under IVNSS traffic signal control model is minimized by 36 percent and under

light traffic conditions the average vehicle delay is minimized by 73 percent when compared to fixed time traffic signal

control model.

Keywords: Signal control- Delay- Simulation

—————————————————————————————————————————-

1. INTRODUCTION

One of the major problems of both developed and developing countries is traffic congestion in urban

road transportation systems. Urban traffic congestions lead to a lot of time consumption and exhaust

emissions. So alleviating congestion will have a good impact on both economy and environment. The

signal control at urban intersections is an effective and most important way to reduce the traffic jams

and congestions. Traffic signals are signalized devices positioned at road intersections, pedestrian

crossings and other such locations to control competing flow of traffic [1]. The purpose of traffic light

signal control is to make the current intersection system more effective and efficient in improving traffic

safety and minimizing congestion, maximizing the capacity of flow and minimizing the delay without

Endalkachew T., Natesan T.,Said Broumi;VALIDATING THE INTERVAL VALUED NEUTROSOPHIC SOFT SET TRAFFIC SIGNAL

CONTROL MODEL USING DELAY SIMULATION
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building new roadways which is often impossible due to scarce or non-availability of land resource. The

conflicts arising from movements of traffic in different directions are addressed by time sharing principle.

The advantages of traffic signal include an orderly movement of traffic, an increased capacity of the

intersection and require only simple geometric design. However the disadvantages of the signalized

intersection are large stopped delays [2]. Traffic signal control is a measure that is commonly used at

road intersections to minimize vehicular delays. In early days as well as at present, traffic is controlled

by hand signs by traffic police officers or by signals and markings called the traditional traffic control

systems. Researches have established that unless otherwise implemented properly the traditional traffic

control system can contribute more to the congestion at intersections [3]. Currently most signalized

intersections in almost all developing countries use fixed time traffic controllers or pre-timed traffic

lights.The traffic lights change phase at a constant cycle time in fixed time traffic light controller,

without taking into account the peak period or highly varying traffic intensity with respect to time.

Pre-timed traffic light also causes traffic congestion as it is incapable of detecting traffic intensity at

the junction and to allow the vehicles waiting in the lanes to cross the junction as per the urgency

necessitated by the traffic conditions prevailing at that time. The present day traffic signal controller

models suffer from indeterminacy due to various factors like unawareness of the problem, inaccurate and

imperfect data and poor forecasting in addition to uncertainty in the constraints. To overcome these

Endalkachew et al.[4] developed an interval valued neutrosophic soft set traffic signal control model

for four way isolated signalized intersections. The main aim of this research is to validate the IVNSS

traffic signal control model and compare it with fixed time traffic signal control model using simulation

study. A MATLAB simulation model for the proposed IVNSS traffic control system is developed and

the efficiency of the model is tested subject to random variation, the basic methods of generating

random variables and simulating probabilistic systems are presented. The MATLAB simulation tool is

utilized to compare the developed IVNSS traffic signal control model with fixed time control model for

an isolated four way intersection at St. Stifanos traffic junction, Addis Ababa, Ethiopia using Webster

delay model.

2. REVIEW OF LITERATURE

Literally simulation is an imitation of certain real events or a system. This technique involves

building a mathematical model that sufficiently represents a given system and using a computer to

imitate (simulate) the operations of the system. Basically, it is used to analyse the behaviour of the

system or to estimate its performance under various circumstances in order to find ways to improve the

functioning of the system. There are several criteria named MOEs (Measures of Effectiveness); delay,

level of service (LoS), average queue length, max queue length, number of stops and vehicle through

put that can be used to compare the proposed IVNSS traffic signal control model with the widely used

pre-timed control. But in this research we use vehicle delay at the junction as a measure of effectiveness.

Vehicle delay is the most important parameter used by transportation professionals in evaluating the
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performance of a signalized intersection. However delay is a parameter that is not easily determined

due to the non-deterministic nature of the arrival and departure processes at the intersection [10]. But

lot of research has been done in this field to define delay by a number of simulated delay models.

Broumi Said et al.[23] reviewed some available mathematical techniques for traffic flow using rough

set, fuzzy rough set, and its extension with the neutrosophic set to solve the traffic problem and found

that the rough set theory can be useful for dealing the uncertain, incomplete, and indeterminate data

set. Hence, the hybridization of the neutrosophic set and rough can be considered one of the efficient

tools for intelligent traffic control and its approximation via automatic red, green and yellow lights.

Recommended that the proposed study will be helpful for several researchers working on traffic flow,

traffic accident diagnosis, and its hybridization as future research. Arshad Jamal et al. [11] developed

meta-heuristic-based methods for intelligent traffic control at isolated signalized intersections, in the

city of Dhahran, Saudi Arabia to optimize delay. Genetic algorithm (GA) and differential evolution

(DE) were employed to enhance the intersection’s level of service (LOS) by optimizing the signal

timings plan. The study results indicated that both GA and DE produced a systematic signal timings

plan and significantly reduced travel time delay ranging from 15 to 35 percent compared to existing

conditions. Although DE converges much faster to the objective function, GA outperforms DE in terms

of solution quality i.e., minimum vehicle delay. To validate the performance of proposed methods, cycle

length-delay curves from GA and DE were compared with optimization outputs from TRANSYT 7F, a

state-of-the-art traffic signal simulation. Nilesh Bhosale et al. [12] compared analysis of the previously

developed methodology and results of delay caused due to pre-timed two way signal coordination with

least time pollution and environmental pollutions. They developed suitable methodology and simulation

techniques for coordination to reduce the time pollution as well as improve the traffic efficiency and

concluded that coordination of signal plays a vital role to abate congestion, reduces travel time as

well as waiting time at signalized intersections. The phase difference plan method is best suited for

signal coordination as these results in minimal delay in overall average travel time. Zhenyu Mei et

al.[13] presented the findings of a simulation study evaluating the potential benefits of implementing

transit signal priority (TSP) combined with arterial signal coordination for an isolated intersection.

Simulation analysis reveals the effect of TSP strategies with flow variation on the optimal cycle, and

also identifies a reasonable method for selecting the gap time and initial green time of the priority

phase. The volume influences both the gap time and initial green time of the TSP phase. Moreover,

the efficiency of red truncation is slightly better than that of the green time extension strategy. Theresa

Thuniga et al.[17] provided an open-source implementation of a decentralized, adaptive signal control

algorithm in the agent-based transport simulation MATSim, which is applicable for large-scale real-

world scenarios. The algorithm is extended in this paper to cope with realistic situations like different

lanes per signal, small periods of overload, phase combination of non-conflicting traffic, and minimum

green times. Impacts and limitations of the adaptive signal control are analysed for a real-world scenario
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and compared to a fixed-time and traffic-actuated signal control. Another finding is that the adaptive

signal control behaves like a fixed-time control in overload situations and, therefore, ensures system with

stability. Nada B et al.[14] presented a new method of developing an optimal real-time traffic signal

controller using the fuzzy logic method (FLM), taking into consideration all various incoming traffic

flows. The developed FLM was designed for an isolated intersection with four legs, split phasing, and

three different movements (through, right, and left). Calibration and validation tests were conducted

to ensure accuracy and efficiency of the developed model. Results show that using the developed FLM

for controlling traffic signals with optimized conditions is promising as it provides optimal solution for

all different traffic flow combinations, during all model development stages, including the simulation,

calibration and the validation process. Ardavan Shojaeyan [15] carried out the design of efficient phase

optimization technique using developed phase plan. CG Road was identified as a troubled corridor

during reconnaissance survey and as such, selected for study. Data on geometric features were collected

by Field survey using Odometer as well as with Google Earth Software. Peak and off peak hour

traffic volume data were collected using ultra high resolution full HD camera. Furthermore signal cycle

timing, space mean speed, discharge head way were simultaneously collected by trained enumerator’s at

all three intersections. Data extraction was carried out on projector screen using updated VLC media

player. The geometric and traffic data collected were analyzed with Microsoft Excel. Three different

Phase Optimization Technique(POT) is tested on real traffic signal data of corridor in forward and

backward direction using Time Space Diagram. With change of phase plan and phase sequence POT

1 is successful in minimizing combined delay of corridor up to 28.05 percent to 76.04 percent for all 4

forward movements for analyzed two cycles. Further improvement in POT 2 is achieved by introducing

10 second offset at intersection B which reduces combined delay up to 32.52 percent to 98.6 percent

in all 4 forward movements. Tracking average travel time, demand supply and prevailing signal cycle

time POT 3 is applied with equal signal cycle length of 104 second at all 3 intersections. D.Nagarajan

[16] analysed traffic flow control under neutrosophic environment using MATLAB. Triangular and

Trapezoidal Fuzzy numbers were used. Traffic flow management has been analyzed with respect to

various ranges of indeterminacy under neutrosophic environment using MATLAB program. They also

compared the traffic control management for crisp sets, fuzzy and neutrosophic sets. Chandan. Ka [18]

proposed a connected vehicle signal control (CVSC) strategy for an isolated intersection, which utilizes

detailed information, including speeds and positions of GPS equipped vehicles on each approach at every

second. The proposed strategy first aims at dispersing any queue that is built up during the red interval,

and then starts minimizing the difference between cumulative arrival flow and cumulative departure

flow on all approaches of the intersection. Various traffic scenarios with 100 percent GPS market

penetration rate were tested in the VISSIM 8 microscopic simulation tool. Results have established

that the proposed CVSC strategy showed outstanding performance in reducing travel time delays and

average number of stops per vehicle when compared to the EPICS adaptive control. D.Nagarajan, et al.
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[19] studied a triangular interval type-2 Schweizer and Sklar weighted arithmetic (TIT2SSWA) operator

and a triangular interval type-2 Schweizer and Sklar weighted geometric (TIT2SSWG) operator based

on Schweizer and Sklar triangular norms. Moreover, they proposed an improved score function for

interval neutrosophic numbers (INNs) to control traffic flow that has been analyzed by identifying the

junction where the traffic intensity is more. D. Nagarajan et al. [20] analysed traffic flow management

with respect to various ranges of indeterminacy under neutrosophic environment using Gauss Jordan

method with the support of MATLAB program. As seen from the above, traffic signal control models

have been developed by a number of researchers under neutrosophic environment but no one has studied

its efficiency and compared it with other existing models.

3. PRELIMINARY CONCEPTS

In this section we present the necessary preliminary ideas and some basic results needed for the

present research work. We start from the definition of a neutrosophic set.

3.1. Single valued neutrosophic set [21]

Let X be the universal set.A neutrosophic set A in X is characterized by a truth membership

function µA, an indeterminacy membership function υA and a falsity membership function ωA,where

µA, υA, ωA : X → [0, 1] are functions and ∀x ∈ X,x ≡ x(µx, υx, ωx) ∈ A is a single valued neutrosophic

element of A.

A single valued neutrosophic set A(SVNS in short) over a finite universe X = {x1, x2, ..., xn} can be

represented as A =
∑n

i=1 < µA(xi), υA(xi), ωA(xi) > /xi.

The three membership functions form the fundamental concepts of neutrosophic set and they are

independently and explicitly quantified subject to the following conditions.

0 ≤ µA(x), υA(x), ωA(x) ≤ 1 and

0 ≤ µA(x) + υA(x) + ωA(x) ≤ 3 ∀x ∈ X.

3.2. Union and Intersection of SVNS [21]

Let A and B be two SVNS defined on a common universe X .Then the union of A and B ,written

as A ∪B = C is defined by

µC(x) = max(µA(x), µB(x))

υC(x) = max(υA(x), υB(x))and

ωC(x) = min(ωA(x), ωB(x))∀x ∈ X.

The intersection of A and B ,denoted by A ∩B = C is defined by

µC(x) = min(µA(x), µB(x)),

υC(x) = min(υA(x), υB(x)) and

ωC(x) = max(ωA(x), ωB(x))∀x ∈ X.
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3.3. Interval Valued Neutrosophic Set [22]

For an arbitrary sub interval set A of [0, 1] we define A = inf of A and A = sup of A.

Let X be the universal set.An interval valued neutrosophic set A in X is characterized by a truth

membership function µA , an indeterminacy membership function υA and a falsity membership function

ωA for each element x ∈ X where

µA(x) = [µ
A

(x), µA(x)], υA(x) = [υA(x), υA(x)], ωA(x) = [ωA(x), ωA(x)] are closed sub-intervals of

[0, 1].

Thus A = < µA(x), υA(x), ωA(x) > /x;x ∈ X.

3.4. Union and Intersection of IVNS [22]

let A and B be two IVNS defined over a common universe X.The union of A and B denoted byA∪̃B

is defined as

A∪̃B = {< [max(µ
A

(x), µ
B

(x)),max(µA(x), µB(x))],

[max(υA(x), υB(x)),max(υA(x), υB(x))],

[min(ωA(x), ωB(x),min(ωA(x), ωB(x))] > /x;∀x ∈ X}

Similarly the intersection of A and B denoted by A∩̃B is defined by

A∩̃B = {< [min(µ
A

(x), µ
B

(x)),min(µA(x), µB(x))],

[min(υA(x), υB(x)),min(υA(x), υB(x))],

[max(ωA(x), ωB(x),max(ωA(x), ωB(x))] > /x;∀x ∈ X}

Traffic flow is usually interrupted by traffic signals and stop signs. These controls have different impacts

on overall flow. The operational state of traffic at an interrupted traffic-flow facility is defined by the

following measures [5].Classified vehicle count or traffic volume, directional movement of vehicles, queues

(saturation flow rate), signal timing and phasing data and delay.

3.5. Traffic flow at signal junction

3.5.1. Traffic Volume Count

Volume is the total number of vehicles that pass over a given point or section of a lane or road

way during a given time interval; it can be expressed in terms of annual, daily, hourly, or sub hourly

periods. Traffic volume count for Directional movement of each vehicle (Through, Right turn and Left

turn movements) is conducted to determine the number, movements and classifications of roadway

movements at a given location. These data can help identify critical flow time periods. The length

of the sampling period depends on the type of count being taken and the intended use of the data

recorded. For example, an intersection count may be conducted during the peak flow period. Manual

count with 15-minute intervals could be used to obtain the traffic volume data.
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Basically, the traffic volume and saturation flow data are collected through traffic sensors installed at

the junction or video graphic record or through manual count.

3.5.2. Capacity

Capacity is an adjustment of the saturation flow rate that takes the real signal timing into account,

since most signals are not allowed to permit continuous movement of one phase for an hour. If the

approach has 30 minutes of green per hour, it can be deduce that the actual capacity of the approach is

about half of the saturation flow rate. The capacity, therefore, is the maximum hourly flow of vehicles

that can be discharged through the intersection from the lane group in question under the prevailing

traffic, roadway, and signalization conditions. The formula for calculating capacity (c) is given below.

c = (g/C) × s

where:

c=capacity(vehicle per hour)

g = Effective green time for the phase in question (seconds)

C = Cycle length (seconds)

s = Saturation flow rate (vehicle per hour per green)

3.6. Delay at signalized intersection

To give a clear description and to understand traffic flow conditions at an individual intersection

the following performance measures are being applied: delay, level of service (LoS), average queue

length, max queue length, number of stops and vehicle throughput. The reasons for determining these

parameters are as follows. Delay and LoS play a primary role in determining individual intersection

performance. LoS can be used to understand the quality of traffic conditions on a particular intersection

and delay exposes the difference between free-flow and congested traffic conditions. Frequent stops due

to congestion are a typical characteristic of urban traffic. One of the reasons for this is the presence

of signalized intersections. Therefore, the information of queue length and number of stops must be

included as performance measure also. The vehicle throughput can provide useful information about

the maximum number of vehicles which can be discharged during the time. In addition, for an in-depth

analysis of the arterial section in the analyzed urban traffic network, travel time; delay and number of

stops are also useful.

Vehicle delay is the most important parameter used by transportation professionals in evaluating the

performance of a signalized intersection. This is perhaps because it directly relates to the time loss

that a vehicle experiences while crossing an intersection .However delay is a parameter that is not

easily determined due to the non deterministic nature of the arrival and departure processes at the

intersection. But lot of research has been done in this field to define delay by a number of analytical

delay models. But the most popular and commonly used delay model is the Webster delay model.
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3.7. Delay Components

In analytic models for predicting delay, there are three distinct components of delay, namely, uniform

delay, random delay, and overflow delay.

3.7.1. Uniform delay

Uniform delay is the delay based on an assumption of uniform arrivals and stable flow with no

individual cycle failures. No signal cycle fails here, i.e., no vehicles are forced to wait for more than

one green phase to be discharged. This type of delay is known as Uniform delay where uniform vehicle

arrival is assumed.

3.7.2. Random Delay

Random delay is the additional delay, above and beyond uniform delay, because flow is randomly

distributed rather than uniform at isolated intersections. This case represents a situation in which the

overall period of analysis is stable (i.e., total demand does not exceed total capacity). Individual cycle

failures within the period, however, have occurred. For these periods, there is a second component of

delay in addition to uniform delay.This type of delay is referred to as Random delay.

3.7.3. Overflow Delay

Overflow delay is the additional delay that occurs when the capacity of an individual phase or series

of phases is less than the demand or arrival flow rate. Actual vehicle arrivals vary in a random manner

[72] and this randomness causes overflows in some signal cycles. If this persists for a long time period

then the over-saturated conditions lead to continuous overflow delay. The effect of the overflow depends

on the degree of saturation over a given time period. This is the case at which demand exceeds capacity

(v/c > 1.0).This type of delay is referred to as Overflow delay

3.8. Webster’s Delay Models

3.8.1. Uniform Delay Model

Model is explained based on the assumptions of stable flow and a simple uniform arrival function.

Thus, Webster’s model [70] for uniform delay (UD) is given as

UD =
C(1− g

C
)2

2(1− v

s
)

Another form of the equation uses the capacity, c, rather than the saturation flow rate, s.

s =
c
g

C

so, the relation for uniform delay changes to,

UD =
C(1− g

C
)2

2(1− g

C
v
c )
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UD =
C(1− g

C
)2

2(1− g

C
X)

where, UD is the uniform delay (sec/vehicle) C is the cycle length (sec), c is the capacity, v is the

vehicle arrival rate (vehicle per hour), s is the saturation flow rate or departing rate of vehicles (vehicle

per hour green), X is the v/c ratio or degree of saturation (ratio of the demand flow rate to saturation

flow rate), and g/C is the effective green ratio for the approach.

3.8.2. Random Delay Model

The uniform delay model assumes that arrivals are uniform and that no signal phases fail (i.e.,

that arrival flow is less than capacity during every signal cycle of the analysis period). At isolated

intersections, vehicle arrivals are more likely to be random. A number of stochastic models have been

developed for this case, including those by Newell, Miller and Webster. These models generally assume

that arrivals are Poisson distributed, with an underlying average rate of v vehicles per unit time. The

models account for random arrivals and the fact that some individual cycles within a demand period

with v/c < 1.0 could fail due to this randomness. This additional delay is often referred to as Random

delay. The most frequently used model for random delay is Webster’s formulation:

RD =
X2

2v(1−X)

Where, RD is the average random delay second per vehicle, and X is the degree of saturation (v/c

ratio).

Webster found that the above delay formula overestimate delay and hence he proposed that total delay

is the sum of uniform delay and random delay multiplied by a constant for agreement with field observed

values. Accordingly, the total delay is given as:

D=0.9(UD+RD)

3.8.3. Overflow delay model

Model is explained based on the assumption that arrival function is uniform. In this model a new

term called over saturation is used to describe the extended time periods during which arrival vehicles

exceeds the capacity of the intersection approach to the discharged vehicles. In such cases queue grows

and there will be overflow delay in addition to the uniform delay. This is the case where v/c >1.0.

During the period of over-saturation delay consists of both uniform delay and overflow delay. As the

maximum value of X is 1.0 for uniform delay, it can be simplified as [72],

UD =
C(1− g

C
)2

2(1− g
CX)

=
C

2
(1− g

C
)

Average delay is obtained by dividing the aggregate delay by the number of vehicles discharged within

the time T which is cT . T is the analysis period in seconds.

OD = T
2 ( v

c − 1)
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4. DELAY SIMULATION

4.1. Data Requirement for the Simulation Model

Even though there are many intersections facing with traffic congestion in Addis Ababa, due to

time and budget constraints and accessibility of relevant traffic data, it is difficult to cover all such

intersections in the city. So that St.Stifanos traffic junction is selected for this study.This intersection

is located in front of St. Stifanos church in Kirkos sub-city at Meskel intersection and considered as

the most congested traffic junction by the road users. St.Stifanos traffic junction is one of the largest

intersections in Addis Ababa with its heavy traffic congestion especially in the morning, mid-day and

evening peak hours due to poor signal controlling system. The geometry of the intersection is presented

in Figure 1 below and the aerial shoot of Meskel square intersection is shown in Figure 2.

Figure 1. Geometric representation of the study area

4.2. Steps for simulation

Step 1: Obtain the input parameters (average arrival rate and average saturation flow rate (queue)

for each approach per day. And use this data to simulate the vehicle arrivals and saturation flow rates

using Poisson distribution.

Step 2: As categorizing arrival rates and saturation flow rates (queues) in to different interval valued

neutrosophic soft sets follow uniform distribution, simulate the corresponding interval valued neutro-

sophic soft sets using uniform distribution using the flow rates and saturation flow rates (queues)

obtained in step one. The interval valued neutrosophic data are simulated for 5 different scenarios and

the average value of all the simulated values is taken as input parameter for determining the green

time and cycle length for each approach. The proposed random number generation plan is simulated

by using the MATLAB simulation tool. This gives the IVNSS ‘A’ for vehicle arrivals and IVNSS ‘B’

for saturation flow rate (queue).
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Figure 2. Aerial shoot of Meskel square intersection

Step 3: Combine the two interval valued neutrosophic soft sets A and B to get a resultant interval

valued neutrosophic soft set say ‘C’.

Step 4: By defining an AVG-threshold value, reduce the parameters.

Step 5:

� Determine the row index for each signal group

� Row index represents the weight of the signal group.

� The first row index represents the weight of the signal group SG1.

� The second row index represents the weight of the signal group SG2.

� The third row index represents the weight of the signal group SG3 and

� The fourth row index represents the weight of the signal group SG4,

� Row index assigns value 1 if the row satisfies the given threshold value and 0 otherwise.

Step 6: Obtain the total weight values which is the sum of the weights of the signal groups with

respect to the parameter eij which is the choice value for the signal groups.

Step 7: Select (choose) the indices (corresponding signal group) with maximum weight.

Step 8: Determine the total cycle time and the green time using the weight value obtained in Step 6.

Step 9: A MATLAB simulation is carried out for the proposed IVNSS traffic signal system to validate

the model and test the efficiency of the model with respect to vehicle delay in which the variables

involved are subject to random variation, we present the basic methods of generating random variables

and simulating probabilistic systems.
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4.3. Assumptions

The simulation is based on the following assumptions:

� The input parameters used for the simulation (average arrival rates and average saturation flow rates

are based on the data obtained from [8].

� Maximum green time is 95 seconds and minimum green time is 27 seconds at St.Stifanos isolated

traffic junction.

� The traffic movement is right, left and through.

� The yellow (amber) signal for all phases at each intersection is included in green signal and its duration

is 3 seconds.

� No right turn on red and

� No pedestrian demand

� The intersection has four phases.

4.4. Delay Simulation Analysis

The IVNSS traffic signal control model validation is carried out comparing the results with fixed

time traffic signal using Webster delay formulas. Generally for the simulation purpose the average

traffic volume count (arrival rate) and average saturation flow rate (queue) are obtained by generating

randomly using Poisson distribution. But in this research, the average traffic volume count (arrival

rate) and average saturation flow rate (queue) are obtained directly from [8] which are used as input

parameters for the simulation and the data was obtained from St. Stifanos intersection with Bambis in

the East, Betemengist in the North, Dembel in the South and Meskel Square in the West as shown in

Figure 1. According to the data obtained from [8], the traffic volume count was made for 8 hours per

day for one week starting from the morning 7:30 AM to the evening 7:30 PM at 15 minutes interval as

shown in appendix (A). This is done 3 hours in the morning (7:30-10:30) AM, 2 hours in the midday

(12:00- 2:00) PM and 3 hours in the evening (4:30-7:30) PM. The traffic flow count is categorized in

to two groups, the first count was made from Monday to Friday at which there is a heavy traffic flow

condition and there is traffic saturations and the second count was made on Saturday and Sunday at

which there is light traffic conditions or no traffic saturations. The average traffic flow rate, saturation

flow rate (queue) and average vehicle delay for fixed time signal control per day for each approach for

a week is shown in the table 1 and table 2 below [8].
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Table 1. The average vehicle delay under fixed time per day for all intersection legs.(

Monday-Friday)

Approach Leg PH Volume FR G/C GT CT SFR Capacity V/c Delay

Bambis Morning 115 460 0.28 75 271 1377 381 1.2 188

Bambis Mid-Day 85 340 0.26 55 214 1023 263 1.3 214

Bambis Evening 114 456 0.29 76 263 1371 396 1.15 172

Dembel Morning 173 692 0.36 108 301 2080 746 0.93 176.8

Dembel Mid-Day 131 524 0.35 87 251 1577 546.6 0.96 148.8

Dembel Evening 171 684 0.36 108 297 2058 748.4 0.91 173.7

Betemengist Morning 88 352 0.2 55 265 1051 218.1 1.6 376

Betemengist Mid-Day 66 264 0.16 38 231 794 130.6 2.01 552

Betemengist Evening 85 340 0.2 52 257 1015 205.4 1.66 400

Meskel Sq. Morning 111 444 0.27 72 262 1328 365 1.22 195

Meskel Sq Mid-Day 82 328 0.23 51 219 981 228.5 1.44 278

Meskel Sq Evening 121 484 0.29 81 277 1456 425.8 1.14 161

Table 2. The average vehicle delay under fixed time control per day for all intersection

legs. (Saturday and Sunday)

Approach Leg PH Volume FR GT CT g/C SFR Capacity V/c Delay

Bambis Morning 56 224 35 166 0.21 669 141 1.6 336

Bambis Mid-Day 41 164 28 144 0.19 490 95.3 1.7 373

Bambis Evening 52 208 34 160 0.21 621 132 1.6 333

Dembel Morning 59 236 38 161 0.24 705 166.4 1.4 241

Dembel Mid-Day 45 185 31 140 0.22 536 118.7 1.6 325

Dembel Evening 60 240 39 159 0.25 715 175.4 1.4 240

Betemengist Morning 33 132 23 157 0.15 395 57.9 2.3 652

Betemengist Mid-Day 27 108 19 153 0.12 325 40.4 2.7 832

Betemengist Evening 31 124 22 158 0.14 377 52.5 2.4 698

Meskel Sq. Morning 53 212 34 164 0.2 631 130.8 1.6 336

Meskel Sq Mid-Day 34 136 24 145 0.17 411 68 2 510

Meskel Sq Evening 48 152 33 159 0.2 582 120.8 1.25 177

The St. Stifanos traffic signal junction is classified into four different signal groups in order to fit

the developed IVNSS traffic signal control design based on the average traffic flow data obtained from

St.Stifanos junction for different peak hour flow rates and peak hour saturation flow rates (queue). An

IVNSS traffic signal control model is developed and simulated to estimate the signal phase, cycle length
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Figure 3. Weekly vehicle delay time at St. Stifanos intersection per approach under

FTC

and the green time duration of the isolated intersection making use of the arrival rate and saturation

flow rate (queue) at the downstreams of the intersection. The model developed is made to run for

5 different simulation scenarios, the average interval valued neutrosophic data (matrix) is extracted.

The arrival rates and saturation flow rates (queue) are first simulated into interval valued neutrosophic

data. The outputs of these simulation runs are then used to extract two outputs; namely, the effective

green time of each signal group and the optimal cycle length. The values of cycle length and green time

for different scenarios are tabulated in tables 3, 4, 5 and 6 below considering the different traffic flow

conditions.

The average effective green times of each signal group and the average cycle length for the different

scenarios are then used to estimate the average vehicle delay of each approach and the average vehicle

delay at the junction. The results are shown in tables 7 and 8.
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Table 3. Different cycle time scenarios at St.Stifanos intersection (Monday-Friday)

Phases/SG PH Scenario1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Average

1{maximum (EL1, WL1)} Morning 217.4 378.3 231 231 308.7 273.3

1{maximum (EL1, WL1)} Mid-Day 261.2 219.7 276.3 265 139 232.2

1{maximum (EL1, WL1)} Evening 149.4 238.6 231 452 208.3 255.9

2{maximum (EL2, WL2)} Morning 217.4 378.3 231 231 308.7 273.3

2{maximum (EL2, WL2)} Mid-Day 261.2 219.7 276.3 265 139 232.2

2{maximum (EL2, WL2)} Evening 149.4 238.6 231 452 208.3 255.9

3{maximum (NL1, SL1)} Morning 217.4 378.3 231 231 308.7 273.3

3{maximum (NL1, SL1)} Mid-Day 261.2 219.7 276.3 265 139 232.2

3{maximum (NL1, SL1)} Evening 149.4 238.6 231 452 208.3 255.9

4{maximum (NL2, SL2)} Morning 217.4 378.3 231 231 308.7 273.3

4{maximum (NL2, SL2)} Mid-Day 261.2 219.7 276.3 265 139 232.2

4{maximum (NL2, SL1)} Evening 149.4 238.6 231 452 208.3 255.9

Table 4. Different cycle time scenarios at St.Stifanos intersection (Saturday and Sun-

day)

Phases/SG PH Scenario1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Average

1 Morning 355.7 231 435 256.5 202.7 296.2

1 Mid-Day 185.7 269.9 339.8 486 187.7 293.8

1 Evening 181.1 684.3 185.7 179 333 312.6

2 Morning 355.7 231 435 256.5 202.7 296.2

2 Mid-Day 185.7 269.9 339.8 486 187.7 293.8

2 Evening 181.1 684.3 185.7 179 333 312.6

3 Morning 355.7 231 435 256.5 202.7 296.2

3 Mid-Day 185.7 269.9 339.8 486 187.7 293.8

3 Evening 181.1 684.3 185.7 179 333 312.6

4 Morning 355.7 231 435 256.5 202.7 296.2

4 Mid-Day 185.7 269.9 339.8 486 187.7 293.8

4 Evening 181.1 684.3 185.7 179 333 312.6

Table 5. Different green time scenarios at St.Stifanos intersection (Monday-Friday)

Phases/SG PH Scenario1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Average

1 Morning 21 122.7 81.5 44.7 74.8 68.9

1 Mid-Day 50.8 67 67.2 54.4 19.1 51.7

1 Evening 90 29.8 39.8 87.5 23.1 54

2 Morning 91.2 71.6 74.7 29.8 102.9 74

2 Mid-Day 36.3 55 97.1 88.3 28.8 61.1

2 Evening 30 44.7 39.8 145.8 63.7 64.8

3 Morning 63 122.7 6.8 96.9 37.4 65.4

3 Mid-Day 72.6 85.4 29.9 27.2 4.8 44

3 Evening 15 96.9 103.6 102.1 92.6 82

4 Morning 42.1 61.4 67.9 59.6 93.5 65

4 Mid-Day 101.6 12 82.2 95.1 86.3 75.4

4 Evening 15 67.1 47.8 116.6 28.9 55
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Table 6. Different green time scenarios at St.Stifanos intersection (Saturday and

Sunday)

Phases/SG PH Scenario1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Average

1 Morning 122 74.5 105 33 47.7 76.4

1 Mid-Day 92.8 108 121.4 132.5 31.3 97.2

1 Evening 90.6 203.5 83.2 26.9 70.6 95

2 Morning 112 67 135 66.2 17.9 111.8

2 Mid-Day 23.2 63 72.8 88.4 37.5 57

2 Evening 23.8 166.5 44.8 58.2 80.7 74.8

3 Morning 61 7.5 75 58 477 135.7

3 Mid-Day 34.8 54 85 147.3 25 131.9

3 Evening 19 166.5 6.4 9 121 64.4

4 Morning 61 82 120 99.3 89.4 90.3

4 Mid-Day 34.8 45 60.7 117.8 93.9 70.4

4 Evening 47.7 148 51.2 85 60.5 78.5

Table 7. The average signal timings and delay results for IVNSS traffic signal control

model (Monday-Friday)

Phase/SG PH Volume Flow rate SFR Capacity V/c CT GT G/C Delay

1 Morning 112 448 2080 524 0.85 273.3 68.9 0.25 146.8

1 Mid-Day 85 340 1577 351 0.97 232.2 51.7 0.22 126.6

1 Evening 111 444 2058 434.3 1.00 255.9 54 0.21 140.3

2 Morning 61 244 2080 563.2 0.43 273.3 74 0.27 129.1

2 Mid-Day 46 184 1577 415 0.44 232.2 61.1 0.26 110.1

2 Evening 60 240 2058 521 0.46 255.9 64.8 0.25 122

3 Morning 109 436 1377 329.5 1.3 273.3 65.4 0.24 239

3 Mid-Day 81 324 1023 194 1.67 232.2 44 0.19 396

3 Evening 108 432 1456 466.6 0.93 255.9 82 0.32 146.9

4 Morning 17 68 1377 327.5 0.21 273.3 65 0.24 122

4 Mid-Day 12 48 1023 332 0.14 232.2 75.4 0.32 98

4 Evening 18 72 1456 313 0.23 255.9 55 0.22 115.5

5. Results and Discussion

From tables 1 and 7, one can see that from Monday-Friday, the average vehicle delay at the junction

in the morning under fixed traffic control is ((188+177+276+195))/4= 209 whereas the average vehicle

delay at the junction in the morning under IVNSS model is (147+129+239+122)/4=159.

From tables 1 and 7, one can see that from Monday-Friday, the average vehicle delay at the junction in

the mid -day under fixed traffic control is ((214+149+552+278))/4= 298 whereas the average vehicle

delay at the junction in the mid-day under IVNSS model is (127+110.1+396.4+98)/4=183.

From tables 1 and 7, one can see that from Monday-Friday, the average vehicle delay at the junction

in the evening under fixed traffic control is ((172+174+400+161))/4= 227 whereas the average vehicle

delay at the junction in the evening IVNSS model is (140.3+122+146.9+115.5)/4=131.

From tables 2 and 8, one can see that in Saturday and Sunday, the average vehicle delay at the junction
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Table 8. The average signal timings and delay results for IVNSS traffic signal control

model (Saturday and Sunday)

Phase/SG PH Volume Flow rate SFR Capacity V/c Cycle time Green time G/C Delay

1 Morning 38 152 705 181.8 0.84 296.2 76.4 0.26 158.6

1 Mid-Day 29 116 536 177 0.65 293.8 97.2 0.33 150.3

1 Evening 39 156 715 217.3 0.72 312.6 95 0.3 163.3

2 Morning 21 84 705 266 0.32 296.2 111.8 0.38 129.8

2 Mid-Day 16 64 536 104 0.62 293.8 57 0.19 144.5

2 Evening 21 84 715 171 0.49 312.6 74.8 0.24 150.3

3 Morning 53 212 669 306.5 0.69 296.2 135.7 0.46 154.2

3 Mid-Day 39 156 4907 220 0.70 293.8 131.9 0.45 154.9

3 Evening 49 196 621 128 1.53 312.6 64.4 0.2 364

4 Morning 8 32 669 204 0.16 296.2 90.3 0.3 127

4 Mid-Day 5 20 490 117.5 0.17 293.8 70.4 0.24 130

4 Evening 7 28 621 156 0.18 312.6 78.5 0.25 138

Figure 4. Weekly vehicle delay time at St. Stifanos intersection per approach under

IVNSS model

in the morning under fixed traffic control is ((336+241+652+336))/4= 391 whereas the average vehicle

delay at the junction in the morning under IVNSS model is (158.6+129.8+154.2+127)/4=142.

From tables 2 and 8, one can see that that in Saturday and Sunday, the average vehicle delay at the

junction in the mid -day under fixed traffic control is ((373+325+832+510))/4= 510 whereas the average

vehicle delay at the junction in the mid-day under IVNSS model is ((150.3+144.5+154.9+130))/4= 145.

From tables 2 and 8, one can see that that in Saturday and Sunday, the average vehicle delay at the

junction in the evening under fixed traffic control is ((333+240+698+177))/4= 362 whereas the average

vehicle delay at the junction in the evening under IVNSS model is (163.3+150.3+364+138)/4=204.

Comparison of the summarized average vehicle delay estimations for different flow rates and saturation

flow rates is given in Table 9. As can be seen from the above discussion, from Monday-Friday the

average vehicle delay at St.Estifanos traffic intersection per day is 244.6 sec/vehicle under FTC and

157.6 sec/vehicle under IVNSS traffic control model where as in Saturday and Sunday the average
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Table 9. Summery of the average vehicle delay at St.Estifanos traffic junction per

day.

Junction Day PH Delay(FTC) Delay(IVNSS)

St.Estifanos Monday-Friday Morning 209 159

St.Estifanos Monday-Friday Mid-day 298 183

St.Estifanos Monday-Friday Evening 227 131

St.Estifanos Saturday and Sunday Morning 391 142

St.Estifanos Saturday and Sunday Mid-day 510 145

St.Estifanos Saturday and Sunday Evening 362 204

Figure 5. Weekly vehicle delay time at St. Stifanos intersection per approach under

both FTC and IVNSS model

vehicle delay at St.Estifanos traffic intersection is 421 sec/vehicle under FTC and 163.6 sec/vehicle

under IVNSS traffic signal control model. From Monday up to Friday under IVNSS traffic signal

control model the average vehicle delay at the junction is reduced by 36 percent and on Saturday and

Sunday the average vehicle delay is reduced by 73 percent under IVNSS control model.

6. CONCLUSION

A comparative study of the IVNSS traffic signal control with the existing fixed time traffic control

shows that IVNSS traffic signal control model gives better performance in terms of delay both from

Monday up to Friday at which heavy traffic (traffic saturation ) is experienced and in Saturday and

Sunday (holidays).in which it is expected that there is no heavy traffic conditions. Thus IVNSS model

performs better than FTC, especially for both high and low traffic volumes and for both unsaturated

and saturated traffic conditions. Under fixed time signal control even if the flow of traffic on Saturday

and Sunday is low ,the average delay per vehicle is very high this is due to the geometric design

of the junction because left-turning movements at signalized intersections are not only difficult to
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accommodate but also often cause accidents. Such problems can be reduced by adopting an exclusive

left-turn signal phase [9].
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Abstract: The Linear programming problems (LPP) have been widely applied to many real-world 

problems. In this study, a formulation of stock portfolio problem is proposed. The problem is 

formulated by involving neutrosophic pentagonal fuzzy numbers (NPFN) in the rate of risked 

return, expected return rate and portfolio risk amount. Based on score function, the problem is 

transformed to its corresponding crisp form. A solution algorithm is investigated to provide the 

decision of the portfolio investment joined with investors in savings and securities. The main 

features of this study are: the investor can choose freely the risk coefficients to maximize the 

expected returns; also, the investors may determine their strategies under consideration of their 

own conditions. The optimal return rate is obtained by using TORA software.  An example is 

introduced to indicate the efficiency and reliability of the technique. 

Keywords: Portfolio; Investment: Stock Portfolio Investment; Pentagonal Fuzzy Numbers; Score 

Function, TORA Software; Neutrosophic Pentagonal Fuzzy Return Rate. 

 

 

1. Introduction 

Portfolio optimization is one of the essential problems in asset management of financial, its main 

goal is to minimize the risk of an investment by dividing it into many assets expected to fluctuate 

independently (Elton et al., 2009). A portfolio is a set of financial assets like cash equivalents, stocks, 

commodities, currencies and bonds. Portfolio can also include non-publicly tradable securities as, 

arts, private investment and real estate. Portfolio are directly held by investors and/ or managed by 
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money managers and financial professionals [1].  Skrinjaric and Sego [2] applied Grey Relational 

Analysis (GRA) method to study the performance for a sample of stocks under various factors. 

Fuzzy set theory initiated by Zadeh [3] has gained a great attention of researchers to solve real-life 

issues, like the supervision of economic threat. It permits us to illustrate and control vagueness in 

decision-support system. The imprecise facts of assets reports and the vagueness associated with the 

behavior of monetary markets can also be considered by means of fuzzy quantities or constraints. 

Fuzzy numerical data may be described using the phenomena of fuzzy subsets of R, are fuzzy 

numbers. Dubois and Prade [4] used a fuzzification principle to extended algebraic operations on 

real numbers to fuzzy numbers (FN). 

    Portfolio selection (PS) is the problem where investor selects the optimal portfolio from a set of 

possible portfolios. Also, it focuses on the optimal investment of one's wealth for maximizing 

profitable return and minimizing risk control [5]. According to lack of clarity of the real-world 

applications, the exact return of each security cannot be predetermined. The theory of optimal 

portfolios has been developed by Markowitz [6],where he has firstly introduced the mean-variance 

models. The PS problem is typically a LPP when all return of securities is constants. Numerous 

studies for PS have been done in the last few decades such as [7 –15]. Many researchers studied stock 

price assessment, in [16] Lindberg introduced new parameterization of the drift rates to modify the n 

stock Black-choles model, and solved Markowitz' continuous time PS in this framework. 

Neutrosophic set (NS) theory was introduced by Smarandache [17] it is a generalization of fuzzy set; 

each element of NS has a truth, indeterminacy and falsity membership function. So, NS can describe 

inaccurate and maladjusted information effectively. Neutrosophic linear programming (NLP) 

problem is a LP problem that contains at least one neutrosophic coefficient or parameter. The NLP 

problem is more efficient than regular LP problems due to imperfect data. Many researchers studied 

NLP problems; Hussein et al. [18] transformed the NLP problem into its corresponding crisp model. 

Abdel-Basset et al. [19] proposed a novel method for solving a fully NLP problem. Ahmed [20], 

developed a new method for solving LR- type NLP problems. Ahmad et al. [21] developed a method 

for solving bipolar single-valued NLP problem. In [22], Bera studies the applications of NLP in real 

life. Das and Dash [23], introduced a modified Solution for NLP Problems with Mixed Constraints. 

Thamaraiselvi and Santhi [24] presented a new method for optimizing a real-life transportation 

problem in neutrosophic environment. 
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The rest of the paper is outlined as follows: 

 

Fig.1. Rest of the paper 

2. Preliminaries 

In this section, some essential definitions and terminologies are recalled from fuzzy-like literature 

for proper understanding of the proposed work. 

Definition 1. [3] A fuzzy set 𝓅  defined on the set of real numbers ℛ is said to be fuzzy 

numbers when its membership function μ
𝓅 
 x :  ℛ → [0,1], have the following properties: 

1. μ
𝓅 

(𝓍) is an upper semi- continuous membership function; 

2. 𝓅  is convex fuzzy set, i.e., μ
𝓅 
 ℱ𝓍 +  1 − ℱ 𝓎 ≥ min  μ

𝓅 
(𝓍),μ

𝓅 
(𝓎)  for all 𝓍, 𝓎 ∈ ℛ; 0 ≤

ℱ ≤ 1; 

3. 𝓅  is normal, i.e., ∃𝓍0 ∈ ℛ such thatμ
𝓅 

(𝓍0) = 1; 

4. Supp  𝓅  =  x ∈ ℛ: μ
𝓅 

(𝓍) > 0   is the support of 𝓅  , and the closure Cl (Supp 𝓅  ) is a 

compact set. 

Definition 2. [25]A fuzzy number A 𝓅 =  r, s, t, u, v , r ≤ s ≤ t ≤ u ≤ v , on ℛ is said to be a 

pentagonal fuzzy number if its membership function is: 

Section 2

Introduces some 
preliminaries related to the 
pentagonal neutrosophic 

fuzzy numbers.

Section 3

Presents assumptions and 
notation needed in the 

paper. 

Section 4
•Formulate stock portfolio 

optimization as the 
pentagonal neutrosophic 

inear programming 
problem. 

Section 5

Presents a Solution 
procedure . 

Section 6 

Gives a numerical 
example to illustrate the 

proposed approach.

Section 7

Presents the comparision 
of the proposed 

approach with existing 
rlevant literature

Section 8

•Paper is summarized with 
future directions.
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𝜇𝐴 𝑃 =
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w1  
x − r

s − r
 ,                  r ≤ 𝓍 ≤ s,

1 −  1 − w1  
x − s

t − s
 , s ≤ 𝓍 ≤ t 

1,                                                  𝓍 = t,
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u − x

u − t
 ,    t ≤ 𝓍 ≤ u,

w2  
v − x

v − u
 ,                       u ≤ 𝓍 ≤ v,

0,                                                𝓍 > v.

                            (1) 

The graphical representation of the pentagonal fuzzy number is illustrated in the 

following figure 

 

 

 

 

 

 

 

 

Fig.2. Graphical Representation of Pentagonal Fuzzy number [25] 

Definition 3. [17]  A neutrosophic set B N  of non-empty set 𝒳 is defined as  

B N =   𝓍;  IB N  𝓍 , JB N  𝓍 , VB N (𝓍) : 𝓍 ∈ 𝒳, IB N  𝓍 , JB N  𝓍 , VB N  𝓍 ∈  0−, 1+  , where IB N  𝓍 , JB N  𝓍 , and 

VB N (𝓍) are truth membership function, an indeterminacy- membership function, and a falsity- 

membership function and there is no restriction on the sum of IB N  𝓍 , JB N  𝓍 , and VB N (𝓍) , so 

0− ≤ Sup IB N  𝓍  + Sup JB N  𝓍  + Sup VB N (𝓍) ≤ 3+, and  0−, 1+  is a nonstandard unit interval.  

Definition 4.  [17]  A single- valued neutrosophic set B SVN of a non-empty set 𝒳 is defined as 

B SVN =   x, IB N  x , JB N  x , VB N (x) : x ∈ X , where IB N  x , JB N  x , and VB N  x ∈ [0, 1]  for each 𝓍 ∈ 𝒳 

and 0 ≤ IB N  𝓍 + JB N  𝓍 + VB N (𝓍) ≤ 3. 

Definition 5. [23] Let τp ,φ
p 

,ωp ∈ [0, 1]  and r, s, t, u, v ∈ ℝ  such that  r ≤ s ≤ t ≤  u ≤ v . Then a 

single-valued pentagonal fuzzy neutrosophic set (SVPFN), p PN =   r, s, t, u, v ;  τp ,φ
p 

,ωp   is a 

special neutrosophic set on ℛ , whose truth-membership, hesitant- membership, and falsity- 

membership functions are 
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Where τp PN ,φ
p PN , and ωp PN  denote the maximum truth, minimum-hesitant, and minimum falsity 

membership degrees, respectively. SVPFN p PN =   r, s, t, u, v : τp PN ,φ
p PN ,ωp PN   may express in 

ill-defined quantity about 𝓅, which is approximately similar to [s, u]. 

Definition 6.  [25] 

Let 𝓅 PN =   r, s, t, u, v ;  τp PN ,φ
p PN ,ωp PN   and 𝓆 PN =   r∗,  s∗, t∗, u∗,  v∗ ;  τq PN ,φ

q PN ,ωq PN   be two 

single-valued PFNs, the arithmetic operations on 𝓅 PN  and 𝓆 PN are: 

1. 𝓅 PN ⊕ 𝓆 PN =   r + r∗, s +  s∗, t + t∗, u +  u∗, v +  v∗ ;  τ𝓅 PN ∧ τ𝓆 PN ,φ
𝓅 PN ∨ φ

𝓆 PN ,ω𝓅PN ∨

ω𝓆PN, 

2. 𝓅 PN ⊖ 𝓆 PN =   r −  v∗, s − u∗, t − t∗, u −  s∗, v − r∗ ; τ𝓅 PN ∧ τ𝓆 PN ,φ
𝓅 PN ∨ φ

𝓆 PN ,ω𝓅PN ∨ω𝓆 PN  , 
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3. 𝓅 PN ⊗ 𝓆 PN =
1

5
γ
𝓆
  r, s, t, u, v ;  τ𝓅 PN ∧ τ𝓆 PN ,φ

𝓅 PN ∨ φ
𝓆 PN ,ω𝓅PN ∨ ω𝓆 PN  ,γ

q
=

1

3
 r∗ +  s∗ +

t∗+ u∗+ v∗2+τ𝓆PN−φ𝓆PN≠0, 

4. 𝓅 PN ⊘ 𝓆 PN =
5

γ𝓆
  r, s, t, u, v ;  τ𝓅 PN ∧ τ𝓆 PN ,φ

𝓅 PN ∨ φ
𝓆 PN ,ω𝓅PN ∨ ω𝓆 PN  ,γ

𝓆
≠ 0, 

5. 𝓂𝓅 PN =  
  𝓂r, 𝓂s, 𝓂t, 𝓂u, 𝓂v ; τ𝓅 PN ,φ

𝓅 PN ,ω𝓅 PN  , 𝓂 > 0,

  𝓂v, 𝓂u, 𝓂t, 𝓂s, 𝓂r ; τ𝓅 PN ,φ
𝓅 PN ,ω𝓅 PN  , 𝓂 < 0,

  

6. 𝓅 PN −1
=   

1

v
,

1

u
,

1

t
,

1

s
,

1

r
 ; τ𝓅 PN ,φ

𝓅 PN ,ω𝓅 PN  , 𝓅 PN ≠ 0. 

Definition7. [26] Let 𝓅 PN =   r, s, t, u, v ; τ𝓅 PN ,φ
𝓅 PN ,ω𝓅 PN   be a single- valued pentagonal fuzzy 

neutrosophic numbers, then 

1. Accuracy function  AC 𝓅 PN  =  
1

15
  r +  s + t + u + v ∗ [2 + τ𝓅 PN − φ

𝓅 PN ]. 

2. Score function SC 𝓅 PN  =  
1

15
  r +  s + t + u + v ∗  2 + τ𝓅 PN − φ

𝓅 PN − ω𝓅 PN  . 

 Definition 8. [27] The order relations between 𝓅 PN and𝓆 PN based on SC p NP   and AC 𝓆 NP   are 

defined as 

1. If SC 𝓅 PN  > SC 𝓆 NP  , then 𝓅 > 𝓆 , 

2. If SC 𝓅 PN  < SC 𝓆 NP  , then 𝓅 < 𝓆 , 

3. If SC 𝓅 PN  = SC 𝓆 NP , then  

i. If AC 𝓅 PN  < 𝐴C 𝓆 NP  , then 𝓅 < 𝓆 , 

ii. If AC 𝓅 PN  > 𝐴C(𝓆 NP ), then 𝓅 > 𝓆 , 

iii. If AC 𝓅 PN  = AC 𝓆 NP  , then𝓅 = 𝓆 . 

3. Assumptions and Notations 

3.1 Assumptions  

In reality, small changes influence in selecting portfolio, since the investment environment is quite 

sensitive. For facilitating problem formulation, we assumed that: 

1) The securities are evaluated based on the expected return rate and the loss-risk rate; 

2) Securities are imperfect and can be divided; 

3) In the course of transaction, there is no need to pay for transactions; 

4) Investors must obey the assumptions of avoiding risk and of non-satisfaction; 
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5) During the investment period, the interest rate of the bank is fixed; 

6) The operation of short selling is not allowed; 

7) There are 𝑛 different risk securities. 

3.2 Notations 

𝑟0: Bank interest rate; 

𝑟𝔦: Expected return rates, 𝔦 = 1, 2, … , 𝑛; 

𝐴𝔦𝔧: Risked return rates, 𝔦 = 1, 2, … , 𝑛, 𝔧 = 1, 2, … , 𝑚; 

𝑥0: Proportion of total investments during the investment period 

𝑥𝒾: Proportion of funds invested in the secondary securities, 𝑖 = 1, 2, … , 𝑛; 

𝑅: Total expected return rate; 

𝔟:  Risk coefficient of portfolio investment; 

𝑉: Maximum value of all securities risks. 

4. Formulation of the Problem 

Consider the stock problem introduced by Yin [28]. The expected rate of return of a combination of 

investments, takes the form: 

𝑅 =  𝑟𝒾𝑥𝒾

𝑛

𝒾=0

 

Investors aim to maximize investments interest and minimize risk in their risk securities. The risk 

coefficient of portfolio 𝔟indicates the market risk. In case of 𝔟 > 1, risk of stock portfolio is more 

than the average value of the market risk; in the case of 𝔟 < 1, the risk of stock portfolio is less than 

the average value of market risk; when 𝔟 = 1, the average market risk and stock portfolio risk are 

equal. The maximum value of all securities risks, denoted 

𝑉 = max⁡(𝐴1𝑥1 , 𝐴2𝑥2  , … , 𝐴𝑛𝑥𝑛) 

Now we can formulate the following linear programming model: 

max 𝑅 =  𝑟𝑖𝑥𝑖

𝑛

𝑖=0
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        𝑠. 𝑡.

 
 
 

 
 

𝐴𝑥 ≤ 𝔟

 𝑥𝔦

𝑛

𝔦=0

= 1                           

𝑥𝔦 ≥ 0, 𝔦 = 1,2, … , 𝑛

 (5) 

The above model is the classical linear programming problem. For more generalization and 

flexibility, it is more reasonable to describe 𝑟𝔦, 𝔟𝔦 and 𝐴𝔦 as pentagonal fuzzy neutrosophic numbers. 

So, we set up the following model: 

max 𝑅 𝑁𝑃 = 𝑟0𝑥0 +  𝑟 𝔦
𝑁𝑃𝑥𝔦

𝑛

𝔦=1

 

             𝑠. 𝑡.

 
 
 

 
 

𝐴 𝑁𝑃𝑥 ≤ 𝔟 𝑁𝑃

 𝑥𝔧

𝑛

𝔧=0

= 1                                               

𝑥𝔧 ≥ 0,    𝔧 = 1,2, … , 𝑛;  𝔦 = 1,2, … , 𝑚.

 (6) 

5. Solution Procedure of Pentagonal Fuzzy Neutrosophic LPP 

In this section we will illustrate the solution procedure of the pentagonal fuzzy neutrosophic 

linear programming problem. The model associated with pentagonal fuzzy neutrosophic 

numbers in expected return rates, risk loss rates and risk coefficients 

5.1 Formulation of pentagonal fuzzy neutrosophic LPP 

Assume that 𝐴 𝑁𝑃 =  𝐴 𝔦𝔧
𝑁𝑃 

𝑚×𝑛
, 𝑏 𝑁𝑃 =  𝑏 1

𝑁𝑃 , 𝑏 2
𝑁𝑃 , … , 𝑏 𝑚

𝑁𝑃 
𝑻

, 𝑟 𝑁𝑃 =  𝑟 1
𝑁𝑃 , 𝑟 2

𝑁𝑃 , … , 𝑟 𝑛
𝑁𝑃 and 

𝑋 = (𝑥1 , 𝑥2 , … . , 𝑥𝑛)𝑇 . The following pentagonal neutrosophic linear programming model 

has been set up: 

max 𝑅 𝑁𝑃 = 𝑟0𝑥0 +  𝑟 𝔧
𝑁𝑃𝑥𝔧

𝑛

𝔧=1

 

                       𝑠. 𝑡.

 
  
 

  
  𝐴 𝔦𝔧

𝑁𝑃𝑥𝔧

𝑛

𝑗=1

≤ 𝑏 𝔦
𝑁𝑃

 𝑥𝔧

𝑛

𝔧=0

= 1                                                                   

𝑥𝔧 ≥ 0, 𝔧 = 1,2, … , 𝑛;  𝔦 = 1,2, … , 𝑚.                  

(7)  

Based on the score function defined in section 2, the pentagonal neutrosophic linear programming 

model transformed to regular linear programming model which is quite easy and solvable. 

max 𝑅 = 𝑟0𝑥0 +  SC(𝑟 𝔦
𝑁𝑃)𝑥𝔦

𝑛

𝔦=1
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          𝑠. 𝑡.

 
  
 

  
  SC (𝐴 𝔦𝔧

𝑁𝑃)𝑥𝔧

𝑛

𝑗=1

≤ SC(𝔟 𝔦
𝑁𝑃)                                      

 𝑥𝔧

𝑛

𝑗=0

= 1                                                                   

𝑥𝔧 ≥ 0, 𝔧 = 1,2, … , 𝑛;  𝔦 = 1,2, … , 𝑚.                  

 (8)  

6. Numerical Example 

In this section, a numerical example is studied to demonstrate the proposed approach. Consider the 

choice of an investor in five available stocks; the first one is a portfolio of bank savings with annual 

rate of interest 𝑟0 = 0.07. The data of the other four stocks are given in the following table 1, table 2 

and table 3.  

 

Table 1.Expected return rate % 

Stocks 𝑟 PN  

𝑆1 CNPC (601857)  11.5, 12.0, 12.2, 12.5, 12.9; 1.0, 0.0,0.0   

𝑆2 CNPC (600028)  15.8, 16.0, 16.2, 16.5, 16.8; 1.0, 0.0,0.0   

𝑆3 Wanke (000002)  13.7, 14.0, 14.3, 14.5, 14.9; 1.0, 0.0,0.0   

𝑆4 Poly (600048) 

 

 13.0, 13.5, 14.0, 14.5, 15.0; 1.0, 0.0,0.0   

 

Table 2. Risk Loss Rate % 

𝐴 𝔦𝔧
𝑁𝑃  Risk loss rate 

𝐴 11
𝑁𝑃   3.8, 4.0, 5.2, 5.6, 5.9; 1.0, 0.0,0.0   

𝐴 12
𝑁𝑃   9.0, 10.0, 12.5, 14.0, 16.9; 1.0, 0.0,0.0   

𝐴 13
𝑁𝑃   3.2, 4.0, 4.8, 5.5, 6.0; 1.0, 0.0,0.0  

𝐴 14
𝑁𝑃   8.7, 9.0, 11.9, 14.0, 16.3; 1.0, 0.0,0.0   

𝐴 21
𝑁𝑃   0.9, 1.0, 1.1, 1.2, 1.3; 1.0, 0.0,0.0   

𝐴 22
𝑁𝑃   1.39, 1.7, 2.15, 3.0, 3.32; 1.0, 0.0,0.0   

𝐴 23
𝑁𝑃   1.2, 3.0, 3.2, 4.0, 4.8; 1.0, 0.0,0.0   

𝐴 24
𝑁𝑃   1.59, 1.8, 2.27, 3.0, 3.3; 1.0, 0.0,0.0   

 

Table 3. Risk coefficient% 

𝔟 𝔦
𝑁𝑃  Risk coefficient rate 

𝔟 1
𝑁𝑃   1.2, 1.5, 2.0, 2.2, 2.4; 1.0, 0.0,0.0   

𝔟2
𝑁𝑃   0.6, 0.9, 2.0, 2.6, 3.0; 1.0, 0.0,0.0   

 

The given problem can be formulated in the following model: 
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         max𝑅 𝑁𝑃 = 𝑟0𝑥0 +  SC(𝑟 𝔦
𝑁𝑃)𝑥𝔧

𝑛

𝔧=1

 

      𝑠. 𝑡.

 
 
 

 
 SC 𝐴 11

𝑁𝑃 𝑥1 + SC(𝐴 12
𝑁𝑃)𝑥2 + SC 𝐴 13

𝑁𝑃 𝑥3 + SC(𝐴 14
𝑁𝑃)𝑥4 ≤ SC(𝑏 1

𝑁𝑃)

SC 𝐴 21
𝑁𝑃 𝑥1 + SC 𝐴 22

𝑁𝑃 𝑥2 + SC 𝐴 23
𝑁𝑃 𝑥3 + SC(𝐴 24

𝑁𝑃)𝑥4 ≤ SC(𝑏 2
𝑁𝑃) 

𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 1                                
𝑥𝔧 ≥ 0, 0 ≤ 𝔧 ≤ 4                                

 (9) 

According to properties and arithmetic operations on pentagonal fuzzy neutrosophic numbers, 

we obtain the following mathematical model: 

       max𝑅 = 0.07  𝑥0 + 0.09165 𝑥1 + 0.12195𝑥2 + 0.1071𝑥3 + 0.105𝑥4 

𝑠. 𝑡.  

3.675 𝑥1 + 9.36 𝑥2 + 3.525 𝑥3 + 8.985 𝑥4 ≤ 1.395,
0.825 𝑥1 + 1.734 𝑥2 + 2.43 𝑥3 + 1.794 𝑥4 ≤ 1.365,

𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 1,                                
𝑥𝔧 ≥ 0, 0 ≤ 𝔧 ≤ 4.                               

      (10) 

The optimal solution is: 

𝑥0 = 0.6042553, 𝑥1 = 0.0, 𝑥2 = 0.0, 𝑥3 = 0.3957447, 𝑥4 = 0.0, 

The optimal value 𝑅 = 0.084682 

The obtained results indicate that the optimal investment under the offered information 

occurred when 60.0426% of all capital is saved to the bank with interest rate 7%and 39.57% of 

the total capital is invested into security of 𝑆3. This strategy leads to the maximum expected 

return 8.4682% on the premise of risk coefficients 𝔟 1
𝑁𝑃and 𝔟 2

𝑁𝑃 . 

7. Comparative Study 

This section, introduces a comparative study between the topics covered by our proposed 

approach and those studied by some other researchers in related work in solving PS problems. 

Table 4. Comparisons with some researcher's contributions 

Reference no. Efficient 

solution 
Environment Type of number   

[28] NO Fuzzy Triangle interval valued 

[29] NO Neutrosophic Neutrosophic 

[30] NO Fuzzy Fuzzy-valued function 

[31] NO realistic Real 

[32] NO stochastic random variables 

[33] NO Fuzzy Triangle 

Our investigation YES Neutrosophic  Neutrosophic 
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8. Conclusion Remarks and Future Work 

A formulation of stock portfolio problem involving neutrosophic pentagonal fuzzy numbers in the 

rate of risked return, expected return rate and portfolio risk amount is proposed. Using  score 

function, the problem is converted to its corresponding crisp form. A solution approach is 

investigated to provide the decision of the portfolio investment joined with investors in savings and 

securities. The main advantages of this study are: the freedom in choosing the risk coefficients to 

maximize the expected returns; also, the investors may select their strategies under consideration of 

their own conditions. The optimal return rate is obtained using TORA software.  A numerical 

example indicates that the approach is reliable and efficient for studying pentagonal neutrosophic 

stock portfolio. Future work may include the further extension of this study to other fuzzy- like structure (i. 

e., interval- valued fuzzy set, Neutrosophic set, Pythagorean fuzzy set, Spherical fuzzy set etc. with more 

discussion and suggestive comments.  
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Abstract. Connectedness (resp. disconnectedness), which reflects the key characteristic of topological spaces

and helps in the differentiation of two topologies, is one of the most significant and fundamental concept in

topological spaces. In light of this, we introduce hypersoft connectedness (resp. hypersoft disconnectedness)

in hypersoft topological spaces and investigate its properties in details. Furthermore, we present the concepts

of disjoint hypersoft sets, separated hypersoft sets, and hypersoft hereditary property. Also, some examples

are provided for the better understanding of these ideas.

Keywords: hypersoft connected (resp. hypersoft disconnected); hypersoft topology; hypersoft sets; disjoint

hypersoft sets; separated hypersoft sets; hypersoft hereditary property.

—————————————————————————————————————————-

1. Introduction

Some mathematical concepts, such as theory of fuzzy sets, theory of rough sets, and theory

of vague sets, can be considered as mathematical tools for dealing with uncertainties. However,

each of these theories has its own difficulties. Molodtsov [1] first proposed the concept of soft

sets as a general mathematical tool for dealing with uncertain objects. He successfully applied

soft set theory to a variety of fields, including the smoothness of functions, game theory,

operation research, Riemann integration, and elsewhere [1,2]. Applications have been made to

decision-making, business competitive capacity information systems, classification of natural

textures, optimization problems, data analysis, similarity measures, algebraic structures of

soft sets, soft matrix theory, parameter reduction in soft set theory, classification of natural

textures, and soft sets and their relation to rough and fuzzy sets. In 2003, Maji et al. [3]

Sagvan Y. Musa, Baravan A. Asaad, Connectedness on Hypersoft Topological Spaces
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presented the basic operations of soft sets. After that, the properties and applications of soft

set theory have been studied increasingly [4–7]. In 2011, Shabir and Naz [8] and Çağman et

al. [9] introduced and studied the notion of soft topological spaces in different ways. Then,

some authors has began to study some of basic concepts and properties of soft topological

spaces [10–20]. Moreover, the concept of connectedness attracted the interest of researchers

[21,22].

In 2018, Smarandache [23] proposed the notion of hypersoft set as a generalization of soft

set. Then, Saeed et al. [24] put forward the basic concepts of hypersoft set theory. They

defined the operators of the intersection, union, and difference between two hypersoft sets as

well as a complement of a hypersoft set. In [25], Saeed et al. modified some operators in [24]

and presented some new types. Abbas et al. [26], in a unique approach, presented new types

of these operators as well as they introduced the concept of hypersoft points.

The concept of bipolar hypersoft sets (a hybridization of hypersoft set and bipolarity) was

introduced and discussed in detail by Musa and Asaad [27]. In [28], they initiated the study

of bipolar hypersoft topological spaces and studied some topological structures via bipolar

hypersoft sets. Musa and Asaad [29] continued studying bipolar hypersoft topological spaces

by presenting the notion of bipolar hypersoft connected (resp. bipolar hypersoft disconnected)

spaces. The concepts of separated bipolar hypersoft sets and bipolar hypersoft hereditary

property were also investigated by them.

Recently, Musa and Asaad [30] initiated the study of hypersoft topological spaces. They

defined hypersoft topology as a collection TH of hypersoft sets over the universe U with a

fixed set of parameters E . Consequently, they defined basic concepts of hypersoft neighbor-

hood, hypersoft limit point, and hypersoft subspace and investigated their several properties.

Furthermore, Musa and Asaad explored and studied in detail hypersoft closure, hypersoft in-

terior, hypersoft exterior, and hypersoft boundary, as well as the relationship between them

were discussed.

In this work, we introduce a new concept in hypersoft topological spaces called hypersoft

connected (resp. hypersoft disconnected) spaces. Preliminaries on basic notions related to hy-

persoft sets and hypersoft topological spaces are presented in Section 2. Section 3 gives the

concepts of disjoint hypersoft sets, separated hypersoft sets, hypersoft connected (resp. hy-

persoft disconnected) spaces, and hypersoft hereditary property as well as some examples are

given for the better understanding of these ideas. A summary of the recent work and an idea

for additional research are provided in Section 4.
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2. Preliminaries

In this section, we present the necessary concepts and results that are related to hypersoft

set and hypersoft topology.

2.1. Hypersoft Sets

Let U be an initial universe, P (U) the power set of U, and E1, E2, ..., En the pairwise of

disjoint sets of parameters. Let Ai, Bi ⊆ Ei for i = 1, 2, ..., n.

Definition 2.1. [23] A pair (F, A1 × A2 × ... × An) is called a hypersoft set over U, where

F is a mapping given by F : A1 ×A2 × ...×An → P (U).

From now on, we write the symbol E for E1 ×E2 × ...×En, A for A1 ×A2 × ...×An, and

B for B1 ×B2 × ...×Bn where A , B ⊆ E . Clearly, each element in A ,B and E is an n-tuple

element.

Moreover, we represent hypersoft set (F,A) as an ordered pair,

(F,A) = {(α,F(α)) : α ∈ A}.

Definition 2.2. [24] For two hypersoft sets (F,A) and (G,B) over a common universe U,

we say that (F,A) is a hypersoft subset of (G,B) if

(1) A ⊆ B , and

(2) F(α) ⊆ G(α) for all α ∈ A .

We write (F,A) ⊑̃ (G,B).

(F,A) is said to be a hypersoft superset of (G,B), if (G,B) is a hypersoft subset of (F,A).

We denote it by (F,A) ⊒̃ (G,B).

Definition 2.3. [24] Two hypersoft sets (F,A) and (G,B) over a common universe U are

said to be hypersoft equal if (F,A) is a hypersoft subset of (G,B) and (G,B) is a hypersoft

subset of (F,A).

Definition 2.4. [24] The complement of a hypersoft set (F,A) is denoted by (F,A)c and is

defined by (F,A)c = (Fc,A) where Fc : A → P (U) is a mapping given by Fc(α) = U \F(α)
for all α ∈ A .

Definition 2.5. [25] A hypersoft set (F,A) over U is said to be a relative null hypersoft set,

denoted by (Φ,A), if for all α ∈ A , F(α) = ϕ.

The relative null hypersoft set with respect to the universe set of parameters E is called the

null hypersoft set over U and is denoted by (Φ,E).

A hypersoft set (F,E) over U is said to be a non-null hypersoft set if F(α) ̸= ϕ for some

α ∈ E .
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Definition 2.6. [25] A hypersoft set (F,A) over U is said to be a relative whole hypersoft

set, denoted by (Ψ,A), if for all α ∈ A , F(α) = U.

The relative whole hypersoft set with respect to the universe set of parameters E is called

the whole hypersoft set over U and is denoted by (Ψ,E).

A hypersoft set (F,E) over U is said to be a non-whole hypersoft set if F(α) ̸= U for some

α ∈ E .

Definition 2.7. [25] Difference of two hypersoft sets (F,A) and (G,B) over a common

universe U, is a hypersoft set (H , C), where C = A ∩ B and for all α ∈ C,H(α) = F(α)\G(α).

We write (F,A) \ (G,B) = (H , C).

Definition 2.8. [25] Union of two hypersoft sets (F,A) and (G,B) over a common universe

U, is a hypersoft set (H , C), where C = A ∩ B and for all α ∈ C, H(α) = F(α) ∪G(α). We

write (F,A) ⊔̃ (G,B) = (H , C).

Definition 2.9. [25] Intersection of two hypersoft sets (F,A) and (G,B) over a common

universe U, is a hypersoft set (H , C), where C = A∩B and for all α ∈ C, H(α) = F(α)∩G(α).

We write (F,A) ⊓̃ (G,B) = (H , C).

Definition 2.10. [30] Let Υ be a non-empty subset of U. Then (Y ,A) denotes the hypersoft

set over U defined by Y (α) = Υ for all α ∈ A .

Definition 2.11. [30] Let (F,A) be a hypersoft set over U and Υ be a non-empty subset of U.

Then the sub hypersoft set of (F,A) over Υ denoted by (FΥ,A) is defined as FΥ(α) = Υ∩F(α)
for all α ∈ A .

In other words, (FΥ,E) = (Y ,A) ⊓̃ (F,A).

The following results are obvious.

Proposition 2.12. Let (F1,A) and (F2,A) be two hypersoft sets over a universe U. Then

the following holds.

(1) (F1,A) ⊓̃ (F2,A) = (Φ,A) if and only if (F1,A) ⊑̃ (F2,A)c and (F2,A) ⊑̃ (F1,A)c;

(2) If (F1,A) ⊑̃ (F2,A) then (F1,A) ⊓̃ (F2,A) = (F1,A);

(3) If (F1,A) ⊑̃ (F2,A) then (F1,A) ⊔̃ (F2,A) = (F2,A).

2.2. Hypersoft Topological Spaces

Let U be an initial universe and E be a set of parameters.

Definition 2.13. [30] Let TH be the collection of hypersoft sets over U, then TH is said to

be a hypersoft topology on U if
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(1) (Φ,E), (Ψ,E) belong to TH,

(2) the intersection of any two hypersoft sets in TH belongs to TH,

(3) the union of any number of hypersoft sets in TH belongs to TH.

We call (U,TH,E) a hypersoft topological space over U.

Definition 2.14. [30] Let (U,TH,E) be a hypersoft space over U, then the members of TH

are said to be hypersoft open sets in U.

Definition 2.15. [30] Let (U,TH,E) be a hypersoft space over U. A hypersoft set (F,E)

over U is said to be a hypersoft closed set in U, if its complement (F,E)c belongs to TH.

Proposition 2.16. [30] Let (U,TH,E) be a hypersoft space over U. Then

(1) (Φ,E), (Ψ,E) are hypersoft closed set over U,

(2) the union of any two hypersoft closed sets is a hypersoft closed set over U,

(3) the intersection of any number of hypersoft closed sets is a hypersoft closed set over U.

Definition 2.17. [30] Let (U,TH,E) be a hypersoft space over U and Υ be a non-empty

subset of U. Then

THΥ
= {(FΥ,E) | (F,E) ∈ TH}

is said to be the relative hypersoft topology on Υ and (Υ,THΥ
,E) is called a hypersoft subspace

of (U,TH,E).

The following results are obvious.

Proposition 2.18. Let (Υ,THΥ
,E) be a hypersoft subspace of hypersoft topological space

(U,TH,E) and (F,E) be a hypersoft set over U, then

(1) (F,E) is hypersoft open in Υ if and only if (F,E) = (Y ,E) ⊓̃ (G,E) for some (G,E)

∈ TH;

(2) (F,E) is hypersoft closed in Υ if and only if (F,E) = (Y ,E) ⊓̃ (G,E) for some

hypersoft closed set (G,E) in U.

Definition 2.19. [30] Let (U,TH,E) be a hypersoft space and (F,E) be a hypersoft set over

U. The intersection of all hypersoft closed supersets of (F,E) is called the hypersoft closure

of (F,E) and is denoted by (F,E).

Definition 2.20. [30] Let (U,TH,E) be a hypersoft space over U. Then hypersoft interior of

hypersoft set (F,E) over U is denoted by (F,E)o and is defined as the union of all hypersoft

open set contained in (F,E).

Definition 2.21. [30] Let (U,TH,E) be a hypersoft space over U, then hypersoft boundary

of hypersoft set (F,E) over U is denoted by (F,E)b and is defined as (F,E)b = (F,E) ⊓̃
(F,E)c.
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3. Hypersoft Connected (resp. Hypersoft Disconnected ) Spaces

In this section, we introduce and characterize one of the most important property of hyper-

soft topological spaces called hypersoft connectedness (resp. hypersoft disconnectedness).

Definition 3.1. Two hypersoft sets (F1,E) and (F2,E) are said to be disjoint hypersoft sets

if (F1,E) ⊓̃ (F2,E) = (Φ,E), that is, F1(α) ∩F2(α) = ϕ for all α ∈ E .

Definition 3.2. Let (U,TH,E) be a hypersoft topological space over U. Two non-null hy-

persoft sets (F1,E) and (F2,E) are said to be separated hypersoft sets if and only if (F1,E)

⊓̃ (F2,E) = (Φ,E) and (F1,E) ⊓̃ (F2,E) = (Φ,E).

Note that any two separated hypersoft sets are disjoint hypersoft sets.

Remark 3.3. The following example shows that two disjoint hypersoft sets are not necessarily

separated hypersoft sets.

Example 3.4. Let U = {u1, u2, u3, u4}, E1 = {e1, e2}, E2 = {e3}, and E3 = {e4}. Let TH

= {(Φ,E), (Ψ,E), (F1,E), (F2,E), (F3,E)} be a hypersoft topology defined on U where

(F1,E), (F2,E), and (F3,E) are hypersoft sets over U, defined as follows

(F1,E) = {((e1, e3, e4), {u2, u3}), ((e2, e3, e4), {u3, u4})}.

(F2,E) = {((e1, e3, e4), ϕ), ((e2, e3, e4), {u3})}.

(F3,E) = {((e1, e3, e4), {u1, u4}), ((e2, e3, e4), {u1, u2, u3})}.

Suppose that (G1,E) and (G2,E) are two hypersoft sets over U, defined as follows

(G1,E) = {((e1, e3, e4), {u2, u3, u4}), ((e2, e3, e4), ϕ)}.

(G2,E) = {((e1, e3, e4), {u1}), ((e2, e3, e4),U)}.

It is easy to see that the two hypersoft sets (G1,E) and (G2,E) are disjoint hypersoft sets

but they are not separated hypersoft sets.

Proposition 3.5. If (F1,E) and (F2,E) are separated hypersoft sets over U and (G1,E) ⊑̃
(F1,E) and (G2,E) ⊑̃ (F2,E), then (G1,E) and (G2,E) are also separated hypersoft sets.

Proof. We are given that (F1,E) ⊓̃ (F2,E) = (Φ,E) and (F1,E) ⊓̃ (F2,E) = (Φ,E). Also,

(G1,E) ⊑̃ (F1,E) implies (G1,E) ⊑̃ (F1,E) and (G2,E) ⊑̃ (F2,E) implies (G2,E) ⊑̃ (F2,E).
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It follows that (G1,E) ⊓̃ (G2,E) = (Φ,E) and (G1,E) ⊓̃ (G2,E) = (Φ,E). Hence, (G1,E)

and (G2,E) are separated hypersoft sets.

Proposition 3.6. Two hypersoft closed (resp. hypersoft open) sets (F1,E) and (F2,E) of a

hypersoft topological space are separated hypersoft sets if and only if they are disjoint hypersoft

sets.

Proof. Since any two separated hypersoft sets are disjoint hypersoft sets, we need only show

that two disjoint hypersoft closed (resp. hypersoft open) sets are separated hypersoft sets. If

(F1,E) and (F2,E) are both disjoint hypersoft sets and hypersoft closed sets, then (F1,E) ⊓̃
(F2,E) = (Φ,E), (F1,E) = (F1,E), (F2,E) = (F2,E) so that (F1,E) ⊓̃ (F2,E) = (Φ,E)

and (F1,E) ⊓̃ (F2,E) = (Φ,E) showing that (F1,E) and (F2,E) are separated hypersoft

sets. If (F1,E) and (F2,E) are both disjoint hypersoft sets and hypersoft open sets, then

(F1,E)c and (F2,E)c are hypersoft closed so that (F1,E)c = (F1,E)c, (F2,E)c = (F2,E)c.

Also, (F1,E) ⊓̃ (F2,E) = (Φ,E) then (F1,E) ⊑̃ (F2,E)c and (F2,E) ⊑̃ (F1,E)c. Implies

that (F1,E) ⊑̃ (F2,E)c = (F2,E)c and (F2,E) ⊑̃ (F1,E)c = (F1,E)c. It follows that (F1,E)

⊓̃ (F2,E) = (Φ,E) and (F1,E) ⊓̃ (F2,E) = (Φ,E). Hence, (F1,E) and (F2,E) are separated

hypersoft sets.

Proposition 3.7. Let (F1,E) and (F2,E) are separated hypersoft sets of a hypersoft topolog-

ical space (U,TH,E). If (F1,E) ⊔̃ (F2,E) is a hypersoft closed, then (F1,E) and (F2,E) are

hypersoft closed.

Proof. Suppose that (F1,E) ⊔̃ (F2,E) is a hypersoft closed so that (F1,E)⊔̃(F2,E) =

(F1,E)⊔̃(F2,E). To prove that (F1,E) and (F2,E) are hypersoft closed, we have to prove that

(F1,E) = (F1,E) and (F2,E) = (F2,E). Since we have (F1,E)⊔̃(F2,E) = (F1,E)⊔̃(F2,E),

then (F1,E)⊔̃(F2,E) = (F1,E) ⊔̃ (F2,E). Evidently, (F1,E) = (F1,E) ⊓̃ ((F1,E)⊔̃(F2,E))

= (F1,E) ⊓̃ ((F1,E)⊔̃(F2,E)) = ((F1,E) ⊓̃ (F1,E)) ⊔̃ ((F1,E) ⊓̃ (F2,E)) = (F1,E) ⊔̃
(Φ,E) = (F1,E). Thus, (F1,E) = (F1,E). Similarly, we can prove that (F2,E) = (F2,E).

Definition 3.8. A hypersoft topological space (U,TH,E) is said to be hypersoft disconnected

if and only if (Ψ,E) can be expressed as the union of two non-null separated hypersoft sets.

Otherwise, (U,TH,E) is said to be hypersoft connected.

Example 3.9. Let U = {u1, u2}, E1 = {e1, e2}, E2 = {e3}, and E3 = {e4}. Let

TH = {(Φ,E), (Ψ,E), (F,E)} be a hypersoft topology defined on U where (F,E) =

{((e1, e3, e4),U), ((e2, e3, e4), ϕ)}. Then, it is easy to see that (U,TH,E) is a hypersoft con-

nected space.
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Example 3.10. Let U = {u1, u2, u3}, E1 = {e1, e2}, E2 = {e3}, and E3 = {e4}. Let TH =

{(Φ,E), (Ψ,E), (F1,E), (F2,E)} be a hypersoft topology defined on U where (F1,E) and

(F2,E) are hypersoft sets over U, defined as follows

(F1,E) = {((e1, e3, e4), {u1, u2}), ((e2, e3, e4), {u1})}.

(F2,E) = {((e1, e3, e4), {u3}), ((e2, e3, e4), {u2, u3})}.

Then, obviously (U,TH,E) is a hypersoft disconnected space.

Proposition 3.11. A hypersoft topological space (U,TH,E) is hypersoft disconnected if and

only if any one of the following statements holds.

i. (Ψ,E) is the union of two non-null disjoint hypersoft open sets;

ii. (Ψ,E) is the union of two non-null disjoint hypersoft closed sets.

Proof. Follows from Definition 3.8 and Proposition 3.6.

Corollary 3.12. A hypersoft subspace (Υ,THΥ
,E) of a hypersoft topological space (U,TH,E)

is hypersoft disconnected if and only if (Y ,E) is the union of two non-null disjoint hypersoft

sets both hypersoft open (resp. hypersoft closed) sets. Thus, (Υ,THΥ
,E) is hypersoft dis-

connected if and only if there exist two non-null hypersoft sets (F,E) and (G,E) in U both

hypersoft open (resp. hypersoft closed) sets such that (F,E) ⊓̃ (Y ,E) ̸= (Φ,E), (G,E) ⊓̃
(Y ,E) ̸= (Φ,E), ((F,E) ⊓̃ (Y ,E)) ⊓̃ ((G,E) ⊓̃ (Y ,E)) = (Φ,E), and ((F,E) ⊓̃ (Y ,E)) ⊔̃
((G,E) ⊓̃ (Y ,E)) = (Y ,E).

Proposition 3.13. Let (U,TH1 ,E) and (U,TH2 ,E) be two hypersoft connected spaces on U,

then (U,TH1 ⊓̃ TH2 , E) is a hypersoft connected space over U.

Proof. Suppose to the contrary that (U,TH1 ⊓̃ TH2 , E) is not a hypersoft connected space.

By Proposition 3.11, there exist two non-null disjoint hypersoft sets (F1,E), (F2,E) ∈̃ TH1

⊓̃ TH2 such that their union is (Ψ,E) in (U,TH1 ⊓̃ TH2 , E). Since (F1,E), (F2,E) ∈̃ TH1

⊓̃ TH2 then (F1,E), (F2,E) ∈̃ TH1 and (F1,E), (F2,E) ∈̃ TH2 . This implies that (F1,E),

(F2,E) are two non-null disjoint hypersoft sets such that their union is (Ψ,E) in (U,TH1 ,E)

and (F1,E), (F2,E) are two non-null disjoint hypersoft sets such that their union is (Ψ,E)

in (U,TH2 ,E) which is a contradiction to given hypothesis. Thus, (U,TH1 ⊓̃ TH2 , E) is a

hypersoft connected space over U.

Remark 3.14. The following example shows that the union of two hypersoft connected spaces

over the same universe need not be a hypersoft connected.
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Example 3.15. Let U = {u1, u2}, E1 = {e1, e2}, E2 = {e3}, and E3 = {e4}. Let TH1 = TH

as in Example 3.9 and TH2 = {(Φ,E), (Ψ,E), (F2,E)} be a hypersoft topology defined on

U where (F2,E) = {((e1, e3, e4), ϕ), ((e2, e3, e4),U)}. Then, (U,TH1 ,E) and (U,TH2 ,E) are

hypersoft connected spaces.

Now, TH1 ⊔̃ TH2 = {(Φ,E), (Ψ,E), (F1,E), (F2,E)} then (U,TH1 ⊔̃ TH2 , E) is not a hypersoft

connected space since the two hypersoft open sets (F1,E) and (F2,E) are disjoint hypersoft

sets and their union is (Ψ,E) in TH1 ⊔̃ TH2 .

Proposition 3.16. Let (U,TH1 ,E) and (U,TH2 ,E) be two hypersoft disconnected spaces on

U, then (U,TH1 ⊔̃ TH2 , E) is a hypersoft disconnected space over U.

Proof. This is straightforward.

Remark 3.17. The following example shows that the intersection of two hypersoft discon-

nected spaces over the same universe need not be a hypersoft disconnected.

Example 3.18. Let U = {u1, u2, u3}, E1 = {e1, e2}, E2 = {e3}, and E3 = {e4}. Let TH1 =

TH as in Example 3.10 and TH2 = {(Φ,E), (Ψ,E), (H1,E), (H2,E)} be a hypersoft topology

defined on U where

(H1,E) = {((e1, e3, e4), {u1, u3}), ((e2, e3, e4), {u2})}.

(H2,E) = {((e1, e3, e4), {u2}), ((e2, e3, e4), {u1, , u3})}.

Then, (U,TH1 ,E) and (U,TH2 ,E) are hypersoft disconnected spaces over U. Now, TH1

⊓̃ TH2 = {(Φ,E), (Ψ,E)} then (U,TH1 ⊓̃ TH2 , E) is not a hypersoft disconnected since there

do not exist two non-null disjoint hypersoft open sets such that their union is (Ψ,E) in TH1 ⊓̃
TH2 .

Proposition 3.19. A hypersoft topological space (U,TH,E) is hypersoft disconnected if and

only if there exists non-null, non-whole hypersoft set which is both hypersoft open and hypersoft

closed.

Proof. Let (F,E) be a non-null, non-whole hypersoft set which is both hypersoft open and

hypersoft closed. We have to show that (U,TH,E) is hypersoft disconnected. Let (G,E) =

(F,E)c. Then, (G,E) is non-null since (F,E) is non-whole hypersoft set. Moreover, (F,E)

⊔̃ (G,E) = (Ψ,E) and (F,E) ⊓̃ (G,E) = (Φ,E). Since (F,E) is both hypersoft open and

hypersoft closed, then (G,E) is also hypersoft open and hypersoft closed. Hence, (F,E) =

(F,E), (G,E) = (G,E). It follows that (F,E) ⊓̃ (G,E) = (Φ,E) and (F,E) ⊓̃ (G,E) =
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(Φ,E). Thus, (Ψ,E) has been expressed as the union of two separated hypersoft sets and so

(U,TH,E) is a hypersoft disconnected.

Conversely, let (U,TH,E) be a hypersoft disconnected. Then, there exists non-null hypersoft

sets (F,E) and (G,E) such that (F,E) ⊓̃ (G,E) = (Φ,E) and (F,E) ⊓̃ (G,E) = (Φ,E) and

(Ψ,E) = (F,E) ⊔̃ (G,E). Since (F,E) ⊑̃ (F,E), (F,E) ⊓̃ (G,E) = (Φ,E) then (F,E) ⊓̃
(G,E) = (Φ,E). Hence, (F,E) = (G,E)c. Since (G,E) is non-null and (G,E) ⊔̃ (G,E)c =

(Ψ,E), it follows that (G,E) = (F,E)c is a non-whole hypersoft set. Now, (F,E) ⊔̃ (G,E)

= (Ψ,E). Also, (F,E) ⊓̃ (G,E) = (Φ,E) then (F,E) = [(G,E)]c and similarly (G,E) =

[(F,E)]c. Since (F,E) and (G,E) are hypersoft closed sets, it follows that (F,E) and (G,E)

are hypersoft open sets. Since (F,E) = (G,E)c, (F,E) is also hypersoft closed set. Thus,

(F,E) is non-null, non-whole hypersoft set which is both hypersoft open and hypersoft closed.

We have shown incidentally that (G,E) is also a non-null, non-whole hypersoft set which is

both hypersoft open and hypersoft closed.

Corollary 3.20. A hypersoft topological space (U,TH,E) is hypersoft connected if and only

if the only hypersoft sets which are both hypersoft open and hypersoft closed are (Φ,E) and

(Ψ,E).

Corollary 3.21. Let (U,TH,E) be a hypersoft topological space and let Υ be a non-empty

subset of U. Then, (Υ,THΥ
,E) is hypersoft disconnected if and only if there exists non-null,

non-whole hypersoft set, say, (FΥ,E) which is both hypersoft open and hypersoft closed. That

is, if and only if there exists a hypersoft open set, say, (F,E) in U and a hypersoft closed set,

say, (G,E) in U such that (FΥ,E) = (F,E) ⊓̃ (Y ,E) and (FΥ,E) = (G,E) ⊓̃ (Y ,E).

Proposition 3.22. A hypersoft topological space (U,TH,E) is hypersoft connected if and only

if every non-null, non-whole hypersoft set has a non-null hypersoft boundary.

Proof. Let every non-null, non-whole hypersoft set has a non-null hypersoft boundary. To

show that (U,TH,E) is hypersoft connected. Suppose, if possible (U,TH,E) is hypersoft dis-

connected. Then there exist non-null disjoint hypersoft sets (F,E) and (G,E) both hypersoft

open and hypersoft closed sets such that (Ψ,E) = (F,E) ⊔̃ (G,E). Therefore, (F,E) =

(F,E) = (F,E)o . But, (F,E)b = (F,E) \ (F,E)o . Hence, (F,E)b = (F,E) \ (F,E) =

(Φ,E), which is contrary to our hypothesis. Hence, (U,TH,E) must be hypersoft connected.

Conversely, let (U,TH,E) be hypersoft connected and suppose, if possible, there exists a

non-null, non-whole hypersoft set (F,E) such that (F,E)b = (Φ,E). Now, (F,E) = (F,E)o

⊔̃ (F,E)b = (F,E) ⊔̃ (F,E)b . Hence, (F,E) = (F,E)o = (F,E) showing that (F,E)

is both both hypersoft open and hypersoft closed set and therefore (U,TH,E) is hypersoft
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disconnected by Proposition 3.19. But this is a contradiction. Hence, every non-null, non-

whole hypersoft set must have a non-null hypersoft boundary.

Proposition 3.23. Let (U1,TH1 ,E) and (U2,TH2 ,E) be two hypersoft topological spaces. If

(U1,TH1 ,E) is hypersoft disconnected and TH1 ⊑̃ TH2, then (U2,TH2 ,E) is hypersoft discon-

nected.

Proof. Since (U1,TH1 ,E) is hypersoft disconnected, then there exists non-null, non-whole

hypersoft set (F,E) which is both hypersoft open and hypersoft closed in U1. Since TH2 is

finer than TH1 , then (F,E) is a hypersoft open set belonging to U2. Again, since (F,E) is a

hypersoft closed set in U1, then (F,E)c is a hypersoft open set. Since TH2 is finer than TH1 ,

then (F,E)c is a hypersoft open set belonging to U2 and consequently (F,E) is a hypersoft

closed set in U2. Thus, (F,E) is a non-null, non-whole hypersoft set which is both hypersoft

open and hypersoft closed in U2. It follows that (U2,TH2 ,E) is hypersoft disconnected.

Corollary 3.24. Let (U1,TH1 ,E) and (U2,TH2 ,E) be two hypersoft topological spaces. If

(U1,TH1 ,E) is hypersoft connected and TH2 ⊑̃ TH1, then (U2,TH2 ,E) is hypersoft connected.

Definition 3.25. Let (U,TH,E) be a hypersoft space over U. A hypersoft set (F,E) is said

to be hypersoft disconnected if and only if it is the union of two non-null separated hypersoft

sets, that is, if and only if there exists two non-null hypersoft sets (F1,E) and (F2,E) such that

(F1,E) ⊓̃ (F2,E) = (Φ,E) and (F1,E) ⊓̃ (F2,E) = (Φ,E) and (F,E) = (F1,E) ⊔̃ (F2,E).

A hypersoft set (F,E) is said to be hypersoft connected if it is not hypersoft disconnected.

Proposition 3.26. Let (U,TH,E) be a hypersoft topological space and let (F,E) be a hypersoft

connected set such that (F,E) ⊑̃ (F1,E) ⊔̃ (F2,E) where (F1,E) and (F2,E) are separated

hypersoft sets. Then (F,E) ⊑̃ (F1,E) or (F,E) ⊑̃ (F2,E).

Proof. Since (F1,E) and (F2,E) are separated hypersoft sets, then (F1,E) ⊓̃ (F2,E) = (Φ,E)

and (F1,E) ⊓̃ (F2,E) = (Φ,E). Now, (F,E) ⊑̃ (F1,E) ⊔̃ (F2,E) then (F,E) = (F,E) ⊓̃
((F1,E) ⊔̃ (F2,E)) = ((F,E) ⊓̃ (F1,E)) ⊔̃ ((F,E) ⊓̃ (F2,E)). We claim that at least one

of the hypersoft sets (F,E) ⊓̃ (F1,E) and (F,E) ⊓̃ (F2,E) is null hypersoft set. For , if

possible, suppose none of these hypersoft sets is null, that is, suppose that (F,E) ⊓̃ (F1,E)

̸= (Φ,E) and (F,E) ⊓̃ (F2,E) ̸= (Φ,E). Then, ((F,E) ⊓̃ (F1,E)) ⊓̃ ((F,E)⊓̃(F2,E)) ⊑̃
((F,E) ⊓̃ (F1,E)) ⊓̃ ((F,E) ⊓̃ (F2,E)) = ((F,E) ⊓̃ (F,E)) ⊓̃ ((F1,E) ⊓̃ (F2,E)) = (F,E)

⊓̃ (Φ,E) = (Φ,E). Similarly, ((F,E)⊓̃(F1,E)) ⊓̃ ((F,E) ⊓̃ (F2,E)) = (Φ,E). Hence, (F,E)

⊓̃ (F1,E) and (F,E) ⊓̃ (F2,E) are separated hypersoft sets. Thus, (F,E) has been expressed

as union of two separated hypersoft sets and consequently (F,E) is hypersoft disconnected.
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But this is a contradiction. Hence, at least one of the hypersoft sets (F,E) ⊓̃ (F1,E) and

(F,E) ⊓̃ (F2,E) is null hypersoft set. If (F,E) ⊓̃ (F1,E) = (Φ,E), then (F,E) = (F,E)

⊓̃ (F2,E) which implies that (F,E) ⊑̃ (F2,E). Similarly, if (F,E) ⊓̃ (F2,E) = (Φ,E), then

(F,E) ⊑̃ (F1,E). Hence, either (F,E) ⊑̃ (F1,E) or (F,E) ⊑̃ (F2,E).

Proposition 3.27. Let (F,E) be a hypersoft connected set and (G,E) be any hypersoft set

such that (F,E) ⊑̃ (G,E) ⊑̃ (F,E), then (G,E) is hypersoft connected. In particular, (F,E)

is hypersoft connected.

Proof. Suppose (G,E) is hypersoft disconnected. Then, there exist non-null hypersoft sets

(F1,E) and (F2,E) such that (F1,E) ⊓̃ (F2,E) = (Φ,E) and (F1,E) ⊓̃ (F2,E) = (Φ,E)

and (G,E) = (F1,E) ⊔̃ (F2,E). Since (F,E) ⊑̃ (G,E) = (F1,E) ⊔̃ (F2,E), it follows from

Proposition 3.26 that (F,E) ⊑̃ (F1,E) or (F,E) ⊑̃ (F2,E). Let (F,E) ⊑̃ (F1,E) which

implies that (F,E) ⊑̃ (F1,E) then (F,E) ⊓̃ (F2,E) ⊑̃ (F1,E) ⊓̃ (F2,E) = (Φ,E), but

(Φ,E) ⊑̃ (F,E) ⊓̃ (F2,E), then we have (F,E) ⊓̃ (F2,E) = (Φ,E). Also, (F1,E) ⊔̃ (F2,E)

= (G,E) ⊑̃ (F,E) then (F2,E) ⊑̃ (G,E) ⊑̃ (F,E) implies that (F,E) ⊓̃ (F2,E) = (F2,E).

Hence, (F2,E) = (Φ,E) which is a contradiction since (F2,E) is non-null. Hence, (G,E)

must be hypersoft connected. Again, since (F,E) ⊑̃ (G,E) ⊑̃ (F,E), we see that (F,E) is

hypersoft connected.

Proposition 3.28. Let {(Fi,E) | i ∈ I} be the family of hypersoft connected sets such that

⊓̃{(Fi,E) | i ∈ I} ≠ (Φ,E). Then ⊔̃{(Fi,E) | i ∈ I} is hypersoft connected sets.

Proof. Suppose (𭟋,E) = ⊔̃{(Fi,E) | i ∈ I} is not hypersoft connected. Then, there exist two

non-null disjoint hypersoft sets (𭟋1,E) and (𭟋2,E) both hypersoft open such that (𭟋,E) =

(𭟋1,E) ⊔̃ (𭟋2,E). For each i, (𭟋1,E) ⊓̃ (Fi,E) and (𭟋2,E) ⊓̃ (Fi,E) are disjoint hypersoft

sets both hypersoft open in (Fi,E) such that ((𭟋1,E) ⊓̃ (Fi,E)) ⊔̃ ((𭟋2,E) ⊓̃ (Fi,E)) =

((𭟋1,E) ⊔̃ (𭟋2,E)) ⊓̃ (Fi,E) = (Fi,E). Since (Fi,E) is hypersoft connected, one of the

hypersoft sets (𭟋1,E) ⊓̃ (Fi,E) and (𭟋2,E) ⊓̃ (Fi,E) must be null hypersoft set, say, (𭟋1,E)

⊓̃ (Fi,E) = (Φ,E). Then, we have (𭟋2,E) ⊓̃ (Fi,E) = (Fi,E) which implies that (Fi,E)

⊑̃ (𭟋2,E) for all i ∈ I and hence ⊔̃{(Fi,E) | i ∈ I} ⊑̃ (𭟋2,E), that is, (𭟋1,E) ⊔̃ (𭟋2,E)

⊑̃ (𭟋2,E). This gives, (𭟋1,E) = (Φ,E) which is a contradiction since (𭟋1,E) is non-null.

Hence, (𭟋,E) must be hypersoft connected.

Definition 3.29. A property of a hypersoft topological space is said to be hypersoft hereditary

if every hypersoft subspace of the space has that property.
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Remark 3.30. The hypersoft disconnectedness (resp. hypersoft connectedness) is not a hy-

persoft hereditary.

Example 3.31. Let U = {u1, u2, u3}, E1 = {e1, e2}, E2 = {e3}, and E3 = {e4}. Let TH =

{(Φ,E), (Ψ,E), (F1,E), (F2,E)} be a hypersoft topology defined on U, where (F1,E), and

(F2,E), are hypersoft sets over U, defined as follows

(F1,E) = {((e1, e3, e4), {u2}), ((e2, e3, e4), {u1})}.

(F2,E) = {((e1, e3, e4), {u1, u3}), ((e2, e3, e4), {u2, u3})}.

Then, (U,TH,E) is a hypersoft disconnected space.

Now, let Υ = {u3}, then THΥ
= {(Φ,E), (Y ,E)} is a hypersoft topology defined on Y . Since

(Φ,E) and (Y ,E) are the only hypersoft open and hypersoft closed sets then by Corollary 3.20,

(Υ,THΥ
,E) is a hypersoft connected subspace of hypersoft disconnected space.

Example 3.32. Let U = {u1, u2, u3}, E1 = {e1, e2}, E2 = {e3}, and E3 = {e4}. Let TH

= {(Φ,E), (Ψ,E), (F1,E), (F2,E), (F3,E)} be a hypersoft topology defined on U, where

(F1,E), (F2,E), and (F3,E) are hypersoft sets over U, defined as follows

(F1,E) = {((e1, e3, e4), {u1}), ((e2, e3, e4), {u2})}.

(F2,E) = {((e1, e3, e4), {u2}), ((e2, e3, e4), {u1})}.

(F3,E) = {((e1, e3, e4), {u1, u2}), ((e2, e3, e4), {u1, u2})}.

Then, (U,TH,E) is a hypersoft connected space.

Now, let Υ = {u1, u2}, then THΥ
= {(Φ,E), (Y ,E), (F1Υ ,E), (FΥ ,E), (F3Υ ,E)} is a hy-

persoft topology defined on Y , where (F1Υ ,E), (F2Υ ,E), and (F3Υ ,E) are hypersoft sets over

Y , defined as follows

(F1Υ ,E) = {((e1, e3, e4), {u1}), ((e2, e3, e4), {u2})}.

(F2Υ ,E) = {((e1, e3, e4), {u2}), ((e2, e3, e4), {u1})}.
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(F3Υ ,E) = {((e1, e3, e4),Υ), ((e2, e3, e4),Υ)} = (Y ,E).

It is easy to see that (Υ,THΥ
,E) is a hypersoft disconnected subspace of hypersoft connected

space.

4. Conclusions

In this paper, we have initiated the concept of hypersoft connected (resp. hypersoft dis-

connected) spaces. Then, some results of this concept were discussed. Furthermore, we have

presented the concepts of disjoint hypersoft sets, separated hypersoft sets, and hypersoft hered-

itary property along with some illustrative examples. In future studies, we can define some

other topological structures in the frame of hypersoft topological spaces such as hypersoft

locally connected space, hypersoft component, hypersoft compact space, and hypersoft para-

compact space. Moreover, we can define hypersoft separation axioms by using both ordinary

points and hypersoft points.
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Abstract. An icebreaking theory known as neutrosophic theory opened a new direction for researchers of

philosophy, logics, set theory and probability/statistics. Neutrosophy put the point base for a entire household

of new mathematical speculations that summarized classical and fuzzy correspondence theories. In this article,

we introduced the conception of neutrosophic fuzzy ideal theory of ordered semigroups based on belongs to

relation and quasi-coincident with relation. Particularly, neutrosophic fuzzy generalized bi-ideal (resp. bi-ideal)

of type (∈, ∈ ∨q) have been developed and detail symposium on multi-dimension of the neutrosophic said ideals

in ordered semigroup has given. Further, a verity of depictions of ordered semigroups in expression of (∈, ∈ ∨q)-
fuzzy generalized bi-ideals have been constructed and several related examples have been formulated. Finally,

the lower parts of neutrosophic (∈, ∈ ∨q)-fuzzy generalized bi-ideals were proposed and ordered semigroups

have been discussed by the properties of these newly developed neutrosophic fuzzy generalized bi-ideals.

Keywords: Ordered Semigroup; Neutrosophic set; Neutrosophic (∈,∈ ∨q)-fuzzy bi-ideal; Neutrosophic (∈,∈
∨q)-fuzzy generalized bi-ideal; lower Parts of the Neutrosophic generalized bi-ideals.)

—————————————————————————————————————————-

1. Introduction

In the modern times, economics and technological progress play a pivotal part in the evo-

lution of at all particular country. Caused by high-quality analysis in the new field such as

computer science, control system engineering, analyses of the data , economics, error-correction

coding, answerable, prediction and automated, most realms have fallen back. These new realms

spend a large scrap of their budgets in these areas. From another point of view, the above-

mentioned meadows face several complex issues calling for uncertainty. These completed issues

cannot be solved by traditional techniques. There are definite types of speculations, such as

theoretical probability, fuzzy set theory, rough set theory, and soft set theory, which can be
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use for the above problems. However, all these theories have their importance and inherent

limitations. One of the main problems accepted by these speculations is their incompatibility

with parametric implements. In order to control such labours, in 1965, Zadeh [1] introduce the

ice breaking conception of fuzzy subset, which could handling imprecision and uncertainties of

these king of problems. So, here we specify some terms which is used throughout my thesis,

FG is used for fuzzy group, OSG is used for ordered semigroup, OSGs used for ordered semi-

groups, SUBG used for subgroup, for fuzzy left (resp. right) ideal used FL(resp. right)I, for

fuzzy generalized bi-ideal FGB-I is used, for quasi-ideal Q-I is used, for bi-ideal B-I is used, for

fuzzy subgroup FSUBG is used, for regular RG is used, for completely regular CRG is used,

for intra-regular intra-RG is used, for semigroup SG is used, for prime P is used, for semiprime

SP is used, for simple SMP is used, for left simple LSMP is used, for quasi-prim Q-P is used,

for weakly quasi-prim Q-P is used, for fuzzy left ideal FLI is used, (∈,∈ ∨q)-fuzzy left ideal

(∈,∈ ∨q)-FLI is used, for subsemigroup SUBSG is used, for interior ideal II is used, for fuzzy

set FS is used, for (∈,∈ ∨q)-fuzzy generalized bi-ideal (∈,∈ ∨q)-FGB-I is used, for (∈,∈ ∨q)-
fuzzy bi-ideal (∈,∈ ∨q)-FB-I is used, for right simple RSMP is used, for fuzzy quasi-prime

ideal FQ-PI is used, for strongly regular SRG is used, for fuzzy quasi-ideal FQ-I is used, and

for plural only small “s” is added at the end e.g fuzzy ideals FIs, for weakly prime fuzzy ideal

WPFI is used, for completely prime fuzzy ideal CPFI is used, for completely semiprime fuzzy

ideal CSPFI is used, for fuzzy point FP is used, for quaasi Q is used, for subgroup SUBG is

used, for (∈,∈ ∨q)-fuzzy left (resp. right) ideal (∈,∈ ∨q)-FL(resp. right)I is used, for intu-

tionistic fuzzy set IFS is used, for neutrosophic set NS is used, for neutrosophic(∈,∈ ∨q)-fuzzy
generalized bi-ideal neutrosophic (∈,∈ ∨q)-FGB-I is used, for intutionistic set IS is used, for

paraconsistent set PS is used, for strongly simple SSMP is used, for characteristic function CF

is used, for lower part LP used, and other also expressed on the same way else stated. Further

Zadeh [4-7] elaborated the conception of fuzzy set to a large extent. After that 1971, Rosen-

feld [2] proposed the new conception of fuzzy group(FG) it opened a new direction for the

scientists to assessment different conceptions and consequence from the principality of algebra

in the larger flow of fuzzy surroundings. Possess the inspiration considering, Das [3] suggested

the conception of level subgroup of the FG. Further, Kruoki [12-16] described the notions of

fuzzy left (resp. right, bi-, quasi-, generalised bi-) ideals of SGs and thereby identified vari-

ous classes (regular, intra-regular, completely regular, semiprime, left simple) of semigroups

in terms of these conceptions. The renowned research group of Kehayopulu [17-21] studied

fuzzy left (right, bi-, interior and quasi-) ideals in OSGs to a greater extent. Moreover, The

conception of (α, β)-FSUBG by utilizing the “belongs to” relation (∈) and “quasi-coincident

with ”relation (q) of fuzzy point(FP) with fuzzy set(FS) by studied by Bakat and Das [9, 10]

and Bakat [11]. Further the conception of the sort of (α, β)-FIIs, and new conception of sort
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an (∈,∈ ∨qk)-FII of an OSG of S is determined by khan et al. [32], here k is an testimo-

nial component of [0, 1). Otherwise expressed. Further demonstrated that in a regular(resp.

semisimple) of OSG, the ideas of (∈,∈ ∨qk)-FI and (∈,∈ ∨qk)-FIIs matched. Similarly, the

conception of (α, β)-FL(resp. right)Is of an OSG of S and the new kind of FL(resp. right)Is

of the type (∈,∈ ∨qk)-F (resp. right)Is, here k ∈ [0, 1). Special in this paper, reported the

relation between ordinary FI and (∈,∈ ∨qk)-FIs of an OSG was initiated by Khan et al. [33].

After this, the conception of IFSs, which is a extension of FSs and provably equivalent to

interval valued FSs are initiated by Atanassov [22], in 1986.

Further, in 1998 Smarandche [23] generalized the ice breaking conception of IFS, PS, and

IS to the NS, and initiated the new conception of the NS.

After this big achievement Maji [24] reported the conception of neutrosophic soft set. More-

over, using the conception neutrosophic solution to make MCDM standard decisions. In ad-

dition to studying some interesting mathematical properties of the method, the algorithm

neut-MCDM is also proposed. This work also provides a concise basis for the MCDM com-

munity with the first introduction of the NS this work proposes a multi approach which was

investigated by Kharal [25]. However Salama et al. [26] investigate the notion of “neutosophic

crisp neighborhoods system for the neutrosophic crisp point”. In addition, to introduced and

investigated the notion of the local function of the neutrosophic crispness, and constructed a

new type of neutrosophic crisp topological space through the ideals of the neutrosophic crisp-

ness. It involves the possible application of GIS topology rules. Further the notion of rough

NS was Studied by Broumi et al. [27], in this article they developed a hybrid structure said to

be “ Rough Neutrosophic Sets(RNSs)” and also, investigate their possessions. Therefore, both

the NS theory and rough set theory are becoming a powerful tools for managing uncertainty,

incompleteness and imprecision information. Mover the operation on the interval NS were

investigated by Broumi and Smarandache [28], in this paper they further defines three new

operation on interval NSs whic is based on arthmetic mean, geometric mean and harmonic

mean. So the interval NS is an example of NS, which can be used in actual science and

engineering

2. Some Basic Definitions and Results

Definition 2.1. If (S, .) is semigroup, then the structure (S, .,≤) is called an OSG, (S,≤) is

a partially ordered set (poset) i.e α ≤ α (reflexive), α ≤ β, β ≤ γ ⇒ α = β (anti-symmetric),

α ≤ β, β ≤ γ ⇒ α ≤ γ,(transitive) ∀α, β, γ ∈ S and x ≤ y ⇒ xα ≤ yβ and xa ≤ xb

∀ a, b, x ∈ S.
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Definition 2.2. Let X be an OSG S. Then interpret the subset (X] of S as.

(X] = {y ∈ S|y ≤ x for some x ∈ X}.
If X = {x}, then the notion (x] is used of ({x}]. For any subset X and Y of S, XY = {xy|x ∈ X

and y ∈ Y } so throughout my thesis S is an OSG unless otherwise indicated.

The definition of SUBSG and left (right) ideal are discussed as follow.

Lemma 2.3. If S be an OSG, then the understated condition are equivalently:

(1) S is left WRG.

(2) Γ ∩ Ω ⊆ (ΓΩ], ∀ ideal Γ and GB-I Ω of S.

(3) Γ(c) ∩ Ω(c) ⊆ (Γ(c)Ω(c)], ∀ c ∈ S.

Lemma 2.4. If S be an OSG, then the understated axioms are equivalently:

(1) S is LWRG.

(2) Γ ∩Ψ ⊆ (ΓΨ], ∀ ideal Γ and left ideal Ψ of S.

(3) Γ(x) ∩Ψ(x) ⊆ (Γ(x)Ψ(α)], ∀ x ∈ S.

Lemma 2.5. If S be an OSG, then the understated axioms are equivalently:

(1) S is RG.

(2) Γ ∩ Ω ∩Ψ ⊆ (ΓΩΨ], ∀ right ideal Γ, GB-I Ω and left ideal Ψ of S.

(3) Γ(z) ∩ Ω(z) ∩Ψ(z) ⊆ (Γ(z)Ω(z)Ψ(z)], ∀ z ∈ S.

Lemma 2.6. If S be an OSG, then the understated axioms are equivalently:

(1) S is RG.

(2) Ω ∩ Γ ⊆ (ΩΓΩ], ∀ Ω GB-I and Γ ideal of S.

(3) (Ω(k)
⋂
Ψ(k) ⊆ (Ω(k)Γ(k)], ∀ k ∈ S.

Lemma 2.7. An OSG S is completely regular ⇔ ∀ X ⊆ S, we have, X ⊆ (X2SX2].

Lemma 2.8. An OSG S is L(resp. right)SMP if, ∀ (Sx]=S, (resp.(xS]=S for all x ∈ S.

Proposition

If χ and ψ are any subsets of an OSG S, then

(1) χ ⊆ (χ].

(2) (χ](ψ] ⊆ (χψ].

(3) ((χ]] = (χ].

(4) ((χ](ψ] = (χψ].

Neutrosophic Sets and Systems, Vol. 51, 2022                                                                               684

Faiz Muhammad Khan, Madad Khan and Ihsanullah, Classification of Ordered Semigroups Through Neu-

trosophic Generalized bi-ideals with Applications



Proposition

Let X and Y ̸= ϕ subsets of S, then we have the understated condition holds:

(1) X ⊆ Y iff AX ⪯ BY .

(2) AX ∧AY = AX∩Y .

(3) AX ◦AY = A(XY ].

3. Neutrosophic sets (Basic Operation)

In the past two decennaries, the utilizes of soft set theory has made one more climacteric in

mathematics. In mathematics, some mathematical enigmas contain indeterminacy in different

paddock, such as answerable, automaton1 theory, coding theory, economics and memorandums

of understanding, while other mathematical problems cannot be solved by ordinary mathe-

matics. Due to the influence of parameterizations, tools (such as fuzzy set theory, probability

theory,etc), the newest investigation on in this managment and the new investigation on theory

of soft are fruitful due to the diversified uses of soft sets in the above-mentioned fields [27, 28].

It is worth noting that Sezgum and Atagum [29] studied various new actions on theory of soft

and explained soft sets the following way:

Definition 3.1. If X is non-empty set, then structure λ in X is of the structure λ =

{⟨a;λT (a), λI(a),
λF (a)⟩|a ∈ X} is called NS, where λT : X → [0, 1] is a truth membership function,

λI : X → [0, 1] is an indeterminate membership function and λF : X → [0, 1] is false member-

ship function. Generalizing the notion of an ordered FP, we introduce a new concept called

neutrosophic ordered points(NOPs) as follows:

Suppose S is an OSG, t ∈ S and u, v, w ∈ [0, 1]. By a NOPs, we mean tp̃(x) =

⟨tu(x), tv(x), tw(x)⟩ where p̃ = (u, v, w) and

tu(x) =

{
u, if x ∈ (t],

1, ifnot.

tv(x) =

{
v, if x ∈ (t],

1, ifnot.

tw(x) =

{
w, if x ∈ (t],

1, ifnot.

Let λ = {⟨a; λT (a), λI(a), λF (a)⟩} be a NS and tp̃ be a NOP, we define
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i→ tp̃ ∈ λ if


λT (t) ≤ u,

λI(t) ≤ v,

λF (t) ≥ w,

ii→ tp̃ q λ if


λT (t) + u < 1,

λI(t) + v < 1,

λF (t) + w > 1,

iii→ tp̃ ∈ ∨q λ⇒ tp̃ ∈ λ or tp̃qλ.

iv → tp̃ ∈ ∧q λ⇒ tp̃ ∈ λ and tp̃qλ.

v → tp̃ ∈ ∧q λ⇒ tp̃ ∈ ∧q λ does not hold.

If λ = ⟨x;λT (x), λI(x), λF (x)⟩ and η = ⟨x; ηT (x), ηI(x), ηF (x)⟩ be neutrosophic sets,

then λ⊗ η, λ∩̃η and λ∪̃η are defined as follow:

λ∩̃η = {⟨x; ((λT o ηT ), (λI o ηI), (λF o ηF )) (x)⟩}
where λT o ηT , λI o ηI and λF o ηF are defined as

(λT o ηT )(x) =

{
∧

(y,z)∈Ax
[λT (y) ∨ ηT (z)] if Ax ̸= ϕ,

1 if Ax = ϕ.

(λI o ηI)(x) =

{
∧

(y,z)∈Ax
[λI(y) ∨ ηI(z)] if Ax ̸= ϕ,

1 if Ax = ϕ.

(λF o ηF )(x) =

{
∨

(y,z)∈Ax
[λF (y) ∧ ηF (z)] if Ax ̸= ϕ,

1 if Ax = ϕ.

λ∩̃η = {⟨x; ((λT ∩ ηT ), (λI ∩ ηI), (λF ∩ ηF ))(x)⟩},

where

(λT ∩ ηT )(x)=max{λT (x), ηT (x), 0.5}

(λI ∩ ηI)(x)=max{λI(x), ηI(x), 0.5}

(λF ∩ ηF )(x)=min{λF (x), ηF (x), 0.5}

and
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λ∪̃η = {⟨x; ((λT ∪ η), (λI ∪ ηI), (λF ∪ ηF ))(x)⟩},

where

(λT ∪ ηT )(x)=min{λT (x), ηT (x), 0.5}

(λI ∪ ηI)(x)=min{λI(x), ηI(x), 0.5}

(λF ∪ ηF )(x)=max{λF (x), ηF (x), 0.5}

Note that if NOP (S) is the group of all NOPs in OSG S,

then

tp̃.sq̃ = (ts)
u1 ∨ u2
v1 ∨ v2
w1 ∧ w2


∈ NOP (S) wherep̃ = (u1, v1, w1) and q̃ = (u2, v2, w2).

Example

General example of neutrosophic set. The premise “ Today is Sunny” or “Today will be

Sunny” it does not convey a fixed rate constituent structure; this may assume to 50% true,

45% indeterminate and 40% false at time tn where n ≥ 0,but at the time tn+1 may be alter at

55% true, 46% indeterminate, and 28% false,(as stated to the new conformation source) and

today at utter tn+60 the same premise may be 100% true, 0% indeterminate and 0% false (if

today indeed sunny) this structure is dynamic; so the truth value change from time to time,

another point of view, the truth value of the premise may be change from place to place

e.g;

the premise “It is sunny” in Islamabad, 100% true, 0% uncertain, and 0% false, but on the

move to another site the city of Karachi the truth rate will be altered and may be 0% true,

0% indeterminate and 100% false It is also alter w.r.t viewer(subject to the parameter of the

function T, I, F)

e.g;

“Simith is longer” (.42%, .64%, .56%) as stated to his mother, but (0.86%

0.23%, 0.7%) as stated to his personal Secretary, or (0.48%, 0.21%, 0.31%) as stated to his Boss.
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4. Neutrosophic generalized bi-ideals of ordered semigroups

In this part, we initiate the conceptions of NS, neutrosophic (∈,∈ ∨q)-SUBSG, neutrosophic

(∈,∈ ∨q)-FGB-I, neutrosophic (∈,∈ ∨q)-FB-I, neutrosophic (∈,∈ ∨q)-FL(resp. right)Is, neu-
trosophic level subset ,regular, weakly regular, related examples, theorems and propositions in

detail.

For simplicity throughout the paper λ will be denoted for NS instead ofλ =

⟨a; λT (a), λI(a), λF (a)⟩ unless otherwise stated.

Definition 4.1. A NS λ of an OSG S is called a neutrosophic (∈,∈ ∨q)-SUBSG of S if the

understated axiom is satisfied:

(∀t, s ∈ S) (p̃ = (u1, v1, w1), q̃ = (u2, v2, w2) ∈ [0, 1])
tp̃ ∈ λ; sq̃ ∈ λ⇒ (ts)

u1 ∨ u2
v1 ∨ v2
w1 ∧ w2


∈ ∨qλ


.

Definition 4.2. A neutrosophic set λ of an OSG S is said to be a neutrosophic (∈,∈ ∨q)-
FL(resp. right)I of S if the understated axioms are contented:

(i)(∀t, s ∈ S with t ≤ s)(p̃ = (u1, v1, w1) ∈ [0, 1])(sp̃ ∈ λ⇒ tp̃ ∈ ∨qλ).

(ii)(∀t, s ∈ S)(p̃ = (u1, v1, w1) ∈ [0, 1])(sp̃ ∈ λ⇒ (ts)p̃ ∈ ∨qλ(resp.(st)

p̃ ∈ ∨qλ)).
Note that aneutrosophic set λ of S is a neutrosophic (∈,∈ ∨q)-FI of S if it is both neutrosophic

(∈,∈ ∨q)-FLI and neutrosophic (∈,∈ ∨q)-FRI of S.

Definition 4.3. A neutrosophic set(NS) λ of an OSG S is said to be a neutrosophic (∈,∈ ∨q)-
FGB-I of S if the understating axioms are contented:

(i)(∀t, s ∈ S with t ≤ s)(p̃ = (u1, v1, w1) ∈ [0, 1])(sp̃ ∈ λ⇒ tp̃ ∈ ∨qλ).
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(ii)(∀t, a, s ∈ S t ≤ s)(p̃ = (u1, v1, w1), q̃ = (u2, v2, w2) ∈ [0, 1])
tp̃ ∈ λ; sq̃ ∈ λ⇒ (tas)

u1 ∨ u2
v1 ∨ v2
w1 ∧ w2


∈ ∨qλ


.

Definition 4.4. A neutrosophic set λ of an ordered semigroup S is said to be a neutrosophic

(∈,∈ ∨q)-FB-I of S if it is both a neutrosophic (∈,∈ ∨q)-FGB-I and neutrosophic(∈,∈ ∨q)-
SUBSG of S.

Theorem 4.5. Suppose that G is a GB-I of an OSG S and λ is a neutrosophic subset of S

such that:

λT (x) =

{
1 if x ∈ S −G,

≤ 0.5 if x ∈ G.

λI(x) =

{
1 if x ∈ S −G,

≤ 0.5 if x ∈ G.

λF (x) =

{
1 if x ∈ S −G,

≥ 0.5 if x ∈ G.
.

Then,

(i) λ is a neutrosophic(q,∈ ∨q)-FGB-I of S.

(ii) λ is a neutrosophic (∈,∈ ∨q)-FGB-I of S.

Proof. (i) Let t, s ∈ S and u1, v1, w1 ∈ [0, 1] with t ≤ s be such that

sp̃qλ where p̃ = (u1, v1, w1).

Then sp̃qλ implies that


λT (s) + u1 < 1,

λI(s) + v1 < 1,

λF (s) + w1 > 1.

.

Thus, s ∈ G but G is FGB-I.

Therefore, t ∈ G which implies that

λT (t) ≤ 0.5, λI(t) ≤ 0.5 and

λF (t) ≥ 0.5. Now, if u1 ≥ 0.5, v1 ≥ 0.5 and w1 ≤ 0.5,then λT (t) ≤ 0.5 ≤ u1, λI(tas) ≤ 0.5 ≤ v1

and λF (tas) ≥ 0.5 ≥ w1.Hence tp̃ ∈ λ.

If u1 < 0.5, v1 < 0.5, w1 > 0.5, then λT (t) + u1 < 0.5 + 0.5 = 1.

λI(t) + v1 < 0.5 + 0.5 = 1, λF (t) + w1 > 0.5 + 0.5 = 1,
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Therefore, tp̃qλ.

Thus, tp̃ ∈ ∨qλ.
Now assume t, a, s ∈ S and u1, u2, v1, v2, w1, w2 ∈ [0, 1] be such that tp̃qλ and sq̃qλ where

p̃ = (u1, v1, w1) and q̃ = (u2, v2, w2).

Then tp̃qλ implies


λT (t) + u1 < 1,

λI(t) + v1 < 1,

λF (t) + w1 > 1.

And sq̃qλ implies


λT (s) + u1 < 1,

λI(s) + v1 < 1,

λF (s) + w1 > 1.

.

Hence, t, s ∈ G but G is generalized bi-ideal. Therefore, tas ∈ G which implies that

λT (tas) ≤ 0.5, λT (tas) ≤ 0.5 and λF (tas) ≥ 0.5. Now, if u1 ≥ 0.5, v1 ≥ 0.5 and w1 ≤ 0.5, then

λT (tas) ≤ 0.5 ≤ u1 ≤ u1∨u1, λI(tas) ≤ 0.5 ≤ v1 ≤ v1∨v2 and λF (tas) ≥ 0.5 ≥ w1 ≥ w1∧w2.

Hence, (tas)
u1 ∨ u2
v1 ∨ v2
w1 ∧ w2


∈ λ

The similar case is also hold if u2 ≥ 0.5, v2 ≥ 0.5 and w2 ≤ 0.5.

If u1 < 0.5, v1 < 0.5, w1 > 0.5, u2 < 0.5, v2 < 0.5 and w2 > 0.5, then λT (tas) + u1 <

0.5 + 0.5 = 1, λI(tas) + v1 < 0.5 + 0.5 = 1, λF (tas) + w1 > 0.5 + 0.5 = 1, λT (tas) + u2 <

0.5 + 0.5 = 1, λI(tas) + v2 < 0.5 + 0.5 = 1 and λF (tas) + w2 > 0.5 + 0.5 = 1.

Consequently, λT (tas) + u1 ∨ u2 < 0.5 + 0.5 = 1,

λI(tas) + v1 ∨ v2 < 0.5 + 0.5 = 1, λF (tas) + w1 ∧ w2 > 0.5 + 0.5 = 1.

Resultantly, (tas)
u1 ∨ u2
v1 ∨ v2
w1 ∧ w2


qλ.

Thus, (tas)
u1 ∨ u2
v1 ∨ v2
w1 ∧ w2


∈ ∨qλ.

Consequently, λ is a neutrosophic (q,∈ ∨q)-FGB-I of S.

(ii) Assume that t, s ∈ S and u, v, w ∈ [0, 1] with t ≤ s be such that sp̃ ∈ λ where

p̃ = (u, v, w).
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Then sq̃ ∈ λ implies that


λT (t) ≤ u,

λI(t) ≤ v,

λF (t) ≥ w.
Thus, s ∈ G but G is FGB-I.

Therefore, t ∈ G which implies that λT (t) ≤ 0.5, λI(t) ≤ 0.5 and λF (t) ≥ 0.5. Now, if

u ≥ 0.5, v ≥ 0.5 and w ≤ 0.5, then λT (t) ≤ 0.5 ≤ u, λI(tas) ≤ 0.5 ≤ v and λF (tas) ≥ 0.5 ≥ w.

Hence tp̃ ∈ λ.

If u < 0.5, v < 0.5, w > 0.5, then λT (t) + u < 0.5 + 0.5 = 1, λI(t) + v < 0.5 + 0.5 =

1, λF (t) + w > 0.5 + 0.5 = 1, therefore, tp̃qλ.

Thus, tp̃ ∈ ∨qλ.
Now suppose that t, a, s ∈ S and u1, u2, v1, v2, w1, w2 ∈ [0, 1] be such that tp̃ ∈ λ and sq̃ ∈ λ

where p̃ = (u1, v1, w1) and q̃ = (u2, v2, w2).

Then tp̃ ∈ λ. Implies


λT (t) ≤ u1,

λI(t) ≤ v1,

λF (t) ≥ w1.

And sq̃ ∈ λ implies


λT (s) ≤ u2,

λI(s) ≤ v2,

λF (s) ≥ w2.

.

Thus, t, s ∈ G but G is FGB-I.

So, tas ∈ G which implies that λT (tas) ≤ 0.5, λI(tas) ≤ 0.5 and λF (tas) ≥ 0.5.

Now, if u1 ≥ 0.5, v1 ≥ 0.5 and w1 ≤ 0.5, then λT (tas) ≤ 0.5 ≤ u1 ≤ u1 ∨ u2, λI(tas) ≤ 0.5 ≤
v1 ≤ v1 ∨ v2 and λF (tas) ≥ 0.5 ≥ w1 ≥ w1 ∧ w2.

Hence, (tas)
u1 ∨ u2
v1 ∨ v2
w1 ∧ w2


∈ λ.

The similar case is also hold if u2 ≥ 0.5, v2 ≥ 0.5 and w2 ≤ 0.5.

If u1 < 0.5, v1 < 0.5, w1 > 0.5, u2 < 0.5, v2 < 0.5 and w2 > 0.5, then λT (tas)+u1 < 0.5+0.5 =

1,

λI(tas) + v1 < 0.5 + 0.5 = 1, λT (tas) + w1 > 0.5 + 9.5 = 1, λT (tas) + u2 < 0.5 + 0.5 =

1, λI(tas) + v2 < 0.5 + 0.5 = 1 and λF (tas) + w2 > 0.5 + 0.5 = 1.

Consequently, λT (tas) + u1 ∨ u2 < 0.5 + 0.5 = 1,

λI(tas) + v)1 ∨ v2 < 0.5 + 0.5 = 1,

λF (tas) + w1 ∧ w2 > 0.5 + 0.5 = 1.
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Resultantly, (tas)
u1 ∨ u2
v1 ∨ v2
w1 ∧ w2


qλ.

Thus, (tas)
u1 ∨ u2
v1 ∨ v2
w1

∧
w2


∈ ∨qλ.

Therefore, λ is a neutrosophic (∈,∈ ∨q)-FGB-I of S.

Theorem 4.6. If λ be a neutrosophic subset of an OSG S, then show that the understated

condition are equivalently:

(I) λ is a neutrosophic (∈,∈ ∨q)-FGB-I of S.

(II) (i) (∀s, t ∈ S such that s ≤ t)




λT (s) ≤ max{λT (t), 0.5},
λT (s) ≤ max{λT (t), 0.5},
λT (s) ≥ min{λT (t), 0.5}.



(ii) (∀t, a, s ∈ S)




λT (tas) ≤ max{λT (tas), λT (t), 0.5},
λT (tas) ≤ max{λI(tas), λT (t), 0.5},
λT (tas) ≥ min{λF (tas), λT (t), 0.5}.

.

Proof. (I) ⇒ (II): Let λ be a n neutrosophic (∈,∈ ∨q)-FGB-I of S and assume on con-

trary bases that λT (s) > max {λT (t), 0.5}, λI(sat) > max {λI(t), 0.5} and λF (s) < min

{λT (t), 0.5}, then ∃ u, v, w ∈ [0, 1] ∋ λT (s) > u ≥ max {λT (t), 0.5}, λI(tas) > v ≥ max

{λI(t), 0.5} and λF (s) ≤ w < min {λT (t), 0.5}. It is clear that λT (t) ≤ u, λI(sat) ≤ v and

λF (t) ≤ w shows that tp̃ ∈ λ but sq̃∈ ∨qλ which is a contradicts to the fact λ is a neutrosophic

(∈,∈ ∨q)-FGB-I.

Hence (i) hold. By similar argument we can also show that (ii) hold.

Thus, (I) ⇒ (II).

(II) ⇒ (I). Suppose (i) and (ii) hold, we need to manifest that λ is a neutrosophic (∈,∈ ∨q)-
FGB-I. For this let s, t ∈ S such that s ≤ t, u, v, w ∈ [0, 1] and tp̃ ∈ λ where p̃ = (u, v, w).

Therefore,

tp̃ ∈ λ implies that


λT (t) ≤ u,

λI(t) ≤ v,

λF (t) ≥ w.

.
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Since by (i)


λT (s) ≤ {λT (t), 0.5} ≤ u,

λI(s) ≤ {λT (t), 0.5} ≤ v,

λF (s) ≥ {λT (t), 0.5} ≥ w.

which shows that


λT (s) ≤ u,

λI(s) ≤ v,

λF (s) ≥ w.

.

Hence sp̃ ∈ λ. If u, v < 0.5 and w > 0.5,

then


λT (t) ≤ u < 0.5,

λI(t) ≤ v < 0.5,

λF (t) ≥ w > 0.5.

implies that λT (t) < 0.5, λI(t) < 0.5 and λF (t) > 0.5.

Consequently, λT (s) < 0.5, λI(s) < 0.5 and λF (s) > 0.5.

Therefore, λT (s)+u < 0.5+0.5 = 1, λI(s)+u < 0.5+0.5 = 1 and λF (s)+u > 0.5+0.5 = 1.

Hence, sp̃qλ, So sp̃ ∈ ∨qλ.
Similarly, for s, a, t ∈ S such that tp̃ ∈ λ, sq̃ ∈ λ.

⇒ (tas)
u1 ∨ u2
v1 ∨ v2
w1 ∧ w2


∈ ∨qλ.

Resultantly, λ is a neutrosophic(∈,∈ ∨q)-FGB-I of S.

Since every neutrosophiuc (∈,∈ ∨q)-FB-I of S is a neutrosophic (∈,∈ ∨q)-FGB-I of S but the

opposite statement is generally inncorrect.

Definition 4.7. Let λ be a neutrosophic subset(NSUBS) of an OSG S, for any u, v, w ∈ [0, 1]

the set

U(λ, p̃) =


λT (x) ≤ u,

x ∈ S| λI(x) ≤ v,

λF (x) ≥ w.

 is SAID TO BE a neutrosophic level subset(NLSUBS) of λ.

Theorem 4.8. Suppose that λ is a neutrosophic subset of an OSG S. Then show that λ is a

neutrosophic (∈,∈ ∨q)-FGB-I of S ⇔ U(λ, p̃)(̸= ϕ) is FGB-I of S for (u, v ∈ (0, 0.5], w ∈
(0, 0.5]).

Proof. Let λ is a neutrosophic (∈,∈ ∨q)-FGB-I of S. Consider such that s, t ∈ S and

t ∈ U(λ, p̃).
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Then

λT (t) ≤ u,

λI(t) ≤ v,

λF (t) ≥ w.

.

Since λ is a neutrosophic (∈,∈ ∨q)-FGB-I. Therefore,

by Theorem [4.2],


λT (s) ≤ max{λT (t), 0.5},
λI(s) ≤ max{λI(t), 0.5},
λF (s) ≥ min{λF (t), 0.5}.

which implies that


λT (s) ≤ max{λT (t), 0.5} = u,

λI(s) ≤ max{λI(t), 0.5} = v,

λF (s) ≥ min{λF (t), 0.5} = w.

because (u, v ∈ (0.5, 1], w ∈

(0, 0.5]).

Thus, s ∈ U(λ, p̃).

Similarly, for s, a, t ∈ S such that s, t ∈ U(λ, p̃) implies sat ∈ U(λ, p̃).

Hence, U(λ, p̃) is a FGB-I of S.

⇐=, assume that U(λ, p̃) is FGB-I of S for (u, v ∈ (0.5, 1], w ∈ (0, 0.5]).

Let s, t ∈ S ∋ s ≤ t.

Suppose by contradiction


λT (s) > max{λT (t), 0.5},
λI(s) > max{λI(t), 0.5},
λF (s) < min{λF (t), 0.5}.

.

Then for some u, v ∈ (0.5, 1], w ∈ (0, 0.5],


λT (s) > u ≥ max{λT (t), 0.5},
λI(s) > v ≥ max{λI(t), 0.5},
λF (s) < w ≤ min{λF (t), 0.5}.

.

Implies that t ∈ U(λ, p̃) but s∈U(λ, p̃) which is a contradicts to the fact that U(λ, p̃) is

FGB-I of S.

Therefore,


λT (s) ≤ max{λT (s), λT (t), 0.5},
λI(s) ≤ max{λI(s), λI(t), 0.5},
λF (s) ≥ min{λF (s), λF (t), 0.5}.

.

Similarly, for s, a, t ∈ S,




λT (tas) ≤ max{λT (t), 0.5},
λT (tas) ≤ max{λT (t), 0.5},
λT (tas) ≥ min{λT (t), 0.5}.

 also hold.

Thus, by Theorem [4.2], λ is a neutrosophic (∈,∈ ∨q)-FGB-I of S.
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Example

Let S = {a, b, c, d} be an OSG with understated multiplication table and ordered relation

“ ≤ ” as follows: ≤:= {(a, a), (b, b), (c, c), (d, d), (a, b)}

. a b c d

a a a a a

b a a a a

c a a b a

d a a b b

Table 1. Multiplicative table of Ordered Semigroup



S λT (x) λI(x) λF (x)

a 0.18 0.15 0.30

b 0.20 0.19 0.28

c 0.17 0.16 0.33

d 0.20 0.20 0.32

Table 2. Example of Neutrosophic (∈,∈ ∨q)-fuzzy generalized bi-ideals

Using definition (4.3) λ is neutrosophic (∈,∈ ∨q)-FGB-I where p̃ = (0.25, 0.20, 0.22) and

q̃ = (0.26, 0.30, 0.28) ∈ [0, 1]

Definition 4.9. Let S be an OSG. The neutrosophic characteristic function XA =

(XλT
, XλI

, XλF
) of A = ⟨x, (λT , λI , λF )(x)⟩ is defined as

XλT
(x) =

{
1 if x ∈ A,

0 ifnot.

XλI
(x) =

{
1 if x ∈ A,

0 ifnot.

XλF
(x) =

{
0 if x ̸∈ A,

1 ifnot.

Theorem 4.10. A non-empty set B of an OSG S is a FGB-I of S ⇔ the characteristic function

XB is a neutrosophic (∈,∈ ∨q)-FGB-I of S.

Proof. The proof is follows from theorem [4.3].

Theorem 4.11. Suppose S is an OSG and L is a L(resp. right)I of S. If λ is defined by the

neutrosophic subset of S

λT (x) =

{
1 if x ∈ S − L,

≤ 0.5 if x ∈ L.

λI(x) =

{
1 if x ∈ S − L,

≤ 0.5 if x ∈ L.

λF (x) =

{
1 if x ∈ S − L,

≥ 0.5 if x ∈ L.

Then

(i) λ is a neutrosophic (q,∈ ∨q)-FL(res. right)I of S.

(ii) λ is a neutrosophic (∈,∈ ∨q)-FL(res. right)I of S.
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Proof. .

Proved by theorem [4.1].

Theorem 4.12. Assume that S is an OSG and I is an ideal of S. If λ be a neutrosophic subset

of S defined as in Theorem [4.5], then λ is both a neutrosophic (q,∈ ∨q)-FI and a neutrosophic

(∈,∈ ∨q)-FI of s.

Proof. the proof follow by combining Theorem [4.5] and Theorem [4.1].

Theorem 4.13. If λ be a NSUBS of an OSG S, then show that the understating condition

are equivalently:

(I) λ is a neutrosophic (∈,∈ ∨q)-FL(resp. right)I of S.

(II) (i)(∀s, t ∈ S suchthat s ≤ t)




λT (s) ≤ max{λT (t), 0.5},
λI(s) ≤ max{λT (t), 0.5},
λF (s) ≥ min{λT (t), 0.5}.

 .

(ii) (∀s, t ∈ S)




λT (st) ≤ max{λT (t), 0.5}, (resp.max{λT (s), 0.5}),
λI(st) ≤ max{λI(t), 0.5}, (resp.max{λI(s), 0.5}),
λF (st) ≥ min{λF (t), 0.5}. (resp.min{λF (s), 0.5})

 .

Proof. Proved by theorem [4.2].

Theorem 4.14. Suppose that λ is a neutrosophic subset of an OSG S. Then λ is a neutrosophis

(∈,∈ ∨q)-FL(resp. right)I of S ⇔

U(λ, p̃)(̸= ϕ)

 λT (x) ≤ u,

x ∈ S| λI(x) ≤ v,

λF (x) ≥ w.

 is a L(resp. right)I of S for (u, v ∈ (0, 0.5], w ∈

(0, 0.5]).

Proof. Proved by theorem [4.3].

Definition 4.15. If S is an OSG, then S is RG ⇔ ∀ x ∈ S ∃ a ∈ S ∋ x ≤ xax or A ⊆ (XSX]

∀ X ⊆ S.

Definition 4.16. If S is an OSG, then S is left weakly RG ⇔ x ∈ S ∃ a, b ∈ S ∋ x ≤ axay or

X ⊆ ((SX)2] ∀ X ⊆ S.
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Proposition

Let λ be a neutrosophic subset of a regular OSG S. Then every neutrosophic (∈,∈ ∨q)-FGB-I

of S is a neutrosophic (∈,∈ ∨q)-FB-I of S.

Proof. Assume that s, t ∈ S and λ is a neutrosophic (∈,∈ ∨q)-FGB-I of S. Since S is RG so

∃ x ∈ S ∋ s ≤ sxs. =⇒ λT (s) ≤ max{λT (sxs), 0.5}.

Hence λT (st) ≤ max{λT (sxst), 0.5}
= max{λT (s(xs)t), 0.5}
≤ max{λT (s), λT (t), 0.5},
by similar argument

λI(st) ≤ max{λI(s), λI(t), 0.5} and λF (st) ≥ min{λF (s), λF (t), 0.5} also hold.

Hence λ is a neutrosophic (∈,∈ ∨q)-FB-I of S.

Proposition

Consider that λ is a neutrosophic subset of a left weakly regular OSG S.Then every neutro-

sophic (∈,∈ ∨q)-FGB-I of S is a neutrosophic (∈,∈ ∨q)-FB-I of S.

Proof. Proved by proposition [3].

5. Lower Parts of Neutrosophic (∈,∈ ∨q)-generalized bi-ideals

In this section, we will start the fundamental operations of the lower parts of the neutro-

sophic subset, the neutrosophic characteristic function(CF) lower parts, left (resp. right)RG,

left (resp. right)SMP, the related theorems and the lammas of the lower parts.

Definition 5.1. Let λ be a neutrosophic subset of an OSG S, we stated the LP as λ¯ =

⟨x, λT̄ , λĪ , λF̄ ⟩ of λ as follows;

λT̄ (x)=max{λT (x), 0.5}

λĪ(x)=max{λI(x), 0.5}

λF̄ (x)=min{λF (x), 0.5}
For any subset A ̸= ϕ and neutrosophic subsets(NSUBSs) λ of OSG S, then LP of neutrosophic

CF (XA)̄ will be denoted by XĀ.
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Definition 5.2. Let λ and η any tow NSUBSs of an OSG S, we stated (λ∩̃η)̄ , (λ∪̃η)̄ and

(λ⊗ η)̄ as follows:

(λ∩̃η)̄ (x)=max{λ∩̃η(x), 0.5}

(λ∪̃η)̄ (x)=max{λ∪̃η(x), 0.5}

(λ⊗ η)̄ (x)=max{λ⊗ η(x), 0.5}.

Lemma 5.3. Let λ and η be any tow NSUBSs of an OSG S, then (λ )̄̄ = λ¯ where λ¯ =

⟨x, λT̄ , λĪ , λF̄ ⟩ is the LP of λ.

Proof. Assume that λ0̄ is the lower part of λ, then by definition [5.2 ]

λT̄ (x)=max{λT (x), 0.5}
(λT̄ )T̄ (x)=max{{max{λT (x), 0.5}}, 0.5}
=max{λT (x), 0.5} = λT̄ (x)

Similarly (λĪ)Ī = λĪ and (λF̄ )F̄ = λF̄ also hold.

Thus, (λ )̄̄ = λ .̄

Lemma 5.4. Let λ and η be any tow NSUBSs of an OSG S, then

• (λ∩̃η)̄ = λ¯∩̃η .̄

• (λ∪̃η)̄ = λ¯∪̃η¯
• (λ⊗ η)̄ = λ¯⊗ η .̄

Proof. Proof is straightforward.

Definition 5.5. Let S be an OSG. Then the LP of the neutrosophic CF XĀ = (X λ̄T
, X λ̄I

,

X λ̄F
) of A = ⟨x, (λT , λI , λF )(x)⟩ is defined as

X λ̄T
(x) =

{
0.5 if x ∈ A,

1 otherwise.

X λ̄I
(x) =

{
0.5 if x ∈ A,

1 otherwise.

X λ̄F
(x) =

{
1 if x ̸∈ A,

0.5 otherwise.
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Theorem 5.6. Let A = ⟨x, (λT , λI , λF )(x)⟩ and B = ⟨x, (ηT , ηI , λF )(x)⟩ are any tow

NSUBS of an OSG S, then

(1) (XA∩̃XB )̄ = XĀ∩B

(2) (XA∪̃XB )̄ = XĀ∪B

(3) (XA ⊗XB )̄ = X (̄AB].

Proof. The proof of (1) and (2) is simple here. So for the proof of (3), Suppose that x ∈ (AB],

then X (̄AB](x) = 0.5. Since x ∈ (AB], then x ≤ ab for some a ∈ A and b ∈ B implies that

(a, b) ∈ Ax.Thus Ax ̸= ϕ. Therefore,

(XA ⊗XB )̄ (x) = {(XA ⊗XB)(x), 0.5}
Since a ∈ A and b ∈ B, therefore, XλT

(x) = 0.5 = XηT (b). Hence,

(XλT
◦XηT )(x) =

{
∧

(a, b)∈Ax
[XλT

(a) ∨XηT (b)]
}

=
{

∧
(a, b)∈Ax

[0.5, 0.5]
}
= 0.5.

Similarly,

(XλT
◦XηT )(x) = 0.5 and

(XλF
◦XηF )(x) = 0.5.

Consequently, (XA ⊗XB)(x) = 0.5

⇒ (XA ⊗XB )̄ (x) = 0.5.

Thus (XA ⊗XB )̄ (x) = X (̄AB].

If x ̸∈ (Ab], then X (̄AB](x) = 1. Let (y, z) ∈ Ax, then

(XλT
◦XηT )(x) =

{
∧

(y,z)∈Ax
[XλT

(y) ∨XηT (z)]
}

Since(y, z) ∈ Ax then x ≤ yz. If y ∈ A and z ∈ B, then yz ∈ AB implies that x ∈ (AB]

which goes to contradiction. Therefore, if y ̸∈ A and z ∈ B, then XλT
(y) = 1, XηT (b) = 0.5.

Hence

(XλT
◦XηT )(x) =

{
∧

(y,z)∈Ax
[1 ∨ 0.5]

}
= 1.

The similar case hold if y ∈ A and z ̸∈ B. By similar way,

(XλI
◦XηI )(x) = 1 and (XλF

◦XηF )(x) = 1.
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Consequently, (XA ⊗XB)(x) = 1.

Hence, (XA ⊗XB )̄ = X (̄AB].

Lemma 5.7. The LP X¯A of the CF XA of A is a neutrosophic (∈,∈ ∨q)-FGB-I of an OSG

S ⇔ A is a GB-I of S.

Proof. Let A is a GB-I of S, then by theorem [4.4], X¯A is a neutrosophic (∈,∈ ∨q)-FGB-I of

S.

⇐, suppose that X¯A is a neutrosophic (∈,∈ ∨q)-FGB-I of S.

Let x, y ∈ S ∋ x ≤ y and y ∈ A, then X¯A(y) = 0.5.

Since X¯A is a neutrosophic (∈,∈ ∨q)-FGB-I of S.

Thus X¯A(x) ≤ max{X¯A(y), 0.5} = 0.5. Also X¯A ≥ 0.5 (always).

Therefore, X¯A(x) = 0.5 shows that x ∈ A.

Similarly, for x, y, z ∈ S and x, z ∈ A, then X¯A(y) = 0.5 = X¯A(z).

Since X¯A is a neutrosophic (∈,∈ ∨q)-FGB-I of S.

So X¯A(xyz) ≤ max{X¯A(x), X¯A(z), 0.5} = 0.5. also X¯A(xyz) ≥ 0.5 (always).

Therefore, X¯A(xyz) = 0.5. Shows that xyz ∈ A.

Hence, A is a GB-I of S.

Lemma 5.8. The LP X¯A of the CF XA of A is a neutrosophic (∈,∈ ∨q)-FL(resp. right)I

of S ⇔ A is L(resp. right)I of S.

Proof. Follows from the lemma [5.4].

Definition 5.9. Let S be an OSG . Then S is L(resp. right)RG if ∀ a ∈ S, ∃ x ∈ S ∋ a ≤ xa2

(resp.a ≤ a2x) or A ⊆ (SA2] (resp. A ⊆ (A2S]).

Definition 5.10. S is L(resp. right)SMP ∀ L(resp. right)I A of S, A=S. S is SMP if it is both

left and right SMP , and is left, right and RG then S is CRG.

Lemma 5.11. An OSG S is CRG ⇔ ∀ A ⊆ S, we have, A ⊆ (A2SA2].

Lemma 5.12. An OSG S is L(resp. right)SMP ⇔ ∀ (Sa]=S, (resp. (aS]=S ∀ a ∈ S.

Theorem 5.13. If S is RG, left and right SMP, then λ (̄a) = λ (̄b) ∀ a, b ∈ S where λ is a

neutrosophic (∈,∈ ∨q)-FGB-I of S.

Proof. Suppose that S is RG, left and right SMP and λ is a neutrosophic (∈,∈ ∨q)-FGB-I

of S. Let Es = {s ∈ S|s ≤ s2}. Since S is RG, therefore ∀ a ∈ S, ∃ x ∈ S ∋ a ≤ axa also

ax ≤ axax = (ax)2. Thus ax ∈ Es implies that Es ̸= ϕ. Now let b, e ∈ S, using Lemma
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[3.3.7], S = (Sb] and S = (bS]. Since e ∈ S it implies that e ∈ (Sb] and e ∈ (bS], then e ≤ xb,

by for some x, y ∈ S.

Hence e2 ≤ (by)(xb) = b(yx)b. Now as λ is a neutrosophic (∈,∈ ∨q)-FGB-I of S.

λT (e
2) ≤max{λT (b(yx)b), 0.5}

≤ max{λT (b), λT (b), 0.5}

=max{λT (b), 0.5}

λT (e
2) ∨ 0.5 ≤ max{λT (b), 0.5} ∨ 0.5

=max{λT (b), 0.5}

λ T̄ (e
2) ≤ λ T̄ (b)

Since e ∈ Es, so e ≤ e2 that is λT (e) ≤ max{λT (e2), 0.5}
implies that λ T̄ (e) ≤ λ T̄ (b).

By similar way λ T̄ (e) ≤ λ Ī(b) and λ F̄ (e) ≥ λ F̄ (b). Therefore, λ¯ is a constant on Es. Now

since S is RG so for a ∈ S, ax, xa ∈ Es follows that λ T̄ (ax) = λ T̄ (b) = λ T̄ (xa). Since

a ≤ ax(axa) = (ax)a(xa). Therefore

λT (a) ≤ max {λT ((ax)a(xa)), 0.5}

≤ max {λT (ax), λT (xa), 0.5}

= max {(λT (ax), 0.5), (λT (xa), 0.5)}

λT (a) ∨ 0.5= max {(λT (ax), 0.5), (λT (xa), 0.5)}
∨
0.5

λ T̄ (a) ≤ max {λ T̄ (ax), λ T̄ (xa)} = λ T̄ (b).

By similar way, λ Ī(a) ≤ λ Ī(b), λ F̄ (a) ≥ λ F̄ (b). Since b ∈ (Sa], (aS], therefore, b ≤ sa, at

for some s, t ∈ S. Thus

λT (b
2) ≤ max {λt(a(ts)a), 0.5}
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≤ max{λT (a), λT (a), 0.5}

= max {λT (a), 0.5}

λT (b
2) ≤ max{λT (a), 0.5} ∨ 0.5

=max{λT (a), 0.5}

λ T̄ (b
2) ≤ λ T̄ (a)

since b ∈ Es so b ≤ b2 that is λT (b) ≤ max {λT (b2), 0.5} implies that λ T̄ (b) ≤ λ T̄ (b
2).

Thus λ T̄ (b) ≤ λ T̄ (b
2) ≤ λ T̄ (a).

By similar way λ Ī(b) ≤ λ Ī(a) and λ F̄ (b) ≥ λ F̄ (a).

Thus λ T̄ (b) = λ T̄ (a), λ Ī(b) = λ Ī(a), and λ F̄ (b) = λ F̄ (a). Resultantly, λ (̄a) = λ (̄b).

Theorem 5.14. If S is an OSG, then it is RG ⇔ ∀ neutrosophic (∈,∈ ∨q)-FGB-I of S,

λ (̄a) = λ (̄a2)∀a ∈ S.

Proof. The direct part of the theorem derived from Theorem [5.8].

⇐, suppose that a ∈ S, assume B(a2) = (a2 ∪ a2Sa2] is GB-I of S

X¯B(a2)(a) =

{
0.5 if a ∈ B(a2)

1 otherwise

is a neutrosophic (∈,∈ ∨q)-FGB-I S, X¯B(a2)(a
2) = X¯B(a2)(a). Thus,a ∈ B(a2), hence a ≤ a2

or a ≤ a2xa2. Now if a ≤ a2, then a ≤ a2 = aa ≤ a2a2 = aaa2 ≤ a2aa2 ∈ a2Sa2 and

a ∈ (a2Sa2]. If a ≤ a2xa2, then a ∈ (a2Sa2]. ∴, S is CRG.

Lemma 5.15. If S is an OSG, then the understating axioms are equivalently:

(1) S is RG.

(2) G ∩ L ⊆ (GL] ∀ GB-I G and LI L of S.

(3) G(k) ∩ L(k) ⊆ (G(k)L(k)] ∀ k ∈ S.

Theorem 5.16. If S be an OSG, then the understating condition are equivalently:

(I) S is RG.

(II) (λ⊗ η)̄ ⪯ (λ∩̃η)̄ ∀ neutrosophic (∈,∈ ∨q)-FGB-I of λ and neutrosophic (∈,∈ ∨q)-FLI η
of S.

Proof. (I) ⇒ (II):. Assume that S is RG, λ is a neutrosophic (∈,∈ ∨q)-FGB-I and η is a neu-

trosophic (∈,∈ ∨q)-FLI of S. Then ∃ x ∈ S ∋ a ≤ axa ≤ (axa)(xa) implies that (axa, xa) ∈ Aa

Neutrosophic Sets and Systems, Vol. 51, 2022                                                                               703

Faiz Muhammad Khan, Madad Khan and Ihsanullah, Classification of Ordered Semigroups Through Neu-

trosophic Generalized bi-ideals with Applications



which shows that Aa ̸= ϕ. Hence

(λT ◦ ηT )̄ (a) = max{(λT ◦ ηT )(a), 0.5}

= max
{(

∧
(y, z)∈Aa

[λT (y) ∨ ηT (z)].0.5
)}

≤ max {(λT (axa) ∨ ηT (xa), 0.5)}
Since λ is a neutrosophic (∈,∈

∨
q)-FGB-I and η is a neutrosophic (∈,∈ ∨q)-FLI of S.

Then, λT (axa) ≤ max {λT (a), λT (a), 0.5}= max{λT (a), 0.5} and λT (xa) ≤ max

{λT (a), 0.5}. Therefore, (λT ◦ ηT )̄ (a) ≤ (λT ∩ ηT )̄ (a).
Similarly, (λI ◦ ηI )̄ (a) ≤ (λI ∩ ηI )̄ (a) and (λF ◦ ηF )̄ (a) ≥ (λF ∩ ηF )̄ (a)
Consequently, (λ⊗ η)̄ ⪯ (λ∩̃η)̄
⇐, suppose that (λ ⊗ η)̄ ⪯ (λ∩̃η)̄ . To demonstrate that S is RG, by Lemma [5.10], it is

adequate to demonstrate that G ∩ L ⊆ (GL] for GB-I G and LI L of S. Let x ∈ G ∩ L, then
x ∈ G and x ∈ L. Thus by Lemma [5.10], X¯G is a neutrosophic (∈,∈ ∨q)-FGB-I and X L̄

is a neutrosophic (∈,∈ ∨q)-FLI of S. By supposition, (XG ⊗XL)̄ (x) ≤ (XG∩̃XL)̄ (x)= max

{(XG∩̃XL)(x), 0.5}.
Since, x ∈ G and x ∈ L, then XG(x) = 0.5 or XG(x) ∨ 0.5 = 0.5 = 0.5 ∨ 0.5 implies

that X¯G(x) = 0.5 similarly X L̄(x) = 0.5 which show that X¯G∩̃X L̄ = 0.5. Follows that

(XG∩̃XL)̄ (x) = 0.5. By Lemma [5.10], (XG∩̃XL)̄ (x) = X (̄GL] = 0.5 therefore, x ∈ (GL].

Hence,S is RG.

Lemma 5.17. If S be an OSG, then the understating axioms are equivalently:

(1) S is RG.

(2) G ∩ T ⊆ (GT ] ∀ GB-I G and ideal T of S.

(3) G(k)
⋂
L(k) ⊆ (G(k)L(a)] ∀ k ∈ S.

Theorem 5.18. If S be an OSG, then the understating condition are equivalently:

(I) S is RG.

(II) (λ⊗ η ⊗ λ)̄ ⪯ (λ∩̃η)̄ ∀ neutrosophic (∈,∈ ∨q)-FGB-I λ and neutrosophic (∈,∈ ∨q)-FLI
η of S.

Proof. The proof of the theorem can be obtained by following the same procedure as follows

in the proof of Theorem [5.11].

Lemma 5.19. If S be an OSG, then the understating axioms are equivalently:

(1) S is RG.
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(2) R ∩G ∩ L ⊆ (RGL] ∀ RI R, GB-I G and LI L of S.

(3) R(k) ∩G(k) ∩ L(k) ⊆ (R(k)G(k)L(k)] ∀ k ∈ S.

Theorem 5.20. If S be an OSG, then the understating condition are equivalent:

(I) S is RG.

(II) (λ ⊗ η ⊗ ξ)̄ ⪯ (λ∩̃η∩̃ξ)̄ ∀ neutrosophic (∈,∈ ∨q)-FRI λ, neutrosophic (∈,∈ ∨q)-FGB-I

η and neutrosophic (∈,∈ ∨q)-FLI ξ of S.

Proof. Follows from the theorem [5.11].

Lemma 5.21. If S be an OSG, then the understating axioms are equivalently:

(1) S is LWRG.

(2) T ∩ L ⊆ (TL] ∀ ideal T and LI L of S.

(3) T (k) ∩ L(k) ⊆ (T (k)L(k)] ∀ k ∈ S.

Theorem 5.22. If S be an OSG, then the understating condition are equivalently:

(I) S is LWRG.

(II) (λ⊗ η)̄ ⪯ (λ∩̃η)̄ ∀ neutrosophic (∈,∈ ∨q)-FI λ and neutrosophuic (∈,∈ ∨q)-FLI η of S.

Proof. Follows from the Theorem [5.11] and Lemma [5.16].

Lemma 5.23. If S be an OSG, then the understating condition are equivalent:

(1) S is LWRG.

(2) T ∩G ⊆ (TG] ∀ ideal T and GB-I G of S.

(3) T (k) ∩G(k) ⊆ (T (k)G(k)] ∀ k ∈ S.

Theorem 5.24. If S be an OSG, then the understating condition are equivalently:

(I) S is LWRG.

(II) (λ ⊗ η)̄ ⪯ (λ∩̃η)̄ ∀ neutrosophic (∈,∈ ∨q)-FI λ and neutrosophic (∈,∈ ∨q)-FGB-I η of

S.

Proof. Follows from Theorem [5.11] and Lemma [5.18].
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Abstract:  

  In this paper a property which can be used to Baire spaces in fy. neutrosophic top. 

Spaces (simply as fy. – fuzzy, top. – topological) are introduced and studied. For this 

purpose, introduced fy. neutrosophic  set, fy. neutrosophic  set, fy. neutrosophic 

dense, fy. neutrosophic nowh. (Simply as nowh. - nowhere) dense, fy. neutrosophic one 

(one denotes first) category, fy. neutrosophic two (two denotes second) category and fy. 

neutrosophic re. (Simply as re. – residual) set are defined. Also, some characterizations 

about these concepts are obtained. 
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set, Fy. neutrosophic Baire spaces, Fy. neutrosophic one and two category. 
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1. Introduction: 

The concept of fy. sets were introduced by L.A. Zadeh in 1965 [10]. Then the fy. set 

theory is extension by many researchers. The important concept of fuzzy topological space 

was offered by C.L. Chang [3] and from that point forward different ideas in topology have 
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been reached out to fuzzy topological space. Since then much attention has been paid to 

generalize the basic concepts of general topology in fuzzy setting and thus a morden theory 

of fuzzy topology has been developed. The concept of fuzzy   Baire spaces was 

introduced and studied by G. Thangaraj and E. Poongothai in [7]. The concept of 

neutrosophic sets was defined with membership, non-membership and indeterminacy 

degrees. In 2017, Veereswari [9] introduced fy. neutrosophic top. spaces. This concept is 

the solution and representation of the problems with various fields. 

In this paper, we define new concepts of fy. neutrosophic  set, fy. neutrosophic 

 set, fy. neutrosophic dense, fy. neutrosophic nowh. dense, fy. neutrosophic one and 

two category sets, fy. neutrosophic re. set, fy. neutrosophic Baire spaces, fy. neutrosophic 

one and two category spaces in fy. neutrosophic top. spaces, and we also discussed some 

new properties and examples based of this defined concept. 

2. Preliminaries:  

Definition 2.1 [2]: 

A fy. neutrosophic set  on the universe of discourse  is defined as 

,  where  and 0  

 

With the condition .  

Definition 2.2 [2]: 

A fy. neutrosophic set  is a subset of a fy. neutrosophic set  (i.e.,)  for all  

if  
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Definition 2.3 [2]: 

Let  be a non-empty set, and  , 

 be two fy. neutrosophic sets. Then 

  

  

Definition 2.4 [2]: 

The difference between two fy. neutrosophic sets  and  is defined as 

 

Definition 2.5 [2]: 

A fy. neutrosophic set  over the universe  is said to be null or empty fy. 

neutrosophic set if    It is denoted by . 

Definition 2.6 [2]: 

A fy. neutrosophic set  over the universe  is said to be absolute (universe) fy. 

neutrosophic set if    It is denoted by . 

Definition 2.7 [2]: 

The complement of a fy. neutrosophic set  is denoted by   and is defined as 

  where 

 

The complement of fy. neutrosophic set  can also be defined as  
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Definition 2.8 [1]: 

A fy. neutrosophic topology on a non-empty set  is a  of fy. neutrosophic sets in 

  

     

     

     

Satisfying the following axioms. 

In this case the pair ,  is called fy. neutrosophic top. space and any Fy. neutrosophic set 

in   is known as fy. neutrosophic open set in  

Definition 2.9 [1]: 

The complement  of a fy. neutrosophic set  in a fy. neutrosophic top. 

space  is called fy. neutrosophic closed set in   

Definition 2.10 [1]: 

Let  be a fy. neutrosophic top. space and   be a 

fy. neutrosophic set in   Then the closure and interior of  are defined by  

  

   

3. On Fuzzy Neutrosophic Nowhere Dense Sets 

Throughout the present paper,  denote the fy. neutrosophic top. spaces. Let  be a 

fy. neutrosophic set on  The fy. neutrosophic interior and closure of  is denoted by 

,  respectively. A fy. neutrosophic set  is defined to be fy. 
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neutrosophic open set  if . The complement of a fy. 

neutrosophic open set is called fy. neutrosophic closed set . 

Definition 3.1: 

A fy. neutrosophic set  in a fy. neutrosophic top. space  is called a fy. 

neutrosophic  set if , where   for  

Definition 3.2: 

A fy. neutrosophic set  in a fy. neutrosophic top. space  is called a fy. 

neutrosophic  set in  if , where  for  

Definition 3.3: 

A fy. neutrosophic set  in a fy. neutrosophic top. space  is called a fy. 

neutrosophic semi-open if  The complement of  in  is 

called a fy. neutrosophic semi-closed set in  

Definition 3.4: 

A fy. neutrosophic set  in a fy. neutrosophic top. space  is called a fy. 

neutrosophic dense if there exist no   in  s.t  That is, 

 

Definition 3.5: 

A fy. neutrosophic set  in a fy. neutrosophic top. space  is called a fy. 

neutrosophic nowh. dense set if there exist no non-zero    in  s.t 

 That is, . 

Example 3.1: 
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Let  and consider the family  where  

 

 

 

Thus  is a fy. neutrosophic top. spaces. 

Now  and . This gives that 

  and  are fy. neutrosophic nowh. dense sets in   

Definition 3.6: 

Let  be a fy. neutrosophic top. space. A fy. neutrosophic set  in  is 

called fy. neutrosophic one category set if , where s are fy. neutrosophic 

nowh. dense sets in   Any other fy. neutrosophic set in  is said to be of fy. 

neutrosophic two category. 

Definition 3.7: 

A fy. neutrosophic top. space  is called fy. neutrosophic one category space if 

the fy. neutrosophic set  is a fy. neutrosophic one category set in  That is   

, where s are fy. neutrosophic nowh. dense sets in  Otherwise 

  will be called a fy. neutrosophic two category space. 

Definition 3.8: 

Let  be a fy. neutrosophic one category set in  Then  is called fy. 

neutrosophic re. set in   

Proposition 3.1: 
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If  is a  in  with  then  is a Fy. neutrosophic nowh. dense 

set in  

Proof: 

Let  is a  . Then    

Now . and hence  is a fy. neutrosophic nowh. dense set 

in .  

Proposition 3.2: 

If   is a fy. neutrosophic nowh. dense set in  then   

Proof: 

Let  be a fy. neutrosophic nowh. dense set in . Now  gives 

that  . Hence, we have    

Remark 3.1: 

 The complement of a fy. neutrosophic nowh. dense set need not be a fy. neutrosophic 

nowh. dense set. For, consider the following example. 

Example 3.2: 

Let  and consider the family  where  

 

 

 

Now  is a fy. neutrosophic nowh. dense sets in . 
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But  . Therefore  is not a fy. neutrosophic nowh. dense sets in 

. 

Proposition 3.3: 

If   is a fy. neutrosophic dense,  in  s.t  then  is a fy. 

neutrosophic nowh. dense set in  

Proof: 

Let  be a  in  s.t  Now  gives that  

 [  is a  in ] Then we have 

and hence   

Therefore  is a fy. neutrosophic nowh. dense set in . 

Proposition 3.4: 

If   is a non-zero fy. neutrosophic nowh. dense set in , is a fy. neutrosophic nowh. 

dense set then  is fy. neutrosophic semi-closed set in .  

Proof: 

Let  be a fy. neutrosophic nowh. dense set in . Then . 

and therefore  . Hence,  is fy. neutrosophic semi-closed set in 

. 

Proposition 3.5: 

If a   is a fy. neutrosophic nowh. dense set in  if and only if  

Proof: 
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Let  be a  in . Then by proposition 3.1,  is a 

fy. neutrosophic nowh. dense set in  Conversely, let is a fy. neutrosophic nowh. 

dense set in  then , which gives that , [since   

is  in . 

Proposition 3.6: 

If  is a fy. neutrosophic nowh. dense set in , then  is a fy. neutrosophic dense 

set in .  

Proof: 

Let  be a fy. neutrosophic nowh. dense set in  

Then by proposition 3.2, we have,  Now 

 Therefore  is a fy. neutrosophic dense set in 

.  

Proposition 3.7: 

If  is a fy. neutrosophic nowh. dense set and  in , then  is a fy. 

neutrosophic nowh. dense set in .  

Proof: 

Let  be a  in s.t,  Now 

  Hence  is a fy. 

neutrosophic nowh. dense set in .  

Proposition 3.8: 
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If  is a fy. neutrosophic nowh. dense set in , then  is a fy. neutrosophic 

nowh. dense set in .  

Proof: 

Let Now  

. 

Hence  is a fy. neutrosophic nowh. dense set in  

Proposition 3.9: 

If  is a fy. neutrosophic nowh. dense set in , then  is a fy. neutrosophic 

dense set in .  

Proof: 

  By proposition 3.8, we have   is a fy. neutrosophic nowh. dense set in 

By proposition 3.7, we have is a fy. neutrosophic nowh. dense set in 

 

Proposition 3.10: 

Let  be a fy. neutrosophic dense set in  

If   is any fy. neutrosophic set in , then  is a fy. neutrosophic nowh. dense set 

in ,  if and only if is a fy. neutrosophic nowh. dense set in . 

Proof: 

Let  be a Fy. neutrosophic nowh. dense set in   

Now, 
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Therefore  is a fy. neutrosophic nowh. dense set in   

Conversely let  is a fy. neutrosophic nowh. dense set in  Then 

 Gives that   

Hence  and therefore    which means that 

 is a fy. neutrosophic nowh. dense set in   

Proposition 3.11: 

Every fy. neutrosophic nowh. dense sets is a . 

Proof: 

Let  be any fy. neutrosophic nowh. dense set in a fy. neutrosophic top. space  

Therefore, we have  and it means that there does not exist any  in 

between  and  Also, let us suppose that  where  is  and 

obviously . Therefore  is a . 

4. Fuzzy Neutrosophic Baire Space 

Definition 4.1: 

 A fy. neutrosophic top. space  is called fy. neutrosophic Baire space if   

 where  are fy. neutrosophic nowh. dense sets in  

Example 4.1: 

Let  and consider the family  where  
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Now   and  are fy. neutrosophic nowh. dense sets in   Also 

  Hence  be a fy. neutrosophic Baire Space. 

Proposition 4.1: 

Let  be a fy. neutrosophic top. space. Then the following are equivalent. 

i)  is a fy. neutrosophic baire space. 

ii)  for every fy. neutrosophic one category set  in  

iii) , for every fy. neutrosophic re. set  in  

Proof: 

 

Let  be a fy. neutrosophic one category set in  Then , 

where  s are fy. neutrosophic nowh. dense sets in  Now 

 Since  is a fy. neutrosophic Baire space. 

Therefore   

 

Let  be a fy. neutrosophic re. set in  Then  is a fy. neutrosophic one 

category set in  By hypothesis,  which gives that =   

Hence    
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Let  be a fy. neutrosophic one category set in  Then  

where  s are fy. neutrosophic nowh. dense sets in  Now  is a fy. neutrosophic 

one category set gives that   is a fy. neutrosophic re. set in  By hypothesis, we 

have  which gives that =  Hence   That is, 

 where  s are fy. neutrosophic nowh. dense sets in  Hence 

 is a fy. neutrosophic Baire space. 

Proposition 4.2: 

If  be a fy. neutrosophic one category set in  then , where 

   

Proof: 

Let  be a fy. neutrosophic one category set in   

Then , where  s are fy. neutrosophic nowh. dense sets in  Now 

 =  Now  is a fy. neutrosophic nowh. dense sets in  Then 

by proposition [3.6] we have .  is a fy. neutrosophic dense sets in  Let us put 

. Then , where    

Proposition 4.3: 

If  where   and  then  is a fy. 

neutrosophic Baire space. 

Proof: 

Now  gives that  is a  in  Since   By 

proposition (3.2),  is a fy. neutrosophic nowh. dense sets in  Therefore 
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, where  is a fy. neutrosophic nowh. dense sets in  Hence 

 is a fy. neutrosophic Baire space. 

Proposition 4.4: 

If where   and ’s are  in fy. neutrosophic top. space 

in then  is a fy. neutrosophic Baire space. 

Proof: 

Let  be  in  Since  , by proposition (3.2),  are 

fy. neutrosophic nowh. dense sets in  Thus  , where  are 

fy. neutrosophic nowh. dense sets in  Hence  is a fy. neutrosophic Baire 

space. 

Proposition 4.5 

If  where  are fy. neutrosophic dense and  in fy. 

neutrosophic top. space  if and only if   is a fy. neutrosophic Baire space. 

Proof: 

Let  be fy. neutrosophic dense sets in  Then   

which gives that . That is  gives 

that  . Since  be fy. neutrosophic dense,  . 

Hence  Consequently , 

where  and  be  in  By proposition 4.4,  is a 

fy. neutrosophic Baire space. 
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Conversely, let  are fy. neutrosophic dense and in  By 

proposition (3.7),  are fy. neutrosophic nowh. dense sets in  Then  

 is a fy. neutrosophic one category set in  Now 

 Since  is a fy. neutrosophic Baire space, by proposition 4.1, we set . 

Then . This gives that . 

Conclusion: 

 In this paper, the concept of a new class of sets, spaces and called them fy. 

neutrosophic dense, fy. neutrosophic nowh. dense, fy. neutrosophic re. set, fy. neutrosophic 

one category set, fy. neutrosophic two category sets, fy. neutrosophic Baire spaces, fy. 

neutrosophic one category space, fy. neutrosophic two category space. Some of its 

characterizations of fy. neutrosophic Baire spaces are also studied. As fuzzy neutrosophic 

have many applications in many fields: information technology, information system, 

decision support system. In the future research presented some of the applications. 
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Abstract: The landslide disaster caused huge losses to human lives and property, and the research 

on the selection of landslide treatment schemes has attracted global attention. Fuzzy multi-

attribute decision-making methods are widely used for selecting the slope treatment schemes in 

engineering practice. But they do not take into account human linguistic arguments in the 

linguistic decision-making environment, which usually contains incomplete and uncertain 

information, and still lack a qualitative evaluation method. To deal with multiple attribute group 

decision-making (MAGDM) problems of landslide treatment schemes in the linguistic 

neutrosophic environment, a linguistic neutrosophic number Dombi weighted arithmetic 

averaging (LNNDWAA) operator and a linguistic neutrosophic number Dombi weighted 

geometric averaging (LNNDWGA) operator are developed to aggregate linguistic neutrosophic 

information. Then, a new MAGDM method using these aggregation operators is proposed in view 

of the Dombi operational flexibility. Finally, the proposed method is applied to select the optimal 

landslide treatment scheme under the linguistic neutrosophic environment. The results show that 

this method can effectively solve the decision-making problem of landslide treatment schemes and 

make the decision result more reasonable and flexible than other existing methods. 

Keywords: landslide treatment scheme; multiple attribute decision; linguistic neutrosophic 

number; Dombi operation 

 

 

1. Introduction  

Landslides have caused immeasurable economic losses to human society. For example, China 

has an average of almost 30,000 landslides, rock falls, and debris flows every year, many of which 

have caused catastrophic disasters. On average, nearly 800 people are killed each year, and the 

direct economic loss exceeds 1 billion US dollars. In 2019, a total of 6,181 geological disasters 

occurred nationwide (Figure 1), where slope failure accounted for 68.27%, accounting for the vast 

majority [1]. Therefore, great attention has been paid to the prevention and treatment of landslides. 

At present, there are many prevention and control plans for slopes. To choose the most reasonable 

plan, some decision-making (DM) methods are needed. In recent years, research on DM methods of 

slope treatment schemes has received increasing attention. These DM methods include the 

empirical discriminant method [2], the analytic hierarchy process [3], the fuzzy multi-attribute DM 

method [4], the subjective and objective weighting method [5], and so on. However, most of these 
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methods are based on the analysis or subjective judgment of expert experience, which leads to 

unreasonable, uneconomical, and sometimes even huge waste in the final choice of the treatment 

schemes. Fuzzy multi-attribute DM methods have been widely used because they can deal with 

fuzzy evaluation and DM problems. But they does not take into account human linguistic 

arguments in the DM issue of the treatment schemes, which usually contains incomplete and 

uncertain information. 

 

Figure 1. Types of geological disasters in 2019 

Due to the indeterminacy and ambiguity of human cognition of objective things and the 

intricacy of multi-attribute group decision making (MAGDM) environment, linguistic variables can 

more effectively describe decision information than numerical values [6,7,8]. Therefore, to improve 

the DM effectiveness, many researchers performed extensive studies on DM challenges in linguistic 

environments. Zadeh [7] initially proposed the concept of linguistic variables (LVs), which can 

employ words or sentences to represent qualitative information. In order to solve DM problems 

with linguistic information, Herrera et al. [9, 10] created a technique for linguistic decision analysis. 

Later, Xu [11,12,13] developed linguistic aggregation operators and goal programming models to 

handle DM problems. To tackle incompleteness and ambiguity in DM situations more effectively, 

Merigó et al. [14,15,16] proposed some linguistic aggregation operators for the aggregation of LVs. 

Xu [17,18] proposed uncertain LVs given by interval values. Then, some scholars developed various 

aggregation operators of uncertain LVs for the MAGDM problems with uncertain linguistic 

information [19–23]. Chen et al. [24] proposed the concept of linguistic intuitionistic fuzzy numbers 

(LIFNs), which enables the direct description of real and false linguistic information using linguistic 

items. Liu et al. [25,26] put forward some LIFN aggregation operators for multi-attribute DM. 

However, LIFN cannot express uncertain and inconsistent linguistic information in DM problems. 

But the neutrosophic numbers (NNs) [27–30] and neutrosophic sets [28–30] proposed by 

Smarandache make up for the above shortcomings. Some scholars put forward new concepts 

focusing on the combination of neutrosophic set and linguistic set. Subsequently, Fang and Ye [8] 

introduced the linguistic neutrosophic number (LNN) which includes three independent LVs for 

describe true, false, and uncertain linguistic information. They also introduced the LNN weighted 

geometric and LNN weighted arithmetic averaging operators to handle MAGDM problems 

containing LNN information. However, this MAGDM method [8] can be better applicable to the 

expression and processing of inconsistent and uncertain linguistic information in DM problems. 

After that, some LNN aggregation operators were successively proposed, such as LNN normalized 

weighted geometric Bonferroni mean (LNNNWGBM) and LNN normalized weighted Bonferroni 
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mean (LNNNWBM) operators [31] and linguistic neutrosophic power weighted Heronian 

aggregation (LNPWHA) operators [32]. These aggregation operators can effectively deal with 

linguistic DM problems with inconsistent and uncertain linguistic information. Furthermore, Shi 

and Ye developed three correlation coefficients of LNNs [33] and two cosine similarity measures of 

LNNs [34] for MAGDM problems with LNN information. Cui and Ye [35] defined the concept of 

hesitant linguistic neutrosophic number (HLNN) sets and introduced the normalized generalized 

distance and similarity measures of HLNNs for DM problems with HLNN information. 

In 1982, Dombi [36] developed Dombi t-conorm and Dombi t-norm operations, which contain 

the advantage of changeability by adjusting a parameter value. Hence, Liu et al. [37] introduced the 

Dombi operations of intuitionistic fuzzy sets (IFSs) and proposed some Dombi aggregation 

operators for the MAGDM problem with intuitionistic fuzzy information. Ye and Chen [38] 

introduced the Dombi operations of single-valued neutrosophic numbers (SVNNs), then presented 

the single-valued neutrosophic Dombi weighted geometric average (SVNDWGA) operator and the 

single-valued neutrosophic Dombi weighted arithmetic average (SVNDWAA) operator to handle 

DM problems with LNNs. Ye and Lu [39] extended the Dombi operations to the environment of 

linguistic cubic variables (LCVs) and developed the linguistic cubic variable Dombi weighted 

geometric average (LCVDWGA) operator and linguistic cubic variable Dombi weighted arithmetic 

average (LCVDWAA) operator for MAGDM problems. However, in the available research, the 

Dombi operations have not yet been extended to LNNs. Therefore, the main goals of this study are 

(1) to propose some Dombi operations of LNNs, (2) to propose the LNN Dombi weighted geometric 

averaging (LNNDWGA) and LNN Dombi weighted arithmetic averaging (LNNDWAA) operators, 

(3) to develop a DM method based on the LNNDWAA or LNNDWGA operator for performing 

MAGDM problems in the LNN information environment, and (4) to validate the viability of this 

method through a case study. 

The following sections constitute the rest of this paper. Section 2 introduces some preliminaries. 

In Section 3, we define the Dombi operations of LNNs and propose the LNNDWAA and 

LNNDWGA operators and their properties. Section 4 introduces a new MAGDM method using the 

LNNDWAA or LNNDWGA operator. In Section 5, the application of the proposed method is 

demonstrated by an application example and then a comparative analysis is given to show its 

superiority over existing approaches. Section 6 gives the conclusions of this article. 

2. Preliminaries  

2.1 Several Concepts of LNNs 

Definition 1 [8]. Suppose that FrRo= {Fr
Ro 

0 , Fr
Ro 

1 , …, Fr
Ro 

Φ } is a set of linguistic terms with an odd 

cardinality Φ + 1. Then, LNN is defined as N= <Fr
Ro 

x , Fr
Ro 

y , Fr
Ro 

z > for Fr
Ro 

x , Fr
Ro 

y , Fr
Ro 

z   FrRo and x, y, z  

[0, Φ], where Fr
Ro 

x , Fr
Ro 

y  and Fr
Ro 

z  independently represent truth, uncertainty, and falsity LVs, 

respectively.  

Definition 2 [8]. Set N = <Fr
Ro 

x , Fr
Ro 

y , Fr
Ro 

z > as LNN in FrRo. The score and accuracy functions of N are 

determined by the following eqations: 

 ( ) (2 ) / (3 )U N x y z= + − −   for  ( ) 0,1U N  , (1) 

 ( )( ) /V N x z= −   for  ( ) 1,1V N  − . (2) 

Definition 3 [8]. Let 
1 1 11 , ,Ro Ro Ro

x y zN Fr Fr Fr=  and 
2 2 22 , ,Ro Ro Ro

x y zN Fr Fr Fr=  be two LNNs in 

FrRo, and they imply the following ranking relations: 

(1) When U(N1) > U(N2)   N1 N2; 
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(2) When U(N1) < U(N2)   N1 N2; 

(3) When V(N1) = V(N2) and U(N1) = U(N2)   N1 = N2; 

(4) When V(N1) < V(N2) and U(N1) = U(N2)   N1 N2; 

(5) When V(N1) > V(N2) and U(N1) = U(N2)   N1 N2. 

Definition 4 [8]. Let 
1 1 11 , ,Ro Ro Ro

x y zN Fr Fr Fr=  and 
2 2 22 , ,Ro Ro Ro

x y zN Fr Fr Fr=  be two LNNs in 

FrRo, and λ is a positive real number (λ > 0). Their operational laws are introduced as follows: 

(1) 
1 1 1 2 2 2 1 2 1 2 1 2

1 2

1 2 , , , , , ,Ro Ro Ro Ro Ro Ro Ro Ro Ro

x y z x y z x x y y z z
x x

N N Fr Fr Fr Fr Fr Fr Fr Fr Fr
+ −

  

 
 =  =  

 
; 

(2) 
1 1 1 2 2 2 1 2 1 2 1 2

1 2 1 2

1 2 , , , , , ,Ro Ro Ro Ro Ro Ro Ro Ro Ro

x y z x y z x x y y z z
y y z z

N N Fr Fr Fr Fr Fr Fr Fr Fr Fr
+ − + −

  

 
 =  =  

 

;

 

(3) 
1 1 1

1 1 1
1

1

, , , ,Ro Ro Ro Ro Ro Ro

x y z x y z
N Fr Fr Fr Fr Fr Fr   

     
− −       

       

= = ; 

(4) 
1 1 1

1 1 1
1

1 1

, , , ,Ro Ro Ro Ro Ro Ro

x y z x y z
N Fr Fr Fr Fr Fr Fr  




     
 − − − −     

       

= = .

 

2.2 Weighted Aggregation Operators of LNNs 

Definition 5 [8]. Set , ,
g g g

Ro Ro Ro

g x y zN Fr Fr Fr=  (g = 1, 2, …, h) as an assemblage of LNNs in FrRo. 

The LNNWAA operator is defined below: 

1 2

1

( , ,..., )
h

h g g

g

LNNWAA N N N N
=

= ,                                                   (3) 

where γg is the weight of Ng (g = 1, 2, …, h) for 0  γg  1 and 
1

1
h

gg


=
= . 

Theorem 1 [8]. Let , ,
g g g

Ro Ro Ro

g x y zN Fr Fr Fr=  (g = 1, 2, …, h) as an assemblage of LNN in FrRo, then 

the aggregation result is obtained based on the following aggregation equation: 

1 1 1

1 2
(1 ) ( ) ( )1

( , ,..., ) , ,h h h
g g gg g g

g g g

h
Ro Ro Ro

h g g x y z
g

LNNWAA N N N N Fr Fr Fr
  



= = =

− −  =
  

= =
  

 .     (4) 

Definition 6 [8]. Suppose that , ,
g g g

Ro Ro Ro

g x y zN Fr Fr Fr=  (g = 1, 2, …, h) is a group of LNNs in FrRo, 

the LNNWGA operator is defined by 

1 2

1

( , ,..., ) g

h

h g

g

LNNWGA N N N N


=

= ,                                       (5) 
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where γg is the weight of Ng (g = 1, 2, …, h) for 0  γg  1 and 
1

1
h

gg


=
= . 

Theorem 2 [8]. Let , ,
g g g

Ro Ro Ro

g x y zN Fr Fr Fr=  (g = 1, 2, …, h) as an assemblage of linguistic 

neutrosophic numbers in FrRo, then the result of aggregation is obtained based on the following 

aggregation equation: 

1 1 1

1 2
( ) (1 ) (1 )1

( , ,..., ) , ,g

h h h
g g gg g g

g g g

h
Ro Ro Ro

h g x y z
g

LNNWGA N N N N Fr Fr Fr
  



= = =

 − − − −=
  

= =
  

 . (6) 

3. Dombi Operations of LNNs  

The Dombi operations contain the advantage of flexible aggregations by modifying the value 

of the parameter. In 1982, Dombi [36] proposed the Dombi T-norm and T-conorm operations for the 

first time. Although many researchers have introduced Dombi operations in various linguistic 

decision-making environments and decision-making methods [37–43], the Dombi operations have 

not yet expanded to LNNs. Therefore, this section proposes the Dombi T-norm and T-conorm 

operations of LNNs, then presents the LNNDWAA and LNNDWGA operators and their properties. 

3.1 Dombi Operational Laws of LNNs 

Definition 7 [36]. For any two real-values Th and Tj, the Dombi T-norm and T-conorm operations 

between Th and Tj are defined below: 

 
1/

1
( , )

1 1
1

DO Th Tj

Th Tj

Th Tj




=
  − −  

+ +    
     

,  (7) 

 ( ) 1/

1
, 1

1
1 1

c

D Th Tj

Th Tj

Th Tj

O




= −
    

+ +    
− −     

,  (8) 

where the parameter ρ ≥ 1 and (Th, Tj)  [0, 1] × [0, 1]. 

Definition 8. Assume that 
1 1 11 , ,Ro Ro Ro

x y zN Fr Fr Fr=  and 
2 2 22 , ,Ro Ro Ro

x y zN Fr Fr Fr=  are two LNNs, 

λ > 0, and ρ > 0. Then, the Dombi T-norm and T-conorm operational laws of LNNs are expressed 

below: 
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1 1 1 2 2 2

1/

1 2 1

1 2 11/

1 2

1 2

1 2

1 1

1 / 1 / 1 /
1 11

1 / / /

/ /
1

1 / 1 /

, , , ,

, ,

Ro Ro Ro Ro Ro Ro

x y z x y z

Ro Ro

y y z

y y z

x x

x x

N N Fr Fr Fr Fr Fr Fr

Fr Fr Fr


 


 

 
  

      −  −  −  
+ + +      

 −                
+ +     

−  −        

 = 

=
1/

2

2

1/ 1/

1 2 1 2 1 2

1 2 1 2 1 2

1 /

/

1 1 1

, ,

Ro

z

z
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    −  
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      

  
−

                − − − −     
+ + + + + +                

− −                   

 
 
 
 
 
 
 
 
 
 

=
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



 
 
 
 
 
 
 

,      (9) 

1 1 1 2 2 2
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1 / 1 /
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/ / /
1 1
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, ,
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
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 

 
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+ + +     

−  −  −       

 = 

=

1/

2

1 2

1/ 1/

1 2 1 2 1

1 2 1 2 1

/

/ 1 /
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, ,
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z

z
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
 

 
    
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 
 
 
 

      
+     

 −        

  
− −

            − −   
+ + + + +            

− − −               

 
 
 
 
 
 
 
 
 
 

=
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2

2
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z
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 
 
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 
 
 
 

,   (10) 
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x

x

x
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 
 




 





 

  
 
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+ +        

 −                 
+   

−      


−


+

−

=

 
 
 
 
 =
 
 
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  

 

 
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+ +          

               

 
 
 
 
 
 
 

,                              (11) 
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1 1 1
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
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+ +         
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=

 
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 
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


 
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  

  

  

  
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+ + +          

− −               








 
 
 

=
 
 
 
 

.                       (12) 

However, the operational results of the equations (9)–(12) are also LNNs.  

Example 1. Let N1 = <Fr
Ro 

2 , Fr
Ro 

1 , Fr
Ro 

3 > and N2 = <Fr
Ro 

3 , Fr
Ro 

2 , Fr
Ro 

4 > in FrRo= {Fr
Ro 

0 , Fr
Ro 

1 , …, Fr
Ro 

6 } be two 

LNNs, λ = 0.5, ρ = 1. Based on the equations (9)–(12), we have the following operational results: 
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, , ,
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N N Fr Fr Fr Fr Fr Fr
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−

     − − − −                
+ + + + + +                

− −                     
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 
 
 = =
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 
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 
 
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, 
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6
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 

−
     − −          

+  +  +           
−               

=

 
 
 = =
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1 1 1
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

− −
     −          

+  +  +           
− −               

=

 
 
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 
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. 
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3.2 Dombi Weighted Aggregation Operators of LNNs 

Definition 9. Set , ,
g g g

Ro Ro Ro

g x y zN Fr Fr Fr=  (g = 1, 2, …, h) as a group of LNNs. Let γ = (γ1, γ2, ..., γh) 

be the weight vector of Ng such that γg  [0, 1] and 
1

1
h

gg


=
= . The LNNDWAA and LNNDWGA 

operators are proposed below: 

 
1 2

1
( , ,..., )

h

h g g
g

LNNDWAA N N N N
=

=  , (13) 

 
1 2

1
( , ,..., ) g

h

h g
g

LNNDWGA N N N N


=
=  . (14) 

Theorem 3. Let , ,
g g g

Ro Ro Ro

g x y zN Fr Fr Fr=  (g = 1, 2, …, h) be an assemblage of LNNs and γ = (γ1, 

γ2, ..., γh) be the weight vector of Ng such that γg  [0, 1] and 
1

1
h

gg


=
= . The aggregated result of 

the LNNDWAA operator is still an LNN, which can be expressed by 

1/ 1/ 1/

1 1 1
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1 1 1
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h h h
g g g

g g g
g g gg g g

h
Ro Ro Ro

h g g
g

x y z

x y z

LNNDWAA N N N N Fr Fr Fr
  

  

  



= = =

  
= −

          − −     
+   +   +            −               

=  =

  

. (15) 

Theorem 3 is proved through mathematical induction below. 

Proof: 

(a) Let h = 2. Based on Definition 8 we can obtain 
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  
     
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
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− −                     


−

 
+ 

 − 

= 

=
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  
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 
= = =

 

        − −     
 +   +           

             

  

. 

(b) If h = k, we can keep the following result from the equation (15): 
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=

  

. 

(c) Set h = k + 1. Based on Definition 9 and the equation (15), there exists the following result: 
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  

. 

In terms of the above results, the equation (15) can hold for all h. 

Then, the LNNDWAA operator has some properties: 

(1) Reducibility: When γ = (1/h, 1/h, ..., 1/h), there exists 
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  
−

          − −     
+   +   +            −               

= 

=

  

. 

(2) Idempotency: Let all LNNs be , ,
g g g

Ro Ro Ro

g x y zN Fr Fr Fr=  = N (g = 1, 2, ..., h). Then, 

LNNDWAA(N1, N2, ..., Nh) = N. 

(3) Commutativity: Let the LNN sequence (N1’, N2’, ..., Nh’) be an arbitrary arrangement of (N1, 

N2, ..., Nh). Then, there is LNNDWAA(N1’, N2’, ..., Nh’) = LNNDWAA(N1, N2, ..., Nh).  

(4) Boundedness: If the maximum and minimum LNNs are 

max max( ) min( ) min( ), ,
g g g

g gg

Ro Ro Ro

x y zN Fr Fr Fr=  and 
min min( ) max( ) max( ), ,

g g g
g g g

Ro Ro Ro

x y zN Fr Fr Fr= , then Nmin ≤ 

LNNDWAA(N1, N2, ..., Nh) ≤ Nmax. 

Proof: 

(1) Based on the equation (15), we can see that the property (1) is valid. 
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(2) Since , ,
g g g

Ro Ro Ro

g x y zN Fr Fr Fr= = N (g = 1, 2, ..., h), by the equation (15) we can obtain the 

following result: 

1/ 1/ 1/

1 1 1

1/

1 2
1

1 1 1

1

( , ,..., )

, ,

,

h h h
g g g

g g g
g g gg g g

h

h g g
g

Ro Ro Ro

x y z

x y z

Ro

x

x

LNNDWAA N N N N

Fr Fr Fr

Fr Fr

  
  




  



= = =

=

  
−

          − −     
+   +   +            −               

 
−

   
+  

−   

= 

=

  

=
1/ 1/

11

1 11

,

, , , , .

Ro Ro

zy

zy

Ro Ro Ro Ro Ro Ro

x y z

x zy

x zy

Fr

Fr Fr Fr Fr Fr Fr N

 
 



   −    − 
++     

       

  
−

−     −
+ ++    

−    

= = =

 

Hence, LNNDWAA(N1, N2, ..., Nh) = N holds. 

(3) The property (3) is obvious.  

(4) Since min( ) max( ),max( ) min( ),max( ) min( )g g g g g g g g g
g g gg g g

x x x y y y z z z      , there 

are the following inequalities: 

1/ 1/ 1/

1
1 1

min( ) max( ) ,

min( ) max( )
11 1

min( ) max( )

g g
g g

h
h hg g g

g g
g

g g
g gg gg g

g g

x x

x x x

xx x

    

 
=

= =

  
− =  −  = −

              +      + +     −    − −            

 

 

1/ 1/ 1/

1
11

max( ) min( ) ,

max( ) min( )
1 11

min( )max( )

g g
gg

h
hh g g g

gg
g

gg
g g gg gg

gg

y y

y y y

y yy

    

 
=

==

  
=   =

           − − −     +       ++     
               

 

 

1/ 1/ 1/

1
11

max( ) min( ) .

max( ) min( )
1 11

min( )max( )

g g
gg

h
hh g g g

gg
g

gg
g g gg gg

gg

z z

z z z

z zz

    

 
=

==

  
=   =

           − − −     +       ++     
               

 

 

Therefore, Nmin ≤ LNNDWAA(N1, N2, ..., Nh) ≤ Nmax is true. 
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Theorem 4. Let , ,
g g g

Ro Ro Ro

g x y zN Fr Fr Fr=  (g = 1, 2, ..., h) be a group of LNNs and γ = (γ1, γ2, ..., γh) 

be the weight vector of Ng (g = 1, 2, ..., h) for γg  [0, 1] and 
1

1
h

gg


=
= . The aggregated result of 

the LNNDWAA operator is still an LNN, which can be expressed by 

1/ 1/ 1/

1 1 1

1 2
1

1 1 1

( , ,..., )

, ,

g

h h h
g g g

g g g
g g gg g g

h

h g
g

Ro Ro Ro

x y z

x y z

LNNDWGA N N N N

Fr Fr Fr
  

  



  
= = =

=

  
− −

          −     
+   +   +            − −               

= 

=

  

.        (16) 

Theorem 4 is also proved based on mathematical induction, which is given below. 

Proof:  

(a) Let h = 2. Based on Definition 8 we can obtain 

1/ 1/ 1/

1 2 1 2 1 2
1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2

1 1 1

1

( , )

, ,

g
g

g

Ro Ro Ro

x x y y z z

x x y y z z

x

x

LNNDWGA N N N N

Fr Fr Fr

Fr

  
     

     



  
− −

                − −     
+ + + + + +                

− − − −                     



 −
+ 


 

= 

=

=
1/ 1/ 1/

2 2 2

1 1 1

1 1

, ,

g g
g g

g gg g g

Ro Ro Ro

y z

y z

Fr Fr
  

 
= = =

 
− −

             
 +   +           − −             

  

. 

(b) If h = k, we can get the following equation from the equation (16): 

1/ 1/ 1/

1 1 1

1 2
1

1 1 1

( , ,..., )

, ,

g

k k k
g g g

g g g
g g gg g g

k

k g
g

Ro Ro Ro

x y z

x y z

LNNDWGA N N N N

Fr Fr Fr
  

  



  
= = =

=

  
− −

          −     
+   +   +            − −               

= 

=

  

. 

(c) If h = k + 1, there exists the following result: 
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1/ 1/ 1/

1 1 1

+1

1 2 1
1

1 1

1 1 1

1

( , ,..., , )

, ,

g

k k k
g g g

g g g
g g gg g g

g
g

g

k

k k g
g

Ro Ro Ro

k k

x y z

x y z

x

x

LNNDWGA N N N N N

Fr Fr Fr N

Fr

  
  



  





= = =

+
=

   + +
− −

          −     
+   +   +            − −               



 −
+ 


 

= 

= 

  

=
1/ 1/ 1/

1 1 1

1 1 1

1 1

, ,

k k k
g g

g g
g gg g g

Ro Ro Ro

y z

y z

Fr Fr
  

  

 
+ + +

= = =

 
− −

             
 +   +           − −             

  

. 

In terms of the above results, the equation (16) is true for all h. 

The LNNDWGA operator also contains some properties: 

(1) Reducibility: When the weight vector is γ = (1/h, 1/h, ..., 1/h), the equation (16) yields the 

following result: 

1/ 1/ 1/

1 1 1

1 2
1

1 1 1
1 1 1

( , ,..., )

, ,

g

h h h
g g g

g g gg g g

h

h g
g

Ro Ro Ro

x y z

h x h y h z

LNNDWGA N N N N

Fr Fr Fr
  

  



= = =

=

  
− −

          −     
+   +   +            − −               

= 

=

  

. 

(2) Idempotency: Let all LNNs be , ,
g g g

Ro Ro Ro

g x y zN Fr Fr Fr=  = N (g = 1, 2, ..., h). Then, 

LNNDWGA(N1, N2, ..., Nh) = N.  

(3) Commutativity: Let the LNN sequence (N1’, N2’, ..., Nh’) be any permutation of (N1, N2, ..., 

Nh). Then, there is LNNDWGA(N1’, N2’, ..., Nh’) = LNNDWGA(N1, N2, ..., Nh).  

(4) Boundedness: If the maximum and minimum LNNs are 

max max( ) min( ) min( ), ,
g g g

g gg

Ro Ro Ro

x y zN Fr Fr Fr=  and 
min min( ) max( ) max( ), ,

g g g
g g g

Ro Ro Ro

x y zN Fr Fr Fr= , then Nmin ≤ 

LNNDWGA(N1, N2, ..., Nh) ≤ Nmax.  

Since the characteristics of the LNNDWGA operator can be easily proved by the similar proof 

process of the characteristics of the LNNDWAA operator, it is omitted here. 

4. MAGDM Method based on the LNNDWAA and LNNDWGA Operators  

This section proposed a new DM method based on the LNNDWAA and LNNDWGA 

operators to solve MAGDM problems in the LNN environment. 

In a MAGDM problem, let P = {P1, P2, ..., Pu} be a set of alternatives and Ψ = {Ψ1, Ψ2, ..., Ψh} be a 

set of attributes. The weight vector of the attributes Ψg (g = 1, 2, ..., h) is γ = (γ1, γ2, ..., γh). Assume 

that there is a group of decision-makers Ω = {Ω1, Ω2, ..., Ωr} with their weight vector η = (η1, η2, ..., ηr). 
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Each decision maker evaluates the value of each attribute Ψg (g = 1, 2, ..., h) for each alternative Pi 

from the set of linguistic terms FrRo = {Fr
Ro 

0  = very low, Fr
Ro 

1  = low, Fr
Ro 

2  = slightly low, Fr
Ro 

3  = medium, 

Fr
Ro 

4  = slightly high, Fr
Ro 

5  = high, Fr
Ro 

6  = very high}. According to the linguistic terms, each decision-

maker can assign the three linguistic values of indeterminacy, falsity, and truth to each attribute Ψg 

for the alternative Pv. Thus, LNN is composed of the obtained linguistic values. Hence, the LNN 

assessment information of the attributes Ψg (g = 1, 2, ..., h) for the alternatives Pv (v = 1, 2, ..., u) 

provided by each decision-maker Ωs (s = 1, 2, ..., r) can establish the LNN decision matrix 

( )s

s vg u h
M N


= , where , ,s s s

vg vg vg

s Ro Ro Ro

vg x y z
N Fr Fr Fr=  (s = 1, 2, ..., r; v = 1, 2, ..., u; g = 1, 2, ..., h) are 

LNNs. 

Then, we present a MAGDM method using the score function (accuracy function) and the 

LNNDWAA and LNNDWGA operators to perform the MAGDM problem with LNN information. 

Here, the MAGDM method is described by the specific decision-making steps below. 

Step 1: Aggregate all Ms (s = 1, 2, ..., r) by using the following LNNDWAA or LNNDWGA 

operator: 

 

1/ 1/ 1/

1 1 1

1 2

1

1 1 1

( , ,..., )

, ,

s s sr r r
vg vg vg

s s ss s s
vg vg vgs s s

r
r s

vg vg vg vg s vg
s

Ro Ro Ro

x y z

x y z

N LNNDWAA N N N N

Fr Fr Fr
  

  

  



= = =

=

  
−

          − −     
     + + +     
     −               

= = 

=

  

           (17) 

or 

( )

1/ 1/ 1/

1 1 1

1 2

1

1 1 1

( , ,..., )

, ,

s

s s sr r r
vg vg vg

s s ss s s
vg vg vgs s s

r
r s

vg vg vg vg vg
s

Ro Ro Ro

G

x y z

x y z

N LNNDWGA N N N N

Fr Fr Fr
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
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= = =

=

  
− −

          −     
     + + +     
     − −               

= = 

=

  

              (18) 

to obtain the integrated matrix ( )vg u h
R N


= , where , ,

vg vg vg

Ro Ro Ro

vg x y zN Fr Fr Fr= (v = 1, 2, ..., u; g = 1, 

2, ..., h) are integrated LNNs. 

Step 2: Use the following LNNDWAA or LNNDWGA operator to obtain the collective overall 

LNNs Nv for Pv (v = 1, 2, ..., u): 

1/ 1/ 1/

1 1 1

1 2
1

1 1 1

( , ,..., )

, ,

h h h
g g g

g g g
g g gg g g

h

v v v vh g vg
g

Ro Ro Ro

x y z

x y z

N LNNDWAA N N N N

Fr Fr Fr
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

= = =

=

  
−

          − −     
+   +   +            −               

= = 

=

  

          (19) 
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or 

1/ 1/ 1/
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N LNNDWGA N N N N
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  

  



  
= = =

=

  
− −

          −     
+   +   +            − −               

= = 

=

  

.           (20) 

Step 3: Calculate the score values of U(Nv) (the accuracy values of V(Nv)) (v = 1, 2, ..., u) through 

the equation (1) (the equation (2)). 

Step 4: Rank all alternatives in decreasing order, then select the more reasonable one. 

Step 5: End. 

5. An Illustrative Example on Slope Treatment Scheme Selection  

The application of the MAGDM method proposed in this paper is illustrated by the selection of 

slope treatment schemes. To avoid slope instability, a set of four slope treatment options P = {P1, P2, 

P3, P4} is proposed, where P1 is gravity retaining wall + lattice protection; P2 is anti-slide retaining 

wall + anti-slide pile; P3 is anchor retaining wall + lattice protection; and P4 is pile-plate retaining 

wall. The evaluation of the schemes should meet the following attribute requirements: (1) Ψ1 is the 

economic status; (2) Ψ2 is the security situation; (3) Ψ3 is the construction feasibility; and (4) Ψ4 is the 

environment situation. The weight vector of the four attributes is assigned as γ = (0.23, 0.28, 0.26, 

0.23). Assume that three experts are invited as a group of decision makers Ω = {Ω1, Ω2, Ω3}, then the 

weight vecror η = (0.29, 0.33, 0.38) is given to indicate the importance of the various decision makers. 

Decision makers need to assess the four attributes on the four alternatives from the linguistic 

term set FrRo = {Fr
Ro 

0  = very low, Fr
Ro 

1  = low, Fr
Ro 

2  = slightly low, Fr
Ro 

3  = medium, Fr
Ro 

4  = slightly high, Fr
Ro 

5  

= high, Fr
Ro 

6 = very high} with Φ = 6. Thus, the linguistic evaluation results of each decision-maker Ωs 

(s = 1, 2, 3) can be established as the LNN decision matrices M1, M2, and M3: 

3 2 3 4 2 1 3 4 5 3 3 3

5 2 1 5 3 2 3 2 4 4 4 5
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3 2 3 4 2 3 4 3 3 3 3 1
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The decision procedures based on the LNNDWAA operator are indicated below. 

Step 1: Aggregate the decision matrices M1, M2, and M3 by the equation (17) for ρ = 1 and 

obtain the integrated matrix ( )
4 4vgR N


= : 

3.4249 2.0000 2.5751 4.0000 2.0000 2.0033 3.4790 3.2345 2.8599 3.4249 2.5751 1.7045

4.4496 2.2472 1.2346 4.2808 2.5751 2.2472 3.00

, , , , , , , ,

, , , ,

Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro

Ro Ro Ro Ro Ro Ro

Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr

Fr Fr Fr Fr Fr Fr Fr
R =

00 2.6201 4.0000 4.0000 2.5751 3.7430

3.3799 3.6036 2.7933 4.3051 3.2698 2.2140 4.4496 2.2472 1.7192 4.4496 3.2345 2.2140

3.3799 2

, , , ,

, , , , , , , ,

,

Ro Ro Ro Ro Ro Ro

Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro

Ro

Fr Fr Fr Fr Fr

Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr

Fr Fr .2140 3.0211 3.4249 1.5038 2.2901 3.0000 2.2472 1.8692 3.3799 2.5210 2.2901, , , , , , ,Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro RoFr Fr Fr Fr Fr Fr Fr Fr Fr Fr
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 
 
 
 
 
 
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. 

Step 2: Through the equation (19), obtain the collective overall LNNs of Nv for Pv (v = 1, 2, 3, 4) 

below: 

N1 = <Fr
Ro 

3.6290, Fr
Ro 

2.3546, Fr
Ro 

2.1981>, N2 = <Fr
Ro 

4.0502, Fr
Ro 

2.6660, Fr
Ro 

2.2865>, N3 = <Fr
Ro 

4.2426, Fr
Ro 

2.9738, Fr
Ro 

2.1555>, and N4 = <Fr
Ro 

3.3043, 

Fr
Ro 

2.0120, Fr
Ro 

2.2835>. 

Step 3: Calculate the score values of U(Nv) (v = 1, 2, 3, 4) by the equation (1): 

U(N1) = 0.6154, U(N2) = 0.6165, U(N3) = 0.6174, and U(N4) = 0.6116. 

Step 4: Rank the four alternatives: P3 P2 P1 P4. It can be seen that P3 is the most reasonable 

option among the four ones. 

Or the decision procedures based on the LNNDWGA operator are indicated below. 

Step 1: Aggregate the decision matrices M1, M2, and M3 by the equation (18) for ρ = 1 and 

obtain the integrated matrix ( )
4 4vgR N


= : 

3.2698 2.0000 2.7302 4.0000 2.0000 3.1401 3.3149 3.3799 3.9967 3.2698 2.7302 2.4623

4.2463 2.3964 1.4338 3.7430 2.7302 2.3964 3.00

, , , , , , , ,

, , , ,

Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro

Ro Ro Ro Ro Ro Ro

Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr

Fr Fr Fr Fr Fr Fr Fr
R =

00 2.7655 4.0000 4.0000 3.7099 4.2808

3.2345 3.7528 3.9798 3.8023 3.4249 2.3526 4.2463 2.3964 2.2570 4.2463 3.3799 2.3526

3.2345 2

, , , ,

, , , , , , , ,

,

Ro Ro Ro Ro Ro Ro

Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro
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Fr Fr Fr Fr Fr

Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr

Fr Fr .3526 4.2222 3.2698 1.7173 2.4497 3.0000 2.3964 3.4093 3.2345 2.6851 2.4497, , , , , , ,Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro RoFr Fr Fr Fr Fr Fr Fr Fr Fr Fr

 
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 
 
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. 

Step 2: Through the equation (20), obtain the collective overall LNNs Nv for Pv (v = 1, 2, 3, 4) 

below: 

N1 = <Fr
Ro 

3.4588, Fr
Ro 

2.6338, Fr
Ro 

3.2455>, N2 = <Fr
Ro 

3.6611, Fr
Ro 

2.9722, Fr
Ro 

3.4480>, N3 = <Fr
Ro 

3.8440, Fr
Ro 

3.3047, Fr
Ro 

2.9054>, and N4 = <Fr
Ro 

3.1795, 

Fr
Ro 

2.2959, Fr
Ro 

3.3218>. 

Step 3: Obtain the score values of U(Nv) (v = 1, 2, 3, 4) by the equation (1): 

U(N1) = 0.5322, U(N2) = 0.5134, U(N3) = 0.5352, and U(N4) = 0.5312. 

Step 4: Rank the four alternatives: P3 P1 P4 P2. It can be seen that P3 is the most reasonable 

choice among the four ones.  
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We can repeat the above decision process by changing the parameter ρ from 2 to 4. The sorting 

results obtained by using the LNNDWAA operator are shown in Figure 2. Then, the ranking orders 

based on the LNNDWGA operator are indicated in Figure 3. 

 

Figure 2. Ranking orders of the four alternatives based on the LNNDWAA operator (Ⅰ, Ⅱ, Ⅲ, Ⅳ are ranking 

numbers) 

As shown in Figure 2, the sorting results obtained based on the LNNDWAA operator change 

with the change of the parameter values of ρ. With an increase of ρ, the score values of the four 

alternatives gradually increase. However, the ranking orders tend to robustness when ρ > 3. 

 

Figure 3. Ranking orders of the four alternatives based on the LNNDWGA operator 
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For the evaluation results using the LNNDWGA operator in Figure 3, the ranking orders also 

change with the change of ρ. With an increase of ρ, the score values of the four alternatives 

gradually decrease. The ranking orders tend to robustness when the value of the parameter ρ 

exceeds 3. 

Furthermore, a comparison is made between the new MAGDM method and the existing 

relative MAGDM methods by the operators of LNNWAA and LNNWGA proposed by Fan and Ye 

[24]. According to the calculational steps given by Fan and Ye [24], the alternatives are evaluated as 

follows. 

Step 1: By the LNNWAA operator of the equation (4), we can obtain the integrated matrix 

( )vg u h
R N


= : 

3.3757 2.0000 2.6243 4.0000 2.0000 2.3988 3.4284 3.2610 3.0433 3.3757 2.6243 1.9761

4.3642 2.2863 1.3013 4.0917 2.6243 2.2863 3.00

, , , , , , , ,

, , , ,

Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro

Ro Ro Ro Ro Ro Ro

Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr

Fr Fr Fr Fr Fr Fr Fr
R =

00 2.6672 4.0000 4.0000 3.5858 3.8255

3.3328 3.6377 2.9822 4.1300 3.2988 2.2496 4.3642 2.2863 1.9083 4.3642 3.2610 2.2496

3.3328 2

, , , ,

, , , , , , , ,

,

Ro Ro Ro Ro Ro Ro

Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro
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Fr Fr Fr Fr Fr

Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr

Fr Fr .2496 3.3286 3.3757 1.5911 2.3332 3.0000 2.2863 2.3620 3.3328 2.5716 2.3332, , , , , , ,Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro RoFr Fr Fr Fr Fr Fr Fr Fr Fr Fr

 
 
 
 
 
 
 
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. 

Step 2: The collective overall linguistic neutrosophic numbers of Nv for Pv (v = 1, 2, 3, 4) was 

determined below: 

N1 = <Fr
Ro 

3.5807, Fr
Ro 

2.4175, Fr
Ro 

2.4916>, N2 = <Fr
Ro 

3.9258, Fr
Ro 

2.7432, Fr
Ro 

2.6147>, N3 = <Fr
Ro 

4.0996, Fr
Ro 

3.0590, Fr
Ro 

2.2998>, and N4 = <Fr
Ro 

3.2625, 

Fr
Ro 

2.1144, Fr
Ro 

2.5240>. 

Step 3: Calculate the score values of U(Nv) (v = 1, 2, 3, 4) for the collective overall linguistic 

neutrosophic numbers of Nv: 

U(N1) = 0.5929, U(N2) = 0.5860, U(N3) = 0.5967, and U(N4) = 0.5902. 

Step 4: We can get the ranking of the four alternatives: P3 P1 P4 P2. It can be seen that P3 is 

the most reasonable choice among the four ones.  

Or by the LNNWGA operator of the equation (5), the calculational steps are given below. 

Step 1: This step is the same as Step 1 mentioned above. 

Step 2: Through the equation (5), the collective overall LNNs of Nv for Pv (v = 1, 2, 3, 4) below: 

N1 = <Fr
Ro 

3.5543, Fr
Ro 

2.5138, Fr
Ro 

2.5421>, N2 = <Fr
Ro 

3.8110, Fr
Ro 

2.8160, Fr
Ro 

3.0491>, N3 = <Fr
Ro 

4.0389, Fr
Ro 

3.1457, Fr
Ro 

2.3507>, and N4 = <Fr
Ro 

3.2545, 

Fr
Ro 

2.1658, Fr
Ro 

2.5717>. 

Step 3: Calculate the score values of U(Nv) (v = 1, 2, 3, 4): 

U(N1) = 0.5832, U(N2) = 0.5525, U(N3) = 0.5857, and U(N4) = 0.5843. 

Step 4: We can get the ranking of the four alternatives: P3 P4 P2 P1. It can be seen that P3 is 

the most reasonable option among the four ones. 

Figure 4 shows the comparison of the decision results obtained using the LNNWGA and 

LNNWAA operators [24] and the proposed LNNDWAA and LNNDWGA operators in this study. 

The ranking orders in this MAGDM example are influenced by different aggregation operators and 

values of the parameter ρ. According to the results obtained using the LNNWGA and LNNWAA 

operators, the scheme P3 is the most reasonable option among the four alternatives. It is the same as 

the result based on the proposed LNNDWAA and LNNDWGA operators when ρ = 1. However, the 
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best alternative is P2 according to the proposed LNNDWAA operator when ρ = 2, 3, 4. According to 

the result of the proposed LNNDWGA operator, when ρ = 2, 3, 4, the best alternative is P4. 

 

  

Figure 4. Comparison of the decision results based on different aggregation operators and values of ρ 

6. Conclusion  

In this study, the LNNDWAA and LNNDWGA operators and their properties were proposed 

in view of the Dombi operations in the LNN environment. A novel technique for MAGDM 

problems was proposed using the LNNDWAA or LNNDWGA operator. In the proposed MAGDM 

process, regarding the satisfactory assessment of alternatives over multiple attributes, we 

established a decision matrix based on the suitable evaluation results given by the decision makers. 

Then, we used the LNNDWAA/LNNDWGA operator to aggregate LNN information. Finally, the 

score values (accuracy values if necessary) was calculated and the ranking results of alternatives are 

given in a descending order to obtain the optimal choice. In the DM application, an illustrative 

example of the selection of landslide treatment schemes was presented to verify the feasibility of the 

proposed method. Compared with the related MAGDM methods in previous studies, this new 

method can influence the sorting order of alternatives by changing the parameter values of ρ. Thus, 

it can overcome the insufficiency of decision flexibility in the existing MAGDM method with LNNs. 

Therefore, we can more effectively deal with the DM problem of landslide treatment schemes by 

specifying various parameter values according to the preferences and demands of decision makers. 

It is obvious that this new method can better solve the DM problem of landslide treatment schemes 

and make the DM results more reasonable and flexible in the uncertainty and inconsistency of 

human linguistic judgments. 
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Abstract. There are several decision-making based situations in which it is necessary to categorize the eval-

uating parameters into their respective sub-parametric values based non-overlapping sets. The existing soft

set model is not compatible with such situations therefore hypersoft set (Ĥs-set) is developed which manages

such situations by utilizing a novel mapping called multi-argument approximate mapping which broadens the

domain of soft approximate mapping. This research presents the characterization of several essential axiomatic

properties and set-based operations of Ĥs-set which will help the researchers to implement this emerging theory

to other fields of study. The brief discussion on some hybridized structures of Ĥs-set with fuzzy set-like models

is also provided.

Keywords: Ĥs-set; Ĥs-Relation; Ĥs-Function; Ĥs-Matrix.

—————————————————————————————————————————-

1. Introduction

There are several models in literature to deal uncertainties but fuzzy set [1] is the most signif-

icant in this regards. It has its own intricacies which limit it to tackle uncertain decision-making

scenarios effectively. The justification behind these obstacles is, potentially, the deficiency of

parameterization tool. A novel model is required for managing vagueness and uncertainties

which should be liberated from all such obstacles. In 1999, Molodtsov [2] established a set-

structure known as soft set (ŝ-set) in literature as a novel parameterized sub-class of universal

set. In the year 2003, Maji et al. [3] broadened the idea and investigated several rudimental

axiomatic properties and set-operations of ŝ-sets . They also validated several results. Later

on Pei et al. [4] introduced an information system (Inf-sys) by using the idea of ŝ-sets. It is

proved that ŝ-set can be considered as a particular class of Inf-sys. Afterwards, Ali et al. [5]

identified many assertions in the research proposed by Maji et al. and introduced novel notions
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by using the concept of restricted and extended ŝ-set aggregation operations. In the same way,

Babitha et al. [6, 7] made investigation on ŝ-set relation, Ĥs-set function by using the Carte-

sian product of Ĥs-sets. Sezgin et al. [8], Ge et al. [9], Fuli [10] provided few amendments

in previous work by establishing few novel results. In order to utilize the concept of ŝ-sets in

the development of algebraic structures, Saeed et al. [11] characterized the classical notions

of elements and points under ŝ-set environment. Many researchers [12–23] discussed various

gluing structures of ŝ-sets with other fuzzy set-like models to resolve several real-life decision

making issues.

It is a matter of common observation that in various decision making problems, parameters

have to be partitioned into their related sub-parametric valued sets whereas the previous re-

searches on ŝ-set are not sufficient to manage such settings therefore Smarandache [24] initiated

the notion of hypersoft set (Ĥs-set) as an extension of ŝ-set by introducing a novel multi-

argument approximate mapping (maa-mapping). Any novel theory can not be implemented

in real-world situations without the characterization of its elementary axiomatic-properties.

Although Saeed et al. [25] made a good effort to investigate various basic properties of Ĥs-

set but it does not cover many of the aspects of Ĥs-set theory. Therefore this paper aims

to (i). generalize the research works described in [3, 5–10] for Ĥs-set environment and (ii).

to modify the results discussed by Saeed et al. [25]. In the present work, all the necessary

rudiments of Ĥs-set are investigated for its further developments. The Figure 1 explains the

sectional-outlines of the paper.

Figure 1. Outlines of the paper

2. Preliminaries

The purpose of this section is to review some basic properties of ŝ-set for clear understanding

of proposed study. The symbol Π̂ will represent initial universe in the remaining parts of the

article.
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Definition 2.1. [2]

A ŝ-set S on Π̂ is usually stated by a pair (ΨS,G) in which ΨS ∶ G → P Π̂ is an approximate

mapping & G be a sub-family of parameters. The family of ŝ-sets is symbolized as Σ(ΨS,G).

Definition 2.2. [3]

For (ΨS1 ,G1) & (ΨS2 ,G2) ∈ Σ(ΨS,G), if G1 ⊆ G2, & ΨS1(ε̂) ⊆ ΨS2(ε̂) for all ε̂ ∈ G1 then ŝ-set

(ΨS1 ,G1) is a soft-subset of ŝ-set (ΨS2 ,G2).

Definition 2.3. [3]

For (ΨS1 ,G1) & (ΨS2 ,G2) ∈ Σ(ΨS,G), their union is a ŝ-set (ΨS3 ,G3) with G3 = G1 ∪G2 & for

ε̂ ∈ G3,

ΨS3(ε̂) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ΨS1(ε̂)
ΨS2(ε̂)

ΨS1(ε̂) ∪ΨS2(ε̂)

ε̂ ∈ (G1 ∖G2)
ε̂ ∈ (G2 ∖G1)
ε̂ ∈ (G1 ∩G2)

Definition 2.4. [3]

For (ΨS1 ,G1) & (ΨS2 ,G2) ∈ Σ(ΨS,G), their intersection is a ŝ-set (ΨS4 ,G4) with G4 = G1 ∩G2

& for ε̂ ∈ G4, ΨS4(ε̂) = ΨS1(ε̂) ∩ΨS2(ε̂).

One can refer [2–10] for detailed description on ŝ-sets.

3. Hypersoft Set

This part of the paper provides the basic axiomatic-properties of Ĥs-set along with the

modification of some notions stated in [25].

Definition 3.1. [22]

Let A1,A2,A3, ....,An are non-overlapping sets having sub-parametric values of parameters

ä1, ä2, ä3, ...., än respectively, then a Ĥs-set on Π̂, is usually stated by a pair (Θ,A) in which

Θ ∶ A → P Π̂ is a maa-mapping and A =
n

∏
i=1

Ai. The family of Ĥs-sets is symbolized by Σ(Θ,A).

The model of Ĥs-set is presented in Figure 2.

Example 3.2. Mrs. Smith visits a mobile mall to purchase a mobile for her personal

use. She is accompanied by her two friends who are experts in mobile purchasing. They

collectively observed 8 types of mobiles which are considered as elements of universal set

Π̂ = {M̂1,M̂2,M̂3,M̂4,M̂5,M̂6,M̂7,M̂8}. They have fixed some parameters for this purchase

with their mutual consensus that are ê1 = random only memory in giga bytes, ê2 = Resolution

of camera in pixels, ê3 = length in inches, ê4 = random access memory in giga bytes, and ê5

= power of battery in mAh. These parameters have their sub-collections as:

B1 = {ê11 = 32, ê12 = 64}, B2 = {ê21 = 8, ê22 = 16}, B3 = {ê31 = 6.5, ê32 = 6.7}
B4 = {ê41 = 4, ê42 = 8}, B5 = {ê51 = 4000} then A =B1 ×B2 ×B3 ×B4 ×B5
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Figure 2. Pictorial Version of Ĥs-set

A = {θ̂1, θ̂2, θ̂3, θ̂4, ....., θ̂16} and every θ̂i, (1)i
(16), is a 5-tuple member. Then the Ĥs-set (Θ,A)

is constructed as

(Θ,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(θ̂1,{M̂1,M̂2}) , (θ̂2,{M̂1,M̂2,M̂3}) , (θ̂3,{M̂2,M̂3,M̂4}) , (θ̂4,{M̂4,M̂5,M̂6}) ,
(θ̂5,{M̂6,M̂7,M̂8}) , (θ̂6,{M̂2,M̂3,M̂4,M̂7}) , (θ̂7,{M̂1,M̂3,M̂5,M̂6}) ,
(θ̂8,{M̂2,M̂3,M̂6,M̂7}) , (θ̂9,{M̂2,M̂3,M̂6,M̂7,M̂8}) , (θ̂10,{M̂1,M̂3,M̂6,M̂7,M̂8}) ,
(θ̂11,{M̂2,M̂4,M̂6,M̂7,M̂8}) , (θ̂12,{M̂1,M̂2,M̂3,M̂6,M̂7,M̂8}) ,
(θ̂13,{M̂2,M̂3,M̂5,M̂7,M̂8}) , (θ̂14,{M̂1,M̂3,M̂5,M̂7,M̂8}) ,
(θ̂15,{M̂1,M̂2,M̂3,M̂5,M̂7,M̂8}) , (θ̂16,{M̂4,M̂5,M̂6,M̂7,M̂8})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition 3.3. Let F Π̂ be a collection consisting of fuzzy subsets on Π̂. Let äi, n ≥ 1, 1i
n

are parameters having their relevant sub-parametric values in the sets Ai respectively, with

Ai ∩Aj = ∅, for i ≠ j, & 1i
n, 1j

n. Then a fuzzy Ĥs-set (Θfhs,A) on Π̂ is stated as,

(Θfhs,A) = {(θ̂,Θfhs(θ̂)) ∶ θ̂ ∈ A,Θfhs(θ̂) ∈ F Π̂}

where Θfhs ∶ A→ F Π̂ and for all θ̂ ∈ A = A1 ×A2 ×A3 × ..... ×An

Θfhs(θ̂) = {µΘfhs(θ̂)($)/$ ∶$ ∈ Π̂, µΘfhs(θ̂)($) ∈ C(I) = [0,1]}

is a fuzzy set on Π̂.

One can consider this definition as modified form of fuzzy Ĥs-set stated in [22] and [24].
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Example 3.4. Assuming the Example 3.2, Fuzzy Ĥs-set (Θfhs,A) is constructed as

(Θfhs,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(θ̂1,{0.1/M̂1,0.2/M̂2}) , (θ̂2,{0.1/M̂1,0.2/M̂2,0.3/M̂3}) , (θ̂3,{0.2/M̂2,0.3/M̂3,0.4/M̂4}) ,
(θ̂4,{0.4/M̂4,0.5/M̂5,0.6/M̂6}) , (θ̂5,{0.6/M̂6,0.7/M̂7,0.8/M̂8}) , (θ̂6,{0.2/M̂2,0.3/M̂3,0.4/M̂4,0.7/M̂7}) ,
(θ̂7,{0.1/M̂1,0.3/M̂3,0.5/M̂5,0.6/M̂6}) , (θ̂8,{0.2/M̂2,0.3/M̂3,0.6/M̂6,0.7/M̂7}) ,
(θ̂9,{0.2/M̂2,0.3/M̂3,0.6/M̂6,0.7/M̂7,0.8/M̂8}) , (θ̂10,{0.1/M̂1,0.3/M̂3,0.6/M̂6,0.7/M̂7,0.8/M̂8}) ,
(θ̂11,{0.2/M̂2,0.4/M̂4,0.6/M̂6,0.7/M̂7,0.8/M̂8}) , (θ̂12,{0.1/M̂1,0.2/M̂2,0.3/M̂3,0.6/M̂6,0.7/M̂7,0.8/M̂8}) ,
(θ̂13,{0.2/M̂2,0.3/M̂3,0.5/M̂5,0.7/M̂7,0.8/M̂8}) , (θ̂14,{0.1/M̂1,0.3/M̂3,0.5/M̂5,0.7/M̂7,0.8/M̂8}) ,
(θ̂15,{0.1/M̂1,0.2/M̂2,0.3/M̂3,0.5/M̂5,0.7/M̂7,0.8/M̂8}) , (θ̂16,{0.4/M̂4,0.5/M̂5,0.6/M̂6,0.7/M̂7,0.8/M̂8})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition 3.5. Let (Θ1,A1), (Θ2,A2) ∈ Σ(Θ,A) then (Θ1,A1) is said to be Ĥs- subset of

(Θ2,A2) if A1 ⊆ A2 and ∀θ̂ ∈ A1,Θ1(θ̂) ⊆ Θ2(θ̂).

Example 3.6. Assuming Example 3.2, if

(Θ1,A1) = { (θ̂1,{M̂1}) , (θ̂2,{M̂1,M̂2}) , (θ̂3,{M̂2,M̂3}) }

(Θ2,A2) = { (θ̂1,{M̂1,M̂2}) , (θ̂2,{M̂1,M̂2,M̂3}) , (θ̂3,{M̂2,M̂3,M̂4}) , (θ̂4,{M̂4,M̂5,M̂6}) }
then (Θ1,A1) ⊆ (Θ2,A2).

Definition 3.7. A set A = A1 ×A2 ×A3 × ..... ×An in Ĥs-set (Θ,A) is said to be Not set if it

has the representation as ⋉A = {⋉θ̂1,⋉θ̂2,⋉θ̂3,⋉θ̂4, .....,⋉θ̂m} where m =
n

∏
i=1

∣Ai∣.

Example 3.8. Reconsidering A1,A2,A3,A4, ,A5 from Example 3.2, we get

⋉A = {⋉θ̂1,⋉θ̂2,⋉θ̂3,⋉θ̂4, .....,⋉θ̂16}

.

Definition 3.9. A Ĥs-set (Θ,A1) is stated as a relative null Ĥs-set w.r.t A1 ⊆ A, symbolized

by (Θ,A1)Φ , if Θ(θ̂) = ∅,∀θ̂ ∈ A1.

Example 3.10. Assuming Example 3.2, if (Θ,A1)Φ = { (θ̂1,∅) , (θ̂2,∅) , (θ̂3,∅) } where A1 ⊆
A.

Definition 3.11. A Ĥs-set (Θ,A1) is stated as a relative whole Ĥs-set w.r.t A1 ⊆ A, symbol-

ized by (Θ,A1)Π̂ , if Θ(θ̂) = Π̂,∀θ̂ ∈ A1.

Example 3.12. Assuming Example 3.2, if (Θ,A1)Π̂ = { (θ̂1, Π̂) , (θ̂2, Π̂) , (θ̂3, Π̂) } where A1 ⊆
A.

Definition 3.13. A Ĥs-set (Θ,A) is stated as a absolute whole Ĥs-set on Π̂, symbolized by

(Θ,A)Π̂ , if Θ(θ̂) = Π̂,∀θ̂ ∈ A.

Example 3.14. Assuming Example 3.2, if

(Θ,A)Π̂ =
⎧⎪⎪⎨⎪⎪⎩

(θ̂1, Π̂) , (θ̂2, Π̂) , (θ̂3, Π̂) , (θ̂4, Π̂) , (θ̂5, Π̂) , (θ̂6, Π̂) , (θ̂7, Π̂) , (θ̂8, Π̂) ,
(θ̂9, Π̂) , (θ̂10, Π̂) , (θ̂11, Π̂) , (θ̂12, Π̂) , (θ̂13, Π̂) , (θ̂14, Π̂) , (θ̂15, Π̂) , (θ̂16, Π̂)

⎫⎪⎪⎬⎪⎪⎭
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Proposition 3.15. Let (Θ1,A1), (Θ2,A2), (Θ3,A3) ∈ Σ(Θ,A) with A1,A2,A3 ⊆ A then

(i) (Θ1,A1) ⊆ (Θ1,A1)Π̂

(ii) (Θ1,A1)Φ ⊆ (Θ1,A1)
(iii) (Θ1,A1) ⊆ (Θ1,A1)
(iv) If (Θ1,A1) ⊆ (Θ2,A2) & (Θ2,A2) ⊆ (Θ3,A3) then (Θ1,A1) ⊆ (Θ3,A3)
(v) If (Θ1,A1) = (Θ2,A2) & (Θ2,A2) = (Θ3,A3) then (Θ1,A1) = (Θ3,A3)

Definition 3.16. The complement of a Ĥs-set (Θ,A), symbolized by (Θ,A)⊖, is stated as

(Θ,A)⊖ = (Θ⊖,⋉A) where Θ⊖ ∶ ⋉A→ P Π̂ with Θ⊖(⋉θ̂) = Π̂ ∖Θ(θ̂),∀θ̂ ∈ A.

Example 3.17. From Example 3.2, we get

(Θ,A)⊖ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(⋉θ̂1,{M̂3, M̂4,M̂5, M̂6,M̂7, M̂8}) , (⋉θ̂2,{M̂4,M̂5, M̂6,M̂7, M̂8}) , (⋉θ̂3,{M̂1, M̂5, M̂6,M̂7, M̂8}) ,
(⋉θ̂4,{M̂1, M̂2,M̂3, M̂7,M̂8}) , (⋉θ̂5,{M̂1, M̂2,M̂3, M̂4,M̂5}) , (⋉θ̂6,{M̂2, M̂3,M̂4, M̂7}) ,
(⋉θ̂7,{M̂2, M̂4, M̂7,M̂8}) , (⋉θ̂8,{M̂1,M̂4, M̂5,M̂8}) , (⋉θ̂9,{M̂1, M̂4,M̂5}) , (⋉θ̂10,{M̂2, M̂4,M̂5}) ,
(⋉θ̂11,{M̂1,M̂3, M̂5}) , (⋉θ̂12,{M̂4,M̂5}) , (⋉θ̂13,{M̂1, M̂4, M̂6}) , (⋉θ̂14,{M̂2,M̂4, M̂6}) ,
(⋉θ̂15,{M̂4,M̂6}) , (⋉θ̂16,{M̂1, M̂2,M̂3})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition 3.18. The relative complement of a Ĥs-set (Θ,A), symbolized by (Θ,A)⊛, is

stated as (Θ,A)⊛ = (Θ⊛,A) where Θ⊛ ∶ A→ P Π̂ with Θ⊛(θ̂) = Π̂ ∖Θ(θ̂),∀θ̂ ∈ A.

Example 3.19. Reconsidering Example 3.2, we get

(Θ,A)⊛ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(θ̂1,{M̂3,M̂4, M̂5,M̂6, M̂7,M̂8}) , (θ̂2,{M̂4, M̂5,M̂6, M̂7,M̂8}) , (θ̂3,{M̂1, M̂5,M̂6, M̂7,M̂8}) ,
(θ̂4,{M̂1,M̂2, M̂3,M̂7, M̂8}) , (θ̂5,{M̂1,M̂2, M̂3,M̂4, M̂5}) , (θ̂6,{M̂2,M̂3, M̂4,M̂7}) ,
(θ̂7,{M̂2,M̂4, M̂7,M̂8}) , (θ̂8,{M̂1, M̂4,M̂5, M̂8}) , (θ̂9,{M̂1,M̂4, M̂5}) , (θ̂10,{M̂2,M̂4, M̂5}) ,
(θ̂11,{M̂1, M̂3, M̂5}) , (θ̂12,{M̂4,M̂5}) , (θ̂13,{M̂1, M̂4,M̂6}) , (θ̂14,{M̂2, M̂4,M̂6}) ,
(θ̂15,{M̂4, M̂6}) , (θ̂16,{M̂1, M̂2, M̂3})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Proposition 3.20. Let (Θ,A) ∈ Σ(Θ,A) then

(i) ((Θ,A)⊖)⊖ = (Θ,A)
(ii) ((Θ,A)⊛)⊛ = (Θ,A)
(iii) ((Θ1,A1)Π̂)⊖ = (Θ1,A1)Φ = ((Θ1,A1)Π̂)⊛; A1 ⊆ A

(iv) ((Θ1,A1)Φ)⊖ = (Θ1,A1)Π̂ = ((Θ1,A1)Φ)⊛; A1 ⊆ A

Definition 3.21. For (Θ1,A1)&(Θ2,A2) ∈ Σ(Θ,A), the union-operation (Θ1,A1)∪ (Θ2,A2), is

a Ĥs-set (Θ3,A3) with A3 = A1 ∪A2 and for θ̂ ∈ A3,

Θ3(θ̂) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Θ1(θ̂)
Θ2(θ̂)

Θ1(θ̂) ∪Θ2(θ̂)

θ̂ ∈ (A1 ∖A2)
θ̂ ∈ (A2 ∖A1)
θ̂ ∈ (A1 ∩A2)

.

Example 3.22. Let

(Θ1,A1) = { (θ̂1,{M̂1,M̂2}) , (θ̂2,{M̂1,M̂2,M̂3}) , (θ̂3,{M̂2,M̂3,M̂4}) }

(Θ2,A2) = { (θ̂3,{M̂1,M̂2}) , (θ̂4,{M̂4,M̂5,M̂6}) , (θ̂5,{M̂2,M̂4,M̂6}) }
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then

(Θ3,A3) =
⎧⎪⎪⎨⎪⎪⎩

(θ̂1,{M̂1,M̂2}) , (θ̂2,{M̂1,M̂2,M̂3}) , (θ̂3,{M̂1,M̂2,M̂3,M̂4}) ,
(θ̂4,{M̂4,M̂5,M̂6}) , (θ̂5,{M̂2,M̂4,M̂6})

⎫⎪⎪⎬⎪⎪⎭
Definition 3.23. For (Θ1,A1)&(Θ2,A2) ∈ Σ(Θ,A), the intersection-operation (Θ1,A1) ∩
(Θ2,A2), is a Ĥs-set (Θ3,A3) with A3 = A1 ∩A2 & for θ̂ ∈ A3, Θ3(θ̂) = Θ1(θ̂) ∩Θ2(θ̂).

Example 3.24. Reconsidering Example 3.22, we get (Θ3,A3) = { (θ̂3,{M̂2}) }.

Definition 3.25. For (Θ1,A1)&(Θ2,A2) ∈ Σ(Θ,A), their extended-intersection (Θ1,A1) ∩ε
(Θ2,A2), is a Ĥs-set (Θ3,A3) with A3 = A1 ∪A2 and for θ̂ ∈ A3,

Θ3(θ̂) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Θ1(θ̂)
Θ2(θ̂)

Θ1(θ̂) ∩Θ2(θ̂)

θ̂ ∈ (A1 ∖A2)
θ̂ ∈ (A2 ∖A1)
θ̂ ∈ (A1 ∩A2)

Example 3.26. Taking assumptions of Example 3.22, we get

(Θ3,A3) =
⎧⎪⎪⎨⎪⎪⎩

(θ̂1,{M̂1,M̂2}) , (θ̂2,{M̂1,M̂2,M̂3}) , (θ̂3,{M̂2}) ,
(θ̂4,{M̂4,M̂5,M̂6}) , (θ̂5,{M̂2,M̂4,M̂6})

⎫⎪⎪⎬⎪⎪⎭
Definition 3.27. For (Θ1,A1)&(Θ2,A2) ∈ Σ(Θ,A), their AND-operation (Θ1,A1)⋀(Θ2,A2),
is a Ĥs-set (Θ3,A3) with A3 = A1 ×A2 and for (θ̂i, θ̂j) ∈ A3, θ̂i ∈ A1, θ̂j ∈ A2,

Θ3(θ̂i, θ̂j) = Θ1(θ̂i) ∪Θ2(θ̂j).

Example 3.28. Taking assumptions of Example 3.22, we get

A1 ×A2 =
⎧⎪⎪⎨⎪⎪⎩

π1 = (θ̂1, θ̂3) , π2 = (θ̂1, θ̂4) , π3 = (θ̂1, θ̂5) , π4 = (θ̂2, θ̂3) , π5 = (θ̂2, θ̂4) ,
π6 = (θ̂2, θ̂5) , π7 = (θ̂3, θ̂3) , π8 = (θ̂3, θ̂4) , π9 = (θ̂3, θ̂5)

⎫⎪⎪⎬⎪⎪⎭
then

(Θ3,A3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(π1,{M̂1,M̂2}) , (π2,{M̂1,M̂2,M̂4,M̂5,M̂6}) ,
(π3,{M̂1,M̂2,M̂4,M̂6}) , (π4,{M̂1,M̂2,M̂3}) ,
(π5,{M̂1,M̂2,M̂3,M̂4,M̂5,M̂6}) , (π6,{M̂1,M̂2,M̂3,M̂4,M̂6}) ,
(π7,{M̂1,M̂2,M̂3,M̂4}) , (π8,{M̂2,M̂3,M̂4,M̂5,M̂6}) ,
(π9,{M̂2,M̂3,M̂4,M̂6}) ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition 3.29. For (Θ1,A1)&(Θ2,A2) ∈ Σ(Θ,A), their OR-operation (Θ1,A1)⋁(Θ2,A2), is

a Ĥs-set (Θ3,A3) with A3 = A1 ×A2 and for (θ̂i, θ̂j) ∈ A3, θ̂i ∈ A1, θ̂j ∈ A2,

Θ3(θ̂i, θ̂j) = Θ1(θ̂i) ∩Θ2(θ̂j).

Example 3.30. Taking assumptions of Examples 3.22 and 3.30, we get

(Θ3,A3) =
⎧⎪⎪⎨⎪⎪⎩

(π1,{M̂1,M̂2}) , (π2,{}) , (π3,{M̂2}) , (π4,{M̂1,M̂2}) ,
(π5,{}) , (π6,{M̂2}) , (π7,{M̂2}) , (π8,{M̂4}) , (π9,{M̂2,M̂4}) ,

⎫⎪⎪⎬⎪⎪⎭
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Definition 3.31. For (Θ1,A1)&(Θ2,A2) ∈ Σ(Θ,A), their restricted-union (Θ1,A1)∪R(Θ2,A2),
is a Ĥs-set (Θ3,A3) with A3 = A1 ∩A2 and for θ̂ ∈ A3,

Θ3(θ̂) = Θ1(θ̂) ∪Θ2(θ̂).

Example 3.32. Taking assumptions of Example 3.22, we get

(Θ3,A3) = { (θ̂3,{M̂1,M̂2,M̂3,M̂4}) }

Definition 3.33. For (Θ1,A1)&(Θ2,A2) ∈ Σ(Θ,A), their restricted-difference (Θ1,A1) ∖R
(Θ2,A2), is a Ĥs-set (Θ3,A3) with A3 = A1 ∩A2 and for θ̂ ∈ A3,

Θ3(θ̂) = Θ1(θ̂) −Θ2(θ̂).

Example 3.34. Taking suppositions of Example 3.22, we get (Θ3,A3) = { (θ̂3,{M̂3,M̂4}) }.

Definition 3.35. For (Θ1,A1)&(Θ2,A2) ∈ Σ(Θ,A), their restricted-symmetric-difference

(Θ1,A1) ▲ (Θ2,A2), is a Ĥs-set (Θ3,A3) stated by

(Θ3,A3) = { ((Θ1,A1) ∪R (Θ2,A2)) ∖R ((Θ1,A1) ∩ (Θ2,A2)) }

or

(Θ3,A3) = { ((Θ1,A1) ∖R (Θ2,A2)) ∪R ((Θ2,A2) ∖R (Θ1,A1)) }

Example 3.36. Taking suppositions of Example 3.22, we get

((Θ1,A1) ∖R (Θ2,A2)) = { (θ̂3,{M̂3,M̂4}) }

&

((Θ2,A2) ∖R (Θ1,A1)) = { (θ̂3,{M̂1}) }

then

(Θ3,A3) = { (θ̂3,{M̂1,M̂3,M̂4}) }

4. Axioms-based Results of Ĥs-sets

This part presents some classical axioms-based results of set theory that are also valid for

Ĥs-settings.

(1) Idempotent Laws

(a) (Θ,A) ∪ (Θ,A) = (Θ,A) = (Θ,A) ∪R (Θ,A)
(b) (Θ,A) ∩ (Θ,A) = (Θ,A) = (Θ,A) ∩ε (Θ,A)

(2) Identity Laws

(a) (Θ,A) ∪ (Θ,A)Φ = (Θ,A) = (Θ,A) ∪R (Θ,A)Φ

(b) (Θ,A) ∩ (Θ,A)Π̂ = (Θ,A) = (Θ,A) ∩ε (Θ,A)Π̂

(c) (Θ,A) ∖R (Θ,A)Φ = (Θ,A) = (Θ,A) ▲ (Θ,A)Φ

(d) (Θ,A) ∖R (Θ,A) = (Θ,A)Φ = (Θ,A) ▲ (Θ,A)
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(3) Domination Laws

(a) (Θ,A) ∪ (Θ,A)Π̂ = (Θ,A)Π̂ = (Θ,A) ∪R (Θ,A)Π̂

(b) (Θ,A) ∩ (Θ,A)Φ = (Θ,A)Φ = (Θ,A) ∩ε (Θ,A)Φ

(4) Property of Exclusion

(Θ,A) ∪ (Θ,A)⊛ = (Θ,A)Π̂ = (Θ,A) ∪R (Θ,A)⊛

(5) Property of Contradiction

(Θ,A) ∩ (Θ,A)⊛ = (Θ,A)Φ = (Θ,A) ∩ε (Θ,A)⊛

(6) Absorption Laws

(a) (Θ1,A1) ∪ ((Θ1,A1) ∩ (Θ2,A2)) = (Θ1,A1)
(b) (Θ1,A1) ∩ ((Θ1,A1) ∪ (Θ2,A2)) = (Θ1,A1)
(c) (Θ1,A1) ∪R ((Θ1,A1) ∩ε (Θ2,A2)) = (Θ1,A1)
(d) (Θ1,A1) ∩ε ((Θ1,A1) ∪R (Θ2,A2)) = (Θ1,A1)

(7) Commutative Laws

(a) (Θ1,A1) ∪ (Θ2,A2) = (Θ2,A2) ∪ (Θ1,A1)
(b) (Θ1,A1) ∪R (Θ2,A2) = (Θ2,A2) ∪R (Θ1,A1)
(c) (Θ1,A1) ∩ (Θ2,A2) = (Θ2,A2) ∩ (Θ1,A1)
(d) (Θ1,A1) ∩ε (Θ2,A2) = (Θ2,A2) ∩ε (Θ1,A1)
(e) (Θ1,A1) ▲ (Θ2,A2) = (Θ2,A2) ▲ (Θ1,A1)

(8) Associative Laws

(a) (Θ1,A1) ∪ ((Θ2,A2) ∪ (Θ3,A3)) = ((Θ1,A1) ∪ (Θ2,A2)) ∪ (Θ3,A3)
(b) (Θ1,A1) ∪R ((Θ2,A2) ∪R (Θ3,A3)) = ((Θ1,A1) ∪R (Θ2,A2)) ∪R (Θ3,A3)
(c) (Θ1,A1) ∩ ((Θ2,A2) ∩ (Θ3,A3)) = ((Θ1,A1) ∩ (Θ2,A2)) ∩ (Θ3,A3)
(d) (Θ1,A1) ∩ε ((Θ2,A2) ∩ε (Θ3,A3)) = ((Θ1,A1) ∩ε (Θ2,A2)) ∩ε (Θ3,A3)
(e) (Θ1,A1)⋁((Θ2,A2)⋁(Θ3,A3)) = ((Θ1,A1)⋁(Θ2,A2))⋁(Θ3,A3)
(f) (Θ1,A1)⋀((Θ2,A2)⋀(Θ3,A3)) = ((Θ1,A1)⋀(Θ2,A2))⋀(Θ3,A3)

(9) De Morgans Laws

(a) ((Θ1,A1) ∪ (Θ2,A2))⊖ = (Θ1,A1)⊖ ∩ε (Θ2,A2)⊖

(b) ((Θ1,A1) ∩ε (Θ2,A2))⊖ = (Θ1,A1)⊖ ∪ (Θ2,A2)⊖

(c) ((Θ1,A1) ∪R (Θ2,A2))⊛ = (Θ1,A1)⊛ ∩ (Θ2,A2)⊛

(d) ((Θ1,A1) ∩ (Θ2,A2))⊛ = (Θ1,A1)⊛ ∪R (Θ2,A2)⊛

(e) ((Θ1,A1)⋁(Θ2,A2))⊖ = (Θ1,A1)⊖⋀(Θ2,A2)⊖

(f) ((Θ1,A1)⋀(Θ2,A2))⊖ = (Θ1,A1)⊖⋁(Θ2,A2)⊖

(g) ((Θ1,A1)⋁(Θ2,A2))⊛ = (Θ1,A1)⊛⋀(Θ2,A2)⊛

(h) ((Θ1,A1)⋀(Θ2,A2))⊛ = (Θ1,A1)⊛⋁(Θ2,A2)⊛

(10) Distributive Laws
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(a) (Θ1,A1) ∪ ((Θ2,A2) ∩ (Θ3,A3)) = ((Θ1,A1) ∪ (Θ2,A2)) ∩ ((Θ1,A1) ∪ (Θ3,A3))
(b) (Θ1,A1) ∩ ((Θ2,A2) ∪ (Θ3,A3)) = ((Θ1,A1) ∩ (Θ2,A2)) ∪ ((Θ1,A1) ∩ (Θ3,A3))
(c) (Θ1,A1) ∪R ((Θ2,A2) ∩ε (Θ3,A3)) = ((Θ1,A1) ∪R (Θ2,A2)) ∩ε ((Θ1,A1) ∪R (Θ3,A3))
(d) (Θ1,A1) ∩ε ((Θ2,A2) ∪R (Θ3,A3)) = ((Θ1,A1) ∩ε (Θ2,A2)) ∪R ((Θ1,A1) ∩ε (Θ3,A3))
(e) (Θ1,A1) ∪R ((Θ2,A2) ∩ (Θ3,A3)) = ((Θ1,A1) ∪R (Θ2,A2)) ∩ ((Θ1,A1) ∪R (Θ3,A3))
(f) (Θ1,A1) ∩ ((Θ2,A2) ∪R (Θ3,A3)) = ((Θ1,A1) ∩ (Θ2,A2)) ∪R ((Θ1,A1) ∩ (Θ3,A3))

5. Relations-based Operations of Ĥs-sets

Here some relations-based classical notions and results are generalized for Ĥs-sets.

Definition 5.1. For (Θ1,A1)&(Θ2,A2) ∈ Σ(Θ,A), their Cartesian product (Θ1,A1)×(Θ2,A2),
is a Ĥs-set (Θ3,A3) where A3 = A1 × A2 & Θ3 ∶ A3 → P (Π̂ × Π̂) stated by Θ3(θ̂i, θ̂j) =
Θ1(θ̂i) ×Θ2(θ̂j) ∀ (θ̂i, θ̂j) ∈ A3 that is Θ3(θ̂i, θ̂j) = {(θ̂i, θ̂j) ∶ θ̂i ∈ Θ1(θ̂i), θ̂j ∈ Θ2(θ̂j)}.

Definition 5.2. If (Θ1,A1), (Θ2,A2) ∈ Σ(Θ,A) then a relation from (Θ1,A1) to (Θ2,A2) is

stated as Ĥs-relation (Ξ̂,A4) (conveniently Ξ̂) which is the Ĥs-subset of (Θ1,A1) × (Θ2,A2)
where A4 ⊆ A1 × A2 & ∀ (θ̂1, θ̂2) ∈ A4, Ξ̂(θ̂1, θ̂2) = Θ3(θ̂1, θ̂2), where (Θ3,A3) = (Θ1,A1) ×
(Θ2,A2).

Definition 5.3. Let Ξ̂ be a Ĥs-relation from (Θ1,A1) to (Θ2,A2) such that (Θ3,A3) =
(Θ1,A1) × (Θ2,A2). Then

(i) The DoM Ξ̂ (the domain of Ξ̂) is a Ĥs-set (Θ,W) ⊂ (Θ1,A1) where W = {θ̂i ∈ A1 ∶
Θ3(θ̂i, θ̂j) ∈ Ξ̂ forsome θ̂j ∈ A2} & Θ(θ̂1) = Θ1(θ̂1),∀ θ̂1 ∈W.

(ii) The RNG Ξ̂ (the range of Ξ̂) is a Ĥs-set (ξ,L) ⊂ (Θ2,A2) where L ⊂ A2 & L = {θ̂j ∈
A2 ∶ Θ3(θ̂i, θ̂j) ∈ Ξ̂ forsome θ̂i ∈ A1} & ξ(θ̂2) = Θ1(θ̂2),∀ θ̂2 ∈ L.

(iii) The Ξ̂−1 (inverse of Ξ̂) is a Ĥs-relation from (Θ2,A2) to (Θ1,A1) stated by Ξ̂−1 =
{Θ2(θ̂j) ×Θ1(θ̂i) ∶ Θ1(θ̂i)Ξ̂Θ2(θ̂j)}.

Example 5.4. Let

(Θ1,A1) = { Θ1(θ̂1),Θ1(θ̂2),Θ1(θ̂3) } , (Θ2,A2) = { Θ2(θ̂4),Θ2(θ̂5),Θ2(θ̂6) }

(Θ1,A1) × (Θ2,A2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(Θ1(θ̂1) ×Θ2(θ̂4)), (Θ1(θ̂1) ×Θ2(θ̂5)), (Θ1(θ̂1) ×Θ2(θ̂6)),
(Θ1(θ̂2) ×Θ2(θ̂4)), (Θ1(θ̂2) ×Θ2(θ̂5)), (Θ1(θ̂2) ×Θ2(θ̂6)),
(Θ1(θ̂3) ×Θ2(θ̂4)), (Θ1(θ̂3) ×Θ2(θ̂5)), (Θ1(θ̂3) ×Θ2(θ̂6))

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
then

Ξ̂ = { (Θ1(θ̂1) ×Θ2(θ̂4)), (Θ1(θ̂1) ×Θ2(θ̂6)), (Θ1(θ̂2) ×Θ2(θ̂6)), (Θ1(θ̂3) ×Θ2(θ̂6)) }

(i) DoM Ξ̂ = (Θ,W) where W = {θ̂1, θ̂2, θ̂3} ⊆ A1 & Θ(θ̂i) = Θ1(θ̂i)∀ θ̂i ∈W.

(ii) RNG Ξ̂ = (ξ,L) where L = {θ̂4, θ̂6} ⊂ A2 & ξ(θ̂j) = Θ2(θ̂j)∀ θ̂j ∈ L.
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(iii)

Ξ̂−1 = { (Θ2(θ̂4) ×Θ1(θ̂1)), (Θ2(θ̂6) ×Θ1(θ̂1)), (Θ2(θ̂6) ×Θ1(θ̂2)), (Θ2(θ̂6) ×Θ1(θ̂3)) } .

Definition 5.5. Let Ξ̂ & S are two Ĥs-relations on Ĥs-set (Θ,W), then we get

(i) Ξ̂ ⊂S, if for all $, ς ∈W,Θ($) ×Θ(ς) ∈ Ξ̂ then Θ($) ×Θ(ς) ∈S.

(ii) Ξ̂© = {Θ($) ×Θ(ς) ∶ Θ($) ×Θ(ς) ∉ Ξ̂,∀ $, ς ∈W}.
(iii) Ξ̂ ∪S = {Θ($) ×Θ(ς) ∶ Θ($) ×Θ(ς) ∈ Ξ̂ or Θ($) ×Θ(ς) ∈S,∀ $, ς ∈W}.
(iv) Ξ̂ ∩S = {Θ($) ×Θ(ς) ∶ Θ($) ×Θ(ς) ∈ Ξ̂ & Θ($) ×Θ(ς) ∈S,∀ $, ς ∈W}.

Example 5.6. Let (Θ,W) = { Θ(θ̂1),Θ(θ̂2),Θ(θ̂3) } then

(Θ,W) × (Θ,W) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(Θ(θ̂1) ×Θ(θ̂1)), (Θ(θ̂1) ×Θ(θ̂2)), (Θ(θ̂1) ×Θ(θ̂3)),
(Θ(θ̂2) ×Θ(θ̂1)), (Θ(θ̂2) ×Θ(θ̂2)), (Θ(θ̂2) ×Θ(θ̂3)),
(Θ(θ̂3) ×Θ(θ̂1)), (Θ(θ̂3) ×Θ(θ̂2)), (Θ(θ̂3) ×Θ(θ̂3))

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
then we get

Ξ̂ = { (Θ(θ̂1) ×Θ(θ̂1)), (Θ(θ̂1) ×Θ(θ̂3)), (Θ(θ̂2) ×Θ(θ̂3)), (Θ(θ̂3) ×Θ(θ̂3)) }

&

S = { (Θ(θ̂1) ×Θ(θ̂1)), (Θ(θ̂1) ×Θ(θ̂2)), (Θ(θ̂2) ×Θ(θ̂2)), (Θ(θ̂3) ×Θ(θ̂2)) }

now

(1) Ξ̂© =
⎧⎪⎪⎨⎪⎪⎩

(Θ(θ̂1) ×Θ(θ̂2)), (Θ(θ̂2) ×Θ(θ̂1)), (Θ(θ̂2) ×Θ(θ̂2)),
(Θ(θ̂3) ×Θ(θ̂1)), (Θ(θ̂3) ×Θ(θ̂2))

⎫⎪⎪⎬⎪⎪⎭
. &

S© = { (Θ(θ̂1) ×Θ(θ̂3)), (Θ(θ̂2) ×Θ(θ̂1)), (Θ(θ̂2) ×Θ(θ̂3)), (Θ(θ̂3) ×Θ(θ̂3)) } .

(2) Ξ̂ ∪S =
⎧⎪⎪⎨⎪⎪⎩

(Θ(θ̂1) ×Θ(θ̂1)), (Θ(θ̂1) ×Θ(θ̂2)), (Θ(θ̂1) ×Θ(θ̂3)), (Θ(θ̂2) ×Θ(θ̂2)),
(Θ(θ̂2) ×Θ(θ̂3)), (Θ(θ̂3) ×Θ(θ̂2)), (Θ(θ̂3) ×Θ(θ̂3))

⎫⎪⎪⎬⎪⎪⎭
.

(3) Ξ̂ ∩S = { (Θ(θ̂1) ×Θ(θ̂1)) } .

Definition 5.7. Let Ξ̂ be a Ĥs-relation on (Θ,W), then

(i) if Θ($) ×Θ($) ∈ Ξ̂∀$ ∈W, then Ξ̂ is reflexive, e.g. Ξ̂ = { (Θ(θ̂1) ×Θ(θ̂1)) } .
(ii) if Θ($) ×Θ(ς) ∈ Ξ̂ then Θ(ς) ×Θ($) ∈ Ξ̂∀$, ς ∈W, so Ξ̂ is symmetric, e.g.

Ξ̂ = { (Θ(θ̂1) ×Θ(θ̂2)), (Θ(θ̂2) ×Θ(θ̂1)) } .

(iii) if Θ($) × Θ(ς) ∈ Ξ̂ & Θ(ς) × Θ(w) ∈ Ξ̂ then Θ($) × Θ(w) ∈ Ξ̂∀$, ς,w ∈ W, so Ξ̂ is

transitive. e.g. Ξ̂ = { (Θ(θ̂1) ×Θ(θ̂2)), (Θ(θ̂1) ×Θ(θ̂3)), (Θ(θ̂2) ×Θ(θ̂3)) } .
(iv) if properties (i)-(iii) are satisfied then Ξ̂ is stated as equivalence relation. E.g.

Ξ̂ = { (Θ(θ̂1) ×Θ(θ̂1)), (Θ(θ̂1) ×Θ(θ̂2)), (Θ(θ̂2) ×Θ(θ̂1)), (Θ(θ̂2) ×Θ(θ̂2)) } .

(v) if Θ($) ×Θ(ς) ∈ Ξ̂ then $ = ς∀$, ς ∈W, so Ξ̂ is stated as identity. e.g.

Ξ̂ = { (Θ(θ̂1) ×Θ(θ̂1)), (Θ(θ̂2) ×Θ(θ̂2)), (Θ(θ̂3) ×Θ(θ̂3)) } .
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Definition 5.8. If Ξ̂ is a Ĥs-relation from (Θ1,A1) to (Θ2,A2) & S is a Ĥs-relation from

(Θ2,A2) to (Θ3,A3) then composition of Ξ̂ & S, symbolized by Ξ̂ ○S, is also a Ĥs-relation

T from (Θ1,A1) to (Θ3,A3) stated as if Θ1($) ∈ (Θ1,A1) & Θ3(w) ∈ (Θ3,A3) then Θ1($) ×
Θ3(w) ∈ Ξ̂ ○S i.e. Θ1($) ×Θ3(w) ∈ Ξ̂ ○S iff Θ1($) ×Θ2(ς) ∈ Ξ̂ & Θ2(ς) ×Θ3(w) ∈ Ξ̂.

Example 5.9. Let

Ξ̂ =
⎧⎪⎪⎨⎪⎪⎩

(Θ1(θ̂1) ×Θ2(θ̂1)), (Θ1(θ̂1) ×Θ2(θ̂3)),
(Θ1(θ̂2) ×Θ2(θ̂3)), (Θ1(θ̂3) ×Θ2(θ̂3))

⎫⎪⎪⎬⎪⎪⎭
&

S =
⎧⎪⎪⎨⎪⎪⎩

(Θ2(θ̂1) ×Θ3(θ̂1)), (Θ2(θ̂1) ×Θ3(θ̂2)),
(Θ2(θ̂2) ×Θ3(θ̂2)), (Θ2(θ̂3) ×Θ3(θ̂2))

⎫⎪⎪⎬⎪⎪⎭
then

Ξ̂ ○S =
⎧⎪⎪⎨⎪⎪⎩

(Θ1(θ̂1) ×Θ3(θ̂1)), (Θ1(θ̂1) ×Θ3(θ̂2)),
(Θ1(θ̂2) ×Θ3(θ̂2)), (Θ1(θ̂3) ×Θ3(θ̂2))

⎫⎪⎪⎬⎪⎪⎭
.

Definition 5.10. A Ĥs-relation F from (Θ1,A1) to (Θ2,A2), represented by F ∶ (Θ1,A1) →
(Θ2,A2), is stated as Ĥs-function when (a). DoM F = A1, (b). DoM F has not repeated mem-

bers & (c). Element-based uniqueness exists between RNGF & DoM F i.e. if Θ1($)FΘ2(ς)
(or Θ1($) ×Θ2(ς) ∈ F) then F(Θ1($)) = Θ2(ς).

Example 5.11. Let A1 = {$1,$2,$3} & A2 = {ς1, ς2, ς3, ς4} then

(Θ1,A1) = { Θ1($1),Θ1($2),Θ1($3) }, (Θ2,A2) = { Θ2(ς1),Θ2(ς2),Θ2(ς3),Θ2(ς4) }
so Ĥs-functions is

F = { (Θ1($1) ×Θ2(ς1)), (Θ1($2) ×Θ2(ς3)), (Θ1($3) ×Θ2(ς4)) }

Definition 5.12. A Ĥs-function F ∶ (Θ1,A1) → (Θ2,A2) is stated as

(i) if RNGF ⊂ A2, then INTO-Ĥs-function. E.g. Let A1 = {$1,$2,$3} & A2 =
{ς1, ς2, ς3, ς4} then F = { (Θ1($1) ×Θ2(ς1)), (Θ1($2) ×Θ2(ς3)), (Θ1($3) ×Θ2(ς4)) }

(ii) if RNGF = A2, then ONTO-Ĥs-function. E.g. Let A1 = {$1,$2,$3,$4} & A2 =
{ς1, ς2, ς3, ς4} then

F = { (Θ1($1) ×Θ2(ς1)), (Θ1($2) ×Θ2(ς3)), (Θ1($3) ×Θ2(ς4)), (Θ1($4) ×Θ2(ς2)) }

(iii) 1-1 Ĥs-function if Θ1($1) ≠ Θ1($2) then F(Θ1($1)) ≠ F(Θ1($2)). E.g.

F = { (Θ1($1) ×Θ2(ς1)), (Θ1($2) ×Θ2(ς4)), (Θ1($3) ×Θ2(ς2)), (Θ1($4) ×Θ2(ς3)) }

(iv) if it is both INTO and ONTO then bijective Ĥs-function. E.g.

F = { (Θ1($1) ×Θ2(ς1)), (Θ1($2) ×Θ2(ς2)), (Θ1($3) ×Θ2(ς3)), (Θ1($4) ×Θ2(ς4)) }

Definition 5.13. The identity Ĥs-function on Ĥs-set (Θ,L) is stated by I ∶ (Θ,L) → (Θ,L)
such that I(Θ(l)) = Θ(l) ∀ Θ(l) ∈ (Θ,L). E.g. Let L = {l1, l2, l3, l4} then

I = { (Θ(l1) ×Θ(l1)), (Θ(l2) ×Θ(l2)), (Θ(l3) ×Θ(l3)), (Θ(l4) ×Θ(l4)) }
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6. Matrix-theory Based on Ĥs-sets

Here some classical matrix-based notions are generalized for Ĥs-sets.

Definition 6.1.

(i) Let (Θ,A) be a Ĥs-set on Π̂. A set RA ⊆ Π̂×A is a relation version of (Θ,A) stated as

RA = { ($, θ̂) ∶ θ̂ ∈ A,$ ∈ Θ(θ̂) } .

(ii) The characteristic function XRA
is stated by XRA

∶ Π̂ ×A→ {0,1}, where

XRA
($, θ̂) =

⎧⎪⎪⎨⎪⎪⎩

1 ; ($, θ̂) ∈ RA

0 ; ($, θ̂) ∉ RA

(iii) If ∣Π̂∣ =m & ∣A∣ = n then (s̈ij) is an m × n Ĥs-matrix of (Θ,A) on Π̂ and stated as

(s̈ij)m×n =

⎛
⎜⎜⎜⎜⎜⎜
⎝

s̈11 s̈12 .... s̈1n

s̈21 s̈22 .... s̈2n

⋮ ⋮ ⋮
s̈m1 s̈m2 .... s̈mn

⎞
⎟⎟⎟⎟⎟⎟
⎠

Note: The family of all m × n Ĥs- matrices on Π̂ is symbolized by (Π̂)(hsm)m×n .

Example 6.2. Let Π̂ = {$1,$2,$3,$4,$5} & A = {θ̂1, θ̂2, θ̂3, θ̂4, θ̂5}. Then Θ(θ̂1) =
{$1,$2}, Θ(θ̂2) = ∅, Θ(θ̂3) = {$4,$5}, Θ(θ̂4) = {$2,$3,$4,}, Θ(θ̂5) = ∅, therefore we

get (Θ,A) = { (θ̂1,{$1,$2}), (θ̂3,{$4,$5}), (θ̂4,{$2,$3,$4,}) } &

RA = { ($1, θ̂1), ($2, θ̂1), ($4, θ̂3), ($5, θ̂3), ($2, θ̂4), ($3, θ̂4), ($4, θ̂4) } . Hence Ĥs- matrix is

given as

(s̈ij)5×5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0

1 0 0 1 0

0 0 0 1 0

0 0 1 1 0

0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1i
5, 1j

5.

Definition 6.3. Let (s̈ij)m×n ∈ (Π̂)(hsm)m×n then (s̈ij)m×n is characterized as:

(i) The (0)m×n is stated as a null Ĥs- matrix if s̈ij = 0 ∀ i, j e.g.

(0)5×5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1i
5, 1j

5.
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(ii) An A1-universal Ĥs- matrix, symbolized by (s̈ij)A1

m×n, if s̈ij = 1,∀j ∈ JA1 = {j ∶ θ̂j ∈ A1}
& i. E.g. Let A be as provided in 6.2 & A1 = {θ̂2, θ̂4, θ̂5} ⊆ A with Θ(θ̂2) = Θ(θ̂4) =
Θ(θ̂5) = Π̂ then

(s̈ij)A1

5×5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 1 1

0 1 0 1 1

0 1 0 1 1

0 1 0 1 1

0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1i
5, 1j

5.

(iii) The (s̈ij)Π̂
m×n is stated as universal Ĥs- matrix if s̈ij = 1,∀ i, j. E.g. Let A as stated

in 6.2 with Θ(θ̂1) = Θ(θ̂2) = Θ(θ̂3) = Θ(θ̂4) = Θ(θ̂5) = Π̂ then

(s̈ij)Π̂
5×5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1i
5, 1j

5.

Definition 6.4. Let L1 = (s̈ij)m×n ,L2 = (ẗij)m×n ∈ (Π̂)(hsm)m×n then

(a) L1 is stated as Ĥs- sub-matrix of L2, symbolized by L1 ⊆ L2 if s̈ij ≤ ẗij e.g. L1 =
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 1 1

0 1 0 1 1

0 1 0 1 1

0 1 0 1 1

0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

& L2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(b) L1 & L2 are stated as comparable, symbolized by L1 ∥ L2, if L1 ⊆ L2 or L2 ⊆ L1.

(c) L1 is stated as proper Ĥs- sub-matrix of L2, symbolized by L1 ⊂ L2 if for atleast one

term s̈ij ≤ ẗij e.g. L1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 0 1 1

1 1 1 1 1

0 1 0 1 1

1 1 1 1 1

0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

& L2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(d) L1 is stated as strictly Ĥs- sub-matrix of L2, symbolized by L1 ⫋ L2 if for each term

s̈ij ≤ ẗij e.g. L1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

& L2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(e) union of L1 & L2, symbolized by L1 ∪ L2, is also a Ĥs- matrix L3 = (δij)m×n if

δij =max{s̈ij , ẗij} ∀ i, j e.g.
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Let L1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 0 1 1

1 1 1 1 1

0 1 0 1 1

1 1 1 1 1

0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

& L2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

then

L3 = L1 ∪L2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(f) intersection of L1 & L2, symbolized by L1 ∩ L2, is also a Ĥs- matrix L3 = (δij)m×n if

δij =min{s̈ij , ẗij} ∀ i, j e.g.

Let L1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 0 1 1

1 1 1 1 1

0 1 0 1 1

1 1 1 1 1

0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

& L2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

then

L3 = L1 ∩L2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 0 1 1

1 1 1 1 1

0 1 0 1 1

1 1 1 1 1

0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(g) The L© (µij)m×n (complement of L = (s̈ij)m×n), is also a Ĥs- matrix if µij = 1−s̈ij ∀ i, j
e.g.

Let L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 0 1 1

1 1 1 1 1

0 1 0 1 1

1 1 1 1 1

0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

then L© =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1 0 0

0 0 0 0 0

1 0 1 0 0

0 0 0 0 0

1 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(h) The difference L2 ∖L1, is also a Ĥs- matrix L3 such that L3 = L2 ∩L
©
1 e.g.

L1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 0 1 1

1 1 1 1 1

0 1 0 1 1

1 1 1 1 1

0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

& L2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

then
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L3 = L2 ∩L
©
1

L3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1 0 0

0 0 0 0 0

1 0 1 0 0

0 0 0 0 0

1 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1 0 0

0 0 0 0 0

1 0 1 0 0

0 0 0 0 0

1 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Proposition 6.5. For C1 = (s̈ij)m×n,C2 = (ẗij)m×n,C3 = (üij)m×n ∈ (Π̂)(hsm)m×n , the following

axiomatic results are valid:

(1) C1 ∪ C1 = C1, C1 ∩ C1 = C1

(2) C1 ∪ (0)m×n = C1, C1 ∩ (s̈ij)Π̂
m×n = C1

(3) C1 ∩ (0)m×n = (0)m×n, C1 ∪ (s̈ij)Π̂
m×n = (s̈ij)Π̂

m×n

(4) ((0)m×n)© = (s̈ij)Π̂
m×n , ((s̈ij)Π̂

m×n)
© = (0)m×n

(5) C1 ∪ C1
© = (s̈ij)Π̂

m×n , C1 ∩ C1
© = (0)m×n

(6) (C1 ∪ C2)© = C1
© ∩ C2

©, (C1 ∩ C2)© = C1
© ∪ C2

©

(7) (C1
©)© = C1

(8) C1 ∪ C2 = C2 ∪ C1, C1 ∩ C2 = C2 ∩ C1

(9) C1 ∪ (C2 ∪ C3) = (C1 ∪ C2) ∪ C3, C1 ∩ (C2 ∩ C3) = (C1 ∩ C2) ∩ C3

(10) C1 ∪ (C2 ∩ C3) = (C1 ∪ C2) ∩ (C1 ∪ C3), C1 ∩ (C2 ∪ C3) = (C1 ∩ C2) ∪ (C1 ∩ C3)

Definition 6.6. Let P = (c̈ij)m×n, Q = (d̈ik)m×n ∈ (Π̂)(hsm)m×n , then

(i) AND-product is stated as

∧ ∶ (Π̂)(hsm)m×n × (Π̂)(hsm)m×n → (Π̂)(hsm)
m×n2 with (c̈ij) ∧ (d̈ik) = (ḧil) & ḧil = min{c̈ij , d̈ik} &

l = n(j − 1) + k.

(ii) OR-product is stated as

∨ ∶ (Π̂)(hsm)m×n × (Π̂)(hsm)m×n → (Π̂)(hsm)
m×n2 with (c̈ij) ∨ (d̈ik) = (ḧil) & ḧil =max{c̈ij , d̈ik}.

(iii) AND-NOT-product is stated as

∧ ∶ (Π̂)(hsm)m×n × (Π̂)(hsm)m×n → (Π̂)(hsm)
m×n2 with (c̈ij) ∧ (d̈ik) = (ḧil) & ḧil =min{c̈ij ,1 − d̈ik}.

(iv) OR-NOT-product is stated as

∨ ∶ (Π̂)(hsm)m×n × (Π̂)(hsm)m×n → (Π̂)(hsm)
m×n2 with (c̈ij) ∨ (d̈ik) = (ḧil) & ḧil =max{c̈ij ,1 − d̈ik}.

Example 6.7. Let P =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 0 1

1 1 1 1

0 1 0 1

1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

& Q =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

then

(i) P ∧Q =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟
⎠
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(ii) P ∨Q =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

(iii) P ∧Q =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 0 1

1 1 1 1

0 1 0 1

1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

∧

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

(iv) P ∨Q =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 0 1

1 1 1 1

0 1 0 1

1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

∨

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

7. Hybridized Structures of Ĥs-sets

Here the notions of some hybridized model of Ĥs-sets are presented. The set A = A1 ×A2 ×
.....×Am with Aα̂∩Aβ̂ = ∅ ∀ α̂, β̂ = 1,2, ...,m and Aα̂ are same as stated in Definition 3.1. The

Figure 3 presents the notations and their full names that are used in this section.

Figure 3. Notations

Definition 7.1. An ˆivfHs-set (Γ,A) on Π̂ is stated by

(Γ,A) = { (θ̂,Γ(θ̂)); θ̂ ∈ A,Γ(θ̂) ∈ F ivf(Π̂) }
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where Γ ∶ A→ F ivf(Π̂) & Γ(θ̂) = { ψ̈Γ(θ̂)($)/$ ∶$ ∈ Π̂, ψ̈Γ(θ̂)($) ∈ C(I) } is an ivf-set on Π̂.

Example 7.2. Let Π̂ = {$1,$2,$3,$4,$5,$6,$7,$8} & A = {θ̂1, θ̂2, θ̂3, θ̂4, θ̂5, θ̂6, θ̂7, θ̂8},

ˆivfHs-set (Γ,A) is constructed as

(Γ,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(θ̂1,{[0.1,0.2]/$1, [0.2,0.3]/$2, [0.4,0.5]/$4, [0.5,0.6]/$5}) ,
(θ̂2,{[0.1,0.3]/$1, [0.2,0.4]/$2, [0.3,0.4]/$3, [0.6,0.8]/$6}) ,
(θ̂3,{[0.2,0.3]/$2, [0.3,0.4]/$3, [0.4,0.5]/$4, , [0.5,0.7]/$5}) ,
(θ̂4,{[0.4,0.5]/$4, [0.5,0.6]/$5, [0.6,0.7]/$6, [0.7,0.8]/$7}) ,
(θ̂5,{[0.3,0.6]/$3, [0.6,0.7]/$6, [0.7,0.8]/$7, [0.8,0.9]/$8}) ,
(θ̂6,{[0.2,0.4]/$2, [0.3,0.5]/$3, [0.4,0.6]/$4, [0.7,0.8]/$7}) ,
(θ̂7,{[0.1,0.4]/$1, [0.3,0.4]/$3, [0.5,0.7]/$5, [0.6,0.8]/$6}) ,
(θ̂8,{[0.2,0.5]/$2, [0.3,0.6]/$3, [0.6,0.8]/$6, [0.7,0.8]/$7})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition 7.3. A fphs-set (D,A) on Π̂ is stated as

(D,A) = { (ϕF(θ̂)/θ̂,ΘF(θ̂)) , θ̂ ∈ A, ΘF(θ̂) ∈ P Π̂, ϕF(θ̂) ∈ C(I) }

where F is a fuzzy set with ϕF ∶ A→ C(I) as membership function of fphs-set &

ΘF ∶ A→ P Π̂ is maa-function of fphs-set.

Example 7.4. From Example 7.2, we get

(D,A) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(0.1/θ̂1,{$1,$2}) , (0.2/θ̂2,{$1,$2,$3}) , (0.3/θ̂3,{$2,$3,$4}) ,
(0.4/θ̂4,{$4,$5,$6}) , (0.5/θ̂5,{$6,$7,$8}) , (0.6/θ̂6,{$2,$3,$4,$7}) ,
(0.7/θ̂7,{$1,$3,$5,$6}) , (0.8/θ̂8,{$2,$3,$6,$7})

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Definition 7.5. An iv-fphs-set (E ,A) on Π̂ is stated as

(E ,A) = { (ΨFiv(θ̂)/θ̂, ψFiv(θ̂)) , θ̂ ∈ A, ψFiv(θ̂) ∈ P Π̂, ΨFiv(θ̂) ∈ C(I) }

where F iv is an ivf-set with ΨFiv ∶ A → C(I) as membership function of fphs-set and ψFiv ∶
A→ P Π̂ is maa-function of iv-fphs-set.

Example 7.6. From Example 7.2, we get

(E ,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

([0.1,0.2]/θ̂1,{$1,$2}) , ([0.2,0.3]/θ̂2,{$1,$2,$3}) ,
([0.3,0.4]/θ̂3,{$2,$3,$4}) , ([0.4,0.5]/θ̂4,{$4,$5,$6}) ,
([0.5,0.6]/θ̂5,{$6,$7,$8}) , ([0.6,0.7]/θ̂6,{$2,$3,$4,$7}) ,
([0.7,0.8]/θ̂7,{$1,$3,$5,$6}) , ([0.8,0.9]/θ̂8,{$2,$3,$6,$7})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition 7.7. An ifphs-set (H,A) on Π̂ is stated as

(H,A) = { (< ς1(θ̂), ς2(θ̂) > /θ̂, ψIF(θ̂)) ; θ̂ ∈ A, ψIF(θ̂) ∈ P Π̂, ς1(θ̂), ς2(θ̂) ∈ C(I) }

where IF is an if-set with ς1(θ̂), ς2(θ̂) ∶ A → C(I) as membership and non-membership func-

tions of ifphs-set and ψIF ∶ A→ P Π̂ is maa-function of ifphs-set.
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Example 7.8. From Example 7.2, we get

(H,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(< 0.1,0.2 > /θ̂1,{$1,$2}) , (< 0.2,0.3 > /θ̂2,{$1,$2,$3}) ,
(< 0.3,0.4 > /θ̂3,{$2,$3,$4}) , (< 0.4,0.5 > /θ̂4,{$4,$5,$6}) ,
(< 0.5,0.6 > /θ̂5,{$6,$7,$8}) , (< 0.6,0.7 > /θ̂6,{$2,$3,$4,$7}) ,
(< 0.7,0.8 > /θ̂7,{$1,$3,$5,$6}) , (< 0.8,0.9 > /θ̂8,{$2,$3,$6,$7})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition 7.9. A nphs-set (N ,A) on Π̂ is stated as

(N ,A) =
⎧⎪⎪⎨⎪⎪⎩

(< λ1(θ̂), λ2(θ̂), λ3(θ̂) > /θ̂, ψN (θ̂)) ; θ̂ ∈ A, ψN (θ̂) ∈ P Π̂,

λ1(θ̂) ∈ C(I), λ2(θ̂) ∈ C(I), λ3(θ̂) ∈ C(I)

⎫⎪⎪⎬⎪⎪⎭

where N is a neutrosophic set with λ1(θ̂), λ2(θ̂), λ3(θ̂) ∶ A → C(I) as membership, indetermi-

nate and falsity of nphs-set and ψN ∶ A→ P Π̂ is maa-function of nphs-set.

Example 7.10. From Example 7.2, we get

(N ,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(< 0.1,0.2,0.2 > /θ̂1,{$1,$2}) , (< 0.2,0.3,0.3 > /θ̂2,{$1,$2,$3}) ,
(< 0.3,0.4,0.4 > /θ̂3,{$2,$3,$4}) , (< 0.4,0.5,0.5 > /θ̂4,{$4,$5,$6}) ,
(< 0.5,0.6,0.6 > /θ̂5,{$6,$7,$8}) , (< 0.6,0.7,0.7 > /θ̂6,{$2,$3,$4,$7}) ,
(< 0.7,0.5,0.8 > /θ̂7,{$1,$3,$5,$6}) , (< 0.8,0.4,0.9 > /θ̂8,{$2,$3,$6,$7})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition 7.11. A Ĥs-set (B̈,A) is known as bijective Ĥs-set (bhs-set) on Π̂ if

(i) ⋃
j∈A

B̈(θ̂) = Π̂

(ii) for θ̂α̂, θ̂β̂ ∈ A, α̂ ≠ β̂, B̈(θ̂α̂) ∩ B̈(θ̂β̂) = ∅

Example 7.12. Reconsidering Example 7.2, we get

(B̈,A) = { (θ̂1,{$1}) , (θ̂2,{$2}) , (θ̂3,{$3}) , (θ̂4,{$4}) , (θ̂5,{$5}) , (θ̂6,{$6}) , (θ̂7,{$7}) , (θ̂8,{$8}) }

Definition 7.13. A ˆfhs-set (B̈f ,A) is stated as bijective ˆfhs-set on Π̂ if

(i) ⋃
θ̂∈A

B̈f(θ̂) = Π̂ with ∑
$∈Π̂

ψ̈f ($) ∈ C(I) where ψ̈f ($) is a f-membership for each $ ∈ Π̂

(ii) for θ̂α̂, θ̂β̂ ∈ A, α̂ ≠ β̂, B̈f(θ̂α̂) ∩ B̈f(θ̂β̂) = ∅

Example 7.14. Reconsidering Example 7.2, we get

(B̈f ,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(θ̂1,{0.1/$1}) , (θ̂2,{0.2/$2}) ,
(θ̂3,{0.13/$3}) , (θ̂4,{0.14/$4}) ,
(θ̂5,{0.05/$5}) , (θ̂6,{0.06/$6}) ,
(θ̂7,{0.07/$7}) , (θ̂8,{0.08/$8})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition 7.15. An ˆivfhs-set (B̈ivf ,A) is stated as bijective ˆivfhs-set on Π̂ if

(i) ⋃
θ̂∈A

B̈ivf(θ̂) = Π̂ with ∑
$∈Π̂

Sup(ψ̈f ($)) ∈ C(I) where ψ̈f ($) is an ivf-membership for

each $ ∈ Π̂
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(ii) for θ̂α̂, θ̂β̂ ∈ A, α̂ ≠ β̂, B̈ivf(θ̂α̂) ∩ B̈ivf(θ̂β̂) = ∅

Example 7.16. Reconsidering Example 7.2, we get

(B̈ivf ,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(θ̂1,{[0.01,0.1]/$1}) , (θ̂2,{[0.02,0.2]/$2}) ,
(θ̂3,{[0.03,0.13]/$3}) , (θ̂4,{[0.04,0.14]/$4}) ,
(θ̂5,{[0.03,0.05]/$5}) , (θ̂6,{[0.02,0.06]/$6}) ,
(θ̂7,{[0.03,0.07]/$7}) , (θ̂8,{[0.04,0.08]/$8})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition 7.17. An ˆifhs-set (B̈if ,A) is known as bijective ˆifhs-set on Π̂ if

(i) ⋃
θ̂∈A

B̈if(θ̂) = Π̂ with ∑
$∈Π̂

Tif ($) & ∑
$∈Π̂

Fif ($) ∈ C(I) where Tif ($) & Fif ($) are

membership and non-membership grades for each $ ∈ Π̂

(ii) for θ̂α̂, θ̂β̂ ∈ A, α̂ ≠ β̂, B̈if(θ̂α̂) ∩ B̈if(θ̂β̂) = ∅

Example 7.18. Reassuming Example 7.2, we get

(B̈if ,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(θ̂1,{< 0.01,0.1 > /$1}) , (θ̂2,{< 0.02,0.2 > /$2}) ,
(θ̂3,{< 0.03,0.13 > /$3}) , (θ̂4,{< 0.04,0.14 > /$4}) ,
(θ̂5,{< 0.03,0.05 > /$5}) , (θ̂6,{< 0.02,0.06 > /$6}) ,
(θ̂7,{< 0.03,0.07 > /$7}) , (θ̂8,{< 0.04,0.08 > /$8})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition 7.19. A ˆnhs-set (B̈N ,A) is known as bijective ˆnhs-set on Π̂ if

(i) ⋃
θ̂∈A

B̈N (θ̂) = Π̂ with ∑
$∈Π̂

TN ($), ∑
$∈Π̂

IN ($) & ∑
$∈Π̂

FN ($) ∈ C(I) where

TN ($) , IN ($) & FN ($) are membership, indeterminacy and non-membership

grades for each $ ∈ Π̂

(ii) for θ̂α̂, θ̂β̂ ∈ A, α̂ ≠ β̂, B̈N (θ̂α̂) ∩ B̈N (θ̂β̂) = ∅

Example 7.20. Reassuming Example 7.2, we get

(B̈N ,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(θ̂1,{< 0.01,0.02,0.1 > /$1}) , (θ̂2,{< 0.02,0.03,0.2 > /$2}) ,
(θ̂3,{< 0.03,0.04,0.13 > /$3}) , (θ̂4,{< 0.04,0.05,0.14 > /$4}) ,
(θ̂5,{< 0.03,0.04,0.05 > /$5}) , (θ̂6,{< 0.02,0.05,0.06 > /$6}) ,
(θ̂7,{< 0.03,0.04,0.07 > /$7}) , (θ̂8,{< 0.04,0.05,0.08 > /$8})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

8. Conclusions

In this research work, several important rudiments (i.e. axioms-based properties, set-based

aggregations etc.,) of Ĥs-set are investigated and explained with the support of real-scenarios

based examples. In order to attract the intellectual attention of researchers, definitions of

some glued models of Ĥs-set are also presented which will motivate them to extend the theory

to other branches of mathematical-cum-computational sciences. Some future directions and

scope of Ĥs-sets are presented in Figure 4.

Conflicts of Interest: The authors declare no conflict of interest.

M. Saeed, A. U. Rahman, M. Ahsan, F. Smarandache, Theory of Hypersoft Sets: Axiomatic
Properties, Aggregation Operations, Relations, Functions and Matrices

Neutrosophic Sets and Systems, Vol. 51, 2022                                                                             763



Figure 4. Future Directions and Scope of Ĥs-sets
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Abstract. The relative performance analysis and ranking of the financial ratios are highly important for

optimal portfolio selection in the stock market. However, the relative performance evaluation of the financial

ratios is highly complex and nonlinear. Thus, the main goal of this study is to measure the relative importance

of the financial ratios of two groups as Accounting based financial measures (AFM) and Economic value-based

financial measures (EFM) through Decision Making Trial and Evaluation Laboratory (DEMATEL) method

under the neutrosophic environment. In this regard, one-year data (June 2018-May 2019) has been collected

from 8 industries in the IT sector. The AFM and EFM values have been evaluated for each firm through the

balance sheet. The obtained values have been given to the two experts: an experienced investor in the NASDAQ

exchange and a Professor in Finance. They have given their opinion in terms of linguistic terms. Then, the AFM

and EFM have ranked based on the neutrosophic DEMATEL approach. Finally, the neutrosophic DEMATEL

approach has compared with the fuzzy DEMATEL and classical DEMATEL approach. The empirical results

assist the investor and traders in selecting among the selected stock.

Keywords: Neutrosophic number; Neutrosophic DEMATEL; Accounting based financial measures; Economic

value-based financial measures

—————————————————————————————————————————-

1. Introduction

The performance assessment of the companies is usually carried out in the context of finan-

cial analysis. From a financial point of view, the notion of performance is defined as terms such

as profit, profitability, production and economic growth, and so on. The use of financial ratios

Veeramani et al., Neutrosophic DEMATEL approach for financial ratio performance evaluation of the

NASDAQ Exchange
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in the performance review process may be useful for all businesses and relevant industries.

Financial ratios obtained from the data in the balance sheets and income statements are con-

sidered to be important metrics for assessing the output and financial assets of businesses. A

large number of studies have been underway for many years (Chen and Shimerda [10], Halkos

and Tzeremes [14], etc.) that prove that financial ratios are crucial indicators of the financial

performance of firms. They allow users to review and analyze relevant data in order to provide

useful information for decision-making. Singh and Schmidgall [24] have shown that the value

of the financial ratios also illustrates the strengths and weaknesses sides of the company in

terms of flexibility, productivity, and profitability. The financial ratios also measure the various

funding aspects of the stock and influence the movement of the stock price [25]. As the finan-

cial performance measures demonstrate the productivity of the company and competitiveness,

they should be carefully identified in the assessment process [10].

One of the widely accepted techniques in group decision making is the Multi-criteria decision-

making (MCDM) technique. Traditional MCDM methods consist of a group of DMs providing

a qualitative and quantitative assessment of the performance for every alternative with respect

to the criteria and the relative significance of the criteria with regard to the entire judgments.

Analytic Hierarchy Process (AHP), Simple Additive Weighting (SAW), Analytic Network Pro-

cess (ANP), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), etc.,

which are the existing MCDM methods in the literature. Decision-Making Trial and Eval-

uate on Laboratory (DEMATEL) is one of the popular MCDM approaches for the search

for interaction effects between parameters and dimensions in decision-making problems. The

DEMATEL method was initially developed to describe the causal relationship among the sub-

components via a causal diagram. It was shown to be a powerful tool for solving complex

problems and has several benefits for describing the interrelated relationship between the cri-

teria. Most of the existing research work has successfully applied to the financial stock market

environment. Lee et al. [17] combined DEMATEL and ANP to analyze the interdependence

between key factors of stock investment decision making. The DEMATEL method is used to

analyze the causal relationship between the item groups instead of the ANP approach. Gol-

cuk and Baykasoglu [12] have suggested for ranking the alternatives based on integrating the

ANP and DEMATEL method. Recently, Venugopal et al. [30] developed a Fuzzy DEMATEL

Approach for Financial Ratio Performance Evaluation of NASDAQ Exchange.

However, the decision-makers (DMs) provide linguistic evaluation for several alternatives

and criteria. Fuzzy MCDM methods have been effectively handled these types of circum-

stances. Serkan and Turkay [29] have introduced a novel DEMATEL method to the Priority
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investment project by calculating their possibility of decreasing foreign trade deficit and creat-

ing new investment together. Mills et al. [19] proposed a hybrid MCDM approach by compris-

ing an integrated ANP and DEMATEL for optimal portfolio selection. These results indicated

that return, financial ratios, dividends, and risk are causal criteria group, which are the most

influential determinants for obtaining high benefits of stock portfolio selection in the Shanghai

Stock Exchange. Rezaeian and Akbari [22] developed a new approach, which combines ANP

and DEMATEL for stock portfolio selection in the fuzzy environment. The fuzzy DEMATEL

method is used for different applications and has been used to change the ANP by analyzing

the causal relationship between the item classes. This approach is called DEMATEL-ANP, as

suggested by Golcuk and Baykasoglu [12]. Wu et al. [31] used the fuzzy and gray Delphi ap-

proach to determine a set of reliable attributes. Varma and Kumar [29], Tabrizi et al. [28] have

evaluated the different criteria that apply to companies and that can assist in the creation of

portfolio construction and causal relations between the criteria defined. Perin [21], Aydn and

Kahraman [7] has developed a fuzzy DEMATEL system for dealing with interactions between

evaluation parameters and proposed a fuzzy ANP method to calculate the relative importance

of each criterion, which was evaluating and the quality of service achievement of airlines in

Turkey is ranked.

Recently, [ [13], [26], [32], [4], [15]] many authors have used the idea of neutrosophic set in

MCDM methods. The concept of the neutrosophic set was introduced by Smarandache [23],

which is distinguished by the role of truth-membership function, indeterminacy-membership

function, and falsity-membership function. Therefore the neutrosophic set theory can be used

to rationalize the confusion associated with ambiguity in an analogous way to human thought.

This handles vague data as distributions of possibilities in terms of membership functions.

Using the concept of triangular neutrosophic additive reciprocal preference relations Basset

et.al, [6] developed a novel method for the group decision-making problem. Bhattacharya

[8], [9], [16] discussed the concept of rule-based neutrosophic reasoning applied to the options

Market. Basset et al. [6], [3] have presented a navel hybrid multiple criteria group decision-

making framework for the project selection under the neutrosophic environment. Altuntas

and Dereli [1] studied a novel approach based on a process called DEMATEL and patent

quote analysis to prioritize investment project portfolios. The suggested strategy represents

the viewpoint of the Government and takes into account foreign trade deficits and attract new

investments for prioritization. The objective of this paper is to measure the relative importance

of the financial ratios of two groups such as AFM and FM by using the DEMATEL approach

under the neutrosophic environment.

Neutrosophic Sets and Systems, Vol. 51, 2022                                                                              768

Veeramani et al., Neutrosophic DEMATEL approach for financial ratio performance evaluation of the

NASDAQ Exchange



1.1. Motivation and Contributions

Stock markets are unpredictable frameworks impacted by many interrelated financial, po-

litical, and internal factors and described by implicit non-linearities. Understanding whenever

and how to invest in stock markets and to make the decisions are very difficult for investors.

In this regard, investors need knowledge about the stocks and an intensive analysis associated

with the markets along with an excellent experience. At present, there are numerous market-

places, different variables, indicators, etc. that must be become analyzed before taking the

financial decisions in the short interval of the time. The performance evaluation of companies

is one of the most important measures that is considered by investors. Thus, the performance

analysis is required in optimal stock selection to make use of mathematical and statistical tools

to assist investors to decide at the optimum moment. However, there are many Accounting

based financial measures(AFM) and Economic value-based financial measures (EFM) available

in the stock market. Hence, the ranking of the AFM and EFM is important and essential in

the stock market selection, which is motivated to research this field. The main purpose of

the analysis is to evaluate which accounting earnings performance measures and value-based

performance measures are best expressed in adjustments in the market value of the product.

In general, most of the performance measures are not deterministic and can not be accurately

predicted. Fuzzy set theory is vividly used to predict the performance values of securities in an

uncertain environment. However, the fuzzy set focuses only on the degree of truth-membership

and it does not take into account the non-membership and indeterminacy. Atanassov [5] devel-

oped intuitionist fuzzy set theory, which takes into account both degrees of truth and degree

of falsity but does not find indeterminacy. So, it fails to deals with indeterminacy existing in

the real world. To overcome these drawbacks of the fuzzy set, we are used the neutrosophic set

in an uncertain environment. The neutrosophic set is an extent or generalization of the intu-

itionistic fuzzy set. It represents real-world problems effectively and efficiently by considering

all aspects of decision situations (Abdel-Basset et al. [2]).

The neutrosophic DEMATEL model is used to deal with interdependencies between cri-

teria and then to draw up a casual diagram between criteria for the assessment of financial

performance ratios. This study intends to establish an investment decision model to provide

investors with the MCDM model consisting of neutrosophic DEMATEL. The empirical results

assist the investor and traders to select stock. To the best of our knowledge, there is no work

studied yet for financial ratio performance selection by using the neutrosophic DEMATEL

approach. The contributions of the paper as follows:

• The financial data of 8 companies, which are listed in the NASDAQ Exchange for a

years time period between June 2018 - May 2019 have collected.
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• AFM and EFM values are calculated from the balance sheet for each firm, which is

given to the two experts.

• Opinion has been collected from two experts: an investor in the NASDAQ exchange,

and a Professor in Finance.

• The relative performance ranking of the financial ratios is evaluated through the Neu-

trosophic DEMATEL framework.

• The Neutrosophic DEMATEL method is compared with the fuzzy DEMATEL and

classical DEMATEL approach.

2. Neutrosophic sets

In this section, we discuss the definitions of neutrosophic sets, single-valued neutrosophic

sets, triangular neutrosophic numbers, and operations on triangular neutrosophic numbers.

Definition 2.1. [23]

Let E be be an universe of discourse and ξ ∈ E. A neutrosophic set X in E is characterized

by a truth truth-membership function TX(ξ) an indeterminacy-membership function IX(ξ)

and a falsity membership function FX(ξ). TX(ξ), IX(ξ) and FX(ξ) are real standard or real

nonstandard subsets of ]−0, 1 + [. That is TX(ξ) : E →] − 0, 1 + [IX(ξ) : E →] − 0, 1 + [

and FX(ξ) : E →]− 0, 1+[. There is no restriction on the sum of TX(ξ), IX(ξ) and FX(ξ), so

0 ≤ supTX(ξ) + supIX(ξ) + supFX(ξ) ≤ 3.

Definition 2.2. [23]

Let E be be a space of points. A single valued neutrosophic set X over E is an object taking

the form {〈ξ, TX(ξ), IX(ξ), FX(ξ), 〉 : ξ ∈ E}, where TX(ξ) : E → [0, 1], IX(ξ) : E → [0, 1] and

FX(ξ) : E → [0, 1] with 0 ≤ TX(ξ)+IX(ξ)+FX(ξ) ≤ 3 for all ξ ∈ E. The intervals TX(ξ), IX(ξ)

and FX(ξ) represent the truth membership degree, the indeterminacy-membership degree and

the falsity membership degree of x to, respectively.

Definition 2.3. [23]

Suppose αl, θl, βl ∈ [0, 1] and l(1), l(2), l(3) ∈ R where l(1) ≤ l(2) ≤ l(3). Then single value

triangular neutrosophic number l̃ = 〈(l(1), l(2), l(3));αl, θl, βl〉 is a special neutrosophic set on the

real line set R, whose truth-membership, indeterminacy-membership and falsity-membership

functions are defined as:

Tl(ξ) =


αl

(
ξ−l(1)
l(2)−l(1)

)
, l(1) ≤ ξ ≤ l(2)

αl, ξ = l(2)

αl

(
l(3)−ξ
l(3)−l(2)

)
, l(2) ≤ ξ ≤ l(3)

0, otherwise

(1)
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Il(ξ) =


(l(2)−ξ+θl(ξ−l(1))

l(2)−l(1) , l(1) ≤ ξ ≤ l(2)

θl, ξ = l(2)

(ξ−l(2)+θl(l(3)−ξ))
l(3)−l(2) , l(2) ≤ ξ ≤ l(3)

1, otherwise

(2)

Fl(ξ) =


(l(2)−ξ+βl(ξ−l(1)))

l(2)−l(1) , l(1) ≤ ξ ≤ l(2)

βl ξ = l(2)

(ξ−l(2)+βl(l(3)−ξ)
l(3)−l(2) , l(2) ≤ ξ ≤ l(3)

(3)

Definition 2.4. [23]

Suppose that l = 〈(l(1), l(2), l(3));αl, θl, βl〉 and m = 〈(m(1),m(2),m(3));αm, θm, βm〉 are two

single valued triangular neutrosophic numbers and γ 6= 0 be any real number. Then the arith-

metic operations are defined as follows:

(i) l +m = 〈(l(1) +m(1), l(2) +m(2), l(3) +m(3));αl ∧ αm, θl ∨ θm, βl ∨ βm〉
(ii) l −m = 〈(l(1) −m(3), l(2) −m(2), l(3) −m(1));αl ∧ αm, θl ∨ θl, βl ∨ βm〉

(iii) l−1 = 〈( 1
l(3)
, 1
l(2)
, 1
l(1)

);αl, θl, βl〉, where l 6= 0

(iv) γl =

{
〈(γl(1), γl(2), γl(3));αl, θl, βl〉, if (γ > 0)

〈(γl(3), γl(2), γl(1));αl, θl, βl〉, if (γ < 0)

(v) l
m =


〈( l(1)

m(3) ,
l(2)

m(2) ,
l(3)

m(1) );αl ∧ αm, θl ∨ θm, βl ∨ βm〉, if (l(3) > 0,m(3) > 0)

〈( l(3)

m(3) ,
l(2)

m(2) ,
l(1)

m(1) );αl ∧ αm, θl ∨ θm, βl ∨ βm〉, if (l(3) < 0,m(3) > 0)

〈( l(3)

m(3) ,
l(2)

m(2) ,
l(1)

m(1) );αl ∧ αm, θl ∨ θm, βl ∨ βm〉, if (l(3) < 0,m(3) < 0)

(vi) l/m =
〈(l(1)m(1), l(2)m(2), l(3)m(3));αl ∧ αm, θl ∨ θm, βl ∨ βm〉, if (l(3) > 0,m(3) > 0)

〈(l(1)m(3), l(2)m(2), l(3)m(1));αl ∧ αm, θl ∨ θm, βl ∨ βm〉, if (l(3) < 0,m(3) > 0)

〈(l(3)m(3), l(2)m(2), l(1)m(1));αl ∧ αm, θl ∨ θm, βl ∨ βm〉, if (l(3) < 0,m(3) < 0)

3. Neutrosophic DEMATEL Approach

Smarandache [23] proposed the neutrosophic set theory. Neutrosophy handles vagueness and

uncertainty, and attend the indeterminacy of values. Neutrosophy has some of the advantages:

(i) Neutrosophy provides the ability to present unknown information in our model us-

ing the indeterminacy degree, so the experts can present opinions about the unsure

preferences.

(ii) Neutrosophy depicts the disagreement between decision-makers and experts.

(iii) Neutrosophy heeds all aspects of decision making situations by considering truthiness,

indeterminacy, and falsity altogether.

Fontela and Gabus [11] have suggested that DEMATEL is used to be an important tool for

defining the cause-and-effect chain components of a vast system. It deals with the evaluation
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of collaborative interaction between factors and the identification of critical relationships via

a graphic conceptual framework. The neutrosophy DEMATEL model is used to deal with

internal dependencies among criteria and then to construct a casual graph between the criteria

for the financial performance ratio assessment. The neutrosophy DEMATEL method is briefly

discussed as follows and the flow chart of the proposed framework is shown in Fig. 1.

Figure 1. The framework of proposed neutrosophy DEMATEL method

Step 1 : Identify the experts who have well experience in the investment field.

Step 2 : Select the most important criteria which will influence the given problem.

Step 3 : Construct the linguistic direct-relation Matrix. This shows the degree of effect that

each criterion has on other criteria. In this regard, collect the opinion from each ex-

pert and make the pairwise comparisons matrix for each expert, whose elements are

linguistic terms such as Equally important, Slightly important, Strongly important,

very strongly important, Absolutely important, etc., which is represented by the fol-

lowing matrix. This matrix is called linguistic the direct-relation matrix, which is a

n × n matrix whose elements tij indicates the degree of effect between criteria i and

criteria j, where tij takes any one the linguistic terms like equally important, slightly

important, strongly important, very strongly important, absolutely important.

Step 4 : Convert the linguistic terms of direct-relation into the triangular neutrosophic scale,

which is shown in table 2.

The triangular neutrosophic scale is in the form of tij = 〈(t(1)ij , t
(2)
ij , t

(3)
ij ;αij , θij , βij)〉

such that t
(1)
ij , t

(2)
ij , t

(3)
ij are the lower, median and upper bound of neutrosophic number

of ith over jth criteria, αij , θij , βij are the truth-membership, indeterminacy and falsity

membership functions of ith over jth criteria.

Step 5 : Convert the neutrosophic scales to crisp values by using the following equations [27]:
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C1 C2 · · · Cn

C1 t11 t12 · · · t1n

C2 t21 t22 · · · t2n
...

...
...

...
...

Cn tn1 tn2 · · · tnn

Table 1. Linguistic direct relation matrix

C1 C2 · · · Cn

C1 〈(t(1)11 , t
(2)
11 , t

(3)
11 );α11, θ11, β11〉 〈(t(1)12 , t

(2)
12 , t

(3)
12 );α12, θ12, β12〉 · · · 〈(t(1)1n , t

(2)
1n , t

(3)
1n );α1n, θ1n, β1n〉

C2 〈(t(1)21 , t
(2)
21 , t

(3)
21 );α21, θ21, β21〉 〈(t(1)22 , t

(2)
22 , t

(3)
22 );α22, θ22, β22〉 · · · 〈(t(1)2n , t

(2)
2n , t

(3)
2n );α2n, θ2n, β2n〉

...
...

...
. . .

...

Cn 〈(t(1)n1 , t
(2)
n1 , t

(3)
n1 );αn1, θn1, βn1〉 〈(t(1)n2 , t

(2)
n2 , t

(3)
n2 );αn2, θn2, βn2〉 · · · 〈(t(1)nn , t(2)nn , t(3)nn);αnn, θnn, βnn〉

Table 2. Neutrosophic Direct relation matrix

r(tij) =

∣∣∣∣(t(1)ij × t(2)ij × t(3)ij )
αij + θij + βij

9

∣∣∣∣ (4)

Step 6 : Combine the opinions of all experts in one integration matrix and measure the

average opinions of the experts by dividing the opinion of all experts for each criterion

by the number of experts (n) considered in the question. Each expert average value

is determined by dividing each value by the number of experts (n) as shown in the

equation (5), and then add all the expert’s average values.

sij =

∑m
k=1 r

k

n
(5)

where sij represents the average opinions value of ith criteria and jth criteria and rk

indicates the opinions crisp value of ith criteria and jth criteria for the kth(k = 1, ...,m)

decision maker.

Step 7 : Construct the crisp direct-relation matrix S. This matrix is obtained from previous

step 6 i.e. the integrating of all averaged opinions of experts. The initial direct-relation

matrix denoted as S, which is a n × n matrix whose elements tij indicates the degree

of effect between criteria i and criteria j.
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S =


1 s12 · · · s1n

s21 1 · · · s2n
...

...
. . .

...

sn1 sn2 · · · 1


Step 8 : Normalizing the direct relation matrix by using the following equations.

U = K × S

K = Min(
1

Max
∑n

i=1 sij
,

1

Max
∑n

j=1 sij
), 1 ≤ i ≤ n, 1 ≤ j ≤ n (6)

Step 9 : Computing the total-relation matrix P by using the following equation

P = U × (I − U)−1 (7)

where I is the n× n identity matrix

Step 10 : Calculate the two indexes Q+R and Q-R for each criterion and draw the causal

diagram. The first step to compute the sum of row (Q) and the sum of column (R) for

each criterion separately. The (Q) and (R) are two vectors and the vector is calculated

by using the following equations, where P = [zij ], i, j ∈ 1, 2, ..., n

Q =

n∑
j=1

zij , ∀i = 1, 2, ...n (8)

R =
n∑
j=1

zij , ∀i = 1, 2, ...n (9)

4. Case Study in NASDAQ Exchange

In the present study, the neutrosophic DEMATEL approach is used for evaluation of relative

importance of the financial ratio measure under the stock market environment. The proposed

method is explained with a case study example as follows:

(1) Select the expects in the stock market field: We consider eight potential protable

companies such as Apple, Micro-soft, Google, Intel Corporation, Adobe Inc, NVIDIA

Corporation, and Micron Technology, Inc., Cognizant Technology Solutions Corp. The

data for one-year performance (June 2018-May 2019) of 8 industries in the IT sector

has been gained by distributing a questionnaire among two experts: (i) investors in

the NASDAQ exchange (DM1), and (ii) a professor in Finance (DM2). The decision-

maker collected opinion two different group financial measures: the Accounting based

financial measures (AFM) and Economic value-based financial measures (EFM).
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(2) Identify the most important criteria in financial ratio measure [33]: AFM based four

criteria such Return On Assets (ROA), Return On Equity (ROE), Earnings per share

(EPS), price for earnings ratio (P/E) Ratio which is shown in Fig. 2 and EFM based

four criteria such that Economic Value Added (EVA), Market Value Added (MVA),

Cash Value Added (CVA), Cash Flow Return on Investment (CFROI) whcih is shown

in Fig.3.

Figure 2. Accounting based financial measures

Figure 3. Economic value-based financial measures

(3) Construct the pairwise comparison matrix: In order to compare the interrelation be-

tween the four criteria such as ROA, ROE, EPS, P/E Ratio in AFM, and four criteria

such as EVA, MVA, CVA, CFROI in EVA, we collect the linguistic information from

the ‘two experts. Then, we design a range of values for each linguistic expression based

on the (DM) expert evaluation as represented as A 5-point Likert scale (see Table 3),

which is given in Tables 4, 5, 6, and 7.
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Explanation Scale Neutrosophic Triangular Scale

Equally important 1 〈(1, 1, 1); 0.5, 0.5, 0.5〉
Slightly important 3 〈(2, 3, 4); 0.30, 0.75, 0.70〉
Strongly important 5 〈(4, 5, 6); 0.80, 0.15, 0.20〉
very strongly important 7 〈(6, 7, 8); 0.90, 0.10, 0.10〉
Absolutely important 9 〈(9, 9, 9); 1.00, 0.00, 0.00〉
sporadic values between two close scales 2 〈(1, 2, 3); 0.40, 0.60, 0.65〉

4 〈(3, 4, 5); 0.35, 0.60, 0.40〉
6 〈(5, 6, 7); 0.70, 0.25, 0.30〉
8 〈(7, 8, 9); 0.85, 0.10, 0.15〉

Table 3. The Neutrosophic Triangular scale value

C1(ROA C2(ROE) C3(EPS) C4(P/E) Ratio

C1(ROA) (1,1,1;0.5,0.5,0.5) (2,3,4;0.3,0.75,0.7) (6,7,8;0.9,0.1,0.1) (9,9,9;1,0,0)

C2(ROE) (4,5,6;0.8,0.15,0.2) (1,1,1;0.5,0.5,0.5) (7,8,9;0.85,0.1,0.15) (6,7,8;0.9,0.1,0.1)

C3(EPS) (2,3,4;0.3,0.75,0.7) (3,4,5;0.35,0.6,0.4) (1,1,1;0.5,0.5,0.5) (4,5,6;0.8,0.15,0.2)

C4(P/E) Ratio (1,2,3;0.4,0.6,0.65) (2,3,4;0.3,0.75,0.7) (5,6,7;0.7,0.25,0.3) (1,1,1;0.5,0.5,0.5)

Table 4. The pairwise Neutrosophic comparison matrix of AFM’s criteria

given by expert 1

C1(ROA) C2(ROE) C3(EPS) C4(P/E) Ratio

C1(ROA) (1,1,1;0.5,0.5,0.5) (2,3,4;0.3,0.75,0.7) (9,9,9;1,0,0) (4,5,6;0.8,0.15,0.2)

C2(ROE) (4,5,6;0.8,0.15,0.2) (1,1,1;0.5,0.5,0.5) (1,2,3;0.4,0.6,0.65) (6,7,8;0.9,0.1,0.1)

C3(EPS) (6,7,8;0.9,0.1,0.1) (3,4,5;0.35,0.6,0.4) (1,1,1;0.5,0.5,0.5) (4,5,6;0.8,0.15,0.2)

C4(P/E)Ratio (1,2,3;0.4,0.6,0.65) (2,3,4;0.3,0.75,0.7) (7,8,9;0.85,0.1,0.15) (1,1,1;0.5,0.5,0.5)

Table 5. The pairwise Neutrosophic comparison matrix of AFM’s criteria

given by expert 2

(4) Convert the neutrosophic AFM and EFM matrices into crisp matrix by using equation

(4), which is shown in Table 8 and 9

(5) In order to construct the initial direction relation-matrix, measure the average opinions

of the experts by using equation (5). The initial direction relation-matrix is shown in

table 10.
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E1(EVA) E2(MVA) E3(CVA) E4(CFROI)

E1(EVA) (1,1,1;0.5,0.5,0.5) (5,6,7;0.7,0.25,0.3) (5,6,7;0.7,0.25,0.3) (9,9,9;1,0,0)

E2(MVA) (6,7,8;0.9,0.1,0.1) (1,1,1;0.5,0.5,0.5) (6,7,8;0.9,1,1) (7,8,9;0.8,0.1,0.15)

E3(CVA) (4,5,6;0.8,0.15,0.2) (5,6,7;0.7,0.25,0.3) (1,1,1;0.5,0.5,0.5) (7,8,9;0.8,0.1,0.15)

E4(CFROI) (1,2,3;0.4,0.6,0.65) (9,9,9;1,0,0) (9,9,9;1,0,0) (1,1,1;0.5,0.5,0.5)

Table 6. The pairwise Neutrosophic comparison matrix of EFM’s criteria

given by expert 1

E1(EVA) E2(MVA) E3(CVA) E4(CFROI)

E1(EVA) (1,1,1;0.5,0.5,0.5) (5,6,7;0.7,0.25,0.3) (3,4,5;0.35,0.6,0.4) (9,9,9;1,0,0)

E2(MVA) (2,3,4;0.3,0.75,0.7) (1,1,1;0.5,0.5,0.5) (6,7,8;0.9,0.1,0.1) (5,6,7;0.7,0.2,0.35)

E3(CVA) (4,5,6;0.8,0.15,0.2) (3,4,5;0.35,0.6,0.4) (1,1,1;0.5,0.5,0.5) (5,6,7;0.7,0.2,0.35)

E4(CFROI) (5,6,7;0.7,0.25,0.3) (6,7,8;0.9,0.1,0.1) (6,7,8;0.9,0.1,0.1) (1,1,1;0.5,0.5,0.5)

Table 7. The pairwise Neutrosophic comparison matrix of EFM’s criteria

given by expert 2

Expert-1 Expert-2

C1(ROA) C2(ROE) C3(EPS) C4(P/E) Ratio C1(ROA) C2(ROE) C3(EPS) C4(P/E) Ratio

C1(ROA) 1.0000 4.6667 41.0667 81.0000 1.0000 4.6667 81.0000 15.3333

C2(ROE) 15.3333 1.0000 61.6000 41.0667 15.3333 1.0000 1.1000 41.0667

C3(EPS) 4.6667 9.0000 1.0000 15.3333 41.0667 9.0000 1.0000 15.3333

C4(P/E) Ratio 1.1000 4.6667 29.1667 1.0000 1.1000 4.6667 61.6000 1.0000

Table 8. The crisp values of pairwise comparison matrix for AFM

Expert-1 Expert-2

E1(EVA) E2(MVA) E3(CVA) E4(CFROI) E1(EVA) E2(MVA) E3(CVA) E4(CFROI)

E1(EVA) 1.0000 29.1667 29.1667 81.0000 1.0000 29.1667 9.0000 81.0000

E2(MVA) 108.2667 1.0000 108.2667 58.8000 4.6667 1.0000 41.0667 29.1667

E3(CVA) 15.3333 29.1667 1.0000 58.8000 15.3333 9.0000 1.0000 29.1667

E4(CFROI) 1.1000 0.0000 0.0000 1.0000 29.1667 41.0667 41.0667 1.0000

Table 9. The crisp values of pairwise comparison matrix for EFM

(6) Normalizing the initial direct relation matrix by using equations (6) and (7). The

normalized matrix is presented in Table 11.
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AFM EFM

C1(ROA) C2(ROE) C3(EPS) C4(P/E) Ratio E1(EVA) E2(MVA) E3(CVA) E4(CFROI)

C1(ROA) 1.0000 4.6667 61.0333 48.1667 E1(EVA) 1.0000 29.1667 19.0833 81.0000

C2(ROE) 15.3333 1.0000 31.3500 41.0667 E2(MVA) 56.4667 1.0000 74.6667 43.9833

C3(EPS) 22.8667 9.0000 1.0000 15.3333 E3(CVA) 15.3333 19.0833 1.0000 43.9833

C4(P/E) Ratio 1.1000 4.6667 45.3833 1.0000 E4(CFROI) 15.1333 20.5333 20.5333 1.0000

Table 10. Direct-relation matrix for AFM and EFM

AFM EFM

C1(ROA) C2(ROE) C3(EPS) C1(P/E) Ratio E1(EVA) E2(MVA) E3(CVA) E4(CFROI)

C1(ROA) 0.0348 0.1625 2.1254 1.6773 E1(EVA) 0.0227 0.6624 0.4334 1.8397

C2(ROE) 0.5340 0.0348 1.0917 1.4301 E2(MVA) 1.2825 0.0227 1.6958 0.9990

C3(EPS) 0.7963 0.3134 0.0348 0.5340 E3(CVA) 0.3483 0.4334 0.0227 0.9990

C4(P/E) Ratio 0.0383 0.1625 1.5804 0.0348 E4(CFROI) 0.3437 0.4664 0.4664 0.0227

Table 11. Normalized decision matrix for AFM and EFM ratio

(7) Compute the total-relation matrix by using equation (8). The total-relation matrix, is

given in Table 12.

AFM EFM

C1(ROA) C2(ROE) C3(EPS) C1(P/E) Ratio E1(EVA) E2(MVA) E3(CVA) E4(CFROI)

C1(ROA) 0.0071 -0.0501 -1.6525 -0.8965 E1(EVA) 0.0060 -0.1977 -0.2637 -0.7966

C2(ROE) -0.2348 0.0209 -1.0010 -0.5474 E2(MVA) -0.4555 0.0026 -0.7370 -0.9952

C3(EPS) -0.1016 -0.0350 -0.0021 -0.2244 E3(CVA) -0.0972 -0.0908 0.0081 -0.3740

C4(P/E) Ratio -0.0105 -0.0153 -0.4471 0.0091 E4(CFROI) -0.0723 -0.0701 -0.1170 0.0049

Table 12. Total relation matrix

(8) By using equations (9) and (10), calculate the indexes Q+R and Q-R for each criterion

and rank the criteria, which is shown in Table 13. Finally, draw the causal diagram

for financial measures, which is shown in Fig. 3 and 4.

5. Result and discussion

In this section, we analyze the results of the proposed method. Table 14, presents the

ranking of AFM and EFM, which has been used for financial performance evaluation.

From the result, it is observed that ROE is the highest Q+R score value (-1.8418)

secured the first rank, and P/E Ratio is indicated the Q+R value is -2.1230. Hence,

it secured the second rank. The EPS has indicated the Q+R value is -3.4657. It has

secured the least rank. Hence, ROE has secured the first rank, which shows that ROE

is the most important criterion in AFM. The company management and investor are
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AFM EFM

Criteria Q+R Q-R Criteria Q+R Q-R

C1(ROA) -2.9319 -2.2521 E1(EVA) -1.8711 -0.6329

C2(ROE) -1.8418 -1.6829 E2(MVA) -2.5412 -1.8291

C3(EPS) -3.4657 2.7395 E3(CVA) -1.6634 0.5557

C4(P/E) Ratio -2.1230 1.1955 E4(CFROI) -2.4153 1.9063

Table 13. The comparative neutrosophic DEMATEL technique Q+R and

Q−R value

Figure 4. The causal diagram for Accounting based financial measures criteria

Figure 5. The causal diagram for Economic value-based financial measures criteria

recommended to pay more attention to ROE for achieving their best competitiveness
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in the organization. According to the degree of importance, Q+R the AFM criteria

are ranked as follows: C3 > C1 > C4 > C2 .

In addition, table 14 presents a summary of financial measure EFM. From the result,

we conclude that the criteria CVA is the most important of the criteria since it has the

highest Q+R priority value (-1.6634). The Q+R value of EVA is -1.8711, which has

secured the second rank. Similarly, MVA is the least performance of the criteria. The

company management and investor are recommended to pay more attention to CVA

for achieving their best competitiveness in the organization. According to the degree

of importance,(S+R) the criteria EFM has ranked which are E2 > E4 > E1 > E3.

However, the causal diagram constructed with the horizontal axis is Q+R and the

vertical axis is Q-R. The causal diagram of AFM’s and EFM’s criteria are shown in

Figures 3 and 4 respectively.

6. Conclusion

Financial ratios provide useful quantitative financial information about the perfor-

mance of a company. The proposed approach (Neutrosophic-DEMATEL) is used to

evaluate the relative importance of financial ratios compared to two groups: Accounting

based financial measures (AFM) and Economic value-based financial measures (EFM).

The empirical results are recommended the following results to the investor: ROE is

the most important financial measure in AFM and CVA is the most influential measure

in EFM. Hence, the proposed method suggests to the investors pay more attention to

ROE in AFM and CVA in EFM. Moreover, the proposed neutrosophic- DEMATEL

model gives a different result for both financial measures. Because neutrosophic DE-

MATEL has provided us with more degrees of freedom to represent uncertainty and

indeterminacy in real-world information. The discussed results will help the companies,

investors, and traders before making profound decisions.

In the future, we consider the other economic value measures such as shareholder

value-added, equity economic value-added, and other performance measures by us-

ing different MCDM techniques like AHP, ELECTRE, and PROMETHEE under an

interval valued neutrosophic environment.
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Abstract. The scheme of rough sets is an effective procedure that handle ambiguous, inexact or uncertain

information configuration. Rough set theory for algebraic structures like semigroups is a formal approxima-

tion space consisting of a universal set and an equivalence relation. This article achieves a new utilization

of rough sets in the theory of semigroups via single valued neutrosophic (SVN) subsemigroups/ideals. The

conceptions of an SVN (∈,∈)-subsemigroup and an SVN (∈,∈)-ideal in semigroups are introduced, and its

properties are investigated. Special congruence relations induced by an SVN (∈,∈)-ideal are introduced in

semigroups. Using these notions, the lower and upper approximations, so called the Rq-lower approximation

and the Rq-upper approximation for q ∈ {T, I, F} based on an SVN (∈,∈)-ideal in semigroups are presented,

and related characteristics are discussed. The notions of lower and upper subsemigroups/ideals, so called the

Rq-lower subsemigroup/ideal and the Rq-upper subsemigroup/ideal for q ∈ {T, I, F}, are defined, and then the

relationships between subsemigroups/ideals and Rq-lower (upper) subsemigroups/ideals are considered.

Keywords: single valued neutrosophic (∈,∈)-subsemigroup/ideal; Rq-lower subsemigroup/ideal; Rq-upper

subsemigroup/ideal.

—————————————————————————————————————————-

1. Introduction

Rough sets were originally suggested by Pawlak (see [1]), as an official approximation of the

classical set in terms of a couple of sets that specify the upper and lower approximations of

the crisp set. The approach of rough set is adequate for rule induction from sets of imperfect

information. This approach helps in set apart between three patterns of missing attribute

Y.B. Jun, A. Al-Masarwah and M. Abu Qamar, Rough semigroups in connection with single valued neutro-

sophic (∈,∈)-ideals
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values; those are lost value, attribute-concept value and “do not care” conditions. Rough set

can be seen as being used in a variety of fields (see [2–9]).

In 1965, Zadeh fetched up the idea of fuzzy set to handle imprecise information (see [10]).

He used a single value to represent the degree of membership of the fuzzy set defined in a

universe. There is a difficulty that not all problems with imprecise information are expressed

in the class of single point membership value. To defeat such difficulties, an interval valued

fuzzy set is adopted by Turksen (see [11]). As an extended notion of fuzzy sets, Atanassov

attained a new scope called intuitionistic fuzziness sets (see [12]). In intuitionistic fuzzy sets,

the membership (resp. nonmembership) function represents truth (resp. false) part. Smaran-

dache used indeterminacy membership function as an independent component to introduce

neutrosophic sets, which are a widen of intuitionistic fuzzy sets, by using three independent

components: truth, indeterminacy and falsehood (see [13–15]). Wang et al. formed the idea of

SVN sets which is an instance of neutrosophic sets which can be utilized in various disciplines

of real-life issues, etc. (see [16]). It is already well known that neutrosophic sets are being

applied in almost every field of study.

In this article, we state a SVN (∈,∈)-subsemigroup and a SVN (∈,∈)-ideal in semigroups,

and investigate their properties. We define some special congruence relations R(T,α), R(I,β)

and R(F,γ) induced by a SVN (∈,∈)-ideal, and discuss a few properties in semigroups. Using

these notions, we introduce the lower and upper approximations, so called the Rq-lower ap-

proximation and the Rq-upper approximation for q ∈ {T, I, F}, based on a SVN (∈,∈)-ideal

in semigroups, and investigate related properties. Using the notion of Rq-lower approxima-

tion and Rq-upper approximation, we define lower and upper subsemigroups/ideals, so called

the Rq-lower subsemigroup/ideal and the Rq-upper subsemigroup/ideal for q ∈ {T, I, F}, are

defined, and then we provide the relationships between subsemigroups/ideals and Rq-lower

(upper) subsemigroups/ideals.

2. Preliminaries

This segment lists the basic well-known contents that are relevant to the current paper.

Definition 2.1. A set S 6= φ together with a binary operation “·” such that (w·z)·~ = w·(z ·~)

for all w, z, ~ ∈ S is called a semigroup.

We use wz instead of w · z in what follows. Given two subsets G and H of a semigroup S,

we define:

GH := {wz|w ∈ G, z ∈ H}.

Y.B. Jun, A. Al-Masarwah and M. Abu Qamar, Rough Semigroups in Connection with
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Definition 2.2. A subset N 6= φ of a semigroup S is a subsemigroup of S if NN ⊆ N , and a

left ideal (resp., right ideal) of S if SN ⊆ N (resp., NS ⊆ N). We say that N is an ideal of S

if it is both a left and a right ideal of S.

Definition 2.3 ( [16]). Let S 6= φ. An SVN set in S is defined as:

ΨTIF := {〈w; ΨT (w),ΨI(w),ΨF (w)〉|w ∈ S} (1)

where ΨT ,ΨI ,ΨF : S → [0, 1] are functions.

For the sake of clarity, the SVN set in (1) will be symbolized by ΨTIF := (ΨT , ΨI , ΨF ).

Given an SVN set ΨTIF := (ΨT ,ΨI ,ΨF ) in S, α, β ∈ (0, 1] and γ ∈ [0, 1), we describe:

T∈(ΨTIF;α) := {w ∈ S|ΨT (w) ≥ α},

I∈(ΨTIF;β) := {w ∈ S|ΨI(w) ≥ β},

F∈(ΨTIF; γ) := {w ∈ S|ΨF (w) ≤ γ},

which are called SVN ∈-subsets.

Definition 2.4 ( [17]). An SVN set ΨTIF in a semigroup S is an SVN (∈,∈)-subsemigroup of

S if it satisfies:

w ∈ T∈(ΨTIF;αw), z ∈ T∈(ΨTIF;αz) ⇒ wz ∈ T∈(ΨTIF; min{αw, αz}),

w ∈ I∈(ΨTIF;βw), z ∈ I∈(ΨTIF;βz) ⇒ wz ∈ I∈(ΨTIF; min{βw, βz}),

w ∈ F∈(ΨTIF; γw), z ∈ F∈(ΨTIF; γz) ⇒ wz ∈ F∈(ΨTIF; max{γw, γz}).

(2)

Lemma 2.5 ( [17]). An SVN set ΨTIF in a semigroup S is an SVN (∈,∈)-subsemigroup of S

if and only if it satisfies:

(∀w, z ∈ S)


ΨT (wz) ≥ min{ΨT (w),ΨT (z)}

ΨI(wz) ≥ min{ΨI(w),ΨI(z)}

ΨF (wz) ≤ max{ΨF (w),ΨF (z)}

 . (3)

3. Rough semigroups based on single valued neutrosophic (∈,∈)-ideals

Here, let S be a semigroup unless otherwise stated.

Definition 3.1. An SVN set ΨTIF in S is a left SVN (∈,∈)-ideal of S if it is an SVN (∈,∈)-

subsemigroup of S satisfying the following condition:

(∀w, z ∈ S)


z ∈ T∈(ΨTIF;α) ⇒ wz ∈ T∈(ΨTIF;α)

z ∈ I∈(ΨTIF;β) ⇒ wz ∈ I∈(ΨTIF;β)

z ∈ F∈(ΨTIF; γ) ⇒ wz ∈ F∈(ΨTIF; γ)

 . (4)
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Definition 3.2. An SVN set ΨTIF in S is a right SVN (∈,∈)-ideal of S if it is an SVN

(∈,∈)-subsemigroup of S satisfying the following condition:

(∀w, z ∈ S)


z ∈ T∈(ΨTIF;α) ⇒ zw ∈ T∈(ΨTIF;α)

z ∈ I∈(ΨTIF;β) ⇒ zw ∈ I∈(ΨTIF;β)

z ∈ F∈(ΨTIF; γ) ⇒ zw ∈ F∈(ΨTIF; γ)

 . (5)

If ΨTIF is a left and a right SVN (∈,∈)-ideal of S, we say that ΨTIF is an SVN (∈,∈)-ideal

of S.

Example 3.3. Consider a semigroup S = {ς1, ς2, ς3, ς4} with the “·” operation given by Table

1.

Table 1. Table for “·” operation

· ς1 ς2 ς3 ς4

ς1 ς1 ς2 ς2 ς4

ς2 ς2 ς2 ς2 ς4

ς3 ς2 ς2 ς2 ς4

ς4 ς4 ς4 ς4 ς4

Let ΨTIF be an SVN set in S which is shown as:

ΨTIF = {〈ς1, (0.33, 0.27, 0.68)〉, 〈ς2, (0.55, 0.47, 0.57)〉,

〈ς3, (0.11, 0.17, 0.89)〉, 〈ς4, (0.88, 0.77, 0.36)〉}.

It is routine to show that ΨTIF is an SVN (∈,∈)-ideal of S.

Theorem 3.4. An SVN set ΨTIF in S is a left (resp. right) SVN (∈, ∈)-ideal of S ⇔ it

satisfies (3) and

(∀w, z ∈ S)


ΨT (wz) ≥ ΨT (z) (resp. ΨT (w))

ΨI(wz) ≥ ΨI(z) (resp. ΨI(w))

ΨF (wz) ≤ ΨF (z) (resp. ΨF (w))

 . (6)

Proof. Let ΨTIF be a left SVN (∈, ∈)-ideal of S. Obviously, the condition (3) is true by

Lemma 2.5. If ∃ w, z ∈ S such that ΨT (wz) < ΨT (z), then z ∈ T∈(ΨTIF; ΨT (z)) but wz /∈
T∈(ΨTIF; ΨT (z)), a contradiction. So ΨT (wz) ≥ ΨT (z) ∀w, z ∈ S. Assume that ΨI(ab) <

ΨI(b) for some a, b ∈ S and take β := 1
2(ΨI(ab) + ΨI(b)). Then, b ∈ I∈(ΨTIF;β) and ab /∈

I∈(ΨTIF;β), which is a contradiction. Hence, ΨI(wz) ≥ ΨI(z) for all w, z ∈ S. If ΨF (wz) >

ΨF (z) for some w, z ∈ S, then ∃ γ ∈ [0, 1) such that ΨF (wz) ≥ γ > ΨF (z). Then, z ∈
F∈(ΨTIF; γ) and wz /∈ F∈(ΨTIF; γ), which induces a contradiction. Therefore, ΨF (wz) ≤
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ΨF (z) ∀w, z ∈ S. Similarly, if ΨTIF is a right SVN (∈, ∈)-ideal of S, then ΨT (wz) ≥ ΨT (w),

ΨI(wz) ≥ ΨI(w) and ΨF (wz) ≤ ΨF (w) for all w, z ∈ S.

Conversely, suppose that ΨTIF satisfies ΨT (wz) ≥ ΨT (w), ΨI(wz) ≥ ΨI(w) and ΨF (wz) ≤
ΨF (w) ∀w, z ∈ S. Let w ∈ T∈(ΨTIF;α) ∩ I∈(ΨTIF;β) ∩ F∈(ΨTIF; γ). Then,

ΨT (wz) ≥ ΨT (w) ≥ α,

ΨI(wz) ≥ ΨI(w) ≥ β

and

ΨF (wz) ≤ ΨF (w) ≤ γ,

which imply that wz ∈ T∈(ΨTIF;α) ∩ I∈(ΨTIF;β) ∩ F∈(ΨTIF; γ). Hence, ΨTIF is a right

SVN (∈, ∈)-ideal of S. Similarly, if ΨTIF satisfies ΨT (wz) ≥ ΨT (z), ΨI(wz) ≥ ΨI(z) and

ΨF (wz) ≤ ΨF (z) for all w, z ∈ S, then ΨTIF is a left SVN (∈, ∈)-ideal of S.

Let ∆ be the diagonal relation on S and let χ∆ be the characteristic function of ∆ in S×S.

Given an SVNS ΨTIF in S, consider the following relations on S:

R(T,α) := {(w, z) ∈ S × S|max{χ∆(w, z),min{ΨT (w),ΨT (z)}} ≥ α}
R(I,β) := {(w, z) ∈ S × S|max{χ∆(w, z),min{ΨI(w),ΨI(z)}} ≥ β}
R(F,γ) := {(w, z) ∈ S × S|min{f∆(w, z),max{ΨF (w),ΨF (z)}} ≤ γ}

(7)

where α, β ∈ (0, 1], γ ∈ [0, 1) and

f∆ : S × S → [0, 1], (w, z) 7→ 1− χ∆(w, z).

It is simple to demonstrate that R(T,α), R(I,β) and R(F,γ) are equivalence relations on S. Let

ΨTIF be an SVN (∈, ∈)-ideal of S. Let a,w, z ∈ S be such that (w, z) ∈ R(T,α). If aw = az,

then χ∆(aw, az) = 1 and so

max{χ∆(aw, az),min{ΨT (aw),ΨT (az)}} = 1 ≥ α.

Thus (aw, az) ∈ R(T,α). Similarly, we can verify that

max{χ∆(aw, az),min{ΨI(aw),ΨI(az)}} = 1 ≥ β,

that is, (aw, az) ∈ R(I,β). If aw = az, then f∆(w, z) = 1− (w, z) = 0 and so

min{f∆(w, z),max{ΨF (w),ΨF (z)}} = 0 ≤ γ,
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i.e., (aw, az) ∈ R(F,γ). Suppose that aw 6= az. Then, χ∆(aw, az) = 0 and w 6= z. Since ΨTIF

is a left SVN (∈, ∈)-ideal of S, it follows that

max{χ∆(aw, az),min{ΨT (aw),ΨT (az)}} = min{ΨT (aw),ΨT (az)}

≥ min{ΨT (w),ΨT (z)}

≥ α,

max{χ∆(aw, az),min{ΨI(aw),ΨI(az)}} = min{ΨI(aw),ΨI(az)}

≥ min{ΨI(w),ΨI(z)}

≥ β

and

min{f∆(ax, ay),max{ΨF (aw),ΨF (az)}} = max{ΨF (aw),ΨF (az)}

≤ max{ΨF (w),ΨF (z)}

≤ γ.

Thus (aw, az) ∈ R(T,α), (aw, az) ∈ R(I,β) and (aw, az) ∈ R(F,γ). Similarly, we can verify

that (wa, za) ∈ R(T,α), (wa, za) ∈ R(I,β) and (wa, za) ∈ R(F,γ). Therefore, R(T,α), R(I,β) and

R(F,γ) are congruence relations on S.

We summarize the result as a lemma.

Lemma 3.5. If ΨTIF is an SVN (∈, ∈)-ideal of S, then R(T,α), R(I,β) and R(F,γ) are congru-

ence relations on S.

Given w ∈ S, let [w](T,α) (resp., [w](I,β) and [w](F,γ)) denote the equivalence class of x which

is called T -equivalence class (resp. I-equivalence class and F -equivalence class) of x.

Lemma 3.6. If ΨTIF is an SVN (∈, ∈)-ideal of S, then [w](T,α)[z](T,α) ⊆ [wz](T,α),

[w](I,β)[z](I,β) ⊆ [wz](I,β) and [w](F,γ)[z](F,γ) ⊆ [wz](F,γ) for every α, β, γ ∈ [0, 1].

Proof. Let a ∈ [w](T,α)[z](T,α). Then, a = w′z′ for some w′ ∈ [w](T,α) and z′ ∈ [z](T,α). Thus

ΨT (w,w′) ≥ α and ΨT (z, z′) ≥ α. Since R(T,α) is a congruence relation on S, it follows

that ΨT (wz,w′z′) ≥ α, that is, a = w′z′ ∈ [wz](T,α). Hence, [w](T,α)[z](T,α) ⊆ [wz](T,α). If

b ∈ [w](I,β)[z](I,β), then b = w′z′ for some w′ ∈ [w](I,β) and z′ ∈ [z](I,β). Hence, ΨI(w,w
′) ≥ β

and ΨI(z, z
′) ≥ β which imply that ΨI(wz,w

′z′) ≥ β, that is, b = w′z′ ∈ [wz](I,β). This

shows that [w](I,β)[z](I,β) ⊆ [wz](I,β). Suppose that c ∈ [w](F,γ)[z](F,γ). Then, c = ab for some

a ∈ [w](F,γ) and b ∈ [z](F,γ). Thus, ΨF (a,w) ≤ γ and ΨF (b, z) ≤ γ, and so ΨF (ab, wz) ≤ γ

since R(F,γ) is a congruence relation on S. Therefore, c = ab ∈ [wz](F,γ), which proves

[w](F,γ)[z](F,γ) ⊆ [wz](F,γ).
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The following example illustrates Lemma 3.6.

Example 3.7. Consider the SVN (∈, ∈)-ideal ΨTIF of S in Example 3.3. If we take (α, β, γ) =

(0.44, 0.37, 0.63), then

R(T,α) = {(ς1, ς1), (ς2, ς2), (ς3, ς3), (ς4, ς4), (ς2, ς4)},

R(I,β) = {(ς1, ς1), (ς2, ς2), (ς3, ς3), (ς4, ς4), (ς2, ς4)}

and

R(F,γ) = {(ς1, ς1), (ς2, ς2), (ς3, ς3), (ς4, ς4), (ς2, ς4)}.

Hence, [ς1](T,α) = {ς1}, [ς2](T,α) = {ς2, ς4}, [ς3](T,α) = {ς3}, and [ς4](T,α) = {ς2, ς4}. It follows

that [ς1](T,α)[ς3](T,α) = {ς2} ⊆ {ς2, ς4} = [ς2](T,α) = [ς1ς3](T,α). In the same way, we can check

[w](I,β)[z](I,β) ⊆ [wz](I,β) and [w](F,γ)[z](F,γ) ⊆ [wz](F,γ) for w, z ∈ S.

Definition 3.8. The congruence relation R(T,α) (resp., R(I,β) and R(F,γ)) on S is said to be

complete if [w](T,α)[z](T,α) = [wz](T,α) (resp., [w](I,β)[z](I,β) = [wz](I,β) and [w](F,γ)[z](F,γ) =

[wz](F,γ)) for all w, z ∈ S.

Example 3.9. Consider a semigroup S = {ς1, ς2, ς3, ς4} with the “·” operation given by Table

2.

Table 2. Table for “·” operation

· ς1 ς2 ς3 ς4

ς1 ς1 ς2 ς3 ς4

ς2 ς2 ς2 ς3 ς4

ς3 ς3 ς3 ς3 ς4

ς4 ς4 ς4 ς4 ς3

Let ΨTIF be an SVNS in S which is shown as:

ΨTIF = {〈ς1, (0.11, 0.27, 0.68)〉, 〈ς2, (0.44, 0.47, 0.57)〉,

〈ς3, (0.77, 0.67, 0.29)〉, 〈ς4, (0.77, 0.67, 0.29)〉}.

Then, ΨTIF is an SVN (∈,∈)-ideal of S. It is routine to verify that [w](T,α)[z](T,α) = [wz](T,α),

[w](I,β)[z](I,β) = [wz](I,β) and [w](F,γ)[z](F,γ) = [wz](F,γ) for all w, z ∈ S where (α, β, γ) =

(0.77, 0.67, 0.29). Therefore, R(T,α), R(I,β) and R(F,γ) are complete congruence relations on S

for (α, β, γ) = (0.77, 0.67, 0.29).
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Definition 3.10. Let ΨTIF be an SVN (∈, ∈)-ideal of S and let N be a nonempty subset of

S. Given q ∈ {T, I, F}, the Rq-lower approximation and Rq-upper approximation of X are

defined to be the sets

RT (N ;α) := {w ∈ S|[w](T,α) ⊆ N}

RI(N ;β) := {w ∈ S|[w](I,β) ⊆ N}

RF (N ; γ) := {w ∈ S|[w](F,γ) ⊆ N}

and

RT (N ;α) := {w ∈ S|[w](T,α) ∩N 6= ∅}

RI(N ;β) := {w ∈ S|[w](I,β) ∩N 6= ∅}

RF (N ; γ) := {w ∈ S|[w](F,γ) ∩N 6= ∅},

respectively.

By routine calculations, we have the next proposition.

Proposition 3.11. Let ΨTIF be an SVN (∈, ∈)-ideal of S. For any nonempty subsets G and

H of S, the following assertions are valid.

RT (G;α) ⊆ G ⊆ RT (G;α),

RI(G;β) ⊆ G ⊆ RI(G;β),

RF (G; γ) ⊆ G ⊆ RF (G; γ),

(8)

RT (G ∩H;α) = RT (G;α) ∩RT (H;α),

RI(G ∩H;β) = RI(G;β) ∩RI(H;β),

RF (G ∩H; γ) = RF (G; γ) ∩RF (H; γ),

(9)

RT (G ∩H;α) ⊆ RT (G;α) ∩RT (H;α),

RI(G ∩H;β) ⊆ RI(G;β) ∩RI(H;β),

RF (G ∩H; γ) ⊆ RF (G; γ) ∩RF (H; γ),

(10)

G ⊆ H ⇒


RT (G;α) ⊆ RT (H;α),

RI(G;β) ⊆ RI(H;β),

RF (G; γ) ⊆ RF (H; γ),

 , (11)

G ⊆ H ⇒


RT (G;α) ⊆ RT (H;α),

RI(G;β) ⊆ RI(H;β),

RF (G; γ) ⊆ RF (H; γ),

 , (12)
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RT (G;α) ∪RT (H;α) ⊆ RT (G ∪H;α),

RI(G;β) ∪RI(H;β) ⊆ RI(G ∪H;β),

RF (G; γ) ∪RF (H; γ) ⊆ RF (G ∪H; γ),

(13)

RT (G ∪H;α) = RT (G;α) ∪RT (H;α),

RI(G ∪H;β) = RI(G;β) ∪RI(H;β),

RF (G ∪H; γ) = RF (G; γ) ∪RF (H; γ),

(14)

RT (RT (G;α);α) = RT (G;α),

RI(RI(G;β);β) = RI(G;β),

RF (RF (G; γ); γ) = RF (G; γ),

(15)

RT (RT (G;α);α) = RT (G;α),

RI(RI(G;β);β) = RI(G;β),

RF (RF (G; γ); γ) = RF (G; γ),

(16)

RT (RT (G;α);α) = RT (G;α),

RI(RI(G;β);β) = RI(G;β),

RF (RF (G; γ); γ) = RF (G; γ),

(17)

RT (RT (G;α);α) = RT (G;α),

RI(RI(G;β);β) = RI(G;β),

RF (RF (G; γ); γ) = RF (G; γ).

(18)

Proposition 3.12. Let ΨTIF be an SVN (∈, ∈)-ideal of S. For any nonempty subsets G and

H of S, we have the following assertion.

RT (G;α)RT (H;α) ⊆ RT (GH;α),

RI(G;β)RI(H;β) ⊆ RI(GH;β),

RF (G; γ)RF (H; γ) ⊆ RF (GH; γ).

(19)

Proof. Let w ∈ RT (G;α)RT (H;α). Then, w = ab for some a ∈ RT (G;α) and b ∈ RT (H;α).

It follows that ∃ wa, wb ∈ S such that wa ∈ [a](T,α) ∩ G and wb ∈ [b](T,α) ∩ H. Since R(T,α)

is a congruence relations on S, we have wawb ∈ [ab](T,α) ∩GH, and so w = ab ∈ RT (GH;α).

Similarly, we get RI(G;β)RI(H;β) ⊆ RI(GH;β). If w ∈ RF (G; γ)RF (H; γ), then ∃ a ∈
RF (G; γ) and b ∈ RF (H; γ) such that w = ab. Hence, [a](F,γ) ∩ G 6= ∅ and [b](F,γ) ∩ H 6= ∅,
which imply that ∃ wa ∈ [a](F,γ) ∩ G and wb ∈ [b](F,γ) ∩ H. Since R(F,γ) is a congruence

relations on S, it follows that wawb ∈ [ab](F,γ) ∩GH. Therefore, w = ab ∈ RF (GH; γ), and so

RF (G; γ)RF (H; γ) ⊆ RF (GH; γ).
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In Proposition 3.12, the reverse inclusion relationship does not hold as seen in the next

example.

Example 3.13. Consider the SVN (∈, ∈)-ideal ΨTIF of S in Example 3.3. If we

take (α, β, γ) = (0.44, 0.37, 0.63), then RT ({ς1};α)RT ({ς3};α) = {ς1}{ς3} = {ς2},
RI({ς1};β)RI({ς3};β) = {ς1}{ς3} = {ς2}, and RF ({ς1}; γ)RF ({ς3}; γ) = {ς1}{ς3} =

{ς2}. Also RT ({ς1}{ς3};α) = {ς2, ς4}, RI({ς1}{ς3};β) = {ς2, ς4} and RF ({ς1}{ς3}; γ) =

{ς2, ς4}. Therefore, RT ({ς1}{ς3};α) * RT ({ς1};α)RT ({ς3};α), RI({ς1}{ς3};β) *
RI({ς1};β)RI({ς3};β), and RF ({ς1}{ς3}; γ) * RF ({ς1}; γ)RF ({ς3}; γ).

Proposition 3.14. If congruence relations R(T,α), R(I,β) and R(F,γ) on S are complete, then

RT (G;α)RT (H;α) ⊆ RT (GH;α),

RI(G;β)RI(H;β) ⊆ RI(GH;β),

RF (G; γ)RF (H; γ) ⊆ RF (GH; γ)

(20)

for all nonempty subsets G and H of S.

Proof. Let w ∈ RT (G;α)RT (H;α). Then, w = ab for some a ∈ RT (G;α) and b ∈ RT (H;α).

Since R(T,α)is a complete congruence relations on S, we get [a](T,α)[b](T,α) = [ab](T,α) ⊆ GH.

Hence, w = ab ∈ RT (GH;α). Therefore, RT (G;α)RT (H;α) ⊆ RT (GH;α). Similarly, we

have RI(G;β)RI(H;β) ⊆ RI(GH;β). If w ∈ RF (G; γ)RF (H; γ), then ∃ a, b ∈ S such that

w = ab, a ∈ RF (G; γ) and b ∈ RF (H; γ). Hence, [a](F,γ)[b](F,γ) = [ab](F,γ) ⊆ GH, and so

w = ab ∈ RF (GH;α). Therefore, RF (G; γ)RF (H; γ) ⊆ RF (GH; γ).

In Proposition 3.14, if congruence relations R(T,α), R(I,β) and R(F,γ) on S are not complete,

then the inclusion relationship does not hold as seen in the next example.

Example 3.15. Consider the SVN (∈, ∈)-ideal ΨTIF of S in Example 3.3, and take

(α, β, γ) = (0.44, 0.37, 0.63). Then, R(T,α), R(I,β) and R(F,γ) are not complete. Obviously,

RT (G;α)RT (H;α) = {ς2} * ∅ = RT (GH;α), RI(G;β)RI(H;β) = {ς2} * ∅ = RI(GH;β),

and RF (G; γ)RF (H; γ) = {ς2} * ∅ = RF (GH; γ) where G = H = {ς2, ς3}.

The results discussed above will contribute to the study of rough subsemigroups and ideals.

Definition 3.16. Let ΨTIF be an SVN (∈, ∈)-ideal of S and let X be a nonempty subset of

S. Given q ∈ {T, I, F}, if Rq-lower approximation (resp., Rq-upper approximation) of X is

a subsemigroup of S, then we say that X is a Rq-lower rough subsemigroup (resp., Rq-upper

rough subsemigroup) of S. If Rq-lower approximation (resp., Rq-upper approximation) of X

is an ideal of S, then we say that X is a Rq-lower rough ideal (resp., Rq-upper rough ideal) of

S.
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Theorem 3.17. Let ΨTIF be an SVN (∈, ∈)-ideal of S and (α, β, γ) ∈ (0, 1] × (0, 1] × [0, 1).

If G is a subsemigroup (resp., ideal) of S, then it is an Rq-upper rough subsemigroup (resp.,

Rq-upper rough ideal) of S for q ∈ {T, I, F}.

Proof. Suppose G is a subsemigroup of S, then GG ⊆ G, and so

RT (G;α)RT (G;α) ⊆ RT (GG;α) ⊆ RT (G;α),

RI(G;β)RI(G;β) ⊆ RI(GG;β) ⊆ RI(G;β)

and

RF (G; γ)RF (G; γ) ⊆ RF (GG; γ) ⊆ RF (G; γ)

by (12) and Proposition 3.12. Hence, RT (G;α), RI(G;β) and RF (G; γ) are subsemigroups of

S, and so G is an Rq-upper rough subsemigroup of S for q ∈ {T, I, F}. If G is an ideal of S,

then SGS ⊆ G. Using (12) and Proposition 3.12, we have

RT (S;α)RT (G;α)RT (S;α) ⊆ RT (SGS;α) ⊆ RT (G;α),

RI(S;β)RI(G;β)RI(S;β) ⊆ RI(SGS;β) ⊆ RI(G;β)

and

RF (S; γ)RF (G; γ)RF (S; γ) ⊆ RF (SGS; γ) ⊆ RF (G; γ).

This shows thatRT (G;α), RI(G;β) andRF (G; γ) are ideals of S. Therefore, G is anRq-upper

rough ideal of S for q ∈ {T, I, F}.

Next example demonstrates that there is an Rq-upper rough ideal for q ∈ {T, I, F} which

is not an ideal.

Example 3.18. Let S = {ς1, ς2, ς3, ς4} be a semigroup with the “·” operation given by Table

3.

Table 3. Table for “·” operation

· ς1 ς2 ς3 ς4

ς1 ς1 ς2 ς3 ς4

ς2 ς2 ς2 ς2 ς2

ς3 ς3 ς3 ς3 ς3

ς4 ς4 ς3 ς2 ς1
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Let ΨTIF be an SVNS in S which is shown as :

ΨTIF = {〈ς1, (0.5, 0.6, 0.6)〉, 〈ς2, (0.7, 0.9, 0.2)〉,

〈ς3, (0.7, 0.9, 0.2)〉, 〈ς4, (0.3, 0.4, 0.8)〉}.

Clearly, ΨTIF is an SVN (∈,∈)-ideal of S. Consider (α, β, γ) ∈ (0, 1]× (0, 1]× [0, 1) such that

the subsets {ς1}, {ς4} and {ς2, ς3} are the Rq-congruence classes for q ∈ {(T, α), (I, β), (F, γ)}.
Then, RT ({ς2};α) = {ς2, ς3}, RI({ς2};β) = {ς2, ς3} andRF ({ς2}; γ) = {ς2, ς3} which are ideals

of S. Hence, {ς2} is an Rq-upper rough ideal for q ∈ {T, I, F}. But it is not an ideal of S

since S{ς2} = {ς2, ς3} * {ς2}.

Theorem 3.19. Let ΨTIF be an SVN (∈, ∈)-ideal of S. in which R(T,α), R(I,β) and R(F,γ)

are complete congruence relations on S. If G is a subsemigroup (resp., ideal) of S, then it is

an Rq-lower rough subsemigroup (resp., Rq-lower rough ideal) of S for q ∈ {T, I, F}.

Proof. If G is a subsemigroup of S, then GG ⊆ G and thus

RT (G;α)RT (G;α) ⊆ RT (GG;α) ⊆ RT (G;α),

RI(G;β)RI(G;β) ⊆ RI(GG;β) ⊆ RI(G;β),

RF (G; γ)RF (G; γ) ⊆ RF (GG; γ) ⊆ RF (G; γ)

by (11) and (20). Therefore, RT (G;α), RI(G;α) and RF (G;α) are subsemigroups of S, that

is, G is an Rq-lower rough subsemigroup of S for q ∈ {T, I, F}. If G is an ideal of S, then

SGS ⊆ G. It follows from (11) and (20) that

RT (S;α)RT (G;α)RT (S;α) ⊆ RT (SGS;α) ⊆ RT (G;α),

RI(S;β)RI(G;β)RI(S;β) ⊆ RI(SGS;β) ⊆ RI(G;β),

RF (S; γ)RF (G; γ)RF (S; γ) ⊆ RF (SGS; γ) ⊆ RF (G; γ).

Hence, RT (G;α), RI(G;α) and RF (G;α) are ideals of S, and therefore G is an Rq-lower rough

ideal of S for q ∈ {T, I, F}.

The example below demonstrates that there is an Rq-lower rough subsemigroup for q ∈
{T, I, F} which is not a subsemigroup.

Example 3.20. Consider the SVN (∈,∈)-ideal ΨTIF of S in Example 3.9. Then, R(T,α),

R(I,β) and R(F,γ) are complete congruence relations on S for (α, β, γ) = (0.77, 0.67, 0.29).

Also, RT ({ς1, ς2, ς4};α) = {ς1, ς2}, RI({ς1, ς2, ς4};β) = {ς1, ς2} andRF ({ς1, ς2, ς4}; γ) = {ς1, ς2}
are subsemigroups of S. Hence, {ς1, ς2, ς4} is an Rq-lower rough subsemigroup of S for q ∈
{T, I, F},. but it is not a subsemigroup of S since {ς1, ς2, ς4}{ς1, ς2, ς4} = S * {ς1, ς2, ς4}.
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4. Conclusions

The application of the SVN set gained attention among researchers. This paper found a

new link between semigroups and SVNSs by introducing an SVN (∈,∈)-subsemigroup and an

SVN (∈,∈)-ideal in semigroups, and studying their properties. Special congruence relations

induced by an SVN (∈,∈)-ideal in semigroups have been introduced. We have introduced

the lower (Rq-lower approximation) and upper approximations (Rq-upper approximation) for

q ∈ {T, I, F} based on an SVN (∈,∈)-ideal in semigroups, and have discussed related prop-

erties. We also have defined the concepts of lower and upper subsemigroups/ideals, so called

the Rq-lower subsemigroup/ideal and the Rq-upper subsemigroup/ideal for q ∈ {T, I, F}, and

have considered the relationships between subsemigroups/ideals and Rq-lower (upper) sub-

semigroups/ideals. In future work, various types of rough SVN ideals in semigroups will be

defined and discussed. In addition, the idea in this research article can be analyzed according

to the works in [18–22], which will be the way for much future work.
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Abstract. In the competitive market, a customer’s choice for an item depends on several factors like management’s

marketing strategy and service, the item’s price and greenness. Demand increases with the marketing strategy, service

and item’s greenness, but it is inversely related to the item’s price. These relations are non-linear and imprecise.

Recently, neutrosophic set has been introduced to represent impreciseness more realistically. Moreover, resources (cap-

ital, storage space, etc.) are generally uncertain (random or imprecise). Considering the above business scenarios,

profit maximization EOQ models with price, marketing, service, and green dependent neutrosophic demand and or-

der quantity dependent unit production cost are developed under different uncertain resource constraints. Models’

parameters are pentagonal neutrosophic (PN) numbers. The proposed models are first made deterministic and then

solved using the geometric programming technique. The PN parameters are made crisp using the score function. The

random, fuzzy, rough and trapezoidal neutrosophic resource constraints in different models are converted to crisp using

possibility measure, chance-constrained technique, trust measure and (α, β, γ)-cut with weighted mean, respectively.

These processes reduce the objective function and constraints to signomial forms, and the reduced problems are solved

by geometric programming technique with the degree of difficulty 2. Numerical experiments and sensitivity analyses

are performed to illustrate the models.

Keywords: Inventory; Pentagonal neutrosophic number; Possibility; Chance constrained programming; Trust mea-

sure;

—————————————————————————————————————————-

1. Introduction

Nowadays, integration of the effects of marketing cost, service cost, green cost, etc., into demand in

an EOQ model is a realistic production and business strategy. Marketing costs are generally the total

expenditure of a manufacturing company on marketing activities. This cost includes advertisement
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of the products, campaigning, promotional events, market research, etc. Now these activities, and

hence marketing costs, directly affect the demand of items. Again, some manufacturing companies

spend incentives on their sales representatives for better performance. Sometimes incentives are given

to the delivery agents to have perfect timing in delivering the items. These types of expenditure

are termed service cost and this cost also directly affects total demand. The demands for green

goods are always very high in any market. Green costs include the extra expenditure to produce

green goods. Thus the demand of an item increases with its greenness. Moreover, it is well known

that an item’s demand is inversely related to its selling price, i.e., demand continuously decreases

with the price. In practice, the relations mentioned above are not linear and deterministic. Demand

is always related to the marketing effort, service provided, greenness and price non-linearly in an

imprecise sense, i.e., fuzzy. Recently, neutrosophic set more realistically represents the impreciseness.

Following these real-life facts, demand is taken as a non-linear function of marketing and service

costs, item’s greenness and price in a neutrosophic fuzzy sense. This presentation of demand is new

in the literature. Lee and Kim [1] first identified the idea of marketing planning into a classical

inventory problem. They formulated the model with price and marketing cost dependent demand

and solved using the geometric programming (GP) method. Later, Lee [2, 3] investigated profit

maximization problems with optimal selling price and order quantity as decision variables along

with some constraints. A multi-objective marketing planning EOQ problem was studied by Islam [4].

Later, marketing cost, selling price and service cost dependent demand was considered by Samadi et

al. [5]. They solved the model under a fuzzy environment. Recently, Aggarwal et al. [6] developed

an inventory model with price and advertising expenditure dependent demand.

In reality, an inventory model is formulated along with one or more restrictions like a limitation

on storage space, order, production cost, etc. Among these restrictions, storage space constraint

is very common. A manufacturing company builds or hires a warehouse to store its products at

the beginning of production or business. These warehouses bear certain dimension that limits total

storage space. In practical situations, this space may not be adequate all the time. Hence, space

may be augmented if necessary. This augmentation is usually uncertain, i.e., the total available

area may be considered as imprecise, random, rough, etc., in nature. Roy and Maiti [7] investigated

a fuzzy EOQ problem under space constraints where demand depends on unit cost. Later, multi-

objective inventory problems were considered for deteriorating items with space constraints under

fuzzy (cf. [8]) and intuitionistic fuzzy (cf. [9]) environments. Again, Mandal and Islam [10], Panda

and Maiti [11] solved an EOQ model with space constraint having fuzzy coefficients by applying the

GP method. Recently, Kar et al. [12, 13] proposed neutrosophic GP technique to solve inventory

problems with space constraints under neutrosophic environment. Das et al. [14] investigated a multi-

item production inventory model with limited storage area under fuzzy environment. Moreover,
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Karimi and Sadjadi [15] developed a deteriorating multi-item EOQ model under capacity constraint

and solved by a dynamic programming approach.

Chance constrained programming is introduced in an optimization problem when the chances of

satisfying a certain constraint are above a certain level. In other words, when any constraint involves

one or more random parameters, it is called a chance constraint. Charnes and Cooper [16] first

developed a chance-constrained programming technique to solve stochastic optimization. Later, it

has been extended in various directions [17–19]. An EOQ model for stochastically imperfect products

was investigated and solved using chance-constrained programming by Panda et al. [20]. In the recent

era, Widyan [21] developed a multi-criteria inventory model with random constraints. Furthermore,

Hajiagha et al. [22] solved a multi-criteria fuzzy inventory model using chance-constrained and

probabilistic programming based hybrid algorithm.

In the real world scenario, the demand for items in the manufacturing companies changes fre-

quently. We can only note down the sales data of an item for one period and suggest an estimated

demand of that item for the next period based on the previous one. Depending on this estimate,

which may be fuzzy, rough, random, etc., the amount of resources, such as budget, warehouse space,

etc., are determined. In such situations, the rough set theory, developed by Pawlak [23] and oth-

ers [24], is used to deal with imprecise, inconsistent, incomplete information and knowledge. Later,

many researchers have studied the rough set theory in various working fields [25, 26]. Also, Xu and

Zhao [27] solved a fuzzy rough multi-objective decision making problem. De et al. [28] investigated

an imperfect economic production model over different time horizons. Xu and Yao [29] proposed

randomness and roughness simultaneously and established that some parameters follow random

distribution with rough expected value. Recently, Bera and Mandal [30] and Midya and Roy [31]

investigated multi-objective transportation problems under rough environment.

The theory of impreciseness has been used in various fields in the recent era. The concept of fuzzy

set was first came up with Zadeh [32], and after that, many researchers [33–39] extended it and

applied it in different problems. Later, Atanassov [40] successfully introduced the generalization of

fuzzy set, called intuitionistic fuzzy set (IFS). In IFS, there are two-degree functions: membership

and non-membership. Many researchers [41–43] have applied IFS in various fields. Nowadays, to deal

with indeterminate/inconsistent information, Smarandache [44–46] developed neutrosophic set (NS).

Unlike IFS, NS has three independent components: membership, indeterminacy and falsity. These

independent degrees lie within ]0−, 1+[. Later, Wang et al. [47] developed single valued neutrosophic

set, and Peng et al. [48] proposed simplified NS. In recent era, Chakraborty et al. [49–51] applied

the idea of pentagonal neutrosophic number on different problems. Moreover, Khalid et al. [52–54]

and Pramanik et al. [55] introduced neutrosophic GP technique in several fields.

Generally, the GP technique is a very effective method for solving a class of non-linear optimization

problems. The GP technique’s most remarkable advantage is that this converts a complicated
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non-linear optimization problem involving highly non-linear constraints into an equivalent linear

optimization problem with only linear constraints. The basic concept of GP was initially introduced

by Duffin [56]. GP has contributed several applications in various areas such as inventory systems,

circuit design, system design, project management, etc. Kochenberger [57] first tackled the inventory

problem by GP technique. Later, several researchers [58–61] efficiently applied the GP technique for

solving various non-linear problems in different fields.

In spite of the above developments in GP and its application in inventory control problems under

uncertain environments, very few researchers have used GP in EOQ with neutrosophic uncertainty

(cf. Kar et al. [12]). Only a few analytically expressed the limited resource amounts using neutro-

sophic numbers. Moreover, there are very few inventory control problems for green products using

GP. We have tried to fill up the above lacunas in the present investigation.

In this paper, single item profit maximization inventory models are formulated with selling price,

marketing, service and green dependent neutrosophic demand. The models are developed with

different uncertain storage space constraints. Parameters of all models’ objective functions are

considered as PN numbers to formulate the models more realistically. Again, the resource constraint

is taken in various environments as fuzzy, random, rough and trapezoidal neutrosophic (TN) numbers

to derive particular models. At first, all the models are transformed into equivalent crisp forms using

score function, possibility measure, chance-constrained programming, trust measure and (α, β, γ)-

cut for PN, fuzzy, random, rough and TN environments respectively. These processes lead both

objective function and constraint expression to signomial forms, which are solved using the GP

technique. Solution procedures for all models are numerically illustrated. Sensitivity analysis is

presented to observe the changes in optimum results against various parameters.

Thus, the main contributions of this investigation are

• For the first time, marketing, service and green expenditures, along with the item’s selling

price, is integrated into the item’s demand to develop the model more realistically. Relations

of these parameters with the demand are imprecise, expressed by PN numbers.

• Realistically, in this investigation, uncertain resource capacities are considered as fuzzy, ran-

dom, rough and neutrosophic.

• Unit production cost is taken as a non-linear function of the order quantity.

• Models are appropriately solved by the GP technique to get the exact values/expressions of

the decision variable.

• Due to the presence of neutrosophic parameters in the model, the concept of score function

is introduced to convert the model into a crisp maximization problem.

• For converting particular models from fuzzy, random and rough environments to an equiv-

alent crisp form, possibility measure, chance-constrained programming and trust measure
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are respectively applied. In the case of TN resource constraint, (α, β, γ)-cuts and weighted

arithmetic mean are used.

The remaining part of the present investigation is arranged as follows: Section 2 represents the

formulation of the proposed models. Section 3 derives some particular cases. The solution procedures

for all the models are explained in Section 4. In Section 5, numerical experiments are performed

and the optimum results are described. Section 6 represents a sensitivity analysis. Conclusion and

future extensions are presented in Section 7. All required preliminaries are explained in Appendix.

2. Formulation of the proposed models

The proposed models are established using the following notations and assumptions:

Notations:

Inventory related parameters:
Symbol Explanation
D: demand rate per unit time
C: production cost per unit item
A: set-up cost per period
H: holding cost per item per unit time
T: period of each cycle
w: available total storage capacity area
w0: capacity area to store per unit quantity
I(t): inventory level at any time t (≥ 0)
a: selling price elasticity to demand
b: marketing expenditure elasticity to demand
c: service expenditure elasticity to demand
d: green expenditure elasticity to demand
θ: lot size elasticity to unit production cost
Decision variables:
P: selling price per unit quantity
Q: number of order quantity
M: marketing expenditure per unit item
R: service expenditure per unit item
G: green expenditure per unit item

Assumptions:

(a) Replenishment rate is instantaneous.

(b) Shortages are not allowed.

(c) Lead time is negligible.

(d) The inventory system allows a single item.

(e) In real life, it is always seen that when the items are ordered in a lot, the per item production

cost reduces with the size of ordered units. Therefore, the unit production cost is inversely

related to order quantity. So it is taken as C = rQ−θ, where r is the scaling factor and

0 < θ < 1.
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(f) It is universally accepted that the demand of an item is negatively influenced by its price

- either inversely or linearly. Marketing effort in the form of advertisement in electronic

media, displayed hoardings on roadsides, etc., always uplifts the demand. Similarly, the

service sector, in the form of timely dispatch, availability, good handling of customers, etc.,

plays an important role in increasing the sale/demand of an item (cf. Samadi et al. [5]).

Nowadays, due to increased environmental consciousness, the demand for green products

gradually increases day by day. Thus, greenness also plays a role in increased demand. Hence,

demand can be expressed as D = kP−aM bRcGd, where k is the scaling factor/market size

and a > 1, 0 < b, c, d < 1. Normally, the market size for a customized product is considered

to be very high. So, the market size parameter, k, is estimated by an uncertain high number

(cf. Samadi et al. [5]).

2.1. Mathematical model

In the present investigation, the inventory level continuously decreases to satisfy the demand (See

Figure 1). If I(t) be the inventory level at time t, then the governing differential equation over the

time (0,T) is given by

D
′
I(t) = −D, 0 ⩽ t ⩽ T ,

(
D

′ ≡ d

dt

)
(1)

where I(0) = Q and I(T ) = 0.

Figure 1. Crisp inventory model

Solving the above differential equation, we get I(t) = Q−Dt and T = Q
D

Now, the average profit in the system involves the following:

Average sales revenue = PQ
T , average production cost = CQ

T , average marketing cost = MQ
T , average

service cost = RQ
T , average green cost = GQ

T , average set-up cost = A
T and average holding cost =∫ T

0 HI(t) dt = HQ
2 .
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Hence total profit per unit time is

f = Sales revenue - Production cost - Merketing cost - Service cost - Green cost

- Set-up cost - Holding cost

= kP 1−aM bRcGd − krP−aM bRcGdQ−θ − kP−aM1+bRcGd − kP−aM bR1+cGd

− kP−aM bRcG1+d − kAP−aM bRcGdQ−1 − 0.5HQ

Here, the space constraint is expressed as w0Q ≤ w.

2.2. Model-1: Model in neutrosophic environment

In reality, all data in an inventory model may not be found accurately. There may arise the

case when some of the data are uncertain, incomplete and/or indeterminant. To deal with such a

situation, the model’s parameters are expressed in an imprecise environment considering fuzzy sets,

intuitionistic sets, neutrosophic sets, rough sets, etc. The present inventory model considers all the

elasticity parameters, scaling factors, holding cost, set-up cost, total available space, and per unit

quantity area in the neutrosophic environment using PN numbers. Let us assume,

ãn = ⟨(a1, a2, a3, a4, a5) ;µãn , σãn , νãn⟩ , b̃
n
=
〈
(b1, b2, b3, b4, b5) ;µb̃

n , σb̃n , νb̃n
〉

c̃n = ⟨(c1, c2, c3, c4, c5) ;µc̃n , σc̃n , νc̃n⟩ , d̃
n
=
〈
(d1, d2, d3, d4, d5) ;µd̃

n , σd̃n , νd̃n
〉

θ̃n =
〈
(θ1, θ2, θ3, θ4, θ5) ;µθ̃n , σθ̃n , νθ̃n

〉
, k̃n =

〈
(k1, k2, k3, k4, k5) ;µk̃n , σk̃n , νk̃n

〉
r̃n = ⟨(r1, r2, r3, r4, r5) ;µr̃n , σr̃n , νr̃n⟩ , H̃n =

〈
(H1, H2, H3, H4, H5) ;µH̃n , σH̃n , νH̃n

〉
Ãn =

〈
(A1, A2, A3, A4, A5) ;µÃn , σÃn , νÃn

〉
, w̃n = ⟨(w1, w2, w3, w4, w5) ;µw̃n , σw̃n , νw̃n⟩

w̃0
n = ⟨(w01, w02, w03, w04, w05) ;µw̃0

n , σw̃0
n , νw̃0

n⟩


(2)

Thus, the inventory model in neutrosophic environment is formulated as

Max f = k̃nP 1−ãnM b̃
n

Rc̃nGd̃
n

− k̃nr̃nP−ãnM b̃
n

Rc̃nGd̃
n

Q−θ̃n − k̃nP−ãnM1+b̃
n

Rc̃nGd̃
n

−k̃nP−ãnM b̃
n

R1+c̃nGd̃
n

− k̃nP−ãnM b̃
n

Rc̃nG1+d̃
n

− k̃nÃnP−ãnM b̃
n

Rc̃nGd̃
n

Q−1 − 0.5H̃nQ (3)

subject to w̃0
n Q ≤ w̃n (4)

P,M,R,G,Q > 0 (5)

3. Particular cases

3.1. Model-1.1: (Model with fuzzy space constraint)

In this consideration, the inventory problem remains similar as formulated previously, except that

the space constraint is taken under fuzzy environment. Practically, the total available space in a

production source point may not be predicted precisely. Keeping this fact in mind, it is assumed

that the total storage space is imprecise in nature, and it is expressed by triangular fuzzy number

w̃ = (w1, w2, w3). Thus, for Model-1.1, the profit function (Max f1.1, say) is same as in expression

(3) subject to w0 Q ≤ w̃ and positivity condition (5).
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3.2. Model-1.2: (Model with random space constraint)

In this case, total available space w̄ is assumed to be random in nature and all the other terms in

the model are left same as in Model-1. Hence, the Model-1.2 is formulated with the profit expression

(Max f1.2, say) same as in equation (3) and the constraints are given by w0 Q ≤ w̄ and positivity

condition (5).

3.3. Model-1.3: (Model with rough space constraint)

When the available total storage space ŵ is a rough variable, the constraint reduces to the rough

environment and is expressed as w0Q ≤ ŵ, where ŵ = ([w1, w2][w3, w4]) , 0 ≤ w3 ≤ w1 ≤ w2 ≤ w4

is a rough variable. Therefore, the Model-1.3 is described by the same profit function (say, f1.3) as

in equation (3) with the restriction w0 Q ≤ ŵ and condition (5).

3.4. Model-1.4: (Model with neutrosophic space constraint)

In this case, we express the total available storage area capacity using a TN number w̌ =

⟨(w1, w2, w3, w4);µw̌, σw̌, νw̌⟩. The corresponding neutrosophic inventory model becomes maximize

profit (say, f1.4) as represented in (3) subject to the constraints w0 Q ≤ w̌ and positivity restriction

(5).

3.5. Model-1.5: (Model without space constraint)

In this particular case, the inventory model is considered as an unconstrained profit maximization

problem by omitting the space constraint from Model-1. Here, the expression for optimal profit (say,

f1.5) remains same as in equation (3) along with the positivity constraint (5) only.

4. Solution procedure

4.1. Solution procedure for Model-1

In this Section, a solution procedure is described to find a solution space for the neutrosophic

inventory Model-1. Firstly, the model is converted into a crisp one from the neutrosophic one

by applying the definition of the score function for PN numbers. It is then transformed into a

posynomial problem. After that GP technique is used to get an ideal solution space.
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Let us find the score values for the neutrosophic parameters as follows: (See Appendix)

S(ãn) =
1

15
{(a1 + a2 + a3 + a4 + a5)× (2 + µãn − σãn − νãn)}

S(b̃
n
) =

1

15

{
(b1 + b2 + b3 + b4 + b5)× (2 + µb̃

n − σb̃n − νb̃n)
}

S(c̃n) =
1

15
{(c1 + c2 + c3 + c4 + c5)× (2 + µc̃n − σc̃n − νc̃n)}

S(d̃
n
) =

1

15

{
(d1 + d2 + d3 + d4 + d5)× (2 + µd̃

n − σd̃n − νd̃n)
}

S(θ̃n) =
1

15

{
(θ1 + θ2 + θ3 + θ4 + θ5)× (2 + µθ̃n − σθ̃n − νθ̃n)

}
S(k̃n) =

1

15

{
(k1 + k2 + k3 + k4 + k5)× (2 + µk̃n − σk̃n − νk̃n)

}
S(r̃n) =

1

15
{(r1 + r2 + r3 + r4 + r5)× (2 + µr̃n − σr̃n − νr̃n)}

S(H̃n) =
1

15

{
(H1 +H2 +H3 +H4 +H5)× (2 + µH̃n − σH̃n − νH̃n)

}
S(Ãn) =

1

15

{
(A1 +A2 +A3 +A4 +A5)× (2 + µÃn − σÃn − νÃn)

}
S(w̃n) =

1

15
{(w1 + w2 + w3 + w4 + w5)× (2 + µw̃n − σw̃n − νw̃n)}

S(w̃0
n) =

1

15
{(w01 + w02 + w03 + w04 + w05)× (2 + µw̃0

n − σw̃0
n − νw̃0

n)}



(6)

Using these values in Model-1, the converted crisp model can be formulated as follows:

Max f = S(k̃n)P 1−S(ãn)MS(b̃
n
)RS(c̃n)GS(d̃

n
) − S(k̃n)S(r̃n)P−S(ãn)MS(b̃

n
)RS(c̃n)GS(d̃

n
)Q−S(θ̃n)

−S(k̃n)P−S(ãn)M1+S(b̃
n
)RS(c̃n)GS(d̃

n
) − S(k̃n)P−S(ãn)MS(b̃

n
)R1+S(c̃n)GS(d̃

n
)

−S(k̃n)P−S(ãn)MS(b̃
n
)RS(c̃n)G1+S(d̃

n
) − S(k̃n)S(Ãn)P−S(ãn)MS(b̃

n
)RS(c̃n)GS(d̃

n
)Q−1

−0.5S(H̃n)Q (7)

subject to S(w̃0
n) Q ≤ S(w̃n) (8)

P,M,R,G,Q > 0

This transformed form of the inventory problem represents by a signomial GP problem, and its

degree of difficulty is 2. Some necessary modifications are needed to convert the model into a posyn-

omial GP problem. For the conversion, an appropriate lower bound is considered for the objective

function with the aim that the maximization of that lower bound will be equivalent to the maxi-

mization of the objective function of the model. In this way, the signomial model is converted into
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the following equivalent form by introducing another additional auxiliary variable and a constraint:

Max f0

subject to S(k̃n)P 1−S(ãn)MS(b̃
n
)RS(c̃n)GS(d̃

n
) − S(k̃n)S(r̃n)P−S(ãn)MS(b̃

n
)RS(c̃n)GS(d̃

n
)Q−S(θ̃n)

−S(k̃n)P−S(ãn)M1+S(b̃
n
)RS(c̃n)GS(d̃

n
) − S(k̃n)P−S(ãn)MS(b̃

n
)R1+S(c̃n)GS(d̃

n
)

−S(k̃n)P−S(ãn)MS(b̃
n
)RS(c̃n)G1+S(d̃

n
) − S(k̃n)S(Ãn)P−S(ãn)MS(b̃

n
)RS(c̃n)GS(d̃

n
)Q−1

−0.5S(H̃n)Q ≤ f0 (9)

S(w̃0
n) Q ≤ S(w̃n) (10)

P,M,R,G,Q > 0 (11)

Again, this reduced model is equivalent to the following minimization problem:

Min F = f0
−1

subject to f0S(k̃n)
−1PS(ãn)−1M−S(b̃

n
)R−S(c̃n)G−S(d̃

n
) + S(r̃n)P−1Q−S(θ̃n) + P−1M + P−1R

+P−1G+ S(Ãn)P−1Q−1 + 0.5S(H̃n)S(k̃n)−1PS(ãn)−1M−S(b̃
n
)R−S(c̃n)G−S(d̃

n
)Q ≤ 1

S(w̃0
n) Q ≤ S(w̃n)

P,M,R,G,Q > 0 (12)

The derived inventory model (12) is a posynomial GP problem whose degree of difficulty is 2. To

solve this problem the dual geometric programming problem is expressed as follows:

Max d(ẇ) =

(
1

w00

)w00
(
S(k̃n)

−1

w01

)w01 (
S(r̃n)

w02

)w02
(

1

w03

)w03
(

1

w04

)w04
(

1

w05

)w05

(
S(Ãn)

w06

)w06
(
0.5S(H̃n)

w07

)w07
(

7∑
i=1

w0i

)∑7
i=1 w0i (

S(w̃0
n)

S(w̃n)

)w11

(13)

subject to the following conditions:

Normality condition: w00 = 1

Orthogonality conditions: − w00 + w01 = 0

(S(ãn)− 1)w01 − w02 − w03 − w04 − w05 − w06 + (S(ãn)− 1)w07 = 0

−S(b̃
n
)w01 + w03 − S(b̃

n
)w07 = 0

−S(c̃n)w01 + w04 − S(c̃n)w07 = 0

−S(d̃
n
)w01 + w05 − S(d̃

n
)w07 = 0

−S(θ̃n)w02 − w06 + w07 + w11 = 0

Positivity condition: w00, w01, w02, w03, w04, w05, w06, w07, w11 > 0
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where ẇ = (w00, w01, w02, w03, w04, w05, w06, w07, w11)
T and w0i(i = 0, 1, ..., 7), w11 are the dual vari-

ables against the primal variables P,M,R,G and Q for the problem defined by equation (12).

As the model has 2 degree of difficulty, we cannot calculate all the dual variables directly from the con-

ditions. Therefore, solving the above constraints and expressing the dual variables w0i, i = 2, 3, ..., 6

in terms of w07 and w11 we get

w00 = 1 = w01

w02 =
S(ãn)− S(b̃

n
)− S(c̃n)− S(d̃

n
)− 2

1− S(θ̃n)
w07 −

1

1− S(θ̃n)
w11

+
S(ãn)− S(b̃

n
)− S(c̃n)− S(d̃

n
)− 1

1− S(θ̃n)
w03 = S(b̃

n
)(1 + w07)

w04 = S(c̃n)(1 + w07)

w05 = S(d̃
n
)(1 + w07)

w06 =
1− S(θ̃n)

(
S(ãn)− S(b̃

n
)− S(c̃n)− S(d̃

n
)− 1

)
1− S(θ̃n)

w07 +
1

1− S(θ̃n)
w11

−
S(θ̃n)

(
S(ãn)− S(b̃

n
)− S(c̃n)− S(d̃

n
)− 1

)
1− S(θ̃n)



(14)

Letting k1 =
S(ãn)−S(b̃

n
)−S(c̃n)−S(d̃

n
)−1

1−S(θ̃n)
and k2 =

1
1−S(θ̃n)

we get,

w02 = (k1 − k2)w07 − k2w11 + k1 and w06 =
(
k2 − S(θ̃n)k1

)
w07 + k2w11 − S(θ̃n)k1

Substituting these dual variables in equation (13), the dual objective function is expressed in terms

of w07 and w11 as given below:

d(w07, w11) = S(k̃n)
−1 ×

(
S(r̃n)

(k1 − k2)w07 − k2w11 + k1

)(k1−k2)w07−k2w11+k1

×

(
1

S(b̃
n
)(1 + w07)

)S(b̃
n
)(1+w07)

×
(

1

S(c̃n)(1 + w07)

)S(c̃n)(1+w07)

×

(
1

S(d̃
n
)(1 + w07)

)S(d̃
n
)(1+w07)

×

(
0.5S(H̃n)

S(k̃n)w07

)w07

×

(
S(Ãn)

(k2 − S(θ̃n)k1)w07 + k2w11 − S(θ̃n)k1

)(k2−S(θ̃n)k1)w07+k2w11−S(θ̃n)k1

× (S(ãn)(1 + w07))
S(ãn)(1+w07) ×

(
S(w̃0

n)

S(w̃n)

)w11

(15)

To evaluate the optimum dual variables w∗
07 and w∗

11 that optimize the dual objective d(w07, w11),

we first take logarithm of equation (15) and get the following expression:
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log d(w07, w11) = logS(k̃n)
−1

+ ((k1 − k2)w07 − k2w11 + k1)logS(r̃n)

− ((k1 − k2)w07 − k2w11 + k1) log((k1 − k2)w07 − k2w11 + k1)

−(S(b̃
n
)(1 + w07))log(S(b̃

n
)(1 + w07))− (S(c̃n)(1 + w07))log(S(c̃

n)(1 + w07))

−(S(d̃
n
)(1 + w07))log(S(d̃

n
)(1 + w07)) + w07log

(
0.5S(H̃n)

S(k̃n)

)
− w07logw07

+((k2 − S(θ̃n)k1)w07 + k2w11 − S(θ̃n)k1)logS(Ãn)

−((k2 − S(θ̃n)k1)w07 + k2w11 − S(θ̃n)k1)log((k2 − S(θ̃n)k1)w07 + k2w11 − S(θ̃n)k1)

+ (S(ãn)(1 + w07)) log (S(ã
n)(1 + w07)) + w11log

(
S(w̃0

n)

S(w̃n)

)
(16)

Since there are two variables w07 and w11 in the above logarithmic expression (16), to derive these

optimal dual variables, we set the first order partial derivatives of log d(w07, w11) with respect to

w07 and w11, respectively, to zero and get the followings:

∂ log d(w07, w11)

∂w07
= (k1 − k2)logS(r̃n)− (k1 − k2)log((k1 − k2)w07 − k2w11 + k1)

−S(b̃
n
)log(S(b̃

n
)(1 + w07))− S(c̃n)log(S(c̃n)(1 + w07))

−S(d̃
n
)log(S(d̃

n
)(1 + w07)) + (k2 − S(θ̃n)k1)logS(Ãn)

−(k2 − S(θ̃n)k1)log((k2 − S(θ̃n)k1)w07 + k2w11 − S(θ̃n)k1)

+log

(
0.5S(H̃n)

S(k̃n)

)
+ logw07 + S(ãn)log(S(ãn)(1 + w07))

= 0 (17)

∂ log d(w07, w11)

∂w11
= −k2logS(r̃n) + k2log((k1 − k2)w07 − k2w11 + k1) + k2logS(Ãn)

−k2log((k2 − S(θ̃n)k1)w07 + k2w11 − S(θ̃n)k1) + log

(
S(w̃0

n)

S(w̃n)

)
= 0 (18)

By using any search method or any software the above equations (17) and (18) can be solved to get

the optimal dual variables w∗
07 and w∗

11. With the help of these optimal values, other optimal dual

variables can easily be evaluated from equation (14). Consequently, the optimum dual objective

function d∗(ẇ∗) can be calculated. Now, the primal-dual relations of the problem (12) are derived

as:

λ =

7∑
i=1

w∗
0i, S(k̃n)

−1
P ∗S(ãn)−1M∗−S(b̃

n
)R∗−S(c̃n)G∗−S(d̃

n
) =

w∗
01

λ
, S(r̃n)P ∗−1Q∗−S(θ̃n) =

w∗
02

λ

P ∗−1M∗ =
w∗
03

λ
, P ∗−1R∗ =

w∗
04

λ
, P ∗−1G∗ =

w∗
05

λ
, S(Ãn)P ∗−1Q∗−1 =

w∗
06

λ
,
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0.5S(H̃n)S(k̃n)
−1

P ∗S(ãn)−1M∗−S(b̃
n
)R∗−S(c̃n)G∗−S(d̃

n
)Q∗ =

w∗
07

λ
,

(
S(w̃0

n)

S(w̃n)

)
Q∗ =

w∗
11

w∗
11

With the help of these equations, we obtain the following expressions for the optimal primal

variables:

Q∗ =
S(w̃n)

S(w̃0
n)

, P ∗ = S(Ãn)
S(w̃0

n)

S(w̃n)

∑7
i=1w

∗
0i

w∗
06

, M∗ = S(Ãn)
S(w̃0

n)

S(w̃n)

w∗
03

w∗
06

,

R∗ = S(Ãn)
S(w̃0

n)

S(w̃n)

w∗
04

w∗
06

, G∗ = S(Ãn)
S(w̃0

n)

S(w̃n)

w∗
05

w∗
06

Substituting the above obtained optimal variables in neutrosophic inventory model i.e. Model-1, the

optimal profit becomes

f∗ =

(
S(Ãn)

w∗
06

S(w̃0
n)

S(w̃n)

)1−S(ãn)+S(b̃
n
)+S(c̃n)+S(d̃

n
) 7∑
i=1

w∗
0i

−S(ãn)

w∗
03

S(b̃
n
)w∗

04
S(c̃n)w∗

05
S(d̃

n
) ×

[
7∑

i=1

w∗
0i

−S(r̃n)

(
S(Ãn)

w∗
06

S(w̃0
n)

S(w̃n)

)S(θ̃n)−1

− w∗
03 − w∗

04 − w∗
05 − S(Ãn)

]
S(k̃n)− 0.5S(H̃n)

S(w̃n)

S(w̃0
n)

4.2. Solution procedure for Model-1.1

In this case, the constraint is formulated under fuzzy environment. To deal with such type

of constraint in inventory model, we follow the possibility theory. After defuzzification the space

constraint reduces to Pos (w0Q ≤ w̃) ≥ η, η represents the degree of fuzziness and w̃ = (w1, w2, w3).

Following Lemma 1, the crisp formulation of the constraint becomes :

w0Q ≤ ηw2 + (1− η)w3 (19)

Here the above obtained constraint is under crisp environment. Using the score function formula,

the neutrosophic objective function is converted into a crisp one, and consequently, the equivalent

crisp model becomes:

Maximize profit f1.1 as given in equation (7) subject to conditions (19) and (5).

Now the model reduces to a signomial GP problem with degree of difficulty 2. Therefore, this

problem can be solved by the GP technique. Following the similar approach as computed in section

4.1, the optimum results are evaluated as follows:

Q∗ =
ηw2 + (1− η)w3

w0
, P ∗ = S(Ãn)

w0

ηw2 + (1− η)w3

∑7
i=1w

∗
0i

w∗
06

,

M∗ = S(Ãn)
w0

ηw2 + (1− η)w3

w∗
03

w∗
06

, R∗ = S(Ãn)
w0

ηw2 + (1− η)w3

w∗
04

w∗
06

,

G∗ = S(Ãn)
w0

ηw2 + (1− η)w3

w∗
05

w∗
06
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and the optimum profit becomes

f∗
1.1 =

(
S(Ãn)

w∗
06

w0

ηw2 + (1− η)w3

)1−S(ãn)+S(b̃
n
)+S(c̃n)+S(d̃

n
) 7∑
i=1

w∗
0i

−S(ãn)

w∗
03

S(b̃
n
)w∗

04
S(c̃n)w∗

05
S(d̃

n
)

×

 7∑
i=1

w∗
0i − S(r̃n)

(
S(Ãn)

w∗
06

w0

ηw2 + (1− η)w3

)S(θ̃n)−1

− w∗
03 − w∗

04 − w∗
05 − S(Ãn)

S(k̃n)

−0.5S(H̃n)
ηw2 + (1− η)w3

w0

4.3. Solution procedure for Model-1.2

For this particular case, the space constraint is considered in a random sense. To deal with such

types of constraints, we follow the chance-constrained programming approach and the corresponding

constraint becomes:

Pr (w0Q ≤ w̄) ≥ p , 0 < p < 1

where ’Pr’ indicates probability and p represents the prescribed permissible probability.

Now, assume that w̄ be normally distributed random variable with mw and σw as mean and standard

deviation respectively. Then, the constraint can be expressed as

Pr

[
w −mw

σw
≥ w0Q−mw

σw

]
≥ p

where w−mw
σw

is a standard normal variate.

If we consider ϕ(p), such that
∫∞
ϕ(p) ϕ(t) dt , where ϕ(t) is the standard normal density function, then

we get
w −mw

σw
≤ ϕ(p)

Thus, using chance-constrained programming the reduced crisp constraint can be written as

w0Q ≤ mw + σwϕ(p) (20)

Again, Definition 7 is used to transform the objective function into a crisp expression from a neutro-

sophic one. Thus, the corresponding crisp model can be expressed by the objective function given

in equation (7) subject to the constraints (20) and (5). The above is again a signomial GP problem

having degree of difficulty 2. Now we follow the GP approach as presented in section 4.1 to solve

the model. Finally, the optimal solution is obtained in the following form:

Q∗ =
mw + σwϕ(p)

w0
, P ∗ = S(Ãn)

w0

mw + σwϕ(p)

∑7
i=1w

∗
0i

w∗
06

, M∗ = S(Ãn)
w0

mw + σwϕ(p)

w∗
03

w∗
06

,

R∗ = S(Ãn)
w0

mW + σWϕ(p)

w∗
04

w∗
06

, G∗ = S(Ãn)
w0

mw + σwϕ(p)

w∗
05

w∗
06
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and corresponding optimum profit becomes

f∗
1.2 =

(
S(Ãn)

w∗
06

w0

mw + σwϕ(p)

)1−S(ãn)+S(b̃
n
)+S(c̃n)+S(d̃

n
) 7∑
i=1

w∗
0i

−S(ãn)

w∗
03

S(b̃
n
)w∗

04
S(c̃n)w∗

05
S(d̃

n
)

×

 7∑
i=1

w∗
0i − S(r̃n)

(
S(Ãn)

w∗
06

w0

mw + σwϕ(p)

)S(θ̃n)−1

− w∗
03 − w∗

04 − w∗
05 − S(Ãn)

S(k̃n)

−0.5S(H̃n)
mw + σwϕ(p)

w0

4.4. Solution procedure for Model-1.3

In this case, the space constraint is supposed to be in rough environment. Therefore, using

Definition 12, the trust measure to the crisp conversion becomes

Tr (ŵ ≥ w0Q) ≥ η1

where η1 ∈ [0, 1] is the trust level.

Now, following Theorem 2, the rough constraint can be written in equivalent crisp form as expressed

below:

w0Q ≤



w4 − η1(w4−w3)
ζ if w2 ≤ w0Q ≤ w4

ζ(w2−w1)+(1−ζ)w2(w4−w3)−η1(w4−w3)(w2−w1)
ζ(w2−w1)+(1−ζ)(w4−w3)

if w1 ≤ w0Q ≤ w2

w4 +
(1−ζ−η1)(w4−w3)

ζ if w3 ≤ w0Q ≤ w1

w3

(21)

where ζ ∈ (0, 1).

After reducing the neutrosophic objective function into its crisp form, the consequent model can be

expressed by the profit function f1.3 as given in expression (7) subject to restrictions (21) and(5).

This obtained signomial GP problem bearing degree of difficulty 2 is then solved using GP technique

as described in section 4.1. The optimal decision variables and profit are respectively obtained as:

Q∗ =
T

w0
, P ∗ = S(Ãn)

w0

T

∑7
i=1w

∗
0i

w∗
06

, M∗ = S(Ãn)
w0

T

w∗
03

w∗
06

, R∗ = S(Ãn)
w0

T

w∗
04

w∗
06

,

G∗ = S(Ãn)
w0

T

w∗
05

w∗
06

and

f∗
1.3 =

(
S(Ãn)

w∗
06

w0

T

)1−S(ãn)+S(b̃
n
)+S(c̃n)+S(d̃

n
) 7∑
i=1

w∗
0i

−S(ãn)

w∗
03

S(b̃
n
)w∗

04
S(c̃n)w∗

05
S(d̃

n
)

×

 7∑
i=1

w∗
0i − S(r̃n)

(
S(Ãn)

w∗
06

w0

T

)S(θ̃n)−1

− w∗
03 − w∗

04 − w∗
05 − S(Ãn)

S(k̃n)− 0.5S(H̃n)
T

w0
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where

T =



w4 − η1(w4−w3)
ζ if w2 ≤ w0Q ≤ w4

ζ(w2−w1)+(1−ζ)w2(w4−w3)−η1(w4−w3)(w2−w1)
ζ(w2−w1)+(1−ζ)(w4−w3)

if w1 ≤ w0Q ≤ w2

w4 +
(1−ζ−η1)(w4−w3)

ζ if w3 ≤ w0Q ≤ w1

w3

and ζ ∈ (0, 1).

4.5. Solution procedure for Model-1.4

To convert this neutrosophic model into a crisp representation, we first need to calculate the

α − cut, β − cut and γ − cut of the TN number. Using Definition 10 , we derive the following

α− cut, β − cut and γ − cut for the neutrosophic total space

w̌α = [Lw̌(α), Rw̌(α)] =

[
(µw̌ − α)w1 + αw2

µw̌
,
(µw̌ − α)w4 + αw3

µw̌

]
w̌β = [L

′
w̌(β), R

′
w̌(β)] =

[
(1− β)w2 + (β − σw̌)w1

1− σw̌
,
(1− β)w3 + (β − σw̌)w4

1− σw̌

]

w̌γ = [L
′′
w̌(γ), R

′′
w̌(γ)] =

[
(1− γ)w2 + (γ − νw̌)w1

1− νw̌
,
(1− γ)w3 + (γ − νw̌)w4

1− νw̌

]
After that, we transform the neutrosophic parameters in the constraint into a crisp interval number

by using Theorem 1. Thus, we have the crisp constraint as w0Q ≤ [Lw̌, Rw̌],

where Lw̌ = max
{
Lw̌(α), L

′
w̌(β), L

′′
w̌(γ)

}
, Rw̌ = min

{
Rw̌(α), R

′
w̌(β), R

′′
w̌(γ)

}
Now applying the weighted mean approach (cf. Lemma 2), convert the interval number into para-

metric function and get the crisp formulation of the constraint as follows:

w0Q ≤ Lw̌(1− ρ) +Rw̌ρ (22)

After reducing the PN objective of the model-1.4 into a crisp one using the score function, the

converted equivalent crisp formulation is expressed with the objective function same as in (7) along

with the constraints given in (22) and (5). Now the reduced model is again a signomial GP problem

having 2 degree of difficulty. Following the solution procedure, explained in Section 4.1, we get the

following optimal solutions:

Q∗ =
Lw̌(1− ρ) +Rw̌ρ

w0
, P ∗ = S(Ãn)

w0

Lw̌(1− ρ) +Rw̌ρ

∑7
i=1w

∗
0i

w∗
06

,

M∗ = S(Ãn)
w0

Lw̌(1− ρ) +Rw̌ρ

w∗
03

w∗
06

, R∗ = S(Ãn)
w0

Lw̌(1− ρ) +Rw̌ρ

w∗
04

w∗
06

,

G∗ = S(Ãn)
w0

Lw̌(1− ρ) +Rw̌ρ

w∗
05

w∗
06
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along with the optimum profit given by

f∗
1.4 =

(
S(Ãn)

w∗
06

w0

Lw̌(1− ρ) +Rw̌ρ

)1−S(ãn)+S(b̃
n
)+S(c̃n)+S(d̃

n
) 7∑
i=1

w∗
0i

−S(ãn)

w∗
03

S(b̃
n
)w∗

04
S(c̃n)w∗

05
S(d̃

n
)

×

 7∑
i=1

w∗
0i − S(r̃n)

(
S(Ãn)

w∗
06

w0

Lw̌(1− ρ) +Rw̌ρ

)S(θ̃n)−1

− w∗
03 − w∗

04 − w∗
05 − S(Ãn)

S(k̃n)

−0.5S(H̃n)
Lw̌(1− ρ) +Rw̌ρ

w0

4.6. Solution procedure for Model-1.5

The objective function of this particular model is transformed into crisp environment by using the

definition of score function, and obtained crisp expression is given in the equation (7). Since there is

only the positivity restriction in this model, the problem is a signomial GP problem with 1 degree

of difficulty. Thus, the model can be solved by the GP technique, and the optimum solutions are as

follows:

Q∗ =

(
S(Ãn)

S(r̃n)

w∗
02

w∗
06

) 1
1−S(θ̃n)

, P ∗ =

(
S(r̃n)

w∗
02

) 1
1−S(θ̃n)

(
w∗
06

S(Ãn)

) S(θ̃n)

1−S(θ̃n)

,

M∗ = w∗
03

(
S(r̃n)

w∗
02

) 1
1−S(θ̃n)

(
w∗
06

S(Ãn)

) S(θ̃n)

1−S(θ̃n)

, R∗ = w∗
04

(
S(r̃n)

w∗
02

) 1
1−S(θ̃n)

(
w∗
06

S(Ãn)

) S(θ̃n)

1−S(θ̃n)

,

G∗ = w∗
05

(
S(r̃n)

w∗
02

) 1
1−S(θ̃n)

(
w∗
06

S(Ãn)

) S(θ̃n)

1−S(θ̃n)

.

Now using these optimum decision variables, optimal profit can be calculated easily.

5. Numerical experiments

Input data for Model-1:

The proposed models (Model-1,-1.1,-1.2,-1.3,-1.4 and -1.5) are illustrated with a theoretical example

in this section. For this, the following inputs in appropriate units are considered:

ãn = ⟨(2, 3, 7, 8, 10); 0.6, 0.5, 0.6⟩ , b̃
n
= ⟨(0.2, 0.32, 0.45, 0.52, 0.61) ; 0.9, 0.1, 0.3⟩ ,

c̃n = ⟨(0.09, 0.18, 0.34, 0.43, 0.52) ; 0.9, 0.3, 0.1⟩ , d̃n = ⟨(0.09, 0.12, 0.19, 0.28, 0.37) ; 0.8, 0.5, 0.3⟩ ,

θ̃n = ⟨(0.01, 0.02, 0.03, 0.04, 0.05) ; 0.8, 0.4, 0.4⟩ , r̃n = ⟨(2, 5.5, 8, 10, 12) ; 0.6, 0.2, 0.4⟩ ,

k̃n = ⟨(200000, 400000, 600000, 750000, 1050000) ; 0.9, 0.3, 0.1⟩ ,

H̃n = ⟨(0.9, 1.2, 2.5, 3.8, 4.1) ; 0.9, 0.8, 0.6⟩ , Ãn = ⟨(36, 58, 86, 110.5, 122) ; 0.7, 0.4, 0.3⟩ ,

w̃0
n = ⟨(1, 6, 10, 15, 18) ; 0.5, 0.5, 0.2⟩ , w̃n = ⟨(280, 450, 695, 860, 1390) ; 0.7, 0.4, 0.3⟩ .
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Input data for particular models:

For the particular models (Model-1.1,-1.2,1.3 and -1.4) the required inputs are presented in Table 1.

All the other parameters for these models are similar as in Model-1.

Table 1. Other input data for particular models

Environments Related data
Fuzzy w̃ = (410, 490, 570) η = 0.5
Random (mw, σw) = (480, 20) p = 0.96
Rough ŵ = ([460, 510][420, 580]), ζ = 0.5, η1 = 0.6
TN w̌ = ⟨(420, 465, 500, 550); 0.7, 0.3, 0.3⟩, α = 0.1, β = 0.7, γ = 0.9

Optimum results:

All models are formulated with the help of above considered parameters and optimized using the

proposed solution approach. The optimum values of selling price P ∗, number of order quantity Q∗,

marketing expenditure M∗, service expenditure R∗, green expenditure G∗ and profit f∗ are eval-

uated for the inventory models with the constraint in different environments, and the results are

indicated in Table 2.

Table 2. Optimal solutions for all models

Models
Environments

P ∗ M∗ R∗ G∗ Q∗ f∗
Objective constraint

1 PN PN 12.600 1.470 1.092 0.588 81.67 1089.50
1.1 PN Fuzzy 12.466 1.454 1.080 0.581 88.33 1101.27
1.2 PN Random 12.790 1.492 1.108 0.597 74.17 1073.64
1.3 PN Rough 12.610 1.471 1.093 0.588 81.43 1089.04
1.4 PN TN 12.710 1.483 1.102 0.593 77.21 1080.44
1.5 PN No constraint 11.463 1.337 0.993 0.535 197.87 1160.63

From Table 2, it is observed that the optimal profit for the model with PN numbers (Model-1)

is 1089.50 $. Again, the optimal selling price per unit item is 12.6 $ for this model, and the total

order quantity is 81.67 units. Moreover, the marketing, service and green expenditure per item are

1.47 $, 1.092 $ and 0.588 $, respectively. Similarly, we note that the optimal profit for the particular

cases, i.e., models with fuzzy constraint (Model-1.1), random constraint (Model-1.2), rough con-

straint (Model-1.3) and TN constraint (Model-1.4) are 1101.27 $, 1073.64 $, 1089.04 $ and 1080.44

$ respectively. The optimal values of these particular models’ decision variables are presented in

Table 2. Again, as per expectation, the unconstrained model (Model-1.5) gives the maximum profit

among all models. Strictly speaking, as the environments under which the models are formulated

are different, their optimum results can not be compared.
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6. Sensitivity analysis

In this Section, we perform some sensitivity analysis to observe the changes in optimal profit with

respect to the changes in parameters for the particular models. From Figure 2a, it is noted that

whenever the degree of fuzziness (η) or the trust level (η1) increases from 0.1 to 0.9, the optimal

profit decreases continuously. But, with the increases of weights (ρ) of the weighted mean used

in Model-1.4, optimal profit increases (cf. Figure 2a). Again, the decrease of optimal profit with

respect to the considered probability (p) of Model-1.2 is plotted in Figure 2b. The changes in optimal

profit of all the models along with the changes in total available space and set-up cost are figured

in Figures 2c and 2d respectively.
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Figure 2. (A) Optimal profit vs. degree of fuzzyness (η)/ trust measure (η1)/ weight
of weighted mean (ρ); (B) Optimal profit vs. permissible probability (p) for Model-
1.2; (C) Optimal profit of all models vs. total available space; (D) Optimal profit of
all models vs. set-up cost

7. Conclusions

The main goal of the present study is to develop an economic order quantity model with space

constraint having all its parameters as PN numbers. In reality, marketing expenditure and service

quality play a significant role in the demand of any manufacturing company. Again, the demand for

green items is always very high in the market. Therefore, the demand in this model is considered as a
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function of the selling price, marketing, service and green expenditure to be more realistic. Moreover,

order quantity dependent unit production cost is assumed here. Again, the space constraint is

considered in several environments like fuzzy, random, rough, and TN. Possibility measure and

chance-constrained programming are used to deal with the fuzzy and random constraint goals,

respectively. For all the models, a solution procedure is suggested. Finally, the GP technique is

applied to solve the converted crisp models. Moreover, some numerical experiments and sensitivity

analyses are done to illustrate the models.

In the future, the model can be developed more realistically by assuming ramp type demand, power

demand, probabilistic demand, etc. Here, the model is considered for a single item, and hence it can

be extended to a multi-item model. Also, shortages can be allowed in the problem. Furthermore,

the items may be damageable, and preservation technology may be introduced. Moreover, different

environments can be considered, such as intuitionistic, fuzzy-random, fuzzy-rough, type-2 fuzzy, etc.

Again, the researchers may suggest different solution procedures and compare the optimum results

with the present one.
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Appendix

Definition 1 (Fuzzy set). [32] A fuzzy set B̃ in X (space of points/objects) is an object having the

form B̃ = {(x, µB̃(x)) : x ∈ X} where µB̃ : X → [0, 1] is the membership function of the fuzzy set B̃.

Definition 2 (Triangular fuzzy number). [20] A triangular fuzzy number B̃ = (b1, b2, b3) is a fuzzy

number whose membership function µB̃(x) is defined as

µB̃(x) =


x−b1
b2−b1

b1 ≤ x < b2

b3−x
b3−b2

b2 ≤ x ≤ b3

0 otherwise

where [b1, b3] is the supporting interval and the point (b2, 1) is the peak.

Definition 3 (Possibility measure). [20] Let m̃ and ñ be two fuzzy numbers and the corresponding

memberships functions be µm̃(x) and µñ(x) respectively. Then the possibility measure of m̃ and ñ is

defined as: Pos(m̃ ∗ ñ) = Sup {min(µm̃(x), µñ(y)), x, y ∈ R, x ∗ y}
Here, the abbreviation ’Pos’ stands for possibility measure and ’*’ represents any one of the relations

<,>,=,≤,≥ . Analogously if ñ be a crisp number,say n, then we have

Pos(m̃ ∗ n) = Sup {min(µm̃(x), x ∈ R, x ∗ n}
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Lemma 1. Let m̃ = (m1,m2,m3) be any triangular fuzzy number and 0 < m1 and n be any crisp

number. Then,

Pos(m̃ > n) ≥ α iff m3−n
m3−m2

≥ α

Definition 4 (Neutrosophic set). [45] Let the set X be a space of points (objects) and x ∈ X. A

neutrosophic set (NS) B̃n ⊂ X is represented by three independent functions: membership function

µB̃n(x), hesitation function σB̃n(x) and non-membership function νB̃n(x) and expressed as

B̃n = {(x, µB̃n(x), σB̃n(x), νB̃n(x)) : x ∈ X}.

where µB̃n(x), σB̃n(x), νB̃n(x) : X → ]0−, 1+[ ∀ x ∈ X are real standard or non-standard subset of

]0−, 1+[. The sum of these three independent functions is related as follows:

0− ≤ Sup µB̃n(x) + Sup σB̃n(x) + Sup νB̃n(x) ≤ 3+ ∀ x ∈ X.

Definition 5 (Single valued neutrosophic set). [45] Let the set X be a space of points (objects). A

single valued neutrosophic set (SVNS) B̃ ⊂ X is expressed as

B̃n = {(x, µB̃n(x), σB̃n(x), νB̃n(x)) : x ∈ X}

where µB̃n , σB̃n , νB̃n : X → [0, 1] satisfy the condition 0 ≤ µB̃n(x) + σB̃n(x) + νB̃n(x) ≤ 3 ∀ x ∈
X. µB̃n(x), σB̃n(x) and νB̃n(x) denote the membership, hesitation and non-membership function

respectively.

Definition 6 (Single valued pentagonal neutrosophic number). [51] A single valued pentagonal

neutrosophic number (SVPN-number) B̃n having the form

B̃n = ⟨[(b′1, b
′
2, b

′
3, b

′
4, b

′
5);w], [(b

′′
1 , b

′′
2 , b

′′
3 , b

′′
4 , b

′′
5);u], [(b

′′′
1 , b

′′′
2 , b

′′′
3 , b

′′′
4 , b

′′′
5 ); y]⟩

where w, u, y ∈ [0, 1]. Here, membership function µB̃n(x) : R → [0, w], hesitation function σB̃n(x) :

R → [u, 1] and non-membership function νB̃n(x) : R → [y, 1] are defined as follows:

µB̃n(x) =



µ
B̃nl1

(x) b
′
1 ≤ x < b

′
2

µ
B̃nl2

(x) b
′
2 ≤ x < b

′
3

w x = b
′
3

µ
B̃nr2

(x) b
′
3 ≤ x < b

′
4

µ
B̃nr1

(x) b
′
4 ≤ x < b

′
5

0 otherwise

, σB̃n(x) =



σ
B̃nl1

(x) b
′′
1 ≤ x < b

′′
2

σ
B̃nl2

(x) b
′′
2 ≤ x < b

′′
3

u x = b
′′
3

σ
B̃nr2

(x) b
′′
3 ≤ x < b

′′
4

σ
B̃nr1

(x) b
′′
4 ≤ x < b

′′
5

0 otherwise
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and

νB̃n(x) =



ν
B̃nl1

(x) b
′′′
1 ≤ x < b

′′′
2

ν
B̃nl2

(x) b
′′′
2 ≤ x < b

′′′
3

y x = b
′′′
3

ν
B̃nr2

(x) b
′′′
3 ≤ x < b

′′′
4

ν
B̃nr1

(x) b
′′′
4 ≤ x < b

′′′
5

0 otherwise

respectively.

Definition 7 (Score function of PN number). [51] The score function is significantly used in the

conversion of PN number into a crisp real number. The value of the score function utterly depends

on the value of the membership, hesitation and non-membership degree of the PN number. Let

B̃n = ⟨(b1, b2, b3, b4, b5);µB̃n , σB̃n , νB̃n⟩ be any SVPN-number. Then the value of the score function

is evaluated as

S(B̃n) = 1
15

{
(b1 + b2 + b3 + b4 + b5)× (2 + µB̃n − σB̃n − νB̃n)

}
Definition 8 (Single valued trapezoidal neutrosophic number). [62] A single valued trapezoidal

neutrosophic number (SVTN-number) B̌ is a special neutrosophic set on R (set of real number)

having the form

B̌ = ⟨(b1, b2, b3, b4);wB̌, uB̌, yB̌⟩

where wB̌, uB̌, yB̌ ∈ [0, 1] be any real numbers and b1, b2, b3, b4 ∈ R, b1 ≤ b2 ≤ b3 ≤ b4 are the

values of the trapezoidal number. Here, membership function µB̌(x), hesitation function σB̌(x) and

non-membership function νB̌(x) are defined as follows:

µB̌(x) =



x−b1
b2−b1

wB̌ if b1 ≤ x < b2

wB̌ if b2 ≤ x ≤ b3

b4−x
b4−b3

wB̌ if b3 < x ≤ b4

0 otherwise

, σB̌(x) =



b2−x+uB̌(x−b1)
b2−b1

if b1 ≤ x < b2

uB̌ if b2 ≤ x ≤ b3
x−b3+uB̌(b4−x)

b4−b3
if b3 < x ≤ b4

0 otherwise

and

νB̌(x) =



b2−x+yB̌(x−b1)
b2−b1

if b1 ≤ x < b2

yB̌ if b2 ≤ x ≤ b3
x−b3+yB̌(b4−x)

b4−b3
if b3 < x ≤ b4

0 otherwise

respectively.

Definition 9 (⟨α, β, γ⟩-cut set of SVTN-number). [62] Let B̌ = ⟨(b1, b2, b3, b4);wB̌, uB̌, yB̌⟩ be a

SVTN-number. Then, ⟨α, β, γ⟩-cut set of the SVTN-number B̌ is denoted by B̌⟨α,β,γ⟩ and defined as:

Chaitali Kar, Tapan Kumar Roy and Manoranjan Maiti, EOQ model with price, marketing,
service and green dependent neutrosophic demand under uncertain resource constraint: A
geometric programming approach

Neutrosophic Sets and Systems, Vol. 51, 2022                                                                                       818



B̌⟨α,β,γ⟩ = {x|µB̌(x) ≥ α, σB̌(x) ≤ β, νB̌(x) ≤ γ, x ∈ R}

which satisfies following the conditions:

0 ≤ α ≤ wB̌, uB̌ ≤ β ≤ 1, yB̌ ≤ γ ≤ 1 and 0 ≤ α+ β + γ ≤ 3

where µB̌, σB̌ and νB̌ represent membership, hesitation and non-membership function respectively.

Definition 10 (α-cut, β-cut, γ-cut of SVTN-number). [62] Let B̌ = ⟨(b1, b2, b3, b4);wB̌, uB̌, yB̌⟩ be
an arbitrary SVTN-number. Then

1. α-cut of B̌ is defined by

B̌α = [LB̌(α), RB̌(α)] =
[
(wB̌−α)b1+αb2

wB̌
,
(wB̌−α)b4+αb3

wB̌

]
where α ∈ [0, wB̌].

2. β-cut of B̌ is defined by

B̌β = [L
′

B̌
(β), R

′

B̌
(β)] =

[
(1−β)b2+(β−uB̌)b1

1−uB̌
,
(1−β)b3+(β−uB̌)b4

1−uB̌

]
where β ∈ [uB̌, 1].

3. γ-cut of B̌ is defined by

B̌γ = [L
′′

B̌
(γ), R

′′

B̌
(γ)] =

[
(1−γ)b2+(γ−yB̌)b1

1−yB̌
,
(1−γ)b3+(γ−yB̌)b4

1−yB̌

]
where γ ∈ [yB̌, 1].

Theorem 1. Let B̌ = ⟨(b1, b2, b3, b4);wB̌, uB̌, yB̌⟩ be an arbitrary SVTN-number. Then, B̌⟨α,β,γ⟩ =

B̌α ∩ B̌β ∩ B̌γ is hold for any 0 < α < wB̌, uB̌ < β < 1 and yB̌ < γ < 1 where 0 ≤ α+ β + γ ≤ 3.

Proof: See [62]

Lemma 2. Let A = [a, b], a, b > 0 be a closed interval with weights w1(> 0), w2(> 0). Then the

interval can be represented by a function using the weighted arithmetic mean

WAMA(ρ) =
w1a+ w2b

w1 + w2
= a(1− ρ) + bρ

where ρ = w2
w1+w2

, ρ ∈ [0, 1].

Definition 11 (Rough variable). [28] Let (Λ, δ,A, π) be a rough space. A rough variable ξ is a

measurable function from the rough space (Λ, δ,A, π) to R (the set of real numbers). That is, for

every Borel set B of R, we have {η ∈ Λ : ξ(η) ∈ B} ∈ A
The upper and lower approximations of the rough variable ξ are denoted and defined by ξ̄ =

{ξ(η) : η ∈ Λ} and ξ = {ξ(η) : η ∈ δ} respectively.

Definition 12 (Trust measure). [28] Let (Λ, δ,A, π) be a rough space. The trust measure of event

A is denoted by Tr {A} and defined by Tr {A} = 1
2(Tr {A} + Tr {A}), where the lower and upper

trust measure of event A are defined by Tr {A} = π{A∩δ}
π{δ} and Tr {A} = π{A}

π{Λ} respectively.
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For a real life problem when sufficient information is given about the measurement of π, it may

be treated as Lebesgue measure. More generally, the trust measure can be considered in the form as

Tr {A} = (1− η)Tr {A}+ ηTr {A} , 0 < η < 1.

Let ξ̂ = ([m,n][p, q]), p ≤ m ≤ n ≤ q be a rough variable. Lebesgue measure is considered for the

trust measure of the rough event associated with ξ̂ ≥ r. Then the trust measure of the rough event

ξ̂ ≥ r is defined by the following function curve

Tr
{
ξ̂ ≥ r

}
=



0 if q ≤ r

η(q−r)
q−p if n ≤ r ≤ q

η(q−r)
q−p + (1−η)(n−r)

n−m if m ≤ r ≤ n

η(q−r)
q−p + (1− η) if p ≤ r ≤ m

1 if r ≤ p

Theorem 2. [28] Let ξ̂ = ([m,n][p, q]), p ≤ m ≤ n ≤ q be a rough variable and ξ̂ ≥ r be a rough

event. Then Tr
{
ξ̂ ≥ r

}
≥ α iff

r ≤



q − α(q−p)
η if n ≤ r ≤ q

η(n−m)+(1−η)n(q−p)−α(q−p)(n−m)
η(n−m)+(1−η)n(q−p) if m ≤ r ≤ n

q + (1−η−α)(q−p)
η if p ≤ r ≤ m

p

for any predetermined level α ∈ [0, 1]

Proof. For any α ∈ [0, 1], we have

Tr
{
ξ̂ ≥ r

}
≥ α

⇔ α ≤ Tr
{
ξ̂ ≥ r

}

⇔ α ≤



0 if q ≤ r

η(q−r)
q−p if n ≤ r ≤ q

η(q−r)
q−p + (1−η)(n−r)

n−m if m ≤ r ≤ n

η(q−r)
q−p + (1− η) if p ≤ r ≤ m

1 if r ≤ p

[With the help of definition of trust measure of an event]

⇔ r ≤



q − α(q−p)
η if n ≤ r ≤ q

η(n−m)+(1−η)n(q−p)−α(q−p)(n−m)
η(n−m)+(1−η)n(q−p) if m ≤ r ≤ n

q + (1−η−α)(q−p)
η if p ≤ r ≤ m

p
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Hence the proof is done.
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Abstract:  
A similarity measure is used to tackle many issues that include indistinct and blurred information, 

excluding is not able to deal with the general fuzziness and obscurity of the problems that have 

various information. In this paper, we study some basic concepts which are helpful for us to build 

the structure of the article, such as soft set, neutrosophic soft set, hypersoft set, neutrosophic 

hypersoft set (NHSS), and interval-valued NHSS, etc. The main objective of the present research is 

to develop a cosine similarity measure and set-theoretic similarity measure for an IVNHSS with 

their necessary properties. A decision-making approach has been established by using cosine and 

set-theoretic similarity measures. Furthermore, we used to develop a technique to solve multi-

criteria decision-making problems. Finally, the advantages, effectiveness, flexibility, and 

comparative analysis of the algorithms are given with prevailing methods. 

Keywords: Neutrosophic soft-set; hypersoft set; neutrosophic hypersoft set; interval-valued 

neutrosophic hypersoft set; similarity measures 

 

1. Introduction 

Decision-making is an interesting concern to pick the perfect alternate for any specific 

persistence. Firstly, it is pretended that details about alternatives are accumulated in crisp numbers, 

but in real-life situations, collective farm information always conquers wrong and inaccurate 

information. Fuzzy sets are like sets having an element of membership (Mem) degree. In classical set 

theory, the Mem degree of the elements in a set is examined in binary form to see that the element is 

not entirely concomitant. In contrast, the fuzzy set theory enables advanced Mem categorization of 

the components in the set. The Mem function portrays it, and also the multipurpose unit interval of 

the Mem function is [0, 1]. In some circumstances, decision-makers consider objects' Mem and 

nonmember-ship (Nmem) values. Zadeh’s FS cannot handle imprecise and vague information in 

such cases. Atanassov [2] developed the notion of intuitionistic fuzzy sets (IFS) to deal above 

mentioned difficulties. The IFS accommodates the imprecise and inaccurate information using Mem 

and Nmem values.  

Atanassov IFS was unable to solve those problems in which decision-makers considered the 

membership degree (MD) and nonmembership degrees (NMD) such as MD = 0.5 and NDM = 0.8, 

then 0.5 + 0.8 ≰ 1. Yager [3, 4] extended the notion of IFS to Pythagorean fuzzy sets (PFSs) to 
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overcome above-discussed complications by modifying 𝑀𝐷 +  𝑁𝑀𝐷 ≤ 1  to 𝑀𝐷2 +  𝑁𝑀𝐷2 ≤ 1 . 

After developing PFSs, Zhang and Xu [5] proposed operational laws for PFSs and established a DM 

approach to resolving the MCDM problem. Wei and Lu [6] planned some power aggregation 

operators (AOs) and proposed a DM technique to solve multi-attribute decision-making (MADM) 

issues under the Pythagorean fuzzy environment. Wang and Li [7] presented power Bonferroni mean 

operators for PFSs with their basic properties using interaction. Gao et al. [8] presented several 

aggregation operators by considering the interaction and proposed a DM approach to solving 

MADM difficulties utilizing the developed operators. Wei [9] developed the interaction operational 

laws for Pythagorean fuzzy numbers (PFNs) by considering interaction and established interaction 

aggregation operators by using the developed interaction operations. Zhang [10] developed the 

accuracy function and presented a DM approach to solving multiple criteria group decision-making 

(MCGDM) problems using PFNs. Wang et al. [11] extended the PFS and introduced an interactive 

Hamacher operation with some novel AOs. They also established a DM method to solve MADM 

problems using their proposed operators. Wang and Li [12] developed some interval-valued PFSs 

and utilized their operators to resolve multi-attribute group decision-making (MAGDM) issues. Peng 

and Yuan [13] established novel operators such as Pythagorean fuzzy point operators and developed 

a DM technique using their proposed operators. Peng and Yang [14] introduced fundamental 

operations and their necessary possessions under PFSs and planned DM methodology. Garg [15] 

developed the logarithmic operational laws for PFSs and proposed some AOs. Arora and Garg [16] 

presented the operational laws for linguistic IFS and developed prioritized AOs. Ma and Xu [17] 

presented some innovative AOs for PFSs and proposed the score and accuracy functions for PFNs. 

Above mentioned theories and their DM methodologies have been used in several fields of life. 

But, these theories cannot deal with the parametrization of the alternatives. Molodtsov [18] 

developed soft sets (SS) to overcome the complications, as mentioned earlier. Molodtsov’s SS 

competently deals with imprecise, vague, and unclear objects considering their parametrization. Maji 

et al. [19] prolonged the notion of SS and introduced some necessary operators with their properties. 

Maji et al. [20] established a DM technique using their developed operations for SS. They also merged 

two well-known theories, such as FS and SS, and established the concept of fuzzy soft sets (FSS) [21]. 

They also proposed an intuitionistic fuzzy soft set (IFSS) [22] and discussed their basic operations. 

Garg and Arora [23] extended the notion of IFSS and presented a generalized form of IFSS with AOs. 

They also planned a DM technique to resolve undefined and inaccurate information under IFSS 

information. Garg and Arora [24] presented the correlation and weighted correlation coefficients for 

IFSS and developed the TOPSIS approach utilizing established correlation procedures. Zulqarnain et 

al. [25] introduced some AOs and correlation coefficients for interval-valued IFSS. They also extended 

the TOPSIS technique using their developed correlation measures to solve the MADM problem. Peng 

et al. [26] proposed the Pythagorean fuzzy soft sets (PFSSs) and presented fundamental operations 

of PFSSs with their desirable properties by merging PFS and SS. Athira et al. [27] proposed the 

entropy measure for PFSSs. They also presented some distance measures for PFSSs and utilized their 

developed distance measures to solve DM [28] issues. Zulqarnain et al. [29] introduced Einstein 

operational laws for Pythagorean fuzzy soft numbers (PFSNs) and developed Einstein AOs utilizing 

defined operational laws for PFSNs. They also planned a DM approach to solve MADM problems 

with the help of presented operators. Riaz et al. [30] prolonged the idea of PFSSs and developed the 

m polar PFSSs. They also established the TOPSIS method under the considered hybrid structure and 

proposed a DM methodology to solve the MCGDM problem. Riaz et al. [31] developed the similarity 

measures for PFSS with their fundamental properties. Zulqarnain et al. [32, 33] protracted the Einstein 

ordered AOs for PFSSs and utilized their developed approach to solving the MAGDM problem. 

All the above studies only deal the inadequate information because of membership and non-

membership values. However, these theories cannot handle the overall incompatible and imprecise 

data. To address such inconsistent and vague records, the idea of the neutrosophic set (NS) was 

developed by Smarandache [34]. Maji [35] offered the perception of a neutrosophic soft set (NSS) 

with necessary operations. The idea of the possibility of NSS was developed by Karaaslan [36] and 
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introduced a possibility of neutrosophic soft DM method based on And-product. Broumi [37] 

developed the generalized NSS with some operations and properties and used the projected concept 

for DM. Deli and Subas [38] developed the single-valued Neutrosophic numbers (SVNNs) to solve 

MCDM problems. They also established the cut sets for SVNNs. Wang et al. [39] proposed the 

correlation coefficient (CC) for SVNSs. Ye [40] introduced the simplified NSs with operational laws 

and AOs. Also, he presented an MCDM technique utilizing his planned AOs. Masooma et al. [41] 

progressed a new concept by combining the multipolar fuzzy set and NS, known as the multipolar 

NS. They also established various characterization and operations with examples. Zulqarnain et al. 

[42] offered the generalized neutrosophic TOPSIS and used their presented technique for supplier 

selection. 

All the above studies have some limitations. When any attribute from a set contains further sub-

attributes, then the above-presented theories fail to solve such problems. To overcome the limitations 

above, Smarandache [43] protracted the idea of SS to hypersoft sets (HSS) by substituting the one-

parameter function f to a multi-parameter (sub-attribute) function. Samarandache claimed that the 

established HSS competently deals with uncertain objects compared to SS. Several researchers 

explored the HSS and presented a lot of extensions for HSS [44, 45]. Zulqarnain et al. [46] presented 

the IFHSS, the generalized version of IFSS. They established the TOPSIS method utilizing the 

developed correlation coefficient. Zulqarnain et al. [47] proposed the Pythagorean fuzzy hypersoft 

sets with AOs and correlation coefficients. They also established the TOPSIS technique using their 

developed correlation coefficient and utilized the presented approach to select appropriate anti-virus 

face masks. Zulqarnain et al. [48, 49] presented some fundamental operations with their properties 

for interval-valued NHSS. Also, they proposed the CC and WCC for interval-valued NHSSS and 

established a decision-making approach utilizing their developed CC. Several researchers extended 

the notion of HSS and introduced different operators for hybrid structures of fuzzy hypersoft sets 

[50-55]. Broumi et al. [56] extended the mathematical algebra of neutrosophic graphs to the interval-

valued neutrosophic graph. Broumi et al. [57] discussed several operations for interval-valued 

neutrosophic graphs and discussed their desirable properties. Singh [58] introduced a fuzzy three-

way context using the properties of the interval-valued neutrosophic set, and its graphical properties 

deal with partial ignorance. Zulqarnain et al. [59, 60] proposed some fundamental operations for 

generalized multipolar neutrosophic soft sets and multipolar interval-valued neutrosophic soft sets. 

However, all existing studies only deal with the scenario by using MD and NMD of sub-attributes of 

the considered attributes. If any decision-maker considers the MD = 0.7 and NDM = 0.6, then 0.7 + 

0.6 ≤ 1 of any sub-attribute of the alternatives. We can observe that the theories mentioned above 

cannot handle it. Zulqarnain et al. [47] proposed the more generalized notion of PFHSS comparative 

to IFHSS. The PFHSS accommodates more uncertainty compared to IFHSS by updating the condition 

𝑴𝑫+  𝑵𝑴𝑫 ≤ 𝟏  to (𝓣𝓕(𝒅̌)(𝜹))
𝟐

+ (𝓙𝓕(𝒅̌)(𝜹))
𝟐

≤  1. All existing hybrid structures of FS cannot 

handle the indeterminacy of sub-attributes of considered n-tuple attributes. On the other hand, 

developed aggregation operators can accommodate the sub-attributes of considered attributes using 

truthiness, indeterminacy, and falsity objects of sub-attributes with the following condition 0 ≤

𝝈𝓕(𝒂̌𝒌)(𝜹) + 𝝉𝓕(𝒂̌𝒌)(𝜹) + 𝜸𝓕(𝒂̌𝒌)(𝜹) ≤ 3. It may be seen that the best selection of the suggested approach is to 

resemble the verbalized own method, and that ensures the liableness along with the effectiveness of the 

recommended approach. 

The following research is organized: In section 2, we recollected some basic definitions used in 

the subsequent sequel, such as NS, SS, NSS, HSS, NHSS, and IVNHSS. Section 3 proposes the 

similarity measures such as cosine and set-theoretic for NHSS with its properties. We established a 

decision-making technique to solve decision-making complications utilizing our developed 

similarity measures. In section 4, we use the proposed similarity measures for decision-making. A 

brief comparative analysis has been conducted between proposed techniques with existing 

methodologies in section 5. Finally, the conclusion and future directions are presented in section 6. 
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2. Preliminaries  

In this section,”we recollect some basic definitions which are helpful to build the structure of the 

following manuscript such as soft set, hypersoft set, and neutrosophic hypersoft set. 

Definition 2.1 [4] 

Let 𝒰 be the universal set and ℰ be the set of attributes concerning 𝒰. Let 𝒫(𝒰) be the power set 

of 𝒰 and ⩜ ⊆ ℰ. A pair (ℱ, ⩜) is called a soft set over 𝒰, and its mapping is given as 

ℱ:⩜ → 𝒫(𝒰) 

It is also defined as: 

(ℱ,⩜) = {ℱ(ℯ) ∈ 𝒫(𝒰): ℯ ∈ ℰ, ℱ(ℯ) =  ∅ 𝑖𝑓 ℯ ∉ ⩜} 

Definition 2.2 [38] 

Let 𝒰 be a universe of discourse and 𝒫(𝒰) be a power set of 𝒰 and 𝑘 = {𝑘1, 𝑘2, 𝑘3,..., 𝑘𝑛},(n ≥ 1) be 

a set of attributes and set 𝐾𝑖 a set of corresponding sub-attributes of 𝑘𝑖 respectively with 𝐾𝑖 ∩ 𝐾𝑗 = 

φ for 𝑛 ≥ 1 for each 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛} and 𝑖 ≠ 𝑗. Assume 𝐾1  × 𝐾2  × 𝐾3 × … × 𝐾𝑛  = 𝒜  = 

{𝑎1ℎ × 𝑎2𝑘 ×⋯× 𝑎𝑛𝑙} be a collection of multi-attributes, where 1 ≤ ℎ ≤ 𝛼, 1 ≤ 𝑘 ≤ 𝛽, and 1 ≤ 𝑙 ≤ 

𝛾, and 𝛼, 𝛽, and 𝛾 ∈ ℕ. Then the pair (ℱ, 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛) is said to be HSS over 𝒰, and 

its mapping is defined as  

ℱ: 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛ →  𝒫(𝒰). 

It is also defined as  

(ℱ, ⩜⃛) = {𝑎̌, ℱ𝒜(𝑎̌): 𝑎̌ ∈⩜⃛, ℱ𝒜(𝑎̌)  ∈  𝒫(𝒰)} 

Definition 2.3 [38] 
Let 𝒰 be a universe of discourse and 𝒫(𝒰) be a power set of 𝒰 and 𝑘 = {𝑘1, 𝑘2, 𝑘3,..., 𝑘𝑛},(n ≥ 1) be 

a set of attributes and set 𝐾𝑖 a set of corresponding sub-attributes of 𝑘𝑖 respectively with 𝐾𝑖 ∩ 𝐾𝑗 = 

φ for 𝑛 ≥ 1 for each 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛} and 𝑖 ≠ 𝑗. Assume 𝐾1  × 𝐾2  × 𝐾3 × … × 𝐾𝑛  = ⩜⃛  = 

{𝑎1ℎ × 𝑎2𝑘 ×⋯× 𝑎𝑛𝑙} be a collection of sub-attributes, where 1 ≤ ℎ ≤ 𝛼, 1 ≤ 𝑘 ≤ 𝛽, and 1 ≤ 𝑙 ≤ 

𝛾, and 𝛼, 𝛽, and 𝛾 ∈ ℕ and 𝑁𝑆𝒰 be a collection of all neutrosophic subsets over 𝒰. Then the pair 

(ℱ, 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛) is said to be NHSS over 𝒰, and its mapping is defined as  

ℱ: 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛ →  𝑁𝑆𝒰. 

It is also defined as  

(ℱ , ⩜⃛) = {(𝑎̌, ℱ⩜⃛(𝑎̌)): 𝑎̌ ∈⩜⃛, ℱ⩜⃛(𝑎̌)  ∈  𝑁𝑆
𝒰} , where ℱ⩜⃛(𝑎̌)  = {〈𝛿, 𝜎ℱ(𝑎̌)(𝛿), 𝜏ℱ(𝑎̌)(𝛿), 𝛾ℱ(𝑎̌)(𝛿)〉: 𝛿 ∈ 𝒰} , 

where 𝜎ℱ(𝑎̌)(𝛿), 𝜏ℱ(𝑎̌)(𝛿), and 𝛾ℱ(𝑎̌)(𝛿) represent the truth, indeterminacy, and falsity grades of the 

attributes such as 𝜎ℱ(𝑎̌)(𝛿), 𝜏ℱ(𝑎̌)(𝛿), 𝛾ℱ(𝑎̌)(𝛿) ∈  [0, 1], and 0 ≤ 𝜎ℱ(𝑎̌)(𝛿) + 𝜏ℱ(𝑎̌)(𝛿) + 𝛾ℱ(𝑎̌)(𝛿) ≤ 3. 

Example 2.4  

Consider the universe of discourse 𝒰  = {𝛿1, 𝛿2}  and 𝔏 = {ℓ1 = 𝑇𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑚𝑒𝑡ℎ𝑑𝑜𝑙𝑜𝑔𝑦, ℓ2 =

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑠, ℓ3 = 𝐶𝑙𝑎𝑠𝑠𝑒𝑠}  be a collection of attributes with following their corresponding attribute 

values are given as teaching methodology = 𝐿1  = {𝑎11 = 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑏𝑎𝑠𝑒, 𝑎12 =  𝑐𝑙𝑎𝑠𝑠 𝑑𝑖𝑠𝑐𝑢𝑠𝑠𝑖𝑜𝑛} , 

Subjects = 𝐿2 = {𝑎21 = 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠, 𝑎22 =  𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟 𝑆𝑐𝑖𝑒𝑛𝑐𝑒, 𝑎23 =  𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠}, and Classes = 𝐿3 = 

{𝑎31 = 𝑀𝑎𝑠𝑡𝑒𝑟𝑠, 𝑎32 =  𝐷𝑜𝑐𝑡𝑜𝑟𝑜𝑙}. Let ⩜⃛ = 𝐿1 × 𝐿2 × 𝐿3 be a set of attributes 

⩜⃛ = 𝐿1 × 𝐿2 × 𝐿3 = {𝑎11, 𝑎12} × {𝑎21, 𝑎22, 𝑎23} × {𝑎31, 𝑎32} 

= {
(𝑎11, 𝑎21, 𝑎31), (𝑎11, 𝑎21, 𝑎32), (𝑎11, 𝑎22, 𝑎31), (𝑎11, 𝑎22, 𝑎32), (𝑎11, 𝑎23, 𝑎31), (𝑎11, 𝑎23, 𝑎32),

(𝑎12, 𝑎21, 𝑎31), (𝑎12, 𝑎21, 𝑎32), (𝑎12, 𝑎22, 𝑎31), (𝑎12, 𝑎22, 𝑎32), (𝑎12, 𝑎23, 𝑎31), (𝑎12, 𝑎23, 𝑎32),
} 

⩜⃛ = {𝑎̌1, 𝑎̌2, 𝑎̌3, 𝑎̌4, 𝑎̌5, 𝑎̌6, 𝑎̌7, 𝑎̌8, 𝑎̌9, 𝑎̌10, 𝑎̌11, 𝑎̌12} 

Then the NHSS over 𝒰 is given as follows 
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(𝓕,⩜⃛) = 

{
 
 

 
 

(𝒂̌𝟏, (𝜹𝟏, (. 𝟔, . 𝟑, . 𝟖)), (𝜹𝟐, (. 𝟗, . 𝟑, . 𝟓))), (𝒂̌𝟐, (𝜹𝟏, (. 𝟓, . 𝟐, . 𝟕)), (𝜹𝟐, (. 𝟕, . 𝟏, . 𝟓))), (𝒂̌𝟑, (𝜹𝟏, (. 𝟓, . 𝟐, . 𝟖)), (𝜹𝟐, (. 𝟒, . 𝟑, . 𝟒))),

 (𝒂̌𝟒, (𝜹𝟏, (. 𝟐, . 𝟓, . 𝟔)), (𝜹𝟐, (. 𝟓, . 𝟏, . 𝟔))) , (𝒂̌𝟓, (𝜹𝟏, (. 𝟖, . 𝟒, . 𝟑)), (𝜹𝟐, (. 𝟐, . 𝟑, . 𝟓))) , (𝒂̌𝟔, (𝜹𝟏, (. 𝟗, . 𝟔, . 𝟒)), (𝜹𝟐, (. 𝟕, . 𝟔, . 𝟖))) ,

(𝒂̌𝟕, (𝜹𝟏, (. 𝟔. . 𝟓, . 𝟑)), (𝜹𝟐, (. 𝟒, . 𝟐, . 𝟖))), (𝒂̌𝟖, (𝜹𝟏, (. 𝟖, . 𝟐, . 𝟓)), (𝜹𝟐, (. 𝟔, . 𝟖, . 𝟒))), (𝒂̌𝟗, (𝜹𝟏, (. 𝟕, . 𝟒, . 𝟗)), (𝜹𝟐, (. 𝟕. . 𝟑, . 𝟓))),

(𝒂̌𝟏𝟎, (𝜹𝟏, (. 𝟖, . 𝟒, . 𝟔)), (𝜹𝟐, (. 𝟕, . 𝟐, . 𝟗))), (𝒂̌𝟏𝟏, (𝜹𝟏, (. 𝟖, . 𝟒, . 𝟓)), (𝜹𝟐, (. 𝟒, . 𝟐, . 𝟓))), (𝒂̌𝟓, (𝜹𝟏, (. 𝟕, . 𝟓, . 𝟖)), (𝜹𝟐, (. 𝟕, . 𝟓, . 𝟗))) }
 
 

 
 

 

Definition 2.5 [42] 
Let 𝒰 be a universe of discourse and 𝒫(𝒰) be a power set of 𝒰 and 𝑘 = {𝑘1, 𝑘2, 𝑘3,..., 𝑘𝑛},(n ≥ 1) be 

a set of attributes and set 𝐾𝑖 a set of corresponding sub-attributes of 𝑘𝑖 respectively with 𝐾𝑖 ∩ 𝐾𝑗 = 

φ for 𝑛 ≥ 1 for each 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛} and 𝑖 ≠ 𝑗. Assume 𝐾1  × 𝐾2  × 𝐾3 × … × 𝐾𝑛  = ⩜⃛  = 

{𝑎1ℎ × 𝑎2𝑘 ×⋯× 𝑎𝑛𝑙} be a collection of sub-attributes, where 1 ≤ ℎ ≤ 𝛼, 1 ≤ 𝑘 ≤ 𝛽, and 1 ≤ 𝑙 ≤ 

𝛾, and 𝛼, 𝛽, and 𝛾 ∈ ℕ and 𝐼𝑉𝑁𝑆𝒰 be a collection of all interval-valued neutrosophic subsets over 

𝒰. Then the pair (ℱ, 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛) is said to be IVNHSS over 𝒰, and its mapping is 

defined as  

ℱ: 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛ →  𝐼𝑉𝑁𝑆𝒰. 

It is also defined as  

( ℱ , ⩜⃛ ) = {(𝑎̌𝑘, ℱ⩜⃛(𝑎̌𝑘)): 𝑎̌𝑘 ∈⩜⃛, ℱ⩜⃛(𝑎̌𝑘)  ∈  𝑁𝑆𝒰} , where ℱ⩜⃛(𝑎̌)  = 

{〈𝛿, 𝜎ℱ(𝑎̌𝑘)
(𝛿), 𝜏ℱ(𝑎̌𝑘)

(𝛿), 𝛾ℱ(𝑎̌𝑘)
(𝛿)〉 : 𝛿 ∈ 𝒰}, where 𝜎ℱ(𝑎̌𝑘)

(𝛿), 𝜏ℱ(𝑎̌𝑘)
(𝛿), and 𝛾ℱ(𝑎̌𝑘)

(𝛿) represent the 

interval truth, indeterminacy, and falsity grades of the attributes such as 𝜎ℱ(𝑎̌𝑘)
(𝛿)  = 

[𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿), 𝜎ℱ(𝑎̌𝑘)

ひ (𝛿)] , 𝜏ℱ(𝑎̌𝑘)
(𝛿)  = [𝜏ℱ(𝑎̌𝑘)

ℓ (𝛿), 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿)] , 𝛾ℱ(𝑎̌𝑘)

(𝛿)  = [𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿), 𝛾

ℱ(𝑎̌𝑘)
ひ (𝛿)] , 

where 𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿), 𝜎ℱ(𝑎̌𝑘)

ひ (𝛿) , 𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿), 𝜏ℱ(𝑎̌𝑘)

ひ (𝛿) , 𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿), 𝛾

ℱ(𝑎̌𝑘)
ひ (𝛿)  ⊆  [0, 1] , and 0 ≤ 

𝜎ℱ(𝑎̌𝑘)
ひ (𝛿) + 𝜏ℱ(𝑎̌𝑘)

ひ (𝛿)+ 𝛾
ℱ(𝑎̌𝑘)
ひ (𝛿) ≤ 3. 

Simply an interval-valued neutrosophic hypersoft number (IVNHSN) can be expressed as 𝓕 = 

{[𝝈𝓕(𝒂̌𝒌)
𝓵 (𝜹),𝝈𝓕(𝒂̌𝒌)

ひ (𝜹)] , [𝝉𝓕(𝒂̌𝒌)
𝓵 (𝜹), 𝝉𝓕(𝒂̌𝒌)

ひ (𝜹)] , [𝜸𝓕(𝒂̌𝒌)
𝓵 (𝜹),𝜸𝓕(𝒂̌𝒌)

ひ (𝜹)]}, where  0 ≤ 𝝈𝓕(𝒂̌𝒌)
ひ (𝜹) + 

𝝉𝓕(𝒂̌𝒌)
ひ (𝜹)+ 𝜸

𝓕(𝒂̌𝒌)
ひ (𝜹) ≤ 3. 

3. Similarity Measures for Interval-Valued Neutrosophic Hypersoft Set 

Many mathematicians developed various methodologies to solve MCDM problems in the past 

few years, such as aggregation operators for different hybrid structures, CC, similarity measures, and 

decision-making applications. The following section develops the cosine and set-theoretic similarity 

measure for IVNHSS. 

Definition 3.1  

Let (ℱ,⩜⃛) = {(𝛿𝑖, [𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜎ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝛾ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)])  ⎸𝛿𝑖 ∈  𝒰} and 

(𝒢,⩕⃛) = {(𝛿𝑖, [𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝜏𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝛾𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)])  ⎸𝛿𝑖 ∈  𝒰} be two 

IVNHSSs defined over a universe of discourse 𝒰. Then, the then cosine similarity measure of (ℱ,⩜⃛) 

and (𝒢,⩕⃛) can be described as follows: 
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𝒮𝐼𝑉𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 

1

𝑚𝑛
∑ ∑

(
(𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖)+ 𝜎ℱ(𝑎̌𝑘)

ひ (𝛿𝑖))(𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖)+ 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖))+(𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖)+𝜏ℱ(𝑎̌𝑘)

ひ (𝛿𝑖))(𝜏𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖)+ 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖))+

(𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖)+𝛾ℱ(𝑎̌𝑘)

ひ (𝛿𝑖))(𝛾𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖)+ 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑖))
)

(

 
 
 √((𝜎ℱ(𝑎̌𝑘)

ℓ (𝛿𝑖))
2
+(𝜎

ℱ(𝑎̌𝑘)
ひ (𝛿𝑖))

2
+(𝜏

ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖))

2
+(𝜏

ℱ(𝑎̌𝑘)
ひ (𝛿𝑖))

2
+(𝛾

ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖))

2
+(𝛾

ℱ(𝑎̌𝑘)
ひ (𝛿𝑖))

2
)

√((𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖))

2
+(𝜎𝒢(𝑎̌𝑘)
ひ (𝛿𝑖))

2
+(𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖))
2
+(𝜏𝒢(𝑎̌𝑘)
ひ (𝛿𝑖))

2
+(𝛾𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖))
2
+(𝛾𝒢(𝑎̌𝑘)
ひ (𝛿𝑖))

2
)
)

 
 
 

𝑛
𝑖=1

𝑚
𝑘=1  

Proposition 3.2  

Let (ℱ,⩜⃛), (𝒢,⩕⃛), and (ℋ, 𝐶̌) ∈ NHSS, then the following properties hold  

1. 0 ≤ 𝒮𝐼𝑉𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1 

2. 𝒮𝐼𝑉𝑁𝐻𝑆𝑆1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 𝒮𝐼𝑉𝑁𝐻𝑆𝑆
1 ((𝒢,⩕⃛), (ℱ,⩜⃛))  

3. If (ℱ,⩜⃛)  ⊆  (𝒢,⩕⃛)  ⊆  (ℋ, 𝐶̌) , then 𝒮𝐼𝑉𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (ℋ, 𝐶̌))  ≤  𝒮𝐼𝑉𝑁𝐻𝑆𝑆

1 ((ℱ,⩜⃛) , (𝒢,⩕⃛))  and 

𝒮𝐼𝑉𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (ℋ, 𝐶̌)) ≤ 𝒮𝐼𝑉𝑁𝐻𝑆𝑆

1 ((𝒢,⩕⃛), (ℋ, 𝐶̌)). 

Proof: Using the above definition, the proof of these properties can be done easily. 

Definition 3.3 

Let (ℱ,⩜⃛) = {(𝛿𝑖, [𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜎ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝛾ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)])  ⎸𝛿𝑖 ∈  𝒰} and 

(𝒢,⩕⃛) = {(𝛿𝑖, [𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝜏𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝛾𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)])  ⎸𝛿𝑖 ∈  𝒰} be two 

IVNHSSs defined over a universe of discourse 𝒰. Then, the then cosine similarity measure of (ℱ,⩜⃛) 

and (𝒢,⩕⃛) can be described as follows: 

𝓢𝑰𝑽𝑵𝑯𝑺𝑺
𝟏 ( (𝓕,⩜⃛) , (𝓖,⩕⃛) ) = 

𝟏

𝒎𝒏
∑ ∑

(
(𝝈

𝓕(𝒂̌𝒌)
𝓵 (𝜹𝒊)+ 𝝈𝓕(𝒂̌𝒌)

ひ (𝜹𝒊))(𝝈𝓖(𝒂̌𝒌)
𝓵 (𝜹𝒊)+ 𝝈𝓖(𝒂̌𝒌)

ひ (𝜹𝒊))+(𝝉𝓕(𝒂̌𝒌)
𝓵 (𝜹𝒊)+𝝉𝓕(𝒂̌𝒌)

ひ (𝜹𝒊))(𝝉𝓖(𝒂̌𝒌)
𝓵 (𝜹𝒊)+ 𝝉𝓖(𝒂̌𝒌)

ひ (𝜹𝒊))+

(𝜸
𝓕(𝒂̌𝒌)
𝓵 (𝜹𝒊)+𝜸𝓕(𝒂̌𝒌)

ひ (𝜹𝒊))(𝜸𝓖(𝒂̌𝒌)
𝓵 (𝜹𝒊)+ 𝜸𝓖(𝒂̌𝒌)

ひ (𝜹𝒊))
)

𝒎𝒂𝒙

(

 
 
 
 (((𝝈𝓕(𝒂̌𝒌)

𝓵 (𝜹𝒊))

𝟐

+(𝝈
𝓕(𝒂̌𝒌)
ひ (𝜹𝒊))

𝟐
+(𝝉

𝓕(𝒂̌𝒌)
𝓵 (𝜹𝒊))

𝟐

+(𝝉
𝓕(𝒂̌𝒌)
ひ (𝜹𝒊))

𝟐
+(𝜸

𝓕(𝒂̌𝒌)
𝓵 (𝜹𝒊))

𝟐

+(𝜸
𝓕(𝒂̌𝒌)
ひ (𝜹𝒊))

𝟐
)),

(((𝝈
𝓖(𝒂̌𝒌)
𝓵 (𝜹𝒊))

𝟐

+(𝝈
𝓖(𝒂̌𝒌)
ひ (𝜹𝒊))

𝟐
+(𝝉

𝓖(𝒂̌𝒌)
𝓵 (𝜹𝒊))

𝟐

+(𝝉
𝓖(𝒂̌𝒌)
ひ (𝜹𝒊))

𝟐
+(𝜸

𝓖(𝒂̌𝒌)
𝓵 (𝜹𝒊))

𝟐

+(𝜸
𝓖(𝒂̌𝒌)
ひ (𝜹𝒊))

𝟐
))

)

 
 
 
 

𝒏
𝒊=𝟏

𝒎
𝒌=𝟏  

Proposition 3.4 

Let (ℱ,⩜⃛) = {(𝛿𝑖, [𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜎ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝛾ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)])  ⎸𝛿𝑖 ∈  𝒰} and 

(𝒢,⩕⃛) = {(𝛿𝑖, [𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝜏𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝛾𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)])  ⎸𝛿𝑖 ∈  𝒰} be two 

IVNHSSs. Then, the following properties hold. 

1. 0 ≤ 𝒮𝐼𝑉𝑁𝐻𝑆𝑆
2 ((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1 

2. 𝒮𝐼𝑉𝑁𝐻𝑆𝑆
2 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 𝒮𝐼𝑉𝑁𝐻𝑆𝑆

2 ((𝒢,⩕⃛), (ℱ,⩜⃛))  

3. If (ℱ,⩜⃛)  ⊆  (𝒢,⩕⃛)  ⊆  (ℋ, 𝐶̌) , then 𝒮𝐼𝑉𝑁𝐻𝑆𝑆
2 ((ℱ,⩜⃛), (ℋ, 𝐶̌))  ≤  𝒮𝐼𝑉𝑁𝐻𝑆𝑆

2 ((ℱ,⩜⃛) , (𝒢,⩕⃛))  and 

𝒮𝐼𝑉𝑁𝐻𝑆𝑆
2 ((ℱ,⩜⃛), (ℋ, 𝐶̌)) ≤ 𝒮𝐼𝑉𝑁𝐻𝑆𝑆

2 ((𝒢,⩕⃛), (ℋ, 𝐶̌)). 

Proof: Using the above definition, the proof of these properties can be done easily. 

4. Application of Correlation Coefficient for Decision Making Under IVNHSS Environment 

This section utilized the developed approaches based on cosine and set-theoretic similarity 

measures for decision making. 

4.1 Algorithm for Similarity Measures of IVNHSS 

Step 1. Pick out the set containing parameters. 

Step 2. Construct the IVNHSS according to experts. 



Neutrosophic Sets and Systems, Vol. 51, 2022     830  

 

 

Rana Muhammad Zulqarnain, Aiyared Iampan, Hamiden Abd El-Wahed Khalifa, Imran Siddique, Similarity Measures for 

Interval-Valued Neutrosophic Hypersoft Set With Their Application to Solve Decision Making Problem     

Step 3. Compute the cosine similarity measure by using definition 3.1. 

Step 4. Compute the set-theoretic similarity measure for NHSS by utilizing definition 3.3. 

Step 5. An alternative with a maximum value with cosine similarity measure has the maximum rank 

according to considered numerical illustration. 

Step 6. An alternative with a maximum value with a set-theoretic similarity measure has the 

maximum rank according to considered numerical illustration. 

Step 7. Analyze the ranking.” 

 

Figure 1: Flow chart of the presented similarity measures 

4.2. Problem Formulation and Application of IVNHSS For Decision Making 

A construction company calls for the appointment of a civil engineer to supervise the workers. Several 

engineers apply for the civil engineer post, simply four engineers call for an interview based on experience for 

undervaluation such as 𝑆 = {𝑆1, 𝑆2, 𝑆3, 𝑆4} be a set of selected engineers call for the interview. The managing 

director hires a committee of four experts 𝒰 = {𝜅1, 𝜅2, 𝜅3, 𝜅4}} for the selection of civil engineer. The group 

of experts chooses the set of attributes for the selection of an appropriate civil engineer such as 𝔏 = 

{ℓ1 = 𝐸𝑥𝑝𝑒𝑟𝑖𝑎𝑛𝑐𝑒, ℓ2 = 𝐷𝑒𝑎𝑙𝑖𝑛𝑔 𝑠𝑘𝑖𝑙𝑙𝑠, ℓ3 = 𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛} be a set of parameters for the selection of 

MS. Experience = ℓ1  = {𝑎11 = 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 20, 𝑎12 =  𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 20} , Dealing skills = ℓ2  = {𝑎21 =

𝑝𝑢𝑏𝑙𝑖𝑐 𝑑𝑒𝑎𝑙𝑖𝑛𝑔, 𝑎22 =  𝑆𝑡𝑎𝑓𝑓 𝑑𝑒𝑎𝑙𝑖𝑛𝑔} , and Qualification = ℓ3  = {𝑎31 =

𝐷𝑜𝑐𝑡𝑜𝑟𝑎𝑙 𝑑𝑒𝑔𝑟𝑒𝑒 𝑖𝑛 𝑚𝑒𝑑𝑖𝑐𝑎𝑙 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑎32 =  𝑀𝑎𝑠𝑡𝑒𝑟𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑖𝑛 𝑚𝑒𝑑𝑖𝑐𝑎𝑙 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛}. Let 𝔏′ = ℓ1 × 

ℓ2 × ℓ3 be a set of sub-attributes. The experts evaluate the applicants under defined parameters and forward 

the evaluation performa to the company's managing director. Finally, the director scrutinizes the best applicant 

based on the expert’s evaluation report. Let 𝔏′ = ℓ1 × ℓ2 × ℓ3 be a set of sub-attributes 

𝔏′ = ℓ1 × ℓ2 × ℓ3 = {𝑎11, 𝑎12} × {𝑎21, 𝑎22} × {𝑎31, 𝑎32} 

= {
(𝑎11, 𝑎21, 𝑎31), (𝑎11, 𝑎21, 𝑎32), (𝑎11, 𝑎22, 𝑎31), (𝑎11, 𝑎22, 𝑎32),

(𝑎12, 𝑎21, 𝑎31), (𝑎12, 𝑎21, 𝑎32), (𝑎12, 𝑎22, 𝑎31), (𝑎12, 𝑎22, 𝑎32) 
}, 𝔏′ = {𝑎̌1, 𝑎̌2, 𝑎̌3, 𝑎̌4, 𝑎̌5, 𝑎̌6, 𝑎̌7, 𝑎̌8} be a set 

of all multi sub-attributes. Each DM will evaluate the ratings of each alternative in the form of 

IVNHSNs under the considered multi sub-attributes. The developed method to find the best 

alternative is as follows. 

Step 1
•Input alternatives, attributes 

Step 2
•Construct the IVNHSS according to experts

Step 3

•Compute the cosine similarity measure by using 
definition 3.1.

Step 4

•Compute the set-theoretic similarity measure for 
NHSS by utilizing definition 3.3.

Step 5
•Compute score values 

Step 6

•Pick the most suitable alternae with supreme score 
value

Step 7
•Analyze the alternatives ranking
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4.2.1. Application of IVNHSS For Decision Making 

Assume 𝑆 = {𝑆1 , 𝑆2 , 𝑆3 , 𝑆4} be a set of alternatives which are shortlisted for interview and 𝔏 = 

{ℓ1 = 𝐸𝑥𝑝𝑒𝑟𝑖𝑎𝑛𝑐𝑒, ℓ2 = 𝐷𝑒𝑎𝑙𝑖𝑛𝑔 𝑠𝑘𝑖𝑙𝑙𝑠, ℓ3 = 𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛} be a set of parameters for the selection of 

MS. Experience = ℓ1  = {𝑎11 = 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 20, 𝑎12 =  𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 20} , Dealing skills = ℓ2  = {𝑎21 =

𝑝𝑢𝑏𝑙𝑖𝑐 𝑑𝑒𝑎𝑙𝑖𝑛𝑔, 𝑎22 =  𝑆𝑡𝑎𝑓𝑓 𝑑𝑒𝑎𝑙𝑖𝑛𝑔} , and Qualification = ℓ3  = {𝑎31 =

𝐷𝑜𝑐𝑡𝑜𝑟𝑎𝑙 𝑑𝑒𝑔𝑟𝑒𝑒 𝑖𝑛 𝑚𝑒𝑑𝑖𝑐𝑎𝑙 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑎32 =  𝑀𝑎𝑠𝑡𝑒𝑟𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑖𝑛 𝑚𝑒𝑑𝑖𝑐𝑎𝑙 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛}. Let 𝔏′ = ℓ1 × 

ℓ2 × ℓ3 be a set of sub-attributes. The health ministry defines a criterion for selecting MS for all 

alternatives in terms of IVNHSNs given in Table 1. 

Table 1. Decision Matrix of Concerning Department 

℘ 𝒂̌𝟏 𝒂̌𝟐 𝒂̌𝟑 𝒂̌𝟒 𝒂̌𝟓 𝒂̌𝟔 𝒂̌𝟕 𝒂̌𝟖 

𝜹𝟏 ([. 3, .5], [. 2, .4], [. 2, .6]) ([. 2, .3], [. 5, .7], [. 1, .3]) ([.5, .6], [.1, .3], [.4, .6]) ([.2, .4], [.3, .5], [.3, .6]) ([.2, .3], [.2, .4], [.4, .5]) ([.4, .6], [.1, .3], [.2, .4]) ([.6, .7], [.2, .3], [.3, .4]) ([.4, .5], [.5, .8], [.1, .2]) 

𝜹𝟐 ([.5, .6], [.1, .3], [.4, .6]) ([.5, .7], [.1, .2], [.4, .6]) ([.2, .4], [.3, .4], [.2, .5]) ([.6, .8], [.1, .2], [.3, .5]) ([.4, .6], [.4, .5], [.3, .5]) ([.3, .5], [.4, .5], [.1, .3]) ([.1, .2], [.5, .8], [.2, .4]) ([.5, .7], [.1, .2], [.5, .6]) 

𝜹𝟑  ([.2, .4], [.5, .6], [.4, .6]) ([.2, .4], [.3, .4], [.2, .5]) ([.4 .6], [.2, .3], [.1, .4]) ([.2, .5], [.2, .3], [.1, .6]) ([.3, .4], [.2, .5], [.5, .7]) ([.3, .5], [.4, .5], [.1, .3]) ([.2, .4], [.7, .8], [.1, .2]) ([.1, .2], [.7, .8], [.2, .3]) 

𝜹𝟒 ([.2, .3], [.5, .7], [.1, .3]) ([.3, .4], [.2, .5], [.5, .7]) ([.2, .4], [.3, .5], [.3, .6]) ([.5, .7], [.1, .2], [.4, .6]) ([.4, .6], [.1, .3], [.2, .4]) ([.1, .2], [.5, .8], [.2, .4]) ([.2, .4], [.3, .4], [.2, .5]) ([.5, .6], [.1, .3], [.4, .6]) 

Table 2. Decision Matrix for Alternative ℵ(1) 

ℵ(𝟏) 𝒂̌𝟏 𝒂̌𝟐 𝒂̌𝟑 𝒂̌𝟒 𝒂̌𝟓 𝒂̌𝟔 𝒂̌𝟕 𝒂̌𝟖 

𝜹𝟏 ([.2, .4], [.4, .5], [.3, .4]) ([.3, .4], [.4, .5], [.2, .5]) ([.3, .6], [.2, .3], [.1, .2]) ([.2, .4], [.4, .6], [.1, .2]) ([.1, .3], [.6, .7], [.2, .3]) ([.4, .5], [.2, .5], [.2, .3]) ([.6, .7], [.1, .2], [.2, .3]) ([.4, .6], [.2, .3], [.4, .5]) 

𝜹𝟐 ([.3, .4], [.2, .5], [.5, .7]) ([.4, .7], [.1, .2], [.1, .2]) ([.4, .5], [.2, .5], [.1, .2]) ([.5, .7], [.1, .2], [.2, .4]) ([.6, .8], [.1, .2], [.1, .5]) ([.2, .4], [.7, .8], [.1, .2]) ([.2, .4], [.3, .5], [.3, .6]) ([.3, .4], [.4, .5], [.2, .4]) 

𝜹𝟑 ([.5, .6], [.2, .3], [.4, .5]) ([.5, .7], [.1, .2], [.2, .4]) ([.7, .8], [.1, .2], [.2, .4]) ([.1, .3], [.1, .5], [.2, .5]) ([.1, .4], [.2, .4], [.1, .2]) ([.2, .5], [.2, .4], [.3, .5]) ([.3, .5], [.2, .4], [.4, .6]) ([.5, .7], [.1, .2], [.5, .6]) 

𝜹𝟒 ([.3, .5], [.3, .4], [.6, .7]) ([.2, .4], [.3, .4], [.2, .5]) ([.2, .4], [.7, .8], [.1, .2]) ([.4, .7], [.1, .2], [.1, .2]) ([.5, .6], [.2, .3], [.4, .5]) ([.2, .4], [.3, .5], [.3, .6]) ([.4, .6], [.2, .3], [.4, .5]) ([.1, .3], [.1, .5], [.2, .5]) 

Table 3. Decision Matrix for Alternative  ℵ(2) 

ℵ(𝟐) 𝒂̌𝟏 𝒂̌𝟐 𝒂̌𝟑 𝒂̌𝟒 𝒂̌𝟓 𝒂̌𝟔 𝒂̌𝟕 𝒂̌𝟖 

𝜹𝟏 ([.2, .4], [.4, .6], [.4, .5]) ([.2, .3], [.4, .6], [.3, .5]) ([.1, .2], [.6, .8], [.2, .5]) ([.4, .5], [.2, .5], [.1, .2]) ([.2, .3], [.4, .6], [.3, .5]) ([.1, .2], [.6, .8], [.2, .5]) ([.7, .8], [.1, .2], [.2, .3]) ([.1, .3], [.6, .7], [.2, .5]) 

𝜹𝟐 ([.4, .5], [.2, .5], [.1, .2]) ([.5, .7], [.1, .2], [.2, .4]) ([.1, .3], [.6, .7], [.2, .6]) ([.1, .4], [.2, .5], [.4, .6]) ([.1, .4], [.2, .4], [.1, .2]) ([.1, .2], [.2, .5], [.4, .6]) ([.1, .4], [.2, .5], [.4, .6]) ([.1, .4], [.2, .5], [.4, .6]) 

𝜹𝟑 ([.3, .4], [.2, .6], [.4, .6]) ([. 2, .4], [. 3, .4], [. 2, .5]) ([.4, .5], [.2, .5], [.1, .2]) ([.1, .2], [.2, .5], [.4, .6]) ([.3, .5], [.3, .5], [.6, .7]) ([.3, .5], [.3, .5], [.6, .7]) ([.1, .2], [.2, .5], [.4, .6]) ([.5, .7], [.1, .2], [.2, .4]) 

𝜹𝟒 ([.2, .4], [.4, .5], [.6, .8]) ([.3, .5], [.3, .5], [.6, .7]) ([.1, .2], [.2, .5], [.4, .6]) ([.1, .4], [.2, .4], [.1, .2]) ([.4, .5], [.2, .5], [.1, .2]) ([.1, .2], [.2, .5], [.4, .6]) ([.4, .5], [.2, .5], [.1, .2]) ([.1, .2], [.2, .5], [.4, .6]) 

Table 4. Decision Matrix for Alternative ℵ(3) 

ℵ(𝟑) 𝒂̌𝟏 𝒂̌𝟐 𝒂̌𝟑 𝒂̌𝟒 𝒂̌𝟓 𝒂̌𝟔 𝒂̌𝟕 𝒂̌𝟖 

𝜹𝟏 ([.6, .7], [.1, .2], [.3, .5]) ([.6, .8], [.1, .2], [.2, .3]) ([.6, .7], [.3, .5], [.1, .2]) ([.7, .8], [.1, .2], [.2, .5]) ([.6, .7], [.1, .2], [.1, .2]) ([.5, .8], [.1, .2], [.2, .4]) ([.1, .3], [.6, .7], [.2, .5]) ([.7, .8], [.1, .2], [.2, .3]) 

𝜹𝟐 ([.5, .7], [.3, .4], [.2, .3]) ([.5, .7], [.2, .5], [.2, .3]) ([.5, .6], [.3, .4], [.1, .2]) ([.7, .8], [.3, .5], [.1, .3]) ([.1, .2], [.2, .5], [.4, .6]) ([.1, .4], [.2, .5], [.4, .6]) ([.4, .6], [.2, .3], [.1, .2]]) ([.4, .6], [.2, .3], [.1, .2]) 

𝜹𝟑 ([. 2, .4], [. 3, .4], [. 2, .5]) ([.4, .7], [.2, .3], [.3, .7]) ([.4, .6], [.2, .3], [.1, .2]) ([.3, .5], [.3, .5], [.6, .7]) ([.6, .8], [.1, .2], [.1, .2]) ([.7, .8], [.1, .2], [.2, .4]) ([.1, .2], [.2, .5], [.4, .6]) ([.6, .8], [.1, .2], [.1, .3]) 

𝜹𝟒 ([.6, .8], [.3, .4], [.1, .2]) ([.5, .7], [.1, .2], [.4, .5]) ([.1, .2], [.2, .5], [.4, .6]) ([.5, .6], [.3, .4], [.1, .2]) ([. 2, .4], [. 3, .4], [. 2, .5]) ([.1, .3], [.6, .7], [.2, .5]) ([.7, .8], [.1, .2], [.2, .5]) ([.4, .6], [.2, .3], [.1, .2]]) 

Table 5. Decision Matrix for Alternative ℵ(4) 

ℵ(𝟒) 𝒂̌𝟏 𝒂̌𝟐 𝒂̌𝟑 𝒂̌𝟒 𝒂̌𝟓 𝒂̌𝟔 𝒂̌𝟕 𝒂̌𝟖 

𝜹𝟏 ([.3, .5], [.2, .4], [.1, .2]) ([.3, .6], [.1, .2], [.4, .7]) ([.4, .7], [.3, .4], [.2, .3]) ([.7, .8], [.2, .4], [.3, .5]) ([.5, .7], [.3, .4], [.2, .4]) ([.4, .6], [.2, .5], [.3, .4]) ([.2, .3], [.5, .7], [.2, .4]) ([.5, .7], [.2, .4], [.3, .5]) 

𝜹𝟐 ([.4, .5], [.5, .7], [.2, .4]) ([.4, .7], [.3, .5], [.2, .4]) ([.5, .8], [.3, .4], [.2, .3]) ([.2, .4], [.2, .3], [.4, .5]) ([.3, .5], [.2, .3], [.3, .5]) ([.2, .4], [.2, .3], [.3, .6]) ([.5, .8], [.3, .6], [.2, .3]) ([.4, .6], [.2, .3], [.1, .2]]) 

𝜹𝟑 ([. 2, .4], [. 3, .4], [. 2, .5]) ([.4, .6], [.2, .3], [.3, .5]) ([.3, .5], [.3, .5], [.1, .2]) ([.3, .5], [.4, .6], [.6, .7]) ([.5, .7], [.1, .2], [.4, .5]) ([.4, .6], [.3, .5], [.1, .2]) ([.6, .7], [.1, .2], [.3, .5]) ([.2, .5], [.2, .3], [.4, .6]) 

𝜹𝟒 ([.1, .2], [.2, .5], [.4, .6]) ([.5, .7], [.2, .4], [.1, .3]) ([.3, .5], [.2, .5], [.1, .3]) ([.4, .6], [.2, .5], [.3, .4]) ([.5, .8], [.3, .4], [.2, .3]) ([.4, .6], [.2, .3], [.1, .2]]) ([.4, .7], [.3, .5], [.2, .4]) ([. 2, .4], [. 3, .4], [. 2, .5]) 
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Step 3. Compute the cosine similarity measure by using definition 3.1. 

By using Tables 1-5, compute the cosine similarity measure between 𝒮𝐼𝑉𝑁𝐻𝑆𝑆
1 (𝑆,𝑆1), 𝒮𝐼𝑉𝑁𝐻𝑆𝑆

1 (𝑆,𝑆2), 

𝒮𝐼𝑉𝑁𝐻𝑆𝑆
1 (𝑆,𝑆3), and 𝒮𝐼𝑉𝑁𝐻𝑆𝑆

1 (𝑆,𝑆𝑡) by using equation 3.1, such as 

𝒮𝐼𝑉𝑁𝐻𝑆𝑆
1 (𝑆,𝑆1) = 0.07007. 

Similarly, we can find the cosine similarity measure between 𝒮𝐼𝑉𝑁𝐻𝑆𝑆
1 (𝑆 ,𝑆2 ), 𝒮𝐼𝑉𝑁𝐻𝑆𝑆

1 (𝑆 ,𝑆3 ), and 

𝒮𝐼𝑉𝑁𝐻𝑆𝑆
1 (𝑆,𝑆4) given as 

𝒮𝐼𝑉𝑁𝐻𝑆𝑆
1 (𝑆 ,𝑆2 ) = 0.06771, 𝒮𝐼𝑉𝑁𝐻𝑆𝑆

1 (𝑆 ,𝑆3 ) = 0.06943, and 𝒮𝐼𝑉𝑁𝐻𝑆𝑆
1 (𝑆 ,𝑆4 ) = 0.06874. This shows that 

𝒮𝐼𝑉𝑁𝐻𝑆𝑆
1 (𝑆, 𝑆1) > 𝒮𝐼𝑉𝑁𝐻𝑆𝑆

1 (𝑆, 𝑆3) > 𝒮𝐼𝑉𝑁𝐻𝑆𝑆
1 (𝑆, 𝑆4)  > 𝒮𝐼𝑉𝑁𝐻𝑆𝑆

1 ( 𝑆 , 𝑆2 ). It can be seen from this ranking 

alternative 𝑆1  is most relevant and similar to 𝑆. Therefore 𝑆1  is the best alternative for the civil 

engineer, the ranking of other alternatives given as 𝑆1 > 𝑆3 > 𝑆4 > 𝑆2. 

Now we compute the set-theoretic similarity measure by using Definition 3.3 between 𝒮𝐼𝑉𝑁𝐻𝑆𝑆
2 (𝑆 ,𝑆1 ), 

𝒮𝐼𝑉𝑁𝐻𝑆𝑆
2 (𝑆,𝑆2), 𝒮𝐼𝑉𝑁𝐻𝑆𝑆

2 (𝑆,𝑆3), and 𝒮𝐼𝑉𝑁𝐻𝑆𝑆
2 (𝑆,𝑆4) given as From Tables 1-5, we can find the set-theoretic 

similarity measure for each alternative by using definition 3.3 given as 𝒮𝐼𝑉𝑁𝐻𝑆𝑆
2 (𝑆,𝑆1) = 0.06986, 𝒮𝐼𝑉𝑁𝐻𝑆𝑆

2 (𝑆,𝑆2) 

= 0.06379, 𝒮𝐼𝑉𝑁𝐻𝑆𝑆
2 (𝑆 ,𝑆3 ) = 0.06157, and 𝒮𝐼𝑉𝑁𝐻𝑆𝑆

2 (𝑆 ,𝑆4 ) = 0.06176. 𝒮𝐼𝑉𝑁𝐻𝑆𝑆
1 (𝑆, 𝑆1) > 𝒮𝐼𝑉𝑁𝐻𝑆𝑆

1 (𝑆, 𝑆2) >

𝒮𝐼𝑉𝑁𝐻𝑆𝑆
1 (𝑆, 𝑆4)  > 𝒮𝐼𝑉𝑁𝐻𝑆𝑆

1 (𝑆, 𝑆3). It can be seen from this ranking alternative 𝑆1 is most relevant and similar 

to 𝑆. Therefore 𝑆1 is the best alternative for the civil engineer, the ranking of other alternatives given as 𝑆1 >

𝑆2 > 𝑆4 > 𝑆3. 

5. Discussion and Comparative Analysis 

 

In the subsequent section, we will talk over the usefulness, easiness, manageability, and assistance of 

the planned method. We also performed a short evaluation of the undermentioned: the planned 

technique and some prevailing methodologies. 

5.1. Superiority of the Proposed Approach 

Through this study and comparison, it could be determined that the consequences acquired by the 

suggested approach have been more common than either available method. Overall, the DM procedure 

associated with the prevailing DM methods accommodates extra information to address hesitation. Also, FS’s 

various hybrid structures are becoming a particular feature of NHSS, along with some appropriate 

circumstances added. The general info associated with the object could be stated precisely and analytically, see 

Table 6. Therefore, it is a suitable technique to syndicate inaccurate and ambiguous information in the DM 

process. Hence, the suggested approach is practical, modest, and ahead of fuzzy sets’ distinctive hybrid 

structures. 

Table 6. Comparison between NHSS and some existing techniques 

 Set Truthiness Indeterminacy Falsity Parametrization Attributes Sub-attributes 

Zadeh [1] FS ✓ × × × ✓ × 

Atanassov [2] IFS ✓ × ✓ × ✓ × 

Smarandache [34] NS ✓ ✓ ✓ × ✓ × 

Maji et al. [21] FSS ✓ × × ✓ ✓ × 

Maji et al. [22] IFSS ✓ × ✓ ✓ ✓ × 

Peng et al. [26] PFSS ✓ × ✓ ✓ ✓ × 

Maji [35] NSS ✓ ✓ ✓ ✓ ✓ × 

Zulqarnain et al. [46] IFHSS ✓ × ✓ ✓ ✓ ✓ 

Zulqarnain et al. [47] PFHSS ✓ × ✓ ✓ ✓ ✓ 

Proposed approach NHSS ✓ ✓ ✓ ✓ ✓ ✓ 

It turns out that this is a contemporary issue. Why do we have to embody novel algorithms based on 

the proposed novel structure? Many indications compared with other existing methods; the 



Neutrosophic Sets and Systems, Vol. 51, 2022     833  

 

 

Rana Muhammad Zulqarnain, Aiyared Iampan, Hamiden Abd El-Wahed Khalifa, Imran Siddique, Similarity Measures for 

Interval-Valued Neutrosophic Hypersoft Set With Their Application to Solve Decision Making Problem     

recommended method may be an exception. We remember the following fact: the mixed structure 

limits IFS, picture fuzzy sets, FS, fuzzy hesitation sets, NS, and other fuzzy sets and cannot provide 

complete information about the situation. But our m-polar model GmPNSS can deal with truthiness, 

indeterminacy, and falsity, so it is most suitable for MCDM. Due to the exaggerated multipolar 

neutrosophy, these three degrees are independent and provide a lot of information about alternative 

norms. Other similarity measures of available hybrid structures are converted into exceptional cases 

of GmPNSS. A comparative analysis of some already existing techniques is listed above in Table 6. 

Therefore, this model has more versatility and can efficiently resolve complications than 

intuitionistic, neutrosophic, hesitant, image, and ambiguity substitution. The similarity measure 

established for GmPNSS becomes better than the existing similarity measure for MCDM. 

5.1 Comparative Analysis   

In the following section, we recommend another algorithmic rule under NHSS by utilizing the 

progressed cosine similarity measure and set-theoretic similarity measure. Subsequently, we use the 

suggested algorithm to a realistic problem, namely the appropriate civil engineer in a company. The 

overall outcomes prove that the algorithmic rule is valuable and practical. It can be observed that 𝑆1 

is the most acceptable alternative for the civil engineer position. The recommended approach may be 

compared to other available methods. From the research findings, it has been concluded that the 

outcomes acquired by the planned approach exceed the consequences of the prevailing ideas. 

Therefore, compared to existing techniques, the established similarity measures handled the 

uncertain and ambiguous information competently. However, under current DM strategies, the core 

advantage of the planned method is that it can accommodate extra info in data comparative to 

existing techniques. It is also a beneficial tool to solve inaccurate and imprecise information in DM 

procedures. The benefit of the planned approach and related measures over current methods is 

evading conclusions grounded on adverse reasons.  

5.2. Discussion  

Zadeh’s [1] FS handled the inaccurate and imprecise information using MD of sub-attributes of 

considered attributes for each alternative. But the FS has no evidence around the NMD of the 

considered parameters. Atanassov’s [2] IFS accommodates the unclear and undefined objects using 

MD and NMD. However, IFS cannot handle the circumstances when MD + NMD ≥ 1, conversely, is 

presented notion competently deals with such difficulties. Meanwhile, these theories have no 

information about the indeterminacy of the attributes. To overcome such problems, Smarandache 

[34] proposed the idea of NS. Maji et al. [21] presented the notion of FSS to deal with the 

parametrization of the objects, which contains uncertainty by considering the MD of the attributes. 

But, the presented FSS provides no information about the NMD of the thing. To overcome the 

presented drawback, Maji et al. [22] offered the concept of IFSS. The proposed notion handles the 

uncertain object more accurately by using the MD and NMD of the attributes with their 

parametrization, and the sum of MD and NMD does not exceed 1. To handle this scenario, Peng et 

al. [26] proposed the notion of PFSS by modifying the condition 𝑀𝐷 + 𝑁𝑀𝐷 ≤ 1 to 𝑀𝐷2 + 𝑁𝑀𝐷2 ≤

1 with their parametrization. The PFSS is unable to deal with the indeterminacy of the attributes. 

Maji [35] introduced the concept of NSS, in which decision-makers competently solve the DM 

problems comparative to the above-studied theories using truthiness, falsity, and indeterminacy of 

the object. But all the studies mentioned above have no information about the sub-attributes of the 

considered attributes. So the theories discussed earlier cannot handle the scenario when 

characteristics have their corresponding sub-attributes. Utilizing the MD and NMD, Zulqarnain et al. 

[46] extended the IFSS to IFHSS and proposed the CC and WCC for IFHSS in which 𝑀𝐷 + 𝑁𝑀𝐷 ≤ 1 

for each sub-attribute. But IFHSS cannot provide any information on the NMem values of the sub-

attribute of the considered attribute. Zulqarnain et al. [47] proposed the more generalized notion of 



Neutrosophic Sets and Systems, Vol. 51, 2022     834  

 

 

Rana Muhammad Zulqarnain, Aiyared Iampan, Hamiden Abd El-Wahed Khalifa, Imran Siddique, Similarity Measures for 

Interval-Valued Neutrosophic Hypersoft Set With Their Application to Solve Decision Making Problem     

PFHSS comparative to IFHSS. The PFHSS accommodates more uncertainty compared to IFHSS by 

updating the condition 𝑀𝐷 +  𝑁𝑀𝐷 ≤ 1  to (𝜎ℱ(𝑎̌)(𝛿))
2
+ (𝜏ℱ(𝑎̌)(𝛿))

2
≤  1. All existing hybrid 

structures of FS cannot handle the indeterminacy of sub-attributes of considered n-tuple attributes. 

On the other hand, developed aggregation operators can accommodate the sub-attributes of 

considered attributes using truthness, indeterminacy, and falsity objects of sub-attributes with the 

following condition 0 ≤ 𝜎ℱ(𝑎̌)(𝛿), 𝜏ℱ(𝑎̌)(𝛿), 𝛾ℱ(𝑎̌)(𝛿) ≤ 3. It may be seen that the best selection of the 

suggested approach is to resemble the verbalized own method, and that ensures the liableness along with the 

effectiveness of the recommended approach.  

 

6. Conclusion 

 The interval-valued neutrosophic hypersoft set is a novel concept that is an extension of the 

interval-valued neutrosophic soft set. This paper studies some basic concepts such as soft set, NSS, 

HSS, IFHSS, PFHSS, and NHSS. We developed the idea of cosine similarity measure and set-theoretic 

similarity measure for IVNHSS and described their desirable properties. Furthermore, a decision-

making approach has been developed for IVNHSS based on the proposed technique. To verify the 

effectiveness of our developed techniques, we presented an illustration to solve MCDM problems. 

We introduced a comprehensive comparative analysis of proposed techniques with existing 

methods. In the future, the concept of IVNHSS will be extended to m polar interval-valued NHSS. It 

will solve real-life problems such as medical diagnoses, decision-making, etc. Future research will 

concentrate on presenting numerous other operators under the mPIVNHSS environment to solve 

decision-making issues. Many other structures such as topological, algebraic, ordered structures, etc., 

can be developed and discussed under-considered environment. 
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Abstract 

In this paper, as a new separation axioms in neutrosophic supra topological space, NS-Ti- space 

(i=0,1,2) is built in this space. Moreover, SN.T1T2-open(closed) sets are defined in neutrosophic 

supra bi-topological spaces. Also SNBi-Ti-space (i=0,1,2) is built on this new neutrosophic sets. And 

their basic properties are presented. The relations between these new neutrosophic separation 

axioms is studied. Finally, many examples are presented.  

Keywords: Neutrosophic supra topological spaces, Neutrosophic supra bi-topological spaces, 

SN.T1T2-open set, SN.T1T2-closed set, neutrosophic separation axioms, NS-Ti- space, NSBi-Ti- space 

(i=0,1,2). 

 

1. Introduction 

The idea of neutrosophic was invented and presented by F. Smarandache [1,2]. This science has 

many applications in all science, including topology, where neutrosophic topological space was 

defined by A. Salama and et al. in [3]. Also, the neutrosophic bi-topological space was defined by R. 

K. Al-Hamido [4] as an extension of neutrosophic topological spaces in 2019. The concept of 

neutrosophic supra bi-topological space has been studied in [5]. Also, the neutrosophic 

Tri-topological space was defined by R.K.Al-Hamido [6] as an extension of neutrosophic 

bi-topological spaces in 2018. Also, in 2018, R. K. Al-Hamido, extended neutrosophic bi-topological 

spaces to Neutrosophic Crisp Bi-Topological Spaces[7].  

Later [8] studied the separations axioms but in neutrosophic crisp topological space via 

neutrosophic crisp points which is defined in this paper. Moreover, these new definitions of 

neutrosophic crisp points open the door to defined new types of separations axioms in neutrosophic 

crisp topological space. such as neutrosophic crisp semi separation axioms in[9] and separation 

axioms via neutrosophic crisp pre-open sets [10] in neutrosophic crisp topological spaces. 

Based on neutrosophic crisp bi-topological space [7], separations axioms in neutrosophic crisp 

bi-topological space were grounded by R. K. Al-Hamido et al. in [11]. 

Khattak et al. [12] worked on soft b-separation axioms in NSTS. Suresh and Palaniammal [13] 

presented NS(WG) separation axioms in NTS. 

Gunnuz Aras et al. [14] studied the separation axioms but in neutrosophic soft topological 

spaces(NSTS). 
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Mehmood et al. [15] worked on generalized neutrosophic separation axioms in NSTS. 

Recently, Neutrosophic crisp set theory has been employed to model uncertainty in several areas of 

application such as image processing [16],[17], and in geographic information systems[18] and 

possible applications to database[19]. Also, neutrosophic sets [20] may have applications in the 

medical field [21-22]. 

Recently, in 2021, A.Acikgoza et al. studied separations axioms in neutrosophic topological 

space[23] for the first time. 

Finally, R.Narmada et al. studied separation axioms in an ordered neutrosophic bitopological space 

in [24]. For more detail about neutrosophic topology see [25-32]. 

In this paper, we will defined new patterns from neutrosophic sets in neutrosophic supra 

bi-topological spaces, moreover we will defined separations axioms in neutrosophic supra 

topological space and in neutrosophic supra bi-topological space depending on 

SN.T1T2-open(closed) sets are defined in neutrosophic supra bi-topological spaces. 

We will study the relationships among these new types of separations axioms, and we will also 

examine the relationship between separations axioms in neutrosophic supra topological space and 

neutrosophic supra bi-topological space. 

 

2. Preliminaries 

This section will discuss some basic definitions and properties of neutrosophic supra topology, 

which are helpful in sequel. 

 

Definition 2.1.[8]   

let X be a non-empty set, D be a neutrosophic set in X, then: 

D is said to be neutrosophic quasi-coincident (neutrosophic q-coincident, for short) with L, denoted 

by DqL if and only if D Lc. If D is not neutrosophic quasi-coincident with L, we denote by D ˜q L. 

Definition 2.2: [25]  

A neutrosophic supra topology (NST) on a non-empty set X is a family Γ of neutrosophic subsets in 

X satisfying the following axioms. 

1. 1N and  0N belong to Γ. 

2. Γ is closed under arbitrary union. 

The pair (X, Γ) is called neutrosophic supra topological space (NSTS) in X. Moreover, members of Γ 

are known as neutrosophic supra open sets (NSOS). 

The set of all neutrosophic supra open (closed) set is denoted NSOS(X) (NSCS(X) ). 
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Definition 2.3. [5]  

Let T1,T2 be two neutrosophic supra topology on a nonempty set X then (X,T1,T2) be a neutrosophic 

supra Bi-topological space (SBi-NTS for short ). 

3. Separation axioms in neutrosophic supra topological space 

In this part, we have defined a new separation axioms in neutrosophic supra topological space, 

namely NS-Ti-space ( i=0,1,2), for first time.  

Definition 3.1.  

A neutrosophic set F in NSTS (X,T) is called NS-T0-space if for any pair of neutrosophic points (NP) 

xyX, there exists an U NOS(X) such that (xU and yU) or there exists V NOS(X); (yV and 

xV).  

Example 3.2. 

Let X={n,m}, T= { { n s, s, 1-s , m e, e, 1-e } : s[0,1] , e[0,1] }     

Then (X,T) is NSTS, (X,T) is NS-T0-space.    

Definition 3.3.  

A neutrosophic set F in NSTS (X,T) is called NS-T1-space if for any pair of neutrosophic points (NP) 

xyX, there exists U,V NOS(X); (xU and yU) and (yV and xV). 

Example 3.4. 

Let X={f,g},T= { { f s, s, 1-s , g e, e, 1-e }: s[0,1] , e[0,1) }.     

Then (X,T) is NSTS, (X,T) is NS-T0-space. But, (X,T) is not NS-T1-space, because, f1,1,0 and g1,1,0 are 

neutrosophic points in (X, τ) ; f1,1,0  g1,1,0 and the only neutrosophic supra open set that contains g1,1,0 

is 1N. 

Definition 3.5.  

A neutrosophic set F in NSTS (X,T) is called NS-T2-space if for any pair of neutrosophic points (NP) 

xyX, there exists U,V NOS(X); (xU and yU) and (yV and xV)   

Theorem 3.6. 

Let (X,T) be a NSTS, then: 

If (X,T) is NS-T2-space then (X,T) is NS-T1-space.    

Proof: 

Let (X,T) is NS-T2-space, Then for any pair of neutrosophic points (NP) xyX there exists U,V 

NOS(X); (xU and yU) and (yV and xV)  so there exists U,VNOS(X); (xU and yU) 

and (yV and xV).  

Therefore (X,T) is NS-T1-space. 

Remark 3.7. 

The converse of the theorem 3.6 is not true; see the following example: 

Example 3.8. 

In example 3.4, (X,T) is NSTS, X is NS-T0-space but not NS-T1-space, because, f1,1,0 and g1,1,0 are 

neutrosophic points in (X, T) ; f1,1,0  g1,1,0 and the only neutrosophic supra open set that contains 

g1,1,0 is 1N. Therefore, X is NS-T0-space but not NS-T2-space. 

Theorem 3.9. 

Let (X,T) be a NSTS, then: 

If (X,T) is NS-T1-space, then (X,T) is NS-T0-space.  

Proof: 

Let (X,T) is NS-T1-space, Then for any pair of neutrosophic points (NP) xyX, there exists U,V 

NOS(X); (xU and yU) and (yV and xV), so there exists U,VNOS(X); (xU and yU) or (yV 

and xV). 

Therefore (X,T) is NS-T0-space. 

Remark 3.10. 

The converse of the theorem 3.9 is not true, see the following example: 
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Example 3.11. 

In example 3.5, (X,T) is NSTS, X is NS-T0-space but not NS-T1-space, because, f1,1,0 and g1,1,0 are 

neutrosophic points in (X, τ) ; f1,1,0  g1,1,0 and the only neutrosophic supra open set that contains g1,1,0 

is 1N. 

Remark 3.12. 

Let (X,T) be a NSTS, then: 

(X,T) is NS-T2-space   (X,T) is NS-T1-space    (X,T) is NS-T0-space. 

Proof:  

Proof following from theorem 3.9 and theorem 3.6.  

 

4. Separation axioms in neutrosophic supra bi-topological space 

In this part, we have defined for the first time a new separation axioms in neutrosophic supra 

topological space, which named NSBi-Ti-space ( i=0,1,2).  

 

Definition 4.1.  

A neutrosophic set A in SBi-NTS (X,T1,T2) is called " NS.T1T2-open set " if it is a neutrosophic open 

set in (X,T1) or in (X,T2). 

- A neutrosophic set B in SBi-NTS (X,T1,T2) is called " NS.T1T2-closed set " iff its complement is 

" NS.T1T2-open set ". 

- The set of all " NS.T1T2-open (closed) sets " is denoted to be" NS.T1T2-NOS (NS.T1T2-NCS)".  

Definition 4.2.  

A SBi-NTS (X,T1,T2) is called NSBi-T0-space if :xyX ,  U NS.T1T2-NOS; (xU and yU) or  V 

NS.T1T2-NOS; (yV and xV).  

 

Example 4.3. 

Let X={n,m}, A1={< n, 0.4, 0.4, 0.4>, < m, 0.5, 0.5, 0.5>}, A2={< n, 0.3, 0.3, 0.3>, < m, 0.6, 0.6, 0.6>}, 

T1={ 0N, A1, A2, A1A2, 1N}, T2={ { n s, s, 1-s , m e, e, 1-e } : s[0,1] , e[0,1] }     

Then (X,T1,T2) is SBi-NTS, (X,T1,T2) is NSBi-T0-space.    

Definition 4.4.  

A SBi-NTS (X,T1,T2) is called NSBi-T1-space if :xyX ,  U,V NS.T1T2-NOS; (xU and yU) and 

(yV and xV). 

Example 4.5. 

Let X={f,g}, A1={< f, 0.4, 0.4, 0.4>, < g, 0.5, 0.5, 0.5>}, A2={< f, 0.3, 0.3, 0.3>, < g, 0.6, 0.6, 0.6>}, 

T1={ 0N, A1, A2, A1 A2, 1N}, T2={ {f s, s, 1-s , g e, e, 1-e } : s[0,1] , e[0,1) }     

Then (X,T1,T2) is SBi-NTS, (X,T1,T2) is NSBi-T0-space. But (X,T1,T2) is not NSBi-T1-space.   

Definition 4.6.  

A SBi-NTS (X,T1,T2) is called NSBi-T2-space if :xyX ,  U,V NS.T1T2-NOS; (xU and yU) and 

(yV and xV)   

Theorem 4.7. 

Let (X,T1,T2) be a SBi-NTS, then: 

(X,T1,T2) is NSBi-T0-space  (X,T1) is NS-T0-space or (X,T2) is NS-T0-space.   

Proof : 

 : 

Let (X,T1,T2) is NSBi-T0-space then, xyX,  U,V NS.T1T2-NOS; (xU and yU) and (yV and 

xV) so there existe U,V T1-NOS; (xU and yU) and (yV and xV) or there existe U,V 

T2-NOS; (xU and yU) and (yV and xV)  therefore (X,T1) is NS-T0-space or (X,T2) is 

NS-T0-space.   

 :  
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Let (X,T1) be a NS-T0-space or (X,T2) be a NS-T0-space. Then, for every xyX , there existe U,V 

T1-NOS; (xU and yU) and (yV and xV)or U,V T2-NOS; (xU and yU) and (yV and xV), 

so there exist U,V NS.T1T2-NOS; (xU and yU) or (yV and xV). Therefore (X,T1,T2) is 

NSBi-T0-space. 

Theorem 4.8. 

Let (X,T1,T2) be a SBi-NTS, then: 

(X,T1,T2) is NSBi-Ti-space  (X,T1) is NS-Ti-space or (X,T2) is NS-Ti-space (i=1,2).    

Proof: 

In the same way of proof theorem 4.7. 

Theorem 4.9. 

Let (X,T1,T2) be a SBi-NTS, then: 

(X,T1,T2) is NSBi-T2-space   (X,T1,T2) is NSBi-T1-space    

Proof: 

Let (X,T1,T2) is NSBi-T2-space, Then xyX ,  U,V NS.T1T2-NOS; (xU and yU) and (yV and 

xV)  so there existe U,VNS.T1T2-NOS; (xU and yU) and (yV and xV).  

Therefore (X,T1,T2) is NSBi-T1-space. 

Remark 4.10. 

The converse of the theorem 4.9 is not true, see the following example: 

Example 4.11. 

In example 4.5, (X,T1,T2) is SBi-NTS, X is NSBi-T0-space but not NSBi-T1-space.  

Therefore X is NSBi-T0-space but not NSBi-T2-space. 

Theorem 4.12. 

Let (X,T1,T2) be a SBi-NTS, then: 

(X,T1,T2) is NSBi-T1-space    (X,T1,T2) is NSBi-T0-space.  

Proof: 

Let (X,T1,T2) is NSBi-T1-space, Then xyX ,  U,V NS.T1T2-NOS; (xU and yU) and (yV and 

xV), so there existe U,VNS.T1T2-NOS; (xU and yU) or (yV and xV). 

Therefore (X,T1,T2) is NSBi-T0-space. 

Remark 4.13. 

The converse of the theorem 4.12 is not true, see the following example: 

Example 4.14. 

In example 4.5, (X,T1,T2) is SBi-NTS, X is NSBi-T0-space but not NSBi-T1-space.  

Remark 4.15. 

Let (X,T1,T2) be a SBi-NTS, then: 

(X,T1,T2) is NSBi-T2-space  (X,T1,T2) is NSBi-T1-space  (X,T1,T2) is NSBi-T0-space. 

Proof:  

Proof following from theorem 4.9 and theorem 4.12.  

Theorem 4.16. 

Let (X,T1,T2) be a SBi-NTS, then: 

If (X,T1) is NS-Ti-space and (X,T2) is NS-Ti-space, then(X,T1,T2) is NSBi-Ti-space(i=0,1,2).   

Proof : 

From the theorem 4.7 and theorem 4.8. 

Remark 4.17: 

If (X,T1,T2) is NSBi-Ti-space(i=0,1,2) then may be(X,T1) or (X,T2) is not NS-Ti-space, so the converse of 

the Theorem 4.16 is not true. 
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5. Conclusion  

  

In this paper, we have defined for first time a new separation axioms in neutrosophic supra 

topological space and neutrosophic supra bi-topological space which namely NS-Ti-space and 

NSBi-Ti-space ( i=0,1,2).  

In the future, using these notions, various classes of separation axioms in neutrosophic supra 

topological space and neutrosophic supra bi-topological space as NS-Ti-space and NSBi-Ti-space 

(i=3,4,5) , and many researchers can be studied. 
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Abstract. In Operations Research, making decisions based on multiple criteria is crucial. Neutrosophic num-

bers produce a more efficient conclusion when dealing with Fuzzy Multi Criteria Decision Making (MCDM)

problems. In this paper, we determine qualitative and quantitative criteria for selecting the best building

construction project. The major goal of this work is to show how to use interval valued neutrosophic sets in

solving MCDM issues using the Max-Product formula. To calculate the weighted average for interval valued

neutrosophic numbers, we offer a new technique in max product. Three approaches are used to rank the interval

valued neutrosophic numbers, and their application is demonstrated numerically.

Keywords: Fuzzy sets; Multiple Criteria Decision Making; Neutrosophic Fuzzy sets; Interval Valued Neutro-

sophic Set; Interval Valued Neutrosophic Numbers.

—————————————————————————————————————————-

1. Introduction

L.A. Zadeh [1] introduced fuzzy sets, fuzzy membership functions, and fuzzy logic in 1965.

K. Atanassov [2] introduced the Intuitionistic Fuzzy set in 1986. It’s a fuzzy set generalization

with a membership grade, non-membership grade, and degree of indeterminacy. MCDM is a

very significant and rapidly increasing subject in operations research. Indeterminacy should

be incorporated into the model formulation of difficulties because MCDM problems are well

addressed in fuzzy and intuitionistic fuzzy. In the decision-making process, indeterminacy is

very significant. As a result of the growth of the MCDM field in a fuzzy environment, the

Neutrosophic Fuzzy MCDM was proposed, and it was used in SAW, AHP, GP, TOPSIS, and

other applications. Neutrosophic set, the generalization of fuzzy set and intuitionstic fuzzy

sets. In Multiple Criteria Decision Making, neutrosophic numbers are ranked to rate tough

problems. Using Neutrosophic Sets in MCDM and ranking methodologies will provide the

best possible solution to challenging situations. Smarandache [3] introduced Neutrosophic
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set in 1998. The membership functions of Neutrosophic sets are Truth, Indeterminacy, and

False. Smarandache and Wang proposed interval valued neutrosophic sets in 2005, and they

introduced single valued neutrosophic sets in 2010. It independently expresses truth, indeter-

minacy, and false membership degree.

The paper Interval Neutrosophic Sets was published by Haibin Wang, et al. in 2004 [4].

They introduce and verify the convexity of interval valued neutrosophic sets, as well as many

features, operations, and relations of interval neutrosophic sets. Athar Kharal published a pa-

per A Neutrosophic Multi-Criteria Decision Making Method [14] in 2014. This study presents

a method of MCDM based on Neutrosophic sets. It is the first time that neutrosophic sets

have been introduced to the MCDM community. In 2014, Based on Bhattacharya’s distance,

Broumi S and Smarandache F [7] define a novel cosine similarity between two Interval valued

neutrosophic sets. They used the cosine similarity measure in pattern recognitionin this re-

search. Jun Ye published a paper Similarity measures between interval neutrosophic sets and

their applications in multicriteria decision-making [10] in 2014. The Hamming and Euclidean

distances between interval neutrosophic sets (INSs) are described in this study, and similarity

measures between INSs are provided based on the relationship between distances and similar-

ity measures. The article, Interval neutrosophic sets and their application in MCDM problems

was published by Zhang et al in 2014 [8]. They established Interval neutrosophic numbers

operators and presented a comparativeapproach between INN and aggregation operators for

INSs in this work. Saha and Broumi [15] presented New Operators on Interval Valued Neutro-

sophic Sets in 2019. They defined some new IVNS operators and examined their properties in

this study. Theoperators are highly useful when dealing with two interval-valued neutrosophic

sets. In the decision-making process, the similarity measure is essential in determining the

degree of similarity between the ideal and each alternative. In 2019, Wang, et al. [13] pro-

posed a multi-criteria decision-making system based on improved cosine similarity measures

with interval neutrosophic sets. The purpose of this study is to develop an MCDM technique

for INSs based on a similarity measure.

In 2017, Deli and Subas [17] published the paper The concept of a single valued neutro-

sophic number (SVNN) is important for quantifying an unknown quantity, and the ranking of

SVNNis atough problem in multi-attribute decision making problems. The goal of this work

is to offer a methodology for using SVNNs to solve multi-attribute decision-making problems.

They created a ranking approach based on the concept of values and uncertainties, which they

used to multi attribute decision making issues where the ratings of alternatives on criteria are

expressed as SVTN-numbers. Ranking methods of Single Valued Neutrosophic number and

Its Applications to Multiple Criteria Decision Making [12] was published by D. Stanujkic, et

al. in 2019. They demonstrate the utility of single-valued Neutrosophic sets in solving MCDM

D. Jeni Seles Martina, G. Deepa, Ranking of Interval Valued Neutrosophic Numbers by
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problems in this work. The proposed Ranking method’s approach and numerical example were

presented. Although single valued neutrosophic sets apply ranking methods, interval valued

neutrosophic sets and numbers are also highly effective in ranking the alternatives.Ranking

of Pentagonal Neutrosophic Numbers and its Applications to Solve Assignment Problem was

published in 2020 by Radhika and Arun [18]. They suggest a new method for ranking neu-

trosophic numbers based on their magnitude in this work. Theyoffer a method for solving

neutrosophic assignment issues with pentagonal neutrosophic numbers. The article, Rank-

ing of single-valued neutrosophic numbers through the index of optimism and its reasonable

properties was published by R. Chutia and F. Smarandache in 2021 [19]. The significance

and vagueness of a single-valued neutrosophic number are used to construct a novel way of

ranking neutrosophic numbers in this study. The method is unique inthe reasonable features

of a ranking system.

There are many ranking methods that are applied in MCDM problems using the various

types of neutrosophic numbers. The motive of our paper is to use Interval Valued Nutro-

sophic Numbers to build ranking techniques in MCDM. It gives better results when similarity

measures, score function, and hamming distance are used to rank the interval valued neu-

trosophic numbers. The paper contains preliminaries and Basic elements of Interval Valued

Neutrosophic sets, and ranking of IVNNs in section 2. The MCDM method based on Interval

Valued Neutrosophic Numbers is provided in section 3. This proposed ranking approach is

given numerical illustration in section 4. Finally, there is a ranking and a conclusion.

2. Preliminaries

Definition 2.1. Neutrosophic Set (NS) [3]

Let U be the universal set and every element x ∈ U has degree of True, Indeterminacy,

False membership in S. Then the Neutrosophic set can be written as

S = {〈x, TS(x), IS(x), FS(x)〉 : x ∈ U}

where, 0 ≤ TS(x) + IS(x) + FS(x) ≤ 3

and Truth Membership function TS : U → [0, 1]

Indeterminacy Membership function IS : U → [0, 1]

False Membership function FS : U → [0, 1]

Definition 2.2. Interval Valued Neutrosophic Set (IVNS) [8]

Let U be a nonempty set with generic elements in U denoted by x. The Interval Valued

Neutrosophic set S in U is as follows

S = {x : 〈x, TS(x), IS(x), FS(x)〉 ;x ∈ U}
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where, Interval Truth Membership Function TS(x) = [TLS , T
U
S ]

Interval Indeterminacy Membership Function IS(x) = [ILS , I
U
S ]

Interval False Membership Function FS(x) = [FLS , F
U
S ]

and for each point x ∈ U. TS(x), IS(x), FS(x) ∈ [0, 1]

Definition 2.3. Interval Valued Neutrosophic Number (IVNN)

For an IVNS S in U the triple interval
〈
[tLs , t

U
s ], [iLs , i

U
s ], [fLs , f

U
s ]
〉

is called the Interval

Valued Neutrosophic Number.

Operations on IVNN

Let s1 =
〈
[tL1 , t

U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]
〉

and s2 =
〈
[tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]
〉

be two IVNN and

λ > 0, then the basic operations are defined as follows [5],

i)s1 + s2 =
〈
[tL1 + tL2 − tL1 tL2 , tU1 + tU2 − tU1 tU2 ], [iL1 i

L
2 , i

U
1 i
U
2 ], [fL1 f

L
2 , f

U
1 f

U
2 ]
〉

ii)s1.s2 =
〈
[tL1 t

L
2 , t

U
1 t
U
2 ], [iL1 + iL2 − iL1 iL2 , iU1 + iU2 − iU1 iU2 ], [fL1 + fL2 − fL1 fL2 , fU1 + fU2 − fU1 fU2 ]

〉
iii)λs1 =

〈
[1− (1− tL1 )λ, 1− (1− tU1 )λ], [(iL1 )λ, (iU1 )λ], [(fL1 )λ, (fU1 )λ]

〉
iv)sλ1 =

〈
[(tL1 )λ, (tU1 )λ], [1− (1− iL1 )λ, 1− (1− iU1 )λ], [1− (1− fL1 )λ, 1− (1− fU1 )λ]

〉
Definition 2.4. Score Function of IVNN

Let s1 =
〈
[tL1 , t

U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]
〉

be an IVNN then a Score Funtion S(s1) is [6]

S(s1) =
1

4
[2 + tL1 + tU1 − 2(iL1 + iU1 )− (fL1 + fU1 )]

Definition 2.5. Cosine Similarity Measure

Let s1 =
〈
[tL1 , t

U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]
〉

and s2 =
〈
[tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]
〉

be two IVNN then

a Cosine Similarity Measure C(s) between two IVNN s1 and s2 is as follows [7] ,

C(s1, s2) =
1
n

∑n
i=1 [(tL1 + tU1 )(tL2 + tU2 ) + (iL1 + iU1 )(iL2 + iU2 ) + (fL1 + fU1 )(fL2 + fU2 )]√

(tL1 + tU1 )2 + (iL1 + iU1 )2 + (fL1 + fU1 )2
√

(tL2 + tU2 )2 + (iL2 + iU2 )2 + (fL2 + fU2 )2

where, n = 1

Definition 2.6. Hamming Distance

Let s1 =
〈
[tL1 , t

U
1 ], [iL1 , i

U
1 ], [fL1 , f

U
1 ]
〉

and s2 =
〈
[tL2 , t

U
2 ], [iL2 , i

U
2 ], [fL2 , f

U
2 ]
〉

be two IVNN then

the Hamming Distance H(s) between two IVNN s1 and s2 is as follows [10],

D(s1, s2) =
1

6

n∑
i=1

[
∣∣tL1 − tL2 ∣∣+

∣∣tU1 − tU2 ∣∣+
∣∣iL1 − iL2 ∣∣+

∣∣iU1 − iU2 ∣∣+
∣∣fL1 − fL2 ∣∣+

∣∣fU1 − fU2 ∣∣]
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2.1. Ranking of Interval Valued Neutrosophic numbers

Let s1 and s2 be two IVNNs, then the ranking method for comparing two IVNS is defined

as follows, [12]

(i) Score Function

If S(s1) > S(s2) then s1 > s2

(ii) Cosine Similarity Measure

C(s1) > C(s2) then s1 > s2

(iii) Hamming Distance

H(s1) > H(s2) then s1 < s2

3. A MCDM approach based on Interval Valued Neutrosophic Numbers

In this section, we proposed a new max-product approach for determining the weighted

average for interval-valued neutrosophic numbers. This formula can be applied to any order of

matrices containing interval-valued neutrosophic numbers, as well as two or more matrices of

the same order. The remaining part contains the suggested method’s procedure and flowchart.

Result 3.1. Let Ax×y and Bx×y be two matrix with an interval valued neutrosophic numbers.

Then the Max-product for A and B is defined as follows,〈
max

(
n∏

m=1

mL
txy1 ,

n∏
m=1

mL
txy2 , . . .

)
,max

(
n∏

m=1

mU
txy1 ,

n∏
m=1

mU
txy2 , . . .

)〉
〈
max

(
n∏

m=1

mL
ixy1 ,

n∏
m=1

mL
ixy2 , . . .

)
,max

(
n∏

m=1

mU
ixy1 ,

n∏
m=1

mU
ixy2 , . . .

)〉
〈
max

(
n∏

m=1

mL
fxy1 ,

n∏
m=1

mL
fxy2 , . . .

)
,max

(
n∏

m=1

mU
fxy1 ,

n∏
m=1

mU
fxy2 , . . .

)〉
Where m denotes the number of matrices.

We know, the fuzzy max-product composition,

Let A and B be x × y and y × z matrices respectively. The Fuzzy Max product compo-

sition of A and B is defined by,

µA◦B = max[µA(x, y).µB(y, z)]

From this we can extend the concept of Interval valued fuzzy number and Interval valued

neutrosophic number.

Let A and B be x × y matrices with an interval valued fuzzy numbers. For A and B

matrices, we should find the maximum product. The lower and upper limits are independent

in this case. As a result, we calculate the max-product separately for the lower and upper

limit values.
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Assume that A1×2 and B1×2 be two matix with interval valued numbers.

we take A =
(

(aL1 , a
U
1 ) (aL2 , a

U
2 )
)

and B =
(

(bL1 , b
U
1 ) (bL2 , b

U
2 )
)

Max-product of A and B =
(
max[(aL1 .b

L
1 ), (aL2 .b

L
2 )] max[(aU1 .b

U
1 ), (aU2 .b

U
2 )]
)

Let A and B be two matrices with interval valued neutrosophic numbers.

we take A =
[〈

(aLt1, a
U
t1), (a

L
i1, a

U
i1), (a

L
f1, a

U
f1)
〉 〈

(aLt2, a
U
t2), (a

L
i2, a

U
i2), (a

L
f2, a

U
f2)
〉]

B =
[〈

(bLt1, b
U
t1), (b

L
i1, b

U
i1), (b

L
f1, b

U
f1)
〉 〈

(bLt2, b
U
t2), (b

L
i2, b

U
i2), (b

L
f2, b

U
f2)
〉]

Max-product of A and B =

[
〈
max[(aLt1.b

L
t1), (a

L
t2.b

L
t2)],max[(aUt1.b

U
t1), (a

U
t2.b

U
t2)]
〉

〈
max[(aLi1.b

L
i1), (a

L
i2.b

L
i2)],max[(aUi1.b

U
i1), (a

U
i2.b

U
i2)]
〉

〈
max[(aLf1.b

L
f1), (a

L
f2.b

L
f2)],max[(aUf1.b

U
f1), (a

U
f2.b

U
f2)]
〉
]

This equation represents the max product value of 1 × 2 matrices, and we calculate the

values for x× y matrices in the same way.

Max-product of m matrices =〈
max

(
n∏

m=1

mL
txy1 ,

n∏
m=1

mL
txy2 , . . .

)
,max

(
n∏

m=1

mU
txy1 ,

n∏
m=1

mU
txy2 , . . .

)〉
〈
max

(
n∏

m=1

mL
ixy1 ,

n∏
m=1

mL
ixy2 , . . .

)
,max

(
n∏

m=1

mU
ixy1 ,

n∏
m=1

mU
ixy2 , . . .

)〉
〈
max

(
n∏

m=1

mL
fxy1 ,

n∏
m=1

mL
fxy2 , . . .

)
,max

(
n∏

m=1

mU
fxy1 ,

n∏
m=1

mU
fxy2 , . . .

)〉
(1)

Here m denotes the number of matrices. The max product of more than two matrices

with x rows and y columns is represented by Equation (1). For Interval valued neutrosophic

numbers, this equation is used as the weighted average max product formula.

3.1. Procedure and Flowchart for the proposed method

The ranking of interval-valued neutrosophic numbers is used to solve some difficult prob-

lems. Here we use score function, cosine similarity function, and hamming distance for ranking

the values and we use two types of criteria which as qualitative and quantitative that are used

for the more accurate outcome. The method’s procedure is as follows, when we take k alter-

natives over m criteria by n experts.

Step 1: Define an available alternatives based on selected problem.

Step 2: Define a set of qualitative and quantitative criteria for evaluating the alternatives.

Step 3: The performance of the alternatives are evaluted by the group of experts. These

performance are taken into interval valued neutrosophic numbers.

Step 4: Calculated overall ratings for qualitative and quantitative criteria separately by using

D. Jeni Seles Martina, G. Deepa, Ranking of Interval Valued Neutrosophic Numbers by
Qualitative and Quantitative Criteria

Neutrosophic Sets and Systems, Vol. 51, 2022                                                                              853



weighted average max product formula given in Equation 1.

Step 5: Calculate the score function, cosine similarity function and hamming distance be-

tween qualitative and quantitative values.

Step 6: Rank the alternatives using the ranking of IVNNs and select the best one among

those alternatives.

We take 4 alternatives over 3 qualitative criteria and 3 quantitative criteria by 3 experts.

By these expressions, the following flowchart is the steps for solving the problem.

Figure 1. Flowchart

4. Numerical Illustration

An example of choosing the optimal construction for a building project to show how IVNNs

may be used to solve MCDM challenges. Assume the manager is tasked with choosing the

best tender construction for their structure. As a result, a group of three experts (E1, E2, E3)

was formed. On the basis of the following Qualitative and Quantitative criteria, the experts

choose the best option out of four (A1, A2, A3, A4) alternatives.

Qualitative : C1- Technical skills, C2- Architectural Design, C3- Reliability

Quantitative : C4- Performance, C5- Price, C6- Period of work

The experts give the rating values to each alternative for the given criteria. The values

are taken as Interval-valued neutrosophic numbers. When the alternatives have good criteria

D. Jeni Seles Martina, G. Deepa, Ranking of Interval Valued Neutrosophic Numbers by
Qualitative and Quantitative Criteria

Neutrosophic Sets and Systems, Vol. 51, 2022                                                                              854



it has a high value in truth membership value. From this concept, experts have directly rated

the alternatives in Interval values. In some critical situations, we use linguistic variables for

collecting ratings from experts. Tables 1, 2 and 3 illustrate the ratings given by the three

experts for qualitative criteria. Tables 4, 5, and 6 provide the ratings for qualitative criteria.

Table 1. Qulitative ratings by Expert 1

C1 C2 C3

A1 [(.5,.7),(.2,.4),(.6,.7)] [(.6,.8),(.3,.5),(.4,.6)] [(.7,.8),(.4,.5),(.3,.5)]

A2 [(.4,.5),(.3,.6),(.3,.4)] [(.4,.5),(.2,.3),(.3,.4)] [(.3,.5),(.2,.4),(.5,.6)]

A3 [(.5,.6),(.1,.3),(.4,.5)] [(.4,.5),(.2,.4),(.4,.5)] [(.6,.8),(.3,.5),(.4,.5)]

A4 [(.6,.7),(.3,.4),(.2,.3)] [(.7,.8),(.3,.4),(.6,.7)] [(.5,.7),(.4,.5),(.6,.7)]

Table 2. Qulitative ratings by Expert 2

C1 C2 C3

A1 [(.3,.4),(.5,.6),(.6,.7)] [(.6,.7),(.2,.3),(.4,.5)] [(.4,.5),(.1,.3),(.5,.6)]

A2 [(.6,.7),(.2,.3),(.3,.4)] [(.4,.6),(.2,.4),(.3,.4)] [(.5,.7),(.3,.5),(.3,.4)]

A3 [(.6,.8),(.2,.4),(.4,.5)] [(.5,.7),(.3,.4),(.4,.5)] [(.4,.6),(.3,.4),(.4,.5)]

A4 [(.3,.5),(.2,.4),(.6,.8)] [(.4,.6),(.3,.5),(.5,.7)] [(.3,.4),(.5,.6),(.5,.7)]

Table 3. Qulitative ratings by Expert 3

C1 C2 C3

A1 [(.5,.6),(.2,.3),(.4,.5)] [(.6,.8),(.1,.3),(.5,.6)] [(.7,.8),(.3,.4),(.4,.5)]

A2 [(.3,.4),(.3,.5),(.5,.7)] [(.4,.6),(.3,.4),(.5,.6)] [(.3,.5),(.1,.3),(.4,.5)]

A3 [(.4,.5),(.2,.3),(.5,.7)] [(.5,.6),(.2,.4),(.6,.7)] [(.6,.7),(.3,.5),(.3,.4)]

A4 [(.4,.6),(.2,.3),(.5,.6)] [(.6,.7),(.2,.3),(.6,.8)] [(.3,.4),(.5,.6),(.5,.7)]

Table 4. Quantitative ratings by Expert 1

C4 C5 C6

A1 [(.3,.4),(.2,.3),(.6,.7)] [(.4,.5),(.3,.4),(.5,.6)] [(.3,.5),(.3,.4),(5,.6)]

A2 [(.4,.5),(.3,.5),(.5,.6)] [(.6,.7),(.3,.5),(.4,.5)] [(.4,.5),(.2,.3),(.6,.7)]

A3 [(.7,.8),(.2,.4),(.3,.5)] [(.6,.7),(.3,.4),(.4,.6)] [(.5,.7),(.2,.4),(.3,.4)]

A4 [(.7,.8),(.2,.3),(.4,.5)] [(.5,.7),(.3,.5),(.2,.4)] [(.6,.8),(.3,.4),(.5,.6)]
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Table 5. Quantitative ratings by Expert 2

C4 C5 C6

A1 [(.2,.4),(.3,.4),(.6,.7)] [(.3,.4),(.2,.3),(.5,.6)] [(.4,.5),(.3,.4),(.6,.8)]

A2 [(.4,.6),(.2,.4),(.6,.8)] [(.5,.6),(.1,.2),(.7,.8)] [(.6,.7),(.2,.3),(.7,.8)]

A3 [(.7,.8),(.3,.5),(.4,.5)] [(.6,.8),(.2,.3),(.4,.5)] [(.8,.9),(.3,.5),(.5,.6)]

A4 [(.5,.6),(.3,.4),(.2,.3)] [(.4,.6),(.1,.3),(.5,.6)] [(.5,.6),(.2,.3),(.3,.5)]

Table 6. Quantitative ratings by Expert 3

C4 C5 C6

A1 [(.4,.5),(.2,.3),(.5,.7)] [(.4,.5),(.2,.4),(.6,.7)] [(.7,.8),(.3,.4),(.6,.7)]

A2 [(.7,.9),(.4,.5),(.3,.4)] [(.6,.7),(.3,.4),(.4,.5)] [(.5,.6),(.4,.5),(.3,.4)]

A3 [(.4,.6),(.2,.4),(.4,.5)] [(.4,.5),(.2,.3),(.6,.7)] [(.6,.7),(.3,.4),(.4,.5)]

A4 [(.6,.8),(.4,.5),(.3,.4)] [(.7,.8),(.3,.4),(.4,.5)] [(.6,.7),(.4,.5),(.3,.4)]

We generate the overall rating values for qualitative and quantitative criteria using the

weighted average max product formula.

A1(T
L) = max{(.5× .3× .5), (.6× .6× .6), (.7× .4× .7)}

= max{0.075, 0.216, 0.112} = 0.216

A1(T
U ) = max{(.7× .4× .6), (.8× .7× .8), (.8× .5× .8)}

= max{0.168, 0.448, 0.32} = 0.448

Similarly, the interminacy and false values are calculated for A1 and the remaining alter-

natives are calculated in the same way.

Overall ratings for qualitative criteria by three experts

A1 [(0.216, 0.448), (0.02, 0.072), (0.144, 0.245)]

A2 [(0.072, 0.18), (0.018, 0.09), (0.06, 0.12)]

A3 [(0.15, 0.336), (0.027, 0.1), (0.08, 0.175)]

A4 [(0.168, 0.336), (0.1, 0.18), (0.18, 0.392)]

Overall ratings for quantitative criteria by three experts

A1 [(0.084, 0.2), (0.027, 0.064), (0.18, 0.343)]

A1 [(0.18, 0.294), (0.024, 0.1), (0.126, 0.224)]

A1 [(0.24, 0.441), (0.018, 0.08), (0.096, 0.21)]

A1 [(0.21, 0.384), (0.024, 0.06), (0.045, 0.12)]
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Score Function

Qualitative A1 =
1

4
[2 + 0.216 + 0.448− 2(0.02 + 0.072)− (0.144 + 0.245)]

= 0.5227

Quantitative A1 =
1

4
[2 + 0.084 + 0.2− 2(0.027 + 0.064)− (0.18 + 0.343)]

= 0.3948

Average S(A1) =
A1 +A1

2

S(A1) = 0.4587

Cosine Similarity Measure

C(A1) =
(0.664)(0.284) + (0.092)(0.091) + (0.389)(0.523)√

(0.664)2 + (0.092)2 + (0.389)2
√

(0.284)2 + (0.091)2 + (0.523)2

C(A1) = 0.8581

Hamming Distance

D(A1) =
1

6
[|0.216− 0.084|+ |0.448− 0.2|+ |0.02− 0.027|

+ |0.072− 0.064|+ |0.144− 0.18|+ |0.245− 0.343|]

D(A1) = 0.0882

The remaining values of score function, cosine similarity measure and hamming distance

are calculated for each alternatives in the same way.

Finally, the following table shows the ranking of the score function, cosine similarity

function, and hamming distance.

Table 7. The ranking results of three approaches

S(A) Rank C(A) Rank D(A) Rank

A1 0.4587 III 0.8581 III 0.0882 III

A2 0.4665 II 0.9917 II 0.0680 II

A3 0.5195 I 0.9935 I 0.0458 I

A4 0.4541 IV 0.8258 IV 0.1155 IV

The values are calculated manually and then ran through MATLAB R2020a. We can

solve a large number of matrices using Matlab code. This helps to solve the difficult situations

in multiple criteria. Figure (a) shows the final output results, and Figure (b) shows the final

ranking as a bar chart.
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(a) Ouput Result (b) Ranking Bar chart

Figure 2. MATLAB R2020a

The colour blue represents the score function and the colour orange represents the cosine

similarity measure in this bar chart, and A3 being the highest value in both. The hamming

distance is represented by the colour yellow. When the distance between two points is small,

the value receives the highest ranking. Clearly, A3 is the highest. In comparison to the other

alternatives, A3 is the best one.

Ranking order of the alternatives : A3 > A2 > A1 > A4

5. Conclusions

Ranking methods always give a good result in decision-making. Particularly comparison

of neutrosophic numbers uses to rank the values very easily. In that situvation, single-valued

neutrosophic numbers and interval-valued neutrosophic numbers play the most part. In this

paper, the basic concepts of interval valued neutrosophic sets and ranking of IVNNs are pre-

sented. We proposed a new technique using max product to calculate the weighted average

for interval valued neutrosophic numbers, which achieved a very efficient result. The ranking

values of three approaches produced an ideal outcome for choosing the best option which is

established in Numerical example. When compared to other alternatives, A3 is the best choice

in terms of both qualitative and quantitative criteria. The output result verified through Mat-

lab. This work can further be developed to solve more complex multi criteria decision making

problems using many types of Neutrosophic numbers such as bi-polar, m-polar neutrosophic

numbers.
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Abstract. Several new linguistic neutrosophic semi-separation axioms and semi-regularity axioms are presented

in this article and example cases are also given for non justifiable results. Additionally, a new class of spaces

called linguistic neutrosophic semi-D0, linguistic neutrosophic semi-D1 and linguistic neutrosophic semi-D2 is

described and the inter relationships are analyzed with appropriate illustrations.
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1. Introduction

It is known as separation axioms in topology and related fields of mathematics that one

often makes several restrictions on the kinds of topological spaces that are to be considered.

Maheswari and Prasad [9] generalized T0, T1 and T2 spaces to semi-T0, semi-T1 and semi-T2

respectively. The separation axioms R0 and R1 are introduced in topological spaces by Shanin

[14] in 1943. Several intriguing results have been obtained by Murdashwar and Naimpally [11]

studying the properties of R0 topological spaces. Also, they proposed a second concept, R1,

was introduced which is independent of T0 and T1, but stronger than T2.

As a continuation of fuzzy sets [17] and eventually intuitionistic fuzzy sets [1], Smarandache [16]

introduced the idea of neutrosophic sets. Chang [2], Coker [3] and Salama, Alblowi [14] are

the topologists who have instigated the notion of fuzzy topology, intuitionistic fuzzy topology

and neutrosophic topology respectively. Meanwhile, Fang [5] found linguistic neutrosophic

number which has led to the concept of linguistic neutrosophic topology introduced in 2021

by Gayathri and Helen [6]. In this article, linguistic neutrosophic semi-Tk, (k = 0, 1, 2) spaces
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and linguistic neutrosophic semi-Rp spaces(p = 0, 1, ) are discussed. Aside from that, the

new spaces called linguistic neutrosophic semi-Dk spaces(k = 0, 1, 2) are introduced and their

properties analyzed and numerous relationships are discussed.

Throughout this article, (SLN , τLN ) denotes the linguistic neutrosophic topological space

2. Preliminaries

Definition 2.1. [16] Let S be a space of points (objects), with a generic element in x denoted

by S. A neutrosophic set A in S is characterized by a truth-membership function TA, an

indeterminacy membership function IA and a falsity-membership function FA. TA(x), IA(x)

and FA(x) are real standard or non-standard subsets of ]0−, 1+[. That is TA : S →]0−, 1+[, IA :

S →]0−, 1+[, FA : S →]0−, 1+[. There is no restriction on the sum of TA(x), IA(x) and FA(x),

so 0− ≤ sup TA(x)+ sup IA(x)+ sup FA(x) ≤ 3+.

Definition 2.2. [16] Let S be a space of points (objects), with a generic element in x denoted

by S. A single valued neutrosophic set (SVNS) A in S is characterized by truth-membership

function TA, indeterminacy-membership function IA and falsity-membership function FA. For

each point S in S, TA(x), IA(x), FA(x) ∈ [0, 1]. When S is continuous, a SVNS A can be

written as A =
∫
〈T (x), I(x), F (x)〉/x ∈ S. When S is discrete, a SVNS A can be written as

A =
∑
〈T (xi), I(xi), F (xi)〉/xi ∈ S.

Definition 2.3. [5] Let S = {sθ|θ = 0, 1, 2, ....., τ} be a finite and totally ordered discrete

term set, where τ is the even value and sθ represents a possible value for a linguistic variable.

Definition 2.4. [5] Let Q = {s0, s1, s2, ..., st} be a linguistic term set (LTS) with odd cardi-

nality t+1 and Q = {sh/s0 ≤ sh ≤ st, h ∈ [0, t]}. Then, a linguistic single valued neutrosophic

set A is defined by,

A = {〈x, sθ(x), sψ(x), sσ(x)〉|x ∈ S}, where sθ(x), sψ(x), sσ(x) ∈ Q represent the linguistic

truth, linguistic indeterminacy and linguistic falsity degrees of S to A, respectively, with con-

dition 0 ≤ θ+ψ+σ ≤ 3t. This triplet (sθ, sψ, sσ) is called a linguistic single valued neutrosophic

number.

Definition 2.5. [6]Let α = (lθ, lψ, lσ) be a LSVNN. The set of all labels is, L =

{l0, l1, l2, ....., lt}.
Then the unit linguistic neutrosophic(LN in short) set (1LN ) is defined as 1LN = (lt, l0, l0),

which is the truth membership,and the zero linguistic neutrosophic set (0LN ) is defined as

0LN = (l0, lt, lt), which is the falsehood membership.

Definition 2.6. [6] For a linguistic neutrosophic topology τLN , the collection of linguistic

neutrosophic(LN in short) sets should obey,
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(1) 0LN , 1LN ∈ τLN
(2) K1

⋂
K2 ∈ τLN for any K1,K2 ∈ τLN

(3)
⋃
Ki ∈ τLN ,∀{Ki : i ∈ J} ⊆ τLN

We call, the pair (SLN , τLN ), a linguistic neutrosophic topological space.

Definition 2.7. Let (SLN , τLN ) be a LNTS. Then, the LN semi-closure, for a LN subset

ELN is defined as the intersection of all LNSCSs in SLN , that are contained in ELN , (i.e)

LNSCl(ELN ) = ∩{KLN : KLN is a LNSCS in SLN and KLN ⊇ ELN}.

Definition 2.8. A topological space (SLN , τLN ) is said to be

(1) semi-T0 [9](semi-Kolomogorov) if for each pair of distinct points in X, there exists a

semi-open set containing one but not the other.

(2) semi-T1 [9](semi-Frechet) if for each pair of distinct points x and y in X, there exist

semi-open sets U and V containing x and y such that x ∈ U, y /∈ V and x /∈ U, y ∈ V .

(3) semi-T2 [9](semi-Hausdorff) if every two points can be separated by disjoint semi-open

sets.

(4) R0 [11] if for each open set G, x ∈ G⇒ cl({x}) ⊆ G.

(5) R1 [11] if for each x, y ∈ X with cl({x} 6= cl({y}), there exist two disjoint open sets U

and V such that cl({x} ⊆ U and cl({y} ∈ V .

Definition 2.9. Let SLN be a non-void set and KLN = {〈s, [TKLN
, IKLN

, FKLN
]〉} and HLN =

{〈s, [THLN
, IHLN

, FHLN
]〉} are LN sets in LNTS.

(I) KLN ∪HLN can be defined as

(a) KLN ∪HLN = {〈s, [TKLN
∧ THLN

, IKLN
∧ IHLN

, FKLN
∨ FHLN

]〉}
(II) KLN ∩HLN can be defined as

(a) KLN ∩HLN = {〈s, [TKLN
∧ THLN

, IKLN
∧ IHLN

, FKLN
∨ FHLN

]〉}
(III) The complement of KLN = {〈s, [TKLN

, IKLN
, FKLN

]〉} is defined as,

(a) (KLN )c = {〈s, [FKLN
, IKLN

, TKLN
]〉}

(b) ((KLN )c)c = KLN

(c) (KLN ∩HLN )c = (KLN )c ∪ (HLN )c

(d) (KLN ∪HLN )c = (KLN )c ∩ (HLN )c

3. Linguistic Neutrosophic Separation Axioms

Definition 3.1. A LNS PLN = {〈s1, TPLN
(s1), IPLN

(s1), FPLN
(s1)〉 : s1 ∈ SLN} is called a

linguistic neutrosophic point(LNP in short) if and only if for any element s2 ∈ SLN ,TPLN
(s1) = lp, IPLN

(s1) = lq, FPLN
(s1) = lr, for s2 = s1,

TPLN
(s1) = 0, IPLN

(s1) = 0, FPLN
(s1) = 1, for s2 6= s1.
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where 0 <p ≤ t, 0 ≤ q < t, 0 ≤ r < t.

Definition 3.2. A LNP PLN = {〈s, TPLN
(s), IPLN

(s), FPLN
(s)〉 : s ∈ SLN} will be denoted by

PLN
s
〈lp,lq ,lr〉 or PLN 〈s, lp, lq, lr〉 or simply by s〈lp,lq ,lr〉.

The complement of the LNP PLN
s
〈lp,lq ,lr〉 will be denoted by (PLN

s
〈lp,lq ,lr〉)

c or sc〈lp,lq ,lr〉.

Definition 3.3. A LNTS (SLN , τLN ) is LN semi-T0 space if for a couple of distinct points in

SLN , there lies a LNSO set containing one point not the other.

Example 3.4. Let the universe of discourse be U = {a, b, c}. The set of all linguistic term

is, L = { very salt(l0), salt(l1), very sour(l2), sour(l3), bitter(l4), sweet(l5), very sweet(l6)}.
Let SLN = {c}. Let s1〈a,l0,l2,l6〉, s2〈a,l1,l0,l6〉 be any two distinct LN points in SLN . Then

ALN = 〈a, (l0, l4, l6)〉 and BLN = 〈a, (l2, l0, l6)〉 the LNSOSs that contains the points s1 and s2

respectively such that s2 /∈ ALN and s1 /∈ BLN .

Theorem 3.5. A LNTS (SLN , τLN ) is semi-T0 iff each couple of points s1, s2 of

SLN , LNSCl({s1}) 6= LNSCl({s2}).

Proof:

Necessity Part: Let the space (SLN , τLN ) is LN semi-T0 and s1 6= s2 where s1, s2 ∈ SLN .

Then there lies a LNSO set VLN with s1 ∈ VLN and s2 /∈ VLN . So, SLN\VLN is a LNSC set

containing s2 but not s1. Also, s2 ∈ LNSCl({s2}) ⊆ SLN\VLN but s1 /∈ LNSCl({s2}).
Sufficiency Part: Let s1, s2 ∈ SLN with s1 6= s2 where LNSCl({s1}) 6= LNSCl({s2}).
Then, there lies an element r ∈ SLN with r ∈ LNSCl({s1}) and r /∈ LNSCl({s2}). If

s1 ∈ LNSCl({s2}), then LNSCl({s1}) ⊆ LNSCl({s2}).(i.e) r ∈ LNSCl({s2}) which is a

contradiction. Therefore, s1 /∈ LNSCl({s2}). Also, s2 /∈ SLN\LNSCl({s2}) where the set

SLN\LNSCl({s2}) is LNSO.

Definition 3.6. Let ALN be a LN subset of (SLN , τLN ). Then LN semi-kernel of ALN is

defined by, LNSKer(ALN ) = ∩{KLN ⊆ SLN |ALN ⊆ KLN and KLN ∈ LNSO(SLN , τLN )}.

Theorem 3.7. A LN topological space (SLN , τLN ) is semi-T0 iff for any couple of points s1, s2

of SLN , LNSKer({s1}) 6= LNSKer({s2}).

Proof: Necessity Part: Suppose SLN is a LN semi-T0 space, then LNSCl({s1}) 6=
LNSCl({s2}). Ergo, LNSKer({s1}) 6= LNSKer({s2}).
Sufficiency Part: Let s1 6= s2 where s1, s2 ∈ SLN and LNSKer({s1}) 6= LNSKer({s2}).
Then, LNSCl({s1}) 6= LNSCl({s2}).

Definition 3.8. A LNTS (SLN , τLN ) is LN semi-T1 space if for every couple of distinct points

in SLN , there lies LNSO sets ELN and FLN containing two points respectively with ELN ∩
FLN = φ, (i.e) the intersection must be an empty set rather than zero element.
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Example 3.9. Let the universe of discourse be U = {a, b, c} and the LTS be as in the example

3.4. Let SLN = {c}. Let s1〈a,l0,l2,l6〉, s2〈a,l1,l0,l6〉 be any two distinct LN points in SLN . Then

ALN = 〈a, (l0, l4, l6)〉 and BLN = 〈a, (l2, l0, l6)〉 the LNSOSs that contains the points s1 and s2

respectively such that ALN and BLN .

Theorem 3.10. The upcoming characterizations of a LN semi-T1 space imply each other.

(1) The space SLN is LN semi-T1 space.

(2) {s} = LNSCl({s}) for every s ∈ SLN .

(3) For each s ∈ SLN , the intersection of all LNSO sets containing s is {s}.

Proof: (1) ⇒ (2): There lies a LNSO set VLN in SLN with s1 ∈ VLN and s2 /∈ VLN . If

s1 ∈ LNSCl({s2}), then s1 is a LN semi-cluster point of {s2}. So, ULN is a LNSO set

containing s1 and {s2}∩VLN 6= φ, which arrives at a contradiction. Thus, s1 /∈ LNSCl({s2}).
(2)⇒ (3): Suppose {s1} = LNSCl({s1}). Then, {s1} ⊆ LNSCl({s1}). If s2 ∈ LNSCl({s1}),
then s1 ∈ LNSKer({s2}). Thus, LNSKer({s1}) ⊆ {s1}. Thus, {s1} = LNSKer({s1}).
Also, {s1} = ∩{VLN : VLN ∈ LNSO(SLN , τLN ) and s1 ∈ ULN}.
(3) ⇒ (1): Let the intersections of all LNSO sets containing s is {s}. And let s1 6= s2, where

s1, s2 ∈ SLN . By the hypothesis, {s1} = ∩{VLN : VLN ∈ LNSO(SLN , τLN ) and s1 ∈ ULN}.
Thus, we can find a LNSO set VLN containing s1 but not s2. Therefore, SLN is LN semi-T1

space.

Theorem 3.11. The space (SLN , τLN ) is LN semi-T1 iff the singleton sets are LNSC.

Proof: Necessity Part: For every singleton set, {s} = LNSCl({s}).
Sufficiency Part: Let {s} is LNSC, {s} = LNSCl({s}). Then the LNTS SLN is LN semi-T1.

Definition 3.12. A LNTS (SLN , τLN ) is LN semi-T2 space if two distinct points s1 and s2

can be separated by disjoint LNSO sets ULN and VLN respectively.

Example 3.13. In example 3.9, ALN and BLN are disjoint LNSOSs.

Theorem 3.14. The underneath characterizations of a LN semi-T2 space imply each other.

(1) The space SLN is LN semi-T2 space.

(2) For every s2 6= s1, there is a LNSO set ULN containing s1 with s2 /∈ LNSCl(ULN ).

Proof: (1) ⇒ (2): For each s2 6= s1, there lie LNSO sets KLN and HLN with s1 ∈ KLN and

s2 ∈ HLN with KLN ∩HLN = φ. Also, KLN ⊆ SLN\HLN and s2 /∈ SLN\HLN , which shows

that s2 /∈ ∩{SLN\HLN : SLN\HLN is LNSC and KLN ⊆ SLN\HLN}.
(2)⇒ (1): Let s2 6= s1, then there lies a LNSO set ULN containing s1 with s2 /∈ LNSCl(ULN ).

Now, s1 ∈ ULN ⊆ LNSCl(ULN ) and SLN\LNSCl(ULN ) is LNSO which is evident that

ULN ∩ (SLN\LNSCl(ULN )) = φ.

N.Gayathri, M.Helen, Semi-Separation Axioms and Semi-Regularity Axioms in Linguistic
Neutrosophic Topological Spaces

Neutrosophic Sets and Systems, Vol. 51, 2022                                                                               865



4. Linguistic Neutrosophic Regulation Axioms

Definition 4.1. A LNTS (SLN , τLN ) is semi-R0 if for each LNSO set KLN , s ∈ KLN ⇒
LNSCl({s}) ⊆ KLN .

Example 4.2. Let the universe of discourse be U = {x, y, z, w} and let SLN = {x, y}.
The set of all LTS be L= {very strongly disagree(l0), strongly disagree(l1), disagree(l2),

mostly disagree(l3), slightly disagree(l4), neither disagree nor agree(l5), slightly agree(l6),

mostly agree(l7), agree(l8), strongly agree(l9), very strongly agree(l10)}. Let FLN =

{(x, 〈l10, l9, l2〉), (y, 〈l5, l7, l0〉)} be an LNSOS. Let s{(x,〈l3,l6,l5〉),(y,〈l7,l2,l6〉)} be a LNP. Now

LNSCl({s}) = (ELN )c ⊆ FLN , where ELN is a LNSOS.

Theorem 4.3. A LNTS (SLN , τLN ) is LN semi-R0 iff each LN subset of SLN is the union of

LNSC sets.

Proof: Necessity Part: Let SLN be a LN semi-R0 space and ALN ⊆ SLN . Then for any

s ∈ ALN , LNSCl({s}) ⊆ ALN . Also, ∪{LNSCl({s}) : s ∈ ALN} ⊆ ALN . Thus, ALN =

LNSCl({s}) = ∪{LNSCl({s}) : s ∈ ALN}.
Sufficiency Part: Let s ∈ ALN where ALN is LNSO. Then, there lie LNSC sets Ui with

ALN = ∪{Ui : i ∈ I}. Since s ∈ ALN ⇒ s ∈ Ui : i ∈ I. Ergo, s ∈ LNSCl({s}) ⊆ Ui ⊆ ALN .

Remark 4.4. Every LN semi-T1 space is LN semi-R0 but not the reverse implication holds

true.

Example 4.5. In example 4.2, the space is semi-R0 but not semi-T1 as ELN ∩ FLN 6= 0LN .

Theorem 4.6. For any LNTS (SLN , τLN ) the upcoming statements imply each other.

(1) (SLN , τLN ) is LN semi-R0.

(2) For any LNSC set VLN and for s /∈ VLN , there lies a ULN ∈ LNSO(SLN , τLN ) with

s /∈ ULN and VLN ⊆ ULN .

(3) LNSCl({s}) ∩ VLN = φ, where VLN is a LNSC set and s /∈ VLN .

Proof: (1) ⇒ (2): Let KLN be a LNSC set with s /∈ KLN . By the definition, LNSCl({s}) ⊆
SLN\KLN and so KLN ⊆ SLN\LNSCl({s}). Then, SLN\LNSCl({s}) is the required LNSC

set containing KLN and s /∈ SLN\LNSCl({s}).
(2) ⇒ (3): Let KLN be a LNSC set with s /∈ KLN . By hypothesis, we can find a ULN ∈
LNSO(SLN , τLN ) with s /∈ ULN and KLN ⊆ ULN . Suppose LNSCl({s}) ∩ ULN 6= φ, then

there exists r ∈ SLN with r ∈ ULN and r ∈ LNSCl({s}). Now, HLN ∩ {s} 6= φ,(i.e)s ∈ HLN .

The result is that ULN is a LNSO set that contains r and s ∈ ULN , which arrives at a

contradiction.

(3)⇒ (1): If HLN is a LNSO set and s ∈ HLN , then SLN\HLN is LNSC and s /∈ SLN\HLN .

By the assumption, LNSCl({s}) ∩ (SLN\HLN ) = φ.
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Theorem 4.7. In a LNTS (SLN , τLN ) for any two points s, r, the result LNSCl({s}) 6=
LNSCl({r})⇒ LNSCl({s}) ∩ LNSCl({r}) = φ holds iff the LNTS is LN semi-R0.

Proof: Necessity Part: Let s, r ∈ SLN with LNSCl({s}) 6= LNSCl({r}). Now, suppose we

can find an element in x ∈ SLN with x ∈ LNSCl({s}) and x ∈ LNSCl({r}). There lies a

LNSO set ULN containing x with {r} ∩ ULN = φ so that r /∈ ULN . As x ∈ LNSCl({s}), for

each LNSO set HLN containing x so that HLN ∩ {s} = φ, which results in s ∈ ULN . Now,

LNSCl({s}) ⊆ SLN\LNSCl({t}).
Sufficiency Part: Let LNSCl({s}) 6= LNSCl({r}) implies LNSCl({s}) ∩ LNSCl({t}) = φ.

Let HLN be a LNSO set with s ∈ HLN . If t /∈ HLN and so s /∈ LNSCl({r}). By assumption,

LNSCl({s}) ∩ LNSCl({t}) = φ and t /∈ LNSCl({s}).

Theorem 4.8. In a space (SLN , τLN ) for any two points s, r, the result LNSKer({s}) 6=
LNSKer({r}) implies LNSKer({s}) ∩ LNSKer({r}) = φ holds iff the LNTS is LN semi-

R0.

Proof: Necessity Part: Let s, t ∈ SLN with LNSKer({s}) 6= LNSKer({r}) and let

x ∈ LNSKer({s}) ∩ LNSKer({r}). Then x ∈ LNSKer({s}) and x ∈ LNSKer({t}).
Then, s ∈ LNSCl({x}) and t ∈ LNSCl({x}) and also LNSCl({s}) ∩ LNSCl({x}) 6= φ

and LNSCl({r}) ∩ LNSKer({x}) 6= φ. Now, LNSCl({s}) = LNSCl({r}). Then,

LNSKer({s}) = LNSKer({r}) which arrives at a contradiction.

Sufficiency Part: Suppose LNSKer({s}) 6= LNSKer({r}) implies LNSKer({s}) ∩
LNSKer({r}) = φ. Let s, t ∈ SLN with LNSCl({s}) 6= LNSCl({r}) and let x ∈
LNSCl({s}) ∩ LNSCl({r}), then x ∈ LNSCl({s}) and x ∈ LNSCl({t}). Then,

s ∈ LNSKer({x}) and t ∈ LNSKer({x}). Now, LNSKer({s}) = LNSKer({x}) and

LNSKer({t}) = LNSKer({x}), also LNSKer({s}) = LNSKer({t}). Then, LNSCl({s}) =

LNSCl({r}) which is a contradiction.

Theorem 4.9. For any LNTS (SLN , τLN ) the following imply each other.

(1) The space (SLN , τLN ) is LN semi-R0.

(2) For a non-zero LN setALN and for a LNSO set KLN , ALN ∩KLN 6= φ, we can find a

ULN ∈ LNSC(SLN , τLN ) with ALN ∩ ULN 6= φ and ULN ⊆ KLN .

(3) For any HLN ∈ LNSO(SLN , τLN ), HLN = ∪{ULN : ULN ∈ LNSC(SLN , τLN ) and

ULN ⊆ HLN}.
(4) For any KLN ∈ LNSC(SLN , τLN ),KLN = ∩{HLN : HLN ∈ LNSO(SLN , τLN )} and

ULN ⊆ HLN}.
(5) For any s ∈ SLN , LNSCl({s}) ⊆ LNSKer({s}).
(6) For any s, t ∈ SLN , t ∈ LNSCl({s})⇔ s ∈ LNSCl({t}).
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Proof: (1)⇒ (2): Let (φ 6= ALN ) ⊆ SLN and KLN ∈ LNSO(SLN , τLN ) with ALN ∩KLN 6= φ

and let s ∈ ALN ∩KLN . Thus, LNSCl({s}) ∩ALN 6= φ.

(2) ⇒ (3): If KLN ∈ LNSO(SLN , τLN ) and s ∈ KLN , then one can find a LNSC set ULN

with {s} ∩ ULN 6= φ and ULN ⊆ KLN . This implies s ∈ ULN and ULN ⊆ KLN} and

so KLN ⊆ ∪{ULN : ULN ∈ LNSC(SLN , τLN ) and ULN ⊆ KLN}. Also, ∪{ULN : ULN ∈
LNSC(SLN , τLN ) and ULN ⊆ KLN} ⊆ KLN .

(3) ⇒ (4): If ULN ∈ LNSC(SLN , τLN , then SLN\ULN ∈ LNSO(SLN , τLN ). By hypothesis,

SLN\ULN = ∪{SLN\KLN : SLN\KLN ∈ LNSC(SLN , τLN ) and SLN\KLN ⊆ SLN\ULN}.
This implies that ULN = ∩{KLN : KLN ∈ LNSO(SLN , τLN ) and ULN ⊆ KLN}.
(4) ⇒ (5): If t /∈ LNSKer({s}), then s /∈ LNSCl({t}). Then we can find a LNSO set

VLN containing s with VLN ∩ {t} = φ, which implies that LNSCl({t}) ∩ VLN = φ. Then,

LNSCl({t}) = ∩{KLN : KLN ∈ LNSO(SLN , τLN ) and LNSCl({t}) ⊆ KLN}. Since s ∈ VLN ,

we have s /∈ LNSCl({t}) and so there exists KLN ∈ LNSO(SLN , τLN ) with LNSCl({t}) ⊆
KLN and s /∈ KLN . This follows that LNSCl({s}) ∩KLN = φ. Thus, t /∈ LNSCl({s}) and

so LNSCl({s}) ⊆ LNSKer({s}).
(5) ⇒ (6): If t ∈ LNSCl({s}) then by hypothesis, t ∈ LNSKer({s}) and s ∈ LNSCl({t}).
Similarly, if s ∈ LNSCl({t}) and s ∈ LNSKer({t}) then t ∈ LNSKer({s}). This shows that

s ∈ LNSCl({y})⇔ t ∈ LNSKer({s}).
(6) ⇒ (1): Let KLN be a LNSO set in (SLN , τLN ) and let s ∈ KLN . If t /∈ KLN ,then

t ∈ SLN\KLN . Since LNSCl({t}) is the smallest LNSC set that contains t, we have t ∈
LNSCl({t}) ⊆ SLN\KLN . Then LNSCl({t})∩KLN = φ, which results that s /∈ LNSCl({t}).

Theorem 4.10. For any LNTS (SLN , τLN ) the following imply each other.

(1) (SLN , τLN ) is LN semi-R0.

(2) If HLN is LNSC, then HLN = LNSKer(HLN ).

(3) If HLN is LNSC and s ∈ HLN , then LNSKer({s}) ⊆ HLN .

(4) If s ∈ SLN , then LNSKer({s}) ⊆ LNSCl({s}).

Proof: Proof is direct. (1) ⇒ (2): Let HLN be a LNSC and s /∈ HLN . Then SLN\HLN is a

LNSO set containing s. Then by definition, LNSCl({s}) ⊆ SLN\HLN and also LNSCl({s})∩
HLN = φ. Also, s /∈ LNSKer(HLN ). This means that LNSKer(HLN ) ⊆ HLN .

(2)⇒ (3): Proof is direct.

(3) ⇒ (4): Let s ∈ LNSCl({s}) and the set LNSCl({s}) is LNSC. From the assumption,

LNSKer({s}) ⊆ LNSCl({s}).
(4)⇒ (1): Let s ∈ LNSCl({t}). Then t ∈ LNSKer({s}) and by hypothesis t ∈ LNSCl({s}).
On the other hand, let t ∈ LNSCl({s}). Then, s ∈ LNSKer({t}) and s ∈ LNSCl({t}). This

reveals that s ∈ LNSCl({t}) iff t ∈ LNSCl({s}).
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Theorem 4.11. For any LNTS (SLN , τLN ) the following imply each other.

(1) The space (SLN , τLN ) is LN semi-R0.

(2) For ALN 6= φ and for a LNSO set KLN , ALN ∩ KLN 6= φ, we can find a ULN ∈
LNSC(SLN , τLN ) with ALN ∩ ULN 6= φ and ULN ⊆ KLN .

(3) For any HLN ∈ LNSO(SLN , τLN ), HLN = ∪{ULN : ULN ∈ LNSC(SLN , τLN ) and

ULN ⊆ HLN}.
(4) For any KLN ∈ LNSC(SLN , τLN ),KLN = ∩{HLN : HLN ∈ LNSO(SLN , τLN )} and

ULN ⊆ HLN}.
(5) For any s ∈ SLN , LNSCl({s}) ⊆ LNSKer({s}).
(6) For any s, t ∈ SLN , t ∈ LNSCl({s})⇔ s ∈ LNSCl({t}).

Proof: (1) ⇒ (2): Proof is direct. (2) ⇒ (3): If KLN ∈ LNSO(SLN , τLN ) and s ∈ KLN ,

then we can find a LNSC set ULN in SLN with {s} ∩ ULN 6= φ where ULN ⊆ KLN . This

implies that s ∈ ULN and also s ∈ ∪{ULN : ULN ∈ LNSC(SLN , τLN ) and ULN ⊆ KLN and

so KLN ⊆ ∪{ULN : ULN ∈ LNSC(SLN , τLN ). Also, ∪{ULN : ULN ∈ LNSC(SLN , τLN ) and

ULN ⊆ KLN} ⊆ KLN .

(3) ⇒ (4): If ULN ∈ LNSC(SLN , τLN ), then SLN\ULN ∈ LNSO(SLN , τLN ). By hypothesis,

SLN\ULN = ∪{SLN\KLN : SLN\KLN ∈ LNSC(SLN , τLN ) and SLN\KLN ⊆ SLN\ULN}.
Thus ULN = ∩{KLN : KLN ∈ LNSO(SLN , τLN ) and ULN ⊆ KLN}.
(4) ⇒ (5): If t /∈ LNSKer({s}), then s /∈ LNSCl({t}). Then we can find a LNSO set

VLN containing s with VLN ∩ {t} = φ, which implies that LNSCl({t}) ∩ VLN = φ. Then

LNSCl({t}) = ∩{KLN : KLN ∈ LNSO(SLN , τLN ) and LNSCl({t}) ⊆ KLN}. Since s ∈ VLN ,

s /∈ LNSCl({t}) and so there lies KLN ∈ LNSO(SLN , τLN ) with LNSCl({t}) ⊆ KLN and

s /∈ KLN .

Proof is direct for (5)⇒ (6) and (6)⇒ (1).

Theorem 4.12. For any LNTS (SLN , τLN ) the following are equivalent.

(1) (SLN , τLN ) is LN semi-R0.

(2) If HLN is LNSC, then HLN = LNSKer(HLN ).

(3) If HLN is LNSC and s ∈ HLN , then LNSKer({s}) ⊆ HLN .

(4) If s ∈ SLN , then LNSKer({s}) ⊆ LNSCl({s}).

Proof: (1)⇒ (2): LetHLN be a LNSC and s /∈ HLN . Then SLN\HLN is a LNSO set containing

s. Then, LNSCl({s}) ⊆ SLN\HLN and also LNSCl({s}) ∩HLN = φ. s /∈ LNSKer(HLN ).

This means that LNSKer(HLN ) ⊆ HLN . Now, HLN ⊆ LNSKer(HLN ).

(2)⇒ (3): Proof is direct.

(3)⇒ (4): Proof is direct.

(4) ⇒ (1): Let s ∈ LNSCl({t}). Then, t ∈ LNSKer({s}) and t ∈ LNSCl({s}). Let
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t ∈ LNSCl({s}). Then, s ∈ LNSKer({t}) and s ∈ LNSCl({t}). This results that s ∈
LNSCl({t}) iff t ∈ LNSCl({s}). Also , the LNTS is LN semi-R0.

Definition 4.13. A LNTS (SLN , τLN ) is semi-R1 if for any couple of points s1, s2 ∈ SLN , with

LNSCl({s1}) 6= LNSCl({s2}), there lie LNSO sets KLN and HLN with LNSCl({s1}) ⊆ KLN

and LNSCl({s2}) ⊆ HLN where KLN ∩HLN = φ.

Example 4.14. Let the universe of discourse be U = {x, y, z, w} and let SLN = {x, y, z}. The

set of all LTS be L= { very poor (l0), poor(l1), very weak(l2), weak(l3), below average (l4),

average (l5), above average (l6), good (l7), very good (l8), excellent (l9), outstanding (l10)}. Let

s1{(x, 〈l1, l2, L5〉), (y, 〈l0, l4, L6〉), (z, 〈l4, l4, l9〉)}, s2{(x, 〈l2, l2, l4〉), (y, 〈l1, l4, l5〉), (z, 〈l7, l4, l9〉)}
be two distinct LNPs. Now, LNSCl({s1}) = ALN ⊆ KLN and LNSCl({s2}) =

BLN ⊆ HLN , where ALN , BLN are LNSCSs and KLN .HLN are LNSOSs given by,

ALN = {(x, 〈l1, l3, l4〉), (y, 〈l1, l6, l5〉), (z, 〈l5, l8, l9〉)}
BLN = {(x, 〈l4, l5, l3〉), (y, 〈l2, l6, l1〉), (z, 〈l8, l5, l7〉)}
KLN = {(x, 〈l5, l6, l1〉), (y, 〈l4, l6, l1〉), (z, 〈l9, l8, l5〉)}
HLN = {(x, 〈l5, l6, l1〉), (y, 〈l4, l7, l1〉), (z, 〈l9, l6, l8〉)}

Theorem 4.15. Every LN semi-R1 space is LN semi-R0 space.

Proof: If SLN , τLN ) is LN semi-R1 and KLN be a LNSO set in SLN . Then for any s1 ∈ SLN
and s2 ∈ SLN\KLN , s1 6= s2 which implies LNSCl({s1}) 6= LNSCl({s2}). We can find two

disjoint LNSO sets Ks2 and Hs2 with LNSCl({s1}) ⊆ Ks2 and LNSCl({s2}) ⊆ Hs2 . Let

HLN = ∪{Hs2/s2 ∈ SLN\KLN}. If s1 ∈ LNSCl({s1}) ⊆ Ks2 and Ks2 ∩ Hs2 = φ for every

s2 ∈ SLN\KLN and so s1 /∈ Hs2 for each s2 ∈ SLN\KLN which implies s1 /∈ HLN . Now,

s1 ∈ LNSCl({s1}) ⊆ SLN\HLNKLN .

Remark 4.16. The reverse implication of the above theorem need not be true unless one

condition is satisfied.

Theorem 4.17. A LN semi-R0 space is LN semi-R1, if for each couple of points s1 and s2 in

SLN satisfying LNSCl({s1}) 6= LNSCl({s2}) with we can find two disjoint LNSO sets KLN

and HLN so that s1 ∈ KLN and s2 ∈ HLN respectively.

Proof: Let the space SLN be LN semi-R0. Also for each couple of points s1 and s2 in SLN

satisfying LNSCl({s1}) 6= LNSCl({s2}), there lie LNSO sets KLN and HLN so that s1 ∈ KLN

and s2 ∈ HLN with KLN ∩HLN = φ. Then, LNSCl({s1}) ⊆ KLN and LNSCl({s1}) ⊆ HLN .

Theorem 4.18. A LNTS is semi-R1 iff for every couple of points s1, s2 ∈ SLN with

LNSKer({s1}) 6= LNSKer({s2}), there lie LNSO sets KLN and HLN in SLN with

LNSCl({s1}) ⊆ KLN and LNSCl({s2}) ⊆ HLN and KLN ∩HLN = φ.
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Proof: Let s1 and s2 be any two points of SLN , τLN ) with LNSKer({s1}) 6= LNSKer({s2}).
Now we can find disjoint LNSO subsets KLN and HLN with LNSCl({s1}) ⊆ KLN and

LNSCl({s2}) ⊆ HLN , which reveals that SLN is semi-R0.

Conversely, suppose for each couple of points s1, s2 ∈ SLN with LNSKer({s1}) 6=
LNSKer({s2}), there lie disjoint LNSO subsetsKLN andHLN with LNSCl({s1}) ⊆ KLN and

LNSCl({s2}) ⊆ HLN . Assume that LNSCl({s1}) 6= LNSCl({s2}). Then, LNSKer({s1}) 6=
LNSKer({s2}).

Theorem 4.19. For the LNTS SLN , τLN ), the following imply each other.

(1) (SLN , τLN ) is LN semi-T2.

(2) (SLN , τLN ) is both LN semi-R1 and LN semi-T1.

(3) (SLN , τLN ) is both LN semi-R1 and LN semi-T0.

Proof: (1) ⇒ (2): Let the space be LN semi-T2, then the LNTS is LN semi-T1. If there

exist two points s1, s2 ∈ (SLN , τLN ) with LNSCl({s1}) 6= LNSCl({s2}), then s1 6= s2. Since

the points are distinct, there lie LNSO subsets ULN and VLN with s1 ∈ ULN , s2 ∈ VLN and

ULN ∩ VLN = φ. This implies {s1} = LNSCl({s1}) ⊆ ULN and {s2} = LNSCl({s2}) ⊆ VLN .

(2)⇒ (3):Proof is direct.

(3)⇒ (1): Suppose the space is both LN semi-R1 and LN semi-T0. Then for any two distinct

points s1, s2 ∈ (SLN , τLN ), we have LNSCl({s1}) 6= LNSCl({s2}). Then we can find LNSO

subsets ULN and VLN with LNSCl({s1}) ⊆ ULN and LNSCl({s2}) ⊆ VLN .

Theorem 4.20. A LNTS (SLN , τLN ) is semi-R1 iff for each points s1, s2 ∈ (SLN , τLN ) with

LNSCl({s1}) 6= LNSCl({s2}), there lie LNSC subsets ULN and VLN with s1 ∈ ULN , s2 /∈
ULN , s2 ∈ VLN , s1 /∈ VLN and SLN = ULN ∪ VLN .

Proof: Let the space (SLN , τLN ) be LN semi-R1 with LNSCl({s1}) 6= LNSCl({s2}). Then we

can find LNSO subsets K1 and K2 with LNSCl({s1}) ⊆ K1 and LNSCl({s2}) ⊆ K2. Then

ULN = SLN\K2 and VLN = SLN\K1 which are LNSC subsets with s1 ∈ ULN , s2 /∈ ULN , s2 ∈
VLN , s1 /∈ VLN and SLN = ULN ∪ VLN .

Let LNSCl({s1}) 6= LNSCl({s2}) for any two disjoint points s1, s2 ∈ SLN . Now by the

hypothesis, there exists LNSC subsets ULN and VLN with s1 ∈ ULN , s2 /∈ ULN , s2 ∈ VLN , s1 /∈
VLN and SLN = ULN ∪ VLN . Then K1 = SLN\VLN and K2 = SLN\ULN , which are LNSO

subsets with s1 ∈ KO1 and s2 ∈ K2 and K1 ∩K2 = φ. Ergo, the space is LN semi-T2 and

also LN semi-R1.
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5. Linguistic Neutrosophic Semi-D0, Semi-D1, Semi-D2 Spaces

Definition 5.1. Let ALN = 〈s, (TALN
, IALN

, FALN
)〉 and BLN = 〈s, (TBLN

, IBLN
, FBLN

)〉 be

LNS’s, then ALN\BLN is defined by,

ALN\BLN = 〈s,min(TALN
, FBLN

),min(IALN
.IBLN

),max(FALN
, TBLN

)〉.

Definition 5.2. Let ALN be a LN subset of (SLN , τLN ) is a LN semi-difference set(LNSDS

in short) if there exist LNSOSs ULN and VLN such that ULN ⊂ SLN and ALN = ULN\VLN .

The collection of all LNSDS’s is denoted by LNSD(SLN , τLN ).

Remark 5.3. Every LNSOS ALN that is different from SLN is a LNSDS if ULN = ALN and

VLN = φ. The reverse implication need not be true, which is given by a counter example.

Example 5.4. Let the universe of discourse U and LTS be as in example 4.2. The LN sets

ELN = 〈(x, l4, l6, l4), (y, l8, l3, l4)〉 and FLN = 〈(x, l10, l9, l2), (y, l5, l7, l0)〉 are LNSOSs. Now,

the LNDS KLN is ELN\FLN = 〈(x, l2, l6, l0), (y, l0, l3, l5)〉 which is not a LNSOS because

LNInt(LNCl(KLN )) = 1LN .

Definition 5.5. A LNTS (SLN , πLN ) is

(1) LN semi-D0 if for two distinct points s1, s2 ∈ SLN there lies LNSD set containing one

of the point but not the other.

(2) LN semi-D1 if for two distinct points s1, s2 ∈ SLN there lie LNSD sets ULN and VLN

with s1 ∈ ULN , s2 /∈ ULN and s2 ∈ VLN , s1 /∈ VLN .

(3) LN semi-D2 if for two distinct points s1, s2 ∈ SLN there lie LNSD sets ULN and VLN

with s1 ∈ ULN , s2 ∈ VLN and ULN ∩ VLN = φ.

Theorem 5.6. A LNTS (SLN , τLN ) is LN semi-T0 iff it is LN semi-D0.

Proof: Let the space be LN semi-T0 and let S1 6= s2 for s1, s2 ∈ SLN . Then by the definition

of semi-T0, there exists a LNSO set ULN containing one of the points but not the other, (i.e)

s1 ∈ ULN but s2 /∈ ULN . Then ULN 6= SLN . By remark above, ULN is a LNSD set containing

s1 but not s2. Hence, (SLN , τLN ) is LN semi-D0.

Conversely, let the space be LN semi-D0. Then by the definition of semi-D0, there exists

a LNSD set ALN containing one of the point but not the other, (i.e)s1 ∈ ALN , s2 /∈ ALN .

Thus, there exists LNSO sets ULNand VLN with ULN 6= SLN and ALN = ULN\VLN . As

s1 ∈ ALN , s1 ∈ ULN but s1 /∈ VLN . For s2 /∈ ALN , we have two cases.

(i) s2 /∈ ULN but s1 ∈ ULN .
(ii) s2 ∈ ULN and s2 ∈ VLN . But s1 /∈ VLN .

In both cases, the LNTS is LN semi-T0.

Theorem 5.7. A LNTS (SLN , τLN ) is LN semi-D1 iff it is LN semi-D2.
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Proof: Let the space be LN semi-D1, then for each pair of distinct points s1, s2 ∈ SLN , we

can find LNSD sets KLN and HLN with s1 ∈ KLN , s2 /∈ KLN and s2 ∈ HLN , s2 /∈ KLN .

Thus, there lie LNSO sets A1, A2, B1, B2 ∈ SLN with A1 6= SLN , A2 6= SLN ,KLN = A1B1 and

HLN = A2\B2. For s1 /∈ HLN , the two cases are given below.

Case 1: s1 /∈ B2. As s2 /∈ KLN , either s2 /∈ A1 or (s2 ∈ A1 and s2 ∈ B1). If s2 /∈ A1,

from s2 ∈ HLN = A2\B2, (i.e) s2 ∈ A2\(B2 ∪ B1) and s1 /∈ A2. Now, we have

s1 ∈ A1\(B1 ∪B2) and (A2\(B2 ∪B1))∩ (A1\(B1 ∪B2)) = φ. If s2 ∈ A1 and s2 ∈ B1,

then we have s1 ∈ KLN = A1\B1 and (A1\B1) ∩B1 = φ.

Case 2: s1 ∈ A2 and s2 ∈ B2 Now, s2 ∈ HLN = A2\B2, s1 ∈ B2 and (A2\B2) ∩ B2 = φ. Since

s1 /∈ B1 and s2 /∈ B2, B1 and B2 are LNSO sets different from (SLN , τLN ). Then by

remark(5.2), B1 and B2 are LNSD sets. Since B2 ∪A1 and B1 ∪A2 are LNSO sets, we

have A2\(B2 ∪A1) and A1\(B1 ∪A2) are LNSD sets.

Conversely, suppose the space is LN semi-D2 and let s1, s2 ∈ SLN with s1 6= s2. There lie

distinct LNSD sets KLN and HLN with s1 ∈ KLN and s2 ∈ HLN , (i.e) s1 ∈ KLN , s2 /∈ KLN

and s2 ∈ HLN , s1 /∈ HLN .

6. Conclusion

Separation axioms and axioms of regularity are outlined in a new space referred to as

linguistic neutrosophic topological spaces. A variety of concepts and ideas are explored with

suitable examples. In addition, semi-different axioms are introduced and discussed through

the use of linguistic neutrosophic semi-difference sets, and numerous intriguing results are

obtained.
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Abstract. The neutrosophic sets and numbers have an important role in modeling the problems. Recently,

studies on neutrosophic numbers and single-valued neutrosophic numbers which is a subclass of neutrosophic

numbers have increased, rapidly. Cauchy distribution is an important concept in the statistic. In this paper,

the notion of Cauchy single-valued neutrosophic numbers (CSVNNs) and α−cuts are introduced based on the

Cauchy distribution formula. Summation, multiplication, and division operations between two CSVNNs are

defined and given related examples. Also, the score functions of CSVNNs, arithmetic and geometric aggregation

operators of them are described. Based on the defined new concepts, a multi-attribute group decision-making

method is developed. Finally, to illustrate how the proposed method works, an application of the proposed

method in the selection of a project to be supported and funded is developed. In this method, for each of the

criteria, different score functions are determined by using the aggregation operators and score functions of the

CSVNNs. Then, evaluations of the decision-makers are transformed into new values under the derived score

functions for the decision. In applications, in general, decision-makers assign to criteria some values between

0 and 1 directly. In the method proposed in this paper, weights of the criteria are considered as the different

functions. Therefore this method presents a more general perspective on decision-making problems.

Keywords: Single-valued neutrosophic set; Cauchy Single-valued neutrosophic number; decision-making; ag-

gregation operators.

—————————————————————————————————————————-

1. Introduction

The fuzzy set theory is a notable theory put forward by Zadeh [38] as a useful tool for

decision-making problems and as a generalization of classical sets. After introducing fuzzy

sets, many researchers needed to study many generalizations of fuzzy sets in order to model
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the problems they encountered. The best known of these are intuitionistic fuzzy set defined by

Atanassov [1], Pythagorean Fuzzy set introduced by Yager [35], Picture fuzzy set introduced

by Cuong [11, 12], q-rung orthopair fuzzy set defined by Yager [36] set, spherical fuzzy sets

proposed by Gundogdu and Kahraman [15], T-spherical fuzzy sets introduced by [20] and neu-

trosophic set (NS) by Smarandache [32]. An NS is described by three mappings defined from

a non-empty set to a real standard or non-standard subset of ]−0, 1+[. These functions are

called truth, indeterminacy, and falsity functions and are represented by notations T, I, and

F, respectively. The basis of the NS is based on neutrosophy which is a branch of philosophy.

Neutrosophic sets have a very important role in modeling and solving decision-making prob-

lems. However, real standard or nonstandard subsets of ]−0, 1+[ are not useful in modeling

real-life problems. Therefore, Wang et al. [34] revealed the notion of a single-valued neutro-

sophic (SVN) set (SVNS) identified by three functions which are defined from a nonempty set

into the unit interval [0, 1]. Many researcher studied on SVN number (SVNN) [4, 9, 13, 14, 16]

and applications in decision-making (DM) based on similarity measures, distance measures,

entropy and aggregation operators [2, 3, 5–8, 10, 17, 18, 22–30, 37, 39, 46–48]. In addition, after

the definition of hypersoft sets [33] as a generalization of soft sets [21], Martin and Smaran-

dache [19] combined the hypersoft sets of neutrosophic sets and introduced the concept of

neutrosophic hypersoft set as a generalization of hypersoft sets. Recently, studies related to

the neutrosophic hypersoft sets and hypersoft sets have been rapidly increasing. Some of them

are aggregation operators [41], interval-valued neutrosophic hypersoft set [42], corrlation coef-

ficient of interval-valued neutrosophic hypersoft set [43] Pythagorean fuzzy hypersoft set [44],

correlation coefficient of neutrosophic hypersoft set [31], neutrosophic hypersoft matrices [45].

In 2018, Karaaslan [16] defined the Gaussian SVNNs and developed a multi-attribute

decision-making method under the Gaussian SVN environment. He also presented an ap-

plication of the proposed method in order to illustrate the progress of the developed method.

The following points motivate us to present this paper:

• Single-valued trapezoidal neutrosophic number (SVTrNN), single-valued triangular

neutrosophic numbers (SVTNN) and GSVNNs are important tools to model decision-

making problems involving indeterminate, and inconsistent data. SVTrNN and

SVTNN are expressed by partial functions involving straight line. However, sometimes

indeterminate and inconsistent data may not be expressed linearly. Therefore, In order

to represent nonlinear states, we introduce a new concept of neutrophic numbers based

on the Cauchy distribution.

• In MADMPs, weights of the attributes are determined as real values between 0 and 1

such that their summation is equal to 1. For weights of the attributes, different func-

tions are not considered. In this paper, we consider different score functions for each
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attribute according to the common opinions of the decision-makers. Thus, developing

a more flexible decision-making approach is aimed.

Following are the contributions of this article:

• The concept of CSVNNs is defined. Also, α−cut and arithmetic operations of CSVNNs

are introduced, and some results are obtained related to α−cut of CSVNNs.

• The score functions of CSVNNs and their aggregation operators are defined.

• Based on novel definitions and operations introduced in this paper, a multi-attribute

group decision-making method is proposed and given an illustrative example in order

to explain the process of the proposed method.

This paper is organized as follows:In section 2, some basic concepts are recalled. In section

3, The concept of CSVNNs, α-cuts of CSVNNs, arithmetic operations between two CSVNNs,

score function of CSVNN, and arithmetic and geometric aggregarin operators of them are

defined and given examples of them. In section 4, a MAGDM method is developed and

presented an illustrative example to show the working of the proposed method.

2. Preliminaries

In this section, some basic definitions related to neutrosophic sets are recalled.

Definition 2.1. [32] Let X 6= ∅. Then, a neutrosophic set Ã on X is a set of quadruplets,

defined by

Ã =
{
〈θ, Ãt(θ), Ãi(θ), Ãf (θ))〉 : θ ∈ X

}
.

Here Ãt, Ãi, Ãf : X →]−0, 1+[ called truth, indeterminacy and falsity membership functions

(MF) of the neutrosophic set Ã, respectively and −0 ≤ Ãt(θ) + Ãi(θ) + Ãf (θ) ≤ 3+.

Definition 2.2. [34] Let X 6= ∅. Then, a single-valued neutrosophic set (SV NS) Â ={
〈θ, Ât(θ), Âi(θ), Âf (θ)〉 : θ ∈ X

}
is defined as follows:

If X is continuous, an SV NS Â can be expressed by

Â =

∫
X

〈
Ât(θ), Âi(θ), Âf (θ)

〉
/θ, for all θ ∈ X.

If X is crisp set, an SV NS Â can be expressed by

Â =
∑
θ

〈
Ât(θ), Âi(θ), Âf (θ)

〉
/θ, for all θ ∈ X.

Note that 0 ≤ Ât(θ) + Âi(θ) + Âf (θ) ≤ 3 for all θ ∈ X. For convenience, an SVNN is denoted

by Â = 〈Ât, Âi, Âf 〉.
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3. Cauchy Single-valued Neutrosophic Number

In this part, we define the Cauchy fuzzy number (CFN) and its α -cuts. Then we introduce

the concept of Cauchy single-valued number number by similar way.

3.1. Cauchy Fuzzy Number

Definition 3.1. [40] A fuzzy number is said to be Cauchy fuzzy number A = CFN(p, q)

whose membership function of is given by

µA(θ) =
1

1 +
(
θ−p
q

)2 .

Definition 3.2. Let us consider membership function of A = CFN(p, q) as follows:

µA(θ) =
1

1 +
(
θ−p
q

)2 .

The α-cut set of CFN(p, q) is defined as follows:

Aα =

[
p− q

√
1− α
α

, p + q

√
1− α
α

]

3.2. Cauchy Single-valued Neutrosophic Number

Definition 3.3. A Cauchy single-valued neutrosophic number (CSVNN) is defined by truth,

indeterminacy and falsity MFs as follows:

℘(θt) =
1

1 +

(
θt − pt

qt

)2 ,

℘(θi) = 1− 1

1 +

(
θi − pi

qi

)2 =

(
θi − pi

qi

)2

1 +

(
θi − pi

qi

)2 ,

℘(θf ) = 1− 1

1 +

(
θf − pf

qf

)2 =

(
θf − pf

qf

)2

1 +

(
θf − pf

qf

)2 ,

respectively.

A CSVNN is denoted by Ã = CSV NN
(
(pt, qt), (pi, qi), (pf , qf )

)
. Set of all CSVNNs over

X is denoted by CSVNN (X).
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Example 3.4. Let Ã = CSV NN
(
(0.8, 0.1), (0.7, 0.3), (0.5, 0.2)

)
be CSVNN. Truth, indeter-

minacy, and falsity MFs of CSVNN are shown in Fig 1.
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-3 -2 -1 1 2 3 4 5 6 7 8 9

0.2

0.4

0.6

0.8

1

2

℘(θt) =

℘(θi) = 1

℘(θf ) = 1

Figure 1. CSVNN Ã

Definition 3.5. Let truth, indeterminacy and falsity MFs of CSVNN Ã be given as follows:

℘(θt) =
1

1 +

(
θt − pt

qt

)2

℘(θi) = 1− 1

1 +

(
θi − pi

qi

)2

℘(θf ) = 1− 1

1 +

(
θf − pf

qf

)2

respectively.

Then, α-cuts of above functions can be expressed as follows:

Ãtα =

[
pt − qt

(
1−α
α

) 1
2
, pt + qt

(
1−α
α

) 1
2

]
,

Ãiα =

[
pi − qi

(
α

1−α

) 1
2
, pi + qi

(
α

1−α

) 1
2

]
,

Ãfα =

[
pf − qf

(
α

1−α

) 1
2
, pf + qf

(
α

1−α

) 1
2

]
,

respectively.
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3.3. Arithmetic operations of CSVNNs

Let Ã = CSV NN
(
(pÃt , qÃt), (pÃi , qÃi), (pÃf , qÃf )

)
and B̃ = CSV NN

(
(pB̃t , qB̃t),

(pB̃i , qB̃i), (pB̃f , qB̃f )
)

be two CSVNNs. Then, α-cuts (α ∈ (0, 1]) of them are as follows:

Ãtα =

[
pÃt − qÃt

(
1−α
α

) 1
2
, pÃt + qÃt

(
1−α
α

) 1
2

]
,

Ãiα =

[
pÃi − qÃi

(
α

1−α

) 1
2
, pÃi + qÃi

(
α

1−α

) 1
2

]
,

Ãfα =

[
pÃf − qÃf

(
α

1−α

) 1
2
, pÃf + qÃf

(
α

1−α

) 1
2

]

and

B̃tα =

[
pB̃t − qB̃t

(
1−α
α

) 1
2
, pB̃t + qB̃t

(
1−α
α

) 1
2

]
,

B̃iα =

[
pB̃i − qB̃i

(
α

1−α

) 1
2
, pB̃i + qB̃i

(
α

1−α

) 1
2

]
,

B̃fα =

[
pB̃f − qB̃f

(
α

1−α

) 1
2
, pB̃f + qB̃f

(
α

1−α

) 1
2

]

respectively.

By using α-cuts of CSVNNs Ã and B̃, arithmetic operations between CSVNN Ã and CSVNN

B̃ are defined as follows:

(1) Addition: By using interval arithmetic, we have

Ãtα + B̃tα =

[
(pÃt + pB̃t)− (qÃt + qB̃t)

(
1−α
α

) 1
2
, (pÃt + pB̃t) + (qÃt + qB̃t)

(
1−α
α

) 1
2

]
,

Ãiα + B̃iα =

[
(pÃi + pB̃i)− (qÃi + qB̃i)

(
α

1−α

) 1
2
, (pÃi + pB̃i) + (qÃi + qB̃i)

(
α

1−α

) 1
2

]
,

Ãfα + B̃fα =

[
(pÃf + pB̃f )− (qÃf + qB̃f )

(
α

1−α

) 1
2
, (pÃf + pB̃f ) + (qÃf + qB̃f )

(
α

1−α

) 1
2

]
.
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Truth, indeterminacy, and falsity MFs of Ã+ B̃ can be expressed as follows:

℘(Ã+B̃)(θt) =
1

1 +

(
θt − (pÃt + pB̃t)

(qÃt + qB̃t)

)2

℘(Ã+B̃)(θi) = 1− 1

1 +

(
θi − (pÃi + pB̃i)

(qÃi + qB̃i)

)2

℘(Ã+B̃)(θf ) = 1− 1

1 +

(
θf − (pÃf + pB̃f )

(qÃf + qB̃f )

)2

(2) Substraction: By using interval arithmetic, we have

Ãtα − B̃tα =

[
(pÃt − pB̃t)− (qÃt − qB̃t)

(
1−α
α

) 1
2
, (pÃt − pB̃t) + (qÃt − qB̃t)

(
1−α
α

) 1
2

]
,

Ãiα − B̃iα =

[
(pÃi − pB̃i)− (qÃi − qB̃i)

(
α

1−α

) 1
2
, (pÃi − pB̃i) + (qÃi − qB̃i)

(
α

1−α

) 1
2

]
,

Ãfα − B̃fα =

[
(pÃf − pB̃f )− (qÃf − qB̃f )

(
α

1−α

) 1
2
, (pÃf − pB̃f ) + (qÃf − qB̃f )

(
α

1−α

) 1
2

]
.

Truth, indeterminacy, and falsity MFs of CSVNN Ã− B̃ can be expressed as follows:

℘(Ã−B̃)(θt) =
1

1 +

(
θt − (pÃt − pB̃t)

(qÃt − qB̃t)

)2 ,

℘(Ã−B̃)(θi) = 1− 1

1 +

(
θi − (pÃi − pBi)

(qÃi − qB̃i)

)2 ,

℘(Ã−B̃)(θf ) = 1− 1

1 +

(
θf − (pÃf − pB̃f )

(qÃf − qB̃f )

)2 ,

respectively.

(3) Multiplication: Let

Ãtα =
[
ÃL
tα , Ãt

U
α

]
=

[
pÃt − qÃt

(
1−α
α

) 1
2
, pÃt + qÃt

(
1−α
α

) 1
2

]
,

Ãiα =
[
ÃL
iα
, ÃU

iα

]
=

[
pÃi − qÃi

(
α

1−α

) 1
2
, pÃi + qÃi

(
α

1−α

) 1
2

]
,

Ãfα =
[
ÃL
fα
, ÃU

fα

]
=

[
pÃf − qÃf

(
α

1−α

) 1
2
, pÃf + qÃf

(
α

1−α

) 1
2

]
,
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and

B̃tα =
[
B̃Ltα , B̃t

U
α

]
=

[
pB̃t − qB̃t

(
1−α
α

) 1
2
, pB̃t + qB̃t

(
1−α
α

) 1
2

]
,

B̃iα =
[
B̃Liα , B̃

U
iα

]
=

[
pB̃i − qB̃i

(
α

1−α

) 1
2
, pB̃i + qB̃i

(
α

1−α

) 1
2

]
,

B̃fα =
[
B̃Lfα , B̃

U
fα

]
=

[
pB̃f − qB̃f

(
α

1−α

) 1
2
, pB̃f + qB̃f

(
α

1−α

) 1
2

]
,

Then,

ÃtαB̃tα =
[
min{ÃL

tαB̃
L
tα , Ã

L
tαB̃

U
tα , Ã

U
tαB̃

L
tα , Ã

U
tαÃ

U
tα},max{ÃL

tαB̃
L
tα , Ã

L
tαB̃

U
tα , Ã

U
tαB̃

L
tα , Ã

U
tαÃ

U
tα}
]
,

ÃiαB̃iα =
[
min{ÃL

iα
B̃Liα , Ã

L
iα
B̃Uiα , Ã

U
iα
B̃Liα , Ã

U
iα
ÃU
iα
},max{ÃL

iα
B̃Liα , Ã

L
iα
B̃Uiα , Ã

U
iα
B̃Liα , Ã

U
iα
ÃU
iα
}
]
,

ÃfαB̃fα =
[
min{ÃL

fα
B̃Lfα , Ã

L
fα
B̃Ufα , Ã

U
fα
B̃Lfα , Ã

U
fα
ÃU
fα
},max{ÃL

fα
B̃Lfα , Ã

L
fα
B̃Ufα , Ã

U
fα
B̃Lfα , Ã

U
fα
ÃU
fα
}
]
.

If Ãtα , Ãiα , Ãfα , B̃tα , B̃iα and B̃fα ⊆ R+, then we can directly write it as follows:

ÃtαB̃tα =

[(
pÃt − qÃt

(
1−α
α

) 1
2
)
.
(
pB̃t − qB̃t

(
1−α
α

) 1
2
)
,
(
pÃt + qÃt

(
1−α
α

) 1
2
)
.
(
pB̃t + qB̃t

(
1−α
α

) 1
2
)]
,

ÃiαB̃iα =

[(
pÃi − qÃi

(
α

1−α

) 1
2
)
.
(
pB̃i − qB̃i

(
α

1−α

) 1
2
)
,
(
pÃi + qÃi)

(
α

1−α

) 1
2
)(

pB̃i + qB̃i

(
α

1−α

) 1
2
)]
,

ÃfαB̃fα =

[(
pÃf − qÃi

(
α

1−α

) 1
2
)
.
(
pB̃f − qB̃f

(
α

1−α

) 1
2
)
,
(
pÃf + qÃf )

(
α

1−α

) 1
2
)(

pB̃f + qB̃f

(
α

1−α

) 1
2
)]
,

(4) Division:

Ãtα
B̃tα

=

 (p
Ãt

−q
Ãt

(
1−α
α

) 1
2

)

(p
B̃t

−q
B̃t

(
1−α
α

) 1
2

)

,
(p
Ãt

+q
Ãt

(
1−α
α

) 1
2

)

((p
B̃t

+q
B̃t

)

(
1−α
α

) 1
2

)

 , 0 6∈ B̃tα

Ãiα
B̃iα

=

 (p
Ãi

−q
Ãi

(
α

1−α

) 1
2

)

(p
B̃i

−q
B̃i

(
α

1−α

) 1
2

)

,
(p
Ãi

+q
Ãi

(
α

1−α

) 1
2

)

((p
B̃i

+q
B̃i

)

(
α

1−α

) 1
2

)

 , 0 6∈ B̃iα

Ãfα
B̃fα

=

 (p
Ãf

−q
Ãf

(
α

1−α

) 1
2

)

(p
B̃f

−q
B̃f

(
α

1−α

) 1
2

)

,
(p
Ãf

+q
Ãf

(
α

1−α

) 1
2

)

((p
B̃f

+q
B̃f

)

(
α

1−α

) 1
2

)

 , 0 6∈ B̃fα

Example 3.6. Let us consider CSVNNs Ã = CSV NN((0.42, 0.68), (0.54, 0.32), (0.69, 0.21))

and B̃ = CSV NN((0.73, 0.32), (0.64, 0.23), (0.57, 0.41)). The graphics of Ã and B̃ are depicted

in Figures (2) and (3).

Truth, indeterminacy, and falsity MFs of CSVNNs Ã+B̃ and Ã−B̃ are obtained as follows:

℘(Ã+B̃)(θt) =
1

1 +

(
θt − 1.15

1.0

)2 ,
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Figure 2. CSVNN Ã
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Figure 3. CSVNN B̃

℘(Ã+B̃)(θi) = 1− 1

1 +

(
θi − 1.18

0.55

)2 ,

℘(Ã+B̃)(θf ) = 1− 1

1 +

(
θf − 1.26

0.62

)2 ,

and

℘(Ã−B̃)(θt) =
1

1 +

(
θt − (−0.31)

0.36

)2 ,
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℘(Ã−B̃)(θi) = 1− 1

1 +

(
θi − (−0.1)

0.09

)2 ,

℘(Ã−B̃)(θf ) = 1− 1

1 +

(
θf − 0.12

(−0.2)

)2 .

Figures (4) and (5) show the graphical representations of CSVNNs Ã+ B̃ and Ã− B̃.
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Figure 4. CSVNN Ã+ B̃
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Figure 5. CSVNN Ã− B̃

Definition 3.7. Let Ã = ((pt, qt), (pi, qi), (pf , qf )) be CSVNN. Then, score function of

CSVNN Ã, denoted by S(Ã), is defined as follows:
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S(Ã) =
1

3

( q2
t

q2
t + (θt − pt)2

+
q2
i

q2
i + (θi − pi)2

+
q2
f

q2
f + (θf − pf )2

)
Note that score functions are functions depending on neutrosophic variables 〈θt, θi, θf 〉.

Furthermore, score functions of CSVNNs can be changed according to CSVNN.

Example 3.8. Let us consider CSVNNs Ã = ((0.5, 0.3), (0.7, 0.2), (0.3, 0.5)) and

B̃ = ((0.6, 0.4), (0.2, 0.6), (0.5, 0.7)). Then, score functions of CSVNNs Ã and B̃ are obtained

as follows:

S(Ã) =
1

3

( 0.09

0.09 + (θt − 0.5)2
+

0.04

0.04 + (θi − 0.7)2
+

0.25

0.25 + (θt − 0.3)2

)
and

S(B̃) =
1

3

( 0.16

0.16 + (θt − 0.6)2
+

0.36

0.36 + (θi − 0.4)2
+

0.49

0.49 + (θt − 0.5)2

)
.

If we consider SVN value 〈0.5, 0.6, 0.7〉, then score values of this SVN according to score

functions of Ã and B̃ are obtained as follows:

S(Ã)(〈0.5, 0.6, 0.7〉) = 0.803 and S(B̃)(〈0.5, 0.6, 0.7〉) = 0.923

Definition 3.9. Let X be a nonempty set and
∑n =

{
Ψk =

(
(ptk , qtk), (pik , qik), (pfk , qfk)

)
:

(k = 1, 2, ..., n)
}

be a set of CSVNNs of which weight vector ς = (ς1, ς2, ..., ςn)T such that

ςk > 0,
∑u

k=1 ςk = 1. Then, CSVN weighted arithmetic aggregation (CSVNWAA) operator is

defined by a mapping CSV NWAA :
∑n → CSVNN (X), where

CSV NWAA(Ψ1,Ψ2, ...,Ψn) =

n⊕
k=1

ςkΨk.

Theorem 3.10. Let X be a nonempty set and
∑n =

{
Ψk =

(
(ptk , qtk), (pik , qik), (pfk , qfk)

)
:

(k = 1, 2, ..., n)
}

be a set of CSNNs of which weight vector ς = (ς1, ς2, ..., ςn)T such that ςk > 0,∑u
k=1 ςk = 1.

Then, aggregated value of set using CSNNWAA is a CSVNN defined as follows:

CSNNWAA(Ψ1,Ψ2, ...,Ψn) =

n⊕
k=1

(ςkΨk)

=
(

(1−
n∏

k=1

(1− p̃tk)ςk , 1−
n∏

k=1

(1− q̃tk)ςk),

(

n∏
k=1

(p̃ik)ςk ,

n∏
k=1

(q̃ik)ςk), (

n∏
k=1

(p̃fk)ςk ,

n∏
k=1

(p̃fk)ςk)
)
.

(1)

Faruk Karaaslan and Fatih Karamaz, Cauchy Single-Valued Neutrosophic Numbers and
Their Application in MAGDM

Neutrosophic Sets and Systems, Vol. 51, 2022                                                                               885



Here there are two cases for p∆k
and q∆k

(∆ ∈ {t, i, f}) and (k = 1, 2, ..., n). If one

of p∆k
and q∆k

is greater then 1, then the following formula are used p̃∆k
=

p∆k√∑n
k=1 p2

∆k

,

q̃∆k
=

p∆k√∑n
k=1 p2

∆k

, If p∆k
and q∆k

(∆ ∈ {t, i, f}) (k = 1, 2, ..., n) are in interval [0, 1], then p∆k

and q∆k
(∆ ∈ {t, i, f}) and (k = 1, 2, ..., n) are used directly in CSNNWAA(Ψ1,Ψ2, ...,Ψn)

and other aggregation operations defined in the next .

Proof. The proof can be easily made based on aggregation operations of the SVNNs. Therefore,

it is omitted.

Definition 3.11. Let X be a nonempty set and
∑n =

{
Ψk =

(
(ptk , qtk), (pik , qik), (pfk , qfk)

)
:

(k = 1, 2, ..., n)
}

be a set of CSVNNs of which weight vector ς = (ς1, ς2, ..., ςn)T such that

ςk > 0,
∑u

k=1 ςk = 1. Then, CSVN weighted geometric aggregation operator (CSNNWGA)

operator is defined by a mapping CSV NWGA :
∑n → CSVNN (X), where

CSV NWGA(Ψ1,Ψ2, ...,Ψn) =
n⊗
k=1

Ψςk
k

Theorem 3.12. Let X be a universe and
∑n =

{
Ψk =

(
(ptk , qtk), (pik , qik), (pfk , qfk)

)
: (k =

1, 2, ..., n)
}

be a collection of CSNNs of which weight vector ς = (ς1, ς2, ..., ςn)T such that ςk > 0,∑u
k=1 ςk = 1.

Then, aggregated value of set using CSVNWGA is a CSVNN defined as follows:

CSNNWGA(Ψ1,Ψ2, ...,Ψn) =

n⊗
k=1

Ψςk
k

=
(

(

n∏
k=1

(p̃tk)ςk ,

n∏
k=1

(q̃tk)ςk), (1−
n∏

k=1

(1− p̃ik)ςk ,

1−
n∏

k=1

(1− q̃ik)ςk), (1−
n∏

k=1

(1− p̃fk)ςk , 1−
n∏

k=1

(1− p̃fk)ςk
)

(2)

Proof. The proof can be easily made based on aggregation operations of the SVNNs. Therefore,

it is omitted.

4. Multi-attribute group decision making method under CSVN environment

In the following table, beginning data and some notation are shown:
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Notaions Explanation

ε = {ε1, ε2, ..., εn} Set of alternatives

Ω = {Ω1,Ω2, ...,Ωk} Set of attributes

δ = {δ1, δ2, ..., δm} Set of decision makers

τij Evaluation of the criteria Ωj made by decision maker δi

β = (β1, β2, ..., βm) weight vector of decision-makers

Table 1. Notation table for MAGDM method

4.1. Decision making method

Steps of the proposed method are explained as follows:

Step 1: Constructing decision-criteria (DA) matrix. In this step, each of decision

makers δi, (i = 1, 2, ...,m) whose weight vector β = (β1, β2, ..., βm) such that βs > 0(s =

1, 2, ...,m) and
∑m

s=1 βs = 1, evaluates the attributes Ωj , (j = 1, 2, ..., k) by CSVNNs and DA

matrix is constructed as follows:

DA =


τ11 τ12 · · · τ1k

τ21 τ22 · · · τ2k

...
...

. . .
...

τm1 τm2 · · · τmk


m×k

.

Here each of τij = ((ptij , qtij), (piij , qiij), (pf ij , qf ij)) is a CSVNN.

Step 2: Finding the aggregation of attributes. By adapting Eqs. 1 and 2 for weigh

vector β = (β1, β2, ..., βm) of decision-makers, aggregated weight for each attribute is calculated

the following formula

AggA(Ωj) = CSV NWAA(τ1j , τ2j , ..., τnj) =
m⊕
k=1

βkτkj

=
((

1−
m∏
k=1

(1− p̃tkj )
βk , 1−

m∏
k=1

(1− q̃tkj )
βk
)
,

( m∏
k=1

p̃βkikj ,

m∏
k=1

q̃βkikj
)
,
( m∏
k=1

p̃βkfkj ,

m∏
k=1

q̃βkfkj

))
(3)
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and

AggG(Ωj) = CSV NWGA(τ1j , τ2j , ..., τnj) =
m⊕
k=1

τβkkj

=
(( m∏

k=1

p̃βktkj ,
m∏
k=1

q̃βktkj
)
,
( m∏
k=1

p̃βkikj ,
m∏
k=1

q̃βkikj
)
,

(
1−

m∏
k=1

(1− p̃fkj )
βk , 1−

m∏
k=1

(1− q̃fkj )
βk
))

(4)

respectively.

Step 3: Obtaining score functions of aggregated attributes. By using Definition

3.7 , for j = 1, 2, ..., k S(AggA(Ωj)) (S(AggG(Ωj))) are found.

Step 4: Construction of evaluation matrices by decision-makers δs (s = 1, 2, ...,m).

For each of decision-makers, evaluation matrices denoted EMs (s = 1, 2, ..., k) are obtained as

follows:

EMs =


κs11 κs12 · · · κs1k
κs21 κs22 · · · κs2k

...
...

. . .
...

κsn1 κsn2 · · · κsnm

 .
Here κsij = 〈tsij , isij , fsij〉 denotes an SVNN which implies evaluation of alternative εi according

to criteria Ωj made by the decision maker δs.

Step 5: Compiling the EMs (s=1,2,...,k). Compiling matrix (CM) is obtained as

follows:

CM =


∪ks=1κ

s
11 ∪ks=1κ

s
12 · · · ∪ks=1κ

s
1k

∪ks=1κ
s
21 ∪ks=1κ

s
22 · · · ∪ks=1κ

s
2k

...
...

. . .
...

∪ks=1κ
s
n1 ∪ks=1κ

s
n2 · · · ∪ks=1κ

s
nm

 .
Here ∪ks=1κ

s
11 = 〈∨ks=1t

s
ij ,∧ks=1i

s
ij ,∧ks=1f

s
ij〉 where ∨ and ∧ denote the maximum and minimum,

respectively.

Step 6: Finding score matrix SM = [∂ij ]nk: By using score functions obtained from DA

matrix in Step 2 for each attribute, score values of elements in CM matrix are found.

Step 7: Evaluation of the alternatives. For i = 1, 2, ..., n, grade of the alternative gi

are calculated by

gi =
1

k

k∑
j=1

∂ij

Step 8: Choosing the optimum alternative: Alternatives are ordered according to

grades of them and alternative having maximum grade is selected as an optimum alternative.

Faruk Karaaslan and Fatih Karamaz, Cauchy Single-Valued Neutrosophic Numbers and
Their Application in MAGDM

Neutrosophic Sets and Systems, Vol. 51, 2022                                                                               888



STARTConstruct DA matr�x

F�nd the aggregat�on of
attr�butes

Obta�n score funct�ons of
aggregated attr�butes

Comp�le the EMs
(s=1, 2, ... , k)

Construct of
evaluat�on matr�ces

 EMs

F�nd the score matr�x
SM

Evaluate the
alternat�ves

Choose the opt�mum
alternat�ve
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Figure 6. Flow chart of the proposed method

Flowchart of the algorithm is showed in Figure 6.

4.2. Illustrative Example

In this section, an example is provided to display the functioning of the developed decision-

making method.

Example 4.1. Suppose that two projects are wanted to be selected among five projects

to provide financial support. There are three experts δ = {δ1, δ2, δ3} with different aca-

demic qualifications in the panel. Their weight vector is (0.5, 0.3, 0.2). These experts evaluate

the project ε1, ε2, ε3, ε4 and ε5 according to four attributes Ω1=Content, Ω2=practicability,

Ω3=Originality and Ω4= widespread impact.
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The method proposed for choosing the best two projects that need financial support is

applied as follows.

Step 1: Constructing decision-attribute (DA) matrix: Each of the experts evaluates

the attribute under CSVN environment and they construct DA matrix as follows:

DA =


((0.4, 0.2), (0.1, 0.1), (0.6, 0.2)) ((0.7, 0.1), (0.5, 0.4), (0.7, 0.3))

((0.7, 0.1), (0.3, 0.1), (0.8, 0.3)) ((0.9, 0.6), (0.9, 0.4), (0.6, 0.4))

((0.8, 0.6), (0.9, 0.2), (0.7, 0.3)) ((0.9, 0.2), (0.8, 0.6), (0.7, 0.5))

((0.6, 0.2), (0.4, 0.3), (0.5, 0.1)) ((0.8, 0.1), (0.5, 0.3), (0.6, 0.3))

((0.9, 0.8), (0.4, 0.1), (0.8, 0.6)) ((0.1, 0.1), (0.9, 0.3), (0.9, 0.2))

((0.4, 0.2), (0.9, 0.4), (0.7, 0.4)) ((0.7, 0.6), (0.7, 0.3), (0.7, 0.5))


Step 2: By using Equation (4) the arithmetic aggregate of each column is obtained as

follows:

AggA(Ωj) =
(

((0.609, 0.279), (0.216, 0.115), (0.675, 0.245)) ((0.827, 0.311), (0.655, 0.434), (0.668, 0.362))

((0.714, 0.472), (0.470, 0.229), (0.616, 0.226)) ((0.659, 0.235), (0.638, 0.300), (0.699, 0.294))
)

Step 3: By using Eq. 3.7, for j = 1, 2, ..., k S(AggA(Ωj)) are found.

S(AggA(Ω1)) =
1

3

( 0.078

0.078 + (θt − 0.609)2
+

0.013

0.013 + (θi − 0.216)2
+

0.060

0.060 + (θf − 0.675)2

)
,

S(AggA(Ω2)) =
1

3

( 0.097

0.097 + (θt − 0.827)2
+

0.188

0.188 + (θi − 0.655)2
+

0.131

0.131 + (θf − 0.668)2

)
,

S(AggA(Ω3)) =
1

3

( 0.223

0.223 + (θt − 0.714)2
+

0.052

0.052 + (θi − 0.470)2
+

0.051

0.051 + (θf − 0.616)2

)
,

S(AggA(Ω4)) =
1

3

( 0.055

0.055 + (θt − 0.659)2
+

0.090

0.090 + (θi − 0.638)2
+

0.087

0.087 + (θf − 0.699)2

)
.

Also, by using CSV NWGA operator score functions of the attributes are obtained as follows:

S(AggG(Ω1)) =
1

3

( 0.041

0.041 + (θt − 0.543)2
+

0.015

0.015 + (θi − 0.462)2
+

0.063

0.063 + (θf − 0.693)2

)
,

S(AggG(Ω2)) =
1

3

( 0.039

0.039 + (θt − 0.794)2
+

0.200

0.200 + (θi − 0.743)2
+

0.141

0.141 + (θf − 0.673)2

)
,

S(AggG(Ω3)) =
1

3

( 0.049

0.049 + (θt − 0.588)2
+

0.072

0.072 + (θi − 0.581)2
+

0.122

0.122 + (θf − 0.657)2

)
,
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S(AggG(Ω4)) =
1

3

( 0.020

0.020 + (θt − 0.417)2
+

0.090

0.090 + (θi − 0.721)2
+

0.102

0.102 + (θf − 0.751)2

)
.

Step 4: For each of decision-makers, evaluation matrices are obtained as follows:

EM1 =



〈0.6, 0.8, 0.3〉 〈0.2, 0.5, 0.4〉 〈0.5, 0.1, 0.6〉 〈0.6, 0.9, 0.4〉
〈0.8, 0.3, 0.1〉 〈0.2, 0.6, 0.8〉 〈0.7, 0.2, 0.8〉 〈0.4, 0.5, 0.5〉
〈0.4, 0.7, 0.2〉 〈0.1, 0.1, 0.2〉 〈0.9, 0.3, 0.7〉 〈0.3, 0.4, 0.2〉
〈0.2, 0.3, 0.9〉 〈0.4, 0.3, 0.9〉 〈0.3, 0.4, 0.9〉 〈0.8, 0.8, 0.3〉
〈0.5, 0.1, 0.9〉 〈0.8, 0.4, 0.5〉 〈0.2, 0.5, 0.1〉 〈0.7, 0.6, 0.9〉


,

EM2 =



〈0.5, 0.1, 0.2〉 〈0.8, 0.8, 0.7〉 〈0.1, 0.6, 0.4〉 〈0.7, 0.4, 0.3〉
〈0.3, 0.2, 0.7〉 〈0.2, 0.6, 0.3〉 〈0.7, 0.4, 0.3〉 〈0.6, 0.8, 0.6〉
〈0.8, 0.6, 0.9〉 〈0.4, 0.7, 0.4〉 〈0.4, 0.5, 0.4〉 〈0.7, 0.6, 0.8〉
〈0.4, 0.7, 0.5〉 〈0.6, 0.3, 0.2〉 〈0.3, 0.6, 0.2〉 〈0.2, 0.7, 0.5〉
〈0.9, 0.3, 0.3〉 〈0.7, 0.5, 0.1〉 〈0.1, 0.8, 0.6〉 〈0.5, 0.2, 0.1〉


,

and

EM3 =



〈0.7, 0.2, 0.9〉 〈0.2, 0.6, 0.7〉 〈0.1, 0.7, 0.8〉 〈0.7, 0.6, 0.6〉
〈0.6, 0.4, 0.3〉 〈0.1, 0.2, 0.9〉 〈0.6, 0.6, 0.6〉 〈0.6, 0.3, 0.1〉
〈0.5, 0.6, 0.5〉 〈0.6, 0.3, 0.3〉 〈0.4, 0.2, 0.1〉 〈0.4, 0.2, 0.3〉
〈0.7, 0.8, 0.6〉 〈0.7, 0.4, 0.5〉 〈0.5, 0.6, 0.3〉 〈0.4, 0.1, 0.4〉
〈0.2, 0.6, 0.8〉 〈0.9, 0.6, 0.3〉 〈0.6, 0.4, 0.2〉 〈0.8, 0.8, 0.6〉


.

Here κsij = 〈tsij , isij , fsij〉 denote a SVN number which implies evaluation of alternative εi

according to criteria Ωj (j = 1, 2, 3, 4) made by the decision maker δs, (s = 1, 2, 3).

Step 5: Compiling matrix (CM) is obtained as follows:

CM =



〈0.7, 0.1, 0.2〉 〈0.8, 0.5, 0.4〉 〈0.5, 0.1, 0.4〉 〈0.7, 0.4, 0.2〉
〈0.8, 0.2, 0.1〉 〈0.8, 0.2, 0.3〉 〈0.7, 0.2, 0.3〉 〈0.6, 0.2, 0.1〉
〈0.8, 0.6, 0.2〉 〈0.6, 0.1, 0.3〉 〈0.9, 0.2, 0.1〉 〈0.7, 0.2, 0.2〉
〈0.7, 0.3, 0.5〉 〈0.9, 0.2, 0.1〉 〈0.5, 0.4, 0.1〉 〈0.8, 0.1, 0.3〉
〈0.9, 0.1, 0.3〉 〈0.9, 0.4, 0.1〉 〈0.9, 0.4, 0.1〉 〈0.8, 0.2, 0.1〉


.

Here ∪ks=1κ
s
11 = 〈∨ks=1t

s
ij ,∧ks=1i

s
ij ,∧ks=1f

s
ij〉 where ∨ and ∧ denote the maximum and mini-

mum, respectively.

Step 6: By using score functions obtained from DA matrix for each attribute, score values

of elements in CM matrix are found by using CSVNWAA and CSVNWGAO operators as

follows:

SMA =



0.537 0.842 0.543 0.614

0.605 0.653 0.585 0.485

0.324 0.508 0.481 0.516

0.739 0.571 0.635 0.442

0.424 0.660 0.647 0.417


.
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and

SMG =



0.311 0.808 0.583 0.307

0.237 0.635 0.539 0.274

0.342 0.445 0.316 0.235

0.537 0.492 0.611 0.215

0.212 0.568 0.435 0.188


,

respectively.

Step 7: Evaluation of the alternatives: For i = 1, 2, 3, 4, 5, grade of the projects εi are

calculated by

εi =
1

k

k∑
j=1

∂ij

by using matrices SMA and SMG

ε1 ε2 ε3 ε4 ε5

SMA 0.634 0.582 0.457 0.597 0.537

SMG 0.502 0.421 0.334 0.464 0.35

Step 8: Projects are ordered according to grades of them and two projects having maximum

grade are selected as projects to be provided financial support. Then, according to SMA and

SMG ranking order is as follows:

ε1 > ε4 > ε2 > ε5 > ε3.

It is seen that same ranking order is obtained according to both of SMA and SMG. Therefore,

the projects ε1 , ε4 are the projects to be provided the financial support.

5. Conclusion

Recently, SVNN has a very important place in modeling decision making problems. Many

researchers have studied on the types of SVNNs. The best known of them are SVTNN and

SVTrNNs. These numbers are SVNNs containing a maximum point and a flatness, respectively.

They are represented by piecewise functions using lines. However, problems in daily life may

not always follow a linear course. Therefore, in this study, the concept of CSVNN was defined

based on the Cauchy distribution function. CSVNNs are important in that they are non-linear

and a generalization of other neutrosophic numbers. Since the score functions defined in this

study are defined separately for each CSVNN, it can be considered as a generalization of type-2

fuzzy structures that include modeling the uncertainty of the membership function. In future,

many mathematical structures can be defined in the environment containing CSVNNs. In

addition, distance measures and similarity measures between CSVNNs may be defined and

integrated TOPSIS, VIKOR and other classical DMs under CSVN environment. its more

advanced potential applications under such a flexible and versatile CSVN environment
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Abstract. The present paper aims to deal with a new variant of uncertain classical transportation problem

namely ‘Interval Pentagonal Neutrosophic Transportation Problem’ (IPNTP) in which the uncertainty of source

& destination parameters are described by pentagonal neutrosophic numbers while an estimated range (interval

number) is used to represent uncertain cost of transportation. The objective consisting interval cost has been

splitted into two equivalent crisp objectives using the concept of expected value & uncertainty of interval

number. The constraints containing pentagonal neutrosophic quantities has also been converted into crisp

constraints with the help of score function. The pareto optimal solution of the transformed bi-objective crisp

transportation problem has been obtained using fuzzy programming approach. A numerical illustration is used

to demonstrate the computational procedure of the proposed variant. Lingo 18.0 software is used to solve the

problem.

Keywords: Fuzzy Set; Intuitionistic Set; Neutrosophic Set; Interval Numbers; Neutrosophic Transportation

Problem; Pentagonal Neutrosophic Number

—————————————————————————————————————————-

1. Introduction

In classical transportation problem, the cost-coefficients of transporting a unit product from

source i to destination j (cij), availability of the product at source i (ai) and demand of des-

tination j (bj) parameters are priorly known certain quantities. However in today’s uncertain

world it is not at all astonishing if these quantities reflect some uncertainty. So if we logi-

cally introduce some impreciseness in these quantities, we may get a new variant of classical

transportation problem. Usually the uncertainty in the problems can be dealt in three ways

(i) fuzzy (ii) interval and (iii) stochastic. Fuzzy sets were introduced by Zadeh [2] in 1965

which is characterized by a membership function. The membership function assigns a grade of
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membership to each element of set. This grade only gives an idea about the possibility of the

inclusion of respective element in the set but it does not reveal any information about non-

inclusion of an element in the set. Later on Atanassov [3] proposed an extension of fuzzy set in

which he also associated another grade of non-membership with each element in the fuzzy set.

Such sets are known as intuitionistic fuzzy sets. Further in the year 1999, Smarandache [4]

identified a situation of indeterminacy about inclusion of element in set. So he suggested the

association of another grade of indeterminacy along with the grades of inclusion and non-

inclusion. To overcome the limitation of intuitionistic fuzzy set, Smarandache [4] proposed the

concept of neutrosophic sets. Alike fuzzy number, the concept of triangular and trapezoidal

neutrosophic number and their deneutrosophication techniques have been developed by several

authors (see [5]- [8]). Wang et al. [9] introduced the idea of single valued neutrosophic sets.

In past few years, ample contribution of neutrosophic sets can be observed in multicriteria de-

cision making ( [10]- [22]), graph theory ( [23]- [29]), optimization techniques ( [30]- [33]) etc.

The concept of neutrosophic sets has been extensively applied by several authors by logically

introducing uncertainty in different ways in the parameters of classical transportation problem.

For example, Thamaraiselvi and Santhi [34] presented a new approach for solving a classical

transportation problem. They considered transportation problem in which the transportation

cost, availability of product and demand were represented by trapezoidal neutrosophic num-

bers. Singh et al. [35] suggested a modified version of Thamaraiselvi and Santhi [34]. The

uncertainty in cost, availability and demand parameters differently introduced by some au-

thors depending various possibilities has been summarized in Table 1. In 2019, Chakaraborty

et al. [46] discussed the advantages of using pentagonal neutrosophic numbers over triangular

and trapezoidal neutrosophic numbers.

This paper considers a transportation problem with pentagonal neutrosophic availability and

demand but interval cost of transportation. Since a membership grade to availability and

demand of product can be assigned easily but in case of transportation cost, it varies uncon-

trollably within a specific range due to many reasons like; maintenance of carrier, disloyalty

of drivers, fluctuation of fuel cost etc. To the best of our knowledge no such variant of the

transportation problem has been considered in literature. So it is quiet advocable to represent

the transportation cost in the form of interval numbers in a reasonable manner depending on

past experience. The concepts of score function [47], expected value and uncertainty [1] has

been applied to convert the developed uncertain transportation problem into an equivalent

crisp problem. To demonstrate the procedure of transportation of IPNTP to crisp problem

and its solution a numerical example is taken and solved using Lingo 18.0 software.
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Table 1. Summary

Refrences Interval Cost Neutrosophic Supply & Demand

Narayanamoorthy & Anukokila [36] 3 7

Pramanik & Dey [37] 7 3

Das et al. [38] 3 7

Saini & Sangal [39] 7 3

Paul et al. [40] 7 3

Kumar Das [41] 7 3

Habiba & Quddoos, [42] 3 7

Habiba & Quddoos, [43] 3 7

Chakraborty et al. [44] 7 3

Sikkannan & Shanmugavel [45] 7 3

Akilbasha et al. [46] 3 7

Proposed IPNTP 3 3

2. Preliminaries

Definition 2.1 (Fuzzy Set [2]). A Set F̃ over X represented as F̃={(x, µ(x)) : x ∈ X,µ(x) ∈
[0, 1]} is called a fuzzy set where X is the collection of points x and µ(x) is its truth membership

function.

Definition 2.2 (Intuitionistic Fuzzy Set [3]). A set Ĩ over X represented as

Ĩ={x;µ(x), δ(x);x ∈ X, where µ(x), δ(x) ∈ [0, 1]} is called an intuitionistic fuzzy set where

µ(x) and δ(x) are the truth and indeterminacy membership functions of x which satisfy the

following relation:

0 ≤ µ(x) + δ(x) ≤ 1

Definition 2.3 (Neutrosophic Set [4]). A set Ñ over X represented as

Ñ={x;µ(x), δ(x), σ(x);x ∈ X, and µ(x), δ(x), σ(x) ∈ [0, 1]} is called a neutrosophic sets where

µ(x), δ(x) and σ(x) are the truth, indeterminacy and falsity membership functions of x which

displays the following relation:

0 ≤ µ(x) + δ(x) + σ(x) ≤ 3

Definition 2.4 (Single-Valued Neutrosophic Set [9]). A Neutrosophic set Ñ in definition

2.3 is called as a single- valued neutrosophic set S̃N if x is a single-valued independent variable.

S̃N={x;µ(x), δ(x), σ(x);x ∈ X, } where µ(x), δ(x) and σ(x) are the truth, indeterminacy and

falsity membership functions of x respectively.

Definition 2.5 (Single-Valued Pentagonal Neutrosophic Number [47]). A Neu-

trosophic Number (S), S=〈[(s1, t1, u1, v1, w1);µ], [(s2, t2, u2, v2, w2); δ], [(s3, t3, u3, v3, w3);σ]〉,
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where µ, δ, σ ∈ [0, 1] is called single-valued pentagonal neutrosophic number, if its truth mem-

bership function (µ), indeterminacy membership function (δ) and the falsity membership func-

tion (σ) are respective given as follows:

µ(x) =



µl1(x) s1 ≤ x ≤ t1

µl2(x) t1 ≤ x ≤ u1

µ x = u1

µr2(x) u1 ≤ x ≤ v1

µr1(x) v1 ≤ x ≤ w1

0 otherwise

δ(x) =



δl1(x) s2 ≤ x ≤ t2

δl2(x) t2 ≤ x ≤ u2

δ x = u2

δr2(x) u2 ≤ x ≤ v2

δr1(x) v2 ≤ x ≤ w2

1 otherwise

σ(x) =



σl1(x) s3 ≤ x ≤ t3

σl2(x) t3 ≤ x ≤ u3

σ x = u3

σr2(x) u3 ≤ x ≤ v3

σr1(x) v3 ≤ x ≤ w3

1 otherwise

Definition 2.6 (Score Function [47]). Score function for any pentagonal single typed neu-

trosophic number (P1, P2, P3, P4, P5;µ, δ, σ) is defined as follows:

S̃ =
1

15
{(P1 + P2 + P3 + P4 + P5)× (2 + µ− δ − σ)}

where µ, δ and σ are the truth, indeterminacy and falsity membership functions.

Definition 2.7 (Interval Numbers [48]).

A = [aL, aR] = { a : aL ≤ a ≤ aR, a ∈ R},

where aL and aR are the left-limit and right-limit of the interval A on the real line R.

A =
〈
ac, aw

〉
= { a : ac − aw ≤ a ≤ ac + aw, a ∈ R},

where ac and aw are the mid-point and half-width (or simply be termed as ‘width’) of interval

A on the real line R, i.e.

ac =
aR + aL

2
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aw =
aR − aL

2

Definition 2.8 ( Ishibuchi and Tanaka’s ranking for intervals [1]). Let A =

[aL, aR]=
〈
ac, aw

〉
and B = [bL, bR]=

〈
bc, bw

〉
be two given intervals then the order relation

≤CW is defined as:

{
A ≤CW B iff ac ≤ bc, and aw ≤ bw
A <CW B iff A ≤CW B, and A 6= B

3. Mathematical Model of IPNTP

Consider a transportation problem in which the cost-coefficients are represented in the form

of interval number & source and destination parameters are represented as pentagonal single

typed neutrosophic numbers. The mathematical model of such IPNTP may be given as follows:

Problem-I:

Minimize : Z =
m∑
i=1

n∑
j=1

[cLij , cRij ]xij (1)

Subject to;

n∑
j=1

xij ≤ aiS , i = 1, 2, . . . ,m (2)

m∑
i=1

xij ≥ bjS , j = 1, 2, . . . , n (3)

xij ≥ 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n (4)

where,

[cLij , cRij ]: interval cost of transporting one unit of product from source i to destination j,

cLij : lowest possible cost of transporting one unit of product from source i to destination j,

cRij : highest possible cost of transporting one unit of product from source i to destination j

ai
S : pentagonal single typed neutrosophic availability of source i,

bj
S : pentagonal single typed neutrosophic demand of destination j,

xij : quantity transported from source i to destination j

4. Equivalent crisp model of IPNTP

4.1. Construction of crisp Objective Function

Let us consider the interval objective function Z of the Problem-I which can be denoted as

Z =
〈
zc, zw

〉
, where zc = ( cR+cL

2 ) and zw = ( cR−cL
2 ) are the center and width of the interval

Z respectively.

According to Ishibuchi and Tanaka [1] the center and width of an interval can be taken as
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the expected value and uncertainty of interval respectively. Since the objective function of

Problem-I is the cost function which is to be minimized, so our interest is to obtain minimum

cost with minimum uncertainty. Then the interval objective function (1) is transformed into

a two crisp functions in terms of expected value and uncertainty by definition (2.8) as follows:

Minimize zc =
m∑
i=1

n∑
j=1

ccijxij (5)

Minimize zw =
m∑
i=1

n∑
j=1

cwijxij (6)

where, cc = cR+cL
2 and cw = cR−cL

2 are the center and width of the interval respectively.

4.2. Construction of crisp Constraints

Let us consider the constraint (2) of Problem-I where the right hand side ai
S representing

the pentagonal single typed neutrosophic availability of product at source i. This pentagonal

single typed neutrosophic number ai
S can be represented by a crisp value using the score

function defined in definition (2.6). Thus corresponding crisp constraint may be written as

follows:
n∑

j=1

xij ≤ S̃(ai), i = 1, 2, . . . ,m (7)

Similarly, the crisp destination constraint can also be obtained as follows:

m∑
i=1

xij ≥ S̃(bj), j = 1, 2, . . . , n (8)

Using equations (5-6) and (7-8), we can write the equivalent bi-objective crisp problem of

IPNTP as follows:

Problem-II:

Minimize zc =

m∑
i=1

n∑
j=1

ccijxij (9)

Minimize zw =
m∑
i=1

n∑
j=1

cwijxij (10)

Subject to;

n∑
j=1

xij ≤ S̃(ai), i = 1, 2, . . . ,m (11)

m∑
i=1

xij ≥ S̃(bj), j = 1, 2, . . . , n (12)

xij ≥ 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n (13)
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5. Fuzzy Programming Technique for solving bi-objective transportation problem

(Problem-II)

First we find the best Lk and worst Uk for the kth, k = c, w objective function, where

Lk is the aspired level and Uk is the highest acceptable level for the kth objective function.

Thereafter we create a fuzzy linear programming problem using membership function. The

stepwise procedure of fuzzy programming technique is given as follows:

Step 1: Solve the bi-objective transportation problem (Problem-II) as a single objective prob-

lem using only one objective at a time and ignoring other.

Step 2: From each solution derived in Step1 determine the values of both objective functions.

Step 3: Find the best Lk and worst Uk for both objectives corresponding to the set of solutions.

Define a fuzzy membership function µk(Zk) as follows:

µk(Zk) =


1, if Zk ≤ Lk

1− Zk−Lk
Uk−Lk

, if Lk ≤ Zk ≤ Uk

0, if Zk ≥ Lk

The equivalent linear programming problem for the vector minimum problem can be

written as follows:

Maximize : λ,

Subject to; λ ≤ Uk − Zk

Uk − Lk

Constraints; (11− 13)

0 ≤ λ ≤ 1

The above linear programming problem may further be simplified as:

Problem-III:

Maximize : λ,

Subject to; Zk + λ(Uk − Lk) ≤ Uk

Constraints; (11− 13)

0 ≤ λ ≤ 1

Step 4: Solve Problem-III using any method and obtain the required pareto optimal solution.

6. Numerical Illustration

A company has three factories F1, F2 and F3. A homogenous product is to be transported

from these factories to four destinations D1, D2, D3 and D4 in such a way that the total

shipment cost becomes minimum. The availability at each factories and requirement at each

Ummey Habiba and Abdul Quddoos, Pentagonal Neutrosophic Transportation Problems
with Interval Cost

Neutrosophic Sets and Systems, Vol. 51, 2022                                                                               902



destinations and unit interval cost transportation cost from each factory to each destination

are given in Table 2.

Table 2. Interval pentagonal neutrosophic transportation table

D1 D2 D3 D4 Availability

F1 [5,7] [5,9] [3,5] [7,8]
(22,26,28,32,35;

0.7,0.3,0.4)

F2 [8,12] [7,10] [4,8] [5,6]
(30,33,36,38,40;

0.6,0.4,0.5)

F3 [6,7] [1,2] [7,9] [5,6]
(21,28,32,37,39;

0.8,0.2,0.4)

Demand
(13,16,18,21,25;

0.5,0.5,0.6)

(17,21,24,28,30;

0.8,0.2,0.4)

(24,29,32,35,37;

0.9,0.5,0.3)

(6,10,13,15,18;

0.7,0.3,0.4)

The mathematical model of the given problem is as follows:

Minimize : Z =

3∑
i=1

4∑
j=1

[cLij , cRij ]xij

Subject to;

4∑
j=1

x1j ≤ (22, 26, 28, 32, 35; 0.7, 0.3, 0.4),

4∑
j=1

x2j ≤ (30, 33, 36, 38, 40; 0.6, 0.4, 0.5),

4∑
j=1

x3j ≤ (21, 28, 32, 37, 39; 0.8, 0.2, 0.4),

3∑
i=1

xi1 ≥ (13, 16, 18, 21, 25; 0.5, 0.5, 0.6),

3∑
i=1

xi2 ≥ (17, 21, 24, 28, 30; 0.8, 0.2, 0.4),

3∑
i=1

xi3 ≥ (24, 29, 32, 35, 37; 0.9, 0.5, 0.3),

3∑
i=1

xi4 ≥ (6, 10, 13, 15, 18; 0.7, 0.3, 0.4), xij ≥ 0, i = 1, 2, 3, j = 1, 2, 3, 4

Using Problem-II the above problem can be written as follows:

Minimize zc =
3∑

i=1

4∑
j=1

ccijxij , Minimize zw =

3∑
i=1

4∑
j=1

cwijxij

where,

ccij =

 6 7 4 7.5

10 8.5 6 5.5

6.5 1.5 8 5.5

 , cwij =

1 2 1 0.5

2 1.5 2 0.5

1 0.5 1 0.5


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Subject to;

4∑
j=1

x1j ≤ 19.06,
4∑

j=1

x2j ≤ 20.06,
4∑

j=1

x3j ≤ 23.01,
3∑

i=1

xi1 ≥ 8.68,

3∑
i=1

xi2 ≥ 17.6,
3∑

i=1

xi3 ≥ 21.96,
3∑

i=1

xi4 ≥ 9.32, xij ≥ 0, i = 1, 2, 3, j = 1, 2, 3, 4

On solving the above problem using lingo 18.0 software, the pareto optimal solution of the

problem is obtained as, x11 = 3.27, x13 = 15.79, x23 = 6.17, x24 = 9.32, x31 = 5.41, x32 = 17.6,

Z = [185.06, 280.19].

The above result shows that minimum total cost of transportation lies between 185.06 to

280.19. The optimal policy of transportation to be adopted by decision maker is given in

Table (3).

Table 3. Optimal policy of transportation

Factoy Destination Suggested optimal policy of transportation

F1 −→ D1 3.27 Units of product are to be transported from first factory

to first destination

F1 −→ D3 15.79 Units of product are to be transported from first factory

to third destination

F2 −→ D3 6.17 Units of product are to be transported from second fac-

tory to third destination

F2 −→ D4 9.32 Units of product are to be transported from second fac-

tory to fourth destination

F3 −→ D1 5.41 Units of product are to be transported from third factory

to first destination

F3 −→ D2 17.6 Units of product are to be transported from third factory

to second destination

7. Advantages and Limitations of IPNTP

Every new study carry some limitations along with the advantages. Two major advantages

and their corresponding limitations have been discussed in Table 4.

8. Conclusion and Future Work

In this paper, a more realistic variant of transportation problem namely IPNTP has been

introduced with interval cost and pentagonal neutrosophic availability and demand parameters.

Since the transportation cost greatly depends on many factors like sudden change in fuel prices,

load carrying capacity of carrier, disloyalty of drivers and many more. So it becomes tedious
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Table 4. Advantages and limitations

Advantages Limitations

• Use of interval cost reduces their tedious

task of assigning membership grade to

every associated cost

• Solution approaches work well for single

objective problem as it converts into a bi-

objective crisp problems

• Relatively more information needed to

reduce the range of interval

• Multiobjective problems increases the

computational complexity of the problem

because it doubles the number of objec-

tives while converting into crisp one

for decision maker to assign grades to truth, indeterminacy and falsity membership functions

for unit cost of transporting product from each source to every destination. To overcome this

issue this article suggest the decision maker to represent the transportation cost in the form

of interval number. But this issue is not valid in case of availability and demand because

membership grade for availability and demand parameters may easily be assigned with the

help of information received from sources and destinations. To the best of our knowledge no

such variant of transportation problem is considered in literature previously.

An extension of the IPNTP with interval valued neutrosophic cost may be proposed in future

research work.
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1 Introduction   

We encounter many uncertainties in every moment of our lives. Often, classical mathematical logic is insufficient 

to get rid of these uncertainties. The reason is that when explaining a situation or a problem, it is not always 

possible to say that it is correct or certain. Neutrosophic logic and the concept of the neutrosophic set are defined 

in 1998 by Florentin Smarandache [1]. In the concept of neutrosophic logic and neutrosophic sets, there is a degree 

of membership T, a degree of uncertainty I, and a degree of non-membership F. These degrees are defined 

independently from each other. A neutrosophic value has the form (T, I, F). In other words, a situation is handled 

in neutrosophy according to its trueness, its indeterminacy, and its falsity. Thus, neutrosophic sets are a more 

general form of fuzzy sets [2] and intuitionistic fuzzy sets [3]. Several researchers have conducted studies on 

neutrosophic set theory [4-7]. Recently, Şahin and Uz studied multi-criteria decision-making applications based 

on set-valued generalized neutrosophic quadruple sets for law [8]; Şahin et al. obtained neutrosophic triplet partial 

g-metric spaces [9]; Kargın et al.  introduced neutrosophic triplet m–Banach spaces [10]; Zhang et al. defined 

singular neutrosophic extended triplet groups and generalized groups [11]; Alhasan et al. studied neutrosophic 
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reliability [12]; Mostafa et al. obtained hybridization between deep learning algorithms and neutrosophic theory 

in medical image processing [13]; Şahin et al. studied Hausdorff measures on generalized set-valued neutrosophic 

quadruple numbers and decision-making applications for the adequacy of online education [14]. 

Sigma algebra theory [15] has an important place in mathematics, especially in real analysis and 

probability theory. Sigma algebras have widespread use, especially in measurable functions and measurement 

theory. Also, Borel algebras are a widely used structure built on sigma algebras. 

Florentin Smarandache defined neutro-structures and anti-structures in 2019 [16] and 2020 [17].  Similar 

to neutrosophic logic, an algebraic structure is divided into three regions: the set of elements that satisfy the 

conditions of the algebraic structure, the truth region A; the set of elements that do not meet the conditions of the 

algebraic structure, the uncertainty region Neutro-A, and the set of elements that do not meet the conditions of the 

algebraic structure, the inaccuracy region Anti-A. Thus, the structure of neutrosophic logic has been transferred 

into the structure of classical algebras, without using neutrosophic sets and neutrosophic numbers. Therefore, 

neutro-algebraic structures, which are more general structures than classical algebras, can be obtained. In addition, 

the region of the elements that do not satisfy any of the classical algebras is also taken as anti-algebraic structures. 

For this reason, many researchers have conducted studies on neutro-algebraic structures and anti-algebraic 

structures [18 - 21]. Recently, Smarandache studied the neutroalgebra [22]; Smarandache worked on neutro-

algebraic structures and anti-algebraic structures [23]; Smarandache and Hamidi, defined neutro-bck-algebra [24]; 

Ibrahim and Agboola introduced neutro – vector spaces [25]; Şahin et al. studied neutro–G modules and anti–G 

modules [26]; Şahin et al. obtained neutro-topological space and anti-topological space [27]; Mirvakili et al. 

studied neutro-H v-semigroups [28]; Kargın and Şahin introduced neutro-law [29]; Hamidi and Smarandache 

defined single-valued neutro hyper BCK-Subalgebras [30].  

In the second section, we define sigma algebra [15] and give basic definitions of neutro-structures [22]. Also, we 

give definitions of neutro-topology and anti-topology [27].  In the third section, we define the neutro-sigma algebra 

and we obtain its basic properties. Also, we give similarities and differences between the classical sigma algebra 

and the neutro-sigma algebra. We show that neutro-sigma algebras have a more general structure with respect to 

classical sigma algebra and a neutro-sigma algebra can be obtained from every classic sigma algebra. In the fourth 

section, we define anti-sigma algebra and we give its basic features. Furthermore, we obtain similarities and 

differences between the classic sigma algebra and the anti-sigma algebra. Also, we show that a neutro-sigma 

algebra can be obtained from every anti-sigma algebra and neutro-sigma algebras have a more general structure 

with respect to anti-sigma algebras. In the last part, results and suggestions are given. 

2 Preliminaries  

 
Definition 1. [22] The Neutro-sophication of the Law (degree of well-defined, degree of indeterminacy, degree 

of outer-defined) 
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Let X be a non-empty set. * be binary operation. For at least a pair (x, y) ∈ (X, X), x ∗ y ∈ X (degree of well 

defined, corresponding in neutrosophy to Truth (T)) and for at least two pairs (a, b), (c, d) ∈ (X, X), [a ∗ b = 

indeterminate (degree of indeterminacy, corresponding in neutrosophy to Indeterminate (I)) or c ∗ d ∉ X (degree 

of outer-defined, corresponding in neutrosophy to Falsehood (F)]. 

Property 2. [22] In neutro-algebra, the classical well-defined for the binary operation * is divided into three 

regions: degree of well-defined (T), degree of indeterminacy (I), and degree of outer-defined (F) similar to 

neutrosophic set and neutrosophic logic. 

Definition 3. [22] The Anti-sophication of the Law (Total OuterFunction) 

Let X be a non-empty set and let * be a binary operation. For all pairs (x, y) ∈ (X, X), x ∗ y ∉ X (totally outer-

defined) 

Definition 4. [27] Let X be a non-empty set and 𝒯 be a collection of subsets of  X. If at least one of the following 

conditions {i, ii, iii} is satisfied, then  𝒯 is called a neutro-topology on X and (X, 𝒯) is called a neutro-topological 

space. 

i) [∅ ∈ 𝒯, X ∉ 𝒯 or X ∈ 𝒯, ∅ ∉ 𝒯] or [ ∅, X ∈I 𝒯] 

ii) For at least n elements 𝑝1, 𝑝2, … 𝑝𝑛 ∈ 𝒯, 

⋂ 𝑝𝑖

𝑛

𝑖=1

∈ 𝒯 

 and for at least n elements 𝑞1, 𝑞2, … 𝑞𝑛 ∈ 𝒯, and for at least n elements   𝑟1, 𝑟2, … 𝑟𝑛 ∈ 𝒯; 

[(⋂ 𝑞𝑖
𝑛
𝑖=1 ∉ 𝒯 or (⋂ 𝑟𝑖

𝑛
𝑖=1 ∈I 𝒯)] 

where n is finite. 

iii) For at least n elements 𝑝1, 𝑝2, … 𝑝𝑛 ∈ 𝒯,  

⋃ 𝑝𝑖

𝑖∈𝐼

∈ 𝒯 

and for at least n elements 𝑞1, 𝑞2, … 𝑞𝑛 ∈ 𝒯,  𝑟1, 𝑟2, … 𝑟𝑛 ∈ 𝒯;  

[(⋃ 𝑞𝑖𝑖∈𝐼 ∉ 𝒯 or (⋃ 𝑟𝑖𝑖∈𝐼 ∉ 𝒯)]. 
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Definition 5. [27] Let X be a non-empty set and 𝒯 be a collection of subsets of X. If the following conditions       

{Ai, Aii, Aiii} are satisfied, then  𝒯 is called an anti-topology on X and (X, 𝒯) is called an anti-topological space. 

Ai) ∅, X ∉ 𝒯, 

Aii) For all 𝑞1, 𝑞2, … 𝑞𝑛 ∈ 𝒯, (⋂ 𝑞𝑖
𝑛
𝑖=1 ∉ 𝒯) where n is finite, 

Aiii) For all 𝑞1, 𝑞2, … 𝑞𝑛 ∈ 𝒯, (⋃ 𝑞𝑖𝑖∈𝐼 ∉ 𝒯). 

Definition 6. [15] Let S be a non-empty set and 𝜎 be a collection of subsets of S. If 𝜎 satisfies the following 

conditions, then 𝜎 is called a sigma algebra: 

i) ∅ and S belongs to 𝜎, 

ii) For A ∈ 𝜎, 𝐴𝑐 ∈ 𝜎, 

iii) Any union of elements of 𝜎 belongs to 𝜎, 

iv) Any finite intersection of elements of 𝜎 belongs to 𝜎. 

3 Neutro-Sigma Algebras 

 

Definition 7. Let S be a non-empty set and 𝜎 be a collection of subsets of S. If at least one of the following 

conditions {i, ii, iii, iv} is satisfied, then 𝜎 is called a neutro-sigma algebra. 

i) [∅ ∈ 𝜎, S ∉ 𝜎 or S ∈ 𝜎, ∅ ∉ 𝜎] or [ ∅, S ∈I 𝜎]. 

ii) For at least one element  

𝑠1 ∈ 𝜎, 𝑠1
𝑐 ∈ 𝜎 

and for at least two elements 

𝑡1 ∈ 𝜎, 𝑚1 ∈ 𝜎; [(𝑡1
𝑐 ∉ 𝜎 or (𝑚1

𝑐 ∈I 𝜎)]. 

iii) For at least n elements 

𝑠1, 𝑠2, … 𝑠𝑛 ∈ 𝜎, ⋂ 𝑝𝑖
𝑛
𝑖=1 ∈ 𝜎 

and for at least n elements 𝑡1, 𝑡2, … 𝑡𝑛 ∈ 𝜎, 𝑚1, 𝑚2, … 𝑚𝑛 ∈ 𝜎; 
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[(⋂ 𝑡𝑖
𝑛
𝑖=1 ∉ 𝜎 or (⋂ 𝑚𝑖

𝑛
𝑖=1 ∈I 𝜎)], 

where n is finite. 

iv) For at least n elements 

𝑠1, 𝑠2, … 𝑠𝑛 ∈ 𝜎, ⋃ 𝑝𝑖𝑖∈𝐼 ∈ 𝜎 

and for at least n elements 𝑡1, 𝑡2, … 𝑡𝑛 ∈ 𝜎, 𝑚1, 𝑚2, … 𝑚𝑛 ∈ 𝜎; 

[(⋃ 𝑡𝑖𝑖∈𝐼 ∉ 𝜎 or (⋃ 𝑚𝑖𝑖∈𝐼 ∉ 𝜎)]. 

We obtain Definition 7 using Definition 1 and Property 2. 

Note 8: In this chapter, the symbol “=I” will be used for situations where equality is uncertain. For example, if it 

is not certain whether “a” and “b” are equal, then it is denoted by a =I b. 

Note 9: In this chapter, the symbol “∈I” will be used for situations where the inclusion is not obvious. For example, 

if it is not certain whether “a” is a member of the set B, then it is denoted by a ∈I B. 

 The notation in Note 8 and Note 9 is the same as in [27]. 

Corollary 10:  

i) By condition {ii} of Definition 7, neutro-sigma algebras differ from neutro-topology (in Definition 4). In 

addition, every neutro-sigma algebra is a neutro-topology. However, the reverse is not always true. 

ii) From Definition 7, the neutro-sigma algebras differ from the classical sigma algebras in Definition 6. Also, the 

neutro-sigma algebras are given as an alternative to the classical sigma algebras. However, for a neutro-sigma 

algebra, instead of the ones that are not met in Definition 7, classical sigma algebra conditions are valid. 

Example 11. Let S = {𝑘, 𝑙, 𝑚, 𝑛} be a set and 𝜎 = {∅, {𝑘}, {𝑘, 𝑙}, {𝑚, 𝑛}, {𝑙, 𝑚}} be a collection of subsets of S. 

Then, 

i) It is clear that S ∉ 𝜎 and  ∅ ∈ 𝜎. 

ii) Let 𝑆1 = {𝑘, 𝑙} and 𝑆2 = {𝑘}. It is clear that 

𝑆1
𝑐 ∈ 𝜎 and 𝑆2

𝑐 ∉ 𝜎. 

iii) Let 𝑆1 = {𝑘}, 𝑆2 = {𝑘, 𝑙}, 𝑇1 = {𝑚, 𝑛} and 𝑇2 = {𝑙, 𝑚}. We obtain that   
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𝑆1 ∩ 𝑆2 ∈ 𝜎 and 𝑇1 ∩ 𝑇2 ∉ 𝜎. 

iv) Let 𝑆1 = {𝑘, 𝑙} , 𝑆2 = {𝑚, 𝑛}, 𝑇1 = {𝑘} and 𝑇2 = {𝑙, 𝑚}. We obtain that 

𝑆1 ∪ 𝑆2 ∈ 𝜎 and  𝑇1 ∪ 𝑇2 ∉ 𝜎. 

Hence, 𝜎 satisfies the conditions {i, ii, iii, iv} of Definition 7. Thus, 𝜎 is a neutro-sigma algebra. 

Example 12. Let S = {𝑘, 𝑙, 𝑚, 𝑛} be a set and 𝜎 = {∅, S, {𝑘}, {𝑙}, {𝑚}, {𝑛}, {𝑚, 𝑛}, {𝑘, 𝑙}} be a collection of subsets 

of S. Then, 

ii) Let 𝑆1 = {𝑚, 𝑛} and 𝑆2 = {𝑙}. It is clear that 

𝑆1
𝑐 ∈ 𝜎 and 𝑆2

𝑐 ∉ 𝜎. 

iv) Let 𝑆1 = {𝑘} , 𝑆2 = {𝑙}, 𝑇1 = {𝑛} and 𝑇2 = {𝑘, 𝑙}. We obtain that 

𝑆1 ∪ 𝑆2 ∈ 𝜎 and  𝑇1 ∪ 𝑇2 ∉ 𝜎. 

Thus, 𝜎 satisfies the conditions {ii, iv} of Definition 7. Hence 𝜎 is a neutro-sigma algebra. 

We note that 𝜎 satisfies the classical sigma algebra conditions {i, iii}. 

Corollary 13. In Example 11, 𝜎 is a neutro-sigma algebra, but 𝜎 is not a classical sigma algebra. In Example 12; 

𝜎 is a neutro-sigma algebra but 𝜎 is not a classical sigma algebra. Thus, neutro-sigma algebras have a more general 

structure than classical sigma algebras. 

Theorem 14. Let 𝜎 be a classical sigma algebra. Then, 𝜎 − ∅ is a neutro-sigma algebra. 

Proof: Since 𝜎 is a classical sigma algebra, it is clear that S ∈ 𝜎. Hence,  

                                                                          𝑆𝑐 =  ∅ ∉ 𝜎 − ∅.                                                                         (1) 

Also, since 𝜎 is a classical sigma algebra; we have, for all A ∈ 𝜎 − ∅ 

      𝐴𝑐 ∈ 𝜎 − ∅.                                                                                (2) 

Therefore, from (1) and (2); 𝜎 − ∅ satisfies the condition {ii} of Definition 7. Thus, 𝜎 − ∅ is a neutro-sigma 

algebra. 

Also, 𝜎 − ∅ satisfies the condition {i} of Definition 7.   
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Theorem 15. Let 𝜎 be a classical sigma algebra. Then, 𝜎 − S is a neutro-sigma algebra.  

Proof: Since 𝜎 is a classical sigma algebra, it is clear that ∅ ∈ 𝜎. Hence,  

                                                                           ∅𝑐 =  S ∉ 𝜎 − S .                                                                       (3) 

Also, since 𝜎 is a classical sigma algebra; we obtain that for all A ∈ 𝜎 − S  

              𝐴𝑐 ∈ 𝜎 − S .                                                                             (4) 

Therefore, from (3) and (4); 𝜎 − S satisfies the condition {ii} of Definition 7. Thus, 𝜎 − S  is a neutro-sigma 

algebra. 

Also, 𝜎 − S satisfies the condition {i} in Definition 7.   

Theorem 16. Let 𝜎 be a classical sigma algebra and A be a set such that  Ac ∉ 𝜎. Then, 𝜎 ∪ A is a neutro-sigma 

algebra.  

Proof: It is clear that since Ac ∉ 𝜎, we obtain 

                                                                           Ac ∉  𝜎 ∪ A                                                                              (5) 

Also, since 𝜎 is a classical sigma algebra; we obtain that for all B ∈ 𝜎  

              Bc ∈ 𝜎                                                                                       (6) 

Therefore, from (5) and (6); 𝜎 ∪ A satisfies the condition {ii} of Definition 7. Thus, 𝜎 ∪ A is a neutro-sigma 

algebra. 

Theorem 17. Let 𝜎 be a classical sigma algebra and A be an element of 𝜎. Then, 𝜎 − A is a neutro-sigma algebra.  

Proof: It is clear that since A ∈ 𝜎, we obtain 

                                                                             (Ac)𝑐= A ∉  𝜎 – A.                                                                  (7) 

 Also, since 𝜎 is a classical sigma algebra; we obtain that for all B ∈ 𝜎 – A , 

              Bc ∈  𝜎 – A.                                                                             (8) 

Therefore, from (7) and (8); 𝜎 – A satisfies the condition {ii} of Definition 7. Thus, 𝜎 – A is a neutro-sigma 

algebra. 
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Corollary 18.   

i) From Theorem 14, Theorem 15, Theorem 16, and Theorem 17, we obtain that a neutro-sigma algebra can be 

obtained from every classical sigma algebra.  

ii) The classical sigma algebras do not satisfy the Theorem 14, Theorem 15, Theorem 16, and Theorem 17. 

However, neutro-sigma algebras satisfy Theorem 19 and Theorem 21. 

Theorem 19. Let (𝜎𝒊) be a non-empty family of neutro-sigma algebras 𝜎𝒊 such that ∅ ∈ 𝜎𝒊, S ∉ 𝜎𝒊 (i = 1, 2, … , n). 

Then, ⋃ (𝜎𝒊)
𝑛
𝑖=1  is a neutro-sigma algebra on S.  

Proof: Since (𝜎𝒊) is a non-empty family of neutro-sigma algebras 𝜎𝒊 such that ∅ ∈ 𝜎𝒊, S ∉ 𝜎𝒊; it is clear that 

                                                                              ∅𝑐 =  S ∉ ⋃ (𝜎𝒊)
𝑛
𝑖=1  .                                                                (9) 

Also, since (𝜎𝒊) is a non-empty family of neutro-sigma algebras 𝜎𝒊 such that ∅ ∈ 𝜎𝒊, S ∉ 𝜎𝒊; we obtain that               

for all B ∈ ⋃ (𝜎𝒊)
𝑛
𝑖=1 – ∅ , 

              Bc ∈  ⋃ (𝜎𝒊)
𝑛
𝑖=1 – ∅ .                                                                             (10) 

Therefore, from (9) and (10); ⋃ (𝜎𝒊)
𝑛
𝑖=1  satisfies the condition {ii} in Definition 7. Thus, ⋃ (𝜎𝒊)

𝑛
𝑖=1  is a neutro-sigma 

algebra. 

Also, ⋃ (𝜎𝒊)
𝑛
𝑖=1  satisfies the condition {i} of Definition 7.   

Example 20. Let S = {𝑘, 𝑙, 𝑚, 𝑛} be a set and 𝜎1 = {∅, {𝑘}, {𝑘, 𝑙}, {𝑚, 𝑛}, {𝑙, 𝑚}},                                                                       

𝜎2 = {∅, {𝑘}, {𝑙}, {𝑚}, {𝑛}, {𝑚, 𝑛}, {𝑘, 𝑙}} be a collection of subsets of S. Then, from Example 12,  𝜎1 is a                        

neutro-sigma algebra. Also, 𝜎2 is a neutro-sigma algebras since  𝜎2 satisfies conditions {i, ii, iv} of Definition 7.          

Now, we show that  

𝜎1 ∪ 𝜎2 = {∅, {𝑘}, {𝑙}, {𝑚}, {𝑛}, {𝑚, 𝑛}, {𝑘, 𝑙}, {𝑙, 𝑚}} 

is a neutro-sigma algebra. 

i) ∅ ∈ 𝜎1 ∪ 𝜎2 and S ∉ 𝜎1 ∪ 𝜎2. 

ii) {𝑚, 𝑛}𝑐 ∈ 𝜎1 ∪ 𝜎2 and {𝑚}𝑐 ∉ 𝜎1 ∪ 𝜎2. 

iii) {𝑘} ∪ {𝑙} ∈ 𝜎1 ∪ 𝜎2 and  {𝑘, 𝑙} ∪ {𝑚, 𝑛} ∉ 𝜎1 ∪ 𝜎2. 
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iv) {𝑘} ∩ {𝑘, 𝑙} ∈ 𝜎1 ∪ 𝜎2 and  {𝑚, 𝑛} ∩ {𝑙, 𝑚} ∉ 𝜎1 ∪ 𝜎2. 

Hence, 𝜎1 ∪ 𝜎2 satisfies the conditions {i, ii, iii, iv} of Definition 7 and 𝜎1 ∪ 𝜎2 is a neutro-sigma algebra. 

Theorem 21. Let (𝜎𝒊) be a non-empty family of neutro-sigma algebras 𝜎𝒊 such that ∅ ∉ 𝜎𝐢, S ∈ 𝜎𝐢  (i = 1, 2, … , n). 

Then, ⋃ (𝜎𝒊)
𝑛
𝑖=1  is a neutro-sigma algebra. 

Proof: Since (𝜎𝒊) is a non-empty family of neutro-sigma algebras 𝜎𝒊 such that ∅ ∉ 𝜎𝐢, S ∈ 𝜎i, it is clear that 

                                                                               𝑆𝑐 =  ∅ ∉ ⋃ (𝜎𝒊)
𝑛
𝑖=1                                                               (11) 

Also, since (𝜎𝒊) is a non-empty family of neutro-sigma algebras 𝜎𝒊 such that ∅ ∈ 𝜎𝒊, S ∉ 𝜎𝒊; we obtain that for all 

B ∈ ⋃ (σ𝐢)
n
i=1 – S , 

              Bc ∈  ⋃ (σ𝐢)
n
i=1 – S .                                                                             (12) 

Therefore, from (11) and (12); ⋃ (𝜎𝒊)
𝑛
𝑖=1  satisfies the condition {ii} of Definition 7. Thus, ⋃ (𝜎𝒊)

𝑛
𝑖=1  is a neutro-

sigma algebra. 

Also, ⋃ (𝜎𝒊)
𝑛
𝑖=1  satisfies the condition {i} of Definition 7.  

Example 22. Let S = {𝑘, 𝑙, 𝑚, 𝑛} be a set and 𝜎1 = {𝑆, {𝑘}, {𝑘, 𝑙}, {𝑚, 𝑛}, {𝑙, 𝑚}},                                                                       

𝜎2 = {𝑆, {𝑘}, {𝑙}, {𝑚}, {𝑛}, {𝑚, 𝑛}, {𝑘, 𝑙}} be  a collection of subsets of S. Then,  𝜎1 is a neutro-sigma algebra since 

𝜎1 satisfies conditions {i, ii, iii, iv} of Definition 7. Also, 𝜎2 is a neutro-sigma algebras since  𝜎2 satisfies the 

conditions {i, ii, iv} of Definition 7.          

Now, we show that  

𝜎1 ∪ 𝜎2 = {𝑆, {𝑘}, {𝑙}, {𝑚}, {𝑛}, {𝑚, 𝑛}, {𝑘, 𝑙}, {𝑙, 𝑚}} 

is a neutro-sigma algebra. 

i) ∅ ∉ 𝜎1 ∪ 𝜎2 and S ∈ 𝜎1 ∪ 𝜎2. 

ii) {𝑘, 𝑙}𝑐 ∈ 𝜎1 ∪ 𝜎2 and {𝑙}𝑐 ∉ 𝜎1 ∪ 𝜎2. 

iii) {𝑚} ∪ {𝑛} ∈ 𝜎1 ∪ 𝜎2 and  {𝑘} ∪ {𝑙, 𝑚} ∉ 𝜎1 ∪ 𝜎2. 

iv) {𝑘} ∩ {𝑙} ∈ 𝜎1 ∪ 𝜎2 and  {𝑚} ∩ {𝑙} ∉ 𝜎1 ∪ 𝜎2. 

Hence, 𝜎1 ∪ 𝜎2 satisfies the conditions {i, ii, iii, iv} of Definition 7 and 𝜎1 ∪ 𝜎2 is a neutro-sigma algebra. 
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Corollary 23. The classical sigma algebras do not satisfy Theorem 19, Theorem 21, Example 20, and              

Example 22. However, neutro-sigma algebras satisfy Theorem 19, Theorem 21, Example 20, and Example 22. 

4 Anti-Sigma Algebras  

Definition 24. Let S be a non-empty set and 𝜎 be a collection of subsets of S. If the following conditions                               

{i, ii, iii, iv} are satisfied, then 𝜎 is called an anti-sigma algebra on S. 

i) ∅, S ∉ 𝜎, 

ii) for all 𝑆𝑖 ∈ 𝜎, 𝑆𝑖
𝑐 ∉ 𝜎 , 

iii) for all 𝑆1, 𝑆2, … 𝑆𝑛 ∈ 𝜎, (⋂ 𝑆𝑖
𝑛
𝑖=1 ∉ 𝜎) , 

iv) for all 𝑆1, 𝑆2, … 𝑆𝑛 ∈ 𝜎, (⋃ 𝑆𝑖𝑖∈𝐼 ∉ 𝜎). 

Example 25. Let S = {𝑘, 𝑙, 𝑚, 𝑛} be a set and 𝜎 = {{𝑘}, {𝑙}, {𝑚}} be a collection of subsets of S. Then, 

i) It is clear that ∅ ∉ 𝜎 and  S ∉ 𝜎. 

ii) Let  

𝑆1 = {𝑘} , 𝑆2 = {𝑙} , 𝑆3 = {𝑚}. 

Thus, we have 

(𝑆1)𝑐 ∉ 𝜎, (𝑆2)𝑐 ∉ 𝜎, (𝑆3)𝑐 ∉ 𝜎. 

iii) Let  

𝑆1 = {𝑘} , 𝑆2 = {𝑙} , 𝑆3 = {𝑚}. 

So, 

⋂ 𝑆𝑖
3
𝑖=1 ∉ 𝜎. 

iv) Let  

𝑆1 = {𝑘} , 𝑆2 = {𝑙} , 𝑆3 = {𝑚}. 

Then, we have 



Neutrosophic Sets and Systems, Vol. 51, 2022  

 

____________________________________________________________________________________________________ 

M. Şahin, Neutro-Sigma Algebras and Anti-Sigma Algebras  
 

 918  

⋃ 𝑆𝑖
3
𝑖=1  ∉ 𝜎. 

Thus, 𝜎 satisfies the {i, ii, iii, iv} conditions of Definition 24. Therefore, 𝜎 is an anti-sigma algebra on S. 

Corollary 26: In Example 25, 𝜎 is an anti-sigma algebra. But 𝜎 is not a neutro-sigma algebra or a classical sigma 

algebra. Thus, anti-sigma algebras are different from neutro-sigma algebras and classical sigma algebras. 

Theorem 27. Let 𝜎 be an anti-sigma algebra on S, A and 𝐴𝑐 be two sets such that  

A∉ 𝜎 and 𝐴𝑐 ∉ 𝜎. 

Then, σ ∪ A ∪ Ac is a neutro-sigma algebra.  

Proof: As 𝐴 ∉ 𝜎 and 𝐴𝑐 ∉ 𝜎, it is clear that  

                                                                           A ∈ σ ∪ A ∪ Ac and Ac ∈ σ ∪ A ∪ Ac .                                      (13) 

Also, since 𝜎 is an anti-sigma algebra; we obtain that for all B ∈ 𝜎,   

              Bc ∉ 𝜎 .                                                                                     (14) 

So, by (13) and (14); σ ∪ A ∪ Ac satisfies the condition {ii} of Definition 7. Thus, σ ∪ A ∪ Ac  is a neutro-sigma 

algebra. 

Theorem 28. Let 𝜎 be an anti-sigma algebra on S. Then, 𝜎 ∪ ∅ ∪ S is a neutro-sigma algebra. 

Proof: Since 𝜎 is an anti-sigma algebra on S, for all 𝑆𝑖 ∈ 𝜎,  we have 𝑆𝑖
𝑐 ∉ 𝜎.  

𝑆𝑐 = ∅ ∈ 𝜎 ∪ ∅ ∪ S and ∅𝑐 = 𝑆 ∈ 𝜎 ∪ ∅ ∪ S. 

Thus, 𝜎 ∪ ∅ ∪ S satisfies condition {ii} of Definition 7. Hence, 𝜎 ∪ ∅ ∪ S is a neutro-sigma algebra. 

          Also, 𝜎 ∪ ∅ ∪ S satisfies condition {iii, iv} of Definition 7. 

In addition, in proof of Theorem 27; if we assume that  

A = ∅ and Ac = S or A = S and Ac = ∅, 

then ∅  and S satisfy Theorem 28. 

Theorem 29. Let 𝜎 be an anti-sigma algebra on S and A be an element of 𝜎. Then, 𝜎 ∪ Ac is a neutro-sigma 

algebra.  



Neutrosophic Sets and Systems, Vol. 51, 2022  

 

____________________________________________________________________________________________________ 

M. Şahin, Neutro-Sigma Algebras and Anti-Sigma Algebras  
 

 919  

Proof: Since 𝜎 is an anti-sigma algebra on S, for all 𝑆𝑖 ∈ 𝜎, 𝑆𝑖
𝑐 ∉ 𝜎. However, it is clear that 

𝐴𝑐 ∈ 𝜎 ∪ Ac. 

Thus, 𝜎 ∪ Ac satisfies condition {ii} of Definition 7. Hence, 𝜎 ∪ Ac is a neutro-sigma algebra.  

Example 30. In Example 25, 𝜎 = {{𝑘}, {𝑙}, {𝑚}} is an anti-sigma algebra on S. By Theorem 27, 𝜎 ∪ ∅ is a      

neutro-sigma algebra. 

Example 31. In Example 25, 𝜎 = {{𝑘}, {𝑙}, {𝑚}} is an anti-sigma algebra on S. By Theorem 28, 𝜎 ∪ S  is a neutro-

sigma algebra. 

Example 32. In Example 25, 𝜎 = {{𝑘}, {𝑙}, {𝑚}} is an anti-sigma algebra on S. By Theorem 29, 𝜎 ∪ ∅ ∪ S  is a 

neutro-sigma algebra. 

Example 33. In Example 25, 𝜎 = {{𝑘}, {𝑙}, {𝑚}} is an anti-sigma algebra on S. By Theorem 30,  

𝜎 ∪ {𝑘}𝑐 ={{𝑘}, {𝑙}, {𝑚}, {𝑙, 𝑚, 𝑛}} 

is a neutro-sigma algebra. 

Corollary 34. 

i) From Theorem 27, Theorem 28, and Theorem 29, we obtain that a neutro-sigma algebra can be obtained from 

every anti-sigma algebra. 

ii) Neutro-topology and anti-topology do not satisfy Theorem 27, Theorem 28, and Theorem 29. Thus, neutro-

sigma algebras and anti-sigma algebras have a more general structure than neutro-topology and anti-topology. 

5 Conclusions 

In this study, a neutro-sigma algebra is defined and relevant basic properties are given. Similarities and 

differences between the classical sigma algebras and neutro-sigma algebras are discussed. We show that a neutro-

sigma algebra can be obtained from every classical sigma algebra. In addition, we define anti-sigma algebras and 

we give corresponding basic properties. We discuss similarities and differences between the classical sigma 

algebra and anti- sigma algebras. Also, we show that a neutro-sigma algebra can be obtained from every anti-

sigma algebra. In addition, we show that neutro-sigma algebras and anti-sigma algebras have a more general 

structure than neutro-topology and anti-topology. Thus, we add new structures to the neutro-algebra theory. 

By using the definition of neutro-sigma algebras and anti-sigma algebras, researchers can define neutro-

sigma measurable functions, anti-sigma measurable functions, neutro-Borel algebras, and anti-Borel algebras.  
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Abstract. The entrepreneurship competence is of vital importance in the teacher training of students. It is inconceivable that 

citizens who are trained in schools do not have the ability to be autonomous, creative and daring, to make decisions that trans-

form the social life in which we are immersed for the better. However, we do not always find institutions with the right educa-

tion to develop this competence. That is why the aim of this article is to propose a model for the representation and obtaining 

of knowledge about the entrepreneurship competence in any educational system. For this end, there are neutrosophic ontolo-

gies, which is a tool to easily reflect the relationships between concepts. The use of neutrosophy allows us taking into account 

the truthfulness, falseness and indeterminacy of the belonging of an object to a specific set, for its evaluation and classification. 

To the knowledge of the authors, this is the first time that neutrosophic ontology has been used to model entrepreneurship 

competence. 

 
Keywords: Entrepreneurship competence, ontology, neutrosophic ontology, education.

 

1 Introduction 

An intention of change in education demands integrating training actions from the continuity that implies the 

verification, distribution and use of knowledge. It is transcendent that the learner manages diverse concepts and 

faces dissimilar interpretations that favor their critical thinking in the field of their reality. 
Training by competencies confers the approach of the educational process from the complex and organic ap-

preciation, which compose, knowledge, abilities, skills, attitudes and values, in synergistic interaction that makes 
viable the autonomous performance of the individual, by equipping him (her) with tools to create, manage, inter-

pret, understand and transform the social environment with a proactive, holistic and innovative vision. This rele-
vant appropriation specifies the need to develop the entrepreneurship competence in education as a contribution 

to the integral formation of the student, from its essence of systemic realization, which nurtures and agrees with 

other generic, basic and specific competences. 
In this sense, the programs to develop the entrepreneurship competence in educational institutions, in general, 

do not educate for entrepreneurship, but rather guide about it and do not focus on skills, attributes and competen-
cies of an entrepreneur, on the contrary, it focuses teaching on the creation of new companies and business ad-

ministration, aspects that are insufficient to guarantee the training of entrepreneurial students, so the advance-

ment of attributes should be strengthened as a priority, thinking, attitude and values [1]. 
The theoretical validation of any strategy expresses the establishment that the purposes for which it is estab-

lished meet the requirements for the intended applications. It is the process by which it is demonstrated that the 
procedures and actions to be developed are pertinent to consummate the indicated objectives, the suitability of 

the strategy to achieve the expected performance is certified by experts or other methodologies. When we study 
the entrepreneurship competence, we must define which projects we consider most valuable for society, because 

they will be the ones that we will try to get students to undertake. We are not interested in educating the compe-

tence to undertake if we do not establish personal and social objectives, specified in a set of shared values. 
One way to measure this process is by representing knowledge through what is known as Knowledge Engi-

neering, which is the theoretical basis for dealing with the knowledge acquired by experts and reflected in publi-
cations, whether monographs, books, scientific articles, among other supports. 

A tool that allows us the representation of knowledge is ontology [2-4]. The term ontology in computer sci-
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ence refers to the formulation of an exhaustive and rigorous conceptual scheme within one or several given do-
mains; in order to facilitate communication and the exchange of information between different systems and enti-

ties. Although it takes its name by analogy, this is the difference with the philosophical point of view of the word 

ontology. 
A current technological common use of the concept of ontology, in this semantic sense, is found in artificial 

intelligence and knowledge representation. In some applications, several schemas are combined into a de facto 
complete data structure, containing all the relevant entities and their relationships within the domain. 

Computer programs can thus use this view of ontology for a variety of purposes, including inductive, and a 
variety of problem-solving techniques. 

Typically, ontologies in computers are closely related to fixed vocabularies (a foundational ontology) with 

whose terms everything else must be described. Because this can lead to poor representations for certain problem 
domains, more specialized schemas must be created to make the data useful for real-world decision-making. 

Classical ontologies based on bivalent logic allow us the representation of knowledge only in a strict way, 
where the measurement of the belonging of an entity or object to a certain concept can be assumed without nu-

ances, where either it is white or it is black. This does not correspond to reality, where there is uncertainty. That 

is why fuzzy ontologies allow us a more exact modeling of reality, where the object belongs to a fuzzy set with a 
certain degree of veracity, which is given by the lack of certainty that exists in the world around us, especially 

the world of social relationships, [3,4]. 
Although fuzzy ontologies better reflect reality, because they include shades of gray in the evaluations, even 

more precision is needed at the cost of greater indeterminacy; this can be solved with the help of neutrosophic 

logic. Neutrosophic logic allows the inclusion of degrees of truthfulness, falsity and indeterminacy explicitly. 
That is why in this paper we use neutrosophic ontologies as a way of representing the knowledge of the entre-

preneurship competence. Other papers that can be found on the application of neutrosophy in pedagogy can be 
consulted on [5-11]. 

In other words, this paper aims to offer a model for representing and obtaining knowledge about the entre-
preneurship competence with the help of neutrosophic ontologies. To do this, in the following section the fun-

damental concepts are developed, such as some details about the entrepreneurial competence and the basic no-

tions about neutrosophic ontologies. Section 3 contains the fundamentals of the proposed model, while the last 
section is dedicated to giving the conclusions. 

2 Preliminaries 

2.1 Entrepreneurship competence 

Learning development strategies are complex constructs that are oriented towards decision-making resulting 

from a training need, containing actions that activate knowledge in close correspondence with the search for the 
achievement of pre-established goals, effectively ([1,5,9,12-14]). 

The definition of competence as the relevant appropriation of cross-cutting skills, knowledge, attitudes and 
values, which, when persistently updated, allow the individual to effectively and responsibly guide their interac-

tion and development in dissimilar social settings. 
The entrepreneurship competence has the duality of integrating terminal objectives and procedural elements, 

which combine substantive and adjective functions at the same time, all that it allows us from its decomposition 

into relevant cognitive nuclei and to group its dimensions into four cardinal groups: 
Instrumental Dimension: (relates the procedural-adjective components) planning, organization, execution, 

control, management, evaluation, communication, project design, negotiation, manifest skills and abilities. 
Cognitive dimension: (brings together the resources of appropriation and use of knowledge) learning to 

learn, interpreting in social reality, understanding the environment, understanding, solving problems, establish-

ing judgments and reasoning, information management and its management for the development of comprehen-
sive general culture. 

Attitudinal dimension: (summarizes the motivational-volitional compositions of the competence) creativity, 
initiative, critical thinking, holistic vision, leadership, decision-making, teamwork, proactivity, risk management, 

motivation and audacity to achieve one's own goals or that of the group, perseverance, autonomy in action and 
the ability to delay the need for immediate satisfaction, development of the will to innovate. 

Axiological dimension: (provides resources related to values and the conditioning of acting) resilience, op-

timism, responsibility, sustainability, altruism, preponderance of social interest, equity, respect for differences 
and equality, care for the environment. 

Each one of these dimensions reaches its own magnitudes that distinguish them, but they cannot be isolated, 
since they form a unit. Its operating system is systemic, which increases its synergistic behavior to the extent that 

they are enhanced. 

The dimensions function as a complex and coherent organization, in which each element fulfills a function, 
establishes an order, involves a logic of relationships, which give fullness to the whole and distinguish it, by di-
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recting and complementing the development that gives rise to competition. 
Approaching the entrepreneurship competence from the pedagogical performance of teachers in any level of 

education means the development of constructs that promote participation, inclusion and social responsibility. It 

is to develop a quality dedicated to individual and group protagonism. 
It is to train the student by reinforcing the attitudinal, cognitive and axiological elements that lead to the mu-

tation of the role of passive executors to men and women with critical thinking, actors of change, producers of 
innovative ideas, of viable projects, with the aptitudes and attitudes to materialize it. This is graphically summa-

rized in Figure 1. 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

Figure 1: Graphical representation of the development of the entrepreneurship competence. Source ([1]). 

2.2 Neutrosophic Ontologies 

Classical ontologies are based on objects and their relationships and have the following components ([2]): 

 Individuals: Instances or objects. 
 Classes: Sets, collections, concepts, etc. 

 Attributes: Aspects, properties, features, characteristics, etc. 
 Relations: How classes and individuals relate to one another. 

 Function terms: Complex structures designed from certain relations. 

 Restrictions: Constrains which describe what is true to be accepted as input. 
 Rules: Statements in the form of IF-THEN sentences. 

 Axioms: Assertions which include rules, in a logical form that comprise the overall theory that the 
ontology describes in its domain of application. 

Figure 2 represents an example of ontology: 
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Figure 2: Graphical representation of a basic generic ontology. Source: The authors. 

 

Neutrosophic logic is a logic in which every proposition is estimated to have the degree of truthfulness, inde-
terminacy, and falsity (T, I, F). 

Definition 1: ([15,16]) The Neutrosophic set N is characterized by three membership functions, which are 

the truth-membership function TA, indeterminacy-membership function IA, and falsity-membership function FA, 
where U is the Universe of Discourse and xU , TA(x), IA(x), FA(x) ] 0− , 1+ [ , and 0− inf TA(x) +
 inf IA(x) +  inf FA(x)sup TA(x) +  sup IA(x) +  sup FA(x)3+ . 

See that according to Definition 1, TA(x), IA(x), FA(x)  are real standard or non-standard subsets of  ] 0− , 1+ [ 
and hence, TA(x), IA(x), FA(x)  can be subintervals of  [0, 1]. 

Definition 2: ([15,16]) The Single-Valued Neutrosophic Set (SVNS) N over U is A =  {<
𝑥; TA(x), IA(x), FA(x) > : 𝑥U} , where  TA: U[0, 1] , IA: U[0, 1] , and FA: U[0, 1] , 0 TA(x)  + IA(x)  +
FA(x)  3. 

The Single-Valued Neutrosophic number (SVNN) is symbolized by N =  (t, i, f ), such that 0 t, i, f  1 and 

0 t +  i +  f 3. 
Definition 3: ([17]) A neutrosophic ontology is a sextuple NO = < 𝐼, 𝐶, 𝑇, 𝑁, 𝑋, 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦 > where I 

is the set of instances, C is the set of classes. T denotes the taxonomy relations among the set of concepts C. N 

denotes the set of non-taxonomy neutrosophic associative relationships. X is the set of axioms expressed in a 
proper logical language. Indeterminacy is the degree of indeterminacy existing in the overlapping region. 

A Neutrosophic Ontology in the example of Figure 2 contains triple truth values for truthfulness, indetermi-
nacy, and falseness. For example, “Studies-in” can be associated with < 1,0,0 > in all the three cases because a 

student usually studies in only one school. On the other hand, for the relationship “Fulfils-the-requirements-of” 
there are different degrees of satisfaction, for example Robert could satisfy the Instrumental dimension with <
0.03,0.2,0.9 >, the Cognitive with < 0.1,0.1,0.8 >, the Attitudinal with < 0.9,0.1,0.2 >, and the Axiological 

with < 0.85,0.15,0.2 >. 

3 The Model 

In the proposed model, the neutrosophic ontology is used to represent knowledge and to evaluate each stu-
dent in terms of its ability to undertake. 

The set I in this case is the set of students that are going to be evaluated on their entrepreneurship compe-

tence. Set C is that of the classes involved, in this case "Has the entrepreneurship competence", which are meas-
ured by the attributes of having the "Instrumental", "Cognitive", "Attitudinal" and "Axiological" dimensions. N 

contains the opposite of the concepts within the classes, that is, “does not have the entrepreneurship competence”. 
The rules defined in this model are very simple and obvious: 

1. If student S satisfies the “Instrumental” dimension, then he or she has a greater capacity for “Entrepre-
neurship Competence”. 
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A                    B 
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2. If student S satisfies the "Cognitive" dimension, then he or she has a greater capacity for “Entrepreneur-
ship Competence”. 

3. If student S satisfies the “Attitudinal” dimension, then he or she has a greater capacity for “Entrepre-

neurship Competence”. 
4. If student S satisfies the “Axiological dimension”, then he or she has a greater capacity for “Entrepre-

neurship Competence”. 
5. If student S satisfies a greater number of dimensions, then he or she will have a greater capacity for “En-

trepreneurship Competence”. 
The teachers of the students to evaluate are invited to give an evaluation out of 100 points that reflects the 

behavior of the students on each of the previous dimensions. This must be stored in a database. The evaluators 

are explained that for each evaluation they must give 3 values out of 100 points, the first value corresponds to 
how certainty they have that the student satisfies the indicated attribute, which is one of the 4 dimensions, the 

second value corresponds within the same scale to the indeterminacy that the evaluator has about the satisfaction 
or not of the dimension, while the third value corresponds to the certainty that the student does not satisfy the at-

tribute. Although evaluators are asked for a greater number of elements to evaluate, this will result in greater ac-

curacy, taking into account that teachers are not always satisfied with giving a grade in a single number that of-
ten leaves them dissatisfied. 

The proposed ontology is visualized in Figure 3. 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 

Figure 3: Neutrosophic Ontology of entrepreneurship competence. Source: The authors. 

 

Note that the triple 〈t, i, f〉 corresponds to the neutrosophic evaluation of each student, as explained above. 
Following the 5 rules, they can be summarized in that the entrepreneurship competence is measured accord-

ing to the satisfaction of the 4 attributes (or dimensions). In addition to the fact that the greater the number of sat-
isfied attributes, the greater the entrepreneurship competence, this is reflected in the following logical predicate: 

 

𝐸𝐶 ↔ 𝐼𝑛𝑠𝑡 𝐴𝑁𝐷 𝐶𝑜𝑔𝑛 𝐴𝑁𝐷 𝐴𝑡𝑡𝑖𝑡 𝐴𝑁𝐷 𝐴𝑥𝑖𝑜𝑙                                             (1) 
 

Where EC denotes the entrepreneurship competence, Int, Cogn, Attit and Axiol, represents each one of the 
dimensions and AND is the logical conjunction operator. 

To perform the calculations, the grades given to the student are de-neutrosified using the following formula 

([18]): 
 

𝑆(〈𝑡, 𝑖, 𝑓〉) =
1

3
(2 +

𝑡−𝑖−𝑓

100
)                                                                            (2) 

Then the AND is applied using the classical t-norm min() formula. 

PEDAGOGICAL COMPETENCES 

ENTREPRENEURSHIP COMPETENCE 

OTHER COMPETENCES 
NON-ENTREPRENEURSHIP COMPETEN-

CE 

ATTRIBUTE 1 ATTRIBUTE 2 ATTRIBUTE 3 ATTRIBUTE 4 

〈𝑡, 𝑖, 𝑓〉 〈𝑡, 𝑖, 𝑓〉 〈𝑡, 𝑖, 𝑓〉 〈𝑡, 𝑖, 𝑓〉 
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Let us illustrate the use of the proposed model with a generic example: 
Example 1. Let us revisit the example in Figure 2 where the evaluations of the 3 students are summarized in 

Table 1. 

 

Student (Instance) Attrib1(Int) Attrib2 (Cogn) Attrib3 (Attit) Attrib4 (Axiol) CE 

Robert < 3,20,90 > < 10,10,80 > < 90,10,20 > < 85,15,20 > 0.31 

John < 60,10,30 > < 70,5,15 > < 63,7,24 > < 80,15,20 > 0.73333 

Mary < 90,1,5 > < 95,2,1 > < 80,0,20 > < 81,1,21 > 0.86333 

Table 1: Neutrosophic Ontology of the example. 

 

We can see, according to Table 1 that Mary has a better development of the entrepreneurship competence, 
followed by John. On the other hand, the assessment of Robert is low. 

Conclusion 

The Entrepreneurship Competence is essential for the useful development of the student within the school. 
This competence will provide us with citizens who have initiatives that promote the progress of the society in 

which we live, while being critical and who have their own innovative thinking. One of the challenges that mod-
ern pedagogy has is to give it the importance that this competence deserves within the curriculum. That is why in 

this article we propose a model where this competence is measured in students of any level of education. The 

model is based on the use of neutrosophic ontologies, where ontology is combined as a technology to represent 
knowledge and neutrosophy that allows us the evaluation of relationships among concepts using neutrosophic 

numbers. To the knowledge of the authors, neutrosophic ontologies are used for the first time in the modeling of 
the Entrepreneurship Competence. 
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Abstract.  

This paper comes side by side with the complement paper (Original Methods for Obtaining the Initial 

Solution in Neutrosophic Transportation Problems), these two papers regarded as twins, they are 

both dedicated to sounding the transportation problems from the perspective of neutrosophic theory, 

having kinds of indeterminacy in three aspects are: 

1- The entries of the payment matrix are neutrosophic values (i.e. Ncij = [cij ± ε] ); the indexes i&j 

have their usual meaning representing the transportation cost of one unit from the production center 

i to the consumption center j. Assume the indeterminate ε = [λ1, λ2]. 

2- The available and the required quantities are both having neutrosophic values represented by 

Nai = ai ± εi , Nbj = bj ± δj respectively, where εi = [λi1, λi2] , δj = [μj1, μj2]. 

3- This kind of neutrosophic transportation problem is represented gathered from the above two 

cases. 

Keywords: Linear Programming; Neutrosophic Transportation Problem (NTP); Neutrosophic 

Production Quantities; Neutrosophic Consumption Quantities. 

Introduction 

The operation research specifically mathematical programming is used in the daily recurrent 

problems that appear each time when we need to transfer materials from the production centers to 

the consumption centers. 

After the transportation problems have been formulated, the yielded linear models will be solved by 

simplex method and its modifications. [1-5]. This manuscript contains a modeling study 

transportation problems using neutrosophic logic that first adopted by F Smarandache (1995) [6-9] is 

took recently a huge solicitude in effectively addressing the potential uncertainties in the real world, 
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neutrosophic logic comes as a replacement to the fuzzy logic presented by L. Zadeh (1965) [10], 

intuitionistic fuzzy logic presented by K. Atanassov (1983) [11]. 

1. Discussion and the General Formulation of the NTP  

There is no doubt of the TP importance in any Inc., because of the  high costs paid by institutions 

and companies to secure their needs of raw materials or through the marketing of their products or 

even the process of transferring their administrative and functional members, so it was necessary to 

present a study that keeps with the frontiers of modern science in which this article studies 

transportation issues using the neutrosophic logic that takes into account all the changes that can 

occur during work, and provides companies with a safe working environment.  

Assume that one material may be transferred from the production center 𝐴𝑖 , 𝑖 = 1,2, … , 𝑚  to the 

consumption center 𝐵𝑗 , 𝑗 = 1,2, … , 𝑛 ,where 𝑎1, 𝑎2, … , 𝑎𝑚  are available quantities, 𝑏1, 𝑏2, … , 𝑏𝑛  are 

required quantities, 𝐶𝑖𝑗  is the transfer cost of one unit from the production center 𝑖  to the 

consumption center 𝑗, and are represent the entries of the payment matrix 𝐶 = [𝑐𝑖𝑗]. To construct the 

mathematical model, 𝑥𝑖𝑗  denotes the transferred amount of material from the production center 𝑖 

to the consumption center 𝑗 . The following tableau contains the basic symbols of the any 

transportation problems, so any later table will be read out of this table: 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐵n 
… 

𝐵3 𝐵2 𝐵1 
  

𝑎1 𝑐1𝑛 

𝑥1𝑛 

… 𝑐13 

𝑥13 

𝑐12 

𝑥12 

𝑐11 

𝑥11 

𝐴1 

𝑎2 𝑐2𝑛 

𝑥2𝑛 

… 𝑐23 

𝑥23 

𝑐22 

𝑥22 

𝑐21 

𝑥21 

𝐴2 

𝑎3 𝑐3𝑛 

𝑥3𝑛 

… 𝑐33 

𝑥33 

𝑐32 

𝑥32 

𝑐31 

𝑥31 

𝐴3 

. 

. 

 

… 

 

… 

 

… 

 

… 

 

… 

. 

. 

𝑎m 𝑐𝑚𝑛 

𝑥𝑚𝑛 

 

… 
𝑐𝑚3 

𝑥𝑚3 

𝑐𝑚2 

𝑥𝑚2 

𝑐𝑚1 

𝑥𝑚1 

𝐴m 

 𝑏n … 𝑏3 𝑏2 𝑏1  

CC 
PC 

AQ 

RQ 
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In any TP, there are two cases: 

1- Balanced model satisfying  ∑ 𝑎𝑖
𝑚
𝑖=1 = ∑ 𝑏𝑗

𝑛
𝑗=1 . 

2- Unbalanced model at ∑ 𝑎𝑖
𝑚
𝑖=1 ≠ ∑ 𝑏𝑗

𝑛
𝑗=1 .  

For the purposes of generalizing any mathematical symbol in the above-mentioned tableau from its 

classical model to its neutrosophic meaning, it is enough to add a prefix 𝑁  to indicate that this 

symbol will hold some indeterminacy as follow: 

a. The matrix of transferring cost of one unit from the production center 𝑖 to the consumption 

center 𝑗 in its neutrosophic value is 𝑁𝑐𝑖𝑗 = [𝑐𝑖𝑗 ± 𝜀], where 𝜀 = [𝜆1, 𝜆2] represents the 

indeterminate value. 

b. The symbol 𝑁𝑥𝑖𝑗  refers to the materials’ amount that transported from the production 

center 𝑖 to the consumption center 𝑗, so the matrix of the unknowns is written as 𝑁𝑋 =

[𝑁𝑥𝑖𝑗]. 

c. The neutrosophic meaning of the available quantities and the required quantities are 𝑁𝑎𝑖 =

𝑎𝑖 ± 𝜀𝑖, 𝑁𝑏𝑗 = 𝑏𝑗 ± 𝛿𝑗 respectively, where 𝜀𝑖 = [𝜆𝑖1, 𝜆𝑖2], 𝛿𝑗 = [𝜇𝑗1, 𝜇𝑗2]. 

d. The neutrosophic encoding of the objective function in the linear programming is 𝑁𝑍 =

∑ ∑ 𝑁𝑐𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1 𝑥𝑖𝑗 , or 𝑁𝑍 = ∑ ∑ 𝑐𝑖𝑗

𝑛
𝑗=1

𝑚
𝑖=1 𝑁𝑥𝑖𝑗 , or 𝑁𝑍 = ∑ ∑ 𝑁𝑐𝑖𝑗

𝑛
𝑗=1

𝑚
𝑖=1 𝑁𝑥𝑖𝑗. 

So, in this article, the authors assumed the representation of neutrosophic numbers as intervals 

such as 𝜺𝒊 = [𝝀𝒊𝟏, 𝝀𝒊𝟐], 𝜹𝒋 = [𝝁𝒋𝟏, 𝝁𝒋𝟐]. It is important to notice that the authors did not adopt 

(trapezoidal numbers, pentagonal numbers, or any other neutrosophic numbers which need to 

specify using the membership functions, this kind of neutrosophic numbers or parameters 

represented by intervals have been firstly introduced by Smarandache F. in his main published 

books [12-14]), 

2. Types of Unbalanced Neutrosophic Transportation Problems  

Without loss of generality, any solver can faces unbalanced NTP (i.e. ∑ 𝑁𝑎𝑖
𝑚
𝑖=1 ≠ ∑ 𝑁𝑏𝑗

𝑛
𝑗=1 ) in which 

two types of problems can be extracted: 

1. Overproduction problems occur when ∑ 𝑁𝑎𝑖
𝑚
𝑖=1 > ∑ 𝑁𝑏𝑗

𝑛
𝑗=1 .  To treat this case, the solver 

should balance this problem by adding an artificial consumption center 𝐵𝑛+1 has need of 
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𝑁𝑏𝑛+1 = ∑ 𝑁𝑎𝑖
𝑚
𝑖=1 − ∑ 𝑁𝑏𝑗

𝑛
𝑗=1 , where the transformation cost of one unit from the all 

production centers to this artificial consumption center equal to zero (i.e. 𝑐𝑖 𝑛+1 = 0; 𝑖 =

1,2, … , 𝑚), also, in the data table, the solver should add a new column concerning the new 

consumption center. The conditions of this linear programming problems that should be 

satisfied are: 

∑ 𝑁𝑥𝑖𝑗
𝑛+1
𝑗=1 = 𝑁𝑎𝑖    ;    ∑ 𝑁𝑥𝑖𝑗

𝑚
𝑖=1 = 𝑁𝑏𝑗 ; 𝑁𝑥𝑖𝑗 ≥ 0 ; 𝑗 = 1,2, … 𝑛 + 1 ; 𝑖 = 1,2, … , 𝑚 

2. production deficient case (type of problems having production shortfall)  occur when 

∑ 𝑁𝑎𝑖
𝑚
𝑖=1 < ∑ 𝑁𝑏𝑗

𝑛
𝑗=1 . The same above strategy of balancing the problem has been applied by 

adding an artificial production center 𝐴𝑚+1 has production power of 𝑁𝑎𝑚+1 = ∑ 𝑁𝑏𝑗
𝑛
𝑗=1 −

∑ 𝑁𝑎𝑖
𝑚
𝑖=1 , where the transformation cost of one unit from this artificial production center to 

all consumption centers equal to zero (i.e. 𝑐𝑚+1 𝑗 = 0; 𝑗 = 1,2, … , 𝑛), also, in the data table, 

the solver should add a new row concerning the new production center. The conditions of 

this linear programming problems that should be satisfied are: 

∑ 𝑁𝑥𝑖𝑗
𝑛
𝑗=1 = 𝑁𝑎𝑖   ;    ∑ 𝑁𝑥𝑖𝑗

𝑚+1
𝑖=1 = 𝑁𝑏𝑗 ; 𝑁𝑥𝑖𝑗 ≥ 0 ; 𝑗 = 1,2, … , 𝑛 ; 𝑖 = 1,2, … , 𝑚 + 1 

3. Miscellaneous NT Problems 

In the upcoming subsections (3.1,3.2,3.3), the problem text will be: A quantity of fuel is intended to 

be shipped from three stations 𝐴1, 𝐴2, 𝐴3 to four cities 𝐵1, 𝐵2, 𝐵3, 𝐵4. The available quantities at each 

station, and the demand quantities in each city, with the transportation costs in each direction are 

demonstrated in accompanied tables; 

3.1 Balanced Neutrosophic Transportation Problem (NTP) 

 𝐵4 𝐵3 𝐵2 𝐵1 
  

120 + 𝜀1 9 + 𝜀 

𝑁𝑥14 

15 + 𝜀 

𝑁𝑥13 

4 + 𝜀 

𝑁𝑥12 

7 + 𝜀 

𝑁𝑥11 

𝐴1 

80 + 𝜀2 3 + 𝜀 

𝑁𝑥24 

7 + 𝜀 

𝑁𝑥23 

2 + 𝜀 

𝑁𝑥22 

11 + 𝜀 

𝑁𝑥21 

𝐴2 

CC 
PC 

AQ 
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100 + 𝜀3 8 + 𝜀 

𝑁𝑥34 

2 + 𝜀 

𝑁𝑥33 

5 + 𝜀 

𝑁𝑥32 

4 + 𝜀 

𝑁𝑥31 

𝐴3 

 60 + 𝛿4 90 + 𝛿3 65 + 𝛿2 85 + 𝛿1  

 

By assuming 𝜀 = [0,2], 𝜀1 = [0,35], 𝜀2 = [0,10], 𝜀3 = [0,15], 𝛿1 = [0,7], 𝛿2 = [0,18], 𝛿3 = [0,25], 𝛿4 =

[0,10], the above table can be rewritten as: 

 𝐵4 𝐵3 𝐵2 𝐵1   

[120,155] [9,11] 

𝑁𝑥14 

[15,17] 

𝑁𝑥13 

[4,6] 

𝑁𝑥12 

[7,9] 

𝑁𝑥11 

𝐴1 

[80,90] [3,5] 

𝑁𝑥24 

[7,9] 

𝑁𝑥23 

[2,4] 

𝑁𝑥22 

[11,13] 

𝑁𝑥21 

𝐴2 

[100,115] [8,10] 

𝑁𝑥34 

[2,4] 

𝑁𝑥33 

[5,7] 

𝑁𝑥32 

[4,6] 

𝑁𝑥31 

𝐴3 

  [60,70] [90,115] [65,83] [85,92]  

Obviously, the problem is balanced cause ∑ 𝑁𝑎𝑖
3
𝑖=1 = ∑ 𝑁𝑏𝑗

4
𝑗=1 = [300,360] 

The model of the linear programming is  

Min 𝑁𝑍 = [7,9]𝑁𝑥11 + [4,6]𝑁𝑥12 + [15,17]𝑁𝑥13 + [9,11]𝑁𝑥14 + [11,13]𝑁𝑥21 + [2,4]𝑁𝑥22 + [7,9]𝑁𝑥23

+ [3,5]𝑁𝑥24 + [4,6]𝑁𝑥31 + [5,7]𝑁𝑥32 + [2,4]𝑁𝑥33 + [8,10]𝑁𝑥34 

Subject to 

∑ 𝑁𝑥𝑖𝑗
4
𝑗=1 = 𝑎𝑖   ;    ∑ 𝑁𝑥𝑖𝑗

3
𝑖=1 = 𝑏𝑗 ; 𝑁𝑥𝑖𝑗 ≥ 0 ; 𝑗 = 1,2,3,4 ; 𝑖 = 1,2,3 

3.2 Unbalanced Overproduction NTP Case Study  

 𝐵4 𝐵3 𝐵2 𝐵1 
  

120 + 𝜀1 9 + 𝜀 

𝑁𝑥14 

15 + 𝜀 

𝑁𝑥13 

4 + 𝜀 

𝑁𝑥12 

7 + 𝜀 

𝑁𝑥11 

𝐴1 

RQ 

CC 
PC 

AQ 

RQ 

CC 
PC 

AQ 
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95 + 𝜀2 3 + 𝜀 

𝑁𝑥24 

7 + 𝜀 

𝑁𝑥23 

2 + 𝜀 

𝑁𝑥22 

11 + 𝜀 

𝑁𝑥21 

𝐴2 

100 + 𝜀3 8 + 𝜀 

𝑁𝑥34 

2 + 𝜀 

𝑁𝑥33 

5 + 𝜀 

𝑁𝑥32 

4 + 𝜀 

𝑁𝑥31 

𝐴3 

 60 + 𝛿4 90 + 𝛿3 65 + 𝛿2 85 + 𝛿1  

By assuming 𝜀 = [0,2], 𝜀1 = [0,35], 𝜀2 = [0,10], 𝜀3 = [0,15], 𝛿1 = [0,7], 𝛿2 = [0,18], 𝛿3 = [0,25], 𝛿4 =

[0,10], the above table can be rewritten as: 

 𝐵4 𝐵3 𝐵2 𝐵1 
  

[120,155] [9,11] 

𝑁𝑥14 

[15,17] 

𝑁𝑥13 

[4,6] 

𝑁𝑥12 

[7,9] 

𝑁𝑥11 

𝐴1 

[95,105] [3,5] 

𝑁𝑥24 

[7,9] 

𝑁𝑥23 

[2,4] 

𝑁𝑥22 

[11,13] 

𝑁𝑥21 

𝐴2 

[100,115] [8,10] 

𝑁𝑥34 

[2,4] 

𝑁𝑥33 

[5,7] 

𝑁𝑥32 

[4,6] 

𝑁𝑥31 

𝐴3 

  [60,70] [90,115] [65,83] [85,92]  

It is obvious that ∑ 𝑁𝑎𝑖
3
𝑖=1 = [315,375] > ∑ 𝑁𝑏𝑗

4
𝑗=1 = [300,360]  ; this lead to add an artificial 

consumption center 𝑏5  has need of the value 𝑏5 = ∑ 𝑎𝑖
𝑚
𝑖=1 − ∑ 𝑏𝑗

𝑛
𝑗=1 = [315,375] − [300,360] =

[15,15] = 15 

Hence, the value of the objective function is  

Min 𝑁𝑍 = [7,9]𝑁𝑥11 + [4,6]𝑁𝑥12 + [15,17]𝑁𝑥13 + [9,11]𝑁𝑥14 + 0. 𝑁𝑥15 + [11,13]𝑁𝑥21 + [2,4]𝑁𝑥22

+ [7,9]𝑁𝑥23 + [3,5]𝑁𝑥24 + 0. 𝑁𝑥25 + [4,6]𝑁𝑥31 + [5,7]𝑁𝑥32 + [2,4]𝑁𝑥33 + [8,10]𝑁𝑥34

+ 0. 𝑁𝑥35 

Subject to 

∑ 𝑁𝑥𝑖𝑗
5
𝑗=1 = 𝑎𝑖   ;    ∑ 𝑁𝑥𝑖𝑗

3
𝑖=1 = 𝑏𝑗 ; 𝑁𝑥𝑖𝑗 ≥ 0 ; 𝑗 = 1,2,3,4,5 ; 𝑖 = 1,2,3 

RQ 

CC 
PC AQ 

RQ 
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3.3 Unbalanced Production Deficient NTP Case Study 

 𝐵4 𝐵3 𝐵2 𝐵1 
  

120 + 𝜀1 9 + 𝜀 

𝑁𝑥14 

15 + 𝜀 

𝑁𝑥13 

4 + 𝜀 

𝑁𝑥12 

7 + 𝜀 

𝑁𝑥11 

𝐴1 

80 + 𝜀2 3 + 𝜀 

𝑁𝑥24 

7 + 𝜀 

𝑁𝑥23 

2 + 𝜀 

𝑁𝑥22 

11 + 𝜀 

𝑁𝑥21 

𝐴2 

100 + 𝜀3 8 + 𝜀 

𝑁𝑥34 

2 + 𝜀 

𝑁𝑥33 

5 + 𝜀 

𝑁𝑥32 

4 + 𝜀 

𝑁𝑥31 

𝐴3 

 60 + 𝛿4 90 + 𝛿3 100 + 𝛿2 85 + 𝛿1  

 

Where, 𝜀 = [0,2], 𝜀1 = [0,35], 𝜀2 = [0,10], 𝜀3 = [0,15], 𝛿1 = [0,7], 𝛿2 = [0,18], 𝛿3 = [0,25], 𝛿4 = [0,10] , 

the above table can be rewritten as: 

 𝐵4 𝐵3 𝐵2 𝐵1 
  

[120,155] [9,11] 

𝑁𝑥14 

[15,17] 

𝑁𝑥13 

[4,6] 

𝑁𝑥12 

[7,9] 

𝑁𝑥11 

𝐴1 

[80,90] [3,5] 

𝑁𝑥24 

[7,9] 

𝑁𝑥23 

[2,4] 

𝑁𝑥22 

[11,13] 

𝑁𝑥21 

𝐴2 

[100,115] [8,10] 

𝑁𝑥34 

[2,4] 

𝑁𝑥33 

[5,7] 

𝑁𝑥32 

[4,6] 

𝑁𝑥31 

𝐴3 

  [60,70] [90,115] [100,118] [85,92]  

It is worthy to mention that  ∑ 𝑁𝑎𝑖
3
𝑖=1 = [300,360] < ∑ 𝑁𝑏𝑗

4
𝑗=1 = [335,395]  ; this lead to add an 

artificial production center 𝑎4 has production power equal to 𝑎4 = ∑ 𝑏𝑗
4
𝑗=1 − ∑ 𝑎𝑖

3
𝑖=1 = [315,395] −

[300,360] = [35,35] = 35 

Hence, the model of the linear programming is  

CC 
PC 

AQ 

RQ 

CC 
PC AQ 

RQ 
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Min 𝑁𝑍 = [7,9]𝑁𝑥11 + [4,6]𝑁𝑥12 + [15,17]𝑁𝑥13 + [9,11]𝑁𝑥14 + [11,13]𝑁𝑥21 + [2,4]𝑁𝑥22 + [7,9]𝑁𝑥23

+ [3,5]𝑁𝑥24 + [4,6]𝑁𝑥31 + [5,7]𝑁𝑥32 + [2,4]𝑁𝑥33 + [8,10]𝑁𝑥34 + 0. 𝑁𝑥41 + 0. 𝑁𝑥42

+ 0. 𝑁𝑥43 + 0. 𝑁𝑥44 

Subject to 

∑ 𝑁𝑥𝑖𝑗
4
𝑗=1 = 𝑎𝑖   ;    ∑ 𝑁𝑥𝑖𝑗

4
𝑖=1 = 𝑏𝑗 ; 𝑁𝑥𝑖𝑗 ≥ 0 ; 𝑗 = 1,2,3,4 ; 𝑖 = 1,2,3,4 

 

4. Conclusion and Results 

This manuscript presented new insights into remodeling transportation problems from classical 

models to the corresponding neutrosophic ones through three basic aspects containing some 

indeterminacies either in transformation costs, or in the available quantities existed in production 

centers side by side with required quantities existing in consumption centers, or in the general case 

study that represents the existence of indeterminacies in all previous states. The solutions to these 

neutrosophic transportation problems NTP give the solver a margin of freedom and reduce the loss 

resulting from transporting process through the availability of the indetermination notion in 

neutrosophic theory. This study was presented simultaneously with the paper entitled (Original 

Methods for Obtaining the Initial Solution in Neutrosophic Transportation Problems) regarded as 

complementary to this recent paper in which the authors discuss the initial solution for the NTP 

models and study the modifications of this initial solution aiming to get the optimal solutions. 
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Abstract: The IndetermSoft Set is as an extension of the Soft Set, because the data, or the function, 
or the sets involved in the definition of the soft set have indeterminacy - as in our everyday life, and 
we still need to deal with such situations. 

And similarly, IndetermHyperSoft Set as extension of the HyperSoft Set, when there is 
indeterminate data, or indeterminate functions, or indeterminate sets. 

Herein, ‘Indeterm’ stands for ‘Indeterminate’ (uncertain, conflicting, incomplete, not unique 
outcome).  

We now introduce for the first time the TreeSoft Set as extension of the MultiSoft Set. 
Several applications are presented for each type of soft set. 

Keywords: Soft Set, IndetermSoft Set, HyperSoft Set, IndetermHyperSoft Set, MultiSoft Set, 
TreeSoft Set   

1. Introduction

We have extended the Soft Set to HyperSoft Set [2, 3] in 2018, then both of them to IndetermSoft
Set and IndetermHyperSoft Set [4, 8] respectively in 2022, and we have introduced Indeterminate 
Soft and HyperSoft operators.  

The operations (complement, intersection, union) for IndetermSoft Set and IndetermHyperSoft 
Set respectively are to be done in the future research. 

And in this paper a new type of soft set, called TreeSoft Set, is introduced for the first time as an 
extension of the MultiSoft Set. 

Several applications are presented for each type of soft set. 

2. Definition of Soft Set

Let U be a universe of discourse, H a non-empty subset of U, with P(𝐻𝐻) the powerset of 𝐻𝐻, and a
an attribute (parameter, factor, etc.), with its set of attribute-values denoted by A. Then, the pair (F, 
A), with 𝐹𝐹: 𝐴𝐴 → 𝑃𝑃(𝐻𝐻), is called a (Classical) Soft Set over 𝐻𝐻.  

Molodtsov [1] has defined in 1999 the Soft Set. 

mailto:smarand@unm.edu
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3. Real Example of (Classical) Soft Set

Let H = {h1, h2, h3, h4} be a set of houses, and a an attribute, a = color, and its set of attribute-values
A = {white, green, red}. The function : ( )F A P H→ , as: 

F(white) = {h1, h2, h4}, F(green) = h3, F(red) = φ  (no house). 

4. Definition of IndetermSoft Set

Smarandache [4, 8] introduced it in 2022.
Let 𝑈𝑈 be a universe of discourse, H a non-empty subset of 𝑈𝑈, and P(𝐻𝐻) the powerset of 𝐻𝐻. Let a

be an attribute, and 𝐴𝐴 be a set of this attribute-values. 
Then 𝐹𝐹: 𝐴𝐴 → 𝑃𝑃(𝐻𝐻) is called an IndetermSoft Set if: 

i) the set A has some indeterminacy;
ii) or the set P(H) has some indeterminacy;
iii) or there exist at least an attribute-value v∈A, such that F(v) = indeterminate (unclear,

incomplete, conflicting, or not unique);
iv) or any two or all three of the above situations.

The IndetermSoft Set has some degree of indeterminacy, and as such it is a particular case of the 
NeutroFunction [5, 6], defined in 2014 – 2015, which is a function that is only partially well-defined 
(inner-defined), partially indeterminate, and partially outer-defined. The NeutroFunction is a 
generalization of the classical function, that is totally well-defined. 

IndetermSoft Set, as extension of the classical (determinate) Soft Set, deals with indeterminate 
data, because there are sources [4, 8] unable to provide exact or complete information on the sets A, 
H or P(H), and on the function F. 

We did not add any indeterminacy, we found the indeterminacy in our real world. Because 
many sources give approximate/uncertain/incomplete/conflicting information, not exact information 
as in the Soft Set, as such we still need to deal with such situations. 

For more information on IndetermSoft Set consult [4, 8]. 

5. Real Example of IndetermSoft Set:

Assume a town has many houses.

1) Indeterminacy with respect to the function.
1a) You ask a source:
- What houses have the red color in the town?
The source:
- I am not sure, I think the houses h1 or h2.
Therefore, F(red) = h1 or h2

(indeterminate / uncertain answer).
1b) You ask again:
- But, what houses are yellow?
The source:
- I do not know, the only thing I know is that the house h5 is not yellow because I have visited it.
Therefore, F(yellow) = not h5

(again indeterminate / uncertain answer).
1c) Another question you ask:
- Then what houses are blue?
The source:
- For sure, either h8 or h9

Therefore, F(blue) = either h8 or h9

(again indeterminate / uncertain answer).
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2) Indeterminacy with respect to the set H of houses.
You ask the source:
- How many houses are in the town?
The source:
- I never counted them, but I estimate their number to be between 100-120 houses.

3) Indeterminacy with respect to the set A of attributes.
You ask the source:
What are all colors of the houses?
The source:
I know for sure that there are houses of colors red, yellow, and blue, but I do not know if there are

houses of other colors (?) 

    This is the IndetermSoft Set. 

6. Definition of HyperSoft Set

Smarandache has extended in 2018 the Soft Set to the HyperSoft Set [3, 4, 8] by transforming the
function F from a uni-attribute function into a multi-attribute function. 

Let 𝒰𝒰 be a universe of discourse, H a non-empty set included in U, and P(𝐻𝐻) the powerset of 𝐻𝐻. 
Let 𝑎𝑎1, 𝑎𝑎2, …, 𝑎𝑎𝑛𝑛, where 𝑛𝑛 ≥ 1, be 𝑛𝑛 distinct attributes, whose corresponding attribute-values are 
respectively the sets 𝐴𝐴1, 𝐴𝐴2, … , 𝐴𝐴𝑛𝑛, with 𝐴𝐴𝑖𝑖 ∩ 𝐴𝐴𝑗𝑗 = ∅, for 𝑖𝑖 ≠ 𝑗𝑗, and 𝑖𝑖, 𝑗𝑗 ∈ {1, 2, … , 𝑛𝑛}. 

Then the pair (𝐹𝐹, 𝐴𝐴1 × 𝐴𝐴2 × … × 𝐴𝐴𝑛𝑛), where 𝐴𝐴1 × 𝐴𝐴2 × … × 𝐴𝐴𝑛𝑛 represents the Cartesian product, with 
𝐹𝐹: 𝐴𝐴1 × 𝐴𝐴2 × … × 𝐴𝐴𝑛𝑛 → 𝑃𝑃(𝐻𝐻) is called a HyperSoft Set.  

In other words, for any 1 2 1 2( , ,..., ) ...n ne e e A A A∈ × × × , 1 2( , ,..., ) ( )nF e e e P H∈  

7. Real Example of HyperSoft Set

Let H = {h1, h2, h3, h4, h5, h6, h7} a set of houses, and two attributes a1 and a2, where a1 = color, and
its set of attribute-values  A1 = {white, green, red}, and a2 = size, and its attribute-values 

A2 = {small, big}. The function 1 2: ( )F A A P H× → , as : 
F(white, small) = {h1, h2}, F(green, big) = {h4, h6, h7}, F(red, big) = {h3, h5}. 

8. Definition of IndetermHyperSoft Set

Smarandache [4, 8] introduced it in 2022.
Let 𝑈𝑈  be a universe of discourse, H a non-empty subset of 𝑈𝑈, and P(𝐻𝐻) the powerset of 𝐻𝐻. Let

𝑎𝑎1, 𝑎𝑎2, …, 𝑎𝑎𝑛𝑛, where 𝑛𝑛 ≥ 1, be 𝑛𝑛 distinct attributes, whose corresponding attribute-values are 
respectively the sets 𝐴𝐴1, 𝐴𝐴2, … , 𝐴𝐴𝑛𝑛, with 𝐴𝐴𝑖𝑖 ∩ 𝐴𝐴𝑗𝑗 = ∅, for 𝑖𝑖 ≠ 𝑗𝑗, and 𝑖𝑖, 𝑗𝑗 ∈ {1, 2, … , 𝑛𝑛}. 

Then the pair (𝐹𝐹, 𝐴𝐴1 × 𝐴𝐴2 × … × 𝐴𝐴𝑛𝑛), where 𝐴𝐴1 × 𝐴𝐴2 × … × 𝐴𝐴𝑛𝑛 represents the Cartesian product, with 
𝐹𝐹: 𝐴𝐴1 × 𝐴𝐴2 × … × 𝐴𝐴𝑛𝑛 → 𝑃𝑃(𝐻𝐻) is called an IndetermHyperSoft Set if:  

i) at least one of the sets A1, A2, …, An has some indeterminacy;
ii) or the set P(H) has some indeterminacy;
iii) or there exist at least one n-plet 1 2 1 2( , ,..., ) ...n ne e e A A A∈ × × × such that 1 2( , ,..., )nF e e e  

= indeterminate (unclear, uncertain, conflicting, or not unique); 
iv) or any two or all three of the above situations.

The IndetermHyperSoft Set has some degree of indeterminacy, and it is as extension of the 
(determinate) HyperSoft Set. 

Similarly, we did not add any indeterminacy, we found the indeterminacy in our real world. 
Because many sources give approximate/uncertain/incomplete/conflicting information, not exact 
information as in the Soft Set and in the HyperSoft Set, as such we still need to deal with such 
situations. 
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9. Real Example of IndetermSoft Set

Assume a town has many houses.

1) Indeterminacy with respect to the function.
1a) You ask a source:
- What houses are of red color and big size in the town?
The source:
- I am not sure, I think the houses h1 or h2.
Therefore, F(red, big) = h1 or h2

(indeterminate / uncertain answer).
1b) You ask again:
- But, what houses are yellow and small?
The source:
- I do not know, the only thing I know is that the house h5 is neither yellow nor small because I

have visited it. 
Therefore, F(yellow, small) = not h5      
(again indeterminate / uncertain answer). 
1c) Another question you ask: 
- Then what houses are blue and big?
The source:
- For sure, either h8 or h9

Therefore, F(blue, big) = either h8 or h9

(again indeterminate / uncertain answer).

2) Indeterminacy with respect to the set H of houses.
You ask the source:
- How many houses are in the town?
The source:
- I never counted them, but I estimate their number to be between 100-120 houses.

3) Indeterminacy with respect to the set A of attributes.
You ask the source:
What are all colors and sizes of the houses?
The source:
I know for sure that there are houses of colors of red, yellow, and blue, but I do not know if there

are houses of other colors (?) 
About the size, I saw many houses that are small, but I do not remember to have seing be big 

houses. 

    This is the IndetermHyperSoft Set. 

10. Definition of MultiSoft Set [7]

Let U be a universe of discourse, and H a non-empty subset of U.
And P(H) is the power set of H. Let A1, A2, …, An be n ≥ 2 sets of attributes (parameters) whose

intersection 1 2 ... nA A A φ∩ ∩ ∩ = .

Let 1 2 ... nA A A A= ∪ ∪ ∪ and ( )P A  be the power set of A. 

Then : ( ) ( )F P A P H→  is a MultiSoft Set over H. 
For ( )P Aε ∈  one considers that ( )F ε  is the set of ε - approximate sets of the multisoft set 

(F, P(A)). 
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11. Extension of the MultiSoft Set to a HyperSoft Set

One introduces the empty-element φ  to each set of attribute-values, and let denote
' ' '
1 1 2 2{ }, { },..., { }n nA A A A A Aφ φ φ= ∪ = ∪ = ∪ . 

Let ' ' '
1 2 1 2( , ,..., ) ...n nA A Aε ε ε ε= ∈ × × × , 

then '
1 1 1 { }A Aε φ∈ = ∪  means that either 1 1Aε ∈  or 1ε φ=  (discarded) ; 

similarly for all ' { }i i iA Aε φ∈ = ∪ , 1 i n≤ ≤ . 

Thus, ' ' '
1 2: ... ( )nF A A A P H× × × → is a hypersoft set. 

12. Real Example of MultiSoft Set

We retake the previous example and adjust it to a MultiSoft Set.
Let H = {h1, h2, h3, h4, h5, h6, h7} a set of houses, and two attributes a1 and a2, where a1 = color, and

its set of attribute-values  A1 = {white, green, red}, and a2 = size, and its attribute-values 
A2 = {small, big}. Let 1 2A A A= ∪ = {white, green, red ; small, big}, and P(A) be the power set of A. 

Then : ( ) ( )F P A P H→  is defined as follows: 
F(white) = {h1}, F(green, big) = {h4, h6}, F(big) = {h3, h5}. 

13. Real MultiSoft Set extended to a HyperSoft Set

Let’s enlarge A1 and A2:
'
1A  = {white, green, red, φ }, and 

'
2A  = {small, big, φ }

Then 
' ' '

1 2: ( )F A A P H× →

F’(white,φ ) ≡  F(white) ={h1}   (since the attribute-valueφ  was discarded).
F’(green, big) ≡  F(green, big) = {h4, h6}.

F’(φ , big) ≡  F(big) = {h3, h5}   (since the attribute-valueφ  was discarded).

14. Generalization of MultiSoft Set to the TreeSoft Set

Let U be a universe of discourse, and H a non-empty subset of U, with P(H) the powerset of H.
Let A be a set of attributes (parameters, factors, etc.),

1 2{ , ,..., }nA A A A= , for integer 1n ≥ , 

where 1 2, ,..., nA A A are attributes of first level (since they have one-digit indexes). 

Each attribute ,1 ,iA i n≤ ≤ is formed by sub-attributes: 

1 1,1 1,2

2 2,1 2,2

,1 ,2

{ , ,...}
{ , ,...}

.

.

.
{ , ,...}n n n

A A A
A A A

A A A

=

=

=

where ,i jA are sub-attributes (or attributes of second level) (since they have two-digit indexes).

Again, each sub-attribute ,i jA is formed by sub-sub-attributes (or attributes of third level): 

, ,i j kA
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And so on, as much refinement as needed into each application, up to sub-sub-…-sub-attributes 
(or attributes of m-level (or having m digits into the indexes): 

1 2, ,..., mi i iA
Therefore, a graph-tree is formed, that we denote as Tree(A), whose root is A (considered of level 

zero), then nodes of level 1, level 2, up to level m. 
We call leaves of the graph-tree, all terminal nodes (nodes that have no descendants). 
Then the TreeSoft Set is: 

: ( ( )) ( )F P Tree A P H→ . 
Tree(A) is the set of all nodes and leaves (from level 1 to level m) of the graph-tree, and 

( ( ))P Tree A  is the powerset of the Tree(A). 
All node sets of the TreeSoft Set of level m are: 

1 1 2 1 2 3 1 21 , 1 2 , , 1 2 3 , ,..., 1 2( ) { | 1, 2,...} { | , 1, 2,...} { | , , 1, 2,...} ... { | , ,..., 1, 2,...}
mi i i i i i i i i mTree A A i A i i A i i i A i i i= = ∪ = ∪ = ∪ ∪ =  

The first set is formed by the nodes of level 1, second set by the nodes of level 2, third set by the 
nodes of level 3, and so on, the last set is formed by the nodes of level m. 

If the graph-tree has only two levels (m = 2), then the TreeSoft Set is reduced to a MultiSoft Set. 

15. Example of TreeSoft Set of Level 3

Node of level 0 (the graph-tree root): A.
Nodes of level 1: A1, A2.
Nodes of level 2: A11, A12; A21, A22.
Nodes of level 3: A211, A212.
Whence Tree(A) = {A1, A2; A11, A12; A21, A22; A211, A212}.
The leaves are: A11, A12; A211, A212; A22. As we see, the leaves may have various levels, in this case:

2, or 3. 
   P�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐴𝐴)� is the powerset of 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐴𝐴). 

F: P�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐴𝐴)� → 𝑃𝑃(𝐻𝐻) is a TreeSoft Set of Level 3. 

Graph 1: TreeSoft Set of Level 3 
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16. Practical Example of TreeSoft Set of Level 3

Graph 2: Practical TreeSoft Set of Level 3 

et’s consider H = {ℎ1, ℎ2, … , ℎ10} be a set of houses, and P(H) the powerset of H. 
And the set of attributes: A = {𝐴𝐴1,𝐴𝐴2}, 
where 𝐴𝐴1 = size, 𝐴𝐴2 = location. 
Then 𝐴𝐴1 = {𝐴𝐴11,𝐴𝐴12} = {small, big}. 
𝐴𝐴2 = {𝐴𝐴21,𝐴𝐴22} = {Arizona, California}, American states. 
Further on, 𝐴𝐴21 = {𝐴𝐴211,𝐴𝐴212} = {Phoenix, Tucson}, Arizonian cities. 
Let’s assume that the function F gets the following values: 
F(big, Arizona, Phoenix) = {ℎ9, ℎ10} 
F(big, Arizona, Tucson) = {ℎ1, ℎ2, ℎ3, ℎ4} 
F(big, Arizona) = all big houses from both cities, Phoenix and Tucson, 

= F(big, Arizona, Phoenix) ∪ F(big, Arizona, Tucson)= {ℎ1,ℎ2, ℎ3, ℎ4, ℎ9, ℎ10}.

17. Properties of the TreeSoft Set

17.1. Theorem 1 

F(node) includes all node’s descendants, and sub-descendants, then sub-sub-descendants, and 
so on up to the corresponding leaves. 

From previous Example 15, one has: 
𝐹𝐹(𝐴𝐴21) = 𝐹𝐹(𝐴𝐴211) ∪ 𝐹𝐹(𝐴𝐴212), 
and consequently 
𝐹𝐹(𝐴𝐴12,𝐴𝐴21) = 𝐹𝐹(𝐴𝐴12,𝐴𝐴211) ∪ 𝐹𝐹(𝐴𝐴12,𝐴𝐴212). 

17.2. Theorem 2 

Let 𝑁𝑁 ∈ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐴𝐴) be a node. 
N generates a SubTree(N) whose root is N itself. 
Then 𝐹𝐹(𝑁𝑁) = ⋃ 𝐹𝐹�𝑁𝑁𝜑𝜑(𝑖𝑖)�𝜑𝜑(𝑖𝑖)   
where 𝑁𝑁𝜑𝜑(𝑖𝑖) are all leaves of the SubTree (N). 
From previous Example 15: 
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𝐹𝐹(𝐴𝐴2) = 𝐹𝐹(𝐴𝐴21) ∪ 𝐹𝐹(𝐴𝐴22) = �𝐹𝐹(𝐴𝐴211) ∪ 𝐹𝐹(𝐴𝐴212)� ∪ 𝐹𝐹(𝐴𝐴22) = 𝐹𝐹(𝐴𝐴211) ∪ 𝐹𝐹(𝐴𝐴212) ∪ 𝐹𝐹(𝐴𝐴22) 
where 𝐴𝐴211, 𝐴𝐴212, 𝐴𝐴22 are all leaves of the SubTree whose root is 𝐴𝐴2 {i.e. SubTree(𝐴𝐴2)}. 

The proof of Theorem 2 is obvious, no matter what graph-tree one has, and it is similar to the 
below Example: 

Graph 3: Tree(N) 

The circled nodes are the leaves. 
𝐹𝐹(𝑁𝑁)   = 𝐹𝐹(𝑁𝑁1) ∪ 𝐹𝐹(𝑁𝑁2) ∪ 𝐹𝐹(𝑁𝑁3) ∪ 𝐹𝐹(𝑁𝑁4) 
= 𝐹𝐹(𝑁𝑁1) ∪ [𝐹𝐹(𝑁𝑁21) ∪ 𝐹𝐹(𝑁𝑁22) ∪ 𝐹𝐹(𝑁𝑁3) ∪ 𝐹𝐹(𝑁𝑁41) ∪ 𝐹𝐹(𝑁𝑁42) ∪ 𝐹𝐹(𝑁𝑁43)] 
= 𝐹𝐹(𝑁𝑁1) ∪  𝐹𝐹(𝑁𝑁21) ∪ 𝐹𝐹(𝑁𝑁22) ∪ 𝐹𝐹(𝑁𝑁3) ∪ [𝐹𝐹(𝑁𝑁411) ∪ 𝐹𝐹(𝑁𝑁412)] ∪ 𝐹𝐹(𝑁𝑁42) ∪ 𝐹𝐹(𝑁𝑁43) 
= 𝐹𝐹(𝑁𝑁1) ∪  𝐹𝐹(𝑁𝑁21) ∪ 𝐹𝐹(𝑁𝑁22) ∪ 𝐹𝐹(𝑁𝑁3) ∪  𝐹𝐹(𝑁𝑁411) ∪ [𝐹𝐹(𝑁𝑁4121) ∪ 𝐹𝐹(𝑁𝑁4122)] ∪  𝐹𝐹(𝑁𝑁42) ∪ 𝐹𝐹(𝑁𝑁43) 
= 𝐹𝐹(𝑁𝑁1) ∪  𝐹𝐹(𝑁𝑁21) ∪ 𝐹𝐹(𝑁𝑁22) ∪ 𝐹𝐹(𝑁𝑁3) ∪  𝐹𝐹(𝑁𝑁411) ∪ 𝐹𝐹(𝑁𝑁41211) ∪ 𝐹𝐹(𝑁𝑁41212) ∪ 𝐹𝐹(𝑁𝑁42) ∪ 𝐹𝐹(𝑁𝑁43) 
which is the union of the soft-values F(.) of all leaves of the SubTree(N). 
Actually Theorems 1 and 2 are equivalent. 

17.3. Theorem 3 

𝐹𝐹 �𝑁𝑁𝑖𝑖1 ,𝑁𝑁𝑖𝑖2 , … ,𝑁𝑁𝑖𝑖𝑝𝑝� = 𝐹𝐹�𝑁𝑁𝑖𝑖1� ∩ 𝐹𝐹�𝑁𝑁𝑖𝑖2� ∩ …∩ 𝐹𝐹 �𝑁𝑁𝑖𝑖𝑝𝑝�, 
where 𝑁𝑁𝑖𝑖1 ,𝑁𝑁𝑖𝑖2 , … ,𝑁𝑁𝑖𝑖𝑝𝑝 are nodes of various levels into the TreeSoft Set of 𝑁𝑁. 

The proof results from the fact that 
1

( )iF N represents the subset H1 of elements in H that have 

the attribute-value 
1i

N , and 
2

( )iF N represents the subset H2 of elements in H that have the 

attribute-value 
2i

N , and so on ( )
pi

F N represents the subset Hp of elements in H that have the 

attribute-value 
pi

N , therefore to get the elements that have all these attribute-values one needs to 

intersect these subsets 1 2 ... pH H H∩ ∩ ∩ . 
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18. Future Research

To define the operations (complement, intersection, union) for IndetermSoft Set,
IndetermHyperSoft Set, and TreeSoft Set respectively and to use them in real applications. 

19. Conclusion

We introduced the TreeSoft Set as an extension of the MultiSoft Set.  We presented simple
practical applications of IndetermSoft Set, IndetermHyperSoft Set, and TreeSoft Set respectively for 
better understanding. 

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare no conflict of interest. 
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Abstract: In this paper, Kruskal-Wallis test is extended to deal with neutrosophic data in single 

valued form using score, accuracy and certainty functions to calculate ranks of SVNNs, also Mann-

Whitney test is extended to deal with same data type which makes it possible to do a post-hoc test 

after rejecting null hypothesis using Neutrosophic Statistics Kruskal-Wallis test. Numerical 

examples were successfully solved showing the power of this new idea to deal with SVNNs and 

make statistical decisions on them. 

Keywords: Kruskal-Wallis; Test Statistic; Chi Square Distribution; Hypothesis Testing; Significance 

Level; Single Valued Neutrosophic Number. 

 

 

1. Introduction 

F. Smarandache presented neutrosophic logic as an extension to fuzzy logic [1] and intuitionistic 

fuzzy logic [2] to deal with indeterminacy, ambiguity, uncertainty, contradiction, unsureness, 

nihilness, vagueness and emptiness [3], this new extension make decisions more flexible and reliable 

[4] [5] and has been applied in many scientific fields including abstract algebra, mathematical 

modelling, probability theory, statistics, operations research, artificial intelligence, machine learning, 

etc. [6] [5] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18]. He also introduced the Neutrosophic 

Statistics as an extension of the Interval Statistics, since the neutroosphic statistics may deal with all 

types of indeterminacies (with respect to the data, inferential procedures, probability distributions, 

graphical representations, etc.), it allows the reduction of indeterminacy, and it uses the neutrosophic 

probability that is more general than imprecise and classical probabilities, and has more detailed 

corresponding probability density functions - while Interval Statistics only deals with indeterminacy 

that can be represented by intervals. [27]. 

In statistics, M. Aslam presented many neutrosophic statistical tests to deal with indeterminacy 

in data considering that observations are classical neutrosophic numbers of the form 𝑁 = 𝐷 + 𝐼 

where 𝐷 is the determinant part of the number and 𝐼 is its indeterminant part [19] [20] [21] [22]. 

Comparing population means is one of the most important statistical tests to test whether several 

drawn samples are from one population (then we say that means are equal) or from different 

populations (here we say that means are not equal). This procedure is done using hypothesis testing 

with respect to a test statistic having a previously known probability distribution comparing its value 

with acceptance region and rejection region. 

mailto:mahmoudmiari1994@gmail.com
mailto:mtanan200988@gmail.com
mailto:bisher.zeina@gmail.com
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The problem arises when dealing with neutrosophic number or judges, e.g., if a doctor says that 

a patient is 70% infected with COVID-19 with 20% indeterminacy because of similar flu syndromes 

and with 50% chance to be wrong diagnosis, here we cannot deal with this data type using classical 

statistical tests neither with previously studied neutrosophic statistical tests. 

A mathematical solve for this problem in lattice theory and abstract algebra was presented in 

[23] where ranking of observations was done and presented in [24] to compare between judges. also, 

previous work was generalized in [25] [26]. 

In this paper we are going to solve this problem from statistical point of view where we are 

dealing with samples data derived from different populations to make generalize decisions made 

based on samples to population extending Kruskal-Wallis test to deal with (𝑇, 𝐼, 𝐹) data sets which 

is the well-known single valued neutrosophic numbers and make it possible to compare several 

samples and take decision if those samples are drawn from same population or from different 

populations, then we will extend Mann-Whitney test to make a multiple comparison between each 

two groups. 

2. Preliminaries  

We recall here some basic definitions of single valued neutrosophic sets and single valued 

neutrosophic numbers and some operations on them. 

 

2.1 Single Valued Neutrosophic Sets: 

Suppose that Ω is the universe and let 𝐴 be a subset of Ω then 𝐴 is said to be Single Valued 

Neutrosophic Set (SVNS) with truth, indeterminacy and falsity memberships and denoted as follows: 

𝐴 = {(𝑥|𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥))} 

Where: 

𝑇𝐴: Ω → [0,1] 

𝐼𝐴: Ω → [0,1] 

𝐹𝐴: Ω → [0,1] 

And: 

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3 

 

2.2 Single Valued Neutrosophic Numbers: 

Single Valued Neutrosophic Number (SVNN) takes the form (𝑇, 𝐼, 𝐹) where 𝑇 reflects truth, 𝐼 

reflects indeterminacy and 𝐹 reflects falsity where 0 ≤ 𝑇, 𝐼, 𝐹 ≤ 1 and 0 ≤ 𝑇 + 𝐼 + 𝐹 ≤ 3. 

2.3 Operations on Single Valued Neutrosophic Numbers: 

Suppose that 𝐴 = (𝑡1, 𝑖1, 𝑓1), 𝐵 = (𝑡2, 𝑖2, 𝑓2) are two SVNNs then operations on 𝐴, 𝐵 are defined 

as follows: 

𝐴 ⊕ 𝐵 = (𝑡1 + 𝑡2 − 𝑡1𝑡2, 𝑖1𝑖2, 𝑓1𝑓2) 

𝐴 ⊗ 𝐵 = (𝑡1𝑡2, 𝑖1 + 𝑖2 − 𝑖1𝑖2, 𝑓1 + 𝑓2 − 𝑓1𝑓2) 

𝐴 ⊖ 𝐵 = (
𝑡1 − 𝑡2

1 − 𝑡2

,
𝑖1

𝑖2

,
𝑓1

𝑓2

) ; 𝑡2 ≠ 1; 𝑖2 ≠ 0; 𝑓2 ≠ 0 

𝐴

𝐵
= (

𝑡1

𝑡2

,
𝑖1 − 𝑖2

1 − 𝑖2

,
𝑓1 − 𝑓2

1 − 𝑓2

) ; 𝑡2 ≠ 0; 𝑖2 ≠ 1; 𝑓2 ≠ 1 

𝜆𝐴 = (1 − (1 − 𝑡1)𝜆, 𝑖1
𝜆, 𝑓1

𝜆); 𝜆 > 0 

𝐴𝜆 = (𝑡1
𝜆, 1 − (1 − 𝑖1)𝜆 , 1 − (1 − 𝑓1)𝜆); 𝜆 > 0 

2.4 Ranking of Single Valued Neutrosophic Numbers 

Let 𝐴(𝑇, 𝐼, 𝐹)  be a SVNN, the score function 𝑠(𝐴) , accuracy function 𝑎(𝐴)  and certainty 

function 𝑐(𝐴) are defined as follows: 

𝑠(𝐴) =
2 + 𝑇 − 𝐼 − 𝐹

3
 

𝑎(𝐴) = 𝑇 − 𝐹 

𝑐(𝐴) = 𝑇 



Neutrosophic Sets and Systems, Vol. 51, 2022    950  

 

 

Mahmoud Miari , Mohamad Taher Anan and Mohamed Bisher Zeina, Single Valued Neutrosophic Kruskal-Wallis and 

Mann Whitney Tests 

We can rank 𝐴, 𝐵 using the following algorithm: 

1) If 𝑠(𝐴) > 𝑠(𝐵) 𝑡ℎ𝑒𝑛 𝐴 > 𝐵. 

2) If 𝑠(𝐴) = 𝑠(𝐵) 𝑎𝑛𝑑 𝑎(𝐴) > 𝑎(𝐵) 𝑡ℎ𝑒𝑛 𝐴 > 𝐵. 

3) If 𝑠(𝐴) = 𝑠(𝐵) 𝑎𝑛𝑑 𝑎(𝐴) = 𝑎(𝐵) 𝑎𝑛𝑑 𝑐(𝐴) > 𝑐(𝐵) 𝑡ℎ𝑒𝑛 𝐴 > 𝐵. 

4) If 𝑠(𝐴) = 𝑠(𝐵) 𝑎𝑛𝑑 𝑎(𝐴) = 𝑎(𝐵) 𝑎𝑛𝑑 𝑐(𝐴) = 𝑐(𝐵) 𝑡ℎ𝑒𝑛 𝐴 = 𝐵 

3. Classical Kruskal-Wallis and Mann Whitney Tests  

  Kruskal-Wallis Test (H Test) one of the nonparametric tests that based on ranks used to compare 

the means of c independent random samples of sizes 𝑛1, … , 𝑛𝑐 drawn from c univariate populations 

with unknown cumulative distribution functions 𝐹1, … , 𝐹𝐶. 

The technique of (H Test) performed by ranking all observation and defined as follows: 

  Formally, letting the distribution function of 𝑋  over the group i be of the form 𝐹𝑖(𝑥) =

𝐹(𝑦 − 𝜃𝑖), we’d like to test  

𝐻0: 𝜃1 = 𝜃2 = ⋯ = 𝜃𝐶   against 𝐻1: 𝜃𝑖 ≠ 𝜃𝑗  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖, 𝑗 

 

The test is based on 𝜒2(𝑐 − 1) distribution using test statistic: 

𝐻 =
12

𝑁(𝑁 + 1)
∑

𝑅𝑖
2

𝑛𝑖

𝐶

𝑖=1

− 3(𝑁 + 1) 

Where: 

 

c number of samples 

𝑛𝑖  number of observations in the ith group 

𝑁 = ∑𝑛𝑖 number of observations in all samples 

𝑅𝑖  sum of ranks for the ith group 

Notice that H test tells us whether the samples are drawn from same population (when accepting 

𝐻0) or those sample are drawn from different populations. 

If we reject 𝐻0 then we must determine the true differences location, i.e. we must do a post hoc test, 

and one of the famous used tests is Mann Whitney test that tests the following hypothesis: 
𝐻0: 𝜃𝑖 = 𝜃𝑗 

𝐻1: 𝜃𝑖 ≠ 𝜃𝑗 

Using test statistic: 

𝑍 =
𝑈 − 𝑈

𝑠𝑡𝑑𝑈

 

Where: 

𝑈 =
𝑛𝑖𝑛𝑗

2
 

𝑠𝑡𝑑𝑈 = √
𝑛𝑖𝑛𝑗(𝑛𝑖 + 𝑛𝑗 + 1)

12
 

𝑈 = min (𝑛𝑖𝑛𝑗 +
𝑛𝑖(𝑛𝑗 + 1)

2
− 𝑅𝑖, 𝑛𝑖𝑛𝑗 +

𝑛𝑗(𝑛𝑗 + 1)

2
− 𝑅𝑗) 

4. Single Valued Neutrosophic Kruskal Wallis and Mann Whitney Tests 

Suppose that we have c random samples as follows: 

Table 1. Neutrosophic Observations. 

Sample 1 Sample 2 … Sample c 

𝑆11 𝑆21 
⋱ 

𝑆𝑐1 
𝑆12 𝑆22 𝑆𝑐2 

⋮ ⋮ ⋮ 
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𝑆1𝑛1
 𝑆2𝑛2

 𝑆𝑐𝑛𝑐
 

 

Where 𝑆11, 𝑆12, … , 𝑆𝑐𝑛𝑐
 are SVNNs, e.g., judgments, sentiments, point of views, considerations, … etc. 

and we would like to check whether these judgments are consistent. Kruskal Wallis test can answer 

our question but the problem that arises is how to calculate the ranks of these judges since it is base 

on neutrosophic numbers. We will present the following algorithm to solve this problem: 

1. Merge all the observation from different samples and deal with it as one sample. 

2. Calculate score, accuracy and certainty of each observation. 

3. Compare and rank these observations based on its score, accuracy and certainty. 

4. Give the ranked observations ranks from 1 to 𝑁 and if we have two equal observation the 

we average its ranks. 

5. Compute Kruskal Wallis test statistic using the formula: 

𝐻𝑁 =
12

𝑁(𝑁 + 1)
∑

(𝑅𝑖
2)𝑁

𝑛𝑖

𝐶

𝑖=1

− 3(𝑁 + 1) 

where (𝑅𝑖
2)𝑁 is sum of ith sample neutrosophic rank, hence 𝐻𝑁 is neutrosophic test statistic. 

6. Compare the test statistic with 𝜒1−𝛼
2 (𝑐 − 1) critical values, if 𝐻𝑁 < 𝜒1−𝛼

2 (𝑐 − 1) then samples 

are drawn from same population, i.e., judgments are consistent and here test is done. 

elsewhere judgments are inconsistent and we must go to step 7. 

7. Compute Mann Whitney test statistic pairwise based on ranked data using steps 1-4 using 

the formula: 

𝑍𝑁 =
𝑈𝑁 − 𝑈𝑁

𝑠𝑡𝑑𝑈𝑁

 

Where: 

𝑈𝑁
̅̅ ̅̅ =

𝑛𝑖𝑛𝑗

2
 

𝑠𝑡𝑑𝑈𝑁
= √

𝑛𝑖𝑛𝑗(𝑛𝑖 + 𝑛𝑗 + 1)

12
 

𝑈𝑁 = min (𝑛𝑖𝑛𝑗 +
𝑛𝑖(𝑛𝑗 + 1)

2
− (𝑅𝑖)𝑁 , 𝑛𝑖𝑛𝑗 +

𝑛𝑗(𝑛𝑗 + 1)

2
− (𝑅𝑗)

𝑁
) 

8. if |𝑍𝑁| < 𝑍1−
𝛼

2
 then two compared samples are drawn from same population and otherwise 

samples are drawn from different populations. 

Example 4.1 

We would like to compare judgments of 3 independent doctors on infecting with COVID-19 for 10 

sick people, each doctor is confident T% and unsure I% and may be giving wrong judgment F%. 

Table 2. Neutrosophic judgments of infecting with COVID-19. 

A B C 

T I F T I F T I F 

0.207 0.922 0.550 0.905 0.808 0.657 0.949 0.034 0.000 

0.879 0.968 0.419 0.555 0.238 0.571 0.057 0.842 0.398 

0.200 0.825 0.208 0.726 0.552 0.689 0.845 0.042 0.662 

0.824 0.378 0.011 0.230 0.046 0.825 0.858 0.622 0.833 

0.859 0.988 0.654 0.779 0.470 0.897 0.853 0.055 0.383 

0.874 0.347 0.499 0.599 0.293 0.607 0.416 0.092 0.972 

0.842 0.772 0.402 0.007 0.013 0.371 0.407 0.330 0.140 

0.855 0.999 0.378 0.688 0.027 0.571 0.978 0.257 0.495 

0.368 0.458 0.078 0.940 0.628 0.441 0.048 0.109 0.983 
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0.698 0.220 0.712 0.614 0.003 0.628 0.110 0.509 0.063 

First, we calculate score, accuracy and certainty of the previous data as follows: 

Table 3. Score, accuracy and certainty of judgments. 

S(A) S(B) S(C) A(A) A(B) A(C) C(A) C(B) C(C) 

0.245 0.480 0.972 -0.343 0.248 0.949 0.207 0.905 0.949 

0.497 0.582 0.272 0.460 -0.016 -0.341 0.879 0.555 0.057 

0.389 0.495 0.714 -0.008 0.037 0.183 0.200 0.726 0.845 

0.812 0.453 0.468 0.813 -0.595 0.025 0.824 0.230 0.858 

0.406 0.471 0.805 0.205 -0.118 0.470 0.859 0.779 0.853 

0.676 0.566 0.451 0.375 -0.008 -0.556 0.874 0.599 0.416 

0.556 0.541 0.646 0.440 -0.364 0.267 0.842 0.007 0.407 

0.493 0.697 0.742 0.477 0.117 0.483 0.855 0.688 0.978 

0.611 0.624 0.319 0.290 0.499 -0.935 0.368 0.940 0.048 

0.589 0.661 0.513 -0.014 -0.014 0.047 0.698 0.614 0.110 

Then we rank our neutrosophic numbers based on its score, accuracy and certainty as follows: 

Table 4. Ranks of judgments. 

Doctor Score Accuracy Certainty Rank 

A 0.139 -0.598 0.074 1 

A 0.33 -0.148 0.754 5 

A 0.383 -0.535 0.31 9 

A 0.426 0.003 0.638 14 

A 0.44 -0.047 0.803 15 

A 0.507 0.379 0.733 21 

A 0.56 0.06 0.746 23 

A 0.568 -0.115 0.723 24 

A 0.665 0.206 0.442 28 

A 0.822 0.584 0.642 30 

B 0.206 -0.449 0.023 3 

B 0.288 -0.434 0.541 4 

B 0.352 -0.085 0.569 6 

B 0.37 0.03 0.906 8 

B 0.385 -0.658 0.23 11 

B 0.406 0.194 0.342 12 

B 0.424 -0.382 0.545 13 

B 0.559 -0.2 0.614 22 

B 0.594 -0.058 0.343 25 

B 0.624 0.125 0.826 26 

C 0.181 -0.921 0.022 2 

C 0.362 -0.353 0.231 7 

C 0.383 -0.037 0.472 10 

C 0.468 0.363 0.446 16 

C 0.474 -0.217 0.393 17 
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C 0.489 -0.158 0.737 18 

C 0.499 -0.238 0.755 19 

C 0.504 0.017 0.854 20 

C 0.66 0.107 0.653 27 

C 0.705 0.399 0.709 29 

Now we rearrange samples and calculate sum of each sample neutrosophic ranks and we get: 

(𝑅𝐴)𝑁 = 170, (𝑅𝐵)𝑁 = 130, (𝑅𝐶)𝑁 = 165 

And test statistic is: 

𝐻𝑁 =
12

30(30 + 1)
(

1702 + 1302 + 1652

10
) − 3(30 + 1) = 1.2258 

Comparing with critical value say at 0.05 significance level we find that 𝐻𝑁 = 1.2258 < 𝜒2(2) =

5.9915 so we accept the null hypothesis and we say that all judgments are consistent. 

Example 4.2 

3 samples of students were drawn to test whether there is a significant difference between nervous 

before exam where 3 sets of students were following three strategies of learning, data is shown in 

Table 5: 

Table 5. Nervous Before Exam. 

A B C 

T I F T I F T I F 

0.399 0.056 0.457 0.127 0.4545 0.3855 0.152 0.622 0.292 

0.4155 0.0705 0.373 0.0025 0.0735 0.083 0.498 0.143 0.748 

0.037 0.5 0.206 0.0095 0.171 0.4055 0.357 0.831 0.625 

0.4635 0.137 0.3055 0.442 0.2785 0.4225 0.464 0.761 0.551 

0.0755 0.029 0.171 0.003 0.4755 0.3055    

0.3335 0.2995 0.207 0.0615 0.072 0.184    

First, we calculate score, accuracy and certainty of the previous data as follows: 

Table 6. Score, accuracy and certainty of nervous. 

S(A) S(B) S(C) A(A) A(B) A(C) C(A) C(B) C(C) 

0.629 0.429 0.413 -0.058 -0.259 -0.140 0.399 0.127 0.152 

0.657 0.615 0.536 0.043 -0.081 -0.250 0.416 0.003 0.498 

0.444 0.478 0.300 -0.169 -0.396 -0.268 0.037 0.010 0.357 

0.674 0.580 0.384 0.158 0.020 -0.087 0.464 0.442 0.464 

0.625 0.407  -0.096 -0.303  0.076 0.003  

0.609 0.602  0.127 -0.123  0.334 0.062  

Then we rank our neutrosophic numbers based on its score, accuracy and certainty as follows: 

Table 7. Ranks of nervous. 

Learning Strategy Score Accuracy Certainty Rank 

A 0.674 0.158 0.4635 16 

A 0.657 0.0425 0.4155 15 

A 0.629 -0.058 0.399 14 

A 0.625 -0.0955 0.0755 13 

A 0.609 0.1265 0.3335 11 
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A 0.444 -0.169 0.037 6 

B 0.615 -0.0805 0.0025 12 

B 0.602 -0.1225 0.0615 10 

B 0.580 0.0195 0.442 9 

B 0.478 -0.396 0.0095 7 

B 0.429 -0.2585 0.127 5 

B 0.407 -0.3025 0.003 3 

C 0.536 -0.25 0.498 8 

C 0.413 -0.14 0.152 4 

C 0.384 -0.087 0.464 2 

C 0.300 -0.268 0.357 1 

Now we rearrange samples and calculate sum of each sample neutrosophic ranks and we get: 

(𝑅𝐴)𝑁 = 75, (𝑅𝐵)𝑁 = 46, (𝑅𝐶)𝑁 = 15 

And test statistic is: 

𝐻𝑁 =
12

16(16 + 1)
(

752

6
+

462

6
+

152

4
) − 3(16 + 1) = 8.4007 

Comparing with critical value, say at 0.05 significance level, we find that 𝐻𝑁 = 8.4007 > 𝜒2(2) =

5.9915 so we reject the null hypothesis and we say that level of nervous are not equal, so we must 

perform Neutrosophic Mann Whitney Test and we have three cases: 

Case 1 between A, B: 

𝑈𝑁 = min (𝑛1𝑛2 +
𝑛1(𝑛1 + 1)

2
− (𝑅𝐴)𝑁 , 𝑛1𝑛2 +

𝑛2(𝑛2 + 1)

2
− (𝑅𝐵)𝑁) = min(5,31) = 5 

𝑈𝑁
̅̅ ̅̅ =

𝑛1𝑛2

2
= 18 

𝑠𝑡𝑑𝑈𝑁
= √

𝑛1𝑛2(𝑛1 + 𝑛2 + 1)

12
= 6.244998 

𝑍𝑁 =
𝑈𝑁 − 𝑈𝑁

𝑠𝑡𝑑𝑈𝑁

= −2.08167 

So |𝑍𝑁| > 𝑍0.975 = 1.96 and hence we reject the null hypothesis and take alternative hypothesis and 

methods A, B making different nervous level, since 𝑅𝐴
̅̅ ̅ =

75

6
= 12.5 > 𝑅𝐵

̅̅̅̅ = 7.667 then nervous level 

of group A is higher than nervous level of group B. 

Case 2 between B, C: 

Following same steps, we see that |𝑍𝑁| = | − 1.7056| <1.96 so there is no difference in nervous 

level between group B and C. 

Case 3 between A, C: 

Following same steps, we see that |𝑍𝑁| = |−2.3452| >1.96 so there is a significant difference in 

nervous level between group A and C and nervous level of group A is higher than nervous level of 

group C because 𝑅𝐴
̅̅ ̅ =

75

6
= 12.5 > 𝑅𝐶

̅̅̅̅ =
15

4
= 3.75. 

5. Conclusions  

In this paper we have solved the problem of making statistical tests on single valued 

neutrosophic number-based problems which wasn’t solved before. An algorithm to perform Kruskal-

Wallis test and Mann Whitney test when dealing with SVNNs is presented and numerical examples 

were solved successfully in two fields of real-life problems, medical field and educational field. In 

future we are looking forward to extend other statistical tests which are important in decision making 

problems. 
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