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Abstract: In this paper, the idea of nitro has been introduced to numerical integrals, where we studied
neutrosophic numerical integrals by submitting the neutrosophic trapezoidal method and estimation

of error of the neutrosophic trapezoidal method, in addition to supporting examples for that and
verified using MATLAB.

Keywords: neutrosophic numerical integrals; estimation of error; the neutrosophic trapezoidal
method.

1. Introduction

In contrast to the current logics, Smarandache suggested the Neutrosophic Logic to
describe a mathematical model of uncertainty, vagueness, ambiguity, imprecision, undefined,
unknown, incompleteness, inconsistency, redundancy, and contradiction. Smarandache introduced
the concept of neutrosophy as a new school of philosophy [4]. He presented the definition of the
standard form of neutrosophic real number, the Neutrosophic statistics [3-5-6], and professor
Smarandache entered the concept of preliminary calculus of the differential and integral calculus,
where he introduced for the first time the notions of neutrosophic mereo-limit, mereo-continuity,
mereoderivative, and mereo-integral [1]. A number of studies in the area of integration and
differentiation were given by Y. Alhasan [10-11-16], also he presented the definition of the concept of
neutrosophic complex numbers and its properties [2-9]. The AH isometry was used to study many

structures such as conic sections, real analysis concepts, and geometrical surfaces [13-14-15].

The calculation of area, size, and arc length is one of integration's most crucial uses in daily life.
We encounter things in our world that are ill-defined and partially indeterminate.

There are four sections of paper. first section, which also includes a study of neutrosophic
science, serves as an introduction. In the second section, a few definitions and theories of the

neutrosophic integrals are offered. The 3th section frames neutrosophic numerical integrals and

Yaser Ahmad Alhasan, Isra Abdalhleem Hassan Ali, The neutrosophic numerical integration and MATLAB


mailto:y.alhasan@psau.edu.sa
mailto:y.alhasan@psau.edu.sa

Neutrosophic Sets and Systems, Vol. 58, 2023 2

MATLAB, in which the neutrosophic trapezoidal method and estimation of error of the neutrosophic

trapezoidal method were studied. In 4th section, a conclusion to the paper is given.
2. Preliminaries

2.1. Neutrosophic integration by substitution method [16]

Definition2.1.1
Let f:D; SR - Ry U {I}, to evaluate [ f(x)dx
Put: x = g(u) = dx = g(u)du

By substitution, we get:

ff(x)dx = ff(u)g’(u)du

then we can directly integral it.

Theorme2.1.1:
If [f(x,Ddx =q(x,I) then,
1 b
I N)dx =(=———
ff«a+b)x+c+d)yu Ql PTCED)
where C is an indeterminate real constant, a #0 ,a# —b and b,c,d are real numbers,
while I = indeterminacy.

D((@+bDx+c+d)+c

3. Methods of the neutrosophic numerical integration

3.1 The neutrosophic trapezoidal method
Let:

c+dl

J flx,Ddx

a+bl
Where f(x,I) isneutrosophic function and a, b, c,d are real numbers, while I = indeterminacy

(I € [0,1]).
we divide the interval [a + bl,c + dI] into n equal parts:

a+ b[ = xo + I.X{O ,xl + I.x{l ,xz + I.x{z, ...,xn_l + Iin_l,xn + I.x’n =c+ dl
such that the length of each sub interval is:

_C+d1—(a+b1)
B n

by

—a+(d—-b)I
_c-a+td-br_

X
n I

Let yo+ 1Yy ,yvi + 1Yy , ¥, + 1Yy, o, Vo1 + IYn_1, V5 + 1), be y —coordinate, whereas:

Yo+ Iyo = flxg +IxXo), y1 + 1Yy = f(xq +1%1), ¥, + 1y, = f(x +1X), e, Yoy + 170
= f( Xp_1 t+ ben—l)'Yn + Iy, = f(x, +IXy)

Then the area between the two lines a + bl,c + dI, the curve of f(x,I) and the x-axis equal the sum
of upright trapezoidal which are bounded from up by arc of the neutrosophic function, Where the
area of the first neutrosophic trapezoidal is:
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(3’0 + 1y, +y, + 1};1)h
5 1

and the area of the second neutrosophic trapezoidal is:

(3’1 +1y,+y, +Iy,2>h
> 1

And the area of the last neutrosophic trapezoidal is:

(yn—l + I:),]n—l + yn + Iy,n>h

1
2

Hence:

c+dl

+ 1y, +y, +1y +1y,+y, +1y Yy 1Y,
f(x,I)dx:(yo 3’023’1 3’1>h1+<3’1 J’1ZJ’2 3’2)h1+“+<3’n1 }’n21 Yn yn>h1

a+bl

hy , , . ,
=3 o + 1Yo + 2y, + 21y, + -+ 25y + 21V, 4 + Y, + V3]

h , ) . ,
= 3’ [Vo + 1Yo + 2(yy + Iy + =+ Vg + V1) + Y + 1]

3.1.1 Estimation of error

1 z
E, Sﬁh,3Max|f(x,l)| ; a+bl<x<c+dl

Then the error of the step (subinterval) is:

n z
E,Sﬁh,3Max|f(x,l)| ; a+bl<x<c+dl
We have:
c+dl — (a+bl) c+dl—(a+bl)
I= - n=
n h;

Then the estimation of error of the neutrosophic trapezoidal method is:

c+dl—(a+bl) , p
< v hy Max|f(x,1)| ;o a+bl<x<c+dI
Example 3.1
Evaluate
141
f dx
1+ x2

0+o1
by trapezoidal where n = 4, then calculate the occurred error.

Solution:

_c—a+(d—b)1_1+1
B n 4

h, = 0.25 + 0.25]
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Then we will divide the interval [0,1 + I] into four subintervals of length: h; = 0.25 + 0.25]

(x,1) 0 0.25(1 + 1) 0.5(1+1) 0.75(1 + 1) 1+1
fx, 1) 1 0.9412 08—03] | 0.64—03323/| 0.5-—0.3]
—0.14121
where:
> f0)=1

1 1
1+(0.25(1+0)%  1.0625+0.18751

> f(0.25(1+D)= =0.9412 — 0.1412]

1 _ 1
1+(0.5(1+0)°  1.25+0.751

> f(05(14D)= =0.8-0.3I

1 1
14(0.75(141))%  1.5625+1.68751

> f(0.75(1+ D) = = 0.64 — 0.3323!

L - L —0.5-03I

> f(l + I) = 1+(1+1)2 2431
then:

1+1

dx _h , , , . ,
J = [yo + Yo + 2(v1 + 1Yy + ¥, + 1Y, + 3 + 1¥3) + v, + 13,]

1+x2 2
0+0!
0.25 + 0.25]
= T [1+2(0.9412 — 0.1412] + 0.8 — 0.3 + 0.64 — 0.33231) + 0.5 — 0.3/]
0.25 + 0.251
= ————[6.2624 — 1.847I]

= (0.25 + 0.251)[3.1312 — 0.9235]] = 0.7828 + 0.32105/

To finding the occurred error:

. —2x
f(x'l)=1+x2 = f(x,1)=m
; =20+ x*)? +6x*(1+x?)  —2-2x*+8x*  6x*—2
= /0D = A+ )" ST a+x? ad+0)7
f(0) =2
e o 22 _ 22
fA+D =g 7171 = 125!
[f@|>|fa+D| on 1=[01]
= Max|f(x,1)|=|f(0)|=|—2|=2
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then:

Note:

If weput I =0 in (1), we get: E; < 0.01042 (the same result without indeterminacy).

Example 3.2
Evaluate

by trapezoidal where h; = 0.1 + 0.1, then calculate the occurred error.

c+dl—(a+b1)h2

1=

12

1

Max|f(x.1)| ; a+bl<x<c+dl

1+1
E, ST(0.25+ 0.250)% |-2] ; 0<x<1+I

<

1+1

0.5+0.51

0.0625 + 0.43751

12

xe* dx

(2) = 0.01042 + 0.072921

ey

Solution:
h; =0.1+0.1]
(x,D) 0.5+ 0.5 0.6 + 0.6] 0.7 4+ 0.71 0.8 + 0.8 0.9 + 0.9] 141
flx, D) 0.8244 1.09326 1.40966 1.7804 2.21364 2.7183
+ 1.894] + 2.89086/ | + 2.89086/ + 6.1444] + 8.67564] | + 12.0599]
where:

> f(0.5+0.51) = (0.5 + 0.51)e05+05!

= (0.5+05N(Ve + I[e — Ve])

= (0.5 + 0.51)(1.6487 + 1.0696])

~ 0.8244 + 1.8941

> (0.6 + 0.61) = (0.6 + 0.61)e(0-6+0:6D

= (0.6 + 0.61)(e%° + I[e'? — e°°])

= (0.6 + 0.61)(1.8221 + 1.4981)

~ 1.09326 + 2.89086/

> £(0.7+0.71) = (0.7 + 0.71)e©7+07D)

= (0.7 4+ 0.7D(e%7 + I[e** — e°7])

= (0.7 + 0.71)(2.0138 + 2.04141)
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~ 1.40966 + 2.890861
> f(0.8+40.81) = (0.8 + 0.81)e(08+08D
= (0.8 + 0.81)(e°® + I[e'® — e°8])
= (0.8 + 0.81)(2.2255 + 2.7275I)
~ 1.7804 + 6.14441
> £(0.9+40.91) = (0.9 + 0.91)e02+09D
= (0.9 4+ 0.91)(e®° + I[e8 — e%°])
= (0.9 + 0.91)(2.4596 + 3.59001)
~ 2.21364 + 8.675641
> fA+D=1+De*D
=@ +D(e+I[e?—e])
= (1+1)(2.7183 + 4.67081)

~ 2.7183 + 12.0599]
then:

1+1

h
xe*dx = El[}’o + 1y + 2y + 1Y +y, + 1Y, +y3 + Y3 + Y, + 1Y) + ys + 1Ys]
0.54+0.51

0.1+0.11
== [0.8244 + 1.8941

+2(1.09326 + 2.890861 + 1.40966 + 4.267621 + 1.7804 + 6.14441 + 2.21364
+8.675641) + 2.7183 + 12.05991]

014017

>~ [16.53662 + 57.91094/]

= (0.826831 + 0.8268311 + 2.8955471 + 2.8955471
= 0.826831 + 6.61792511 D
to finding the occurred error:
flx,I) = xe* = fl, D) =(1+x)e*
= fa,D =2 +x)ex
£(0.5+ 0.51) = (2.5 + 0.51)e%5+05" = (2.5 + 0.51)(e°S + I[e — e®5])

= (2.5 + 0.5)(1.64872 + 1.069561)
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=41218 + 4.12181 + 0.534781 + 0.53478I
= 41218 + 5.191361
FA+D =@+De =@ +(e+I[e?—e])
= (3 +1)(2.7183 + 4.6708I)
= 8.1549 + 8.1549] + 4.6708I + 4.67081

= 8.1549 + 17.4965]

|f(1 + 1)| > |f(0.5 + 0.51)| on I=1[01]
= Max |f(x,D| =|f(1 + 1| =18.1549 + 17.49651|

=[8.1549| + I[|25.6514| — |8.1549]]

= 8.1549 + 17.4965]
then:

<c+d1—(a+bl)h
= 12

,2 Max|f(x,l)| ;o a+bl <x<c+dl

141—(0.5+ 0.5
<
12

(0.1+00)? (8.1549 + 17.4965) ; 05+05/<x<1+1

0.5+ 0.51
<

< 12 (0.081549 + 0.1749651) =~ 0.00398 + 0.01856/ ©)

3.1.2 The neutrosophic numerical integration by using MATLAB

If we go back to the previous example 3.1 and evaluate
141

dx
j ——=0.7828 + 0.32105]
1+ x2

0+01

by trapezoidal, where h; = 0.1 + 0.1], by using MATLAB

solution:
> for I =1 by substitution in (2), we find:

1+1

dx
f ——=10.7828 + 0.32105(1) = 1.10385
1+ x2

0+01

Let's now use MATLAB (for I = 1):

a=0;
>>b=2;
>>h=0.5;
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>> {=0;

>> for x=0.5:(h):1.5;

f=(f+(1/(1+x"2)));

end

>> Am=(h/2)*((1/(1+a"2))+(2*f)+(1/(1+b"2)))

Am =

1.1038

» for I = 0 by substitution in (2), we find:

1+1

dx
f = 0.7828 + 0.32105(0) = 0.7828
1+ x2

0+01

Let's now use MATLAB (for I = 0):

a=0;

b=1;

h=0.25;

f=0;

for x=0.25:(h):0.75;

f=(t+(1/(1+x72)));

end
Am=(h/2)*((1/(1+a"2))+(2*)+(1/(1+b"2)))

Am=
0.7828

If we go back to the previous example 3.2 and evaluate
141

xe* dx

0.54+0.51

by trapezoidal, where h; = 0.1 + 0.1], by using MATLAB

solution:
> for I =1 by substitution in (1), we find:

2
fxex dx = 0.826831 + 6.6179251(1) =|7.4447561

1

Let's now use MATLAB (for I = 1):
>>a=1;

b=2;

h=0.2;

f=0;

for x=1.2:(h):1.8;

=(t+(<*(exp(x))));
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end

>> Am=(h/2)*((a*(exp(a))+2*{+(b*(exp(b)))))
Am =
7.4448

» for I = 0 by substitution in (1), we find:

1

fxex dx = 0.826831 + 6.6179251(0) =|0.826831
0.5

Let's now use MATLAB (for I = 0):
a=0.5;
b=1;
h=0.1;
f=0;
for x=0.6:(h):0.9;
F(EH(x (exp(9)));
end
>> Am=(h/2)*((a*(exp(a))+2*t+(b*(exp(b)))))

Am =
0.8268

We note that we got the same results, noting that the numerical integration is approximate and the
error estimate is studied.

4. Conclusions

This essay expands on the writings we previously wrote on neutrosophic integrals. Integrals
play a significant role in daily life since they make several mathematical operations possible in the
actual world, this is why we decided to explore the neutrosophic numerical integration, where we
introduced the concept of neutrosophic numerical integration through the trapezoidal method, and
the estimation of error study. Some examples of this were also solved and the correctness of the
results was confirmed using MATLAB. In addition, this study is also regarded as being significant
for neutrosophic integral applications.
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Abstract: The degree of data uncertainty may be measured using a variety of mathematical
techniques, but neutrosophic logic is a potent instrument for analysis when compared to
fuzzy and intuitionistic fuzzy logics. This article introduces the novel idea of "dominance in
neutrosophic over graph (NOG)s" and discusses some of the intriguing characteristics of
complete, complete bipartite, and neutrosophic over bridge domination. With the relevant
instances, the characterization of neutrosophic over domination set and neutrosophic over
minimal domination set is developed, and their dominance numbers are examined.

Keywords: Neutrosophic over domination set, Neutrosophic over minimum domination
set, Neutrosophic over domination number.

Introduction:

Graph theory has various uses in a range of fields, including operations research,
physics, chemistry, economics, genetic engineering, and computer science, among others.
A classical graph cannot accurately represent uncertain issues since there are two choices
for each vertex or edge: it is either in the graph or it is not. A generalized form of the
classical set known as a fuzzy set [18] is one in which objects have membership degrees
ranging from zero to one. On fuzzy graphs, more work has previously been done. Zadeh
invented the fuzzy set and presented the degree of membership in 1965. The intuitionistic
fuzzy set and the degree of falsity (F) were both proposed by Atanassov [1] in 1983. The
neutrosophic set (NS) of components (T, I, F) and the degree of indeterminacy (I) were
created by Smarandache [10,11,12,13] in 1995. Prem Kumar [14,15,16] developed three
different forms of lattices for neutrosophic graphs. Three sets of neutrosophic
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over/off/lunder were introduced by Smarandache [8, 9] and their use in nursing research
approaches was discussed. This inspired the creation of the notion of dominance number
[17] in the realm of NOG. Later, Narmada Devi worked on a novel neutrosophic off graph
and minimum dominance using NOGs and NO- top graphs [2, 3, 4, 5, 6, 7].

Smarandache has created a NS [15]. It is a generalization of intuitionistic fuzzy sets
and fuzzy sets. With some ambiguity, consistency, and partial knowledge that is used in
daily life, it is a potent instrument to influence. The three elements of membership (M),
indeterminacy (1), and non-membership (N) functions are dealt with by NSs. It is a really
useful programme for dealing with challenges in everyday life. However, it only applies to
three attribute values. Advanced research suggests that in order to increase accuracy, the
measurement of data uncertainty needs to be handled with greater attribute value. This is
true across many scientific disciplines, including biology, physics, information technology,
networks, decision-making analysis, etc.

Recently, several writers have focused on dealing with multi-valued attribute data sets
based on Smarandache Plithogenic set [7, 8]. It is regarded as one of the important sets that
depict the contradictory multi-valued properties. Finding some of the valuable patterns
from data with lithogenic properties and its graphical visualisation, which were inspired by
several recent work in this subject, presents a challenge.

1. PRELIMINARIES:

Definition 2.1 [8] Let IV be a given non-empty set. Then the set 4 is said to be Fuzzy set on V' such

that its membership function g 4:V — [0,1] for eachx € V.

Definition 2.2 [5] Let V be a given non-empty set. A NS A in V is characterized by a truth

membership function T,(x), an indeterminate membership function I,(x) and a false membership
function Fy(x). The functionsT, (x), I;(x) and F4(x) are fuzzy sets on V. That is, Ty, 14,F; : V =
[0,1]and 0 < T (x) + 1, (x) + Fy(x) = 3.

Definition 2.3 [6] Let U be the universe of discourse and the NS 4 C 1. A Neutrosophic over set
Ais defined as 4 = {(x, {T(x),I(x), F(x)}),x €U, where T,I,F: V— [0,Q] thatis, 0 <1 < Qand Qis

said to be a over limit, T(x),/(x),F(x) € [0, 2] such that no element has neutrosophic components

of <0, and there is at least one element that has at least one neutrosophic component of >1.
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Definition 2.4 [6] Let 6* = (V, E) be a crisp graph with ¥V is vertex and E is edge. A NOG is a pair
G = (A.B) of G* where A is a neutrosophic over set in ¥ and B is a neutrosophic over set in
E CV % V such that

Tp(xy) = min{T(x), T,(1},

I(xy) = min{l(x), L(y)}

Fe(xy) = max{F,(x), Fs(v)} forallxy € E.

Here A and B are said to be neutrosophic over vertex set and neutrosophic over edge set of G,

respectively.

2.  VARIOUS TYPES OF NOGs

Definition 3.1 LetG = (4,B) beaNOG in G*. G is said to be complete if:
Tp(xy) = min{T4(x), T,(y)},
I (xy) = min{I4(x), T, (v)},

Fglxy) = max{F,(x), F, ()}, for all (x,y) EE.

Example 3.1:
(0.3,1.1,1.1)

(0.3,0.4, 1. (0.3,0.7, 1.1)

(0.9,0.4,1.2) (0.9,04,1.2) (1.3,0.7,0.4)

Figure 1: Complete NOG.
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Definition 3.2 A NOG G = (4, B} in G* is a neutrosophic over bipartite (NOBipar) if the set IV can
be partitioned into two non-empty over sets V;and V; such that Tz(xy) = Jg(xv) = Fg(xy) = 0, for
all (x,v) € Eyor (x,v) € E,.

A NOBipar graph is a complete-NOBipar if Tz(xy)=min{T,(x),T.(V)}
T (xy) = min{I4(x), 34(3)), Fplxy) = max{F,(x), F4(y)}, forall (x,y) €EE.

A complete-NOBipar graph is a star NOG if either |V;| =1or [15 1] =1.

Example 3.2:
(04,11,11) (0.9,04,1.2)

(0.4,0.8, 1. (0.9,04,1.2)

(1.2,0.8,0.5)
Figure 2: Complete Bi-par and Star NOG.

Definition 3.3 Let G = (4, E) be a NOG in G*. Then

a) The real number L is said to be the T-order, if L =3, T (1).
b) The real number M is said to be the 7-order, if M=}, o T4 (11).
¢) The real number N is said to be the F-order, if N =¥, o Fa(1t).

d) A real number is said to be the order of a NOG, if it is equal to order = (L, M, N}.

Example 3.3:
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(0.3,1.1,0.8)

(0.2,0.5, 1.1)

(0.9,04,1.2) (0.7,0.2,1.4) (1.3,0.7,0.4)

Figure 3: NOG.

In this above Figure 3 of NOG, the T-order, L = 2.5, J-order, M = 2.2, F-order, N = 2.4 and the

orderis<2.5,2.2,2.4>

Definition 3.4 Let v, 17, be two given vertices in a NOG ¢ = (4, B) such thatn € N. Then

a) A T -path is an sequence of distinct vertices P : vy, 1y, ... ,7%, of length n from v to v, if
Te(vv ) >0 fori = 0,1,..,n—1.
The strength of that T-path is minl=j* {T'5(v;v;,,)} and denoted by i (P)r

b) A 7-path is an sequence of distinct vertices P : vy, vy, ..., 1, of length n from vy to v, if
Jg(v;v;4) =0, fori = 0,1,.. ,n—1.
The strength of that 7-path is min’=¢' {75(v;v;,,)} and denoted by 15 (P);.

c) A F-path is an sequence of distinct vertices P : vy, vy, ..., 1, of length n from v, to v, if
Fr(vyvipq) >0, fori = 0,1,...,n—1.
The strength of that F-path is minlg' {Fz(v;v;,,)} and denoted by . (P)7.

d) A path is an sequence of distinct vertices P: v, vy, ..., v, of length n from vy to v, if it be T-
path, 7-path, F-path, simultaneously.
The strength of that path is min {u; (P)y. 16 (P)g. g (P)#]) and denoted by i (P).

Example 3.4:
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In the figure 3 of NOG, the various types of path from1-2areP;: 1— 2and P, :1 —3 — 2
which are T -path, 7-path, F-path respectively. pi;(P;)= (0.3, 0.3, 1.3), uz(F;)= (0.2, 0.2, 1.1).
Definition 3.5
Let v;, v; be two given verticesinaNOG G = (4,B) such thati = jandi,j € N. Then

a) The T-strength between v; and v; is max{u;(FP)s] and denoted by ug (v, v; )7
b) The J-strength between v; and v; is max{yi;(F)s} and denoted by ug (v;,v;)5
¢) The F-strength between v; and v; is max{y;(P)#} and denoted by uZ (v, v; ]T
d) The strength between v; and v; is max{ug (v;,v;) 7 1g (v, v;)3. 4G (v, ;) £} and denoted by
He (vy, vy ).
Example 3.5

In the Figure 3 of NOG, the various type of paths from 1to2are P,: 1 —2and P,:1 —3 — 2

which are T -path, J-path, F-path respectively. ugz(P)= (0.3, 0.3, 1.3), ug(PF;)= (0.2, 0.2, 1.1). Then

the T -strength, J-strength, F-strength are 0.3, 0.3,1.3 and the strength =1.3.

Example 3.6
Consider ¢ = (4,B) is a NOG on G* as Figure 4. Various paths of length 3 from v, to 1, are

explored.

Pl:vl—>1)3—>1}4—> 1}2

P3 :'Ul — 'U4 — 'U3 — 1}2
P4 : 'Ul — 1}4 — US — vz
'P5 : ‘Ul — UE — UB — vz

Py :vy — v5 — vy — v, respectively.
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And from following graph, we find the strength of that paths as follows.

For

For

For

For

For

For

Py

D ug(P)r =02, ug(P)g =05, ng(R)e=12and pg(F)=0.2

D ug(P)r =03, ug(P)y =04, ng(P)e=12and pg(F)=0.3

D Hg(P)r =04, ug(Fy)s=06, 1g(Py)r=12and ug(F)=04

D pg(Ps)y =02, ug(Ps)3=0.5, pg(Ps)e=12and pg(Ps)=0.2

D ug(Fs)r =05, ug(F)s =03, ng(Fs)e=12and pg(F)=0.3

Finally, we discuss about the strength between two vertices v, and v,.

(0.9,1.1,0.9) %5

(0.7,1.2,0.6) Y

Ug (v, v5)g = 0.5, ug (v, v3)5 = 0.6, ug (vy.v5)F = 1.2, pg (vy,v7) = 1.2,

(0.5,0.8, 1.3)

(0.8, 1.1, 0.4)
V)

(0.6, 0.9, 1.2)

(0.7,0.8, 1.1)

0.6,0.3,1.2)

(0.4, 0.8

(0.2, 0.5, 1.4)

1.4)

(0.3, 0.4, 1.4)

Figure 4 NOG

Definition 3.6 AnedgexyinaNOGG = (4, B) is said to be the

V,(1.2, 0.9, 0.4)

(0.3,0.7, 1.4)

V3(0.5, 0.9, 1.3)

a) T-bridge, if the strengths of each T -path P from x to y excluding xy were less than Tz (xy).

b) 7- bridge, if the strengths of each 7-path P from x to y excluding xy were less than 75 (xy).
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c) - bridge, if the strengths of each F-path P from x to ¥ excluding xy were less than Fz(xy).
d) Bridge, if it is either T -bridge, 7-bridge, F-bridge.
Example 3.7 In the figure 3 of NOG, the edges 12 and 23 are T-bridge and F-bridge respectively

a)The edges 12 and 13 are 7-bridge and
b)The edges 12, 13 and 23 is bridge

Notation: ug_,.,(x, y) is the strength between x and y obtained from G by deleting the edge xy.
Thus, we notate for T-strength, 7-strength, F-strength as pZF_ o (x, V)5, HE- {x}.}[x, y); and
HG—geyy (%, ) respectively.
Definition 3.7 An edge xy in G = (A4, B) is said to be

a) T-effective, if T5(xy) = pg_ (%, ¥)7r-

b) J-effective, if T5(xy) = ug 1y (% )5

c) F-effective, if F5(xy) = Hg_ (% V)7

d) Effective if it is either of T-effective, J-effective and F-effective.

Example 3.8

Consider ¢ = (A,B) is a NOG. In the below Table 1, effectiveness of edges of G is

established.
Edges T-effective J-effective F-effective Effective
(R Vv v X v
1y v v v v
vy vy X v X v
vy s X Vv X v
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(R X X Vv v
7 7

Vg 1y v X X v
! !

VU5 v pd b v
7 7

Vg X X v v
! !

Val'g b pd v v
Uy Vs b b X X

Table 1 Effectiveness of edges

For example, 1,5 have neither of T- effective, 7- effective, F- effective and effective property. 111

have T-effective and J-effective property.

Therefore, it is an effective edge. The collection of edges {vyvy,vyvs, o1y, 15},

{vy vy, vy v, vy v, vy Vs ) {0y v, v 03, 130, 3 s ) {1y Vo, vy 0, 0y U, 1 Vs, U Vs, VR U, 1R Vs, V3 1, T3 V5] have

T-effective, J-effective, F-effective and effective property, respectively.

3. DOMINATION ON NOGs.
Definition 4.1

a) Let G =(A4,B)be a NOG, let x,y € ¥V, we say x dominates y in G if there exist an T-

effective edge between them.

b) A subset S of V is said to be a T-effective dominating set in G if for every v € V — 5, there

exists u € § such that u dominates 17 as T-eff.

c) The T-weight of x is defined by w(x)y = Ty (x) + LxyisaT-effedge TE{“.:I.
ny:'.i a sdgsrﬂfx."',l

d) Forany S c V, T-weight of S is defined by w(S)y = X edw(u)s).

Dr.R.Narmada Devi and M.Menu, A Novel of Domination in Neutrosophic Over Graphs



Neutrosophic Sets and Systems, Vol. 58, 2023 20

e)

f)

Note: If ¥, i g eage T5(xy) equals 0, for some x € V. Then

Let A be the set of all T-effective dominating sets in G. The T-domination number of G is
given by y(G)y = g}gi{l}(w (D)7). Then the T-effective dominating set that correspond to
¥(G) is known as T-dominating set.

Further, in the similar manner we define 7-dominating set and F-dominating set of G,

respectively.

Z:r_)' isa T—eff edge T B(XY)

equal with 0.

Ex_)' isaedged B(XY)

Definition 4.2

b)

d)

We say x dominates y in G, if there exist an effective edge between them.

A subset S of V is said to be the effective dominating set in G, if for every v € V - §, there
exists u € S such that u dominates v as eff.

The weight of S is defined by w(S) = min{w(D),w(D);, w(D)g}.

Let A be the set of all eff dominating sets in G. The domination number of G is given by

¥(G) = Ig}gi{l}lﬁw (D)). Then the effective dominating set that correspond to y(&) is known as

dominating set.

4. PROPERTIES OF EFFECTIVE EDGES IN NOGs

Proposition 5.1

LetG =

has
a)

b)

d)

(A4, B) be a complete NOG in ¢* which has exactly one path between two given vertices and

T-strength. Then y(G)y < r&g{} Ta(u)+2.
7- strength. Then y(G); < I’IREI‘I} Ta(w) +2.
F- strength. Then y(G) ¢ = rlflé-.r} Fulu)+2.

strength. Then y(G) = r&lé‘g[TA (1), T4 (u), Fa(w)) +2.
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Proof

(a) Let G = (A,B) be aNOG on G*. Then the T-strength of path P from u to v will be Ty (u) A ... A
Tu(v) = Ty(u) A Ty(v) = Tg(uv). So ug (w,v)y < Tg(uv). uv is a path from u to v such that
Te(uv) =T, (u) A Ty4(v). Therefore uZ(w,v)y= Tg(uv). Hence ug(u,v)y = Tg(uv). Then
T5(uv) = pg_ (1 v)7 which means the edge uv is T-effective. Therefore, all edges are T-effective
and each vertex is adjacent to all other vertices. So D = {u} will be the T-effective dominating set

and X,y isq 7—eff edge Ta(XV) = Xy isa eage T5(xy) foreachu € V. The result follows.

Similarly, we can prove for (b), (c) and (d).

Proposition 5.2 Let G = (4, B) be any complete-NOBipar graph in ¢* which has exactly one path

between two given vertices and has

a) T-strength. Then y(G)sis either Ty (u) + 1or min (T,(u)+ T, (v)) + 2.
uevV,, el
b) 7-strength. Then y(G)sis either J,(u) +1or min (T4(u) + T4(v)) + 2.
ueEV, vEV,
c) F-strength. Then y(G)gis either F,(u) + 1 or Jmin (Fy (W) + Fu(v))+ 2.
USky v

d) Then ¥(G) is either min(T 4 (1), 14(u), Fa(u)) + 1 or

min (T (W) + Ty(w), T,(uw)+ 3,(v), Fy(u)+ Fy(v))+2.forall u,v € V.

ueEVy,ve

Proof

(a) Let G = (A, B) be any complete-NOBipar graph on G¢* which has exactly one path and has 7-
strength between two given vertices. By the proof of Proposition 5.1, all the edges are T-effective.

Case (i): Consider, if G is the star NOG with V = {u, 1,13, ...15,} in which u and v; are the center
and the leaves of G, for 1 = i = n, respectively. Then {u} is the T-dominating set of G. Hence

Y(G)r =Ta(w) + 1.
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Case (ii): Let both of ¥} and 15 include more than one vertex. Every vertex in V; is dominated by
every vertex in V5, as T-effective and conversely every vertex in V; is dominated by every vertex in

Vi, as T-effective. Thus the T-effective dominating sets are ¥; and 15 and any set containing 2

vertices one in ¥} and the other in ¥;. Therefore, ¥(G); = Jnin (T4(u)+ T4(v)) +2. The result
Uy eV,

follows.
Similarly, we can prove for (b), (c) and (d).

Proposition 5.3 Let G = (4,B) beaNOGin G*. Thenxy € Eisa
a) T-effective edge < xy is a T-bridge.
b) I7- effective edge < xy is a 7-bridge.
c) TF-effective edge < xy is a F-bridge.

d) Effective edge < xy is a bridge.
Proof

(a) & Suppose xy is a T-effective edge.
& By Definition 3.7(a), T5(xy) = pz_ (%, V)7
& Since, Tg(xy) = ug (x,¥)g. Therefore uF (x,y)5 = UE_puyy (%, V)7

& xyisa T-bridge. Therefore, the result follows.

Similarly, we can prove for (b), (c) and (d).
5. CONCLUSION:

Both theoretical studies and practical applications for the idea of dominance in graphs are
fairly extensive. In this study, we used strength of path to construct the NOG dominance number
and explain it with relevant instances. Numerous applications of expert systems, image processing,
computer networks, and social systems can make use of the NOG notion. Additionally, we look at
several noteworthy characteristics of the product NOGs with the dominance number, and the

suggested ideas are explained with useful examples.
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Abstract:

This study is concerned with creating a neutrosophic inference system (NIS) and developing its
mathematical concepts, as well as determining the most critical problems in the power electrical
transformers. Studying their potential failure mode and effects analysis and then, analyzing the risk
assessment and management. New insight and novel techniques have been presented to interpret the
failure modes (i.e. severity, occurrence, and detection). This paper presents a novel operator called ANOR
which is used for the first time to combine the (IF-Then) inference rules. The neutrosophic inference system
using failure mode effect analysis is a modern tool for studying the reliability of electrical power
transformers. Also, this study suggested some modifications in the standard MIL-STD-1629A. this article
presents and for the first time, a new inferencing sixty-three neutrosophic rules in which their biasing is
categorized into three types: truth state, indeterminacy state, and falsity state.

Keywords: Neutrosophic Failure Mode Effect Analysis (NFMEA); Neutrosophic Risk Priority
Number (NRPN); Neutrosophic Inference Analysis NFMEA; type -1- Mamdani inference system; MIL-
STD-1629A.

1. Introduction

It is well-known that all inference systems techniques such as the type-1 and type-2 Mamdani system
and type-1 and type-2 Sugeno system were created in the 1970s. In 1975, Prof. E. Mamdani built one of the
first fuzzy systems to control a steam engine and boiler combination, it is still implemented in fuzzy

environments as an active tool for analyzing fuzzy control systems, we can define the fuzzy controllers
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simply as it came in literature, they are very simple conceptually because they are composed of input,
processing, and output stages. As a special case, if we focused on the electrical power transformer for the

reasons that:
1- The power transformers have an active role in the efficiency and reliability of power transmission lines,
2- The electrical power transformer is one of the most expensive network equipment.

3- It is important to know when the electrical power transformer facing danger because it contains a great

quantity of oil in contact with high-voltage elements.

Therefore, the objective is to study the failure modes and their effect analysis for it by giving up
the well-known fuzzy approach and replacing it with a neutrosophic inference system (NIS). Before
moving forward with this new approach (i.e. putting the mathematical fundamentals of NIS), some of the
basic concepts are present in the upcoming sections. Till this moment and before this study, the traditional
and fuzzy methods are being taken up to analyze the parameters, and criteria which increase the risk of
fire and explosion in case of abnormal circumstances or technical failures using the traditional and fuzzy
control systems with the general goal of improving the reliability of the system. Many researchers

published dozens of articles in this field including but not limited to [1-6].

To describe the use of potential failure mode and effects analysis in the neutrosophic environments
(NFMEA), we need to determine the inputs of the neutrosophic inference system (NIS) that will be the
mathematical tool for risk assessment and management, the inputs of the NIS in the electrical power

transformers (EPT) that have been considered in this paper are [7-10]:

1- Active Part which consists of the Core (i.e. having the function of concentrating the magnetic flux),
the Windings (i.e. the function of the windings is to carry current. In addition to dielectric stress and

thermal requirements the windings have to withstand mechanical forces that may cause windings

replacement).
2- Insulation system which consists of the solid insulation and the transformer oil.
3- Some transformer components which is known as accessories are Bushings, Tap Changer, cooling

system, Tank, Mechanical structure includes (clamping, coil blocking and lead support), and Winding

Connections that are between windings, tap leads, and to bushings).
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4- Protection which includes the Buchholz protection, pressure relief, valve circuity, sure protection,

and tap changer pressure relief.

At the experts, these parts are well known, it should be studied the severity, occurrence, and detection of
each problem caused in one of the previously mentioned parts of (EPT). Again, the neutrosophic inference
system (NIS) consists of an input stage, a processing stage, and an output stage, the processing stage
invokes each appropriate rule and generates results for each rule, then combines the results of the rules.

The output stage converts the combined result back into a specific control output value.

The membership functions that should be used in the neutrosophic inference system, and how to classify
the (If-then), (If- and- then), (If-or-then), and (If- anor-then) statements will be discussed with details in the

forthcoming sections.

2. A Comparison Between Conventional FMEA, Fuzzy FMEA and Neutrosophic
FMEA

NASA agency in 1963 adopted the FMEA as a formal system analysis methodology for their reliability
requirements. Then, it was adopted and implemented by Ford Motor in 1977 [8] simultaneously with the
military standard procedures for performing a failure mode, effects, and critical analysis which has been
released by the USA Department of Defense on June 12, 1977. Since then, it has become a powerful tool
extensively used for risk and reliability analysis of systems in a wide range of industries, including

automotive, construction, aerospace, nuclear, and electro-technical [5].

Reliability and quality assurance have been of increasing concern in various industries in recent years.
The evidence of this argumentation is that there are many different standards developed for failure modes

and effects analysis (FMEA) application in various industries, and the most popular standards are:

. SAE-J-1739 [state ref.], /great for the ground vehicle community.

- AIAG's [state ref.], /a reference manual to be used by suppliers to Chrysler LLC, Ford
Motor Company, and General Motors Corporation.

- MIL-STD-1629A [state ref.] / drafted by the United States Department of Defense.

- IEC 60812 [state ref.] / guidance to how these techniques may be applied to achieve various
reliability program objectives.

- BSEN 60812 [state ref.]/ the European adoption of the IEC 60812.
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The above standards are dedicated for conventional FME, a typical standard will outline Severity,
Occurrence, and Detection rating scales as well as examples of an FMEA spreadsheet layout. Also, a
glossary will be included that defines all terms used in the FMEA. The rating scales and the layout of the
data can be different between standards, but the processes and definitions remain similar. However, in
general, FMEA is a systematic, proactive method for evaluating a process to identify where and how it
might fail and to assess the relative impact of different failures, in order to identify the parts of the process

that are must in need of repair and maintenance [2].

Even though the conventional FMEA is probably the most popular tool for reliability and failure
mode analysis in electrical power transformers, there are some limitations in it since it is difficult or even
impossible for experts to precisely evaluate the three risk factors S, O, and D, since the risk factors are often
expressed in a linguistic way (such as ‘likely’, ‘important’, ‘very high’, ‘catastrophic’, ‘marginal’,
‘minor’...etc.). as well as, in traditional FMEA methodology, the three risk factors are assumed to have the
same importance [11-16]. However, it is observed that many operative and management experts give more

preference to the “fault detection factor”.

The neutrosophic failure mode effect analysis (NFMEA) is proposed in this study, which will be
more general in its aspects than the fuzzy failure mode effect analysis (FFMEA) since the latter concentrates
on the creation of membership functions for the antecedents and consequences of rules, while the (NFMEA)
is more accurate in classifying the cases of Severity into three main portions (membership function supports
the Truth Side/ MFT, membership function supports the Indeterminate Side/ MFI, and membership
function supports the Falsity Side/ MFF), same talking goes for Occurrence and Detections. In this manner,
the membership functions that were used in FFMEA will be hugely different from what they will be used
in NEMEA. In this study we adopt the strategy that the relations between MFT, MFI, and MFF are simply

represented as:
MFF =1— MFT,MFI = MFT N MFF ............ ... ... (1)

It means from a philosophical point of view that the behavior of the truth membership function for any
neutrosophic object (i.e. number, element, variable, function...etc.) has the inverse behavior of the falsity
membership function for the same object, while the indeterminacy membership function for that object is
exactly the intersection of the two membership functions MFT and MFF because the indeterminacy case is

neither truth nor false but it is swinging between them this means the indeterminacy may contain some
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truth combined with some falsity. The following mathematical definition is a great representation of the
severity criteria, Occurrence criteria, and Detection criteria that would be used to formulate the rules in

NFMEA.
2.1 Definition [7]

Let Ag be the set of all neutrosophic non-liner functions g(x) that are neutrosophically less than or equal

to z,i.e. Ay = {X; € FNy,, g(x) < ¥z}. The membership functions of g(x) and anti(g(x)) are:

1 0<gx)<z

uAO( g(X)) = -1 -1, . ()

(e%(g(X)_z) + edo ANt B2 _ 1), z<g(x) <z—d,In0.5

0 0<gx)<z
Ma, (anti( g(x))) = 1 -1 ®)
(1 — oo ANt (€002 _ ed_o(g(x)_z)) ,Zz—dyIn05<gkx) <z+d,
It is clear that p, (neut( g(x))) consists from the intersection of the following functions:
e EOD o ) To(antig(9)-2) @
-1 .
1 — ep(anti(8)-2) z2<g(x) <z—dyIn05
ia, (neut(g(x))) = Q)

—(g()-2)
edo & z—d,In0.5 < g(x) <z+d,

-1
ta,(g(x) =%

/ (z—d,1n05 ,05)

(g(x)=-2z)

-1
s, (anti( g(x))) = 1 — @' THEH™

(1+dg1—et)

(1+d,e)

> g
z \ z+d,

z—d,In05

Figure 1.1: The orange color means the region covered by pa (g(x)), the red color means the region

covered by p,_(anti( g(x))), and the yellow color means the region covered by p,_(neut(g(x))).
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3. The construction of Rules in the Neutrosophic Inference Systems

It is an important issue to talk about the IF-Then statements in fuzzy rule sets before presenting our

modification on these fuzzy rules to transfer it from fuzzy environments to neutrosophic environments.

We mentioned in the introduction section, one of the stages in any inference system is the processing
stage which consists of a collection of logic rules in the frame of IF_THEN phrases. However, the IF-portion
is called the antecedent, while the THEN-portion is called the consequent. Regular fuzzy control systems

have dozens of rules.

Consider a rule for the severity input in the electrical power transformer:

IF (the primary function can be done) and (urgent repair is required) THEN

(the risk severity on the power transformer is minor)

The above fuzzy inference rules no longer meet the need, more sophisticated rules should be formulated

from the neutrosophic perspective.

Moreover, the fuzzy operators (AND, OR, NOT) that combines several antecedents should be extended to

include new operator.
3.1  Creation of the Neutrosophic Inference Rules

The truth, indeterminacy, and falsity for neutrosophic terms such as (about, near, close to, approximately,
very slightly, too, extremely, somewhat) have spectrums of severity due to the definitions can vary

considerably among different implementations.

The following three tables illustrate neutrosophic rules in which the neutrosophic inference systems can be

in new apparel:

Ahmed K. Essa, Montifort Blessings Andrew Mitungwi, Tuweh Prince Gadama, A. A. Salama, “Neutrosophic Inference System
(NIS) in Power Electrical Transformers, Adapted the MIL-STD-1629A"



Neutrosophic Sets and Systems, Vol. 58, 2023 31

Table (1): Neutrosophic Rules for Severity Inputs of the Power Transformer

Truth IF the primary function can be done AND un-urgent repair is required THEN the risk severity
on the power transformer is minor-minor

Indeterminacy IF the primary function can be done AND urgent repair is required THEN the risk severity on
the power transformer is rather-minor

Falsity IF the primary function can be done AND very-urgent repair is required THEN the risk
severity on the power transformer is minor

Truth IF there is a few reduction in the ability to implement the primary function THEN the risk
severity on the power transformer is a mini-marginal.

Indeterminacy IF there is a normal reduction in the ability to implement the primary function THEN the risk
severity on the power transformer is a rather-marginal.

Falsity IF there is an extremely reduction in the ability to implement the primary function THEN the
risk severity on the power transformer is a marginal.

Truth IF the problem does not cause a loss of primary function THEN the state of the system is not
critical

Indeterminacy IF the problem causes a partial loss of primary function THEN the state of the system is rather
critical

Falsity IF the problem causes a totally loss of primary function THEN the state of the system is critical

Truth IF the system becomes partially inoperative THEN the state is not catastrophic

Indeterminacy IF the system becomes inoperative THEN the state is rather catastrophic

Falsity IF the system becomes completely inoperative THEN the state completely catastrophic
Table (2): Neutrosophic Rules for Occurrence Inputs of the Power Transformer

Truthl IF a single failure mode probability of occurrence is less than 0.001 THEN the probability

of the risk occurrence on the power transformer is extremely unlikely.
Truth2 IF a single failure mode probability of occurrence is less than 0.01 THEN the probability
of the risk occurrence on the power transformer is unlikely.
Indeterminatel IF a single failure mode probability of occurrence is less than 0.1 THEN the probability of

the risk occurrence on the power transformer is occasional.
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Indeterminate2 IF a single failure mode probability of occurrence is less than 0.2 THEN the probability of
the risk occurrence on the power transformer is reasonably probable.

Falsity1 IF a single failure mode probability of occurrence is greater than 0.2 THEN the probability
of the risk occurrence on the power transformer is sometimes frequent.

Falsity2 IF a single failure mode probability of occurrence is greater than 0.3 THEN the probability
of the risk occurrence on the power transformer is permanently frequent.

Table (3): Neutrosophic Rules for Detection Inputs of the Power Transformer

Truthl IF the problem has been well identified THEN the problem will be completely fixed before
the electricity services reach to the customer.

Truth2 IF the problem has been fairly identified THEN the problem will be fixed before the
electricity services reach to the customer.

Indeterminatel IF the problem has been well detected AND rough identification THEN the problem will
be nearly fixed before the electricity services reach to the customer.

Indeterminate2 IF the problem has been fairly detected THEN the problem will cause a delay in reaching
the electricity services to the customer.

Falsity1 IF the problem has been roughly detected THEN the problem will cause a temporary
pause in the system.

Falsity?2 IF the system needs to complementary test THEN the problem will cause a pause in the

system.

Regarded table (3), it is worth mentioning that the term “’identification’”” indicates that the source or the

location of the defect or the fault has been determined by the test. while the term “Detection” indicates that

the defect or the fault exists.

Again, if we intend to combine several antecedents using the traditional operators that used to be in

traditional or in fuzzy inference systems which are (AND, OR, NOT), but in neutrosophic theory, we need

to establish new operators called (ANOR, NOT ANOR), the operator (ANOR) is neither “AND” nor “OR”,

but it is the value between them, the following neutrosophic operators are considered in banding the

neutrosophic statements:
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- AND operator: it means to select the minimum weight of all combined antecedents.
- OR operator: it means to select the maximum weight of all combined antecedents.
- Not operator: it is the resulting value of subtracting 2 minus the (truth membership function plus

indeterminacy membership function) to give the complementary function.

AND operator result+OR operator result
2

- ANOR operator: it is resulting from the equation that is mean (the

minimum weight of all combined antecedents plus the maximum weight of all combined
antecedents divided by two).

- Not ANOR: it is the value resulting from the formula

AND operator result+OR operator result
2

1

, which is exactly the complement of the operator ANOR.

The above neutrosophic operators have been created by the Ph.D. student (Ahemd K. Essa) and first
appeared in this dissertation similar to the proposed neutrosophic inference system that was presented

newly in this work (i.e. field of research that did not fathomless yet).

In the fuzzy inference systems, the most popular shapes of membership functions are the triangular,
trapezoidal, and bell curves, but the shape is generally less important than the number of curves and their
placement, from three to seven curves are generally appropriate to cover the required range of an input
value in fuzzy inference system. The neutrosophic inference system will differ in taking the curves, we will
depend on the truth membership function for those antecedents (i.e. inputs) and consequents (i.e. outputs)
that belong to the truth spectrum, indeterminate membership functions are dedicated to those antecedents
and consequents that represent the spectrum of indeterminacy, similarly, the falsity membership functions
have been specified for those antecedents and consequences that represent the spectrum of falsity. So, the
shape of the membership functions in the neutrosophic inference systems are as important as number of

curves and their placements.

4. Suggestions to Modify MIL-STD-1629A

The generality and speedily used standard is MIL-STD-1629A. with more than four decades of years’
usage and improvements, it has been utilized in various industries for failure mode, effects, and criticality
analysis (FMECA). The objective of a FMCA is to identify all modes of failure within a system design, its
first purpose is the early identification of all catastrophic and critical failure possibilities so they can be

eliminated or minimized through design correction at the earliest possible time [16].
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4.1

Pioneering Neutrosophic Thoughts in Modifying MIL-STD-1629A

To replace the severity classification categories that were stated in section 4.4.3, page 9 of MIL-STD-

16294, issued on 24 NOVEMBER 1980 into new categories in the perspective of neutrosophic theory,

we can customize the following components with their appropriate membership function:

IF + Antecedent | AND + | THEN + Consequence | The membership function

Neutroso | Statement Antecedent Statement concerning to the

phic Bias Statement neutrosophic bias

Truth IF  the  primary | And un-urgent | Then the risk severity on the | All statements in this row are
function can be done | repair is | power transformer is minor- | adhering to the truth

required minor membership function
represented by (6)
indetermi | IF the  primary | And urgent | Then the risk severity on the | The last two statements in this
nacy function can be done | repair is | power transformer is rather- | row are adhering to the
required minor Indeterminacy membership
function represented by (7)
falsity IF  the  primary | And very-urgent | Then the risk severity on the | The last two statements in this
function can be done | repair is | power transformer is minor row are adhering to the falsity
required membership function
represented by (8)

Truth IF there is a few | ........cocoiiin. Then the risk severity on the | All statements in this row are
reduction in the power transformer is mini- | adhering to the truth
ability to implement marginal membership function
the primary function represented by (6)

Indeterm | IF there is a normal | ..................... Then the risk severity on the | All statements in this row are

inacy reduction in the power transformer is a rather- | adhering to the Indeterminacy

ability to implement

the primary function

marginal

membership function

represented by (7)
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Falsity IF  there is an | ..................... Then the risk severity on the | All statements in this row are
extremely reduction power transformer is a | adhering to the falsity
in the ability to marginal membership function
implement the represented by (8)
primary function

Table (4): Severity Rules distributed to its neutrosophic bias
Suppose the following variables represent the corresponding statements:
Table 5: Encoding the truth, indeterminacy, and falsity statements to its corresponding variable #;.
Neutrosophic Neutrosophic
Corresponding Statements
Variables #; bias
# the primary function can be done Truth bias
#, un-urgent repair is required Truth bias
#; the risk severity on the power transformer is minor-minor Truth bias
#a urgent repair is required Indet. bias
#s the risk severity on the power transformer is rather-minor Indet. bias
#e very-urgent repair is required Falsity bias
#; The risk severity on the power transformer is minor Falsity bias
#g There is a few reduction in the ability to implement the primary | Truth bias
function
#9 The risk severity on the power transformer is a mini-marginal Truth bias
#10 There is a normal reduction in the ability to implement the primary | Indet. bias
function
#11 The risk severity on the power transformer is a rather-marginal Indet. bias
#12 There is an extremely reduction in the ability to implement the | Falsity bias
primary function
#13 The risk severity on the power transformer is a marginal Falsity bias

Ahmed K. Essa, Montifort Blessings Andrew Mitungwi, Tuweh Prince Gadama, A. A. Salama, “Neutrosophic Inference System
(NIS) in Power Electrical Transformers, Adapted the MIL-STD-1629A"




Neutrosophic Sets and Systems, Vol. 58, 2023 36

For all #; , i = 1,2,3,8,9 the following truth membership function is recommended

0 #, <04
#;—0.4
Sal) = C5)* 04 <# <2 (6)
1 #,>2

For all #;, i = 4,5,10,11 the following indeterminacy membership function should be taken

(%)2 04<# <16
@a(#:,0.4,2) = {1 _ (M)Z 16<#, <2 @)
2 2 o
Lo 2 <#,<04

Finally, those #; , i = 6,7,12,13 have to be shapes according to the following falsity membership function:

1 #,< 0.4
Ya(#) ={1- 2 04<# <2 8)
0 #,>2

It should be noticed that the expert has free choice in adopting the truth membership function, but, once
he/ she decides to adopt a specific one, the remaining indeterminacy and falsity functions must follow the

behaviour of his choice as it refers to in the equation (2).
5. Build Neutrosophic Inference System Using Custom Functions

Due to the fuzzyLogicDesigner app and the MATLAB® command lines are not supplied with the
ability to specify the neutrosophic statements to their appropriate truth, indeterminacy, and falsity
membership functions, as well as, fuzzyLogicDesigner lacks to contain other operators except the
traditional inference functions (AND, OR), which are inadequate for the representation of neutrosophic
argues, therefore, this section has been dedicated to program new operators (i.e. custom functions) ANOR,

NOT ANOR, in addition to program all neutrosophic inference system requirements.
5.1 Programming the Truth Membership Function

Now, the creation custom truth membership function is the aiming step, regarded as the preparation

step to use it in the neutrosophic inference system. It is clear that the following MATLAB commands
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are plotting the truth membership function that mathematically represents the equation (6), and it lies

between 0 and 1.

% plot the diagram of truth membership function
clc;

clear;

close;

syms X

f1=((x-0.4)/2)"2;

figure

obj=fplot(f1,[0.4 2.4])

hold on

fplot(0,[0 0.4])

fplot(1,[2.4 3.0])

hold off

title('figurel:truthmf')

xlabel('input values')

ylabel('truth membership function')
ylim([-0.06 1.06])
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figure1:truthmf
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051 1

03r 7

truth membership function

02r 4

| 1 1 | 1

0 0.5 1 1.5 2 25 3
input values

Figure 5.1: the graph of truth membership function &,(#;),i = 1,2,3,8,9

52  Programming the Falsity Membership Function

Again using the similarly commands goes to plot the mathematical representation of falsity

membership function that was presented in equation (8),

% plot the diagram of falsity membership function
clc;

clear;

close; syms x

£2=1-(((x-0.4)/2)"2);

figure

obj=fplot(f2,[0.4 2.4])

hold on

fplot(1,[0 0.4])
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fplot(0,[2.4 3.0])

hold off

title('figure2:falsitymf’)

xlabel('input values')

ylabel('falsity membership function')
ylim([-0.06 1.06])

figure2:falsitymf

falsity membership function

1 1 1 1 1

0 0.5 1 1.5 2 2.5 3
input values

Figure 5.2: the graph of falsity membership function Y, (#;),i = 6,7,12,13

5.3  Programming the Indeterminacy Membership Function

Again, the concept of the indeterminacy function is that function which swings between the truth and
the falsity membership functions for the same neutrosophic object (variable, element, number... etc.), that
is, the intersection of them represents the indeterminacy function. The following MATLAB syntax

demonstrates the region

% plot the curve of the indeterminacy memebership function which is the

% intersection of both truth membership function and falsity membership % function
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clc;

clear;

close;

syms X

f1=((x-0.4)/2)"2;
£2=0.5-(((x-0.4)/2)2);

figure

obj=fplot(f2,[1.4 1.82])

hold on

obj=fplot(f1,[0.4 1.4])

fplot(0,[0 0.4])

fplot(0,[1.80091 3])

hold off
title('figure3:indeterminacymf’)
xlabel('input values')
ylabel('indeterminacy membership function')

ylim([-0.06 1.06])
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figure3:indeterminacymf
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Figure 5.3: the graph of indeterminacy membership function w, (#;,0.4,2),i = 4,5,10,11

54 Create Custom Inference Functions

Since the MATLAB Toolbox of fuzzy inference systems (FIS) is void of features that support the
operators ANOR, and NOT ANOR. Furthermore, the MATLAB Toolbox completely unsupported with
Neutrosophic Inference System (NIS) which built-in AND, OR, implication, aggregation, and
deneutrosophication, this forced us to the strategy of partial use of a FIS with some modification through
custom-specific operators and adapted functions of (FIS) to be appropriate for neutrosophic Inference

System (NIS), this will be done by the following clauses:

Note that: when the custom inference system has been created, we should save it in our current

working folder or on the MATLAB path, this will enable us to design a NIS that uses the custom inference

function at the command line or in AddaptedFuzzylogicDesigner app.
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In Neutrosophic Logic Toolbox™ software that should be built in Matlab we have:

¢ AND inference function performs an element by element matrix operation, similar to the

command min, see the following example:

clc;

clear;

close;

x=[0.51;3 0.7];
y=[0.32 5;0.79 2];

ANDOperator=min(x,y)

ANDOperator =
0.3200 1.0000
0.7900 0.7000

¢ OR inference function performs an element by element matrix operator, similar to the

command mayx, the following example illustrates the operator:

clc;

clear;

close;

x=[0.51;3 0.7];
y=[0.32 5;0.79 2];

OROperator=max(x,y)

OROperator =
0.5000 5.0000
3.0000 2.0000
¢ ANOR inference function performs an element by element matrix operator, similar to the

command (max+min)/2, the following example illustrates the operator:

clc;
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clear;

close;

x=[0.51;3 0.7;2.1 0.56];

y=[0.325;0.79 2;8.1 1.03];
ANOROperator=(max(x,y)+min(x,y))/2

ANOROperator =
0.4100 3.0000
1.8950 1.3500
5.1000 0.7950
¢ NOT ANOR inference function performs an element by element matrix operator, similar to the

command 1-(max+min)/2, the upcoming example is demonstrating the requirement:

x=[0.5 1,3 0.7;2.1 0.56];
y=[0.32 5;0.79 2;8.1 1.03];
ANOROperator=1-((max(x,y)+min(x,y))/2)

ANOROperator =
0.5900 -2.0000
-0.8950 -0.3500
-4.1000 0.2050

6. Neutrosophic FMEA Flow Chart

The scaling of the three factors (i.e. Severity, Detection, and Occurrence) which were
manifested in Tables (1,2 & 3), leads us to produce the flowchart of NFMEA which is presented in Figure
2 containing the algorithm of neutrosophic failure mode effect analysis to conduct the neutrosophic risk

priority ranking.

We should state that the general defect analysis of the power transformers in this manuscript concerning
its severity classification and its occurrence classification are scaling by using adapted MIL-STD-1629

standard, this adaptation is to meet our requirements that came from the neutrosophic theory were
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tabulated in tables (1&2). furthermore, our adaptation technique of the CIGRE working group on power

transformer [11] is used to scale the detection factor for diagnostic tests tabulated in Table (3).

Without loss of generality, our algorithm for the neutrosophic inference system dependent on
Mamdani type-1- method with customizing (truth, indeterminacy, and falsity) membership functions for
inputs and outputs, and the neutrosophic risk priority number NRPN will be partitioned into three
categories, NRPN truth-biased, NRPN indeterminacy-biased, finally NRPN falsity-biased. For each faulty
cause, the controls that are currently in place in order to reduce or eliminate the risk linked with potential

defective reason should be noted.
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Figure 2: Algorithm of NFMEA creation

7. Components of the Power Transformer Dependent in this Work
In this work, we will depend on the same components of the oil-immersed power transformers
that have been adopted by [2], which are:
1- The active part is composed of the Core and its function is to concentrate the magnetic flux.

Windings have the function of carrying current.
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2-

The insulation system consists of two parts, a liquid part called transformer oil, and a solid
part which is cellulose.

Accessories are firstly composed of bushings that insulate a high-voltage conductor passing
through a metal enclosure. The second component is the tap changer which is the most
complex component of the transformer and its function is to regular the voltage level by adding
or subtracting turns from the transformer windings. The third component is the cooling System
consists of cooling fans which is designed to remove the heat caused by copper and iron losses.
The fourth component is the tank is primarily the container for the oil and physical protection
for the active part. The fifth component is the mechanical structure which includes clamping,
coil blocking, and lead support, their function is to support the active part of the transformer
firmly in its place and withstand against mechanical stresses. The sixth and final part is
winding connections which are between windings, tap leads, and bushings, their function is
to provide the required electrical connection between these elements.

Protection is the primary objective of transformer protection which is used to detect internal
faults in the transformer with a high degree of sensitivity and cause subsequent de-

energization and, at the same time be immune to faults external to the transformer.

8. Power Transformer Neutrosophic Failure Mode Effect Analysis (NFMEA)

Similar to the severity rules distributed to the neutrosophic bias that has been done in table (4), we will

create the same distributed rules for the occurrence and the severity of failure modes:

IF +  Antecedent

THEN + Consequence

The membership function

Neutrosophic | Statement Statement concerning to the neutrosophic
Bias bias
Truth IF a single failure | THEN the probability of the | All statements in this row are

mode probability of
occurrence is less than

0.001

risk occurrence on the power
transformer is  extremely

unlikely.

adhering  to  the  truth
membership function

represented by (6)
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Truth IF a single failure | THEN the probability of the | All statements in this row are
mode probability of | risk occurrence on the power | adhering to the truth
occurrence is less | transformer is unlikely. membership function
than 0.01 represented by (6)

Indeterminacy | IF a single failure | THEN the probability of the | All statements in this row are
mode probability of | risk occurrence on the power | adhering to the Indeterminacy
occurrence is less than | transformer is occasional. membership function
0.1 represented by (7)

Indeterminacy | IF a single failure | THEN the probability of the | All statements in this row are
mode probability of | risk occurrence on the power | adhering to the Indeterminacy
occurrence is less than | transformer is reasonably | membership function
0. probable. represented by (7)

Falsity IF a single failure | THEN the probability of the | All statements in this row are
mode probability of | risk occurrence on the power | adhering to the falsity
occurrence is greater | transformer is sometimes | membership function
than 0.2 frequent. represented by (8)

Falsity IF a single failure | THEN the probability of the | The last two statements in this
mode probability of | risk occurrence on the power | row are adhering to the falsity
occurrence is greater | transformer is permanently | membership function
than 0.3 frequent. represented by (8)

Table (6): Occurrence Rules Distributed to its Neutrosophic Bias
IF  + Antecedent | THEN + Consequence | The membership function
Neutroso | Statement Statement concerning to the
phic Bias neutrosophic bias
Truth IF the problem has | THEN the problem will be | All statements in this row are

been well identified

completely fixed before the
electricity services reach to the

customer.

adhering to the truth
membership function
represented by (6)
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Truth IF the problem has | THEN the problem will be | All statements in this row are
been fairly identified | fixed before the electricity | adhering to the truth
services reach to the customer. | membership function

represented by (6)

Indeterm | IF the problem has | THEN the problem will be | All statements in this row are

inacy been well detected | nearly fixed before the | adhering to the Indeterminacy
AND rough | electricity services reach to the | membership function
identification customer. represented by (7)

Indeterm | IF the problem has | THEN the problem will cause | All statements in this row are

inacy been fairly detected a delay in reaching the | adhering to the Indeterminacy

electricity services to the | membership function
customer. represented by (7)

Falsity IF the problem has | THEN the problem will cause | All statements in this row are
been roughly | a temporary pause in the | adhering to the falsity
detected system. membership function

represented by (8)

Falsity IF the system needs to | THEN the problem will cause | All statements in this row are

complementary test a pause in the system. adhering to the falsity
membership function
represented by (8)

The following table (8) illustrates sixty-three of (IF-AND-THEN-ANOR) rules for seven components of the

Table (7): Detection Rules Distributed to its Neutrosophic Bias

power transformer:

1- Solid Insulation: which has the function of insulation of windings, where its failure mode is

physical and chemistry.

2- Oil Insulation: which has the function of isolating and cooling the active part of the transformer,

where its failure mode is physical and chemistry.

3- Windings: which has the function of conducting current, where its failure mode is mechanical.
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4- Tank: This has the function of enclosing oil and protecting the active part of the transformer, where

its failure mode is chemical and physical.

5- Bushings: has the function of connecting windings with the net, and isolating between tank and

windings. Also, its failure mode is physical and chemical.

6- Core: has the function of containing the magnetic field, and its failure mode is thermal.

7- Diverter switch: has the function of maintaining a coherent current, and its failure mode is

electrical.

able (8): IF-THEN Rules for Some Power Transformer Components

Components

Number of rules and

Neutrosophic Bias

IF (Antecedent) or/and/anor (Antecedent) THEN

(Consequence) or/and/anor (Consequence)

Oil Insulation

R1 Truth

IF the probability of particle contamination occurrence
is less than 0.001 OR less than 0.01 THEN the reduction
of the electrical strength AND the reduction of the
breakdown voltage AND the increase in dielectric loss
of oil is extremely unlikely OR unlikely.

ANOR

IF the probability of particle contamination occurrence
is less than 0.001 or less than 0.01 THEN the
overheating AND short circuit in the transformer is
extremely unlikely OR unlikely.

ANOR

IF there is a pump bearing monitor AND there is a
correct oil sampling procedure THEN the breakdown
voltage will be completely fixed before the electricity

services reach the customer.

R2 Indeterminacy

IF the probability of particle contamination occurrence
is less than 0.1 OR less than 0.2 THEN the reduction of

the electrical strength AND the reduction of the
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breakdown voltage AND the increase in dielectric loss
of oil is occasional OR reasonably probable

ANOR

IF the probability of particle contamination occurrence
is less than 0.1 or less than 0.2 THEN the overheating
AND short circuit in the transformer is occasional OR
reasonably probable

ANOR

IF there is well detection for the pump bearing monitor
AND there is rough identification for the correct oil
sampling THEN there will be nearly correction of the
breakdown voltage before the electricity services reach

the customer

R3 Falsity IF the probability of particle contamination occurrence
is greater than 0.2 OR greater than 0.3 THEN the
reduction of the electrical strength AND the reduction
of the breakdown voltage AND the increase in
dielectric loss of oil is sometimes frequent OR
permanently frequent.

ANOR

IF the probability of particle contamination occurrence
is greater than 0.2 or greater than 0.3 THEN the
overheating AND short circuit in the transformer is
sometimes frequent OR permanently frequent.

ANOR

IF there is not a pump bearing monitor AND there is
not a correct oil sampling procedure THEN the
breakdown voltage will never fixed before the

electricity services reach the customer.
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R4 Truth IF the probability of the excessive moisture occurrence
is less than 0.001 OR less than 0.01 THEN the reduction
of the dielectric AND the reduction of the mechanical
strength of paper is extremely unlikely OR unlikely
ANOR

IF the probability of the excessive moisture occurrence
is less than 0.001 OR less than 0.01 THEN the
Mechanical damage AND fault in insulation is

extremely unlikely OR unlikely

ANOR
Solid IF we prevent free transportation of the oil AND there
Insulation is the prevention of direct entry of moisture from the

air by the proper sealing THEN the oil moisture will be

completely avoidable

R5 Indeterminacy IF the probability of the excessive moisture occurrence
is less than 0.1 OR less than 0.2 THEN the reduction of
the dielectric AND the reduction of the mechanical
strength of paper is occasional OR reasonable
probable.

ANOR

IF the probability of the excessive moisture occurrence
is less than 0.1 OR less than 0.2 THEN the Mechanical
damage AND fault in insulation is occasional OR
reasonable probable.

ANOR

IF we often prevent the free transportation of the oil
AND there is often prevention of direct entry of
moisture from the air by the proper sealing THEN the

oil moisture will be nearly avoidable.
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R6 Falsity IF the probability of the excessive moisture occurrence
is greater than 0.2 OR greater than 0.3 THEN the
reduction of the dielectric AND the reduction of the
mechanical strength of paper is sometimes frequent
OR permanently frequent.

ANOR

IF the probability of the excessive moisture occurrence
is greater than 0.2 OR greater than 0.3 THEN the
Mechanical damage AND fault in insulation is
sometimes frequent OR permanently frequent.

ANOR

IF we do not prevent free transportation of the oil
AND there is not prevention of direct entry of moisture
from the air by the proper sealing THEN the oil

moisture will not be avoidable

R7 Truth IF the probability of the loose clamping occurrence is
Windings less than 0.001 OR less than 0.01 THEN the winding
deformation is extremely unlikely OR unlikely.
ANOR

IF the probability of the loose clamping occurrence is
less than 0.001 OR less than 0.01 THEN the high
through current faults AND high inrush current AND
protective relay tripping are extremely unlikely OR
unlikely

ANOR

IF we use higher density insulation AND use of higher
clamping pressures during manufacturing AND we
use spring dashpot assemblies on the coil clamping
structure THEN the loose clamping will be completely

avoidable
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R8 Indeterminacy IF the probability of the loose clamping occurrence is
less than 0.1 OR less than 0.2 THEN the winding
deformation is occasional OR reasonable probable.
ANOR

IF the probability of the loose clamping occurrence is
less than 0.1 OR less than 0.2 THEN the high through
current faults AND high inrush current AND
protective relay tripping are occasional OR reasonable
probable.

ANOR

IF we often use higher density insulation AND often
use of higher clamping pressures during
manufacturing AND we often use spring dashpot
assemblies on the coil clamping structure THEN the

loose clamping will be nearly avoidable

R9 Falsity IF the probability of the loose clamping occurrence is
greater than 0.2 OR greater than 0.3 THEN the winding
deformation is sometimes frequent OR permanently
frequent.

ANOR

IF the probability of the loose clamping occurrence is
greater than 0.2 OR greater than 0.3 THEN the high
through current faults AND high inrush currents AND
protective relay tripping is sometimes frequent OR
permanently frequent.

ANOR

IF we could not use higher density insulation AND
could not use of higher clamping pressures during

manufacturing AND we could not use spring dashpot
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assemblies on the coil clamping structure THEN the

loose clamping will not be avoidable.

IF the probability of the insufficient maintenance
occurrence is less than 0.001 OR less than 0.01 THEN
the corrosion is extremely unlikely OR unlikely.

R10 Truth ANOR

IF the probability of the insufficient maintenance
occurrence is less than 0.001 OR less than 0.01 THEN
the leakage is extremely unlikely OR unlikely.

ANOR

IF we use monitoring of the inhibitor content according
to IEC 60666 AND there is external examination for oil
Tank leaks THEN any corrosion will be completely

avoidable.

IF the probability of the insufficient maintenance
occurrence is less than 0.1 OR less than 0.2 THEN the
corrosion is occasional OR reasonably probable.

R11 Indeterminacy ANOR

IF the probability of the insufficient maintenance
occurrence is less than 0.1 OR less than 0.2 THEN the
leakage is occasional OR reasonably probable.

ANOR

IF we often use the monitoring of the inhibitor content
according to IEC 60666 AND often there is an external
examination for oil leaks THEN any corrosion will be

nearly avoidable.

IF the probability of the insufficient maintenance
occurrence is greater than 0.2 OR greater than 0.3
R12 Falsity THEN the corrosion is sometimes frequent OR

permanently frequent.
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ANOR

IF the probability of the insufficient maintenance
occurrence is greater than 0.2 OR greater than 0.3
THEN the leakage is sometimes frequent OR
permanently frequent.

ANOR

IF we do not use monitoring of the inhibitor content
according to IEC 60666 AND there is not external
examination for oil leaks THEN any corrosion will not

be avoidable.

IF the lack of maintenance is less than 0.001 OR less
than 0.01 THEN the external contamination corrosion
AND the discharge current on the external surface of
R13 Truth the insulation is extremely unlikely OR unlikely.
ANOR

IF the lack of maintenance is less than 0.001 OR less
than 0.01 THEN the short circuit AND the personal
danger is extremely unlikely OR unlikely.

ANOR

IF there is periodic maintenance THEN the power

factor will adhere the standard (IEC 137)/ tan delta.

Bushings IF the lack of maintenance is less than 0.1 OR less than
0.2 THEN the external contamination corrosion AND
the discharge current on the external surface of the
R14 Indeterminacy insulation is occasional OR reasonable probable.
ANOR

IF the probability of the lack of maintenance is less
than 0.1 OR less than 0.2 THEN the short circuit AND
the personal danger is occasional OR reasonable

probable.
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ANOR
IF there is often periodic maintenance THEN the
power factor will often adhere the standard (IEC 137)/

tan delta.

IF the lack of maintenance is greater than 0.2 OR
greater than 0.3 THEN the external contamination
corrosion AND the discharge current on the external
R15 Falsity surface of the insulation is sometimes frequent OR
permanently frequent.

ANOR

IF the lack of maintenance is greater than 0.2 OR
greater than 0.3 THEN the short circuit AND the
personal danger is sometimes frequent OR
permanently frequent.

ANOR

IF there is not periodic maintenance THEN the power

factor will not adhere the standard (IEC 137)/ tan delta.

IF the probability of the inexistence of the frame to
earth circulating currents is less than 0.001 OR less
than 0.01 THEN the increased core temperature is
R16 Truth extremely unlikely OR unlikely.

ANOR

IF the probability of the inexistence of the frame to
earth circulating currents is less than 0.001 OR less
Core than 0.01 THEN the loss of efficiency is extremely
unlikely OR unlikely.

ANOR

IF there exist the frame to earth circulating currents

THEN there is not increased core temperature.
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IF the probability of the inexistence of the frame to
earth circulating currents is less than 0.1 OR less than
0.2 THEN the increased core temperature is occasional
R17 Indeterminacy OR reasonably probable.

ANOR

IF the probability of the inexistence of the frame to
earth circulating currents is less than 0.1 OR less than
0.2 THEN the loss of efficiency is occasional OR
reasonably probable.

ANOR

IF the often inexistence of the frame to earth circulating
currents THEN the increased core temperature is often
detected and often identification by Furfuraldehyde
Analysis (FFA).

IF the probability of the inexistence of the frame to
earth circulating currents is greater than 0.2 OR greater
than 0.3 THEN the increased core temperature is

R18 Falsity sometimes frequent OR permanently frequent.

ANOR

IF the probability of the inexistence of the frame to
earth circulating currents is greater than 0.2 OR greater
than 0.3 THEN the loss of efficiency is sometimes
frequent OR permanently frequent.

ANOR

IF the inexistence of the frame to earth circulating
currents THEN the increased core temperature is
detected and identification by Furfuraldehyde
Analysis (FFA).

IF the probability of the worry contact occurrence is

R19 Truth less than 0.001 OR less than 0.01 THEN the existence of
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a high carbon build-up is extremely unlikely OR
Diverter unlikely.

Switch ANOR

IF the probability of the worry contact occurrence is
less than 0.001 OR less than 0.01 THEN the existence of
possible flash over is extremely unlikely OR unlikely.
ANOR

IF there is not worry contact THEN we do not need to
the contact replacement after the specified performance

number according to the manufacturer suggestions.

IF the probability of the worry contact occurrence is
R20 Indeterminacy less than 0.1 OR less than 0.2 THEN the existence of a
high carbon build-up is occasional OR reasonable
probable.

ANOR

IF the probability of the worry contact occurrence is
less than 0.1 OR less than 0.2 THEN the existence of
possible flash over is occasional OR reasonable
probable.

ANOR

IF there is often a worry contact THEN we will often
contact replacement after the specified performance

number according to the manufacturer's suggestions.

IF the probability of the worry contact occurrence is
greater than 0.2 OR greater than 0.3 THEN the
existence of a high carbon build-up is sometimes
R21 Falsity frequent OR permanently frequent.

ANOR

IF the probability of the worry contact occurrence is

greater than 0.2 OR less than 0.3 THEN the existence of
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possible flash over is sometimes frequent OR
permanently frequent.

ANOR

IF there is worry contact THEN the contact
replacement after the specified performance number

according to the manufacturer suggestions.

9. Implement NFMEA using NeutrosophicLogicDesigner

As previously discussed, the MATLAB Toolbox suffers from uncontained for a neutrosophic logic
based-inference system, therefore, the researcher was forced to use the fuzzyLogicDesigner after adapting
it by using specific membership functions, specific operators...etc. However, the implementation will be on

the type-1 Mamdani inference system.

To abbreviate the simulation, we tried to apply the Type-1 Mamdani inference method on just three

rules of the above table (8), especially the following rules

1- IF there is a pump bearing monitor AND there is a correct oil sampling procedure THEN the

breakdown voltage will be completely fixed before the electricity services reach the customer.

2- IF there is well detection for the pump bearing monitor AND there is rough identification for the
correct oil sampling THEN there will be nearly correction of the breakdown voltage before the electricity

services reach the customer.

3- IF there is not a pump bearing monitor AND there is not a correct oil sampling procedure THEN

the breakdown voltage will never fixed before the electricity services reach the customer.

In the neutrosophic inference rules, we noticed that there are different composites from the traditional
patterns, where we linked every two opposite statements in one input by two opposite membership
functions using the command (Evenly Distributed MFs), Also we gave opposite weights of opposite rules.
As well as we also interpreted the statements of indeterminate bias by those membership functions that are

embedded between two opposite membership functions (i.e. truth and false)
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FILE ADD COMPONENTS CONVERT FIS SIMULATION DESIGNS | EXPORT
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10 |Iithere is (is not) pump breaing monitor is mf1 and there is (is not) correct oil sampling procedure is mi1 and there is well detection for the pump bearing monitor is mf1 and there is rough idenfification for the co... 0.213| rule10
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Figure 9.1: Some of the Defined Rules to Combine Neutrosophic (Severity, Occurrence and Detection) in MATLAB R2023a
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Figure 9.2: Implementation the Neutrosophic Inference Rules R1, R2, R3
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Figure 9.3: Surface of the Neutrosophic Inference System (NIS)

10. Neutrosophic Risk Priority Numbers

Analogs to the concept of the traditional FMEA, and fuzzy FMEA, the neutrosophic failure mode effect

analysis assigns numerical values to every risk associated with causing failure, using severity,
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occurrence, and detection by calculating the neutrosophic risk priority number (NRPN) for each failure

cause.

We should notice that, in the NFMEA, the definition of failure modes, failure causes and failure effects
depend on the level of analysis and system failure criteria. As the analysis progress, the failure effects
identified at the lower level may become failure modes at the higher level. The failure modes at the

lower level may become the failure causes at the higher level, and so on [2].
10.1. Analysis results of the inferencing R1, R2, R3

The sake of this study is to put the principles of the neutrosophic inference system for the power
transformers, and after putting all (IF-HEN) rules concerning the (severity, occurrence, not detection) of
each failure mode belonging to seven components (Solid Insulation, Oil Insulation, Windings, Tank,
Bushings, Core, and Diverter Switch), and since the MATLAB toolbox does not support the NIS which lead
us to use the fuzzyLogicDesigner to build adaptive NeutrosophicLogicDesigner. Therefore, we tried to
restrict the analysis to only three rules out of sixty-three rules stated in table (8). Also, the generalization
concepts of the neutrosophic theory and its superiority to fuzzy logic, as well as, its superiority to classical
logic, led to the creation of the operator (ANOR) which was never ever previously created neither in
classical inference systems nor fuzzy inference systems. Again, the existence of the operator (ANOR) is
regarded as a challenge preventing us from using all 63 rules stated in Table (8) for the same reason of

unsupported fuzzyLogicDesigner to this kind of operator.

Now, if we track the trace of the thirteen rules resulting from R1, R2, and R3 (see figures 9.1 & 9.2) with
different impacts in their weights for each rule depending upon the (severity, occurrence, not detection) if

their bias to the truth state or to the indeterminate state or to the falsity state.

The ranking of each failure mode caused by its severity, occurrence, and not detection will be ranked in
decreasingly order (the largest number of NRPN = 6 is the more truth situation having lowest risk impact
that has lowest priority, while the smallest number of NRPN = 1 is the more falsity or more indeterminate
situation having highest risk impact that has largest priority) of the neutrosophic risk priority number

(NRPN) as demonstrated in the following table
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Table (8): Neutrosophic Failure Mode Analysis in Power Transformers
No. of Ranking
Rules Control (s) Factor Neutrosophic bias Weight | of NRPN

1 Pump bearing factor+ breakdown voltage+ | Truth+Truth+Truth 0.9 6
correct oil sampling

2 Pump bearing factor+ breakdown voltage+ | Truth+ Falsity+Truth 0.8 5
correct oil sampling

3 Pump bearing factor+ breakdown voltage+ | Truth+Truth+Falsity 0.7 4
correct oil sampling

4 Pump bearing factor+ breakdown voltage+ | Truth+Indet.+Truth 0.6 4
correct oil sampling

5 Pump bearing factor+ breakdown voltage+ | Truth+Indet.+Falsity 0.4 3
correct oil sampling

6 Pump bearing factor+ breakdown voltage+ | Truth+Indet.+Indet. 0.3 3
correct oil sampling

7 Pump bearing factor+ breakdown voltage+ | Truth+Truth+Indet 0.2 2
correct oil sampling

8 Pump bearing factor+ breakdown voltage+ | Falsity+Falsity+Falsity 0.1 1
correct oil sampling

9 Pump bearing factor+ breakdown voltage+ | Indet.+indet+indet 0.5 3
correct oil sampling

10 Pump bearing factor+ breakdown voltage+ | Indet.+Indet.+Falsity 0.213 2
correct oil sampling

11 Pump bearing factor+ breakdown voltage+ | Indet.+Indet.+Truth 0.785 4
correct oil sampling

12 Pump bearing factor+ breakdown voltage+ | Indet.+falsity+Truth 0.46 3
correct oil sampling

13 Pump bearing factor+ breakdown voltage+ | Falsity+Indet.+Falsity 0.1 1

correct oil sampling
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11. Conclusion

In view of neutrosophic theory, many new concepts and procedures have been introduced in this
manuscript, a modifying MIL-STD-1629A by re-presenting new categories of severity factors of failure
mode that were stated and used since 1980. Also, the authors re-framed all failure modes (severity,
occurrence, and not detection) of the electrical power transformer according to their neutrosophic bias. we
create a mathematical tool for implementing the concept of neutrosophic inference systems, a consistent
new algorithm of neutrosophic failure mode analysis has been presented, set up the neutrosophic risk
priority numbers, and implement the new algorithm for inferencing and assessing the reliability and the

stability of the system by using thirteen (IF-Then) rules derived from R1, R2, and R3.
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Abstract:
The linear programming method is one of the important methods of operations research that

has been used to address many practical issues and provided optimal solutions for many
institutions and companies, which helped decision makers make ideal decisions through
which companies and institutions achieved maximum profit, but these solutions remain
ideal and appropriate in If the conditions surrounding the work environment are stable,
because any change in the data provided will affect the optimal solution and to avoid losses
and achieve maximum profit, we have, in previous research, reformulated the linear models
using the concepts of neutrosophic science, the science that takes into account the
instability of conditions and fluctuations in the work environment and leaves nothing to
chance. While taking data, neutrosophic values carry some indeterminacy, giving a margin
of freedom to decision makers. In another research, we reformulated one of the most
important methods used to solve linear models, which is the simplex method, using the
concepts of this science, and as a continuation of what we did in the previous two
researches, we will reformulate in this research. The graphical method for solving linear
models using the concepts of neutrosophics. We will also shed light on a case that is rarely
mentioned in most operations research references, which is that when the difference
between the number of unknowns and the number of constraints is equal to one, two, or
three, we can also find the optimal solution graphically for some linear models. This is
done by taking advantage of the conditions of non-negativity that linear models have, and
we will explain this through an example in which the difference is equal to two. Also,
through examples, we will explain the difference between using classical values and
neutrosophic values and the extent of this’s impact on the optimal solution.

Keywords: linear programming; Neutrosophic science; Neutrosophic linear models;
Graphical method for solving linear models; Graphical method for solving neutrosophic
linear models.
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A continuation of what we have done in previous research, the purpose of which was to
reformulate some operations research methods using the concepts of neutrosophic science.
See [1-14] The science that made a great revolution in all fields of science, which grew and
developed very quickly, as many topics were reformulated using the concepts of this
Science, and we find neutrosophic groups, neutrosophic differentiation, neutrosophic
integration, and neutrosophic statistics ... [14-16], and given the importance of the graphic
method used to find the optimal solution for linear models, which is a graph of the model
and is one of the easiest ways to solve linear programming problems, but it is not sufficient
to address All linear programming problems because they often contain a large number of
variables, and the use of the graphical method is limited to the following cases:

* The number of unknownsisn=1orn=2o0rn=3.

* In linear models whose constraints are equal constraints, if the number of unknowns and
the number of equations meet one of the following conditions: n—m=1orn—-m=2 orn
— m = 3.Here we can transform the model into a function of one variable or two variables
or three variables, respectively, by taking advantage of the non-negativity constraints that
the variables of the linear model have. In this research, we will present a reformulation of
the graphical method for solving linear models using the concepts of neutrosophic, as well
as the graphical method for solving linear models that Its restrictions are equal restrictions,
and the difference between the number of unknowns and the number of restrictions is equal
to one, two, or three.

Discussion:

The graphical method is one of the important ways to find the optimal solution for the
linear and nonlinear models, so in the research [3] we reformulated it for the neutrosophic
nonlinear models, and in this research we will present the graphic method to find the
optimal solution for the neutrosophic linear models that were presented in the research [1],
we know that the model the script is written in the following abbreviated form:

n
Z = E ¢jxj > (Max or Min)
j=1

Restrictions:

NIV

n
Z A (—) b, ;i=12,..,m
Jj=1

x=20 ;j=12,..,n

If at least one of the values G, ajj, b;, is a neutrosophic value then the linear model is a
neutrosophic linear model.

First: The graphical method for solving linear models: [17-20]
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Through the studies presented according to classical logic in many references, we know
that to find the optimal solution for linear models in which the number of variables is one,
two, or three graphically, we represent the area of common solutions for the constraints in
one of the spaces R or R? or R3This depends on the number of variables in this sentence,
for example if the number of variables is two, i.e. the solution is in space R? (where work is
done on models that contain one or three variables with the same steps)

We find the optimal solution according to the following steps:

1. We determine the half-planes defined by the inequalities of the constraints by
drawing the straight lines resulting from converting the inequalities of the
constraints into equals. The drawing is done by specifying two points that satisfy
the constraint, and then we connect the two points to obtain the straight line
corresponding to the constraint. This straight line divides the plane into two halves
in order to determine the half-plane that satisfies the constraint. We choose A point
at the top of the mapping from one of the two half-planes. We substitute the
coordinates of this point into the inequality. If it is satisfied, then the region in
which this point is located is the solution region. If it is not achieved, then the
opposite region is the solution region.

2. We define the common solutions region, which is the region resulting from the
intersection of the halves of the levels defined by constraint inequalities. This
region must be non-empty so that we can proceed with the solution.

3. In order to represent the objective function, we note that its relationship contains
three unknowns, Z , x; ,x, . Therefore, we must know a value for Z, which is
unknown to us. Here we assume a value, let it be Z; = 0, draw the equation of the
objective function Z; give another value, let it be Z,, and represent the equation.
We get a line parallel to the first line, and by continuing, we obtain a set of parallel
lines representing the target function.

> ¢ : - : - .
4. We draw ray C = [Cﬂwhere c,is coefficient of x;and c, is coefficient of x,in the
objective function statement, and the direction of its increasing function is the
o > ¢ o . . : :
direction of rayC = [C:] and the direction of its decreasing function is the opposite

direction. This ray, that is, the drawing is done according to the type of objective
function (maximization or minimization). In clearer terms, we find the optimal
solution point by pulling the line representing Z,parallel to itself towards the ray

S (4 . . . : .
C= [C;]to find the maximum value of the objective function, (And reverse this

direction to find the smallest value), until it passes through the last point of the
common solutions region and this point is the optimal solution point, which is
located on the borders of the common solutions region and any other displacement,
no matter how small, takes it out of it.
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The graphical method for finding the optimal solution for neutrosophic linear models:
From the definition of neutrosophic linear models, we find that we can apply the same
previous steps to obtain the optimal solution, which is a neutrosophic value suitable for all
conditions. We explain the above through the following example:

Example 1:

A company produces two types of products A; A, and uses three types of raw materials
B, B,, Bz in the production process, if the available quantities of each of the raw materials
areB; ;i = 1,2,3, and the quantity needed to produce one unit of each products 4; ; j =
1,2, and the profit accruing from one unit of each of the products A; A, is shown in the
following table:

products A, A, available quantities

raw materials

B, 6 4 36
B, 2 3 12
B, 5 0 10
profit [6,8] [2,4]

Table Issue data

Required:
Determine the quantities that must be produced of each products 4; ; j = 1,2 so that the

company achieves maximum profit:
the solution :
Let x; be the quantity produced from product j , where j = 1,2, then we can formulate the

following neutrosophic linear mathematical model:

Z =168]x; +[2,4]x, > Max
Restrictions:
6x; +4x, <36 (1)

2x; +3x, <12 (2)
5x; <15

X1, %X, =0

The previous model is a linear neutrosophic model because there is indeterminacy in
variables coefficients in objective function. To find the optimal solution for the
previous model, we will use the graphical method according to the following steps:
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The first constraint: We draw the straight line representing the first constraint:

6X1 + 4‘x2 = 36

We impose:

x1=0=>4x,=36>x, =9
We get the first point: A(0,9).
We impose:

X, =0=>6x;,=36>x;, =06
We get the second point: B(6,0)

If we take a point at the top of the designation from one of the two halves of the resulting
plane after drawing the straight through the two points A(0,9) and B(6,0), let it be the
point 0(0,0)and substitute it in the inequality of the first entry, we find that the inequality
is fulfilled, that is, the half of the plane that the point 0(0,0)belongs to it, which is half the
solution plane of the first-constraint inequality.

We proceed in the same way for the second and third restrictions and obtain the following
graphical representation: Figure No. (1)

Figure No. (1) Graphic representation of the
limitations of the linear model in Example 1
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After representing the constraints, we notice that the common solution area is bounded by
the polygon whose vertices are the points, 0(0,0) , E(3,0) , M and €(0,4) .

The point M is the point of intersection, the second and third constraints we get their
coordinates by solving the following two equations:

le + 3x2 - 12

le = 15

We fiend: M(3,2)
Substituting the coordinates of the vertex points into the objective function expression, we
get:
Zo=0
Zp € [12,16]
Zy €[22,32]
Z; €[8,16]

That is, the greatest value of the function Z is achieved at point M(3,2) , that is, the
company must produce three units of the first product and two units of the second product,
then it will achieve maximum profit.

MaxZ = Z € [22,32]

Note:
The process of substituting the objective function with the coordinates of the points of the

vertices of the common solution area is possible when the number of points is small, as we
can easily replace them in the objective function, and the point that gives the best value for
the objective function represents the optimal solution, but when there are a large number of
constraints, we get a large number From the vertical points located on the perimeter of the
common solution region. In this case, the method of finding the coordinates of all these
points and substituting them into the objective function becomes impractical, so we resort
to representing the objective function and determining the optimal solution point as we
mentioned previously.

Second: How to take advantage of the conditions of non-negativity to find the optimal
solution for some neutrosophic linear models using the graphical method:

Example 2:
Find the optimal solution for the following linear neutrosophic model:

Z =x1— X, —3x3 + x4 +[2,5]x5 — xg + 2x;, — [10,15] > Max
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Restrictions:
xl—x2+X3=5 (1)

le_xZ_X3_x4=_11 (2)
X1+ x, — x5 =—4 3)
Xo +x6 =6 (4‘)

2x1 - ?)XZ - x6 + 2x7 = 8 (5)
X1,X2,X3,X4, X5, Xg, X7 = 0
The solution:
We note that the number of constraints m = 5 and the number of variables n = 7, meaning
thatn —m = 2. Therefore, we can, relying on the non-negativity constraints, find the

optimal solution for the previous model using the graphical method according to the
following steps:

1- We calculate five variables in terms of only two variables.

2- Since the variables of the linear model satisfy the non-negativity constraints, then we obtain
from the variables that we calculated five inequalities of the type greater than or equal to.

3- Substituting the five variables into the objective function, we get an objective function with
only two variables.

4- We write the new model, which is a linear model with two variables, so the optimal
solution can be found graphically.

We apply the previous steps to Example 2:
We find:
X3=5—x;+x, (D'
Xy = 3%, —2x,+6 (2)'
Xs =X +x,+4 3)'
Xe=6—x, (4)'
X;=7—x,+%x, (5

Substituting in the objective function, we get:

Z = [1,4]x, + [3,6]x, + [8,25]

Since,x3, x4, X5, X6, x7 = 0 from (1)" <« (2)" <(3)" < (4)" < (5)’, we get the following set of
constraints:
5—x;+x, =20
—3x;+2x,—3=0
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x1+x2+420
6_x2 20
7—x1+x,=20

Then the neutrosophic linear mathematical model becomes:

Find:
Z =[1,4]x, + [3,6]x, + [8,25] —» Max
Restrictions:
5—x;+x, 20
3%, —2x,+6 =0
x1+x,+4=>0
6—x, =0
7—x1+x,=20
X1,%X, =0

The model has two variables, so the optimal solution can be found graphically by following
the same steps mentioned in Example (1).
We obtain the representation. Figure No. (2) Is the required graphic representation:
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Figure No. (2): Graphical representation of the constraints of the
linear model in Example 2

Region D is the region of joint solutions and is defined by the polygon OBRSC,
where,0(0,0) , B(5,0), €(0,3) , and for the two points R , S we find:

Point R is the point of intersection of the first and fourth entries.

We obtain its coordinates by solving the set of equations:

5 - x1 + xz = 0
6 - xz = 0
We get: R(11,6)

Point S is the point of intersection of the second and fourth entries.
We obtain its coordinates by solving the set of equations:

3x1_2x2+6=0
6_x2=0

We get: S(2,6)
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Since the optimal solution is located at one of the vertices of the common solution region,

we substitute the coordinates of these points with the objective function:

At point, 0(0,0)
Z,=0

At point, B(5,0)
Zp = [13,45]

At point ,R(11,6)
Zg € [37,105]

At point ,S(2,6)
Zs € [28,69]

At point, €(0,3)
Z € [17,43]

The greatest value of the objective function is at the point,R(11,6) that is, x; = 11

and x, = 6.

We calculate the values of the remaining variables by (1)" < (2)" «(3)" < (4)" < (5)".

We find, x3 =0 ,x, =27 ,xs = 21,x4 =0 ,x, = 2.

Substituting in the objective function of the original model we obtain the maximum value

of the Z function, which is.
MaxZ € [68,126]

Important Notes:
1- The graphical solution applies to a vertical point in space R™.

2- The number of components of the ideal solution is non-existent because the ideal
solution applies to a vertical point, and the vertical point is the result of the
intersection of a number of lines or planes, and the number of non-existent

components is at least n — m components.

3- The model may include some conditions that do not play a role in the solution

process.

4- The ideal solution may be a single point, or it may be an infinite number of points,

when one of the sides of the common solution area that passes through the point of

the ideal solution is parallel to the straight line Z = 0. Therefore, when the straight
line representing the objective function is drawn, this straight line will apply to the
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parallel side, and all the points of that side, the number of which are infinite, will be
they are perfect solutions.

5- If the region of acceptable solutions is open in terms of increasing the function Z
then we cannot stop at a specific ideal solution, and then we say that the objective
function has an infinite number of acceptable solutions that give us greater and
greater values of Z.

6- The state of not having an ideal solution (acceptable solution) when the conditions
contradict each other and then the region of possibilities is an empty set (the
problem is impossible to solve).

Conclusion and results:

In the previous study, we presented the graphical method for finding the optimal solution
for neutrosophic linear models, and also a method that is rarely discussed in classical
operations research references, which is how to take advantage of non-negativity
constraints to find the graphically optimal solution for some neutrosophic linear models,
but we must be aware that we may encounter neutrosophic linear models with two
variables, but There may be difficulty in arriving at the common solution area, or there may
be difficulty in determining the optimal solution after obtaining the common solution area.
Therefore, it is preferable to use the Cymex neutrosophic method. As a result, the main goal
is to obtain the optimal solution, so the researcher must determine the appropriate method
for the model being solved.
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Abstract: Several previous papers dealt with neutrosophic integrals without introducing the idea of
double neutrosophic integrals. In this article, double integrals were discussed by presenting several
theories in double neutrosophic integrals over a rectangle and over a general region, the most
important of which is the neutrosophic Fubini's theorem. In addition to studying the applications of

double neutrosophic integrals in calculating areas.

Keywords: neutrosophic integrals, double neutrosophic integrals, neutrosophic Fubini's theorem,
area.

1. Introduction

In contrast to the current logics, Smarandache suggested the Neutrosophic Logic to describe a
mathematical model of uncertainty, vagueness, ambiguity, imprecision, undefined, unknown,
incompleteness, inconsistency, redundancy, and contradiction. Smarandache introduced the concept
of neutrosophy as a new school of philosophy [4]. He presented the definition of the standard form
of neutrosophic real number [3-5], studying the concept of the Neutrosophic probability [6], the
Neutrosophic statistics [5-7], and professor Smarandache entered the concept of preliminary calculus
of the differential and integral calculus, where he introduced for the first time the notions of
neutrosophic mereo-limit, mereo-continuity, mereoderivative, and mereo-integral [1]. A number of
studies in the area of integration and differentiation were given by Y. Alhasan [9-12-15], also he
presented the definition of the concept of neutrosophic complex numbers and its properties, in
addition, he studied the general exponential form of a neutrosophic complex number [2-10].
Madeleine Al- Taha presented results on single valued neutrosophic (weak) polygroups [13]. The AH
isometry was used to study many structures such as conic sections, real analysis concepts, and
geometrical surfaces [11-16].

The calculation of area, volume, and arc length is one of the most essential uses of integration
in human life. In our reality, there are things that cannot be precisely defined and contain an element

of indeterminacy.
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There are four sections of paper. first section, which includes a study of neutrosophic
science, serves as an introduction. The second portion deals with a neutrosophic integrals theories
and rules. The double neutrosophic integral and its applications are discussed in the third part. The

fourth section offers the paper's conclusion.
2. Preliminaries

2.1. Neutrosophic integration by substitution method [15]

Definition 1

Let f:D; € R - R U{l}, toevaluate [ f(x)dx
put: x = g(u) = dx = g(w)du

by substitution, we get:

ff(x)dx = ff(u)g’(u)du

Definition 3.2[16]
Let f: R(I) — R(); f=f(X) and X = x + yI € R(I) then fis called a neutrosophic real function with
one neutrosophic variable. a neutrosophic real function f(X) written as follows:

fX)=flx+yD=f)+I[f(x+y) = f(x)]
3. Double neutrosophic integrals over a rectangle

Theorem 2 (neutrosophic Fubini’s theorem)
Let f(x,y,I) integrable over the rectangle

RUI={(x,y,D: a+agl <x<b+by] and ¢+ ¢, <y <d+dyl} , where:
a, do,b, bo,é, C'O,d, do are real numbers, while I = indeterminacy.
Then we can write the double neutrosophic integrals over a rectangle R U by the following
formula:
l")+i)01 d+d01 i)+i)01 i)+i)01
fff(x,y,[) dA = j j fl,y, 1) dydx = j j fl,y, 1) dxdy
RUI a+agl C¢+cépl ¢+col a+agl

Integration according to the horizontal slice:
d+d01 i)+i)01

fC,y, 1) dxdy

¢Hcol  atagl
Integration according to the vertical slice:

b+bgl d+dgl
flx,y, 1) dydx
a+agl ¢+éol
Example 1
Let RUT ={(x,y 1) 0<x<2+2I and 1+ <7y <4+ 41}, then let find:

f (x? + 2Ixy) dA

RUI
Solution:
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Integration according to the vertical slice:

2421 4+41 2+21
f f (x% + 2Ixy)dydx = f (x%y + Ixy®)| 1 dx
0 141 0

2+21

= f ([(4+ 4Dx? + Ix(4 +4D?] — [(1 + Dx? + Ix(1 + D?])dx
0

2+21

= f [(3 +3D)x? + 60Ix]dx = (1 + Da® + 301x2)|. ™
0

=@1+D@2+2D3+301(2+2D)?
= (1+1)(8+56I) +480I
=8+ 56I + 81 +56] +480I = 8 + 600/

Integration according to the horizontal slice:

4+41 2421 4+41 3 2+21
f f (x? + 2Ixy)dxdy = j (; + Ixzy) dy
141 0 1+ 0

+41

4
T2 v 2| - )

1+1

4+41

= J <—(8 +356I) + 16Iy> dy

1+1

8 + 561 el
= (—( 3 )y + 81y2>

1+1

_[B+56D
- 3

(8 +56I)

(4+4D)+8I(4+ 41)2] - [ 3 A+D+8ly(1+1)?

= 1+ DI[(8 + 56I) + 296I]
=1+ D(8+296I)
=8+ 2961 + 296/ + 81 =8 + 600/
note that we got the same result.

3.1 Double neutrosophic integrals over a general region

Theorem 3
Let f(x,y,I) is continuous on the region
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RUI ={(x,yD: a+a,d <x<b+byl and g,(x,I) <y < g,(x, 1)}, where: a,d,, b, b, are
real numbers, while I = indeterminacy, and g,(x,I), g,(x,I) continuous neutrosophic functions,
where g,(x,1) £ g,(x,I), forall x € [a+ a,] ,b + byl].

Then we can write the double neutrosophic integrals a general region R UI by the following

formula:

b+bol g (x,D)

ff(x,y,l) dA = f f f(x,y,1) dydx

RUI a+agl g1(xI)

Example 2
Let RUI ={(xy 1) 0<x<4+4] and 0<y < (1+D)x}, then let find:

ff(Ze"z — siny) dA

RUI

Solution:

4+4] (1+Dx 4441
(1+Dx

[ ] e s = [ (e cosy)ly e
0 0

0

4+4]

= f ([2(1 + Dxe** + cos(1 + Dx] — [0 + cos 0])dx
0

4+41

= J ([2(1 + l)xe"2 + cos(1 + I)x] — [1])dx
0

4+41

= ((1 +De*” + sin(1+ Dx — x)

1+1 0

sin(1+1)(4+41)—4—41]—[(1+I)e°+ sin(0) — 0

1
— (4+41)?
(14 De + I 111

+1

1
= (14 De@+* 4 s+ DA +4D) —4 -4 —1-1

+1

1
= (1 + 1)el6+48l 4 (1 —51) sin(4 +12I) — 5 — 51

=1 +D(e® +I[e®* —e®]) + (1 —%I) (sin(4) + I [sin(16) — sin(4)]) — 5 — 51

Example 2
Let RUI ={(x,y,1): 0<x<1+1 and 0 <y < x}, then let find:

T T
sinl++1)x
ﬂ (3 4) A
X
RUI
Solution:
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RUI

ffsin(%+%1)x dA:TIfsin(%+%1)x
x
0 0

=f sin(g+%l)xdx

0

1+1
-1 T T
mCOS (§+ZI)X
3 4

o

T T
= _§—+%cos(§+11)(1+1) —

-(E42) [ () +1]cos (2F) - cos (g)]] 2]

T 7n

R (e

n 7n n 7n

SIS RPNER)E 0D

n 7n

3 3+ 12/3
=—+|(——|1
2T 14w

Example 3
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1 +1I

2

X

f fxsin(%+%1)ydydx

0

0

(g + %1) )] | dx

1+EI
-1 T T
= E+Elxcos(§+gl)y dx
0 36
1+%1
A[ -1 (ﬂ'+_nl) -1
= 7, xcos\g+el)y T X COS
o \[ 3% 316!

T

= (| (G r)sm G+ 351) -
U T )P 3T
9 3
- (e
4 +31 (27 29
2n 4w w3 s

1
T

27 29 T
FJ’F’)“’S(?J’E

21) o3 1o (1) s 3] - (242

/)

derivation integration
-3 1 T T
——= =+—=I
(+)<n n1> x cos(3+6 )x
-3 1T\ N\/3 1 T T
- ——=1 ——=1I]sin(s+=1
=) (TL’ TL’> <TL’ n)sm(3+6)x
N\
0 N -3 2

2
2

7

3

[ (& -=1) (1+%’)Si"(§+%’)(1+§’>‘(_73‘%’

](1+11)

-l
1) (cos () +1[eos (33) - o5 B)])

-3 3

2n 4w

)-G+ =)
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_ (9 3 )(\/§ [M_x/j])_(g §1)<1 1[—\/8—\/2__1D 3 3

=z w2 N\Z 2 2 =T ml)\2 2 2

27 29
‘(W%’)

+
2n  4m

9 3 V3 V6—2-23 27 29\(1 —J6-+2 -2 3 3
_ (—_—) Yo Yo Ve T Ve, -(— —1) S L. ) A
w2 2 2 4 3 w3 2 4 2T 4w

27 29

()
B (9 31) V3, V6-v2-2Vv3, (27 291> 1, V6-v2 -2 3 3
T \gz g2 2+ 4 S \m3 3 2+ 4 2w 4w

27 29

‘(F*E’)

Theorem 4

Let f(x,y,I) is continuous on the region

RUI ={(x,y,D): ¢+c¢yl <y<d+dyl and h (y,) <y < hy(y,1)}, where: ¢,¢,,d, d, are
real numbers, while I = indeterminacy, and h,(y,I), h,(y,I) continuous neutrosophic functions,
where h,(y,1) £ h,(y,D), forall y € [¢ + ¢, ,d + d,l].

Then we can write the double neutrosophic integrals a general region R U by the following
formula:

d+dol  hy(y.D)

Jf(x,y,l) dA = J J fl,y, D dxdy

RUI ¢+éol  hi(y.I)

Example 4
Let RUI ={(x,y,D: 1+1<y<3+3] and (1+ 1)y <x < y?}, then let find:

JSdA

RUI
Solution:
3431 ¥? 3+31
_ y?
j 5 dxdy = j 5x|(1+1)y dy
141 14Dy 141
3+3]

=5 [ or-a+ny) @y

1+1

3+31

s -aend)

1+1

__([@+3D° B+3D*1 [a+D)?® (14 1)?
_5([ S aen&E H D e ])

_: 91+ 0] [@+D*\ _65(1+1)°
-s(F2 - ]) -5
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_65(1+71) 65 455

3 3 3

Theorem 5
Let f(x,y,I) and g(x,y,I) be integrable over region

RUI cR? andlet ¢ + ¢yl any constant, where ¢,¢, are real numbers, while [

indeterminacy. Then:

) ff(é+éol)f(x,y,l) dA = (¢ + ¢l fff(x,y,l) dA

RUI RUI

@  [[irey.n+geyn aa= ([ e aa+ [[ reoyn aa

RUI RUI RUI
(@) If RUI =R, UR, UI, where R;,R, are nonoverlapping region, then:
[[r@wn aa= [ r@nn aa+ || reorn aa
RUI RUI RUI

3.2 Applications of double neutrosophic integrals
The area of region t can be calculated using a double neutrosophic integrals:

4= [ axty = [[

RUI RUI
Example 5

Using a double neutrosophic integrals to find the area of the plane region bounded by the curve

of y=x? and y = (1 + Dx.
Solution:
Let find the intersection points of the two equations:
x2=1+Dx
x>—1+Dx=0

x(x—1-1)=0 = {x

so, the two equations intersect at the points: (0 ,0) and (1+1 ,1 + 3I)

> Integration according to the horizontal slice:

1+1 (1+Dx 1+1
f f dydx = f y|9(612+1)xdx
0 x2 0

1+1

=f ((1+ Dx — x?)dx
0
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1+1

x? x3
= ((1-{-1)7—?)

a1+D?> @+1I1)3
=1+D T3

0

1+0D3 (1 7
_a+n (17
6 6 6

I

> Integration according to the vertical slice:

1431 VY 1431
dxdy = f x‘r dx
[ ] ar= ] HT,
O a-zny 0
1+31

1+31

( Vy? - (1——0—2)

w/(1+31)3 - (1+3I) \/_ (1_11)0_2
2

1+151

\/1+63 —(1——1)( )

= (1+71) <1+151 11 151)
N 2 4 4

2 1 7

‘§(1+7’)_<E+E’>

2 14 1 71—1+71
~3 3 2" 716 ' 6

note that we got the same result.

Example 6

Using a double neutrosophic integrals to find the area of the plane region bounded by the curve

of y=9+47I —x% and x — axis.

Solution:
9471 —x%2=0

x2=9+7]

by root the both sides, we get on:
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x=3+4+1 x=3-17I
= {x=—3—l ) or {x=—3+71

where:

VO+7l =y +4I
9+ 71 =y%+ 2y61 + 6%

9+ 71 =y2+ (2y5 + 62
then:

r
26+ 6%2=7

{ y=13
§2+2y6—-7=0
find the values of f3:
» When y =3 = §24+4656—7=0
BG+7NGE-1=0 =4§§=-7,6=1

» When y=-3 = §2-66—7=0

-G+ =0 =6§=7 ,6=-1

VO+7I =341
or =-3-1
or =3-7I
or =-3+47I
case (1):
341 9+71-x2 341
A= j j dydx = j y|3+71=2% dx
-3-1 0 —-3-1
3+1
= f 9+ 71 — x*)dx
—-3-1
3+1
X3
= ((9 + 7I)X —?>
-3-1
3+1) -3-1)3
= [(9+71)(3+1)—( 3 ) ]—[(9+71)(—3 - —%]

=2 [(9 +70D)@B+ 1) - S 21)3]

2)
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27+ 271 +91+1
=2[27+37I—( )]

3

371 148
=2[27+371—9—T:| =36+Tl

case (2):

3-719+71-x? 3-71
A= f f dydx = fylg”"xzdx

—-3+71 0 —3+71

9+ 71 —x?)dx

—-3+71

= <(9 + 7Dx —%3>

= [(9 +7D(B =71 - (3_3—71)3] - [(9 +7D(=3+71) —

3-71

—=3+71

(=3 +7I)3
=5

- [(9 +7D@3B =71 _(3_3_71)3] N [(9 PPN ¢ —371)3]

=2 [(9 +7D@3 =71 —(3_3—71)3]

27 — 1891 + 4411 — 3431
=2[27—911—< >]
3
911 364
=2 27+911_9+T] =36+Tl

4. Conclusions

The significance of this paper stems from the fact that it explained the concept of double
neutrosophic integrals. where double neutrosophic integrals over a rectangle and over a general
region were presented. In addition, integrations were calculated according to the horizontal and
vertical slice, and we got the same results in both cases. Also, we introduced the applications of
double neutrosophic integrals.
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Abstract: In this article we generalized a Smarandache’s neutrosophic set as BS-neutrosophic set
and it is applied to BCK/BClI-algebras. The concept of BS-neutrosophic subalgebra, BS-neutrosophic
ideal and related properties are investigated.

Keywords: Neutrosophic set (NSS); BS-neutrosophic set (BS-NSS); BS-neutrosophic subalgebra (BS-
NSSA); BS-neutrosophic ideal (BS-NSI).

1. Introduction

L.A.Zadeh [1], a professor of computer science at the University of California, introduced the
concept of fuzzy set (FS) in 1965.Fuzzy sets analyzed the degree of membership of elements of set. In
1986 Atanassove [2] generalized a fuzzy set to an Intuitionistic Fuzzy Set (IFS) by including another
function called a non-membership function. The neutrosophic Set (NS) concept was developed by
Smarandache ([3],[4]) and is a more general framework that extends the concepts of Classical Set,
fuzzy set, Intuitionistic fuzzy set, Interval valued fuzzy(Intuitionistic) set. Neutrosophic algebraic
structures in BCK/BCl-algebras are described in articles [5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15] we
know that Smarandache’s NSS have many generalizations. The purpose of this paper is to consider
a new generalization of the NS. A NS has true, false and indeterminate membership functions which
are fuzzy sets. When we considering the generalization of a NS, an interval-valued fuzzy set is used
as non-membership function, since the interval-valued fuzzy set is a generalization of the fuzzy set.
We introduce the concept of BS-neutrosophic set, and we apply it to BCK/BCI-algebras. Also, the
concept of BS-neutrosophic subalgebra, BS-neutrosophic ideal are introduced and the associated
properties are investigated. We consider homomorphic inverse image of the BS-neutrosophic
subalgebra and discuss the translation of the BS- neutrosophic Subalgebra. In a BCI-algebra, we

provide conditions for a BS- neutrosophic ideal to be a BS-neutrosophic subalgebra.

2. Preliminaries

"

Definition: 2.1([16],[17],[18]) Let K be a non-empty set with a binary operation “+” and a constant

“0” is called a BCl-algebra if it satisfies the following axioms for all p,, 74, 1, € K
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L. ((ﬂ’o*””o)*(#?o*uo))*(’uo*ro)=0

ii. (ﬂ”o*(ﬁo *””0))*””0 =0

ili. po*py =0

V. po*x1y=0,7%xpy =0 p, =71y.

If a BCl-algebra X satisfies the following identity

v. 0xp,=0 forall p, € K then X is called a BCK-algebra

The following properties are hold in any BCK/BClI-algebra

i po*x0=0

. pg S 7y = Po *Ug S 1y * U, Ug * 1y S Uy * Py

iii. (o * 70) *x g = (Po * o) * 1o

iv.  (po *ug) * (ry *uy) < po * 1y for all py, 75,1y € K.

Where p, <7y if and only if py * 75 = 0.

The following conditions are hold in any BCI-algebra X [16]

L. %’o*(ﬂ’o*(ﬂ’o*””e))zfi”o*””o

ii.  0x(pg*715) =(0*p,)* (0 %)

Definition: 2.2[16] A BCl-algebra X is said to be p-semisimple if 0 * (0 * p,) = p, for all p, € KX
In a p-semisimple BCl-algebra X, the following holds for all gy, 7, € X

a. 0% (po*71y) =710 *po

b.  pox (po*10) =10

Definition: 2.3[16] A BCl-algebra X is said to be associative if (py * 79) * 1y = (po * o) * 7, for
all pg, 75, g € K

Definition: 2.4 [18] An (s)-BCK-algebra, we mean a BCK-algebra X such that, for any p,, 7, € X
the set {1y € K /uy * po < 74} has the greatest element, written by g, o 5.

Definition: 2.5 A non-empty sub set H of a BCK/BCl-algebra X is called a sub algebra of X if p, *
79 €H forall py, 1y EH.

Definition: 2.6 A non-empty sub set # of a BCK/BCl-algebra X is called an ideal of X if 0 €
H,and 7y, po * 19 € H = py € H forall py, 1, € K.

Definition: 2.7 A non-empty sub set ' of a BCl-algebra X is called a closed ideal of X if it is an
ideal of K which satisfies py € H = 0+ p, € H forall p, € KX

Definition: 2.8[1] Let X be non-empty set. A fuzzy setin X is amapping N;:X - [0,1]
Definition: 2.9[1] The complement of fuzzy set N; denoted by (N;)¢ is also a fuzzy set defined as
VP =1—=2; forall py € K. Also (W)€ = Ny

Definition: 2.10 A fuzzy set N;:K — [0,1] is called fuzzy sub-algebra of X, if Ny (py *74) =
min{Ny (po), Nz (74)}-

By an interval number we mean a closed subinterval m = [m~,m*] of [I] where 0 <m~ <m* <
1. Denote by [I] the set of all interval numbers. Let us define what is known as refined minimum
(briefly, rmin) and refined maximum (briefly, rmax) of two elements in [I]. We also define the
symbols "< " ," > "," =" in case of two elements in [[]. Consider two interval numbers 7, =
[m,~,m;*] and i, = [m,~,m,*]. Then

rmin{m,, M,} = [min{m,~, m,”}, min{m;*,m,*}],

Tmax{ml: mz} = [max{ml_i m2 _}! maX{m1+, m2+}]/
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m, =M, ©®my~ =>m,”,m* >m,*, and similarly, we may have m,; < m,
my > m, (resp. M; < M,) we mean M, » M, and M, # M, (resp.m; < M, an
m; € [I] where i €n. We define

rinf m; _ [mf - inf and rsup m; _ [supm__ supmi+].

+
ien m ien™i s en

ien L rien T ] ien
Definition: 2.11[19] Let X be anon-empty set. A function N: K — [I] is called an interval-valued
fuzzy set (briefly, an IVF set) in X. Let [[]* stand for the set of all IVF setsin K. For every N € [I]%
and p, € K, N(po) = [V~ (o), N *(p,)] is called the degree of membership of an element p, €
N, where N7:X - [I] and V*: K — [I] are fuzzy sets in K which are called a lower fuzzy set
and an upper fuzzy setin X, respectively. For simplicity, we denote V' = [V'=, V" *].

Definition: 2.12[4] Let X be a non-empty set. A neutrosophic set (NS) in K is a structure of the
form N = {po; Ne (o), Ny (o), Ne(po)): po € K} where N;:K —[0,1] is a degree of
membership, N;:X — [0,1] is a degree of indeterminacy, and Np:X — [0,1] degree of non-
membership. For the sake of simplicity, we shall use the symbol N = (N, N;,N;) for the
neutrosophic set N = {{po; Ny (2o), N;(po), Nz (po)): po € K}

3. BS-Neutrosophic Structures

Definition: 3.1 Let K be a non-empty set. BS-neutrosophic setin X , is a structure of the form N =
{(;?O;J\Q(;JO),]\Q(;JO),J\AG(;JO)): po €K} where N;, N; are fuzzy sets in X, which are called a
degree of indeterminacy and degree of non-membership, respectively, and #; is an interval valued
fuzzy set in K which is called an interval valued degree of non-membership

For the sake of simplicity, we shall use the symbol N = (]\Q,J\Q,J\Aff) for the BS-NSS N =
{(@0; M 20), i (20), N (p0)): 20 € K.

In a BS-NSS IV = (IV,, V;, ;) if we take N;:K - [I], po = [N~ (p0), N; T (p0)] with N~ (p,) =
N (py) then NV = (]\Q,]\Q,]\Aff) is a neutrosophic set in X.

Definition: 3.2 Let X be a BCK/BCI algebra. A BS-NSS N = (J\Q,J\Q,J\Aff) in X is called a BS-
neutrosophic subalgebra of X if it satisfies

(BS-NSSA 1) N (# * 10) = min{Ne (o), Ne(70)}

(BS-NSSA 2) Ni(p, * 79) =2 min{N; (@), Ni(0)}

(BS-NSSA 3) ]\Aff(po * 1) < rmax{]\Aff(gao),]\Aff(fo)} for all p,, r, € K.

Example: 3.3 Consider a set K = {0, a, b, c} with the binary operation * which is given in table.1

*|0|la|b|c
0|0|0f0]O0
alal|0]0]a
b{bja|0]|Db
clc|clc|O

Table.1 BCK-algebra
Then (¥;*,0) is a BCK-algebra. Let N = (J\ft,]\fi,]\/ff) be a BS-NSSin X defined by table.2

K| M(po) | Mipo) | Nr(po)
0 0.9 1 [0.1,0.4]

a 0.4 0.5 [0.3,0.5]
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b 0.3 0.3 [0.2,0.6]
c 0 0.1 [0.4,1]
Table.2 BS-NSSA

It is routine to verify that V' = (IV;, V;, V;) is a BS-NSSA of X.
Proposition: 34 If N = (]\ft,]\fi,ﬁf) is a BS-NSSA of K then N;(0) = N, (p,) N;(0) = N;(po)
and ]\Aff(O) < ]\Aff(ﬁo) forall p, € X

Proof: For any p, € X, we have

N:(0) = Ne(po * po) = min{ Ny (py), N (po)} = N (po)

Ni(0) = Ni(@o * po) = min{Ni(po) , Ni(#o) } = Ni(Po)

ﬁ;‘(o) = ]’\\Gf(l’o * Po) < rmax{]?ff(po),]\’ff(po)} = Tmax{[M_(ﬁo)']\GJr(ﬂ’o)]' [J\’}_(WO)»]\’f(Wo)]}

= [V @0), Ny (20)] = N (o)

Hence the proof is completed.
Proposition: 3.5 Let N = (]\Q,]\G,J\Tf) is a BS-NSSA of X if there exists a sequence {l’on} in X

such that lim M (z,,) =1, lim N(p,,) =1 and lim N;(p,, )= [0,0], then V;(0) =1, v;(0) =
n-oo n—oo n-o

1 and V;(0) = [0,0].
Proof: Using the proposition 3.4, we know that N;(0) > ]\/}(;70”) N:(0) = J\fi(pon) and N;:(0) <
ﬁf(ﬂ’on) for every positive integer n. Note that

12 N,(0) = lim My(p,,) =1,
n—oo

12 :(0) = lim M;(p,,) =1,
n—-oo

[0,0] < N;(0) < lim V;(p,,,) = [0,0].

n—-oo

Therefore N;(0) =1, ;(0) =1 and N;(0) = [0,0].

Theorem: 3.6 Let V' = (M, V;, N;) is a BS-NSSin X. Then N = (V;,V;, N}) is a BS-NSSA in X if
and only if NV, N, (]\ff_)c and (Nf+)c are fuzzy subalgebras of XK.

Proof: Suppose that V' = (]\Q,]\Q,]\Aff) isa BS-NSSA in X then for all pg, 7, € K we have
Ne(@o * 10) = rmin{Ne(po), Ni (1)}

Ni(@o * 19) = min{N;(p,), Ni ()}

J\Tf(ﬂ?o *79) S max{]@(?’o):]@(fo)}

[]\ff_(ﬁo * 1) :]\ff+(#70 * "”0)] < rmax{[]\ff_(#%) ,]\G+(#70)]' [J\ff_(””o) ,]\Gf+(4”o)]}
~[max{N;~ (o), Ny~ ()} max (¥ * (), M * ()]

Therefore N;™ (po * 15) < max{N; ™ (po), Ny (10)}

= 1 =N (po *79) = 1 —max{N;™ (po), Ny~ (70)}

= 1 =N (po * 10) 2 min{l = Ny~ (po), 1 — Ny~ (70)}

= (W) (o * 70) = min{(%;7) (o), (37) ()} and

]\rf+(370 *1y) < max{]\fjf+(#70):]\f]‘+(””vo)}

=1 _]\ff+(370 *1p) =1 — max{]\f]‘+(370)']\f]‘+(””vo)}

=1 _]\ff+(370 * 1) = min{l — ]\ff+(370)' 1- ]\ff+(4”0)}

= (M) @o 7o) = min{(3) o), (W) o)}
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Hence N, IV;, (V;7)"  and (W) are fuzzy subalgebras of X.

Converse part is obvious.

Definition: 3.7 Let ' = (V;, Ni,J\Aff) is a BS-NSS in K, we define the following sets

UG D ={po € K:Ne(po) = 1}

UV m) ={po € K: N;i(po) = m}

L(]V}”; [n1:n2]) = {%’0 € Kl]vf(%’o) < [npnz]}

Where [,m € [0,1] and [ny,n,] € [I]

Theorem: 3.8 A BS-NSS N = (V,,V;, V) in X isa BS-NSSA of X if and only if the non-empty sets
UWN;D, UV;m) and L(]\Aff; [nl,nZ]) are subalgebrasof X forall [,m € [0,1] and [n,,n,] € [I]
Proof: Suppose that NV = (]\Q,]\f,-,J\Tf) is a BS-NSSA of XK.

Let ,m €[0,1] and [n,,n,] € [[] be such that U(N;; 1), UWV;;m) and L(]\AI}; [nl,nz]) are non-
empty. For any ay,a,,by,by,ci,c, €KX if  aj,a, €EUNGD , by,b, € UN;m) and ¢,c, €
L(N;;[ny,n,]) then

Ni(ag * ap) =2 rmin{Ne(a,), Ni(ap)} = rminfl, 1} = 1

Ni(by * by) = min{N;(by), N;(b,)} = min{m, m} = m

-7\7f(C1 *Cp) < Tmax{]v}(ﬁ);]v}(cz)} < rmax{[ng, ny], [ny, 1,1} = [ny,n]

Therefore a; * a, € UWy; D), by * b, € UWN;m) and ¢, * ¢, € L(Nf; [ny,1,])

Hence U(N,; 1), UV;m) and L(]\Aff; [nl,nz]) are subalgebras of K.

Conversely, assume that the non-empty sets U(N;;D) , UN;m) and L(]\Aff; [nl,nz]) are
subalgebras of X forall I,m € [0,1] and [ny,n,] € [I]

If  Ni(ag * by) < min{N;(ay), Ny (by)} for some ay, by € K, then ay, by € U(N;;l,) but ay* by &
UWN;; ) for 1y = min{N;(ay), N;(by)}. This is a contradiction, and thus

Ne(po * 14) = min{N,(p,y), N (1)} for all p,, r € K. Similarly, we can show that N;(p, * 1) =
min{N;(p,), Ni(r4)} forall p,, 1, € K.

Suppose that ]\Aff(ao * by) > rmax{J\Aff(ao),J\Aff(bo)} for some ay, by € K.

Let J/\ff(ao) = [61,6,], ]\Aff(bo) = [63,6,] and ]\Aff(ao *by) = [ny, ;]

Then [ny,n,] > rmax{[8;,8,],[83,6,]} = [max{6,, 85}, max{5,,6,}] and so n; >max{d;,65;} and
n, > max{d,,8,}

Taking [ny,72] = % [ﬁ}(ao *by) + rmax{]\Aff(aO),]\Aff(bo)}]
= % [[n1,1,] + [max{8,, 85}, max{s,,8,}1]

= [ 0u + max(8,, 6,5 (n, + max(s,,6,))|
It follows that
n>n = i(n1 + max{8;,63}) > max{8;,85} and n, >n, = %(n2 + max{8,,6,}) > max{8,,8,}

Hence [max{6,, 85}, max{5,,6,}]1 < [n1,m,] < [ny,n,] = ]\7)‘(‘10 *by)

Therefore a, * b, & 'U(]’\\ff ; [n4,n,]). On the other hand

J\Tf(ao) = [8,,6,] < [max{8,, 63}, max{8,,64}] < [n1,1.]

Ny (by) = [63,6,] < [max{8y, 63}, max{6,,6,}1 < [ny,m,] that is a,b, € 'u(ﬁf; [n,n,]) .This is a
contradiction and therefore ]’\ff(gao *1y) < rmax{]vf (o), J\Tf(/ro)} for all p,, 7, € K.
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Consequently V' = (I, V;, ;) is a BS-NSSA of X.

Corollary: 3.9 If V= (IV;, V;, ;) is a BS-NSSA of K then the sets Ky, = {p, € K: N, (p,) = N;(0)},
K, = {po € K:N;(p,) = N;(0)} and Ky, = {po € K Ny (o) = J\Tf(O)} are subalgebras of ¥.

We say that the subalgebras as U(N;; 1), U(N;;m) and L(]\Aff ;[n,n,])  are BS-subalgebras of N =
(N, N, V)

Theorem: 3.10 Every subalgebra of K can be realized as BS-subalgebra of a BS-NSSA of X.

Proof: Let J be a subalgebra of X and let V' = (]\/},]\/},J\Tf) be a BS-NSSin K defined by

_{l if po€d, _ _{m if po€d, _ B
Ne@o) _{ 0 otherwise, Ni@o) = 0 otherwise, and - N;(po) =

{ [71,7,] if po€d,

[1,1] otherwise,

Where [,m € (0,1] and 14,1, € [0,1) with n; <n,. It is clear that U(N;; 1) = J, U(V;;m) = J and
L(N:; [n,m2]) = J. Let po, 1o € K. I po, 74 €J then p, 1, € J and so

Ne(@o * 1) = L= min{l, 1} = min{V;(p,), N;(10)}

Ni(@o * 10) = m = min{m, m} = min{N;(,), N;(r4)}

-7\7,‘(}’0 * 1) = [n1,m,] = rmax{[ny,n;], 01,11} = Tmax{]\’/}(ﬁo)'ﬂ’}(”’vo)}

If any one of p, and r, is contained in J, say p, € J, then N, (p,) = L N;(py) = m,N;(p,) =
[11, 121, NV, (75) = 0, NV;(#) = 0,and N () = [1,1]. Hence

Ne(@o * 10) = 0 = min{l, 0} = min{N,(p,), N (75)}

Ni(@o * 1) =2 0 = min{m, 0} = min{N;(p,), N;(74)}

-ﬁf(ﬂ’o * 1) < [L1] = rmax{[ny,n.], [L1]} = Tmax{@(#’o)»]\?f(”’o)}-

If po, 7y & J, then

Ne@o) = 0, NVi(po) = 0:]/\7}(#70) = [1,1], Vi (r5) = 0, N;(r5) = 0,and AAG“(”’VU) = [1,1] it follows that
Ne(@o * 15) = 0 = min{0,0} = min{V; (p,), Ny (1)}

Ni(@o * 10) = 0 =min{0,0} = min{V;(p,), N;(r5)}

N (po * 1) < [1,1] = rmax{[1,1], [1,1]} = rmax{N; (po), N; (ro) }.

Therefore NV = (]\Q,]\Q,]\Aff) is a BS-NSSA of XK.

Theorem:3.11 For any non-empty set J of X, Let V' = (]\Q,J\Q,J\Aff) be a BS-NSS in X defined by

_{! if po€d, _{m if po€d, v _
Ne(@o) = {0 otherwise, Ni@o) = 0 otherwise, and - N (#,) =
(11, 72] if po€d, . _
{[1’1] otherwise, Where [,m € (0,1] and 74,1, € [0,1) with n;, <n,. If N =

(]\Q,J\Q,J\Tf) is a BS-NSSA of X ,then J is subalgebra of X.

Proof: let p,,7,€J then Ne(po) = LN:(py) = m.]vf(ﬁo) = [N, M), Ne(rp) = LNi(rp) =
m, and J\Tf(’r”o) = [11,71,]- Thus

Ne(@o * 10) = min{Ny (po), Ne (1)} =1

Ni(@o * 19) = min{N;(p,), Ni(r5)} = m

J\Tf(??o * 1) < rmax{]’\ff(yao),]’\ff(/ro)} = [n,,71,] and therefore p, * 7, € J.

Hence J is a subalgebra of K.
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Theorem: 3.12 Given a BS-NSSA N = (I, V;, V;) of a BCl-algebra X, Let NV'* = (]\Q*,]\Q*,]\Tf*) is
a BS-NSS defined by N;"(p0) = N:(0 * £o), Ni"(#) = N; (0 * po) and -7\7}*(#70) = NV;(0 % py) for all
Po €K then V' = (", ", ;") is a BS-NSSA of X.
Proof: Note that 0 * (p, *75) = (0 * py) * (0 x 7)) for all p,, 7, € K. We have
N (@o * 70) = N (0 (2o * 10)) = Ne((0 % po) * (0 %)) = min{N (0 * pg), N (0 * 75)}
= min{N;" (p0), V" (10)}
N (o * 10) = Ny (0 (2o * 15)) = Ni((0 * po) * (0 % 775))) = min{N;(0 * p,), NV; (0 x 75)}
= min{V;" (o), Ni" (10)}
j\rf*(ﬁo * 1) = J\Tf(O *(po *10)) = ]\7}((0 *p0) * (0 7)) < rmax{]\Tf(O * ;70),]’\/\}(0 *1p)} =
rmax{N; (po), N (19)} forall po, 7y € K
Therefore N* = (]\Q*,]\fi*,ﬁf*) is a BS-NSSA of K.
Theorem: 3.13 Let W: X —» Y be a homomorphism of BCK/BCl-algebras. If N = (]\I},]\I},]\AI}) is a BS-
NSSA of Y, then W '(IV) =W '(WV), P 1(MV), P 1(VN;) is a BS-NSSA of X . Where
Y (@0) = M (P (po)) L PTEHMV) (o) = Ni(¥(p,)) and lp_l(ﬂ’i})(ﬁo) = ]\7}(111(270)) for all
o EXK.
Proof: Let p,, 7, € K. Then
PN @0 * 10) = Ne(P (o * 10)) = N (P (o) * W (175)) = min{NV, (¥ (p,)), Ne (¥ (7))} =
min{¥ (V) (Po), ¥~ (V) (70)},
PH M) @0 * 70) = Ni(P (o * 70)) = Ni(P (@0) * P (10)) = min{N; (¥ (#,)), N (¥ (15))} =
min{¥ = (V) (p,), ¥~ (V) (1)},
And
YN (o * 10) = Np (W (@0 * 10)) = Ny (P () * P(15)) < rmax{Np (¥ (o)), Ny (P (1))} =
rmax{® (N (2o), ¥~ (V) (1)}
Hence ¥~1(W) = (‘P‘l(]\ft),‘l"l(]\fi),‘{"l(]\?f)) is a BS-NSSA of X
Let V = (]\Q,J\Q,]\Aff) be a BS-NSS in K. We denote
& = 1 — sup(N; (po): 0 € K}
& =1—sup{N;(po): po € X}
B = rinf{]@(ﬁo):po € X}.
For any a€[0,8],b€[0,K] and ¢ € [[0,0],23] we define N.%(p,) = N, (p,) +a, J\fib(;ao) =

N;(po) + b and 7 = Ne(py) — ¢ then NT = (J\fta,J\fib,J\AfCA) is a BS-NSS in &,which is called a
iPo i rPo f

(a,b,c) — translative BS-NSS of XK.
Theorem: 3.14 If V' = (IV;,V;, N;) BS-NSSA of X, then the (a,b,¢")— translative BS-NSS of
N = (I, V;, ;) is also a BS-NSSA of K.
Proof: For any p,, 7, € K, we get

N (po * 70) = N (o * 15) + a = min{N, (p,), Ny (75)} + a = min{N; (po) + a, Ny () + a} =
min{N,* (po), N;* (1)},
N2 (po * 10) = Ny (o *70) + b = min{N; (o), Ny (1)} + b = min{N;(po) + b, N;(r5) + b} =
min{]\rib(ﬁo):mb(”’"o)}/ and

B. Satyanarayana, Shake Baji and U. Bindu Madhavi, BS-Neutrosophic Structures in BCK/BCI-Algebras



Neutrosophic Sets and Systems, Vol. 58, 2023 100

]vfc (Po * 1) = ]vf(#’o *19) —C < rmax{]@(ﬁo):]\’/}(ro)} - = rmax{]vf(l’o) - 5\;]’\7}(4’0) -

¢} =rmax {J\TfCA(#?o).]\AffCA(%)}. Therefore N7 = (J\/;@,Nib,ﬁ,f) is a BS-NSSA of X.

Theorem: 3.15 Let V= (]\Q,]\G,]\Tf) be a BS-NSS in X such that its (a,b,¢ ) — translative BS-NSS
is a BS-NSSA of X for a € [0,8],b € [0,§] and ¢~ € [[0,0],B]. Then N = (V;, V;, NV} )is a BS-NSSA
of K.

Proof: Assume that N7 = (J\fta,J\fib,J\AffCA) is a BS-NSSA of X for a € [0,&],b € [0,]] and T €

[[0,0],8]. Let p,, 7, € K. Then

Ne(@o * 10) + a = N (py * 1p) = min{N,* (o), N;* (1)} = min{N, (po) + a, Ny (1) + a} =
rmin{N;(py), Ne (1)} + a,

Ni(@o *70) + b = N;” (o * 70) = min{ ;" (), N ()} = min{N; (po) + b, V; (1) + b} =
min{V;(p,), N;(r5)} + b, and

Ne(pox1o) — ¢ = ]\Affc (po * 1) < rmax {JV\}C (#70)']\7}C (fro)} = rmax{J\Aff(;JO) -, N (rp) —

T} = rmax{N;(p,), Ny (r5)} — €. It follows that

Ne@o * 10) = min{N; (po), Ne(75)}

Ni(@o * 1) = min{N;(po), Ni(70)}

Ne(po * 10) < rmax{N; (p,), Ny (1)} forall py, 7, € K.
Hence NV = (]\Q,]\Q,]\Aff)is a BS-NSSA of XK.

4. BS-Neutrosophic Ideal (BS-NSI)
Definition:4.1 Let X be a BCK/BCl-algebra. A BS-NSS N = (]\Q,J\Q,J\Aff) in K is called a BS-NSI of

K if it satisfies

(BS-NSI 1) V,(0) = N, (20), Mi(0) = N, (o) and F;(0) < Wy (x) forall o € K

(BS-NSIL2) NV (20) = min{Ne (o * 74), Ne (70)}

(BS-NSI 3) N;(#0) = min{NV; (@, * 74), Ny(10)}

(BS-NSL 4) N;(p,) < rmax{N;(p, * o), Ny (1)} forall py, r, € K.

Example:4.2 Consider a set X = {0,1,2,a} with the binary operation ‘*” which is given in the table:3
Then (¥ ; *,0) is a BCl-algebra.

* |10 |a|b |1
0|0|0 0|1
ala|0]0]|1
b|{b|b |0 |1
1111110

Table.3 BCl-algebra
Let V = (IV;, V;, N;) be a BS-NSS in X defined in table:4
K| Ne(po) | Mipo) | Np@o)
0 0.9 0.8 [0.2,0.5]
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a 0.7 0.6 [0.4,0.7]
b 0.4 0.3 [0.7,0.9]
1 0.2 0.1 [0.9,1]

Table.4 BS-NSI

It is routine to verify that v = (IV,, V;, ;) is a BS-NSlof X.
Proposition: 4.3 Let K be a BCK/BCl-algebra. Then every BS-NSI V' = (IV,, NV;, V;) of X satisfies
the following  assertion Po * 1o < ug = Ne(po) = min{N; (1), Ne(ug)} ,  Ni(pg) =
min{V; (o), N; (1o)}, J\Tf(%’o) < rmax{]\’?f(ro),.ﬁf(uo)} for all po, 79,1 € K.
Proof: Let p,, 1,1y € K be such that p, * 75 < 1y. Then
Ne@o * 76) 2 min{N, (o * 79) * 140), Ny (140)} = min{N, (0, IV, (140)} = N, (o),
Ni@o *776) = min{N; (o * 770) * 14 ), Ny (19)} = min{N;(0), ;i (10)} = N; (1), and
]vf(l’o *19) < rmax{]\’ff((yo * 1) * uo)'ﬁf(’“o)} = rmax{]\Aff(O),J\Al}(uo)} = ]\Arf(“ﬂ)'
It follows that
Ne(@o) = min{ Ny (po * 74), Ne(10)} = min{IV; (we), Ny (1)},
Ni(@o) = min{N;(po * 10), Ni(r9)} = min{lV;(w,), N;(79)},
N (po) < rmax{N:(po * 10), Ny (1)} < rmax{N;(u,), Ny (1)} forall po, 7, € K.
Hence the proof is completed.
Theorem: 4.4 Every BS-NSS in a BCK/BCl-algebra K satisfying (BS-NSI 1) and assertion p, * 7y <
o = N (o) = min{N (7)), Ny (140)} , Ni(@o) = min{N; (), N;(1o)} , J‘Tf(ﬁo) <
rmax{]\AGc(/r‘o),J\Aff(uo)} for all pg, 74,1y € K isa BS-NSI of XK.
Proof: Let V= (]\Q,]\Q,]\Aff) be a BS-NSS in K satisfying (BS-NSI 1) and assertion p, * 7 < 1y =
Ne(@0) = min{N;(10), N (140)} ,  Ni(po) = min{IV;(r5), Ni(wo)} , Ny (#0) < rmax{Ny (), Ny (1)}
for all p,, 7, € K.
Note that p, * (pg * 1) < 7 for all py, 7, € K. So, we have
Ne(@o) = min{Ne(po * 70), Ne(70)},
Ni(@o) =2 min{N;(po * 1), Ni ()},
Ni(po) < Tmax{N; (p, * 14), Ny (1) }. There fore N = (W, V;, ;) is a BS-NSIof %.
Theorem: 4.5 Given a BS-NSS V' = (]\Q,]\G,]\Aff) in a BCK/BCl-algebra K. Then IV = (J\Q,J\fi,J\Aff) is
a BS-NSI if and only if M, V;, (]\ff_)c, and (]\f]c+)c are fuzzy ideals of X.
Proof: suppose that N = (I, V;, N;) be a BS-NSI in K. Then we have N;(0) = NV, (p,), V;(0) =
N;(p,) and N;(0) < N;(x) forall p, € X
Ne(@o) = min{ Ny (po * 70), Ne(70)}
Ni(@o) = min{N;(p, * 1), Ni()}
N;(po) < rmax{Ny(po * 10), Ny (1)} for all po, 7, € K
Now N;(0) < Ny () = [NV~ (0), N (O] < [V (o) N ()]
= N;7(0) SN (po) and N;F(0) < NV (py)
= (M) = (W) (o) and (W) (0) = (W) (20)
J\Tf(??o) < rmax{]vf(po * ”’"o):]vf(””'o)}
= []\rf_(ﬁo):]\f]ﬁ(ﬁo)] < rmax{[]\ff_(po * ””Vo)']\f]f+(#70 * ””Vo)]' []\Gf_(””o):]\ff*-(ro)]}

= [max{]\ff_(po * ”’”o)']\ff_(”’”o)}' max{]\ff(;?o * 4”0):]\ff+(4”0)}]
Therefore
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Ny~ (o) < max{]\ff_(ﬁo * ’Vo):]\ff_(ro)} and -N}Jr(po) = max{]\/}+(ﬂ90 * 4’0)»]\/}+(4’0)}
=1- ]\ff_(ﬁo) =21- max{]\ff_(#?o * 4’0)']\/}_(4”0)}
= (M) o) = min{1 = N (o * 1), 1 = ;™ ()
= (M) @o) 2 min{(N;7) (o % 7). (M) (o)}
Similarly
(V1) o) = min{(M;) (o * 7o), (M) (1)}
Therefore IV, N, (V; "), and (W;:*)" are fuzzy ideals of K.
Converse part is obvious.
Theorem: 4.6 A BS-NSS N = (W, V;, V}) in X isa BS-NSIof X if and only if the non-empty sets
UV D, UV;m) and L(]Tff; [nl,nz]) areideals of ¥ forall [,m € [0,1] and [n,,n,] € [I]
Proof: Suppose that NV = (]\Q,]\f,-,J\Tf) is a BS-NSI of XK.
Let [,m €[0,1] and [n,,n,] € [I] be such that U(N; 1), UN;m) and L(]\AI}; [nl,nz]) are non-
empty.
Obviously 0 € U(N;;1), 0 € UNV;m) and 0 € L(N}; [ny,n,])
For any ay,a,, by, by 0,0, €K if  ay*aya, € WN;l), by*byb, €UN;m) and ¢y * ¢y, €
L(]\Tf; [ny,n,]) then
Ne(ay) =2 min{Ne(a, * az), Ne(az)} =2 min{l, 1} = 1
Ni(by) =2 min{N;(b; * by), N;(b,)} = min{m, m} = m
-7\7,‘(C1) < Tmax{]v}(cl * Cz):]v}(cz)} < rmax{[ng, ny], [ny, .1} = [ny,n]
Therefore a; € U(W;; 1), by, € U(NV;m) and ¢; € L(Nf; [ny,n,])
Hence U(N;; 1), U(NV;;m) and L(J\Aff; [nl,nz]) are ideals of K.
Conversely, assume that the non-empty sets U(N;; 1), U(N;m) and L(J\Aff; [nl,nz]) are ideals of K
forall I,m € [0,1] and [n,n,] € [I].
Suppose that V,(0) < NV, (p,), N;(0) < N;(p,) and N;(0) > N;(p,) for some p, € K.
Then 0 & U(N; N (po)) N UDN; N;(pg)) N L(]\Aff;J\Aff(gJO)).which is a contradiction.
Hence V,(0) = IV, (p,), V;(0) = IV;(p,) and N;(0) < Ny(x) forall p, €K
If Ni(ap) < min{N;(ay * bg), Ny (by)} for some ay, by € K, then ag * by, by € U(N;; 1) but a, &
UWN;; 1) for 1y = min{N;(a, * by), N;(by)}. This is a contradiction, and thus
N (a) = min{N;(a * b), N;(b)} forall a,b € K.
Similarly, we can show that N;(a) = min{;(a * b), N;(b)} forall a,b € XK.
Suppose that J/\ff(ao) > rmax{]\Aff (ay * bo),]\Aff(bO)} for some ay, b, € K.
Let J\Tf(ao *by) = [61,8,], ]vf(bo) =[83,6,] and ‘7\7}‘(“0) = [ny,n,]
Then [ny,n,] > rmax{[6,,6,],[65,8,]1} = [max{6;, 65}, max{s,,5,}] and so
ny, > max{6;,65} and n, > max{8,, 6,}

Taking [ny,7,] = i[ﬁ}(ao) + rmax{]’\ff(aO * bo),]\'ff(bo)}]
= 2 [l n,] + (max{8,, 85}, max{(6,,8,))]

= E (n; + max{8,, 53}).% (n, + max{6,, 54})]

It follows that
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n,>n = % (ny + max{6,, 65}) > max{6,,65} and n, >n, = %(n2 + max{6,,6,}) > max{6,,6,}

Hence [max{8,, 83}, max{6,, 6,31 < [11,m,] < [ny,n,] = Ny(ao)

Therefore a, & U(N}; [ny,n,]). On the other hand

j\rf(ao * by) = [64,6,] < [max{8,, 63}, max{6,,6,}] < [11,7m.]

N;(bo) = [83,8,] < [max{8;, 85}, max{8,,8,}] < [n1,m,] that is aq * by, by € U(N};[ny,n,]).This is a
contradiction and therefore Nj(ao) < rmax{N;(a, * by), N;(bo)} for all ay, by € K .Consequently
N = (N, NV, N;) is a BS-NSI of K.

Theorem: 4.7 Given an ideal J of a BCK/BCl-algebra X, let N = (J\I},J\I},]\Aff) be an BS-NSS in X

. l i €d, m [ €J,
defined by N (p,) = { 0 o th’;r f o Ni(#0) ={ 0 oth];rf;fse and
—~ B l € (:7; 1
Ny @o) = {[?11 ;I]Z] ot]lclefv?/ise. Where [,m € (0,1] and ny,m, €[0,1) with 7, <7, Then

N = (N, V;, NV;) is a BS-NSI of X such that U(N; 1) = J, UWNV;m) = J and L(N; [n,,7,]) = J.
Proof: Let p,, 7, € K

If po*x7ry€J and 7y € J then p, € J and so

Ne(@o) = 1 =min{l, 1} = min{N;(po * 14), N; (1)}

Ni(@o) = m = min{N;(po * 7), N; (1) }

-ﬁf(}’o) = [1,m2] = rmax{[n.,m,), 01,121} = rmax{]\?f(ﬁo * ”’"0)']\”}(”’"0)}-

If any one of py* 7, and 7y is contained in J, say p, * 7, € J, then N (po * 7o) = L N;(po *
7o) = m']\Aff(ﬂ’o *170) = [1M1,M2], N (o) = 0, Ni(rp) = 0,and J\Aff(”’o) = [1,1]. Hence

Nie(@o) = 0 = min{l, 0} = min{N, (o * 7o), N (70)}

Ni(@o) =2 0 = min{m, 0} = min{N;(p, * 14), Ni(70)}

-ﬁf(ﬂ’o) < [11] = rmax{[ny,n.],[11]} = Tmax{J\Aff(#’O * ’VVO)JJ\AGC(”’O)}-

If po*xry€&J and r, € J,then

Ne(@o * 10) = 0, Ni(po * 1) = O:J\Aff(#?o * 1) = [1,1], N () = 0, NV; () = 0,and ]\7;‘(”’0) =[1,1] it
follows that

Nie(#o) = 0 =min{0,0} = min{N, (p, * 7)., N (10)},

Ni(#o) 2 0 = min{0,0} = min{; (po * 1), Ni(70)},

Ny (o) < [1,1] = rmax{[1,1],[L,1]} = rmax{N; (po * 70), Ny ()}

It is obvious that N;(0) = N.(p,), N;(0) = N;(p,) and J\7f(0) < J\?,c(x) forall p, € X

Therefore NV = (]\Q,]\fi,]’\ff) is a BS-NSI of X.

Obviously, we have U(N; D) = J, U(N;m) = J and L(J\’ff; (n1,7,]) = J.

Theorem:4.8 For any non-empty set J of X, Let N = (,, N;, ;) be aBS-NSSin K defined by

_{! if po€d, _{m if po€d, " _
Ne@o) = { 0 otherwise, Ni@o) = 0 otherwise, and - N(0) =
(11, 72] if po€d, . _
{ [11] otherwise. Where [,me (0,1] and 7,1, €[0,1) with n, <n, If N =

(J\Q,]\Q,J\Tf) is a BS-NSI of X ,then J isideal of X.
Proof: Obviously, 0€J . Let py,7, €K be such that py*74,7) €J then N.(p, * 7o) =
LN (po *19) = m:]vf(ﬁo * 1) = [11,12], Ve () = LN (1) = m,and ]\7;‘(4”0) = [n1,7,]. Thus
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Ne(@o) =2 min{ Ny (po * 70), Ne(19)} =1
Ni(Po) = min{N;(po * 1), Ni(r5)} =m
Ni(po) < Tmax{N;(po * 74), Ny (1)} = [11,12] and therefore p, € J. Hence J is an ideal of X.
Theorem:4.9 In a BCK-algebra X, every BS-NSI is a BS-NSSA of X.

Proof: Let V' = (W, V;, ;) be a BS-NSI of a BCK-algebra XK.

Since (py * 1) * po < 1 for py, 7y € K, it follows from proposition 4.3 that

Ne(@o * 1) 2 min{Ny (o), Ne(10)},  Ni(@o * 10) = min{N;(po), Ni(74)}

Ty @0 * 70) < rmax{(Fy (o), Ny (1)} for all po,7 € K.

Hence IV = (IV,, V;, N;) be a BS-NSSA of a BCK-algebra X.

The converse of the above theorem may not be true as seen in the following example.

Example: 4.10 Consider a BCK-algebra X = {0, a, b, c} with a binary operation ‘*” which is given in
table.5 Let V' = (]\ft,]\fi,]\’ff) be a BS-NSSin K defined by table.6 then V' = (]\Q,]\Q,]\Aff) is BS-INSSA
of ¥, but it is not an BS-NSI of a BCK-algebra K. Since N;(a) & smin{N;(a * b), N,(b)}

* |0 |a|b |c

0|0 (0|0 O
00 |a
b|b|a |0 |b

c|lc|c|c |0

Table.5 BCK-algebra

K| Me(po) | Mi@o) | Np@o)
0 1 0.8 [0.2,0.4]
a 0.3 0.5 [0.4,0.6]
b 0.3 0.8 [0.5,0.7]
c 0.5 0.5 [0.7,0.9]

Table.6 BS-NSSA

We give a condition for a BS-NSSA to be a BS-NSI in a BCK-algebra
Theorem:4.11 Let V' = (]\Q,]\Q,]\Aff) be a BS-NSSA of a BCK-algebra X satisfying the conditions
Po * 10 < Uy = Ne(po) =2 min{Ne(70), Ne(uo)} , Ni(@o) = min{N; (), Ni(ue)} ]\7,‘(#70) <
rmax{]/\ff(/ro),]/\ff(uo)} for all pg, 7y, 1y € K. Then N = (]\ft,]\fi,]\’ff) is a BS-NSI of X.
Proof: For any p, € K, we get
N (0) = N (o * po) = min{N(po), Ne(p0)} = N (po)
N;(0) = V(o * po) = min{N;(po), Ni(po)} = Ni(po),
N (0) = N (o * o) < rmax{ Wy (20), Ny (po)} < rmax{[V;~ (o), N @), [V~ @), My * ()]}

= []\Gf_(ﬁo):]\f]f+(#70)] = ]vf(ﬁo)-
Since pgy * (pg * 1) < 1y for all py, 7y € K. It follows that N;(p,) = min{N,(py * 74), N:(10)}
N:(po) = min{N;(po * 1), Ni(15)} J\Tf({po) < rmax{]\/ff(;ao * ””0):]‘7)‘(4”0)} for all po, 75 €K .
Therefore NV = (]\ft,]\fi,]’\ff) is a BS-NSI in a BCK-algebra X.
Definition:4.12 A BS- neutrosophic ideal of NV = (]\ft,]\fi,]\/@) of a BCl-algebra X is said to be
closed if IV, (0 * po) = N, (), N; (0 * o) = N; (o) and Np(0 * po) < Np(x) forall p, € K.
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Theorem:4.13 In a BClI-algebra X, every closed BS-NSI is a BS-NSSA
Proof: Let V= (Nt,J\fi,]\Aff) be a closed BS-NSI of a BCI-algebra X
We have for all p,, 7, € K
No(po * 7o) = min{N;((po * 70) * o), Ne(po)} (+ N is a BS— neutrosophic ideal )
= min{]\fr((#’o * Po) * 4"0)']\/}(#70)} (v @o *10) *uo = (Po * uo) * 1)
= min{N, (0 * 14), Ny (po)} (+ po*po =0)
> min{N; (o), Ny (py)} (+ N is a closed BS — neutrosophic ideal )
N;(po * 179) = min{N;((po * 70) * £0), Ni(po)} (+ N is a BS— neutrosophic ideal )
= min{]\fi((po * Po) * 4"0)']‘/}(#70)} ( @o *70) * g = (P * o) * 1)
=min{V;(0 = ), N;i(po)} (= po*po =0)
> min{N;(r), N;(po)} (+ N is a closed BS — neutrosophic ideal )
And
N (po * o) < rmax{N; ((pg * 10) * £o), Ni(po)} (+ N is a BS— neutrosophic ideal )
= Tmax{]v}((ﬁo * Po) * ”"0)'@(%70)} (+ (po *10) x g = (Po * ug) * 1)
= rmax{N; (0 * 70), Ny (po)} (< o * po = 0)
< rmax{N; (ry), Ny (p,)} (+ N is a closed BS—
neutrosophic ideal )
Hence NV = (]\Q,]\G,J\Aff) is a BS-NSSA of XK.
Theorem:4.14 In a weakly BCK-algebra X, every BS-NSI is closed.
Proof: Let V = (]\Q,J\G,J\Aff) be a BS-NSI of a weakly BCK-algebra K. For any p, € X, we obtain
No(0 % p9) 2 min{N; (0 * o) * o), N, (#0)} = min{N, (0), N; (o)} = Ny (o),
;0 * o) = min{N; ((0 * po) * 2), Ni (p6)} = min{N;(0), N;(p0)} = N; (o),
N;(0 % po) < rmax{N;((0 * po) * po), Ny (o)} = rmax{N; (0), N} (o)} = N} (o).
Therefore NV = (]\Q,]\Q,]\Aff) is a closed BS-NSI of K.
Corollary: 4.15 In a weakly BCK-algebra, every BS-NSI is a BS-NSSA of X.
In a following example we show that any BS-NSSA is not an BS-NSI in a BCl-algebra.
Example: 4.16 Consider a BCl-algebra ¥ = {0,1,2,3,4,5} with binary operation ‘*’ in table.7
Let vV = (W, W, J\Aff) be aBS-NSSin K defined by table.8 It is routine to verify that N = (I, V;, J\Aff)
is a BS-NSSA of XK. But it is not a BS-NSI of X. Since N;(4) < min{N,(4 = 3), V;(3)}.

* 10 |1 12 |3 (415
010 ]|]0 |3 |2 |3 |3
110 (3|2 |3 |3
2 1212 (0|3 |00
3 13 |3 (2|0 (2|2
4 |4 |2 |1 |3 |0 |1
55|12 |1 |3 |1 |0

Table.7 BCl-algebra
K | Me@o) | M@o) | Ny (@o)
0 0.9 0.8 | [0.2,0.6]
1] 03 04 |[0.50.9]
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21 09 0.8 | [0.2,0.6]
3| 09 0.8 | [0.2,0.6]
41 03 04 |[0.50.9]
5| 03 04 |[0.50.9]

Table.8 BS-NSSA

Theorem: 4.17 In a p-semi simple BCI-algebra X, the following are equivalent

(i). ¥ = (W, V;, ;) is a closed BS-NSI of X.
(ii). V' = (IV;, V;, Vy) is a BS-NSSA of XK.

Proof: (i) = (ii) see theorem 4.12

(i) = (@) let ¥V = (]\Q,]\fi,]’\ff) is a BS-NSSA of X. For any p, € K, we get
N:(0) = N (po * po) = min{N;(po), N:(po)} = N (po),

N;(0) = N;(po * po) = min{N;(p,), N;(po)} = N;(po),

]’\7,‘(0) = ﬁ}(ﬂ’o * Po) < rmax{f\/\}(ﬁo);]\’rf(ﬁo)} = J\Tf(ﬂ’o)-

Hence V(0 * po) = min{NV;(0), Ny (p0)} = N (o)

N;(0 x po) = min{V;(0), V;(po)} = J\Q(;JO),J\’/}(O * Po) S Tmax{ﬂ’}(o)'ﬂ’}(ﬁo)} = ]\Aff(ﬁo) forall p, €

x.
Let po, 75 € K then

N (po) = ‘N;:(/’ﬂo * (1 * ﬂ’o)) = min{N; (1), Ne (75 * po)}
= min{N, (r5), N, (0 = (g * 7))} = min{N;(p, * 10), Ny (1)},
Ni(po) = ]\fi(”’vo * (1 * #’o)) = min{V; (r,), N; (74 * po)}
= min{IV; (r5), N; (0 % (p * 79))} = min{N; (p, * 7o), N; (1)}, and

-7\71“(290) = ]\Aff(”’“o * (1 * #’o)) < Tmax{J\AGf(””o);J\AG(W"O *#’o)}

= rmax{N; (1), N; (0 % (po * 7))} < rmax{N;(po * 74), Ny (15)}.

Therefore NV = (]\Q,]\Q,]\Aff) is a closed BS-NSI of K.

Since every associative BCI-algebra is a p-semisimple, we have the following are corollary

Corollary:4.18 In a associative BCI-algebra X, the following are equivalent

(i). ¥ = (W, V;, ;) is a closed BS-NSI of X.
(ii). V' = (IV;, V;, V}) is a BS-NSSA of X.

Definition: 4.19 Let X be an (s)-BCK-algebra. A BS-NSS N = (J\Q,J\Q,J\Aff) is called a BS-

neutrosophic o-subalgebra of K if the following assertions are valid

Ne(@o ° 15) = min{N;(po), Ny (7))}
Ni(@g © 15) = min{N;(po), Ni(70)}

Ni(po © 7o) < rmax{N; (po), N; ()} forall py, 7, € K.
Lemma:4.20 Every BS-NSI of BCK/BCl-algebra X satisfies the following assertion
Po <15 =2 Ne(po) = N (1), Ni(po) = N; () and ]\7}(370) < ]\7)‘(””0) for all p,, 15 € K.
Proof: Assume that p, < 7 forall p,,7, € X then p, * 7, = 0 and so
Ne(@o) = min{NV, (g * 179), Ny (1)} = min{V; (0), Ny (775)} = Ny (7p)
N;(@o) = min{NV;(p, * 1), N;(15)} = min{N;(0), V; (1)} = N;(r5)
J\Tf(??o) < rmax{]vf(po * ”’"o):]vf(””'o)} = T'max{]vf(o)']\/rf(”’”o)} = ]\7)‘(””0) for all p,, 15 € K.

Hence the proof is completed.

Theorem:4.21 In a (s)-BCK-algebra, every BS-NSI is a BS-neutrosophic o-subalgebra.
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Proof: Let V = (Nt,J\fi,]\Aff) be a BS-NSI of a (s)-BCK-algebra X. Note that (p, o 7y) * py < 7 for
Po, 7o € K. We have

Ne@o o 10) 2 min{Nt((#’o ° 1) * 390) ']\ft(ﬂ?o)} = min{N;(70), Ne(#0)},

Ni(@o o) = min{M((ﬂ’o °17y) * i’o) ']\G(#’o)} = min{N;(r,) ,N;(p,)}, and

Ni(po o 10) < rmax{]\’\ff((po °70) * ) 'ﬁf(l’o)} < rmax{Ny(r) , Ny (po)}-

Therefore NV = (Nt,]\fi,]\?f) is a BS-neutrosophic o-subalgebra of K.

Theorem:4.22 Let V' = (IV,, V;, V;) be a BS-NSS in a (s)-BCK-algebra X. Then N = (IV;, V;, NV}) is a
BS-NSI of KX if and only if the following assertions are valid N (o) = min{N;(79), N;(w,)},
Ni(@o) = min{V; (1), Ni (o)}, Ny (po) S rmax{WNy (o), Ny (o)} for all po, 7o,y € K with g, <
7 © Uy

Proof: Assume that N = (]\ft,]\f,-,J\Tf) is a BS-NSI of K and let pg, 74, 4y € K be such that p, <
7 © Uy

Then we have

Ne(po) = min{]\ft(ﬁo * (190 uo))J"}(”"o ° ”"0)}

= min{N;(0), N; (75 o ug)} = Ny (7 0 1) = min{N;(ry), N; (1y)} (By theorem 4.20)

Ni(po) = mi”{]\fi(ﬂ’o *(1g 0 ”'Lo)):]\fi(””o ° ”"0)}

= min{N;(0), V; (75 o 1y)} = N;(rg ° 1ug) = min{N;(rg), N;(1y)} (By theorem 4.20)

-7\7,‘(}’0) < Tmax{]v}(ﬂ’o * (1 © ”"o)):]vf(””o ° ”"0)}

= rmax{N; (0), Ny (ry © 1)} = Ny (1 0 ) < rmax{N;(#5), Ny (1)} (By theorem 4.20)

Conversely, let N = (J\Q,J\G,J\Aff) be a BS-NSS in a (s)-BCK-algebra X satisfying the conditions
Ne(Po) = min{N,(10), My (1)}, Ni(po) = min{N;(r4), Ni(10)} , Ny (po) < rmax(Wy (v, Ny (1)}
for all py, 7,1y € K with py < 75 0 uy

Since 0 < p, ° p, forall p, € K, we have

Ne(0) = min{V, (po), Ve (p0)} = Ne(#0)

N;(0) = min{N;(po), Ni(#0)} = Ni(#0)

~7\7f(0) < Tmax{]vf(ﬁo):]@(#?o)} = ]\Aff(ﬁo)-

Since py < (pg * 1) o 1y for all py, 7, € K, we have

Ne(@o) = min{Ne(po * 70), Ne(70)}

Ni(@o) =2 min{N;(p, * 1), Ni(75)}

Ni(po) < Tmax{N; (po * 14), Ny (1)} for all p,, 7y € K. Therefore N = (W, N;, N;) is a BS-NSI of
X.
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Abstract: To measure the level of accuracy of crisp, fuzzy, intuitionistic fuzzy sets and neutrosophic
set various mathematical tools are available. The generalization of these four sets is Plithogenic set.
In this paper, for the first time we introduce the concept of plithogenic cubic vague set and its
generalization, plithogenic fuzzy cubic vague set, plithogenic intuitionistic fuzzy cubic vague set,
plithogenic neutrosophic cubic vague set. It is the combination of cubic vague set and plithogenic set.
It aims to address the problems involving multiple attribute decision making. This concept is suitable
and the accuracy of the result is precise as the set is described by more value of attributes. An attribute
value v has a corresponding (fuzzy, intuitionistic fuzzy, neutrosophic) degree of appurtenance d(x,v)
of the element x to the set P, with respect to some given criteria. Its corresponding internal and
external sets are also discussed with examples. Further, P-union, P-intersection as well as R-union
and R-intersection are introduced for plithogenic cubic vague sets which acts as a tool to study some
of their properties. Some examples of the newly developed concepts in our everyday life is offered in

this article.

Keywords: cubic vague set, plithogenic fuzzy cubic vague set, plithogenic intuitionistic fuzzy cubic

vague set, plithogenic neutrosophic cubic vague set.

1. Introduction

In real life, there may be an uncertainty about any degree of membership in the variable assumption.
Zadeh [24] introduced fuzzy set in which each element is assigned a membership degree in the form of a single
crisp value in the interval [0,1]. Fuzzy sets is an extension of crisp set. He also gave the perception of an interval
valued fuzzy set as a cause of uncertainty in the membership. Grabisch et.al[9] represent an aggregation operator
exhibits a set of mathematical properties, which depends on imposed axiomatic assumptions. A new definition
of cardinality of fuzzy sets on the basis of membership value is introduced by Mamonidhar[16]. The
generalization of fuzzy set and fuzzy logic to intuitionistic fuzzy sets (IFS) by adding the falsehood (f), the degree
of non-membership was introduced by Atanassov [5] to have a better accuracy level. The definition for some
operations on intuitionistic fuzzy set and its properties was given by Atanassov[6]. It is based only on
membership and non-membership function, but it does not exist in the indeterminacy. The concept of

intuitionistic fuzzy topological spaces was put forward by Coker [7]. Norsyahida Zulkifli[18] proposed the
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interval-valued intuitionistic fuzzy vague sets (IVIFVS) where membership and non-membership of interval-
valued intuitionistic fuzzy sets are combined with truth membership and false membership of vague sets. Then
the next evaluation of IFS is neutrosophic set introduced by Smarandache[20]. It is a generalization of fuzzy sets
and IFS. It deals with membership, indeterminacy and non-membership degree which is highly helpful for
dealing with uncertain, inadequate and varying data exist in real life. But it is applicable only on three attribute
values. Data needs to be handled with more attribute values so as to raise the accuracy level in the stage of
advanced research.

The theory of vague sets was proposed by Gau and Buehrer[8]. It has more powerful ability than fuzzy
sets to process fuzzy information to some degree. Jun, Y.B[12] introduced the concept of cubic set and it is
characterized by interval valued fuzzy set and fuzzy set, which is a more general tool to capture uncertainty and
vagueness. The ideas of internal and external cubic sets and their characteristics were also presented. Cubic
interval-valued intuitionistic fuzzy sets was introduced by Jun et.al [13]. Khaleed et.al [14] introduced the novel
concept of cubic vague set by incorporating both the ideas of cubic set and vague set. Some new operations on
intuitionistic neutrosophic set with examples for the implementation of the operations problems is introduced
by Monoranjan et.al.[15]

As an extension of the neutrosophic set Wang et.al [22] proposed the definition of the interval valued
neutrosophic set (INS). Interval neutrosophic sets and their application in multi-criteria decision making
problems is defined by Hong et.al[11]. Hazwani Hashimcet.et.al [10] introduced the idea Interval Neutrosophic
Vague Sets. Shawkat Alkhazaleh [19] introduced the concept of neutrosophic vague set as a combination of
neutrosophic set and vague set. Anitha et.al[4] introduced the NGSR closed sets in neutrosophic topological
spaces. Wang et.al[23] presented an instance of neutrosophic set called single valued neutrosophic set.

To, increase the preciseness, Smarandache [21] introduced plithogenic. It is a powerful tool which is a
generalization of crisp set, fuzzy set, intuitionistic fuzzy set and neutrosophic set is collectively called
plithogenic. It is the base for all plithogenic functions such as plithogenic set, plithogenic probability, plithogenic
logic and plithogenic statistics. These sets which are characterized by a single appurtenance is plithogenic set. A
plithogenic set, in general may have elements characterized by attributes with four or more attributes. It is a set
whose components are described by at least one trait and each attribute may have numerous elements. He
developed the aggregation operations on plithogenic set and proved that plithogenic set is the most generalized
structure that can be efficiently applied to a variety of real life problems.

A procedure to come up with a methodical system to assess the infirmary serving under a framework of
plithogenic theory was suggested by Abdel-Basset et al.[1] as an approach to be constructed on the connotation
of plithogenic theory. To increase the accuracy of the evaluation Abdel-Basset et al.[2] proposed a method which
is a combination of quality function deployment with plithogenic aggregation operations. Nivetha et.al[17]
developed a concept of combined plithogenic hypersoft set and its application in multi attribute decision
making. Based on the technique in order of preference by similarity to ideal solution and criteria importance
through inter-criteria correlation methods to estimation of sustainable supply chain risk management Abdel-
Basset et al.[3] proposed a methodology as a combination of plithogenic multi-criteria decision making
approach.

In this paper, we introduced the generalization of plithogenic cubic vague sets for fuzzy, intuitionistic
fuzzy and neutrosophic sets using the principles of cubic vague set and plithogenic set and its union and
intersection. Plithogenic cubic vague set is the combination of cubic vague set and plithogenic set. It

aims to address the problems involving multiple attribute decision making. This concept is suitable
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and the accuracy of the result is precise as the set is described by more value of attributes. The
organization of this paper is as follows. Introduction is presented in Section 1. Section 2 provides
some preliminaries for the proposed concept is given. Section 3 covers the notion of plithogenic cubic
vague set and it is divided into four subsections. In 3.1 definition and examples of plithogenic fuzzy
cubic vague set, in 3.2 plithogenic intuitionistic fuzzy cubic vague set, in 3.3 plithogenic neutrosophic
cubic vague set and in 3.4 internal and external plithogenic cubic vague sets were presented. In
Section 4 we define the basic operations namely, union and intersection of the developed set. Finally,

Section 5 conclude this paper and provides the direction for future studies.

2. Preliminaries

Definition: 2.1. [8] A vague set A (VS) in the universe of discourse U is a characterized by membership functions
given by: truth membership function t,: U — [0,1] and false membership function f: U — [0,1] where t,(u) is a
lower bound of the grade of membership of u derived from the evidence of u and f, (u) is a lower bound of the
negation of u derived from the evidence against u and t, (1) + f5(u) < 1. Thus the grade of membership of u in
the vague set A is bounded by a sub interval [t (u), 1 — fo(w) ] of [0,1]. This indicates that if the actual grade of
membership is p(u) thenty (u) < py(u) < 1—F,(u). The vague set A is written as A ={(u, [ta(u), 1 — fa(w)])|u €
U}, where the internal [t, (u), 1 — f5(w) ] is called vague value of uin A and denoted byV, (w).

Definition: 2.2. [12] Let X be a non-empty set. A structure 4= {(x, A(x),A(x)):x € X} be a cubic set in X in which
A'is an IVFS and 1 is a fuzzy set in X.

Definition: 2.3. [12] Let X be a universal Set. A cubic vague set AV defined over the universal set X is an ordered
pair which is defined as follows AV = {(x, A, (x), A, (x)): x € X} where 4, = (4}, ,A%,_f) = {(x, [tA_V (0, t7,(x) ], [1 —
fa, (O, 1= fa, (x)]): x€eX } represents IVVS defined on X while 4, = {(x, tw (), 1— fiy(0):x €X } represents VS
such that tf (x) + ff,(x) < 1and ty (x) + fay (x) < 1. For clarity we denote the pairs as AY=(Ay, 1), where A, =
([tA_V, ta, I[1- fa, 11— fAt/]) and Ay= (ty, 1 — fay)- C¥ denotes the set of all cubic vague sets in X.

Definition: 2.4. [12] Let X be a universal set and V be a non-empty vague set. A cubic vague set AV= (4, ,4,) is
called an internal cubic vague set (brief. ICVS) if 4;, (x) < Ay (x) < A (x) for allx € X.

Definition: 2.5. [12] Let X be a universal set and V be a non-empty vague set. A cubic vague set AV= (4, ,1,) is
called an external cubic vague set (brief. ECVS) ifAy (x) € (4 (x), A} (x)) for allx € X.

Definition: 2.6. [8] An interval valued vague sets 4" over a universe of discourse X is defined as an object of the
form AV={(x;, [Tzv(x;), Fzv(x)D|x; € X}, where Tzv:X - D[0,1] and Fzv:X - D[0,1] are called truth
membership function and false membership function respectively and where D[0,1] is the set of all intervals
within [0,1].

Definition: 2.7. [19] A neutrosophic vague set Ay, (NVS inshort) on the universe of discourse X written as Ay, =
{(x, T'ANV’ iANVv’ FANV )x € X} whose truth membership, indeterminacy membership and falsity membership
functions are defined as TANV(x) =[T",T%], fANV(x) =[I-,I7], FANV(x) =[F ,F*], whereT*=1-F ,Ft=1-
T-and 0~ <T~+[ +F <2%.

Definition: 2.8. [10] An interval valued neutrosophic vague set 4,y also known as INVS in the universe of
discourse E. An IVNVS is characterized by truth membership, indeterminacy membership and falsity
membership functions is defined as: Ay, = {< e, [V (e), VY (e)], [WE(e), WY ()], [Xk(e), XY (e)] > |e € E},
Vi) =[VvE,VE ], 0P (e) = [vV7, VU | Wi(e) = [Wh, W |, WEe) = WV, wV" ], Xk(e) = [X*, X "], XY (e)
=[xU7, X" | where V" =1 - X!, X1 =1 -V, VU =1- XU, xV" =1-VU and

0" SVE VU W + WU+ XY + XV <4%, 07 < VE VU W 4wl 4 XV 4 XUT <47,

Definition: 2.9 [12] A = (A4, 1) and B = (B, i) be cubic sets in X. Then we define
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(a) (Equality) A =B A=Band A = p
(b) (P-order) A=Beo ASBandA < U
(c) R-order) A =B ASBand A > U

3. PLITHOGENIC CUBIC VAGUE SETS

Definition: 3.1
Interval valued plithogenic fuzzy vague set (IPFVS) is defined as Vx € P,d,:P X Q, — P([0,1])and Vq €
Q,d(x, q) is an (open, semi-open, closed) interval included in [0,1].

Definition: 3.2
Interval valued plithogenic intuitionistic fuzzy vague set (IPIFVS) is defined as Vx € P,d,:P X Q,, —
P([0,1]*) and V q € Q, d(x, ) is an (open, semi-open, closed) interval included in [0,1].

Definition: 3.3
Interval valued plithogenic Neutrosophic vague set (IPIFVS) is defined as Vx € P,d,: P x Q, — P([0,1]®) and
Y q € Q,d(x, q) is an (open, semi-open, closed) interval included in [0,1].

Definition: 3.4
A fuzzy vague set Ap, (FVS in short) on the universe of discourse X written as Apy = {(x, TAFV) x € X} whose
truth membership is defined as TAFV () =[T",T*]where0< T-<T*<1.

Definition: 3.5

A Intuitionistic fuzzy vague set A;ry (IFVS in short) on the universe of discourse X written as A;py =
{(x, TA'A,FV,I:"A,FV )x € X} whose truth membership and falsity membership functions are defined as TANV(x) =
[T~ T*], Fa, () = [F7,F*].

3.1. Plithogenic Fuzzy Cubic Vague Sets

Definition: 3.1.1
Let U be a universal set. The set A,," = {(x, Ay (x), Ay (x)):x € X} is called plithogenic fuzzy cubic vague set in
which Ay is an interval valued plithogenic fuzzy vague set in X and 4y, is the fuzzy vague set in X.

Example: 3.1.2

Let the attribute be “size” and the attribute values are {small, medium, big, very big}. Let’s consider the dominant
value of attribute size be small.

The attribute value contradictory degrees are:

c(small, small) = 0, ¢(small, medium) = 0.50, c(small, big) = 0.75, c(small, very big) = 1.

The degree of appurtenance Ay: {small, medium, big, very big} — [0,1].

Ay (small) = ([0.3,0.4],[0.4,0.6]), Ay (medium) = ([0.2,0.3],[0.4,0.5]),

Ay (big) = ([0.1,0.3],[0.3,0.6]), Ay (very big) = ([0.3,0.4],[0.4,0.5]).

Degrees of 0 0.5 0.75 1
contradiction
Attribute values small Medium Big very big
Degrees of ([0.3,0.4], ([0.2,0.3], ([0.1,0.3], ([0.3,0.4],
appurtenance [0.4,0.6]) [0.4,0.5]) [0.3,0.6]) [0.4,0.5])
Ay (x)
Ay (x) [0.3,0.5] [0.2,0.4] [0.3,0.5] [0.4,0.5]

3.2 Plithogenic Intuitionistic Fuzzy Cubic Vague Sets

Definition: 3.2.1
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Let U be a universal set. The set A,” = {(x, A, (x), 4, (x)):x € X} is called plithogenic intuitionistic fuzzy cubic
vague set in which Ay is an interval valued plithogenic intuitionistic fuzzy vague set in X and Ay is the
intuitionistic fuzzy vague set in X.

Example: 3.2.2

Let the attribute be “Car Brands” and the attribute values are {Ford, Audi, Benz, BMW]}. Let's consider the
dominant value of attribute car brands be Ford.

Degrees of 0 0.5 0.75 1
contradiction
Attribute values Ford Audi Benz BMW
Degrees of {([0.4,0.6],[0.5,0.51),(I | {([0.3,0.8],[0.5,0.6]),([ | {([0.2,0.6],[0.3,0.6]),( | {([0.1,0.7],[0.2,0.4]),([
appurtenance 0.4,0.6],[0.5.0.5])} 0.2,0.71,[0.4.0.5])} 0.4,0.8],[0.4.0.7])} 0.3,0.9],[0.6.0.8])}
Ay (x)
Ay (x) [0.3,0.6],[0.4,0.7] [0.2,0.5],[0.5,0.8] [0.4,0.7],[0.3,0.6] [0.5,0.6],[0.4,0.5]

3.3 Plithogenic Neutrosophic Cubic Vague Sets

Definition: 3.3.1

Let U be a universal set. The set A,,” = {(x, Ay (x), Ay (x)):x € X} is called plithogenic neutrosophic cubic vague

set in which Ay, is an interval valued plithogenic neutrosophic vague set in X and Ay is the neutrosophic vague

set in X.

Example: 3.3.2

Let the attribute be “Colleges” and the attribute values are {Arts, Engineering, Medical, Agriculture}. Let’s

consider the dominant value of attribute colleges be Arts.

Degrees of 0 0.5 0.75 1
contradiction
Attribute values Arts Engineering Medical Agriculture
Degrees of {([0.4,0.6],[0.5,0.5]),([0. | {([0.3,0.8],[0.5,0.6]),([0. | {([0-2,0.6],[0.3,0.6]),([0. | {([0.1,0.7],[0.2,0.4
appurtenance 1,0.8],[0.2,0.6]),([0.4,0. | 3,0.5],[0.4,0.6]),([0.2,0. | 4,0.8],[0.2,0.5]),([0.4,0. | 1),([0.4,0.5],[0.3,0.
Ay (x) 6],[0.5.0.5])} 71,[0.4.0.5])} 8],[0.4.0.7])} 61),([0.3,0.9],[0.6.
0.8])}
Ay (x) [0.2,0.5],[0.3,0.4],[0.5,0. | [0.4,0.7],[0.2,0.3],[0.3,0. | [0.3,0.6],[0.4,0.5],[0.4,0. | [0.5,0.6],[0.5,0.6],[
8] 6] 7] 0.4,0.5]

3.4. Internal Plithogenic Cubic Vague Set and External Plithogenic Cubic Vague Set

Definition: 3.4.1

Let X be a universal set and V be a non-empty vague set. The plithogenic fuzzy cubic vague set A,,” = (4, ,4,) in
X is called an internal plithogenic fuzzy cubic vague set (IPFCVS) if 4,, ~(x) < 1,,(x) < 4, d_+(x) for all x € X

and d; denotes the contradictory degree and its attribute values.

Example: 3.4.2

Let the attribute be “Continents” and the attribute values are {Asia, Africa, Europe, Australia}. Let’s consider the
dominant value of attribute continents as Asia.

Degrees of
contradiction

0.5

0.75
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Attribute values Asia Africa Europe Australia
Degrees of ([0.3,0.4], ([0.2,0.3], ([0.1,0.3], ([0.3,0.4],
appurtenance [0.4,0.6]) [0.4,0.5]) [0.3,0.6]) [0.4,0.5])
Ay (x)
Av (%) [0.3,0.5] [0.2,0.4] [0.1,0.5] [0.3,0.4]

Definition: 3.4.3

Let X be a universal set and V be a non-empty vague set. The plithogenic intuitionistic fuzzy cubic vague set A"
= (4,,4) in X is called an internal plithogenic intuitionistic fuzzy cubic vague set (IPIFCVS) if 4,, ~(x) <

Ay, (%) <4, d,+ (x) for all x € X and d; denotes the contradictory degree and its attribute values.

Example: 3.4.4

Let the attribute be “Vehicles” and the attribute values are {Car, Bus, Bicycle, Scooter}. Let’s consider the
dominant value of the attribute Vehicles as Car.

Degrees of 0 0.5 0.75 1
contradiction
Attribute values Car Bus Bicycle Scooter
Degrees of {([0.3,0.8],[0.5,0.6]),([ | {([0.4,0.7],[0.3,0.5]),([ | {([0.2,0.6],[0.3,0.6]),([ | {([0.4,0.6],[0.5,0.5]),(
appurtenance 0.2,0.71,[0.4.0.5])} 0.3,0.6],[0.5.0.7])} 0.4,0.8],[0.4.0.7])} 0.4,0.6],[0.5.0.5])}
Ay (x)
Ay (x) [0.4,0.6],[0.3,0.4] [0.5,0.5],[0.3,0.6] [0.3,0.4],[0.5,0.5] [0.2,0.5],[0.4,0.5]

Definition: 3.4.5

Let X be a universal set and V be a non-empty vague set. The plithogenic neutrosophic cubic vague set A,” =
(4, ,4,) in X is said to be internal plithogenic neutrosophic cubic vague set (IPNCVS) in X if it satisfies the

following equations.

(i) truth-internal (briefly, T-internal) if A, d._T x) < AviT(x) <A, d.+T(x) for all x € x and d; denotes the
contradictory degree and its attribute values. (Condition 1)
(ii) indeterminacy-internal (briefly, I-internal) if 4,, di_l () < Avil(x) <A, di+1 (x) for all x € x and d; denotes the

contradictory degree and its attribute values. (Condition 2)
(iii) falsity-internal (briefly, F-internal) if A, d__F () < Avip(x) <A, d_+F (x) for all x €x and d; denotes the

contradictory degree and its attribute values. (Condition 3)

Example: 3.4.6

Let the attribute be “Weather” and the attribute values are {Sunny, Cloudy, Rain, Snow}. Let’s consider the
dominant value of the attribute Weather as Sunny.

Degrees of 0 0.5 0.75 1
contradiction
Attribute values Sunny Cloudy Rain Snow
Degrees of {([0.1,0.7],]0.2,0.4]),([0. | {([0.2,0.6],[0.3,0.6]),([0. | {([0.3,0.8],[0.5,0.6]),([0. | {([0.4,0.6],[0.5,0.
appurtenance 4,0.5],[0.3,0.6]),([0.3,0. | 4,0.8],[0.2,0.5]),([0.4,0. | 3,0.5],[0.4,0.6]),([0.2,0. | 51),([0.1,0.8],[0.2
Ay (x) 91,[0.6.0.8])} 81,[0.4.0.7])} 71,[0.4.0.5])} ,0.6]),([0.4,0.6],[
0.5.0.5])}
Ay (x) [0.2,0.3],[0.4,0.4],[0.5,0. | [0.3,0.5],[0.5,0.5],[0.5,0. | [0.4,0.6],[0.3,0.5],[0.2,0. | [0.5,0.5],[0.2,0.6]
8] 6] 4] ,[0.4,0.5]

Definition: 3.4.7
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Let X be a universal set and V be a non-empty vague set. The plithogenic fuzzy cubic vague set A,” = (4,,,1,) in
X is called an external plithogenic fuzzy cubic vague set (EPFCVS) if 1,,(x) & (4,, ~(x), 4, d.+(x)) forallx € X

and d; denotes the contradictory degree and its attribute values.

Example: 3.4.8
Let the attribute be “Languages” and the attribute values are {Tamil, French, Malayalam, English}. Let’s consider
the dominant value of the attribute Languages as Tamil.

Degrees of 0 0.5 0.75 1
contradiction
Attribute values Tamil French Malayalam English
Degrees of ([0.3,0.4], ([0.2,0.3], ([0.1,0.3], ([0.3,0.5],
appurtenance [0.4,0.6]) [0.4,0.5]) [0.3,0.5]) [0.4,0.5])
Ay (x)
Ay (x) [0.2,0.7] [0.1,0.6] [0.4,0.6] [0.2,0.7]

Definition: 3.4.9

Let X be a universal set and V be a non-empty vague set. The plithogenic intuitionistic fuzzy cubic vague set A"
= (4,,4,) in X is called an external plithogenic intuitionistic fuzzy cubic vague set (IPIFCVS) if 4, (x) €
(4, di_(x),A,, di+(x)) for all x € X and d; denotes the contradictory degree and its attribute values.

Example: 3.4.10
Let the attribute be “Country” and the attribute values are {India, Japan, Malaysia, Korea}. Let’s consider the
dominant value of the attribute country as India.

Degrees of 0 0.5 0.75 1
contradiction
Attribute values India Japan Malaysia Korea
Degrees of {([0.3,0.8],[0.5,0.6]),([ | {([0.4,0.71,[0.3,0.5]),([ | {([0.2,0.6],[0.3,0.6]),( | {([0.4,0.6],[0.5,0.5]),([
appurtenance 0.2,0.71,[0.4.0.5])} 0.3,0.6],[0.5.0.7])} 0.4,0.8],[0.4.0.7])} 0.4,0.6],[0.5.0.5])}
Ay (x)
Ay (x) [0.2,0.8],[0.1,0.7] [0.3,0.6],[0.2,0.8] [0.1,0.7],[0.2,0.3] [0.1,0.6],[0.2,0.6]

Definition: 3.4.11

Let X be a universal set and V be a non-empty vague set. The plithogenic neutrosophic cubic vague set A,” =
(4,,4,) in X is said to be external plithogenic neutrosophic cubic vague set (EPNCVS) in X if it satisfies the
following equations.

(i) truth-external (briefly, T- external) if AviT x) ¢ (4, di_T ), 4, dz+T (x)) for all x € x and d; denotes the
contradictory degree and its attribute values. (Condition 4)

(ii) indeterminacy- external (briefly, I- external) if Avil(x) € (4, di_l(x),AV di+1 (x)) for all x € x and d; denotes the
contradictory degree and its attribute values. (Condition 5)

(iii) falsity- external (briefly, F- external) if /L,iF x) ¢ (4, di_F(x),AV di+F (x)) for all x € x and d; denotes the

contradictory degree and its attribute values. (Condition 6)

Example: 3.4.12
Let the attribute be “Month” and the attribute values are {July, May, April, March}. Let’s consider the dominant
value of the attribute Month as July.

Degrees of 0 0.5 0.75 1
contradiction
Attribute values July May April March
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Degrees of {([0.2,0.6],[0.3,0.6]),([0. | {([0.4,0.6],[0.5,0.5]),([0. | {([0.3,0.8],[0.5,0.6]),([0. | {([0.4,0.6],[0.1,0.2
appurtenance 4,0.8],[0.2,0.5]),([0.4,0. | 3,0.8],[0.2,0.6]),([0.4,0. | 3,0.5],[0.4,0.6]),([0.2,0. | 1),([0.4,0.5],[0.3,0.
Ay (x) 8],[0.4.0.7])} 61,[0.5.0.5])} 71,[0.4.0.5])} 61),([0.4,0.6],[0.8.
0.9}
Ay (x) [0.1,0.7],[0.3,0.8],[0.2,0. | [0.3,0.7],[0.2,0.9],[0.3,0. | [0.1,0.9],[0.2,0.7],[0.1,0. | [0.1,0.5],[0.2,0.8],
8] 6] 6] 0.2,0.5]

4. Union and Intersection
In this section, we introduce the definitions of union and intersection of plithogenic cubic vague sets with
examples.

Definition:4.1 Let A,” = {{x, A, (x), 4y (x)):x € X,v € V}and B," = {{x, B, (x), uy(x)):x € X,u €V} be
two plithogenic cubic vague sets in X then we have

1.A,"=B," if and only if A, (x) = B, (x) and Ay, (x) = uy, (x).

2. A,” and B,” are two plithogenic cubic vague sets in X then we define and denote P-order as A,” <, B
and only if A, (x) € B, (x) and A, (x) < u, (x) forall x € X.

3. A," and B,," are two plithogenic cubic vague sets in X then we define and denote R-order as A,,” <; B
and only if A, (x) € B, (x) and A, (x) = u, (x) forall x € X.

V.
plf

V.
plf

Definition:4.2 Let A,” = {{x, A, (x), 4y (x)):x € X,v € V}and B," = {{x, B, (x), uy(x)):x € X,v € V} be
two plithogenic cubic vague sets in X. Then we have

1.A," Up IBp”={((x),sup(AV(x), BV(x)),sup(AV(x),uV(x)))lx € X,v € V} (P-union)

2. Apv Np Ipr = (), inf(AV(x), By (x)) , inf(/lv(x), ,uV(x)))| x € X,v €V} (P-intersection)
3.A," Uy B,” ={((x),sup(AV(x), BV(x)),inf(AV(x),uV(x)))l x € X,v € V} (R-union)
4.A," ng B,” ={((x),inf(AV(x), BV(x)),sup(/lv(x),uv(x)))l x € X,v € V} (R-intersection)

4.1 Plithogenic Fuzzy Cubic Vague Union and Intersection

Example: 4.1.1 (P-Order)

The expert values between “color” and “height” and their values are Color = {red, blue, green} and Height = {tall,
medium} then the object elements are characterized by the Cartesian product

Color X Height ={(red, tall), (red, medium), (blue, tall), (blue, medium), (green, tall), (green, medium)}.
Let’s consider the dominant value of attribute “Color” be “red” and of attribute “Height” be “tall”. The attribute

value contradiction degrees are:

c(red, red) =0, c(red, blue) = %, c(red, green) =§, c(tall, tall) =0, c(tall, medium) = %

We have two plithogenic cubic vague sets A and B and we consider the fuzzy, intuitionistic fuzzy and
neutrosophic appurtenance degree of attribute values to the sets.

Apv:
Degrees of 0 1 E 0 l
contradiction 3 3 3
Attribute values red blue green tall medium
Degrees of ([0.2,0.3], ([0.2,0.3], ([0.1,0.3], ([0.2,0.3], ([0.1,0.3],
appurtenance [0.4,0.6]) [0.4,0.5]) [0.3,0.6]) [0.4,0.5]) [0.4,0.5])
Ay (x)
Ay () [0.2,0.5] [0.2,0.4] [0.1,0.8] [0.3,0.5] [0.1,0.4]
[pr:
Degrees of 0 1 2 0 1
contradiction 3 3 3
Attribute values red blue green tall medium
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Degrees of ([0.3,0.4], ([0.3,0.4], ([0.2,0.3], ([0.3,0.4], ([0.3,0.4],
appurtenance [0.4,0.6]) [0.4,0.5]) [0.4,0.6]) [0.4,0.5]) [0.4,0.5])
By (x)
1y (%) [0.5,0.5] [0.3,0.4] [0.2,0.8] [0.4,0.5] [0.4,0.4]
Then P-Union denoted by A,,” Up B,,” and P-Intersection denoted by A,” Np B,"
Degrees of 0 1 2 0 1
contradiction 3 3 3
Attribute values red blue green tall medium
Ay U By, ([0.3,0.4], ([0.3,0.4], ([0.2,0.3], ([0.3,0.4], ([0.3,0.4],
[0.4,0.6]) [0.4,0.5]) [0.4,0.6]) [0.4,0.5]) [0.4,0.5])
Ay Uy [0.5,0.5] [0.3,0.4] [0.2,0.8] [0.4,0.5] [0.4,0.4]
Ay N By ([0.2,0.3], ([0.2,0.3], ([0.1,0.3], ([0.2,0.3], ([0.1,0.3],
[0.4,0.6]) [0.4,0.5]) [0.3,0.6]) [0.4,0.5]) [0.4,0.5])
Ay 0y [0.2,0.5] [0.2,0.4] [0.1,0.8] [0.3,0.5] [0.1,0.4]
Example: 4.1.2 (R-Order)
Apv:
Degrees of 0 1 2 0 1
contradiction 3 3 3
Attribute values red blue green tall medium
Degrees of ([0.2,0.3], ([0.2,0.3], ([0.1,0.3], ([0.2,0.3], ([0.1,0.3],
appurtenance [0.4,0.6]) [0.4,0.5]) [0.3,0.6]) [0.4,0.5]) [0.4,0.5])
Ay (x)
Ay(x) [0.4,0.5] [0.3,0.4] [0.2,0.8] [0.4,0.5] [0.4,0.4]
B,":
Degrees of 0 1 2 0 1
contradiction 3 3 3
Attribute values red blue green tall medium
Degrees of ([0.3,0.4], ([0.3,0.4], ([0.2,0.3], ([0.3,0.4], ([0.3,0.4],
appurtenance [0.4,0.6]) [0.4,0.5]) [0.4,0.6]) [0.4,0.5]) [0.4,0.5])
By (x)
py (x) [0.3,0.5] [0.2,0.4] [0.1,0.8] [0.3,0.5] [0.1,0.4]
Then R-Union denoted by Apv Ur Bp” and R-Intersection denoted by Apv Ng IBpV
Degrees of 0 1 2 0 1
contradiction 3 3 3
Attribute red blue green tall medium
values
Ay U By ([0.3,0.4], ([0.3,0.4], ([0.2,0.3], ([0.3,0.4], ([0.3,0.4],
[0.4,0.6]) [0.4,0.5]) [0.4,0.6]) [0.4,0.5]) [0.4,0.5])
Ay Uy [0.3,0.5] [0.2,0.4] [0.1,0.8] [0.3,0.5] [0.1,0.4]
A, N By, (10.2,0.3], ([0.2,0.3], ([0.1,0.3], ([0.2,0.3], (10.1,0.3],
[0.4,0.6]) [0.4,0.5]) [0.3,0.6]) [0.4,0.5]) [0.4,0.5])
Ay 0 fy [0.4,0.5] [0.3,0.4] [0.2,0.8] [0.4,0.5] [0.4,0.4]

4.2 Plithogenic Intuitionistic Fuzzy Cubic Vague Union and Intersection
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Example: 4.2.1 (P-Order)
Ap":
Degrees of 0 1 z 0 l
contradiction 3 3 3
Attribute red blue green tall medium
values
Degrees of {([0.2,0.6],[0.5,0 | {([0.2,0.6],[0.3,0.6]) | {([0.4,0.5],[0.1,0. {(10.1,0.7],10.2,0. | {([0.2,0.5],[0.2,0.3]
appurtenance | .5]),([0.4,0.8],[0. | ,([0.4,0.8],[0.4.0.7]) | 4]),([0.5,0.6],[0.6. 41),([0.3,0.91,[0.6. | ),([0.5,0.8],[0.7.0.8
Ay (x) 5.0.5])} } 0.9])} 0.8])} D)
Ay (%) [0.2,0.5],[0.5,0.8 | [0.4,0.5],[0.5,0.6] [0.2,0.4],[0.6,0.8] [0.1,0.5],[0.5,0.9] | [0.2,0.4],[0.6,0.8]
]
[pr:
Degrees of 0 1 E 0 l
contradiction 3 3 3
Attribute red blue green tall medium
values
Degrees of {(10.3,0.8],[0.5,0 | {([0.3,0.8],[0.5,0.6]) | {([0.4,0.6],[0.5.0. {([0.6,0.9],[0.2,0. | {([0.2,0.5],[0.2,0.3]
appurtenance | .6]),([0.2,0.7],[0. | ,([0.2,0.7],[0.4.0.5]) | 5]),([0.4,0.6],[0.5. 51),([0.1,0.4],[0.5. | ),([0.5,0.8],[0.7.0.8
By (x) 4.0.5])} } 0.5)} 0.8))} D
wy (x) [0.2,0.5],[0.5,0.8 | [0.4,0.5],[0.5,0.6] [0.2,0.4],[0.6,0.8] [0.1,0.5],[0.5,0.9] | [0.2,0.4],[0.6,0.8]
]
Then P-Union denoted by A,,” Up B,,” and P-Intersection denoted by A,” Np B,"
Degrees of 0 1 E 0 l
contradiction 3 3 3
Attribute red blue green tall medium
values
A,U By, {([0.3,0.8],[0.5,0 | {([0.3,0.8],[0.5,0.6]) | {([0.4,0.6],[0.5,0. {([0.6,0.9],[0.2,0. | {([0.2,0.6],[0.2,0.3]
.6]),([0.2,0.7],[0. | ,([0.2,0.7],[0.4.0.5]) | 5]),([0.4,0.6],[0.5. 51),([0.1,0.4],[0.5. | ),([0.4,0.8],[0.7.0.8
4.0.5])} } 0.5])} 0.8]) D}
Ay U uy [0.2,0.5], [0.4,0.5],[0.5,0.6] [0.2,0.4],[0.6,0.8] [0.1,0.5],[0.5,0.9] | [0.2,0.4],[0.6,0.8]
[0.5,0.8]
A, N By, {([0.2,0.6],[0.5,0 | {([0.2,0.6],[0.3,0.6]) | {([0.4,0.5],[0.1,0. {([0.1,0.7],[0.2,0. | {([0.2,0.5],[0.2,0.3]
.51),([0.4,0.8],[0. | ,([0.4,0.8],[0.4.0.7]) | 4]),([0.5,0.6],[0.6. 41),([0.3,0.9],[0.6. | ),([0.5,0.8],[0.7.0.8
5.0.5])} } 0.9D} 0.8])} i
Ay 0 py [0.2,0.5],[0.5,0.8 | [0.4,0.5],[0.50.6] | [0.2,0.4],[0.6,0.8] [0.1,0.5],[0.5,0.9] | [0.2,0.4],[0.6,0.8]
]

Example: 4.2.2 (R-Order)

Apv:
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Degrees of 0 l E 0 l
contradiction 3 3 3
Attribute red blue green tall medium
values
Degrees of {([0.2,0.6],[0.5,0 | {([0.2,0.6],[0.3,0.6]) | {([0.4,0.5],[0.1,0. {(10.1,0.7],10.2,0. | {([0.2,0.5],[0.2,0.3]
appurtenance | .5]),([0.4,0.8],[0. | ,([0.4,0.8],[0.4.0.7]) | 4]),([0.5,0.6],[0.6. 41),([0.3,0.91,[0.6. | ),([0.5,0.8],[0.7.0.8
Ay (x) 5.0.5])} } 0.9])} 0.8])} D)
Ay (%) [0.4,0.7],[0.3,0.6 | [0.1,0.3],[0.7,0.9] [0.7,0.8],[0.2,0.3] [0.5,0.6],[0.4,0.5] | [0.3,0.5],[0.5,0.7]
]
[pr:
Degrees of 0 1 E 0 l
contradiction 3 3 3
Attribute red blue green tall medium
values
Degrees of {([0.3,0.8],[0.5,0 | {([0.3,0.8],[0.5,0.6]) | {([0.4,0.6],[0.5.0. {([0.6,0.9],[0.2,0. | {([0.2,0.5],[0.2,0.3]
appurtenance | .6]),([0.2,0.7],[0. | ,([0.2,0.7],[0.4.0.5]) | 5]),([0.4,0.6],[0.5. 51),([0.1,0.4],[0.5. | ),([0.5,0.8],[0.7.0.8
By (x) 4.0.5])} } 0.5)} 0.8))} D
py (x) [0.4,0.7],[0.3,0.6 | [0.1,0.3],[0.7,0.9] [0.7,0.8],[0.2,0.3] [0.5,0.6],[0.4,0.5] | [0.3,0.5],[0.5,0.7]
]
Then R-Union denoted by A,” Ug B,,” and R-Intersection denoted by A,” Ng B,"
Degrees of 0 1 E 0 l
contradiction 3 3 3
Attribute red blue green tall medium
values
Ay VU By, {([0.3,0.8],[0.5,0 | {([0.3,0.8],[0.5,0.6]) | {([0.4,0.6],[0.5.0. {([0.6,0.9],[0.2,0. | {([0.2,0.5],[0.2,0.3]
.6]),([0.2,0.7],[0. | ,([0.2,0.7],[0.4.0.5]) | 5]),([0.4,0.6],[0.5. 51),([0.1,0.4],[0.5. | ),([0.5,0.8],[0.7.0.8
4.0.5])} } 0.5))} 0.8))} D
Ay U uy [0.4,0.7],[0.3,0.6 | [0.1,0.3],[0.7,0.9] [0.7,0.8],[0.2,0.3] [0.5,0.6],[0.4,0.5] | [0.3,0.5],[0.5,0.7]
]
A, N By, {([0.2,0.6],[0.5,0 | {([0.2,0.6],[0.3,0.6]) | {([0.4,0.5],[0.1,0. {([0.1,0.7],[0.2,0. | {([0.2,0.5],[0.2,0.3]
.5]),([0.4,0.8],[0. | ,([0.4,0.8],[0.4.0.7]) | 4]),([0.5,0.6],[0.6. 41),([0.3,0.9],[0.6. | ),([0.5,0.8],[0.7.0.8
5.0.5])} } 0.9} 0.8])} i
Ay 0 py [0.4,0.7],[0.3,0.6 | [0.1,0.3],[0.7,0.9] | [0.7,0.8],[0.2,0.3] [0.5,0.6],[0.4,0.5] | [0.3,0.5],[0.5,0.7]
]
4.3 Plithogenic Neutrosophic Cubic Vague Union and Intersection
Example: 4.3.1 (P-Order)
Apv:
Degrees of 0 1 E 0 l
contradiction 3 3 3
Attribute red blue green Tall Medium
values
Degrees of {([0.2,0.6],[0.5,0 | {([0.2,0.6],[0.3,0.6]) | {([0.4,0.5],[0.1,0. {((0.1,0.71,[0.2,0. | {([0.2,0.5],[0.2,0.3]
appurtenance | .5]),([0.4,0.6],[0. | ,([0.4,0.8],[0.4,0.6]), | 4]),([0.5,0.8],[0.2, 41),(10.4,0.71,[0.3, | ),([0.5,0.8],[0.4,0.6
Ay (x) 2,0.6]),([0.4,0.8] | ([0.4,0.8],[0.4.0.7])} | 0.6]),([0.5,0.6],[0. 0.6]),([0.3,0.9,[0. | 1),([0.5,0.8],[0.7.0.
,[0.5.0.5])} 6.0.9])} 6.0.8])} 8]}
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Ay (x) [0.2,0.5],[0.2,0.3 | [0.4,0.5],[0.5,0.5],[0 | [0.2,0.4],[0.2,0.4] [0.1,0.5],[0.3,0.4] | [0.2,0.4],[0.3,0.5],[
1,[0.5,0.8] .5,0.6] ,[0.6,0.8] ,[0.5,0.9] 0.6,0.8]
[Bp":
Degrees of 0 1 z 0 l
contradiction 3 3 3

Attribute red blue green tall Medium

values

Degrees of {([0.3,0.8],[0.5,0 | {([0.3,0.8],[0.5,0.6]) | {([0.4,0.6],[0.5,0. {([0.6,0.9],[0.2,0. | {([0.2,0.5],[0.2,0.3]

appurtenance | .6]),([0.3,0.5],[0. | ,([0.3,0.5],[0.2,0.5]), | 5]),([0.1,0.5],[0.1, 51),([0.3,0.5],[0.2, | ),([0.5,0.8],[0.4,0.6
By (x) 1,0.6]),([0.2,0.7] | ([0.2,0.7],[0.4.0.5])} | 0.3]),([0.4,0.6],[0. 0.5]),([0.1,0.4],[0. | 1),([0.5,0.8],[0.7.0.
,[0.4.0.5])} 5.0.5])} 5.0.8])} 81)}
wy (x) [0.2,0.5],[0.3,0.4 | [0.4,0.5],[0.6,0.6],[0 | [0.2,0.4],[0.3,0.5] [0.1,0.5],[0.5,0.6] | [0.2,0.4],[0.7,0.8],[
1,[0.5,0.8] .5,0.6] ,[0.6,0.8] ,[0.5,0.9] 0.6,0.8]
Then P-Union denoted by A,,” Up B,," and P-Intersection denoted by A,,” Np B,” are
Degrees of 0 1 E 0 l
contradiction 3 3 3

Attribute red blue Green tall medium

values

A,U By, {([0.3,0.8],[0.5,0 | {([0.3,0.8],[0.5,0.6]) | {([0.4,0.6],[0.5,0. {([0.6,0.91,[0.2,0. | {([0.2,0.6],[0.2,0.3]
.6]),([0.3,0.5],[0. | ,([0.3,0.5],[0.2,0.5]), | 5]),([0.1,0.5],[0.1, 51),([0.3,0.5],[0.2, | ),([0.4,0.7],[0.3,0.5
1,0.6]),([0.2,0.7] | ([0.2,0.7],[0.4.0.5])} | 0.3]),([0.4,0.6],[0. 0.5]),([0.1,0.4],[0. | 1),([0.4,0.8],[0.7.0.

,[0.4.0.5])} 5.0.5])} 5.0.8]) 8))}

Ay U uy [0.2,0.5],[0.2,0.3 | [0.4,0.5],[0.5,0.5],[0 | [0.2,0.4],[0.2,0.4] [0.1,0.5],[0.3,0.4] | [0.2,0.4],[0.3,0.5],[

1,[0.5,0.8] .5,0.6] ,[0.6,0.8] ,[0.5,0.9] 0.6,0.8]

A, N By, {([0.2,0.6],[0.5,0 | {([0.2,0.6],[0.3,0.6]) | {([0.4,0.5],[0.1,0. {([0.1,0.7],[0.2,0. | {([0.2,0.5],[0.2,0.3]
.5]),([0.4,0.6],[0. | ,([0.4,0.8],[0.4,0.6]), | 4]),([0.5,0.8],[0.2, 41),([0.4,0.71,[0.3, | ),([0.5,0.8],[0.4,0.6
2,0.6]),([0.4,0.8] | ([0.4,0.8],[0.4.0.7])} | 0.6]),([0.5,0.6],[0. 0.6]),([0.3,0.9,[0. | 1),([0.5,0.8],[0.7.0.

,[0.5.0.5])} 6.0.9])} 6.0.8])} 8])}
Ay 0 py [0.2,0.5],[0.3,0.4 | [0.4,0.5],[0.6,0.6],[0 | [0.2,0.4],[0.3,0.5] [0.1,0.5],[0.5,0.6] | [0.2,0.4],[0.7,0.8],[
1,10.5,0.8] 5,0.6] ,[0.6,0.8] ,[0.5,0.9] 0.6,0.8]
Example: 4.3.2 (R-Order)
Apv:
Degrees of 0 1 E 0 l
contradiction 3 3 3

Attribute red blue green tall Medium

values

Degrees of {([0.2,0.6],[0.5,0 | {([0.2,0.6],[0.3,0.6]) | {([0.4,0.5],[0.1,0. {((0.1,0.71,[0.2,0. | {([0.2,0.5],[0.2,0.3]

appurtenance | .5]),([0.4,0.6],[0. | ,([0.4,0.8],[0.4,0.6]), | 4]),([0.5,0.8],[0.2, 41),(10.4,0.71,[0.3, | ),([0.5,0.8],[0.4,0.6
Ay (%) (10.4,0.81,[0.4.0.7])}
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2,0.6]),([0.4,0.6 0.6]),([0.5,0.6],[0. 0.6]),([0.3,0.91,[0. | 1),([0.5,0.8],[0.7.0.
8],[0.5.0.5])} 6.0.9])} 6.0.8])} 8])}
Ay (x) [0.4,0.7],[0.3,0.4 | [0.1,0.3],[0.5,0.6],[0 | [0.7,0.8],[0.3,0.5] [0.5,0.6],[0.5,0.6] | [0.3,0.5],[0.6,0.6],[
1,[0.3,0.6] .7,0.9] ,[0.2,0.3] ,[0.4,0.5] 0.5,0.7]
[Bp":
Degrees of 0 1 z 0 l
contradiction 3 3 3

Attribute red blue green tall Medium

values

Degrees of {([0.3,0.8],[0.5,0 | {([0.3,0.8],[0.5,0.6]) | {([0.4,0.6],[0.5,0. {([0.6,0.9],[0.2,0. | {([0.2,0.5],[0.2,0.3]

appurtenance | .6]),([0.3,0.5],[0. | ,([0.3,0.5],[0.2,0.5]), | 5]),([0.1,0.5],[0.1, 51),([0.3,0.5],[0.2, | ),([0.5,0.8],[0.4,0.6
By (x) 1,0.6]),([0.2,0.7] | ([0.2,0.7],[0.4.0.5])} | 0.3]),([0.4,0.6],[0. 0.5]),([0.1,0.4],[0. | 1),([0.5,0.8],[0.7.0.
,[0.4.0.5])} 5.0.5])} 5.0.8])} 81)}
wy (x) [0.4,0.7],[0.2,0.3 | [0.1,0.3],[0.3,0.4],[0 | [0.7,0.8],[0.1,0.3] [0.5,0.6],[0.2,0.],[ | [0.3,0.5],[0.4,0.5],[
1,[0.3,0.6] .7,0.9] ,[0.2,0.3] 0.4,0.5] 0.5,0.7]
Then R-Union denoted by A,” Ug B,,” and R-Intersection denoted by A,” Ng B,"
Degrees of 0 1 E 0 l
contradiction 3 3 3

Attribute red blue green tall medium

values

A,U By, {([0.3,0.8],[0.5,0 | {([0.3,0.8],[0.5,0.6]) | {([0.4,0.6],[0.5,0. {([0.6,0.9]1,[0.2,0. | {([0.2,0.5],[0.2,0.3]
.6]),([0.3,0.5],[0. | ,([0.3,0.5],[0.2,0.5]), | 5]),([0.1,0.5],[0.1, 51),([0.3,0.5],[0.2, | ),([0.5,0.8],[0.4,0.6
1,0.6]),([0.2,0.7] | ([0.2,0.7],[0.4.0.5])} | 0.3]),([0.4,0.6],[0. 0.5]),([0.1,0.4],[0. | 1),([0.5,0.8],[0.7.0.

,[0.4.0.5])} 5.0.5])} 5.0.8])} 8])}
Ay U uy [0.4,0.7],[0.2,0.3 | [0.1,0.3],[0.3,0.4],[0 | [0.7,0.8],[0.1,0.3] [0.5,0.6],[0.2,0.],[ | [0.3,0.5],[0.4,0.5],[
1,[0.3,0.6] .7,0.9] ,[0.2,0.3] 0.4,0.5] 0.5,0.7]

A, N By, {([0.2,0.6],[0.5,0 | {([0.2,0.6],[0.3,0.6]) | {([0.4,0.5],[0.1,0. {([0.1,0.7],[0.2,0. | {([0.2,0.5],[0.2,0.3]
.5]),([0.4,0.6],[0. | ,([0.4,0.8],[0.4,0.6]), | 4]),([0.5,0.8],[0.2, 41),([0.4,0.71,[0.3, | ),([0.5,0.8],[0.4,0.6
2,0.6]),([0.4,0.8] | ([0.4,0.8],[0.4.0.7])} | 0.6]),([0.5,0.6],[0. 0.6]),([0.3,0.9],[0. | 1),([0.5,0.8],[0.7.0.

,[0.5.0.5])} 6.0.9])} 6.0.8])} 8])}

Ay N opy [0.4,0.7],[0.3,0.4 | [0.1,0.3],[0.5,0.6],[0 | [0.7,0.8],[0.3,0.5] [0.5,0.6],[0.5,0.6] | [0.3,0.5],[0.6,0.6],[

1,[0.3,0.6] 7,09] ,[0.2,0.3] ,[0.4,0.5] 0.5,0.7]

Theorem: 4.3.2

Let X be a non-empty set and Apv = (A, ,1,) be a PNCVS in X which is not external. Then there exists x €
X such that lviT x) € (Avd‘_T(x),Avd‘”(x))

(4, T, Ay, *F (x)) where d; denotes the contradictory degree and its attribute values.
L L

Proof: Straight forward

Theorem: 4.3.3

L)€ (4,7 (@), A, T (0)

/1,,l.F (x) €
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Let X be a non-empty set and Ap” = (A,,A,) be a PNCVS in X. If Ap” is both T-internal and T-external, then,
(VxeX) (lviT(x) € {(A,,di_T )|x € X} U {Avdi”(x) |x € X}) where d; denotes the contradictory degree
and its attribute values.

Proof: Consider the conditions 1 and 4 which implies that 4, di_T(x) < AviT(x) <A, di+T(x) and /L,iT(x) ¢
(A"dz _T(x),AvdiJrT(x)) for all x € X. Then it follows that AviT(x) = Avdi_T(x) or AviT(x) = Avdi *T(x), and
hence (lviT(x) € {(Av d._T )|xeX } U {Av dl”(x) |x € X}) where d; denotes the contradictory degree and

its attribute values. Hence proved.
Remark: Similarly the consequent theorems holds for indeterminacy and falsity values.

Theorem: 4.3.4
Let X be a non-empty set and A,” = (4,,,4,) be a PNCVS in X. If A,,” is both I-internal and I-external, then,

(VxeX) (lvil(x) € {(Avd._l(x)|x € X} U {Avd.+1(x)|x € X}) where d; denotes the contradictory degree
v L

and its attribute values.

Theorem: 4.3.5
Let X be a non-empty set and Apv = (4, ,1,) be a PNCVS in X. If Ap” is both F-internal and F-external, then,

(VxeX) (lviF(x) € {(Avd__F(x)|x € X} U {Avd_+F(x)|x € X}) where d; denotes the contradictory degree

and its attribute values.

Definition: 4.3.6
Let X be a non-empty set. The complement of Apv = (A, ,A,) is said to be PNCVS, (APU)C = (AC,,, AC,,)

where A4,° = {(ACleT(x), AClel(x),ACvd‘F(x))} is an interval valued PNCVS in X and A¢, =
(@, 00,26, (0, 2¢," ()} is a neutrosophic set in Y.

Theorem: 4.3.7
Let X be a non-empty set and Apv = (A4, ,1,)be aPNCVS in X. If Apv is both T-internal and T-external, then the

complement (A,")¢= (A¢,,A¢,) of A,” = (4,,,1,) is a T-internal and T-external PNCVS in X.
Proof:

Let X be a non-empty set and if Apv = (A, ,A,) is an T-internal and T-external PNCVS in X, then 4,, d'_T (x) <
lviT(x) < Avdi+T(x) and lviT(x) ¢ (Avdi_T(x),A,,di+T(x)) for all x € X. It follows that 1 — Avdi_T(x) <
1-— /L,L.T(x) <1- Avd‘”(x) and 1-— lviT(x) ¢ (1- A,,d._T(x), 1- A,,d'+T(x)). Therefore (A,")=
(A€, 2¢,) of A, = (4,,4,) is a T-internal and T-external PNCVS in X.

Remark: Similarly the consequent theorems holds for indeterminacy and falsity values.

Theorem: 4.3.8

Let X be a non-empty set and Apv = (A,, , /1,,) be a PNCVS in X. If Apv is both I-internal and I-external, then the
complement (A,")¢= (A€, A¢,) of A,” = (4, ,1,) is a I-internal and I-external PNCVS in X.

Theorem: 4.3.9
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Let X be a non-empty set and Ap” = (A,,A,)beaPNCVSinX. If Ap” is both F-internal and F-external, then the
complement (A,")¢= (A€, A€,) of A," = (A, ,1,) is a F-internal and F-external PNCVS in X.

5 Conclusion and Future Work

The objective of this paper is to define the concept of plithogenic cubic vague set and its generalization;
plithogenic fuzzy cubic vague set, plithogenic intuitionistic fuzzy cubic vague set, plithogenic neutrosophic
cubic vague set with examples. Its corresponding internal and external cubic vague sets are also defined. We
studied the union and intersection of P and R order also some basic properties. The work presented in this paper
delivers the theoretical framework for further study on plithogenic cubic vague set. In the future work, we will
study AND and OR operations, similarity measures of plithogenic cubic vague set.
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Abstract:

A finite commutative ring involution is the multiplicative inverse of the element attribute R is the
element itself. This classical characteristic of a finite commutative ring makes Neutrosophic
involutions possible, which are counted, listed and assessed in this work. Assume that the
Neutrosophic ring R(I) is the finite commutative ring with unity 1 over the ring R under the
indeterminate I. We first establish some useful necessary and sufficient conditions for the
Neutrosophic components of the type a + bl is involutory in order to understand how to count
Neutrosophic involutions of R(I). The behavior of the Neutrosophic composition table for
identifying Neutrosophic involutions and counting the number of 1s that appear on the primary
diagonal of the composition table of R(I) is also investigated in this work.

Keywords: Involutions, Neutrosophic Involutions, Neutrosophic Units, Pure Neutrosophic
Involution, Neutrosophic Ring.

1. Introduction

An involution is a special element in any ring R with unity and it is a self-multiplicative inverse
element under multiplication defined over R. For a finite ring R, let Jn(R) denote the set of
involutions ofR, and [|In(R)| represents the number of involutions of R. Because R's involutions
are systematically arranged mathematical objects that don't require any additional resources to
implement, they have received a great deal of attention for their potential applications in security
systems, coding-decoding systems, combinatorial designs, the creation of self-intelligent systems,
etc. [1-11].Due to the fact that involutions have been crucial to the development, interpretation, and
design of electronic devices. Every commutative ring with unity is known to contain at least one
involution. However, the theory of finite commutative rings has two intriguing subcategories. One is
cyclic rings and theother is non-cyclic rings. A ring R is called cyclic if the group (R, +) is a cyclic

group under addition defined by R. Otherwise, it is called a noncyclic ring. Every cyclic ring is
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commutative, and a finite cyclic ring with unity of order n is isomorphic to the ring Z,,
integersunder addition and multiplication modulo n.On the other hand, the rings Z,, X Z,, and
Z,[i] are all noncyclic rings for every integerm,n > 1.

In 1987, Smarandache and Vasantha Kandasamy introduced a basic setup of the theory of
Neutrosophic structures through indeterminacy I, because simply they had a natural and necessary
role of [ to play in the development of the Neutrosophic algebraic systems. Now a days, they
rapidly become flourishing systems, because the structure R and indeterminatel are needful in
modern mathematical systems and many intelligent systems like Neutrosophic decision systems,
Neutrosophic error detection systems, algorithms for digital communication systems [12-15];all
these typesof systems employ the Neutrosophic structure R([).

Because they had a natural and essential role for indeterminate I to play in the growth of
the Neutrosophic algebraic systems, Smarandache and Vasantha Kandasamy established the theory
of Neutrosophic structures through indeterminacy I in 1987. They are now developing rapidly
because many smart systems and quality systems, such as product quality systems, Neutrosophic
virtual reality systems, and uncertainty systems [16-18], all use the Neutrosophic structure and
logic, which is necessary in modern mathematical systems.

The classic Neutrosophic Rings, written by Florentin Smarandache and Vasantha
Kandasamy, and published in 2006, sparked the growth of two contemporary mathematics fields
that are closely related to one another: The mathematical concept of "Neutrosophic ring" and
Neutrosophic logic. The value of the symbols T(True), F(False), and I(Indeterminate) and their
corresponding laws was illustrated in Chapter 2 of Florentin Smarandache and Vasantha
Kandasamy's book [19].Neutrosophic logic is interested in how we think in order to draw
conclusions about mathematics. That book will help us in studying this paper. Now starts a simple
introduction about the structureR(I). Mathematically, a Neutrosophic ring is a system with the
following components: a ring R, an indeterminate I, two Neutrosophic binary operations on R, and a
set of axioms that the elements of R satisfy via the indeterminate I. For any ring R, there exists a new
structure R([), called a Neutrosophic ring, and is engendered by R and I, which is represented by a
Neutrosophic set "R(I) =(R,I) ={a+ bl:a,b € R and [* =1}", where [ is the indeterminate of
the system with algebraic properties: 0/ =0, 1/ =1, I?=1, and I does not exist The
Neutrosophic set R(I) = (R,I) of Neutrosophic elements of the form a + bl forms a Neutrosophic
ring under Neutrosophic addition "(a +bI) + (c +dI) = (a +c¢) + (b + d)I", and Neutrosophic
multiplication "(a + bI)(c + dI) = ac + (ad + bc + bd)I", for every a + bl and c +dI in R(I)."

In Neutrosophic algebra, the algebraic structures R and R(I) areplaying dominant roles,
and they are also specific mathematical tools for developing and studying many Neutrosophic
research fields like QuadrupleNeutrosophic rings, Neutrosophic zero rings, Neutrosophic number
theory, Neutrosophic Boolean rings, Neutrosophic vector spaces, Refined Neutrosophic rings, and
so on. For example, see [20].

The purpose of this paper is to prepare and enumerate the Neutrosophic involutions in the

Neutrosophic group of units of a finite commutative Neutrosophic ring with unity and to examine
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and compare the properties of the classical involutions in a group of units. For this first, we shall
define involutions in various fields of mathematics and their other related algebraic concepts.
Generally, in modern mathematics and other related computational systems, involution is a map f
and it is equal to its inverse. This means that f(f(x)) = x for all x in the domain of a function f. So, the
involution is a bijection. For this reason, many fields in modern mathematics contain the term
involution such as Group theory, Ring theory, and Vector spaces. Moreover, in the Euclidean and
the Projective geometry, the involution is a reflection through the origin, and an involution is a
projectivity of period 2, respectively. In mathematical logic, the operation of complement in Boolean
algebra is called Boolean involution, and in classical logic, the negation that satisfies the law of
double negation is called involution. Lastly, in Computer science, the XOR bitwise operation with a
given value for one constraint is also an involution, and RC4 cryptographic cipher is involution, as
encryption and decryption operations use the same map.

In [21-23],there is a classical and simple problem between the composition table and the
corresponding finite ring R with unity1, that is, how many 1s appear in the principle diagonal of
the composition table ofR? This question produces the number of solutions of the equationa? = 1 in
a finite ring R with unityl. This paper extends this procedure to Neutrosophic rings R(I) for
enumerating Neutrosophic involutions, and we shall show that the Neutrosophic involutions to the

Neutrosophic ring R(I) over the finite commutative R with unity 1come in a multiple of four
through the relations 7n(R(I)) =JIn(R)uU (1 —2NIn(R) and |7n(R(I))| = 2|In(R)|.

2. Properties of Finite Neutrosophic Fields

This section introduces the concept of Neutrosophic involution and shows how to determine the
number of such Neutrosophic involutions. Recall that the element a in R is involution if a? =1,
and the set of involutions of R is In(R) and notated as Jn(R) = {a € R: a = a™'}. For conveniently,
it can be defined asIn(R) = {a € R:a? = 1}. For example, In(Zg) = {1,3,5,7}, In(Z,,) = {1,9}, and
In(Z,,) ={1,5,7,11}. Consequently, any undefined notions and results of classical involutions are
standard as in [21].
Our next definition provides a considerably more efficient variant of this classical involution of a
finite commutative ring R with unity 1.
Definition 2.1.We say that a Neutrosophic element a + bl of a Neutrosophic ring R(I) is a
Neutrosophic involution if(a + bI)? = 1, where 1 = 1 4 0] is the unity inR(1).
The set of Neutrosophic involutions of R(I) is denoted by Jn(R(I)) with the conditions

1) n(R) € In(RWD))

@ (R(D)) = m(UR)) U In (U(R(I))),

where U(R) and U (R (a )) are units and Neutrosophic units of R and R(I), respectively.

Now we begin our discussion with two simple examples.
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Example 2.2.Neutrosophic involution, by definition, the involutions of the Neutrosophic ring
Z;(D)={a+bl:ab €Z; and I*> =1} is the set In(Z5()) = {1,2,1 — 21,2 — I}, where 12 =1, 22 =
1, (1-2D%=1,and (2-1)%2 = 1.
Example 2.3. Becausel1? =1, 32=1, (1-20)?=1, and (3 —2[)? =1, the involutions of the
Neutrosophic ring Z,(I) ={a+ bl:a,b € Z, and 1* =1} is the set f]n(Z3(I)) ={1,3,1— 21,3 — 2I}.
The above examplespresent the following two confluences of involutions and Neutrosophic
involutions.

(1) (a+b?* =1 in R(I) ifand only if a* =1 in R.

(2) a+ bl is a Neutrosophic involution implies b + al need not be a Neutrosophic involution,

and vice versa.

These two confluences proposed the following necessary and sufficient conditions on a and b for
a + bl is a Neutrosophic involution.
Theorem 2.4. A necessary and sufficient condition for the Neutrosophic element a + bl is a
Neutrosophic involution in R(I) is (a — 2al)? = a?.
Proof. Leta + bl be anonzero element in R(I). Then there exists (a + bI)? in R(I) such that
a + bl be a Neutrosophic involution in R(I) & (a+bl)? =1
© a?+b*1+2abl =1
o a?=1,and b?+2ab =0
o a?=1,and b(b +2a) =0 in R.
Let us starts two cases on the element b in R.
Case 1. Suppose b =0 in R. Then the Neutrosophic form reduces to classical form. This case
concludes that
a + bl be a Neutrosophic involution in R(I) © a? =1,and b =0 in R.
Case 1. Suppose b # 0 in R. Then
a + bl be a Neutrosophic involution in R(I) © a®? =1,and b+2a =0 in R.
Therefore, a? =1, and b = —2a in R. These two conditions confirm that
(a —2al)? =a?,
and clearly a® =1 in R if and only if (—2a)?# 1 in R. Hence, we end up with a —2alas a
Neutrosophic involution in R(I) whenever a is an involution in R. This completes the proof. m
Corollary 2.5. There is no Neutrosophic involution of the form a + bl, b # 0 in R(I) if and only if
char(R) is 2. In other words, IJn(R) = ﬂn(R(I)) if and only if char(R) is 2.
Proof.The widely recognized outcome makes it abundantly clear that
char(R) is 2 —2 ¢ R
& —2al € R(D)
©a—2al € R(D
& (a —2al)? # a® in R().
By the Theorem [2.4 |, we clear that there is no Neutrosophic involution of the form a + bl, b # 0 in

R(I) if and only if char(R) is 2. Hence, we conclude that
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In(R) = jn(R(I)) if and only if char(R) is 2,
because Jn(R) S Jn(R(I))l

The next example establishes the correctness of the above result.

Example 2.6.SinceF, = {0,1,a,1+ a:a®> + a + 1 = 0} is a field of characteristic 2. So, there exists a
Neutrosophic field F,(I)same characteristic 2such that

F,(D)={a+bl:a,b€F, and I*> =1}.
Obviously, In(F,(I)) = In(F,) because (a + b[)?> =1 in F,(I) if and only if b = 0 in F,.

In the classical ring theory, it is well known that Jn(R) € U(R) and U(R) € In(R) for any
finite commutative ring that R with unity, and similar manner, in the theory of Neutrosophic rings,
these subset inclusions are both true, that is, .‘ln(R(I)) cuU (R(I)) and U (R(I)) ¢ jn(R(I)), where
U(R(I)) is the set of Neutrosophic units of R(I). However, ﬂn(R(I)) c U(R(I)) and U(R(I)) c
In(R(I)) are both true, that is, U(R(I)) = In(R(I)) ifanonlyif a+ bl isin U(R(I)) with b # 0.
For example, if b # 0 in a + b, we have U(Zg(I)) can be written as

U(Zg(D) = m(Zs(D) = {1-21,3-61,5—21,7 — 6},
and which is equal to 7n(ZS(I)) because 1—2I, ,3—6I, 5—2I, and 7 —6] are all

b=0’
Neutrosophic involutions with b # 0, that is
In(Zs(),,, = {1-21,3—61,5-21,7 - 6I}.
This illustration supports the following definition.
Definition 2.7.A Neutrosophic involution a + bl in R(I) is called pureNeutrosophic involution if
b # 0.
The set of pure Neutrosophic involutions of R(I) is denoted by of
In(R(D),,, ={a+bl €RU): (a+bD?=a+bl and b # 0}
The following theorem supports this observation.

Theorem 2.8. Let R be a finite commutative ring with unity 1 and let |R| > 2. Then .’]n(R(I)) =
U(R(I)) if and only if a + bl is pure in R(I).
Proof. Because of In(R(I)) € U(R(I)), it is enough to prove that the other subset inclusion
U(R()) € In(R()). For this, we shall show that every Neutrosophic unit is a Neutrosophic
involution. Suppose a + blis pure in R(I). Then there exists ¢ +dI in U (R(I )) such that a + bl #
c+dl and

(a+bD(c+d) =1

Sac+ (bc+bd+ad)l =1

©ac=1 and bc+bd +ad =0

©ac=1and bc+bd +ad +ac =1

Sac=1and (a+b)(c+d)=1

©a=1b=0,c=1 and d =0 in thering R.
Consequently, R = {0,1}, and |R| = 2, which is a contradiction to our hypothesis that|R| > 2. Thus
a+ bl = c+dl is always truein U(R(I)) if and only if b # 0 in R. This implies that

(a+bD)(a+ bl) =1 forevery a+ bl in U(R(I)).

& (a+bI)? =1 forevery a+ bl in U(R(D)).
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& a+ bl € In(R(I)) forevery a+ bl in U(R()).
Therefore, U(R(I)) € In(R(I)) is true in U(R(I)), and hence In(R(I)) = U(R(I)). =
The subsequent description helps us to estimate the cardinality of In(R(I)).
First, we construct two tableswhich are employed Neutrosophic involutions along with the earlier
results.
The first table describes Neutrosophic involutions arising in the cyclic Neutrosophic ring Z,(I)

from n=1 to 10.

n n(z,(D)

1 )

2 {1}

3 {(1L,23u{1-21,2-1}

4 {1,3}u{1-21,3-2I}

5 (1,4} U {1 —21,4—3I}

6 {1,5} U {1 — 21,5 — 41}

7 {1.6}u{1—-21,6—-5I}

8 | {1,3573u{l—21,3—61,5—21,7—6I}
9 (1,8} u{1—21,8—7I}

10 | {1,3,79}u{1-21,3—-61,7—41,9 -8}

We now turn to noncyclic Neutrosophic rings over cyclic rings for determining Neutrosophic rings.
For some positive integer n, there exists finite commutative ring Z,[i] such that

Zylil={z=x+iy:x,y€Z, and i*=-1}
And also for each Z,[i] there exists Neutrosophic ring Z,[i,!] such that

Zyli,ll={z+z'l:z,z’ € Z, [i] and I?> =1}.
It is clear that Z,[i,I] is also non cyclic Neutrosophic ring, because

Zo[i) = Zy +iZ,, and Z,[i, 1] = Z, + iZ, + il Z,,.

Here we notice that |Z,,| =n, 1Z,[i]| = n?and |Z,,[i,I]| = n*, and for more information about Z,[i]
reader refer to [21].Next, the following second table illustrates the Neutrosophic Gaussian

involutions from n =1 to 5.

n In(Z,[i,11)

1 )

2 {1,i}

3 (1,23u{1-21,2 -1}

4 | {1,31+2i,3+2i3u{l—21,3—2[,(1 +2i) — 21, (3 + 2i) — 21}
5 {1,4,2i,3i} U {1 — 21,4 — 31,2i — 4il,3i — il}

By virtueofthe above tables, there are exact powers of 2 Neutrosophic involutionsthat exist inR (1),
these being related to the classical involutions inR. Also, the collection Jn(R(I)) contains a

Neutrosophic element 1 —2I as an element in R(I) if and only if |R| > 2. So, one consequence of
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what has just been observed is that, in those finite commutative Neutrosophic ring R(I) with unity
cases in which a Neutrosophic involution exists, we can now state exactly how many there are.
Theorem 2.9. Letchar(R) # 2. Then i7n(R(1)) = (1 —2D)In(R), where In(R) = {a € R:a? = 1}.
Proof. By the theorem [2.4], it is well known that b = 0 in In(R(I)) if and onlyif a? =1 in In(R)
if and only if In(R) # In(R(I)). Now suppose b # 0 in In(R(I)). Then
In(RMD)={a+bl €RU):(a+bD>=1,b+0 }

={a+bl€R(I):a€In(R),and b+2a=0 }

={a—2al € R(I):a € In(R)}

={a(1—-2I) € R(I):a € In(R)}

=In(R) U (1 — 21)In(R), since In(R) € In(R(I)). =m
The next theorem illustrates an extremely useful enumerating technique for enumerating
Neutrosophic involutions, often used next results. First, we notice that In(R) = ﬂn(R «u )) if and only
if char(R) = 2.
Theorem 2.10. Let char(R) # 2. Then|7n(R(I))| = 2|9n(R)I.
Proof. Let In(R) # 7n(R(I)). Then char(R) # 2 and charR(I) # 2 but char(R) = charR(I). So
there exists an element —2 € R such that —2I € R(I). Therefore, 1 — 2I € R(I), and we have

1-20%=1-2D1—-20)=1—4I+4I =1 in R().
This yields the order |1 — 2I| of the Neutrosophic element 1 — 2 in R(I) is 2. Using .’]n(R(I)) =
In(R)U (1 —20In(R) and also there is a one to one correspondence f:In(R) — (1 — 21)In(R)
defined by the relation

fl@=@0-2Da
for every element a in In(R). So that |In(R)| = [(1 — 2I)In(R)|. Hence

|7n(R(D)| = 17n(R) U (1 — 2DIn(R)|

= [In(R)| + |(1 — 2DIn(R)|, since In(R) N (1 — 21)In(R) = @.
= |In(R)| + |Tn(R)| = 2|9In(R)|. m
Let's apply the aforementioned to a concrete example now.
The cardinalities of In(R) and ﬂn(R (I )) are shown in the following brief table.

Involutions | n=1 2 3 4 5 6 7 8 9 10
l
|7n(Z,)I 0 1 2 2 2 2 2 2
|7 (2, (D)) 0 1 4 4 4 4 4 4
|7n(Z,,[iDI 0 2 2 4 4 4 2 2
|7n(Z,,[i, IDI 0 2 4 8 8 8 4 16 4 16

Let us attention to the fact that, in the above table, it is necessary to stipulate that [Jn(R(D))| <
|7n(S(1))| whenever R is a cyclic ring and S is a noncyclic ring. Further attention depends on finite
fields.Since only finite Neutrosophic fields [F,n(I) of characteristic2 is of even order, and in this

sense the Neutrosophic equation (a + bI)?> = 1 has no Neutrosophic solution in F,n(I), because
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—2 & Fyn(I). In this case In(F,n) = :7n(IF2n (I)). Moreover, since the finite Neutrosophic field F,n(I)
of characteristic p has order p?" for some odd prime pand for some positive integer n. In this
system [F,n(I), the Neutrosophic equation (a + bI)? =1 is solvable and it has Neutrosophic
solutions, because —2 € [F,n (/). This theorem proves that there are an infinite number of solutions to

the quadratic equation(a + bI)*> = 1 over a finite Neutrosophic field of odd order.

Theorem 2.11. Over the finite Neutrosophic field F,(I) corresponding to the odd prime p and the
integer n = 1, the Neutrosophic equation
(a+bD)?=1

has exactly four solutions. In particular, |.7n (]Fpn {u ))| = 4.

Proof. For any odd prime p, there exists field F,» and Neutrosophic field F,»(I) of odd orders p™
and p*", respectively. Classically, you always the equation a? = 1 exists F,» and is also factorable,
like
(a-=1D@+1)=0

in Fpn. Since F,n is a field with no zero divisors, we must have a = +1. Thus, In(F,») = {1,-1}.
Further, since —2 € F,n(I), there exists a Neutrosophic element 1 — 2I in F,n(I) such that

1-2D%=1
in F,n(I). Using the Theorem [2.4],

I (FEn () = In(Fpn) U (1 = 2D)3n(Fyn)

{1,-13u (1-2D{1,-1}
{1,-1,1-(1-2I),-1-(1 -2}
{1,-1,1—2I, -1+ 2I}.

Hence, |7n (IFpn([))| =4 n

Further on the total number of Neutrosophic involutions to the R(I) over R we have the

subsequent result.
Theorem 2.12.Neutrosophic involutions to the ring R(I) over the finite commutative R with unity
1 come in multiple of four.
Proof.LetR be any finite commutative with unity 1 and let cha(R) # 2. Then there exists at least
two involutions in R, namely unity u and its additive inverse -u whenever u? = 1.This means
that the least number of involutions in a finite commutative ring R with unity 1 is two if and only if
cha(R) # 2. Consequently,

In(R) = (u,—uw:u? =1 in R),
and similarly

1-2DIn(R) ={(1-2Du,—(1—2Du:u*=1 in R).

Therefore,
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[Tn(R)| = [{u,—w:u? = 1) = 2,and |(1 —2DIn(R)| = {(1 — 2Du,—(1 —2Du:u? = 1)| = 2.
By the Theorem [2.4 ] the structure ﬂn(R(I)) can be written as

In(R(D) = In(R) U (1 — 21)In(R)

=(u—wu*=1u{1-2Duy, -1 -2Du:u?® =1).

This shows that |7n(R(I))| > (2)(2) =4, and also |17n(R(I))| = 2|9n(R)|. Hence, Neutrosophic
involutions to the Neutrosophic ring R(I) over the finite commutative R with unity 1 comes in
multiple of four. m
Corollary 2.13. The least number of Neutrosophic involutions ofR (I)is four if and only if cha(R) #
2.
Proof. This is easily understood based on a common observation.For any R(I )Withchar(R u )) * 2,
you always have the four Neutrosophic involutionsu,—u, (1 —2u and —(1 —2I)u whenever

u? = 1lin R, and viceversa. m

3. Neutrosophic Involutions of R(I) x S(I)

In this section, we give some procedures of the determination of Neutrosophic involutions of
R(I) x S(I) along with the involutions ofR x S. It is well known that if R and S are commutative
rings with unity, then their Cartesian product R X S of R and S is also commutative rig with unity
under the usual component-wise addition and component-wise multiplication. So for each
systemR X S, there exists a Neutrosophic system R(I) x S(I) such that
RU) xS ={(a+bl,c+dl):a+bl €R(U),c+dl €SU)}

which is a commutative Neutrosophic ring with unity (1,1) under the component-wise
Neutrosophic addition and Neutrosophic multiplication.

The following basic result associates the set of Neutrosophic involutions of R(I) X S(I) to
Neutrosophic involutions of R(I) andS(I), and this association depends on component-wise
Neutrosophic multiplication.

Theorem 3.1. Let R and S be commutative rigs with the same unity 1. Then
In(R() x S()) = In(RD)) x In(SD)).
Proof. It is sufficient to prove that a Neutrosophic element of (a + bl,c +dI) inof R() xS(I) isa
Neutrosophic involution if and only if of a + bl is a Neutrosophic involution in of R(I), and of
¢ +dI is a Neutrosophic involution in of S(I). Indeed,
(a+bl,c+dD?>?=1,1) e (a+bl,c+d)(a+bl,c+dl)=(1,1)
& ((a+bD?, (c+dD?) = (1,1)
o (@a+bD?*=1and ((c+dD?) =1
e a+bl €(R(I)) and ¢ +dl € In(S(1)). m
The next example presents one to one corresponding involution behavior between
In(R() x S()) and In(R()) x In(S(I)) for computing their corresponding cardinalities.
Example 3.2. Consider the Neutrosophic involution structures ﬂn(Z +(D)xZg( )) and?n(Z L1 )) X
In(Zg(I)), where
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Jn(Z4(I) X Zs(I)) ={(1,1),1,7,11-2n,1,7-6D,33,1),(3,7),31-2D,3,7-6D),(1 - 21,1),(1 -
21,7),1-211-2D,(1-21,7-61),3—-21,1),3—-21,7),3—-21,1—-20),(3—-21,7— 6l)},and
In(Z,(D) x In(Zz(D) ={1, 3, 1-213 -2} x{1, 7,1—21,7—6I}
={(1,D,1,7,1,1-2D,(1,7-6D,3,1),37),3,1-2,3,7—-6I),
(1 —21,1),(1—21,7),(1 — 21,1 —=2I),(1 — 21,7 — 61),(3 — 21, 1),
(3—21,7),(3—21,1—2D),(3— 21,7 — 6D}

Let m and n be any two positive integers greater 1. Then Z,, X Z,, is a commutative ring
with unity. So the following statement associates the set of involutions of Z,, X Z,to involutions of
ZnpandZ,. In the light of this basic argument, the following theorem is necessary and the proof is
clear.

(a,b) €eIn(Z,, X Z,,) © a € In(Z,,,) and b € In(Z,).
Now the following result of the immediate consequence of the above statement.
Theorem 3.3. Let m and n be any two positive integers greater 1. Then
|71(Z,,, (D) x Z,,(D)| = |1 (Z,n, (D) ||I(Z,,(D)].
Proof. Define amap f: In(Z,,(I) x Z,()) » In(Z,, (1)) x In(Z, (1)) by the relation
f(@@+blc+dD) = {((1 - 21)(28 - lzj;)f) (z}db :O,d #0
Let us suppose b =0 and d = 0. Then there is nothing to prove because the map f: n(Z,,(I) x
Z,(D) » In(Z,, (D) x In(Z, (1)) is trivially a Neutrosophic ring isomorphism. Now we can prove
that this for the case b # 0 and d # 0.
f isone toone. Let (a+ bl,c+dI), (a'+b'l,c' +d'I) € ﬂn(Zm(I) X Zn(I)). Then

f(a+blc+dD)=f((a +b'l,c' +d' D)= (A1-2Da (1 -20c)=(1-2Da’,(1 -

20)c’)
>1-2Da=0-2Dd, 1-2Dc=1-2Dc
>a—2al =a —2ad'l, c—2cl =c" —2c']
2>a+bl=a+Db'l, c+dl=c"+dI,

where b = —2a, b’ = —2a’, d = —2¢, and d' = —2c’. So, the map f is one to one.

f is onto.The range of the function f: ﬂn(Zm nHxz, (I)) - .‘]n(Zm (I)) X .‘]n(Zn (I)) is defined by
f (jn(zm(l) x Zn(l))) ={f((a+bl,c+dD): (a+bl,c +dl) € (Zu() X Z, (D)}

={f((a+bl,c+dD):(a +bl,c+dI) € In(Z,(I) x Z,(D)}
= {((1 —2Da, (1 - ZI)C): a€In(Z,),ce Jn(Zn)}
={(1-2Da:a € In(Z,)}x{(1 —2N)c:c € In(Z,)}
= In(Z,) U (1 = 2DIn(Z,,) x n(Z,) U (1 — 2D)In(Z,)
= In(Z,,(D) x In(Z, (D)),
where  In(Z,,(D)) = In(Z,) U (1 —2DIn(Z,) and  In(Z,()) = In(Z,) U (1 — 2)In(Z,)

Consequently the map f is onto.
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f is a Neutrosophic ring isomorphism. For this let a = (a + bl,c +dI), f =(a' +b'l,c' +d']) €
In(Z,, (1) x Z, (D)), then
fla+pB) =f(la+bl,c+d)+(a +b'l,c"+dI))

=f((@+a)+ G +b)(c+c)+(d+d)D))

=(A-2D(a+a),(1-2D(c+c")
=(1-2Da+ (1 -2Da’,(1 =2Dc+ (1-20c")
=((1-2Da,(1—2Nc) +((1—2Da’,(1 —2)c")

=f(a+blc+dD)+ f(@ +b'Lc'+d'D)=f(a) + f(B),
and similarly we can show that

flap) = f(a)f(B) forevery a and S in ﬂn(Zm(I) X Zn(I)).
Thus the map f is a Neutrosophic ring isomorphism from In(Z,,(I) X Z,(I)) onto the In(Z,,(I)) x
In(Z,(D) with f(1,1) = (1 — 21,1 — 2I), and hence

I(Zp (D) % Z, (D) = In(Z, (D) x In(Z,, (D).
This identity implies that

|T(Zn (D % Z,(D)| = |7n(Z,, (D) ||7n(Z,(D)]. =

4.Diagonal Property of Neutrosophic Elements in R(I)

This section introduces the diagonal property of finite commutative Neutrosophicrings.First of all
we have, for any finite commutative Neutrosophic ring R(I) with unity, there exists a multiplicative
composition table of all elements of R(I), and this table is associated to one to one correspondence of
the matrix network R(I) X R(I) with the size |R(I)| X |R(I)|. Classically, it is well known that there
is an element 1 at the position of the entry (a,b) in the composition table of R. Then obviously
ab=1=ba in R. So automatically there a connection between 1s in R and entries of the
composition table of R, see [22,23 ].Here, we can establish same theory on to Neutrosophic rings.
Definition 4.1.A Neutrosophic ring R(I) with unity 1 has diagonal property if all 1s appeared in
the main diagonal of the composition table of R(I).

In [ 23],the author Sunil proved the following necessary and sufficient condition for 1s appeared in
the main diagonal of the composition table of Z,, and divisors of 24.

Theorem 4.2.[23].The multiplication table for the cyclic ring Z, contains 1s only on the diagonal of
the multiplicative composition table of Z, if and only if n is a divisor of 24.

Consequently, this result also obviously true in Neutrosophic rings, that is it can be stated as follows.
Theorem 4.3. The multiplication table for the Neutrosophic cyclic ring Z, (I) contains 1s only on
the diagonal of the multiplicative composition table if and only if n is a divisor of 24.
Subsequently, if n is not a divisor of 24, then the above results are not true. For example, n is 5
which is not a divisor of 24, then there exists a Neutrosophic ring Z;(I) = {a + bl:a,b € Zs; I* =
I}, which does not satisfies diagonal property, because (2 + 0/)(3 + 0I) = 6 + 0 = 1 under modulo
5. This failure concept concludes that the conditionb = Oexists in the form a + bI. However, all

elements of Neutrosophic system Zg(I) ={a+ bl:a,b € Zs; 1> =1} is also satisfies diagonal
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property whenever b # 0 in the forma + bl, and this success illustrates the following Neutrosophic
composition table for Zs(I)withb # 0.

Forb # 0, the pure Neutrosophic involutions ofZ;(I) can be written as

(2s(1), ., = T (U(Zs(D)) - (U (2s)) = (1 — 21,4 - 31}.

Os 1-21 43I
1-2I 1 4
43I 4 1

Consequently the following result is more eminent for satisfying diagonal property of
anyNeutrosophic ringR(I).
Theorem 4.5. The multiplication table for Neutrosophic units U(R(I))—U(R) ={a + bl €
R(I):a,b € R,and b # 0} of any finite commutative Neutrosophic ringR(I) contains 1s only on
the diagonal of the multiplicative composition table if and only if char(R) # 2.
Proof. It is clear by theTheorem [2.8],we have

In(R(D) = U(R(D)) if and only if a + bI isin U(R(I)) with b # 0.

In(R()) = U(R(D)) if and only if a + bI is a pure Neutrosophic involutions of R(I).
Hence, the number of 1s appear on the principal diagonal of the table of

UR(D) ={a+bl €R(I):a,b ER,and b=+ 0}

is equal to 2* for some integer k > 1, because the cardinality of U(R(I)) ={a+ bl € R(I):a,b €

R,and b # 0} is even and it is greater than or equal to the power of2. m

5. Conclusions

In this paper, we have analytically studied Neutrosophic involutory behavior of the Neutrosophic
elements of the finite commutative Neutrosophic ring R(I). A necessary and sufficient for the
Neutrosophic elementa + bl being a Neutrosophic involution has been obtained. From this criterion
we have developed a general procedure to enumerate Neutrosophic involutions of the form a + bl
over R(I) from given classical involutions over the corresponding finite commutative ring R. The
proposed technique can be used to determine more desired Neutrosophic involutions of R(1).

6. Future Work

A Neutrosophic involution over a finite commutative Neutrosophic ring R(I) is an element
property whose multiplicative inverse is itself. Owing to this property, we will prepare and produce
techniques for enumerating Neutrosophic involutions which are applied in Computational systems
like the XOR bitwise operations with a given value for one parameter with indeterminate, and
develop RC4 cryptographic ciphers, further we will use these Neutrosophic involutions for studying
liminalities and minimalities of Reversible Rings.
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Abstract:

Analysis using simulation is a natural and logical extension of the analytical and
mathematical models inherent in operations research. Simulation has become a modern tool
that helps in studying many systems that we could not study or predict the results that we
could obtain during the operation of these systems over time before the existence of
Simulation, since the main interest in statistical analysis is to obtain a series of random
variables that follow the probability distribution in which the system under study operates,
through a series of random numbers that follow a uniform distribution over the domain [0,
1], using scientific methods provided by the efforts of researchers. In the field of modeling
and simulation, such as the reverse transformation method, the rejection and acceptance
method, and other methods that we have reformulated using the concepts of neutrosophic
science in previous research. In summary of what we have done previously, we present in
this research a study whose purpose is to generate random variables that follow the beta
distribution, which is used in many applications. In administrative processes, especially in
analyzing network diagrams using the neutrosophic rejection and acceptance method.
Keywords: modeling and simulation; neutrosophic science; rejection and acceptance
method for generating neutrosophic random variables; neutrosophic uniform distribution;
neutrosophic random numbers; Neutrosophic beta distribution.

Introduction:

Operations research has provided many scientific methods that have contributed to the great
scientific development witnessed in our contemporary world. The importance of these
methods increases when they are reformulated using the concepts of neutrosophic science,
the science that relies on neutrosophic data that leaves nothing to chance and takes into
account all the circumstances and fluctuations facing decision makers. Therefore,
researchers have presented many Among the researches through which some operations
research methods were reformulated using the concepts and information presented by the
founder of this science, we mention [1-18]. Neutrosophic statistical studies are an extension
of traditional statistical studies, as they depend on neutrosophic data, which are groups
where any a value such as a in a group denoted by a, which means (a neutrosophic), (a
imprecise), or (a non-specific). ay may be a neighbor of a or an interval containing a, and
in general it can be considered any set close to a. See [19].

In any probability distribution, if there is a quantity that contains some indeterminacy, then
this distribution is a neutrosophic probability distribution. Therefore, the random numbers
and random variables that we obtain based on this probability distribution are neutrosophic
random numbers and random variables. See [20].
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Discussion:

Probability distributions are the mainstay of the simulation process. Therefore, the interest
of researchers and scholars interested in the simulation method has focused on providing
scientific studies that help in obtaining random variables that follow the probability
distributions most used in practical applications. In classical studies, we find many
algorithms that are concerned with transforming random numbers that follow a uniform
distribution into The domain [1, O] refers to the probability distribution with which the
system to be simulated operates, and based on this importance of probability distributions
and after the emergence of neuroscientific science, which paid great attention to probability
distributions, many probability distributions were reformulated using the concepts of this
science, and we presented in previous research how Generating neutrosophic random
numbers and methods for converting these numbers into neutrosophic random variables
that follow the exponential distribution and others that follow the uniform distribution using
the inverse transformation method, which was reformulated using the concepts of
neutrosophic science [21-23]. In this research, and given the importance of the beta
distribution, we present a study whose goal is to use the method Neutrosophic rejection and
acceptance, which was presented in the paper [24], to generate neutrosophic random
variables that follow the beta distribution, which is defined using classical values as the
following probability density function:

I'a+p)
r(a)T ()

Where a and B are the medians used to define this distributionand ¢ > 0, g > 0

flx) = x*11-x)F1 ; 0<x<1 (1

The symbol I'(c) is the value of the integral (gamma), defined by the following
relationship:

I'(c) =f xle*dx
0

The beta distribution curve takes many shapes depending on the values of a and g and we
can be classified into three types:

1- Pessimistic curve in this case is ¢ > 8
2- Symmetrical curve a = 8
3- Optimistic curve a < 8

As in the following figures:
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Neutrosophic function: [25]
The neutrosophic function f: A — B is a function that has some indeterminacy, taking into
account the definition of its domain, its corresponding domain, and the relationship
between the elements of the domain and the elements of the corresponding domain.
If a, B, or both of them carry some indeterminacy, that is, they take one or the other
Where a, and B, are neutrosophic values written as follows:
Pn=F+6say=a+ ¢
Where ¢ is an indeterminacy and takes one form ¢ € {1,,1,} or € € [A4,4, ] or other
than that.
Where § is an indeterminacy and takes one form & € {u, ,u,} or & € [y, u, | or other
than that.
Then we obtain the neutrosophic beta distribution, which has a probability density function
given by the following formula:
Fx) = T'(ay + By)

T'(an)T(By)
Based on what has been reported about this beta distribution in classical studies, we can
present these neutrosophic types of beta distribution: [24]
The graphic curve of the beta neutrosophic distribution takes many shapes depending on
the values of ay and S, and can be classified into three types:

1- Pessimistic curve in this case is ay > By

2- Symmetrical curve ay = By

3- Optimistic curve ay < By
Generating random variables that follow a beta distribution:

xW1(1—x)At s 0<x<1 (2)
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We know that the process of neutrosophic simulation depends on generating neutrosophic
random numbers that follow the regular neutrosophic distribution and then converting these
random numbers into random variables that follow the probability distribution with which
the system to be simulated operates. There are several methods that can be used for the
conversion process, including we mentioned in previous research the inverse
transformation method and the rejection method. And acceptance [21-23], where the
appropriate method is used for the probability density function because in the inverse
transformation method we need the inverse function of the cumulative distribution function.
As we know, in many functions, the inverse function does not exist or obtaining it requires
complex operations. Here we resort to the method Rejection and acceptance. As is clear
from relationship (1), it is not easy to obtain the inverse function of the probability density
function for the beta distribution. Therefore, we will use the inverse transformation method
and apply it to the beta distribution according to the following algorithms:

Rejection and acceptance algorithm: [23,24]
We calculate My, the maximum value taken by the probability density function over its
defined domain, and we obtain it by calculating the derivative of this function and setting it
equal to zero, i.e.:
dfy(x)
My = dx
x=0
And in simplified form, we define the derivative of the neutrosophic function as follows
[24]:

@) = li linf f(x +h) —inf f(x)supf(x + h) — sup f(x)]
fu(x) = lim A

This is a generalization of the traditional derivative definition, where the function and
variables are conventional. It can be written as:

linf H,sup H] = h
inf (x+ H) =sup(x+H) = f(x+h)
inf f(x) =sup f(x) = f(x)

Here, H is a closed, open, half-closed, or half-open interval.

By applying the above definition to the function defined by the relationship (2), we obtain:
f/(x) =c.(ay — Dx=2(1 —x)Av=1 — c(By — Dx*N=1(1 — x)Pv—2

To find the solution, we set the derivative equal to zero:

() =c.(ay — DxN2(1 — x)Pv-1 — c(By — Dx"1(1 —x)Pv-2 =0
In short, by finding the common limits, we get:

Ne=—2"1 _ed 3
x_aN+,BN—2_mO 3)
This value of x corresponds to the maximum value of the function, and therefore:
CZN - 1
My=———
N ay + By — 2
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After obtaining the values of ay and By and substituting them into equations (2) and (3),
we apply the following algorithm:

1. Generate two random numbers, R;and R, following a uniform distribution in the
range [0, 1]. We use the method of squaring the average to generate the random
numbers R, and R, as follows [24,25]:

Riy1 = Mid[R?] ;i=012,——— — (4)
where, Mid refers to the middle four digits of RF and R, is an initial random number
consisting of four digits (called the seed) that doesn't contain zero in any of its four digits.

2. Convert the numbers R; and R, into neutrosophic function random numbers. To
convert random numbers following a uniform distribution into neutrosophic
random numbers, we follow the method introduced in [22], where three forms of
neutrosophic random numbers are distinguished based on the uncertainty associated
with the range [0, 1]:

a. Form 1: Uncertainty in the lower limit, i.e., [0+ €,1]. where, each classical
random number is mapped to a neutrosophic function random number using the
following relationship:

Ry—¢ [Ry, Ry —n] Ry —n

1—¢  [1,1-n] €[Rog 7]

b. Form 2: Uncertainty in the upper limit, i.e., [0,1+ &]. where, each classical
random number is mapped to a neutrosophic function random number using the
following relationship:

NRO=

NRy = —0_ - Ro € [Ry,—=]
7 14e [1, n+1] “'n+1
c. Form 3: Uncertainty in both upper and lower limits, i.e. [0,1 + €]. where, each
classical random number is mapped to a neutrosophic function random number
using the following relationship:
NRO =R0 —€E [ROIRO _n]
In the three previous forms, we have e € [0,n] and 0< n<1.
In this study, we will use the third form: non-deterministic in the upper and lower bounds,
ie., [0+¢&,1+ &]. Here, we associate each classical random number with a non-
deterministic random number using the following relationship:
NRO :RO —€E [ROJRO _n]
Wheree € [0,n] and 0< n<1

3. We take one of the two numbers, let it be NR, , and transform it appropriately for
the uniform distribution. We know that when the boundaries of the domain are
neutrosophic values, we apply the following [22] for the upper and lower limits of
the domain:

[b+¢,a+¢€],wherea=ay=a + candby =b+¢,ande € [0,n] and a <
n < b.

We use the following relationship:

Nx; =(b—a)NR, +a
4. We test whether NR,satisfies the inequality:
f(NR,)
)

NR, <
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That is,

fn(NRy) — T(a)T(B)
My — T(a+p)

5. If the inequality (5) is satisfied, then we accept that Nx; = NR,follows the Beta
distribution defined by equation (1).

NR, <

(NR)*™ 11— (NRy)Pv-1]

6. If NR, does not satisfy the inequality (5), then we reject the two numbers
NR;  NRjand return to the first step to generate new random numbers.

We explain the above through the following example:
Example 1:

We have a system that operates according to the beta function defined by the following
probability density function:
r(1o0)

—r(3)r(7)x2(1_x)6 ; 0<x<1

fx) =

Thatis,a=3and =7

What is required is to generate random variables that follow this distribution. In this
example, we will take the beta function in the classical form and neutrosophic random
numbers:

We apply the rejection and acceptance algorithm according to the previously mentioned
steps:

1. We calculate the largest value of the density function over its defined field from the
following relationship:

_ a—1

Ca+p-2
We find:

3—-1 2 1

M=3i7-278" 1
2. We use the method of squaring to generate two random numbers that follow the

uniform distribution over the domain [0, 1]. We take the seed Ry = 0.1273 and
obtain the following random numbers:

R, = 0.6205 ,R, =0.5020

3. We convert the classical random numbers to random numbers that follow the non-
deterministic uniform distribution over the domain [0+ ¢, 1+ ¢]. We take the non-
deterministic bounds £ € [0 ,0.02]and obtain the following neutrosophic non-
deterministic random numbers:

NR, =R, —€ € [R;,R; — 0.02]
NR; =R, —e=0.6205—[0,0.02] = [0.6205,0.6005] = NR; € [0.6205,0.6005]
NR, =R, —€ € [R,,R, — 0.02]
NR, =R, —&g=0.5020—[0 ,0.02] = [0.5020,0.482] = NR, € [0.5020,0.482]
4. We take one of the numbers and form an appropriate transformation for the uniform
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distribution over the domain [0, 1] . Here, since the distribution is defined over the
domain [0,1], we take one of the non-deterministic random numbers, let's say
NR; € [0.6205,0.6005], and calculate the value of the probability density
function at that point:

r(o 5 6
f(NR,) = m ([0.6205,0.6005])“(1 — ([0.6205,0.6005]))
We know that if n is a positive integer, then (n + 1) = n! , therefore:

r(1o) _ 9!
r(3)r(7) 2'e!
f(NR,) € (252 % [0.385,0.3606] x [0.003,0.0041]) = [0.2911,0.3726]
1. We test the inequality (5) and for this, we calculate:
NR 0.2911,0.3726
f(VRY) | I_ [1.1644,1.4904]

M S 025
We have NR, € [0.5020,0.482]. We note that:

[0.5020,0.482] < [1.1644,1.4904]
Therefore, inequality (5) is satisfied, i.e.:

f(NRy)

= 252

NR, <

Here we accept that N(R,) € [1.1644,1.4904]follows the beta distribution given in
the example.
Generating random numbers following the neutrosophic beta distribution from
classical random numbers:
Example 2: We have a system that operates according to the beta function defined
by the neutrosophic probability density function as in the following relationship:
Flx) = T'(ay + By)
T'(ap)T(By)
ayand Sy are neutrosophic values of the form ay =a+¢ ,fy =B + 8, which are
adjacent to the real values @« = 3 and § = 7.
Where ¢ and & are the indeterminacy in these values. We take them in this example as
follows: € € [A,4,]1=1[0,0.2]and § € [uy, u,] =[0,0.1] we get ay €[3,3.2] and
By € [7,7.1] then the probability density function is written as follows:
— F([lo ’ 10.3 ]) 2,2.2 6,6.2 .
WO = tEaaprar rap A 0eet s 0sxs1
What is required is to generate random numbers that follow the previous distribution, based
on classical random numbers. We apply the rejection and acceptance algorithm according
to the steps mentioned previously, and as we did in Example 1, we obtain what is required.
Example 3: We have a system that operates according to the beta function defined by the
neutrosophic probability density function as in the following relationship:
Fx) = I'(ay + By)
I'(an)T(By)
ayand fSyare neutrosophic values of the form ay =a+¢ , By = B + &, which are
adjacent to the real valuesa = 3,8 = 7.
And & and & are the indeterminacy in these values. We take them in this example as
follows: ¢ € [A;,4,]1=1[0,0.2]and & € [us, ;] =10,0.1] we get ay € [3,3.2] and
By € [7,7.1] then the probability density function is written as follows:
r{10,10.3])
&) = wm a2 D, 74D

xWN"1(1—x)A1 s 0<x<1

xWN1(1—x)1 , 0<x<1

x2221(1 —x)l662] . o<x <1
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What is required is to generate random numbers that follow the previous distribution, based
on neutrosophic random numbers. We apply the rejection and acceptance algorithm
according to the steps mentioned previously, and as we did in Example 1, we obtain what is
required.
The difference between the second and third examples:
In the second example, we generate random numbers that follow a uniform distribution
over the domain [0, 1]using the mean square method. For example, we take the seed R, =
0.1273 from the relationship (3), which is:

R, =0.6205 ,R, = 0.5020
Then we use the two numbers to implement the rejection and acceptance algorithm, as we
did in the first example.
In the third example, we generate two random numbers that follow a uniform distribution
over the domain [0, 1]using the mean square method. For example, we take the seed R, =
0.1273 from the relationship (3), which is:

R; = 0.6205 ,R, =0.5020
Then we transform them into two random numbers that follow the uniform neutrosophic
distribution over the domain[0 + €, 1 + &]. We take the indeterminacy € € [0 ,0.02]. We
get the following two-neutrosophic random numbers:

NR, € [0.6205,0.6005] , NR, € [0.5020,0.482]

Then we use two-neutrosophic random numbers to implement the rejection and acceptance
algorithm, as we did in the first example.

Conclusion and results:

In order to obtain more accurate results and enjoy a margin of freedom when simulating
systems that operate according to the beta distribution, which is one of the important
distributions that has many uses in many fields, we presented in this research a study
through which we are able to obtain neutrosophic random variables that follow this
distribution, using neutrosophic rejection and acceptance method. Thanks to the
indeterminacy of neutrosophic values, we are able to provide simulation results suitable for
all circumstances and achieve the desired goal for decision makers.
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Abstract

The normal distribution has been extensively been used in the statistical inference and decision
making problems. One of the main assumptions of the existing tests in classical statistics is that the
data should be from normally distributed population.Shapiro- Wilk test is widely used to test the
normality of data when the observations are precise or exact in nature. But in many areas including
agriculture, engineering and reliability, the data may be in interval form, indeterminate form or
uncertain. In such cases, the existed Classical Shapiro- Wilk test fails to test the normality of data.
In this paper, we proposed the Shapiro- Wilk test under neutrosophic environment to check whether
the uncertain data is from neutrosophic normal distribution or not. The hypothesis testing process
is executed on the observations based on lifetime of batteries. The comparative analysis has been
done with the existed Shapiro- Wilk test.The comparison shows that the proposed test is efficacious,

appropriate and well-suited to be applied in scenarios involving indeterminacy.

Keywords: Neutrosophic Statistics, Shapiro- Wilk Test, Neutrosophic Normal Distribution,

Classical Statistics, Hypothesis Testing.
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1. Introduction

Now a day, inferential statistics have been used commonly in all fields of the research to test the
hypotheses and making predictions on the bases of data. The statistical tests in inferential statistics
have common assumption about data that it should be taken from a population following a specific
distribution. It is a crucial assumption for the selection of relevant test. The distribution from which
the sample has been taken is always unknown in advance. In classical statistics, there are two ways
to check the distribution of the data. First is graphical approach in which the graphs are formed on
the bases of given data. Another strategy that yields more trustworthy and superior results is
“goodness of fit”. These tests used the “cumulative distribution function” of the fitted or underlying
distribution. For the testing of the assumption that the data follows the generalized Pareto
distribution or not, Anderson- Darling test proposed by Arshad et al. [1]. Various tests, most notably
"goodness-of-fit," are used to determine whether the sample has been taken from a specific
distribution. The most commonly used “goodness-of-fit” tests are; Jarque—Bera [2-3], Kolmogorov—
Smirnov [4-5], Lilliefors [6], “Pearson's chi-square” [7], “Cramer—von Mises” [8-9], D'Agostino-
Pearson [10] and Anderson-Darling [11-12]. Aslam [13] proposed a new test of “goodness of fit”
under the presence of neutrosophic parameters. Ahsan-ul-Hagq [14] discussed the Cramer—von Mises
test under uncertainty. Smarandache [15] proposed a generalisation of fuzzy logic known as
neutrosophic logic. The advantages of neutrosophic logic over fuzzy logic and interval-based analysis
were shown by Smarandache and Khalid [16].The more literature, related articles and books on the
neutrosophic statistics can be view in [17-18]. Shapiro [19] proposed the Shapiro-Wilk test for
checking the assumption of normality. Nornadiah and Yap [20] proved that the Shapiro-Wilk test is
most powerful normality test as comparison to the Kolmogorov-Smirnov test, Lilliefors test and
Anderson—Darling test.Jeyaraman et al. [21] defined the neutrosophic norms and made some finding
regarding the respective categories. Uma and Nandhitha[22] determined the Quick Switching System
using the Neutrosophic Poisson distribution and compared with the Fuzzy Poisson distribution by

means of Operating Characteristic (OC) curves. Dey and Ray[23] investigated some properties of the
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redefined neutrosophic composite relations. Utilizing the principles of neutrosophic science, Jdid and
Smarandache [24]reformulated the Lagrangian multiplier technique originally designed for

nonlinear models constrained by equality.

Under uncertainty, the existed Classical Shapiro- Wilk test is failed to test the normality assumption.
Here, we proposed the Shapiro-Wilk test under neutrosophic environment to check whether the
uncertain data is from neutrosophic normal distribution or not. We discussed the hypothesis testing
procedure on lifetime of batteries. The comparative analysis has been done with the existed Shapiro-
Wilk test.

2. Preliminaries

Let us consider Ay = A; + A,Dy are the neutrosophic numbers, such that Dy € [D;,D,] is an
indeterminacy interval, follows that neutrosophic normal distribution (NND) [17-18]with the
neutrosophic mean uy = y; + p, Dy ; Dy € [D;, D,] and neutrosophic variance o = o2 + 02Dy ;Dy €

[D;, D). The “probability density function” of the NND is given by

_ (An-pn)?
201%

1
fulaw) = =ewn J stan € o ) 0 € (07,021 Dy € [D1 D] )

The NND given by equation (1) is the generalized version of existed normal distribution. NND will

reduce to the classical normal distribution if the D, = 0.
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3. Shapiro- Wilk Test Under Neutrosophic Statistics (NSW)

The Shapiro- Wilk (SW) test is a frequently used test in classical statistics to access the normality of
the data. Here, we extend the SW test under the neutrosophic environment. We'll go over the
algorithm for determining whether the given data follows the NND or not. The neutrosophic
parameters of NND are assumed to be unknown and estimated from the given neutrosophic data in
order to develop the proposed test. When compared to the traditional SW test, the proposed test
will produce the results in terms of interval of indeterminacy. The assumptions of the NSW test are
that the data should consist neutrosophic observations and observations should be independent of
each other. The null and alternative hypothesis for the NSW test is:

Hyy: The data has been taken from the NND.

H,y: The data has not been from the NND.

The intended application procedure for the neutrosophic Shapiro-Wilks test is outlined as follows:

Step 1: Find the mean of neutrosophic observations Ay where i =1,2,..., ni.e.

_— 1
Ay =~ Lic1Awn @)

Step 2: Find the Neutrosophic Sum of Squares (NSS) by subtracting the neutrosophic mean value
from neutrosophic observations then squaring and summing the obtained neutrosophic values as

given below:

—\2
NSS = ¥ (Agw — Aww) 3)

Step 3: Now calculatedgyas given below

2
In = (Z?=1 Wi(A(n+1—i)1v - A(i)N)) 4)

where w; weights taken from Shapiro-Wilk Table [19].
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Ay is the ith smallest neutrosophic number or ith neutrosophic order statistic. The median value is

not included if n is odd.
Step 4: Compute the value of test statistic for NSW is given by

2
(B wilAme1—pn—A@N))

WN 2
Y (Awn—An)

; Wy € [W,, W,] andDy € [D;, D, ] 5)

Collect the data

v

Compute Wy, € [W;, W, ] and
choose significance level 0.05.

Data is from NND Yes Wy < Critical No Data is not from
population value NND population

Figure 1. Testing procedure of NSW test

From the Shapiro-Wilks table, we choose the critical value corresponding to significance level a. The
null hypothesis, which assumes that the data conforms to theNND, is considered valid if the
calculated Shapiro-Wilk test statistic (Wy) lies within the range of critical values. Otherwise, we can
conclude that the data do not conforms the NND
4. Application

In this section, we will delve into the implementation of the suggested test by utilizing data of
life-span of batteries in which the life time is observed for twenty-three batteries. This data set was
utilized by [13]. In practice, the failure time of the batteries cannot be measured precisely becauseit's

tough to know exactly when they'll stop working.But it can be measured in neutrosophic form. The

lifetime in 100h of twenty-three batteries are given below:
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Table 1. The failure time of 23 batteries (in 100h)

2.9,3.99 5.24,7.2 6.56,9.02 7.14,9.82 11.6,15.96 12.14,16.69  12.65,17.4 13.24,18.21
13.67,18.79  13.88,19.09  15.64,21.51 17.0523.45 17.4,23.93 17.8,24.48 19.01,26.14  19.34,26.59

23.13,31.81  23.34,32.09 26.07,35.84 30.29,41.65 43.97,60.46  48.09,66.13  73.48,98.04

The engineers make some claim that the average failure time of the batteries is somewhere 3000
hours. For this they need to access whether the data has been taken from normally distributed
population or not. From table 1, the data is in interval form that is indeterministic in nature. Hence,
it is not possible to use the SW Test under classical statistics. Therefore, we use here proposed NSW
to check the normality of data.

Hyn: The sample of batteries came from the neutrosophic Normal distribution.

H,n: The sample of batteries do not come from the neutrosophic Normal distribution.

Step 1:the mean of neutrosophic observations given in table 1 is

n

1 1

A(l)N = EZA(L')N = §(473.63,647.66)
i=1

Step 2:By equation (3), theNeutrosophic Sum of Squares (NSS)is given by

Y (A — Am)” = (6912.268,11460.13)

Step 3:The value of sample size (n) = 23 which is odd. From Shapiro-Wilk Table [19], the weightsw;
values corresponding to n =23 are 0.4542, 0.3126, 0.2563, 0.2139, 0.1787, 0.1480, 0.1201, 0.0941, 0.0696,

0.0459, 0.0228, 0.0000.

2
(I, wi(Amsron — Aaw)) = (3736.699,9183.037)

Step 4:The value of test statistic for NSW is given by

_ (3736.699,9183.037)
N~ (6912.268,11460.13)

Wy = (0.540589,0.801303) where W, = 0.540589, W, = 0.801303
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We found that the critical value corresponding to n = 23 and significance level 0.01 is
(0.881,0.881). Since Wy < (0.881,0.881), for the lifetime of batteries data. Hence it can be

concluded that the lifetime of batteries follows the NND.

5. Comparative Study & Discussion

In this analysis, we compared the effectiveness of the provided NSW test with the traditional

SW test. When working with data characterized by imprecise, uncertain, or ambiguous observations,

the suggested test demonstrates greater efficiency by delivering outcomes in the form of

indeterminacy.The obtained value of NSWtest statistic is Wy € (0.5406,0.8013). It can be written as

Wy = 0.5406 + 0.8013Dy ; Dy € [0,0.3254]. The critical value of neutrosophic Shapiro-Wilk Test is

(0.881,0.881) at 0.01significance level. Here the value 0.5406 represents the value of Classical Shapiro-

Wilk Test when the Dy = 0 .For the significance level 0.01, “the probability of the rejecting the null

hypothesis when it is true is 0.01 and probability of accepting the null hypothesis when it is true will

be 0.99 and measure of indeterminacy is 0.3254”. Hence it can be said that the proposed Shapiro-Wilk

Test of normality under neutrosophic statistics gives the test statistic value with the measure

indeterminacy (Dy) while the existed Shapiro-Wilk Test of normality under classical statistics fails to

provide any information about the measure of indeterminacy. Therefore, the proposed test of

normality under uncertainty or neutrosophic statistic is more effective than the existed Shapiro-Wilk

Test and Classical Shapiro-Wilk Test becomes special case of the suggested Shapiro-Wilk Test under

neutrosophic environment when the indeterminacy (Dy) = 0.

6. Conclusion

In this paper, we suggested the Shapiro-Wilk Test under the presence of neutrosophic data.

We obtained the value of test statistic of the proposed test and decision rule. We take the data of the
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lifetime of batteries in neutrosophic form and used the proposed model to check whether the data is

taken from neutrosophic normally distribution population or not. From the obtained value of test

statistic, we conclude that the lifetime of batteries follows the neutrosophic normal distribution and

data can be used for further analysis under neutrosophic statistical inferences where it is necessary

that the obtained data should be from neutrosophic normally distributed population. From the

comparative study, the proposed test of normality under uncertainty or neutrosophic statistic is more

effective than the existed Shapiro-Wilk Test and Classical Shapiro-Wilk Test becomes special case of

the proposed Shapiro-Wilk Test under neutrosophic statistics when the indeterminacy (Dy) = 0. In

future, the proposed test can be applied on some other data to check the neutrosophic normality.
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Abstract: The Multi-attribute decision-making (MADM) approaches are utilized to aggregate
ambiguous and imprecise information based on different aggregation operators (AOs). The aim of
this article is to explore the notion of single-valued neutrosophic (SVN) set (SVNS), wich is the
modified structure of an intuitionistic fuzzy sets and picture fuzzy sets. Some appropriate
operations of Aczel Alsina tools under the system of SVN information are also presented. By using
the theory of prioritization aggregation model, we developed a class of new approaches including
SVN Aczel Alsina prioritized average (SVNAAPA) and SVN Aczel Alsina prioritized geometric
(SVNAAPG) operators. We also presented a series of new methodologies in the light of SVN
information such as SVN Aczel Alsina prioritized weighted average (SVNAAPWA), and SVN Aczel
Alsina prioritized weighted geometric (SVNAAPWG) operators. To verify discussed aggregation
approaches, we also presented some notabe characteristics. We established a MADM technique to
solve complexities and difficulties during decision-making in our real-life problems. By utilizing a
practical numerical example to select an appropriate research scientist for the vacant post of a public
university. To find the validity and flexibility of our invented approaches, sensitive analysis, and
comparative study by comparing the results of existing approaches with currently proposed
aggregation techniques.

Keywords: Neutrosophic values, Single valued neutrosophic values, Aczel Alsina Aggregation
operators, and Multi-attribute decision-making approach.

1. Introduction

In order to choose the optimal option based on a set of criteria, decision-making is a common and
daily activity in human existence. The last several years have seen extensive research and useful
decision-making applications to management, economics, and other fields because of its outstanding
ability to express information uncertainty. Fuzzy set theory has become more common in recent years
as a way to resolve decision-making issues due to the uncertainty of decision data. Zadeh [1]
anticipated the fuzzy set (FS) concepts, which have gained popularity among intellectuals. In order
to deal with uncertain conditions, numerous theoretical advancements in FS have been made to date.
However, in many circumstances, the notion of FS is effective. For instance, the FS theory is unable
to deal with the knowledge supplied to a person in the form of positive membership value (PMV)

and negative membership value (NMV). To address these issues, Atanassov [2] created the
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intuitionistic FS (IFS) theory by incorporating the concept of PMV into the drawbacks of FS. The
limitation that the addition of the PMV and NMYV is between [0,1] makes IFS significantly more
useful than the current FS. When dealing with complex and unreliable data in decision-making
scenarios, IFS is a thorough and powerful strategy. Many researchers have used IFS theory in a
variety of fields [3], [4]. However, the IFS cannot handle such values if the sum of them exceeds the
unit interval [0, 1]. To address such difficulties, Yager [5] investigated Pythagorean FS (PyFS). The
PyFS is more effective for tackling complex, unreliable information in real-life situations. Yager [6]
also modified and explored the theory of the PyFS in the framework of q-rung orthopair FS (q-ROFS),
with the additional limitation that the sum of the qth power of PMV and NMV cannot be more than
the unit interval [0,1]. The concepts of q-ROFS have received much use and have received more
interest from researchers because of their structure. Many authors have applied the q-ROFS theory
in ways that have been detrimental to a number of areas. Cuong [7], [8] extended the concepts of IFS,
PyFS and q-ROFS using the characteristics PMV, abstinence membership value (AMV), and NMV
such that the sum of PMV, AMV, and NMV restricted on interval [0,1]. In order to convey
ambiguous and conflicting data, Smarandache [9] anticipated the neutrosophic set (NS). A NS having
PMV, AMV, and NMV are separately represented and lies in real standard or nonstandard subsets
of ]70,1*[. We may have faced many difficulties when we explored the results in nonstandard close
intervals. In order to overcome this complexity, Wang et al. [10] gave the concepts of SVNS and
provided the idea of interval NS [11]. Ye [12] explored the work of IFS, PFS, and NS using the system
of simplified NSs to deal effectively with uncertain and inaccurate data during the decision-making
process. Many research scientists explored the concepts of NS, and SVNS in the different fuzzy
environments [13]-[15].

The AOs arereliable and convenient mathematical tools to easily handle inaccurate and uncertain
information during aggregation. Due to the significance of AOs, several research scientists worked
on different fuzzy environments. Xu [16] explored the idea of arithmetic and geometric tools using
the framework of weighted averaging and geometric operators depending on IFS. Rahman et al. [17]
gave some AOs of PyFSs by using the concepts of algebraic sum and algebraic product to handle
imprecision information. Jan et al. [18] explored the notions of PyFS by applying the interval-valued
PyES (IVPyFES) structure to cope with ambiguous and uncertain information. Liu and Wang [19]
presented AOs of q-ROFSs to solve real-life problems under a MADM approach. Garg [20] expanded
the theory of IFS using the way of PFSs and anticipated some innovative AOs to handle the
complexities of the fuzziness. Riaz and Farid [21] explored the theory of PFSs to handle unpredictable
and imprecision information during the decision-making process by developing certain approaches.
Jdid et al. [22] proposed a strong mechanism for checking the qualities of final products and
developed some new mathematical approaches for the inspection of goods under their cost and
benefits. A novel approach for the improvement of the sustainability and resilience of supply chain
enterprises based on the theory of industry 5.0 was presented by Gamal et al. [23]. This theory has a
great capability to provide strong decision under considering the decision-making process. Riaz and
Hashmi [24] extended the ideology of FSs regarding Linear Diophantine FS to introduce some
valuable AOs on the basis of the fundamental operations of PESs. Liu and Jiang [25] explored the
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conception of distance measures in the form of interval-valued IFS (IVIFS) and used a number of AOs
to deal with real-life problems under the MADM process. Mahnaz et al. [26] present detailed certain
approaches to T-SESs by utilizing the concepts of frank operators to cope with inaccurate and
impression information. Ahmad et al. [27] provided some specific approaches of SFSs to deal with
real-life issues under MADM techniques. Ali et al. [28] explored the theory of T-SFSs and explored
the basic operation of T-SFSs. Ye [29] presented some AOs by using the correlation coefficients tools
of SVNSs and interval-valued SVNSs. Wei and Zhang [30] present a few certain methodologies of
Bonferroni power operators applying SVN information. Chen and Ye [31] anticipated certain
approaches based on Dombi operations under the system of SVNSs. Mahmood and Ali [32] explored
the theory of SVNS by utilizing complex SVNS (CSVNS) to develop certain approaches by using
mathematical tools like prioritized Muirhead Mean operators. Fan et al. [33] invent a series of certain
approaches to SVNS by utilizing innovative linguistic variables for the solution of complicatedness
in different fuzziness. Hussain et al. [34] anticipated a series of complex IFS by using the theory of
Hamy mean tools and established an application in the tourism industry. Garg [35] explored the
theory of SVNS to overcome the loss of information during the aggregation process with the help of
certain mathematical tools like Frank operators. Liu et al. [36] elaborated the theories of NS to
develop a series of certain approaches to cope with vague and impression information in the fuzzy
environment. Akram et al. [37] elaborated the structure of energy cell under the system of interval
valued T-SFSs to develop certain models of Bonferroni mean operators. Ali Khan et al. [38] gave a
series of certain approaches of PyFSs based on prioritized mathematical tools to express the
ambiguous and vague information.

Aczel and Alsina [39] explored the theories of t-norm (TNM) and t-conorm (TCNM) to develop
an innovative idea for Aczel Alsina tools in 1982. Farahbod and Eftekhari [40] compared other TNMs
and TCNMs to evaluate and categorize more reliable TNMs and TCNMs after investigation. Recently
several research scientists worked on different fuzzy environments to cope with uncertain and
imprecise information. Senapati et al. [41] explored the idea of IFSs to establish a list of certain
approaches by using the basic operations of Aczel Alsina tools to deal with real-life problems under
a MADM approach. Senapati et al. [42] also utilized the basic operations of Aczel Alsina tools to
develop a few certain approaches based on IVIFSs. Hussain et al. [43] generalized the concept of Aczel
Alsina tools in framework of PyFSs and gave a series of certain approaches to aggregate ambiguous
and uncertain information. Khan et al. [44] generalized the structure of q-ROFS and anticipated a
series of certain approaches by using the basic operations of Aczel Alsina tools. Naeem et al. [45]
expanded the concept of PFSs and anticipated detailed certain approaches by using basic operations
of Aczel Alsina tools. Mahmood et al. [46] explored the meanings of IFS in terms of complex IFS to
introduce a list of certain approaches using the basic operations of Aczel Alsina tools. Several research
scientists also conceptualized the ideas of Aczel Alsina tools in different fuzzy environments seen in
the references [47]-[49].

In order to handle vague information, we studied several aggregation models under considering
different fuzzy circumstances. Sometimes decision-makers cannot approach an appropriate optimal

option due to insufficient information on human opinions. To serve this purpose, the SVNS is a
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well-known aggregation model that provides the decision maker freedom in their decisions. Aczel
Alsina aggregation tools have an attractive aggregation tool and play an essential role in the decision-
making process. By inspiring the theory of prioritization and Aczel Alsian aggregation tools, we
explored the theory of SVNSs. The main contribution of our research work is established as follows:

a) To expose the theory of SVNS with some specific properties.

b) To explore operations of Aczel Alsina aggregation tools under considering the system of
SVN information.

c) By utilizing the degree of preferences of the attributes, we developed a class of new
approaches based on Aczel Alsina aggregation models such as SVNAAPA and
SVNAAPG operators.

d) We also proposed a series of new methodologies under the system of SVNS, including
SVNAAPWA and SVNAAPWG operators.

e) Toillustrate the applicability and effectiveness of our invented approaches, some notable
characteristics are also demonstrated.

f) We established an algorithm of the MADM technique to resolve several real-life
applications.

g) We gave a practical numerical example to find a suitable candidate for the vacant post of
general manager for a multinational company. To find validity and flexibility of our
invented approaches, we discussed sensitive analysis and comparative study by
contrasting the results of existing approaches.

h) Additionally, some remarkable points related to our research work are expressed in the
conclusion.

The structure of this manuscript is given as follows: In section 2, we studied the notion of SVNSs
and its primary operations. In section 3, we revised the concepts of prioritized AOs based on SVNVs
and some existing AOs based on SVNVs. In section 4, we improved the fundamental OLs of SVNVs
based on Aczel Alsina operations. Section 5 listed certain approaches of SVNAAPA and SVNAAPG
operators based on Aczel Alsina operations. In section 6, we anticipated the AOs of SVNAAPWA
and SVNAAPWG operators with the help of weight vectors based on Aczel Alsina operations. In
section 7, we evaluate a MADM technique to select a suitable research scientist by utilizing the
SVNAAPWA and SVNAAPWG operators for a public university and observe the effects on the
results of alternatives for different parametric values. In section 8, find the validity and reliability of
our discussed approaches by contrasting the outcomes of current AOs with the result of our invented
approaches. In section 9, the entire article was condensed into one paragraph and discussed the

advantages of our research work.

2. Preliminaries

This section will study the basic definition of the neutrosophic set (NS) and single-valued
neutrosophic set (SVNS). We also study some fundamental OLs of SVN value (SVNV) for further

development of this article. We also provide a list of all abbreviations in Table 1.
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Definition 1: [9] Let X be a be a non-empty set and a NS A in X is characterized by positive
membership value (PMV), abstinence membership value (AMV) and negative membership value
(NMV).Then, all the terms of membership are restricted in such intervals, ¢@,(7) € ]107,1*[,§,(») €
10-,1*[ and o,(#) €107, 1%

Where a PMV is denoted by ¢,(7), AMV is denoted by §,(#~) and a NMV is denoted by o,(r).

Table 1 shows abbreviations and their meanings.

MADM Multi-attribute NMV negative membership
decision making value
OLs Operational laws AMV abstinence
membership value
NS neutrosophic set ES Fuzzy set
SVNS Single-valued IFS Intuitionistic fuzzy set
neutrosophic set
SVNV Single-valued PyES Pythagorean fuzzy set
neutrosophic value
AOs Aggregation operators = q-ROFS g-rung orthopair
fuzzy set
NMV positive membership PFS Picture fuzzy set
value
TNM t-norm TCNM t-conorm
SVNAAPA Single valued neutrosophic Aczel Alsina prioritized average.
SVNAAPG Single-valued neutrosophic Aczel Alsina prioritized geometric.
SVNAAPWA Single valued neutrosophic Aczel Alsina prioritized weighted average.
SVNAAPWG Single-valued neutrosophic Aczel Alsina prioritized weighted geometric.

Definition 2: [10] A SVNS A is defined as:

A={(r0a(r),8,(r), 0,() |7 € X}
Where @,(7):X = [0,1], §,(r):X - [0,1] and o,4(7):X — [0,1] represent the PMV, AMV, and
NMYV, respectively. A SVNS satisfies such condition:

0< @u(r)+8,(r)+a4(r) <3

A SVNV is denoted by the a = (¢@,4,8,,0,).
Definition 3: [10] Let a = (¢4, 8,,0,) be a SVNV. Then, a score function G(a) can be particularized
as:

2+ ((Pa B 80: B Ga) (1)
3

G(a) =

Here, G(a) € [0,1].
Definition 4: [10] Let a = (¢,,8,,0,) be a SVNV. Then, an accuracy function Q(a) can be

particularized as:
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Q(a) = @, + 0, 2)
Here, Q(a) € [0,1].
Definition 5: [10] Let a = (@, 64 0,) and B = (cp[;,ﬁ,;,c,;) be two SVNVs and G(a) =

M and G(B) = M be the score values of a and B respectively. Let Q(a) =

@y + 0, and Q(B) = @z + o5 be the accuracy values of @ and f respectively. Then,
i If Gla) <G(B), then a < B
ii. If G(a) = G(B) then,
a. If Qla) < Q(B), then a <p
b. If Q(a) = Q(B), then a =p

Definition 6: [32] Let a = (¢4, 6,,0,) and B = ((pB,SB, GB) be two SVNVs. Then, some basic
operations of SVNVs are given as:
i a®B = (0ot ®p— PaPp 885 0,05)
ii. a®PB=(QaPp 8at 85— 848404+ 05— 0,05)
il pa = (1= (1= @H, (8% (0)") , 1> 0
iv.  (@* =@ )" 1-(1-8)"1=( 1=0,)"), u>0

Definition 7: [50] Let R = (R;,R,,...,8,) be the collection of characteristics and there is a
prioritization between the attributes which is represented by linear ordering £, > 3, > - >3,
shows that attribute £, has a maximum priority than 8, if p < k. The values 3,(#) shows the
performance of any alternative +~ under the attribute 3, and satisfies 3,(#) € [0,1]. The

prioritized average operator (PA) is defined as if it satisfies such axiom:

PA(T,(M) = D w,,() ©
p=1

Where o, = ﬁ,sp = ]—Ii;i G(t1),p =2,3,...,n. The initial value &, =1 and G(t,) represents

score values of k™ SVNVs. Then, PA is called the prioritized averaging (PA) operator.

Definition 8: [50] Let T, = (cpp, 8, Gp),p =1,2,3, ..,n be the collection of SVNVs, with PA w, =

&
n
p=1%p

operator for each 7,. Then, SVN prioritized averaging (SVNPA) operator is particularized as:

SVNPA(T,, Ty, s Ty, ) = 6T, D 657, D ... D €, 1,

Where ¢, = Hi;ll G (‘[p),p = 2,3,...,n. The initial value of & =1 and G(t)) represents the score

value of kt" SVNVs.
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Definition 9: [50] Let 7, = (cpp, 8, O'p),p =1,2,3,..,n Dbe the collection of SVNVs with PA w, =

o operator for each 7,. Then, the SVN prioritized geometric (SVNPG) operator is particularized
p=1%p

as:

SVNPG(Ty, Ty )Ty ) =T Q1,2 Q@ .. @ T,5n

Where g, = =1l g(rp) p =2,3,...,n The initial value of &, =1 and §(t;) represents the score
values of k" SVNVS.

3. Basic Operations of Aczel Alsina tools Based on Single-Valued Neutrosophic
Information

In this section, we will demonstrate Aczel Alsina operations in the form of sum, product, scalar
multiplication, and power rule using SVNV data.
Definition 10: Let 7 = (¢, 8,0),7; = (¢4,6;,0,) and 1, = (¢,,5,,0,) be the three SVNVs, £ >1

and p > 0. Then, we illustrate some basic operations of Aczel Alsina tools in the following form:

1
/ 1 e_((_m(l—wl))“ﬂ —ln<1—‘vz))¢)‘Z

)

\

Lo =| (@) +(- znasz))"’)% I
\ e_((_ln(cl))%*'(—ln(cz))z)% /

/ (i) +(- ln(cpz)) \

i 7, ®1, =| | (s s Cmas)) %, |
\1_ ~((-m(1-0) +(-na-02))") o) /

i, pur= I . (u(-tn,2)") I
\ e—(u(—ln(of))%)% /
/ e—(u(—ln(w))’z)%, \
iv.  th= I\l e-(u(—zn(1—5¢))a)z, I

R
S~—

1— e—(u(—ln(l—w))ﬂ)

Theorem 1: Let © = (¢, §,0),7, = (9;, 6;,0,) and 7, = (@,, §,,0,) be the three SVNVs with ¢ >

1 and pu > 0. Then, a few fundamental OLs are defined as follows:

i. T1®T2=T2®T1

ii. 1R, =1,Q0T1
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iii. p(ty @ 75) = pty @ pt,u >0
iv. (1 + H2)T = T+ UoT, g, 1y > 0
v. =1 Q1,u>0

vi. h @ rHe = gt oy >0

4. Single Valued Neutrosophic Aczel Alsina Prioritized Aggregation Operators

In this section, we will narrate some certain approaches of SVNVs based on Aczel Alsina
operations and elaborate on some characteristics of our aimed work. We also extend our work to the

weighted averaging and weighted geometric operators.

Definition 11: Let 7, = ((pp, 89,09),9 =1,2,3,..,n be the collection of SVNVs with PA w, = %

n
20:1 €p

operator for each t,. Then SVNAAPA operator is particularized as:

E
SVNAAPA(t,, Ty, .., T, ) = EB (Z” . rp)
P

& & &n
SVNAAPA(ty,73, ..., Ty ) = |\lar— |1 B |la— | D .. D | = T,
p=1&p p=1%p p=1&p

Where ¢, = i;ll G(t),p=23,..,n

(4)

Theorem 2: Let 7, = (‘Pp: 8, 09),9 =1,23,..,n be the collection of SVNVs with PA w, = Z[}: -

operator for each 7,,. Then, the SVNAAPA operator is particularized as:

I/l e (Zp 1(29 & l”(l ‘Pp) z,\l
SVNAAPA = Z(Z;} ~ >=i e—(zz::l(zgi‘; ) (-in) ) i

\ ) )

Proof: We will proof this theorem with the help of a mathematical induction technique in the

©)

following way:

i.  Take the value of p = 2 depends on Aczel Alsina operations of SVNVs, we get,

. <(23_ ) (-tn-o0) >

1

= - -In
=15 ! e Xo-18 !

_<<ﬁ>(—ln(ol))ﬂ>ﬂ

alr

)

e
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< » )

’[ =
n 2
p=1%p

1
[

Y . T _ ¢
1—e <<ZE=1SQ>( n(1-¢2)) )

’

1
3 [4 ‘
2
_<<23=189>(_m(82)) >
e

’
1

o]

By using the above Definition 11, we have:

SVNAAPA(z,,T,) =

Hence, this is true for p = 2.

ii. Now, suppose that this is true for p =

@
/_\
—
—
M
3
/—\
S'
~
Q
iy
=
=
—
D

L, <<Zn >( n(1-@1)) >@

)

)

e <<Zp— B >( (o) >E
_ lezmeme-wr ]
—e

1

-

)
1

<( £ (inco) >a
e

)

1_6,_(((9—1)( " %))) <<2 )(-unt-02) >>“

k. Then, we have:

(et} [o
e
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1
!Z

_[ vk £k _
1w (29=1<23=ng> n(1-p)°

1

| ./ )
SVNAAPA(t,, Ty, ., T Z( a ) = i e-(zk (z" 189)( () ) i
\ o)

)

p=1

&IH

e-(zgzl(zg =)o)

Now, for p=k + 1. We get,

k £ £
SVNAAPA(Ty, Ty, ) T Tess) = @ (n—")rkea< S )rk+1
s

1
AT
|1 ,

I =
i ‘(Zﬁzl(zzi’iso>(""(5k”ﬂ>g ®
e =

_<zg=1<z >( in(op) >

= ¢
( 5"“ ( n(1- wkm))

;
< k+1 (l”(5k+1))>

1

[4

< Zflk+1 (~in(ok4+1) >
p=1

nl-

)

ﬁl»—l

(g e moea)
1

|
e |

§|>-I

I
—

Hence proved.

Example 1: Let (0.54,0.98,0.27),(0.87,0.55,0.61), (0.49,0.33,0.72) and (0.11,0.39,0.27) be the
four SVNVs with € = 3. Then, SVNAAPA can be calculated as:
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0l

(Zgzl (-in(a- ¢P1)) ( >( n(1- <Pz)) \

(
1 _e_K(Zgzl 5 (-tn(1-93)* +<Zn >( In(1-9,)) )

1

)

SVNAAPA(T,, Ty, T3, T,) = _/ <23_189>( In(81)) +< )( In(52)) +\
. K 23_ >( In(83)) +< 89)(—111(54)) ),
/(z >( In(sy)) +< >( In(o7)) +\1
o K( >( In(c3)) +< g)(—ln(cn;)) )
_<(1.7})27)(_’”(1‘0-54))3+((1):‘7L3(2)(7))(—ln(1—0.87))3+>%
1—e (32520)(-in(1-049)° +(33528)(~in(1-0.11))°

= _((1.7})27)(( ”(098))3) (2?333)(( in(o. 55))) >
e )(-n039)*)+(F7577)((-in0:39)°)

_<(171927)(( n(027)")+(37577)((-in(0.61)")+ >
0.2451 0.1176
e (1 7927)(( in(0.72)) ) (1 7927)(( in(027)) )
SVNAAPA(ty,T5,73,74) = (0.7349,0.5149,0.3239)
Theorem 3: If all T, = ((pg, 8, O'Q),Q =1,2,3,..,n are equal, that s, T, =T for all 7. Then, we have:
SVUNAAPA(T, T3, T3y 0, Tp) =T
Proof: Since T, = ((pp, 8, cp),p =1,2,3,..,n Then,

n

&
SVNAAPA(t,, 15, ..., Ty )=Z<Zn ie rp>
p=1"p

p=1

(e p>(_m(1_%))a>%\
-
|

(A m(l-(qap))“‘)z e-((-m(sp))“z)z (o)’

, , € =T

Thus, it is obvious that SVNAAPA(t4, 75, ..., T,) = T holds.

Theorem 4: Let 7, = (¢,,5,, O'D),Q =1,23,..,n be the collection of SVNVs, with PA @, = =2

P 23 1€p

operator for each 7,. Let 7~ = min(ty, Ty, ..., T, ) and tt = max(ty, 7y, ..., T, ). SO,

T~ < SVNAAPA(t,, T3, 0, Ty ) <7T*
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Proof: Let 7, = (cpp,Sp, Gp),p =123,..,n Dbe the collection of SVNVs, with PA w, —ng‘lgp

operator for each 7,. Let 1~ = min,(7y,75,..,7, ) = (¢7,67,07), and t* =max,(ty, 75, .., T, ) =
(¢*,8%,6%). We have ¢~ = min,{p,},6~ = max,{8,} and o~ = max,{c,} and ¢* = max,{e,}, 6" =

minQ{SQ}, and o* = minp{cp}. Hence, there is the following result for the inequalities:

1

1—e (Zp 1(Zp >( in(1-¢7)) ) e (Zp 1(29 » p)( in(1-¢,)) )é e (20 1(20_ _ )( zn(l_q,+))‘l>

1

B e Sl N e CATCY I L G CRCO

5

S
S

Similarly,

1

. (zp 1(2" )( in(c™)) > B e—(zgzl(ﬁx—m(%))”) Y

S

(s

So,

T~ < SVNAAPA(ty, Ty o T,) < T
Theorem 5: Let T, and Ié,p=1, 2,3,..,n be two sets of SVNVs, if T, S‘L’é For all 7. So,

SVNAAPA(ty, Ty, ., Ty ) < SVNAAPA(TL, T5, .., Ty,)

Proof: Let T, and Té, p=1,2,3,..,n be two sets of SVNVs, we can write in the following form:

‘(zsﬂ(ﬁ>(-ln(1—%>)%>i e‘<23=1<ﬁ>(""(1“"9)a>%

o)
e—(zgﬂ(ﬁ)(—m(%))’z)

Hence, it is proved that SYNAAPA(t, 75, ..., T, ) < SVNAAPA(ty, 15, ..., Tp).

1—e <1-

S
U

> e_<23=1<ﬁ>(_m(8")))a>

(s Jcnen))

alR
alR

Definition 12: Let T, = (cpp, Sp,cp),p =1,2,3,...,n bethe collection of SVNVs, with PA w, = o

p ZE:l €p

operator for each 7,,. Then, the SVNAAPG operator is particularized as:

(s2)
T Yo=18

" (6)

(5725 (5723
Yp=1%p Yp=18p

1, ®.Qr1,

n
SVUNAAPG(T1, T3, Ty ) =Q
p=1

(se)
Xp=1%p

SVNAAPG(1,,75, ..., T, ) =1,

Where ¢, = [I}_ g (ty),p = 2,3, ...,n. The initial value of & =1 and G(t}) represents the score
values of k" SVNVS.
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Theorem 6: Let 7, = ((pp, 8, cp), p=1,23,..,n be the collection of SVNVs, with PA w, = =2

P Tp=15p

operator for each 7,. Then, the SVNAAPG operator is particularized as:

@)

svare - [ (5% | 6 <8—@><-m(1_5 9 |
p=1 ? P=NZE-18 ° |

|
|
| 1
\y_ Amlgg)enof)

Proof: Proof is similar to the theorem 2.

Example 2: Let (0.59,0.73,0.34),(0.45,0.56,0.67), (0.78,0.89,0.9) and (0.51,0.82,0.65) be the four

SVNVs with & =1,¢&, = 0.5067,&; = 0.2060 and ¢, = 0.0680 and ¢ = 3. Then, SVNAAPG can be
calculated as:

/ ( in(¢1)) +<Z" )( in(e2)"+ \%
o \ ( In(@3)) +<Z" )( ()"
SVNAAPG(t,, T, T3, 7,) == / zp " >( In(1-8,)) +(Zn )( -5+ |
1_ek2318 (ln(l 83)) ( )
/(Z" >( n(1-04)) +<Zn )( In(1-03)) \%

1—e \(pl >( In(1- 03)) <

1
[ (7557)(-1n059)° +(T7557) (-in(©45)" +
. (02060)( m(o. 78)) (00680)( mo. 51))

)

= (s 25 (~in(1-073))* (3200 )( In(1- 056))3 3
1— e \ (B20)(-in(1-089)" +{23e2)(~in(1-0.82))°

1
<(1 7a7)(-in(1-030)"+(1 gggg)(—ln(l—om))”)g
1—e¢ )

(F2559)(~in(1-0.9)*+(37557) (-in(1-0.65))

SVNAAPG(t,,7,,75,7,) = (0.5368,0.7579,0.7092)

Theorem 7: If all 7, = (¢,,5,, O'D),Q =1,2,3,..,n are equal, thatis, 7, =7 forall 7. Then,

SVNAAPG(t4,T5, ., Ty) = T.
Proof: Since 7, = (cpp, 8, O'D),Q =1,2,3,...,n. Then,

n )

SVNAAPG(1,,T5, ..., Ty, ) = 1_[ Tf‘):lg‘)
p=1
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SVNAAPG(t1,T3, )Ty ) =

5

R (S e (ST

,1—e

=1
Thus, it is obvious that SVNAAPG(t4, 15, ..., T, ) =7 holds.

Theorem 8: Let 7, = ((pp, 8, cp),p =1,23,..,n be the collection of SVNVs, with PA w, = %

n
20:1 €p

operator for each 7,. Let T~ = min(7, 75, ...,7, ) and tt = max(ty, 14, ..., T, ). Then,

T~ < SVNAAPG(1y, Ty, o, Tp) < TH.

Proof: Let T, = ((pg, 8, Gg),p =1,2,3,...,n be the collection of SVNVs with PA w, = % operator

P Ipmae
for each 7, . Let 77 = minp(rl,rz, v Ty )=(07,67,07), and 1t = maxp(rl,rz, vy Ty ) =
(¢*,8%, 0%). We have o~ = min,{p,},6~ = max,{8,} and 6~ = max,{c,} and @* = max,{o,} 6* =

minD{SD}, and o* = minp{crp }. Hence, there is the following result for the inequalities:

SV

e—(23=1(ﬁ)(—ln(cp‘))m>% < e_( E‘=1(ﬁ>(—ln(%))ﬂ> < e‘<zg=1<ﬁ>(—ln(¢+))ﬁ>%

R
SV
s

et | e | Al

S
SV
s

1— e—( Z,l:l(ﬁ)(—ln(l—o_))%) —(Zg=1<ﬁ>(—ln(l—op))a>

<1l-e <1- e_<23=1<2£—i%>(_l"(1_“+))¢>

So, T~ < SVNAAPG(t4,75,...,T, ) < 7% holds.

Theorem 9: Let T, and T,,p=123,..,n be two sets of SVNVs, if 7, <1, for all 1. Then,
SVNAAPG(t4,T4, ..., T, ) < SVNAAPG(t1, T3, ..., T}).

Proof: Let T, and T,,p=123,..,n be two sets of SVNVs. Then, we can write in the following way:

alr

et )emen) ) _ A 3:(%)(—1@5))%)%

And,
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S
alR

Ll eme-a)) ) (sl me-a)')

Similarly, we get:

1 1
(en [\ ~ [AY4 (sn (% N\ . ﬂ)@
1—e (2921(2’;:189)( in(1-0y)) > S1—e <29:1<23:189>( in(1-c}))
From this, we can conclude that SVNAAPG(t4,7T;, ..., T,) < SVNAAPG(1},T5, ..., T,) holds.

5. Single Valued Neutrosophic Aczel Alsina Prioritized Weighted Aggregation Operators

In this section, we demonstrate many AOs of SVNAAPWA and SVNAAPWG based on Aczel

Alsina operations with some specific characteristics by using our methodology.

Definition 13: Let T, = ((pg, 89,69), p=1,2,3,..,n be the collection of SVNVs with associated
weight vectors (WVs) ¥ =¥, %, .., %) of T, p=1,23,..,n such that ¥ € [0,1]

and Xp_, ¥, =1 with PA w, = ':’p s"s operator for each t,. Then, the SVNAAPWA operator is

Zp:l )

particularized as:

n

Fo&p
SVNAAPWA(ty, T4, ., Ty )=Z T
o5 \p=1 #ogp

Y e ¥,e Y€
SVNAAPWA(ty, Ty, o, Ty, ) = (%1-1) o) (nL ) D .0 <Ltn)
0 o

p=1 Fp€ p=1Fp€ p=1Pnén

®)

Where ¢, = Hi;ll G(tx),p = 2,3, ...,n. The initial value is & =1 and G(t;) be the score value of
k" SVNVs.
Theorem 9: Let 7, = (cpp,Sp,cp),p= 1,2,3,..,n Dbe the collection of SVNVs with WVs ¥ =

W, ¥, ... %)T and ¥, €e[01], Yh-1¥y =1 associated with PA 8‘) operator. Then

o =
010

SVNAAPWA operator is particularized as:

ﬁl»—l

©)

SVNAAPWA = Z (—‘[ ) =
Y e

[ o) cmoa) ) |
' 3
e

\ ol

Proof: We will proof this theorem with the help of a mathematical induction technique in the
following way:

i.  Take the value of p = 2 depends on Aczel Alsina operations of SVNVs, we get,
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< Vg

n
p=1Fp&

Ve,

(52

1¥,€

T1> =
P

Tz) =
(Y

1
[
>( ln(81)) >
1'
Y& [4 ‘
_ 11 —_
<<23:1%89>( In(o4)) >
e
1
Yye ¢
__r2¢2 m(1-@5)
1—e <<29 1%p¢ >( " (p2)>

>(-m(sz))‘z>a

)

¥ae

e_<<23=1""959

By using the above Definition 13, we have:

SVYNAAPWA(x,,1,) =

./
'\

Hence, this is true for p = 2.

ii.

n
SVNAAPWA(T,, Ty, ., Tpy) = Z (

1
[

Y, 4
‘<(23=fw2sp>(""““"”) >

)

1—e

1
<< P&
Xh=1%pE
e p=

¢
) (-ins) >
_ ( V&1
e 2p=1%p
_ ( Y2
Zp 1%

1

3
)( zn(1—<pz>)‘z>

)

[v2 £p
1—e (szl(ZSﬂ%E
(oo
e

Zn Wpe

el )nen)’)

[
( ti e
1,
. ¢ ‘
< Zn 2‘;,25 ( ln(o'z)) >

%o

Joeen) )

)(-m(sp))’z)%

)

¥p&p

IR

Now suppose that this is true for p = k. Then, we have:

L

P

n
p=1 \p=1 ot

)( n(1-91)) )E

’
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Now, for p=k + 1. We get,

k+1

Y, e Y, &
SVNAAPWA(T,, Ty, Ty vor Trsy) = Z (%rk) > <ﬁLl;+lrk+1>

o=1 p=1 p=1 Tp<p

S

( N ) GRS
I B 1 ’
|
| )] @
e
\ (ke J-mca))
e
1

= ¢
<<%>( In(1- ‘Pk+1))>
1—e

Z
R

1
i
R

S

)

’

ﬁl»—l

(e maew))

| 1

|

i (Zk*'l(%)( n(8x41)) >
e )

’

|
|
|
|
1
k+1 l"k+15k+1>( In(og+1)) > /

Example 3: Let 7, = (0.98,0.45,0.32), (0.56,0.76,0.3), (0.11,0.23,0.66) and (0.45,0.6,0.29) be the
four SVNVs with WVs (0.3783,0.4180,0.1045,0.0992) and ¢ = 3. Then, SVNAAPWA can be

p=1

calculated as:

A
SVNAAPWA = Z(TT ) _ i e_( 3=1< % >(_m(89))ez>a i
\ )

(o))
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0l

/Zglpll‘;,l >( In(1- (Pl)) ( lngz >( In(1- tpz)) \

¥3e3 Paey _ _
. KZQ e ( in(1-93)" +<23=1w9sp>( n(1 m)))

1

/Z %;1 (-n(81) +< ‘I-’282 >( n(8,)) +\
SVNAAPWA(T,,T,, T3, Ty) = K p=1%pEp
e

)

”’383 (~1n(83)) +< "’484 >( n(55)"
1

23’1’11;1 (-in(oy)) +< 11-'252 >( In(o3)) +\

K Zgwii?g (-in(o3)) +< W“S“ >( in(oy4)) )
e

1
<(0 ) (~in(1-0.98)) +(g:§§;2)(—ln(1—0.56))3+>3
1-e

( 0.0524
0.5287

U'l\l

~—~ O
Swu

A
o

) (~in(1-011)° +(3oo2t)(~in(1-045))°
1
_<(°:232°( in(0.45)"+('5587) (- m<o7s>)3+>3
e
0.0524

05287)(-n029)"+(§ 5357) (-in(0))°
<(o $357)(-1n(0.66)) " +(55357) (-1n(0:29)°
SVNAAPWA(Tl,TZ,T3,T4) = (0.9416,0.4416,0.3196)
Theorem 10: If all T, = ((pg, 8, 09),9 =1,2,3,..,n areequal, thatis, t, =t forall 7. Then, we have:
SUNAAPWA(T,,Tp, ey Tp) =T
Proof: Since T, = ((pp, 8, cp),p =1,2,3,..,n Then,

(=]
om
w\l

1
57)(-1n(032))"+(55557) (-in(0)"+ >

)
SVNAAPWA(T,, Ty, ..., Tp) = Z . P
o1 \&p=1 #ogy
p 1
Y,€ A
1— =1 Zn qu)g >( ln(l—(pp)) > ,

\.
)

)

=l

-1
i <sl<zf%>< oo
\

¢
(i e
=l1-e

Thus, it is obvious that SYNAAPWA(t,, Ty, ..., T,) = T holds.

Theorem 11: Let 7, = (¢,,8,,0,),p = 1,2,3,..,n  be the collection of SVNVs with associated WVs
Y =(P,%, .., ¥)" of 7, p=1,2,3,..,n such that ¥, € [0,1] and Z =1 with PA w, =

¥pép
n
p=1%p

operator for each t,. Let 7~ =min(ty, T, ..., Tp), and t7 =max(t,, 1y, ...,7,), then 77 <

SVNAAPWA(T,, Ty, ) Ty) < T7.
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Proof: Let 7, = (cpp, 8, cp),p =1,23,..,n be the collection of SVNVs with associated WVs ¥ =

W, ¥,,..,.¥)T of 7, p=1,2,3,..,n such that ¥, € [0,1] and X]_ =1 with PA w, = _To%

Ip=18
operator for each 7,. Let ™ =min(ry, 15, ..,7,) = (¢7,87,07), and 1" =max(1;,75, .., 7T,) =
(9*,8*,67) . We have, ¢~ =minfe,}, 6" =max,{5,}] and o =max,{o,}] and "=
max,{¢,}, 8" =min,{s,}, and o* =min{o,} . Hence, there is the following result for the

inequalities:

5
_lR

e (Zp 1(2,1[1’74,)( In(1-¢7)) > <1—e (Zp 1<anj"4if’%>(—ln(1—tpp))a>

<l-e (Zp 1(2;119—;95)( ln(1_¢,+))'(z>‘(Z

And,

S
_lR
S

Aot _ () g

Similarly,

S
_lR

Al Al ol

So, 17 < SVNAAPWA(ty, T3, ..., T) < T holds.
Theorem 12: Let T, and Té,p =1,2,3,...,n be two sets of SVNVs, if 7, <1/ for all 7. Then,

p="1p
SVNAAPWA(ty, 7y, ..., T,) < SVNAAPWA(T1, T3, ..., Tp).
Proof: Let 7, and 7),,p = 1,2,3,...,n be two sets of SVNVs, we can say that:

G 1(%% ol _ Ao (ggnc-en)

o )ene) f (o))

alR

alR

Similarly,

e_( gﬂ(igjfs’i&p)(_m(op))a)% > e ( gl(%?‘?ofo)(_m(aé))ﬂ)%

Definition 14: Let T, = (cpp, 89,09), p=1,2,3,..,n be the collection of SVNVs with associated WVs
Y= (‘Ifl,‘lfz,...,‘lfn)T of 7, p=1,2,3,..,n such that ¥, € [0,1] and Z -1¥, =1 with PA w,

operator. Then, the SVNAAPWG operator is particularized as:

919

n ¥oép

SVNAAPWG (t1, Ty, ..., Tn )zn Ep:l%ep
p=1 (10)
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Y16 LS 1)

Ynen )
SVNAAPWG(Tl, Ty oy Ty ) = ‘L'1<29=1%£9> ® rz<zo=1“”ogo) ® .0 rn<zo=1”’nfn

Where ¢, =[I,_; G(tx),p = 2,3,..,n. The initial value is & =1 and G(t}) be the score value of

k*" SVNVs.

Theorem 10: Let 7, = ((pp, 8, O'D),p =1,2,3,..,n be the collection of SVNVs with WVs ¥ =

W, ¥,,...%)" and ¥, €[0,1], X, ¥, =1 associated with PA w, = ng" operator. Then, the
p=1¢

SVNAAPWG operator is particularized as:

SVNAAPWG = 1_[
p=1

(11)

Proof: Proof is similar to Theorem 9.

Example 3: Let 7, = (0.39,0.69,0.41),(0.19,0.43,0.71),(0.8,0.37,0.99) and (0.55,0.51,0.25) be the
four SVNVs with WVs (0.5307,0.3423,0.0599,0.0671) and ¢ = 3. Then, SVNAAPWG can be

¥olp

calculated as:
e
e

Zg=1 '-Ppg

Yoo

"'Deo
SVNAAPWG = 1_[ Zp=1¥o%
p=1

s ( Yop
1—e = Zg:l"posp

)(—m@—sp))“))a

)

n Y,e [4 %
el )

Y,¢e ¢ 7
—|/ (Zz)l=11qllpgp>(—ln(<P1)) +< >( ln((pz)) \l
WY3e3 B ¢ We, B
e \+(Zg=1q’p£p>( n(e3)) +<ZZ}=1%59>( ln((p4))} ,
1
[
( qui;l >( in(1-8,)) +< qugz )( In(1-8,))"+ \

R (O |
—e =

{
\
_((zgwf £ (-tnti-o) (s

[

l1’252

SVNAAPWG(t,,T,,T3,Ts) =

L) 52

)( n(1- 0‘2)) \
)(-zn(1-c3))’z+<232’f‘;;t)gp)(-zn(1-c4)) )

Y3&3
n
2p=1%pep

1-—e
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1
_((—81§328)<—1n<0-39>)3+(—3:§328)(—ln<0-19>)3+>3
e

(0.0226)(_111(0.8))3 +(0'0253)(—ln(0.55))3

0.3769 0.3769

1
= (8?7)28)("”(1—0-69))3+(g:;§zg)(—ln(1—0.43))3+ 3
1—e (35252)(-in(1-037)*+(§9253) (- in(1-0.51))°

)

1
(giéggg)(‘ln(l‘o-‘“)f+(gé§zg)(—ln(1—o.71))3+ 3
1—e (8:2328)0171(1—0-99))3+(g’_g§23)(—m(1—0.25))3

SVNAAPWG(ty,T,,T3,T,4) = (0.2830,0.6250, 0.8465)
Theorem 13: If all 7, = ((pp, 8, O'D),p =1,2,3,..,n are equal, that is, 7, =7 for all .
Then, SVNAAPWG(ty, Ty, ..., Ty) = T.
Proof: Since 7, = ((pp, 8, cp),p =1,2,3,...,n. Then,
n Fo&p

IR
SVNAAPWG (T, Ty, o) Ty) = 1_[ 20=1%%
p=1

e_<Zg=1<Zgjf§%£p>(_m((p"))a>% \I
1— e(ZQﬂ(%)(ln@sp))‘z)a/i

1
n Yoe AV
1— e_(Zp:1<Zg=qup£p>(—ln(1—o'p)) >

’

SVNAAPWG(ty, Ty, ., Ty) =

.

(emoaF | (cotesoff | (cotme)f

=|e , e ,1—e

Thus, it is obvious that SYUNAAPWG(ty, Ty, ...,T, ) = T holds.

Theorem 14: Let T, = (cpp, 8, O'D), p=123,..,n Dbe the collection of SVNVs with associated WVs

Y ==U,¥,,..,.¥)" of T, p=1,2,3,..,n such that ¥, €[0,1] and X}_,¥, =1 with PA w, =

¥pép
n
Ep=1%p8p

operator for each 7,. Let 7~ = min(ty, Ty, ..., T,,) and Tt = max(ty, 1y, ..., T,). Then, 77 <

SVNAAPWG(ty, T, o, Tp) < TT.

Proof: Let 7, = (¢, 5, O'D),p =1,23,..,n Dbe the collection of SVNVs with associated WVs ¥ =

P, ¥, ¥, ... ¥)" of T p=1,2,3,..,n such that ¥, €[0,1] and X}, ¥, =1 with PA w, =

¥pép
n
Zp=1%p8p

operator for each 7, . Let T~ =min(ty, Ty, ., Tp) = (@7,67,067), and 1t =

max(ty, Ty, ..., Ty) = (@F,8%,07). We have, @™ = minp{(pp},S‘ = maxp{Sp} and o~ = maxp{op} and
@+ = max,{@,}, 8" =min{s,}, and o* =min,{o,}. Hence, there is the following result for the

inequalities:

alr

1 1
(el oo ol
e (23:1(2;')1:1‘1'959)( In(e ))) <e ( g=1<23=1 lllpgp>( m(‘PD)) <e Z)l=1 ZE=ILPD€D ( ln((p ))

Sajid Latif, Kifayat Ullah and Abrar Hussain, Novel Single Valued Neutrosophic Prioritized Aczel Alsina Aggregation
Operators and Their Applications in Multi-Attribute Decision Making



Neutrosophic Sets and Systems, Vol. 58, 2023 180

S

1
Yy n W,e [AY

1—e (Zg 1(_211—[1, >( In(1-87)) > <1- e—<29:1<%>(—ln(l—ﬁp)) )
1

—_{yn_ &) ) &t ¢>E
<l-e <Zp_1<23:1’”959 (-in(1-8"))

S
5

_ il o))

EYRTE—
- N n(1-o
1—e V7T \pa ¥ <1
1

—_{yn_ &) ) _ot ¢>E
<l-e <Zp_1<23:1"'959 (-in(1-"))

So, 77 < SVNAAPWG(14, 7y, ..., Tp) < Tt holds.

Theorem 15: Let 7, and 7,,p=1,23,..,n be two sets of SVNVs, if 7, <7, for all 7. Then,
SVNAAPWG(ty, T3, ., T, ) < SUNAAPWG(T1,T5, ..., Tp)-

Proof: Let 7, and 7,,p = 1,2,3,...,n be two sets of SVNVs. Then, we use the following way to prove

it:

1 1
Ppp Y] w,ep AV
e—(zg=1(zg=1wggp)(—ln(‘?p)) > < e—<zg=1<m>(—ln((p"))) >

And,

1o (Zp (%)( ln(l—%))yz>% oo e—<23=1<%>(—1n(1—53))¢>%

In the same way,
1 1
- e—(zgq(%)(—m(l-%))“)” i e—(zgﬂ(%)(—m(l-og))“y
From the above, we can conclude that:
SVUNAAPWG(tq, Ty, o, Ty ) < SUNAAPWG(T1, T, ., Tp)

6. MADM Techniques of SVNAAPWA and SVNAAPWG Operations

In this section, we shall use the SVNAAPWA and SVNAAPWG operators to solve the MADM
technique by using the information of SVNVs. Suppose that ® = (#,#8,,...,8,) be the set of
alternatives and £ = (;,%,,83,...,8,) be the set of attributes with the degree of weights¥ =
W, %, .. %), p=(01,23,..,n) such that ¥, € [0,1] and Z = 1. The decision maker also

explores the theory of prioritization between attributes which is represented as linear ordering X; >

2, > ..> X, The following decision matrix R = (an)’cxﬁ contained information in the form of
SVNVs.
(CH S B CH S B (O
R= (1), = (0820 002) - (Pr008rr0r) ((pfzn, "
CI B ((P% e /
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In this decision matrix ((pTKﬁ,STKﬁ, O‘Tkﬁ) represents the value of SVNV and @, € [0,1], 8,4 € [0,1]

and o, . €[0,1] such that 0 < ¢, +8,  + 0, < 3. There are two kinds of attributes: cost factor
m paail paail i

and beneficial factor. If the cost factor is involved in the decision matrix, then the decision matrix

transforms to normalize matrix:

(cpfxﬁ,afxﬁ,crkﬁ) if benefit factor

R=(Y, =
2 (tpfxﬁ,cﬁfxﬁ,cfxﬁ) if cost factor

nX1

Now, we will describe the following steps of the algorithm for solving given a MADM technique by
the decision maker.

6.1 Algorithm

Step 1: In the first step, the decision maker collects information and arranges a decision matrix under
the system of SVNVs.

Step 2: We must convert the decision matrix into a normalizer matrix if the cost factor involves in the
set of attributes; otherwise, there is no need.

Step 3: We utilized our proposed methodologies to solve a MADM technique by using the
SVNAAWA and SVNAAWG operators.

Step 4: Shows the results of SVNAAWA and SVNAAWG operators in a table.

Step 5: Calculate score values by using the consequences of SVNAAWA and SVNAAWG operators.
We evaluate suitable alternatives after ranking and ordering of the score values.
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» | A setof alternatives 8 = (8,82, ..., By A set of attributes £ =
(By, By, B3, .., By)

Assign degree of weight to each attribute ¥ = (¥, ¥,, ..., %, )7 as
Step 1 ¥, €[0,1] and ¥l ¥, = 1

Established a decision matrix covers SVNVs
based on Alternative and attributes

Transform standard dedsion matrix into normalize decision matrix

Aggregate given information by using
SVMNAAPWA and SVNAAPWG operators

Rearrange all score values and investigate appropriate

e
Coms >
Comgprte score values of all individuals

optimal options

Figure 1 Flow chart of an algorithm.

6.2. Application

Research scientists are present in various alternative domains, such as mathematics, chemistry,
biology, software engineering, environmental science, medicine, nano technology, human science,
history, political science and so on. They develop a conceptual model for collecting information, and
findings respond to inquiries about individuals and the universe. Research scientists are employed
by various institutions, including universities and colleges, government agencies, organizations, and
businesses engaged in production and innovation. Research scientists generally hold master's or
doctoral degrees in their respective professions. Most research scientists hold postgraduate degrees
in their specialized disciplines. While master's degrees are frequently sufficient for employment in
the general financial industry, PhDs are typically necessary for research scientist careers at colleges
and universities. Research scientists are generally interested. Their task involves analytical skills and
sensitive, caring attention in order to put up a repeatable approach and recommend the right results.
For their discoveries to be communicated in publications and oral presentations, research scientists
must be effective communicators and editors.

6.3. Numerical Example

Consider a public university wanted to fill its vacant post with a research scientist, and the
selection committee selects from five different applicants #; = (1, #,, ..., #,) based on the following

four characteristics. f3; : represents the qualification/ academic history, f,: represents the
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publication and its citations, £3;: experience in teaching related to the research field, 2,: Personality/
digital skills/ communication skills/ moral value.

The decision maker selects a suitable candidate under above-discussed characteristics. Consider WVs
¥ = (0.20,0.30,0.15,0.35) associated with the collected information in the form of SVNVs. We
aggregated information given by the decision maker in Table 2 by following the steps of the

algorithm.
Table 2 shows the information in the form of SNNVSs given by the decision maker.

ny  (0.23,0.45,0.56) (0.66,0.65,0.78) (0.12,0.97,0.32) (0.21,0.78,0.78) (0.65,0.54,0.76)
n, (0.67,0.78,0.98) (0.89,0.12,0.32) (0.99,0.88,0.76) (0.23,0.32,0.71) (0.65,0.55,0.61)
ns  (0.8,0.39,0.19) (0.12,0.34,0.54)  (0.33,0.9,0.1)  (0.62,0.56,0.69) (0.78,0.61,0.32)
n,  (0.7,039,0.88)  (0.78,0.1,0.2) (0.2,0.4,05)  (0.11,0.77,0.19) (0.77,0.22,0.11)

Step 1: The information gathered by the decision-maker using the system of SVNVs is represented
in Table 2.

Step 2: As no cost factor is included in the attributes set data, we have not transformed the decision

matrix into the normalized matrix.
Step 3: Applied the techniques of SVNAAPWA and SVNAAPWG operators to aggregate information
given by the decision maker, which is depicted in Table 2.
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Table 3 shows the results of our proposed work.

| SVNAAPWA  SVNAAPWG

(0.6067,0.4812,0.5002) (0.2768,0.6612,0.9359)
(0.7990,0.1950,0.3747) (0.3459,0.5610,0.6983)
(0.9468,0.6972,0.3062) (0.1510,0.9553,0.6059)
(0.3138,0.4944,0.5376) (0.2250,0.7457,0.7587)
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(0.6877,0.4317,0.3256) (0.5387,0.5375,0.6947)

Step 4: After the computation of information using our proposed methodologies, we displayed all
outcomes in Table 3.

Step 5: Investigate the results of the score values obtained by SVNAAPWA and SVNAAPWG
operators shown in Table 3. Invested results of all individual by the SVNAAPWA and SVNAAPWG

operators listed in Table 4.
Table 4 shows the score values of AOs of SVNAAPWA and SVNAAPWG

SVNAAPWA 0.5418 0.7431 0.6478 0.4273 0.6435 #, >3 > fs > 8 > #y
SVNAAPWG | 0.2266  0.3622  0.1966 0.2402 | 0.4355  #5 > R, > B, > B > By

We noticed the ranking and ordering of score values #, > #5 > 3 >8; > 8, and 8, > 8; > 8, >
f; > 1, for SVUNAAPWA and SVNAAPWG, respectively. #, is a suitable applicant for the vecant
post. Similarly, #s is the best applicants for a research scientist of a public university. We also show
the outcomes of the score values acquired from the SVNAAWA and SVNAAWG operators as a

graphical representation of the following Figure 2.

0.8000
0.7000

0.6000
0.5000
0.4000
0.3000
0.2000
0.1000 I l
0.0000

SVNAAPWA SVNAAPWG

Score Values

Aggregation operators

Hp l WMy 2 MR 3 Wa 4 ERS5

Figure 2 Covers the geometrical representation of all score values, which are listed in Table 4.

6.4. Behavior of Different Parameters of {. on our Purposed Methodologies

We modified several values of ¢ in step 4 of the recommended MADM approach to explore
the impact of different parameter values ¢ on the ranking of all alternatives. The derived outcomes
are displayed in Tables 5-6. From Table 5, we noticed when the valued of ¢ increases, score values
gained through the SVNAAPWA and SVNAAPWG operators also increase. Moreover, we noticed
that the ranking and ordering sequence of the score values remain the same when we change the
parametric values of ¢ for our invented approaches SVNAAPWA and SVNAAPWG operators. To
see this increasing sequence of the parameter value ¢ and outcomes obtained from our discussed

approaches is shown the isotonicity property.
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Table 5 shows the results of SVNAAPWA operators for the variation of .

1 04352 0.6502 0.4841 0.2984 0.5522
=3  0.5418 0.7431 0.6478 0.4273 0.6435
£ =25 0.7041 0.8436 0.8061 0.6675 0.7905
£=75 0.7281  0.8566 0.8222 0.6915 0.8075
¢ 05 0.7315 0.8585 0.8244 0.6949 0.8101
¢ 55  0.7343 0.8601 0.8262 0.6976 0.8122
£ =201 0.7356 0.8608 0.8271 0.6989 0.8132
¢ =255 0.7365 0.8614 0.8277 0.6999 0.8139
£ =275 0.7368 0.8615 0.8279 0.7001 0.8141
£ =321 0.7372 0.8618 0.8282 0.7006 0.8145
£ =375 0.7376 0.8620 0.8284 0.7010 0.8148
£ =421 0.7379 0.8621 0.8286 0.7012 0.8150
£ =463 0.7381 0.8623 0.8287 0.7014 0.8152

> By
> Ry
> By
> Ry
> By
> Ry
> By
> Ry
> By
> fg
> fg
> fg

> Ry > By
> R > By
> R > By
> R > By
> Rg > By
> Bg > By
> R > By
> B > By
> Rg > By
>Ry > By
>Ry >y
> ng > 8y

> Bg > By

> B,
> B,
> By,
> B,
> By,
> B,
> By,
> By,
> B,
> R,
>R,
> R,

Table 6 shows the results of SVNAAPWG operators for the variation of .

> By
> n,
>n,
> n,
>n,
> n,
> B,
> n,
>n,
> n,
>n,
> n,

>R, > Ay
>R, >0,
> 8, >80,
>R, > 8,
>R, >80,
>R, > 8,
>R, >80,
>R, > 8,
> 8, >80,
>R, >0,
> 8, >80,
>R, > 8,

> B,
> By
> By
> By
> By
> By
> By
> By
> By
> By
> By
> By

Further, we explored all the results obtained by the SVNAAPWA and SVNAAPWG

operators in the graphical representation of Figure 3 and Figure 4.
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Figure 3 Graphical representation of score values depicted in Table 5.

0.6000

0.5000
0.4000
0.3000

=] l\l\ Il Il

’//\QOJQ’)Q'\,

Score Values

S
&t/ /’)’ NQ &‘g)

&/
Variation of different parametric values

Br 1l WMy 2 Wa 3 Wr 4 ER S5

Figure 4 Graphical representation of score values depicted in Table 6.

7. Comparative Study

To show the effectiveness and applacability of our discussed approaches, we make a comparison
of the outcomes of the current discussed approaches with the consequences of the existing
approaches. For this purpose, we utilized a few numbers of used AOs on the data of SVNVs presented
by the decision maker and shown in Table 2. AOs of SVN Dombi weighted average and SVN Dombi
weighted geometric operators anticipated by Chen and Ye [31], AOs of SVN weighted average and
SVN weighted geometric operators presented by Peng et al. [51], AOs of SVN Einstein weighted
average and SVN Einstein weighted geometric operators anticipated by the Ye et al. [52], and AOs of
complex SVNVs (CSVNVs) based on Prioritized Muirhead Mean tools given by the Mahmood and
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Ali [32]. All the results obtained by the existing AOs [31], [32], [51], [52] are shown in the following

Table 7.

0.9000
0.8000
0.7000
0.6000
0.5000
0.4000
0.3000
0.2000
0.1000
0.0000

S

R

Q
N N &

(=)

Q
v
(_)Aév )

Br 1l Ha 2 Br3 Wr 4 BRS5

&~

R\ S O IO SN SR\ y @“
N

Figure 5. Shows the results of the comparative study in a graphical representation.

Current work

Current work

SVNWA [51]

SVNWG [51]

SVNDWA [31]

SVNDWG [31]

SVNEWA [52]

SVNEWG [52]

Mahmood and Ali [32]

Table 7. Shows the results of a comparative study.

G(a,) = 0.5418, G(r,) = 0.7431,G(n,) = 0.6478,
G(r,) = 0.4273,G(rs) = 0.6435

G(ay) = 0.2266,G(r,) = 0.3622,G(rs) = 0.1966,
G(r,) = 0.2402, G(rs) = 0.4355

G(ay) = 0.4985, G(r,) = 0.7415,G(n,) = 0.5654,
G(a,) = 0.4160, G(rs) = 0.6655

G(ry) = 0.3751,G(n,) = 0.6136,G(rs) = 0.3120
,G(r,) = 0.3158,G(rs) = 0.5862

G(ry) = 0.5539,G(n,) = 0.7815,G(rs) = 0.6759,
G(a,) = 0.4714, G(rs) = 0.7115

G(ry) = 0.3597,G(n,) = 0.5842, G(rs) = 0.3416
,G(r,) = 0.3346,G(rs) = 0.5980

G(ry) = 0.4797,G(r,) = 0.7309,G(rs) = 0.5333
,G(r,) = 0.3979,G(rs) = 0.6549

G(ry) = 0.3882,G(n,) = 0.6397,G(rs) = 0.3313
,G(r,) = 0.3271,G(rs) = 0.5977

CSVNVs

s

)

)

#,

#,

#,

> B

> s

> s

>Ry >R, > Ry

Failed

From Table 7, we examined the results of existing approaches and concluded that invented

methodologies are superior to other ones. Due to the parametric value of Aczel Alsina aggregation

tools, Decision makers can acquire results of score values according to their preferences by setting
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different parametric values of Aczel Alsina aggregation tools. We also observed the consistency and
effectiveness of our invented approaches in Tables 5-6.
Following graphical representation shows the results of existing approaches obtained by the decision

matrix of Table 2 and shown in Figure 5.

8. Conclusion

The decision information is more appropriately described in terms of SVNVs during the decision-
making process due to the increasing uncertainties and complexity of practical situations. In this
article, we exposed the notion of SVNSs to cope with ambiguous and vague information about human
opinions. The SVNS is the modified version of an IFSs and PFSs, which provides freedom to decision-
makers in the decision-making process and contains more extensive information than other
frameworks of fuzzy systems. Aczel Alsina aggregation tools are superior to other aggregation tools.
By using the theory of Aczel Alsina aggregation tools, we proposed a class of new approaches based
on SVN information, including SVNAAPA and SVNAAPG operators. We also generalized the theory
of SVNSs with properties of Aczel Alsina aggregation tools and presented a series of new approaches
like SVNAAPWA and SVNAAPWG operators. To reveal the intensity and effectiveness of our
invented methodologies, some notable characteristics are also explored. We established an algorithm
for the MADM problem under the system of SVN information. We discussed a numerical example to
find the most appropriate candidate for the vacant post of a general manger for the multinational
company. To find the validity and flexibility of our methods, we evaluated the effects of the results
on the alternatives for several parametric values. The advantages of our presented methodologies are
also presented by comparing the findings of existing approaches with currently proposed AOs.

Sometimes decision-makers cannot find an appropriate optimal option due to insufficient
information about weight vectors. We can use the concepts of power operators and entropy measures
to handle this situation. We also apply our invented approaches to resolve different applications such
as artificial intelligence, game theory, waste management, and social selection. Furthermore, we will
explore our invented approaches in the framework of the bipolar soft set [53], [54], picture fuzzy sets
[55], spherical fuzzy sets, and complex spherical fuzzy sets [56]. Next, we will apply our invented
approaches to improve the healthcare system's reliability and establish a strong model for the waste

materials under the system of NS [57].

Furthermore, we also attached a list of variables used throughout this article.

s e s s

X Non-empty set Q Accuracy function
10 PMV ' 4 Weight vector

é AMV 3 Attribute

o NMV R Alternative
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7 Element from non-empty set [/ Parametric values
a SVNV g Score function

References

[1] L. A.Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338-353, Jun. 1965,
doi: 10.1016/50019-9958(65)90241-X.

[2] K. Atanassov, “Intuitionistic fuzzy sets. Fuzzy Sets Syst,” 1986.

[3] K. T.Atanassov, “Intuitionistic fuzzy sets,” in Intuitionistic fuzzy sets, Springer, 1999,
pp. 1-137.

[4] K. T. Atanassov, “Two theorems for intuitionistic fuzzy sets,” Fuzzy sets and systems,
vol. 110, no. 2, pp. 267-269, 2000.

[5] R.R.Yager, “Pythagorean membership grades in multicriteria decision making,”
IEEE Transactions on Fuzzy Systems, vol. 22, no. 4, pp. 958-965, 2013.

[6] R.R.Yager, “Generalized orthopair fuzzy sets,” IEEE Transactions on Fuzzy Systems,
vol. 25, no. 5, pp. 1222-1230, 2016.

[7] B.C. Cuong, “Picture fuzzy sets-first results. part 1, seminar neuro-fuzzy systems
with applications,” Institute of Mathematics, Hanoi, 2013.

[8] B. Cuong, “Picture fuzzy sets,” Journal of Computer Science and Cybernetics, vol. 30, Feb.
2015, doi: 10.15625/1813-9663/30/4/5032.

[9] F.Smarandache, “A unifying field in logics. neutrosophy: Neutrosophic probability,
set and logic.” American Research Press, Rehoboth, 1999.

[10] H. Wang, F. Smarandache, Y. Zhang, and R. Sunderraman, Single valued neutrosophic
sets. Infinite study, 2010.

[11] H. Wang, F. Smarandache, R. Sunderraman, and Y.-Q. Zhang, interval neutrosophic
sets and logic: theory and applications in computing: Theory and applications in computing,
vol. 5. Infinite Study, 2005.

[12] J. Ye, “A multicriteria decision-making method using aggregation operators for
simplified neutrosophic sets,” Journal of Intelligent & Fuzzy Systems, vol. 26, no. 5, pp.
2459-2466, 2014.

[13] H. Garg, “A Novel Correlation Coefficients between Pythagorean Fuzzy Sets and Its
Applications to Decision-Making Processes,” International Journal of Intelligent
Systems, vol. 31, no. 12, pp. 1234-1252, 2016, doi: 10.1002/int.21827.

[14] Z. Ai, Z. Xu, R. R. Yager, and J. Ye, “q-rung orthopair fuzzy integrals in the frame of
continuous Archimedean t-norms and t-conorms and their application,” IEEE
Transactions on Fuzzy Systems, vol. 29, no. 5, pp. 996-1007, 2020.

[15] T. Mahmood, K. Ullah, Q. Khan, and N. Jan, “An approach toward decision-making
and medical diagnosis problems using the concept of spherical fuzzy sets,” Neural
Computing and Applications, vol. 31, no. 11, pp. 7041-7053, 2019.

[16] Z.Xu, “Intuitionistic fuzzy aggregation operators,” IEEE Transactions on fuzzy systems,
vol. 15, no. 6, pp. 1179-1187, 2007.

Sajid Latif, Kifayat Ullah and Abrar Hussain, Novel Single Valued Neutrosophic Prioritized Aczel Alsina Aggregation
Operators and Their Applications in Multi-Attribute Decision Making



Neutrosophic Sets and Systems, Vol. 58, 2023 190

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

K. Rahman, A. Ali, M. Shakeel, M. A. Khan, and M. Ullah, “Pythagorean fuzzy
weighted averaging aggregation operator and its application to decision making
theory,” The Nucleus, vol. 54, no. 3, pp. 190-196, 2017.

N. Jan, M. Aslam, K. Ullah, T. Mahmood, and J. Wang, “An approach towards
decision making and shortest path problems using the concepts of interval-valued
Pythagorean fuzzy information,” International Journal of Intelligent Systems, vol. 34, no.
10, pp. 2403-2428, 2019.

P. Liu and P. Wang, “Some g-Rung Orthopair Fuzzy Aggregation Operators and
their Applications to Multiple-Attribute Decision Making,” International Journal of
Intelligent Systems, vol. 33, no. 2, pp. 259-280, 2018, doi: 10.1002/int.21927.

H. Garg, “Some picture fuzzy aggregation operators and their applications to
multicriteria decision-making,” Arabian Journal for Science and Engineering, vol. 42, no.
12, pp. 5275-5290, 2017.

M. Riaz and H. M. A. Farid, “Picture fuzzy aggregation approach with application to
third-party logistic provider selection process,” Reports in Mechanical Engineering, vol.
3, no. 1, pp. 318-327, 2022.

M. Jdid, F. Smarandache, and S. Broumi, “Inspection Assignment Form for Product
Quality Control Using Neutrosophic Logic,” Jan. 2023, doi: 10.5281/zenodo.8171135.
A. Gamal, A. F. A. El-Gawad, and M. Abouhawwash, “Towards a Responsive
Resilient Supply Chain based on Industry 5.0: A Case Study in Healthcare Systems,”
Feb. 2023, doi: 10.5281/zenodo.8185201.

M. Riaz and M. R. Hashmi, “Linear Diophantine fuzzy set and its applications
towards multi-attribute decision-making problems,” Journal of Intelligent & Fuzzy
Systems, vol. 37, no. 4, pp. 5417-5439, 2019.

Y. Liu and W. Jiang, “A new distance measure of interval-valued intuitionistic fuzzy
sets and its application in decision making,” Soft Comput, vol. 24, no. 9, pp. 6987-7003,
May 2020, doi: 10.1007/s00500-019-04332-5.

S. Mahnaz, J. Ali, M. G. A. Malik, and Z. Bashir, “T-Spherical Fuzzy Frank
Aggregation Operators and Their Application to Decision Making With Unknown
Weight Information,” IEEE Access, vol. 10, pp. 7408-7438, 2022, doi:
10.1109/ACCESS.2021.3129807.

J. Ahmmad, T. Mahmood, R. Chinram, and A. Iampan, “Some average aggregation
operators based on spherical fuzzy soft sets and their applications in multi-criteria
decision making.,” AIMS Mathematics, vol. 6, no. 7, pp. 7798-7833, Jul. 2021.

Z. Ali, T. Mahmood, and M.-S. Yang, “Complex T-Spherical Fuzzy Aggregation
Operators with Application to Multi-Attribute Decision Making,” Symmetry, vol. 12,
no. 8, Art. no. 8, Aug. 2020, doi: 10.3390/sym12081311.

J. Ye, “Improved correlation coefficients of single valued neutrosophic sets and
interval neutrosophic sets for multiple attribute decision making,” Journal of
Intelligent & Fuzzy Systems, vol. 27, no. 5, pp. 2453-2462, 2014.

Sajid Latif, Kifayat Ullah and Abrar Hussain, Novel Single Valued Neutrosophic Prioritized Aczel Alsina Aggregation
Operators and Their Applications in Multi-Attribute Decision Making



Neutrosophic Sets and Systems, Vol. 58, 2023 191

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

G. Wei and Z. Zhang, “Some single-valued neutrosophic Bonferroni power
aggregation operators in multiple attribute decision making,” Journal of Ambient
Intelligence and Humanized Computing, vol. 10, no. 3, pp. 863-882, 2019.

J. Chen and J. Ye, “Some single-valued neutrosophic Dombi weighted aggregation
operators for multiple attribute decision-making,” Symmetry, vol. 9, no. 6, p. 82, 2017.
T. Mahmood and Z. Ali, “Prioritized Muirhead Mean Aggregation Operators under
the Complex Single-Valued Neutrosophic Settings and Their Application in Multi-
Attribute Decision-Making,” Journal of Computational and Cognitive Engineering, pp.
56-73, 2022.

C. Fan, E. Fan, and K. Hu, “New form of single valued neutrosophic uncertain
linguistic variables aggregation operators for decision-making,” Cognitive Systems
Research, vol. 52, pp. 1045-1055, 2018.

A. Hussain, K. Ullah, J. Ahmad, H. Karamti, D. Pamucar, and H. Wang,
“Applications of the Multiattribute Decision-Making for the Development of the
Tourism Industry Using Complex Intuitionistic Fuzzy Hamy Mean Operators,”
Computational Intelligence and Neuroscience, vol. 2022, 2022.

H. Garg, “Novel single-valued neutrosophic aggregated operators under Frank norm
operation and its application to decision-making process,” International Journal for
Uncertainty Quantification, vol. 6, no. 4, 2016.

P. Liu, Q. Khan, and T. Mahmood, “Application of Interval Neutrosophic Power
Hamy Mean Operators in MAGDM,” Informatica, vol. 30, no. 2, pp. 293-325, Jan. 2019.
M. Akram, K. Ullah, and D. Pamucar, “Performance Evaluation of Solar Energy Cells
Using the Interval-Valued T-Spherical Fuzzy Bonferroni Mean Operators,” Energies,
vol. 15, no. 1, Art. no. 1, Jan. 2022, doi: 10.3390/en15010292.

M. S. Ali Khan, S. Abdullah, and A. Ali, “Multiattribute group decision-making
based on Pythagorean fuzzy Einstein prioritized aggregation operators,” International
Journal of Intelligent Systems, vol. 34, no. 5, pp. 1001-1033, 2019, doi: 10.1002/int.22084.
J. Aczél and C. Alsina, “Characterizations of some classes of quasilinear functions
with applications to triangular norms and to synthesizing judgements,” aequationes
mathematicae, vol. 25, no. 1, pp. 313-315, 1982.

F. Farahbod and M. Eftekhari, “Comparison of different T-norm operators in
classification problems,” IJFLS, vol. 2, no. 3, pp. 33-39, Jul. 2012, doi:
10.5121/ijfl1s.2012.2303.

T. Senapati, G. Chen, and R. R. Yager, “Aczel-Alsina aggregation operators and their
application to intuitionistic fuzzy multiple attribute decision making,” International
Journal of Intelligent Systems, vol. 37, no. 2, pp. 1529-1551, 2022, doi: 10.1002/int.22684.
T. Senapati, G. Chen, R. Mesiar, and R. R. Yager, “Novel Aczel-Alsina operations-
based interval-valued intuitionistic fuzzy aggregation operators and their
applications in multiple attribute decision-making process,” International Journal of
Intelligent Systems, 2021.

A. Hussain, K. Ullah, M. N. Alshahrani, M.-S. Yang, and D. Pamucar, “Novel Aczel-
Alsina Operators for Pythagorean Fuzzy Sets with Application in Multi-Attribute

Sajid Latif, Kifayat Ullah and Abrar Hussain, Novel Single Valued Neutrosophic Prioritized Aczel Alsina Aggregation
Operators and Their Applications in Multi-Attribute Decision Making



Neutrosophic Sets and Systems, Vol. 58, 2023 192

Decision Making,” Symmetry, vol. 14, no. 5, Art. no. 5, May 2022, doi:
10.3390/sym14050940.

[44] M. R. Khan, H. Wang, K. Ullah, and H. Karamti, “Construction Material Selection by
Using Multi-Attribute Decision Making Based on q-Rung Orthopair Fuzzy Aczel-
Alsina Aggregation Operators,” Applied Sciences, vol. 12, no. 17, Art. no. 17, Jan. 2022,
doi: 10.3390/app12178537.

[45] M. Naeem, Y. Khan, S. Ashraf, W. Weera, and B. Batool, “A novel picture fuzzy
Aczel-Alsina geometric aggregation information: Application to determining the
factors affecting mango crops,” AIMS Mathematics, vol. 7, no. 7, pp. 12264-12288,
2022.

[46] T. Mahmood, Z. Ali, S. Baupradist, and R. Chinram, “Complex Intuitionistic Fuzzy
Aczel-Alsina Aggregation Operators and Their Application in Multi-Attribute
Decision-Making,” Symmetry, vol. 14, no. 11, p. 2255, 2022.

[47] J. Ahmmad, T. Mahmood, N. Mehmood, K. Urawong, and R. Chinram, “Intuitionistic
Fuzzy Rough Aczel-Alsina Average Aggregation Operators and Their Applications
in Medical Diagnoses,” Symmetry, vol. 14, no. 12, Art. no. 12, Dec. 2022, doi:
10.3390/sym14122537.

[48] J. Ali and M. Naeem, “Complex g-Rung Orthopair Fuzzy Aczel-Alsina aggregation
operators and its application to multiple criteria decision-making with unknown
weight information,” IEEE Access, vol. 10, pp. 85315-85342, 2022.

[49] T. Senapati, R. Mesiar, V. Simic, A. lampan, R. Chinram, and R. Ali, “Analysis of
Interval-Valued Intuitionistic Fuzzy Aczel-Alsina Geometric Aggregation Operators
and Their Application to Multiple Attribute Decision-Making,” Axioms, vol. 11, no. 6,
p. 258, 2022.

[50] R.R. Yager, “Prioritized aggregation operators,” International Journal of Approximate
Reasoning, vol. 48, no. 1, pp. 263-274, Apr. 2008, doi: 10.1016/j.ijar.2007.08.009.

[51] J. Peng, J. Wang, ]. Wang, H. Zhang, and X. Chen, “Simplified neutrosophic sets and
their applications in multi-criteria group decision-making problems,” International
Journal of Systems Science, vol. 47, no. 10, pp. 2342-2358, Jul. 2016, doi:
10.1080/00207721.2014.994050.

[52] J. Ye, E. Tirkarslan, M. Unver, and M. Olgun, “Algebraic and Einstein weighted
operators of neutrosophic enthalpy values for multi-criteria decision making in
neutrosophic multi-valued set settings,” Granul. Comput., vol. 7, no. 3, pp. 479487,
Jul. 2022, doi: 10.1007/s41066-021-00279-x.

[53] T. Mahmood, “A novel approach towards bipolar soft sets and their applications,”
Journal of Mathematics, vol. 2020, 2020.

[54] T. Mahmood, “Multi-attribute decision-making method based on bipolar complex
fuzzy Maclaurin symmetric mean operators,” Computational and Applied Mathematics,
vol. 41, no. 7, pp. 1-25, 2022.

[55] K. Ullah, “Picture fuzzy maclaurin symmetric mean operators and their applications
in solving multiattribute decision-making problems,” Mathematical Problems in
Engineering, vol. 2021, 2021.

Sajid Latif, Kifayat Ullah and Abrar Hussain, Novel Single Valued Neutrosophic Prioritized Aczel Alsina Aggregation
Operators and Their Applications in Multi-Attribute Decision Making



Neutrosophic Sets and Systems, Vol. 58, 2023 193

[56] Z. Ali, T. Mahmood, and M.-S. Yang, “TOPSIS Method Based on Complex Spherical
Fuzzy Sets with Bonferroni Mean Operators,” Mathematics, vol. 8, no. 10, Art. no. 10,
Oct. 2020, doi: 10.3390/math8101739.

[57] A. Abdelhafeez, H. K.Mohamed, and N. A.Khalil, “Rank and Analysis Several
Solutions of Healthcare Waste to Achieve Cost Effectiveness and Sustainability Using
Neutrosophic MCDM Model,” Feb. 2023, doi: 10.5281/zenodo.8185213.

Received: June 3,2023. Accepted: Oct 2, 2023

Sajid Latif, Kifayat Ullah and Abrar Hussain, Novel Single Valued Neutrosophic Prioritized Aczel Alsina Aggregation
Operators and Their Applications in Multi-Attribute Decision Making



BINSS Neutrosophic Sets and Systems, Vol. 58, 2023

m University of New Mexico
4'

Determining the Best Plastic Recycling Technology Using the
MABAC Method in a Single-Valued Neutrosophic Fuzzy
Approach

D. Sasirekha'*, P. Senthilkumar®
L*Research Scholar, PG and Research Department of Mathematics, Government Arts and Science College,
Kangeyam, Tiruppur, Tamil Nadu, India; sasirekhasaba@gmail.com
2 Assistant Professor, PG and Research Department of Mathematics, Government Arts and Science College,

Kangeyam, Tiruppur, Tamil Nadu, India; rajenranpsk@gmail.com

Abstract. In recent years, waste management approaches have shifted to recycling and recovery, and waste is
now viewed as a potentially new resource. Several research projects have developed extensive plans to observe
the planning in these waste management systems. These plastic recycling methods contribute to the creation
of environmentally friendly products from waste. In this study, we present a method of multi-attribute decision
making (MADM) to provide an efficient way to choose the best plastic recycling method from the selected four
recycling alternatives. The multi-attribute border approximation area comparison (MABAC) method is used
to evaluate the alternatives under the single-valued neutrosophic fuzzy set (SVNFS). Additionally, we used

SWARA in computing the weights of the attributes. Finally, a numerical illustration is given for this problem.

Keywords: Multi-attribute decision making; single-valued neutrosophic fuzzy set; plastic recycling; MABAC.

1. Introduction

Plastics, once a rare commodity, are now our most serious threat. Plastic is widely used,
durable, and cheap, so its use has become a part of all sectors. The use of plastic products in
our daily lives has inevitably increased. Plastics are mainly used in daily life items, medical
and industrial equipment, and electrical appliances. It plays an important role in the products
that people mostly use in all fields. The reason for using this plastic is that it is very easy to
carry and the price is cheap, so people are using it more and more.

A reference to plastic materials in the Earth’s environment that affect organisms living on
the Earth’s surface is called ”plastic pollution“. When plastics are burned, they pollute land,
water, the oceans, and the air. Many environmental problems are caused by pollution due to
its use and improper management. Balancing the production of plastics and their recycling

and reuse after use is a major challenge in today’s environment. We can’t stop using plastic
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right now and make it better, but we can certainly find and use alternatives to reduce the
use and production of plastic in the world. This research paper explains how to control the
effects of plastic waste and how to recycle it. Reusing plastic can help reduce overproduction.
The process of converting waste materials into new products is called recycling. This study
discusses recycling methods for plastic and thermoplastic polymers. Also, we discussed the
plastic recycling methods (PRM) and their processes.

Sabino Armenise et al.[1] fully examined and reviewed in the area of plastic recycling with
pyrolysis methods. Martinez [2] studied plastic pyrolysis methods in American countries. An-
uar et al. [3] reviewed some literature about pyrolysis methodologies in plastic wastes. Harish
Jeswani et al. [4] disguised about pyrolysis of mixed plastic waste. Sofie Huysman et al.
[5] studied the pertinence of the recyclability benefit index concepts. Pakiya Pradeep and
Gowthaman [6] explained waste plastic as potential alternative sources for fossil fuel. Good-
ship [7] provided a compendious of the quantities and the main effects of recycling on the
plastic material. Adeleka et al. [8] explained the sustainable utilization of energy from waste
in South Africa. Chen et al. [9] discussed the various recycling energy recovery technologies.
Wilson et al. [10] summarized pyrolysis technology in plastic waste management; the exper-
imental results on the pyrolysis of thermoplastic polymers are discussed on single and mixed
waste plastics. Based on a real-world case study, Gu et al. [11] assessed mechanical plastic
recycling practices. Pacheco et al. [12] overview and investigated of plastic recycling difficul-
ties were in the Metropolitan area of Rio de Janeiro. Shanker et al. [13] proposed recycling
technological options for India and reprocessing infrastructure for PWR in India. Plastics
recycling worldwide overviewed by dAmbrires [14]. Challenges, and opportunities of recycling
plastics in Western Australia reported by Cceres Ruiz and Zaman [15]. Many researchers ex-
amined various recycling technologies. All of these studies examined and aimed to identify the
most viable plastic recycling method. As a result, the study’s goal was to develop a general
framework for selecting the most appropriate PRM based on environmental and social factors.

Real-life decision-making problems are made more difficult by ambiguity and fuzzy logic.
Zadeh [16, 17] created the concept of fuzzy set theory, which describes and converts data that
is imprecise rather than accurate. The theory of fuzzy logic demonstrates an empirical basis for
gathering information about the risks and unpredictability associated with human cognitive
abilities such as reasoning and comprehension [18]. Due to the intricate nature of data and the
vagueness of the way humans think, the ability to identify members of the set of fuzzy numbers
is not always adequate for determining the features of issues. To overcome this restriction,
Atanassov [19] converted the fuzzy set into an intuitionistic fuzzy set (IFS) by introducing
the not-being-a-member and unwillingness functions. An IFS may indicate situations in three

ways: superiority, complex inferiority, and skepticism, with intuitionistic fuzzy numbers (IFNs)
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typically representing these [20]. Smarandache [21] recommended the neutrosophic set and
neutrosophic possibility in 1998, in addition to the reasoning behind them, which includes
three distinct sense ideas such as truthfulness, indeterminacy, and untruthfulness. This idea
additionally encompasses the idea of trepidation, which contributes to the research having a
significant impact in specific research areas. In a neutrosophic fuzzy set (NSS), truthfulness
is expressed by T, indeterminacy by I, and falsehood by F. All of these are separate, adding
up to 0 < T+ I + F < 3. Although the level of membership as well as non-membership
determines the ambiguity of IFS, the indeterminacy associated with NF'S is not dependent on
truth and untruth values. NFNs can be used to define the ambiguity, falsity, and unwillingness
of information in an everyday issue. Karaaslan and Hunu [22] used the TOPSIS approach
to determine and explain single-valued neutrosophic sets (SVNS) and their applications in
multiple attribute group decision making (MCGDM).

Balwada et al. [23] identify a better waste collection system using AHP for packaging plastic
waste. Geetha et al. [24] proposed a suitable recycling method for plastics under hesitant
pythagorean fuzzy ELECTRE III. Vinodh et al. [25] examined the best recycling method
using integrated MCDM methods. Soni et al. [26] proposed a triangular fuzzy weighted
bonferroni mean operator AHP-TOPSIS model for selecting an appropriate composition for
developing floor tiles from recycled waste plastics. Chakraborty and Saha [27] presented a new
GDM process that combines the AHP model and WASPAS under LR fuzzy numbers to convey
and model expert linguistic judgments. Afzal and Aslam [28] introduced a novel methodology
to establish the relationship between capacitance and resistance when dealing with imprecise
data obtained from LCR meters. Using a neutrosophic set, Abdelhafeez et al. [29] proposed
a mean weighting methodology for analysing and selecting the best criteria in smart farming.
The AHP is combined with the SVNS to deal with uncertain data in the assessment process
of underwater vehicles studied by Mohamed et al. [30]. Gamal and Mohamed [31] examined
the integrated MCDM methods for the industrial robot selection problem. Abdel-Basset et al.
[32] suggested a hybrid MCDM method for choosing the components of a sustainable RES in
unpredictable circumstances, employing various triangular neutrosophic numbers for dealing
with ambiguous data. Abdl-Basset et al. [33] described a novel hybrid MCDM framework
for classifying and selecting third-party reverse logistics provider identification. Rani et al.
[34] investigated a novel single-valued neutrosophic mixed compromise solution approach for
selecting renewable energy resources. Ali Salamai [35] explored a neutrosophic SWARA and
VIKOR integrated technique for ranking strategies in energy problems related to decision-
making. Based on the SVNFS, Stanujkic et al. [36] suggested a multiple-criteria evaluation
model. The MABAC model was used by Sahin and Altun [37] in a probabilistic single-valued
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neutrosophic hesitant scenario. Wang et al. [38] elevated the MABAC procedure for MCGDM
in a fuzzy Q-rung environment.

Many studies have focused on the application of plastic recycling methods in the existing
literature. The goal of this study is to develop a new MCDM model for the plastic recycling
problem. There has been no research using the MABAC method with a single-valued neutro-
sophic fuzzy set. As a result, it is critical to address the lack of research in plastic recycling
treatments. The MABAC model successfully adapts to the relevance needs for plastic recy-
cling techniques, which motivated us to research and develop our proposed model for PRM,
which may substantially minimise plastic waste while also protecting the environment and
society. This is urgently needed. The contribution of the study is to use the proposed method
to choose the best plastic recycling method in terms of minimal operating expenses, a small
amount of contamination, additional social benefits, and fewer harms to the environment. In
this research, we combined the MABAC model with the SWARA weight finding method and
performed an analysis of comparison to validate the suggested method’s suitability for PRM
problems against existing methods such as EDAS and WASPAS. Furthermore, sustainability
was examined and provided as a sensitivity analysis.

In this study, we use the SVNFS to present an improved and trustworthy solution to the
plastic recycling challenge under MABAC and SWARA methods. Moreover, numerous studies
investigated plastic recycling methods using a variety of fuzzy sets with different MCDM
approaches. To fill this research gap for this problem, we use the proposed method under
SVNFN.

This paper is organized as follows: Section 2 - preliminaries; Section 3 - mathematical
methods; Section 4 - application; Section 5 - numerical example of the application; Section 6

- comparative and sensitivity analysis of the obtained solutions; Section 7-conclusions.

2. Preliminaries

Definition 2.1. [34,36] Let U be a universal set. A fuzzy set F' on U is a form
F={(a,pr(a))la € U,0 < pp(a) < 1}

Where pp(a) denoted the membership degree of a € U to F.

Definition 2.2. [34,36] A neutrosophic fuzzy set N on U is a form:
N ={(a,Tn(a),In(a), Fx(a)):a € U}

where Tn(a), In(a), Fx(a) € [0,1],0 < Tn(a) + In(a) + Fy(u) < 3 for all a € U, Ty(a) is
membership, Iy (a) is indeterminacy and Fy(a) is non-membership degree. Here, Ty (a) and

Fyn(a) are dependent and In(a) is an independent components.
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TABLE 1. Linguistic scale

Linguistic term Single-valued neutrosophic fuzzy number
Extremely High Preferred (EHP) (0.85, 0.20, 0.15)
Very High Preferred (VHP) (0.80, 0.25, 0.20)
High Preferred (HP) (0.75, 0.25, 0.25)
Moderate (M) (0.70, 0.30, 0.30)
Moderate Preferred (MP) (0.65, 0.30, 0.35)
Low Moderate Preferred (LMP) (0.60, 0.35, 0.40)
Extremely Moderate Preferred (EMP) (0.55, 0.40, 0.45)

Definition 2.3. [36] A SVNF set S in U is a form:
S =<a,Ts(a), Is(a), Fs(a) > la €U

Where Tg : U — [0,1] is called the truth-membership grade of a € U to S, Is : U — [0,1]
is indeterminacy-membership, Fg : U — [0,1] is called the falsity-membership grade. They
satisfy 0 < Tg(a) + Is(a) + Fs(a) < 3 for a € U.

Definition 2.4. [36,37] Let h =< T,I,F > be a SVNFN. The score function A, of h is a
follows:

Ap=014T-2I—-F)/2
Where 4;, € [-1,1].

Definition 2.5 (31,39). Let m = (ki, f1) and n = (k2, f2) be two SVNNs, then the single-
valued neutrosophic fuzzy normalized hamming distance (SVNFNHD) is

Dram(m,n) = % D (Tn(as) = Ta(0i)| + [ m(ai) = Ln(bi)| + [Fn(ai) — Fa(bi)))

i=1
Definition 2.6. Linguistic variables deal with many more complex and uncertain real-world
decision-making problems [40]. Table 1 shows the linguistic variables with SVNFNs used to

evaluate the PRM based on selected attributes and the linguistic scale.

3. Mathematical Methods

Pamucar and Cirovi [33] established the MABAC, which is an innovative distance-based
approach. This strategy’s policy is based on calculating criterion function parameters for
alternatives and expressing the criterion function’s distance from the border approximation
area. As a result, all alternatives can be included into the approximation area’s border (G),
upper (G+), or lower (G—).

The procedure of the fuzzy MABAC method is discussed below.
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4. The fuzzy MABAC method

Here, m alternatives X1, Xo,..., X;;,, n attributes Y7,Ys,...,Y;, are given with weight W,
and the decision-making procedures of the traditional MABAC method are explained below.

Step 1: Create the initial decision matrix F = [X;],i =1,2,....,m,j =1,2,...,n as:

11 12 T1n
o1 T929 Ton

F=[Xyl=1 . : : (1)
_Ccml Tm2 .- xmn_

where x;; represents the evaluation information of alternative X; based on attributes Y; by

decision maker E.

Step 2: Normalize the initial decision matrix (NDM) N = [X};] based on beneficial and non-
beneficial attributes which are given below:

For beneficial attributes:

Nij=Xiji=1,2,..,m,j=1,2,..n (2)
For non-beneficial attributes:

Nij=1-Xij,i=1,2,...mj=12,..n (3)

Step 3: In accordance with the NDM [V;; and attribute’s weight values w;; the weighted

normalized matrix (WNDM) Vj; = w;N;; can be calculated as:
V;j = ijij (4)

Step 4: Calculate the border approximation area (BAA) values and the BAA matrix B =

[bj]1xn can be obtained as below:
by = (] Vis) (5)
i=1

Step 5: Obtain the distance D = [d;j]mxn between each alternative and the BAA is given
below:
d(Vij,b;) if Vij >b;
dij = § Otherwise if Vj; =b; (6)
—d(Vij,bj) if Vij <b;
where d(V;,b;) denotes the distance from Vj; to b;. Based on the values of dj,

e if d;; > 0, the alternatives are in the upper approximation area Gt (UAA);
e if d;; = 0, the alternatives are in the border approximation area G(BAA);

e if d;; < 0, the alternatives are in the lower approximation area G~ (LAA);
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Clearly, the best alternatives are in GT(UAA) and the worst alternatives are in G~ (LAA).

Step 6: Sum the values of each alternatives d;; is given below:

n

R; =) dj (7)
j=1

Here, the highest value of the alternative R; is the best choice from the evaluation results.

4.1. The Step-wise Weight Assessment Ratio Analysis weighting method

The SWARA model developed by Kresuliene et al. [34] helps experts find criteria weights.
The SWARA model procedure is as follows:

Step 1: Sort the criteria by priority.
Step 2: Obtain its relative importance d;.

Step 3: Compute v;, where v; = 0; + 1.

Step 4: Determine the starting weights n;,n; = %

Step 5: Finally, in order to determine the final ranking of the criteria W;, where W; = E?j?? -.
J

5. Application

Plastics are a type of chemical-based or partly synthetic substance that consists mainly
of polymers. Because of their flexibility, plastics can be shaped, ejected, or transformed into
solid things of various shapes. This versatility, along with additional features such as thinness,
longevity, adaptability, and low manufacturing expenses, has contributed to its broad adoption.
Plastics are usually manufactured using human industrial machinery. Most present-day plastics
contain chemicals produced from fossil fuels such as natural gas or gasoline.

Plastic waste (PW) is a major source of solid waste pollution all over the world. PWs slow
degradation rate kills billions of living organisms. People all over the world have tried different
types of methods to degrade or convert PW into usable materials in order to dispose of it.
Incineration involves the combustion of PW, which produces toxic gases. Recycling is another
method for converting PW into new plastic products. Recycling is required because almost
all plastic is non-biodegradable and thus accumulates in the environment, causing harm.

Modern landfill technology is already vastly superior to older landfills and open-air dumps.
New landfills in the various countries are better designed and built in safer locations to reduce
or prevent seepage of noxious water or gases into the environment. Especially by recycling
plastic materials, the biggest impact can be avoided. The use of plastic waste to build roads

can lead to quality roads. Learning basic knowledge about recycling processes will definitely
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help us fight plastic pollution and choose the most suitable recycling method. Modern policies
are now in place to recycle plastics.

Mechanical recycling is the process of making secondary materials without significantly
changing the chemical structure of the plastic. Thermoplastic is recycled in this manner [1,
4]. Pyrolysis is a chemical process that breaks down plastic by recycling it. When plastic
waste is separated and extracted from pyrolysis, its raw materials reveal an excess of crude
oil. Stabilization of plastic waste at different temperatures (300 — 900°C') in anoxic or low
oxygen conditions is called "pyrolysis“. In this case, their hydrocarbon composition is cracked
instead of being heated. Pyrolysis is the process by which discarded plastic is converted into
a valuable resource in the form of fuel and monomers. This recycling offers many advantages
over conventional plastic waste management; another recycling method reduces the plasticity
compared with pyrolysis. As the plastic is repeatedly recycled, its strength and flexibility
decrease [1].

Cold plasma pyrolysis is the most advanced method of pyrolysis. In common, the method of
pyrolysis is thermal decomposition with limited oxygen at temperatures between 400and650C.
From this process, one can generate electricity and fuels; in particular, when cold plasma is
added to the pyrolysis process, waste plastics give off hydrogen, methane, and ethylene. Green
energy can be generated from plastic waste. Hydrogen and methane are able to be employed
as environmentally friendly energy sources due to their low emissions of COs, while ethylene
is the basic component of most plastics. Rather than wasting plastics, cold plasma pyrolysis
may preserve valuable substances that can be used to manufacture other kinds of plastic [35].

PRM is critical as a waste management method and as an essential part of the new circular
economy and no-waste systems, all of which are designed to decrease waste and improve
ecological sustainability. Only a small percentage of plastic waste is recycled. There are
several reasons for this, and while our plastic waste is increasing, technological advancements
and changes in how we recycle are assisting in making it more successful and efficient. In this
paper, we propose the best plastic recycling method based on a single-valued neutrosophic
fuzzy approach, using the fuzzy MABAC and SWARA methods.

6. Numerical Illustration

In this section, we discuss the PR treatment problem under the single-valued neutrosophic
fuzzy set using the MABAC and SWARA model. Here, the decision maker evaluate this
problem based on the four attributes which are Y; - Environment, Y5 - Technology, Y3 -
Economic, and Yy - Social aspects. The PR technologies are X; - Cold Plasma Recycling, X»
- Mechanical recycling, X3 - Pyrolysis Recycling and X4 - New trends in Landfill.
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TABLE 2. Weight values of the criteria

Criteria d; v =6;+1 nj = 6j(;1 W; = 27:7]%
Yi 0 1 1 0.4186
Yy 0.32 1.32 0.7575 0.3171
Ys 0.48 1.8 0.4208 0.1761
Ys 0.20 2 0.2104 0.0880

To address this issue, experts use the proposed method to evaluate PRM. A decision matrix

is constructed using the linguistic scale.

6.1. SWARA method:

Using the SWARA model procedure, we get the weight values of the attributes, which are

shown in Table 2.

6.2. The fuzzy MABAC method:
The plastic recycling techniques and attributes are given below:
X1 — Cold Plasma Recycling
X9 — Mechanical recycling
X3 — Pyrolysis Recycling
X4 — New trends in Landfill

Attributes are as follows:

Y7 — Environment
Y5 — Technology
Y3 — Economic

Y4 — Social aspects

Step 1: The evaluation attribute chosen by the decision maker is used to evaluate the plastic
recycling techniques. Table 3 shows the initial decision matrix along with the assessments in

the format of SVNFNs obtained from transforming the linguistic factors from Table 1.

Step 2: Table 4 shows the results of obtaining the NDM by using equations (2) and (3).
Step 3: The weighted NDM can be calculated using equation (4), which is given in Table 5.
Step 4: Using equation (5), calculate the BAA values shown in Table 6.

Step 5: Obtained the distance d;; by applying the equation (6) which is shown in Table 7.
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TABLE 3. Initial decision matrix

Alternatives / Attribute Y1 Y5 Y3 Y,
X1 (0.70, 0.35, 0.20) | (0.70, 0.30, 0.30) | (0.60, 0.30, 0.35) | (0.70, 0.25, 0.45)
X5 (0.55, 0.30, 0.40) | (0.65, 0.35, 0.20) | (0.85, 0.25, 0.30) | (0.60, 0.25, 0.30)
X3 (0.80, 0.25, 0.45) | (0.75, 0.30, 0.25) | (0.55, 0.25, 0.35) | (0.80, 0.35, 0.30)
X4 (0.65, 0.40, 0.30) | (0.85, 0.35, 0.20) | (0.80, 0.25, 0.40) | (0.85, 0.30, 0.35)

TABLE 4. Normalized decision matrix

Alternatives / Attribute Yi Y5 Y3 Ys
X1 (0.70, 0.35, 0.20) | (0.70, 0.30, 0.30) | (0.40, 0.70, 0.65) | (0.70, 0.25, 0.45)
X5 (0.55, 0.30, 0.40) | (0.65, 0.35, 0.20) | (0.15, 0.75, 0.70) | (0.60, 0.25, 0.30)
X3 (0.80, 0.25, 0.45) | (0.75, 0.30, 0.25) | (0.45, 0.75, 0.65) | (0.80, 0.35, 0.30)
Xy (0.65, 0.40, 0.30) | (0.85, 0.35, 0.20) | (0.20, 0.75, 0.60) | (0.85, 0.30, 0.35)

TABLE 5. Weighted normalized decision matrix

Alternatives / Attribute Y1 Yo Y3 Ya
X1 (0.2930, 0.1465, 0.0837) | (0.0792, 0.2219, 0.2219) | (0.0704, 0.1232, 0.1144) (0.0264, 0.066, 0.0484)
Xo (0.2302, 0.1255, 0.1674) | (0.1109, 0.2061, 0.2536) | (0.0264, 0.1320, 0.1232) (0.0352, 0.066, 0.0616)
X3 (0.3348, 0.1046, 0.1883) | (0.0792, 0.2219, 0.2378) | (0.0792, 0.1320, 0.1144) | (0.0176, 0.0572, 0.0616)
Xy (0.2720, 0.1674, 0.1255) | (0.0475, 0.2061, 0.2536) | (0.0352, 0.1320, 0.1056) | (0.0132, 0.0616, 0.0572)

TABLE 6. BAA values

b; values

b1 (0.2120, 0.1014, 0.1021)
b (0.0657, 0.0285, 0.0205)
b3 (0.1134, 0.3085, 0.2716)
b4 (0.1286, 0.0500, 0.0607)

Step 6: Sum the values of each alternatives R; is calculated by using equation (7). The final

ranking results are shown in Table 8.

From this Table 8, X;—Cold plasma recycling technology is the most suitable and environment

friendly method for plastic recycling method.
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TABLE 7. Distance d;; values

Y1 Y, Y3 Yy
X3 0.0917 0.0905 0.0586 0.0790
Xo -0.1052 0.0824 -0.0566 0.0812
X3 0.0970 0.0869 0.0685 -0.0902
Xy -0.0972 -0.0886 -0.0560 -0.0871
TABLE 8. The final ranking results
Alternatives R; values Ranking result
X4 0.3198 1
Xo 0.0018 3
X3 0.1622 2
Xy -0.3289 4

7. Comparison and sensitivity analysis

In this section, we analyze the proficiency of this suggested method through the comparison
of existing methods such as EDAS and WASPAS in the case of a SVNEFN. For this study,

sensitivity analysis was also established.

7.1. Comparison Analysis

Although contrasted to the EDAS and WASPAS shown in Figure 1, the MABAC is more
readily compatible with our application. The analysis of comparison in this study generates
more realistic and consistent outcomes if compared with different approaches. In short, in-
stead of the EDAS and WASPAS techniques, the MABAC requires an alternative comparison.
Furthermore, the selection results generated by the suggested approach provide more data in
the form of a reliability index of outranking relationships among alternatives, which is more
beneficial for the suggested approach. Table 9 indicates the order of importance provided for
the two methods as well as the order of ranking results, and the graphic depictions are shown
in Figure 1. We focused on just four criteria to determine alternatives in this paper; however,
future research can employ the proposed approach to consider additional aspects such as ex-
penses for operations and societal benefits. The proposed ranking produces results that more
differ from the existing EDAS and WASPAS methods. As a result, the proposed approach

produces more reliable results when compared to other MCDM model.
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TABLE 9. Comparison analysis results

Alternatives EDAS Rank VIKOR Rank Proposed method Rank
X1 0.2375 2 0.4216 1 0.3198 1
X5 0.1818 3 0.4169 2 0.0018 3
X3 0.3906 1 0.4033 4 0.1622 2
Xy -0.1901 4 0.4137 3 -0.3289 4

Comparison Analysis

WASPAS

#3832

= PROPOSED MODEL

FiGURE 1. Graphical representation for comparison analysis

7.2. Sensitivity analysis

The sensitivity evaluation of this framework is contrasted with the outcomes of three cases,

as shown in Table 10. These cases are discovered by varying the weights of the criteria. Case

1 is the study’s outcome, and Cases 2 and 3 are each of the results obtained by applying

various attribute weights. Sensitivity analysis reveals that changing the attribute weights has

an impact on the overall order, as shown in Table 11, and Figure 2 depicts their graphical

representation.

7.3. Results and discussion

There are numerous advantages to the cold plasma recycling of plastics. This results in a

decrease in the utilization of novel goods and energy, lowering carbon dioxide emissions. As a
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TABLE 10. Weights in sensitivity analysis

Attribute Case 1 Case 2 Case 3
Yi 0.4186 0.3171 0.1761
Yo 0.3171 0.0880 0.4186
Y3 0.1761 0.4186 0.0880
Y, 0.0880 0.1761 0.3171

TABLE 11. Sensitivity analysis results

Alternatives Case 1 Rank Case 2 Rank Case 3 Rank
My 0.3198 1 0.2185 2 0.1496 2
Mo 0.0018 3 -0.3793 4 0.0803 3
Ms 0.1622 2 0.3927 1 0.2427 1
My -0.3289 4 -0.0592 3 0.0649 4

Sensitivity analysis

05

0.3927

00649

e -0.3289

-0.37583
-0.5

MCasel mCase? MCase3d

F1GURE 2. Graphical representation for sensitivity analysis

result, the cold plasma recycling method is a good plastic recycling method that contributes to
lowering plastic waste [41]. Cold plasma recycling alternative X is the best PRM technique.
Furthermore, the overall ranking of the choices for this problem proposed a one-of-a-kind

method. Because experts struggled to evaluate choices among the various levels of contentment
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and frustration in order to estimate unknowns, this research study used the SVNN to handle
the data. Based on the end ranking results (Fig. 2), an enhanced MABAC model looks to
be more precise and suitable to address a various of other issues in MADM. The contrast
between suggested model and other ranking strategies reveals that proposed model provides
a more realistic and suitable solution that is easier to implement. The obtained weight values
of criteria show that this approach was combined with the advanced, rapid, and precisely
calculated SWARA weight finding method. In this paper, we propose a cohesive MCDM
model for the plastic recycling problem. The MABAC method is used to determine the order
of the alternatives, and SWARA is used to calculate the weights of the criteria. These processes
are particularly effective when contrasted with some MCDM methods. The MABAC model
computes the distance between each alternative and the bore estimation area. This model
has numerous benefits over other MCDM methods, including shorter processing times, greater
ease and stability, and fewer numerical computations [42]. As a result, decision makers will
be able to use fuzzy MABAC to select the best alternative with regard to processing time,
reliability, and expenses. Compared to other criteria weight determination methods (such as
AHP), the SWARA method has reduced computational challenges and greater consistency.
As a result of these benefits, the SWARA method has been used to solve real-world issues in
a variety of scenarios [43]. SWARA gives more plausible weight values than other weighting

methods due to more consistent computations.

8. Conclusion

In this regard, the mathematical model is an important tool for the evaluation of plastic
waste management systems and illustrates an efficient implementation of plastic recycling
approach to the plastic recycling methods. The SVNF's decision techniques have distinguished
similar rankings among the administrative choices when target weights are allocated to the
criteria. An alternate ranking is obtained just with the weight set which vigorously needs
technical /operation indicators. Consequently, attribute weighting is an important process
in decision making. In this paper, we conclude cold plasma recycling method is the best
alternative solution for the plastic recycling planning. This gives energy producing technique
also and environmental friendly.

Plastic recycling methods, among others, have been recognised as a promising solution to
the issue of intricately made and growing waste from plastics in advanced nations like the
European Union and the US. The government and policymakers, on the other hand, continue
to face major obstacles in determining appropriate plastic recycling techniques for establishing

effective waste disposal systems. As a result, this research was conducted in order to suggest an
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overall organised structure that can assist policymakers in determining the most suitable tech-
nology. In this paper, MABAC and SWARA methods under single-valued neutrosophic fuzzy
environment were presented. The characteristics of every option are represented by SVNFNs.
According to the suggested strategy for determining a suitable solution for this problem, cold
plasma recycling has been selected as the most secure and best-performing PRM technique in
the present scenario. This method reduces waste while generating energy, which will aid in
addressing future energy challenges. In the future, we are interested in extending the proposed
method to other issues, such as microplastic disposal. Furthermore, applying the suggested
methodology to the Pythagorean neutrosophic fuzzy approach is an intriguing avenue for fu-

ture research.
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Abstract: Neutrosophic sets have emerged as a powerful tool for addressing uncertainty and imprecision
in diverse domains, and their potential in anomaly detection within smart farming systems is the central
focus of this paper. We present a cutting-edge Neutrosophic Approach to Edge-Based Anomaly Detection,
specifically designed to cater to the intricacies of smart farming data. By harnessing the unique attributes
of single-valued neutrosophic sets, in conjunction with single-valued neutrosophic decision matrices, our
methodology adeptly handles the challenges posed by uncertain, dynamic, and multi-dimensional farm
data. Through a comprehensive analysis of sample data, we illustrate the precision and adaptability of our
approach, allowing for the quantification of intricate attribute relationships and the precise identification
of anomalies. By employing neutrosophic statistics and a weighted correlation coefficient, our approach
provides profound insights into the complex interactions within smart farming systems. This research
stands as a pivotal contribution within the scope of neutrosophic-based anomaly detection, promising to
advance the state of the art in the realm of precision agriculture.

Keywords: Neutrosophic Logic; Edge Computing; Anomaly Detection; Smart Farming; Sensor Networks;
Agricultural IoT; MCDM; Neutrosophic Sets.

1. Introduction

The utilization of neutrosophic sets has witnessed a significant surge in recent years, offering a versatile
framework to tackle complex problems characterized by ambiguity, uncertainty, and imprecision.
Neutrosophic set theory, an extension of classical fuzzy set theory, introduces a third component—
indeterminacy —alongside membership and non-membership degrees, enabling a more comprehensive
representation of uncertain information [1]. This novel framework has found application in diverse fields
such as medicine, image processing, decision-making, and pattern recognition [2].

The domain of smart farming, characterized by its amalgamation of advanced technologies, has ushered in
anew era of data-driven agriculture. Within this landscape, edge-based anomaly detection plays a pivotal
role in ensuring the seamless operation and optimization of farming systems. However, the very attributes
that make smart farming systems so powerful —the vast and dynamic streams of data generated by sensors,

devices, and machinery —also introduce inherent challenges. Uncertainty abounds in every facet of smart
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farming data. Environmental conditions fluctuate, sensor readings exhibit variability, and unforeseen
events can disrupt the expected patterns. These uncertainties are further compounded by the intricate
interplay of multiple variables and attributes within the farming ecosystem [3].

This pressing need for precise, real-time anomaly detection in the face of pervasive uncertainty
provides the impetus for our exploration of neutrosophic sets. Neutrosophic sets, with their ability to
handle not only membership and non-membership degrees but also indeterminacy, offer a nuanced
understanding of uncertain data [4]. Their adaptive nature aligns perfectly with the volatile environment
of smart farming systems, where anomalies can be subtle and evolving. By embracing the philosophy of
neutrosophic sets, we embark on a journey to harness the power of uncertainty, transforming it from a
challenge into an opportunity [5].

In line with the increasing relevance of neutrosophic sets, this paper is centered on their application in the
realm of anomaly detection within smart farming systems. Smart farming, characterized by its integration
of cutting-edge technologies such as IoT devices, sensors, and data analytics, has ushered in a new era of
precision agriculture [4]. However, the vast and dynamic nature of the data generated by these systems
presents intricate challenges for anomaly detection. Traditional methods often fall short in handling the
nuanced uncertainties inherent in smart farming data. This is where neutrosophic sets, particularly single-
valued neutrosophic sets, take center stage, offering a comprehensive approach to address the intricacies
of anomaly detection in this context [5-6]. In light of the challenges posed by smart agriculture and the
potential of neutrosophic logic and edge intelligence, this paper sets out specific research objectives [8].
Our primary goal is to develop and evaluate a novel approach to anomaly detection in smart agriculture
systems. We aim to harness the power of edge intelligence to process and analyze agricultural data in real
time and utilize neutrosophic logic to model and detect anomalies effectively. Through rigorous
experimentation and validation, we seek to demonstrate the feasibility and advantages of our proposed
approach [7-11].

The paper is organized into five sections to comprehensively address the development of a neutrosophic
approach for anomaly detection in smart agriculture systems using edge intelligence. In Section 2, we
review existing literature and research efforts related to smart agriculture, anomaly detection, edge
intelligence, and neutrosophic logic. This section offers a contextual foundation for our work by
highlighting gaps in the current body of knowledge. Section 3 presents the intricacies of our proposed
approach, elucidating the integration of edge intelligence and neutrosophic logic for anomaly detection. In

Section 4, we provide a detailed account of our experimental findings and data analysis, showcasing the
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effectiveness of our methodology in real-world smart agriculture scenarios. Section 5 offers a concise

summary of our key findings, contributions, and future directions.

2. Background

This section provides a comprehensive review of the existing literature related to anomaly detection in
smart farming systems, focusing on both traditional and emerging approaches. We explore how various
techniques have addressed the challenges of anomaly detection and highlight the rationale for introducing
a neutrosophic approach as a novel and promising avenue for enhancing the precision and robustness of
anomaly detection systems in smart farming. Dhole et al. [12] presented a review of brain tumor detection
from MRI images using hybrid approaches. Although their work focused on medical imaging, it
underscored the importance of hybrid techniques in image analysis. This review highlighted the relevance
of combining multiple methods, which potentially inspired hybrid approaches in the context of anomaly
detection in smart farming systems. The study by Garcia-Lamont et al. [15] provided insights into image
segmentation using color features. While their focus was on a different application domain, the
segmentation techniques they discussed had relevance in preprocessing and feature extraction for smart
farming system anomaly detection. Zakaria et al. [16] discussed the use of graph cuts for image
segmentation in the context of COVID-19 X-ray image analysis. Their work showcased the effectiveness of
segmentation methods in medical image analysis. In the context of smart farming, similar segmentation
techniques might have been employed for the preprocessing of agricultural images. Qi et al. [18] provided
a comprehensive review of computer vision-based hand gesture recognition for human-robot interaction.
Although their focus was on different applications, their discussion on computer vision methods was
relevant, as computer vision played a pivotal role in many smart farming applications, including anomaly
detection. The work by Ashfaq [19] touched on retrospective image registration for medical image analysis.
While the domain differed, image registration techniques could have been adapted to align images in the
context of smart farming, potentially aiding in anomaly detection. Beebe [22] provided a complete
bibliography of publications in computer networks, which might have contained relevant references for
advanced data communication and networking techniques that were important for edge-based anomaly
detection systems in smart farming.

3. Proposed Method

In this section, we elucidate the methodology employed in our research to develop a robust and innovative

approach for anomaly detection in smart agriculture systems using the amalgamation of edge intelligence

and neutrosophic logic. The methodology presented herein outlines the systematic framework and
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techniques we employed to address the intricate challenges associated with real-time anomaly detection in
agricultural environments.

The neutrosophic theory is a mathematical framework that deals with indeterminacy, uncertainty, and
incomplete information. It extends classical set theory to handle situations where information is imprecise,
vague, or contradictory. In the context of anomaly detection in smart farming, neutrosophic sets can
represent the uncertainty associated with sensor readings and anomalies. A neutrosophic set is defined as
a triple (T,1, F), Suppose a5 , 85, Bz € [0,1]and a, , a, , a3 , a,e R, where a; < a, < a; < a,. Then, a single-
valued trapezoidal neutrosophic number d=((a; , a, , as, a,); @z , 85 , Ba) is a special neutrosophic set on
the real line set R, whose truth-membership, indeterminacy-membership and falsity-membership functions
are defined as

T represents the truth-membership function.

az—ax

(aa(x_al) (a; < x < ap)

a; (a,<x<aj)
az—x
ag (a:_—%) (a3 < x < a,)
0 otherwise
I represents the indeterminacy-membership function.

Tz (x)= (1)

( (az—x+0z(x—aq)) (a <x< az)
1 —_— —_—

(az—-aq)
Iy (%) :4 g (ay < x < ajy) 2)
(x—az+0z(ad—x)) (as <x< a4)
(ag—az)
1 otherwise ,

F represents the falsity-membership function.

(aZ_x+Bﬁ(x_a1)) (a1 <x< az)

(az-a1)
F, (x) = ag (a; £x<aj3) (3)
a (x—az+PBzas—x))
e (a3 £x<ay)
1 otherwise,

Neutrosophic logic operators, analogous to classical logic operators, are used to perform operations on
neutrosophic sets. The neutrosophic logical operators include:

Neutrosophic AND (M) Operator:
For two neutrosophic sets A = (T}, Iy, F,) and B = (T, I, Fg); the neutrosophic AND operator is defined
as follows:

AAAB=(TA_TB’IA+IB_IA'IBIFA+FB_FA_FB) (4)
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Neutrosophic OR(V) Operator:
For A and B as defined above, the neutrosophic OR operator is defined as:
AV, B =Ty +Tg =Ty Tg, Iy — I3, Fy - Fp) (5)
Neutrosophic NOT (~,) Operator.
For a neutrosophic set A = (Ty, I, F,), the neutrosophic NOT operator is defined as:
~nA=1-TylF) (6)
In the context of anomaly detection, sensor data is represented as neutrosophic sets. The degree of anomaly
for a particular data point can be calculated using the neutrosophic anomaly score (N.S.S) Let X =
(Tx, Ix, Fx) be the neutrosophic representation of a data point. The neutrosophic anomaly score can be
calculated as follows:
NAS =1 — (Ty + Iy + Fy) )
A NAS value closer to 1 indicates a higher degree of anomaly.
In decision-making processes, neutrosophic sets can be used to represent different criteria. Aggregation
operators, such as the neutrosophic weighted average, can be employed to combine these criteria into an
overall decision. For a set of neutrosophic criteria C;, C;, ..., C,,, with corresponding weights wy, w,, ..., wy,
the neutrosophic weighted average (NWA) is calculated as:

Vi
Dicq (w; - Tyyw; - I, w; - Fy)

NWA = : (8)
Z?:llwi
where T; I;, and F; represent the truth, indeterminacy, and falsity membership functions of criterion ;
respectively.

In the context of anomaly detection in smart farming systems, effectively managing uncertain information
is of paramount importance. The complexity and dynamism of the data, coupled with the intricate interplay
between factors that may lead to anomalies, present formidable challenges. Handling uncertain
information is a critical objective in anomaly detection. In real-world agricultural scenarios, numerous
variables contribute to the data collected from smart farming sensors. These variables are often influenced
by various factors, such as weather conditions, soil composition, and the presence of pests or diseases. The
resulting data can be inherently uncertain, imprecise, and subject to fluctuations.

To address these challenges, this paper leverages the power of neutrosophic sets. Neutrosophic sets are a
powerful tool for handling uncertainty, indeterminacy, and contradiction in data and decision-making. In
our proposed approach for edge-based anomaly detection in smart farming, we use neutrosophic sets to
model these three aspects. Uncertainty represents the degree to which we lack precise knowledge about a

data point. In the context of smart farming, uncertainty may arise from various sources such as sensor
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noise, environmental variability, or measurement errors. Neutrosophic sets can model uncertainty through
their membership functions.
Uncertainty Membership Function (Uy): For a neutrosophic set X = (T, I, F;,), the uncertainty membership
function Uyis defined as:

Uy = Fx 9)
This formula quantifies the indeterminacy component of the neutrosophic set, which represents
uncertainty.
Indeterminacy represents the degree to which a data point is ambiguous or lacks a definite attribute value.
In our context, indeterminacy can occur when sensor readings are imprecise or when the interpretation of
data is not clear. Contradiction arises when there are conflicting pieces of information within a data point.
In smart farming, contradiction may occur when different sensors provide conflicting readings or when
historical data contradicts current observations.
Contradiction Membership Function (Cyx) : For a neutrosophic set X = (Ty,Ix, Fx), the contradiction
membership function Cy is defined as:

Cxy = Fx (10)
This formula quantifies the falsity component of the neutrosophic set, which represents a contradiction.
For example, let’s consider an example using a neutrosophic set X representing the temperature reading
from a smart farming sensor:

X =(0.7,0.2,0.1) (11)
In this case Ty = 0.7 represents the truth component, indicating a high likelihood that the temperature
reading is accurate. Iy = 0.2 represents the indeterminacy component, signifying some uncertainty or
imprecision in the reading. Fy = 0.1 represents the falsity component, suggesting a minor degree of
contradiction or inconsistency.
This paper proposes the utilization of a single-valued neutrosophic set, a specialized form of neutrosophic
set. In the context of anomaly detection in smart farming, the single-valued neutrosophic set is generated
using triangular neutrosophic numbers. This approach allows for a more structured representation of
uncertainty, where each data point is associated with a single-valued neutrosophic set that encapsulates its
truth, indeterminacy, and falsity components. To quantify the relationships between data points and detect
anomalies effectively, this paper introduces an improved weighted correlation coefficient formula. This
formula takes into account the specific characteristics of single-valued neutrosophic sets and their

triangular neutrosophic number representations. The detailed description of our anomaly detection

Bandar A Alanazi, Ibrahim Alrashdi, A Neutrosophic Approach to Edge-Based Anomaly Detection in Smart Farming Systems



Neutrosophic Sets and Systems, Vol. 58, 2023 217

approach involves the following essential steps. These steps collectively form a comprehensive framework
for identifying anomalies within the smart farming system:

Step 1: In this phase of our anomaly detection approach, we handle the generation of neutrosophic
numbers for farm anomaly data (4) and test sample data (C). This step is crucial in preparing the data for
subsequent analysis. For anomaly template set A = {4;, 4,, ..., 4;,} and test sample set C = {Cy, C5, ..., Cy},
we generate neutrosophic numbers to represent the inherent uncertainty in the data. Specifically, we create
three neutrosophic numbers for each data point: the lower membership function (L), the upper
membership function (U), and the midpoint (M).

Lower Membership Function (L): The lower membership function represents the lower bound of the data's

uncertainty. It quantifies the minimum possible value that the data point can take. This is computed as:

x —min(4;)
max(A4;) — min(4;)

L(x) = (12)

where x is the value of the data point and min(4;) and max(4;) are the minimum and maximum values in
the anomaly template set 4; fori = 1,2,...,m.

Upper Membership Function ( U ): The upper membership function represents the upper bound of the
data's uncertainty. It quantifies the maximum possible value that the data point can take. This is computed

as:

max(4;) — x

Ux) = max(4;) — min(4;)

(13)

where x is the value of the data point, and min(4;) and max(4;) are the minimum and maximum values

in the anomaly template set 4; fori = 1,2, ..., m.

Midpoint (M): The midpoint represents the central value within the data's uncertainty | range. It is

calculated as the average of the lower and upper bounds:
L(x)+ U(x)
2

In our anomaly detection approach, we utilize triangular neutrosophic numbers to represent data points.

M(x) = (14)

A triangular neutrosophic number is characterized by specific properties that allow us to quantify the
inherent uncertainty in the data. These properties are as follows:

Largest Value: In a triangular neutrosophic number, the largest value corresponds to the right end value of
the triangle. This value represents the upper bound of uncertainty and signifies the maximum possible

value that the data point can take. It quantifies the most optimistic scenario.
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Minimum Value: Conversely, the minimum value in a triangular neutrosophic number is located at the left
endpoint of the triangle. This value represents the lower bound of uncertainty and signifies the minimum
possible value that the data point can take. It quantifies the most pessimistic scenario.

Average Value: The average value of a triangular neutrosophic number is situated at the upper-end value of
the triangle. This value represents the central tendency within the data's uncertainty range. It is calculated
as the midpoint between the minimum and maximum values.

Height of the Triangle: A critical characteristic of a triangular neutrosophic number is that the height of the
triangle is equal to 1. This height signifies the degree of uncertainty or fuzziness associated with the data
point. A taller triangle indicates a higher degree of uncertainty, while a shorter triangle suggests greater
confidence in the data's precision.

The graphical representation of a triangular neutrosophic number is depicted in Figure 1, where the
triangle illustrates the range of uncertainty, and the location of its apex, base, and height aligns with the
specific properties mentioned above.

Step 2: In the second step of our anomaly detection approach, we perform a critical comparison between
the neutrosophic numbers representing the attributes of test samples (C;) and those of the farm anomaly

templates (4;). This comparison allows us to quantify the degrees of determinacy membership (TAL.(C]-) )
non-membership (FAi(Cj)), and indeterminacy-membership ( IAi(C]-)). These degrees provide insights into
the level of conformity or deviation between test samples and farm anomaly templates, facilitating effective
anomaly detection. For each attribute (4;) of a test sample (C;), the degrees of membership, non-
membership, and indeterminacy-membership are calculated using the following formulas:
Degree of Determinacy-Membership (TAi(Cj)) : This degree represents the extent to which the attribute 4; of
the test sample C; belongs to the farm anomaly template A;. Calculated as the minimum of the upper-bound
values of the neutrosophic numbers:

T,,(C;) — min{U,,(G;), U, (49} (15)
Degree of Non-Membership (FAi(Cj)): This degree quantifies the extent to which the attribute A; of the test
sample C; does not belong to the farm anomaly template A;. Calculated as the maximum of the lower-
bound values of the neutrosophic numbers:

Fa,(C;) — max{L,,(C;), La, (40} (16)
Degree of Indeterminacy-Membership (IAi(Cj)): This degree captures the degree of ambiguity or uncertainty
associated with the attribute 4; of the test sample C; concerning the farm anomaly template A;. Calculated

as the complement of the sum of the degrees of determinacy-membership and non-membership:
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1(G) = 1= T4 () — Fa(G) (17)
These degrees (TAi(Cj), FAi(Cj), IAL.(C]')) provide a comprehensive understanding of the similarity or
dissimilarity between test samples and farm anomaly templates for each attribute.

Step 3: In the next step of our anomaly detection approach, we transition from the parameters
Ta,(C;), Fa,(C;), and I,,(C;) to single-valued neutrosophic sets (a;;). These single-valued neutrosophic sets
encapsulate the degrees of determinacy-membership, nonmembership, and indeterminacy-membership

for each attribute of a test sample C; concerning the corresponding attribute in the anomaly template 4;.

< t11, fi1 b1 > <tz fizliz > < tim fijo lij >
D= _| <t for iz > <ty forinn > - <ty fonlm >
- (aij)mxn - . . . (18)
< tmltfml:iml > < tmzrfmzrimz > - < tmntfmn: imn >

Each single-valued neutrosophic set a;; is represented as a triple (t;;, f;, i;;), where t;; denotes the degree
of determinacy-membership. f;; represents the degree of non-membership. i;; signifies the degree of
indeterminacy-membership. By expressing the parameters Ty, (C).F A, (¢;),and I " (¢;) in the form of single-
valued neutrosophic sets a;;, we encapsulate the uncertainty and relationships between attributes within a

structured neutrosophic framework.

Y d; a3 X

Figure 1. Visualizing a Triangular neutrosophic Number
Geometrically.

Step 4: In the subsequent step of our anomaly detection approach, we derive ideal single-valued
neutrosophic numbers for each attribute j (where j = 1,2, ...,n). These ideal single-valued neutrosophic
numbers serve as reference points for assessing the degree of similarity or dissimilarity between test
samples and anomaly templates. The generation process is performed column-wise based on the single-

valued neutrosophic set decision matrix D.

Bandar A Alanazi, Ibrahim Alrashdi, A Neutrosophic Approach to Edge-Based Anomaly Detection in Smart Farming Systems



Neutrosophic Sets and Systems, Vol. 58, 2023 220

a*j =< t*j,f*j,i*j >=< ml_alx(tl-j), miin(fij), miin(iij) > (19)
Step 5: In this step of our anomaly detection approach, we generate a weighted correlation coefficient to
quantitatively assess the degree of similarity between the single-valued neutrosophic sets in the decision
matrix D and the ideal single-valued neutrosophic number. This coefficient serves as a crucial indicator for

identifying anomalies based on the deviation from the ideal values. The calculation formula for the

weighted correlation coefficient WCC is as follows:

n

W(Ai'B) = n

0 (20)
2 P * x 2 %
E ) 1W][tl]2+f” +lij2]+ E ] 1W][t ]2+f] +l]‘2
J= =

4. Results and Analysis

The outcomes of our research and the in-depth analysis of the experimental data, offering a comprehensive
assessment of the effectiveness of our proposed methodology for anomaly detection in smart agriculture
systems are presented. In our study, we leveraged real-world farm anomaly data to conduct a
comprehensive analysis of anomaly detection within smart farming systems. A pivotal aspect of this
analysis involved the acquisition of triangular neutrosophic numbers for diverse attributes, a critical step
in the neutrosophic framework we employed for anomaly detection. Table 1 presents the resulting
triangular neutrosophic numbers obtained under various attributes. These neutrosophic numbers
encapsulate the inherent uncertainty and variability within the data, capturing the complex and dynamic
nature of smart farming environments. Our study meticulously considered attributes such as temperature,
humidity, soil moisture, and spectral data, among others, to provide a holistic view of anomaly detection
in agriculture. The acquisition of these neutrosophic numbers represents a foundational element of our
research, facilitating the subsequent neutrosophic analysis that drives the accurate identification of
anomalies. In the following sections, we delve into the outcomes of our anomaly detection approach,

offering insights into its effectiveness and real-world applicability within the realm of smart farming.

Table 1. Triangular neutrosophic Numbers for Attributes in Farm Anomaly Data

0.0551 0.2232 0.2928 0.2516
0.1180 0.1528 0.4736 0.1129
0.0278 0.2001 0.2381 0.0199
0.3117 4.3342 4.6856 2.1545
0.1253 0.2009 0.2296 0.0236
0.3031 0.4025 0.4551 0.0220
0.1339 0.2658 0.3574 0.0677
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4.0418 4.7958 9.0371 2.4010
0.2749 0.3803 0.3990 0.0235
0.2278 0.3486 0.4082 0.0423
0.0959 0.1688 0.2776 0.0357
9.3726 9.8447 10.1851 0.3635

In our analysis of the sample data, a fundamental component of our study involved the extraction of
triangular neutrosophic numbers for diverse attributes, a key element within the neutrosophic framework
we employed for anomaly detection. As demonstrated in Table 2, we obtained these triangular
neutrosophic numbers under various attributes, each representing the inherent uncertainty and variability
observed within the sample dataset. Attributes such as temperature, humidity, soil moisture, and spectral
data were meticulously considered, providing a comprehensive view of anomaly detection in the context
of our study. These triangular neutrosophic numbers lay the foundation for the subsequent neutrosophic
analysis, enabling us to quantitatively assess the degree of similarity between the sample data attributes

and ideal values.

Table 2. Triangular Neutrosophic Numbers for Attributes in Analyzed Sample Data

- 0.10898 0.20047 0.31950 0.02117
- 0.03912 0.20983 0.33639 0.18393
- 0.09619 0.23943 0.31954 0.04330
- 0.11814 0.15975 0.24484 0.00999
- 4.03510 410292 419177 0.12442

In our analysis, we conducted an in-depth examination of the analyzed sample data, focusing on the
matching of sample attributes (represented as X,, where k = 1,2,3,4 denotes specific attributes) with
various anomaly categories (G; >, where G = X, Y, Z represents three distinct types of anomalies - A, B, C).
This matching process allowed us to systematically evaluate the degree of similarity and dissimilarity
between the attributes of the sample data and the three anomaly categories. Subsequently, we calculated
neutrosophic statistics encompassing the determined-membership degree (T), nonmembership degree
(F), and indeterminacy-membership degree (I). These statistics, presented in Table 3, offer valuable
insights into the dynamic interplay between the sample data attributes and the anomaly categories. The
statistics shed light on the varying degrees of membership, non-membership, and indeterminacy,

providing a comprehensive understanding of the anomaly detection process within our study. In the
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following sections, we delve deeper into the implications and significance of these findings, elucidating

their relevance in real-world applications.

Table 3. Neutrosophic Statistics for Sample Data Attributes Matched with Anomaly Categories

(0.8143,0.0523,0.8483)
(0,1,0.5431)
(0,1,0.6321)

(0.7063,0.2633,0.7002)
(0,1,0.6024)

(0.0103,0.9874,0.6722)

(0.0127,0.9787,0.6809)

(0,1,1)

(0.9121,0.0164,0.6952)

(0.9887,0.0072,0.9801)

(0.0806,0.9293,0.9088)

(0,1,0.616257)

In our examination of the farming anomaly data template and the neutrosophic sample attributes
represented by X, we embarked on a comprehensive analysis aimed at quantifying the relationships
between these attributes. Our objective was to construct a structured representation that captures the
nuanced interplay between attributes, essential for effective anomaly detection. As a result of this analysis,
we have generated a single-valued neutrosophic decision matrix, which is presented in Table 4. This
decision matrix encapsulates the degree of similarity and dissimilarity between the various attributes of the
farming anomaly data template and the corresponding attributes within the neutrosophic sample. Each
entry in this matrix reflects the outcome of our neutrosophic analysis, quantifying the degree to which
attributes align or deviate from one another. The decision matrix serves as a cornerstone for our anomaly
detection approach, offering a comprehensive view of attribute relationships and guiding us in the
identification of anomalies within smart farming systems. In the subsequent sections, we delve into the
practical implications and insights derived from our anomaly detection methodology, highlighting its

effectiveness in real-world applications.

Table 4. Single-Valued Neutrosophic Decision Matrix for Attribute Relationships

[ A1 (0.0,0.7384,0.5728) (0.1905,0.0,1) (0.1367, 0.6227, 0.3160)
A2 (0.1903,1,0.2589) (0.6327,1.0,0.1212) (05734, 0.4212, 0.6390)
A3 (04062, 0.5660,0.3213)  (0.4010,0.0,0.5598) (0.2363, 0.7829, 0.0)
A4 (0.3593, 0, 0) (0.3718,0.1022, 0.3867)  (0.3953, 0.3674, 1)
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5. Conclusions

This study has introduced and demonstrated the efficacy of a neutrosophic approach to edge-based
anomaly detection within smart farming systems. By harnessing the power of neutrosophic sets and single-
valued neutrosophic decision matrices, we have successfully addressed the challenges posed by uncertain
and dynamic farm data. Our methodology has proven capable of quantifying attribute relationships,
facilitating the identification of anomalies with precision and sensitivity. Through the analysis of sample
data and the generation of neutrosophic statistics, we have gained valuable insights into the complexities
of anomaly detection in agriculture. These findings underscore the adaptability and real-world
applicability of our approach, offering the potential to enhance the resilience and efficiency of smart
farming systems. As we move forward, further research and refinement of our methodology promise to
contribute significantly to the advancement of anomaly detection and decision-making processes in the

realm of precision agriculture.
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Abstract. The aim of this work is to introduce the new notion of Neutrosophic hypersoft rough set and study
its properties. Neutrosophic hypersoft rough set is a generalization of Neutrosophic soft rough set. The notion
of Neutrosophic hypersoft rough set has not been reported in the literature. The concept of Neutrosophic hy-
persoft approximation space is presented with illustrative examples and some of its properties are established.
The notions of equality, reduct and core among Neutrosophic hypersoft rough sets are studied with suitable

examples. Some directions for applications and future research in this area are also indicated.

Keywords: Hypersoft sets, Neutrosophic sets, Neutrosophic soft sets, Neutrosophic hypersoft sets, Neutro-

sophic hypersoft rough sets, Equality, Reduct and Core.

1. Introduction

Extension of soft set to hypersoft set was discussed by Smarandache.F [13,/14]. Al-Quran.A
et al. |1] presented a novel approach to Neutrosophic soft rough set in 2019. Some basic op-
erations on hypersoft sets was studied by Mujahid.A et al. |[10]. Jafar.M.N et al. [8] proposed
trigonometry similarity measures of Neutrosophic hypersoft set and investigated the basic oper-
ations on them. They have also presented an application to revolvable energy source selection.
Jafar.M.N et al. [7] have proposed different similarity measures with the help of distances and
max-min operators defined on Neutrosophic hypersoft sets. They have proved some proper-
ties of this similarity measures and presented an application in site selection for solid waste
management system. Jafar.M.N and Saeed.M [6] have also presented an algorithm based on
a score function to solve a multi attribute multi criteria decision making problem. Aggregate

operators on Neutrosophic hypersoft sets was studied by Saqlain.M et al. [12]. Huseyin.K [5]
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investigated on hybrid structure of hypersoft sets and rough sets. Das.M et al. [4] expanded
the scope of rough set, soft set, and Neutrosophic set by combining Neutrosophic soft set with
rough set theory. Broumi.S et al. [1,2] developed a hybrid structure called rough neutrosophic
set and discussed its properties. Maji.P.K [9] defined some operations on Neutrosophic soft
set and established some properties. Ozturk.T.Y et al. [11] have redefined some operations on
Neutrosophic soft sets with illustrative examples. Yolcu.A et al. [15] have broadened the scope
of rough, soft and Neutrosophic sets by developing the notion of Neutrosophic soft rough set.
They have also presented examples and established some properties of the new structure.

From the above literature study it can be seen that hybrid structures combing Neutrosophic
sets and soft sets, Neutrosophic sets and rough sets as well as Neutrosophic hyper sets and
soft sets have been considered by different authors for different applications. No work in the
literature exists combining Neutrosophic hypersoft sets and rough sets.

In this paper we propose to introduce the hybrid structure Neutrosophic hypersoft rough
set (NHSRS) and discuss some of its basic properties like union, intersection and comple-
mentation with illustrative examples. The notions of equality between NHSRSs, the reduct
and core of a NHSRS are studied.

The rest of the paper is organized as follows. Section 2, deals with the necessary preliminar-
ies. In section 3, we present the definition of NHSRS and give an example. Some properties
of Neutrosophic hypersoft approximation space are also established. In section 4, equality be-
tween NHSRSs is defined and some interesting results are also established. Section 5, deals
with reduct and core of a NHSRS. Some theoretical results connecting core and reduct are

proved with necessary examples.

2. Preliminaries

The necessary fundamental definitions such as neutrosophic set, hypersoft set, rough set,
some properties of neutrosophic hypersoft set and neutrosophic hypersoft rough set can be
found in [11,/15].

3. Neutrosophic Hypersoft Rough Sets (VHSRSs).

In this section we introduce the notion of NHSRSs.

Definition 3.1. Let U be a non-empty universe set and Py (U) be the set of all neutrosophic
sets over U. Let E denote the set of parameters. We assume that £ = {A1, Ag, ..., A},
where A; N A; = 0 for i # j. Let 6; C A; j € {1,2,..,n}. Then II}_,5; C II?_;A;. The
pair (N, H?:16j> = Pyp(U), where N is mapping defined by N : II7_,0; — Pn(U) is called
a Neutrosophic hypersoft set (NVHSS). The triplet (U,N,H?Zléj) is called a neutrosophic

hypersoft approximation space. The lower and upper neutrosophic hypersoft approximation
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spaces of K € Pypg(U) with respect to (U,N,H?Zléj) are denoted by aprNHSS(K) and
apr \ryss(K) respectively, defined by

Jj=1

»
apr K) = 05, < — — >, VxelU;.
Niss(K) {( j=19j Fintn_ e ):nngbzléj(”)’VHJT‘:l‘sj(%) )

n ) X
WNHSS(K)_{<Hj_16]7< L ( ) n (%) Vi 5 (%) >) ’V%GU}'
71‘[;1 1 . s =1

where,

s, () = { A\ prn_y5,0) s pmrn_s, (56) € KO (NG, T 185); (N T 6) € KV € U }
Mg 5,09 = N8, () 5, () € KOV (0N, T4 85); (N, T, 85) € K Ve €U}
Zn;!/:l(sj(%) :{\/Vn;ﬁ:laj(%) v 5y () € K0 (N, TF165); (N, T165) C© K, Vo € U}
B, s, () = {\ prp_, s, ) s s, () € KU (N5, Iy 8,); (N, Iy 85) © K, Ve € U |
M s, (%) = {\/ mr_ 6 (5) smmn_ 6, () € KU (NG, I 65); (N, T4 85) © K,V € U}

P, s, () :{/\ynn 5, () vimn_ s, (30) € K U (N, T3, 85); (N, T 65) C K, Ve € U}

where “min” and “max” operators are denoted by “ A” and “\/”, respectively. It is easy to
see that apr .o o(K) and @pr y g gs(K) are two NHSSs over Pyy(U). It is said that K is a

neutrosophic hypersoft definable set if apr K) = aprpryss(K), otherwise it is referred

NHSS(
to as a Neutrosophic hypersoft rough sets (NVHSRSs).

Example 3.2. Let U = {11, 52, 53, 54 }. Define the attributes sets by,

Ay = {e11,e12}, Ay = {ea1, €22}, Az = {e31,e32}.

Let 61 = {611,612},52 = {621,622},(53 = {631} that is H}lzléj - H;LZIA]', 7 =1,2,3. Let the
NHSS,

1 2

(N1, T, 05) :{((6”’621’631)’ {< 5,.2,.3>'<.7,.3,.2 >})’

((e13, €28 €3a), { .S,ii 2> < .7,:.683, 9> < .6,9.?, 1)
Vs

(e e en) {55 =<,
V4 .

((er2, €21, €1):{ 8, .j, 1>'< 1, .;,.5 N2
n .

(12, ez e3), {2 5, 21 3> < 4, .;,.2 S

((exs, €21, e31) { =2 =)

<.8,.9.2>"<4,.2.7>
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i

o] = {611},0&2 = {621,622},&3 = {631,632} that is H;‘Zlaj - H?:lAj 7 = 1,2,3. Let the

NHSS,

(No, IT2_ ;) :{((611,621,631)a {< '27}';2’ 6> < .8,.%5, 1 >})’
((613,623,633)a{< '6,9.632, 8>'< .2,:.1;;, 3 >})7
((e11, e22, €31), {#ﬁ})’
((e11, e21,€32), {< ,4,.%317 5> < .7,?, 2 >})7
((e11, e22,€32), {< '4,?, 2>"< .1,3.{;, 8 >})’
((e1s, €21, e31), {< '9’%227 4> < .8,?,.9 >})}

61 = {611,612},ﬁ2 = {621},,83 = {631,632} that is H?:LB]’ - H?:lAj 7 = 1,2,3. Let the

NHSS,

2

73 !

(N3, II3_, 8;) :{((611,6217631),{

L2

<.7,4,5><.9,6,7> < .4,6,8>

1

x3

((613,6237633),{< 10

2

1
1

8>7<.8,.4,9>
4

((612,6217631),{< 5.6,

2!

3>7<.6,.3,4>
3 7y

1

((611,6217632),{< )

1

3>7<.6,.7,.8>"<.3,8,2>
3
b,

((61276217632),{< 6.3

x3
((e13,€21,€31), {

Let K be a N'HSS defined as

1

< .8, 4,

2

B5>"<.4,5,9>

D}

d>

3 <z

1

K ={((€117€21,631),{
P2

< .8,.5,.2 >
P2

b,

((e11,e22,€31),{

< .6,.4,.9>"<.5,.

3

6,.9>"<.2,.5,.6>"<.8,.6,.6>

4z

b,

((61276217631)7{< A

1

9>"<.5,.7,
7y

8>"<.6,.4,8>

((61276227631)7{< 78

1

2>7<.5,.6,
3

1

3>
7y

((61176217632)7{< 6.3

3

8>"<.6,.6,
Y

s

2>'<.7,.5,.8>

((61176227632)7{< 37

1

9>"<.8,.9,
3

2 >})’

((61276217632)7{< 6.3

8>"< 4,.6,

el

Then the lower and upper N'HSS approximation of K are calculated as

%NHSS(K) :{((6117 €21, 631)7 {

12
<.2,.3,.9>

h}
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sl 9 3 7\

<.6,.4,3>"<.7,6,2>"<.9.6,.1>"<.8.6,.6>
2

< .8,.5,.2 >})’
2 3 1y

<.7,6,2>"<.8,.7,.1>"<.6,.5,.4>
sl Y })

<.7,8,.2>"<.5.6,.2>""
1 3 My

<.7,9,3>'<.6,.7,2><.7,.8,2>
3 Y })

< .4,.7,2>7<.8,.9,.2>""

Fal 3
((er2, €21, €30), { 6,3.5> < .4 6,9 >})}'

})7

apr nyss (K) Z{((enaem,ezl)»{
((6117 €22, 631)7 {

})7

((612, €21, 631)7 {

((e12,€22,€31),{

})?

((e11,e21,e32),{

((e11, €22, €32),{

Theorem 3.3. Let (U, N, H’;:l&j) be a neutrosophic hypersoft approximation space, and
K,L € Pyg(U), then the following properties hold.

i. apr K) C K Capryyss(K)

./\/’HSS(
i apr, ., 550w, mn_ ) =0, ne_,6;)s apr \ryss(lw, H;*:léj)) = Lw, mr_s))
iii. If K C L, then aprNHSS(K) C aprNHSS(L)
iv. If K C L, then aprpryss(K) C aprparyss(L)
(KNL)Capr (K)Napr
KUL)Capr K)Uapr

L

(L)
aPr s ) € apr 55 (K) U apryy 5(L)
vil. @prpryss(K N L) C apraryss(K) Naprayss(L)
vili. @pr gy ss(K U L) C aprayss(K) Uapryyss(L)

v. apr

LNHSS LNHSS LNHSS

vi. apr

Proof. (i) From the Definition 3.1, we can conclude that apr,., ..(K) € K.

In addition, from the definition of neutrosophic hypersoft upper approximation,
v (NI 65) N K # O, sy, 78,777 € KU (N, T 65).
Hence KCWNHSS(K)
N?—LSS(K) CKC WN’HSS(K)
(ii) From Definition 3.1, the proof of (ii) naturally follows.
(iii) Let K C L and (Nj,m: 5-) CK,j=(1,2..,n)
(e (m8))
Also, we have ((Nj,l'[?: 5 ) C K then (N m_s; ) cL

Hence apr, ., oo(L) = LN (ﬂ ( ))
apr 55 ) “pTNHss(L)
(iv) Let K C L and (Nj,m: 5 ) NK#0,j=1,2,...n

Then @pFyr3s5(K) = K U (U (NJ,H 6 )) . For K C L,
then (Nj,ng;laj) AL+ 0 and @pFyps5(L) = LU (U (NJ,H 0 )) .
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This implies apTNHSS(K) C apryyss(L).
apr s NL).

n”
There exist (N, Hj:15j> such that s, %

S
n H;'lzléj n
(N,szlaj) C K and .05 € (NIT0;)

TL

o7
(v) Let 50,55 * € apr

5j

tT“ﬁ
S =
m

( i/ 1(5J> C apry,ss(KNL), 5
L.

Tﬁerefore %H v, e aprNHSS(K> alfll’fl
Hum | € APTye o s(L), implying %ufun € apryry 55 () N apr s 5(L)-
Thus aprNHSS(K NL)C GPTNHSS(K) N a’prj\[’HSS(L)

. H 165
(vi) Let s, %5, " ¢ apr ., o5 (K UL).
There exist (N, Hj:15j> such that %E,
that <N, H;;laj) Z K and (N,H;L:laj) Z L.

n

(N 17 ) Z apr ., ¢s(K ML), hence it follows

m_s; 1171 9;

Therefore 3,7, ' ¢ apr apr 4,55 (K) and suim | & apr aprq,,s5(L);
R

implying %,u,]l/ml ’ ¢ apT‘N,HSS(K) U aprN’?—LSS(L)

Thus apr KUL)Capr K) Uapr L).

./\/HSS( NHSS( NHSS(

H 165
(vii) Let »,5, ~ € aprayss(K N L).
d;
There exist (N,1_,d;) such that s € (NI_,8;) 0 (K 1 L) # 0

(N, ngléj) N (K) # 0, 1y_3,) and (N,H?Zléj) N (L) # 0w, w5,

nr_,s;
Therefore dum | € apraryss(K) and

U, H?:l(sj)’

1

H ; . . Hn_ A; ___ -
Hubm | € GPTNHSS(L) implying >¢,55 " € apr nyss(K) N apryyss(L).-
i
(viii) Let %W/n " eapryyss(KUL).
5

There exist (N,szléj) such that %EJ 17 (N 7,4, ) N(KUL)# 0y, mr_5,); it follows
that
(N,m: 5-) N (K) # 0w, my_,s;) of (N,Hﬂ, 5-) (L) # 0w, mr_s,)-

H” 165 H 165
Therefore 5,7 * € apraryss(K) or su0y € apraryss(L).
H 5
Hence 5,1, ' € @GP prpss(K) UapTaryss(L)-

Thus aprpryss(K U L) C aprpryss(K) Uapryyss(L) o

The converse of properties (i), (iii), (), (v), (vi), (vii) and (viii) in Theorem 3.3 does not
hold.

Theorem 3.4. Let (U, N, H?:16j> be a neutrosophic hypersoft approximation space, and
K,L € Pyg(U), then the following properties hold.
Loapry i ss (aprNﬂss(K )> apr s ()
i apr nyss (@PT nyss (K)) 2 apraryss(K)
iii. apryryss(K) S apryuss (ﬂNHSS(K))-

iv. aprpyss (CLPTN—HSS(K)) 2 aprNHSS(K)
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1T, 1 J
Proof. (i) Let %(’f-?[n V)(; € CLPTNHSS(K)
19
Then, we have %(uj,n,l/) € (Nj,Hj: 0j ) - apTNHSS(K)

s

S0 32,0y € AT s (ap " nss B )>
Therefore apr s (K) C apr \russ (GPTNHSS (K)>

From the Theorem 3.3 apr,. ..(K) C K using (iii) of Theorem 3.3 we obtain

NHSS
P \ryss (aprNHss(K )> C apryryys5(K)-
Hence apr, .. <o (aprNHSS(K)> apr v, s5(K)-

(ii) Let P = aprpryss(K). Using property (i) of Theorem 3.3,
we get P C aprpryss(K).

Hence a@przryss (@7 xuss(K)) 2 aprapss(K).

Using property (i) of Theorem 3.3, we got apr K)CP.

NHSS(
Hence apr, . s (DT pryss(K)) S aprppyss(K).

(iv) Let @ = apr,,, 55 (K).

Using property (i) of Theorem 3.3, we got aprryss(K) 2 Q.

Hence apr, .. oo € apT prpys5(K) (apTNHSS(K)> o

The converse of properties (ii), (iii) and (iv) in Theorem 3.4 does not hold.

Remark 3.5. Let (U, N, H?:16j> be a neutrosophic hypersoft approximation space, and
K,L € Pyg(U), then the following properties hold.

Loapr, ., o5 (K°) # [apTarpss(K)]°
i aprprpss(K°) # [apr 65 (K]

Definition 3.6. Let (Nl,H?:15j> and (NQ,H?:15]'> be two NHSSs over the same uni-
verse set U. Then “ (Nl,ﬂyzléj) difference (Nz,ﬂyzléj)” operation on them is denoted by
((N1 \ Na), Hg:15j> and is defined by

(0 \ Mo, 11 67) = (80,0455 ) 0 (8,185

= {I_,6j, < =, (1—M)Nj,ngglaj( #), (L=m)ny 55 (3¢), (L=v)n; in_ 55(5¢) >:c € U 1465 C
IIERYAVES

where

M(NI\NQ),Hyzlsj(%) mm{ﬂNl mnr_, (%) HNo, 117 5;(%)}

W(Nl\NQ),ngléj(%)—’mm{ﬂNl, " 10 (%) TNz, 1T ( }

)
VN\No) I, 05 (%) = max{vn, 55 (%), g i 65(50) }-
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Definition 3.7. Let apr,. ..(K) and apryryss(K) be neutrosophic hypersoft lower and
upper approximations of K € Py (U) with respect to the neutrosophic hypersoft approxima-

tion space K, respectively. Then
posnwss(K) = apr ., o o(K)
negnuss(K) = (@rayss(K))°

bndpyss(K) = apryyss(K) \ apr ., o o(K)
are called the neutrosophic hypersoft positive region, neutrosophic hypersoft negative region

and neutrosophic hypersoft boundary region of K, respectively.

Example 3.8. Consider Example 3.2. The neutrosophic hypersoft rough positive, negative,
and boundary region can then be computed as follows:
posnuss(K) =apr .., o (K)

={emen e {575 550

negnuss(K) =(apryyss(K))°

1 V29) 73 <
:{((6”’621"‘331)’{< 4,6,7><.3,4,8> <.1,4,.9> < .2 4, 4 =2
((611,622,631),{%})7
((61276217631)){< ‘3722’ ’8>' < '2’_%3?, 9> < _4,?, .6 >})
((6127622,631)’{< ‘373'{21’ 8> < '5’?7 8 >})
((611,621,632)a{< _3’.%117 7>’ < .47}.;3’ 8>« _3,%247 .8 >})
a =

((61176227632)7{< 6,.3,.8>"<.2.1,8>

1 3
((ers eonses2) A == 50 1 >})}
K))° = -
(07 55 B ={ (e, e e) A g 75 )}

Brdyss(K) =apryrpss(K) \ apr oo (K)

=aprprpss (K) 0 (apr 0,65 (K))°

:{((611, €21, 631)7 {<7%7622>})}

Obviously, apr,., ¢s(K) # @prapuss(K). So K is NHSS in the approximation space

(U, N, H;.;laj)

Theorem 3.9. Let (U N, II7_ 5j) be a neutrosophic hypersoft approximation space, and

K,L e Pyu(U), then apr,.. o (K \ L) Capr,., oo(K)\apr,. <s(L).
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Proof. Let %u] 1% € apTNHSS(K\L)Hn .
There exist <N 1T} 5-) such that s}, " € (N, Hg’:léj) C apr

(N s, ) CK and 220", € (N, H’?;l(sj) C Ic

IIm_

d;

ey
-

Nyss(K \ L)7

<
3
m

1-v,1—n
Thus apr ., oo (K\ L) € apr,.. o (K) \ apr, ., <5 (L).

7,65
Therefore 5,7, * € apr apr ., s (K) and
7,4, i I
s o, € apryr,5(L°), implying %“Jl,n s apr s (K \apr . oo (L).
Thus apr ., (KN L) Capr, . (K \apr,. (L) o

The converse of Theorem 3.9 does not hold.

Remark 3.10. Let (U, N, H;L:15j> be a neutrosophic hypersoft approximation space, and
K, L€ PNH(U), then

aprpryss (K \ L) # apraryss(K) \ aprapyss(L).

Example 3.11. Let (U, N, H?Zléj) be a neutrosophic hypersoft approximation space, and
K,L € Pyy(U), based on Example 3.2 defined as,

K :{((611,621,631)a{< .6,.%41, 9> < .5,?, 9> < .2,%53, 6> < .8,}.2, 6 >})’
((613,6237633)7{< .8,}-252, 9> < _4,?, 8> < .8,}.2, .9 >})’
((611,6227631)7{<.87}_fﬁ})’

((612,621,331)7{< .77}_2 9> < _5,%73, 8>"< .6,}.2.8 >})’
((612,6227631)7{< .77}_;17 29> < _5724, 3 >})7
((e11,€21,€32)7{< .6,}-;17 8> < ,6,?, 2> < .7,}.?, .8 >})’
((e11, €22, e32), { a = b,

<.3,.7,9>"<.8,.9,.2>

25 3
((e12; €21, e32), { 6,.3,.8>" < 4,.6,.9 >})}

Then the lower and upper N'HSS approximation of K are calculated as

7
apTNHSS(K) :{((611,6217631), {W})u
2 3 }
(ers, €23, e53). { 4,3,9><.2,4,.9 =)
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apr nryss (K) :{((611,621,631)7{< .6,1.{41, 3> < .7,.%62, 2> < .9,.%(?, 1>"< .8,J.{64, 6 >})»
((613,623,633)7{< .8,1.{62, 9> < .8,?, 3> < .8,2 4 >})’
((611’622’631)’{<.8,%ﬁ})’
((612,621,631)7{< ,7,}.f62, 2> < .8,.%73, 1>"< .6,.%54, A4 >})’
((612,622,€3l)a{< .7,.%81, 2> < .57.%(;1, 2 >})’
((611,621,632)7{< _7’37 3> < ,6,}?, 2> < .7,?, 2 >})’
((611,6227632)7{< _4’.%737 92> < .8,}.;1, 2 >})’
((612,6217632)7{< .6,.%31, 5> < '47}_;3’ 9 >})}
Let L :{((611’621’631)’{< .7,? 4> < .6,?, 8> < .3,}.f63, 2> < .9,%(?, 350

((611,6227631)7{#%})’

((612,621,631)7{< ,9,.%82, 1> < _6,.%;, 5> < .7,}.t54, A >})’

((611,621,632>7{< .8,.%51, 6> < _8,.%;, 1>"< .8,}.?, 3 >})’

((612,6217632>7{< .8,.%51, 3> < _6’237 7 >})’

((613,6217631>7{< .7’_%12’ 3>’ < _gi)i 8 >})}

Then the lower and upper N'HSS approximation of L are calculated as

7
@NHSS(L) :{((611&21,631)7 {W})v

((e13, e21,e31), L})}

<.4,.1,.9>
apr pryss (L) :{((611,621,631),{< ‘77%{51’ 3> < ,7,,%72, 2>'< .9,3.{;,.1 >’ < .9,?, 3 >})’
((611,6227631%{%})’
((e12, €21, €31), {< _9,?, 1> < ,8,1.483, 1>"< .7,?, A4 >})’
((e11,e21,e32), {< .S,J;l, 1> < ,6,1.{73, 8>"< .8:?, 2 >})’
((e12, €21, e32), {< .8,?, 3> < .6,1.{83, 7 >})’
((e13, €21, €31), {< ‘9,?’ 2> < ~9,J-{j, 1 >})}

apr a5 (K)/apr o0 oo (L) :{((6117 €1, €31), {#ﬁ})}
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L - n Vo) 73 4
apTnmss(K) /P vmss (L) :{((6“’621’631)’{< 3475 <3385 <LA95 <La7s)
2

<1595
0 3 4
((exz a1, ea) 2 1,.2,.9>7<.2,.2,.9>"< 3,5,.6 b

((e11,e22,€31),{

(( ) { 24 3 4 })
€11, €21, €
11, €21, ©32/5 <.2,,1,9>"<.4,3,2>"<.2,2,.8>""

n 73
((e12; €21, es2), { 2,5,.7> < 4,.2,.3 >})}

L¢ :{((611,621,631),{< ‘3:{51’ 6> < ,4,?, 2> < .7,29), 8>"< .1,?, T >})’
s

NS

((e12,e21,€31), {< ‘1:{22’ 9> <« ,4,1.{23, b>T< .2:2, 7 >})’

((e11,e21,€32), {< .6,2, 8>« ,2,1.{53, 7> < .4,%2{ 3 >})’

((e12,€21,€32), { “ “ })}

<.3,9,.7>"<.1,.7,2>

n 9 73 <z

K L :{ ) b ) bl ) bl bl

\ (emeanes) d 3 I 3 95 2.5 85 < L4775
4P

<.1,.5,.9 >})’

P 23 P2 1

<.1,2,9>"<4,2,.8> < .24, 8>""

1 3 4
(lenseaea) { g0 55 75 Ta 2850

Al 3
(e es) {5355 =7 69 —h}

((e11,e22,€31), {

((e11,e22,€31),{

((e12,€21,€31),{

%N’HSS(K \ L) :{((611, €21, 631), {%})}

apT aruss(K\ L) :{((611’621’631)’{< .5,1.{41, 3>7< .7,?, 2>7< .9,?, 1>7< .4,?,.8 >
((ﬁh@z&&)ﬂ#ﬁ})’
((612,621,631)7{< ,5,1.{62, 3> < ,S,J.{éi 1>"< .6,?, 4 >})’
((611,621,632)7{< ‘7’%91, 3> < .6,?, 7> < .7,1.?, 2 >})’
((612,621,632)7{< .6,1.{31, 5> < ‘4,?’ 9 >})}

Hence,
apr\rayss BN L) S apry o, oo (K) \ apr o o o(L)

apr \russ (K \ L) # aprppss(K) \ apraryss(L).
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4. Equality Properties on Neutrosophic Hypersoft Rough Sets

In this section, we define equity between neutrosophic hypersoft rough sets.

Definition 4.1. Let (U, N, H?Zléj) be a neutrosophic hypersoft approximation space, then
V K,L € Pyg(U), we define the following binary relations:

(i). Sets K and L are in lower N'HSS equal related iff

K Smss L= apryp,55(K) = apr  55(L)-
(ii). Sets K and L are in upper NHSS equal related iff

K 2nnss L <= apryryss(K) = apryyss(L).
(iii). Sets K and L are NHSS equal related iff

K =ypss L <— @NHSS(K) = @NHSS(L) & WN’HSS(K) = WNHSS(L) :

Theorem 4.2. Let (U, N, H?:15j> be a neutrosophic hypersoft approximation space, then V
K,L,M,N € Pyy(U). Then the following hold:

(i). If K C L and L Rpxuss O(U,Hy:ﬁj)’ then K Rnuss O(Uﬂ;;:lgj).

(ii). If K C L and K Rnuss 1(U,H§P:16j); then L R nuss 1(U,H;P:16j)'

(i) K Ryuss L <= K ynss (KUL) Zyuss L.

(iv) K Rnpss Ly M Lypss N = (KUM) Znpuss (LUN).

Proof. (i). Given K C L and L Ry yss O(U,H;-gléj)v
so that aprgss(K) S apryyss(L) and apryryss(L) = Ow,mr_s,)-
Hence, apryryss(K) = Ownr_,s;) = aPTauss(L)-
(ii). Given, K 2 uss 1(U,H;P:16j) and K C L,
then apr 55 (K) = apryyss(Lwnn_,s;)) and apryyss(K) C apryyss(L)-
But we know that apryyss(K) € aprayuss(Lwmr_,s));
hence aprryss(K) = apryuss(Lwnr_,s;))-
We note here that K <yyss L iff KN L Kyyss K and K N L Kpyss L is not true in
general.
(iii) Assume that K < yss L. By definition 4.1(ii), we have
apr nyss(K) = apryryss(L).
From Theorem 3.3, it is known that aprryss(K U L) = @pryryss(K) U aprayss(L). There
by we obtain apr \yss(K U L) = apryryss(K) = aprryss(L).
Consequently, K <y uss L = K yuss (KU L) Jauss L.
Conversely, if K Zayss (K U L) auss L then it is obvious that K <yyss L from the
transitivity of < yuss.
(iv) Suppose that K <ryss L and M <xyss N. By Definition 4.1(ii),
we can write apraryss(K) = apraryss(L) and @pryryss(M) = apraryss(N). By considering
Theorem 33, we have WN'HSS(KUL) = WN’HSS(K) UWN'HSS(L) and W/\/’HSS(MUN) =
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apr \ryss (M) U apryryss(N).
Thereby, we conclude that aprpryss(K U M) = aprpryss(L U N) and

S0 apT Aryss (K U M) Rnuss apr ayss(LUN). g

The converse of property (iv) in Theorem 4.2 does not hold.

Example 4.3. Let (U, N, H?:15j> be a neutrosophic hypersoft approximation space, then
V K,L € Pyy(U) based on Example 3.2, K Ryuss L <= apraryss(K) = aprayss(L),

K= {((611’621’631)’{< .6,3.2, 9>"< .5,9.062, 9>"< .2,3.653, 6> < .8,9.6(;1, .6 >})’
((611,6227631)7{#ﬁ})7
({12, e21 e31), {2 .7,:.642, 9> < 5x; 8> < .6,3.::, 1)
((611’621’632)’{< .6,%31, 8>"< .6,9.663, 2>7< .7,%54, 8 >}>’
((e12, €21, e32), { —m G H}

<.6,.3,.8>"<.4,.6,.9 >
The lower and upper NHSS approximation of K are calculated as

apr s (K) = {((e11, e21, e31), {Jﬁ})}

N Ty x2 x3 T4
K) =
apTmss(K) ={(ew eavea) { 5= == =5 5 T T 86,650
T2
< .8,.5,.2 >})’
<.7,6,2>"<.8,.7,.1>"<.6,.5,.4>""
T T3 Ty })
<.7,9,3>'<.6,.7,2>"<.7,.8,2>""
T1 T3
((erzsean en2) A 55— 695!
<.6,4,5>"<.6,6,.8>"<.8,.6,4>"<.8.6.6>""
)
< .8,.5,.2 >})’
i) I3 Ty })
<7,5,6>"<.6,.7,4>"<.6,.4,.8>""
71 T3 Ty 1
<7,4,6>7<.6,.7,2>"<.7,.6,5>""

T1 I3
((e12, €21, €32), { 6,3, 7> <4 6,9 3

The lower and upper NHSS approximation of L are calculated as

((e11,e22,€31), {

((e12,e21,€31