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Abstract: In this paper, the idea of nitro has been introduced to numerical integrals, where we studied 

neutrosophic numerical integrals by submitting the neutrosophic trapezoidal method and estimation 

of error of the neutrosophic trapezoidal method, in addition to supporting examples for that and 

verified using MATLAB. 

 

Keywords: neutrosophic numerical integrals; estimation of error; the neutrosophic trapezoidal 

method. 

 

 

1. Introduction 

           In contrast to the current logics, Smarandache suggested the Neutrosophic Logic to 

describe a mathematical model of uncertainty, vagueness, ambiguity, imprecision, undefined, 

unknown, incompleteness, inconsistency, redundancy, and contradiction. Smarandache introduced 

the concept of neutrosophy as a new school of philosophy [4]. He presented the definition of the 

standard form of neutrosophic real number, the Neutrosophic statistics [3-5-6], and professor 

Smarandache entered the concept of preliminary calculus of the differential and integral calculus, 

where he introduced for the first time the notions of neutrosophic mereo-limit, mereo-continuity, 

mereoderivative, and mereo-integral [1]. A number of studies in the area of integration and 

differentiation were given by Y. Alhasan [10-11-16], also he presented the definition of the concept of 

neutrosophic complex numbers and its properties [2-9]. The AH isometry was used to study many 

structures such as conic sections, real analysis concepts, and geometrical surfaces [13-14-15]. 

 

     The calculation of area, size, and arc length is one of integration's most crucial uses in daily life. 

We encounter things in our world that are ill-defined and partially indeterminate. 

     There are four sections of paper. first section, which also includes a study of neutrosophic 

science, serves as an introduction. In the second section, a few definitions and theories of the 

neutrosophic integrals are offered. The 3th section frames neutrosophic numerical integrals and 

mailto:y.alhasan@psau.edu.sa
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MATLAB, in which the neutrosophic trapezoidal method and estimation of error of the neutrosophic 

trapezoidal method were studied. In 4th section, a conclusion to the paper is given. 

2. Preliminaries 

2.1. Neutrosophic integration by substitution method [16] 

Definition2.1.1 

Let  𝑓: 𝐷𝑓 ⊆ 𝑅 → 𝑅𝑓 ∪ {𝐼}, to evaluate ∫ 𝑓(𝑥)𝑑𝑥 

Put: 𝑥 = 𝑔(𝑢)     ⇒    𝑑𝑥 = 𝑔́(𝑢)𝑑𝑢  

By substitution, we get: 

∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑢)𝑔́(𝑢)𝑑𝑢 

then we can directly integral it. 

 

Theorme2.1.1:  

If ∫ 𝑓(𝑥, 𝐼)𝑑𝑥 = 𝜑(𝑥, 𝐼)  𝑡ℎ𝑒𝑛, 

 ∫ 𝑓((𝑎 + 𝑏𝐼)𝑥 + 𝑐 + 𝑑𝐼)) 𝑑𝑥 = (
1

𝑎
−

𝑏

𝑎(𝑎 + 𝑏)
𝐼) 𝜑((𝑎 + 𝑏𝐼)𝑥 + 𝑐 + 𝑑𝐼)) + 𝐶  

where 𝐶  is an indeterminate real constant, 𝑎 ≠ 0 , 𝑎 ≠ −𝑏 𝑎𝑛𝑑 𝑏, 𝑐, 𝑑  are real numbers, 

while 𝐼 = indeterminacy. 

3. Methods of the neutrosophic numerical integration 

3.1 The neutrosophic trapezoidal method 

Let: 

∫ 𝑓(𝑥, 𝐼)

𝑐+𝑑𝐼

𝑎+𝑏𝐼

𝑑𝑥 

 

Where 𝑓(𝑥, 𝐼) is neutrosophic function and 𝑎, 𝑏, 𝑐, 𝑑 are real numbers, while 𝐼 = indeterminacy 

(𝐼 ∈ [0,1]). 

 we divide the interval [𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼] into 𝑛 equal parts: 

 

𝑎 + 𝑏𝐼 = 𝑥0 + 𝐼𝑥0́ , 𝑥1 + 𝐼𝑥1́ , 𝑥2 + 𝐼𝑥2́, … , 𝑥𝑛−1 + 𝐼𝑥́𝑛−1, 𝑥𝑛 + 𝐼𝑥𝑛́ = 𝑐 + 𝑑𝐼 
 

such that the length of each sub interval is: 

 

ℎ𝐼 =
𝑐 + 𝑑𝐼 − (𝑎 + 𝑏𝐼)

𝑛
 

 

        =
𝑐 − 𝑎 + (𝑑 − 𝑏)𝐼

𝑛
= 𝛥𝑥𝐼 

 

Let 𝑦0 + 𝐼𝑦0́ , 𝑦1 + 𝐼𝑦1́ , 𝑦2 + 𝐼𝑦2́, … , 𝑦𝑛−1 + 𝐼𝑦́𝑛−1, 𝑦𝑛 + 𝐼𝑦𝑛́ be 𝑦 –coordinate, whereas: 

 

𝑦0 + 𝐼𝑦0́ = 𝑓(𝑥0 + 𝐼𝑥0́), 𝑦1 + 𝐼𝑦1́ = 𝑓( 𝑥1 + 𝐼𝑥1́), 𝑦2 + 𝐼𝑦2́ = 𝑓(𝑥2 + 𝐼𝑥2́), … , 𝑦𝑛−1 + 𝐼𝑦́𝑛−1

= 𝑓( 𝑥𝑛−1 + 𝐼𝑥́𝑛−1), 𝑦𝑛 + 𝐼𝑦𝑛́ = 𝑓(𝑥𝑛 + 𝐼𝑥𝑛́) 

 

Then the area between the two lines 𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼, the curve of 𝑓(𝑥, 𝐼) and the x-axis equal the sum 

of upright trapezoidal which are bounded from up by arc of the neutrosophic function, Where the 

area of the first neutrosophic trapezoidal is: 
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(
𝑦0 + 𝐼𝑦0́ + 𝑦1 + 𝐼𝑦1́

2
) ℎ𝐼 

 

and the area of the second neutrosophic trapezoidal is: 

 

(
𝑦1 + 𝐼𝑦1́ + 𝑦2 + 𝐼𝑦2́

2
) ℎ𝐼 

 

And the area of the last neutrosophic trapezoidal is: 

 

(
𝑦𝑛−1 + 𝐼𝑦́𝑛−1 + 𝑦𝑛 + 𝐼𝑦𝑛́

2
) ℎ𝐼  

Hence: 

 

∫ 𝑓(𝑥, 𝐼)

𝑐+𝑑𝐼

𝑎+𝑏𝐼

𝑑𝑥 = (
𝑦0 + 𝐼𝑦0́ + 𝑦1 + 𝐼𝑦1́

2
) ℎ𝐼 + (

𝑦1 + 𝐼𝑦1́ + 𝑦2 + 𝐼𝑦2́

2
) ℎ𝐼+. . + (

𝑦𝑛−1 + 𝐼𝑦́𝑛−1 + 𝑦𝑛 + 𝐼𝑦𝑛́

2
) ℎ𝐼 

 

 =
ℎ𝐼

2
[𝑦0 + 𝐼𝑦0́ + 2𝑦1 + 2𝐼𝑦1́ + ⋯ + 2𝑦𝑛−1 + 2𝐼𝑦́𝑛−1 + 𝑦𝑛 + 𝐼𝑦𝑛́] 

 

=
ℎ𝐼

2
[𝑦0 + 𝐼𝑦0́ + 2(𝑦1 + 𝐼𝑦1́ + ⋯ + 𝑦𝑛−1 + 𝐼𝑦́𝑛−1) + 𝑦𝑛 + 𝐼𝑦𝑛́] 

 

3.1.1 Estimation of error 

𝐸𝐼 ≤
1

12
ℎ𝐼

3𝑀𝑎𝑥 |𝑓́́(𝑥, 𝐼)|  ;   𝑎 + 𝑏𝐼 ≤ 𝑥 ≤ 𝑐 + 𝑑𝐼 

 

Then the error of the step (subinterval) is: 

 

𝐸𝐼 ≤
𝑛

12
ℎ𝐼

3𝑀𝑎𝑥 |𝑓́́(𝑥, 𝐼)|  ;   𝑎 + 𝑏𝐼 ≤ 𝑥 ≤ 𝑐 + 𝑑𝐼 

 

We have: 

ℎ𝐼 =
𝑐 + 𝑑𝐼 − (𝑎 + 𝑏𝐼)

𝑛
   ⟹  𝑛 =

𝑐 + 𝑑𝐼 − (𝑎 + 𝑏𝐼)

ℎ𝐼

 

 

Then the estimation of error of the neutrosophic trapezoidal method is: 

 

 

𝐸 ≤
𝑐 + 𝑑𝐼 − (𝑎 + 𝑏𝐼)

12
ℎ𝐼

2𝑀𝑎𝑥 |𝑓́́(𝑥, 𝐼)|  ;   𝑎 + 𝑏𝐼 ≤ 𝑥 ≤ 𝑐 + 𝑑𝐼 

 

Example 3.1  

Evaluate  

              ∫
𝑑𝑥

1 + 𝑥2

1+𝐼

0+0𝐼

 

by trapezoidal where 𝑛 = 4, then calculate the occurred error. 

 

Solution: 

 

ℎ𝐼 =
𝑐 − 𝑎 + (𝑑 − 𝑏)𝐼

𝑛
=

1 + 𝐼

4
= 0.25 + 0.25𝐼 
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Then we will divide the interval [0, 1 + 𝐼] into four subintervals of length: ℎ𝐼 = 0.25 + 0.25𝐼 

 

(𝑥, 𝐼) 0 0.25(1 + 𝐼) 0.5(1 + 𝐼) 0.75(1 + 𝐼) 1 + 𝐼 

𝑓(𝑥, 𝐼) 1 0.9412

− 0.1412𝐼 

0.8 − 0.3𝐼 0.64 − 0.3323𝐼 0.5 − 0.3𝐼 

 

where: 

 

 𝑓(0) = 1 
 

 𝑓(0.25(1 + 𝐼)) =
1

1+(0.25(1+𝐼))
2 =

1

1.0625+0.1875𝐼
= 0.9412 − 0.1412𝐼 

 

 𝑓(0.5(1 + 𝐼)) =
1

1+(0.5(1+𝐼))
2 =

1

1.25+0.75𝐼
= 0.8 − 0.3𝐼 

 

 𝑓(0.75(1 + 𝐼)) =
1

1+(0.75(1+𝐼))
2 =

1

1.5625+1.6875𝐼
= 0.64 − 0.3323𝐼 

 

 𝑓(1 + 𝐼) =
1

1+(1+𝐼)2 =
1

2+3𝐼
= 0.5 − 0.3𝐼 

 

then: 

 

∫
𝑑𝑥

1 + 𝑥2

1+𝐼

0+0𝐼

=
ℎ𝐼

2
[𝑦0 + 𝐼𝑦0́ + 2(𝑦1 + 𝐼𝑦1́ + 𝑦2 + 𝐼𝑦2́ + 𝑦3 + 𝐼𝑦3́) + 𝑦4 + 𝐼𝑦4́] 

 

=
0.25 + 0.25𝐼

2
[1 + 2(0.9412 − 0.1412𝐼 + 0.8 − 0.3𝐼 + 0.64 − 0.3323𝐼) + 0.5 − 0.3𝐼] 

 

=
0.25 + 0.25𝐼

2
[6.2624 − 1.847𝐼] 

 

= (0.25 + 0.25𝐼)[3.1312 − 0.9235𝐼] = 0.7828 + 0.32105𝐼 

 

To finding the occurred error: 

 

𝑓(𝑥, 𝐼) =
1

1 + 𝑥2
   ⟹     𝑓́(𝑥, 𝐼) =

−2𝑥

(1 + 𝑥2)2
   

 

 ⟹ 𝑓́́(𝑥, 𝐼) =
−2(1 + 𝑥2)2 + 6𝑥2(1 + 𝑥2)

(1 + 𝑥2)4
=

−2 − 2𝑥2 + 8𝑥2

(1 + 𝑥2)3
=

6𝑥2 − 2

(1 + 𝑥2)3
 

 

𝑓́́(0) = −2 

 

𝑓́́(1 + 𝐼) =
22𝐼

8 + 117𝐼
=

22

125
𝐼 

 

 |𝑓́́(0)| > |𝑓́́(1 + 𝐼)|  𝑜𝑛 𝐼 = [0,1] 

 

    ⟹          𝑀𝑎𝑥 |𝑓́́(𝑥, 𝐼)| = |𝑓́́(0)| = |−2| = 2 
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then: 

 

𝐸𝐼 ≤
𝑐 + 𝑑𝐼 − (𝑎 + 𝑏𝐼)

12
ℎ𝐼

2 𝑀𝑎𝑥 |𝑓́́(𝑥, 𝐼)|  ;   𝑎 + 𝑏𝐼 ≤ 𝑥 ≤ 𝑐 + 𝑑𝐼 

 

𝐸𝐼 ≤
1 + 𝐼

12
(0.25 + 0.25𝐼)2 |−2|  ;   0 ≤ 𝑥 ≤ 1 + 𝐼 

 

𝐸𝐼 ≤
0.0625 + 0.4375𝐼

12
(2) ≈ 0.01042 + 0.07292𝐼   (1) 

 

Note: 

If we put 𝐼 = 0 in (1), we get: 𝐸𝐼 ≤ 0.01042 (the same result without indeterminacy). 

 

Example 3.2 

Evaluate  

              ∫ 𝑥𝑒𝑥

1+𝐼

0.5+0.5𝐼

𝑑𝑥 

by trapezoidal where ℎ𝐼 = 0.1 + 0.1𝐼, then calculate the occurred error. 

 

Solution: 

 

ℎ𝐼 = 0.1 + 0.1𝐼 
 

(𝑥, 𝐼) 0.5 + 0.5𝐼 0.6 + 0.6𝐼 0.7 + 0.7𝐼 0.8 + 0.8𝐼 0.9 + 0.9𝐼 1 + 𝐼 

𝑓(𝑥, 𝐼) 0.8244

+ 1.894𝐼 

1.09326

+ 2.89086𝐼 

1.40966

+ 2.89086𝐼 

1.7804

+ 6.1444𝐼 

2.21364

+ 8.67564𝐼 

2.7183

+ 12.0599𝐼 

 

where: 

 

 𝑓(0.5 + 0.5𝐼) = (0.5 + 0.5𝐼)𝑒0.5+0.5𝐼 

 

= (0.5 + 0.5𝐼)(√𝑒 + 𝐼[𝑒 − √𝑒]) 

 

= (0.5 + 0.5𝐼)(1.6487 + 1.0696𝐼) 
 

≈ 0.8244 + 1.894𝐼 
 

 𝑓(0.6 + 0.6𝐼) = (0.6 + 0.6𝐼)𝑒(0.6+0.6𝐼) 

 

= (0.6 + 0.6𝐼)(𝑒0.6 + 𝐼[𝑒1.2 − 𝑒0.6]) 
 

= (0.6 + 0.6𝐼)(1.8221 + 1.498𝐼) 
 

≈ 1.09326 + 2.89086𝐼 

 

 𝑓(0.7 + 0.7𝐼) = (0.7 + 0.7𝐼)𝑒(0.7+0.7𝐼) 

 

= (0.7 + 0.7𝐼)(𝑒0.7 + 𝐼[𝑒1.4 − 𝑒0.7]) 
 

= (0.7 + 0.7𝐼)(2.0138 + 2.0414𝐼) 
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≈ 1.40966 + 2.89086𝐼 
 

 𝑓(0.8 + 0.8𝐼) = (0.8 + 0.8𝐼)𝑒(0.8+0.8𝐼) 

 

= (0.8 + 0.8𝐼)(𝑒0.8 + 𝐼[𝑒1.6 − 𝑒0.8]) 
 

= (0.8 + 0.8𝐼)(2.2255 + 2.7275𝐼) 
 

≈ 1.7804 + 6.1444𝐼 
 

 𝑓(0.9 + 0.9𝐼) = (0.9 + 0.9𝐼)𝑒(0.9+0.9𝐼) 

 

= (0.9 + 0.9𝐼)(𝑒0.9 + 𝐼[𝑒1.8 − 𝑒0.9]) 
 

= (0.9 + 0.9𝐼)(2.4596 + 3.5900𝐼) 

 

≈ 2.21364 + 8.67564𝐼 
 

 𝑓(1 + 𝐼) = (1 + 𝐼)𝑒(1+𝐼) 

 

= (1 + 𝐼)(𝑒 + 𝐼[𝑒2 − 𝑒]) 
 

= (1 + 𝐼)(2.7183 + 4.6708𝐼) 
 

≈ 2.7183 + 12.0599𝐼 
then: 

 

∫ 𝑥𝑒𝑥

1+𝐼

0.5+0.5𝐼

𝑑𝑥 =
ℎ𝐼

2
[𝑦0 + 𝐼𝑦0́ + 2(𝑦1 + 𝐼𝑦1́ + 𝑦2 + 𝐼𝑦2́ + 𝑦3 + 𝐼𝑦3́ + 𝑦4 + 𝐼𝑦4́) + 𝑦5 + 𝐼𝑦5́] 

 

                                

=
0.1 + 0.1𝐼

2
[0.8244 + 1.894𝐼

+ 2(1.09326 + 2.89086𝐼 + 1.40966 + 4.26762𝐼 + 1.7804 + 6.1444𝐼 + 2.21364

+ 8.67564𝐼) + 2.7183 + 12.0599𝐼] 
 

=
0.1 + 0.1𝐼

2
[16.53662 + 57.91094𝐼] 

 

                               = 0.826831 + 0.826831𝐼 + 2.895547𝐼 + 2.895547𝐼 

 

= 0.826831 + 6.6179251𝐼      (1) 

 

to finding the occurred error: 

 

𝑓(𝑥, 𝐼) = 𝑥𝑒𝑥    ⟹    𝑓́(𝑥, 𝐼) = (1 + 𝑥)𝑒𝑥    

 

                    ⟹               𝑓́́(𝑥, 𝐼) = (2 + 𝑥)𝑒𝑥 

 

𝑓́́(0.5 + 0.5𝐼) = (2.5 + 0.5𝐼)𝑒0.5+0.5𝐼 = (2.5 + 0.5𝐼)(𝑒0.5 + 𝐼[𝑒 − 𝑒0.5]) 

 

                                   = (2.5 + 0.5𝐼)(1.64872 + 1.06956𝐼) 



Neutrosophic Sets and Systems, Vol. 58, 2023     7  

 

 

Yaser Ahmad Alhasan, Isra Abdalhleem Hassan Ali, The neutrosophic numerical integration and MATLAB 

 

= 4.1218 + 4.1218𝐼 + 0.53478𝐼 + 0.53478𝐼 
 

= 4.1218 + 5.19136𝐼 

 

𝑓́́(1 + 𝐼) = (3 + 𝐼)𝑒1+𝐼 = (3 + 𝐼)(𝑒 + 𝐼[𝑒2 − 𝑒]) 

 

                    = (3 + 𝐼)(2.7183 + 4.6708𝐼) 
 

                    = 8.1549 + 8.1549𝐼 + 4.6708𝐼 + 4.6708𝐼 

 

                    = 8.1549 + 17.4965𝐼 
 

 |𝑓́́(1 + 𝐼)| > |𝑓́́(0.5 + 0.5𝐼)|  𝑜𝑛 𝐼 = [0,1] 

 

    ⟹          𝑀𝑎𝑥 |𝑓́́(𝑥, 𝐼)| = |𝑓́́(1 + 𝐼)| = |8.1549 + 17.4965𝐼| 

 

                                   = |8.1549| + 𝐼[|25.6514| − |8.1549|] 
 

                                   = 8.1549 + 17.4965𝐼 
then: 

 

𝐸𝐼 ≤
𝑐 + 𝑑𝐼 − (𝑎 + 𝑏𝐼)

12
ℎ𝐼

2 𝑀𝑎𝑥 |𝑓́́(𝑥, 𝐼)|  ;   𝑎 + 𝑏𝐼 ≤ 𝑥 ≤ 𝑐 + 𝑑𝐼 

 

𝐸𝐼 ≤
1 + 𝐼 − (0.5 + 0.5𝐼)

12
(0.1 + 0𝐼)2 (8.1549 + 17.4965𝐼)  ;   0.5 + 0.5𝐼 ≤ 𝑥 ≤ 1 + 𝐼 

 

𝐸𝐼 ≤
0.5 + 0.5𝐼

12
(0.081549 + 0.174965𝐼) ≈ 0.00398 + 0.01856𝐼   (∗) 

3.1.2 The neutrosophic numerical integration by using MATLAB 

If we go back to the previous example 3.1 and evaluate  

      ∫
𝑑𝑥

1 + 𝑥2

1+𝐼

0+0𝐼

= 0.7828 + 0.32105𝐼 

 

by trapezoidal, where ℎ𝐼 = 0.1 + 0.1𝐼, by using MATLAB 

 

solution: 

 for 𝐼 = 1 by substitution in (2), we find:  

 

      ∫
𝑑𝑥

1 + 𝑥2

1+𝐼

0+0𝐼

= 0.7828 + 0.32105(1) = 1.10385 

 

 

Let's now use MATLAB (for 𝐼 = 1):  

 

a=0; 

>> b=2; 

>> h=0.5; 
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>> f=0; 

>> for x=0.5:(h):1.5; 

f=(f+(1/(1+x^2))); 

end 

>> Am=(h/2)*((1/(1+a^2))+(2*f)+(1/(1+b^2))) 

 

Am = 

 

    1.1038 

 

 

 for 𝐼 = 0 by substitution in (2), we find:  

 

      ∫
𝑑𝑥

1 + 𝑥2

1+𝐼

0+0𝐼

= 0.7828 + 0.32105(0) = 0.7828 

 

 

Let's now use MATLAB (for 𝐼 = 0):  

 

a=0; 

b=1; 

h=0.25; 

f=0; 

for x=0.25:(h):0.75; 

f=(f+(1/(1+x^2))); 

end 

Am=(h/2)*((1/(1+a^2))+(2*f)+(1/(1+b^2))) 

 

Am = 

 

    0.7828 

 

If we go back to the previous example 3.2 and evaluate  

              ∫ 𝑥𝑒𝑥

1+𝐼

0.5+0.5𝐼

𝑑𝑥 

by trapezoidal, where ℎ𝐼 = 0.1 + 0.1𝐼, by using MATLAB 

 

solution: 

 for 𝐼 = 1 by substitution in (1), we find:  

 

∫ 𝑥𝑒𝑥

2

1

𝑑𝑥 = 0.826831 + 6.6179251(1) = 7.4447561 

 

Let's now use MATLAB (for 𝐼 = 1):  

>> a=1; 

b=2; 

h=0.2; 

f=0; 

for x=1.2:(h):1.8; 

f=(f+(x*(exp(x)))); 
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end 

>> Am=(h/2)*((a*(exp(a))+2*f+(b*(exp(b))))) 

 

Am = 

 

    7.4448 

 

 for 𝐼 = 0 by substitution in (1), we find:  

 

∫ 𝑥𝑒𝑥

1

0.5

𝑑𝑥 = 0.826831 + 6.6179251(0) = 0.826831 

 

Let's now use MATLAB (for 𝐼 = 0): 

a=0.5; 

b=1; 

h=0.1; 

f=0; 

for x=0.6:(h):0.9; 

f=(f+(x*(exp(x)))); 

end 

>> Am=(h/2)*((a*(exp(a))+2*f+(b*(exp(b))))) 

 

Am = 

 

    0.8268 

 

We note that we got the same results, noting that the numerical integration is approximate and the 

error estimate is studied. 

4. Conclusions  

      This essay expands on the writings we previously wrote on neutrosophic integrals. Integrals 

play a significant role in daily life since they make several mathematical operations possible in the 

actual world, this is why we decided to explore the neutrosophic numerical integration, where we 

introduced the concept of neutrosophic numerical integration through the trapezoidal method, and 

the estimation of error study. Some examples of this were also solved and the correctness of the 

results was confirmed using MATLAB. In addition, this study is also regarded as being significant 

for neutrosophic integral applications. 
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Abstract: The degree of data uncertainty may be measured using a variety of mathematical 

techniques, but neutrosophic logic is a potent instrument for analysis when compared to 

fuzzy and intuitionistic fuzzy logics. This article introduces the novel idea of "dominance in 

neutrosophic over graph (NOG)s" and discusses some of the intriguing characteristics of 

complete, complete bipartite, and neutrosophic over bridge domination. With the relevant 

instances, the characterization of neutrosophic over domination set and neutrosophic over 

minimal domination set is developed, and their dominance numbers are examined. 

 

Keywords: Neutrosophic over domination set, Neutrosophic over minimum domination 

set, Neutrosophic over domination number. 

 

Introduction:   

“Graph theory has various uses in a range of fields, including operations research, 

physics, chemistry, economics, genetic engineering, and computer science, among others. 

A classical graph cannot accurately represent uncertain issues since there are two choices 

for each vertex or edge: it is either in the graph or it is not. A generalized form of the 

classical set known as a fuzzy set [18] is one in which objects have membership degrees 

ranging from zero to one. On fuzzy graphs, more work has previously been done. Zadeh 

invented the fuzzy set and presented the degree of membership in 1965. The intuitionistic 

fuzzy set and the degree of falsity (F) were both proposed by Atanassov [1] in 1983. The 

neutrosophic set (NS) of components (T, I, F) and the degree of indeterminacy (I) were 

created by Smarandache [10,11,12,13] in 1995. Prem Kumar [14,15,16] developed three 

different forms of lattices for neutrosophic graphs. Three sets of neutrosophic 
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over/off/under were introduced by Smarandache [8, 9] and their use in nursing research 

approaches was discussed. This inspired the creation of the notion of dominance number 

[17] in the realm of NOG.  Later, Narmada Devi worked on a novel neutrosophic off graph 

and minimum dominance using NOGs and NO- top graphs [2, 3, 4, 5, 6, 7]. 

 

“Smarandache has created a NS [15]. It is a generalization of intuitionistic fuzzy sets 

and fuzzy sets. With some ambiguity, consistency, and partial knowledge that is used in 

daily life, it is a potent instrument to influence. The three elements of membership (M), 

indeterminacy (I), and non-membership (N) functions are dealt with by NSs. It is a really 

useful programme for dealing with challenges in everyday life. However, it only applies to 

three attribute values. Advanced research suggests that in order to increase accuracy, the 

measurement of data uncertainty needs to be handled with greater attribute value. This is 

true across many scientific disciplines, including biology, physics, information technology, 

networks, decision-making analysis, etc.  

Recently, several writers have focused on dealing with multi-valued attribute data sets 

based on Smarandache Plithogenic set [7, 8]. It is regarded as one of the important sets that 

depict the contradictory multi-valued properties. Finding some of the valuable patterns 

from data with lithogenic properties and its graphical visualisation, which were inspired by 

several recent work in this subject, presents a challenge.” 

 

1. “PRELIMINARIES: 

Definition 2.1 [8] Let  be a given non-empty set.  Then the set  is said to be Fuzzy set on  such 

that its membership function  for each . 

Definition 2.2 [5] Let V be a given non-empty set.  A NS A in V is characterized by a truth 

membership function , an indeterminate membership function  and a false membership 

function .  The functions ,  and   are fuzzy sets on V.         That is,  : V  

[0, 1] and 0   +  +   3. 

Definition 2.3 [6] Let  be the universe of discourse and the NS  .  A Neutrosophic over set 

is defined as {(x, ), x  , where  that is,  and  is 

said to be a over limit,  such that no element has neutrosophic components 

of <0, and there is at least one element that has at least one neutrosophic component of >1.” 
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Definition 2.4 [6] Let  be a crisp graph with  is vertex and  is edge.  A NOG is a pair 

 of  where  is a neutrosophic over set in  and  is a neutrosophic over set in  

 such that   

, 

, 

                , for all . 

Here  and  are said to be neutrosophic over vertex set and neutrosophic over edge set of G, 

respectively. 

2. VARIOUS TYPES OF NOGs 

 Definition 3.1   Let  be a NOG in .   is said to be complete if: 

, 

, 

                    , for all  

 

 

Example 3.1:  

1

2 3

(0.3, 1.1, 1.1)

(0.3, 0.4, 1.2)

(0.9, 0.4, 1.2) (0.9, 0.4, 1.2) (1.3, 0.7, 0.4)

(0.3, 0.7, 1.1)

 

Figure 1: Complete NOG.  
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Definition 3.2   A NOG in  is a neutrosophic over bipartite (NOBipar) if the set  can 

be partitioned into two non-empty over sets and  such that , for 

all  or .  

A NOBipar graph is a complete-NOBipar if , 

, , for all .   

A complete-NOBipar graph is a star NOG if either | | = 1 or | | = 1. 

Example 3.2: 

1 2

3

V

V

1

2

(0.4, 1.1, 1.1)

(0.4, 0.8, 1.1)

(1.2, 0.8, 0.5)

(0.9, 0.4, 1.2)

(0.9, 0.4, 1.2)

 

Figure 2: Complete Bi-par and Star NOG. 

Definition 3.3 Let  be a NOG in .  Then  

a) The real number  is said to be the -order, if L = . 

b) The real number  is said to be the -order, if M = (u). 

c) The real number  is said to be the -order, if N = (u). 

d) A real number is said to be the order of a NOG, if it is equal to order  

Example 3.3: 
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1

2 3

(0.3, 1.1, 0.8)

(0.3, 0.3, 1.3)

(0.9, 0.4, 1.2) (0.7, 0.2, 1.4) (1.3, 0.7, 0.4)

(0.2, 0.5, 1.1)

 

Figure 3: NOG. 

In this above Figure 3 of NOG, the -order,  2.5, -order,  2.2, -order,  2.4 and the 

order is <2.5, 2.2, 2.4>. 

Definition 3.4 Let  ,  be two given vertices in a NOG  such that  ℕ.  Then 

a) A  -path is an sequence of distinct vertices P : , , … ,  of length n from  to  if 

, for . 

The strength of that -path is   and denoted by  

b) A -path is an sequence of distinct vertices P : , , … ,  of length n from  to  if 

, for . 

The strength of that -path is   and denoted by . 

c) A -path is an sequence of distinct vertices P : , , … ,  of length  from  to  if 

( ) ˃ 0, for . 

The strength of that -path is   and denoted by . 

d) A path is an sequence of distinct vertices P: , , … ,  of length n from  to  if it be -

path, -path, -path, simultaneously. 

The strength of that path is  and denoted by . 

Example 3.4: 
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In the figure 3 of NOG, the various types of path from 1 - 2 are  and   

which are  -path, -path, -path respectively.  = (0.3, 0.3, 1.3),  = (0.2, 0.2, 1.1). 

 

Definition 3.5 

Let  be two given vertices in a NOG  such that  and  ℕ.  Then 

a) The -strength between  and  is  and denoted by   

b) The -strength between  and  is  and denoted by  

c) The -strength between  and  is  and denoted by  

d) The strength between  and  is  and denoted by 

. 

Example 3.5 

In the Figure 3 of NOG, the various type of paths from 1 to 2 are  : 2 and   :  

which are  -path, -path, -path respectively.   = (0.3, 0.3, 1.3), = (0.2, 0.2, 1.1).    Then 

the  -strength, -strength, -strength are 0.3, 0.3,1.3 and the strength = 1.3. 

Example 3.6 

Consider  is a NOG on  as Figure 4.  Various paths of length 3 from  to  are 

explored.   

 :   

 :   

 :   

 :                   

 :  

 : ,   respectively.  
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And from following graph, we find the strength of that paths as follows.  

For   :    = 0.3,  = 0.3,   = 1.2 and  = 0.3 

For   :   = 0.2 ,  = 0.5,  = 1.2 and = 0.2 

For   :   = 0.3 ,  = 0.4,  = 1.2 and = 0.3 

For   :   = 0.4 ,  = 0.6,  = 1.2 and = 0.4 

For   :    = 0.2,  = 0.5,  = 1.2 and  = 0.2 

For   :   = 0.5 ,  = 0.3,  = 1.2 and = 0.3 

Finally, we discuss about the strength between two vertices  and . 

 0.5,  = 0.6,  = 1.2,  = 1.2. 

v
4

(0.8, 1.1, 0.4)

(0.6, 0.9, 1.2)

(0.9, 1.1, 0.9)

(0.7, 0.8, 1.1)

(0.7, 0.6, 1.2) (1.2, 0.9, 0.4)

(0.3, 0.7, 1.4)
(0.4, 0.8, 1.4)

(0.5, 0.9, 1.3)(0.7, 1.2, 0.6)

(0.3, 0.4, 1.4)

(0.5, 0.8, 1.3) (0.4, 0.9, 1.2)

(0.2, 0.5, 1.4)(0.6,0.3,1.2)

v
5

v
1

v
2

v
3

 

Figure 4 NOG 

Definition 3.6  “An edge  in a NOG  is said to be the 

a) -bridge, if the strengths of each  -path  from  to  excluding  were less than . 

b) - bridge, if the strengths of each -path  from  to  excluding  were less than . 
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c) - bridge, if the strengths of each -path  from x to  excluding  were less than . 

d) Bridge, if it is either  -bridge, -bridge, -bridge. 

Example 3.7 In the figure 3 of NOG, the edges 12 and 23 are -bridge and -bridge respectively 

a) The edges 12 and 13 are -bridge and  

b) The edges 12, 13 and 23 is bridge  

Notation:   is the strength between  and  obtained from  by deleting the edge .  

Thus, we notate for -strength, -strength, -strength as ,  and 

 respectively. 

Definition 3.7 An edge  in  is said to be  

a) -effective, if   . 

b) -effective, if   . 

c) - effective, if  . 

d) Effective if it is either of -effective, -effective and -effective. 

Example 3.8 

Consider  is a NOG.  In the below Table 1, effectiveness of edges of G is 

established. 

Edges -effective -effective -effective Effective 
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Table 1 Effectiveness of edges 

For example,  have neither of - effective, - effective, - effective and effective property.   

have -effective and -effective property. 

Therefore, it is an effective edge.  The collection of edges  

 have 

-effective, -effective, -effective and effective property, respectively.” 

3. DOMINATION ON NOGs. 

Definition 4.1   

a) Let be a NOG, let ,  we say  dominates  in  if there exist an -

effective edge between them.   

b) A subset  of  is said to be a -effective dominating set in  if for every , there 

exists  such that u dominates  as -eff.  

c) The -weight of x is defined by .   

d) For any , -weight of S is defined by . 
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e) Let  be the set of all -effective dominating sets in .  The -domination number of  is 

given by .  Then the -effective dominating set that correspond to 

 is known as -dominating set. 

f) Further, in the similar manner we define -dominating set and -dominating set of , 

respectively.  

Note:   If  equals 0, for some .  Then  equal with 0. 

Definition 4.2 

a) We say  dominates  in , if there exist an effective edge between them.   

b) A subset of  is said to be the effective dominating set in , if for every , there 

exists u  S such that u dominates v as eff. 

c) The weight of S is defined by .  

d) Let  be the set of all eff dominating sets in .  The domination number of  is given by 

  Then the effective dominating set that correspond to  is known as 

dominating set. 

4. PROPERTIES OF EFFECTIVE EDGES IN NOGs 

Proposition 5.1 

Let  be a complete NOG in  which has exactly one path between two given vertices and 

has 

a) -strength. Then  + 2. 

b) - strength. Then  + 2. 

c) - strength. Then + 2. 

d) strength.  Then  + 2. 
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Proof 

(a) Let  be a NOG on .  Then the -strength of path  from  to  will be   …  

     = .  So .   is a path from  to  such that 

  .  Therefore  .  Hence .  Then 

 which means the edge is -effective.  Therefore, all edges are -effective 

and each vertex is adjacent to all other vertices.  So  will be the -effective dominating set 

and  =  for each .  The result follows.  

Similarly, we can prove for (b), (c) and (d). 

Proposition 5.2 Let  be any complete-NOBipar graph in  which has exactly one path 

between two given vertices and has 

a) -strength.  Then  is either  1 or  2.  

b) -strength.  Then  is either  1 or  2. 

c) - strength.  Then  is either  1 or  2. 

d) Then  is either min( (u), (u), (u)) + 1 or 

 + 2. for all  . 

Proof 

(a) Let  be any complete-NOBipar graph on  which has exactly one path and has -

strength between two given vertices. By the proof of Proposition 5.1, all the edges are -effective. 

Case (i): Consider, if  is the star NOG with   in which  and  are the center 

and the leaves of G, for , respectively.  Then  is the -dominating set of G.  Hence 
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Case (ii): Let both of  and  include more than one vertex.  Every vertex in  is dominated by 

every vertex in , as -effective and conversely every vertex in  is dominated by every vertex in 

, as -effective.  Thus the -effective dominating sets are  and  and any set containing 2 

vertices one in  and the other in .  Therefore,  + 2.  The result 

follows. 

Similarly, we can prove for (b), (c) and (d). 

Proposition 5.3 Let  be a NOG in .  Then  is a  

a) -effective edge  xy is a -bridge. 

b) - effective edge  xy is a -bridge. 

c) -effective edge  xy is a -bridge. 

d) Effective edge  xy is a bridge. 

Proof 

(a)    Suppose  is a -effective edge.  

By Definition 3.7(a),                       

Since, .  Therefore  

 is a -bridge.  Therefore, the result follows. 

Similarly, we can prove for (b), (c) and (d). 

5. CONCLUSION: 

Both theoretical studies and practical applications for the idea of dominance in graphs are 

fairly extensive.  In this study, we used strength of path to construct the NOG dominance number 

and explain it with relevant instances.  Numerous applications of expert systems, image processing, 

computer networks, and social systems can make use of the NOG notion.   Additionally, we look at 

several noteworthy characteristics of the product NOGs with the dominance number, and the 

suggested ideas are explained with useful examples. 
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Abstract:  
 

This study is concerned with creating a neutrosophic inference system (NIS) and developing its 

mathematical concepts, as well as determining the most critical problems in the power electrical 

transformers. Studying their potential failure mode and effects analysis and then, analyzing the risk 

assessment and management. New insight and novel techniques have been presented to interpret the 

failure modes (i.e. severity, occurrence, and detection). This paper presents a novel operator called ANOR 

which is used for the first time to combine the (IF-Then) inference rules. The neutrosophic inference system 

using failure mode effect analysis is a modern tool for studying the reliability of electrical power 

transformers. Also, this study suggested some modifications in the standard MIL-STD-1629A. this article 

presents and for the first time, a new inferencing sixty-three neutrosophic rules in which their biasing is 

categorized into three types: truth state, indeterminacy state, and falsity state. 

Keywords: Neutrosophic Failure Mode Effect Analysis (NFMEA); Neutrosophic Risk Priority 

Number (NRPN); Neutrosophic Inference Analysis NFMEA; type -1- Mamdani inference system; MIL-

STD-1629A. 

1. Introduction 

It is well-known that all inference systems techniques such as the type-1 and type-2 Mamdani system 

and type-1 and type-2 Sugeno system were created in the 1970s. In 1975, Prof. E. Mamdani built one of the 

first fuzzy systems to control a steam engine and boiler combination, it is still implemented in fuzzy 

environments as an active tool for analyzing fuzzy control systems, we can define the fuzzy controllers 

mailto:ahmed.k.essa@uotelafer.edu.iq
mailto:proftuwehprincegadamathegreat@gmail.com
mailto:drsalama44@gmail.com
mailto:ahmed.k.essa@uotelafer.edu.iq
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simply as it came in literature, they are very simple conceptually because they are composed of input, 

processing, and output stages. As a special case, if we focused on the electrical power transformer for the 

reasons that: 

1- The power transformers have an active role in the efficiency and reliability of power transmission lines, 

2- The electrical power transformer is one of the most expensive network equipment. 

3- It is important to know when the electrical power transformer facing danger because it contains a great 

quantity of oil in contact with high-voltage elements. 

Therefore, the objective is to study the failure modes and their effect analysis for it by giving up 

the well-known fuzzy approach and replacing it with a neutrosophic inference system (NIS). Before 

moving forward with this new approach (i.e. putting the mathematical fundamentals of NIS), some of the 

basic concepts are present in the upcoming sections. Till this moment and before this study, the traditional 

and fuzzy methods are being taken up to analyze the parameters, and criteria which increase the risk of 

fire and explosion in case of abnormal circumstances or technical failures using the traditional and fuzzy 

control systems with the general goal of improving the reliability of the system. Many researchers 

published dozens of articles in this field including but not limited to [1-6]. 

To describe the use of potential failure mode and effects analysis in the neutrosophic environments 

(NFMEA), we need to determine the inputs of the neutrosophic inference system (NIS) that will be the 

mathematical tool for risk assessment and management, the inputs of the NIS in the electrical power 

transformers (EPT) that have been considered in this paper are [7-10]: 

1- Active Part which consists of the Core (i.e. having the function of concentrating the magnetic flux), 

the Windings (i.e. the function of the windings is to carry current. In addition to dielectric stress and 

thermal requirements the windings have to withstand mechanical forces that may cause windings 

replacement). 

2- Insulation system which consists of the solid insulation and the transformer oil. 

3- Some transformer components which is known as accessories are Bushings, Tap Changer, cooling 

system, Tank, Mechanical structure includes (clamping, coil blocking and lead support), and Winding 

Connections that are between windings, tap leads, and to bushings). 
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4- Protection which includes the Buchholz protection, pressure relief, valve circuity, sure protection, 

and tap changer pressure relief. 

At the experts, these parts are well known, it should be studied the severity, occurrence, and detection of 

each problem caused in one of the previously mentioned parts of (EPT). Again, the neutrosophic inference 

system (NIS) consists of an input stage, a processing stage, and an output stage, the processing stage 

invokes each appropriate rule and generates results for each rule, then combines the results of the rules. 

The output stage converts the combined result back into a specific control output value. 

The membership functions that should be used in the neutrosophic inference system, and how to classify 

the (If-then), (If- and- then), (If-or-then), and (If- anor-then) statements will be discussed with details in the 

forthcoming sections. 

2. A Comparison Between Conventional FMEA, Fuzzy FMEA and Neutrosophic 

FMEA 

NASA agency in 1963 adopted the FMEA as a formal system analysis methodology for their reliability 

requirements. Then, it was adopted and implemented by Ford Motor in 1977 [8] simultaneously with the 

military standard procedures for performing a failure mode, effects, and critical analysis which has been 

released by the USA Department of Defense on June 12, 1977. Since then, it has become a powerful tool 

extensively used for risk and reliability analysis of systems in a wide range of industries, including 

automotive, construction, aerospace, nuclear, and electro-technical [5]. 

Reliability and quality assurance have been of increasing concern in various industries in recent years. 

The evidence of this argumentation is that there are many different standards developed for failure modes 

and effects analysis (FMEA) application in various industries, and the most popular standards are: 

- SAE-J-1739 [state ref.], /great for the ground vehicle community. 

- AIAG’s [state ref.], /a reference manual to be used by suppliers to Chrysler LLC, Ford 

Motor Company, and General Motors Corporation. 

- MIL-STD-1629A [state ref.] / drafted by the United States Department of Defense. 

- IEC 60812 [state ref.] / guidance to how these techniques may be applied to achieve various 

reliability program objectives. 

- BSEN 60812 [state ref.]/ the European adoption of the IEC 60812. 
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The above standards are dedicated for conventional FME, a typical standard will outline Severity, 

Occurrence, and Detection rating scales as well as examples of an FMEA spreadsheet layout. Also, a 

glossary will be included that defines all terms used in the FMEA. The rating scales and the layout of the 

data can be different between standards, but the processes and definitions remain similar. However, in 

general, FMEA is a systematic, proactive method for evaluating a process to identify where and how it 

might fail and to assess the relative impact of different failures, in order to identify the parts of the process 

that are must in need of repair and maintenance [2]. 

Even though the conventional FMEA is probably the most popular tool for reliability and failure 

mode analysis in electrical power transformers, there are some limitations in it since it is difficult or even 

impossible for experts to precisely evaluate the three risk factors S, O, and D, since the risk factors are often 

expressed in a linguistic way (such as ‘likely’, ‘important’, ‘very high’, ‘catastrophic’, ‘marginal’, 

‘minor’…etc.). as well as, in traditional FMEA methodology, the three risk factors are assumed to have the 

same importance [11-16]. However, it is observed that many operative and management experts give more 

preference to the “fault detection factor”. 

The neutrosophic failure mode effect analysis (NFMEA) is proposed in this study, which will be 

more general in its aspects than the fuzzy failure mode effect analysis (FFMEA) since the latter concentrates 

on the creation of membership functions for the antecedents and consequences of rules, while the (NFMEA) 

is more accurate in classifying the cases of Severity into three main portions (membership function supports 

the Truth Side/ MFT, membership function supports the Indeterminate Side/ MFI, and membership 

function supports the Falsity Side/ MFF), same talking goes for Occurrence and Detections. In this manner, 

the membership functions that were used in FFMEA will be hugely different from what they will be used 

in NFMEA. In this study we adopt the strategy that the relations between MFT, MFI, and MFF are simply 

represented as: 

𝑀𝐹𝐹 = 1 −𝑀𝐹𝑇,𝑀𝐹𝐼 = 𝑀𝐹𝑇 ∩ MFF ……………… . (1) 

It means from a philosophical point of view that the behavior of the truth membership function for any 

neutrosophic object (i.e. number, element, variable, function…etc.) has the inverse behavior of the falsity 

membership function for the same object, while the indeterminacy membership function for that object is 

exactly the intersection of the two membership functions MFT and MFF because the indeterminacy case is 

neither truth nor false but it is swinging between them this means the indeterminacy may contain some 
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truth combined with some falsity. The following mathematical definition is a great representation of the 

severity criteria, Occurrence criteria, and Detection criteria that would be used to formulate the rules in 

NFMEA. 

2.1 Definition [7] 

Let A0 be the set of all neutrosophic non-liner functions g(𝑥) that are neutrosophically less than or equal 

to 𝑧, i.e. A0 = {xi ∈ FNm, g(x) < ₦ z}. The membership functions of g(𝑥) and  anti(g(𝑥)) are:  

μAo( g(x)) = {

      1                                                                                            0 ≤ g(x) ≤ z

(e
−1

do
(g(x)−z)

+ e
−1

do
(anti (g(x))−z)

− 1) ,      z < g(x) ≤ z − do ln 0.5
                    (2)         

μAo(anti( g(x))) = {

0                                                                                      0 ≤ g(x) ≤ z

(1 − e
−1

do
(anti (g(x))−z)

− e
−1

do
(g(x)−z)

) , z − do ln 0.5 ≤ g(x) ≤ z + do

        (3)                   

It is clear that μAo(neut( g(𝑥))) consists from the intersection of the following functions: 

e
−1

do
(g(x)−z)

      &  1 − e
−1

do
(anti(g(x))−z)

                                                                                           (4)  

 μAo(neut( g(x))) = {
1 − e

−1

do
(anti( g(x))−z)

            z ≤ g(x) ≤ z − do ln 0.5

e
−1

do
(g(x)−z)

                    z − do ln 0.5 < g(x) ≤ z + do

                             (5)     

 

Figure 1.1: The orange color means the region covered by μAo( g(x)), the red color means the region 

covered by  μAo(anti( g(x))), and the yellow color means the region covered by  μAo(neut( g(x))). 
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3. The construction of Rules in the Neutrosophic Inference Systems 

It is an important issue to talk about the IF-Then statements in fuzzy rule sets before presenting our 

modification on these fuzzy rules to transfer it from fuzzy environments to neutrosophic environments. 

We mentioned in the introduction section, one of the stages in any inference system is the processing 

stage which consists of a collection of logic rules in the frame of IF_THEN phrases. However, the IF-portion 

is called the antecedent, while the THEN-portion is called the consequent. Regular fuzzy control systems 

have dozens of rules. 

Consider a rule for the severity input in the electrical power transformer: 

 

 

 

The above fuzzy inference rules no longer meet the need, more sophisticated rules should be formulated 

from the neutrosophic perspective. 

Moreover, the fuzzy operators (AND, OR, NOT) that combines several antecedents should be extended to 

include new operator. 

3.1 Creation of the Neutrosophic Inference Rules 

The truth, indeterminacy, and falsity for neutrosophic terms such as (about, near, close to, approximately, 

very slightly, too, extremely, somewhat) have spectrums of severity due to the definitions can vary 

considerably among different implementations. 

The following three tables illustrate neutrosophic rules in which the neutrosophic inference systems can be 

in new apparel: 

 

 

 

IF (the primary function can be done) and (urgent repair is required) THEN 

(the risk severity on the power transformer is minor) 
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Table (1): Neutrosophic Rules for Severity Inputs of the Power Transformer 

Truth IF the primary function can be done AND un-urgent repair is required THEN the risk severity 

on the power transformer is minor-minor 

Indeterminacy IF the primary function can be done AND urgent repair is required THEN the risk severity on 

the power transformer is rather-minor 

Falsity IF the primary function can be done AND very-urgent repair is required THEN the risk 

severity on the power transformer is minor 

Truth IF there is a few reduction in the ability to implement the primary function THEN the risk 

severity on the power transformer is a mini-marginal. 

Indeterminacy IF there is a normal reduction in the ability to implement the primary function THEN the risk 

severity on the power transformer is a rather-marginal. 

Falsity IF there is an extremely reduction in the ability to implement the primary function THEN the 

risk severity on the power transformer is a marginal. 

Truth IF the problem does not cause a loss of primary function THEN the state of the system is not 

critical 

Indeterminacy IF the problem causes a partial loss of primary function THEN the state of the system is rather 

critical 

Falsity IF the problem causes a totally loss of primary function THEN the state of the system is critical 

Truth IF the system becomes partially inoperative THEN the state is not catastrophic 

Indeterminacy IF the system becomes inoperative THEN the state is rather catastrophic 

Falsity IF the system becomes completely inoperative THEN the state completely catastrophic 

 

Table (2): Neutrosophic Rules for Occurrence Inputs of the Power Transformer 

Truth1 IF a single failure mode probability of occurrence is less than 0.001 THEN the probability 

of the risk occurrence on the power transformer is extremely unlikely. 

Truth2 IF a single failure mode probability of occurrence is less than 0.01 THEN the probability 

of the risk occurrence on the power transformer is unlikely. 

Indeterminate1 IF a single failure mode probability of occurrence is less than 0.1 THEN the probability of 

the risk occurrence on the power transformer is occasional. 
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Indeterminate2 IF a single failure mode probability of occurrence is less than 0.2 THEN the probability of 

the risk occurrence on the power transformer is reasonably probable. 

Falsity1 IF a single failure mode probability of occurrence is greater than 0.2 THEN the probability 

of the risk occurrence on the power transformer is sometimes frequent.  

Falsity2 IF a single failure mode probability of occurrence is greater than 0.3 THEN the probability 

of the risk occurrence on the power transformer is permanently frequent. 

 

Table (3): Neutrosophic Rules for Detection Inputs of the Power Transformer 

Truth1 IF the problem has been well identified THEN the problem will be completely fixed before 

the electricity services reach to the customer. 

Truth2 IF the problem has been fairly identified THEN the problem will be fixed before the 

electricity services reach to the customer. 

Indeterminate1 IF the problem has been well detected AND rough identification THEN the problem will 

be nearly fixed before the electricity services reach to the customer. 

Indeterminate2 IF the problem has been fairly detected THEN the problem will cause a delay in reaching 

the electricity services to the customer. 

Falsity1 IF the problem has been roughly detected THEN the problem will cause a temporary 

pause in the system. 

Falsity2 IF the system needs to complementary test THEN the problem will cause a pause in the 

system. 

 

Regarded table (3), it is worth mentioning that the term ‘’identification’’ indicates that the source or the 

location of the defect or the fault has been determined by the test. while the term “Detection” indicates that 

the defect or the fault exists. 

Again, if we intend to combine several antecedents using the traditional operators that used to be in 

traditional or in fuzzy inference systems which are (AND, OR, NOT), but in neutrosophic theory, we need 

to establish new operators called (ANOR, NOT ANOR), the operator (ANOR) is neither “AND” nor “OR”, 

but it is the value between them, the following neutrosophic operators are considered in banding the 

neutrosophic statements: 
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- AND operator: it means to select the minimum weight of all combined antecedents. 

- OR operator: it means to select the maximum weight of all combined antecedents. 

- Not operator: it is the resulting value of subtracting 2 minus the (truth membership function plus 

indeterminacy membership function) to give the complementary function. 

- ANOR operator: it is resulting from the equation 
𝐴𝑁𝐷 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑟𝑒𝑠𝑢𝑙𝑡+𝑂𝑅 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑟𝑒𝑠𝑢𝑙𝑡

2
 that is mean (the 

minimum weight of all combined antecedents plus the maximum weight of all combined 

antecedents divided by two). 

- Not ANOR: it is the value resulting from the formula  

1 −
𝐴𝑁𝐷 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑟𝑒𝑠𝑢𝑙𝑡+𝑂𝑅 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑟𝑒𝑠𝑢𝑙𝑡

2
, which is exactly the complement of the operator ANOR. 

The above neutrosophic operators have been created by the Ph.D. student (Ahemd K. Essa) and first 

appeared in this dissertation similar to the proposed neutrosophic inference system that was presented 

newly in this work (i.e. field of research that did not fathomless yet). 

In the fuzzy inference systems, the most popular shapes of membership functions are the triangular, 

trapezoidal, and bell curves, but the shape is generally less important than the number of curves and their 

placement, from three to seven curves are generally appropriate to cover the required range of an input 

value in fuzzy inference system. The neutrosophic inference system will differ in taking the curves, we will 

depend on the truth membership function for those antecedents (i.e. inputs) and consequents (i.e. outputs) 

that belong to the truth spectrum, indeterminate membership functions are dedicated to those antecedents 

and consequents that represent the spectrum of indeterminacy, similarly, the falsity membership functions 

have been specified for those antecedents and consequences that represent the spectrum of falsity. So, the 

shape of the membership functions in the neutrosophic inference systems are as important as number of 

curves and their placements. 

 

4. Suggestions to Modify MIL-STD-1629A 

The generality and speedily used standard is MIL-STD-1629A. with more than four decades of years’ 

usage and improvements, it has been utilized in various industries for failure mode, effects, and criticality 

analysis (FMECA). The objective of a FMCA is to identify all modes of failure within a system design, its 

first purpose is the early identification of all catastrophic and critical failure possibilities so they can be 

eliminated or minimized through design correction at the earliest possible time [16]. 
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4.1 Pioneering Neutrosophic Thoughts in Modifying MIL-STD-1629A 

To replace the severity classification categories that were stated in section 4.4.3, page 9 of MIL-STD-

1629A, issued on 24 NOVEMBER 1980 into new categories in the perspective of neutrosophic theory, 

we can customize the following components with their appropriate membership function: 

 

Neutroso

phic Bias 

IF + Antecedent 

Statement 

AND + 

Antecedent 

Statement 

THEN + Consequence 

Statement 

The membership function 

concerning to the 

neutrosophic bias 

Truth IF the primary 

function can be done 

And un-urgent 

repair is 

required 

Then the risk severity on the 

power transformer is minor-

minor 

All statements in this row are 

adhering to the truth 

membership function 

represented by (6) 

indetermi

nacy 

IF the primary 

function can be done 

And urgent 

repair is 

required 

Then the risk severity on the 

power transformer is rather-

minor 

The last two statements in this 

row are adhering to the 

Indeterminacy membership 

function represented by (7) 

falsity IF the primary 

function can be done 

And very-urgent 

repair is 

required 

Then the risk severity on the 

power transformer is minor 

The last two statements in this 

row are adhering to the falsity 

membership function 

represented by (8) 

Truth IF there is a few 

reduction in the 

ability to implement 

the primary function 

………………….

. 

Then the risk severity on the 

power transformer is mini-

marginal 

All statements in this row are 

adhering to the truth 

membership function 

represented by (6) 

Indeterm

inacy 

IF there is a normal 

reduction in the 

ability to implement 

the primary function 

………………… Then the risk severity on the 

power transformer is a rather-

marginal 

All statements in this row are 

adhering to the Indeterminacy 

membership function 

represented by (7) 
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Table (4): Severity Rules distributed to its neutrosophic bias 

Suppose the following variables represent the corresponding statements: 

 

Table 5: Encoding the truth, indeterminacy, and falsity statements to its corresponding variable  #𝑖. 

Neutrosophic 

Variables #𝑖 
Corresponding Statements 

Neutrosophic 

bias 

#1 the primary function can be done Truth bias 

#2 un-urgent repair is required Truth bias 

#3 the risk severity on the power transformer is minor-minor Truth bias 

#4 urgent repair is required Indet. bias 

#5 the risk severity on the power transformer is rather-minor Indet. bias 

#6 very-urgent repair is required Falsity bias 

#7 The risk severity on the power transformer is minor Falsity bias 

#8 There is a few reduction in the ability to implement the primary 

function 

Truth bias 

#9 The risk severity on the power transformer is a mini-marginal Truth bias 

#10 There is a normal reduction in the ability to implement the primary 

function 

Indet. bias 

#11 The risk severity on the power transformer is a rather-marginal Indet. bias 

#12 There is an extremely reduction in the ability to implement the 

primary function 

Falsity bias 

#13 The risk severity on the power transformer is a marginal Falsity bias 

  

Falsity IF there is an 

extremely reduction 

in the ability to 

implement the 

primary function 

………………… Then the risk severity on the 

power transformer is a 

marginal 

All statements in this row are 

adhering to the falsity 

membership function 

represented by (8) 
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For all #𝑖 , 𝑖 = 1,2,3,8,9 the following truth membership function is recommended 

𝜉𝐴(#𝑖) = {

0                                                         #𝑖 ≤ 0.4

(
#𝑖−0.4

2
)2                                     0.4 < #𝑖 ≤ 2

1                                                              #𝑖 > 2 

                           (6) 

For all #𝑖 , 𝑖 = 4,5,10,11 the following indeterminacy membership function should be taken 

 

𝜛𝐴(#𝑖 , 0.4, 2) =

{
 

 (
#𝑖−0.4

1.6
)2                                             0.4 ≤ #𝑖 < 1.6

1

2
− (

#𝑖−1.6

2
)
2

                                         1.6 ≤ #𝑖 < 2

0                                                            2 ≤ #𝑖 < 0.4 

               (7) 

Finally, those #𝑖 , 𝑖 = 6,7,12,13 have to be shapes according to the following falsity membership function: 

Υ𝐴(#𝑖) = {

1                                                    #𝑖 ≤ 0.4

1 − (
#𝑖−0.4

2
)2                      0.4 < #𝑖 ≤ 2

0                                                      #𝑖 > 2 

                                  (8) 

It should be noticed that the expert has free choice in adopting the truth membership function, but, once 

he/ she decides to adopt a specific one, the remaining indeterminacy and falsity functions must follow the 

behaviour of his choice as it refers to in the equation (2). 

5. Build Neutrosophic Inference System Using Custom Functions 

Due to the fuzzyLogicDesigner app and the MATLAB® command lines are not supplied with the 

ability to specify the neutrosophic statements to their appropriate truth, indeterminacy, and falsity 

membership functions, as well as, fuzzyLogicDesigner lacks to contain other operators except the 

traditional inference functions (AND, OR), which are inadequate for the representation of neutrosophic 

argues, therefore, this section has been dedicated to program new operators (i.e. custom functions)  ANOR, 

NOT ANOR, in addition to program all neutrosophic inference system requirements. 

5.1 Programming the Truth Membership Function 

Now, the creation custom truth membership function is the aiming step, regarded as the preparation 

step to use it in the neutrosophic inference system. It is clear that the following MATLAB commands 
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are plotting the truth membership function that mathematically represents the equation (6), and it lies 

between 0 and 1. 

% plot the diagram of truth membership function 

clc; 

clear; 

close; 

syms x 

f1=((x-0.4)/2)^2; 

figure 

obj=fplot(f1,[0.4 2.4]) 

hold on 

fplot(0,[0 0.4]) 

fplot(1,[2.4 3.0]) 

hold off 

title('figure1:truthmf') 

xlabel('input values') 

ylabel('truth membership function') 

ylim([-0.06 1.06]) 
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Figure 5.1: the graph of truth membership function 𝜉𝐴(#𝑖), 𝑖 = 1,2,3,8,9 

5.2 Programming the Falsity Membership Function 

Again using the similarly commands goes to plot the mathematical representation of falsity 

membership function that was presented in equation (8), 

% plot the diagram of falsity membership function 

clc; 

clear; 

close; syms x 

f2=1-(((x-0.4)/2)^2); 

figure 

obj=fplot(f2,[0.4 2.4]) 

hold on 

fplot(1,[0 0.4]) 
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fplot(0,[2.4 3.0]) 

hold off 

title('figure2:falsitymf') 

xlabel('input values') 

ylabel('falsity membership function') 

ylim([-0.06 1.06]) 

 

 

Figure 5.2: the graph of falsity membership function Υ𝐴(#𝑖), 𝑖 = 6,7,12,13 

5.3 Programming the Indeterminacy Membership Function 

Again, the concept of the indeterminacy function is that function which swings between the truth and 

the falsity membership functions for the same neutrosophic object (variable, element, number… etc.), that 

is, the intersection of them represents the indeterminacy function. The following MATLAB syntax 

demonstrates the region 

% plot the curve of the indeterminacy memebership function which is the 

% intersection of both truth membership function and falsity membership % function 
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clc; 

clear; 

close; 

syms x 

f1=((x-0.4)/2)^2; 

f2=0.5-(((x-0.4)/2)^2); 

figure 

obj=fplot(f2,[1.4 1.82]) 

hold on 

obj=fplot(f1,[0.4 1.4]) 

fplot(0,[0 0.4]) 

fplot(0,[1.80091 3]) 

hold off 

title('figure3:indeterminacymf') 

xlabel('input values') 

ylabel('indeterminacy membership function') 

ylim([-0.06 1.06]) 
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Figure 5.3: the graph of indeterminacy membership function 𝜛𝐴(#𝑖 , 0.4, 2), 𝑖 = 4,5,10,11 

 

5.4 Create Custom Inference Functions 

Since the MATLAB Toolbox of fuzzy inference systems (FIS) is void of features that support the 

operators ANOR, and NOT ANOR. Furthermore, the MATLAB Toolbox completely unsupported with 

Neutrosophic Inference System (NIS) which built-in AND, OR, implication, aggregation, and 

deneutrosophication, this forced us to the strategy of partial use of a FIS with some modification through 

custom-specific operators and adapted functions of (FIS) to be appropriate for neutrosophic Inference 

System (NIS), this will be done by the following clauses: 

Note that: when the custom inference system has been created, we should save it in our current 

working folder or on the MATLAB path, this will enable us to design a NIS that uses the custom inference 

function at the command line or in AddaptedFuzzyLogicDesigner app. 
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In Neutrosophic Logic Toolbox™ software that should be built in Matlab we have: 

• AND inference function performs an element by element matrix operation, similar to the 

command min, see the following example: 

clc; 

clear; 

close; 

x=[0.5 1;3 0.7]; 

y=[0.32 5;0.79 2]; 

ANDOperator=min(x,y) 

ANDOperator = 

   0.3200    1.0000 

   0.7900    0.7000 

• OR inference function performs an element by element matrix operator, similar to the 

command max, the following example illustrates the operator: 

clc; 

clear; 

close; 

x=[0.5 1;3 0.7]; 

y=[0.32 5;0.79 2]; 

OROperator=max(x,y) 

OROperator = 

  0.5000    5.0000 

  3.0000    2.0000 

• ANOR inference function performs an element by element matrix operator, similar to the 

command (max+min)/2, the following example illustrates the operator: 

clc; 
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clear; 

close; 

x=[0.5 1;3 0.7;2.1 0.56]; 

y=[0.32 5;0.79 2;8.1 1.03]; 

ANOROperator=(max(x,y)+min(x,y))/2 

ANOROperator = 

 0.4100    3.0000 

 1.8950    1.3500 

 5.1000    0.7950 

• NOT ANOR inference function performs an element by element matrix operator, similar to the 

command 1-(max+min)/2, the upcoming example is demonstrating the requirement: 

x=[0.5 1;3 0.7;2.1 0.56]; 

y=[0.32 5;0.79 2;8.1 1.03]; 

ANOROperator=1-((max(x,y)+min(x,y))/2) 

ANOROperator = 

  0.5900   -2.0000 

 -0.8950   -0.3500 

 -4.1000    0.2050 

 

6. Neutrosophic FMEA Flow Chart 

 The scaling of the three factors (i.e. Severity, Detection, and Occurrence) which were 

manifested in Tables (1,2 & 3), leads us to produce the flowchart of NFMEA which is presented in Figure 

2 containing the algorithm of neutrosophic failure mode effect analysis to conduct the neutrosophic risk 

priority ranking. 

We should state that the general defect analysis of the power transformers in this manuscript concerning 

its severity classification and its occurrence classification are scaling by using adapted MIL-STD-1629 

standard, this adaptation is to meet our requirements that came from the neutrosophic theory were 
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tabulated in tables (1&2). furthermore, our adaptation technique of the CIGRE working group on power 

transformer [11] is used to scale the detection factor for diagnostic tests tabulated in Table (3). 

Without loss of generality, our algorithm for the neutrosophic inference system dependent on 

Mamdani type-1- method with customizing (truth, indeterminacy, and falsity) membership functions for 

inputs and outputs, and the neutrosophic risk priority number NRPN will be partitioned into three 

categories, NRPN truth-biased, NRPN indeterminacy-biased, finally NRPN falsity-biased. For each faulty 

cause, the controls that are currently in place in order to reduce or eliminate the risk linked with potential 

defective reason should be noted. 
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Figure 2: Algorithm of NFMEA creation 

 

7. Components of the Power Transformer Dependent in this Work 

In this work, we will depend on the same components of the oil-immersed power transformers 

that have been adopted by [2], which are: 

1- The active part is composed of the Core and its function is to concentrate the magnetic flux. 

Windings have the function of carrying current. 
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2- The insulation system consists of two parts, a liquid part called transformer oil, and a solid 

part which is cellulose. 

3- Accessories are firstly composed of bushings that insulate a high-voltage conductor passing 

through a metal enclosure. The second component is the tap changer which is the most 

complex component of the transformer and its function is to regular the voltage level by adding 

or subtracting turns from the transformer windings. The third component is the cooling System 

consists of cooling fans which is designed to remove the heat caused by copper and iron losses. 

The fourth component is the tank is primarily the container for the oil and physical protection 

for the active part. The fifth component is the mechanical structure which includes clamping, 

coil blocking, and lead support, their function is to support the active part of the transformer 

firmly in its place and withstand against mechanical stresses. The sixth and final part is 

winding connections which are between windings, tap leads, and bushings, their function is 

to provide the required electrical connection between these elements. 

4- Protection is the primary objective of transformer protection which is used to detect internal 

faults in the transformer with a high degree of sensitivity and cause subsequent de-

energization and, at the same time be immune to faults external to the transformer. 

 

8. Power Transformer Neutrosophic Failure Mode Effect Analysis (NFMEA) 

Similar to the severity rules distributed to the neutrosophic bias that has been done in table (4), we will 

create the same distributed rules for the occurrence and the severity of failure modes: 

 

Neutrosophic 

Bias 

IF + Antecedent 

Statement 

THEN + Consequence 

Statement 

The membership function 

concerning to the neutrosophic 

bias 

Truth IF a single failure 

mode probability of 

occurrence is less than 

0.001 

THEN the probability of the 

risk occurrence on the power 

transformer is extremely 

unlikely. 

All statements in this row are 

adhering to the truth 

membership function 

represented by (6) 
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Table (6): Occurrence Rules Distributed to its Neutrosophic Bias 

Truth  IF a single failure 

mode probability of 

occurrence is less 

than 0.01 

THEN the probability of the 

risk occurrence on the power 

transformer is unlikely. 

All statements in this row are 

adhering to the truth 

membership function 

represented by (6) 

Indeterminacy IF a single failure 

mode probability of 

occurrence is less than 

0.1 

THEN the probability of the 

risk occurrence on the power 

transformer is occasional. 

All statements in this row are 

adhering to the Indeterminacy 

membership function 

represented by (7) 

Indeterminacy IF a single failure 

mode probability of 

occurrence is less than 

0. 

THEN the probability of the 

risk occurrence on the power 

transformer is reasonably 

probable. 

All statements in this row are 

adhering to the Indeterminacy 

membership function 

represented by (7) 

Falsity IF a single failure 

mode probability of 

occurrence is greater 

than 0.2  

THEN the probability of the 

risk occurrence on the power 

transformer is sometimes 

frequent. 

All statements in this row are 

adhering to the falsity 

membership function 

represented by (8) 

Falsity IF a single failure 

mode probability of 

occurrence is greater 

than 0.3  

THEN the probability of the 

risk occurrence on the power 

transformer is permanently 

frequent. 

The last two statements in this 

row are adhering to the falsity 

membership function 

represented by (8) 

 

Neutroso

phic Bias 

IF + Antecedent 

Statement 

THEN + Consequence 

Statement 

The membership function 

concerning to the 

neutrosophic bias 

Truth IF the problem has 

been well identified  

THEN the problem will be 

completely fixed before the 

electricity services reach to the 

customer. 

All statements in this row are 

adhering to the truth 

membership function 

represented by (6) 
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Table (7): Detection Rules Distributed to its Neutrosophic Bias 

 

The following table (8) illustrates sixty-three of (IF-AND-THEN-ANOR) rules for seven components of the 

power transformer: 

1- Solid Insulation: which has the function of insulation of windings, where its failure mode is 

physical and chemistry. 

2- Oil Insulation: which has the function of isolating and cooling the active part of the transformer, 

where its failure mode is physical and chemistry. 

3- Windings: which has the function of conducting current, where its failure mode is mechanical. 

Truth  IF the problem has 

been fairly identified  

THEN the problem will be 

fixed before the electricity 

services reach to the customer. 

All statements in this row are 

adhering to the truth 

membership function 

represented by (6) 

Indeterm

inacy 

IF the problem has 

been well detected 

AND rough 

identification  

THEN the problem will be 

nearly fixed before the 

electricity services reach to the 

customer. 

All statements in this row are 

adhering to the Indeterminacy 

membership function 

represented by (7) 

Indeterm

inacy 

IF the problem has 

been fairly detected  

THEN the problem will cause 

a delay in reaching the 

electricity services to the 

customer. 

All statements in this row are 

adhering to the Indeterminacy 

membership function 

represented by (7) 

Falsity IF the problem has 

been roughly 

detected  

THEN the problem will cause 

a temporary pause in the 

system. 

All statements in this row are 

adhering to the falsity 

membership function 

represented by (8) 

Falsity IF the system needs to 

complementary test  

THEN the problem will cause 

a pause in the system. 

All statements in this row are 

adhering to the falsity 

membership function 

represented by (8) 
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4- Tank: This has the function of enclosing oil and protecting the active part of the transformer, where 

its failure mode is chemical and physical. 

5- Bushings: has the function of connecting windings with the net, and isolating between tank and 

windings. Also, its failure mode is physical and chemical. 

6- Core: has the function of containing the magnetic field, and its failure mode is thermal. 

7- Diverter switch: has the function of maintaining a coherent current, and its failure mode is 

electrical. 

able (8): IF-THEN Rules for Some Power Transformer Components 

Components  Number of rules and 

Neutrosophic Bias 

IF (Antecedent) or/and/anor (Antecedent) THEN 

(Consequence) or/and/anor (Consequence) 

 

 

 

 

 

 

 

 

 

 

 

Oil Insulation 

R1 Truth IF the probability of particle contamination occurrence 

is less than 0.001 OR less than 0.01 THEN the reduction 

of the electrical strength AND the reduction of the 

breakdown voltage AND the increase in dielectric loss 

of oil is extremely unlikely OR unlikely. 

ANOR 

IF the probability of particle contamination occurrence 

is less than 0.001 or less than 0.01 THEN the 

overheating AND short circuit in the transformer is 

extremely unlikely OR unlikely. 

ANOR 

IF there is a pump bearing monitor AND there is a 

correct oil sampling procedure THEN the breakdown 

voltage will be completely fixed before the electricity 

services reach the customer. 

R2 Indeterminacy IF the probability of particle contamination occurrence 

is less than 0.1 OR less than 0.2 THEN the reduction of 

the electrical strength AND the reduction of the 
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breakdown voltage AND the increase in dielectric loss 

of oil is occasional OR reasonably probable 

 ANOR 

IF the probability of particle contamination occurrence 

is less than 0.1 or less than 0.2 THEN the overheating 

AND short circuit in the transformer is occasional OR 

reasonably probable 

ANOR 

IF there is well detection for the pump bearing monitor 

AND there is  rough identification for the correct oil 

sampling  THEN there will be nearly correction of the 

breakdown voltage  before the electricity services reach 

the customer 

R3 Falsity IF the probability of particle contamination occurrence 

is greater than 0.2 OR greater than 0.3 THEN the 

reduction of the electrical strength AND the reduction 

of the breakdown voltage AND the increase in 

dielectric loss of oil is sometimes frequent OR 

permanently frequent. 

ANOR 

IF the probability of particle contamination occurrence 

is greater than 0.2 or greater than 0.3 THEN the 

overheating AND short circuit in the transformer is 

sometimes frequent OR permanently frequent. 

ANOR 

IF there is not a pump bearing monitor AND there is 

not a correct oil sampling procedure THEN the 

breakdown voltage will  never fixed before the 

electricity services reach the customer. 
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Solid 

Insulation 

R4 Truth IF the probability of the excessive moisture occurrence 

is less than 0.001 OR less than 0.01 THEN the reduction 

of the dielectric AND the reduction of the mechanical 

strength of paper is extremely unlikely OR unlikely 

 ANOR 

IF the probability of the excessive moisture occurrence 

is less than 0.001 OR less than 0.01 THEN the 

Mechanical damage AND fault in insulation is 

extremely unlikely OR unlikely 

ANOR 

IF we prevent  free transportation of the oil AND there 

is the prevention of direct entry of moisture from the 

air by the proper sealing THEN the oil moisture will be 

completely avoidable 

R5 Indeterminacy IF the probability of the excessive moisture occurrence 

is less than 0.1 OR less than 0.2 THEN the reduction of 

the dielectric AND the reduction of the mechanical 

strength of paper is occasional OR reasonable 

probable. 

 ANOR 

IF the probability of the excessive moisture occurrence 

is less than 0.1 OR less than 0.2 THEN the Mechanical 

damage AND fault in insulation is occasional OR 

reasonable probable. 

ANOR 

IF we often prevent the free transportation of the oil 

AND there is often prevention of direct entry of 

moisture from the air by the proper sealing THEN the 

oil moisture will be nearly avoidable. 
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R6 Falsity IF the probability of the excessive moisture occurrence 

is greater than 0.2 OR greater than 0.3 THEN the 

reduction of the dielectric AND the reduction of the 

mechanical strength of paper is sometimes frequent 

OR permanently frequent. 

 ANOR 

IF the probability of the excessive moisture occurrence 

is greater than 0.2 OR greater than 0.3 THEN the 

Mechanical damage AND fault in insulation is 

sometimes frequent OR permanently frequent. 

ANOR 

IF we do not prevent  free transportation of the oil 

AND there is not prevention of direct entry of moisture 

from the air by the proper sealing THEN the oil 

moisture will not be avoidable 

 

Windings 

R7 Truth IF the probability of the loose clamping occurrence is 

less than 0.001 OR less than 0.01 THEN the winding 

deformation is extremely unlikely OR unlikely. 

 ANOR 

IF the probability of the loose clamping occurrence is 

less than 0.001 OR less than 0.01 THEN the high 

through current faults AND high inrush current AND 

protective relay tripping are extremely unlikely OR 

unlikely 

ANOR 

IF we use higher density insulation AND use of higher 

clamping pressures during manufacturing AND we 

use spring dashpot assemblies on the coil clamping 

structure THEN the loose clamping will be completely 

avoidable 
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R8 Indeterminacy IF the probability of the loose clamping occurrence is 

less than 0.1 OR less than 0.2 THEN the winding 

deformation is occasional OR reasonable probable. 

 ANOR 

IF the probability of the loose clamping occurrence is 

less than 0.1 OR less than 0.2 THEN the high through 

current faults AND high inrush current AND 

protective relay tripping are occasional OR reasonable 

probable. 

ANOR 

IF we often use higher density insulation AND often 

use of higher clamping pressures during 

manufacturing AND we often use spring dashpot 

assemblies on the coil clamping structure THEN the 

loose clamping will be nearly avoidable 

R9 Falsity IF the probability of the loose clamping occurrence is 

greater than 0.2 OR greater than 0.3 THEN the winding 

deformation is sometimes frequent OR permanently 

frequent.  

ANOR 

IF the probability of the loose clamping occurrence is 

greater than 0.2 OR greater than 0.3 THEN the high 

through current faults AND high inrush currents AND 

protective relay tripping is sometimes frequent OR 

permanently frequent. 

ANOR 

IF we could not use higher density insulation AND 

could not use of higher clamping pressures during 

manufacturing AND we could not use spring dashpot 
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assemblies on the coil clamping structure THEN the 

loose clamping will not be avoidable. 

 

 

 

 

 

 

 

 

 

 

Tank 

 

 

 

R10 Truth 

IF the probability of the insufficient maintenance 

occurrence is less than 0.001 OR less than 0.01 THEN 

the corrosion is extremely unlikely OR unlikely. 

 ANOR 

IF the probability of the insufficient maintenance 

occurrence is less than 0.001 OR less than 0.01 THEN 

the leakage is extremely unlikely OR unlikely. 

ANOR 

IF we use monitoring of the inhibitor content according 

to IEC 60666 AND there is external examination for oil 

leaks THEN any corrosion will be completely 

avoidable. 

 

 

 

R11 Indeterminacy 

IF the probability of the insufficient maintenance 

occurrence is less than 0.1 OR less than 0.2 THEN the 

corrosion is occasional OR reasonably probable. 

 ANOR 

IF the probability of the insufficient maintenance 

occurrence is less than 0.1 OR less than 0.2 THEN the 

leakage is occasional OR reasonably probable. 

ANOR 

IF we often use the monitoring of the inhibitor content 

according to IEC 60666 AND often there is an external 

examination for oil leaks THEN any corrosion will be 

nearly avoidable. 

 

 

R12 Falsity 

IF the probability of the insufficient maintenance 

occurrence is greater than 0.2 OR greater than 0.3 

THEN the corrosion is sometimes frequent OR 

permanently frequent. 
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 ANOR 

IF the probability of the insufficient maintenance 

occurrence is greater than 0.2 OR greater than 0.3 

THEN the leakage is sometimes frequent OR 

permanently frequent. 

ANOR 

IF we do not use monitoring of the inhibitor content 

according to IEC 60666 AND there is not external 

examination for oil leaks THEN any corrosion will not 

be avoidable. 

 

 

 

 

 

 

 

 

 

 

 

Bushings 

 

 

 

R13 Truth 

IF the lack of maintenance is less than 0.001 OR less 

than 0.01 THEN the external contamination corrosion 

AND the discharge current on the external surface of 

the insulation is extremely unlikely OR unlikely. 

 ANOR 

IF the lack of maintenance is less than 0.001 OR less 

than 0.01 THEN the short circuit AND the personal 

danger is extremely unlikely OR unlikely. 

ANOR 

IF there is  periodic maintenance THEN the power 

factor will adhere the standard (IEC 137)/ tan delta. 

 

 

 

R14 Indeterminacy 

IF the lack of maintenance is less than 0.1 OR less than 

0.2 THEN the external contamination corrosion AND 

the discharge current on the external surface of the 

insulation is occasional OR reasonable probable. 

 ANOR 

IF the probability of the lack of maintenance is less 

than 0.1 OR less than 0.2 THEN the short circuit AND 

the personal danger is occasional OR reasonable 

probable. 
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ANOR 

IF there is often periodic maintenance THEN the 

power factor will often adhere the standard (IEC 137)/ 

tan delta. 

 

 

 

R15 Falsity 

IF the lack of maintenance is greater than 0.2 OR 

greater than 0.3 THEN the external contamination 

corrosion AND the discharge current on the external 

surface of the insulation is sometimes frequent OR 

permanently frequent. 

 ANOR 

IF the lack of maintenance is greater than 0.2 OR 

greater than 0.3 THEN the short circuit AND the 

personal danger is sometimes frequent OR 

permanently frequent. 

ANOR 

IF there is not periodic maintenance THEN the power 

factor will not adhere the standard (IEC 137)/ tan delta. 

 

 

 

 

 

 

 

Core 

 

 

 

R16 Truth 

IF the probability of the inexistence of the frame to 

earth circulating currents is less than 0.001 OR less 

than 0.01 THEN the increased core temperature is 

extremely unlikely OR unlikely. 

 ANOR 

IF the probability of the inexistence of the frame to 

earth circulating currents is less than 0.001 OR less 

than 0.01 THEN the loss of efficiency is extremely 

unlikely OR unlikely. 

ANOR 

IF there exist the frame to earth circulating currents 

THEN there is not increased core temperature. 
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R17 Indeterminacy 

IF the probability of the inexistence of the frame to 

earth circulating currents is less than 0.1 OR less than 

0.2 THEN the increased core temperature is occasional 

OR reasonably probable. 

 ANOR 

IF the probability of the inexistence of the frame to 

earth circulating currents is less than 0.1 OR less than 

0.2 THEN the loss of efficiency is occasional OR 

reasonably probable. 

ANOR 

IF the often inexistence of the frame to earth circulating 

currents THEN the increased core temperature is often 

detected and often identification by Furfuraldehyde 

Analysis (FFA). 

 

 

 

R18 Falsity 

IF the probability of the inexistence of the frame to 

earth circulating currents is greater than 0.2 OR greater 

than 0.3 THEN the increased core temperature is 

sometimes frequent OR permanently frequent. 

 ANOR 

IF the probability of the inexistence of the frame to 

earth circulating currents is greater than 0.2 OR greater 

than 0.3 THEN the loss of efficiency is sometimes 

frequent OR permanently frequent. 

ANOR 

IF the inexistence of the frame to earth circulating 

currents THEN the increased core temperature is 

detected and identification by Furfuraldehyde 

Analysis (FFA). 

 

 

 

R19 Truth 

IF the probability of the worry contact occurrence is 

less than 0.001 OR less than 0.01 THEN the existence of 
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Diverter 

Switch 

a high carbon build-up is extremely unlikely OR 

unlikely. 

ANOR 

IF the probability of the worry contact occurrence is 

less than 0.001 OR less than 0.01 THEN the existence of 

possible flash over is extremely unlikely OR unlikely. 

ANOR 

IF there is not worry contact THEN we do not need to 

the contact replacement after the specified performance 

number according to the manufacturer suggestions. 

 

R20 Indeterminacy 

IF the probability of the worry contact occurrence is 

less than 0.1 OR less than 0.2 THEN the existence of a 

high carbon build-up is occasional OR reasonable 

probable. 

ANOR 

IF the probability of the worry contact occurrence is 

less than 0.1 OR less than 0.2 THEN the existence of 

possible flash over is occasional OR reasonable 

probable. 

ANOR 

IF there is often a worry contact THEN we will often 

contact replacement after the specified performance 

number according to the manufacturer's suggestions. 

 

 

 

R21 Falsity 

IF the probability of the worry contact occurrence is 

greater than 0.2 OR greater than 0.3 THEN the 

existence of a high carbon build-up is sometimes 

frequent OR permanently frequent. 

ANOR 

IF the probability of the worry contact occurrence is 

greater than 0.2 OR less than 0.3 THEN the existence of 
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possible flash over is sometimes frequent OR 

permanently frequent. 

ANOR 

IF there is worry contact THEN the contact 

replacement after the specified performance number 

according to the manufacturer suggestions. 

 

9. Implement NFMEA using NeutrosophicLogicDesigner 

As previously discussed, the MATLAB Toolbox suffers from uncontained for a neutrosophic logic 

based-inference system, therefore, the researcher was forced to use the fuzzyLogicDesigner after adapting 

it by using specific membership functions, specific operators...etc. However, the implementation will be on 

the type-1 Mamdani inference system. 

To abbreviate the simulation, we tried to apply the Type-1 Mamdani inference method on just three 

rules of the above table (8), especially the following rules 

1- IF there is a pump bearing monitor AND there is a correct oil sampling procedure THEN the 

breakdown voltage will be completely fixed before the electricity services reach the customer. 

2- IF there is well detection for the pump bearing monitor AND there is rough identification for the 

correct oil sampling THEN there will be nearly correction of the breakdown voltage before the electricity 

services reach the customer. 

3- IF there is not a pump bearing monitor AND there is not a correct oil sampling procedure THEN 

the breakdown voltage will never fixed before the electricity services reach the customer. 

In the neutrosophic inference rules, we noticed that there are different composites from the traditional 

patterns, where we linked every two opposite statements in one input by two opposite membership 

functions using the command (Evenly Distributed MFs), Also we gave opposite weights of opposite rules. 

As well as we also interpreted the statements of indeterminate bias by those membership functions that are 

embedded between two opposite membership functions (i.e. truth and false)  
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Figure 9.1: Some of the Defined Rules to Combine Neutrosophic (Severity, Occurrence and Detection) in MATLAB R2023a 
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Figure 9.2: Implementation the Neutrosophic Inference Rules R1, R2, R3 
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Figure 9.3: Surface of the Neutrosophic Inference System (NIS)  

10. Neutrosophic Risk Priority Numbers 

Analogs to the concept of the traditional FMEA, and fuzzy FMEA, the neutrosophic failure mode effect 

analysis assigns numerical values to every risk associated with causing failure, using severity, 



Neutrosophic Sets and Systems, Vol. 58, 2023    64 

 
Ahmed K. Essa, Montifort Blessings Andrew Mitungwi, Tuweh Prince Gadama, A. A. Salama, “Neutrosophic Inference System 

(NIS) in Power Electrical Transformers, Adapted the MIL-STD-1629A" 

 

occurrence, and detection by calculating the neutrosophic risk priority number (NRPN) for each failure 

cause. 

We should notice that, in the NFMEA, the definition of failure modes, failure causes and failure effects 

depend on the level of analysis and system failure criteria. As the analysis progress, the failure effects 

identified at the lower level may become failure modes at the higher level. The failure modes at the 

lower level may become the failure causes at the higher level, and so on [2]. 

10.1. Analysis results of the inferencing R1, R2, R3  

 The sake of this study is to put the principles of the neutrosophic inference system for the power 

transformers, and after putting all (IF-HEN) rules concerning the (severity, occurrence, not detection) of 

each failure mode belonging to seven components (Solid Insulation, Oil Insulation, Windings, Tank, 

Bushings, Core, and Diverter Switch), and since the MATLAB toolbox does not support the NIS which lead 

us to use the fuzzyLogicDesigner to build adaptive NeutrosophicLogicDesigner. Therefore, we tried to 

restrict the analysis to only three rules out of sixty-three rules stated in table (8). Also, the generalization 

concepts of the neutrosophic theory and its superiority to fuzzy logic, as well as, its superiority to classical 

logic, led to the creation of the operator (ANOR) which was never ever previously created neither in 

classical inference systems nor fuzzy inference systems. Again, the existence of the operator (ANOR) is 

regarded as a challenge preventing us from using all 63 rules stated in Table (8) for the same reason of 

unsupported fuzzyLogicDesigner to this kind of operator. 

Now, if we track the trace of the thirteen rules resulting from R1, R2, and R3 (see figures 9.1 & 9.2) with 

different impacts in their weights for each rule depending upon the (severity, occurrence, not detection) if 

their bias to the truth state or to the indeterminate state or to the falsity state. 

The ranking of each failure mode caused by its severity, occurrence, and not detection will be ranked in 

decreasingly order (the largest number of 𝑁𝑅𝑃𝑁 = 6 is the more truth situation having lowest risk impact 

that has lowest priority, while the smallest number of 𝑁𝑅𝑃𝑁 = 1 is the more falsity or more indeterminate 

situation having highest risk impact that has largest priority) of the neutrosophic risk priority number 

(NRPN) as demonstrated in the following table  
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Table (8): Neutrosophic Failure Mode Analysis in Power Transformers 

No. of 

Rules 

 

Control (s) Factor 

 

Neutrosophic bias 

 

Weight 

Ranking 

of NRPN 

1 Pump bearing factor+ breakdown voltage+ 

correct oil sampling 

Truth+Truth+Truth 0.9 6 

2 Pump bearing factor+ breakdown voltage+ 

correct oil sampling 

Truth+ Falsity+Truth 0.8 5 

3 Pump bearing factor+ breakdown voltage+ 

correct oil sampling 

Truth+Truth+Falsity 0.7 4 

4 Pump bearing factor+ breakdown voltage+ 

correct oil sampling 

Truth+Indet.+Truth 0.6 4 

5 Pump bearing factor+ breakdown voltage+ 

correct oil sampling 

Truth+Indet.+Falsity 0.4 3 

6 Pump bearing factor+ breakdown voltage+ 

correct oil sampling 

Truth+Indet.+Indet. 0.3 3 

7 Pump bearing factor+ breakdown voltage+ 

correct oil sampling 

Truth+Truth+Indet 0.2 2 

8 Pump bearing factor+ breakdown voltage+ 

correct oil sampling 

Falsity+Falsity+Falsity 0.1 1 

9 Pump bearing factor+ breakdown voltage+ 

correct oil sampling 

Indet.+indet+indet 0.5 3 

10 Pump bearing factor+ breakdown voltage+ 

correct oil sampling 

Indet.+Indet.+Falsity 0.213 2 

11 Pump bearing factor+ breakdown voltage+ 

correct oil sampling 

Indet.+Indet.+Truth 0.785 4 

12 Pump bearing factor+ breakdown voltage+ 

correct oil sampling 

Indet.+falsity+Truth 0.46 3 

13 Pump bearing factor+ breakdown voltage+ 

correct oil sampling 

Falsity+Indet.+Falsity 0.1 1 
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11. Conclusion 

In view of neutrosophic theory, many new concepts and procedures have been introduced in this 

manuscript, a modifying MIL-STD-1629A by re-presenting new categories of severity factors of failure 

mode that were stated and used since 1980. Also, the authors re-framed all failure modes (severity, 

occurrence, and not detection) of the electrical power transformer according to their neutrosophic bias. we 

create a mathematical tool for implementing the concept of neutrosophic inference systems, a consistent 

new algorithm of neutrosophic failure mode analysis has been presented, set up the neutrosophic risk 

priority numbers, and implement the new algorithm for inferencing and assessing the reliability and the 

stability of the system by using thirteen (IF-Then) rules derived from R1, R2, and R3. 
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Abstract: 

The linear programming method is one of the important methods of operations research that 

has been used to address many practical issues and provided optimal solutions for many 

institutions and companies, which helped decision makers make ideal decisions through 

which companies and institutions achieved maximum profit, but these solutions remain 

ideal and appropriate in If the conditions surrounding the work environment are stable, 

because any change in the data provided will affect the optimal solution and to avoid losses 

and achieve maximum profit, we have, in previous research, reformulated the linear models 

using the concepts of neutrosophic science, the science that takes into account the 

instability of conditions and fluctuations in the work environment and leaves nothing to 

chance. While taking data, neutrosophic values carry some indeterminacy, giving a margin 

of freedom to decision makers. In another research, we reformulated one of the most 

important methods used to solve linear models, which is the simplex method, using the 

concepts of this science, and as a continuation of what we did in the previous two 

researches, we will reformulate in this research. The graphical method for solving linear 

models using the concepts of neutrosophics. We will also shed light on a case that is rarely 

mentioned in most operations research references, which is that when the difference 

between the number of unknowns and the number of constraints is equal to one, two, or 

three, we can also find the optimal solution graphically for some linear models. This is 

done by taking advantage of the conditions of non-negativity that linear models have, and 

we will explain this through an example in which the difference is equal to two. Also, 

through examples, we will explain the difference between using classical values and 

neutrosophic values and the extent of this’s impact on the optimal solution. 

 

Keywords: linear programming; Neutrosophic science; Neutrosophic linear models; 

Graphical method for solving linear models; Graphical method for solving neutrosophic 

linear models. 
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 A continuation of what we have done in previous research, the purpose of which was to 

reformulate some operations research methods using the concepts of neutrosophic science. 

See [1-14] The science that made a great revolution in all fields of science, which grew and 

developed very quickly, as many topics were reformulated using the concepts of this 

Science, and we find neutrosophic groups, neutrosophic differentiation, neutrosophic 

integration, and neutrosophic statistics ... [14-16], and given the importance of the graphic 

method used to find the optimal solution for linear models, which is a graph of the model 

and is one of the easiest ways to solve linear programming problems, but it is not sufficient 

to address All linear programming problems because they often contain a large number of 

variables, and the use of the graphical method is limited to the following cases: 

• The number of unknowns is n = 1 or n = 2 or n = 3. 

• In linear models whose constraints are equal constraints, if the number of unknowns and 

the number of equations meet one of the following conditions: n – m = 1 or n – m = 2  or n 

– m = 3.Here we can transform the model into a function of one variable or  two variables 

or three variables, respectively, by taking advantage of the non-negativity constraints that 

the variables of the linear model have. In this research, we will present a reformulation of 

the graphical method for solving linear models using the concepts of neutrosophic, as well 

as the graphical method for solving linear models that Its restrictions are equal restrictions, 

and the difference between the number of unknowns and the number of restrictions is equal 

to one, two, or three. 

 

Discussion: 

The graphical method is one of the important ways to find the optimal solution for the 

linear and nonlinear models, so in the research [3] we reformulated it for the neutrosophic 

nonlinear models, and in this research we will present the graphic method to find the 

optimal solution for the neutrosophic linear models that were presented in the research [1], 

we know that the model the script is written in the following abbreviated form: 

 

𝑍 = ∑ 𝑐𝑗𝑥𝑗 → (𝑀𝑎𝑥  𝑜𝑟  𝑀𝑖𝑛 )
𝑛

𝑗=1
 

Restrictions: 

 

∑ 𝑎𝑖𝑗𝑥𝑗 (
≥
≤
=

)
𝑛

𝑗=1
𝑏𝑖      ; 𝑖 = 1,2, … , 𝑚 

𝑥𝑗 ≥ 0    ; 𝑗 = 1,2, … , 𝑛 

 
If at least one of the values cj , aij , bi , is a neutrosophic value then the linear model is a 

neutrosophic linear model. 

 
First: The graphical method for solving linear models: [17-20] 
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Through the studies presented according to classical logic in many references, we know 

that to find the optimal solution for linear models in which the number of variables is one, 

two, or three graphically, we represent the area of common solutions for the constraints in 

one of the spaces 𝑅 𝑜𝑟  𝑅2 𝑜𝑟 𝑅3This depends on the number of variables in this sentence, 

for example if the number of variables is two, i.e. the solution is in space 𝑅2 (where work is 

done on models that contain one or three variables with the same steps) 

 

We find the optimal solution according to the following steps: 

 

1. We determine the half-planes defined by the inequalities of the constraints by 

drawing the straight lines resulting from converting the inequalities of the 

constraints into equals. The drawing is done by specifying two points that satisfy 

the constraint, and then we connect the two points to obtain the straight line 

corresponding to the constraint. This straight line divides the plane into two halves 

in order to determine the half-plane that satisfies the constraint. We choose A point 

at the top of the mapping from one of the two half-planes. We substitute the 

coordinates of this point into the inequality. If it is satisfied, then the region in 

which this point is located is the solution region. If it is not achieved, then the 

opposite region is the solution region. 

2. We define the common solutions region, which is the region resulting from the 

intersection of the halves of the levels defined by constraint inequalities. This 

region must be non-empty so that we can proceed with the solution. 

3. In order to represent the objective function, we note that its relationship contains 

three unknowns,  𝑍   , 𝑥1  , 𝑥2 . Therefore, we must know a value for 𝑍, which is 

unknown to us. Here we assume a value, let it be 𝑍1 = 0, draw the equation of the 

objective function 𝑍1 give another value, let it be 𝑍2, and represent the equation. 

We get a line parallel to the first line, and by continuing, we obtain a set of parallel 

lines representing the target function. 

4. We draw ray 𝐶 = [
𝑐1

𝑐2
]where 𝑐1is coefficient of 𝑥1and 𝑐2 is coefficient of 𝑥2in the 

objective function statement, and the direction of its increasing function is the 

direction of ray𝐶 = [
𝑐1

𝑐2
], and the direction of its decreasing function is the opposite 

direction. This ray, that is, the drawing is done according to the type of objective 

function (maximization or minimization). In clearer terms, we find the optimal 

solution point by pulling the line representing 𝑍1parallel to itself towards the ray 

𝐶 = [
𝑐1

𝑐2
]to find the maximum value of the objective function, (And reverse this 

direction to find the smallest value), until it passes through the last point of the 

common solutions region and this point is the optimal solution point, which is 

located on the borders of the common solutions region and any other displacement, 

no matter how small, takes it out of it. 
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The graphical method for finding the optimal solution for neutrosophic linear models: 

From the definition of neutrosophic linear models, we find that we can apply the same 

previous steps to obtain the optimal solution, which is a neutrosophic value suitable for all 

conditions. We explain the above through the following example: 

 

 

Example 1: 

A company produces two types of products 𝐴1   ,𝐴2 and uses three types of raw materials 

𝐵1   ,𝐵2 , 𝐵3 in the production process, if the available quantities of each of the raw materials 

are𝐵𝑖 ; 𝑖 = 1,2,3, and the quantity needed to produce one unit of each products 𝐴𝑗   ;   𝑗 =

1,2, and the profit accruing from one unit of each of the products 𝐴1   ,𝐴2 is shown in the 

following table: 

 

available quantities 𝑨𝟐 𝑨𝟏   products 

raw materials     
𝟑𝟔 𝟒 𝟔 𝑩𝟏   
𝟏𝟐 𝟑 𝟐 𝑩𝟐 
𝟏𝟎 𝟎 𝟓 𝑩𝟑 

 [𝟐, 𝟒] [𝟔, 𝟖] profit 
 

Table Issue data 

 

Required: 

Determine the quantities that must be produced of each products 𝐴𝑗   ;   𝑗 = 1,2 so that the 

company achieves maximum profit: 

the solution : 

Let 𝑥𝑗 be the quantity produced from product 𝑗 , where 𝑗 = 1,2, then we can formulate the 

following neutrosophic linear mathematical model: 

 

𝑍 = [6,8]𝑥1 + [2,4]𝑥2 → 𝑀𝑎𝑥 

Restrictions: 

6𝑥1 + 4𝑥2 ≤ 36     (1) 

2𝑥1 + 3𝑥2 ≤ 12    (2) 

5𝑥1 ≤ 15 

𝑥1, 𝑥2 ≥ 0 

 

The previous model is a linear neutrosophic model because there is indeterminacy in 

variables coefficients in objective function. To find the optimal solution for the 

previous model, we will use the graphical method according to the following steps: 
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The first constraint: We draw the straight line representing the first constraint: 

 

6𝑥1 + 4𝑥2 = 36    

 

 

 

We impose: 

𝑥1 = 0 ⇒ 4𝑥2 = 36 ⇒ 𝑥2 = 9 

We get the first point: 𝐴(0,9).  

We impose: 

𝑥2 = 0 ⇒ 6𝑥1 = 36 ⇒ 𝑥1 = 6 

We get the second point: 𝐵(6,0) 

If we take a point at the top of the designation from one of the two halves of the resulting 

plane after drawing the straight through the two points  𝐴(0,9) and 𝐵(6,0), let it be the 

point  𝑂(0,0)and substitute it in the inequality of the first entry, we find that the inequality 

is fulfilled, that is, the half of the plane that the point  𝑂(0,0)belongs to it, which is half the 

solution plane of the first-constraint inequality. 

We proceed in the same way for the second and third restrictions and obtain the following 

graphical representation: Figure No. (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure No. (1) Graphic representation of the 

limitations of the linear model in Example 1 
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After representing the constraints, we notice that the common solution area is bounded by 

the polygon whose vertices are the points, 𝑂(0,0) , 𝐸(3,0) , 𝑀 and 𝐶(0,4) .  

 

The point 𝑀 is the point of intersection, the second and third constraints we get their 

coordinates by solving the following two equations: 

 

2𝑥1 + 3𝑥2 = 12     

 

 

5𝑥1 = 15 

We fiend: 𝑀(3,2)  

Substituting the coordinates of the vertex points into the objective function expression, we 

get: 

𝑍𝑂 = 0 

𝑍𝐸 ∈ [12,16] 

𝑍𝑀 ∈ [22,32] 

𝑍𝐶 ∈ [8,16] 

 

That is, the greatest value of the function Z is achieved at point 𝑀(3,2) , that is, the 

company must produce three units of the first product and two units of the second product, 

then it will achieve maximum profit. 

 

𝑀𝑎𝑥 𝑍 = 𝑍𝑀 ∈ [22,32] 
 

Note: 

 The process of substituting the objective function with the coordinates of the points of the 

vertices of the common solution area is possible when the number of points is small, as we 

can easily replace them in the objective function, and the point that gives the best value for 

the objective function represents the optimal solution, but when there are a large number of 

constraints, we get a large number From the vertical points located on the perimeter of the 

common solution region. In this case, the method of finding the coordinates of all these 

points and substituting them into the objective function becomes impractical, so we resort 

to representing the objective function and determining the optimal solution point as we 

mentioned previously. 

 

Second: How to take advantage of the conditions of non-negativity to find the optimal 

solution for some neutrosophic linear models using the graphical method: 

 

 Example 2: 

Find the optimal solution for the following linear neutrosophic model: 

 

𝑍 = 𝑥1 − 𝑥2 − 3𝑥3 + 𝑥4 + [2,5]𝑥5 − 𝑥6 + 2𝑥7 − [10,15] → 𝑀𝑎𝑥 
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Restrictions: 

𝑥1 − 𝑥2 + 𝑥3 = 5           (1) 

2𝑥1 − 𝑥2 − 𝑥3 − 𝑥4 = −11            (2) 

𝑥1 + 𝑥2 − 𝑥5 = −4          (3) 

𝑥2 + 𝑥6 = 6          (4) 

 

2𝑥1 − 3𝑥2 − 𝑥6 + 2𝑥7 = 8          (5) 

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7 ≥ 0 

The solution: 

 We note that the number of constraints 𝑚 = 5 and the number of variables 𝑛 = 7, meaning 

that 𝑛 − 𝑚 = 2. Therefore, we can, relying on the non-negativity constraints, find the 

optimal solution for the previous model using the graphical method according to the 

following steps: 

 

1- We calculate five variables in terms of only two variables. 

2- Since the variables of the linear model satisfy the non-negativity constraints, then we obtain 

from the variables that we calculated five inequalities of the type greater than or equal to. 

3- Substituting the five variables into the objective function, we get an objective function with 

only two variables. 

4- We write the new model, which is a linear model with two variables, so the optimal 

solution can be found graphically. 

 

We apply the previous steps to Example 2: 

We find: 

𝑥3 = 5 − 𝑥1 + 𝑥2          (1)′ 

𝑥4 =  3𝑥1 − 2𝑥2 + 6         (2)′ 

𝑥5 = 𝑥1 + 𝑥2 + 4          (3)′ 

𝑥6 = 6 − 𝑥2          (4)′ 

𝑥7 = 7 −  𝑥1 + 𝑥2        (5)′ 

 

Substituting in the objective function, we get: 

 

𝑍 = [1,4]𝑥1 + [3,6]𝑥2 + [8,25] 

 

Since,𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7 ≥ 0 from  (1)′    ، (2)′ ،(3)′   ، (4)′   ، (5)′, we get the following set of 

constraints: 

5 − 𝑥1 + 𝑥2  ≥ 0   
− 3𝑥1 + 2𝑥2 − 3 ≥ 0   
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𝑥1 + 𝑥2 + 4 ≥ 0    
6 − 𝑥2  ≥ 0    

7 − 𝑥1 + 𝑥2 ≥ 0   
 

Then the neutrosophic linear mathematical model becomes:  
 

Find:  

𝑍 = [1,4]𝑥1 + [3,6]𝑥2 + [8,25] → 𝑀𝑎𝑥 

Restrictions: 

5 − 𝑥1 + 𝑥2  ≥ 0  
3𝑥1 − 2𝑥2 + 6 ≥ 0 

𝑥1 + 𝑥2 + 4 ≥ 0  
6 − 𝑥2  ≥ 0  

7 − 𝑥1 + 𝑥2 ≥ 0   
𝑥1, 𝑥2 ≥ 0 

 

The model has two variables, so the optimal solution can be found graphically by following 

the same steps mentioned in Example (1).  

We obtain the representation. Figure No. (2) Is the required graphic representation: 
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Region 𝐷 is the region of joint solutions and is defined by the polygon 𝑂𝐵𝑅𝑆𝐶, 

where,𝑂(0,0) , 𝐵(5,0) , 𝐶(0,3) , and for the two points 𝑅 , 𝑆 we find: 

Point 𝑅 is the point of intersection of the first and fourth entries.  

We obtain its coordinates by solving the set of equations: 

 

5 − 𝑥1 + 𝑥2 = 0 

6 − 𝑥2 = 0 

We get: 𝑅(11,6) 

 

Point  𝑆 is the point of intersection of the second and fourth entries. 

 We obtain its coordinates by solving the set of equations: 

 

3𝑥1 − 2𝑥2 + 6 = 0 

6 − 𝑥2 = 0 

 

We get: 𝑆(2,6) 

 

Figure No. (2): Graphical representation of the constraints of the 

linear model in Example 2 
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Since the optimal solution is located at one of the vertices of the common solution region, 

we substitute the coordinates of these points with the objective function: 

 

At point, 𝑂(0,0)  

𝑍𝑂 = 0 

 

At point,  𝐵(5,0) 

𝑍𝐵 = [13,45] 

 

At point , 𝑅(11,6)  

𝑍𝑅 ∈ [37,105] 
 

At point , 𝑆(2,6)  

𝑍𝑆 ∈ [28,69] 
 

At point , 𝐶(0,3)  

𝑍𝐶 ∈ [17,43] 
 

The greatest value of the objective function is at the point,𝑅(11,6) that is, 𝑥1 = 11 

and 𝑥2 = 6.  

 

We calculate the values of the remaining variables by (1)′   ، (2)′ ،(3)′   ، (4)′   ، (5)′ . 

 

We find, 𝑥3 = 0  , 𝑥4 = 27 , 𝑥5 = 21 , 𝑥6 = 0  , 𝑥7 = 2.  

 

Substituting in the objective function of the original model we obtain the maximum value 

of the 𝑍 function, which is. 

 

𝑀𝑎𝑥𝑍 ∈ [68,126] 

 

Important Notes: 

1- The graphical solution applies to a vertical point in space 𝑅𝑛. 

2- The number of components of the ideal solution is non-existent because the ideal 

solution applies to a vertical point, and the vertical point is the result of the 

intersection of a number of lines or planes, and the number of non-existent 

components is at least 𝑛 − 𝑚 components. 

3- The model may include some conditions that do not play a role in the solution 

process. 

4- The ideal solution may be a single point, or it may be an infinite number of points, 

when one of the sides of the common solution area that passes through the point of 

the ideal solution is parallel to the straight line 𝑍 = 0. Therefore, when the straight 

line representing the objective function is drawn, this straight line will apply to the 
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parallel side, and all the points of that side, the number of which are infinite, will be 

they are perfect solutions. 

5- If the region of acceptable solutions is open in terms of increasing the function 𝑍 

then we cannot stop at a specific ideal solution, and then we say that the objective 

function has an infinite number of acceptable solutions that give us greater and 

greater values of 𝑍. 

6- The state of not having an ideal solution (acceptable solution) when the conditions 

contradict each other and then the region of possibilities is an empty set (the 

problem is impossible to solve). 

 

 

 

Conclusion and results:   

In the previous study, we presented the graphical method for finding the optimal solution 

for neutrosophic linear models, and also a method that is rarely discussed in classical 

operations research references, which is how to take advantage of non-negativity 

constraints to find the graphically optimal solution for some neutrosophic linear models, 

but we must be aware that we may encounter neutrosophic linear models with two 

variables, but There may be difficulty in arriving at the common solution area, or there may 

be difficulty in determining the optimal solution after obtaining the common solution area. 

Therefore, it is preferable to use the Cymex neutrosophic method. As a result, the main goal 

is to obtain the optimal solution, so the researcher must determine the appropriate method 

for the model being solved. 
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Abstract: Several previous papers dealt with neutrosophic integrals without introducing the idea of 

double neutrosophic integrals. In this article, double integrals were discussed by presenting several 

theories in double neutrosophic integrals over a rectangle and over a general region, the most 

important of which is the neutrosophic Fubini's theorem. In addition to studying the applications of 

double neutrosophic integrals in calculating areas. 

 

Keywords: neutrosophic integrals, double neutrosophic integrals, neutrosophic Fubini's theorem, 

area.  

1. Introduction 

In contrast to the current logics, Smarandache suggested the Neutrosophic Logic to describe a 

mathematical model of uncertainty, vagueness, ambiguity, imprecision, undefined, unknown, 

incompleteness, inconsistency, redundancy, and contradiction. Smarandache introduced the concept 

of neutrosophy as a new school of philosophy [4]. He presented the definition of the standard form 

of neutrosophic real number [3-5], studying the concept of the Neutrosophic probability [6], the 

Neutrosophic statistics [5-7], and professor Smarandache entered the concept of preliminary calculus 

of the differential and integral calculus, where he introduced for the first time the notions of 

neutrosophic mereo-limit, mereo-continuity, mereoderivative, and mereo-integral [1]. A number of 

studies in the area of integration and differentiation were given by Y. Alhasan [9-12-15], also he 

presented the definition of the concept of neutrosophic complex numbers and its properties, in 

addition, he studied the general exponential form of a neutrosophic complex number [2-10]. 

Madeleine Al- Taha presented results on single valued neutrosophic (weak) polygroups [13]. The AH 

isometry was used to study many structures such as conic sections, real analysis concepts, and 

geometrical surfaces [11-16]. 

        The calculation of area, volume, and arc length is one of the most essential uses of integration 

in human life. In our reality, there are things that cannot be precisely defined and contain an element 

of indeterminacy. 

mailto:y.alhasan@psau.edu.sa
mailto:y.alhasan@psau.edu.sa
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          There are four sections of paper. first section, which includes a study of neutrosophic 

science, serves as an introduction. The second portion deals with a neutrosophic integrals theories 

and rules. The double neutrosophic integral and its applications are discussed in the third part. The 

fourth section offers the paper's conclusion.  

2. Preliminaries 

2.1. Neutrosophic integration by substitution method [15] 

Definition 1 

Let  𝑓: 𝐷𝑓 ⊆ 𝑅 → 𝑅𝑓 ∪ {𝐼}, to evaluate ∫ 𝑓(𝑥)𝑑𝑥 

put: 𝑥 = 𝑔(𝑢)     ⇒    𝑑𝑥 = 𝑔́(𝑢)𝑑𝑢  

by substitution, we get: 

∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑢)𝑔́(𝑢)𝑑𝑢 

Definition 3.2[16] 

Let 𝑓: 𝑅(𝐼)  →  𝑅(𝐼);  𝑓 = 𝑓(𝑋) and 𝑋 = 𝑥 + 𝑦𝐼 ∈ 𝑅(𝐼) then f is called a neutrosophic real function with 

one neutrosophic variable. a neutrosophic real function 𝑓(𝑋) written as follows:  

𝑓(𝑋) = 𝑓(𝑥 + 𝑦𝐼) = 𝑓(𝑥) + 𝐼[𝑓(𝑥 + 𝑦) − 𝑓(𝑥)] 

3. Double neutrosophic integrals over a rectangle 

Theorem 2 (neutrosophic Fubini’s theorem) 

Let 𝑓(𝑥, 𝑦, 𝐼) integrable over the rectangle 

𝑅 ∪ 𝐼 = {(𝑥, 𝑦, 𝐼): 𝑎̇ + 𝑎̇0𝐼 ≤ 𝑥 ≤ 𝑏̇ + 𝑏̇0𝐼 𝑎𝑛𝑑 𝑐̇ + 𝑐̇0𝐼 ≤ 𝑦 ≤ 𝑑̇ + 𝑑̇0𝐼} , where: 

𝑎̇, 𝑎̇0, 𝑏̇, 𝑏̇0, 𝑐̇, 𝑐̇0, 𝑑̇, 𝑑̇0 are real numbers, while 𝐼 = indeterminacy. 

Then we can write the double neutrosophic integrals over a rectangle 𝑅 ∪ 𝐼 by the following 

formula: 

 

∬ 𝑓(𝑥, 𝑦, 𝐼) 𝑑𝐴

𝑅∪𝐼

= ∫ ∫ 𝑓(𝑥, 𝑦, 𝐼) 𝑑𝑦𝑑𝑥

𝑑̇+𝑑̇0𝐼

𝑐̇+𝑐0̇𝐼

𝑏̇+𝑏̇0𝐼 

𝑎̇+𝑎̇0𝐼

= ∫ ∫ 𝑓(𝑥, 𝑦, 𝐼) 𝑑𝑥𝑑𝑦

𝑏̇+𝑏̇0𝐼

𝑎̇+𝑎̇0𝐼

𝑏̇+𝑏̇0𝐼 

𝑐̇+𝑐0̇𝐼

 

 

Integration according to the horizontal slice: 

∫ ∫ 𝑓(𝑥, 𝑦, 𝐼) 𝑑𝑥𝑑𝑦

𝑏̇+𝑏̇0𝐼

𝑎̇+𝑎̇0𝐼

𝑑̇+𝑑̇0𝐼 

𝑐̇+𝑐0̇𝐼

 

 

Integration according to the vertical slice: 

 

∫ ∫ 𝑓(𝑥, 𝑦, 𝐼) 𝑑𝑦𝑑𝑥

𝑑̇+𝑑̇0𝐼

𝑐̇+𝑐0̇𝐼

𝑏̇+𝑏̇0𝐼 

𝑎̇+𝑎̇0𝐼

 

Example 1 

Let 𝑅 ∪ 𝐼 = {(𝑥, 𝑦, 𝐼): 0 ≤ 𝑥 ≤ 2 + 2𝐼 𝑎𝑛𝑑 1 + 𝐼 ≤ 𝑦 ≤ 4 + 4𝐼}, then let find: 

 

∬(𝑥2 + 2𝐼𝑥𝑦) 𝑑𝐴

𝑅∪𝐼

 

Solution: 
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Integration according to the vertical slice: 

 

∫ ∫ (𝑥2 + 2𝐼𝑥𝑦)𝑑𝑦𝑑𝑥

4+4𝐼

1+𝐼

2+2𝐼

0

= ∫ (𝑥2𝑦 + 𝐼𝑥𝑦2)|1+𝐼
4+4𝐼𝑑𝑥

2+2𝐼

0

 

 

= ∫ ([(4 + 4𝐼)𝑥2 + 𝐼𝑥(4 + 4𝐼)2] − [(1 + 𝐼)𝑥2 + 𝐼𝑥(1 + 𝐼)2])𝑑𝑥

2+2𝐼

0

 

 

= ∫ [(3 + 3𝐼)𝑥2 + 60𝐼𝑥]𝑑𝑥

2+2𝐼

0

= ((1 + 𝐼)𝑥3 + 30𝐼𝑥2)|
0

2+2𝐼
 

 

= (1 + 𝐼)(2 + 2𝐼)3 + 30𝐼(2 + 2𝐼)2 
 

= (1 + 𝐼)(8 + 56𝐼) + 480𝐼 
 

= 8 + 56𝐼 + 8𝐼 + 56𝐼 + 480𝐼 = 8 + 600𝐼 
 

Integration according to the horizontal slice: 

 

∫ ∫ (𝑥2 + 2𝐼𝑥𝑦)𝑑𝑥𝑑𝑦

2+2𝐼

0

4+4𝐼

1+𝐼

= ∫ (
𝑥3

3
+ 𝐼𝑥2𝑦)|

0

2+2𝐼

𝑑𝑦

4+4𝐼

1+𝐼

 

 

= ∫ ([(
(2 + 2𝐼)3

3
+ 𝐼(2 + 2𝐼)2𝑦)] − [0]) 𝑑𝑦

4+4𝐼

1+𝐼

 

 

= ∫ (
(8 + 56𝐼)

3
+ 16𝐼𝑦) 𝑑𝑦

4+4𝐼

1+𝐼

 

 

= (
(8 + 56𝐼)

3
𝑦 + 8𝐼𝑦2)|

1+𝐼

4+4𝐼

 

 

= [
(8 + 56𝐼)

3
(4 + 4𝐼) + 8𝐼(4 + 4𝐼)2] − [

(8 + 56𝐼)

3
(1 + 𝐼) + 8𝐼𝑦(1 + 𝐼)2] 

 

= (1 + 𝐼)[(8 + 56𝐼) + 296𝐼] 
 

= (1 + 𝐼)(8 + 296𝐼) 
 

= 8 + 296𝐼 + 296𝐼 + 8𝐼 = 8 + 600𝐼 
 

note that we got the same result. 

3.1 Double neutrosophic integrals over a general region 

Theorem 3  

Let 𝑓(𝑥, 𝑦, 𝐼) is continuous on the region  
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𝑅 ∪ 𝐼 = {(𝑥, 𝑦, 𝐼): 𝑎̇ + 𝑎̇0𝐼 ≤ 𝑥 ≤ 𝑏̇ + 𝑏̇0𝐼 𝑎𝑛𝑑 𝑔1(𝑥, 𝐼) ≤ 𝑦 ≤ 𝑔2(𝑥, 𝐼)}, where: 𝑎̇, 𝑎̇0, 𝑏̇, 𝑏̇0 are 

real numbers, while 𝐼 = indeterminacy, and 𝑔1(𝑥, 𝐼), 𝑔2(𝑥, 𝐼) continuous neutrosophic functions, 

where 𝑔1(𝑥, 𝐼) ≤  𝑔2(𝑥, 𝐼), for all 𝑥 ∈ [𝑎̇ + 𝑎̇0𝐼 , 𝑏̇ + 𝑏̇0𝐼]. 

Then we can write the double neutrosophic integrals a general region 𝑅 ∪ 𝐼 by the following 

formula: 

 

∬ 𝑓(𝑥, 𝑦, 𝐼) 𝑑𝐴

𝑅∪𝐼

= ∫ ∫ 𝑓(𝑥, 𝑦, 𝐼) 𝑑𝑦𝑑𝑥

𝑔2(𝑥,𝐼)

𝑔1(𝑥,𝐼)

𝑏̇+𝑏̇0𝐼 

𝑎̇+𝑎̇0𝐼

 

 

Example 2 

Let 𝑅 ∪ 𝐼 = {(𝑥, 𝑦, 𝐼): 0 ≤ 𝑥 ≤ 4 + 4𝐼 𝑎𝑛𝑑 0 ≤ 𝑦 ≤ (1 + 𝐼)𝑥}, then let find: 

 

∬(2𝑒𝑥2
− 𝑠𝑖𝑛𝑦) 𝑑𝐴

𝑅∪𝐼

 

 

Solution: 

 

∫ ∫ (2𝑒𝑥2
− 𝑠𝑖𝑛 𝑦)𝑑𝑦𝑑𝑥

(1+𝐼)𝑥

0

4+4𝐼

0

= ∫ (2𝑦𝑒𝑥2
+ 𝑐𝑜𝑠 𝑦)|

0

(1+𝐼)𝑥
𝑑𝑥

4+4𝐼

0

 

 

= ∫ ([2(1 + 𝐼)𝑥𝑒𝑥2
+ 𝑐𝑜𝑠(1 + 𝐼)𝑥] − [0 + 𝑐𝑜𝑠 0])𝑑𝑥

4+4𝐼

0

 

 

= ∫ ([2(1 + 𝐼)𝑥𝑒𝑥2
+ 𝑐𝑜𝑠(1 + 𝐼)𝑥] − [1])𝑑𝑥

4+4𝐼

0

 

 

= ((1 + 𝐼)𝑒𝑥2
+

1

1 + 𝐼
𝑠𝑖𝑛(1 + 𝐼)𝑥 − 𝑥)|

0

4+4𝐼

 

 

= [(1 + 𝐼)𝑒(4+4𝐼)2
+

1

1 + 𝐼
𝑠𝑖𝑛(1 + 𝐼)(4 + 4𝐼) − 4 − 4𝐼] − [(1 + 𝐼)𝑒0 +

1

1 + 𝐼
𝑠𝑖𝑛(0) − 0] 

 

= (1 + 𝐼)𝑒(4+4𝐼)2
+

1

1 + 𝐼
𝑠𝑖𝑛(1 + 𝐼)(4 + 4𝐼) − 4 − 4𝐼 − 1 − 𝐼 

 

= (1 + 𝐼)𝑒16+48𝐼 + (1 −
1

2
𝐼) 𝑠𝑖𝑛(4 + 12𝐼) − 5 − 5𝐼 

 

= (1 + 𝐼)(𝑒16 + 𝐼[𝑒64 − 𝑒16]) + (1 −
1

2
𝐼) (𝑠𝑖𝑛(4) + 𝐼 [𝑠𝑖𝑛(16) − 𝑠𝑖𝑛(4)]) − 5 − 5𝐼 

 

Example 2 

Let 𝑅 ∪ 𝐼 = {(𝑥, 𝑦, 𝐼): 0 ≤ 𝑥 ≤ 1 + 𝐼 𝑎𝑛𝑑 0 ≤ 𝑦 ≤ 𝑥}, then let find: 

 

∬
𝑠𝑖𝑛 (

𝜋
3 +

𝜋
4 𝐼) 𝑥

𝑥
 𝑑𝐴

𝑅∪𝐼

 

Solution: 
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∬
𝑠𝑖𝑛 (

𝜋
3

+
𝜋
4

𝐼) 𝑥

𝑥
 𝑑𝐴

𝑅∪𝐼

= ∫ ∫
𝑠𝑖𝑛 (

𝜋
3

+
𝜋
4

𝐼) 𝑥

𝑥
𝑑𝑦𝑑𝑥

𝑥

0

1+𝐼

0

 

 

                                    = ∫
𝑠𝑖𝑛 (

𝜋
3 +

𝜋
4 𝐼) 𝑥

𝑥
 𝑦|

0

𝑥

𝑑𝑥

1+𝐼

0

 

 

                                                                             

= ∫ ([
𝑠𝑖𝑛 (

𝜋
3

+
𝜋
4

𝐼) 𝑥

𝑥
 𝑥] − [

𝑠𝑖𝑛 (
𝜋
3

+
𝜋
4

𝐼) 𝑥

𝑥
 (0)]) 𝑑𝑥

1+𝐼

0

 

 

= ∫ 𝑠𝑖𝑛 (
𝜋

3
+

𝜋

4
𝐼) 𝑥 𝑑𝑥

1+𝐼

0

 

 

=
−1

𝜋
3 +

𝜋
4

𝑐𝑜𝑠 (
𝜋

3
+

𝜋

4
𝐼) 𝑥|

0

1+𝐼

 

 

= [
−1

𝜋
3 +

𝜋
4

𝑐𝑜𝑠 (
𝜋

3
+

𝜋

4
𝐼) (1 + 𝐼)] − [

−1
𝜋
3 +

𝜋
4

𝑐𝑜𝑠 (
𝜋

3
+

𝜋

4
𝐼) (0)] 

 

= [
−1

𝜋
3 +

𝜋
4

𝑐𝑜𝑠 (
𝜋

3
+

𝜋

4
𝐼) (1 + 𝐼)] − [

−1
𝜋
3 +

𝜋
4

] 

 

= [(
−3

𝜋
+

9

7𝜋
𝐼) 𝑐𝑜𝑠 (

𝜋

3
+

5𝜋

6
𝐼)] − [

−3

𝜋
+

9

7𝜋
𝐼] 

 

= (
−3

𝜋
+

9

7𝜋
𝐼) [𝑐𝑜𝑠 (

𝜋

3
) + 𝐼 [𝑐𝑜𝑠 (

7𝜋

6
) − 𝑐𝑜𝑠 (

𝜋

3
)]] − [

−3

𝜋
+

9

7𝜋
𝐼] 

 

= (
−3

𝜋
+

9

7𝜋
𝐼) [

1

2
+ 𝐼 [

−√3

2
−

1

2
]] − [

−3

𝜋
+

9

7𝜋
𝐼] 

 

=
1

2
(

−3

𝜋
+

9

7𝜋
𝐼) + 𝐼 (

−√3

2
−

1

2
) (

−3

𝜋
+

9

7𝜋
𝐼) − (

−3

𝜋
+

9

7𝜋
𝐼) 

=
−1

2
(

−3

𝜋
+

9

7𝜋
𝐼) + 𝐼 (

−√3

2
−

1

2
) (

−3

𝜋
+

9

7𝜋
𝐼) 

 

=
3

2𝜋
−

9

14𝜋
𝐼 +

3√3

2𝜋
𝐼 −

9√3

14𝜋
𝐼 +

3

2𝜋
𝐼 −

9

14𝜋
𝐼 

 

=
3

2𝜋
+ (

3 + 12√3

14𝜋
) 𝐼 

 

Example 3 
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∫ ∫ 𝑥 𝑠𝑖𝑛 (
𝜋

3
+

𝜋

6
𝐼) 𝑦 𝑑𝑦𝑑𝑥

𝑥

0

1+
1
2

𝐼

0

 

 

 

= ∫  
−1

𝜋
3

+
𝜋
6

𝐼
𝑥 𝑐𝑜𝑠 (

𝜋

3
+

𝜋

6
𝐼) 𝑦|

0

𝑥

𝑑𝑥

1+
1
2

𝐼

0

 

 

= ∫ ([ 
−1

𝜋
3 +

𝜋
6 𝐼

𝑥 𝑐𝑜𝑠 (
𝜋

3
+

𝜋

6
𝐼) 𝑦] − [ 

−1
𝜋
3 +

𝜋
6 𝐼

𝑥 𝑐𝑜𝑠 (
𝜋

3
+

𝜋

6
𝐼) (0)]) 𝑑𝑥

1+
1
2

𝐼

0

 

 

= ∫ ([ (
−3

𝜋
−

1

𝜋
𝐼) 𝑥 𝑐𝑜𝑠 (

𝜋

3
+

𝜋

6
𝐼) 𝑥] − [ 

−3

𝜋
−

1

𝜋
𝐼] 𝑥) 𝑑𝑥

1+
1
2

𝐼

0

 

 

derivation integration 

(+) (
−3

𝜋
−

1

𝜋
𝐼)  𝑥 

 

𝑐𝑜𝑠 (
𝜋

3
+

𝜋

6
𝐼) 𝑥 

(−)  (
−3

𝜋
−

1

𝜋
𝐼) 

 

(
−3

𝜋
−

1

𝜋
𝐼) 𝑠𝑖𝑛 (

𝜋

3
+

𝜋

6
𝐼) 𝑥 

0 

 
(

−3

𝜋
−

1

𝜋
𝐼)

2

𝑐𝑜𝑠 (
𝜋

3
+

𝜋

6
𝐼) 𝑥 

 

 

= ([ (
−3

𝜋
−

1

𝜋
𝐼)

2

𝑥 𝑠𝑖𝑛 (
𝜋

3
+

𝜋

6
𝐼) 𝑥 − (

−3

𝜋
−

1

𝜋
𝐼)

3

𝑐𝑜𝑠 (
𝜋

3
+

𝜋

6
𝐼) 𝑥] − [ 

−3

𝜋
−

1

𝜋
𝐼]

𝑥2

2
)|

0

1+
1
2

𝐼

 

 

= ([ (
−3

𝜋
−

1

𝜋
𝐼)

2

(1 +
1

2
𝐼) 𝑠𝑖𝑛 (

𝜋

3
+

𝜋

6
𝐼) (1 +

1

2
𝐼) − (

−3

𝜋
−

1

𝜋
𝐼)

3

𝑐𝑜𝑠 (
𝜋

3
+

𝜋

6
𝐼) (1 +

1

2
𝐼)]

− [ 
−3

𝜋
−

1

𝜋
𝐼]

(1 +
1
2 𝐼)

2

2
) − (

−3

𝜋
−

1

𝜋
𝐼)

3

 

 

= ([ (
9

𝜋2
−

3

𝜋2
𝐼) 𝑠𝑖𝑛 (

𝜋

3
+

7𝜋

12
𝐼) − (

27

𝜋3
+

29

𝜋3
𝐼) 𝑐𝑜𝑠 (

𝜋

3
+

7𝜋

12
𝐼)] − [ 

−3

2𝜋
−

3

4𝜋
𝐼]) − (

27

𝜋3
+

29

𝜋3
𝐼) 

 

=  (
9

𝜋2
−

3

𝜋2
𝐼) (𝑠𝑖𝑛 (

𝜋

3
) + 𝐼 [𝑠𝑖𝑛 (

11𝜋

12
) − 𝑠𝑖𝑛 (

𝜋

3
)]) − (

27

𝜋3
+

29

𝜋3
𝐼) (𝑐𝑜𝑠 (

𝜋

3
) + 𝐼 [𝑐𝑜𝑠 (

11𝜋

12
) − 𝑐𝑜𝑠 (

𝜋

3
)])

+
3

2𝜋
+

3

4𝜋
𝐼 − (

27

𝜋3
+

29

𝜋3
𝐼) 
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=  (
9

𝜋2
−

3

𝜋2
𝐼) (

√3

2
+ 𝐼 [

√6 − √2

4
−

√3

2
]) − (

27

𝜋3
+

29

𝜋3
𝐼) (

1

2
+ 𝐼 [

−√6 − √2 

4
−

1

2
]) +

3

2𝜋
+

3

4𝜋
𝐼

− (
27

𝜋3
+

29

𝜋3
𝐼) 

 

=  (
9

𝜋2
−

3

𝜋2
𝐼) (

√3

2
+

√6 − √2 − 2√3

4
𝐼) − (

27

𝜋3
+

29

𝜋3
𝐼) (

1

2
+

−√6 − √2 − 2

4
𝐼) +

3

2𝜋
+

3

4𝜋
𝐼

− (
27

𝜋3
+

29

𝜋3
𝐼) 

 

=  (
9

𝜋2
−

3

𝜋2
𝐼) (

√3

2
+

√6 − √2 − 2√3

4
𝐼) − (

27

𝜋3
+

29

𝜋3
𝐼) (

1

2
+

−√6 − √2 − 2

4
𝐼) +

3

2𝜋
+

3

4𝜋
𝐼

− (
27

𝜋3
+

29

𝜋3
𝐼) 

 

Theorem 4  

Let 𝑓(𝑥, 𝑦, 𝐼) is continuous on the region  

𝑅 ∪ 𝐼 = {(𝑥, 𝑦, 𝐼): 𝑐̇ + 𝑐̇0𝐼 ≤ 𝑦 ≤ 𝑑̇ + 𝑑̇0𝐼 𝑎𝑛𝑑 ℎ1(𝑦, 𝐼) ≤ 𝑦 ≤ ℎ2(𝑦, 𝐼)}, where: 𝑐̇, 𝑐̇0, 𝑑̇, 𝑑̇0 are 

real numbers, while 𝐼 = indeterminacy, and ℎ1(𝑦, 𝐼), ℎ2(𝑦, 𝐼) continuous neutrosophic functions, 

where ℎ1(𝑦, 𝐼) ≤  ℎ2(𝑦, 𝐼), for all 𝑦 ∈ [𝑐̇ + 𝑐̇0𝐼 , 𝑑̇ + 𝑑̇0𝐼]. 

Then we can write the double neutrosophic integrals a general region 𝑅 ∪ 𝐼 by the following 

formula: 

 

∬ 𝑓(𝑥, 𝑦, 𝐼) 𝑑𝐴

𝑅∪𝐼

= ∫ ∫ 𝑓(𝑥, 𝑦, 𝐼) 𝑑𝑥𝑑𝑦

ℎ2(𝑦,𝐼)

ℎ1(𝑦,𝐼)

𝑑̇+𝑑̇0𝐼 

𝑐̇+𝑐0̇𝐼

 

 

Example 4 

Let 𝑅 ∪ 𝐼 = {(𝑥, 𝑦, 𝐼): 1 + 𝐼 ≤ 𝑦 ≤ 3 + 3𝐼 𝑎𝑛𝑑 (1 + 𝐼)𝑦 ≤ 𝑥 ≤ 𝑦2}, then let find: 

 

∬ 5 𝑑𝐴

𝑅∪𝐼

 

Solution: 

 

∫ ∫ 5 𝑑𝑥𝑑𝑦

𝑦2

(1+𝐼)𝑦

3+3𝐼

1+𝐼

= ∫ 5𝑥|
(1+𝐼)𝑦
𝑦2

 𝑑𝑦

3+3𝐼

1+𝐼

 

 

= 5 ∫ (𝑦2 − (1 + 𝐼)𝑦) 𝑑𝑦

3+3𝐼

1+𝐼

 

 

= 5 (
𝑦

3

3

− (1 + 𝐼)
𝑦

2

2

)|
1+𝐼

3+3𝐼

 

 

= 5 ([
(3 + 3𝐼)

3

3

− (1 + 𝐼)
(3 + 3𝐼)

2

2

] − [
(1 + 𝐼)

3

3

− (1 + 𝐼)
(1 + 𝐼)

2

2

]) 

 

= 5 ([
9(1 + 𝐼)

2

3

] − [
(1 + 𝐼)

6

3

]) =
65(1 + 𝐼)

3

3
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=
65(1 + 7𝐼)

3
=

65

3
+

455

3
 

 

Theorem 5 

Let 𝑓(𝑥, 𝑦, 𝐼) and 𝑔(𝑥, 𝑦, 𝐼) be integrable over region 

𝑅 ∪ 𝐼 ⊂ ℝ2, and let 𝑐̇ + 𝑐̇0𝐼 any constant, where 𝑐̇, 𝑐̇0 are real numbers, while 𝐼 = 

indeterminacy. Then: 

 

(𝑖) ∬(𝑐̇ + 𝑐̇0𝐼)𝑓(𝑥, 𝑦, 𝐼) 𝑑𝐴

𝑅∪𝐼

= (𝑐̇ + 𝑐̇0𝐼) ∬ 𝑓(𝑥, 𝑦, 𝐼) 𝑑𝐴

𝑅∪𝐼

 

 

(𝑖𝑖)   ∬[𝑓(𝑥, 𝑦, 𝐼) + 𝑔(𝑥, 𝑦, 𝐼)] 𝑑𝐴

𝑅∪𝐼

= ∬ 𝑓(𝑥, 𝑦, 𝐼) 𝑑𝐴

𝑅∪𝐼

+ ∬ 𝑓(𝑥, 𝑦, 𝐼) 𝑑𝐴

𝑅∪𝐼

 

 

(𝑖𝑖𝑖) If 𝑅 ∪ 𝐼 = 𝑅1 ∪ 𝑅2 ∪ 𝐼, where 𝑅1, 𝑅2 are nonoverlapping region, then: 

  

∬ 𝑓(𝑥, 𝑦, 𝐼) 𝑑𝐴

𝑅∪𝐼

= ∬ 𝑓(𝑥, 𝑦, 𝐼) 𝑑𝐴

𝑅∪𝐼

+ ∬ 𝑓(𝑥, 𝑦, 𝐼) 𝑑𝐴

𝑅∪𝐼

 

3.2 Applications of double neutrosophic integrals  

The area of region t can be calculated using a double neutrosophic integrals: 

 

𝐴 = ∬ 𝑑𝑥𝑑𝑦

𝑅∪𝐼

= ∬ 𝑑𝑦𝑑𝑥

𝑅∪𝐼

 

Example 5 

Using a double neutrosophic integrals to find the area of the plane region bounded by the curve 

of 𝑦 = 𝑥2 and 𝑦 = (1 + 𝐼)𝑥. 

 

Solution: 

Let find the intersection points of the two equations: 

𝑥2 = (1 + 𝐼)𝑥 

 

𝑥2 − (1 + 𝐼)𝑥 = 0 
 

𝑥(𝑥 − 1 − 𝐼) = 0        ⟹  {
𝑥 = 0

𝑥 = 1 + 𝐼
 

 

                                           ⟹ {
𝑦 = 0

𝑦 = 1 + 3𝐼
 

 

so, the two equations intersect at the points: (0 , 0) and (1 + 𝐼 , 1 + 3𝐼) 

 

 Integration according to the horizontal slice: 

 

∫ ∫ 𝑑𝑦𝑑𝑥

(1+𝐼)𝑥

𝑥2

1+𝐼

0

= ∫ 𝑦|
𝑥2
(1+𝐼)𝑥

𝑑𝑥

1+𝐼

0

 

 

= ∫ ((1 + 𝐼)𝑥 − 𝑥2)𝑑𝑥

1+𝐼

0

 



Neutrosophic Sets and Systems, Vol. 58, 2023     89  

 

 

Yaser Ahmad Alhasan, Suliman Sheen and Raja Abdullah Abdulfatah, Double neutrosophic integrals 

 

 

= ((1 + 𝐼)
𝑥2

2
−

𝑥3

3
)|

0

1+𝐼

 

 

= (1 + 𝐼)
(1 + 𝐼)2

2
−

(1 + 𝐼)3

3
 

 

=
(1 + 𝐼)3

6
=

1

6
+

7

6
𝐼 

 

 Integration according to the vertical slice: 

 

∫ ∫ 𝑑𝑥𝑑𝑦

√𝑦

(1−
1
2

𝐼)𝑦

1+3𝐼

0

= ∫ 𝑥|
(1−

1
2

𝐼)𝑦

√𝑦
𝑑𝑥

1+3𝐼

0

 

 

= ∫ (√𝑦 − (1 −
1

2
𝐼)𝑦) 𝑑𝑥

1+3𝐼

0

 

 

= (
2

3
√𝑦3 − (1 −

1

2
𝐼)

𝑦2

2
)|

0

1+3𝐼

 

 

= [
2

3
√(1 + 3𝐼)3 − (1 −

1

2
𝐼)

(1 + 3𝐼)2

2
] − [

2

3
√03 − (1 −

1

2
𝐼)

02

2
] 

 

=
2

3
√1 + 63𝐼 − (1 −

1

2
𝐼)

(1 + 15𝐼)

2
 

 

=
2

3
(1 + 7𝐼) − (

1

2
+

15

2
𝐼 −

1

4
𝐼 −

15

4
𝐼) 

 

=
2

3
(1 + 7𝐼) − (

1

2
+

7

2
𝐼) 

 

=
2

3
+

14𝐼

3
−

1

2
−

7

2
𝐼 =

1

6
+

7

6
𝐼 

 

note that we got the same result. 

 

Example 6 

 

Using a double neutrosophic integrals to find the area of the plane region bounded by the curve 

of 𝑦 = 9 + 7𝐼 − 𝑥2 and 𝑥 − 𝑎𝑥𝑖𝑠. 

 

Solution: 

9 + 7𝐼 − 𝑥2 = 0 

 

𝑥2 = 9 + 7𝐼 
 

by root the both sides, we get on: 
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⟹  {
𝑥 = 3 + 𝐼

𝑥 = −3 − 𝐼
    (1)              𝑜𝑟    {

𝑥 = 3 − 7𝐼
𝑥 = −3 + 7𝐼

    (2) 

 

where: 

√9 + 7𝐼 = 𝛾 + 𝛿𝐼 
 

9 + 7𝐼 = 𝛾2 + 2𝛾𝛿𝐼 + 𝛿2𝐼 
 

9 + 7𝐼 = 𝛾2 + (2𝛾𝛿 + 𝛿2)𝐼 

then:  

 

{
𝛾2 = 9 

2𝛾𝛿 + 𝛿2 = 7
 

 

{
𝛾 = ±3 

𝛿2 + 2𝛾𝛿 − 7 = 0
 

find the values of 𝛽: 

 

 When 𝛾 = 3    ⟹  𝛿2 + 6𝛿 − 7 = 0  

 

(𝛿 + 7)(𝛿 − 1) = 0    ⟹ 𝛿 = −7 , 𝛿 = 1 

 

 When 𝛾 = −3    ⟹  𝛿2 − 6𝛿 − 7 = 0  

 

(𝛿 − 7)(𝛿 + 1) = 0    ⟹ 𝛿 = 7 , 𝛿 = −1 
 

√9 + 7𝐼 = 3 + 𝐼  

𝑜𝑟        = −3 − 𝐼  

𝑜𝑟           = 3 − 7𝐼  

𝑜𝑟        = −3 + 7𝐼 
 

case (1): 

 

𝐴 = ∫  ∫ 𝑑𝑦𝑑𝑥

9+7𝐼−𝑥2

0

3+𝐼

−3−𝐼

= ∫ 𝑦|0
9+7𝐼−𝑥2

𝑑𝑥

3+𝐼

−3−𝐼

 

 

= ∫ (9 + 7𝐼 − 𝑥2)𝑑𝑥

3+𝐼

−3−𝐼

 

 

= ((9 + 7𝐼)𝑥 −
𝑥3

3
)|

−3−𝐼

3+𝐼

 

 

= [(9 + 7𝐼)(3 + 𝐼) −
(3 + 𝐼)3

3
] − [(9 + 7𝐼)(−3 − 𝐼) −

(−3 − 𝐼)3

3
] 

 

= 2 [(9 + 7𝐼)(3 + 𝐼) −
(3 + 𝐼)3

3
] 
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= 2 [27 + 37𝐼 − (
27 + 27𝐼 + 9𝐼 + 𝐼

3
)] 

 

= 2 [27 + 37𝐼 − 9 −
37𝐼

3
] = 36 +

148

3
𝐼 

case (2): 

 

𝐴 = ∫ ∫ 𝑑𝑦𝑑𝑥

9+7𝐼−𝑥2

0

3−7𝐼

−3+7𝐼

= ∫ 𝑦|0
9+7𝐼−𝑥2

𝑑𝑥

3−7𝐼

−3+7𝐼

 

 

= ∫ (9 + 7𝐼 − 𝑥2)𝑑𝑥

3−7𝐼

−3+7𝐼

 

 

= ((9 + 7𝐼)𝑥 −
𝑥3

3
)|

−3+7𝐼

3−7𝐼

 

 

= [(9 + 7𝐼)(3 − 7𝐼) −
(3 − 7𝐼)3

3
] − [(9 + 7𝐼)(−3 + 7𝐼) −

(−3 + 7𝐼)3

3
] 

 

= [(9 + 7𝐼)(3 − 7𝐼) −
(3 − 7𝐼)3

3
] + [(9 + 7𝐼)(3 − 7𝐼) −

(3 − 7𝐼)3

3
] 

 

= 2 [(9 + 7𝐼)(3 − 7𝐼) −
(3 − 7𝐼)3

3
] 

 

= 2 [27 − 91𝐼 − (
27 − 189𝐼 + 441𝐼 − 343𝐼

3
)] 

 

= 2 [27 + 91𝐼 − 9 +
91𝐼

3
] = 36 +

364

3
𝐼 

4. Conclusions   

The significance of this paper stems from the fact that it explained the concept of double 

neutrosophic integrals. where double neutrosophic integrals over a rectangle and over a general 

region were presented. In addition, integrations were calculated according to the horizontal and 

vertical slice, and we got the same results in both cases. Also, we introduced the applications of 

double neutrosophic integrals. 
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Abstract: In this article we generalized a Smarandache’s neutrosophic set as BS-neutrosophic set 

and it is applied to BCK/BCI-algebras. The concept of BS-neutrosophic subalgebra, BS-neutrosophic 

ideal and related properties are investigated. 
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1. Introduction 

L.A.Zadeh [1], a professor of computer science at the University of California, introduced the 

concept of fuzzy set (FS) in 1965.Fuzzy sets analyzed the degree of membership of elements of set. In 

1986 Atanassove [2] generalized a fuzzy set to an Intuitionistic Fuzzy  Set (IFS) by including another 

function called a non-membership function. The neutrosophic Set (NS) concept was developed by 

Smarandache ([3],[4]) and is a more general framework that extends the concepts of Classical Set, 

fuzzy set, Intuitionistic fuzzy set, Interval valued fuzzy(Intuitionistic) set. Neutrosophic algebraic 

structures in BCK/BCI-algebras are described in articles [5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15] we 

know that Smarandache’s NSS have many generalizations. The purpose of this paper is to consider 

a new generalization of the NS. A NS has true, false and indeterminate membership functions which 

are fuzzy sets. When we considering the generalization of a NS, an interval-valued fuzzy set is used 

as non-membership function, since the interval-valued fuzzy set is a generalization of the fuzzy set. 

We introduce the concept of BS-neutrosophic set, and we apply it to BCK/BCI-algebras. Also, the 

concept of BS-neutrosophic subalgebra, BS-neutrosophic ideal are introduced and the associated 

properties are investigated. We consider homomorphic inverse image of the BS-neutrosophic 

subalgebra and discuss the translation of the BS- neutrosophic Subalgebra. In a BCI-algebra, we 

provide conditions for a BS- neutrosophic ideal to be a BS-neutrosophic subalgebra.  

2. Preliminaries  

Definition: 2.1([16],[17],[18]) Let 𝒦 be a non-empty set with a binary operation “∗” and a constant 

“0” is called a BCI-algebra if it satisfies the following axioms for all 𝓅0, 𝓇0, 𝓊0 ∈ 𝒦 

mailto:drbsn63@yahoo.co.in
mailto:shakebaji6@gmail.com
mailto:bindumadhaviu@gmail.com
mailto:shakebaji6@gmail.com
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i. ((𝓅0 ∗ 𝓇0) ∗ (𝓅0 ∗ 𝓊0)) ∗ (𝓊0 ∗ 𝓇0) = 0 

ii. (𝓅0 ∗ (𝓅0 ∗ 𝓇0)) ∗ 𝓇0 = 0 

iii. 𝓅0 ∗ 𝓅0 = 0 

iv. 𝓅0 ∗ 𝓇0 = 0, 𝓇0 ∗ 𝓅0 = 0 ⇒ 𝓅0 = 𝓇0 . 

If a BCI-algebra 𝒦 satisfies the following identity 

v. 0 ∗ 𝓅0 = 0 for all 𝓅0 ∈ 𝒦 then 𝒦 is called a BCK-algebra 

The following properties are hold in any BCK/BCI-algebra 

i. 𝓅0 ∗ 0 = 0 

ii. 𝓅0 ≤ 𝓇0 ⇒ 𝓅0 ∗ 𝓊0 ≤ 𝓇0 ∗ 𝓊0, 𝓊0 ∗ 𝓇0 ≤ 𝓊0 ∗ 𝓅0  

iii. (𝓅0 ∗ 𝓇0) ∗ 𝓊0 = (𝓅0 ∗ 𝓊0) ∗ 𝓇0  

iv. (𝓅0 ∗ 𝓊0) ∗ (𝓇0 ∗ 𝓊0) ≤ 𝓅0 ∗ 𝓇0  for all 𝓅0, 𝓇0, 𝓊0 ∈ 𝒦. 

Where  𝓅0 ≤ 𝓇0  if and only if 𝓅0 ∗ 𝓇0 = 0. 

The following conditions are hold in any BCI-algebra 𝒦 [16]  

i. 𝓅0 ∗ (𝓅0 ∗ (𝓅0 ∗ 𝓇0)) = 𝓅0 ∗ 𝓇0  

ii. 0 ∗ (𝓅0 ∗ 𝓇0) = (0 ∗ 𝓅0) ∗ (0 ∗ 𝓇0) 

Definition: 2.2[16]  A BCI-algebra 𝒦 is said to be p-semisimple if 0 ∗ (0 ∗ 𝓅0) = 𝓅0 for all 𝓅0 ∈ 𝒦 

In a p-semisimple BCI-algebra 𝒦, the following holds for all 𝓅0 , 𝓇0 ∈ 𝒦 

a. 0 ∗ (𝓅0 ∗ 𝓇0) = 𝓇0 ∗ 𝓅0 

b. 𝓅0 ∗ (𝓅0 ∗ 𝓇0) = 𝓇0  

Definition: 2.3[16] A BCI-algebra 𝒦 is said to be associative if (𝓅0 ∗ 𝓇0) ∗ 𝓊0 = (𝓅0 ∗ 𝓊0) ∗ 𝓇0   for 

all 𝓅0, 𝓇0, 𝓊0 ∈ 𝒦 

Definition: 2.4 [18] An (s)-BCK-algebra, we mean a BCK-algebra 𝒦 such that, for any 𝓅0, 𝓇0 ∈ 𝒦 

the set {𝓊0 ∈ 𝒦/𝓊0 ∗ 𝓅0 ≤ 𝓇0} has the greatest element, written by 𝓅0 ∘ 𝓇0 . 

Definition: 2.5 A non-empty sub set ℋ of a BCK/BCI-algebra 𝒦 is called a sub algebra of 𝒦 if 𝓅0 ∗

𝓇0 ∈ ℋ for all 𝓅0 , 𝓇0 ∈ ℋ.     

Definition: 2.6 A non-empty sub set ℋ  of a BCK/BCI-algebra 𝒦  is called an ideal of 𝒦  if 0 ∈

ℋ, 𝑎𝑛𝑑 𝓇0, 𝓅0 ∗ 𝓇0 ∈ ℋ ⇒ 𝓅0 ∈ ℋ for all 𝓅0, 𝓇0 ∈ 𝒦. 

Definition: 2.7 A non-empty sub set ℋ of a BCI-algebra 𝒦 is called a closed ideal of 𝒦 if it is an 

ideal of 𝒦 which satisfies 𝓅0 ∈ ℋ ⇒ 0 ∗ 𝓅0 ∈ ℋ for all 𝓅0 ∈ 𝒦 

Definition: 2.8[1]  Let 𝒦 be non-empty set. A fuzzy set in 𝒦 is a mapping  𝒩𝑇: 𝒦 → [0,1]   

Definition: 2.9[1] The complement of fuzzy set 𝒩𝑇 denoted by (𝒩𝑇)𝑐 is also a fuzzy set defined as 

(𝒩𝑇)𝑐 = 1 − 𝒩𝑇 for all 𝓅0 ∈ 𝒦. Also ((𝒩𝑇)𝑐)𝑐 = 𝒩𝑇. 

Definition: 2.10 A fuzzy set 𝒩𝑇: 𝒦 → [0,1]   is called fuzzy sub-algebra of 𝒦 , if 𝒩𝑇(𝓅0 ∗ 𝓇0) ≥

𝑚𝑖𝑛{𝒩𝑇(𝓅0), 𝒩𝑇(𝓇0)}. 

By an interval number we mean a closed subinterval 𝑚̂ = [𝑚−, 𝑚+] 𝑜𝑓 [𝐼] where 0 ≤ 𝑚− ≤ 𝑚+ ≤

1. Denote by [𝐼]  the set of all interval numbers. Let us define what is known as refined minimum 

(briefly, rmin) and refined maximum (briefly, rmax) of two elements in [𝐼] . We also define the 

symbols " ≼ " , " ≽ ", " = "  in case of two elements in [𝐼]. Consider two interval numbers 𝑚̂1 =

[𝑚1
−, 𝑚1

+] and 𝑚̂2 = [𝑚2
−, 𝑚2

+]. Then  

𝑟𝑚𝑖𝑛{𝑚̂1, 𝑚̂2} = [𝑚𝑖𝑛{𝑚1
−, 𝑚2

−}, min {𝑚1
+, 𝑚2

+}],    

𝑟𝑚𝑎𝑥{𝑚̂1, 𝑚̂2} = [𝑚𝑎𝑥{𝑚1
−, 𝑚2

−}, max{𝑚1
+, 𝑚2

+}], 
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𝑚̂1 ≽ 𝑚̂2 ⇔ 𝑚1
− ≥ 𝑚2

−, 𝑚1
+ ≥ 𝑚2

+ , and similarly, we may have 𝑚̂1 ≼ 𝑚̂2  and 𝑚̂1 = 𝑚̂2 . To say 

𝑚̂1 ≻ 𝑚̂2 (resp. 𝑚̂1 ≺ 𝑚̂2 ) we mean 𝑚̂1 ≽ 𝑚̂2  and 𝑚̂1 ≠ 𝑚̂2  (resp. 𝑚̂1 ≼ 𝑚̂2 𝑎𝑛𝑑 𝑚̂1 ≠ 𝑚̂2 ). Let 

𝑚̂𝑖 ∈ [𝐼] where 𝑖 ∈⊓. We define  

 𝑟𝑖𝑛𝑓 𝑚̂𝑖
𝑖∈⊓

= [𝑖𝑛𝑓
𝑖∈⊓

𝑚𝑖
−, 𝑖𝑛𝑓

𝑖∈⊓
𝑚𝑖

+]  𝑎𝑛𝑑 𝑟𝑠𝑢𝑝 𝑚̂𝑖
𝑖∈⊓

= [𝑠𝑢𝑝
𝑖∈⊓

𝑚𝑖
−, 𝑠𝑢𝑝

𝑖∈⊓
𝑚𝑖

+]. 

Definition: 2.11[19] Let  𝒦 be a non-empty set. A function 𝒩̂: 𝒦 → [𝐼] is called an interval-valued 

fuzzy set (briefly, an IVF set) in 𝒦. Let [𝐼]𝒦 stand for the set of all IVF sets in 𝒦. For every 𝒩̂ ∈ [𝐼]𝒦  

and 𝓅0 ∈ 𝒦, 𝒩̂(𝓅0) = [𝒩−(𝓅0), 𝒩+(𝓅0)] is called the degree of membership of an element  𝓅0 ∈

𝒩̂,  where 𝒩−: 𝒦 → [𝐼] and 𝒩+: 𝒦 → [𝐼] are fuzzy sets in 𝒦 which are called a lower fuzzy set 

and an upper fuzzy set in 𝒦, respectively. For simplicity, we denote 𝒩̂ = [𝒩−, 𝒩+]. 

Definition: 2.12[4]  Let 𝒦 be a non-empty set. A neutrosophic set (NS) in 𝒦 is a structure of the 

form  𝒩 = {〈𝓅0; 𝒩𝑇(𝓅0), 𝒩𝐼(𝓅0), 𝒩𝐹(𝓅0)〉: 𝓅0 ∈ 𝒦}  where 𝒩𝑇: 𝒦 → [0,1]  is a degree of 

membership, 𝒩𝐼: 𝒦 → [0,1]  is a degree of indeterminacy, and 𝒩𝐹: 𝒦 → [0,1]  degree of non-

membership. For the sake of simplicity, we shall use the symbol 𝒩 = (𝒩𝑇 , 𝒩𝐼 , 𝒩𝐹)  for the 

neutrosophic set 𝒩 = {〈𝓅0; 𝒩𝑇(𝓅0), 𝒩𝐼(𝓅0), 𝒩𝐹(𝓅0)〉: 𝓅0 ∈ 𝒦}. 

 

3. BS-Neutrosophic Structures   

Definition: 3.1 Let 𝒦 be a non-empty set. BS-neutrosophic set in 𝒦 , is a structure of the form 𝒩 =

{〈𝓅0; 𝒩𝑡(𝓅0), 𝒩𝑖(𝓅0), 𝒩̂𝑓(𝓅0)〉: 𝓅0 ∈ 𝒦} where 𝒩𝑡 , 𝒩𝑖  are fuzzy sets in 𝒦,  which are called a 

degree of indeterminacy and degree of non-membership, respectively, and 𝒩̂𝑓 is an interval valued 

fuzzy set in 𝒦 which is called an interval valued degree of non-membership   

For the sake of simplicity, we shall use the symbol 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓)  for the BS-NSS 𝒩 =

{〈𝓅0; 𝒩𝑡(𝓅0), 𝒩𝑖(𝓅0), 𝒩̂𝑓(𝓅0)〉: 𝓅0 ∈ 𝒦}. 

In a BS-NSS 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) if we take 𝒩̂𝑓: 𝒦 → [𝐼] , 𝓅0 ↦ [𝒩𝑓
−(𝓅0), 𝒩𝑓

+(𝓅0)]  with 𝒩𝑓
−(𝓅0) =

𝒩𝑓
+(𝓅0) then 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓)  is a neutrosophic set in 𝒦. 

Definition: 3.2 Let 𝒦  be a BCK/BCI algebra. A BS-NSS  𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓)  in 𝒦  is called a BS-

neutrosophic subalgebra of 𝒦 if it satisfies 

(BS-NSSA 1) 𝒩𝑡(𝓅0 ∗ 𝓇0) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓅0), 𝒩𝑡(𝓇0)} 

(BS-NSSA 2) 𝒩𝑖(𝓅0 ∗ 𝓇0) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓅0), 𝒩𝑖(𝓇0)} 

(BS-NSSA 3) 𝒩̂𝑓(𝓅0 ∗ 𝓇0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0), 𝒩̂𝑓(𝓇0)} for all 𝓅0, 𝓇0 ∈ 𝒦. 

Example: 3.3 Consider a set 𝒦 = {0, 𝑎, 𝑏, 𝑐} with the binary operation ∗ which is given in table.1  

∗ 0 a b c 

0 0 0 0 0 

a a 0 0 a 

b b a 0 b 

c c c c 0 

Table.1 BCK-algebra 

Then (𝒦;∗ ,0) is a BCK-algebra. Let  𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) be a BS-NSS in 𝒦 defined by table.2 

𝒦 𝒩𝑡(𝓅0) 𝒩𝑖(𝓅0) 𝒩̂𝑓(𝓅0) 

0 0.9 1 [0.1,0.4] 

a 0.4 0.5 [0.3,0.5] 
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b 0.3 0.3 [0.2,0.6] 

c 0 0.1 [0.4,1] 

Table.2 BS-NSSA 

It is routine to verify that 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) is a BS-NSSA of 𝒦. 

Proposition: 3.4 If  𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓)  is a BS-NSSA of 𝒦  then 𝒩𝑡(0) ≥ 𝒩𝑡(𝓅0)   𝒩𝑖(0) ≥ 𝒩𝑖(𝓅0) 

and  𝒩̂𝑓(0) ≼ 𝒩̂𝑓(𝓅0) for all 𝓅0 ∈ 𝒦 

Proof: For any 𝓅0 ∈ 𝒦, we have  

𝒩𝑡(0) = 𝒩𝑡(𝓅0 ∗ 𝓅0) ≥  𝑚𝑖𝑛{𝒩𝑡(𝓅0), 𝒩𝑡(𝓅0)} = 𝒩𝑡(𝓅0) 

𝒩𝑖(0) = 𝒩𝑖(𝓅0 ∗ 𝓅0) ≥  𝑚𝑖𝑛{𝒩𝑖(𝓅0) , 𝒩𝑖(𝓅0) } = 𝒩𝑖(𝓅0) 

𝒩̂𝑓(0) = 𝒩̂𝑓(𝓅0 ∗ 𝓅0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0), 𝒩̂𝑓(𝓅0)} = 𝑟𝑚𝑎𝑥{[𝒩𝑓
−(𝓅0), 𝒩𝑓

+(𝓅0)], [𝒩𝑓
−(𝓅0), 𝒩𝑓

+(𝓅0)]}  

                                     = [𝒩𝑓
−(𝓅0), 𝒩𝑓

+(𝓅0)] = 𝒩̂𝑓(𝓅0) 

Hence the proof is completed. 

Proposition: 3.5 Let  𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) is a BS-NSSA of 𝒦 if there exists a sequence {𝓅0𝑛
} in 𝒦 

such that lim
𝑛→∞

𝒩𝑡(𝓅0𝑛
) = 1 , lim

𝑛→∞
𝒩𝑖(𝓅0𝑛

) = 1  and  lim
𝑛→∞

𝒩̂𝑓(𝓅0𝑛
) = [0,0], then 𝒩𝑡(0) = 1, 𝒩𝑖(0) =

1 and 𝒩̂𝑓(0) = [0,0]. 

Proof: Using the proposition 3.4, we know that 𝒩𝑡(0) ≥ 𝒩𝑡(𝓅0𝑛
)  𝒩𝑖(0) ≥ 𝒩𝑖(𝓅0𝑛

) and  𝒩̂𝑓(0) ≼

𝒩̂𝑓(𝓅0𝑛
) for every positive integer n. Note that 

1 ≥ 𝒩𝑡(0) ≥ lim
𝑛→∞

𝒩𝑡(𝓅0𝑛
) = 1, 

1 ≥ 𝒩𝑖(0) ≥ lim
𝑛→∞

𝒩𝑖(𝓅0𝑛
) = 1, 

[0,0] ≼ 𝒩̂𝑓(0) ≼ lim
𝑛→∞

𝒩̂𝑓(𝓅0𝑛
) = [0,0]. 

Therefore 𝒩𝑡(0) = 1, 𝒩𝑖(0) = 1  and 𝒩̂𝑓(0) = [0,0]. 

Theorem: 3.6 Let 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓)  is a BS-NSS in 𝒦. Then 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) is a BS-NSSA in 𝒦 if 

and only if 𝒩𝑡 , 𝒩𝑖 , (𝒩𝑓
−)

𝑐
  𝑎𝑛𝑑 (𝒩𝑓

+)
𝑐
 are fuzzy subalgebras of  𝒦. 

Proof: Suppose that 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) is a BS-NSSA in 𝒦 then for all 𝓅0, 𝓇0 ∈ 𝒦 we have 

𝒩𝑡(𝓅0 ∗ 𝓇0) ≥ 𝑟𝑚𝑖𝑛{𝒩𝑡(𝓅0), 𝒩𝑡(𝓇0)} 

𝒩𝑖(𝓅0 ∗ 𝓇0) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓅0), 𝒩𝑖(𝓇0)} 

𝒩̂𝑓(𝓅0 ∗ 𝓇0) ≼ 𝑚𝑎𝑥{𝒩̂𝑓(𝓅0), 𝒩̂𝑓(𝓇0)} 

[𝒩𝑓
−(𝓅0 ∗ 𝓇0) , 𝒩𝑓

+(𝓅0 ∗ 𝓇0)] ≼ 𝑟𝑚𝑎𝑥{[𝒩𝑓
−(𝓅0) , 𝒩𝑓

+(𝓅0)], [𝒩𝑓
−(𝓇0) , 𝒩𝑓

+(𝓇0)]}                                                

=[𝑚𝑎𝑥{𝒩𝑓
−(𝓅0), 𝒩𝑓

−(𝓇0)}, 𝑚𝑎𝑥{𝒩𝑓
+(𝓅0), 𝒩𝑓

+(𝓇0)}] 

Therefore 𝒩𝑓
−(𝓅0 ∗ 𝓇0)  ≤ 𝑚𝑎𝑥{𝒩𝑓

−(𝓅0), 𝒩𝑓
−(𝓇0)}  

⇒ 1 − 𝒩𝑓
−(𝓅0 ∗ 𝓇0) ≥ 1 − 𝑚𝑎𝑥{𝒩𝑓

−(𝓅0), 𝒩𝑓
−(𝓇0)}  

⇒ 1 − 𝒩𝑓
−(𝓅0 ∗ 𝓇0) ≥ 𝑚𝑖𝑛{1 − 𝒩𝑓

−(𝓅0), 1 − 𝒩𝑓
−(𝓇0)}  

⇒ (𝒩𝑓
−)

𝑐
(𝓅0 ∗ 𝓇0) ≥ 𝑚𝑖𝑛{(𝒩𝑓

−)
𝑐
(𝓅0), (𝒩𝑓

−)
𝑐
(𝓇0)} and 

𝒩𝑓
+(𝓅0 ∗ 𝓇0)  ≤ 𝑚𝑎𝑥{𝒩𝑓

+(𝓅0), 𝒩𝑓
+(𝓇0)}  

⇒ 1 − 𝒩𝑓
+(𝓅0 ∗ 𝓇0) ≥ 1 − 𝑚𝑎𝑥{𝒩𝑓

+(𝓅0), 𝒩𝑓
+(𝓇0)} 

⇒ 1 − 𝒩𝑓
+(𝓅0 ∗ 𝓇0) ≥ 𝑚𝑖𝑛{1 − 𝒩𝑓

+(𝓅0), 1 − 𝒩𝑓
+(𝓇0)} 

⇒ (𝒩𝑓
+)

𝑐
(𝓅0 ∗ 𝓇0) ≥ 𝑚𝑖𝑛{(𝒩𝑓

+)
𝑐
(𝓅0), (𝒩𝑓

+)
𝑐
(𝓇0)}. 
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Hence 𝒩𝑡, 𝒩𝑖 , (𝒩𝑓
−)

𝑐
  𝑎𝑛𝑑 (𝒩𝑓

+)
𝑐
 are fuzzy subalgebras of 𝒦. 

Converse part is obvious. 

Definition: 3.7 Let 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓)  is a BS-NSS in 𝒦, we define the following sets  

𝒰(𝒩𝑡; 𝑙) = {𝓅0 ∈ 𝒦: 𝒩𝑡(𝓅0) ≥ 𝑙} 

𝒰(𝒩𝑖; 𝑚) = {𝓅0 ∈ 𝒦: 𝒩𝑖(𝓅0) ≥ 𝑚} 

ℒ(𝒩̂𝑓; [𝑛1, 𝑛2]) = {𝓅0 ∈ 𝒦: 𝒩̂𝑓(𝓅0) ≼ [𝑛1, 𝑛2]} 

Where 𝑙, 𝑚 ∈ [0,1] and [𝑛1, 𝑛2] ∈ [𝐼]  

Theorem: 3.8 A BS-NSS 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) in 𝒦 is a BS-NSSA of 𝒦 if and only if the non-empty sets 

𝒰(𝒩𝑡; 𝑙), 𝒰(𝒩𝑖; 𝑚)  and  ℒ(𝒩̂𝑓; [𝑛1, 𝑛2]) are subalgebras of  𝒦 for all 𝑙, 𝑚 ∈ [0,1] and [𝑛1, 𝑛2] ∈ [𝐼]  

Proof: Suppose that 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) is a BS-NSSA of 𝒦.  

Let 𝑙, 𝑚 ∈ [0,1]  and [𝑛1, 𝑛2] ∈ [𝐼]   be such that 𝒰(𝒩𝑡; 𝑙) , 𝒰(𝒩𝑖; 𝑚)  and ℒ(𝒩̂𝑓; [𝑛1, 𝑛2])  are non-

empty. For any 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2 ∈ 𝒦  if  𝑎1, 𝑎2 ∈ 𝒰(𝒩𝑡; 𝑙) , 𝑏1, 𝑏2 ∈ 𝒰(𝒩𝑖; 𝑚)  and 𝑐1, 𝑐2 ∈

ℒ(𝒩̂𝑓; [𝑛1, 𝑛2]) then 

𝒩𝑡(𝑎1 ∗ 𝑎2) ≥ 𝑟𝑚𝑖𝑛{𝒩𝑡(𝑎1), 𝒩𝑡(𝑎2)} ≥ 𝑟𝑚𝑖𝑛{𝑙, 𝑙} = 𝑙 

𝒩𝑖(𝑏1 ∗ 𝑏2) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝑏1), 𝒩𝑖(𝑏2)} ≥ 𝑚𝑖𝑛{𝑚, 𝑚} = 𝑚 

𝒩̂𝑓(𝑐1 ∗ 𝑐2) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝑐1), 𝒩̂𝑓(𝑐2)} ≼ 𝑟𝑚𝑎𝑥{[𝑛1, 𝑛2], [𝑛1, 𝑛2]} = [𝑛1, 𝑛2] 

Therefore 𝑎1 ∗ 𝑎2 ∈ 𝒰(𝒩𝑡; 𝑙), 𝑏1 ∗ 𝑏2 ∈ 𝒰(𝒩𝑖; 𝑚) and 𝑐1 ∗ 𝑐2 ∈ ℒ(𝒩̂𝑓; [𝑛1, 𝑛2]) 

Hence 𝒰(𝒩𝑡; 𝑙),  𝒰(𝒩𝑖; 𝑚) and ℒ(𝒩̂𝑓; [𝑛1, 𝑛2])  are subalgebras of 𝒦. 

Conversely, assume that the non-empty sets 𝒰(𝒩𝑡; 𝑙) , 𝒰(𝒩𝑖; 𝑚)  and ℒ(𝒩̂𝑓; [𝑛1, 𝑛2])   are 

subalgebras of 𝒦 for all 𝑙, 𝑚 ∈ [0,1] and [𝑛1, 𝑛2] ∈ [𝐼]  

If  𝒩𝑡(𝑎0 ∗ 𝑏0) < 𝑚𝑖𝑛{𝒩𝑡(𝑎0), 𝒩𝑡(𝑏0)}  for some 𝑎0, 𝑏0 ∈ 𝒦 , then 𝑎0, 𝑏0 ∈ 𝒰(𝒩𝑡; 𝑙0)  but  𝑎0 ∗ 𝑏0 ∉

𝒰(𝒩𝑡; 𝑙0) for 𝑙0 = 𝑚𝑖𝑛{𝒩𝑡(𝑎0), 𝒩𝑡(𝑏0)}. This is a contradiction, and thus  

𝒩𝑡(𝓅0 ∗ 𝓇0) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓅0), 𝒩𝑡(𝓇0)} for all 𝓅0, 𝓇0 ∈ 𝒦 . Similarly, we can show that 𝒩𝑖(𝓅0 ∗ 𝓇0) ≥

𝑚𝑖𝑛{𝒩𝑖(𝓅0), 𝒩𝑖(𝓇0)} for all 𝓅0, 𝓇0 ∈ 𝒦. 

Suppose that 𝒩̂𝑓(𝑎0 ∗ 𝑏0) ≻ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝑎0), 𝒩̂𝑓(𝑏0)} for some 𝑎0, 𝑏0 ∈ 𝒦. 

Let 𝒩̂𝑓(𝑎0) = [𝛿1, 𝛿2], 𝒩̂𝑓(𝑏0) = [𝛿3, 𝛿4] and  𝒩̂𝑓(𝑎0 ∗ 𝑏0) = [𝑛1, 𝑛2]  

Then [𝑛1, 𝑛2] ≻ 𝑟𝑚𝑎𝑥{[𝛿1, 𝛿2], [𝛿3, 𝛿4]} = [𝑚𝑎𝑥{𝛿1, 𝛿3}, 𝑚𝑎𝑥{𝛿2, 𝛿4}]  and so 𝑛1 > 𝑚𝑎𝑥{𝛿1, 𝛿3}  and 

𝑛2 > 𝑚𝑎𝑥{𝛿2, 𝛿4} 

Taking  [𝜂1, 𝜂2] =
1

2
[𝒩̂𝑓(𝑎0 ∗ 𝑏0) + 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝑎0), 𝒩̂𝑓(𝑏0)}] 

                          =
1

2
[[𝑛1, 𝑛2] + [𝑚𝑎𝑥{𝛿1, 𝛿3}, 𝑚𝑎𝑥{𝛿2, 𝛿4}]] 

                          = [
1

2
(𝑛1 + 𝑚𝑎𝑥{𝛿1, 𝛿3}),

1

2
(𝑛2 + 𝑚𝑎𝑥{𝛿2, 𝛿4})] 

It follows that 

𝑛1 > 𝜂1 =
1

2
(𝑛1 + 𝑚𝑎𝑥{𝛿1, 𝛿3}) > 𝑚𝑎𝑥{𝛿1, 𝛿3} and 𝑛2 > 𝜂2 =

1

2
(𝑛2 + 𝑚𝑎𝑥{𝛿2, 𝛿4}) > 𝑚𝑎𝑥{𝛿2, 𝛿4} 

Hence [𝑚𝑎𝑥{𝛿1, 𝛿3}, 𝑚𝑎𝑥{𝛿2, 𝛿4}] ≺ [𝜂1, 𝜂2] ≺ [𝑛1, 𝑛2] = 𝒩̂𝑓(𝑎0 ∗ 𝑏0)  

Therefore 𝑎0 ∗ 𝑏0 ∉ 𝒰(𝒩̂𝑓; [𝑛1, 𝑛2]). On the other hand  

𝒩̂𝑓(𝑎0) = [𝛿1, 𝛿2] ≼ [𝑚𝑎𝑥{𝛿1, 𝛿3}, 𝑚𝑎𝑥{𝛿2, 𝛿4}] ≺ [𝜂1, 𝜂2] 

𝒩̂𝑓(𝑏0) = [𝛿3, 𝛿4] ≼ [𝑚𝑎𝑥{𝛿1, 𝛿3}, 𝑚𝑎𝑥{𝛿2, 𝛿4}] ≺ [𝜂1, 𝜂2]  that is 𝑎0, 𝑏0 ∈ 𝒰(𝒩̂𝑓; [𝑛1, 𝑛2]) .This is a 

contradiction and therefore 𝒩̂𝑓(𝓅0 ∗ 𝓇0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0), 𝒩̂𝑓(𝓇0)} for all 𝓅0, 𝓇0 ∈ 𝒦. 
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Consequently 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) is a BS-NSSA of 𝒦. 

Corollary: 3.9 If 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) is a BS-NSSA of 𝒦,then the sets 𝒦𝒩𝑡
= {𝓅0 ∈ 𝒦: 𝒩𝑡(𝓅0) = 𝒩𝑡(0)}, 

𝒦𝒩𝑖
= {𝓅0 ∈ 𝒦: 𝒩𝑖(𝓅0) = 𝒩𝑖(0)} and 𝒦𝒩̂𝑓

= {𝓅0 ∈ 𝒦: 𝒩̂𝑓(𝓅0) = 𝒩̂𝑓(0)} are subalgebras of 𝒦. 

We say that the subalgebras as 𝒰(𝒩𝑡; 𝑙), 𝒰(𝒩𝑖; 𝑚) and ℒ(𝒩̂𝑓; [𝑛1, 𝑛2])   are BS-subalgebras of 𝒩 =

(𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) 

Theorem: 3.10 Every subalgebra of 𝒦 can be realized as BS-subalgebra of a BS-NSSA of 𝒦. 

Proof: Let 𝒥 be a subalgebra of 𝒦 and let 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) be a BS-NSS in 𝒦 defined by 

 𝒩𝑡(𝓅0) = {
𝑙        𝑖𝑓 𝓅0 ∈ 𝒥,

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
     𝒩𝑖(𝓅0) = {

𝑚          𝑖𝑓 𝓅0 ∈ 𝒥,
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 and 𝒩̂𝑓(𝓅0) =

{
[𝜂1, 𝜂2]    𝑖𝑓 𝓅0 ∈ 𝒥,

[1,1]       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 

Where 𝑙, 𝑚 ∈ (0,1] and 𝜂1, 𝜂2 ∈ [0,1) with 𝜂1 < 𝜂2. It is clear that 𝒰(𝒩𝑡; 𝑙) = 𝒥, 𝒰(𝒩𝑖; 𝑚) = 𝒥 and 

ℒ(𝒩̂𝑓; [𝜂1, 𝜂2]) = 𝒥. Let 𝓅0 , 𝓇0 ∈ 𝒦. If  𝓅0 , 𝓇0 ∈ 𝒥 then 𝓅0 ∗ 𝓇0 ∈ 𝒥 and so  

𝒩𝑡(𝓅0 ∗ 𝓇0) = 𝑙 = 𝑚𝑖𝑛{𝑙, 𝑙} = 𝑚𝑖𝑛{𝒩𝑡(𝓅0), 𝒩𝑡(𝓇0)} 

𝒩𝑖(𝓅0 ∗ 𝓇0) = 𝑚 = 𝑚𝑖𝑛{𝑚, 𝑚} = 𝑚𝑖𝑛{𝒩𝑖(𝓅0), 𝒩𝑖(𝓇0)} 

𝒩̂𝑓(𝓅0 ∗ 𝓇0) = [𝜂1, 𝜂2] = 𝑟𝑚𝑎𝑥{[𝜂1, 𝜂2], [𝜂1, 𝜂2]} = 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0), 𝒩̂𝑓(𝓇0)}. 

If any one of 𝓅0 𝑎𝑛𝑑 𝓇0  is contained in 𝒥, say 𝓅0 ∈ 𝒥, then 𝒩𝑡(𝓅0) =  𝑙, 𝒩𝑖(𝓅0) = 𝑚, 𝒩̂𝑓(𝓅0) =

[𝜂1, 𝜂2], 𝒩𝑡(𝓇0) = 0, 𝒩𝑖(𝓇0) = 0, 𝑎𝑛𝑑 𝒩̂𝑓(𝓇0) = [1,1]. Hence 

𝒩𝑡(𝓅0 ∗ 𝓇0) ≥ 0 = 𝑚𝑖𝑛{𝑙, 0} = 𝑚𝑖𝑛{𝒩𝑡(𝓅0), 𝒩𝑡(𝓇0)} 

𝒩𝑖(𝓅0 ∗ 𝓇0) ≥ 0 = 𝑚𝑖𝑛{𝑚, 0} = 𝑚𝑖𝑛{𝒩𝑖(𝓅0), 𝒩𝑖(𝓇0)} 

𝒩̂𝑓(𝓅0 ∗ 𝓇0) ≼ [1,1] = 𝑟𝑚𝑎𝑥{[𝜂1, 𝜂2], [1,1]} = 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0), 𝒩̂𝑓(𝓇0)}. 

If 𝓅0 , 𝓇0 ∉ 𝒥, then             

𝒩𝑡(𝓅0) =  0, 𝒩𝑖(𝓅0) = 0, 𝒩̂𝑓(𝓅0) = [1,1], 𝒩𝑡(𝓇0) = 0, 𝒩𝑖(𝓇0) = 0, 𝑎𝑛𝑑 𝒩̂𝑓(𝓇0) = [1,1] it follows that 

𝒩𝑡(𝓅0 ∗ 𝓇0) ≥ 0 = 𝑚𝑖𝑛{0,0} = 𝑚𝑖𝑛{𝒩𝑡(𝓅0), 𝒩𝑡(𝓇0)}  

𝒩𝑖(𝓅0 ∗ 𝓇0) ≥ 0 = 𝑚𝑖𝑛{0,0} = 𝑚𝑖𝑛{𝒩𝑖(𝓅0), 𝒩𝑖(𝓇0)} 

𝒩̂𝑓(𝓅0 ∗ 𝓇0) ≼ [1,1] = 𝑟𝑚𝑎𝑥{[1,1], [1,1]} = 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0), 𝒩̂𝑓(𝓇0)}. 

Therefore 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) is a BS-NSSA of 𝒦. 

Theorem:3.11 For any non-empty set 𝒥 of  𝒦, Let 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) be a BS-NSS in 𝒦 defined by 

 𝒩𝑡(𝓅0) = {
𝑙       𝑖𝑓 𝓅0 ∈ 𝒥,
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

     𝒩𝑖(𝓅0) = {
𝑚          𝑖𝑓 𝓅0 ∈ 𝒥,

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 and 𝒩̂𝑓(𝓅0) =

{
[𝜂1, 𝜂2]   𝑖𝑓 𝓅0 ∈ 𝒥,

[1,1]      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
           Where 𝑙, 𝑚 ∈ (0,1]  and 𝜂1, 𝜂2 ∈ [0,1)  with 𝜂1 < 𝜂2 . If 𝒩 =

(𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) is a BS-NSSA of 𝒦,then 𝒥 is subalgebra of 𝒦. 

Proof: let 𝓅0 , 𝓇0 ∈ 𝒥  then  𝒩𝑡(𝓅0) =  𝑙, 𝒩𝑖(𝓅0) = 𝑚, 𝒩̂𝑓(𝓅0) = [𝜂1, 𝜂2], 𝒩𝑡(𝓇0) = 𝑙, 𝒩𝑖(𝓇0) =

𝑚, 𝑎𝑛𝑑 𝒩̂𝑓(𝓇0) = [𝜂1, 𝜂2]. Thus   

𝒩𝑡(𝓅0 ∗ 𝓇0) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓅0), 𝒩𝑡(𝓇0)} = 𝑙 

𝒩𝑖(𝓅0 ∗ 𝓇0) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓅0), 𝒩𝑖(𝓇0)} = 𝑚 

𝒩̂𝑓(𝓅0 ∗ 𝓇0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0), 𝒩̂𝑓(𝓇0)} = [𝜂1, 𝜂2] and therefore 𝓅0 ∗ 𝓇0 ∈ 𝒥.  

Hence 𝒥 is a subalgebra of 𝒦. 
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Theorem: 3.12 Given a BS-NSSA  𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) of a BCI-algebra 𝒦, Let 𝒩∗ = (𝒩𝑡
∗, 𝒩𝑖

∗, 𝒩̂𝑓

∗
) is 

a BS-NSS defined by 𝒩𝑡
∗(𝓅0) = 𝒩𝑡(0 ∗ 𝓅0), 𝒩𝑖

∗(𝓅0) = 𝒩𝑖(0 ∗ 𝓅0) and 𝒩̂𝑓

∗
(𝓅0) = 𝒩̂𝑓(0 ∗ 𝓅0) for all 

𝓅0 ∈ 𝒦 then 𝒩∗ = (𝒩𝑡
∗, 𝒩𝑖

∗, 𝒩̂𝑓

∗
) is a BS-NSSA of 𝒦. 

Proof: Note that 0 ∗ (𝓅0 ∗ 𝓇0) = (0 ∗ 𝓅0) ∗ (0 ∗ 𝓇0) for all 𝓅0, 𝓇0 ∈ 𝒦. We have  

𝒩𝑡
∗(𝓅0 ∗ 𝓇0) = 𝒩𝑡(0 ∗ (𝓅0 ∗ 𝓇0)) = 𝒩𝑡((0 ∗ 𝓅0) ∗ (0 ∗ 𝓇0))) ≥ 𝑚𝑖𝑛{𝒩𝑡(0 ∗ 𝓅0), 𝒩𝑡(0 ∗ 𝓇0)}

= 𝑚𝑖𝑛{𝒩𝑡
∗(𝓅0), 𝒩𝑡

∗(𝓇0)} 

𝒩𝑖
∗(𝓅0 ∗ 𝓇0) = 𝒩𝑖(0 ∗ (𝓅0 ∗ 𝓇0)) = 𝒩𝑖((0 ∗ 𝓅0) ∗ (0 ∗ 𝓇0))) ≥ 𝑚𝑖𝑛{𝒩𝑖(0 ∗ 𝓅0), 𝒩𝑖(0 ∗ 𝓇0)}

= 𝑚𝑖𝑛{𝒩𝑖
∗(𝓅0), 𝒩𝑖

∗(𝓇0)} 

𝒩̂𝑓

∗
(𝓅0 ∗ 𝓇0) = 𝒩̂𝑓(0 ∗ (𝓅0 ∗ 𝓇0)) = 𝒩̂𝑓((0 ∗ 𝓅0) ∗ (0 ∗ 𝓇0))) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(0 ∗ 𝓅0), 𝒩̂𝑓(0 ∗ 𝓇0)} =

𝑟𝑚𝑎𝑥{𝒩̂𝑓

∗
(𝓅0), 𝒩̂𝑓

∗
(𝓇0)} for all 𝓅0 , 𝓇0 ∈ 𝒦 

Therefore  𝒩∗ = (𝒩𝑡
∗, 𝒩𝑖

∗, 𝒩̂𝑓

∗
) is a BS-NSSA of 𝒦. 

Theorem: 3.13 Let Ψ: 𝒦 → 𝒴 be a homomorphism of BCK/BCI-algebras. If 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) is a BS-

NSSA of 𝒴 , then Ψ−1(𝒩) = (Ψ−1(𝒩𝑡), Ψ−1(𝒩𝑖), Ψ−1(𝒩̂𝑓))  is a BS-NSSA of 𝒦 . Where 

Ψ−1(𝒩𝑡)(𝓅0) = 𝒩𝑡(Ψ(𝓅0))  , Ψ−1(𝒩𝑖)(𝓅0) = 𝒩𝑖(Ψ(𝓅0)) and Ψ−1(𝒩̂𝑓)(𝓅0) = 𝒩̂𝑓(Ψ(𝓅0))  for all 

𝓅0 ∈ 𝒦. 

Proof: Let 𝓅0, 𝓇0 ∈ 𝒦. Then  

Ψ−1(𝒩𝑡)(𝓅0 ∗ 𝓇0) = 𝒩𝑡(Ψ(𝓅0 ∗ 𝓇0)) = 𝒩𝑡(Ψ(𝓅0) ∗ Ψ(𝓇0)) ≥ 𝑚𝑖𝑛{𝒩𝑡(Ψ(𝓅0)), 𝒩𝑡(Ψ(𝓇0))} =

𝑚𝑖𝑛{Ψ−1(𝒩𝑡)(𝓅0), Ψ−1(𝒩𝑡)(𝓇0)}, 

Ψ−1(𝒩𝑖)(𝓅0 ∗ 𝓇0) = 𝒩𝑖(Ψ(𝓅0 ∗ 𝓇0)) = 𝒩𝑖(Ψ(𝓅0) ∗ Ψ(𝓇0)) ≥ 𝑚𝑖𝑛{𝒩𝑖(Ψ(𝓅0)), 𝒩𝑖(Ψ(𝓇0))} =

𝑚𝑖𝑛{Ψ−1(𝒩𝑖)(𝓅0), Ψ−1(𝒩𝑖)(𝓇0)}, 

And 

Ψ−1(𝒩̂𝑓)(𝓅0 ∗ 𝓇0) = 𝒩̂𝑓(Ψ(𝓅0 ∗ 𝓇0)) = 𝒩̂𝑓(Ψ(𝓅0) ∗ Ψ(𝓇0)) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(Ψ(𝓅0)), 𝒩̂𝑓(Ψ(𝓇0))} =

𝑟𝑚𝑎𝑥{Ψ−1(𝒩̂𝑓)(𝓅0), Ψ−1(𝒩̂𝑓)(𝓇0)}. 

Hence Ψ−1(𝒩) = (Ψ−1(𝒩𝑡), Ψ−1(𝒩𝑖), Ψ−1(𝒩̂𝑓)) is a BS-NSSA of 𝒦 

Let 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) be a BS-NSS in 𝒦. We denote  

𝔖 = 1 − 𝑠𝑢𝑝{𝒩𝑡(𝓅0): 𝓅0 ∈ 𝒦} 

𝔎 = 1 − 𝑠𝑢𝑝{𝒩𝑖(𝓅0): 𝓅0 ∈ 𝒦} 

𝔅 = 𝑟inf {𝒩̂𝑓(𝓅0): 𝓅0 ∈ 𝒦}. 

For any 𝑎 ∈ [0, 𝔖] , 𝑏 ∈ [0, 𝔎]  and 𝑐 ̂ ∈ [[0,0], 𝔅]  we define 𝒩𝑡
𝑎(𝓅0) = 𝒩𝑡(𝓅0) + 𝑎 , 𝒩𝑖

𝑏(𝓅0) =

𝒩𝑖(𝓅0) + 𝑏 and 𝒩̂𝑓

𝑐 ̂
= 𝒩̂𝑓(𝓅0) − 𝑐̂ then 𝒩𝑇 = (𝒩𝑡

𝑎 , 𝒩𝑖
𝑏 , 𝒩̂𝑓

𝑐 ̂
) is a BS-NSS in 𝒦,which is called a 

(𝑎, 𝑏, 𝑐 ̂ ) − translative BS-NSS of  𝒦. 

Theorem: 3.14 If 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) BS-NSSA of 𝒦 , then the (𝑎, 𝑏, 𝑐 ̂ ) −  translative BS-NSS of  

𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) is also a BS-NSSA of 𝒦. 

Proof: For any 𝓅0, 𝓇0 ∈ 𝒦,we get  

 𝒩𝑡
𝑎(𝓅0 ∗ 𝓇0) = 𝒩𝑡(𝓅0 ∗ 𝓇0) + 𝑎 ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓅0), 𝒩𝑡(𝓇0)} + 𝑎 = 𝑚𝑖𝑛{𝒩𝑡(𝓅0) + 𝑎, 𝒩𝑡(𝓇0) + 𝑎} =

𝑚𝑖𝑛{𝒩𝑡
𝑎(𝓅0), 𝒩𝑡

𝑎(𝓇0)}, 

𝒩𝑖
𝑏(𝓅0 ∗ 𝓇0) = 𝒩𝑖(𝓅0 ∗ 𝓇0) + 𝑏 ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓅0), 𝒩𝑖(𝓇0)} + 𝑏 = 𝑚𝑖𝑛{𝒩𝑖(𝓅0) + 𝑏, 𝒩𝑖(𝓇0) + 𝑏} =

𝑚𝑖𝑛{𝒩𝑖
𝑏(𝓅0), 𝒩𝑖

𝑏(𝓇0)}, and 
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𝒩̂𝑓

𝑐 ̂
(𝓅0 ∗ 𝓇0) = 𝒩̂𝑓(𝓅0 ∗ 𝓇0) − 𝑐 ̂ ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0), 𝒩̂𝑓(𝓇0)} − 𝑐 ̂ = 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0) − 𝑐 ̂ , 𝒩̂𝑓(𝓇0) −

𝑐 ̂ } = 𝑟𝑚𝑎𝑥 {𝒩̂𝑓

𝑐 ̂
(𝓅0), 𝒩̂𝑓

𝑐 ̂
(𝓇0)}. Therefore 𝒩𝑇 = (𝒩𝑡

𝑎̂ , 𝒩𝑖
𝑏 , 𝒩̂𝑓

𝑐
) is a BS-NSSA of 𝒦. 

Theorem: 3.15 Let 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) be a BS-NSS in 𝒦 such that its (𝑎, 𝑏, 𝑐 ̂ ) − translative BS-NSS 

is a BS-NSSA of 𝒦 for 𝑎 ∈ [0, 𝔖],𝑏 ∈ [0, 𝔎] and 𝑐 ̂ ∈ [[0,0], 𝔅]. Then 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓)is a BS-NSSA 

of 𝒦. 

Proof: Assume that 𝒩𝑇 = (𝒩𝑡
𝑎, 𝒩𝑖

𝑏 , 𝒩̂𝑓

𝑐 ̂
) is a BS-NSSA of 𝒦  for 𝑎 ∈ [0, 𝔖],𝑏 ∈ [0, 𝔎]  and 𝑐 ̂ ∈

[[0,0], 𝔅]. Let 𝓅0, 𝓇0 ∈ 𝒦. Then  

𝒩𝑡(𝓅0 ∗ 𝓇0) + 𝑎 = 𝒩𝑡
𝑎(𝓅0 ∗ 𝓇0) ≥ 𝑚𝑖𝑛{𝒩𝑡

𝑎(𝓅0), 𝒩𝑡
𝑎(𝓇0)} = 𝑚𝑖𝑛{𝒩𝑡(𝓅0) + 𝑎, 𝒩𝑡(𝓇0) + 𝑎} =

𝑟𝑚𝑖𝑛{𝒩𝑡(𝓅0), 𝒩𝑡(𝓇0)} + 𝑎, 

𝒩𝑖(𝓅0 ∗ 𝓇0) + 𝑏 = 𝒩𝑖
𝑏(𝓅0 ∗ 𝓇0) ≥ 𝑚𝑖𝑛{𝒩𝑖

𝑏(𝓅0), 𝒩𝑖
𝑏(𝓇0)} = 𝑚𝑖𝑛{𝒩𝑖(𝓅0) + 𝑏, 𝒩𝑖(𝓇0) + 𝑏} =

𝑚𝑖𝑛{𝒩𝑖(𝓅0), 𝒩𝑖(𝓇0)} + 𝑏, and  

𝒩̂𝑓(𝓅0 ∗ 𝓇0) − 𝑐 ̂ = 𝒩̂𝑓

𝑐 ̂
(𝓅0 ∗ 𝓇0) ≼ 𝑟𝑚𝑎𝑥 {𝒩̂𝑓

𝑐 ̂
(𝓅0), 𝒩̂𝑓

𝑐 ̂
(𝓇0)} = 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0) − 𝑐 ̂ , 𝒩̂𝑓(𝓇0) −

𝑐 ̂ } = 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0), 𝒩̂𝑓(𝓇0)} − 𝑐 ̂ . It follows that 

𝒩𝑡(𝓅0 ∗ 𝓇0) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓅0), 𝒩𝑡(𝓇0)} 

𝒩𝑖(𝓅0 ∗ 𝓇0) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓅0), 𝒩𝑖(𝓇0)} 

𝒩̂𝑓(𝓅0 ∗ 𝓇0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0), 𝒩̂𝑓(𝓇0)} for all 𝓅0 , 𝓇0 ∈ 𝒦. 

 Hence 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓)is a BS-NSSA of 𝒦. 

4. BS-Neutrosophic Ideal (BS-NSI) 

Definition:4.1 Let 𝒦 be a BCK/BCI-algebra. A BS-NSS  𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) in 𝒦 is called a BS-NSI of 

𝒦 if it satisfies                                                                                                    

(BS-NSI 1) 𝒩𝑡(0) ≥ 𝒩𝑡(𝓅0), 𝒩𝑖(0) ≥ 𝒩𝑖(𝓅0) and 𝒩̂𝑓(0) ≼ 𝒩̂𝑓(𝑥)  for all 𝓅0 ∈ 𝒦 

(BS-NSI 2) 𝒩𝑡(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓅0 ∗ 𝓇0), 𝒩𝑡(𝓇0)} 

(BS-NSI 3) 𝒩𝑖(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓅0 ∗ 𝓇0), 𝒩𝑖(𝓇0)} 

(BS-NSI 4) 𝒩̂𝑓(𝓅0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0 ∗ 𝓇0), 𝒩̂𝑓(𝓇0)} for all 𝓅0, 𝓇0 ∈ 𝒦. 

Example:4.2 Consider a set 𝒦 = {0,1,2, 𝑎} with the binary operation ‘∗’ which is given in the table:3 

Then (𝒦 ; ∗, 0) is a BCI-algebra.  

∗ 0 a b 1 

0 0 0 0 1 

a a 0 0 1 

b b b 0 1 

1 1 1 1 0 

Table.3 BCI-algebra 

Let 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) be a BS-NSS in 𝒦 defined in table:4 

𝒦 𝒩𝑡(𝓅0) 𝒩𝑖(𝓅0) 𝒩̂𝑓(𝓅0) 

0 0.9 0.8 [0.2,0.5] 
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a 0.7 0.6 [0.4,0.7] 

b 0.4 0.3 [0.7,0.9] 

1 0.2 0.1 [0.9,1] 

Table.4 BS-NSI 

It is routine to verify that 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) is a BS-NSI of  𝒦. 

Proposition: 4.3 Let 𝒦 be a BCK/BCI-algebra. Then every BS-NSI 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) of  𝒦 satisfies 

the following assertion  𝓅0 ∗ 𝓇0 ≤ 𝓊0 ⇒ 𝒩𝑡(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓇0), 𝒩𝑡(𝓊0)} , 𝒩𝑖(𝓅0) ≥

𝑚𝑖𝑛{𝒩𝑖(𝓇0), 𝒩𝑖(𝓊0)}, 𝒩̂𝑓(𝓅0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓇0), 𝒩̂𝑓(𝓊0)} for all 𝓅0, 𝓇0 , 𝓊0 ∈ 𝒦. 

Proof: Let 𝓅0, 𝓇0, 𝓊0 ∈ 𝒦 be such that 𝓅0 ∗ 𝓇0 ≤ 𝓊0. Then  

𝒩𝑡(𝓅0 ∗ 𝓇0) ≥ 𝑚𝑖𝑛{𝒩𝑡((𝓅0 ∗ 𝓇0) ∗ 𝓊0), 𝒩𝑡(𝓊0)} = 𝑚𝑖𝑛{𝒩𝑡(0), 𝒩𝑡(𝓊0)} = 𝒩𝑡(𝓊0), 

𝒩𝑖(𝓅0 ∗ 𝓇0) ≥ 𝑚𝑖𝑛{𝒩𝑖((𝓅0 ∗ 𝓇0) ∗ 𝓊0), 𝒩𝑖(𝓊0)} = 𝑚𝑖𝑛{𝒩𝑖(0), 𝒩𝑖(𝓊0)} = 𝒩𝑖(𝓊0), and 

𝒩̂𝑓(𝓅0 ∗ 𝓇0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓((𝓅0 ∗ 𝓇0) ∗ 𝓊0), 𝒩̂𝑓(𝓊0)} = 𝑟𝑚𝑎𝑥{𝒩̂𝑓(0), 𝒩̂𝑓(𝓊0)} = 𝒩̂𝑓(𝓊0). 

It follows that  

𝒩𝑡(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓅0 ∗ 𝓇0), 𝒩𝑡(𝓇0)}  ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓊0), 𝒩𝑡(𝓇0)}, 

𝒩𝑖(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓅0 ∗ 𝓇0), 𝒩𝑖(𝓇0)}  ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓊0), 𝒩𝑖(𝓇0)}, 

𝒩̂𝑓(𝓅0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0 ∗ 𝓇0), 𝒩̂𝑓(𝓇0)} ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓊0), 𝒩̂𝑓(𝓇0)}  for all 𝓅0, 𝓇0 ∈ 𝒦.  

Hence the proof is completed. 

Theorem: 4.4 Every BS-NSS in a BCK/BCI-algebra 𝒦 satisfying (BS-NSI 1) and assertion  𝓅0 ∗ 𝓇0 ≤

𝓊0 ⇒ 𝒩𝑡(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓇0), 𝒩𝑡(𝓊0)} , 𝒩𝑖(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓇0), 𝒩𝑖(𝓊0)} , 𝒩̂𝑓(𝓅0) ≼

𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓇0), 𝒩̂𝑓(𝓊0)} for all 𝓅0, 𝓇0, 𝓊0 ∈ 𝒦 is a BS-NSI of  𝒦. 

Proof: Let 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) be a BS-NSS in 𝒦 satisfying (BS-NSI 1) and assertion  𝓅0 ∗ 𝓇0 ≤ 𝓊0 ⇒

𝒩𝑡(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓇0), 𝒩𝑡(𝓊0)} , 𝒩𝑖(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓇0), 𝒩𝑖(𝓊0)} , 𝒩̂𝑓(𝓅0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓇0), 𝒩̂𝑓(𝓊0)} 

for all 𝓅0, 𝓇0 ∈ 𝒦.                                                                                                                                          

Note that 𝓅0 ∗ (𝓅0 ∗ 𝓇0) ≤ 𝓇0  for all 𝓅0, 𝓇0 ∈ 𝒦. So, we have  

𝒩𝑡(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓅0 ∗ 𝓇0), 𝒩𝑡(𝓇0)},  

𝒩𝑖(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓅0 ∗ 𝓇0), 𝒩𝑖(𝓇0)}, 

𝒩̂𝑓(𝓅0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0 ∗ 𝓇0), 𝒩̂𝑓(𝓇0)}. There fore 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) is a BS-NSI of  𝒦. 

Theorem: 4.5 Given a BS-NSS 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) in a BCK/BCI-algebra 𝒦. Then 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) is 

a BS-NSI if and only if 𝒩𝑡, 𝒩𝑖 , (𝒩𝑓
−)

𝑐
, 𝑎𝑛𝑑 (𝒩𝑓

+)
𝑐
 are fuzzy ideals of  𝒦. 

Proof: suppose that  𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) be a BS-NSI in 𝒦. Then we have 𝒩𝑡(0) ≥ 𝒩𝑡(𝓅0), 𝒩𝑖(0) ≥

𝒩𝑖(𝓅0) and 𝒩̂𝑓(0) ≼ 𝒩̂𝑓(𝑥)  for all 𝓅0 ∈ 𝒦 

𝒩𝑡(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓅0 ∗ 𝓇0), 𝒩𝑡(𝓇0)} 

𝒩𝑖(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓅0 ∗ 𝓇0), 𝒩𝑖(𝓇0)}  

𝒩̂𝑓(𝓅0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0 ∗ 𝓇0), 𝒩̂𝑓(𝓇0)} for all 𝓅0 , 𝓇0 ∈ 𝒦 

Now 𝒩̂𝑓(0) ≼ 𝒩̂𝑓(𝓅0) ⇒ [𝒩𝑓
−(0), 𝒩𝑓

+(0)] ≼ [𝒩𝑓
−(𝓅0) , 𝒩𝑓

+
(𝓅0)] 

⇒ 𝒩𝑓
−(0) ≤ 𝒩𝑓

−(𝓅0) 𝑎𝑛𝑑 𝒩𝑓
+(0) ≤ 𝒩𝑓

+(𝓅0)  

⇒ (𝒩𝑓
−)

𝑐
(0) ≥ (𝒩𝑓

−)
𝑐
(𝓅0) 𝑎𝑛𝑑 (𝒩𝑓

+)
𝑐
(0) ≥ (𝒩𝑓

+)
𝑐
(𝓅0) 

𝒩̂𝑓(𝓅0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0 ∗ 𝓇0), 𝒩̂𝑓(𝓇0)} 

⇒ [𝒩𝑓
−(𝓅0), 𝒩𝑓

+(𝓅0)] ≼ 𝑟𝑚𝑎𝑥{[𝒩𝑓
−(𝓅0 ∗ 𝓇0), 𝒩𝑓

+(𝓅0 ∗ 𝓇0)], [𝒩𝑓
−(𝓇0), 𝒩𝑓

+(𝓇0)]} 

                      = [𝑚𝑎𝑥{𝒩𝑓
−(𝓅0 ∗ 𝓇0), 𝒩𝑓

−(𝓇0)}, 𝑚𝑎𝑥{𝒩𝑓
+(𝓅0 ∗ 𝓇0), 𝒩𝑓

+(𝓇0)}]  

Therefore 
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 𝒩𝑓
−(𝓅0) ≤ 𝑚𝑎𝑥{𝒩𝑓

−(𝓅0 ∗ 𝓇0), 𝒩𝑓
−(𝓇0)} and 𝒩𝑓

+(𝓅0) ≤ 𝑚𝑎𝑥{𝒩𝑓
+(𝓅0 ∗ 𝓇0), 𝒩𝑓

+(𝓇0)} 

⇒ 1 − 𝒩𝑓
−(𝓅0) ≥ 1 − 𝑚𝑎𝑥{𝒩𝑓

−(𝓅0 ∗ 𝓇0), 𝒩𝑓
−(𝓇0)} 

⇒ (𝒩𝑓
−)

𝑐
(𝓅0) ≥ 𝑚𝑖𝑛{1 − 𝒩𝑓

−(𝓅0 ∗ 𝓇0), 1 − 𝒩𝑓
−(𝓇0)} 

⇒ (𝒩𝑓
−)

𝑐
(𝓅0) ≥ 𝑚𝑖𝑛{(𝒩𝑓

−)
𝑐
(𝓅0 ∗ 𝓇0), (𝒩𝑓

−)
𝑐
(𝓇0)}  

Similarly 

(𝒩𝑓
+)

𝑐
(𝓅0) ≥ 𝑚𝑖𝑛{(𝒩𝑓

+)
𝑐
(𝓅0 ∗ 𝓇0), (𝒩𝑓

+)
𝑐
(𝓇0)} 

Therefore 𝒩𝑡, 𝒩𝑖 , (𝒩𝑓
−)

𝑐
, 𝑎𝑛𝑑 (𝒩𝑓

+)
𝑐
 are fuzzy ideals of  𝒦. 

Converse part is obvious. 

Theorem: 4.6 A BS-NSS 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) in 𝒦 is a BS-NSI of  𝒦 if and only if the non-empty sets 

𝒰(𝒩𝑡; 𝑙), 𝒰(𝒩𝑖; 𝑚) and ℒ(𝒩̂𝑓; [𝑛1, 𝑛2]) are ideals of  𝒦 for all 𝑙, 𝑚 ∈ [0,1] and [𝑛1, 𝑛2] ∈ [𝐼] 

Proof: Suppose that 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) is a BS-NSI of 𝒦.  

Let 𝑙, 𝑚 ∈ [0,1] and [𝑛1, 𝑛2] ∈ [𝐼]  be such that 𝒰(𝒩𝑡; 𝑙) , 𝒰(𝒩𝑖; 𝑚)  and ℒ(𝒩̂𝑓; [𝑛1, 𝑛2])  are non-

empty.                                                                                           

Obviously 0 ∈ 𝒰(𝒩𝑡; 𝑙), 0 ∈ 𝒰(𝒩𝑖; 𝑚) and 0 ∈ ℒ(𝒩̂𝑓; [𝑛1, 𝑛2]) 

For any 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2 ∈ 𝒦  if  𝑎1 ∗ 𝑎2, 𝑎2 ∈ (𝒩𝑡; 𝑙) , 𝑏1 ∗ 𝑏2, 𝑏2 ∈ 𝒰(𝒩𝑖; 𝑚)  and 𝑐1 ∗ 𝑐2, 𝑐2 ∈

ℒ(𝒩̂𝑓; [𝑛1, 𝑛2]) then 

𝒩𝑡(𝑎1) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝑎1 ∗ 𝑎2), 𝒩𝑡(𝑎2)} ≥ 𝑚𝑖𝑛{𝑙, 𝑙} = 𝑙 

𝒩𝑖(𝑏1) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝑏1 ∗ 𝑏2), 𝒩𝑖(𝑏2)} ≥ 𝑚𝑖𝑛{𝑚, 𝑚} = 𝑚 

𝒩̂𝑓(𝑐1) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝑐1 ∗ 𝑐2), 𝒩̂𝑓(𝑐2)} ≼ 𝑟𝑚𝑎𝑥{[𝑛1, 𝑛2], [𝑛1, 𝑛2]} = [𝑛1, 𝑛2] 

Therefore 𝑎1 ∈ 𝒰(𝒩𝑡; 𝑙), 𝑏1 ∈ 𝒰(𝒩𝑖; 𝑚) and 𝑐1 ∈ ℒ(𝒩̂𝑓; [𝑛1, 𝑛2]) 

Hence 𝒰(𝒩𝑡; 𝑙), 𝒰(𝒩𝑖; 𝑚) and ℒ(𝒩̂𝑓; [𝑛1, 𝑛2]) are ideals of 𝒦. 

Conversely, assume that the non-empty sets 𝒰(𝒩𝑡; 𝑙), 𝒰(𝒩𝑖; 𝑚) and ℒ(𝒩̂𝑓; [𝑛1, 𝑛2]) are ideals of 𝒦 

for all 𝑙, 𝑚 ∈ [0,1] and [𝑛1, 𝑛2] ∈ [𝐼]. 

Suppose that 𝒩𝑡(0) < 𝒩𝑡(𝓅0), 𝒩𝑖(0) < 𝒩𝑖(𝓅0) and 𝒩̂𝑓(0) ≻ 𝒩̂𝑓(𝓅0) for some 𝓅0 ∈ 𝒦. 

Then 0 ∉ 𝒰(𝒩𝑡; 𝒩𝑡(𝓅0)) ∩ 𝒰(𝒩𝑖; 𝒩𝑖(𝓅0)) ∩ ℒ(𝒩̂𝑓; 𝒩̂𝑓(𝓅0)).which is a contradiction. 

Hence 𝒩𝑡(0) ≥ 𝒩𝑡(𝓅0), 𝒩𝑖(0) ≥ 𝒩𝑖(𝓅0) and 𝒩̂𝑓(0) ≼ 𝒩̂𝑓(𝑥)  for all 𝓅0 ∈ 𝒦 

If  𝒩𝑡(𝑎0) < 𝑚𝑖𝑛{𝒩𝑡(𝑎0 ∗ 𝑏0), 𝒩𝑡(𝑏0)}  for some 𝑎0, 𝑏0 ∈ 𝒦 , then 𝑎0 ∗ 𝑏0, 𝑏0 ∈ 𝒰(𝒩𝑡; 𝑙0)  but  𝑎0 ∉

𝒰(𝒩𝑡; 𝑙0) for 𝑙0 = 𝑚𝑖𝑛{𝒩𝑡(𝑎0 ∗ 𝑏0), 𝒩𝑡(𝑏0)}. This is a contradiction, and thus  

𝒩𝑡(𝑎) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝑎 ∗ 𝑏), 𝒩𝑡(𝑏)} for all 𝑎, 𝑏 ∈ 𝒦. 

Similarly, we can show that 𝒩𝑖(𝑎) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝑎 ∗ 𝑏), 𝒩𝑖(𝑏)} for all 𝑎, 𝑏 ∈ 𝒦. 

Suppose that 𝒩̂𝑓(𝑎0) ≻ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝑎0 ∗ 𝑏0), 𝒩̂𝑓(𝑏0)} for some 𝑎0, 𝑏0 ∈ 𝒦. 

Let 𝒩̂𝑓(𝑎0 ∗ 𝑏0) = [𝛿1, 𝛿2], 𝒩̂𝑓(𝑏0) = [𝛿3, 𝛿4] and  𝒩̂𝑓(𝑎0) = [𝑛1, 𝑛2]  

Then [𝑛1, 𝑛2] ≻ 𝑟𝑚𝑎𝑥{[𝛿1, 𝛿2], [𝛿3, 𝛿4]} = [𝑚𝑎𝑥{𝛿1, 𝛿3}, 𝑚𝑎𝑥{𝛿2, 𝛿4}] and so 

 𝑛1 > 𝑚𝑎𝑥{𝛿1, 𝛿3} and 𝑛2 > 𝑚𝑎𝑥{𝛿2, 𝛿4} 

Taking [𝜂1, 𝜂2] =
1

2
[𝒩̂𝑓(𝑎0) + 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝑎0 ∗ 𝑏0), 𝒩̂𝑓(𝑏0)}] 

                         =
1

2
[[𝑛1, 𝑛2] + (𝑚𝑎𝑥{𝛿1, 𝛿3}, 𝑚𝑎𝑥{𝛿2, 𝛿4})] 

                         = [
1

2
(𝑛1 + 𝑚𝑎𝑥{𝛿1, 𝛿3}),

1

2
(𝑛2 + 𝑚𝑎𝑥{𝛿2, 𝛿4})] 

It follows that 
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 𝑛1 > 𝜂1 =
1

2
(𝑛1 + 𝑚𝑎𝑥{𝛿1, 𝛿3}) > 𝑚𝑎𝑥{𝛿1, 𝛿3} and 𝑛2 > 𝜂2 =

1

2
(𝑛2 + 𝑚𝑎𝑥{𝛿2, 𝛿4}) > 𝑚𝑎𝑥{𝛿2, 𝛿4} 

Hence [𝑚𝑎𝑥{𝛿1, 𝛿3}, 𝑚𝑎𝑥{𝛿2, 𝛿4}] ≺ [𝜂1, 𝜂2] ≺ [𝑛1, 𝑛2] = 𝒩̂𝑓(𝑎0)  

Therefore 𝑎0 ∉ 𝒰(𝒩̂𝑓; [𝑛1, 𝑛2]). On the other hand  

 𝒩̂𝑓(𝑎0 ∗ 𝑏0) = [𝛿1, 𝛿2] ≼ [𝑚𝑎𝑥{𝛿1, 𝛿3}, 𝑚𝑎𝑥{𝛿2, 𝛿4}] ≺ [𝜂1, 𝜂2] 

𝒩̂𝑓(𝑏0) = [𝛿3, 𝛿4] ≼ [𝑚𝑎𝑥{𝛿1, 𝛿3}, 𝑚𝑎𝑥{𝛿2, 𝛿4}] ≺ [𝜂1, 𝜂2]  that is 𝑎0 ∗ 𝑏0, 𝑏0 ∈ 𝒰(𝒩̂𝑓; [𝑛1, 𝑛2]) .This is a 

contradiction and therefore 𝒩̂𝑓(𝑎0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝑎0 ∗ 𝑏0), 𝒩̂𝑓(𝑏0)}  for all 𝑎0, 𝑏0 ∈ 𝒦 .Consequently 

𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) is a BS-NSI of 𝒦. 

 

Theorem: 4.7 Given an ideal 𝒥 of a BCK/BCI-algebra 𝒦, let 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) be an BS-NSS in 𝒦 

defined by 𝒩𝑡(𝓅0) = {
𝑙            𝑖𝑓 𝓅0 ∈ 𝒥,

0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
     𝒩𝑖(𝓅0) = {

𝑚         𝑖𝑓 𝓅0 ∈ 𝒥,
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 and 

𝒩̂𝑓(𝓅0) = {
[𝜂1, 𝜂2]         𝑖𝑓 𝓅0 ∈ 𝒥,

[1,1]         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 Where 𝑙, 𝑚 ∈ (0,1] and 𝜂1, 𝜂2 ∈ [0,1) with 𝜂1 < 𝜂2  Then 

𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) is a BS-NSI of 𝒦 such that 𝒰(𝒩𝑡; 𝑙) = 𝒥, 𝒰(𝒩𝑖; 𝑚) = 𝒥 and ℒ(𝒩̂𝑓; [𝜂1, 𝜂2]) = 𝒥. 

Proof: Let 𝓅0, 𝓇0 ∈ 𝒦 

If  𝓅0 ∗ 𝓇0 ∈ 𝒥 and 𝓇0 ∈ 𝒥 then 𝓅0 ∈ 𝒥 and so  

𝒩𝑡(𝓅0) = 𝑙 = 𝑚𝑖𝑛{𝑙, 𝑙} = 𝑚𝑖𝑛{𝒩𝑡(𝓅0 ∗ 𝓇0), 𝒩𝑡(𝓇0)} 

𝒩𝑖(𝓅0) = 𝑚 = 𝑚𝑖𝑛{𝒩𝑖(𝓅0 ∗ 𝓇0), 𝒩𝑖(𝓇0)} 

𝒩̂𝑓(𝓅0) = [𝜂1, 𝜂2] = 𝑟𝑚𝑎𝑥{[𝜂1, 𝜂2], [𝜂1, 𝜂2]} = 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0 ∗ 𝓇0), 𝒩̂𝑓(𝓇0)}. 

If any one of 𝓅0 ∗ 𝓇0 𝑎𝑛𝑑 𝓇0  is contained in 𝒥 , say 𝓅0 ∗ 𝓇0 ∈ 𝒥 , then 𝒩𝑡(𝓅0 ∗ 𝓇0) = 𝑙, 𝒩𝑖(𝓅0 ∗

𝓇0) = 𝑚, 𝒩̂𝑓(𝓅0 ∗ 𝓇0) = [𝜂1, 𝜂2], 𝒩𝑡(𝓇0) = 0, 𝒩𝑖(𝓇0) = 0, 𝑎𝑛𝑑 𝒩̂𝑓(𝓇0) = [1,1]. Hence 

𝒩𝑡(𝓅0) ≥ 0 = 𝑚𝑖𝑛{𝑙, 0} = 𝑚𝑖𝑛{𝒩𝑡(𝓅0 ∗ 𝓇0), 𝒩𝑡(𝓇0)} 

𝒩𝑖(𝓅0) ≥ 0 = 𝑚𝑖𝑛{𝑚, 0} = 𝑚𝑖𝑛{𝒩𝑖(𝓅0 ∗ 𝓇0), 𝒩𝑖(𝓇0)} 

𝒩̂𝑓(𝓅0) ≼ [1,1] = 𝑟𝑚𝑎𝑥{[𝜂1, 𝜂2], [1,1]} = 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0 ∗ 𝓇0), 𝒩̂𝑓(𝓇0)}. 

If 𝓅0 ∗ 𝓇0 ∉ 𝒥 𝑎𝑛𝑑 𝓇0 ∉ 𝒥,then            

𝒩𝑡(𝓅0 ∗ 𝓇0) = 0, 𝒩𝑖(𝓅0 ∗ 𝓇0) = 0, 𝒩̂𝑓(𝓅0 ∗ 𝓇0) = [1,1], 𝒩𝑡(𝓇0) = 0, 𝒩𝑖(𝓇0) = 0, 𝑎𝑛𝑑 𝒩̂𝑓(𝓇0) = [1,1]  it 

follows that 

𝒩𝑡(𝓅0) ≥ 0 = 𝑚𝑖𝑛{0,0} = 𝑚𝑖𝑛{𝒩𝑡(𝓅0 ∗ 𝓇0), 𝒩𝑡(𝓇0)}, 

𝒩𝑖(𝓅0) ≥ 0 = 𝑚𝑖𝑛{0,0} = 𝑚𝑖𝑛{𝒩𝑖(𝓅0 ∗ 𝓇0), 𝒩𝑖(𝓇0)}, 

𝒩̂𝑓(𝓅0) ≼ [1,1] = 𝑟𝑚𝑎𝑥{[1,1], [1,1]} = 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0 ∗ 𝓇0), 𝒩̂𝑓(𝓇0)}. 

It is obvious that 𝒩𝑡(0) ≥ 𝒩𝑡(𝓅0), 𝒩𝑖(0) ≥ 𝒩𝑖(𝓅0) and 𝒩̂𝑓(0) ≼ 𝒩̂𝑓(𝑥)  for all 𝓅0 ∈ 𝒦 

Therefore 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) is a BS-NSI of 𝒦. 

Obviously, we have 𝒰(𝒩𝑡; 𝑙) = 𝒥, 𝒰(𝒩𝑖; 𝑚) = 𝒥 and ℒ(𝒩̂𝑓; [𝜂1, 𝜂2]) = 𝒥. 

Theorem:4.8 For any non-empty set 𝒥 of  𝒦, Let 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) be a BS-NSS in 𝒦 defined by  

𝒩𝑡(𝓅0) = {
𝑙            𝑖𝑓 𝓅0 ∈ 𝒥,

0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
   𝒩𝑖(𝓅0) = {

𝑚         𝑖𝑓 𝓅0 ∈ 𝒥,
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 and 𝒩̂𝑓(𝓅0) =

{
[𝜂1, 𝜂2]         𝑖𝑓 𝓅0 ∈ 𝒥,

[1,1]         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 Where 𝑙, 𝑚 ∈ (0,1]  and 𝜂1, 𝜂2 ∈ [0,1) with 𝜂1 < 𝜂2  .If 𝒩 =

(𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) is a BS-NSI of 𝒦,then 𝒥 is ideal of 𝒦. 

Proof: Obviously, 0 ∈ 𝒥 . Let  𝓅0, 𝓇0 ∈ 𝒦  be such that 𝓅0 ∗ 𝓇0 , 𝓇0 ∈ 𝒥  then 𝒩𝑡(𝓅0 ∗ 𝓇0) =

 𝑙, 𝒩𝑖(𝓅0 ∗ 𝓇0) = 𝑚, 𝒩̂𝑓(𝓅0 ∗ 𝓇0) = [𝜂1, 𝜂2], 𝒩𝑡(𝓇0) = 𝑙, 𝒩𝑖(𝓇0) = 𝑚, 𝑎𝑛𝑑 𝒩̂𝑓(𝓇0) = [𝜂1, 𝜂2]. Thus   
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𝒩𝑡(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓅0 ∗ 𝓇0), 𝒩𝑡(𝓇0)} = 𝑙 

𝒩𝑖(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓅0 ∗ 𝓇0), 𝒩𝑖(𝓇0)} = 𝑚 

𝒩̂𝑓(𝓅0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0 ∗ 𝓇0), 𝒩̂𝑓(𝓇0)} = [𝜂1, 𝜂2] and therefore 𝓅0 ∈ 𝒥. Hence 𝒥 is an ideal of 𝒦. 

Theorem:4.9 In a BCK-algebra 𝒦, every BS-NSI is a BS-NSSA of 𝒦. 

Proof: Let 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) be a BS-NSI of a BCK-algebra 𝒦. 

Since (𝓅0 ∗ 𝓇0) ∗ 𝓅0 ≤ 𝓇0  for 𝓅0, 𝓇0 ∈ 𝒦, it follows from proposition 4.3 that  

𝒩𝑡(𝓅0 ∗ 𝓇0) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓅0), 𝒩𝑡(𝓇0)},   𝒩𝑖(𝓅0 ∗ 𝓇0) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓅0), 𝒩𝑖(𝓇0)} 

𝒩̂𝑓(𝓅0 ∗ 𝓇0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0), 𝒩̂𝑓(𝓇0)} for all 𝓅0 , 𝓇0 ∈ 𝒦. 

Hence 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) be a BS-NSSA of a BCK-algebra 𝒦. 

The converse of the above theorem may not be true as seen in the following example. 

Example: 4.10 Consider a BCK-algebra 𝒦 = {0, 𝑎, 𝑏, 𝑐} with a binary operation ‘∗’ which is given in 

table.5 Let 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) be a BS-NSS in 𝒦 defined by table.6 then 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) is BS-NSSA 

of 𝒦, but it is not an BS-NSI of a BCK-algebra 𝒦. Since 𝒩𝑡(𝑎) ≱ 𝑠𝑚𝑖𝑛{𝒩𝑡(𝑎 ∗ 𝑏), 𝒩𝑡(𝑏)} 

∗ 0 a b c 

0 0 0 0 0 

a a 0 0 a 

b b a 0 b 

c c c c 0 

Table.5 BCK-algebra 

𝒦 𝒩𝑡(𝓅0) 𝒩𝑖(𝓅0) 𝒩̂𝑓(𝓅0) 

0 1 0.8 [0.2,0.4] 

a 0.3 0.5 [0.4,0.6] 

b 0.3 0.8 [0.5,0.7] 

c 0.5 0.5 [0.7,0.9] 

Table.6 BS-NSSA 

We give a condition for a BS-NSSA to be a BS-NSI in a BCK-algebra 

Theorem:4.11  Let 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) be a BS-NSSA of  a BCK-algebra 𝒦 satisfying the conditions 

𝓅0 ∗ 𝓇0 ≤ 𝓊0 ⇒ 𝒩𝑡(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓇0), 𝒩𝑡(𝓊0)} , 𝒩𝑖(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓇0), 𝒩𝑖(𝓊0)} , 𝒩̂𝑓(𝓅0) ≼

𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓇0), 𝒩̂𝑓(𝓊0)} for all 𝓅0, 𝓇0, 𝓊0 ∈ 𝒦. Then 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) is a BS-NSI of 𝒦. 

Proof: For any 𝓅0 ∈ 𝒦, we get  

𝒩𝑡(0) = 𝒩𝑡(𝓅0 ∗ 𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓅0), 𝒩𝑡(𝓅0)} = 𝒩𝑡(𝓅0) 

𝒩𝑖(0) = 𝒩𝑖(𝓅0 ∗ 𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓅0), 𝒩𝑖(𝓅0)} = 𝒩𝑖(𝓅0), 

𝒩̂𝑓(0) = 𝒩̂𝑓(𝓅0 ∗ 𝓅0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0), 𝒩̂𝑓(𝓅0)} ≼ 𝑟𝑚𝑎𝑥{[𝒩𝑓
−(𝓅0), 𝒩𝑓

+(𝓅0)], [𝒩𝑓
−(𝓅0), 𝒩𝑓

+(𝓅0)]} 

           = [𝒩𝑓
−(𝓅0), 𝒩𝑓

+(𝓅0)] = 𝒩̂𝑓(𝓅0).  

Since 𝓅0 ∗ (𝓅0 ∗ 𝓇0) ≤ 𝓇0  for all 𝓅0, 𝓇0 ∈ 𝒦 . It follows that 𝒩𝑡(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓅0 ∗ 𝓇0), 𝒩𝑡(𝓇0)}  , 

𝒩𝑖(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓅0 ∗ 𝓇0), 𝒩𝑖(𝓇0)}  , 𝒩̂𝑓(𝓅0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0 ∗ 𝓇0), 𝒩̂𝑓(𝓇0)}  for all 𝓅0 , 𝓇0 ∈ 𝒦 . 

Therefore 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) is a BS-NSI in a BCK-algebra  𝒦. 

Definition:4.12  A BS- neutrosophic ideal of 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) of a BCI-algebra 𝒦  is said to be 

closed if 𝒩𝑡(0 ∗ 𝓅0) ≥ 𝒩𝑡(𝓅0), 𝒩𝑖(0 ∗ 𝓅0) ≥ 𝒩𝑖(𝓅0) and 𝒩̂𝑓(0 ∗ 𝓅0) ≼ 𝒩̂𝑓(𝑥)  for all 𝓅0 ∈ 𝒦. 
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Theorem:4.13 In a BCI-algebra 𝒦, every closed BS-NSI is a BS-NSSA 

Proof: Let 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) be a closed BS-NSI of a BCI-algebra 𝒦 

We have for all 𝓅0 , 𝓇0 ∈ 𝒦 

𝒩𝑡(𝓅0 ∗ 𝓇0) ≥ 𝑚𝑖𝑛{𝒩𝑡((𝓅0 ∗ 𝓇0) ∗ 𝓅0), 𝒩𝑡(𝓅0)} (∵  𝒩 𝑖𝑠 𝑎 BS − neutrosophic ideal ) 

                     = 𝑚𝑖𝑛{𝒩𝑡((𝓅0 ∗ 𝓅0) ∗ 𝓇0), 𝒩𝑡(𝓅0)}  (∵  (𝓅0 ∗ 𝓇0) ∗ 𝓊0 = (𝓅0 ∗ 𝓊0) ∗ 𝓇0) 

                     = 𝑚𝑖𝑛{𝒩𝑡(0 ∗ 𝓇0), 𝒩𝑡(𝓅0)}  (∵  𝓅0 ∗ 𝓅0 = 0) 

                     ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓇0), 𝒩𝑡(𝓅0)} (∵  𝒩 𝑖𝑠 𝑎 𝑐𝑙𝑜𝑠𝑒𝑑 BS − neutrosophic ideal ) 

𝒩𝑖(𝓅0 ∗ 𝓇0) ≥ 𝑚𝑖𝑛{𝒩𝑖((𝓅0 ∗ 𝓇0) ∗ 𝓅0), 𝒩𝑖(𝓅0)} (∵  𝒩 𝑖𝑠 𝑎 BS − neutrosophic ideal ) 

                     = 𝑚𝑖𝑛{𝒩𝑖((𝓅0 ∗ 𝓅0) ∗ 𝓇0), 𝒩𝑖(𝓅0)} (∵  (𝓅0 ∗ 𝓇0) ∗ 𝓊0 = (𝓅0 ∗ 𝓊0) ∗ 𝓇0) 

                     = 𝑚𝑖𝑛{𝒩𝑖(0 ∗ 𝓇0), 𝒩𝑖(𝓅0)}  (∵  𝓅0 ∗ 𝓅0 = 0) 

                     ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓇0), 𝒩𝑖(𝓅0)} (∵  𝒩 𝑖𝑠 𝑎 𝑐𝑙𝑜𝑠𝑒𝑑 BS − neutrosophic ideal ) 

And  

𝒩̂𝑓(𝓅0 ∗ 𝓇0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓((𝓅0 ∗ 𝓇0) ∗ 𝓅0), 𝒩̂𝑓(𝓅0)} (∵  𝒩 𝑖𝑠 𝑎 BS − neutrosophic ideal ) 

                     = 𝑟𝑚𝑎𝑥{𝒩̂𝑓((𝓅0 ∗ 𝓅0) ∗ 𝓇0), 𝒩̂𝑓(𝓅0)}  (∵  (𝓅0 ∗ 𝓇0) ∗ 𝓊0 = (𝓅0 ∗ 𝓊0) ∗ 𝓇0) 

                     = 𝑟𝑚𝑎𝑥{𝒩̂𝑓(0 ∗ 𝓇0), 𝒩̂𝑓(𝓅0)}  (∵  𝓅0 ∗ 𝓅0 = 0) 

                     ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓇0), 𝒩̂𝑓(𝓅0)}         (∵  𝒩 𝑖𝑠 𝑎 𝑐𝑙𝑜𝑠𝑒𝑑 BS −

neutrosophic ideal ) 

Hence 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) is a BS-NSSA of  𝒦. 

Theorem:4.14 In a weakly BCK-algebra 𝒦, every BS-NSI is closed. 

Proof: Let 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) be a BS-NSI of a weakly BCK-algebra 𝒦. For any 𝓅0 ∈ 𝒦, we obtain  

𝒩𝑡(0 ∗ 𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑡((0 ∗ 𝓅0) ∗ 𝓅0), 𝒩𝑡(𝓅0)} = 𝑚𝑖𝑛{𝒩𝑡(0), 𝒩𝑡(𝓅0)} = 𝒩𝑡(𝓅0), 

𝒩𝑖(0 ∗ 𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑖((0 ∗ 𝓅0) ∗ 𝓅0), 𝒩𝑖(𝓅0)} = 𝑚𝑖𝑛{𝒩𝑖(0), 𝒩𝑖(𝓅0)} = 𝒩𝑖(𝓅0), 

𝒩̂𝑓(0 ∗ 𝓅0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓((0 ∗ 𝓅0) ∗ 𝓅0), 𝒩̂𝑓(𝓅0)} = 𝑟𝑚𝑎𝑥{𝒩̂𝑓(0), 𝒩̂𝑓(𝓅0)} = 𝒩̂𝑓(𝓅0). 

Therefore 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) is a closed BS-NSI of 𝒦. 

Corollary: 4.15 In a weakly BCK-algebra, every BS-NSI is a BS-NSSA of  𝒦. 

In a following example we show that any BS-NSSA is not an BS-NSI in a BCI-algebra. 

Example: 4.16 Consider a BCI-algebra 𝒦 = {0,1,2,3,4,5} with binary operation ‘∗’ in table.7 

Let 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) be a BS-NSS in 𝒦 defined by table.8 It is routine to verify that 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) 

is a BS-NSSA of 𝒦. But it is not a BS-NSI of 𝒦. Since 𝒩𝑡(4) ≺ 𝑚𝑖𝑛{𝒩𝑡(4 ∗ 3), 𝒩𝑡(3)}. 

∗ 0 1 2 3 4 5 

0 0 0 3 2 3 3 

1 1 0 3 2 3 3 

2 2 2 0 3 0 0 

3 3 3 2 0 2 2 

4 4 2 1 3 0 1 

5 5 2 1 3 1 0 

Table.7 BCI-algebra 

𝒦 𝒩𝑡(𝓅0) 𝒩𝑖(𝓅0) 𝒩̂𝑓(𝓅0) 

0 0.9 0.8 [0.2,0.6] 

1 0.3 0.4 [0.5,0.9] 
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2 0.9 0.8 [0.2,0.6] 

3 0.9 0.8 [0.2,0.6] 

4 0.3 0.4 [0.5,0.9] 

5 0.3 0.4 [0.5,0.9] 

Table.8 BS-NSSA 

Theorem: 4.17 In a p-semi simple BCI-algebra  𝒦, the following are equivalent 

(i). 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) is a closed BS-NSI of 𝒦. 

(ii). 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) is a BS-NSSA of 𝒦. 

Proof: (𝑖) ⟹ (𝑖𝑖) see theorem 4.12 

(𝑖𝑖) ⟹ (𝑖) let 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) is a BS-NSSA of 𝒦. For any 𝓅0 ∈ 𝒦, we get  

𝒩𝑡(0) = 𝒩𝑡(𝓅0 ∗ 𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓅0), 𝒩𝑡(𝓅0)} = 𝒩𝑡(𝓅0), 

𝒩𝑖(0) = 𝒩𝑖(𝓅0 ∗ 𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓅0), 𝒩𝑖(𝓅0)} = 𝒩𝑖(𝓅0), 

𝒩̂𝑓(0) = 𝒩̂𝑓(𝓅0 ∗ 𝓅0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0), 𝒩̂𝑓(𝓅0)} = 𝒩̂𝑓(𝓅0). 

Hence 𝒩𝑡(0 ∗ 𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑡(0), 𝒩𝑡(𝓅0)} = 𝒩𝑡(𝓅0) 

𝒩𝑖(0 ∗ 𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑖(0), 𝒩𝑖(𝓅0)} = 𝒩𝑖(𝓅0),𝒩̂𝑓(0 ∗ 𝓅0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(0), 𝒩̂𝑓(𝓅0)} = 𝒩̂𝑓(𝓅0) for all 𝓅0 ∈

𝒦. 

Let 𝓅0, 𝓇0 ∈ 𝒦 then  

𝒩𝑡(𝓅0) = 𝒩𝑡(𝓇0 ∗ (𝓇0 ∗ 𝓅0)) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓇0), 𝒩𝑡(𝓇0 ∗ 𝓅0)} 

             = 𝑚𝑖𝑛{𝒩𝑡(𝓇0), 𝒩𝑡(0 ∗ (𝓅0 ∗ 𝓇0))} ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓅0 ∗ 𝓇0), 𝒩𝑡(𝓇0)}, 

𝒩𝑖(𝓅0) = 𝒩𝑖(𝓇0 ∗ (𝓇0 ∗ 𝓅0)) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓇0), 𝒩𝑖(𝓇0 ∗ 𝓅0)} 

               = 𝑚𝑖𝑛{𝒩𝑖(𝓇0), 𝒩𝑖(0 ∗ (𝓅0 ∗ 𝓇0))} ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓅0 ∗ 𝓇0), 𝒩𝑖(𝓇0)}, and  

𝒩̂𝑓(𝓅0) = 𝒩̂𝑓(𝓇0 ∗ (𝓇0 ∗ 𝓅0)) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓇0), 𝒩̂𝑓(𝓇0 ∗ 𝓅0)} 

               = 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓇0), 𝒩̂𝑓(0 ∗ (𝓅0 ∗ 𝓇0))} ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0 ∗ 𝓇0), 𝒩̂𝑓(𝓇0)}. 

Therefore 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) is a closed BS-NSI of 𝒦. 

Since every associative BCI-algebra is a p-semisimple, we have the following are corollary 

Corollary:4.18 In a associative BCI-algebra  𝒦, the following are equivalent 

(i). 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) is a closed BS-NSI of 𝒦. 

(ii). 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) is a BS-NSSA of 𝒦. 

Definition: 4.19 Let 𝒦  be an (s)-BCK-algebra. A BS-NSS 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓)  is called a BS-

neutrosophic ∘-subalgebra of 𝒦 if the following assertions are valid  

𝒩𝑡(𝓅0 ∘ 𝓇0) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓅0), 𝒩𝑡(𝓇0)} 

𝒩𝑖(𝓅0 ∘ 𝓇0) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓅0), 𝒩𝑖(𝓇0)} 

𝒩̂𝑓(𝓅0 ∘ 𝓇0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0), 𝒩̂𝑓(𝓇0)} for all 𝓅0, 𝓇0 ∈ 𝒦. 

Lemma:4.20 Every BS-NSI of BCK/BCI-algebra 𝒦 satisfies the following assertion 

 𝓅0 ≤ 𝓇0 ⇒ 𝒩𝑡(𝓅0) ≥ 𝒩𝑡(𝓇0), 𝒩𝑖(𝓅0) ≥ 𝒩𝑖(𝓇0) and 𝒩̂𝑓(𝓅0) ≼ 𝒩̂𝑓(𝓇0) for all 𝓅0, 𝓇0 ∈ 𝒦. 

Proof: Assume that 𝓅0 ≼ 𝓇0  for all 𝓅0 , 𝓇0 ∈ 𝒦 then 𝓅0 ∗ 𝓇0 = 0 and so  

𝒩𝑡(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓅0 ∗ 𝓇0), 𝒩𝑡(𝓇0)} = 𝑚𝑖𝑛{𝒩𝑡(0), 𝒩𝑡(𝓇0)} = 𝒩𝑡(𝓇0) 

𝒩𝑖(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓅0 ∗ 𝓇0), 𝒩𝑖(𝓇0)} = 𝑚𝑖𝑛{𝒩𝑖(0), 𝒩𝑖(𝓇0)} = 𝒩𝑖(𝓇0) 

𝒩̂𝑓(𝓅0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0 ∗ 𝓇0), 𝒩̂𝑓(𝓇0)} = 𝑟𝑚𝑎𝑥{𝒩̂𝑓(0), 𝒩̂𝑓(𝓇0)} = 𝒩̂𝑓(𝓇0) for all 𝓅0, 𝓇0 ∈ 𝒦. 

Hence the proof is completed. 

Theorem:4.21 In a (s)-BCK-algebra, every BS-NSI is a BS-neutrosophic ∘-subalgebra. 
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Proof: Let 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) be a BS-NSI of a (s)-BCK-algebra 𝒦. Note that (𝓅0 ∘ 𝓇0) ∗ 𝓅0 ≤ 𝓇0 for 

𝓅0, 𝓇0 ∈ 𝒦. We have  

𝒩𝑡(𝓅0 ∘ 𝓇0) ≥ 𝑚𝑖𝑛{𝒩𝑡((𝓅0 ∘ 𝓇0) ∗ 𝓅0) , 𝒩𝑡(𝓅0)} ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓇0), 𝒩𝑡(𝓅0)}, 

𝒩𝑖(𝓅0 ∘ 𝓇0) ≥ 𝑚𝑖𝑛{𝒩𝑖((𝓅0 ∘ 𝓇0) ∗ 𝓅0) , 𝒩𝑖(𝓅0)} ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓇0) , 𝒩𝑖(𝓅0)}, and 

𝒩̂𝑓(𝓅0 ∘ 𝓇0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓((𝓅0 ∘ 𝓇0) ∗ 𝓅0) , 𝒩̂𝑓(𝓅0)} ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓇0) , 𝒩̂𝑓(𝓅0)}. 

Therefore 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) is a BS-neutrosophic ∘-subalgebra of 𝒦. 

Theorem:4.22 Let 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) be a BS-NSS in a (s)-BCK-algebra 𝒦. Then 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓) is a 

BS-NSI of 𝒦  if and only if the following assertions are valid 𝒩𝑡(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓇0), 𝒩𝑡(𝓊0)} , 

𝒩𝑖(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓇0), 𝒩𝑖(𝓊0)} , 𝒩̂𝑓(𝓅0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓇0), 𝒩̂𝑓(𝓊0)}  for all 𝓅0 , 𝓇0, 𝓊0 ∈ 𝒦  with 𝓅0 ≤

𝓇0 ∘ 𝓊0 

Proof: Assume that 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) is a BS-NSI of 𝒦  and let 𝓅0, 𝓇0, 𝓊0 ∈ 𝒦  be such that 𝓅0 ≤

𝓇0 ∘ 𝓊0  

Then we have  

𝒩𝑡(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓅0 ∗ (𝓇0 ∘ 𝓊0)), 𝒩𝑡(𝓇0 ∘ 𝓊0)} 

= 𝑚𝑖𝑛{𝒩𝑡(0), 𝒩𝑡(𝓇0 ∘ 𝓊0)} = 𝒩𝑡(𝓇0 ∘ 𝓊0) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓇0), 𝒩𝑡(𝓊0)} (By theorem 4.20) 

𝒩𝑖(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓅0 ∗ (𝓇0 ∘ 𝓊0)), 𝒩𝑖(𝓇0 ∘ 𝓊0)} 

= 𝑚𝑖𝑛{𝒩𝑖(0), 𝒩𝑖(𝓇0 ∘ 𝓊0)} = 𝒩𝑖(𝓇0 ∘ 𝓊0) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓇0), 𝒩𝑖(𝓊0)} (By theorem 4.20) 

𝒩̂𝑓(𝓅0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0 ∗ (𝓇0 ∘ 𝓊0)), 𝒩̂𝑓(𝓇0 ∘ 𝓊0)} 

= 𝑟𝑚𝑎𝑥{𝒩̂𝑓(0), 𝒩̂𝑓(𝓇0 ∘ 𝓊0)} = 𝒩̂𝑓(𝓇0 ∘ 𝓊0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓇0), 𝒩̂𝑓(𝓊0)} (By theorem 4.20) 

Conversely, let 𝒩 = (𝒩𝑡, 𝒩𝑖 , 𝒩̂𝑓)  be a BS-NSS in a (s)-BCK-algebra 𝒦  satisfying the conditions 

𝒩𝑡(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓇0), 𝒩𝑡(𝓊0)} , 𝒩𝑖(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓇0), 𝒩𝑖(𝓊0)} , 𝒩̂𝑓(𝓅0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓇0), 𝒩̂𝑓(𝓊0)} 

for all 𝓅0, 𝓇0 , 𝓊0 ∈ 𝒦 with 𝓅0 ≤ 𝓇0 ∘ 𝓊0 

Since 0 ≤ 𝓅0 ∘ 𝓅0 for all 𝓅0 ∈ 𝒦, we have  

𝒩𝑡(0) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓅0), 𝒩𝑡(𝓅0)} = 𝒩𝑡(𝓅0) 

𝒩𝑖(0) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓅0), 𝒩𝑖(𝓅0)} = 𝒩𝑖(𝓅0) 

𝒩̂𝑓(0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0), 𝒩̂𝑓(𝓅0)} = 𝒩̂𝑓(𝓅0). 

Since  𝓅0 ≤ (𝓅0 ∗ 𝓇0) ∘ 𝓇0  for all 𝓅0, 𝓇0 ∈ 𝒦, we have  

𝒩𝑡(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑡(𝓅0 ∗ 𝓇0), 𝒩𝑡(𝓇0)} 

𝒩𝑖(𝓅0) ≥ 𝑚𝑖𝑛{𝒩𝑖(𝓅0 ∗ 𝓇0), 𝒩𝑖(𝓇0)} 

𝒩̂𝑓(𝓅0) ≼ 𝑟𝑚𝑎𝑥{𝒩̂𝑓(𝓅0 ∗ 𝓇0), 𝒩̂𝑓(𝓇0)} for all 𝓅0 , 𝓇0 ∈ 𝒦. Therefore 𝒩 = (𝒩𝑡 , 𝒩𝑖 , 𝒩̂𝑓) is a BS-NSI of 

𝒦. 
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Abstract: To measure the level of accuracy of crisp, fuzzy, intuitionistic fuzzy sets and neutrosophic 

set various mathematical tools are available. The generalization of these four sets is Plithogenic set. 

In this paper, for the first time we introduce the concept of plithogenic cubic vague set and its 

generalization, plithogenic fuzzy cubic vague set, plithogenic intuitionistic fuzzy cubic vague set, 

plithogenic neutrosophic cubic vague set. It is the combination of cubic vague set and plithogenic set. 

It aims to address the problems involving multiple attribute decision making. This concept is suitable 

and the accuracy of the result is precise as the set is described by more value of attributes. An attribute 

value v has a corresponding (fuzzy, intuitionistic fuzzy, neutrosophic) degree of appurtenance d(x,v) 

of the element x to the set P, with respect to some given criteria. Its corresponding internal and 

external sets are also discussed with examples. Further, P-union, P-intersection as well as R-union 

and R-intersection are introduced for plithogenic cubic vague sets which acts as a tool to study some 

of their properties. Some examples of the newly developed concepts in our everyday life is offered in 

this article.  

 

Keywords: cubic vague set, plithogenic fuzzy cubic vague set, plithogenic intuitionistic fuzzy cubic 

vague set, plithogenic neutrosophic cubic vague set. 
 

 

1. Introduction 

 In real life, there may be an uncertainty about any degree of membership in the variable assumption. 

Zadeh [24] introduced fuzzy set in which each element is assigned a membership degree in the form of a single 

crisp value in the interval [0,1]. Fuzzy sets is an extension of crisp set. He also gave the perception of an interval 

valued fuzzy set as a cause of uncertainty in the membership. Grabisch et.al[9] represent an aggregation operator 

exhibits a set of mathematical properties, which depends on imposed axiomatic assumptions. A new definition 

of cardinality of fuzzy sets on the basis of membership value is introduced by Mamonidhar[16]. The 

generalization of fuzzy set and fuzzy logic to intuitionistic fuzzy sets (IFS) by adding the falsehood (f), the degree 

of non-membership was introduced by Atanassov [5] to have a better accuracy level. The definition for some 

operations on intuitionistic fuzzy set and its properties was given by Atanassov[6]. It is based only on 

membership and non-membership function, but it does not exist in the indeterminacy. The concept of 

intuitionistic fuzzy topological spaces was put forward by Coker [7]. Norsyahida Zulkifli[18] proposed the 
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interval-valued intuitionistic fuzzy vague sets (IVIFVS) where membership and non-membership of interval-

valued intuitionistic fuzzy sets are combined with truth membership and false membership of vague sets. Then 

the next evaluation of IFS is neutrosophic set introduced by Smarandache[20]. It is a generalization of fuzzy sets 

and IFS. It deals with membership, indeterminacy and non-membership degree which is highly helpful for 

dealing with uncertain, inadequate and varying data exist in real life. But it is applicable only on three attribute 

values. Data needs to be handled with more attribute values so as to raise the accuracy level in the stage of 

advanced research.  

The theory of vague sets was proposed by Gau and Buehrer[8].  It has more powerful ability than fuzzy 

sets to process fuzzy information to some degree. Jun, Y.B[12] introduced the concept of cubic set and it is 

characterized by interval valued fuzzy set and fuzzy set, which is a more general tool to capture uncertainty and 

vagueness. The ideas of internal and external cubic sets and their characteristics were also presented. Cubic 

interval-valued intuitionistic fuzzy sets was introduced by Jun et.al [13]. Khaleed et.al [14] introduced the novel 

concept of cubic vague set by incorporating both the ideas of cubic set and vague set. Some new operations on 

intuitionistic neutrosophic set with examples for the implementation of the operations problems is introduced 

by Monoranjan et.al.[15]  

As an extension of the neutrosophic set Wang et.al [22] proposed the definition of the interval valued 

neutrosophic set (INS). Interval neutrosophic sets and their application in multi-criteria decision making 

problems is defined by Hong et.al[11]. Hazwani Hashimcet.et.al [10] introduced the idea Interval Neutrosophic 

Vague Sets. Shawkat Alkhazaleh [19] introduced the concept of neutrosophic vague set as a combination of 

neutrosophic set and vague set. Anitha et.al[4] introduced the NGSR closed sets in neutrosophic topological 

spaces. Wang et.al[23] presented an instance of neutrosophic set called single valued neutrosophic set. 

To, increase the preciseness, Smarandache [21] introduced plithogenic. It is a powerful tool which is a 

generalization of crisp set, fuzzy set, intuitionistic fuzzy set and neutrosophic set is collectively called 

plithogenic. It is the base for all plithogenic functions such as plithogenic set, plithogenic probability, plithogenic 

logic and plithogenic statistics. These sets which are characterized by a single appurtenance is plithogenic set. A 

plithogenic set, in general may have elements characterized by attributes with four or more attributes. It is a set 

whose components are described by at least one trait and each attribute may have numerous elements. He 

developed the aggregation operations on plithogenic set and proved that plithogenic set is the most generalized 

structure that can be efficiently applied to a variety of real life problems.  

A procedure to come up with a methodical system to assess the infirmary serving under a framework of 

plithogenic theory was suggested by Abdel-Basset et al.[1] as an approach to be constructed on the connotation 

of plithogenic theory. To increase the accuracy of the evaluation Abdel-Basset et al.[2] proposed a method which 

is a combination of quality function deployment with plithogenic aggregation operations. Nivetha et.al[17] 

developed a concept of combined plithogenic hypersoft set and its application in multi attribute decision 

making. Based on the technique in order of preference by similarity to ideal solution and criteria importance 

through inter-criteria correlation methods to estimation of sustainable supply chain risk management Abdel-

Basset et al.[3] proposed a methodology as a combination of plithogenic multi-criteria decision making 

approach. 

In this paper, we introduced the generalization of plithogenic cubic vague sets for fuzzy, intuitionistic 

fuzzy and neutrosophic sets using the principles of cubic vague set and plithogenic set and its union and 

intersection. Plithogenic cubic vague set is the combination of cubic vague set and plithogenic set. It 

aims to address the problems involving multiple attribute decision making. This concept is suitable 
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and the accuracy of the result is precise as the set is described by more value of attributes. The 

organization of this paper is as follows. Introduction is presented in Section 1. Section 2 provides 

some preliminaries for the proposed concept is given. Section 3 covers the notion of plithogenic cubic 

vague set and it is divided into four subsections. In 3.1 definition and examples of plithogenic fuzzy 

cubic vague set, in 3.2 plithogenic intuitionistic fuzzy cubic vague set, in 3.3 plithogenic neutrosophic 

cubic vague set and in 3.4 internal and external plithogenic cubic vague sets were presented. In 

Section 4 we define the basic operations namely, union and intersection of the developed set. Finally, 

Section 5 conclude this paper and provides the direction for future studies. 

 

2. Preliminaries 

 

Definition: 2.1. [8] A vague set A (VS) in the universe of discourse U is a characterized by membership functions 

given by: truth membership function tA: U → [0,1] and false membership function fA: U → [0,1] where tA(𝑢) is a 

lower bound of the grade of membership of u derived from the evidence of u and fA(𝑢) is a lower bound of the 

negation of u derived from the evidence against u and tA(𝑢) + fA(𝑢) ≤ 1. Thus the grade of membership of u in 

the vague set A is bounded by a sub interval [tA(𝑢), 1 − fA(𝑢) ] of [0,1].  This indicates that if the actual grade of 

membership is 𝜇(𝑢) then tA(𝑢)  ≤ 𝜇𝐴(𝑢) ≤  1 − fA(𝑢). The vague set A is written as A ={(𝑢, [tA(𝑢), 1 − fA(𝑢)])|𝑢 ∈

𝑈}, where the internal [tA(𝑢), 1 − fA(𝑢) ] is called vague value of u in A and denoted by𝑉𝐴(𝑢). 

Definition: 2.2. [12] Let X be a non-empty set. A structure 𝐴 = {〈𝑥, 𝐴(𝑥), 𝜆(𝑥)〉: 𝑥 ∈ 𝑋} be a cubic set in X in which 

A is an IVFS and 𝜆 is a fuzzy set in X. 

 

Definition: 2.3. [12] Let X be a universal Set. A cubic vague set 𝔸V defined over the universal set X is an ordered 

pair which is defined as follows 𝔸V = {〈𝑥, 𝐴𝑉(𝑥), 𝜆𝑉(𝑥)〉: 𝑥 ∈ 𝑋} where 𝐴𝑉 = 〈𝐴𝑉
𝑡 , 𝐴𝑉

1−𝑓〉 = {〈𝑥, [𝑡𝐴𝑉

− (𝑥), 𝑡𝐴𝑉

+ (𝑥) ], [1 −

𝑓𝐴𝑉

− (𝑥), 1 − 𝑓𝐴𝑉

+ (𝑥)]〉: 𝑥 ∈ 𝑋} represents IVVS defined on X while 𝜆𝑉 = {(𝑥, 𝑡𝜆𝑉(𝑥), 1 − 𝑓𝜆𝑉(𝑥)): 𝑥 ∈ 𝑋} represents VS 

such that 𝑡𝐴𝑉

+ (𝑥) + 𝑓𝐴𝑉

+ (𝑥) ≤ 1 and 𝑡𝜆𝑉(𝑥) + 𝑓𝜆𝑉(𝑥) ≤ 1. For clarity we denote the pairs as 𝔸V =〈𝐴𝑉 , 𝜆𝑉〉, where 𝐴𝑉 = 

〈[𝑡𝐴𝑉

− , 𝑡𝐴𝑉

+  ], [1 − 𝑓𝐴𝑉

− , 1 − 𝑓𝐴𝑉

+ ]〉 and 𝜆𝑉= (𝑡𝜆𝑉 , 1 − 𝑓𝜆𝑉). CV
X denotes the set of all cubic vague sets in X. 

 

Definition: 2.4. [12] Let X be a universal set and V be a non-empty vague set. A cubic vague set 𝔸V=  〈𝐴𝑣  , 𝜆𝑣〉 is 

called an internal cubic vague set (brief. ICVS) if 𝐴𝑉
−(𝑥) ≤ 𝜆𝑉(𝑥) ≤ 𝐴𝑉

+(𝑥) for all𝑥 ∈ 𝑋. 

 

Definition: 2.5. [12] Let X be a universal set and V be a non-empty vague set. A cubic vague set 𝔸V=  〈𝐴𝑣  , 𝜆𝑣〉 is 

called an external cubic vague set (brief. ECVS) if𝜆𝑉(𝑥) ∉ (𝐴𝑉
−(𝑥), 𝐴𝑉

+(𝑥)) for all 𝑥 ∈ 𝑋. 

 

Definition: 2.6. [8] An interval valued vague sets 𝐴 ̃𝑉 over a universe of discourse X is defined as an object of the 

form 𝐴 ̃𝑉={(𝑥𝑖 , [T𝐴 ̃𝑉(𝑥𝑖), 𝐹𝐴 ̃𝑉 (𝑥𝑖)])|𝑥𝑖 ∈ 𝑋}, where T𝐴 ̃𝑉: 𝑋 → D[0,1] and F𝐴 ̃𝑉 : 𝑋 → D[0,1] are called truth 

membership function and false membership function respectively and where D[0,1] is the set of all intervals 

within [0,1]. 

 

Definition: 2.7. [19] A neutrosophic vague set 𝐴𝑁𝑉 (NVS in short) on the universe of discourse X written as 𝐴𝑁𝑉 =

{〈𝑥, 𝑇̂𝐴𝑁𝑉
, 𝐼𝐴𝑁𝑉, , 𝐹̂𝐴𝑁𝑉

 〉 𝑥 ∈ 𝑋} whose truth membership, indeterminacy membership and falsity membership 

functions are defined as 𝑇̂𝐴𝑁𝑉
(𝑥) = [𝑇− , 𝑇+], 𝐼𝐴𝑁𝑉

(𝑥) = [𝐼− , 𝐼+], 𝐹𝐴𝑁𝑉
(𝑥) = [𝐹− , 𝐹+], where 𝑇+ = 1 − 𝐹−, 𝐹+ = 1 −

𝑇− and 0− ≤ 𝑇− + 𝐼− + 𝐹− ≤ 2+. 

 

Definition: 2.8. [10] An interval valued neutrosophic vague set 𝐴𝐼𝑁𝑉 also known as INVS in the universe of 

discourse E. An IVNVS is characterized by truth membership, indeterminacy membership and falsity 

membership functions is defined as: 𝐴𝐼𝑁𝑉 = {< 𝑒, [𝑉̂𝐴
𝐿(𝑒), 𝑉̂𝐴

𝑈(𝑒)], [𝑊̂𝐴
𝐿(𝑒), 𝑊̂𝐴

𝑈(𝑒)], [𝑋̂𝐴
𝐿(𝑒), 𝑋̂𝐴

𝑈(𝑒)] > |𝑒 ∈ 𝐸}, 

𝑉̂𝐴
𝐿(𝑒) = [𝑉𝐿−

, 𝑉𝐿+
 ], 𝑉̂𝐴

𝑈(𝑒) = [𝑉𝑈−
, 𝑉𝑈+

 ], 𝑊̂𝐴
𝐿(𝑒) = [𝑊𝐿−

, 𝑊𝐿+
 ], 𝑊̂𝐴

𝐿(𝑒) = [𝑊𝑈−
, 𝑊𝑈+

 ], 𝑋̂𝐴
𝐿(𝑒) = [𝑋𝐿−

, 𝑋𝐿+
 ],  𝑋̂𝐴

𝑈(𝑒) 

= [𝑋𝑈−
, 𝑋𝑈+

 ] where 𝑉𝐿+
= 1 − 𝑋𝐿−

, 𝑋𝐿+
= 1 − 𝑉𝐿−

, 𝑉𝑈+
= 1 − 𝑋𝑈−

, 𝑋𝑈+
= 1 − 𝑉𝑈−

 and 

0− ≤ 𝑉𝐿−
+ 𝑉𝑈−

+ 𝑊𝐿−
+ 𝑊𝑈−

+ 𝑋𝐿−
+ 𝑋𝑈−

≤ 4+, 0− ≤ 𝑉𝐿+
+ 𝑉𝑈+

+ 𝑊𝐿+
+ 𝑊𝑈+

+ 𝑋𝐿+
+ 𝑋𝑈+

≤ 4+. 

Definition: 2.9 [12] 𝒜 = 〈𝐴, 𝜆〉 and ℬ = 〈𝐵, 𝜇〉 be cubic sets in X. Then we define 
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(a) (Equality) 𝒜 = ℬ ⇔ 𝐴 = 𝐵 and 𝜆 =  𝜇 

(b) (P-order) 𝒜 = ℬ ⇔ 𝐴 ⊆ 𝐵 and 𝜆 ≤  𝜇 

(c) (R-order) 𝒜 = ℬ ⇔ 𝐴 ⊆ 𝐵 and 𝜆 ≥  𝜇 
 

3. PLITHOGENIC CUBIC VAGUE SETS 

 

Definition: 3.1 

Interval valued plithogenic fuzzy vague set (IPFVS) is defined as ∀𝑥 ∈ 𝑃, 𝑑𝑣: 𝑃 × 𝑄𝑣  → 𝑃([0,1]) and ∀ 𝑞 ∈

𝑄, 𝑑(𝑥, 𝑞) is an (open, semi-open, closed) interval included in [0,1]. 

 

Definition: 3.2 

Interval valued plithogenic intuitionistic fuzzy vague set (IPIFVS) is defined as ∀𝑥 ∈ 𝑃, 𝑑𝑣: 𝑃 × 𝑄𝑣  →

𝑃([0,1]2) and ∀ 𝑞 ∈ 𝑄, 𝑑(𝑥, 𝑞) is an (open, semi-open, closed) interval included in [0,1]. 

 

Definition: 3.3 

Interval valued plithogenic Neutrosophic vague set (IPIFVS) is defined as ∀𝑥 ∈ 𝑃, 𝑑𝑣: 𝑃 × 𝑄𝑣  → 𝑃([0,1]3) and 

∀ 𝑞 ∈ 𝑄, 𝑑(𝑥, 𝑞) is an (open, semi-open, closed) interval included in [0,1]. 

 

Definition: 3.4 

A fuzzy vague set 𝐴𝐹𝑉 (FVS in short) on the universe of discourse X written as 𝐴𝐹𝑉 = {〈𝑥, 𝑇̂𝐴𝐹𝑉
〉 𝑥 ∈ 𝑋} whose 

truth membership is defined as 𝑇̂𝐴𝐹𝑉
(𝑥) = [𝑇−, 𝑇+] where 0 ≤  𝑇− ≤ 𝑇+ ≤ 1. 

 

Definition: 3.5 

A Intuitionistic fuzzy vague set 𝐴𝐼𝐹𝑉 (IFVS in short) on the universe of discourse X written as 𝐴𝐼𝐹𝑉 =

{〈𝑥, 𝑇̂𝐴𝐼𝐹𝑉
, 𝐹̂𝐴𝐼𝐹𝑉

 〉 𝑥 ∈ 𝑋} whose truth membership and falsity membership functions are defined as 𝑇̂𝐴𝑁𝑉
(𝑥) =

[𝑇− , 𝑇+], 𝐹𝐴𝑁𝑉
(𝑥) = [𝐹− , 𝐹+]. 

 

3.1. Plithogenic Fuzzy Cubic Vague Sets 

 

Definition: 3.1.1 

Let U be a universal set. The set 𝔸𝑝
𝑣 = {〈𝑥, 𝐴𝑉(𝑥), 𝜆𝑉(𝑥)〉: 𝑥 ∈ 𝑋} is called plithogenic fuzzy cubic vague set in 

which 𝐴𝑉 is an interval valued plithogenic fuzzy vague set in X and 𝜆𝑉 is the fuzzy vague set in X. 

 

Example: 3.1.2 

Let the attribute be “size” and the attribute values are {small, medium, big, very big}. Let’s consider the dominant 

value of attribute size be small. 

The attribute value contradictory degrees are: 

c(small, small) = 0, c(small, medium) = 0.50, c(small, big) = 0.75, c(small, very big) = 1. 

The degree of appurtenance 𝐴𝑉: {small, medium, big, very big} → [0,1]. 

𝐴𝑉(small) = ([0.3,0.4],[0.4,0.6]), 𝐴𝑉(medium) = ([0.2,0.3],[0.4,0.5]), 

𝐴𝑉(big) = ([0.1,0.3],[0.3,0.6]), 𝐴𝑉(very big) = ([0.3,0.4],[0.4,0.5]). 

 

Degrees of 

contradiction 

0 0.5 0.75 1 

Attribute values small Medium Big very big 

Degrees of 

appurtenance 
𝐴𝑉(𝑥) 

([0.3,0.4], 

[0.4,0.6]) 

([0.2,0.3], 

[0.4,0.5]) 

([0.1,0.3], 

[0.3,0.6]) 

([0.3,0.4], 

[0.4,0.5]) 

𝜆𝑉(𝑥) [0.3,0.5] [0.2,0.4] [0.3,0.5] [0.4,0.5] 

 

3.2 Plithogenic Intuitionistic Fuzzy Cubic Vague Sets 

 

Definition: 3.2.1 
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Let U be a universal set. The set 𝔸𝑝
𝑣 = {〈𝑥, 𝐴𝑉(𝑥), 𝜆𝑉(𝑥)〉: 𝑥 ∈ 𝑋} is called plithogenic intuitionistic fuzzy cubic 

vague set in which 𝐴𝑉 is an interval valued plithogenic intuitionistic fuzzy vague set in X and 𝜆𝑉 is the 

intuitionistic fuzzy vague set in X. 

 

Example: 3.2.2 

Let the attribute be “Car Brands” and the attribute values are {Ford, Audi, Benz, BMW}. Let’s consider the 

dominant value of attribute car brands be Ford. 

 

Degrees of 

contradiction 

0 0.5 0.75 1 

Attribute values Ford Audi Benz BMW 

Degrees of 

appurtenance 
𝐴𝑉(𝑥) 

{([0.4,0.6],[0.5,0.5]),([

0.4,0.6],[0.5.0.5])} 

 

{([0.3,0.8],[0.5,0.6]),([

0.2,0.7],[0.4.0.5])} 

 

{([0.2,0.6],[0.3,0.6]),([

0.4,0.8],[0.4.0.7])} 

 

{([0.1,0.7],[0.2,0.4]),([

0.3,0.9],[0.6.0.8])} 

 

𝜆𝑉(𝑥) [0.3,0.6],[0.4,0.7] [0.2,0.5],[0.5,0.8] 

 

[0.4,0.7],[0.3,0.6] 

 

[0.5,0.6],[0.4,0.5] 

 

3.3 Plithogenic Neutrosophic Cubic Vague Sets 

 

Definition: 3.3.1 

Let U be a universal set. The set 𝔸𝑝
𝑣 = {〈𝑥, 𝐴𝑉(𝑥), 𝜆𝑉(𝑥)〉: 𝑥 ∈ 𝑋} is called plithogenic neutrosophic cubic vague 

set in which 𝐴𝑉 is an interval valued plithogenic neutrosophic vague set in X and 𝜆𝑉 is the neutrosophic vague 

set in X. 

 

Example: 3.3.2 

Let the attribute be “Colleges” and the attribute values are {Arts, Engineering, Medical, Agriculture}. Let’s 

consider the dominant value of attribute colleges be Arts. 

Degrees of 

contradiction 

0 0.5 0.75 1 

Attribute values Arts   Engineering Medical Agriculture 

Degrees of 

appurtenance 
𝐴𝑉(𝑥) 

{([0.4,0.6],[0.5,0.5]),([0.

1,0.8],[0.2,0.6]),([0.4,0.

6],[0.5.0.5])} 

 

{([0.3,0.8],[0.5,0.6]),([0.

3,0.5],[0.4,0.6]),([0.2,0.

7],[0.4.0.5])} 

 

{([0.2,0.6],[0.3,0.6]),([0.

4,0.8],[0.2,0.5]),([0.4,0.

8],[0.4.0.7])} 

 

{([0.1,0.7],[0.2,0.4

]),([0.4,0.5],[0.3,0.

6]),([0.3,0.9],[0.6.

0.8])} 

𝜆𝑉(𝑥) [0.2,0.5],[0.3,0.4],[0.5,0.

8] 

 

[0.4,0.7],[0.2,0.3],[0.3,0.

6] 

 

[0.3,0.6],[0.4,0.5],[0.4,0.

7] 

 

[0.5,0.6],[0.5,0.6],[

0.4,0.5] 

 

3.4. Internal Plithogenic Cubic Vague Set and External Plithogenic Cubic Vague Set 

 

Definition: 3.4.1  

Let X be a universal set and V be a non-empty vague set. The plithogenic fuzzy cubic vague set 𝔸𝑝
𝑣 = 〈𝐴𝑣  , 𝜆𝑣〉 in 

X is called an internal plithogenic fuzzy cubic vague set (IPFCVS) if 𝐴𝑣𝑑𝑖

−(𝑥) ≤ 𝜆𝑣𝑖
(𝑥) ≤ 𝐴𝑣𝑑𝑖

+(𝑥) for all 𝑥 ∈ 𝑋 

and 𝑑𝑖 denotes the contradictory degree and its attribute values. 

 

Example: 3.4.2 

Let the attribute be “Continents” and the attribute values are {Asia, Africa, Europe, Australia}. Let’s consider the 

dominant value of attribute continents as Asia. 

 

Degrees of 

contradiction 

0 0.5 0.75 1 



Neutrosophic Sets and Systems, Vol. 58, 2023     114  

 

 
 

S.Anitha, Dr.A.Francina Shalini, Plithogenic Cubic Vague Sets 

Attribute values Asia Africa Europe Australia 

Degrees of 

appurtenance 
𝐴𝑉(𝑥) 

([0.3,0.4], 

[0.4,0.6]) 

([0.2,0.3], 

[0.4,0.5]) 

([0.1,0.3], 

[0.3,0.6]) 

([0.3,0.4], 

[0.4,0.5]) 

𝜆𝑉(𝑥) [0.3,0.5] [0.2,0.4] [0.1,0.5] [0.3,0.4] 

 

Definition: 3.4.3 

Let X be a universal set and V be a non-empty vague set. The plithogenic intuitionistic fuzzy cubic vague set 𝔸𝑝
𝑣 

=  〈𝐴𝑣 , 𝜆𝑣〉 in X is called an internal plithogenic intuitionistic fuzzy cubic vague set (IPIFCVS) if 𝐴𝑣𝑑𝑖

−(𝑥) ≤

𝜆𝑣𝑖
(𝑥) ≤ 𝐴𝑣𝑑𝑖

+(𝑥) for all 𝑥 ∈ 𝑋 and 𝑑𝑖 denotes the contradictory degree and its attribute values. 

 

Example: 3.4.4 

Let the attribute be “Vehicles” and the attribute values are {Car, Bus, Bicycle, Scooter}. Let’s consider the 

dominant value of the attribute Vehicles as Car. 

 

Degrees of 

contradiction 

0 0.5 0.75 1 

Attribute values Car Bus Bicycle Scooter 

Degrees of 

appurtenance 
𝐴𝑉(𝑥) 

{([0.3,0.8],[0.5,0.6]),([

0.2,0.7],[0.4.0.5])} 

 

{([0.4,0.7],[0.3,0.5]),([

0.3,0.6],[0.5.0.7])} 

{([0.2,0.6],[0.3,0.6]),([

0.4,0.8],[0.4.0.7])} 

 

{([0.4,0.6],[0.5,0.5]),([

0.4,0.6],[0.5.0.5])} 

 

𝜆𝑉(𝑥) [0.4,0.6],[0.3,0.4] 

 

[0.5,0.5],[0.3,0.6] [0.3,0.4],[0.5,0.5] 

 

[0.2,0.5],[0.4,0.5] 

 

Definition: 3.4.5 

Let X be a universal set and V be a non-empty vague set. The plithogenic neutrosophic cubic vague set 𝔸𝑝
𝑣 =  

〈𝐴𝑣  , 𝜆𝑣〉 in X is said to be internal plithogenic neutrosophic cubic vague set (IPNCVS) in X if it satisfies the 

following equations. 

(i) truth-internal (briefly, T-internal) if 𝐴𝑣𝑑𝑖

−𝑇(𝑥) ≤  𝜆𝑣𝑖

𝑇(𝑥) ≤ 𝐴𝑣𝑑𝑖

+𝑇(𝑥) for all 𝑥 ∈ 𝑥 and 𝑑𝑖 denotes the 

contradictory degree and its attribute values. (Condition 1) 

(ii) indeterminacy-internal (briefly, I-internal) if 𝐴𝑣𝑑𝑖

−𝐼(𝑥) ≤  𝜆𝑣𝑖

𝐼(𝑥) ≤ 𝐴𝑣𝑑𝑖

+𝐼(𝑥) for all  𝑥 ∈ 𝑥 and 𝑑𝑖 denotes the 

contradictory degree and its attribute values. (Condition 2) 

(iii) falsity-internal (briefly, F-internal) if 𝐴𝑣𝑑𝑖

−𝐹(𝑥) ≤  𝜆𝑣𝑖

𝐹(𝑥) ≤ 𝐴𝑣𝑑𝑖

+𝐹(𝑥) for all  𝑥 ∈ 𝑥 and 𝑑𝑖 denotes the 

contradictory degree and its attribute values. (Condition 3) 

 

Example: 3.4.6 

Let the attribute be “Weather” and the attribute values are {Sunny, Cloudy, Rain, Snow}. Let’s consider the 

dominant value of the attribute Weather as Sunny.  

 

Degrees of 

contradiction 

0 0.5 0.75 1 

Attribute values Sunny Cloudy Rain Snow 

Degrees of 

appurtenance 
𝐴𝑉(𝑥) 

{([0.1,0.7],[0.2,0.4]),([0.

4,0.5],[0.3,0.6]),([0.3,0.

9],[0.6.0.8])} 

 

 

{([0.2,0.6],[0.3,0.6]),([0.

4,0.8],[0.2,0.5]),([0.4,0.

8],[0.4.0.7])} 

 

{([0.3,0.8],[0.5,0.6]),([0.

3,0.5],[0.4,0.6]),([0.2,0.

7],[0.4.0.5])} 

 

{([0.4,0.6],[0.5,0.

5]),([0.1,0.8],[0.2

,0.6]),([0.4,0.6],[

0.5.0.5])} 

 

𝜆𝑉(𝑥) [0.2,0.3],[0.4,0.4],[0.5,0.

8] 

 

[0.3,0.5],[0.5,0.5],[0.5,0.

6] 

 

[0.4,0.6],[0.3,0.5],[0.2,0.

4] 

 

[0.5,0.5],[0.2,0.6]

,[0.4,0.5] 

 

 

Definition: 3.4.7 
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Let X be a universal set and V be a non-empty vague set. The plithogenic fuzzy cubic vague set 𝔸𝑝
𝑣 = 〈𝐴𝑣  , 𝜆𝑣〉 in 

X is called an external plithogenic fuzzy cubic vague set (EPFCVS) if 𝜆𝑣𝑖
(𝑥) ∉ (𝐴𝑣𝑑𝑖

−(𝑥), 𝐴𝑣𝑑𝑖

+(𝑥)) for all 𝑥 ∈ 𝑋 

and 𝑑𝑖 denotes the contradictory degree and its attribute values. 

 

Example: 3.4.8 

Let the attribute be “Languages” and the attribute values are {Tamil, French, Malayalam, English}. Let’s consider 

the dominant value of the attribute Languages as Tamil. 

 

Degrees of 

contradiction 

0 0.5 0.75 1 

Attribute values Tamil French Malayalam English 

Degrees of 

appurtenance 
𝐴𝑉(𝑥) 

([0.3,0.4], 

[0.4,0.6]) 

([0.2,0.3], 

[0.4,0.5]) 

([0.1,0.3], 

[0.3,0.5]) 

 

([0.3,0.5], 

[0.4,0.5]) 

𝜆𝑉(𝑥) [0.2,0.7] [0.1,0.6] [0.4,0.6] [0.2,0.7] 

 

Definition: 3.4.9 

Let X be a universal set and V be a non-empty vague set. The plithogenic intuitionistic fuzzy cubic vague set 𝔸𝑝
𝑣 

=  〈𝐴𝑣 , 𝜆𝑣〉 in X is called an external plithogenic intuitionistic fuzzy cubic vague set (IPIFCVS) if 𝜆𝑣𝑖
(𝑥) ∉ 

(𝐴𝑣𝑑𝑖

−(𝑥), 𝐴𝑣𝑑𝑖

+(𝑥)) for all 𝑥 ∈ 𝑋 and 𝑑𝑖 denotes the contradictory degree and its attribute values. 

 

Example: 3.4.10 

Let the attribute be “Country” and the attribute values are {India, Japan, Malaysia, Korea}. Let’s consider the 

dominant value of the attribute country as India.  

 

Degrees of 

contradiction 

0 0.5 0.75 1 

Attribute values India Japan Malaysia Korea 

Degrees of 

appurtenance 
𝐴𝑉(𝑥) 

{([0.3,0.8],[0.5,0.6]),([

0.2,0.7],[0.4.0.5])} 

 

{([0.4,0.7],[0.3,0.5]),([

0.3,0.6],[0.5.0.7])} 

 

{([0.2,0.6],[0.3,0.6]),([

0.4,0.8],[0.4.0.7])} 

 

{([0.4,0.6],[0.5,0.5]),([

0.4,0.6],[0.5.0.5])} 

 

𝜆𝑉(𝑥) [0.2,0.8],[0.1,0.7] 

 

[0.3,0.6],[0.2,0.8] [0.1,0.7],[0.2,0.3] 

 

[0.1,0.6],[0.2,0.6] 

 

 

Definition: 3.4.11 

Let X be a universal set and V be a non-empty vague set. The plithogenic neutrosophic cubic vague set 𝔸𝑝
𝑣 =  

〈𝐴𝑣  , 𝜆𝑣〉 in X is said to be external plithogenic neutrosophic cubic vague set (EPNCVS) in X if it satisfies the 

following equations. 

(i) truth-external (briefly, T- external) if 𝜆𝑣𝑖

𝑇(𝑥) ∉ (𝐴𝑣𝑑𝑖

−𝑇(𝑥), 𝐴𝑣𝑑𝑖

+𝑇(𝑥)) for all 𝑥 ∈ 𝑥 and 𝑑𝑖 denotes the 

contradictory degree and its attribute values. (Condition 4) 

(ii) indeterminacy- external (briefly, I- external) if 𝜆𝑣𝑖

𝐼(𝑥) ∉ (𝐴𝑣𝑑𝑖

−𝐼(𝑥), 𝐴𝑣𝑑𝑖

+𝐼(𝑥)) for all 𝑥 ∈ 𝑥 and 𝑑𝑖 denotes the 

contradictory degree and its attribute values. (Condition 5) 

(iii) falsity- external (briefly, F- external) if 𝜆𝑣𝑖

𝐹(𝑥) ∉ (𝐴𝑣𝑑𝑖

−𝐹(𝑥), 𝐴𝑣𝑑𝑖

+𝐹(𝑥)) for all 𝑥 ∈ 𝑥 and 𝑑𝑖 denotes the 

contradictory degree and its attribute values. (Condition 6) 

 

Example: 3.4.12 

Let the attribute be “Month” and the attribute values are {July, May, April, March}. Let’s consider the dominant 

value of the attribute Month as July.  

 

Degrees of 

contradiction 

0 0.5 0.75 1 

Attribute values July May April March 
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Degrees of 

appurtenance 
𝐴𝑉(𝑥) 

{([0.2,0.6],[0.3,0.6]),([0.

4,0.8],[0.2,0.5]),([0.4,0.

8],[0.4.0.7])} 

 

{([0.4,0.6],[0.5,0.5]),([0.

3,0.8],[0.2,0.6]),([0.4,0.

6],[0.5.0.5])} 

 

{([0.3,0.8],[0.5,0.6]),([0.

3,0.5],[0.4,0.6]),([0.2,0.

7],[0.4.0.5])} 

 

{([0.4,0.6],[0.1,0.2

]),([0.4,0.5],[0.3,0.

6]),([0.4,0.6],[0.8.

0.9])} 
𝜆𝑉(𝑥) [0.1,0.7],[0.3,0.8],[0.2,0.

8] 

 

[0.3,0.7],[0.2,0.9],[0.3,0.

6] 

 

[0.1,0.9],[0.2,0.7],[0.1,0.

6] 

 

[0.1,0.5],[0.2,0.8],[

0.2,0.5] 

 

4. Union and Intersection  

In this section, we introduce the definitions of union and intersection of plithogenic cubic vague sets with 

examples. 

 

Definition:4.1 Let 𝔸𝑝
𝑣 = {〈𝑥, 𝐴𝑉(𝑥), 𝜆𝑉(𝑥)〉: 𝑥 ∈ 𝑋, 𝜐 ∈ 𝑉} and  𝔹𝑝

𝑣 = {〈𝑥, 𝐵𝑉 (𝑥), 𝜇𝑉(𝑥)〉: 𝑥 ∈ 𝑋, 𝜐 ∈ 𝑉} be 

two plithogenic cubic vague sets in X then we have  

1. 𝔸𝑝
𝑣= 𝔹𝑝

𝑣 if and only if 𝐴𝑉(𝑥) = 𝐵𝑉 (𝑥) and 𝜆𝑉(𝑥) = 𝜇𝑉(𝑥). 
2.  𝔸𝑝

𝑣  and 𝔹𝑝
𝑣 are two plithogenic cubic vague sets in X then we define and denote P-order as  𝔸𝑝

𝑣 ≤𝑃 𝔹𝑝
𝑣 if 

and only if 𝐴𝑉(𝑥) ⊆ 𝐵𝑉 (𝑥) and 𝜆𝑉(𝑥) ≤ 𝜇𝑉(𝑥) for all 𝑥 ∈ 𝑋. 
3.  𝔸𝑝

𝑣  and 𝔹𝑝
𝑣 are two plithogenic cubic vague sets in X then we define and denote R-order as  𝔸𝑝

𝑣 ≤𝑅 𝔹𝑝
𝑣 if 

and only if 𝐴𝑉(𝑥) ⊆ 𝐵𝑉 (𝑥) and 𝜆𝑉(𝑥) ≥ 𝜇𝑉(𝑥) for all 𝑥 ∈ 𝑋. 
 

Definition:4.2 Let 𝔸𝑝
𝑣 = {〈𝑥, 𝐴𝑉(𝑥), 𝜆𝑉(𝑥)〉: 𝑥 ∈ 𝑋, 𝜐 ∈ 𝑉} and  𝔹𝑝

𝑣 = {〈𝑥, 𝐵𝑉 (𝑥), 𝜇𝑉(𝑥)〉: 𝑥 ∈ 𝑋, 𝜐 ∈ 𝑉} be 

two plithogenic cubic vague sets in X. Then we have 

1. 𝔸𝑝
𝑣  ∪P  𝔹𝑝

𝑣 = {〈(𝑥), sup(𝐴𝑉(𝑥), 𝐵𝑉(𝑥)) , sup(𝜆𝑉(𝑥), 𝜇𝑉(𝑥))〉| 𝑥 ∈ 𝑋, 𝜐 ∈ 𝑉} (P-union) 

2. 𝔸𝑝
𝑣  ∩P  𝔹𝑝

𝑣 = {〈(𝑥), inf(𝐴𝑉(𝑥), 𝐵𝑉 (𝑥)) , inf(𝜆𝑉(𝑥), 𝜇𝑉(𝑥))〉| 𝑥 ∈ 𝑋, 𝜐 ∈ 𝑉} (P-intersection) 

3. 𝔸𝑝
𝑣  ∪R  𝔹𝑝

𝑣  = {〈(𝑥), sup(𝐴𝑉(𝑥), 𝐵𝑉 (𝑥)) , inf(𝜆𝑉(𝑥), 𝜇𝑉(𝑥))〉| 𝑥 ∈ 𝑋, 𝜐 ∈ 𝑉} (R-union) 

4. 𝔸𝑝
𝑣  ∩R  𝔹𝑝

𝑣  = {〈(𝑥), inf(𝐴𝑉(𝑥), 𝐵𝑉(𝑥)) , sup(𝜆𝑉(𝑥), 𝜇𝑉(𝑥))〉| 𝑥 ∈ 𝑋, 𝜐 ∈ 𝑉} (R-intersection) 

 

4.1 Plithogenic Fuzzy Cubic Vague Union and Intersection 

 

Example: 4.1.1 (P-Order) 

The expert values between “color” and “height” and their values are Color = {red, blue, green} and Height = {tall, 

medium} then the object elements are characterized by the Cartesian product 

Color × Height ={(red, tall), (red, medium), (blue, tall), (blue, medium), (green, tall), (green, medium)}. 

Let’s consider the dominant value of attribute “Color” be “red” and of attribute “Height” be “tall”. The attribute 

value contradiction degrees are:  

c(red, red) = 0, c(red, blue) = 
1

3
, c(red, green) =

2

3
, c(tall, tall) =0, c(tall, medium) = 

1

3
. 

We have two plithogenic cubic vague sets A and B and we consider the fuzzy, intuitionistic fuzzy and 

neutrosophic appurtenance degree of attribute values to the sets. 

 

𝔸𝑝
𝑣:  

Degrees of 

contradiction 

0 1

3
 

2

3
 

 0 1

3
 

Attribute values red blue green tall medium 

Degrees of 

appurtenance 

𝐴𝑉(𝑥) 

 ([0.2,0.3], 

[0.4,0.6]) 

([0.2,0.3], 

[0.4,0.5]) 

([0.1,0.3], 

[0.3,0.6]) 

 ([0.2,0.3], 

[0.4,0.5]) 

([0.1,0.3], 

[0.4,0.5]) 

𝜆𝑉(𝑥) [0.2,0.5] [0.2,0.4] [0.1,0.8] [0.3,0.5] [0.1,0.4] 

 

𝔹𝑝
𝑣:  

Degrees of 

contradiction 

0 1

3
 

2

3
 

 0 1

3
 

Attribute values red blue green tall medium 
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Degrees of 

appurtenance 

𝐵𝑉(𝑥) 

([0.3,0.4], 

[0.4,0.6]) 

 

([0.3,0.4], 

[0.4,0.5]) 

([0.2,0.3], 

[0.4,0.6]) 

([0.3,0.4], 

[0.4,0.5]) 

 

([0.3,0.4], 

[0.4,0.5]) 

𝜇𝑉(𝑥) [0.5,0.5] [0.3,0.4] [0.2,0.8] [0.4,0.5] [0.4,0.4] 

 

Then P-Union denoted by 𝔸𝑝
𝑣  ∪P  𝔹𝑝

𝑣 and P-Intersection denoted by 𝔸𝑝
𝑣  ∩P  𝔹𝑝

𝑣  

Degrees of 

contradiction 

0 1

3
 

2

3
 

 0 1

3
 

Attribute values red blue green tall medium 

𝐴𝑉 ∪  𝐵𝑉  ([0.3,0.4], 

[0.4,0.6]) 

([0.3,0.4], 

[0.4,0.5]) 

([0.2,0.3], 

[0.4,0.6]) 

([0.3,0.4], 

[0.4,0.5]) 

([0.3,0.4], 

[0.4,0.5]) 

𝜆𝑉 ∪ 𝜇𝑉  [0.5,0.5] [0.3,0.4] [0.2,0.8] [0.4,0.5] [0.4,0.4] 

𝐴𝑉  ∩  𝐵𝑉  ([0.2,0.3], 

[0.4,0.6]) 

([0.2,0.3], 

[0.4,0.5]) 

([0.1,0.3], 

[0.3,0.6]) 

([0.2,0.3], 

[0.4,0.5]) 

([0.1,0.3], 

[0.4,0.5]) 

𝜆𝑉  ∩  𝜇𝑉 [0.2,0.5] [0.2,0.4] [0.1,0.8] [0.3,0.5] [0.1,0.4] 

 

Example: 4.1.2 (R-Order) 

 

𝔸𝑝
𝑣: 

Degrees of 

contradiction 

0 1

3
 

2

3
 

 0 1

3
 

Attribute values red blue green tall medium 

Degrees of 

appurtenance 

𝐴𝑉(𝑥) 

 ([0.2,0.3], 

[0.4,0.6]) 

([0.2,0.3], 

[0.4,0.5]) 

([0.1,0.3], 

[0.3,0.6]) 

 ([0.2,0.3], 

[0.4,0.5]) 

([0.1,0.3], 

[0.4,0.5]) 

𝜆𝑉(𝑥) [0.4,0.5] [0.3,0.4] [0.2,0.8] [0.4,0.5] [0.4,0.4] 

 

𝔹𝑝
𝑣:  

Degrees of 

contradiction 

0 1

3
 

2

3
 

 0 1

3
 

Attribute values red blue green tall medium 

Degrees of 

appurtenance 

𝐵𝑉(𝑥) 

([0.3,0.4], 

[0.4,0.6]) 

 

([0.3,0.4], 

[0.4,0.5]) 

([0.2,0.3], 

[0.4,0.6]) 

([0.3,0.4], 

[0.4,0.5]) 

 

([0.3,0.4], 

[0.4,0.5]) 

𝜇𝑉(𝑥) [0.3,0.5] [0.2,0.4] [0.1,0.8] [0.3,0.5] [0.1,0.4] 

 

Then R-Union denoted by 𝔸𝑝
𝑣  ∪R  𝔹𝑝

𝑣  and R-Intersection denoted by 𝔸𝑝
𝑣  ∩R  𝔹𝑝

𝑣  

Degrees of 

contradiction 

0 1

3
 

2

3
 

 0 1

3
 

Attribute 

values 

red blue green tall medium 

𝐴𝑉 ∪  𝐵𝑉  ([0.3,0.4], 

[0.4,0.6]) 

([0.3,0.4], 

[0.4,0.5]) 

([0.2,0.3], 

[0.4,0.6]) 

([0.3,0.4], 

[0.4,0.5]) 

([0.3,0.4], 

[0.4,0.5]) 

𝜆𝑉 ∪ 𝜇𝑉  [0.3,0.5] [0.2,0.4] [0.1,0.8] [0.3,0.5] [0.1,0.4] 

𝐴𝑉  ∩  𝐵𝑉  ([0.2,0.3], 

[0.4,0.6]) 

([0.2,0.3], 

[0.4,0.5]) 

([0.1,0.3], 

[0.3,0.6]) 

([0.2,0.3], 

[0.4,0.5]) 

([0.1,0.3], 

[0.4,0.5]) 

𝜆𝑉  ∩  𝜇𝑉 [0.4,0.5] [0.3,0.4] [0.2,0.8] [0.4,0.5] [0.4,0.4] 

 

4.2 Plithogenic Intuitionistic Fuzzy Cubic Vague Union and Intersection 
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Example: 4.2.1 (P-Order)  

 

𝔸𝑝
𝑣: 

Degrees of 

contradiction 

0 1

3
 

2

3
 

 0 1

3
 

Attribute 

values 

red blue green tall medium 

Degrees of 

appurtenance 

𝐴𝑉(𝑥) 

{([0.2,0.6],[0.5,0

.5]),([0.4,0.8],[0.

5.0.5])} 

{([0.2,0.6],[0.3,0.6])

,([0.4,0.8],[0.4.0.7])

} 

 

{([0.4,0.5],[0.1,0.

4]),([0.5,0.6],[0.6.

0.9])} 

 

{([0.1,0.7],[0.2,0.

4]),([0.3,0.9],[0.6.

0.8])} 

 

{([0.2,0.5],[0.2,0.3]

),([0.5,0.8],[0.7.0.8

])} 

 

𝜆𝑉(𝑥) [0.2,0.5],[0.5,0.8

] 

[0.4,0.5],[0.5,0.6] 

 

[0.2,0.4],[0.6,0.8] 

 

[0.1,0.5],[0.5,0.9] 

 

[0.2,0.4],[0.6,0.8] 

 

 

𝔹𝑝
𝑣:  

Degrees of 

contradiction 

0 1

3
 

2

3
 

 0 1

3
 

Attribute 

values 

red blue green tall medium 

Degrees of 

appurtenance 

𝐵𝑉(𝑥) 

{([0.3,0.8],[0.5,0

.6]),([0.2,0.7],[0.

4.0.5])} 

 

{([0.3,0.8],[0.5,0.6])

,([0.2,0.7],[0.4.0.5])

} 

 

{([0.4,0.6],[0.5.0.

5]),([0.4,0.6],[0.5.

0.5])} 

{([0.6,0.9],[0.2,0.

5]),([0.1,0.4],[0.5.

0.8])} 

 

{([0.2,0.5],[0.2,0.3]

),([0.5,0.8],[0.7.0.8

])} 

 

 

𝜇𝑉(𝑥) [0.2,0.5],[0.5,0.8

] 

 

[0.4,0.5],[0.5,0.6] 

 

[0.2,0.4],[0.6,0.8] 

 

[0.1,0.5],[0.5,0.9] 

 

 

[0.2,0.4],[0.6,0.8] 

 

 

Then P-Union denoted by 𝔸𝑝
𝑣  ∪P  𝔹𝑝

𝑣 and P-Intersection denoted by 𝔸𝑝
𝑣  ∩P  𝔹𝑝

𝑣  

Degrees of 

contradiction 

0 1

3
 

2

3
 

 0 1

3
 

Attribute 

values 

red blue green tall medium 

𝐴𝑉 ∪  𝐵𝑉  {([0.3,0.8],[0.5,0

.6]),([0.2,0.7],[0.

4.0.5])} 

 

{([0.3,0.8],[0.5,0.6])

,([0.2,0.7],[0.4.0.5])

} 

 

{([0.4,0.6],[0.5,0.

5]),([0.4,0.6],[0.5.

0.5])} 

{([0.6,0.9],[0.2,0.

5]),([0.1,0.4],[0.5.

0.8]) 

{([0.2,0.6],[0.2,0.3]

),([0.4,0.8],[0.7.0.8

])} 

 

𝜆𝑉 ∪ 𝜇𝑉  [0.2,0.5], 

[0.5,0.8] 

 

[0.4,0.5],[0.5,0.6] 

 

[0.2,0.4],[0.6,0.8] 

 

[0.1,0.5],[0.5,0.9] [0.2,0.4],[0.6,0.8] 

 

𝐴𝑉  ∩  𝐵𝑉  {([0.2,0.6],[0.5,0

.5]),([0.4,0.8],[0.

5.0.5])} 

 

{([0.2,0.6],[0.3,0.6])

,([0.4,0.8],[0.4.0.7])

} 

 

{([0.4,0.5],[0.1,0.

4]),([0.5,0.6],[0.6.

0.9])} 

 

{([0.1,0.7],[0.2,0.

4]),([0.3,0.9],[0.6.

0.8])} 

{([0.2,0.5],[0.2,0.3]

),([0.5,0.8],[0.7.0.8

])} 

 

𝜆𝑉  ∩  𝜇𝑉  [0.2,0.5],[0.5,0.8

] 

 

[0.4,0.5],[0.5,0.6] 

 

[0.2,0.4],[0.6,0.8] 

 

[0.1,0.5],[0.5,0.9] [0.2,0.4],[0.6,0.8] 

 

 

Example: 4.2.2 (R-Order) 

 

𝔸𝑝
𝑣: 
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Degrees of 

contradiction 

0 1

3
 

2

3
 

 0 1

3
 

Attribute 

values 

red blue green tall medium 

Degrees of 

appurtenance 

𝐴𝑉(𝑥) 

{([0.2,0.6],[0.5,0

.5]),([0.4,0.8],[0.

5.0.5])} 

{([0.2,0.6],[0.3,0.6])

,([0.4,0.8],[0.4.0.7])

} 

 

{([0.4,0.5],[0.1,0.

4]),([0.5,0.6],[0.6.

0.9])} 

 

{([0.1,0.7],[0.2,0.

4]),([0.3,0.9],[0.6.

0.8])} 

 

{([0.2,0.5],[0.2,0.3]

),([0.5,0.8],[0.7.0.8

])} 

 

𝜆𝑉(𝑥) [0.4,0.7],[0.3,0.6

] 

[0.1,0.3],[0.7,0.9] [0.7,0.8],[0.2,0.3] [0.5,0.6],[0.4,0.5] 

 

[0.3,0.5],[0.5,0.7] 

 

 

𝔹𝑝
𝑣:  

Degrees of 

contradiction 

0 1

3
 

2

3
 

 0 1

3
 

Attribute 

values 

red blue green tall medium 

Degrees of 

appurtenance 

𝐵𝑉(𝑥) 

{([0.3,0.8],[0.5,0

.6]),([0.2,0.7],[0.

4.0.5])} 

 

{([0.3,0.8],[0.5,0.6])

,([0.2,0.7],[0.4.0.5])

} 

 

{([0.4,0.6],[0.5.0.

5]),([0.4,0.6],[0.5.

0.5])} 

{([0.6,0.9],[0.2,0.

5]),([0.1,0.4],[0.5.

0.8])} 

 

{([0.2,0.5],[0.2,0.3]

),([0.5,0.8],[0.7.0.8

])} 

 

𝜇𝑉(𝑥) [0.4,0.7],[0.3,0.6

] 

[0.1,0.3],[0.7,0.9] [0.7,0.8],[0.2,0.3] [0.5,0.6],[0.4,0.5] 

 

[0.3,0.5],[0.5,0.7] 

 

 

Then R-Union denoted by 𝔸𝑝
𝑣  ∪R  𝔹𝑝

𝑣  and R-Intersection denoted by 𝔸𝑝
𝑣  ∩R  𝔹𝑝

𝑣  

Degrees of 

contradiction 

0 1

3
 

2

3
 

 0 1

3
 

Attribute 

values 

red blue green tall medium 

𝐴𝑉 ∪  𝐵𝑉  {([0.3,0.8],[0.5,0

.6]),([0.2,0.7],[0.

4.0.5])} 

 

{([0.3,0.8],[0.5,0.6])

,([0.2,0.7],[0.4.0.5])

} 

{([0.4,0.6],[0.5.0.

5]),([0.4,0.6],[0.5.

0.5])} 

{([0.6,0.9],[0.2,0.

5]),([0.1,0.4],[0.5.

0.8])} 

 

{([0.2,0.5],[0.2,0.3]

),([0.5,0.8],[0.7.0.8

])} 

 

𝜆𝑉 ∪ 𝜇𝑉  [0.4,0.7],[0.3,0.6

] 

[0.1,0.3],[0.7,0.9] [0.7,0.8],[0.2,0.3] [0.5,0.6],[0.4,0.5] 

 

[0.3,0.5],[0.5,0.7] 

 

𝐴𝑉  ∩  𝐵𝑉  {([0.2,0.6],[0.5,0

.5]),([0.4,0.8],[0.

5.0.5])} 

{([0.2,0.6],[0.3,0.6])

,([0.4,0.8],[0.4.0.7])

} 

 

{([0.4,0.5],[0.1,0.

4]),([0.5,0.6],[0.6.

0.9])} 

 

{([0.1,0.7],[0.2,0.

4]),([0.3,0.9],[0.6.

0.8])} 

 

{([0.2,0.5],[0.2,0.3]

),([0.5,0.8],[0.7.0.8

])} 

 

𝜆𝑉  ∩  𝜇𝑉  [0.4,0.7],[0.3,0.6

] 

[0.1,0.3],[0.7,0.9] [0.7,0.8],[0.2,0.3] [0.5,0.6],[0.4,0.5] 

 

[0.3,0.5],[0.5,0.7] 

 

 

4.3 Plithogenic Neutrosophic Cubic Vague Union and Intersection 

Example: 4.3.1 (P-Order) 

𝔸𝑝
𝑣: 

Degrees of 

contradiction 

0 1

3
 

2

3
 

 0 1

3
 

Attribute 

values 

red blue green Tall Medium 

Degrees of 

appurtenance 

𝐴𝑉(𝑥) 

{([0.2,0.6],[0.5,0

.5]),([0.4,0.6],[0.

2,0.6]),([0.4,0.8]

,[0.5.0.5])} 

{([0.2,0.6],[0.3,0.6])

,([0.4,0.8],[0.4,0.6]),

([0.4,0.8],[0.4.0.7])} 

 

{([0.4,0.5],[0.1,0.

4]),([0.5,0.8],[0.2,

0.6]),([0.5,0.6],[0.

6.0.9])} 

{([0.1,0.7],[0.2,0.

4]),([0.4,0.7],[0.3,

0.6]),([0.3,0.9],[0.

6.0.8])} 

{([0.2,0.5],[0.2,0.3]

),([0.5,0.8],[0.4,0.6

]),([0.5,0.8],[0.7.0.

8])} 
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𝜆𝑉(𝑥) [0.2,0.5],[0.2,0.3

],[0.5,0.8] 

[0.4,0.5],[0.5,0.5],[0

.5,0.6] 

 

[0.2,0.4],[0.2,0.4]

,[0.6,0.8] 

 

[0.1,0.5],[0.3,0.4]

,[0.5,0.9] 

 

[0.2,0.4],[0.3,0.5],[

0.6,0.8] 

 

 

𝔹𝑝
𝑣:  

Degrees of 

contradiction 

0 1

3
 

2

3
 

 0 1

3
 

Attribute 

values 

red blue green tall Medium 

Degrees of 

appurtenance 

𝐵𝑉(𝑥) 

{([0.3,0.8],[0.5,0

.6]),([0.3,0.5],[0.

1,0.6]),([0.2,0.7]

,[0.4.0.5])} 

 

{([0.3,0.8],[0.5,0.6])

,([0.3,0.5],[0.2,0.5]),

([0.2,0.7],[0.4.0.5])} 

 

{([0.4,0.6],[0.5,0.

5]),([0.1,0.5],[0.1,

0.3]),([0.4,0.6],[0.

5.0.5])} 

{([0.6,0.9],[0.2,0.

5]),([0.3,0.5],[0.2,

0.5]),([0.1,0.4],[0.

5.0.8])} 

 

{([0.2,0.5],[0.2,0.3]

),([0.5,0.8],[0.4,0.6

]),([0.5,0.8],[0.7.0.

8])} 

 

 

𝜇𝑉(𝑥) [0.2,0.5],[0.3,0.4

],[0.5,0.8] 

 

[0.4,0.5],[0.6,0.6],[0

.5,0.6] 

 

[0.2,0.4],[0.3,0.5]

,[0.6,0.8] 

 

[0.1,0.5],[0.5,0.6]

,[0.5,0.9] 

 

 

[0.2,0.4],[0.7,0.8],[

0.6,0.8] 

 

 

Then P-Union denoted by 𝔸𝑝
𝑣  ∪P  𝔹𝑝

𝑣 and P-Intersection denoted by 𝔸𝑝
𝑣  ∩P  𝔹𝑝

𝑣 are 

Degrees of 

contradiction 

0 1

3
 

2

3
 

 0 1

3
 

Attribute 

values 

red blue Green tall medium 

𝐴𝑉 ∪  𝐵𝑉  {([0.3,0.8],[0.5,0

.6]),([0.3,0.5],[0.

1,0.6]),([0.2,0.7]

,[0.4.0.5])} 

 

{([0.3,0.8],[0.5,0.6])

,([0.3,0.5],[0.2,0.5]),

([0.2,0.7],[0.4.0.5])} 

 

{([0.4,0.6],[0.5,0.

5]),([0.1,0.5],[0.1,

0.3]),([0.4,0.6],[0.

5.0.5])} 

{([0.6,0.9],[0.2,0.

5]),([0.3,0.5],[0.2,

0.5]),([0.1,0.4],[0.

5.0.8]) 

{([0.2,0.6],[0.2,0.3]

),([0.4,0.7],[0.3,0.5

]),([0.4,0.8],[0.7.0.

8])} 

 

𝜆𝑉 ∪ 𝜇𝑉  [0.2,0.5],[0.2,0.3

],[0.5,0.8] 

 

[0.4,0.5],[0.5,0.5],[0

.5,0.6] 

 

[0.2,0.4],[0.2,0.4]

,[0.6,0.8] 

 

[0.1,0.5],[0.3,0.4]

,[0.5,0.9] 

[0.2,0.4],[0.3,0.5],[

0.6,0.8] 

 

𝐴𝑉  ∩  𝐵𝑉  {([0.2,0.6],[0.5,0

.5]),([0.4,0.6],[0.

2,0.6]),([0.4,0.8]

,[0.5.0.5])} 

 

{([0.2,0.6],[0.3,0.6])

,([0.4,0.8],[0.4,0.6]),

([0.4,0.8],[0.4.0.7])} 

 

{([0.4,0.5],[0.1,0.

4]),([0.5,0.8],[0.2,

0.6]),([0.5,0.6],[0.

6.0.9])} 

 

{([0.1,0.7],[0.2,0.

4]),([0.4,0.7],[0.3,

0.6]),([0.3,0.9],[0.

6.0.8])} 

{([0.2,0.5],[0.2,0.3]

),([0.5,0.8],[0.4,0.6

]),([0.5,0.8],[0.7.0.

8])} 

 

𝜆𝑉  ∩  𝜇𝑉  [0.2,0.5],[0.3,0.4

],[0.5,0.8] 

 

[0.4,0.5],[0.6,0.6],[0

.5,0.6] 

 

[0.2,0.4],[0.3,0.5]

,[0.6,0.8] 

 

[0.1,0.5],[0.5,0.6]

,[0.5,0.9] 

[0.2,0.4],[0.7,0.8],[

0.6,0.8] 

 

 

Example: 4.3.2 (R-Order) 

 

𝔸𝑝
𝑣: 

Degrees of 

contradiction 

0 1

3
 

2

3
 

 0 1

3
 

Attribute 

values 

red blue green tall Medium 

Degrees of 

appurtenance 

𝐴𝑉(𝑥) 

{([0.2,0.6],[0.5,0

.5]),([0.4,0.6],[0.

{([0.2,0.6],[0.3,0.6])

,([0.4,0.8],[0.4,0.6]),

([0.4,0.8],[0.4.0.7])} 

{([0.4,0.5],[0.1,0.

4]),([0.5,0.8],[0.2,

{([0.1,0.7],[0.2,0.

4]),([0.4,0.7],[0.3,

{([0.2,0.5],[0.2,0.3]

),([0.5,0.8],[0.4,0.6
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2,0.6]),([0.4,0.6

8],[0.5.0.5])} 

 0.6]),([0.5,0.6],[0.

6.0.9])} 

 

0.6]),([0.3,0.9],[0.

6.0.8])} 

 

]),([0.5,0.8],[0.7.0.

8])} 

 

𝜆𝑉(𝑥) [0.4,0.7],[0.3,0.4

],[0.3,0.6] 

[0.1,0.3],[0.5,0.6],[0

.7,0.9] 

[0.7,0.8],[0.3,0.5]

,[0.2,0.3] 

[0.5,0.6],[0.5,0.6]

,[0.4,0.5] 

 

[0.3,0.5],[0.6,0.6],[

0.5,0.7] 

 

 

𝔹𝑝
𝑣:  

Degrees of 

contradiction 

0 1

3
 

2

3
 

 0 1

3
 

Attribute 

values 

red blue green tall Medium 

Degrees of 

appurtenance 

𝐵𝑉(𝑥) 

{([0.3,0.8],[0.5,0

.6]),([0.3,0.5],[0.

1,0.6]),([0.2,0.7]

,[0.4.0.5])} 

 

{([0.3,0.8],[0.5,0.6])

,([0.3,0.5],[0.2,0.5]),

([0.2,0.7],[0.4.0.5])} 

 

{([0.4,0.6],[0.5,0.

5]),([0.1,0.5],[0.1,

0.3]),([0.4,0.6],[0.

5.0.5])} 

{([0.6,0.9],[0.2,0.

5]),([0.3,0.5],[0.2,

0.5]),([0.1,0.4],[0.

5.0.8])} 

 

{([0.2,0.5],[0.2,0.3]

),([0.5,0.8],[0.4,0.6

]),([0.5,0.8],[0.7.0.

8])} 

 

𝜇𝑉(𝑥) [0.4,0.7],[0.2,0.3

],[0.3,0.6] 

[0.1,0.3],[0.3,0.4],[0

.7,0.9] 

[0.7,0.8],[0.1,0.3]

,[0.2,0.3] 

[0.5,0.6],[0.2,0.],[

0.4,0.5] 

 

[0.3,0.5],[0.4,0.5],[

0.5,0.7] 

 

 

Then R-Union denoted by 𝔸𝑝
𝑣  ∪R  𝔹𝑝

𝑣  and R-Intersection denoted by 𝔸𝑝
𝑣  ∩R  𝔹𝑝

𝑣  

Degrees of 

contradiction 

0 1

3
 

2

3
 

 0 1

3
 

Attribute 

values 

red blue green tall medium 

𝐴𝑉 ∪  𝐵𝑉  {([0.3,0.8],[0.5,0

.6]),([0.3,0.5],[0.

1,0.6]),([0.2,0.7]

,[0.4.0.5])} 

 

{([0.3,0.8],[0.5,0.6])

,([0.3,0.5],[0.2,0.5]),

([0.2,0.7],[0.4.0.5])} 

 

{([0.4,0.6],[0.5,0.

5]),([0.1,0.5],[0.1,

0.3]),([0.4,0.6],[0.

5.0.5])} 

{([0.6,0.9],[0.2,0.

5]),([0.3,0.5],[0.2,

0.5]),([0.1,0.4],[0.

5.0.8])} 

 

{([0.2,0.5],[0.2,0.3]

),([0.5,0.8],[0.4,0.6

]),([0.5,0.8],[0.7.0.

8])} 

 

𝜆𝑉 ∪ 𝜇𝑉  [0.4,0.7],[0.2,0.3

],[0.3,0.6] 

[0.1,0.3],[0.3,0.4],[0

.7,0.9] 

[0.7,0.8],[0.1,0.3]

,[0.2,0.3] 

[0.5,0.6],[0.2,0.],[

0.4,0.5] 

 

[0.3,0.5],[0.4,0.5],[

0.5,0.7] 

 

𝐴𝑉  ∩  𝐵𝑉  {([0.2,0.6],[0.5,0

.5]),([0.4,0.6],[0.

2,0.6]),([0.4,0.8]

,[0.5.0.5])} 

{([0.2,0.6],[0.3,0.6])

,([0.4,0.8],[0.4,0.6]),

([0.4,0.8],[0.4.0.7])} 

 

{([0.4,0.5],[0.1,0.

4]),([0.5,0.8],[0.2,

0.6]),([0.5,0.6],[0.

6.0.9])} 

 

{([0.1,0.7],[0.2,0.

4]),([0.4,0.7],[0.3,

0.6]),([0.3,0.9],[0.

6.0.8])} 

 

{([0.2,0.5],[0.2,0.3]

),([0.5,0.8],[0.4,0.6

]),([0.5,0.8],[0.7.0.

8])} 

 

𝜆𝑉  ∩  𝜇𝑉  [0.4,0.7],[0.3,0.4

],[0.3,0.6] 

[0.1,0.3],[0.5,0.6],[0

.7,0.9] 

[0.7,0.8],[0.3,0.5]

,[0.2,0.3] 

[0.5,0.6],[0.5,0.6]

,[0.4,0.5] 

[0.3,0.5],[0.6,0.6],[

0.5,0.7] 

 

 

Theorem: 4.3.2 

Let X be a non-empty set and 𝔸𝑝
𝑣 =  〈𝐴𝑣 , 𝜆𝑣〉 be a PNCVS in X which is not external. Then there exists 𝑥 ∈

𝑋 such that 𝜆𝑣𝑖

𝑇(𝑥) ∈ (𝐴𝑣𝑑𝑖

−𝑇(𝑥), 𝐴𝑣𝑑𝑖

+𝑇(𝑥)) , 𝜆𝑣𝑖

𝐼(𝑥) ∈ (𝐴𝑣𝑑𝑖

−𝐼(𝑥), 𝐴𝑣𝑑𝑖

+𝐼(𝑥)) , 𝜆𝑣𝑖

𝐹(𝑥) ∈ 

(𝐴𝑣𝑑𝑖

−𝐹(𝑥), 𝐴𝑣𝑑𝑖

+𝐹(𝑥)) where 𝑑𝑖 denotes the contradictory degree and its attribute values. 

Proof: Straight forward 

 

Theorem: 4.3.3 
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Let X be a non-empty set and 𝔸𝑝
𝑣 =  〈𝐴𝑣 , 𝜆𝑣〉 be a PNCVS in X. If 𝔸𝑝

𝑣  is both T-internal and T-external, then, 

(∀ 𝑥 ∈ 𝑋) (𝜆𝑣𝑖

𝑇(𝑥) ∈ {(𝐴𝑣𝑑𝑖

−𝑇(𝑥)|𝑥 ∈ 𝑋} ∪ {𝐴𝑣𝑑𝑖

+𝑇(𝑥)|𝑥 ∈ X}) where 𝑑𝑖 denotes the contradictory degree 

and its attribute values. 

Proof: Consider the conditions 1 and 4 which implies that 𝐴𝑣𝑑𝑖

−𝑇(𝑥) ≤  𝜆𝑣𝑖

𝑇(𝑥) ≤ 𝐴𝑣𝑑𝑖

+𝑇(𝑥) and 𝜆𝑣𝑖

𝑇(𝑥) ∉ 

(𝐴𝑣𝑑𝑖

−𝑇(𝑥), 𝐴𝑣𝑑𝑖

+𝑇(𝑥)) for all 𝑥 ∈ 𝑋. Then it follows that 𝜆𝑣𝑖

𝑇(𝑥) = 𝐴𝑣𝑑𝑖

−𝑇(𝑥) or 𝜆𝑣𝑖

𝑇(𝑥) = 𝐴𝑣𝑑𝑖

+𝑇(𝑥), and 

hence (𝜆𝑣𝑖

𝑇(𝑥) ∈ {(𝐴𝑣𝑑𝑖

−𝑇(𝑥)|𝑥 ∈ 𝑋} ∪ {𝐴𝑣𝑑𝑖

+𝑇(𝑥)|𝑥 ∈ X}) where 𝑑𝑖 denotes the contradictory degree and 

its attribute values. Hence proved.  

 

Remark: Similarly the consequent theorems holds for indeterminacy and falsity values. 

 

Theorem: 4.3.4  

Let X be a non-empty set and 𝔸𝑝
𝑣 =  〈𝐴𝑣 , 𝜆𝑣〉 be a PNCVS in X. If 𝔸𝑝

𝑣  is both I-internal and I-external, then, 

(∀ 𝑥 ∈ 𝑋) (𝜆𝑣𝑖

𝐼(𝑥) ∈ {(𝐴𝑣𝑑𝑖

−𝐼(𝑥)|𝑥 ∈ 𝑋} ∪ {𝐴𝑣𝑑𝑖

+𝐼(𝑥)|𝑥 ∈ X}) where 𝑑𝑖 denotes the contradictory degree 

and its attribute values. 

 

Theorem: 4.3.5 

Let X be a non-empty set and 𝔸𝑝
𝑣 =  〈𝐴𝑣 , 𝜆𝑣〉 be a PNCVS in X. If 𝔸𝑝

𝑣  is both F-internal and F-external, then, 

(∀ 𝑥 ∈ 𝑋) (𝜆𝑣𝑖

𝐹(𝑥) ∈ {(𝐴𝑣𝑑𝑖

−𝐹(𝑥)|𝑥 ∈ 𝑋} ∪ {𝐴𝑣𝑑𝑖

+𝐹(𝑥)|𝑥 ∈ X}) where 𝑑𝑖 denotes the contradictory degree 

and its attribute values. 

 

Definition: 4.3.6 

Let X be a non-empty set. The complement of  𝔸𝑝
𝑣  =  〈𝐴𝑣 , 𝜆𝑣〉 is said to be PNCVS, (𝔸𝑝

𝑣)𝑐 =  〈𝐴𝐶
𝑣 , 𝜆𝐶

𝑣〉 

where 𝐴𝑣
𝑐 = {(𝐴𝐶

𝑣𝑑𝑖

𝑇
(𝑥), 𝐴𝐶

𝑣𝑑𝑖

𝐼
(𝑥), 𝐴𝐶

𝑣𝑑𝑖

𝐹
(𝑥))} is an interval valued PNCVS in X and 𝜆𝐶

𝑣 =

{(𝜆𝐶
𝑣

𝑇
(𝑥), 𝜆𝐶

𝑣
𝐼
(𝑥), 𝜆𝐶

𝑣
𝐹

(𝑥))} is a neutrosophic set in Y. 

 

Theorem: 4.3.7  
Let X be a non-empty set and 𝔸𝑝

𝑣 =  〈𝐴𝑣 , 𝜆𝑣〉 be a PNCVS in X. If 𝔸𝑝
𝑣  is both T-internal and T-external, then the 

complement (𝔸𝑝
𝑣)𝑐 =  〈𝐴𝐶

𝑣 , 𝜆𝐶
𝑣〉 of 𝔸𝑝

𝑣  =  〈𝐴𝑣 , 𝜆𝑣〉 is a T-internal and T-external PNCVS in X. 

Proof:  

Let X be a non-empty set and if 𝔸𝑝
𝑣  =  〈𝐴𝑣 , 𝜆𝑣〉 is an T-internal and T-external PNCVS in X, then 𝐴𝑣𝑑𝑖

−𝑇(𝑥) ≤

 𝜆𝑣𝑖

𝑇(𝑥) ≤ 𝐴𝑣𝑑𝑖

+𝑇(𝑥) and 𝜆𝑣𝑖

𝑇(𝑥) ∉ (𝐴𝑣𝑑𝑖

−𝑇(𝑥), 𝐴𝑣𝑑𝑖

+𝑇(𝑥)) for all 𝑥 ∈ 𝑋. It follows that 1 − 𝐴𝑣𝑑𝑖

−𝑇(𝑥) ≤

 1 − 𝜆𝑣𝑖

𝑇(𝑥) ≤ 1 − 𝐴𝑣𝑑𝑖

+𝑇(𝑥) and 1 − 𝜆𝑣𝑖

𝑇(𝑥) ∉ (1 − 𝐴𝑣𝑑𝑖

−𝑇(𝑥), 1 − 𝐴𝑣𝑑𝑖

+𝑇(𝑥)). Therefore (𝔸𝑝
𝑣)𝑐 =  

〈𝐴𝐶
𝑣 , 𝜆𝐶

𝑣〉 of 𝔸𝑝
𝑣 =  〈𝐴𝑣 , 𝜆𝑣〉 is a T-internal and T-external PNCVS in X. 

 

Remark: Similarly the consequent theorems holds for indeterminacy and falsity values. 

 

Theorem: 4.3.8 

Let X be a non-empty set and 𝔸𝑝
𝑣 =  〈𝐴𝑣 , 𝜆𝑣〉 be a PNCVS in X. If 𝔸𝑝

𝑣  is both I-internal and I-external, then the 

complement (𝔸𝑝
𝑣)𝑐 =  〈𝐴𝐶

𝑣 , 𝜆𝐶
𝑣〉 of 𝔸𝑝

𝑣  =  〈𝐴𝑣 , 𝜆𝑣〉 is a I-internal and I-external PNCVS in X. 

 

Theorem: 4.3.9 
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Let X be a non-empty set and 𝔸𝑝
𝑣 =  〈𝐴𝑣 , 𝜆𝑣〉 be a PNCVS in X. If 𝔸𝑝

𝑣  is both F-internal and F-external, then the 

complement (𝔸𝑝
𝑣)𝑐 =  〈𝐴𝐶

𝑣 , 𝜆𝐶
𝑣〉 of 𝔸𝑝

𝑣  =  〈𝐴𝑣 , 𝜆𝑣〉 is a F-internal and F-external PNCVS in X. 

 

5 Conclusion and Future Work 

             The objective of this paper is to define the concept of plithogenic cubic vague set and its generalization; 

plithogenic fuzzy cubic vague set, plithogenic intuitionistic fuzzy cubic vague set, plithogenic neutrosophic 

cubic vague set with examples. Its corresponding internal and external cubic vague sets are also defined. We 

studied the union and intersection of P and R order also some basic properties. The work presented in this paper 

delivers the theoretical framework for further study on plithogenic cubic vague set. In the future work, we will 

study AND and OR operations, similarity measures of plithogenic cubic vague set. 

 

References 

[1] Abdel-Basset, Mohamed El-hoseny, Abduallah Gamal, and Florentin Smarandache. A      

     novel model for evaluation hospital medical care systems based on plithogenic sets. Artificial      

     Intelligence in Medicine, 100:101710, 2019.  

[2] Abdel-Basset and Rehab Mohamed. A novel plithogenic topsis- critic model for     

      sustainable supply chain risk management. Journal of Cleaner Production, 247:119586, 2020.  

[3] Abdel-Basset, Rehab Mohamed, Abd El-Nasser H. Zaied, and Florentin Smarandache. A     

      hybrid plithogenic decision-making approach with quality function deployment for selecting          

      supply chain sustain- ability metrics. Symmetry, 11(7):903, 2019. 

[4] Anitha S, Mohana K & Florentin Smarandache. On NGSR Closed Sets in Neutrosophic topological  

     Spaces, Neutrosophic Sets and Systems, 28, 2019, 171-178.  

[5] Atanassov.K.T, Intuitionistic fuzzy sets, Fuzzy sets and systems, 20, 1986, 87-96. 

[6] K.Atanassov. New operations defined over the intuitionistic fuzzy sets. Fuzzy Sets and Systems.    

      1994, 61: 137- 142  

[7] Coker.D, An introduction to Intuitionistic fuzzy topological spaces, Fuzzy sets and systems,   

      88,1997, 81-89.  

[8] Gau. W.L., Buehrer. D.J., Vague sets, IEEE Transactions on Systems, Man and Cybernetics, 23-  

      2,1993, 610–614. 

[9] Grabisch M, Orlovski Sergei A, Yager Ronald R. Fuzzy Aggregation of Numerical   

      Preferences.Fuzzy Sets in Decision Analysis,Operations Research and Statistics.The Handbooks  

      of FuzzySets Series 1(1998) 31-68. 

[10] Hazwani Hashim, Lazim Abdullah and Ashraf Al-Quran, Interval Neutrosophic Vague Sets,  

        Neutosophic Sets and Systems, Vol. 25, 2019, 66-75. 

[11] Hong-yu Zhang, Jian-qiang Wang, and Xiao-hongChen ,”Interval Neutrosophic Sets and   

        Their Application in Multicriteria Decision Making Problems’’ Hindawi Publishing Corporation   

        World Journal Volume 2014, Article ID 645953, 15 pages  http://dx.doi.org/10.1155/2014/645953. 

[12] Jun, Y.B.; Kim, C.S.; Yang, K.O. Cubic set. Ann. Fuzzy Math. Inform, 4, 2012, 83–98 

[13] Jun, Y.B.; Song, S.Z.; Kim, S.J. Cubic interval-valued intuitionistic fuzzy sets and their application  

        in BCK/BCI-algebras. Axioms 2018, 7, 7,1-17. 



Neutrosophic Sets and Systems, Vol. 58, 2023     124  

 

 
 

S.Anitha, Dr.A.Francina Shalini, Plithogenic Cubic Vague Sets 

[14] Khaleed Alhazaymeh, Yousef Al-Qudah , Nasruddin Hassan and Abdul Muhaimin Nasruddin   

       Cubic Vague Set and its Application in Decision Making, Entropy, 2020, 22, 963. 

[15] Monoranjan Bhowmik and   Madhumangal Pal, “Intuitionistic NeutrosophicSet,”ISSN  1746- 

        7659,England, UK Journal of Information and Computing Science,Vol. 4, No. 2, 2009, pp. 142-15. 

[16] MamoniDhar (2018) “Cardinality of Fuzzy Sets: An Overview” International Journal of  

        Energy,Information and Communications Vol. 4, Issue 1, February, 2013. 

[17] Nivetha Martin and Florentin Smarandache, Introduction to Combined Plithogenic  Hypersoft  

       Sets, Neutrosophic  Sets and Systems, vol. 35, 2020, pp. 503-510. DOI: 10.5281/zenodo.3951708 

 [18] Norsyahida Zulkifli, Lazim Abdullah & Harish Garg, An Integrated Interval-Valued   

        Intuitionistic Fuzzy Vague Set and Their Linguistic Variables, International Journal of Fuzzy        

        Systems Vol. 23, 182– 193(2021) 

[19] Shawkat Alkhazaleh, Neutrosophic Vague Set Theory, Critical Review, Vol.10, 2015, 29-39. 

[20] F.Smarandache, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, International  

        Journal of Pure and Appl.Math., 24, 2005, 287-297. 

[21] F.Smarandache, Plithogeny, PlithogenicSet, Logic,Probability, and Statistics, Pons                

Editions,Brussels, Belgium,2017, 141,  arXiv.org (Cornell University), Computer Science- 

Artificial Intelligence. 

[22] Wang, H.; Smarandache, F.; Zhang, Y. Q.; Sunderraman, R. Interval Neutrosophic Sets and   

         logic:Theory and Applications in Computing; Hexis, Phoenix, Ariz, USA, 2005. 

 [23] Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic  

         sets.MultispaceMultistruct. 2010, 4, 410–413.  

[24] L.A. Zadeh, Fuzzy sets, Information and Control, 8, 1965, 338-353.  

 

 

 

Received: June 2, 2023.  Accepted: Sep 30, 2023 

https://link.springer.com/article/10.1007/s40815-020-01011-8#auth-Norsyahida-Zulkifli
https://link.springer.com/article/10.1007/s40815-020-01011-8#auth-Lazim-Abdullah
https://link.springer.com/article/10.1007/s40815-020-01011-8#auth-Harish-Garg
https://link.springer.com/journal/40815
https://link.springer.com/journal/40815


Neutrosophic Sets and Systems, Vol. 58, 2023 
University of New Mexico 

 

Chalapathi T, Kumaraswamy Naidu K, Harish Babu D, Enumeration of Neutrosophic Involutions over Finite Commutative 

Neutrosophic Rings 

 

 

Enumeration of Neutrosophic Involutions over Finite 

Commutative Neutrosophic Rings 

 
Chalapathi T1*, Kumaraswamy Naidu K2,Harish Babu D3 

1Department of Mathematics, Madanapalle Institute of Technology & Science, Madanpalle-517325, A.P. India, 
2Dept. of Mathematics, Mohan Babu University, Tirupati-517 102, A.P, India; 

3Dept. of Mathematics, SASL, VIT Bhopal University, Bhopal-466114, M P, India 
 

*Correspondence: chalapathi.tekuri@gmail.com; Tel.: +919542865332 

 

Abstract: 
A finite commutative ring involution is the multiplicative inverse of the element attribute R is the 

element itself. This classical characteristic of a finite commutative ring makes Neutrosophic 

involutions possible, which are counted, listed and assessed in this work. Assume that the 

Neutrosophic ring R(I) is the finite commutative ring with unity 1 over the ring R under the 

indeterminate 𝑰 . We first establish some useful necessary and sufficient conditions for the 

Neutrosophic components of the type 𝒂 + 𝒃𝑰 is involutory in order to understand how to count 

Neutrosophic involutions of R(I). The behavior of the Neutrosophic composition table for 

identifying Neutrosophic involutions and counting the number of 1s that appear on the primary 

diagonal of the composition table of R(I) is also investigated in this work. 

Keywords: Involutions, Neutrosophic Involutions, Neutrosophic Units, Pure Neutrosophic 

Involution, Neutrosophic Ring. 

 

 

1. Introduction 

An involution is a special element in any ring 𝑅 with unity and it is a self-multiplicative inverse 

element under multiplication defined over 𝑅 . For a finite ring 𝑅 , let ℐ𝑛(𝑅) denote the set of 

involutions of𝑅, and  |ℐ𝑛(𝑅)| represents the number of involutions of 𝑅. Because R's involutions 

are systematically arranged mathematical objects that don't require any additional resources to 

implement, they have received a great deal of attention for their potential applications in security 

systems, coding-decoding systems, combinatorial designs, the creation of self-intelligent systems, 

etc. [1–11].Due to the fact that involutions have been crucial to the development, interpretation, and 

design of electronic devices. Every commutative ring with unity is known to contain at least one 

involution. However, the theory of finite commutative rings has two intriguing subcategories. One is 

cyclic rings and theother is non-cyclic rings. A ring 𝑅 is called cyclic if the group (𝑅, +) is a cyclic 

group under addition defined by 𝑅. Otherwise, it is called a noncyclic ring. Every cyclic ring is 
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commutative, and a finite cyclic ring with unity of order 𝑛  is isomorphic to the ring 𝑍𝑛 , 

integersunder addition and multiplication modulo 𝑛.On the other hand, the rings 𝑍𝑚 × 𝑍𝑛  and 

𝑍𝑛[𝑖] are all noncyclic rings for every integer𝑚, 𝑛 > 1. 

In 1987, Smarandache and Vasantha Kandasamy introduced a basic setup of the theory of 

Neutrosophic structures through indeterminacy 𝐼, because simply they had a natural and necessary 

role of  𝐼 to play in the development of the Neutrosophic algebraic systems. Now a days, they 

rapidly become flourishing systems, because the structure 𝑅  and indeterminate𝐼 are needful in 

modern mathematical systems and many intelligent systems like Neutrosophic decision systems, 

Neutrosophic error detection systems, algorithms for digital communication systems [12-15];all 

these typesof systems employ the Neutrosophic structure 𝑅(𝐼). 

Because they had a natural and essential role for indeterminate 𝐼 to play in the growth of 

the Neutrosophic algebraic systems, Smarandache and Vasantha Kandasamy established the theory 

of Neutrosophic structures through indeterminacy 𝐼 in 1987. They are now developing rapidly 

because many smart systems and quality systems, such as product quality systems, Neutrosophic 

virtual reality systems, and uncertainty systems [16–18], all use the Neutrosophic structure and 

logic, which is necessary in modern mathematical systems. 

The classic Neutrosophic Rings, written by Florentin Smarandache and Vasantha 

Kandasamy, and published in 2006, sparked the growth of two contemporary mathematics fields 

that are closely related to one another: The mathematical concept of "Neutrosophic ring" and 

Neutrosophic logic. The value of the symbols T(True), F(False), and I(Indeterminate) and their 

corresponding laws was illustrated in Chapter 2 of Florentin Smarandache and Vasantha 

Kandasamy's book [19].Neutrosophic logic is interested in how we think in order to draw 

conclusions about mathematics. That book will help us in studying this paper. Now starts a simple 

introduction about the structure𝑅(𝐼). Mathematically, a Neutrosophic ring is a system with the 

following components: a ring R, an indeterminate I, two Neutrosophic binary operations on R, and a 

set of axioms that the elements of R satisfy via the indeterminate I. For any ring 𝑅, there exists a new 

structure 𝑅(𝐼), called a Neutrosophic ring, and is engendered by 𝑅 and 𝐼, which is represented by a 

Neutrosophic set "𝑅(𝐼) = 〈𝑅, 𝐼〉 = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ 𝑅 𝑎𝑛𝑑 𝐼2 = 𝐼}", where 𝐼  is the indeterminate of 

the system with algebraic properties: 0𝐼 = 0 , 1𝐼 = 𝐼 , 𝐼2 = 𝐼 , and 𝐼−1 does not exist The 

Neutrosophic set 𝑅(𝐼) = 〈𝑅, 𝐼〉 of Neutrosophic elements of the form 𝑎 + 𝑏𝐼 forms a Neutrosophic 

ring under Neutrosophic addition "(𝑎 + 𝑏𝐼) + (𝑐 + 𝑑𝐼) = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝐼" , and Neutrosophic 

multiplication "(𝑎 + 𝑏𝐼)(𝑐 + 𝑑𝐼) = 𝑎𝑐 + (𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑)𝐼", for every 𝑎 + 𝑏𝐼 and 𝑐 + 𝑑𝐼 in 𝑅(𝐼).` 

In Neutrosophic algebra, the algebraic structures 𝑅 and 𝑅(𝐼) areplaying dominant roles, 

and they are also specific mathematical tools for developing and studying many Neutrosophic 

research fields like QuadrupleNeutrosophic rings, Neutrosophic zero rings, Neutrosophic number 

theory, Neutrosophic Boolean rings, Neutrosophic vector spaces, Refined Neutrosophic rings, and 

so on. For example, see [20]. 

The purpose of this paper is to prepare and enumerate the Neutrosophic involutions in the 

Neutrosophic group of units of a finite commutative Neutrosophic ring with unity and to examine 



Neutrosophic Sets and Systems, Vol. 58, 2023 127  

 

 

Chalapathi T, Kumaraswamy Naidu K, Harish Babu D, Enumeration of Neutrosophic Involutions over Finite Commutative 

Neutrosophic Rings 

and compare the properties of the classical involutions in a group of units. For this first, we shall 

define involutions in various fields of mathematics and their other related algebraic concepts. 

Generally, in modern mathematics and other related computational systems, involution is a map 𝑓 

and it is equal to its inverse. This means that 𝑓(𝑓(𝑥)) = 𝑥 for all 𝑥 in the domain of a function 𝑓. So, the 

involution is a bijection. For this reason, many fields in modern mathematics contain the term 

involution such as Group theory, Ring theory, and Vector spaces. Moreover, in the Euclidean and 

the Projective geometry, the involution is a reflection through the origin, and an involution is a 

projectivity of period 2, respectively. In mathematical logic, the operation of complement in Boolean 

algebra is called Boolean involution, and in classical logic, the negation that satisfies the law of 

double negation is called involution. Lastly, in Computer science, the XOR bitwise operation with a 

given value for one constraint is also an involution, and RC4 cryptographic cipher is involution, as 

encryption and decryption operations use the same map. 

 In [21-23],there is a classical and simple problem between the composition table and the 

corresponding finite ring 𝑅 with unity1, that is, how many 1𝑠 appear in the principle diagonal of 

the composition table of𝑅? This question produces the number of solutions of the equation𝑎2 = 1 in 

a finite ring 𝑅 with unity1. This paper extends this procedure to Neutrosophic rings 𝑅(𝐼) for 

enumerating Neutrosophic involutions, and we shall show that the Neutrosophic involutions to the 

Neutrosophic ring 𝑅(𝐼) over the finite commutative 𝑅 with unity 1come in a multiple of four 

through the relations ℐ𝑛(𝑅(𝐼)) = ℐ𝑛(𝑅) ∪ (1 − 2𝐼)ℐ𝑛(𝑅) and |ℐ𝑛(𝑅(𝐼))| = 2|ℐ𝑛(𝑅)|. 

2. Properties of Finite Neutrosophic Fields 

This section introduces the concept of Neutrosophic involution and shows how to determine the 

number of such Neutrosophic involutions. Recall that the element 𝑎 in 𝑅 is involution if 𝑎2 = 1, 

and the set of involutions of 𝑅 is ℐ𝑛(𝑅) and notated as ℐ𝑛(𝑅) = {𝑎 ∈ 𝑅: 𝑎 = 𝑎−1}. For conveniently, 

it can be defined asℐ𝑛(𝑅) = {𝑎 ∈ 𝑅: 𝑎2 = 1}. For example, ℐ𝑛(𝑍8) = {1,3,5,7}, ℐ𝑛(𝑍10) = {1,9}, and 

ℐ𝑛(𝑍12) = {1,5,7,11}. Consequently, any undefined notions and results of classical involutions are 

standard as in [21]. 

Our next definition provides a considerably more efficient variant of this classical involution of a 

finite commutative ring 𝑅 with unity 1. 

Definition 2.1.We say that a Neutrosophic element 𝑎 + 𝑏𝐼  of a Neutrosophic ring 𝑅(𝐼)  is a 

Neutrosophic involution if(𝑎 + 𝑏𝐼)2 = 1, where 1 = 1 + 0𝐼 is the unity in𝑅(𝐼).  

The set of Neutrosophic involutions of 𝑅(𝐼) is denoted by ℐ𝑛(𝑅(𝐼)) with the conditions 

(1) ℐ𝑛(𝑅) ⊆ ℐ𝑛(𝑅(𝐼)) 

(2) ℐ𝑛(𝑅(𝐼)) = ℐ𝑛(𝑈(𝑅)) ∪ ℐ𝑛 (𝑈(𝑅(𝐼))), 

where 𝑈(𝑅) and 𝑈(𝑅(𝐼)) are units and Neutrosophic units of 𝑅 and 𝑅(𝐼), respectively. 

Now we begin our discussion with two simple examples. 
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Example 2.2.Neutrosophic involution, by definition, the involutions of the Neutrosophic ring 

𝑍3(𝐼) = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ 𝑍3 𝑎𝑛𝑑 𝐼2 = 𝐼} is the set ℐ𝑛(𝑍3(𝐼)) = {1,2,1 − 2𝐼, 2 − 𝐼}, where 12 = 1, 22 =

1, (1 − 2𝐼)2 = 1, and (2 − 𝐼)2 = 1. 

Example 2.3. Because 12 = 1 , 32 = 1 , (1 − 2𝐼)2 = 1 , and (3 − 2𝐼)2 = 1 , the involutions of the 

Neutrosophic ring 𝑍4(𝐼) = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ 𝑍4 𝑎𝑛𝑑 𝐼2 = 𝐼} is the set ℐ𝑛(𝑍3(𝐼)) = {1,3,1 − 2𝐼, 3 − 2𝐼}. 

The above examplespresent the following two confluences of involutions and Neutrosophic 

involutions. 

(1) (𝑎 + 𝑏𝐼)2 = 1 in 𝑅(𝐼) if and only if 𝑎2 = 1 in 𝑅. 

(2) 𝑎 + 𝑏𝐼 is a Neutrosophic involution implies 𝑏 + 𝑎𝐼 need not be a Neutrosophic involution, 

and vice versa. 

These two confluences proposed the following necessary and sufficient conditions on 𝑎 and 𝑏 for 

𝑎 + 𝑏𝐼 is a Neutrosophic involution. 

Theorem 2.4. A necessary and sufficient condition for the Neutrosophic element 𝑎 + 𝑏𝐼  is a 

Neutrosophic involution in 𝑅(𝐼) is (𝑎 − 2𝑎𝐼)2 = 𝑎2 . 

Proof. Let𝑎 + 𝑏𝐼 be a nonzero element in 𝑅(𝐼). Then there exists (𝑎 + 𝑏𝐼)2 in 𝑅(𝐼) such that  

  𝑎 + 𝑏𝐼 be a Neutrosophic involution in 𝑅(𝐼) ⇔ (𝑎 + 𝑏𝐼)2 = 1 

       ⇔ 𝑎2 + 𝑏2𝐼 + 2𝑎𝑏𝐼 = 1 

       ⇔ 𝑎2 = 1, and 𝑏2 + 2𝑎𝑏 = 0 

       ⇔ 𝑎2 = 1, and 𝑏(𝑏 + 2𝑎) = 0 in 𝑅. 

Let us starts two cases on the element 𝑏 in 𝑅. 

Case 1. Suppose 𝑏 = 0 in 𝑅 . Then the Neutrosophic form reduces to classical form. This case 

concludes that  

  𝑎 + 𝑏𝐼 be a Neutrosophic involution in 𝑅(𝐼) ⇔ 𝑎2 = 1, and 𝑏 = 0 in 𝑅. 

Case 1. Suppose 𝑏 ≠ 0 in 𝑅. Then  

  𝑎 + 𝑏𝐼 be a Neutrosophic involution in 𝑅(𝐼) ⇔ 𝑎2 = 1, and 𝑏 + 2𝑎 = 0  in 𝑅. 

Therefore, 𝑎2 = 1, and 𝑏 = −2𝑎  in 𝑅. These two conditions confirm that 

  (𝑎 − 2𝑎𝐼)2 = 𝑎2, 

and clearly 𝑎2 = 1 in 𝑅  if and only if  (−2𝑎)2 ≠ 1 in 𝑅 . Hence, we end up with 𝑎 − 2𝑎𝐼as a 

Neutrosophic involution in 𝑅(𝐼) whenever 𝑎 is an involution in 𝑅. This completes the proof. ∎ 

Corollary 2.5. There is no Neutrosophic involution of the form 𝑎 + 𝑏𝐼, 𝑏 ≠ 0 in 𝑅(𝐼) if and only if  

𝑐ℎ𝑎𝑟(𝑅) is 2. In other words, ℐ𝑛(𝑅) = ℐ𝑛(𝑅(𝐼)) if and only if 𝑐ℎ𝑎𝑟(𝑅) is 2. 

Proof.The widely recognized outcome makes it abundantly clear that 

  𝑐ℎ𝑎𝑟(𝑅) is 2 ⇔ −2 ∉ 𝑅 

   ⇔ −2𝑎𝐼 ∉ 𝑅(𝐼)  

   ⇔ 𝑎 − 2𝑎𝐼 ∉ 𝑅(𝐼) 

   ⇔ (𝑎 − 2𝑎𝐼)2 ≠ 𝑎2 in 𝑅(𝐼). 

By the Theorem [2.4 ],we clear that there is no Neutrosophic involution of the form 𝑎 + 𝑏𝐼, 𝑏 ≠ 0 in 

𝑅(𝐼) if and only if  𝑐ℎ𝑎𝑟(𝑅) is 2. Hence, we conclude that 
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ℐ𝑛(𝑅) = ℐ𝑛(𝑅(𝐼)) if and only if 𝑐ℎ𝑎𝑟(𝑅) is 2,  

because ℐ𝑛(𝑅) ⊆ ℐ𝑛(𝑅(𝐼))∎ 

The next example establishes the correctness of the above result. 

Example 2.6.Since𝔽4 = {0,1, 𝛼, 1 + 𝛼: 𝛼2 + 𝛼 + 1 = 0} is a field of characteristic 2. So, there exists a 

Neutrosophic field 𝔽4(𝐼)same characteristic 2such that 

  𝔽4(𝐼) = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ 𝔽4 𝑎𝑛𝑑 𝐼2 = 𝐼}. 

Obviously, ℐ𝑛(𝔽4(𝐼)) = ℐ𝑛(𝔽4) because (𝑎 + 𝑏𝐼)2 = 1 in 𝔽4(𝐼) if and only if 𝑏 = 0 in 𝔽4. 

In the classical ring theory, it is well known that ℐ𝑛(𝑅) ⊆ 𝑈(𝑅) and  𝑈(𝑅) ⊈ ℐ𝑛(𝑅) for any 

finite commutative ring that 𝑅 with unity, and similar manner, in the theory of Neutrosophic rings, 

these subset inclusions are both true, that is, ℐ𝑛(𝑅(𝐼)) ⊆ 𝑈(𝑅(𝐼)) and  𝑈(𝑅(𝐼)) ⊈ ℐ𝑛(𝑅(𝐼)), where 

𝑈(𝑅(𝐼)) is the set of Neutrosophic units of  𝑅(𝐼). However, ℐ𝑛(𝑅(𝐼)) ⊆ 𝑈(𝑅(𝐼)) and  𝑈(𝑅(𝐼)) ⊆

ℐ𝑛(𝑅(𝐼)) are both true, that is, 𝑈(𝑅(𝐼)) = ℐ𝑛(𝑅(𝐼))  if an only if  𝑎 + 𝑏𝐼 is in 𝑈(𝑅(𝐼)) with 𝑏 ≠ 0. 

For example, if  𝑏 ≠ 0 in 𝑎 + 𝑏𝐼, we have 𝑈(𝑍8(𝐼)) can be written as 

 𝑈(𝑍8(𝐼)) = ℐ𝑛(𝑍8(𝐼)) = {1 − 2𝐼, 3 − 6𝐼, 5 − 2𝐼, 7 − 6𝐼}, 

and which is equal to ℐ𝑛(𝑍8(𝐼))
𝑏≠0

, because 1 − 2𝐼 , , 3 − 6𝐼 , 5 − 2𝐼 , and 7 − 6𝐼  are all 

Neutrosophic involutions with 𝑏 ≠ 0, that is  

ℐ𝑛(𝑍8(𝐼))
𝑏≠0

= {1 − 2𝐼, 3 − 6𝐼, 5 − 2𝐼, 7 − 6𝐼}. 

This illustration supports the following definition. 

Definition 2.7.A Neutrosophic involution 𝑎 + 𝑏𝐼 in 𝑅(𝐼) is called pureNeutrosophic involution if 

𝑏 ≠ 0. 

The set of pure Neutrosophic involutions of 𝑅(𝐼) is denoted by of  

ℐ𝑛(𝑅(𝐼))
𝑏≠0

= {𝑎 + 𝑏𝐼 ∈ 𝑅(𝐼): (𝑎 + 𝑏𝐼)2 = 𝑎 + 𝑏𝐼 𝑎𝑛𝑑 𝑏 ≠ 0} 

The following theorem supports this observation. 

Theorem 2.8. Let 𝑅 be a finite commutative ring with unity 1 and let |𝑅| > 2. Then ℐ𝑛(𝑅(𝐼)) =

𝑈(𝑅(𝐼)) if and only if 𝑎 + 𝑏𝐼 is pure in 𝑅(𝐼).  

Proof. Because of  ℐ𝑛(𝑅(𝐼)) ⊆ 𝑈(𝑅(𝐼)) , it is enough to prove that the other subset inclusion 

𝑈(𝑅(𝐼)) ⊆ ℐ𝑛(𝑅(𝐼)) . For this, we shall show that every Neutrosophic unit is a Neutrosophic 

involution. Suppose 𝑎 + 𝑏𝐼is pure in 𝑅(𝐼). Then there exists 𝑐 + 𝑑𝐼 in 𝑈(𝑅(𝐼)) such that 𝑎 + 𝑏𝐼 ≠

𝑐 + 𝑑𝐼 and  

   (𝑎 + 𝑏𝐼)(𝑐 + 𝑑𝐼) = 1 

   ⇔ 𝑎𝑐 + (𝑏𝑐 + 𝑏𝑑 + 𝑎𝑑)𝐼 = 1 

   ⇔ 𝑎𝑐 = 1 and 𝑏𝑐 + 𝑏𝑑 + 𝑎𝑑 = 0 

   ⇔ 𝑎𝑐 = 1 and 𝑏𝑐 + 𝑏𝑑 + 𝑎𝑑 + 𝑎𝑐 = 1 

   ⇔ 𝑎𝑐 = 1 and (𝑎 + 𝑏)(𝑐 + 𝑑) = 1 

   ⇔ 𝑎 = 1, 𝑏 = 0, 𝑐 = 1 and 𝑑 = 0 in the ring 𝑅. 

Consequently, 𝑅 = {0,1}, and |𝑅| = 2, which is a contradiction to our hypothesis that|𝑅| > 2. Thus 

𝑎 + 𝑏𝐼 = 𝑐 + 𝑑𝐼 is always true in 𝑈(𝑅(𝐼)) if and only if 𝑏 ≠ 0 in 𝑅. This implies that 

   (𝑎 + 𝑏𝐼)(𝑎 + 𝑏𝐼) = 1 for every 𝑎 + 𝑏𝐼 in 𝑈(𝑅(𝐼)). 

   ⇔ (𝑎 + 𝑏𝐼)2 = 1 for every 𝑎 + 𝑏𝐼 in 𝑈(𝑅(𝐼)). 
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   ⇔ 𝑎 + 𝑏𝐼 ∈ ℐ𝑛(𝑅(𝐼)) for every 𝑎 + 𝑏𝐼 in 𝑈(𝑅(𝐼)). 

Therefore, 𝑈(𝑅(𝐼)) ⊆ ℐ𝑛(𝑅(𝐼)) is true in 𝑈(𝑅(𝐼)), and hence ℐ𝑛(𝑅(𝐼)) = 𝑈(𝑅(𝐼)). ∎ 

 The subsequent description helps us to estimate the cardinality of  ℐ𝑛(𝑅(𝐼)). 

First, we construct two tableswhich are employed Neutrosophic involutions along with the earlier 

results. 

The first table describes Neutrosophic involutions arising in the cyclic Neutrosophic ring 𝑍𝑛(𝐼) 

from  𝑛 = 1 to 10. 

𝑛 ℐ𝑛(𝑍𝑛(𝐼)) 

1 ∅ 

2 {1} 

3 {1,2} ∪ {1 − 2𝐼, 2 − 𝐼} 

4 {1,3} ∪ {1 − 2𝐼, 3 − 2𝐼} 

5 {1,4} ∪ {1 − 2𝐼, 4 − 3𝐼} 

6 {1,5} ∪ {1 − 2𝐼, 5 − 4𝐼} 

7 {1,6} ∪ {1 − 2𝐼, 6 − 5𝐼} 

8 {1,3,5,7} ∪ {1 − 2𝐼, 3 − 6𝐼, 5 − 2𝐼, 7 − 6𝐼} 

9 {1,8} ∪ {1 − 2𝐼, 8 − 7𝐼} 

10 {1,3,7,9} ∪ {1 − 2𝐼, 3 − 6𝐼, 7 − 4𝐼, 9 − 8𝐼} 

 

We now turn to noncyclic Neutrosophic rings over cyclic rings for determining Neutrosophic rings. 

For some positive integer 𝑛, there exists finite commutative ring 𝑍𝑛[𝑖] such that 

  𝑍𝑛[𝑖] = {𝑧 = 𝑥 + 𝑖𝑦: 𝑥, 𝑦 ∈ 𝑍𝑛  𝑎𝑛𝑑 𝑖2 = −1} 

And also for each 𝑍𝑛[𝑖] there exists Neutrosophic ring 𝑍𝑛[𝑖, 𝐼] such that 

  𝑍𝑛[𝑖, 𝐼] = {𝑧 + 𝑧′𝐼: 𝑧, 𝑧′ ∈ 𝑍𝑛 [𝑖] 𝑎𝑛𝑑 𝐼2 = 𝐼}. 

It is clear that 𝑍𝑛[𝑖, 𝐼] is also non cyclic Neutrosophic ring, because 

𝑍𝑛[𝑖] = 𝑍𝑛 + 𝑖𝑍𝑛, and 𝑍𝑛[𝑖, 𝐼] = 𝑍𝑛 + 𝑖𝑍𝑛 + 𝑖𝐼𝑍𝑛. 

Here we notice that |𝑍𝑛| = 𝑛, |𝑍𝑛[𝑖]| = 𝑛2and |𝑍𝑛[𝑖, 𝐼]| = 𝑛4, and for more information about 𝑍𝑛[𝑖] 

reader refer to [21].Next, the following second table illustrates the Neutrosophic Gaussian 

involutions from 𝑛 = 1 to 5. 

𝑛 ℐ𝑛(𝑍𝑛[𝑖, 𝐼]) 

1 ∅ 

2 {1, 𝑖} 

3 {1,2} ∪ {1 − 2𝐼, 2 − 𝐼} 

4 {1,3,1 + 2𝑖, 3 + 2𝑖} ∪ {1 − 2𝐼, 3 − 2𝐼, (1 + 2𝑖) − 2𝐼, (3 + 2𝑖) − 2𝐼} 

5 {1,4,2𝑖, 3𝑖} ∪ {1 − 2𝐼, 4 − 3𝐼, 2𝑖 − 4𝑖𝐼, 3𝑖 − 𝑖𝐼} 

 

By virtueofthe above tables, there are exact powers of 2 Neutrosophic involutionsthat exist in𝑅(𝐼), 

these being related to the classical involutions in𝑅 . Also, the collection ℐ𝑛(𝑅(𝐼))  contains a 

Neutrosophic element 1 − 2𝐼 as an element in 𝑅(𝐼) if and only if |𝑅| > 2. So, one consequence of 
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what has just been observed is that, in those finite commutative Neutrosophic ring 𝑅(𝐼) with unity 

cases in which a Neutrosophic involution exists, we can now state exactly how many there are. 

Theorem 2.9. Let𝑐ℎ𝑎𝑟(𝑅) ≠ 2. Then ℐ𝑛(𝑅(𝐼)) = (1 − 2𝐼)ℐ𝑛(𝑅), where ℐ𝑛(𝑅) = {𝑎 ∈ 𝑅: 𝑎2 = 1}. 

Proof. By the theorem [2.4], it is well known that 𝑏 = 0 in ℐ𝑛(𝑅(𝐼)) if and only if  𝑎2 = 1 in ℐ𝑛(𝑅) 

if and only if ℐ𝑛(𝑅) ≠ ℐ𝑛(𝑅(𝐼)). Now suppose 𝑏 ≠ 0 in ℐ𝑛(𝑅(𝐼)). Then  

  ℐ𝑛(𝑅(𝐼)) = {𝑎 + 𝑏𝐼 ∈ 𝑅(𝐼): (𝑎 + 𝑏𝐼)2 = 1, 𝑏 ≠ 0 } 

   = {𝑎 + 𝑏𝐼 ∈ 𝑅(𝐼): 𝑎 ∈ ℐ𝑛(𝑅), 𝑎𝑛𝑑 𝑏 + 2𝑎 = 0 } 

   = {𝑎 − 2𝑎𝐼 ∈ 𝑅(𝐼): 𝑎 ∈ ℐ𝑛(𝑅)} 

   = {𝑎(1 − 2𝐼) ∈ 𝑅(𝐼): 𝑎 ∈ ℐ𝑛(𝑅)} 

   = ℐ𝑛(𝑅) ∪ (1 − 2𝐼)ℐ𝑛(𝑅), since ℐ𝑛(𝑅) ⊆ ℐ𝑛(𝑅(𝐼)). ∎ 

The next theorem illustrates an extremely useful enumerating technique for enumerating 

Neutrosophic involutions, often used next results. First, we notice that ℐ𝑛(𝑅) = ℐ𝑛(𝑅(𝐼)) if and only 

if  𝑐ℎ𝑎𝑟(𝑅) = 2. 

Theorem 2.10. Let 𝑐ℎ𝑎𝑟(𝑅) ≠ 2. Then|ℐ𝑛(𝑅(𝐼))| = 2|ℐ𝑛(𝑅)|. 

Proof. Let ℐ𝑛(𝑅) ≠ ℐ𝑛(𝑅(𝐼)) . Then 𝑐ℎ𝑎𝑟(𝑅) ≠ 2  and 𝑐ℎ𝑎𝑟𝑅(𝐼) ≠ 2  but 𝑐ℎ𝑎𝑟(𝑅) = 𝑐ℎ𝑎𝑟𝑅(𝐼) . So 

there exists an element −2 ∈ 𝑅 such that −2𝐼 ∈ 𝑅(𝐼). Therefore, 1 − 2𝐼 ∈ 𝑅(𝐼), and we have  

   (1 − 2𝐼)2 = (1 − 2𝐼)(1 − 2𝐼) = 1 − 4𝐼 + 4𝐼 = 1 in 𝑅(𝐼). 

This yields the order |1 − 2𝐼| of the Neutrosophic element 1 − 2𝐼 in 𝑅(𝐼) is 2. Using ℐ𝑛(𝑅(𝐼)) =

ℐ𝑛(𝑅) ∪ (1 − 2𝐼)ℐ𝑛(𝑅) and also there is a one to one correspondence 𝑓: ℐ𝑛(𝑅) ⟶ (1 − 2𝐼)ℐ𝑛(𝑅) 

defined by the relation 

  𝑓(𝑎) = (1 − 2𝐼)𝑎 

for every element 𝑎 in ℐ𝑛(𝑅). So that |ℐ𝑛(𝑅)| = |(1 − 2𝐼)ℐ𝑛(𝑅)|. Hence  

   |ℐ𝑛(𝑅(𝐼))| = |ℐ𝑛(𝑅) ∪ (1 − 2𝐼)ℐ𝑛(𝑅)| 

    = |ℐ𝑛(𝑅)| + |(1 − 2𝐼)ℐ𝑛(𝑅)|, since ℐ𝑛(𝑅) ∩ (1 − 2𝐼)ℐ𝑛(𝑅) = ∅. 

    = |ℐ𝑛(𝑅)| + |ℐ𝑛(𝑅)| = 2|ℐ𝑛(𝑅)|. ∎ 

Let's apply the aforementioned to a concrete example now. 

The cardinalities of ℐ𝑛(𝑅) and ℐ𝑛(𝑅(𝐼)) are shown in the following brief table. 

 

 

Let us attention to the fact that, in the above table, it is necessary to stipulate that |ℐ𝑛(𝑅(𝐼))| ≤

|ℐ𝑛(𝑆(𝐼))| whenever 𝑅 is a cyclic ring and 𝑆 is a noncyclic ring. Further attention depends on finite 

fields.Since only finite Neutrosophic fields  𝔽2𝑛(𝐼) of characteristic2 is of even order, and in this 

sense the Neutrosophic equation (𝑎 + 𝑏𝐼)2 = 1 has no Neutrosophic solution in 𝔽2𝑛(𝐼), because 

Involutions 

↓ 

𝑛 = 1

→ 

2 3 4 5 6 7 8 9 10 

|ℐ𝑛(𝑍𝑛)| 0 1 2 2 2 2 2 4 2 4 

|ℐ𝑛(𝑍𝑛(𝐼))| 0 1 4 4 4 4 4 8 4 8 

|ℐ𝑛(𝑍𝑛[𝑖])| 0 2 2 4 4 4 2 8 2 8 

|ℐ𝑛(𝑍𝑛[𝑖, 𝐼])| 0 2 4 8 8 8 4 16 4 16 
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−2 ∉ 𝔽2𝑛(𝐼). In this case ℐ𝑛(𝔽2𝑛) = ℐ𝑛(𝔽2𝑛(𝐼)). Moreover, since the finite Neutrosophic field 𝔽𝑝𝑛(𝐼) 

of characteristic 𝑝 has order 𝑝2𝑛 for some odd prime 𝑝and for some positive integer 𝑛. In this 

system 𝔽𝑝𝑛(𝐼) , the Neutrosophic equation (𝑎 + 𝑏𝐼)2 = 1  is solvable and it has Neutrosophic 

solutions, because −2 ∈ 𝔽𝑝𝑛(𝐼). This theorem proves that there are an infinite number of solutions to 

the quadratic equation(𝑎 + 𝑏𝐼)2 = 1 over a finite Neutrosophic field of odd order. 

 

Theorem 2.11. Over the finite Neutrosophic field 𝔽𝑝𝑛(𝐼) corresponding to the odd prime 𝑝 and the 

integer 𝑛 ≥ 1, the Neutrosophic equation 

   (𝑎 + 𝑏𝐼)2 = 1 

has exactly four solutions. In particular, |ℐ𝑛 (𝔽𝑝𝑛(𝐼))| = 4. 

Proof. For any odd prime 𝑝, there exists field 𝔽𝑝𝑛  and Neutrosophic field 𝔽𝑝𝑛(𝐼) of odd orders 𝑝𝑛 

and 𝑝2𝑛, respectively. Classically, you always the equation 𝑎2 = 1 exists 𝔽𝑝𝑛  and is also factorable, 

like 

(𝑎 − 1)(𝑎 + 1) = 0 

in 𝔽𝑝𝑛 . Since 𝔽𝑝𝑛  is a field with no zero divisors, we must have 𝑎 = ±1. Thus, ℐ𝑛(𝔽𝑝𝑛) = {1, −1}. 

Further, since −2 ∈ 𝔽𝑝𝑛(𝐼), there exists a Neutrosophic element 1 − 2𝐼 in 𝔽𝑝𝑛(𝐼) such that 

  (1 − 2𝐼)2 = 1 

in 𝔽𝑝𝑛(𝐼). Using the Theorem [2.4], 

  ℐ𝑛 (𝔽𝑝𝑛(𝐼)) =  ℐ𝑛(𝔽𝑝𝑛) ∪ (1 − 2𝐼)ℐ𝑛(𝔽𝑝𝑛) 

   = {1, −1} ∪ (1 − 2𝐼){1, −1} 

   =  {1, −1,1 ⋅ (1 − 2𝐼), −1 ⋅ (1 − 2𝐼)} 

   =  {1, −1,1 − 2𝐼, −1 + 2𝐼}. 

Hence, |ℐ𝑛 (𝔽𝑝𝑛(𝐼))| = 4. ∎ 

 Further on the total number of Neutrosophic involutions to the 𝑅(𝐼) over 𝑅  we have the 

subsequent result. 

Theorem 2.12.Neutrosophic involutions to the ring 𝑅(𝐼) over the finite commutative 𝑅 with unity 

1 come in multiple of four. 

Proof.Let𝑅 be any finite commutative with unity 1 and let 𝑐ℎ𝑎(𝑅) ≠ 2. Then there exists at least 

two involutions in 𝑅, namely unity 𝑢 and its additive inverse – 𝑢 whenever 𝑢2 = 1.This means 

that the least number of involutions in a finite commutative ring 𝑅 with unity 1 is two if and only if 

𝑐ℎ𝑎(𝑅) ≠ 2. Consequently, 

 ℐ𝑛(𝑅) = 〈𝑢, −𝑢: 𝑢2 = 1 𝑖𝑛 𝑅〉, 

and similarly 

  (1 − 2𝐼)ℐ𝑛(𝑅) = 〈(1 − 2𝐼)𝑢, −(1 − 2𝐼)𝑢: 𝑢2 = 1 𝑖𝑛 𝑅〉. 

 

Therefore,  
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|ℐ𝑛(𝑅)| = |〈𝑢, −𝑢: 𝑢2 = 1〉| ≥ 2, and |(1 − 2𝐼)ℐ𝑛(𝑅)| = |〈(1 − 2𝐼)𝑢, −(1 − 2𝐼)𝑢: 𝑢2 = 1〉| ≥ 2. 

By the Theorem [2.4 ],the structure ℐ𝑛(𝑅(𝐼)) can be written as 

   ℐ𝑛(𝑅(𝐼)) = ℐ𝑛(𝑅) ∪ (1 − 2𝐼)ℐ𝑛(𝑅) 

    = 〈𝑢, −𝑢: 𝑢2 = 1〉 ∪ 〈(1 − 2𝐼)𝑢, −(1 − 2𝐼)𝑢: 𝑢2 = 1〉. 

This shows that |ℐ𝑛(𝑅(𝐼))| ≥ (2)(2) = 4 , and also |ℐ𝑛(𝑅(𝐼))| = 2|ℐ𝑛(𝑅)| . Hence, Neutrosophic 

involutions to the Neutrosophic ring 𝑅(𝐼) over the finite commutative 𝑅 with unity 1 comes in 

multiple of four. ∎ 

Corollary 2.13. The least number of Neutrosophic involutions of𝑅(𝐼)is four if and only if  𝑐ℎ𝑎(𝑅) ≠

2. 

Proof. This is easily understood based on a common observation.For any 𝑅(𝐼)with𝑐ℎ𝑎𝑟(𝑅(𝐼)) ≠ 2, 

you always have the four Neutrosophic involutions𝑢,−𝑢 , (1 − 2𝐼)𝑢 and −(1 − 2𝐼)𝑢  whenever 

𝑢2 = 1in 𝑅, and viceversa. ∎ 

3. Neutrosophic Involutions of 𝑹(𝑰) × 𝑺(𝑰) 

In this section, we give some procedures of the determination of Neutrosophic involutions of  

𝑅(𝐼) × 𝑆(𝐼) along with the involutions of𝑅 × 𝑆. It is well known that if  𝑅 and 𝑆 are commutative 

rings with unity, then their Cartesian product 𝑅 × 𝑆 of 𝑅 and 𝑆 is also commutative rig with unity 

under the usual component-wise addition and component-wise multiplication. So for each 

system𝑅 × 𝑆, there exists a Neutrosophic system 𝑅(𝐼) × 𝑆(𝐼) such that  

  𝑅(𝐼) × 𝑆(𝐼) = {(𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼): 𝑎 + 𝑏𝐼 ∈ 𝑅(𝐼), 𝑐 + 𝑑𝐼 ∈ 𝑆(𝐼)} 

which is a commutative Neutrosophic ring with unity (1,1)  under the component-wise 

Neutrosophic addition and Neutrosophic multiplication. 

 The following basic result associates the set of Neutrosophic involutions of  𝑅(𝐼) × 𝑆(𝐼) to 

Neutrosophic involutions of 𝑅(𝐼)  and 𝑆(𝐼) , and this association depends on component-wise 

Neutrosophic multiplication. 

Theorem 3.1. Let 𝑅 and 𝑆 be commutative rigs with the same unity 1. Then  

ℐ𝑛(𝑅(𝐼) × 𝑆(𝐼)) = ℐn(𝑅(𝐼)) × ℐ𝑛(𝑆(𝐼)). 

Proof. It is sufficient to prove that a Neutrosophic element of  (𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼) in of  𝑅(𝐼) × 𝑆(𝐼) is a 

Neutrosophic involution if and only if of  𝑎 + 𝑏𝐼 is a Neutrosophic involution in of  𝑅(𝐼), and of  

𝑐 + 𝑑𝐼 is a Neutrosophic involution in of  𝑆(𝐼). Indeed, 

  (𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼)2 = (1,1) ⇔ (𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼)(𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼) = (1,1) 

      ⇔ ((𝑎 + 𝑏𝐼)2, (𝑐 + 𝑑𝐼)2) = (1,1) 

      ⇔ (𝑎 + 𝑏𝐼)2 = 1 and (, (𝑐 + 𝑑𝐼)2) = 1 

      ⇔ 𝑎 + 𝑏𝐼 ∈ ℐn(𝑅(𝐼)) and 𝑐 + 𝑑𝐼 ∈ ℐn(𝑆(𝐼)). ∎ 

 The next example presents one to one corresponding involution behavior between 

ℐ𝑛(𝑅(𝐼) × 𝑆(𝐼)) and ℐn(𝑅(𝐼)) × ℐ𝑛(𝑆(𝐼)) for computing their corresponding cardinalities. 

Example 3.2. Consider the Neutrosophic involution structures ℐ𝑛(𝑍4(𝐼) × 𝑍8(𝐼)) andℐ𝑛(𝑍4(𝐼)) ×

ℐ𝑛(𝑍8(𝐼)), where 
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ℐ𝑛(𝑍4(𝐼) × 𝑍8(𝐼)) = {(1,1),(1,7),(1,1 − 2𝐼),(1,7 − 6𝐼),(3,1),(3,7),(3,1 − 2𝐼),(3,7 − 6𝐼),(1 − 2𝐼, 1),(1 −

2𝐼, 7),(1 − 2𝐼, 1 − 2𝐼),(1 − 2𝐼, 7 − 6𝐼),(3 − 2𝐼, 1),(3 − 2𝐼, 7),(3 − 2𝐼, 1 − 2𝐼),(3 − 2𝐼, 7 − 6𝐼)},and 

ℐ𝑛(𝑍4(𝐼)) × ℐ𝑛(𝑍8(𝐼)) = {1, 3, 1 − 2𝐼,3 − 2𝐼} × {1, 7,1 − 2𝐼,7 − 6𝐼} 

   = {(1,1),(1,7),(1,1 − 2𝐼),(1,7 − 6𝐼),(3,1),(3,7),(3,1 − 2𝐼),(3,7 − 6𝐼), 

   (1 − 2𝐼, 1),(1 − 2𝐼, 7),(1 − 2𝐼, 1 − 2𝐼),(1 − 2𝐼, 7 − 6𝐼),(3 − 2𝐼, 1), 

   (3 − 2𝐼, 7),(3 − 2𝐼, 1 − 2𝐼),(3 − 2𝐼, 7 − 6𝐼)}. 

 Let 𝑚 and 𝑛 be any two positive integers greater 1. Then 𝑍𝑚 × 𝑍𝑛 is a commutative ring 

with unity. So the following statement associates the set of involutions of 𝑍𝑚 × 𝑍𝑛to involutions of 

𝑍𝑚and𝑍𝑛. In the light of this basic argument, the following theorem is necessary and the proof is 

clear. 

  (𝑎, 𝑏) ∈ ℐ𝑛(𝑍𝑚 × 𝑍𝑛) ⇔ 𝑎 ∈ ℐn(𝑍𝑚) and 𝑏 ∈ ℐ𝑛(𝑍𝑛). 

Now the following result of the immediate consequence of the above statement. 

Theorem 3.3. Let 𝑚 and 𝑛 be any two positive integers greater 1. Then 

   |ℐ𝑛(𝑍𝑚(𝐼) × 𝑍𝑛(𝐼))| = |ℐ𝑛(𝑍𝑚(𝐼))||ℐ𝑛(𝑍𝑛(𝐼))|. 

Proof. Define a map 𝑓: ℐ𝑛(𝑍𝑚(𝐼) × 𝑍𝑛(𝐼)) →  ℐ𝑛(𝑍𝑚(𝐼)) × ℐ𝑛(𝑍𝑛(𝐼)) by the relation 

  𝑓((𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼)) = {
(𝑎, 𝑐)  𝑖𝑓 𝑏 = 0, 𝑑 = 0

((1 − 2𝐼)𝑎, (1 − 2𝐼)𝑐)  𝑖𝑓 𝑏 ≠ 0, 𝑑 ≠ 0
 

Let us suppose  𝑏 = 0 and 𝑑 = 0. Then there is nothing to prove because the map 𝑓: ℐ𝑛(𝑍𝑚(𝐼) ×

𝑍𝑛(𝐼)) →  ℐ𝑛(𝑍𝑚(𝐼)) × ℐ𝑛(𝑍𝑛(𝐼)) is trivially a Neutrosophic ring isomorphism. Now we can prove 

that this for the case 𝑏 ≠ 0 and 𝑑 ≠ 0.  

𝒇 is one to one. Let (𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼), (𝑎′ + 𝑏′𝐼, 𝑐′ + 𝑑′𝐼) ∈ ℐ𝑛(𝑍𝑚(𝐼) × 𝑍𝑛(𝐼)). Then  

 

 𝑓((𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼)) = 𝑓((𝑎′ + 𝑏′𝐼, 𝑐′ + 𝑑′𝐼)) ⇒ ((1 − 2𝐼)𝑎, (1 − 2𝐼)𝑐) = ((1 − 2𝐼)𝑎′ , (1 −

2𝐼)𝑐′) 

      ⇒ (1 − 2𝐼)𝑎 = (1 − 2𝐼)𝑎′, (1 − 2𝐼)𝑐 = (1 − 2𝐼)𝑐′ 

      ⇒ 𝑎 − 2𝑎𝐼 = 𝑎′ − 2𝑎′𝐼, 𝑐 − 2𝑐𝐼 = 𝑐′ − 2𝑐′𝐼 

      ⇒ 𝑎 + 𝑏𝐼 = 𝑎′ + 𝑏′𝐼, 𝑐 + 𝑑𝐼 = 𝑐′ + 𝑑′𝐼, 

where 𝑏 = −2𝑎, 𝑏′ = −2𝑎′, 𝑑 = −2𝑐, and 𝑑′ = −2𝑐′. So, the map 𝑓 is one to one. 

𝒇 is onto.The range of the function 𝑓: ℐ𝑛(𝑍𝑚(𝐼) × 𝑍𝑛(𝐼)) →  ℐ𝑛(𝑍𝑚(𝐼)) × ℐ𝑛(𝑍𝑛(𝐼)) is defined by 

 𝑓 (ℐ𝑛(𝑍𝑚(𝐼) × 𝑍𝑛(𝐼))) = {𝑓((𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼)): (𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼) ∈ ℐ𝑛(𝑍𝑚(𝐼) × 𝑍𝑛(𝐼))} 

   = {𝑓((𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼)): (𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼) ∈ ℐ𝑛(𝑍𝑚(𝐼) × 𝑍𝑛(𝐼))} 

   = {((1 − 2𝐼)𝑎, (1 − 2𝐼)𝑐): 𝑎 ∈ ℐ𝑛(𝑍𝑚), 𝑐 ∈ ℐ𝑛(𝑍𝑛)} 

   = {(1 − 2𝐼)𝑎: 𝑎 ∈ ℐ𝑛(𝑍𝑚)} × {(1 − 2𝐼)𝑐: 𝑐 ∈ ℐ𝑛(𝑍𝑛)} 

   = ℐ𝑛(𝑍𝑚) ∪ (1 − 2𝐼)ℐ𝑛(𝑍𝑚) × ℐ𝑛(𝑍𝑛) ∪ (1 − 2𝐼)ℐ𝑛(𝑍𝑛) 

   = ℐ𝑛(𝑍𝑚(𝐼)) × ℐ𝑛(𝑍𝑛(𝐼)), 

where ℐ𝑛(𝑍𝑚(𝐼)) = ℐ𝑛(𝑍𝑚) ∪ (1 − 2𝐼)ℐ𝑛(𝑍𝑚)  and ℐ𝑛(𝑍𝑛(𝐼)) = ℐ𝑛(𝑍𝑛) ∪ (1 − 2𝐼)ℐ𝑛(𝑍𝑛) . 

Consequently the map 𝑓 is onto. 
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𝒇 is a Neutrosophic ring isomorphism. For this let 𝛼 = (𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼), 𝛽 = (𝑎′ + 𝑏′𝐼, 𝑐′ + 𝑑′𝐼) ∈

ℐ𝑛(𝑍𝑚(𝐼) × 𝑍𝑛(𝐼)), then 

  𝑓(𝛼 + 𝛽) = 𝑓((𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼) + (𝑎′ + 𝑏′𝐼, 𝑐′ + 𝑑′𝐼)) 

   = 𝑓 (((𝑎 + 𝑎′) + (𝑏 + 𝑏′)𝐼, (𝑐 + 𝑐′) + (𝑑 + 𝑑′)𝐼)) 

   = ((1 − 2𝐼)(𝑎 + 𝑎′), (1 − 2𝐼)(𝑐 + 𝑐′)) 

   = ((1 − 2𝐼)𝑎 + (1 − 2𝐼)𝑎′ , (1 − 2𝐼)𝑐 + (1 − 2𝐼)𝑐′) 

= ((1 − 2𝐼)𝑎, (1 − 2𝐼)𝑐) + ((1 − 2𝐼)𝑎′ , (1 − 2𝐼)𝑐′) 

   = 𝑓((𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼)) + 𝑓(𝑎′ + 𝑏′𝐼, 𝑐′ + 𝑑′𝐼) = 𝑓(𝛼) + 𝑓(𝛽), 

and similarly we can show that  

   𝑓(𝛼𝛽) = 𝑓(𝛼)𝑓(𝛽) for every  𝛼 and 𝛽 in ℐ𝑛(𝑍𝑚(𝐼) × 𝑍𝑛(𝐼)). 

Thus the map 𝑓 is a Neutrosophic ring isomorphism from ℐ𝑛(𝑍𝑚(𝐼) × 𝑍𝑛(𝐼)) onto the ℐ𝑛(𝑍𝑚(𝐼)) ×

ℐ𝑛(𝑍𝑛(𝐼)) with 𝑓(1,1) = (1 − 2𝐼, 1 − 2𝐼), and hence  

   ℐ𝑛(𝑍𝑚(𝐼) × 𝑍𝑛(𝐼)) ≅ ℐ𝑛(𝑍𝑚(𝐼)) × ℐ𝑛(𝑍𝑛(𝐼)). 

This identity implies that  

   |ℐ𝑛(𝑍𝑚(𝐼) × 𝑍𝑛(𝐼))| = |ℐ𝑛(𝑍𝑚(𝐼))||ℐ𝑛(𝑍𝑛(𝐼))|. ∎ 

4.Diagonal Property of Neutrosophic Elements in 𝑹(𝑰) 

This section introduces the diagonal property of finite commutative Neutrosophicrings.First of all 

we have, for any finite commutative Neutrosophic ring 𝑅(𝐼) with unity, there exists a multiplicative 

composition table of all elements of 𝑅(𝐼), and this table is associated to one to one correspondence of  

the matrix network 𝑅(𝐼) × 𝑅(𝐼) with the size |𝑅(𝐼)| × |𝑅(𝐼)|. Classically, it is well known that there 

is an element 1 at the position of the entry (𝑎, 𝑏) in the composition table of 𝑅. Then obviously 

𝑎𝑏 = 1 = 𝑏𝑎  in 𝑅 . So automatically there a connection between 1𝑠  in 𝑅  and entries of the 

composition table of 𝑅, see [22,23 ].Here, we can establish same theory on to Neutrosophic rings. 

Definition 4.1.A Neutrosophic ring 𝑅(𝐼) with unity 1 has diagonal property if all 1𝑠 appeared in 

the main diagonal of the composition table of 𝑅(𝐼). 

In [ 23],the author Sunil proved the following necessary and sufficient condition for 1𝑠 appeared in 

the main diagonal of the composition table of 𝑍𝑛 and divisors of 24. 

Theorem 4.2.[23].The multiplication table for the cyclic ring 𝑍𝑛 contains 1𝑠 only on the diagonal of 

the multiplicative composition table of 𝑍𝑛 if and only if 𝑛 is a divisor of 24. 

Consequently, this result also obviously true in Neutrosophic rings, that is it can be stated as follows. 

Theorem 4.3. The multiplication table for the Neutrosophic cyclic ring 𝑍𝑛(𝐼) contains 1𝑠 only on 

the diagonal of the multiplicative composition table if and only if 𝑛 is a divisor of 24. 

Subsequently, if 𝑛 is not a divisor of 24, then the above results are not true. For example, 𝑛 is 5 

which is not a divisor of  24, then there exists a Neutrosophic ring 𝑍5(𝐼) = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ 𝑍5; 𝐼2 =

𝐼}, which does not satisfies diagonal property, because (2 + 0𝐼)(3 + 0𝐼) = 6 + 0𝐼 = 1 under modulo 

5. This failure concept concludes that the condition𝑏 = 0exists in the form 𝑎 + 𝑏𝐼. However, all 

elements of Neutrosophic system 𝑍5(𝐼) = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ 𝑍5; 𝐼2 = 𝐼}  is also satisfies diagonal 
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property whenever 𝑏 ≠ 0 in the form𝑎 + 𝑏𝐼, and this success illustrates the following Neutrosophic 

composition table for 𝑍5(𝐼)with𝑏 ≠ 0. 

 For𝑏 ≠ 0, the pure Neutrosophic involutions of𝑍5(𝐼) can be written as 

   ℐ𝑛(𝑍5(𝐼))
𝑏≠0

= ℐ𝑛 (𝑈(𝑍5(𝐼))) − ℐ𝑛(𝑈(𝑍5)) = {1 − 2𝐼, 4 − 3𝐼}. 

⨀5 1 − 2𝐼 4 − 3𝐼 

1 − 2𝐼 𝟏 4 

4 − 3𝐼 4 𝟏 

Consequently the following result is more eminent for satisfying diagonal property of 

anyNeutrosophic ring𝑅(𝐼). 

Theorem 4.5. The multiplication table for Neutrosophic units 𝑈(𝑅(𝐼)) − 𝑈(𝑅) = {𝑎 + 𝑏𝐼 ∈

𝑅(𝐼): 𝑎, 𝑏 ∈ 𝑅, 𝑎𝑛𝑑 𝑏 ≠ 0} of any finite commutative Neutrosophic ring𝑅(𝐼) contains 1𝑠 only on 

the diagonal of the multiplicative composition table if and only if 𝑐ℎ𝑎𝑟(𝑅) ≠ 2. 

Proof. It is clear by theTheorem [2.8],we have 

ℐ𝑛(𝑅(𝐼)) = 𝑈(𝑅(𝐼)) if and only if 𝑎 + 𝑏𝐼 is in 𝑈(𝑅(𝐼)) with 𝑏 ≠ 0. 

ℐ𝑛(𝑅(𝐼)) = 𝑈(𝑅(𝐼)) if and only if 𝑎 + 𝑏𝐼 is a pure Neutrosophic involutions of 𝑅(𝐼). 

Hence, the number of 1s appear on the principal diagonal of the table of  

𝑈(𝑅(𝐼)) = {𝑎 + 𝑏𝐼 ∈ 𝑅(𝐼): 𝑎, 𝑏 ∈ 𝑅, 𝑎𝑛𝑑 𝑏 ≠ 0} 

is equal to 2𝑘 for some integer 𝑘 ≥ 1, because the cardinality of 𝑈(𝑅(𝐼)) = {𝑎 + 𝑏𝐼 ∈ 𝑅(𝐼): 𝑎, 𝑏 ∈

𝑅, 𝑎𝑛𝑑 𝑏 ≠ 0} is even and it is greater than or equal to the power of2. ∎ 

5. Conclusions 

In this paper, we have analytically studied Neutrosophic involutory behavior of the Neutrosophic 

elements of the finite commutative Neutrosophic ring 𝑅(𝐼). A necessary and sufficient for the 

Neutrosophic element𝑎 + 𝑏𝐼 being a Neutrosophic involution has been obtained. From this criterion 

we have developed a general procedure to enumerate Neutrosophic involutions of the form 𝑎 + 𝑏𝐼 

over 𝑅(𝐼) from given classical involutions over the corresponding finite commutative ring 𝑅. The 

proposed technique can be used to determine more desired Neutrosophic involutions of 𝑅(𝐼). 

6. Future Work 

A Neutrosophic involution over a finite commutative Neutrosophic ring 𝑅(𝐼)  is an element 

property whose multiplicative inverse is itself. Owing to this property, we will prepare and produce 

techniques for enumerating Neutrosophic involutions which are applied in Computational systems 

like the XOR bitwise operations with a given value for one parameter with indeterminate, and 

develop RC4 cryptographic ciphers, further we will use these Neutrosophic involutions for studying 

liminalities and minimalities of Reversible Rings. 
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Abstract: 

  Analysis using simulation is a natural and logical extension of the analytical and 

mathematical models inherent in operations research. Simulation has become a modern tool 

that helps in studying many systems that we could not study or predict the results that we 

could obtain during the operation of these systems over time before the existence of 

Simulation, since the main interest in statistical analysis is to obtain a series of random 

variables that follow the probability distribution in which the system under study operates, 

through a series of random numbers that follow a uniform distribution over the domain [0, 

1], using scientific methods provided by the efforts of researchers. In the field of modeling 

and simulation, such as the reverse transformation method, the rejection and acceptance 

method, and other methods that we have reformulated using the concepts of neutrosophic 

science in previous research. In summary of what we have done previously, we present in 

this research a study whose purpose is to generate random variables that follow the beta 

distribution, which is used in many applications. In administrative processes, especially in 

analyzing network diagrams using the neutrosophic rejection and acceptance method. 

Keywords: modeling and simulation; neutrosophic science; rejection and acceptance 

method for generating neutrosophic random variables; neutrosophic uniform distribution; 

neutrosophic random numbers; Neutrosophic beta distribution. 

 Introduction: 

Operations research has provided many scientific methods that have contributed to the great 

scientific development witnessed in our contemporary world. The importance of these 

methods increases when they are reformulated using the concepts of neutrosophic science, 

the science that relies on neutrosophic data that leaves nothing to chance and takes into 

account all the circumstances and fluctuations facing decision makers. Therefore, 

researchers have presented many Among the researches through which some operations 

research methods were reformulated using the concepts and information presented by the 

founder of this science, we mention [1-18]. Neutrosophic statistical studies are an extension 

of traditional statistical studies, as they depend on neutrosophic data, which are groups 

where any 𝑎 value such as a in a group denoted by 𝑎𝑁 which means (𝑎 neutrosophic), (𝑎 

imprecise), or (𝑎 non-specific). 𝑎𝑁 may be a neighbor of 𝑎 or an interval containing 𝑎, and 

in general it can be considered any set close to 𝑎. See [19]. 

In any probability distribution, if there is a quantity that contains some indeterminacy, then 

this distribution is a neutrosophic probability distribution. Therefore, the random numbers 

and random variables that we obtain based on this probability distribution are neutrosophic 

random numbers and random variables. See [20]. 
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Discussion: 

Probability distributions are the mainstay of the simulation process. Therefore, the interest 

of researchers and scholars interested in the simulation method has focused on providing 

scientific studies that help in obtaining random variables that follow the probability 

distributions most used in practical applications. In classical studies, we find many 

algorithms that are concerned with transforming random numbers that follow a uniform 

distribution into The domain [1, 0] refers to the probability distribution with which the 

system to be simulated operates, and based on this importance of probability distributions 

and after the emergence of neuroscientific science, which paid great attention to probability 

distributions, many probability distributions were reformulated using the concepts of this 

science, and we presented in previous research how Generating neutrosophic random 

numbers and methods for converting these numbers into neutrosophic random variables 

that follow the exponential distribution and others that follow the uniform distribution using 

the inverse transformation method, which was reformulated using the concepts of 

neutrosophic science [21-23]. In this research, and given the importance of the beta 

distribution, we present a study whose goal is to use the method Neutrosophic rejection and 

acceptance, which was presented in the paper [24], to generate neutrosophic random 

variables that follow the beta distribution, which is defined using classical values as the 

following probability density function: 

𝒇(𝒙) =
𝚪(𝜶 + 𝜷)

𝚪(𝜶)𝚪(𝜷)
𝒙𝜶−𝟏(𝟏 − 𝒙)𝜷−𝟏    ;   𝟎 ≤ 𝒙 ≤ 𝟏       (𝟏) 

Where 𝛂 and 𝜷 are the medians used to define this distribution and 𝜶 > 𝟎, 𝜷 > 𝟎 

The symbol 𝚪(𝒄) is the value of the integral (gamma), defined by the following 

relationship: 

𝚪(𝒄) = ∫ 𝒙𝒄−𝟏
∞

𝟎

𝒆−𝒙𝒅𝒙 

The beta distribution curve takes many shapes depending on the values of 𝛂 and 𝜷 and we 

can be classified into three types: 

1- Pessimistic curve in this case is 𝜶 > 𝜷 

2-  Symmetrical curve 𝜶 = 𝜷 

3- Optimistic curve 𝜶 < 𝜷 

 As in the following figures: 
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Neutrosophic function: [25] 

The neutrosophic function 𝑓: 𝐴 → 𝐵 is a function that has some indeterminacy, taking into 

account the definition of its domain, its corresponding domain, and the relationship 

between the elements of the domain and the elements of the corresponding domain. 

  If α , 𝛽 , or both of  them carry some indeterminacy, that is, they take one or the other 

Where 𝛼𝑁  and 𝛽𝑁  are neutrosophic values written as follows: 

𝛼𝑁 = 𝛼 +   𝜀   و𝛽𝑁 = 𝛽 + 𝛿 

Where  𝜀  is an indeterminacy and takes one form  𝜀 ∈  {𝜆1 , 𝜆2} or  𝜀 ∈ [𝜆1, 𝜆2 ] or other 

than that. 

Where  𝛿  is an indeterminacy and takes one form   𝛿 ∈  {𝜇1 , 𝜇2} or  𝛿 ∈ [𝜇1, 𝜇2 ] or other 

than that. 

Then we obtain the neutrosophic beta distribution, which has a probability density function 

given by the following formula: 

𝑓(𝑥) =
Γ(𝛼𝑁 + 𝛽𝑁)

Γ(𝛼𝑁)Γ(𝛽𝑁)
𝑥𝛼𝑁−1(1 − 𝑥)𝛽𝑁−1    ;   0 ≤ 𝑥 ≤ 1          (2) 

Based on what has been reported about this beta distribution in classical studies, we can 

present these neutrosophic types of beta distribution: [24] 

The graphic curve of the beta neutrosophic distribution takes many shapes depending on 

the values of 𝛼𝑁 and 𝛽𝑁 and can be classified into three types: 

1-  Pessimistic curve in this case is 𝛼𝑁 > 𝛽𝑁 

2- Symmetrical curve 𝛼𝑁 = 𝛽𝑁  

3- Optimistic curve 𝛼𝑁 < 𝛽𝑁 

Generating random variables that follow a beta distribution: 

Symmetrical curve  Pessimistic curve Optimistic curve 
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We know that the process of neutrosophic simulation depends on generating neutrosophic 

random numbers that follow the regular neutrosophic distribution and then converting these 

random numbers into random variables that follow the probability distribution with which 

the system to be simulated operates. There are several methods that can be used for the 

conversion process, including we mentioned in previous research the inverse 

transformation method and the rejection method. And acceptance [21-23], where the 

appropriate method is used for the probability density function because in the inverse 

transformation method we need the inverse function of the cumulative distribution function. 

As we know, in many functions, the inverse function does not exist or obtaining it requires 

complex operations. Here we resort to the method Rejection and acceptance. As is clear 

from relationship (1), it is not easy to obtain the inverse function of the probability density 

function for the beta distribution. Therefore, we will use the inverse transformation method 

and apply it to the beta distribution according to the following algorithms: 

 

 

 

Rejection and acceptance algorithm: [23,24] 

We calculate 𝑴𝑵, the maximum value taken by the probability density function over its 

defined domain, and we obtain it by calculating the derivative of this function and setting it 

equal to zero, i.e.: 

𝑀𝑁 =
𝑑𝑓𝑁(𝑥)

𝑑𝑥
|

𝑥=0

  

And in simplified form, we define the derivative of the neutrosophic function as follows 

[24]: 

𝑓𝑁(𝑥) = lim
ℎ→0

[𝑖𝑛𝑓 𝑓(𝑥 + ℎ) − 𝑖𝑛𝑓 𝑓(𝑥)𝑠𝑢𝑝𝑓(𝑥 + ℎ) − 𝑠𝑢𝑝 𝑓(𝑥)]

ℎ
 

This is a generalization of the traditional derivative definition, where the function and 

variables are conventional. It can be written as: 

[𝑖𝑛𝑓 𝐻 , 𝑠𝑢𝑝 𝐻] = ℎ 

𝑖𝑛𝑓 (𝑥 + 𝐻) = 𝑠𝑢𝑝(𝑥 + 𝐻) = 𝑓(𝑥 + ℎ) 

𝑖𝑛𝑓 𝑓(𝑥) = 𝑠𝑢𝑝 𝑓(𝑥) = 𝑓(𝑥) 

Here, 𝑯 is a closed, open, half-closed, or half-open interval. 

By applying the above definition to the function defined by the relationship (2), we obtain:  

𝑓′(𝑥) = 𝑐. (𝛼𝑁 − 1)𝑥𝛼𝑁−2(1 − 𝑥)𝛽𝑁−1 − 𝑐(𝛽𝑁 − 1)𝑥𝛼𝑁−1(1 − 𝑥)𝛽𝑁−2 

To find the solution, we set the derivative equal to zero: 

𝑓′(𝑥) = 𝑐. (𝛼𝑁 − 1)𝑥𝛼𝑁−2(1 − 𝑥)𝛽𝑁−1 − 𝑐(𝛽𝑁 − 1)𝑥𝛼𝑁−1(1 − 𝑥)𝛽𝑁−2 = 0 

In short, by finding the common limits, we get: 

𝑁𝑥 =
𝛼𝑁 − 1

𝛼𝑁 + 𝛽𝑁 − 2
= 𝑚𝑜𝑑       (3) 

This value of x corresponds to the maximum value of the function, and therefore: 

𝑀𝑁 =
𝛼𝑁 − 1

𝛼𝑁 + 𝛽𝑁 − 2
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After obtaining the values of 𝜶𝑵 and 𝜷𝑵 and substituting them into equations (2) and (3), 

we apply the following algorithm: 

1. Generate two random numbers, 𝑹𝟏and 𝑹𝟐 following a uniform distribution in the 

range [0, 1]. We use the method of squaring the average to generate the random 

numbers 𝑹𝟏 and 𝑹𝟐 as follows [24,25]: 

𝑅𝑖+1 = 𝑀𝑖𝑑[𝑅𝑖
2]   ; 𝑖 = 0,1,2, − − − −         (4) 

where, Mid refers to the middle four digits of 𝑹𝟏
𝟐 and  𝑹𝟎 is an initial random number 

consisting of four digits (called the seed) that doesn't contain zero in any of its four digits.  

2. Convert the numbers   𝑹𝟏 and   𝑹𝟐 into neutrosophic function random numbers. To 

convert random numbers following a uniform distribution into neutrosophic  

random numbers, we follow the method introduced in [22], where three forms of 

neutrosophic  random numbers are distinguished based on the uncertainty associated 

with the range [0, 1]: 

a. Form 1: Uncertainty in the lower limit, i.e., [𝟎 + 𝛆 , 𝟏]. where, each classical 

random number is mapped to a neutrosophic function random number using the 

following relationship: 

𝑁𝑅0 =
𝑅0 − 𝜀

1 − 𝜀
=

[𝑅0 , 𝑅0 − 𝑛]

[1 , 1 − 𝑛]
∈ [ 𝑅0,

𝑅0 − 𝑛

1 − 𝑛
] 

b. Form 2: Uncertainty in the upper limit, i.e.,  [𝟎 , 𝟏 + 𝜺]. where, each classical 

random number is mapped to a neutrosophic function random number using the 

following relationship: 

𝑁𝑅0 =
𝑅0

1 + 𝜀
=

𝑅0

[1 ,   𝑛 + 1]
∈ [𝑅0 ,

𝑅0

𝑛 + 1
] 

c. Form 3: Uncertainty in both upper and lower limits, i.e.  [𝟎 , 𝟏 + 𝛆]. where, each 

classical random number is mapped to a neutrosophic function random number 

using the following relationship: 

𝑁𝑅0 = 𝑅0 − ε ∈ [𝑅0 , 𝑅0 − 𝑛] 

In the three previous forms, we have 𝛆 ∈ [𝟎 , 𝒏]     𝒂𝒏𝒅     𝟎 <  𝒏 < 𝟏. 

In this study, we will use the third form: non-deterministic in the upper and lower bounds, 

i.e., [𝟎 + 𝜺 , 𝟏 + 𝜺]. Here, we associate each classical random number with a non-

deterministic random number using the following relationship: 

𝑁𝑅0 = 𝑅0 − ε ∈ [𝑅0 , 𝑅0 − 𝑛] 

Where 𝛆 ∈ [𝟎 , 𝒏]     𝒂𝒏𝒅     𝟎 <  𝒏 < 𝟏 

3. We take one of the two numbers, let it be 𝑵𝑹𝟏  , and transform it appropriately for 

the uniform distribution. We know that when the boundaries of the domain are 

neutrosophic values, we apply the following [22] for the upper and lower limits of 

the domain: 

 [𝒃 + 𝛆 , 𝒂 + 𝛆], where 𝒂 = 𝒂𝑵 = 𝒂  +   and 𝒃𝑵 = 𝐛 + , and 𝛆 ∈ [𝟎 , 𝒏] 𝒂𝒏𝒅  𝒂 <

 𝒏 < 𝒃.  

We use the following relationship: 

𝑁𝑥1 = (𝑏 − 𝑎)𝑁𝑅1 + 𝑎   
4. We test whether 𝑵𝑹𝟐satisfies the inequality: 

𝑁𝑅2 ≤
𝑓(𝑁𝑅1)

𝑀
       (5) 
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That is, 

𝑁𝑅2 ≤
𝑓𝑁(𝑁𝑅1)

𝑀𝑁
  =   

Γ(𝛼)Γ(𝛽)

Γ(𝛼 + 𝛽)
(𝑁𝑅1)𝛼𝑁−1[1 − (𝑁𝑅1)𝛽𝑁−1]      

5. If the inequality (5) is satisfied, then we accept that 𝑵𝒙𝟏 = 𝑵𝑹𝟏follows the Beta 

distribution defined by equation (1). 

 

6. If 𝑵𝑹𝟐 does not satisfy the inequality (5), then we reject the two numbers 

𝑵𝑹𝟏   ,   𝑵𝑹𝟐and return to the first step to generate new random numbers. 

We explain the above through the following example: 

Example 1: 

  We have a system that operates according to the beta function defined by the following 

probability density function: 

𝒇(𝒙) =
𝚪(𝟏𝟎)

𝚪(𝟑)𝚪(𝟕)
𝒙𝟐(𝟏 − 𝒙)𝟔    ;   𝟎 ≤ 𝒙 ≤ 𝟏 

That is, 𝛂 = 𝟑 and 𝛃 = 𝟕  

What is required is to generate random variables that follow this distribution. In this 

example, we will take the beta function in the classical form and neutrosophic random 

numbers: 

We apply the rejection and acceptance algorithm according to the previously mentioned 

steps: 

1. We calculate the largest value of the density function over its defined field from the 

following relationship: 

𝑴 =
𝛂 − 𝟏

𝛂 + 𝛃 − 𝟐
 

We find: 

𝑴 =
𝟑 − 𝟏

𝟑 + 𝟕 − 𝟐
=

𝟐

𝟖
=

𝟏

𝟒
 

2. We use the method of squaring to generate two random numbers that follow the 

uniform distribution over the domain [𝟎 , 𝟏]. We take the seed 𝑹𝟎 = 𝟎. 𝟏𝟐𝟕𝟑 and 

obtain the following random numbers: 

𝑹𝟏 = 𝟎. 𝟔𝟐𝟎𝟓    , 𝑹𝟐 = 𝟎. 𝟓𝟎𝟐𝟎  

3. We convert the classical random numbers to random numbers that follow the non-

deterministic uniform distribution over the domain    1,0 . We take the non-

deterministic bounds 𝛆 ∈ [𝟎  , 𝟎. 𝟎𝟐]and obtain the following neutrosophic non-

deterministic random numbers: 

𝑁𝑅1 = 𝑅1 − ε ∈ [𝑅1 , 𝑅1 − 0.02] 
𝑁𝑅1 = 𝑅1 − ε = 0.6205 − [0  , 0.02] = [0.6205 , 0.6005] ⇒ 𝑁𝑅1 ∈ [0.6205 , 0.6005] 

𝑁𝑅2 = 𝑅2 − ε ∈ [𝑅2 , 𝑅2 − 0.02] 
𝑁𝑅2 = 𝑅2 − ε = 0.5020 − [0  , 0.02] = [0.5020 , 0.482] ⇒ 𝑁𝑅2 ∈ [0.5020 , 0.482] 
4. We take one of the numbers and form an appropriate transformation for the uniform 
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distribution over the domain [𝟎 , 𝟏] . Here, since the distribution is defined over the 

domain [𝟎 , 𝟏] , we take one of the non-deterministic random numbers, let's say 

𝑵𝑹𝟏 ∈ [𝟎. 𝟔𝟐𝟎𝟓 , 𝟎. 𝟔𝟎𝟎𝟓], and calculate the value of the probability density 

function at that point: 

𝒇(𝑵𝑹𝟏) =
𝜞(𝟏𝟎)

𝜞(𝟑)𝜞(𝟕)
([𝟎. 𝟔𝟐𝟎𝟓 , 𝟎. 𝟔𝟎𝟎𝟓])𝟐(𝟏 − ([𝟎. 𝟔𝟐𝟎𝟓 , 𝟎. 𝟔𝟎𝟎𝟓]))𝟔  

We know that if 𝒏 is a positive integer, then (𝒏 + 𝟏) = 𝒏! , therefore: 
𝚪(𝟏𝟎)

𝚪(𝟑)𝚪(𝟕)
=

𝟗!

𝟐! 𝟔!
= 𝟐𝟓𝟐 

𝒇(𝑵𝑹𝟏) ∈ (𝟐𝟓𝟐 × [𝟎. 𝟑𝟖𝟓, 𝟎. 𝟑𝟔𝟎𝟔] × [𝟎. 𝟎𝟎𝟑, 𝟎. 𝟎𝟎𝟒𝟏]) = [𝟎. 𝟐𝟗𝟏𝟏, 𝟎. 𝟑𝟕𝟐𝟔] 
1. We test the inequality (5) and for this, we calculate: 

𝑓(𝑁𝑅1)

𝑀
∈

[0.2911,0.3726]

0.25
= [1.1644,1.4904] 

We have 𝑁𝑅2 ∈ [0.5020 , 0.482]. We note that: 
[0.5020 , 0.482] ≤ [1.1644,1.4904] 

Therefore, inequality (5) is satisfied, i.e.: 

𝑁𝑅2 ≤
𝑓(𝑁𝑅1)

𝑀
   

Here we accept that 𝑁(𝑅1) ∈ [1.1644,1.4904]follows the beta distribution given in 

the example. 

Generating random numbers following the neutrosophic beta distribution from 

classical random numbers: 

Example 2: We have a system that operates according to the beta function defined 

by the neutrosophic probability density function as in the following relationship: 

𝑓(𝑥) =
Γ(𝛼𝑁 + 𝛽𝑁)

Γ(𝛼𝑁)Γ(𝛽𝑁)
𝑥𝛼𝑁−1(1 − 𝑥)𝛽𝑁−1    ;   0 ≤ 𝑥 ≤ 1    

𝛼𝑁and 𝛽𝑁 are neutrosophic values of the form 𝛼𝑁 = 𝛼 + 𝜀 , 𝛽𝑁 = 𝛽 + 𝛿, which are 

adjacent to the real values 𝛼 = 3 and 𝛽 = 7. 

Where  𝜀 and  𝛿 are the indeterminacy in these values. We take them in this example as 

follows: 𝜀 ∈ [𝜆1, 𝜆2 ] = [0 , 0.2 ]and 𝛿 ∈ [𝜇1, 𝜇2] = [0 , 0.1 ] we get 𝛼𝑁 ∈ [3 , 3.2 ] and 

𝛽𝑁 ∈ [7 , 7.1 ] then the probability density function is written as follows: 

𝑓𝑁(𝑥) =
Γ([10 , 10 .3 ])

Γ([3 , 3.2 ])Γ([7 , 7.1 ])
𝑥[2 ,2.2 ](1 − 𝑥)[6 ,6.2 ]   ;   0 ≤ 𝑥 ≤ 1 

What is required is to generate random numbers that follow the previous distribution, based 

on classical random numbers. We apply the rejection and acceptance algorithm according 

to the steps mentioned previously, and as we did in Example 1, we obtain what is required. 

Example 3: We have a system that operates according to the beta function defined by the 

neutrosophic probability density function as in the following relationship: 

𝑓(𝑥) =
Γ(𝛼𝑁 + 𝛽𝑁)

Γ(𝛼𝑁)Γ(𝛽𝑁)
𝑥𝛼𝑁−1(1 − 𝑥)𝛽𝑁−1    ;   0 ≤ 𝑥 ≤ 1    

  𝛼𝑁and 𝛽𝑁are neutrosophic values of the form 𝛼𝑁 = 𝛼 + 𝜀 , 𝛽𝑁 = 𝛽 + 𝛿, which are 

adjacent to the real values 𝛼 = 3 , 𝛽 = 7. 

And 𝜀 and 𝛿 are the indeterminacy in these values. We take them in this example as 

follows: 𝜀 ∈ [𝜆1, 𝜆2 ] = [0 , 0.2 ]and 𝛿 ∈ [𝜇1, 𝜇2] = [0 , 0.1 ] we get 𝛼𝑁 ∈ [3 , 3.2 ] and 

𝛽𝑁 ∈ [7 , 7.1 ] then the probability density function is written as follows: 

𝑓𝑁(𝑥) =
Γ([10 , 10 .3 ])

Γ([3 , 3.2 ])Γ([7 , 7.1 ])
𝑥[2 ,2.2 ](1 − 𝑥)[6 ,6.2 ]   ;   0 ≤ 𝑥 ≤ 1 
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What is required is to generate random numbers that follow the previous distribution, based 

on neutrosophic random numbers. We apply the rejection and acceptance algorithm 

according to the steps mentioned previously, and as we did in Example 1, we obtain what is 

required. 

The difference between the second and third examples: 

In the second example, we generate random numbers that follow a uniform distribution 

over the domain [0 , 1]using the mean square method. For example, we take the seed 𝑅0 =
0.1273 from the relationship (3), which is: 

𝑅1 = 0.6205    , 𝑅2 = 0.5020  
Then we use the two numbers to implement the rejection and acceptance algorithm, as we 

did in the first example. 

In the third example, we generate two random numbers that follow a uniform distribution 

over the domain [0 , 1]using the mean square method. For example, we take the seed 𝑅0 =
0.1273 from the relationship (3), which is: 

𝑅1 = 0.6205    , 𝑅2 = 0.5020 

Then we transform them into two random numbers that follow the uniform neutrosophic 

distribution over the domain[0 + 𝜀, 1 + 𝜀]. We take the indeterminacy ε ∈ [0  , 0.02]. We 

get the following two-neutrosophic random numbers: 

𝑁𝑅1 ∈ [0.6205 , 0.6005]  ,   𝑁𝑅2 ∈ [0.5020 , 0.482] 
Then we use two-neutrosophic random numbers to implement the rejection and acceptance 

algorithm, as we did in the first example. 

 

 

 

Conclusion and results: 

  In order to obtain more accurate results and enjoy a margin of freedom when simulating 

systems that operate according to the beta distribution, which is one of the important 

distributions that has many uses in many fields, we presented in this research a study 

through which we are able to obtain neutrosophic random variables that follow this 

distribution, using neutrosophic rejection and acceptance method. Thanks to the 

indeterminacy of neutrosophic values, we are able to provide simulation results suitable for 

all circumstances and achieve the desired goal for decision makers. 
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Abstract 

The normal distribution has been extensively been used in the statistical inference and decision 

making problems. One of the main assumptions of the existing tests in classical statistics is that the 

data should be from normally distributed population.Shapiro- Wilk test is widely used to test the 

normality of data when the observations are precise or exact in nature. But in many areas including 

agriculture, engineering and reliability, the data may be in interval form, indeterminate form or 

uncertain.  In such cases, the existed Classical Shapiro- Wilk test fails to test the normality of data. 

In this paper, we proposed the Shapiro- Wilk test under neutrosophic environment to check whether 

the uncertain data is from neutrosophic normal distribution or not. The hypothesis testing process 

is executed on the observations based on lifetime of batteries. The comparative analysis has been 

done with the existed Shapiro- Wilk test.The comparison shows that the proposed test is efficacious, 

appropriate and well-suited to be applied in scenarios involving indeterminacy. 

Keywords: Neutrosophic Statistics, Shapiro- Wilk Test, Neutrosophic Normal Distribution, 

Classical Statistics, Hypothesis Testing. 
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1. Introduction 

Now a day, inferential statistics have been used commonly in all fields of the research to test the 

hypotheses and making predictions on the bases of data. The statistical tests in inferential statistics 

have common assumption about data that it should be taken from a population following a specific 

distribution. It is a crucial assumption for the selection of relevant test. The distribution from which 

the sample has been taken is always unknown in advance. In classical statistics, there are two ways 

to check the distribution of the data. First is graphical approach in which the graphs are formed on 

the bases of given data. Another strategy that yields more trustworthy and superior results is 

“goodness of fit”. These tests used the “cumulative distribution function” of the fitted or underlying 

distribution. For the testing of the assumption that the data follows the generalized Pareto 

distribution or not, Anderson- Darling test proposed by Arshad et al. [1]. Various tests, most notably 

"goodness-of-fit," are used to determine whether the sample has been taken from a specific 

distribution. The most commonly used “goodness-of-fit” tests are; Jarque–Bera [2-3], Kolmogorov–

Smirnov [4-5], Lilliefors [6], “Pearson's chi-square” [7], “Cramèr–von Mises” [8-9], D'Agostino–

Pearson [10] and Anderson–Darling [11-12]. Aslam [13] proposed a new test of “goodness of fit” 

under the presence of neutrosophic parameters. Ahsan-ul-Haq [14] discussed the Cramèr–von Mises 

test under uncertainty. Smarandache [15] proposed a generalisation of fuzzy logic known as 

neutrosophic logic. The advantages of neutrosophic logic over fuzzy logic and interval-based analysis 

were shown by Smarandache and Khalid [16].The more literature, related articles and books on the 

neutrosophic statistics can be view in [17-18]. Shapiro [19] proposed the Shapiro–Wilk test for 

checking the assumption of normality. Nornadiah and Yap [20] proved that the Shapiro–Wilk test is 

most powerful normality test as comparison to the Kolmogorov–Smirnov test, Lilliefors test and 

Anderson–Darling test.Jeyaraman et al. [21] defined the neutrosophic norms and made some finding 

regarding the respective categories. Uma and Nandhitha[22] determined the Quick Switching System 

using the Neutrosophic Poisson distribution and compared with the Fuzzy Poisson distribution by 

means of Operating Characteristic (OC) curves. Dey and Ray[23] investigated some properties of the 
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redefined neutrosophic composite relations. Utilizing the principles of neutrosophic science, Jdid and 

Smarandache [24]reformulated the Lagrangian multiplier technique originally designed for 

nonlinear models constrained by equality. 

Under uncertainty, the existed Classical Shapiro- Wilk test is failed to test the normality assumption. 

Here, we proposed the Shapiro-Wilk test under neutrosophic environment to check whether the 

uncertain data is from neutrosophic normal distribution or not. We discussed the hypothesis testing 

procedure on lifetime of batteries. The comparative analysis has been done with the existed Shapiro- 

Wilk test. 

2. Preliminaries 

Let us consider 𝐴𝑁 = 𝐴𝑙 + 𝐴𝑢𝐷𝑁  are the neutrosophic numbers, such that 𝐷𝑁 ∈ [𝐷𝑙 , 𝐷𝑢]  is an 

indeterminacy interval, follows that neutrosophic normal distribution (NND) [17-18]with the 

neutrosophic mean 𝜇𝑁 = 𝜇𝑙 + 𝜇𝑢𝐷𝑁 ; 𝐷𝑁 ∈ [𝐷𝑙 , 𝐷𝑢] and neutrosophic variance 𝜎𝑁
2 = 𝜎𝑙

2 + 𝜎𝑢
2𝐷𝑁 ;𝐷𝑁 ∈

[𝐷𝑙 , 𝐷𝑢]. The “probability density function” of the NND is given by  

𝑓𝑁(𝐴𝑁) =
1

𝜎𝑁√2𝜋
𝑒𝑥𝑝 {−

(𝐴𝑁−𝜇𝑁)2

2𝜎𝑁
2 } ; 𝜇𝑁 ∈ [𝜇𝑙 , 𝜇𝑢] , 𝜎𝑁

2 ∈ [𝜎𝑙
2, 𝜎𝑢

2], 𝐷𝑁 ∈ [𝐷𝑙 , 𝐷𝑢]                  (1) 

The NND given by equation (1) is the generalized version of existed normal distribution. NND will 

reduce to the classical normal distribution if the 𝐷𝑙 = 0.  
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3. Shapiro- Wilk Test Under Neutrosophic Statistics (NSW) 

The Shapiro- Wilk (SW) test is a frequently used test in classical statistics to access the normality of 

the data. Here, we extend the SW test under the neutrosophic environment. We'll go over the 

algorithm for determining whether the given data follows the NND or not. The neutrosophic 

parameters of NND are assumed to be unknown and estimated from the given neutrosophic data in 

order to develop the proposed test.  When compared to the traditional SW test, the proposed test 

will produce the results in terms of interval of indeterminacy. The assumptions of the NSW test are 

that the data should consist neutrosophic observations and observations should be independent of 

each other. The null and alternative hypothesis for the NSW test is: 

𝐻0𝑁: The data has been taken from the NND. 

𝐻𝑎𝑁: The data has not been from the NND. 

The intended application procedure for the neutrosophic Shapiro-Wilks test is outlined as follows: 

Step 1: Find the mean of neutrosophic observations 𝑨(𝒊)𝑵 where 𝒊 =1, 2,…, n i.e.  

𝐴(𝑖)𝑁
̅̅ ̅̅ ̅̅ =

1

𝑛
∑ 𝑨(𝒊)𝑵

𝑛
𝒊=𝟏                                                                                     (2) 

 

Step 2: Find the Neutrosophic Sum of Squares (NSS) by subtracting the neutrosophic mean value 

from neutrosophic observations then squaring and summing the obtained neutrosophic values as 

given below:  

𝑁𝑆𝑆 =  ∑ (𝐴(𝑖)𝑁 − 𝐴𝑖𝑁
̅̅ ̅̅ ̅)𝑛

𝑖=1

2
                 (3)  

 

Step 3: Now calculated𝑔𝑁as given below  

𝑔𝑁 =  (∑ 𝑤𝑖(𝐴(𝑛+1−𝑖)𝑁 − 𝐴(𝑖)𝑁
𝑛
𝑖=1 ))

2
                                                          (4) 

where 𝑤𝑖  weights taken from Shapiro-Wilk Table [19].  
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𝐴(𝑖)𝑁 is the ith smallest neutrosophic number or ith neutrosophic order statistic. The median value is 

not included if n is odd.  

Step 4: Compute the value of test statistic for NSW is given by  

𝑊𝑁 =
(∑ 𝑤𝑖(𝐴(𝑛+1−𝑖)𝑁−𝐴(𝑖)𝑁

𝑛
𝑖=1 ))

2

∑ (𝐴(𝑖)𝑁−𝐴𝑖𝑁̅̅ ̅̅ ̅)𝑛
𝑖=1

2  ; 𝑊𝑁 ∈ [𝑊𝑙 , 𝑊𝑢] 𝑎𝑛𝑑𝐷𝑁 ∈ [𝐷𝑙 , 𝐷𝑢]       (5) 

 

Figure 1. Testing procedure of NSW test 

From the Shapiro-Wilks table, we choose the critical value corresponding to significance level 𝛼. The 

null hypothesis, which assumes that the data conforms to theNND, is considered valid if the 

calculated Shapiro-Wilk test statistic (𝑊𝑁) lies within the range of critical values. Otherwise, we can 

conclude that the data do not conforms the NND 

4. Application 

In this section, we will delve into the implementation of the suggested test by utilizing data of 

life-span of batteries in which the life time is observed for twenty-three batteries. This data set was 

utilized by [13]. In practice, the failure time of the batteries cannot be measured precisely becauseit's 

tough to know exactly when they'll stop working.But it can be measured in neutrosophic form. The 

lifetime in 100h of twenty-three batteries are given below: 
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Table 1. The failure time of 23 batteries (in 100h) 

2.9,3.99 5.24,7.2 6.56,9.02 7.14,9.82 11.6,15.96 12.14,16.69 12.65,17.4 13.24,18.21 

13.67,18.79 13.88,19.09 15.64,21.51 17.05,23.45 17.4,23.93 17.8,24.48 19.01,26.14 19.34,26.59 

23.13,31.81 23.34,32.09 26.07,35.84 30.29,41.65 43.97,60.46 48.09,66.13 73.48,98.04  

The engineers make some claim that the average failure time of the batteries is somewhere 3000 

hours. For this they need to access whether the data has been taken from normally distributed 

population or not. From table 1, the data is in interval form that is indeterministic in nature. Hence, 

it is not possible to use the SW Test under classical statistics. Therefore, we use here proposed NSW 

to check the normality of data.  

𝐻0𝑁: The sample of batteries came from the neutrosophic Normal distribution. 

𝐻𝑎𝑁: The sample of batteries do not come from the neutrosophic Normal distribution. 

 

Step 1:the mean of neutrosophic observations given in table 1 is  

𝐴(𝑖)𝑁
̅̅ ̅̅ ̅̅ =

1

𝑛
∑ 𝐴(𝑖)𝑁

𝑛

𝑖=1

=
1

23
( 473.63,647.66) 

 

Step 2:By equation (3), theNeutrosophic Sum of Squares (NSS)is given by 

∑ (𝐴(𝑖)𝑁 − 𝐴𝑖𝑁
̅̅ ̅̅̅)𝑛

𝑖=1

2
= (6912.268,11460.13) 

 

Step 3:The value of sample size (n) = 23 which is odd. From Shapiro-Wilk Table [19], the weights𝑤𝑖  

values corresponding to n =23 are 0.4542, 0.3126, 0.2563, 0.2139, 0.1787, 0.1480, 0.1201, 0.0941, 0.0696, 

0.0459, 0.0228, 0.0000.  

(∑ 𝑤𝑖(𝐴(𝑛+1−𝑖)𝑁 − 𝐴(𝑖)𝑁
𝑛
𝑖=1 ))

2
=  (3736.699,9183.037) 

Step 4:The value of test statistic for NSW is given by  

𝑊𝑁 =
(3736.699,9183.037)

(6912.268,11460.13)
 

WN =  (0.540589,0.801303) where 𝑊𝑙 = 0.540589, 𝑊𝑢 = 0.801303 
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We found that the critical value corresponding to n = 23 and significance level 0.01 is 

(0.881,0.881). Since  WN < (0.881,0.881) ,   for the lifetime of batteries data. Hence it can be 

concluded that the lifetime of batteries follows the NND. 

5. Comparative Study & Discussion 

In this analysis, we compared the effectiveness of the provided NSW test with the traditional 

SW test. When working with data characterized by imprecise, uncertain, or ambiguous observations, 

the suggested test demonstrates greater efficiency by delivering outcomes in the form of 

indeterminacy.The obtained value of NSWtest statistic is WN ∈ (0.5406,0.8013). It can be written as 

WN =  0.5406 + 0.8013𝐷𝑁 ; 𝐷𝑁 ∈ [0,0.3254]. The critical value of neutrosophic Shapiro-Wilk Test is 

(0.881,0.881) at 0.01significance level. Here the value 0.5406 represents the value of Classical Shapiro-

Wilk Test when the 𝐷𝑁 = 0 .For the significance level 0.01, “the probability of the rejecting the null 

hypothesis when it is true is 0.01 and probability of accepting the null hypothesis when it is true will 

be 0.99 and measure of indeterminacy is 0.3254”. Hence it can be said that the proposed Shapiro-Wilk 

Test of normality under neutrosophic statistics gives the test statistic value with the measure 

indeterminacy (𝐷𝑁) while the existed Shapiro-Wilk Test of normality under classical statistics fails to 

provide any information about the measure of indeterminacy. Therefore, the proposed test of 

normality under uncertainty or neutrosophic statistic is more effective than the existed Shapiro-Wilk 

Test and Classical Shapiro-Wilk Test becomes special case of the suggested Shapiro-Wilk Test under 

neutrosophic environment when the indeterminacy (𝐷𝑁) = 0.  

6. Conclusion 

In this paper, we suggested the Shapiro-Wilk Test under the presence of neutrosophic data. 

We obtained the value of test statistic of the proposed test and decision rule. We take the data of the 
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lifetime of batteries in neutrosophic form and used the proposed model to check whether the data is 

taken from neutrosophic normally distribution population or not. From the obtained value of test 

statistic, we conclude that the lifetime of batteries follows the neutrosophic normal distribution and 

data can be used for further analysis under neutrosophic statistical inferences where it is necessary 

that the obtained data should be from neutrosophic normally distributed population. From the 

comparative study, the proposed test of normality under uncertainty or neutrosophic statistic is more 

effective than the existed Shapiro-Wilk Test and Classical Shapiro-Wilk Test becomes special case of 

the proposed Shapiro-Wilk Test under neutrosophic statistics when the indeterminacy (𝐷𝑁) = 0. In 

future, the proposed test can be applied on some other data to check the neutrosophic normality. 
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Abstract: The Multi-attribute decision-making (MADM) approaches are utilized to aggregate 

ambiguous and imprecise information based on different aggregation operators (AOs). The aim of 

this article is to explore the notion of single-valued neutrosophic (SVN) set (SVNS), wich is the 

modified structure of an intuitionistic fuzzy sets and picture fuzzy sets. Some appropriate 

operations of Aczel Alsina tools under the system of SVN information are also presented. By using 

the theory of prioritization aggregation model, we developed a class of new approaches including 

SVN Aczel Alsina prioritized average (SVNAAPA) and SVN Aczel Alsina prioritized geometric 

(SVNAAPG) operators. We also presented a series of new methodologies in the light of SVN 

information such as SVN Aczel Alsina prioritized weighted average (SVNAAPWA), and SVN Aczel 

Alsina prioritized weighted geometric (SVNAAPWG) operators. To verify discussed aggregation 

approaches, we also presented some notabe characteristics. We established a MADM technique to 

solve complexities and difficulties during decision-making in our real-life problems. By utilizing a 

practical numerical example to select an appropriate research scientist for the vacant post of a public 

university. To find the validity and flexibility of our invented approaches, sensitive analysis, and 

comparative study by comparing the results of existing approaches with currently proposed 

aggregation techniques. 

Keywords: Neutrosophic values, Single valued neutrosophic values, Aczel Alsina Aggregation 

operators, and Multi-attribute decision-making approach. 

 

 

1. Introduction 

In order to choose the optimal option based on a set of criteria, decision-making is a common and 

daily activity in human existence. The last several years have seen extensive research and useful 

decision-making applications to management, economics, and other fields because of its outstanding 

ability to express information uncertainty. Fuzzy set theory has become more common in recent years 

as a way to resolve decision-making issues due to the uncertainty of decision data. Zadeh [1] 

anticipated the fuzzy set (FS) concepts, which have gained popularity among intellectuals. In order 

to deal with uncertain conditions, numerous theoretical advancements in FS have been made to date. 

However, in many circumstances, the notion of FS is effective. For instance, the FS theory is unable 

to deal with the knowledge supplied to a person in the form of positive membership value (PMV) 

and negative membership value (NMV). To address these issues, Atanassov [2] created the 
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intuitionistic FS (IFS) theory by incorporating the concept of PMV into the drawbacks of FS. The 

limitation that the addition of the PMV and NMV is between [0, 1] makes IFS significantly more 

useful than the current FS. When dealing with complex and unreliable data in decision-making 

scenarios, IFS is a thorough and powerful strategy. Many researchers have used IFS theory in a 

variety of fields [3], [4]. However, the IFS cannot handle such values if the sum of them exceeds the 

unit interval [0, 1]. To address such difficulties, Yager [5] investigated Pythagorean FS (PyFS). The 

PyFS is more effective for tackling complex, unreliable information in real-life situations. Yager [6] 

also modified and explored the theory of the PyFS in the framework of q-rung orthopair FS (q-ROFS), 

with the additional limitation that the sum of the qth power of PMV and NMV cannot be more than 

the unit interval [0,1]. The concepts of q-ROFS have received much use and have received more 

interest from researchers because of their structure. Many authors have applied the q-ROFS theory 

in ways that have been detrimental to a number of areas. Cuong [7], [8] extended the concepts of IFS, 

PyFS and q-ROFS using the characteristics PMV, abstinence membership value (AMV), and NMV 

such that the sum of PMV, AMV, and NMV restricted on interval  [0, 1] . In order to convey 

ambiguous and conflicting data, Smarandache [9] anticipated the neutrosophic set (NS). A NS having 

PMV, AMV, and NMV are separately represented and lies in real standard or nonstandard subsets 

of ]−0, 1+[. We may have faced many difficulties when we explored the results in nonstandard close 

intervals. In order to overcome this complexity, Wang et al. [10] gave the concepts of SVNS and 

provided the idea of interval NS [11]. Ye [12] explored the work of IFS, PFS, and NS using the system 

of simplified NSs to deal effectively with uncertain and inaccurate data during the decision-making 

process. Many research scientists explored the concepts of NS, and SVNS in the different fuzzy 

environments [13]–[15]. 

The AOs are reliable and convenient mathematical tools to easily handle inaccurate and uncertain 

information during aggregation. Due to the significance of AOs, several research scientists worked 

on different fuzzy environments. Xu [16] explored the idea of arithmetic and geometric tools using 

the framework of weighted averaging and geometric operators depending on IFS. Rahman et al. [17] 

gave some AOs of PyFSs by using the concepts of algebraic sum and algebraic product to handle 

imprecision information. Jan et al. [18] explored the notions of PyFS by applying the interval-valued 

PyFS (IVPyFS) structure to cope with ambiguous and uncertain information. Liu and Wang [19] 

presented AOs of q-ROFSs to solve real-life problems under a MADM approach. Garg [20] expanded 

the theory of IFS using the way of PFSs and anticipated some innovative AOs to handle the 

complexities of the fuzziness. Riaz and Farid [21] explored the theory of PFSs to handle unpredictable 

and imprecision information during the decision-making process by developing certain approaches. 

Jdid et al. [22] proposed a strong mechanism for checking the qualities of final products and 

developed some new mathematical approaches for the inspection of goods under their cost and 

benefits. A novel approach for the improvement of the sustainability and resilience of supply chain 

enterprises based on the theory of industry 5.0 was presented by Gamal et al. [23]. This theory has a 

great capability to provide strong decision under considering the decision-making process. Riaz and 

Hashmi [24] extended the ideology of FSs regarding Linear Diophantine FS to introduce some 

valuable AOs on the basis of the fundamental operations of PFSs. Liu and Jiang [25] explored the 
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conception of distance measures in the form of interval-valued IFS (IVIFS) and used a number of AOs 

to deal with real-life problems under the MADM process. Mahnaz et al. [26] present detailed certain 

approaches to T-SFSs by utilizing the concepts of frank operators to cope with inaccurate and 

impression information. Ahmad et al. [27] provided some specific approaches of SFSs to deal with 

real-life issues under MADM techniques. Ali et al. [28] explored the theory of T-SFSs and explored 

the basic operation of T-SFSs. Ye [29] presented some AOs by using the correlation coefficients tools 

of SVNSs and interval-valued SVNSs. Wei and Zhang [30] present a few certain methodologies of 

Bonferroni power operators applying SVN information. Chen and Ye [31] anticipated certain 

approaches based on Dombi operations under the system of SVNSs. Mahmood and Ali [32] explored 

the theory of SVNS by utilizing complex SVNS (CSVNS) to develop certain approaches by using 

mathematical tools like prioritized Muirhead Mean operators. Fan et al. [33] invent a series of certain 

approaches to SVNS by utilizing innovative linguistic variables for the solution of complicatedness 

in different fuzziness. Hussain et al. [34] anticipated a series of complex IFS by using the theory of 

Hamy mean tools and established an application in the tourism industry. Garg [35] explored the 

theory of SVNS to overcome the loss of information during the aggregation process with the help of 

certain  mathematical tools like Frank operators. Liu et al. [36] elaborated the theories of NS to 

develop a series of certain approaches to cope with vague and impression information in the fuzzy 

environment. Akram et al. [37] elaborated the structure of energy cell under the system of interval 

valued T-SFSs to develop certain models of Bonferroni mean operators. Ali Khan et al. [38] gave a 

series of certain approaches of PyFSs based on prioritized mathematical tools to express the 

ambiguous and vague information. 

Aczel and Alsina [39] explored the theories of t-norm (TNM) and t-conorm (TCNM) to develop 

an innovative idea for Aczel Alsina tools in 1982. Farahbod and Eftekhari [40] compared other TNMs 

and TCNMs to evaluate and categorize more reliable TNMs and TCNMs after investigation. Recently 

several research scientists worked on different fuzzy environments to cope with uncertain and 

imprecise information. Senapati et al. [41] explored the idea of IFSs to establish a list of certain 

approaches by using the basic operations of Aczel Alsina tools to deal with real-life problems under 

a MADM approach. Senapati et al. [42] also utilized the basic operations of Aczel Alsina tools to 

develop a few certain approaches based on IVIFSs. Hussain et al. [43] generalized the concept of Aczel 

Alsina tools in framework of PyFSs and gave a series of certain approaches to aggregate ambiguous 

and uncertain information. Khan et al. [44] generalized the structure of q-ROFS and anticipated a 

series of certain approaches by using the basic operations of Aczel Alsina tools. Naeem et al. [45] 

expanded the concept of PFSs and anticipated detailed certain approaches by using basic operations 

of Aczel Alsina tools. Mahmood et al. [46] explored the meanings of IFS in terms of complex IFS to 

introduce a list of certain approaches using the basic operations of Aczel Alsina tools. Several research 

scientists also conceptualized the ideas of Aczel Alsina tools in different fuzzy environments seen in 

the references [47]–[49]. 

In order to handle vague information, we studied several aggregation models under considering 

different fuzzy circumstances. Sometimes decision-makers cannot approach an appropriate optimal 

option due to insufficient information on human opinions.  To serve this purpose, the SVNS is a 
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well-known aggregation model that provides the decision maker freedom in their decisions. Aczel 

Alsina aggregation tools have an attractive aggregation tool and play an essential role in the decision-

making process. By inspiring the theory of prioritization and Aczel Alsian aggregation tools, we 

explored the theory of SVNSs. The main contribution of our research work is established as follows: 

a) To expose the theory of SVNS with some specific properties. 

b) To explore operations of Aczel Alsina aggregation tools under considering the system of 

SVN information. 

c) By utilizing the degree of preferences of the attributes, we developed a class of new 

approaches based on Aczel Alsina aggregation models such as SVNAAPA and 

SVNAAPG operators. 

d) We also proposed a series of new methodologies under the system of SVNS, including 

SVNAAPWA and SVNAAPWG operators. 

e) To illustrate the applicability and effectiveness of our invented approaches, some notable 

characteristics are also demonstrated. 

f) We established an algorithm of the MADM technique to resolve several real-life 

applications. 

g) We gave a practical numerical example to find a suitable candidate for the vacant post of 

general manager for a multinational company. To find validity and flexibility of our 

invented approaches, we discussed sensitive analysis and comparative study by 

contrasting the results of existing approaches. 

h) Additionally, some remarkable points related to our research work are expressed in the 

conclusion. 

The structure of this manuscript is given as follows: In section 2, we studied the notion of SVNSs 

and its primary operations. In section 3, we revised the concepts of prioritized AOs based on SVNVs 

and some existing AOs based on SVNVs. In section 4, we improved the fundamental OLs of SVNVs 

based on Aczel Alsina operations. Section 5 listed certain approaches of SVNAAPA and SVNAAPG 

operators based on Aczel Alsina operations. In section 6, we anticipated the AOs of SVNAAPWA 

and SVNAAPWG operators with the help of weight vectors based on Aczel Alsina operations. In 

section 7, we evaluate a MADM technique to select a suitable research scientist by utilizing the 

SVNAAPWA and SVNAAPWG operators for a public university and observe the effects on the 

results of alternatives for different parametric values. In section 8, find the validity and reliability of 

our discussed approaches by contrasting the outcomes of current AOs with the result of our invented 

approaches. In section 9, the entire article was condensed into one paragraph and discussed the 

advantages of our research work. 

2. Preliminaries 

This section will study the basic definition of the neutrosophic set (NS) and single-valued 

neutrosophic set (SVNS). We also study some fundamental OLs of SVN value (SVNV) for further 

development of this article. We also provide a list of all abbreviations in Table 1. 
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Definition 1: [9] Let 𝑋  be a be a non-empty set and a NS 𝐴  in 𝑋  is characterized by positive 

membership value (PMV), abstinence membership value (AMV) and negative membership value 

(NMV).Then, all the terms of membership are restricted in such intervals, φ𝐴(𝓇) ∈ ]0
−, 1+[, δ𝐴(𝓇) ∈

]0−, 1+[ and σ𝐴(𝓇) ∈ ]0
−, 1+[. 

Where a PMV is denoted by φ𝐴(𝓇), AMV is denoted by δ𝐴(𝓇) and a NMV is denoted by σ𝐴(𝓇). 

Table 1 shows abbreviations and their meanings. 

Abbreviations Meanings Abbreviations Meanings 

MADM Multi-attribute 

decision making  

NMV negative membership 

value 

OLs Operational laws AMV abstinence 

membership value  

NS neutrosophic set FS Fuzzy set 

SVNS Single-valued 

neutrosophic set 

IFS Intuitionistic fuzzy set 

SVNV Single-valued 

neutrosophic value 

PyFS Pythagorean fuzzy set 

AOs Aggregation operators q-ROFS q-rung orthopair 

fuzzy set 

NMV positive membership 

value 

PFS Picture fuzzy set 

TNM t-norm TCNM t-conorm 

SVNAAPA Single valued neutrosophic Aczel Alsina prioritized average. 

SVNAAPG Single-valued neutrosophic Aczel Alsina prioritized geometric. 

SVNAAPWA Single valued neutrosophic Aczel Alsina prioritized weighted average. 

SVNAAPWG Single-valued neutrosophic Aczel Alsina prioritized weighted geometric. 

Definition 2: [10] A SVNS 𝐴 is defined as: 

𝐴 = {(𝓇,𝜑𝐴(𝓇), 𝛿𝐴(𝓇), 𝜎𝐴(𝓇))|𝓇 ∈ 𝑋} 

Where φ𝐴(𝓇): 𝑋 → [0, 1],  δ𝐴(𝓇):𝑋 → [0, 1]  and σ𝐴(𝓇): 𝑋 → [0, 1]  represent the PMV, AMV, and 

NMV, respectively. A SVNS satisfies such condition: 

 0 ≤ 𝜑𝐴(𝓇) + 𝛿𝐴(𝓇)+ 𝜎𝐴(𝓇) ≤ 3 

A SVNV is denoted by the 𝛼 = (φ𝛼 , δ𝛼 , σ𝛼). 

Definition 3: [10] Let 𝛼 = (φ𝛼 , δ𝛼 , σ𝛼) be a SVNV. Then, a score function 𝒢(𝛼) can be particularized 

as: 

𝒢(𝛼) =
2 + (φ𝛼 −  δ𝛼 − σ𝛼)

3
  

(1) 

Here, 𝒢(𝛼) ∈ [0, 1]. 

Definition 4: [10] Let 𝛼 = (φ𝛼 , δ𝛼 , σ𝛼)  be a SVNV. Then, an accuracy function 𝔔(𝛼)  can be 

particularized as: 
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𝔔(𝛼) = φ𝛼 + σ𝛼 (2) 

Here, 𝔔(𝛼) ∈ [0,1]. 

Definition 5: [10] Let 𝛼 = (φ𝛼 , δ𝛼 , σ𝛼)  and 𝛽 = (φ𝛽 , δ𝛽 , σ𝛽)  be two SVNVs and 𝒢(𝛼) =

2+(φ𝛼− δ𝛼−σ𝛼)

3
 and 𝒢(𝛽) =

2+ (φ𝛽− δ𝛽−σ𝛽)

3
 be the score values of 𝛼 and 𝛽 respectively. Let 𝔔(𝛼) =

φ𝛼 + σ𝛼 and 𝔔(𝛽) = φ𝛽 + σ𝛽 be the accuracy values of 𝛼 and 𝛽 respectively. Then, 

i. If 𝒢(𝛼) < 𝒢(𝛽), then 𝛼 < 𝛽 

ii. If 𝒢(𝛼) = 𝒢(𝛽) then, 

a. If 𝔔(𝛼) < 𝔔(𝛽), then 𝛼 < 𝛽 

b. If 𝔔(𝛼) = 𝔔(𝛽), then 𝛼 = 𝛽 

Definition 6: [32] Let 𝛼 = (φ𝛼 , δ𝛼 , σ𝛼)  and 𝛽 = (φ𝛽 , δ𝛽 , σ𝛽)  be two SVNVs. Then, some basic 

operations of SVNVs are given as: 

i. 𝛼 ⊕𝛽 = (φ𝛼 +φ𝛽 −φ𝛼φ𝛽 , δ𝛼δ𝛽 , σ𝛼σ𝛽) 

ii. 𝛼 ⊗𝛽 = (φ𝛼φ𝛽 , δ𝛼+ δ𝛽 − δ𝛼δ𝛽 , σ𝛼 + σ𝛽 − σ𝛼σ𝛽) 

iii. 𝜇𝛼 = (1 − (1 − φ𝛼)
𝜇 , (δ𝛼)

𝜇 , (σ𝛼)
𝜇) , 𝜇 > 0 

iv. (𝛼)𝜇 = ((φ𝛼)
𝜇 , 1 − ( 1 − δ𝛼)

𝜇 , 1 − ( 1 − σ𝛼)
𝜇), 𝜇 > 0 

Definition 7: [50] Let ß = (ß1, ß2, … , ß𝑛)  be the collection of characteristics and there is a 

prioritization between the attributes which is represented by linear ordering ß1 > ß2 > ⋯ > ß𝑛  

shows that attribute ßϼ has a maximum priority than ß𝑘 , if ϼ < 𝑘. The values ßϼ(𝓇) shows the 

performance of any alternative 𝓇  under the attribute ßϼ,  and satisfies ßϼ(𝓇) ∈ [0, 1].  The 

prioritized average operator (PA) is defined as if it satisfies such axiom: 

𝑃𝐴 (𝜏ϼ(𝓇)) =∑𝜔ϼ𝜏ϼ(𝓇)

𝑛

ϼ=1

 

 

(3) 

Where 𝝎ϼ =
𝜺ϼ

∑ 𝜺ϼ
𝒏
ϼ=𝟏

, 𝜺ϼ = ∏ 𝓖(𝝉𝒌), ϼ = 𝟐, 𝟑,… ,𝒏
ϼ−𝟏
𝒌=𝟏 . The initial value 𝜺𝟏 = 𝟏 and 𝓖(𝝉𝒌)  represents 

score values of 𝒌𝒕𝒉 SVNVs. Then, PA is called the prioritized averaging (PA) operator. 

Definition 8: [50] Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3, … , 𝑛  be the collection of SVNVs, with PA 𝜔ϼ =

𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 operator for each 𝜏ϼ. Then, SVN prioritized averaging (SVNPA) operator is particularized as: 

𝑆𝑉𝑁𝑃𝐴(𝜏1, 𝜏2, … , 𝜏𝑛  ) = 𝜀1𝜏1⊕ 𝜀2𝜏2⊕…⊕ 𝜀𝑛𝜏𝑛 

Where 𝜀ϼ = ∏  𝒢(𝜏ϼ), ϼ = 2, 3, … , 𝑛
ϼ−1
𝑘=1 . The initial value of 𝜀1 = 1 and 𝒢(𝜏𝑘) represents the score 

value of 𝑘𝑡ℎ SVNVs. 
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Definition 9: [50] Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3, … , 𝑛  be the collection of SVNVs with PA 𝜔ϼ =

𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 operator for each 𝜏ϼ. Then, the SVN prioritized geometric (SVNPG) operator is particularized 

as: 

𝑆𝑉𝑁𝑃𝐺(𝜏1, 𝜏2, … , 𝜏𝑛  ) = 𝜏1
𝜀1⊗ 𝜏2

𝜀2⊗…⊗ 𝜏𝑛
𝜀𝑛 

Where 𝜺ϼ = ∏  𝓖(𝝉ϼ), ϼ = 𝟐, 𝟑,… , 𝒏
ϼ−𝟏
𝒌=𝟏 . The initial value of 𝜺𝟏 = 𝟏 and 𝓖(𝝉𝒌) represents the score 

values of 𝒌𝒕𝒉 SVNVs. 

3. Basic Operations of Aczel Alsina tools Based on Single-Valued Neutrosophic 

Information 

In this section, we will demonstrate Aczel Alsina operations in the form of sum, product, scalar 

multiplication, and power rule using SVNV data. 

Definition 10: Let 𝜏 = (φ, δ, σ), 𝜏1 = (φ1, δ1, σ1)  and 𝜏2 = (φ2, δ2, σ2)  be the three SVNVs,  ₡ ≥ 1 

and 𝜇 > 0. Then, we illustrate some basic operations of Aczel Alsina tools in the following form: 

i. 𝜏1⊕ 𝜏2 =

(

 
 
 1 − 𝑒

−((−𝑙𝑛(1−φ1))
₡
+( −𝑙𝑛(1−φ2))

₡
)

1
₡

,

𝑒
−((−𝑙𝑛(δ1))

₡
+(−𝑙𝑛(δ2))

₡
)

1
₡

,

𝑒
−((−𝑙𝑛(σ1))

₡
+(−𝑙𝑛(σ2))

₡
)

1
₡

)

 
 
 

 

ii. 𝜏1⊗ 𝜏2 =

(

 
 
 𝑒

−((−𝑙𝑛(φ1))
₡
+(−𝑙𝑛(φ2))

₡
)

1
₡

,

1 − 𝑒
−((−𝑙𝑛(1−δ1))

₡
+(−𝑙𝑛(1−δ2))

₡
)

1
₡

,

1 − 𝑒
−((−𝑙𝑛(1−σ1))

₡
+(−𝑙𝑛(1−σ2))

₡
)

1
₡

)

 
 
 

 

iii. 𝜇𝜏 =

(

 
 
 1− 𝑒

−(𝜇(−𝑙𝑛(1−φ𝓇))
₡
)

1
₡

,

𝑒
−(𝜇(−𝑙𝑛(δ𝓇))

₡
)

1
₡

,

𝑒
−(𝜇(−𝑙𝑛(σ𝓇))

₡
)

1
₡

)

 
 
 

 

iv. 𝜏𝜇 =

(

 
 
 𝑒

−(𝜇(−𝑙𝑛(φ𝓇))
₡
)

1
₡

,

1 − 𝑒
−(𝜇(−𝑙𝑛(1−δ𝓇))

₡
)

1
₡

,

1 − 𝑒
−(𝜇(−𝑙𝑛(1−σ𝓇))

₡
)

1
₡

)

 
 
 

 

Theorem 1: Let 𝜏 = (φ, δ, σ), 𝜏1 = (φ1,  δ1, σ1) and 𝜏2 = (φ2,  δ2, σ2) be the three SVNVs with ₡ ≥

1 and 𝜇 > 0. Then, a few fundamental OLs are defined as follows: 

i. 𝜏1⊕ 𝜏2 = 𝜏2⊕𝜏1 

ii. 𝜏1⊗ 𝜏2 = 𝜏2⊗𝜏1 
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iii. 𝜇(𝜏1⊕ 𝜏2) = 𝜇𝜏1⊕𝜇𝜏2, 𝜇 > 0 

iv. (𝜇1 + 𝜇2)𝜏 = 𝜇1𝜏 + 𝜇2𝜏, 𝜇1, 𝜇2 > 0 

v. (𝜏1⊗ 𝜏2)
𝜇 = 𝜏1

𝜇
⊗𝜏2

𝜇
, 𝜇 > 0 

vi. 𝜏𝜇1⊗ 𝜏𝜇2 = 𝜏(𝜇1+𝜇2) , 𝜇1, 𝜇2 > 0 

4. Single Valued Neutrosophic Aczel Alsina Prioritized Aggregation Operators 

In this section, we will narrate some certain approaches of SVNVs based on Aczel Alsina 

operations and elaborate on some characteristics of our aimed work. We also extend our work to the 

weighted averaging and weighted geometric operators. 

Definition 11: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3, … , 𝑛  be the collection of SVNVs with PA 𝜔ϼ =
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 

operator for each 𝜏ϼ. Then SVNAAPA operator is particularized as: 

𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2, … , 𝜏𝑛  ) =⊕
ϼ=1

𝑛

(
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

𝜏ϼ) 

𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2, … , 𝜏𝑛  ) = (
𝜀1

∑ 𝜀ϼ
𝑛
ϼ=1

) 𝜏1⊕(
𝜀2

∑ 𝜀ϼ
𝑛
ϼ=1

) 𝜏2⊕…⊕(
𝜀𝑛

∑ 𝜀ϼ
𝑛
ϼ=1

) 𝜏𝑛 

 

 

(4) 

Where 𝜀ϼ = ∏  𝒢(𝜏𝑘), ϼ = 2, 3, … , 𝑛
ϼ−1
𝑘=1 . 

Theorem 2: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1,2,3,… , 𝑛  be the collection of SVNVs with PA 𝜔ϼ =
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 

operator for each 𝜏ϼ. Then, the SVNAAPA operator is particularized as: 

𝑆𝑉𝑁𝐴𝐴𝑃𝐴 =∑(
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

𝜏ϼ)

𝑛

ϼ=1

=

(

 
 
 
 
 1− 𝑒

−(∑ (
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ))
₡

𝑛
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ))
₡

𝑛
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ))
₡

𝑛
ϼ=1 )

1
₡

)

 
 
 
 
 

 

 

 

(5) 

Proof: We will proof this theorem with the help of a mathematical induction technique in the 

following way: 

i. Take the value of ϼ = 2 depends on Aczel Alsina operations of SVNVs, we get, 

(
𝜀1

∑ 𝜀ϼ
𝑛
ϼ=1

𝜏1) =

(

 
 
 
 
 
 
 
1− 𝑒

−((
𝜀1

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ1))
₡
)

1
₡

,

𝑒
−((

𝜀1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ1))
₡
)

1
₡

,

𝑒
−((

𝜀1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ1))
₡
)

1
₡

)
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(
𝜀2

∑ 𝜀ϼ
𝑛
ϼ=1

𝜏2) =

(

 
 
 
 
 
 
 
1− 𝑒

−((
𝜀2

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ2))
₡
)

1
₡

,

𝑒
−((

𝜀2
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ2))
₡
)

1
₡

,

𝑒
−((

𝜀2
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ2))
₡
)

1
₡

)

 
 
 
 
 
 
 

 

By using the above Definition 11, we have: 

𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
1− 𝑒

−((
𝜀1

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ1))
₡
)

1
₡

,

𝑒
−((

𝜀1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ1))
₡
)

1
₡

,

𝑒
−((

𝜀1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ1))
₡
)

1
₡

)

 
 
 
 
 
 
 

⊕

(

 
 
 
 
 
 
 
1− 𝑒

−((
𝜀2

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ2))
₡
)

1
₡

,

𝑒
−((

𝜀2
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ2))
₡
)

1
₡

,

𝑒
−((

𝜀2
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ2))
₡
)

1
₡

)

 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 
 
1− 𝑒

−(((
𝜀1

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ1))
₡
)⊕((

𝜀2
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ2))
₡
))

1
₡

,

𝑒

−(((
𝜀1

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ1))
₡
)⊕((

𝜀2
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ2))
₡
))

1
₡

,

𝑒

−(((
𝜀1

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ1))
₡
)⊕((

𝜀2
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ1))
₡
))

1
₡

)

 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 1− 𝑒

−(∑ (
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ))
₡

2
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ))
₡

2
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ))
₡

2
ϼ=1 )

1
₡

)

 
 
 
 
 

 

Hence, this is true for ϼ = 2. 

ii. Now, suppose that this is true for ϼ = 𝑘. Then, we have: 
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𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2, … , 𝜏𝑛  ) =∑(
𝜀𝑘

∑ 𝜀ϼ
𝑛
ϼ=1

𝜏𝑘)

𝑘

ϼ=1

=

(

 
 
 
 
 1 − 𝑒

−(∑ (
𝜀𝑘

∑ 𝜀ϼ
𝑛
ϼ=1

)(− 𝑙𝑛(1−φ𝑘))
₡𝑘

ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝜀𝑘
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ𝑘))
₡𝑘

ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝜀𝑘
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ𝑘))
₡𝑘

ϼ=1 )

1
₡

)

 
 
 
 
 

 

Now, for ϼ = 𝑘 + 1. We get, 

𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2, … , 𝜏𝑘 , 𝜏𝑘+1) =⊕
ϼ=1

𝑘

((
𝜀𝑘

∑ 𝜀ϼ
𝑛
ϼ=1

)𝜏𝑘⊕(
𝜀𝑘+1
∑ 𝜀ϼ
𝑛
ϼ=1

)𝜏𝑘+1) 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 1 − 𝑒

−(∑ (
𝜀𝑘

∑ 𝜀ϼ
𝑛
ϼ=1

)(− 𝑙𝑛(1−φk))
₡𝑘

ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝜀𝑘
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ𝑘))
₡𝑘

ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝜀𝑘
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ𝑘))
₡𝑘

ϼ=1 )

1
₡

)

 
 
 
 
 

⊕

(

 
 
 
 
 
 
 
1− 𝑒

−((
𝜀𝑘+1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−𝜑𝑘+1))
₡
)

1
₡

,

𝑒
−((

𝜀𝑘+1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ𝑘+1))
₡
)

1
₡

,

𝑒
−((

𝜀𝑘+1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ𝑘+1))
₡
)

1
₡

)

 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 1 − 𝑒

−(∑ (
𝜀𝑘+1
∑ 𝜀ϼ
𝑛
ϼ=1

)(− 𝑙𝑛(1−φ𝑘+1))
₡𝑘+1

ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝜀𝑘+1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ𝑘+1))
₡𝑘+1

ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝜀𝑘+1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ𝑘+1))
₡𝑘+1

ϼ=1 )

1
₡

)

 
 
 
 
 

 

Hence proved. 

Example 1: Let  (0.54, 0.98, 0.27), (0.87, 0.55, 0.61) , (0.49, 0.33, 0.72)  and (0.11, 0.39, 0.27) be the 

four SVNVs with ₡ = 3. Then, SVNAAPA can be calculated as: 
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𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2, 𝜏3, 𝜏4) =

(

 
 
 
 
 
 
 
 
 
 

1 − 𝑒

−

(

 
 
(

𝜀1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ1))
₡
+(

𝜀2
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ2))
₡
+

(
𝜀3

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ3))
₡
 +(

𝜀4
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ4))
₡

)

 
 

1
₡

,

𝑒

−

(

 
 
(

𝜀1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ1))
₡
+(

𝜀2
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ2))
₡
+

(
𝜀3

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ3))
₡
+(

𝜀4
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ4))
₡

)

 
 

1
₡

,

𝑒

−

(

 
 
(

𝜀1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ1))
₡
+(

𝜀2
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ2))
₡
+

(
𝜀3

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ3))
₡
+(

𝜀4
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ4))
₡

)

 
 

1
₡

)

 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 
1 − 𝑒

−(
(

1
1.7927

)(−𝑙𝑛(1−0.54))
3
+(
0.4300
1.7927

)(−𝑙𝑛(1−0.87))
3
+

(
0.2451
1.7927

)(−𝑙𝑛(1−0.49))
3
 +(

0.1176
1.7927

)(−𝑙𝑛(1−0.11))
3
)

1
3

,

𝑒

−(
(

1
1.7927

)((−𝑙𝑛(0.98))
3
)+(

0.4300
1.7927

)((−𝑙𝑛(0.55))
3
)+

(
0.2451
1.7927

)((−𝑙𝑛(0.33))
3
)+(

0.1176
1.7927

)((−𝑙𝑛(0.39))
3
)
)

1
3

,

𝑒

−(
(

1
1.7927

)((−𝑙𝑛(0.27))
3
)+(

0.4300
1.7927

)((−𝑙𝑛(0.61))
3
)+

(
0.2451
1.7927

)((−𝑙𝑛(0.72))
3
)+(

0.1176
1.7927

)((−𝑙𝑛(0.27))
3
)
)

1
3

)

 
 
 
 
 
 
 

 

𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2, 𝜏3, 𝜏4) = (0.7349, 0.5149, 0.3239) 

Theorem 3: If all 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3,… , 𝑛 are equal, that is, 𝜏ϼ = 𝜏 for all 𝜏. Then, we have: 

𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2, 𝜏3, … , 𝜏𝑛) = 𝜏 

Proof: Since 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3,… , 𝑛. Then, 

𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2, … , 𝜏𝑛  ) =∑(
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

𝜏ϼ)

𝑛

ϼ=1

 

=

(

 
 
 
 
 1− 𝑒

−(∑ (
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ))
₡

𝑛
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ))
₡

𝑛
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ))
₡

𝑛
ϼ=1 )

1
₡

)

 
 
 
 
 

 

= (1− 𝑒
−(− 𝑙𝑛(1−(φϼ))

₡
)

1
₡

, 𝑒
−((−𝑙𝑛(δϼ))

₡
)

1
₡

, 𝑒
−((−𝑙𝑛(σϼ))

₡
)

1
₡

) = 𝜏 

Thus, it is obvious that 𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2, … , 𝜏𝑛) = 𝜏 holds. 

Theorem 4: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1,2,3,… , 𝑛  be the collection of SVNVs, with PA 𝜔ϼ =
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 

operator for each 𝜏ϼ. Let 𝜏− = 𝑚𝑖𝑛(𝜏1, 𝜏2, … , 𝜏𝑛  ) and 𝜏+ = 𝑚𝑎𝑥(𝜏1, 𝜏2, … , 𝜏𝑛  ). So, 

 𝜏− ≤ 𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2, … , 𝜏𝑛  ) ≤ 𝜏
+ 
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Proof: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1,2,3,… , 𝑛  be the collection of SVNVs, with PA  𝜔ϼ =
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 

operator for each 𝜏ϼ . Let 𝜏− = 𝑚𝑖𝑛ϼ(𝜏1, 𝜏2, … , 𝜏𝑛  ) = (φ
−, δ−, σ−), and 𝜏+ = 𝑚𝑎𝑥ϼ(𝜏1, 𝜏2, … , 𝜏𝑛  ) =

(φ+, δ+, σ+). We have,φ− = 𝑚𝑖𝑛ϼ{φϼ}, δ
− = 𝑚𝑎𝑥ϼ{δϼ} and σ− = 𝑚𝑎𝑥ϼ{σϼ} and φ+ = 𝑚𝑎𝑥ϼ{φϼ}, δ

+ =

𝑚𝑖𝑛ϼ{δϼ}, and σ+ = 𝑚𝑖𝑛ϼ{σϼ}. Hence, there is the following result for the inequalities: 

1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)𝑛
ϼ=1 (−𝑙𝑛(1−φ−))

₡
)

1
₡

≤ 1− 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 1− 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ+))
₡

𝑛
ϼ=1 )

1
₡

 

𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ−))
₡𝑛

ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ+))
₡

𝑛
ϼ=1 )

1
₡

 

Similarly, 

𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ−))
₡𝑛

ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ+))
₡

𝑛
ϼ=1 )

1
₡

 

So, 

𝜏− ≤ 𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2, … , 𝜏𝑛) ≤ 𝜏
+ 

Theorem 5: Let 𝜏ϼ  and 𝜏ϼ
′ , ϼ = 1, 2, 3, … , 𝑛  be two sets of SVNVs, if 𝜏ϼ ≤ 𝜏ϼ

′ For all  𝜏.  So, 

𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2, … , 𝜏𝑛  ) ≤ 𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1
′ , 𝜏2

′ , … , 𝜏𝑛
′ ) 

Proof:  Let 𝜏ϼ and 𝜏ϼ
′ , ϼ = 1, 2, 3, … , 𝑛 be two sets of SVNVs, we can write in the following form: 

1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ
′ ))

₡
𝑛
ϼ=1 )

1
₡

 

𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ))
₡

𝑛
ϼ=1 )

1
₡

≥ 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ
′ ))

₡
𝑛
ϼ=1 )

1
₡

 

𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ))
₡

𝑛
ϼ=1 )

1
₡

≥ 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ
′ ))

₡
𝑛
ϼ=1 )

1
₡

 

Hence, it is proved that 𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2, … , 𝜏𝑛  ) ≤ 𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1
′ , 𝜏2

′ , … , 𝜏𝑛
′ ). 

Definition 12: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3, … , 𝑛  be the collection of SVNVs, with PA 𝜔ϼ =
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 

operator for each 𝜏ϼ. Then, the SVNAAPG operator is particularized as: 

𝑆𝑉𝑁𝐴𝐴𝑃𝐺(𝜏1, 𝜏2, … , 𝜏𝑛  ) =⊗
ϼ=1

𝑛

(𝜏𝑛

(
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

)

) 

𝑆𝑉𝑁𝐴𝐴𝑃𝐺(𝜏1, 𝜏2, … , 𝜏𝑛  ) = 𝜏1

(
𝜀1

∑ 𝜀ϼ
𝑛
ϼ=1

)

⊗ 𝜏2

(
𝜀2

∑ 𝜀ϼ
𝑛
ϼ=1

)

⊗…⊗ 𝜏
₡

(
𝜀𝑛

∑ 𝜀ϼ
𝑛
ϼ=1

)

 

 

 

(6) 

Where 𝜀ϼ = ∏  𝒢(𝜏𝑘), ϼ = 2, 3, … , 𝑛
ϼ−1
𝑘=1 . The initial value of 𝜀1 = 1 and 𝒢(𝜏𝑘) represents the score 

values of 𝑘𝑡ℎ SVNVs. 
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Theorem 6: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3, … , 𝑛  be the collection of SVNVs, with PA 𝜔ϼ =
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 

operator for each 𝜏ϼ. Then, the SVNAAPG operator is particularized as: 

𝑆𝑉𝑁𝐴𝐴𝑃𝐺 =∏(𝜏ϼ

(
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

)

)

𝑛

ϼ=1

=

(

 
 
 
 
 𝑒

−(∑ (
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φϼ))
₡

𝑛
ϼ=1 )

1
₡

,

1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δϼ))
₡

𝑛
ϼ=1 )

1
₡

,

1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σϼ))
₡

𝑛
ϼ=1 )

1
₡

)

 
 
 
 
 

 

 

 

(7) 

Proof: Proof is similar to the theorem 2. 

Example 2: Let (0.59, 0.73, 0.34), (0.45, 0.56, 0.67), (0.78, 0.89, 0.9) and (0.51, 0.82, 0.65) be the four 

SVNVs with 𝜀1 = 1, 𝜀2 = 0.5067, 𝜀3 = 0.2060 and 𝜀4 = 0.0680 and ₡ = 3. Then, SVNAAPG can be 

calculated as: 

𝑆𝑉𝑁𝐴𝐴𝑃𝐺(𝜏1, 𝜏2, 𝜏3, 𝜏4) ==

(

 
 
 
 
 
 
 
 
 
 

𝑒

−

(

 
 
(

𝜀1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φ1))
₡
+(

𝜀2
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φ2))
₡
+

(
𝜀3

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φ3))
₡
+(

𝜀4
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φ4))
₡

)

 
 

1
₡

,

1 − 𝑒

−

(

 
 
(

𝜀1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δ1))
₡
+(

𝜀2
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δ2))
₡
+

(
𝜀3

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δ3))
₡
+(

𝜀4
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δ4))
₡

)

 
 

1
₡

,

1 − 𝑒

−

(

 
 
(

𝜀1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σ1))
₡
+(

𝜀2
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σ2))
₡
+

(
𝜀3

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σ3))
₡
+(

𝜀4
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σ4))
₡

)

 
 

1
₡

)

 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 

𝑒

−(
(

1
1.7807

)(−𝑙𝑛(0.59))
3
+(
0.5067
1.7807

)(−𝑙𝑛(0.45))
3
+

(
0.2060
1.7807

)(−𝑙𝑛(0.78))
3
+(
0.0680
1.7807

)(−𝑙𝑛(0.51))
3
)

1
3

,

1 − 𝑒

−(
(

1
1.7807

)(−𝑙𝑛(1−0.73))
3
+(
0.5067
1.7807

)(−𝑙𝑛(1−0.56))
3
+

(
0.2060
1.7807

)(−𝑙𝑛(1−0.89))
3
+(
0.0680
1.7807

)(−𝑙𝑛(1−0.82))
3
)

1
3

,

1 − 𝑒

−(
(

1
1.7807

)(−𝑙𝑛(1−0.34))
3
+(
0.5067
1.7807

)(−𝑙𝑛(1−0.67))
3
+

(
0.2060
1.7807

)(−𝑙𝑛(1−0.9))
3
+(
0.0680
1.7807

)(−𝑙𝑛(1−0.65))
3
)

1
3

)

 
 
 
 
 
 
 

 

𝑆𝑉𝑁𝐴𝐴𝑃𝐺(𝜏1, 𝜏2, 𝜏3, 𝜏4)  = (0.5368, 0.7579, 0.7092) 

Theorem 7: If all 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3,… , 𝑛 are equal, that is, 𝜏𝑛 = 𝜏 for all 𝜏. Then, 

 𝑆𝑉𝑁𝐴𝐴𝑃𝐺(𝜏1, 𝜏2, … , 𝜏𝑛) = 𝜏. 

Proof: Since 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1,2,3,… , 𝑛. Then, 

𝑆𝑉𝑁𝐴𝐴𝑃𝐺(𝜏1, 𝜏2, … , 𝜏𝑛  ) =∏(𝜏ϼ

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1 )

𝑛

ϼ=1
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𝑆𝑉𝑁𝐴𝐴𝑃𝐺(𝜏1, 𝜏2, … , 𝜏𝑛  ) =

(

 
 
 
 
 𝑒

−(∑ (
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φϼ))
₡

𝑛
ϼ=1 )

1
₡

,

1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δϼ))
₡

𝑛
ϼ=1 )

1
₡

,

1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σϼ))
₡

𝑛
ϼ=1 )

1
₡

)

 
 
 
 
 

 

= (𝑒
−((−𝑙𝑛(φ₡))

₡
)

1
₡

, 1 − 𝑒
−((−𝑙𝑛(1−δ₡))

₡
)

1
₡

, 1 − 𝑒
−((−𝑙𝑛(1−σ₡))

₡
)

1
₡

) = 𝜏 

Thus, it is obvious that 𝑆𝑉𝑁𝐴𝐴𝑃𝐺(𝜏1, 𝜏2, … , 𝜏𝑛  ) = 𝜏 holds. 

Theorem 8: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1,2,3,… , 𝑛  be the collection of SVNVs, with PA 𝜔ϼ =
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 

operator for each 𝜏ϼ. Let 𝜏− = 𝑚𝑖𝑛(𝜏1, 𝜏2, … , 𝜏𝑛  ) and 𝜏+ = 𝑚𝑎𝑥(𝜏1, 𝜏2, … , 𝜏𝑛  ). Then, 

 𝜏− ≤ 𝑆𝑉𝑁𝐴𝐴𝑃𝐺(𝜏1, 𝜏2, … , 𝜏𝑛) ≤ 𝜏
+ . 

Proof: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1,2,3,… , 𝑛 be the collection of SVNVs with PA 𝜔ϼ =
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 operator 

for each  𝜏ϼ . Let 𝜏− = 𝑚𝑖𝑛ϼ(𝜏1, 𝜏2, … , 𝜏𝑛  ) = (φ
−, δ−, σ−),  and  𝜏+ = 𝑚𝑎𝑥ϼ(𝜏1, 𝜏2, … , 𝜏𝑛  ) =

(φ+, δ+, σ+). We have,φ− = 𝑚𝑖𝑛ϼ{φϼ}, δ
− = 𝑚𝑎𝑥ϼ{δϼ} and σ− = 𝑚𝑎𝑥ϼ{σϼ} and φ+ = 𝑚𝑎𝑥ϼ{φϼ}, δ

+ =

𝑚𝑖𝑛ϼ{δϼ}, and σ+ = 𝑚𝑖𝑛ϼ{σϼ}. Hence, there is the following result for the inequalities:  

𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φ−))
₡𝑛

ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φ+))
₡

𝑛
ϼ=1 )

1
₡

 

1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δ−))
₡𝑛

ϼ=1 )

1
₡

≤ 1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 1− 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δ+))
₡

𝑛
ϼ=1 )

1
₡

 

1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σ−))
₡𝑛

ϼ=1 )

1
₡

≤ 1− 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 1− 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σ+))
₡

𝑛
ϼ=1 )

1
₡

 

So, 𝜏− ≤ 𝑆𝑉𝑁𝐴𝐴𝑃𝐺(𝜏1, 𝜏2, … , 𝜏𝑛  ) ≤ 𝜏
+ holds. 

Theorem 9: Let 𝜏ϼ  and 𝜏ϼ
′ , ϼ = 1,2,3,… , 𝑛  be two sets of SVNVs, if 𝜏ϼ ≤ 𝜏ϼ

′   for all  𝜏.  Then, 

𝑆𝑉𝑁𝐴𝐴𝑃𝐺(𝜏1, 𝜏2, … , 𝜏𝑛  ) ≤ 𝑆𝑉𝑁𝐴𝐴𝑃𝐺(𝜏1
′ , 𝜏2

′ , … , 𝜏𝑛
′ ). 

Proof: Let 𝜏ϼ and 𝜏ϼ
′ , ϼ = 1,2,3,… , 𝑛 be two sets of SVNVs. Then, we can write in the following way: 

𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φϼ
′ ))

₡
𝑛
ϼ=1 )

1
₡

 

And, 
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1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δϼ))
₡

𝑛
ϼ=1 )

1
₡

≥ 1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δϼ
′ ))

₡
𝑛
ϼ=1 )

1
₡

 

Similarly, we get: 

1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σϼ))
₡

𝑛
ϼ=1 )

1
₡

≥ 1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σϼ
′))

₡
𝑛
ϼ=1 )

1
₡

 

From this, we can conclude that 𝑺𝑽𝑵𝑨𝑨𝑷𝑮(𝝉𝟏, 𝝉𝟐 , … , 𝝉𝒏) ≤ 𝑺𝑽𝑵𝑨𝑨𝑷𝑮(𝝉𝟏
′ , 𝝉𝟐

′ , … , 𝝉𝒏
′ ) holds. 

5. Single Valued Neutrosophic Aczel Alsina Prioritized Weighted Aggregation Operators 

In this section, we demonstrate many AOs of SVNAAPWA and SVNAAPWG based on Aczel 

Alsina operations with some specific characteristics by using our methodology.  

Definition 13: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3, … , 𝑛  be the collection of SVNVs with associated 

weight vectors (WVs) 𝛹 = (𝛹1 , 𝛹2 , … ,𝛹𝑛)
𝑇  of 𝜏ϼ, ϼ = 1, 2, 3,… , 𝑛  such that 𝛹ϼ ∈ [0,1] 

and ∑ 𝛹ϼ = 1
𝑛
ϼ=1  with PA 𝜔ϼ =

𝛹ϼ𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 operator for each 𝜏ϼ . Then, the SVNAAPWA operator is 

particularized as: 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1, 𝜏2, … , 𝜏𝑛  ) =∑(
𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

𝜏ϼ)

𝑛

ϼ=1

 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1, 𝜏2, … , 𝜏𝑛  ) = (
𝛹1𝜀1

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

𝜏1)⊕ (
𝛹2𝜀2

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

𝜏2)⊕…⊕ (
𝛹𝑛𝜀𝑛

∑ 𝛹𝑛𝜀𝑛
𝑛
ϼ=1

𝜏𝑛) 

 

 

(8) 

Where 𝜀ϼ = ∏  𝒢(𝜏𝑘), ϼ = 2, 3, … , 𝑛
ϼ−1
𝑘=1 . The initial value is 𝜀1 = 1 and 𝒢(𝜏𝑘) be the score value of 

𝑘𝑡ℎ SVNVs. 

Theorem 9: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3, … , 𝑛  be the collection of SVNVs with WVs 𝛹 =

(𝛹1, 𝛹2 , … ,𝛹𝑛)
𝑇  and 𝛹₡ ∈ [0,1],  ∑ 𝛹₡ = 1

𝑛
ϼ=1  associated with PA  𝜔ϼ =

𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 operator. Then 

SVNAAPWA operator is particularized as: 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴 =∑(
𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

𝜏ϼ)

𝑛

ϼ=1

=

(

 
 
 
 
 1− 𝑒

−(∑ (
𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ))
₡

𝑛
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ))
₡

𝑛
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ))
₡

𝑛
ϼ=1 )

1
₡

)

 
 
 
 
 

 

 

 

(9) 

Proof: We will proof this theorem with the help of a mathematical induction technique in the 

following way: 

i. Take the value of ϼ = 2 depends on Aczel Alsina operations of SVNVs, we get, 
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(
𝛹1𝜀1

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

𝜏1) =

(

 
 
 
 
 
 
 
1− 𝑒

−((
𝛹1𝜀1

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ1))
₡
)

1
₡

,

𝑒
−((

𝛹1𝜀1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ1))
₡
)

1
₡

,

𝑒
−((

𝛹1𝜀1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ1))
₡
)

1
₡

)

 
 
 
 
 
 
 

 

(
𝛹2𝜀2

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

𝜏2) =

(

 
 
 
 
 
 
 
1− 𝑒

−((
𝛹2𝜀2

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ2))
₡
)

1
₡

,

𝑒
−((

𝛹2𝜀2
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ2))
₡
)

1
₡

,

𝑒
−((

𝛹2𝜀2
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ2))
₡
)

1
₡

)

 
 
 
 
 
 
 

 

By using the above Definition 13, we have: 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1, 𝜏2) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
1 − 𝑒

−((
𝛹1𝜀1

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ1))
₡
)

1
₡

,

𝑒
−((

𝛹1𝜀1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ1))
₡
)

1
₡

,

𝑒
−((

𝛹1𝜀1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ1))
₡
)

1
₡

)

 
 
 
 
 
 
 

⊕

(

 
 
 
 
 
 
 
1− 𝑒

−((
𝛹2𝜀2

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ2))
₡
)

1
₡

,

𝑒
−((

𝛹2𝜀2
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ2))
₡
)

1
₡

,

𝑒
−((

𝛹2𝜀2
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ2))
₡
)

1
₡

)

 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 1− 𝑒

−(∑ (
𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ))
₡

2
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ))
₡

2
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ))
₡

2
ϼ=1 )

1
₡

)

 
 
 
 
 

 

Hence, this is true for ϼ = 2. 

ii. Now suppose that this is true for ϼ = 𝑘. Then, we have: 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1, 𝜏2, … , 𝜏𝑛) =∑(
𝛹𝑘𝜀𝑘

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

𝜏𝑘)

𝑛

ϼ=1
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=

(

 
 
 
 
 1− 𝑒

−(∑ (
𝛹𝑘𝜀𝑘

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(− 𝑙𝑛(1−φ𝑘))
₡𝑘

ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹𝑘𝜀𝑘
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ𝑘))
₡𝑘

ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹𝑘𝜀𝑘
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ𝑘))
₡𝑘

ϼ=1 )

1
₡

)

 
 
 
 
 

 

Now, for ϼ = 𝑘 + 1. We get, 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1, 𝜏2, 𝜏𝑘 , … , 𝜏𝑘+1) =∑((
𝛹𝑘𝜀𝑘

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

𝜏𝑘)⊕ (
𝛹𝑘+1𝜀𝑘+1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

𝜏𝑘+1))

𝑘+1

ϼ=1

 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 1 − 𝑒

−(∑ (
𝛹𝑘𝜀𝑘

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(− 𝑙𝑛(1−φk))
₡𝑘

ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹𝑘𝜀𝑘
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ𝑘))
₡𝑘

ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹𝑘𝜀𝑘
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ𝑘))
₡𝑘

ϼ=1 )

1
₡

)

 
 
 
 
 

⊕

(

 
 
 
 
 
 
 
1− 𝑒

−((
𝛹𝑘+1𝜀𝑘+1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−𝜑𝑘+1))
₡
)

1
₡

,

𝑒
−((

𝛹𝑘+1𝜀𝑘+1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ𝑘+1))
₡
)

1
₡

,

𝑒
−((

𝛹𝑘+1𝜀𝑘+1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ𝑘+1))
₡
)

1
₡

)

 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 1 − 𝑒

−(∑ (
𝛹𝑘+1𝜀𝑘+1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(− 𝑙𝑛(1−φ𝑘+1))
₡𝑘+1

ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹𝑘+1𝜀𝑘+1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ𝑘+1))
₡𝑘+1

ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹𝑘+1𝜀𝑘+1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ𝑘+1))
₡𝑘+1

ϼ=1 )

1
₡

)

 
 
 
 
 

 

Example 3: Let 𝜏1 = (0.98, 0.45, 0.32), (0.56, 0.76, 0.3), (0.11, 0.23, 0.66)  and (0.45, 0.6, 0.29)  be the 

four SVNVs with WVs (0.3783, 0.4180, 0.1045, 0.0992)  and ₡ = 3.  Then, SVNAAPWA can be 

calculated as: 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴 =∑(
𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

𝜏ϼ)

𝑛

ϼ=1

=

(

 
 
 
 
 1 − 𝑒

−(∑ (
𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ))
₡

𝑛
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ))
₡

𝑛
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ))
₡

𝑛
ϼ=1 )

1
₡

)
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𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1, 𝜏2, 𝜏3, 𝜏4) =

(

 
 
 
 
 
 
 
 
 
 

1 − 𝑒

−

(

 
 
(

𝛹1𝜀1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ1))
₡
+(

𝛹2𝜀2
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ2))
₡
+

(
𝛹3𝜀3

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ3))
₡
 +(

𝛹4𝜀4
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ4))
₡

)

 
 

1
₡

,

𝑒

−

(

 
 
(

𝛹1𝜀1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ1))
₡
+(

𝛹2𝜀2
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ2))
₡
+

(
𝛹3𝜀3

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ3))
₡
+(

𝛹4𝜀4
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ4))
₡

)

 
 

1
₡

,

𝑒

−

(

 
 
(

𝛹1𝜀1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ1))
₡
+(

𝛹2𝜀2
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ2))
₡
+

(
𝛹3𝜀3

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ3))
₡
+(

𝛹4𝜀4
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ4))
₡

)

 
 

1
₡

)

 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 
1 − 𝑒

−(
(
0.2000
0.5287

)(−𝑙𝑛(1−0.98))
3
+(
0.2210
0.5287

)(−𝑙𝑛(1−0.56))
3
+

(
0.0553
0.5287

)(−𝑙𝑛(1−0.11))
3
 +(

0.0524
0.5287

)(−𝑙𝑛(1−0.45))
3
)

1
3

,

𝑒

−(
(
0.2000
0.5287

)(−𝑙𝑛(0.45))
3
+(
0.2210
0.5287

)(−𝑙𝑛(0.76))
3
+

(
0.0553
0.5287

)(−𝑙𝑛(0.23))
3
+(
0.0524
0.5287

)(−𝑙𝑛(0.6))
3
)

1
3

,

𝑒

−(
(
0.2000
0.5287

)(−𝑙𝑛(0.32))
3
+(
0.2210
0.5287

)(−𝑙𝑛(0.3))
3
+

(
0.0553
0.5287

)(−𝑙𝑛(0.66))
3
+(
0.0524
0.5287

)(−𝑙𝑛(0.29))
3
)

1
3

)

 
 
 
 
 
 
 

 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1, 𝜏2, 𝜏3, 𝜏4) = (0.9416, 0.4416, 0.3196) 

Theorem 10: If all 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3,… , 𝑛 are equal, that is, 𝜏𝑛 = 𝜏 for all 𝜏. Then, we have: 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1, 𝜏2, … , 𝜏𝑛) = 𝜏 

Proof: Since 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3,… , 𝑛. Then, 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1, 𝜏2, … , 𝜏𝑛) =∑(
𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

) 𝜏ϼ

𝑛

ϼ=1

 

=

(

 
 
 
 
 1− 𝑒

−(∑ (
𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ))
₡

𝑛
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ))
₡

𝑛
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ))
₡

𝑛
ϼ=1 )

1
₡

)

 
 
 
 
 

 

= (1− 𝑒
−(− 𝑙𝑛(1−(φϼ))

₡
)

1
₡

, 𝑒
−((−𝑙𝑛(δϼ))

₡
)

1
₡

, 𝑒
−((−𝑙𝑛(σϼ))

₡
)

1
₡

) = 𝜏 

Thus, it is obvious that 𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1, 𝜏2, … , 𝜏𝑛) = 𝜏 holds. 

Theorem 11: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3, … , 𝑛  be the collection of SVNVs with associated WVs 

𝛹 = (𝛹1 , 𝛹2, … ,𝛹𝑛)
𝑇  of 𝜏ϼ, ϼ = 1, 2, 3,… , 𝑛  such that 𝛹ϼ ∈ [0,1]  and  ∑ 𝛹ϼ = 1

𝑛
ϼ=1  with PA  𝜔ϼ =

𝛹ϼ𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 operator for each  𝜏ϼ . Let 𝜏− = 𝑚𝑖𝑛(𝜏1, 𝜏2, … , 𝜏𝑛),  and  𝜏+ = 𝑚𝑎𝑥(𝜏1, 𝜏2, … , 𝜏𝑛) , then  𝜏− ≤

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1, 𝜏2, … , 𝜏𝑛) ≤ 𝜏
+ . 
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Proof: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1,2,3,… , 𝑛  be the collection of SVNVs with associated WVs 𝛹 =

(𝛹1, 𝛹2 , … ,𝛹𝑛)
𝑇 of 𝜏ϼ, ϼ = 1, 2, 3,… , 𝑛 such that 𝛹ϼ ∈ [0,1] and ∑ 𝛹ϼ = 1

𝑛
ϼ=1  with PA 𝜔ϼ =

𝛹ϼ𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 

operator for each  𝜏ϼ . Let 𝜏− = 𝑚𝑖𝑛(𝜏1, 𝜏2, … , 𝜏𝑛) = (φ
−, δ−, σ−),  and  𝜏+ = 𝑚𝑎𝑥(𝜏1, 𝜏2, … , 𝜏𝑛) =

(φ+, δ+, σ+) . We have, φ− = 𝑚𝑖𝑛ϼ{φϼ}, δ
− = 𝑚𝑎𝑥ϼ{δϼ}  and σ−  = 𝑚𝑎𝑥ϼ{σϼ}  and φ+ =

𝑚𝑎𝑥ϼ{φϼ}, δ
+ = 𝑚𝑖𝑛ϼ{δϼ},  and  σ+ = 𝑚𝑖𝑛ϼ{σϼ} . Hence, there is the following result for the 

inequalities:  

1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)𝑛
ϼ=1 (−𝑙𝑛(1−φ−))

₡
)

1
₡

≤ 1− 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ+))
₡

𝑛
ϼ=1 )

1
₡

 

And, 

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ−))
₡𝑛

ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ+))
₡

𝑛
ϼ=1 )

1
₡

 

Similarly,  

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ−))
₡𝑛

ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ+))
₡

𝑛
ϼ=1 )

1
₡

 

So, 𝜏− ≤ 𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1, 𝜏2, … , 𝜏𝑛) ≤ 𝜏
+ holds. 

Theorem 12: Let 𝜏ϼ  and 𝜏ϼ
′ , ϼ = 1, 2, 3, … , 𝑛  be two sets of SVNVs, if 𝜏ϼ ≤ 𝜏ϼ

′   for all  𝜏.  Then, 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1, 𝜏2, … , 𝜏𝑛) ≤ 𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1
′ , 𝜏2

′ , … , 𝜏𝑛
′ ). 

Proof: Let 𝜏ϼ and 𝜏ϼ
′ , ϼ = 1, 2, 3, … , 𝑛 be two sets of SVNVs, we can say that: 

1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ
′))

₡
𝑛
ϼ=1 )

1
₡

 

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ))
₡

𝑛
ϼ=1 )

1
₡

≥ 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ
′ ))

₡
𝑛
ϼ=1 )

1
₡

 

Similarly, 

𝑒
−(∑ (

𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ))
₡

𝑛
ϼ=1 )

1
₡

≥ 𝑒
−(∑ (

𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ
′))

₡
𝑛
ϼ=1 )

1
₡

 

Definition 14: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3, … , 𝑛  be the collection of SVNVs with associated WVs 

𝛹 = (𝛹1 , 𝛹2, … ,𝛹𝑛)
𝑇  of 𝜏ϼ, ϼ = 1, 2, 3,… , 𝑛  such that 𝛹ϼ ∈ [0,1]  and  ∑ 𝛹ϼ = 1

𝑛
ϼ=1  with PA 𝜔ϼ =

𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 operator. Then, the SVNAAPWG operator is particularized as: 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1, 𝜏2, … , 𝜏𝑛  ) =∏(𝜏ϼ

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1 )

𝑛

ϼ=1

 

 

 

(10) 
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𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1, 𝜏2, … , 𝜏𝑛  ) = 𝜏1
(

𝛹1𝜀1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)

⊗𝜏2
(

𝛹2𝜀2
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)

⊗…⊗ 𝜏𝑛
(

𝛹𝑛𝜀𝑛
∑ 𝛹𝑛𝜀𝑛
𝑛
ϼ=1

)

 

Where 𝜀ϼ = ∏  𝒢(𝜏𝑘), ϼ = 2, 3, … , 𝑛
ϼ−1
𝑘=1 . The initial value is 𝜀1 = 1 and 𝒢(𝜏𝑘) be the score value of 

𝑘𝑡ℎ SVNVs. 

Theorem 10: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3, … , 𝑛  be the collection of SVNVs with WVs 𝛹 =

(𝛹1, 𝛹2 , … ,𝛹𝑛)
𝑇  and 𝛹ϼ ∈ [0,1], ∑ 𝛹ϼ = 1

𝑛
ϼ=1  associated with PA 𝜔ϼ =

𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 operator. Then, the 

SVNAAPWG operator is particularized as: 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺 =∏(𝜏ϼ

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)

𝑛

ϼ=1

=

(

 
 
 
 
 𝑒

−(∑ (
𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φϼ))
₡

𝑛
ϼ=1 )

1
₡

,

1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δϼ))
₡

𝑛
ϼ=1 )

1
₡

,

1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σϼ))
₡

𝑛
ϼ=1 )

1
₡

)

 
 
 
 
 

 

 

 

 

(11) 

Proof: Proof is similar to Theorem 9. 

 

Example 3: Let 𝜏1 = (0.39, 0.69, 0.41), (0.19, 0.43, 0.71), (0.8, 0.37, 0.99) and (0.55, 0.51, 0.25) be the 

four SVNVs with WVs (0.5307, 0.3423, 0.0599, 0.0671)  and ₡ = 3.  Then, SVNAAPWG can be 

calculated as: 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺 =∏(𝜏ϼ

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1 )

𝑛

ϼ=1

=

(

 
 
 
 
 
 
 

𝑒
−(∑ ((

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φϼ))
₡
)𝑛

ϼ=1 )

1
₡

,

1 − 𝑒
−(∑ ((

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δϼ))
₡
)𝑛

ϼ=1 )

1
₡

,

1 − 𝑒
−(∑ ((

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σϼ))
₡
)𝑛

ϼ=1 )

1
₡

)

 
 
 
 
 
 
 

 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1, 𝜏2, 𝜏3, 𝜏4) =

(

 
 
 
 
 
 
 
 
 
 

𝑒

−

(

 
 
(

𝛹1𝜀1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φ1))
₡
+(

𝛹2𝜀2
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φ2))
₡

+(
𝛹3𝜀3

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φ3))
₡
 +(

𝛹4𝜀4
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φ4))
₡

)

 
 

1
₡

,

1 − 𝑒

−

(

 
 
(

𝛹1𝜀1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δ1))
₡
+(

𝛹2𝜀2
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δ2))
₡
+

(
𝛹3𝜀3

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δ3))
₡
+(

𝛹4𝜀4
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δ4))
₡

)

 
 

1
₡

,

1 − 𝑒

−

(

 
 
(

𝛹1𝜀1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σ1))
₡
+(

𝛹2𝜀2
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σ2))
₡
+

(
𝛹3𝜀3

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σ3))
₡
+(

𝛹4𝜀4
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σ4))
₡

)

 
 

1
₡

)
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=

(

 
 
 
 
 
 
 

𝑒

−(
(
0.2000
0.3769

)(−𝑙𝑛(0.39))
3
+(
0.1290
0.3769

)(−𝑙𝑛(0.19))
3
+

(
0.0226
0.3769

)(−𝑙𝑛(0.8))
3
 +(

0.0253
0.3769

)(−𝑙𝑛(0.55))
3
)

1
3

,

1 − 𝑒

−(
(
0.2000
0.3769

)(−𝑙𝑛(1−0.69))
3
+(
0.1290
0.3769

)(−𝑙𝑛(1−0.43))
3
+

(
0.0226
0.3769

)(−𝑙𝑛(1−0.37))
3
+(
0.0253
0.3769

)(−𝑙𝑛(1−0.51))
3
)

1
3

,

1 − 𝑒

−(
(
0.2000
0.3769

)(−𝑙𝑛(1−0.41))
3
+(
0.1290
0.3769

)(−𝑙𝑛(1−0.71))
3
+

(
0.0226
0.3769

)(−𝑙𝑛(1−0.99))
3
+(
0.0253
0.3769

)(−𝑙𝑛(1−0.25))
3
)

1
3

)

 
 
 
 
 
 
 

 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1, 𝜏2, 𝜏3, 𝜏4) = (0.2830, 0.6250, 0.8465) 

Theorem 13: If all 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3,… , 𝑛  are equal, that is, 𝜏𝑛 = 𝜏  for all  𝜏. 

Then, 𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1, 𝜏2, … , 𝜏𝑛) = 𝜏. 

Proof: Since 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1,2,3,… , 𝑛. Then, 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1, 𝜏2, … , 𝜏𝑛) =∏(𝜏ϼ

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1 )

𝑛

ϼ=1

 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1, 𝜏2, … , 𝜏𝑛) =

(

 
 
 
 
 𝑒

−(∑ (
𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φϼ))
₡

𝑛
ϼ=1 )

1
₡

,

1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δϼ))
₡

𝑛
ϼ=1 )

1
₡

,

1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σϼ))
₡

𝑛
ϼ=1 )

1
₡

)

 
 
 
 
 

 

= (𝑒
−((−𝑙𝑛(φ₡))

₡
)

1
₡

, 1 − 𝑒
−((−𝑙𝑛(1−δ₡))

₡
)

1
₡

, 1 − 𝑒
−((−𝑙𝑛(1−σ₡))

₡
)

1
₡

) = 𝜏 

Thus, it is obvious that 𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1, 𝜏2, … , 𝜏𝑛  ) = 𝜏 holds. 

Theorem 14: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1,2,3,… , 𝑛  be the collection of SVNVs with associated WVs 

𝛹 = (𝛹1 , 𝛹2, … ,𝛹𝑛)
𝑇  of 𝜏ϼ, ϼ = 1, 2, 3,… , 𝑛  such that 𝛹ϼ ∈ [0,1]  and  ∑ 𝛹ϼ = 1

𝑛
ϼ=1  with PA  𝜔ϼ =

𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

 operator for each 𝜏ϼ . Let 𝜏− = 𝑚𝑖𝑛(𝜏1, 𝜏2, … , 𝜏𝑛) and 𝜏+ = 𝑚𝑎𝑥(𝜏1, 𝜏2, … , 𝜏𝑛). Then, 𝜏− ≤

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1, 𝜏2, … , 𝜏𝑛) ≤ 𝜏
+. 

Proof: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1,2,3,… , 𝑛  be the collection of SVNVs with associated WVs 𝛹 =

(𝛹1, 𝛹2 , 𝛹3, … , 𝛹𝑛)
𝑇  of 𝜏ϼ, ϼ = 1, 2, 3, … , 𝑛  such that 𝛹ϼ ∈ [0,1]  and  ∑ 𝛹ϼ = 1

𝑛
ϼ=1  with PA  𝜔ϼ =

𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

 operator for each  𝜏ϼ . Let 𝜏− = 𝑚𝑖𝑛(𝜏1, 𝜏2, … , 𝜏𝑛) = (φ
−, δ−, σ−),  and  𝜏+ =

𝑚𝑎𝑥(𝜏1, 𝜏2, … , 𝜏𝑛) = (φ
+, δ+, σ+) . We have,φ− = 𝑚𝑖𝑛ϼ{φϼ}, δ

− = 𝑚𝑎𝑥ϼ{δϼ}  and σ− = 𝑚𝑎𝑥ϼ{σϼ}  and 

φ+ = 𝑚𝑎𝑥ϼ{φϼ}, δ
+ = 𝑚𝑖𝑛ϼ{δϼ},  and  σ+ = 𝑚𝑖𝑛ϼ{σϼ} . Hence, there is the following result for the 

inequalities:  

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φ−))
₡𝑛

ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φ+))
₡

𝑛
ϼ=1 )

1
₡
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1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δ−))
₡𝑛

ϼ=1 )

1
₡

≤ 1− 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δ+))
₡

𝑛
ϼ=1 )

1
₡

 

1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σ−))
₡𝑛

ϼ=1 )

1
₡

≤ 1− 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 1− 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σ+))
₡

𝑛
ϼ=1 )

1
₡

 

So, 𝜏− ≤ 𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1, 𝜏2, … , 𝜏𝑛) ≤ 𝜏
+ holds. 

Theorem 15: Let 𝜏ϼ  and 𝜏ϼ
′ , ϼ = 1,2,3,… , 𝑛  be two sets of SVNVs, if 𝜏ϼ ≤ 𝜏ϼ

′   for all  𝜏.  Then, 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1, 𝜏2, … , 𝜏𝑛  ) ≤ 𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1
′ , 𝜏2

′ , … , 𝜏𝑛
′ ). 

Proof: Let 𝜏ϼ and 𝜏ϼ
′ , ϼ = 1,2,3,… , 𝑛 be two sets of SVNVs. Then, we use the following way to prove 

it: 

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φϼ
′ ))

₡
𝑛
ϼ=1 )

1
₡

 

And,  

1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δϼ))
₡

𝑛
ϼ=1 )

1
₡

≥ 1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δϼ
′ ))

₡
𝑛
ϼ=1 )

1
₡

 

In the same way, 

1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σϼ))
₡

𝑛
ϼ=1 )

1
₡

≥ 1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σϼ
′))

₡
𝑛
ϼ=1 )

1
₡

 

From the above, we can conclude that: 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1, 𝜏2, … , 𝜏𝑛  ) ≤ 𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1
′ , 𝜏2

′ , … , 𝜏𝑛
′ ) 

6. MADM Techniques of SVNAAPWA and SVNAAPWG Operations 

In this section, we shall use the SVNAAPWA and SVNAAPWG operators to solve the MADM 

technique by using the information of SVNVs. Suppose that ᵰ = (ᵰ1, ᵰ2, … , ᵰn)  be the set of 

alternatives and ß = (ß1, ß2, ß3, … , ß𝑛)  be the set of attributes with the degree of weights𝛹 =

(𝛹1, 𝛹2 , … ,𝛹𝑛)
𝑇, ϼ = (1, 2, 3,… , 𝑛)  such that 𝛹ϼ ∈ [0,1]  and  ∑ 𝛹ϼ = 1

𝑛
ϼ=1 .  The decision maker also 

explores the theory of prioritization between attributes which is represented as linear ordering 𝛴1 >

𝛴2 > … > 𝛴𝑛 . The following decision matrix ℟ = (𝑌𝜂ϼ)𝜅×ἢ
 contained information in the form of 

SVNVs. 

℟ = (𝑌𝜂ϼ)𝜘×ἢ
=

(

  
 
(φ𝜏11 , δ𝜏11 , σ𝜏11)

(φ𝜏21 , δ𝜏21 , σ𝜏21)

⋮
(φ𝜏𝜘1 , δ𝜏𝜘1 , σ𝜏𝜘1)

(φ𝜏12 , δ𝜏12 , σ𝜏12)

(φ𝜏22 , δ𝜏22 , σ𝜏22)

⋮
(φ𝜏𝜘2 , δ𝜏𝜘2 , σ𝜏𝜘2)

⋯
⋯
⋱
⋮

(φ𝜏1𝑛, δ𝜏1𝑛 , σ𝜏1ἢ)

(φ𝜏2𝑛, δ𝜏2𝑛 , σ𝜏2ἢ)

⋮

(φ𝜏𝜘ἢ , δ𝜏𝜘ἢ , σ𝜏𝜘ἢ))
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In this decision matrix (φ𝜏𝜘ἢ , δ𝜏𝜘ἢ , σ𝜏𝜘ἢ) represents the value of SVNV and φ𝜏𝜘ἢ ∈ [0,1], δ𝜏𝜘ἢ ∈ [0,1] 

and σ𝜏𝜘ἢ ∈ [0,1] such that 0 ≤ φ𝜏𝜘ἢ + δ𝜏𝜘ἢ + σ𝜏𝜘ἢ ≤ 3. There are two kinds of attributes: cost factor 

and beneficial factor. If the cost factor is involved in the decision matrix, then the decision matrix 

transforms to normalize matrix:  

℟ = (𝑌𝜂ϼ)𝜘×ἢ
= {

(φ𝜏𝜘ἢ, δ𝜏𝜘ἢ , σ𝜏𝜘ἢ) 𝑖𝑓 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑓𝑎𝑐𝑡𝑜𝑟

(φ𝜏𝜘ἢ, δ𝜏𝜘ἢ , σ𝜏𝜘ἢ) 𝑖𝑓 𝑐𝑜𝑠𝑡 𝑓𝑎𝑐𝑡𝑜𝑟
 

Now, we will describe the following steps of the algorithm for solving given a MADM technique by 

the decision maker. 

6.1 Algorithm 

Step 1: In the first step, the decision maker collects information and arranges a decision matrix under 

the system of SVNVs. 

Step 2: We must convert the decision matrix into a normalizer matrix if the cost factor involves in the 

set of attributes; otherwise, there is no need. 

Step 3: We utilized our proposed methodologies to solve a MADM technique by using the 

SVNAAWA and SVNAAWG operators. 

Step 4: Shows the results of SVNAAWA and SVNAAWG operators in a table.  

Step 5: Calculate score values by using the consequences of SVNAAWA and SVNAAWG operators. 

We evaluate suitable alternatives after ranking and ordering of the score values. 
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Figure 1 Flow chart of an algorithm. 

6.2. Application 

Research scientists are present in various alternative domains, such as mathematics, chemistry, 

biology, software engineering, environmental science, medicine, nano technology, human science, 

history, political science and so on. They develop a conceptual model for collecting information, and 

findings respond to inquiries about individuals and the universe. Research scientists are employed 

by various institutions, including universities and colleges, government agencies, organizations, and 

businesses engaged in production and innovation. Research scientists generally hold master's or 

doctoral degrees in their respective professions. Most research scientists hold postgraduate degrees 

in their specialized disciplines. While master's degrees are frequently sufficient for employment in 

the general financial industry, PhDs are typically necessary for research scientist careers at colleges 

and universities. Research scientists are generally interested. Their task involves analytical skills and 

sensitive, caring attention in order to put up a repeatable approach and recommend the right results. 

For their discoveries to be communicated in publications and oral presentations, research scientists 

must be effective communicators and editors. 

6.3. Numerical Example 

Consider a public university wanted to fill its vacant post with a research scientist, and the 

selection committee selects from five different applicants ᵰi = (ᵰ1, ᵰ2, … , ᵰn) based on the following 

four characteristics. ß1 : represents the qualification/ academic history,  ß2:  represents the 
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publication and its citations, ß3: experience in teaching related to the research field, ß4: Personality/ 

digital skills/ communication skills/ moral value. 

The decision maker selects a suitable candidate under above-discussed characteristics. Consider WVs 

𝛹 = (0.20, 0.30, 0.15, 0.35)  associated with the collected information in the form of SVNVs. We 

aggregated information given by the decision maker in Table 2 by following the steps of the 

algorithm. 

Table 2 shows the information in the form of SNNVSs given by the decision maker. 

 ß𝟏 ß𝟐 ß𝟑 ß𝟒 ß𝟓 

ᵰ𝟏 (0.23, 0.45, 0.56) (0.66, 0.65, 0.78) (0.12, 0.97, 0.32) (0.21, 0.78, 0.78) (0.65, 0.54, 0.76) 

ᵰ𝟐 (0.67, 0.78, 0.98) (0.89, 0.12, 0.32) (0.99, 0.88, 0.76) (0.23, 0.32, 0.71) (0.65, 0.55, 0.61) 

ᵰ𝟑 (0.8, 0.39, 0.19) (0.12, 0.34, 0.54) (0.33, 0.9, 0.1) (0.62, 0.56, 0.69) (0.78, 0.61, 0.32) 

ᵰ𝟒 (0.7, 0.39, 0.88) (0.78, 0.1, 0.2) (0.2, 0.4, 0.5) (0.11, 0.77, 0.19) (0.77, 0.22, 0.11) 

Step 1: The information gathered by the decision-maker using the system of SVNVs is represented 

in Table 2. 

Step 2: As no cost factor is included in the attributes set data, we have not transformed the decision 

matrix into the normalized matrix. 

Step 3: Applied the techniques of SVNAAPWA and SVNAAPWG operators to aggregate information 

given by the decision maker, which is depicted in Table 2. 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴 =∑(
𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

𝜏ϼ)

𝑛

ϼ=1

=

(

 
 
 
 
 1 − 𝑒

−(∑ (
𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ))
₡

𝑛
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ))
₡

𝑛
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ))
₡

𝑛
ϼ=1 )

1
₡

)

 
 
 
 
 

 

And, 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺 =∏(𝜏ϼ

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)

𝑛

ϼ=1

=

(

 
 
 
 
 
 
 

𝑒
−(∑ ((

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φϼ))
₡
)𝑛

ϼ=1 )

1
₡

,

1 − 𝑒
−(∑ ((

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δϼ))
₡
)𝑛

ϼ=1 )

1
₡

,

1 − 𝑒
−(∑ ((

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σϼ))
₡
)𝑛

ϼ=1 )

1
₡

)

 
 
 
 
 
 
 

 

Table 3 shows the results of our proposed work. 

SVNAAPWA SVNAAPWG 

(𝟎. 𝟔𝟎𝟔𝟕, 𝟎. 𝟒𝟖𝟏𝟐, 𝟎. 𝟓𝟎𝟎𝟐) (0.2768, 0.6612, 0.9359)  

(𝟎. 𝟕𝟗𝟗𝟎, 𝟎. 𝟏𝟗𝟓𝟎, 𝟎. 𝟑𝟕𝟒𝟕) (0.3459, 0.5610, 0.6983) 

(𝟎. 𝟗𝟒𝟔𝟖, 𝟎. 𝟔𝟗𝟕𝟐, 𝟎. 𝟑𝟎𝟔𝟐) (0.1510, 0.9553, 0.6059) 

(𝟎. 𝟑𝟏𝟑𝟖, 𝟎. 𝟒𝟗𝟒𝟒, 𝟎. 𝟓𝟑𝟕𝟔) (0.2250, 0.7457, 0.7587) 
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(𝟎. 𝟔𝟖𝟕𝟕, 𝟎. 𝟒𝟑𝟏𝟕, 𝟎. 𝟑𝟐𝟓𝟔) (0.5387, 0.5375, 0.6947) 

 

 

Step 4: After the computation of information using our proposed methodologies, we displayed all 

outcomes in Table 3. 

Step 5: Investigate the results of the score values obtained by SVNAAPWA and SVNAAPWG 

operators shown in Table 3. Invested results of all individual by the SVNAAPWA and SVNAAPWG 

operators listed in Table 4. 

Table 4 shows the score values of AOs of SVNAAPWA and SVNAAPWG 

Operators 𝓖(ᵰ𝟏) 𝓖(ᵰ𝟐) 𝓖(ᵰ𝟑) 𝓖(ᵰ𝟒) 𝓖(ᵰ𝟓) Ranking and ordering 

SVNAAPWA 0.5418 0.7431 0.6478 0.4273 0.6435 ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

SVNAAPWG 0.2266 0.3622 0.1966 0.2402 0.4355 ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

We noticed the ranking and ordering of score values ᵰ2 > ᵰ5 > ᵰ3 > ᵰ1 > ᵰ4 and ᵰ2 > ᵰ5 > ᵰ1 >

ᵰ3 > ᵰ4 for SVNAAPWA and SVNAAPWG, respectively. ᵰ2 is a suitable applicant for the vecant 

post. Similarly, ᵰ5 is the best applicants for a research scientist of a public university. We also show 

the outcomes of the score values acquired from the SVNAAWA and SVNAAWG operators as a 

graphical representation of the following Figure 2. 

 

Figure 2 Covers the geometrical representation of all score values, which are listed in Table 4. 

6.4. Behavior of Different Parameters of ₡ on our Purposed Methodologies 

We modified several values of ₡ in step 4 of the recommended MADM approach to explore 

the impact of different parameter values ₡ on the ranking of all alternatives. The derived outcomes 

are displayed in Tables 5-6. From Table 5, we noticed when the valued of ₡ increases, score values 

gained through the SVNAAPWA and SVNAAPWG operators also increase. Moreover, we noticed 

that the ranking and ordering sequence of the score values remain the same when we change the 

parametric values of ₡ for our invented approaches SVNAAPWA and SVNAAPWG operators. To 

see this increasing sequence of the parameter value ₡ and outcomes obtained from our discussed 

approaches is shown the isotonicity property. 

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

SVNAAPWA  SVNAAPWG

S
co

re
 V

al
u

es

Aggregation operators

ᵰ_1 ᵰ_2 ᵰ_3 ᵰ_4 ᵰ_5



Neutrosophic Sets and Systems, Vol. 58, 2023     185  

 

 

Sajid Latif, Kifayat Ullah and Abrar Hussain, Novel Single Valued Neutrosophic Prioritized Aczel Alsina Aggregation 
Operators and Their Applications in Multi-Attribute Decision Making 

 

 

Table 5 shows the results of SVNAAPWA operators for the variation of ₡. 

 𝓖(ᵰ𝟏) 𝓖(ᵰ𝟐) 𝓖(ᵰ𝟑) 𝓖(ᵰ𝟒) 𝓖(ᵰ𝟓) Ranking and Ordering 

₡ = 𝟏 0.4352 0.6502 0.4841 0.2984 0.5522 ᵰ2 > ᵰ5 > ᵰ3 > ᵰ1 > ᵰ4 

₡ = 𝟑 0.5418 0.7431 0.6478 0.4273 0.6435 ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

₡ = 𝟐𝟓 0.7041 0.8436 0.8061 0.6675 0.7905 ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

₡ = 𝟕𝟓 0.7281 0.8566 0.8222 0.6915 0.8075 ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

₡ = 𝟏𝟎𝟓 0.7315 0.8585 0.8244 0.6949 0.8101 ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

₡ = 𝟏𝟓𝟓 0.7343 0.8601 0.8262 0.6976 0.8122 ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

₡ = 𝟐𝟎𝟏 0.7356 0.8608 0.8271 0.6989 0.8132 ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

₡ = 𝟐𝟓𝟓 0.7365 0.8614 0.8277 0.6999 0.8139 ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

₡ = 𝟐𝟕𝟓 0.7368 0.8615 0.8279 0.7001 0.8141 ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

₡ = 𝟑𝟐𝟏 0.7372 0.8618 0.8282 0.7006 0.8145 ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

₡ = 𝟑𝟕𝟓 0.7376 0.8620 0.8284 0.7010 0.8148 ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

₡ = 𝟒𝟐𝟏 0.7379 0.8621 0.8286 0.7012 0.8150 ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

₡ = 𝟒𝟔𝟑 0.7381 0.8623 0.8287 0.7014 0.8152 ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

 

Table 6 shows the results of SVNAAPWG operators for the variation of ₡. 

 𝓖(ᵰ𝟏) 𝓖(ᵰ𝟐) 𝓖(ᵰ𝟑) 𝓖(ᵰ𝟒) 𝓖(ᵰ𝟓) Ranking and Ordering 

₡ = 𝟏 0.3007 0.5041 0.2636 0.2610 0.4807 ᵰ2 > ᵰ5 > ᵰ1 > ᵰ3 > ᵰ4 

₡ = 𝟑 0.2266 0.3622 0.1966 0.2402 0.4355 ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

₡ = 𝟐𝟓 0.1591 0.2445 0.1366 0.2212 0.3423 ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

₡ = 𝟕𝟓 0.1489 0.2348 0.1285 0.2183 0.3254 ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

₡ = 𝟏𝟎𝟓 0.1473 0.2334 0.1271 0.2179 0.3229 ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

₡ = 𝟏𝟓𝟓 0.1460 0.2323 0.1258 0.2175 0.3209 ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

₡ = 𝟐𝟎𝟏 0.1454 0.2318 0.1253 0.2173 0.3199 ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

₡ = 𝟐𝟓𝟓 0.1450 0.2314 0.1249 0.2172 0.3192 ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

₡ = 𝟐𝟕𝟓 0.1448 0.2313 0.1247 0.2171 0.3190 ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

₡ = 𝟑𝟐𝟏 0.1446 0.2311 0.1245 0.2171 0.3187 ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

₡ = 𝟑𝟕𝟓 0.1444 0.2309 0.1244 0.2170 0.3184 ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

₡ = 𝟒𝟐𝟏 0.1443 0.2308 0.1243 0.2170 0.3182 ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

₡ = 𝟒𝟔𝟑 0.1442 0.2308 0.1242 0.2169 0.3181 ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

Further, we explored all the results obtained by the SVNAAPWA and SVNAAPWG 

operators in the graphical representation of Figure 3 and Figure 4. 
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Figure 3 Graphical representation of score values depicted in Table 5. 

 

Figure 4 Graphical representation of score values depicted in Table 6. 

7. Comparative Study 

To show the effectiveness and applacability of our discussed approaches, we make a comparison 

of the outcomes of the current discussed approaches with the consequences of the existing 

approaches. For this purpose, we utilized a few numbers of used AOs on the data of SVNVs presented 

by the decision maker and shown in Table 2. AOs of SVN Dombi weighted average and SVN Dombi 

weighted geometric operators anticipated by Chen and Ye [31], AOs of SVN weighted average and 

SVN weighted geometric operators presented by Peng et al. [51], AOs of SVN Einstein weighted 

average and SVN Einstein weighted geometric operators anticipated by the Ye et al. [52], and AOs of 

complex SVNVs (CSVNVs) based on Prioritized Muirhead Mean tools given by the Mahmood and 
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Ali [32]. All the results obtained by the existing AOs [31], [32], [51], [52] are shown in the following 

Table 7. 

 

Figure 5. Shows the results of the comparative study in a graphical representation. 

Table 7. Shows the results of a comparative study. 

AOs Score values Ranking and ordering 

Current work 𝒢(ᵰ1) = 0.5418, 𝒢(ᵰ2) = 0.7431, 𝒢(ᵰ3) = 0.6478, 

 𝒢(ᵰ4) = 0.4273, 𝒢(ᵰ5) = 0.6435 

ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

Current work 𝒢(ᵰ1) = 0.2266, 𝒢(ᵰ2) = 0.3622, 𝒢(ᵰ3) = 0.1966, 

 𝒢(ᵰ4) = 0.2402, 𝒢(ᵰ5) = 0.4355 

ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

SVNWA [51] 𝒢(ᵰ1) = 0.4985, 𝒢(ᵰ2) = 0.7415, 𝒢(ᵰ3) = 0.5654, 

 𝒢(ᵰ4) = 0.4160, 𝒢(ᵰ5) = 0.6655 

ᵰ2 > ᵰ5 > ᵰ3 > ᵰ1 > ᵰ4 

SVNWG [51] 𝒢(ᵰ1) = 0.3751, 𝒢(ᵰ2) = 0.6136, 𝒢(ᵰ3) = 0.3120 

, 𝒢(ᵰ4) = 0.3158, 𝒢(ᵰ5) = 0.5862 

ᵰ2 > ᵰ5 > ᵰ1 > ᵰ3 > ᵰ4 

SVNDWA [31] 𝒢(ᵰ1) = 0.5539, 𝒢(ᵰ2) = 0.7815, 𝒢(ᵰ3) = 0.6759,  

𝒢(ᵰ4) = 0.4714, 𝒢(ᵰ5) = 0.7115 

ᵰ2 > ᵰ5 > ᵰ3 > ᵰ1 > ᵰ4 

SVNDWG [31] 𝒢(ᵰ1) = 0.3597, 𝒢(ᵰ2) = 0.5842, 𝒢(ᵰ3) = 0.3416 

, 𝒢(ᵰ4) = 0.3346, 𝒢(ᵰ5) = 0.5980 

ᵰ2 > ᵰ5 > ᵰ1 > ᵰ3 > ᵰ4 

SVNEWA [52] 𝒢(ᵰ1) = 0.4797, 𝒢(ᵰ2) = 0.7309, 𝒢(ᵰ3) = 0.5333 

, 𝒢(ᵰ4) = 0.3979, 𝒢(ᵰ5) = 0.6549 

ᵰ2 > ᵰ5 > ᵰ3 > ᵰ1 > ᵰ4 

SVNEWG [52] 𝒢(ᵰ1) = 0.3882, 𝒢(ᵰ2) = 0.6397, 𝒢(ᵰ3) = 0.3313 

, 𝒢(ᵰ4) = 0.3271, 𝒢(ᵰ5) = 0.5977 

ᵰ2 > ᵰ5 > ᵰ1 > ᵰ4 > ᵰ3 

Mahmood and Ali [32] CSVNVs Failed 

From Table 7, we examined the results of existing approaches and concluded that invented 

methodologies are superior to other ones. Due to the parametric value of Aczel Alsina aggregation 

tools, Decision makers can acquire results of score values according to their preferences by setting 
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different parametric values of Aczel Alsina aggregation tools. We also observed the consistency and 

effectiveness of our invented approaches in Tables 5-6. 

Following graphical representation shows the results of existing approaches obtained by the decision 

matrix of Table 2 and shown in Figure 5. 

8. Conclusion 

The decision information is more appropriately described in terms of SVNVs during the decision-

making process due to the increasing uncertainties and complexity of practical situations. In this 

article, we exposed the notion of SVNSs to cope with ambiguous and vague information about human 

opinions. The SVNS is the modified version of an IFSs and PFSs, which provides freedom to decision-

makers in the decision-making process and contains more extensive information than other 

frameworks of fuzzy systems. Aczel Alsina aggregation tools are superior to other aggregation tools. 

By using the theory of Aczel Alsina aggregation tools, we proposed a class of new approaches based 

on SVN information, including SVNAAPA and SVNAAPG operators. We also generalized the theory 

of SVNSs with properties of Aczel Alsina aggregation tools and presented a series of new approaches 

like SVNAAPWA and SVNAAPWG operators. To reveal the intensity and effectiveness of our 

invented methodologies, some notable characteristics are also explored. We established an algorithm 

for the MADM problem under the system of SVN information. We discussed a numerical example to 

find the most appropriate candidate for the vacant post of a general manger for the multinational 

company. To find the validity and flexibility of our methods, we evaluated the effects of the results 

on the alternatives for several parametric values. The advantages of our presented methodologies are 

also presented by comparing the findings of existing approaches with currently proposed AOs. 

Sometimes decision-makers cannot find an appropriate optimal option due to insufficient 

information about weight vectors. We can use the concepts of power operators and entropy measures 

to handle this situation. We also apply our invented approaches to resolve different applications such 

as artificial intelligence, game theory, waste management, and social selection. Furthermore, we will 

explore our invented approaches in the framework of the bipolar soft set [53], [54], picture fuzzy sets 

[55], spherical fuzzy sets, and complex spherical fuzzy sets [56]. Next, we will apply our invented 

approaches to improve the healthcare system's reliability and establish a strong model for the waste 

materials under the system of NS [57]. 

Furthermore, we also attached a list of variables used throughout this article. 

Symbols Meanings Symbols Meanings 

𝑋 Non-empty set 𝕼 Accuracy function 

𝜑 PMV 𝜳 Weight vector 

𝛿 AMV ß Attribute 

𝜎 NMV ᵰ Alternative 
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𝓇 Element from non-empty set ₡ Parametric values 

𝛼 SVNV 𝓖 Score function 
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Abstract. In recent years, waste management approaches have shifted to recycling and recovery, and waste is

now viewed as a potentially new resource. Several research projects have developed extensive plans to observe

the planning in these waste management systems. These plastic recycling methods contribute to the creation

of environmentally friendly products from waste. In this study, we present a method of multi-attribute decision

making (MADM) to provide an efficient way to choose the best plastic recycling method from the selected four

recycling alternatives. The multi-attribute border approximation area comparison (MABAC) method is used

to evaluate the alternatives under the single-valued neutrosophic fuzzy set (SVNFS). Additionally, we used

SWARA in computing the weights of the attributes. Finally, a numerical illustration is given for this problem.

Keywords: Multi-attribute decision making; single-valued neutrosophic fuzzy set; plastic recycling; MABAC.

—————————————————————————————————————————-

1. Introduction

Plastics, once a rare commodity, are now our most serious threat. Plastic is widely used,

durable, and cheap, so its use has become a part of all sectors. The use of plastic products in

our daily lives has inevitably increased. Plastics are mainly used in daily life items, medical

and industrial equipment, and electrical appliances. It plays an important role in the products

that people mostly use in all fields. The reason for using this plastic is that it is very easy to

carry and the price is cheap, so people are using it more and more.

A reference to plastic materials in the Earth’s environment that affect organisms living on

the Earth’s surface is called ”plastic pollution“. When plastics are burned, they pollute land,

water, the oceans, and the air. Many environmental problems are caused by pollution due to

its use and improper management. Balancing the production of plastics and their recycling

and reuse after use is a major challenge in today’s environment. We can’t stop using plastic
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right now and make it better, but we can certainly find and use alternatives to reduce the

use and production of plastic in the world. This research paper explains how to control the

effects of plastic waste and how to recycle it. Reusing plastic can help reduce overproduction.

The process of converting waste materials into new products is called recycling. This study

discusses recycling methods for plastic and thermoplastic polymers. Also, we discussed the

plastic recycling methods (PRM) and their processes.

Sabino Armenise et al.[1] fully examined and reviewed in the area of plastic recycling with

pyrolysis methods. Martinez [2] studied plastic pyrolysis methods in American countries. An-

uar et al. [3] reviewed some literature about pyrolysis methodologies in plastic wastes. Harish

Jeswani et al. [4] disguised about pyrolysis of mixed plastic waste. Sofie Huysman et al.

[5] studied the pertinence of the recyclability benefit index concepts. Pakiya Pradeep and

Gowthaman [6] explained waste plastic as potential alternative sources for fossil fuel. Good-

ship [7] provided a compendious of the quantities and the main effects of recycling on the

plastic material. Adeleka et al. [8] explained the sustainable utilization of energy from waste

in South Africa. Chen et al. [9] discussed the various recycling energy recovery technologies.

Wilson et al. [10] summarized pyrolysis technology in plastic waste management; the exper-

imental results on the pyrolysis of thermoplastic polymers are discussed on single and mixed

waste plastics. Based on a real-world case study, Gu et al. [11] assessed mechanical plastic

recycling practices. Pacheco et al. [12] overview and investigated of plastic recycling difficul-

ties were in the Metropolitan area of Rio de Janeiro. Shanker et al. [13] proposed recycling

technological options for India and reprocessing infrastructure for PWR in India. Plastics

recycling worldwide overviewed by dAmbrires [14]. Challenges, and opportunities of recycling

plastics in Western Australia reported by Cceres Ruiz and Zaman [15]. Many researchers ex-

amined various recycling technologies. All of these studies examined and aimed to identify the

most viable plastic recycling method. As a result, the study’s goal was to develop a general

framework for selecting the most appropriate PRM based on environmental and social factors.

Real-life decision-making problems are made more difficult by ambiguity and fuzzy logic.

Zadeh [16, 17] created the concept of fuzzy set theory, which describes and converts data that

is imprecise rather than accurate. The theory of fuzzy logic demonstrates an empirical basis for

gathering information about the risks and unpredictability associated with human cognitive

abilities such as reasoning and comprehension [18]. Due to the intricate nature of data and the

vagueness of the way humans think, the ability to identify members of the set of fuzzy numbers

is not always adequate for determining the features of issues. To overcome this restriction,

Atanassov [19] converted the fuzzy set into an intuitionistic fuzzy set (IFS) by introducing

the not-being-a-member and unwillingness functions. An IFS may indicate situations in three

ways: superiority, complex inferiority, and skepticism, with intuitionistic fuzzy numbers (IFNs)
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typically representing these [20]. Smarandache [21] recommended the neutrosophic set and

neutrosophic possibility in 1998, in addition to the reasoning behind them, which includes

three distinct sense ideas such as truthfulness, indeterminacy, and untruthfulness. This idea

additionally encompasses the idea of trepidation, which contributes to the research having a

significant impact in specific research areas. In a neutrosophic fuzzy set (NSS), truthfulness

is expressed by T , indeterminacy by I, and falsehood by F . All of these are separate, adding

up to 0 ≤ T + I + F ≤ 3. Although the level of membership as well as non-membership

determines the ambiguity of IFS, the indeterminacy associated with NFS is not dependent on

truth and untruth values. NFNs can be used to define the ambiguity, falsity, and unwillingness

of information in an everyday issue. Karaaslan and Hunu [22] used the TOPSIS approach

to determine and explain single-valued neutrosophic sets (SVNS) and their applications in

multiple attribute group decision making (MCGDM).

Balwada et al. [23] identify a better waste collection system using AHP for packaging plastic

waste. Geetha et al. [24] proposed a suitable recycling method for plastics under hesitant

pythagorean fuzzy ELECTRE III. Vinodh et al. [25] examined the best recycling method

using integrated MCDM methods. Soni et al. [26] proposed a triangular fuzzy weighted

bonferroni mean operator AHP-TOPSIS model for selecting an appropriate composition for

developing floor tiles from recycled waste plastics. Chakraborty and Saha [27] presented a new

GDM process that combines the AHP model and WASPAS under LR fuzzy numbers to convey

and model expert linguistic judgments. Afzal and Aslam [28] introduced a novel methodology

to establish the relationship between capacitance and resistance when dealing with imprecise

data obtained from LCR meters. Using a neutrosophic set, Abdelhafeez et al. [29] proposed

a mean weighting methodology for analysing and selecting the best criteria in smart farming.

The AHP is combined with the SVNS to deal with uncertain data in the assessment process

of underwater vehicles studied by Mohamed et al. [30]. Gamal and Mohamed [31] examined

the integrated MCDM methods for the industrial robot selection problem. Abdel-Basset et al.

[32] suggested a hybrid MCDM method for choosing the components of a sustainable RES in

unpredictable circumstances, employing various triangular neutrosophic numbers for dealing

with ambiguous data. Abdl-Basset et al. [33] described a novel hybrid MCDM framework

for classifying and selecting third-party reverse logistics provider identification. Rani et al.

[34] investigated a novel single-valued neutrosophic mixed compromise solution approach for

selecting renewable energy resources. Ali Salamai [35] explored a neutrosophic SWARA and

VIKOR integrated technique for ranking strategies in energy problems related to decision-

making. Based on the SVNFS, Stanujkic et al. [36] suggested a multiple-criteria evaluation

model. The MABAC model was used by Sahin and Altun [37] in a probabilistic single-valued
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neutrosophic hesitant scenario. Wang et al. [38] elevated the MABAC procedure for MCGDM

in a fuzzy Q-rung environment.

Many studies have focused on the application of plastic recycling methods in the existing

literature. The goal of this study is to develop a new MCDM model for the plastic recycling

problem. There has been no research using the MABAC method with a single-valued neutro-

sophic fuzzy set. As a result, it is critical to address the lack of research in plastic recycling

treatments. The MABAC model successfully adapts to the relevance needs for plastic recy-

cling techniques, which motivated us to research and develop our proposed model for PRM,

which may substantially minimise plastic waste while also protecting the environment and

society. This is urgently needed. The contribution of the study is to use the proposed method

to choose the best plastic recycling method in terms of minimal operating expenses, a small

amount of contamination, additional social benefits, and fewer harms to the environment. In

this research, we combined the MABAC model with the SWARA weight finding method and

performed an analysis of comparison to validate the suggested method’s suitability for PRM

problems against existing methods such as EDAS and WASPAS. Furthermore, sustainability

was examined and provided as a sensitivity analysis.

In this study, we use the SVNFS to present an improved and trustworthy solution to the

plastic recycling challenge under MABAC and SWARA methods. Moreover, numerous studies

investigated plastic recycling methods using a variety of fuzzy sets with different MCDM

approaches. To fill this research gap for this problem, we use the proposed method under

SVNFN.

This paper is organized as follows: Section 2 - preliminaries; Section 3 - mathematical

methods; Section 4 - application; Section 5 - numerical example of the application; Section 6

- comparative and sensitivity analysis of the obtained solutions; Section 7-conclusions.

2. Preliminaries

Definition 2.1. [34, 36] Let U be a universal set. A fuzzy set F on U is a form

F = {(a, µF (a))|a ∈ U, 0 ≤ µF (a) ≤ 1}

Where µF (a) denoted the membership degree of a ∈ U to F .

Definition 2.2. [34, 36] A neutrosophic fuzzy set N on U is a form:

N = {(a, TN (a), IN (a), FN (a)) : a ∈ U}

where TN (a), IN (a), FN (a) ∈ [0, 1], 0 ≤ TN (a) + IN (a) + FN (u) ≤ 3 for all a ∈ U , TN (a) is

membership, IN (a) is indeterminacy and FN (a) is non-membership degree. Here, TN (a) and

FN (a) are dependent and IN (a) is an independent components.
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Table 1. Linguistic scale

Linguistic term Single-valued neutrosophic fuzzy number

Extremely High Preferred (EHP) (0.85, 0.20, 0.15)

Very High Preferred (VHP) (0.80, 0.25, 0.20)

High Preferred (HP) (0.75, 0.25, 0.25)

Moderate (M) (0.70, 0.30, 0.30)

Moderate Preferred (MP) (0.65, 0.30, 0.35)

Low Moderate Preferred (LMP) (0.60, 0.35, 0.40)

Extremely Moderate Preferred (EMP) (0.55, 0.40, 0.45)

Definition 2.3. [36] A SVNF set S in U is a form:

S = < a, TS(a), IS(a), FS(a) > |a ∈ U

Where TS : U → [0, 1] is called the truth-membership grade of a ∈ U to S, IS : U → [0, 1]

is indeterminacy-membership, FS : U → [0, 1] is called the falsity-membership grade. They

satisfy 0 ≤ TS(a) + IS(a) + FS(a) ≤ 3 for a ∈ U .

Definition 2.4. [36, 37] Let h =< T, I, F > be a SVNFN. The score function Ah of h is a

follows:

Ah = (1 + T − 2I − F )/2

Where Ah ∈ [−1, 1].

Definition 2.5 (31,39). Let m = (k1, f1) and n = (k2, f2) be two SVNNs, then the single-

valued neutrosophic fuzzy normalized hamming distance (SVNFNHD) is

DHam(m,n) =
1

3n

n∑
i=1

(|Tm(ai)− Tn(bi)|+ |Im(ai)− In(bi)|+ |Fm(ai)− Fn(bi)|)

Definition 2.6. Linguistic variables deal with many more complex and uncertain real-world

decision-making problems [40]. Table 1 shows the linguistic variables with SVNFNs used to

evaluate the PRM based on selected attributes and the linguistic scale.

3. Mathematical Methods

Pamucar and Cirovi [33] established the MABAC, which is an innovative distance-based

approach. This strategy’s policy is based on calculating criterion function parameters for

alternatives and expressing the criterion function’s distance from the border approximation

area. As a result, all alternatives can be included into the approximation area’s border (G),

upper (G+), or lower (G−).

The procedure of the fuzzy MABAC method is discussed below.
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4. The fuzzy MABAC method

Here, m alternatives X1, X2, ..., Xm, n attributes Y1, Y2, ..., Yn are given with weight Wj ,

and the decision-making procedures of the traditional MABAC method are explained below.

Step 1: Create the initial decision matrix F = [Xij ], i = 1, 2, ...,m, j = 1, 2, ..., n as:

F = [Xij ] =


x11 x12 ... x1n

x21 x22 ... x2n
...

... ...
...

xm1 xm2 ... xmn

 (1)

where xij represents the evaluation information of alternative Xi based on attributes Yj by

decision maker E.

Step 2: Normalize the initial decision matrix (NDM) N = [Xij ] based on beneficial and non-

beneficial attributes which are given below:

For beneficial attributes:

Nij = Xij , i = 1, 2, ...,m, j = 1, 2, ..., n (2)

For non-beneficial attributes:

Nij = 1−Xij , i = 1, 2, ...,m, j = 1, 2, ..., n (3)

Step 3: In accordance with the NDM Nij and attribute’s weight values wj ; the weighted

normalized matrix (WNDM) Vij = wjNij can be calculated as:

Vij = wjNij (4)

Step 4: Calculate the border approximation area (BAA) values and the BAA matrix B =

[bj ]1×n can be obtained as below:

bj = (
m∏
i=1

Vij) (5)

Step 5: Obtain the distance D = [dij ]m×n between each alternative and the BAA is given

below:

dij =


d(Vij , bj) if Vij > bj

Otherwise if Vij = bj

−d(Vij , bj) if Vij < bj

(6)

where d(Vij , bj) denotes the distance from Vij to bj . Based on the values of dij ,

• if dij > 0, the alternatives are in the upper approximation area G+(UAA);

• if dij = 0, the alternatives are in the border approximation area G(BAA);

• if dij < 0, the alternatives are in the lower approximation area G−(LAA);
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Clearly, the best alternatives are in G+(UAA) and the worst alternatives are in G−(LAA).

Step 6: Sum the values of each alternatives dij is given below:

Ri =

n∑
j=1

dij (7)

Here, the highest value of the alternative Ri is the best choice from the evaluation results.

4.1. The Step-wise Weight Assessment Ratio Analysis weighting method

The SWARA model developed by Kresuliene et al. [34] helps experts find criteria weights.

The SWARA model procedure is as follows:

Step 1: Sort the criteria by priority.

Step 2: Obtain its relative importance δj .

Step 3: Compute γj , where γj = δj + 1.

Step 4: Determine the starting weights ηj , ηj =
δj
δ .

.Step 5: Finally, in order to determine the final ranking of the criteria Wj , where Wj =
ηj∑
ηj

.

.

5. Application

Plastics are a type of chemical-based or partly synthetic substance that consists mainly

of polymers. Because of their flexibility, plastics can be shaped, ejected, or transformed into

solid things of various shapes. This versatility, along with additional features such as thinness,

longevity, adaptability, and low manufacturing expenses, has contributed to its broad adoption.

Plastics are usually manufactured using human industrial machinery. Most present-day plastics

contain chemicals produced from fossil fuels such as natural gas or gasoline.

Plastic waste (PW) is a major source of solid waste pollution all over the world. PWs slow

degradation rate kills billions of living organisms. People all over the world have tried different

types of methods to degrade or convert PW into usable materials in order to dispose of it.

Incineration involves the combustion of PW, which produces toxic gases. Recycling is another

method for converting PW into new plastic products. Recycling is required because almost

all plastic is non-biodegradable and thus accumulates in the environment, causing harm.

Modern landfill technology is already vastly superior to older landfills and open-air dumps.

New landfills in the various countries are better designed and built in safer locations to reduce

or prevent seepage of noxious water or gases into the environment. Especially by recycling

plastic materials, the biggest impact can be avoided. The use of plastic waste to build roads

can lead to quality roads. Learning basic knowledge about recycling processes will definitely
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help us fight plastic pollution and choose the most suitable recycling method. Modern policies

are now in place to recycle plastics.

Mechanical recycling is the process of making secondary materials without significantly

changing the chemical structure of the plastic. Thermoplastic is recycled in this manner [1,

4]. Pyrolysis is a chemical process that breaks down plastic by recycling it. When plastic

waste is separated and extracted from pyrolysis, its raw materials reveal an excess of crude

oil. Stabilization of plastic waste at different temperatures (300 − 900oC) in anoxic or low

oxygen conditions is called ”pyrolysis“. In this case, their hydrocarbon composition is cracked

instead of being heated. Pyrolysis is the process by which discarded plastic is converted into

a valuable resource in the form of fuel and monomers. This recycling offers many advantages

over conventional plastic waste management; another recycling method reduces the plasticity

compared with pyrolysis. As the plastic is repeatedly recycled, its strength and flexibility

decrease [1].

Cold plasma pyrolysis is the most advanced method of pyrolysis. In common, the method of

pyrolysis is thermal decomposition with limited oxygen at temperatures between 400and650C.

From this process, one can generate electricity and fuels; in particular, when cold plasma is

added to the pyrolysis process, waste plastics give off hydrogen, methane, and ethylene. Green

energy can be generated from plastic waste. Hydrogen and methane are able to be employed

as environmentally friendly energy sources due to their low emissions of CO2, while ethylene

is the basic component of most plastics. Rather than wasting plastics, cold plasma pyrolysis

may preserve valuable substances that can be used to manufacture other kinds of plastic [35].

PRM is critical as a waste management method and as an essential part of the new circular

economy and no-waste systems, all of which are designed to decrease waste and improve

ecological sustainability. Only a small percentage of plastic waste is recycled. There are

several reasons for this, and while our plastic waste is increasing, technological advancements

and changes in how we recycle are assisting in making it more successful and efficient. In this

paper, we propose the best plastic recycling method based on a single-valued neutrosophic

fuzzy approach, using the fuzzy MABAC and SWARA methods.

6. Numerical Illustration

In this section, we discuss the PR treatment problem under the single-valued neutrosophic

fuzzy set using the MABAC and SWARA model. Here, the decision maker evaluate this

problem based on the four attributes which are Y1 - Environment, Y2 - Technology, Y3 -

Economic, and Y4 - Social aspects. The PR technologies are X1 - Cold Plasma Recycling, X2

- Mechanical recycling, X3 - Pyrolysis Recycling and X4 - New trends in Landfill.

D. Sasirekha and P. Senthilkumar, Determining the Best Plastic Recycling Technology Using
the MABAC Method in a Single-Valued Neutrosophic Fuzzy Approach

Neutrosophic Sets and Systems, Vol. 58, 2023                                                                               201



Table 2. Weight values of the criteria

Criteria δj γj = δj + 1 ηj =
δj−1

δ Wj =
ηj∑
ηj

Y1 0 1 1 0.4186

Y4 0.32 1.32 0.7575 0.3171

Y2 0.48 1.8 0.4208 0.1761

Y3 0.20 2 0.2104 0.0880

To address this issue, experts use the proposed method to evaluate PRM. A decision matrix

is constructed using the linguistic scale.

6.1. SWARA method:

Using the SWARA model procedure, we get the weight values of the attributes, which are

shown in Table 2.

6.2. The fuzzy MABAC method:

The plastic recycling techniques and attributes are given below:

X1 − Cold Plasma Recycling

X2 −Mechanical recycling

X3 − Pyrolysis Recycling

X4 −New trends in Landfill

Attributes are as follows:

Y1 − Environment

Y2 − Technology

Y3 − Economic

Y4 − Social aspects

(8)

Step 1: The evaluation attribute chosen by the decision maker is used to evaluate the plastic

recycling techniques. Table 3 shows the initial decision matrix along with the assessments in

the format of SVNFNs obtained from transforming the linguistic factors from Table 1.

Step 2: Table 4 shows the results of obtaining the NDM by using equations (2) and (3).

Step 3: The weighted NDM can be calculated using equation (4), which is given in Table 5.

Step 4: Using equation (5), calculate the BAA values shown in Table 6.

Step 5: Obtained the distance dij by applying the equation (6) which is shown in Table 7.
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Table 3. Initial decision matrix

Alternatives / Attribute Y1 Y2 Y3 Y4

X1 (0.70, 0.35, 0.20) (0.70, 0.30, 0.30) (0.60, 0.30, 0.35) (0.70, 0.25, 0.45)

X2 (0.55, 0.30, 0.40) (0.65, 0.35, 0.20) (0.85, 0.25, 0.30) (0.60, 0.25, 0.30)

X3 (0.80, 0.25, 0.45) (0.75, 0.30, 0.25) (0.55, 0.25, 0.35) (0.80, 0.35, 0.30)

X4 (0.65, 0.40, 0.30) (0.85, 0.35, 0.20) (0.80, 0.25, 0.40) (0.85, 0.30, 0.35)

Table 4. Normalized decision matrix

Alternatives / Attribute Y1 Y2 Y3 Y4

X1 (0.70, 0.35, 0.20) (0.70, 0.30, 0.30) (0.40, 0.70, 0.65) (0.70, 0.25, 0.45)

X2 (0.55, 0.30, 0.40) (0.65, 0.35, 0.20) (0.15, 0.75, 0.70) (0.60, 0.25, 0.30)

X3 (0.80, 0.25, 0.45) (0.75, 0.30, 0.25) (0.45, 0.75, 0.65) (0.80, 0.35, 0.30)

X4 (0.65, 0.40, 0.30) (0.85, 0.35, 0.20) (0.20, 0.75, 0.60) (0.85, 0.30, 0.35)

Table 5. Weighted normalized decision matrix

Alternatives / Attribute Y1 Y2 Y3 Y4

X1 (0.2930, 0.1465, 0.0837) (0.0792, 0.2219, 0.2219) (0.0704, 0.1232, 0.1144) (0.0264, 0.066, 0.0484)

X2 (0.2302, 0.1255, 0.1674) (0.1109, 0.2061, 0.2536) (0.0264, 0.1320, 0.1232) (0.0352, 0.066, 0.0616)

X3 (0.3348, 0.1046, 0.1883) (0.0792, 0.2219, 0.2378) (0.0792, 0.1320, 0.1144) (0.0176, 0.0572, 0.0616)

X4 (0.2720, 0.1674, 0.1255) (0.0475, 0.2061, 0.2536) (0.0352, 0.1320, 0.1056) (0.0132, 0.0616, 0.0572)

Table 6. BAA values

bj values

b1 (0.2120, 0.1014, 0.1021)

b2 (0.0657, 0.0285, 0.0205)

b3 (0.1134, 0.3085, 0.2716)

b4 (0.1286, 0.0500, 0.0607)

Step 6: Sum the values of each alternatives Ri is calculated by using equation (7). The final

ranking results are shown in Table 8.

From this Table 8, X1−Cold plasma recycling technology is the most suitable and environment

friendly method for plastic recycling method.
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Table 7. Distance dij values

Y1 Y2 Y3 Y4

X1 0.0917 0.0905 0.0586 0.0790

X2 -0.1052 0.0824 -0.0566 0.0812

X3 0.0970 0.0869 0.0685 -0.0902

X4 -0.0972 -0.0886 -0.0560 -0.0871

Table 8. The final ranking results

Alternatives Ri values Ranking result

X1 0.3198 1

X2 0.0018 3

X3 0.1622 2

X4 -0.3289 4

7. Comparison and sensitivity analysis

In this section, we analyze the proficiency of this suggested method through the comparison

of existing methods such as EDAS and WASPAS in the case of a SVNFN. For this study,

sensitivity analysis was also established.

7.1. Comparison Analysis

Although contrasted to the EDAS and WASPAS shown in Figure 1, the MABAC is more

readily compatible with our application. The analysis of comparison in this study generates

more realistic and consistent outcomes if compared with different approaches. In short, in-

stead of the EDAS and WASPAS techniques, the MABAC requires an alternative comparison.

Furthermore, the selection results generated by the suggested approach provide more data in

the form of a reliability index of outranking relationships among alternatives, which is more

beneficial for the suggested approach. Table 9 indicates the order of importance provided for

the two methods as well as the order of ranking results, and the graphic depictions are shown

in Figure 1. We focused on just four criteria to determine alternatives in this paper; however,

future research can employ the proposed approach to consider additional aspects such as ex-

penses for operations and societal benefits. The proposed ranking produces results that more

differ from the existing EDAS and WASPAS methods. As a result, the proposed approach

produces more reliable results when compared to other MCDM model.
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Table 9. Comparison analysis results

Alternatives EDAS Rank VIKOR Rank Proposed method Rank

X1 0.2375 2 0.4216 1 0.3198 1

X2 0.1818 3 0.4169 2 0.0018 3

X3 0.3906 1 0.4033 4 0.1622 2

X4 -0.1901 4 0.4137 3 -0.3289 4

Figure 1. Graphical representation for comparison analysis

7.2. Sensitivity analysis

The sensitivity evaluation of this framework is contrasted with the outcomes of three cases,

as shown in Table 10. These cases are discovered by varying the weights of the criteria. Case

1 is the study’s outcome, and Cases 2 and 3 are each of the results obtained by applying

various attribute weights. Sensitivity analysis reveals that changing the attribute weights has

an impact on the overall order, as shown in Table 11, and Figure 2 depicts their graphical

representation.

7.3. Results and discussion

There are numerous advantages to the cold plasma recycling of plastics. This results in a

decrease in the utilization of novel goods and energy, lowering carbon dioxide emissions. As a
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Table 10. Weights in sensitivity analysis

Attribute Case 1 Case 2 Case 3

Y1 0.4186 0.3171 0.1761

Y2 0.3171 0.0880 0.4186

Y3 0.1761 0.4186 0.0880

Y4 0.0880 0.1761 0.3171

Table 11. Sensitivity analysis results

Alternatives Case 1 Rank Case 2 Rank Case 3 Rank

M1 0.3198 1 0.2185 2 0.1496 2

M2 0.0018 3 -0.3793 4 0.0803 3

M3 0.1622 2 0.3927 1 0.2427 1

M4 -0.3289 4 -0.0592 3 0.0649 4

Figure 2. Graphical representation for sensitivity analysis

result, the cold plasma recycling method is a good plastic recycling method that contributes to

lowering plastic waste [41]. Cold plasma recycling alternative X1 is the best PRM technique.

Furthermore, the overall ranking of the choices for this problem proposed a one-of-a-kind

method. Because experts struggled to evaluate choices among the various levels of contentment
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and frustration in order to estimate unknowns, this research study used the SVNN to handle

the data. Based on the end ranking results (Fig. 2), an enhanced MABAC model looks to

be more precise and suitable to address a various of other issues in MADM. The contrast

between suggested model and other ranking strategies reveals that proposed model provides

a more realistic and suitable solution that is easier to implement. The obtained weight values

of criteria show that this approach was combined with the advanced, rapid, and precisely

calculated SWARA weight finding method. In this paper, we propose a cohesive MCDM

model for the plastic recycling problem. The MABAC method is used to determine the order

of the alternatives, and SWARA is used to calculate the weights of the criteria. These processes

are particularly effective when contrasted with some MCDM methods. The MABAC model

computes the distance between each alternative and the bore estimation area. This model

has numerous benefits over other MCDM methods, including shorter processing times, greater

ease and stability, and fewer numerical computations [42]. As a result, decision makers will

be able to use fuzzy MABAC to select the best alternative with regard to processing time,

reliability, and expenses. Compared to other criteria weight determination methods (such as

AHP), the SWARA method has reduced computational challenges and greater consistency.

As a result of these benefits, the SWARA method has been used to solve real-world issues in

a variety of scenarios [43]. SWARA gives more plausible weight values than other weighting

methods due to more consistent computations.

8. Conclusion

In this regard, the mathematical model is an important tool for the evaluation of plastic

waste management systems and illustrates an efficient implementation of plastic recycling

approach to the plastic recycling methods. The SVNFs decision techniques have distinguished

similar rankings among the administrative choices when target weights are allocated to the

criteria. An alternate ranking is obtained just with the weight set which vigorously needs

technical/operation indicators. Consequently, attribute weighting is an important process

in decision making. In this paper, we conclude cold plasma recycling method is the best

alternative solution for the plastic recycling planning. This gives energy producing technique

also and environmental friendly.

Plastic recycling methods, among others, have been recognised as a promising solution to

the issue of intricately made and growing waste from plastics in advanced nations like the

European Union and the US. The government and policymakers, on the other hand, continue

to face major obstacles in determining appropriate plastic recycling techniques for establishing

effective waste disposal systems. As a result, this research was conducted in order to suggest an
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overall organised structure that can assist policymakers in determining the most suitable tech-

nology. In this paper, MABAC and SWARA methods under single-valued neutrosophic fuzzy

environment were presented. The characteristics of every option are represented by SVNFNs.

According to the suggested strategy for determining a suitable solution for this problem, cold

plasma recycling has been selected as the most secure and best-performing PRM technique in

the present scenario. This method reduces waste while generating energy, which will aid in

addressing future energy challenges. In the future, we are interested in extending the proposed

method to other issues, such as microplastic disposal. Furthermore, applying the suggested

methodology to the Pythagorean neutrosophic fuzzy approach is an intriguing avenue for fu-

ture research.
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Abstract: Neutrosophic sets have emerged as a powerful tool for addressing uncertainty and imprecision 

in diverse domains, and their potential in anomaly detection within smart farming systems is the central 

focus of this paper. We present a cutting-edge Neutrosophic Approach to Edge-Based Anomaly Detection, 

specifically designed to cater to the intricacies of smart farming data. By harnessing the unique attributes 

of single-valued neutrosophic sets, in conjunction with single-valued neutrosophic decision matrices, our 

methodology adeptly handles the challenges posed by uncertain, dynamic, and multi-dimensional farm 

data. Through a comprehensive analysis of sample data, we illustrate the precision and adaptability of our 

approach, allowing for the quantification of intricate attribute relationships and the precise identification 

of anomalies. By employing neutrosophic statistics and a weighted correlation coefficient, our approach 

provides profound insights into the complex interactions within smart farming systems. This research 

stands as a pivotal contribution within the scope of neutrosophic-based anomaly detection, promising to 

advance the state of the art in the realm of precision agriculture.     
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1. Introduction 

The utilization of neutrosophic sets has witnessed a significant surge in recent years, offering a versatile 

framework to tackle complex problems characterized by ambiguity, uncertainty, and imprecision. 

Neutrosophic set theory, an extension of classical fuzzy set theory, introduces a third component—

indeterminacy—alongside membership and non-membership degrees, enabling a more comprehensive 

representation of uncertain information [1]. This novel framework has found application in diverse fields 

such as medicine, image processing, decision-making, and pattern recognition [2]. 

The domain of smart farming, characterized by its amalgamation of advanced technologies, has ushered in 

a new era of data-driven agriculture. Within this landscape, edge-based anomaly detection plays a pivotal 

role in ensuring the seamless operation and optimization of farming systems. However, the very attributes 

that make smart farming systems so powerful—the vast and dynamic streams of data generated by sensors, 

devices, and machinery—also introduce inherent challenges. Uncertainty abounds in every facet of smart 
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farming data. Environmental conditions fluctuate, sensor readings exhibit variability, and unforeseen 

events can disrupt the expected patterns. These uncertainties are further compounded by the intricate 

interplay of multiple variables and attributes within the farming ecosystem [3].  

This pressing need for precise, real-time anomaly detection in the face of pervasive uncertainty 

provides the impetus for our exploration of neutrosophic sets. Neutrosophic sets, with their ability to 

handle not only membership and non-membership degrees but also indeterminacy, offer a nuanced 

understanding of uncertain data [4]. Their adaptive nature aligns perfectly with the volatile environment 

of smart farming systems, where anomalies can be subtle and evolving. By embracing the philosophy of 

neutrosophic sets, we embark on a journey to harness the power of uncertainty, transforming it from a 

challenge into an opportunity [5]. 

In line with the increasing relevance of neutrosophic sets, this paper is centered on their application in the 

realm of anomaly detection within smart farming systems. Smart farming, characterized by its integration 

of cutting-edge technologies such as IoT devices, sensors, and data analytics, has ushered in a new era of 

precision agriculture [4]. However, the vast and dynamic nature of the data generated by these systems 

presents intricate challenges for anomaly detection. Traditional methods often fall short in handling the 

nuanced uncertainties inherent in smart farming data. This is where neutrosophic sets, particularly single-

valued neutrosophic sets, take center stage, offering a comprehensive approach to address the intricacies 

of anomaly detection in this context [5-6]. In light of the challenges posed by smart agriculture and the 

potential of neutrosophic logic and edge intelligence, this paper sets out specific research objectives [8]. 

Our primary goal is to develop and evaluate a novel approach to anomaly detection in smart agriculture 

systems. We aim to harness the power of edge intelligence to process and analyze agricultural data in real 

time and utilize neutrosophic logic to model and detect anomalies effectively. Through rigorous 

experimentation and validation, we seek to demonstrate the feasibility and advantages of our proposed 

approach [7-11]. 

The paper is organized into five sections to comprehensively address the development of a neutrosophic 

approach for anomaly detection in smart agriculture systems using edge intelligence. In Section 2, we 

review existing literature and research efforts related to smart agriculture, anomaly detection, edge 

intelligence, and neutrosophic logic. This section offers a contextual foundation for our work by 

highlighting gaps in the current body of knowledge. Section 3 presents the intricacies of our proposed 

approach, elucidating the integration of edge intelligence and neutrosophic logic for anomaly detection. In 

Section 4, we provide a detailed account of our experimental findings and data analysis, showcasing the 
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effectiveness of our methodology in real-world smart agriculture scenarios. Section 5 offers a concise 

summary of our key findings, contributions, and future directions.  

2. Background  

This section provides a comprehensive review of the existing literature related to anomaly detection in 

smart farming systems, focusing on both traditional and emerging approaches. We explore how various 

techniques have addressed the challenges of anomaly detection and highlight the rationale for introducing 

a neutrosophic approach as a novel and promising avenue for enhancing the precision and robustness of 

anomaly detection systems in smart farming. Dhole et al. [12] presented a review of brain tumor detection 

from MRI images using hybrid approaches. Although their work focused on medical imaging, it 

underscored the importance of hybrid techniques in image analysis. This review highlighted the relevance 

of combining multiple methods, which potentially inspired hybrid approaches in the context of anomaly 

detection in smart farming systems. The study by Garcia-Lamont et al. [15] provided insights into image 

segmentation using color features. While their focus was on a different application domain, the 

segmentation techniques they discussed had relevance in preprocessing and feature extraction for smart 

farming system anomaly detection. Zakaria et al. [16] discussed the use of graph cuts for image 

segmentation in the context of COVID-19 X-ray image analysis. Their work showcased the effectiveness of 

segmentation methods in medical image analysis. In the context of smart farming, similar segmentation 

techniques might have been employed for the preprocessing of agricultural images. Qi et al. [18] provided 

a comprehensive review of computer vision-based hand gesture recognition for human-robot interaction. 

Although their focus was on different applications, their discussion on computer vision methods was 

relevant, as computer vision played a pivotal role in many smart farming applications, including anomaly 

detection.  The work by Ashfaq [19] touched on retrospective image registration for medical image analysis. 

While the domain differed, image registration techniques could have been adapted to align images in the 

context of smart farming, potentially aiding in anomaly detection.  Beebe [22] provided a complete 

bibliography of publications in computer networks, which might have contained relevant references for 

advanced data communication and networking techniques that were important for edge-based anomaly 

detection systems in smart farming. 

3. Proposed Method 

In this section, we elucidate the methodology employed in our research to develop a robust and innovative 

approach for anomaly detection in smart agriculture systems using the amalgamation of edge intelligence 

and neutrosophic logic. The methodology presented herein outlines the systematic framework and 
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techniques we employed to address the intricate challenges associated with real-time anomaly detection in 

agricultural environments. 

The neutrosophic theory is a mathematical framework that deals with indeterminacy, uncertainty, and 

incomplete information. It extends classical set theory to handle situations where information is imprecise, 

vague, or contradictory. In the context of anomaly detection in smart farming, neutrosophic sets can 

represent the uncertainty associated with sensor readings and anomalies. A neutrosophic set is defined as 

a triple (𝑇, 𝐼, 𝐹), Suppose 𝛼𝑎̃ , 𝜃𝑎̃ , 𝛽𝑎̃ ϵ [0,1]and 𝑎1 , 𝑎2 , 𝑎3 , 𝑎4𝜖 R, where 𝑎1 ≤ 𝑎2 ≤ 𝑎3 ≤ 𝑎4. Then, a single-

valued trapezoidal neutrosophic number 𝑎̃=〈(𝑎1 , 𝑎2 , 𝑎3, 𝑎4); 𝛼𝑎̃ , 𝜃𝑎̃ , 𝛽𝑎̃〉 is a special neutrosophic set on 

the real line set R, whose truth-membership, indeterminacy-membership and falsity-membership functions 

are defined as 

𝑇 represents the truth-membership function. 

𝑇𝑎̃  (𝑥) = 

{
 
 

 
 𝛼𝑎̃ (

𝑥−𝑎1

𝑎2−𝑎1
)         (𝑎1 ≤ 𝑥 ≤ 𝑎2)

𝛼𝑎̃       (𝑎2 ≤ 𝑥 ≤ 𝑎3)

𝛼𝑎̃ (
𝑎4−𝑥

𝑎4−𝑎3
)         (𝑎3 ≤ 𝑥 ≤ 𝑎4)

0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 

𝐼 represents the indeterminacy-membership function. 

𝐼𝑎̃  (𝑥) = 

{
 
 

 
 

(𝑎2−𝑥+𝜃𝑎̃(𝑥−𝑎1))

(𝑎2−𝑎1)
        (𝑎1 ≤ 𝑥 ≤ 𝑎2)

𝛼𝑎̃             (𝑎2 ≤ 𝑥 ≤ 𝑎3)
(𝑥−𝑎3+𝜃𝑎̃(𝑎4−𝑥))

(𝑎4−𝑎3)
        (𝑎3 ≤ 𝑥 ≤ 𝑎4)

      1                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            ,

 (2) 

 

𝐹 represents the falsity-membership function. 

𝐹𝑎̃  (𝑥) = 

{
 
 

 
 
(𝑎2−𝑥+𝛽𝑎̃(𝑥−𝑎1))

(𝑎2−𝑎1)
        (𝑎1 ≤ 𝑥 ≤ 𝑎2)

𝛼𝑎̃            (𝑎2 ≤ 𝑥 ≤ 𝑎3)
(𝑥−𝑎3+𝛽𝑎̃(𝑎4−𝑥))

(𝑎4−𝑎3)
        (𝑎3 ≤ 𝑥 ≤ 𝑎4)

      1                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 (3) 

  

Neutrosophic logic operators, analogous to classical logic operators, are used to perform operations on 

neutrosophic sets. The neutrosophic logical operators include: 

Neutrosophic AND (M) Operator: 

For two neutrosophic sets 𝐴 = (𝑇𝐴, 𝐼𝐴, 𝐹𝐴) and 𝐵 = (𝑇𝐵 , 𝐼𝐵 , 𝐹𝐵)1 the neutrosophic AND operator is defined 

as follows: 

𝐴𝐴𝐴𝐵 = (𝑇𝐴 − 𝑇𝐵 , 𝐼𝐴 + 𝐼𝐵 − 𝐼𝐴 ⋅ 𝐼𝐵 , 𝐹𝐴 + 𝐹𝐵 − 𝐹𝐴 − 𝐹𝐵) (4) 
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Neutrosophic OR(V) Operator: 

For 𝐴 and 𝐵 as defined above, the neutrosophic 𝑂𝑅 operator is defined as: 

𝐴 ∨𝑛 𝐵 = (𝑇𝐴 + 𝑇𝐵 − 𝑇𝐴 ⋅ 𝑇𝐵 , 𝐼𝐴 − 𝐼𝐵 , 𝐹𝐴 ⋅ 𝐹𝐵)  (5) 

Neutrosophic NOT (∼𝒏) Operator. 

For a neutrosophic set 𝐴 = (𝑇𝐴, 𝐼𝐴, 𝐹𝐴), the neutrosophic NOT operator is defined as: 

∼  n 𝐴 = (1 − 𝑇𝐴, 𝐼𝐴, 𝐹𝐴) (6) 

In the context of anomaly detection, sensor data is represented as neutrosophic sets. The degree of anomaly 

for a particular data point can be calculated using the neutrosophic anomaly score (N.S.S) Let 𝑋 =

(𝑇𝑋, 𝐼𝑋, 𝐹𝑋) be the neutrosophic representation of a data point. The neutrosophic anomaly score can be 

calculated as follows: 

𝑁𝐴𝑆 = 1 − (𝑇𝑋 + 𝐼𝑋 + 𝐹𝑋) (7) 

A NAS value closer to 1 indicates a higher degree of anomaly. 

In decision-making processes, neutrosophic sets can be used to represent different criteria. Aggregation 

operators, such as the neutrosophic weighted average, can be employed to combine these criteria into an 

overall decision. For a set of neutrosophic criteria 𝐶1, 𝐶2, … , 𝐶𝑛, with corresponding weights 𝑤1, 𝑤2, … , 𝑤𝑛, 

the neutrosophic weighted average (𝑁𝑊𝐴) is calculated as: 

𝑁𝑊𝐴 =
∑𝑖=1
𝑉𝑖  (𝑤𝑖 ⋅ 𝑇𝑖 , 𝑤𝑖 ⋅ 𝐼𝑖 , 𝑤𝑖 ⋅ 𝐹𝑖)

∑𝑖=1
𝑛𝑖  𝑤𝑖

 (8) 

where 𝑇𝑖1𝐼𝑖2  and 𝐹1 represent the truth, indeterminacy, and falsity membership functions of criterion 𝐶𝑖 

respectively.  

In the context of anomaly detection in smart farming systems, effectively managing uncertain information 

is of paramount importance. The complexity and dynamism of the data, coupled with the intricate interplay 

between factors that may lead to anomalies, present formidable challenges. Handling uncertain 

information is a critical objective in anomaly detection. In real-world agricultural scenarios, numerous 

variables contribute to the data collected from smart farming sensors. These variables are often influenced 

by various factors, such as weather conditions, soil composition, and the presence of pests or diseases. The 

resulting data can be inherently uncertain, imprecise, and subject to fluctuations. 

To address these challenges, this paper leverages the power of neutrosophic sets. Neutrosophic sets are a 

powerful tool for handling uncertainty, indeterminacy, and contradiction in data and decision-making. In 

our proposed approach for edge-based anomaly detection in smart farming, we use neutrosophic sets to 

model these three aspects. Uncertainty represents the degree to which we lack precise knowledge about a 

data point. In the context of smart farming, uncertainty may arise from various sources such as sensor 
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noise, environmental variability, or measurement errors. Neutrosophic sets can model uncertainty through 

their membership functions.  

Uncertainty Membership Function (𝑈𝑋): For a neutrosophic set 𝑋 = (𝑇𝑥, 𝐼𝑥 , 𝐹𝑥), the uncertainty membership 

function 𝑈𝑋is defined as: 

𝑈𝑋 = 𝐹𝑋 (9) 

This formula quantifies the indeterminacy component of the neutrosophic set, which represents 

uncertainty. 

Indeterminacy represents the degree to which a data point is ambiguous or lacks a definite attribute value. 

In our context, indeterminacy can occur when sensor readings are imprecise or when the interpretation of 

data is not clear.  Contradiction arises when there are conflicting pieces of information within a data point. 

In smart farming, contradiction may occur when different sensors provide conflicting readings or when 

historical data contradicts current observations. 

Contradiction Membership Function (𝐶𝑋) : For a neutrosophic set 𝑋 = (𝑇𝑋, 𝐼𝑋, 𝐹𝑋), the contradiction 

membership function 𝐶𝑋 is defined as: 

𝐶𝑋 = 𝐹𝑋 (10) 

This formula quantifies the falsity component of the neutrosophic set, which represents a contradiction. 

For example, let’s consider an example using a neutrosophic set 𝑋 representing the temperature reading 

from a smart farming sensor: 

𝑋 = (0.7,0.2,0.1) (11) 

In this case 𝑇𝑋 = 0.7 represents the truth component, indicating a high likelihood that the temperature 

reading is accurate. 𝐼𝑋 = 0.2 represents the indeterminacy component, signifying some uncertainty or 

imprecision in the reading. 𝐹𝑋 = 0.1 represents the falsity component, suggesting a minor degree of 

contradiction or inconsistency. 

This paper proposes the utilization of a single-valued neutrosophic set, a specialized form of neutrosophic 

set. In the context of anomaly detection in smart farming, the single-valued neutrosophic set is generated 

using triangular neutrosophic  numbers. This approach allows for a more structured representation of 

uncertainty, where each data point is associated with a single-valued neutrosophic set that encapsulates its 

truth, indeterminacy, and falsity components. To quantify the relationships between data points and detect 

anomalies effectively, this paper introduces an improved weighted correlation coefficient formula. This 

formula takes into account the specific characteristics of single-valued neutrosophic sets and their 

triangular neutrosophic  number representations. The detailed description of our anomaly detection 
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approach involves the following essential steps. These steps collectively form a comprehensive framework 

for identifying anomalies within the smart farming system: 

Step 1: In this phase of our anomaly detection approach, we handle the generation of neutrosophic  

numbers for farm anomaly data (𝐴) and test sample data (𝐶). This step is crucial in preparing the data for 

subsequent analysis. For anomaly template set 𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑚} and test sample set 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑛}, 

we generate neutrosophic  numbers to represent the inherent uncertainty in the data. Specifically, we create 

three neutrosophic  numbers for each data point: the lower membership function (𝐿), the upper 

membership function (𝑈), and the midpoint (𝑀). 

Lower Membership Function (𝐿): The lower membership function represents the lower bound of the data's 

uncertainty. It quantifies the minimum possible value that the data point can take. This is computed as: 

𝐿(𝑥) =
𝑥 −min(𝐴𝑖)

max(𝐴𝑖) − min(𝐴𝑖)
 (12) 

where 𝑥 is the value of the data point and min(𝐴𝑖) and max(𝐴𝑖) are the minimum and maximum values in 

the anomaly template set 𝐴𝑖 for 𝑖 = 1,2, … ,𝑚.  

Upper Membership Function ( 𝑈 ): The upper membership function represents the upper bound of the 

data's uncertainty. It quantifies the maximum possible value that the data point can take. This is computed 

as: 

𝑈(𝑥) =
max(𝐴𝑖) − 𝑥

max(𝐴𝑖) − min(𝐴𝑖)
 (13) 

where 𝑥 is the value of the data point, and min(𝐴𝑖) and max(𝐴𝑖) are the minimum and maximum values 

in the anomaly template set 𝐴𝑖 for 𝑖 = 1,2, … ,𝑚. 

 

Midpoint (𝑀): The midpoint represents the central value within the data's uncertainty| range. It is 

calculated as the average of the lower and upper bounds: 

𝑀(𝑥) =
𝐿(𝑥) + 𝑈(𝑥)

2
 (14) 

In our anomaly detection approach, we utilize triangular neutrosophic  numbers to represent data points. 

A triangular neutrosophic  number is characterized by specific properties that allow us to quantify the 

inherent uncertainty in the data. These properties are as follows: 

Largest Value: In a triangular neutrosophic  number, the largest value corresponds to the right end value of 

the triangle. This value represents the upper bound of uncertainty and signifies the maximum possible 

value that the data point can take. It quantifies the most optimistic scenario. 
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Minimum Value: Conversely, the minimum value in a triangular neutrosophic  number is located at the left 

endpoint of the triangle. This value represents the lower bound of uncertainty and signifies the minimum 

possible value that the data point can take. It quantifies the most pessimistic scenario. 

Average Value: The average value of a triangular neutrosophic  number is situated at the upper-end value of 

the triangle. This value represents the central tendency within the data's uncertainty range. It is calculated 

as the midpoint between the minimum and maximum values. 

Height of the Triangle: A critical characteristic of a triangular neutrosophic  number is that the height of the 

triangle is equal to 1. This height signifies the degree of uncertainty or fuzziness associated with the data 

point. A taller triangle indicates a higher degree of uncertainty, while a shorter triangle suggests greater 

confidence in the data's precision. 

The graphical representation of a triangular neutrosophic  number is depicted in Figure 1, where the 

triangle illustrates the range of uncertainty, and the location of its apex, base, and height aligns with the 

specific properties mentioned above. 

Step 2: In the second step of our anomaly detection approach, we perform a critical comparison between 

the neutrosophic  numbers representing the attributes of test samples (𝐶𝑗) and those of the farm anomaly 

templates (𝐴𝑖). This comparison allows us to quantify the degrees of determinacy membership (𝑇𝐴𝑖(𝐶𝑗) ), 

non-membership (𝐹𝐴𝑖(𝐶𝑗)), and indeterminacy-membership ( 𝐼𝐴𝑖(𝐶𝑗)). These degrees provide insights into 

the level of conformity or deviation between test samples and farm anomaly templates, facilitating effective 

anomaly detection. For each attribute (𝐴𝑖) of a test sample (𝐶𝑗), the degrees of membership, non-

membership, and indeterminacy-membership are calculated using the following formulas: 

Degree of Determinacy-Membership (𝑇𝐴𝑖(𝐶𝑗)) : This degree represents the extent to which the attribute 𝐴𝑖 of 

the test sample 𝐶𝑗 belongs to the farm anomaly template 𝐴𝑖. Calculated as the minimum of the upper-bound 

values of the neutrosophic  numbers: 

𝑇𝐴𝑖(𝐶𝑗) − min{𝑈𝐴𝑖(𝐶𝑗), 𝑈𝐴𝑖(𝐴𝑖)} (15) 

Degree of Non-Membership (𝐹𝐴𝑖(𝐶𝑗)): This degree quantifies the extent to which the attribute 𝐴𝑖 of the test 

sample 𝐶𝑗 does not belong to the farm anomaly template 𝐴𝑖. Calculated as the maximum of the lower-

bound values of the neutrosophic  numbers: 

𝐹𝐴𝑖(𝐶𝑗) − max{𝐿𝐴𝑖(𝐶𝑗), 𝐿𝐴𝑖(𝐴𝑖)} (16) 

Degree of Indeterminacy-Membership (𝐼𝐴𝑖(𝐶𝑗)): This degree captures the degree of ambiguity or uncertainty 

associated with the attribute 𝐴𝑖 of the test sample 𝐶𝑗 concerning the farm anomaly template 𝐴𝑖. Calculated 

as the complement of the sum of the degrees of determinacy-membership and non-membership: 
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𝐼𝐴𝑖(𝐶𝑗) − 1 − 𝑇𝐴𝑖(𝐶𝑗) − 𝐹𝐴𝑖(𝐶𝑗) (17) 

These degrees (𝑇𝐴𝑖(𝐶𝑗), 𝐹𝐴𝑖(𝐶𝑗), 𝐼𝐴𝑖(𝐶𝑗)) provide a comprehensive understanding of the similarity or 

dissimilarity between test samples and farm anomaly templates for each attribute. 

Step 3: In the next step of our anomaly detection approach, we transition from the parameters 

𝑇𝐴𝑖(𝐶𝑗), 𝐹𝐴𝑖(𝐶𝑗), and 𝐼𝐴𝑖(𝐶𝑗) to single-valued neutrosophic sets (𝑎𝑖𝑗). These single-valued neutrosophic sets 

encapsulate the degrees of determinacy-membership, nonmembership, and indeterminacy-membership 

for each attribute of a test sample 𝐶𝑗 concerning the corresponding attribute in the anomaly template 𝐴𝑖. 

𝐷 = (𝑎𝑖𝑗)𝑚×𝑛 =

[
 
 
 
< 𝑡11, 𝑓11, 𝑖11 > < 𝑡12, 𝑓12, 𝑖12 > ⋯ < 𝑡𝑖𝑛 , 𝑓𝑖𝑗 , 𝑖𝑖𝑗 >

< 𝑡21, 𝑓21, 𝑖21 > < 𝑡22, 𝑓22, 𝑖22 > ⋯ < 𝑡2𝑛, 𝑓2𝑛, 𝑖2𝑛 >

⋮ ⋮ ⋮
< 𝑡𝑚1, 𝑓𝑚1, 𝑖𝑚1 > < 𝑡𝑚2, 𝑓𝑚2, 𝑖𝑚2 > ⋯ < 𝑡𝑚𝑛 , 𝑓𝑚𝑛, 𝑖𝑚𝑛 >]

 
 
 

 (18) 

Each single-valued neutrosophic set 𝑎𝑖𝑗  is represented as a triple ⟨𝑡𝑖𝑗 , 𝑓𝑖𝑗 , 𝑖𝑖𝑗⟩, where 𝑡𝑖𝑗 denotes the degree 

of determinacy-membership. 𝑓𝑖𝑗 represents the degree of non-membership. 𝑖𝑖𝑗  signifies the degree of 

indeterminacy-membership. By expressing the parameters 𝑇𝐴𝑖(𝐶𝑗), 𝐹𝐴𝑖(𝐶𝑗), and 𝐼𝐴𝑖(𝐶𝑗) in the form of single-

valued neutrosophic sets 𝑎𝑖𝑗 , we encapsulate the uncertainty and relationships between attributes within a 

structured neutrosophic framework. 

Step 4: In the subsequent step of our anomaly detection approach, we derive ideal single-valued 

neutrosophic numbers for each attribute 𝑗 (𝑤ℎ𝑒𝑟𝑒 𝑗 = 1,2, … , 𝑛). These ideal single-valued neutrosophic 

numbers serve as reference points for assessing the degree of similarity or dissimilarity between test 

samples and anomaly templates. The generation process is performed column-wise based on the single-

valued neutrosophic set decision matrix 𝐷. 

Figure 1. Visualizing a Triangular neutrosophic  Number 

Geometrically. 
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𝑎∗𝑗 =< 𝑡∗𝑗 , 𝑓
∗
𝑗
, 𝑖∗𝑗 >=< max

𝑖
(𝑡𝑖𝑗),min

𝑖
(𝑓𝑖𝑗),min

𝑖
(𝑖𝑖𝑗) > (19) 

Step 5: In this step of our anomaly detection approach, we generate a weighted correlation coefficient to 

quantitatively assess the degree of similarity between the single-valued neutrosophic sets in the decision 

matrix 𝐷 and the ideal single-valued neutrosophic number. This coefficient serves as a crucial indicator for 

identifying anomalies based on the deviation from the ideal values. The calculation formula for the 

weighted correlation coefficient 𝑊𝐶𝐶 is as follows: 

𝑊(𝐴𝑖 , 𝐵) =

2 ·∑ 𝑤𝑗[𝑡𝑖𝑗 · 𝑡
∗
𝑗 + 𝑓𝑖𝑗 · 𝑓

∗
𝑗
+ 𝑖𝑖𝑗 · 𝑖

∗
𝑗]

𝑛

𝑗=1

∑ 𝑤𝑗[𝑡𝑖𝑗
2 + 𝑓𝑖𝑗

2 + 𝑖𝑖𝑗
2]

𝑛

𝑗=1
+∑ 𝑤𝑗[𝑡

∗
𝑗
2 + 𝑓∗

𝑗
2 + 𝑖∗𝑗

2]
𝑛

𝑗=1

 (20) 

4. Results and Analysis  

The outcomes of our research and the in-depth analysis of the experimental data, offering a comprehensive 

assessment of the effectiveness of our proposed methodology for anomaly detection in smart agriculture 

systems are presented. In our study, we leveraged real-world farm anomaly data to conduct a 

comprehensive analysis of anomaly detection within smart farming systems. A pivotal aspect of this 

analysis involved the acquisition of triangular neutrosophic  numbers for diverse attributes, a critical step 

in the neutrosophic framework we employed for anomaly detection. Table 1 presents the resulting 

triangular neutrosophic  numbers obtained under various attributes. These neutrosophic  numbers 

encapsulate the inherent uncertainty and variability within the data, capturing the complex and dynamic 

nature of smart farming environments. Our study meticulously considered attributes such as temperature, 

humidity, soil moisture, and spectral data, among others, to provide a holistic view of anomaly detection 

in agriculture. The acquisition of these neutrosophic  numbers represents a foundational element of our 

research, facilitating the subsequent neutrosophic analysis that drives the accurate identification of 

anomalies. In the following sections, we delve into the outcomes of our anomaly detection approach, 

offering insights into its effectiveness and real-world applicability within the realm of smart farming. 

Table 1. Triangular neutrosophic  Numbers for Attributes in Farm Anomaly Data 

  Minimum  Mean  Maximum Zone 

A12-A18 0.0551 0.2232 0.2928 0.2516 

A22-A28 0.1180 0.1528 0.4736 0.1129 

A32-A38 0.0278 0.2001 0.2381 0.0199 

A42-A48 0.3117 4.3342 4.6856 2.1545 

B12-B18 0.1253 0.2009 0.2296 0.0236 

B22-B28 0.3031 0.4025 0.4551 0.0220 

B32-B38 0.1339 0.2658 0.3574 0.0677 
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B42-B48 4.0418 4.7958 9.0371 2.4010 

C12-C18 0.2749 0.3803 0.3990 0.0235 

C22-C28 0.2278 0.3486 0.4082 0.0423 

C32-C38 0.0959 0.1688 0.2776 0.0357 

C42-C48 9.3726 9.8447 10.1851 0.3635 

 

 

In our analysis of the sample data, a fundamental component of our study involved the extraction of 

triangular neutrosophic  numbers for diverse attributes, a key element within the neutrosophic framework 

we employed for anomaly detection. As demonstrated in Table 2, we obtained these triangular 

neutrosophic  numbers under various attributes, each representing the inherent uncertainty and variability 

observed within the sample dataset. Attributes such as temperature, humidity, soil moisture, and spectral 

data were meticulously considered, providing a comprehensive view of anomaly detection in the context 

of our study. These triangular neutrosophic  numbers lay the foundation for the subsequent neutrosophic 

analysis, enabling us to quantitatively assess the degree of similarity between the sample data attributes 

and ideal values. 

Table 2. Triangular Neutrosophic  Numbers for Attributes in Analyzed Sample Data 

  Minimum  Mean  Maximum Zone 

A1 0.10898 0.20047 0.31950 0.02117 

A2 0.03912 0.20983 0.33639 0.18393 

A3 0.09619 0.23943 0.31954 0.04330 

A4 0.11814 0.15975 0.24484 0.00999 

A5 4.03510 4.10292 4.19177 0.12442 

 

In our analysis, we conducted an in-depth examination of the analyzed sample data, focusing on the 

matching of sample attributes (represented as 𝑋𝑘, where 𝑘 = 1,2,3,4 denotes specific attributes) with 

various anomaly categories (𝐺𝑘
1−5, where 𝐺 = 𝑋, 𝑌, 𝑍 represents three distinct types of anomalies - A, B, C). 

This matching process allowed us to systematically evaluate the degree of similarity and dissimilarity 

between the attributes of the sample data and the three anomaly categories. Subsequently, we calculated 

neutrosophic statistics encompassing the determined-membership degree (𝑇), nonmembership degree 

(𝐹), and indeterminacy-membership degree (𝐼). These statistics, presented in Table 3, offer valuable 

insights into the dynamic interplay between the sample data attributes and the anomaly categories. The 

statistics shed light on the varying degrees of membership, non-membership, and indeterminacy, 

providing a comprehensive understanding of the anomaly detection process within our study. In the 
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following sections, we delve deeper into the implications and significance of these findings, elucidating 

their relevance in real-world applications. 

Table 3. Neutrosophic Statistics for Sample Data Attributes Matched with Anomaly Categories 

Anomaly Template Neutrosophic Number 

A12-A18 (0.8143,0.0523,0.8483) 

A22-A28 (0,1,0.5431) 

A32-A38 (0,1,0.6321) 

A42-A48 (0.7063,0.2633,0.7002) 

B12-B18 (0,1,0.6024) 

B22-B28 (0.0103,0.9874,0.6722) 

B32-B38 (0.0127,0.9787,0.6809) 

B42-B48 (0,1,1) 

C12-C18 (0.9121,0.0164,0.6952) 

C22-C28 (0.9887,0.0072,0.9801) 

C32-C38 (0.0806,0.9293,0.9088) 

C42-C48 (0,1,0.616257) 

 

In our examination of the farming anomaly data template and the neutrosophic  sample attributes 

represented by 𝑋, we embarked on a comprehensive analysis aimed at quantifying the relationships 

between these attributes. Our objective was to construct a structured representation that captures the 

nuanced interplay between attributes, essential for effective anomaly detection. As a result of this analysis, 

we have generated a single-valued neutrosophic decision matrix, which is presented in Table 4. This 

decision matrix encapsulates the degree of similarity and dissimilarity between the various attributes of the 

farming anomaly data template and the corresponding attributes within the neutrosophic  sample. Each 

entry in this matrix reflects the outcome of our neutrosophic analysis, quantifying the degree to which 

attributes align or deviate from one another. The decision matrix serves as a cornerstone for our anomaly 

detection approach, offering a comprehensive view of attribute relationships and guiding us in the 

identification of anomalies within smart farming systems. In the subsequent sections, we delve into the 

practical implications and insights derived from our anomaly detection methodology, highlighting its 

effectiveness in real-world applications. 

Table 4. Single-Valued Neutrosophic Decision Matrix for Attribute Relationships 

Anomaly A12-A18 B12-B18 C12-C18 

A1 (0.0, 0.7384,0.5728) (0.1905,0.0,1) (0.1367, 0.6227, 0.3160) 

A2 (0.1903,1,0.2589) (0.6327,1.0,0.1212) (0.5734, 0.4212, 0.6390) 

A3 (0.4062, 0.5660, 0.3213) (0.4010,0.0,0.5598) (0.2363, 0.7829, 0.0) 

A4 (0.3593, 0, 0) (0.3718,0.1022, 0.3867) (0.3953, 0.3674, 1) 
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5. Conclusions 

This study has introduced and demonstrated the efficacy of a neutrosophic approach to edge-based 

anomaly detection within smart farming systems. By harnessing the power of neutrosophic sets and single-

valued neutrosophic decision matrices, we have successfully addressed the challenges posed by uncertain 

and dynamic farm data. Our methodology has proven capable of quantifying attribute relationships, 

facilitating the identification of anomalies with precision and sensitivity. Through the analysis of sample 

data and the generation of neutrosophic statistics, we have gained valuable insights into the complexities 

of anomaly detection in agriculture. These findings underscore the adaptability and real-world 

applicability of our approach, offering the potential to enhance the resilience and efficiency of smart 

farming systems. As we move forward, further research and refinement of our methodology promise to 

contribute significantly to the advancement of anomaly detection and decision-making processes in the 

realm of precision agriculture. 
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Abstract. The aim of this work is to introduce the new notion of Neutrosophic hypersoft rough set and study

its properties. Neutrosophic hypersoft rough set is a generalization of Neutrosophic soft rough set. The notion

of Neutrosophic hypersoft rough set has not been reported in the literature. The concept of Neutrosophic hy-

persoft approximation space is presented with illustrative examples and some of its properties are established.

The notions of equality, reduct and core among Neutrosophic hypersoft rough sets are studied with suitable

examples. Some directions for applications and future research in this area are also indicated.

Keywords: Hypersoft sets, Neutrosophic sets, Neutrosophic soft sets, Neutrosophic hypersoft sets, Neutro-

sophic hypersoft rough sets, Equality, Reduct and Core.

—————————————————————————————————————————-

1. Introduction

Extension of soft set to hypersoft set was discussed by Smarandache.F [13,14]. Al-Quran.A

et al. [1] presented a novel approach to Neutrosophic soft rough set in 2019. Some basic op-

erations on hypersoft sets was studied by Mujahid.A et al. [10]. Jafar.M.N et al. [8] proposed

trigonometry similarity measures of Neutrosophic hypersoft set and investigated the basic oper-

ations on them. They have also presented an application to revolvable energy source selection.

Jafar.M.N et al. [7] have proposed different similarity measures with the help of distances and

max-min operators defined on Neutrosophic hypersoft sets. They have proved some proper-

ties of this similarity measures and presented an application in site selection for solid waste

management system. Jafar.M.N and Saeed.M [6] have also presented an algorithm based on

a score function to solve a multi attribute multi criteria decision making problem. Aggregate

operators on Neutrosophic hypersoft sets was studied by Saqlain.M et al. [12]. Huseyin.K [5]
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investigated on hybrid structure of hypersoft sets and rough sets. Das.M et al. [4] expanded

the scope of rough set, soft set, and Neutrosophic set by combining Neutrosophic soft set with

rough set theory. Broumi.S et al. [1,2] developed a hybrid structure called rough neutrosophic

set and discussed its properties. Maji.P.K [9] defined some operations on Neutrosophic soft

set and established some properties. Ozturk.T.Y et al. [11] have redefined some operations on

Neutrosophic soft sets with illustrative examples. Yolcu.A et al. [15] have broadened the scope

of rough, soft and Neutrosophic sets by developing the notion of Neutrosophic soft rough set.

They have also presented examples and established some properties of the new structure.

From the above literature study it can be seen that hybrid structures combing Neutrosophic

sets and soft sets, Neutrosophic sets and rough sets as well as Neutrosophic hyper sets and

soft sets have been considered by different authors for different applications. No work in the

literature exists combining Neutrosophic hypersoft sets and rough sets.

In this paper we propose to introduce the hybrid structure Neutrosophic hypersoft rough

set (NHSRS) and discuss some of its basic properties like union, intersection and comple-

mentation with illustrative examples. The notions of equality between NHSRSs, the reduct

and core of a NHSRS are studied.

The rest of the paper is organized as follows. Section 2, deals with the necessary preliminar-

ies. In section 3, we present the definition of NHSRS and give an example. Some properties

of Neutrosophic hypersoft approximation space are also established. In section 4, equality be-

tween NHSRSs is defined and some interesting results are also established. Section 5, deals

with reduct and core of a NHSRS. Some theoretical results connecting core and reduct are

proved with necessary examples.

2. Preliminaries

The necessary fundamental definitions such as neutrosophic set, hypersoft set, rough set,

some properties of neutrosophic hypersoft set and neutrosophic hypersoft rough set can be

found in [11,15].

3. Neutrosophic Hypersoft Rough Sets (NHSRSs).

In this section we introduce the notion of NHSRSs.

Definition 3.1. Let U be a non-empty universe set and PN (U) be the set of all neutrosophic

sets over U . Let E denote the set of parameters. We assume that E = {∆1,∆2, ...,∆n},
where ∆i ∩ ∆j = ∅ for i 6= j. Let δj ⊆ ∆j j ∈ {1, 2, ..., n}. Then Πn

j=1δj ⊆ Πn
j=1∆j . The

pair
(
N, Πn

j=1δj

)
= PNH(U), where N is mapping defined by N : Πn

j=1δj → PN (U) is called

a Neutrosophic hypersoft set (NHSS). The triplet
(
U,N,Πn

j=1δj

)
is called a neutrosophic

hypersoft approximation space. The lower and upper neutrosophic hypersoft approximation

Neutrosophic Sets and Systems, Vol. 58, 2023                                                                              227

V.S. Subha, R. Selvakumar, A New Approach to Neutrosophic Hypersoft Rough Sets



spaces of K ∈ PNH(U) with respect to
(
U,N,Πn

j=1δj

)
are denoted by aprNHSS(K) and

aprNHSS(K) respectively, defined by

apr
NHSS

(K) =


Πn

j=1δj , <
κ

µ
Πn

j=1δj
(κ), η

Πn
j=1δj

(κ), νΠn
j=1δj

(κ)
>

 , ∀ κ ∈ U

 .

aprNHSS(K) =

{(
Πn
j=1δj , <

κ
µΠn

j=1δj
(κ), ηΠn

j=1δj
(κ), νΠn

j=1δj
(κ)

>

)
, ∀ κ ∈ U

}
.

where,

µ
Πn

j=1δj
(κ) =

{∧
µΠn

j=1δj
(κ) : µΠn

j=1δj
(κ) ∈ K ∩ (Nj ,Πnj=1δj); (Nj ,Πnj=1δj) ⊆ K,∀κ ∈ U

}
η

Πn
j=1δj

(κ) =
{∧

ηΠn
j=1δj

(κ) : ηΠn
j=1δj

(κ) ∈ K ∩ (Nj ,Πnj=1δj); (Nj ,Πnj=1δj) ⊆ K,∀κ ∈ U
}

νΠn
j=1δj

(κ) =
{∨

νΠn
j=1δj

(κ) : νΠn
j=1δj

(κ) ∈ K ∩ (Nj ,Πnj=1δj); (Nj ,Πnj=1δj) ⊆ K,∀κ ∈ U
}

µΠn
j=1δj

(κ) =
{∨

µΠn
j=1δj

(κ) : µΠn
j=1δj

(κ) ∈ K ∪ (Nj ,Πnj=1δj); (Nj ,Πnj=1δj) ⊆ K,∀κ ∈ U
}

ηΠn
j=1δj

(κ) =
{∨

ηΠn
j=1δj

(κ) : ηΠn
j=1δj

(κ) ∈ K ∪ (Nj ,Πnj=1δj); (Nj ,Πnj=1δj) ⊆ K,∀κ ∈ U
}

νΠn
j=1δj

(κ) =
{∧

νΠn
j=1δj

(κ) : νΠn
j=1δj

(κ) ∈ K ∪ (Nj ,Πnj=1δj); (Nj ,Πnj=1δj) ⊆ K,∀κ ∈ U
}

where “ min ” and “ max ” operators are denoted by “
∧

” and “
∨

”, respectively. It is easy to

see that apr
NHSS

(K) and aprNHSS(K) are two NHSSs over PNH(U). It is said that K is a

neutrosophic hypersoft definable set if aprNHSS(K) = aprNHSS(K), otherwise it is referred

to as a Neutrosophic hypersoft rough sets (NHSRSs).

Example 3.2. Let U = {κ1,κ2,κ3,κ4}. Define the attributes sets by,

∆1 = {e11, e12},∆2 = {e21, e22},∆3 = {e31, e32}.
Let δ1 = {e11, e12}, δ2 = {e21, e22}, δ3 = {e31} that is Πn

j=1δj ⊆ Πn
j=1∆j , j = 1, 2, 3. Let the

NHSS,

(
N1,Π

3
j=1δi

)
=
{

((e11, e21, e31), { κ1

< .5, .2, .3 >
,

κ2

< .7, .3, .2 >
}),

((e13, e23, e33), { x2

< .8, .4, .2 >
,

x3

< .7, .8, .9 >
,

x4

< .6, .1, .4 >
}),

((e11, e22, e31), { κ2

< .3, .2, .5 >
}),

((e12, e21, e31), { κ3

< .8, .4, .1 >
,

κ4

< .1, .5, .5 >
}),

((e12, e22, e31), { κ1

< .5, .2, .3 >
,

κ4

< .4, .3, .2 >
}),

((e13, e21, e31), { x2

< .8, .9, .2 >
,

x3

< .4, .2, .7 >
})}
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α1 = {e11}, α2 = {e21, e22}, α3 = {e31, e32} that is Πn
j=1αj ⊆ Πn

j=1∆j j = 1, 2, 3. Let the

NHSS, (
N2,Π

3
i=1αi

)
=
{

((e11, e21, e31), { κ2

< .2, .5, .6 >
,

κ3

< .8, .6, .1 >
}),

((e13, e23, e33), { x2

< .6, .3, .8 >
,

x3

< .2, .7, .3 >
}),

((e11, e22, e31), { κ2

< .6, .2, .3 >
}),

((e11, e21, e32), { κ1

< .4, .3, .5 >
,

κ4

< .7, .3, .2 >
}),

((e11, e22, e32), { κ3

< .4, .4, .2 >
,

κ4

< .1, .3, .8 >
}),

((e13, e21, e31), { x2

< .9, .2, .4 >
,

x3

< .8, .1, .9 >
})}

β1 = {e11, e12}, β2 = {e21}, β3 = {e31, e32} that is Πn
j=1βj ⊆ Πn

j=1∆j j = 1, 2, 3. Let the

NHSS, (
N3,Π

3
j=1βj

)
=
{

((e11, e21, e31), { κ2

< .7, .4, .5 >
,

κ3

< .9, .6, .7 >
,

κ4

< .4, .6, .8 >
}),

((e13, e23, e33), { x2

< .4, .6, .8 >
,

x3

< .8, .4, .9 >
}),

((e12, e21, e31), { κ2

< .5, .6, .3 >
,

κ4

< .6, .3, .4 >
}),

((e11, e21, e32), { κ1

< .7, .9, .3 >
,

κ3

< .6, .7, .8 >
,

κ4

< .3, .8, .2 >
}),

((e12, e21, e32), { κ1

< .6, .3, .5 >
,

κ3

< .4, .5, .9 >
}),

((e13, e21, e31), { x3

< .8, .4, .1 >
})}

Let K be a NHSS defined as

K =
{

((e11, e21, e31), { κ1

< .6, .4, .9 >
,

κ2

< .5, .6, .9 >
,

κ3

< .2, .5, .6 >
,

κ4

< .8, .6, .6 >
}),

((e11, e22, e31), { κ2

< .8, .5, .2 >
}),

((e12, e21, e31), { κ2

< .7, .4, .9 >
,

κ3

< .5, .7, .8 >
,

κ4

< .6, .4, .8 >
}),

((e12, e22, e31), { κ1

< .7, .8, .2 >
,

κ4

< .5, .6, .3 >
}),

((e11, e21, e32), { κ1

< .6, .3, .8 >
,

κ3

< .6, .6, .2 >
,

κ4

< .7, .5, .8 >
}),

((e11, e22, e32), { κ3

< .3, .7, .9 >
,

κ4

< .8, .9, .2 >
}),

((e12, e21, e32), { κ1

< .6, .3, .8 >
,

κ3

< .4, .6, .9 >
})
}

Then the lower and upper NHSS approximation of K are calculated as

aprNHSS(K) =
{

((e11, e21, e31), { κ2

< .2, .3, .9 >
})
}

Neutrosophic Sets and Systems, Vol. 58, 2023                                                                              229

V.S. Subha, R. Selvakumar, A New Approach to Neutrosophic Hypersoft Rough Sets



aprNHSS(K) =
{

((e11, e21, e31), { κ1

< .6, .4, .3 >
,

κ2

< .7, .6, .2 >
,

κ3

< .9, .6, .1 >
,

κ4

< .8, .6, .6 >
}),

((e11, e22, e31), { κ2

< .8, .5, .2 >
}),

((e12, e21, e31), { κ2

< .7, .6, .2 >
,

κ3

< .8, .7, .1 >
,

κ4

< .6, .5, .4 >
}),

((e12, e22, e31), { κ1

< .7, .8, .2 >
,

κ4

< .5, .6, .2 >
}),

((e11, e21, e32), { κ1

< .7, .9, .3 >
,

κ3

< .6, .7, .2 >
,

κ4

< .7, .8, .2 >
}),

((e11, e22, e32), { κ3

< .4, .7, .2 >
,

κ4

< .8, .9, .2 >
}),

((e12, e21, e32), { κ1

< .6, .3, .5 >
,

κ3

< .4, .6, .9 >
})
}
.

Theorem 3.3. Let
(
U, N, Πn

j=1δj

)
be a neutrosophic hypersoft approximation space, and

K,L ∈ PNH(U), then the following properties hold.

i. aprNHSS(K) ⊆ K ⊆ aprNHSS(K)

ii. aprNHSS(0(U, Πnj=1δj)
) = 0(U, Πnj=1δj)

, aprNHSS(1(U, Πnj=1δj)
) = 1(U, Πnj=1δj)

iii. If K ⊆ L, then aprNHSS(K) ⊆ aprNHSS(L)

iv. If K ⊆ L, then aprNHSS(K) ⊆ aprNHSS(L)

v. aprNHSS(K ∩ L) ⊆ aprNHSS(K) ∩ aprNHSS(L)

vi. aprNHSS(K ∪ L) ⊆ aprNHSS(K) ∪ aprNHSS(L)

vii. aprNHSS(K ∩ L) ⊆ aprNHSS(K) ∩ aprNHSS(L)

viii. aprNHSS(K ∪ L) ⊆ aprNHSS(K) ∪ aprNHSS(L)

Proof. (i) From the Definition 3.1, we can conclude that aprNHSS(K) ⊆ K.

In addition, from the definition of neutrosophic hypersoft upper approximation,

∀
(
Nj ,Πn

j=1δj

)
∩K 6= 0(U, Πnj=1δj)

, µ, ν, η ∈ K ∪
(
Nj ,Πn

j=1δj

)
.

Hence , K ⊆ aprNHSS(K).

Thus, aprNHSS(K) ⊆ K ⊆ aprNHSS(K).

(ii) From Definition 3.1, the proof of (ii) naturally follows.

(iii) Let K ⊆ L and
(
Nj ,Πn

j=1δj

)
⊆ K, j = (1, 2, ..., n).

Then aprNHSS(K) = K ∩
(⋂n

j=1

(
Nj ,Πn

j=1δj

))
.

Also, we have (
(
Nj ,Πn

j=1δj

)
⊆ K then

(
Nj ,Πn

j=1δj

)
⊂ L.

Hence aprNHSS(L) = L ∩
(⋂n

j=1

(
Nj ,Πn

j=1δj

))
.

This implies aprNHSS(K) ⊆ aprNHSS(L).

(iv) Let K ⊆ L and
(
Nj ,Πn

j=1δj

)
∩K 6= ∅, j = 1, 2, ..., n.

Then aprNHSS(K) = K ∪
(⋃n

j=1

(
Nj ,Πn

j=1δj

))
. For K ⊆ L,

then
(
Nj ,Πn

j=1δj

)
∩ L 6= ∅ and aprNHSS(L) = L ∪

(⋃n
j=1

(
Nj ,Πn

j=1δj

))
.
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This implies aprNHSS(K) ⊆ aprNHSS(L).

(v) Let κ
Πnj=1δj
µ,ν,η ∈ aprNHSS(K ∩ L).

There exist
(
N,Πn

j=1δj

)
such that κ

Πnj=1δj
µ,ν,η ∈

(
N,Πn

j=1δj

)
⊆ aprNHSS(K ∩ L), κ

Πnj=1δj
µ,ν,η ∈(

N,Πn
j=1δj

)
⊆ K and κ

Πnj=1δj
µ,ν,η ∈

(
N,Πn

j=1δj

)
⊆ L.

Therefore κ
Πnj=1δj
µ,ν,η ∈ aprNHSS(K) and

κ
Πnj=1δj
µ,ν,η ∈ aprNHSS(L), implying κ

Πnj=1δj
µ,ν,η ∈ aprNHSS(K) ∩ aprNHSS(L).

Thus aprNHSS(K ∩ L) ⊆ aprNHSS(K) ∩ aprNHSS(L).

(vi) Let κ
Πnj=1δj
µ,ν,η /∈ aprNHSS(K ∪ L).

There exist
(
N,Πn

j=1δj

)
such that κ

Πnj=1δj
µ,ν,η ∈

(
N,Πn

j=1δj

)
6⊆ aprNHSS(K∩L), hence it follows

that
(
N,Πn

j=1δj

)
6⊆ K and

(
N,Πn

j=1δj

)
6⊆ L.

Therefore κ
Πnj=1δj
µ,ν,η /∈ aprNHSS(K) and κ

Πnj=1δj
µ,ν,η /∈ aprNHSS(L),

implying κ
Πnj=1δj
µ,ν,η /∈ aprNHSS(K) ∪ aprNHSS(L).

Thus aprNHSS(K ∪ L) ⊆ aprNHSS(K) ∪ aprNHSS(L).

(vii) Let κ
Πnj=1δj
µ,ν,η ∈ aprNHSS(K ∩ L).

There exist
(
N,Πn

j=1δj

)
such that κ

Πnj=1δj
µ,ν,η ∈

(
N,Πn

j=1δj

)
∩ (K ∩ L) 6= 0(U, Πnj=1δj)

,(
N,Πn

j=1δj

)
∩ (K) 6= 0(U, Πnj=1δj)

and
(
N,Πn

j=1δj

)
∩ (L) 6= 0(U, Πnj=1δj)

.

Therefore κ
Πnj=1δj
µ,ν,η ∈ aprNHSS(K) and

κ
Πnj=1δj
µ,ν,η ∈ aprNHSS(L), implying κΠni=1Ai

µ,ν,η ∈ aprNHSS(K) ∩ aprNHSS(L).

(viii) Let κ
Πnj=1δj
µ,ν,η ∈ aprNHSS(K ∪ L).

There exist
(
N,Πn

j=1δj

)
such that κ

Πnj=1δj
µ,ν,η ∈

(
N,Πn

j=1δj

)
∩ (K ∪ L) 6= 0(U, Πnj=1δj)

, it follows

that(
N,Πn

j=1δj

)
∩ (K) 6= 0(U, Πnj=1δj)

or
(
N,Πn

j=1δj

)
∩ (L) 6= 0(U, Πnj=1δj)

.

Therefore κ
Πnj=1δj
µ,ν,η ∈ aprNHSS(K) or κ

Πnj=1δj
µ,ν,η ∈ aprNHSS(L).

Hence κ
Πnj=1δj
µ,ν,η ∈ aprNHSS(K) ∪ aprNHSS(L).

Thus aprNHSS(K ∪ L) ⊆ aprNHSS(K) ∪ aprNHSS(L)

The converse of properties (i), (iii), (iv), (v), (vi), (vii) and (viii) in Theorem 3.3 does not

hold.

Theorem 3.4. Let
(
U, N, Πn

j=1δj

)
be a neutrosophic hypersoft approximation space, and

K,L ∈ PNH(U), then the following properties hold.

i. aprNHSS

(
aprNHSS(K)

)
= aprNHSS(K)

ii. aprNHSS (aprNHSS(K)) ⊇ aprNHSS(K)

iii. aprNHSS(K) ⊆ aprNHSS
(
aprNHSS(K)

)
.

iv. aprNHSS

(
aprNHSS(K)

)
⊇ aprNHSS(K).
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Proof. (i) Let κ
Πnj=1δj

(µ,η,ν) ∈ aprNHSS(K).

Then, we have κ
Πnj=1δj

(µ,η,ν) ∈
(
Nj ,Πn

j=1δj

)
⊆ aprNHSS(K).

So κ
Πnj=1δj

(µ,η,ν) ∈ aprNHSS
(
aprNHSS(K)

)
.

Therefore aprNHSS(K) ⊆ aprNHSS
(
aprNHSS(K)

)
.

From the Theorem 3.3 aprNHSS(K) ⊆ K using (iii) of Theorem 3.3 we obtain

aprNHSS

(
aprNHSS(K)

)
⊆ aprNHSS(K).

Hence aprNHSS

(
aprNHSS(K)

)
= aprNHSS(K).

(ii) Let P = aprNHSS(K). Using property (i) of Theorem 3.3,

we get P ⊆ aprNHSS(K).

Hence aprNHSS (aprNHSS(K)) ⊇ aprNHSS(K).

(iii) Let P = aprNHSS(K).

Using property (i) of Theorem 3.3, we got aprNHSS(K) ⊆ P .

Hence aprNHSS (aprNHSS(K)) ⊆ aprNHSS(K).

(iv) Let Q = aprNHSS(K).

Using property (i) of Theorem 3.3, we got aprNHSS(K) ⊇ Q.

Hence aprNHSS ⊆ aprNHSS(K)
(
aprNHSS(K)

)
.

The converse of properties (ii), (iii) and (iv) in Theorem 3.4 does not hold.

Remark 3.5. Let
(
U, N, Πn

j=1δj

)
be a neutrosophic hypersoft approximation space, and

K,L ∈ PNH(U), then the following properties hold.

i. aprNHSS(Kc) 6= [aprNHSS(K)]c

ii. aprNHSS(Kc) 6= [aprNHSS(K)]c

Definition 3.6. Let
(
N1,Π

n
j=1δj

)
and

(
N2,Π

n
j=1δj

)
be two NHSSs over the same uni-

verse set U . Then “
(
N1,Π

n
j=1δj

)
difference

(
N2,Π

n
j=1δj

)
” operation on them is denoted by(

(N1 \ N2),Πn
j=1δj

)
and is defined by(

(N1 \ N2),Πn
j=1δj

)
=
(
N1,Π

n
j=1δj

)
∩
(
N2,Π

n
j=1δj

)c
= {Πn

j=1δj,< κ, (1−µ)Nj ,Πnj=1δj
(κ), (1−η)Nj ,Πnj=1δj

(κ), (1−ν)Nj ,Πnj=1δj
(κ) >: κ ∈ U : Πn

j=1δj ⊆
Πn
j=1∆j}.

where

µ(N1\N2),Πnj=1δj
(κ) = min{µN1,Πnj=1δj

(κ), µN2,Πnj=1δj
(κ)}

η(N1\N2),Πnj=1δj
(κ) = min{ηN1,Πnj=1δj

(κ), ηN2,Πnj=1δj
(κ)}

ν(N1\N2),Πnj=1δj
(κ) = max{νN1,Πnj=1δj

(κ), νN2,Πnj=1δj
(κ)}.
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Definition 3.7. Let aprNHSS(K) and aprNHSS(K) be neutrosophic hypersoft lower and

upper approximations of K ∈ PNH(U) with respect to the neutrosophic hypersoft approxima-

tion space K, respectively. Then

posNHSS(K) = aprNHSS(K)

negNHSS(K) = (aprNHSS(K))c

bndNHSS(K) = aprNHSS(K) \ aprNHSS(K)

are called the neutrosophic hypersoft positive region, neutrosophic hypersoft negative region

and neutrosophic hypersoft boundary region of K, respectively.

Example 3.8. Consider Example 3.2. The neutrosophic hypersoft rough positive, negative,

and boundary region can then be computed as follows:

posNHSS(K) =aprNHSS(K)

=
{

((e11, e21, e31), { κ2

< .2, .3, .9 >
})
}

negNHSS(K) =(aprNHSS(K))c

=
{

((e11, e21, e31), { κ1

< .4, .6, .7 >
,

κ2

< .3, .4, .8 >
,

κ3

< .1, .4, .9 >
,

κ4

< .2, .4, .4 >
}),

((e11, e22, e31), { κ2

< .2, .5, .8 >
}),

((e12, e21, e31), { κ2

< .3, .4, .8 >
,

κ3

< .2, .3, .9 >
,

κ4

< .4, .5, .6 >
}),

((e12, e22, e31), { κ1

< .3, .2, .8 >
,

κ4

< .5, .4, .8 >
}),

((e11, e21, e32), { κ1

< .3, .1, .7 >
,

κ3

< .4, .3, .8 >
,

κ4

< .3, .2, .8 >
}),

((e11, e22, e32), { κ3

< .6, .3, .8 >
,

κ4

< .2, .1, .8 >
}),

((e12, e21, e32), { κ1

< .4, .7, .5 >
,

κ3

< .6, .4, .1 >
})
}

(aprNHSS(K))c =
{

((e11, e21, e31), { κ2

< .8, .7, .1 >
})
}

BndNHSS(K) =aprNHSS(K) \ aprNHSS(K)

=aprNHSS(K) ∩ (aprNHSS(K))c

=
{(

(e11, e21, e31), { κ2

< .7, .6, .2 >
}
)}

Obviously, aprNHSS(K) 6= aprNHSS(K). So K is NHSS in the approximation space(
U,N,Πn

j=1δj

)
.

Theorem 3.9. Let
(
U, N, Πn

j=1δj

)
be a neutrosophic hypersoft approximation space, and

K,L ∈ PNH(U), then aprNHSS(K \ L) ⊆ aprNHSS(K) \ aprNHSS(L).

Neutrosophic Sets and Systems, Vol. 58, 2023                                                                              233

V.S. Subha, R. Selvakumar, A New Approach to Neutrosophic Hypersoft Rough Sets



Proof. Let κ
Πnj=1δj
µ,ν,η ∈ aprNHSS(K \ L).

There exist
(
N,Πn

j=1δj

)
such that κ

Πnj=1δj
µ,ν,η ∈

(
N,Πn

j=1δj

)
⊆ aprNHSS(K \ L), κ

Πnj=1δj
µ,ν,η ∈(

N,Πn
j=1δj

)
⊆ K and κ

Πnj=1δj
1−µ,1−ν,1−η ∈

(
N,Πn

j=1δj

)
⊆ Lc.

Thus aprNHSS(K \ L) ⊆ aprNHSS(K) \ aprNHSS(L).

Therefore κ
Πnj=1δj
µ,ν,η ∈ aprNHSS(K) and

κ
Πnj=1δj
1−µ,1−ν,1−η ∈ aprNHSS(Lc), implying κ

Πnj=1δj
µ,ν,η ∈ aprNHSS(K) \ aprNHSS(L).

Thus aprNHSS(K ∩ L) ⊆ aprNHSS(K \ aprNHSS(L).

The converse of Theorem 3.9 does not hold.

Remark 3.10. Let
(
U, N, Πn

j=1δj

)
be a neutrosophic hypersoft approximation space, and

K,L ∈ PNH(U), then

aprNHSS(K \ L) 6= aprNHSS(K) \ aprNHSS(L).

Example 3.11. Let
(
U, N, Πn

j=1δj

)
be a neutrosophic hypersoft approximation space, and

K,L ∈ PNH(U), based on Example 3.2 defined as,

K =
{(

(e11, e21, e31), { κ1

< .6, .4, .9 >
,

κ2

< .5, .6, .9 >
,

x3

< .2, .5, .6 >
,

κ4

< .8, .6, .6 >
}),

((e13, e23, e33), { κ2

< .8, .6, .9 >
,

κ3

< .4, .6, .8 >
,

κ4

< .8, .4, .9 >
}),

((e11, e22, e31), { κ2

< .8, .5, .2 >
}),

((e12, e21, e31), { κ2

< .7, .4, .9 >
,

κ3

< .5, .7, .8 >
,

κ4

< .6, .4, .8 >
}),

((e12, e22, e31), { κ1

< .7, .8, .2 >
,

κ4

< .5, .6, .3 >
}),

((e11, e21, e32), { κ1

< .6, .3, .8 >
,

κ3

< .6, .6, .2 >
,

κ4

< .7, .5, .8 >
}),

((e11, e22, e32), { κ3

< .3, .7, .9 >
,

κ4

< .8, .9, .2 >
}),

((e12, e21, e32), { κ1

< .6, .3, .8 >
,

κ3

< .4, .6, .9 >
}
)}

Then the lower and upper NHSS approximation of K are calculated as

aprNHSS(K) =
{(

(e11, e21, e31), { κ2

< .2, .3, .9 >
}
)
,(

(e13, e23, e33), { κ2

< .4, .3, .9 >
,

κ3

< .2, .4, .9 >
}
)}
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aprNHSS(K) =
{

((e11, e21, e31), { κ1

< .6, .4, .3 >
,

κ2

< .7, .6, .2 >
,

κ3

< .9, .6, .1 >
,

κ4

< .8, .6, .6 >
}),

((e13, e23, e33), { κ2

< .8, .6, .2 >
,

κ3

< .8, .8, .3 >
,

κ4

< .8, .4, .4 >
}),

((e11, e22, e31), { κ2

< .8, .5, .2 >
}),

((e12, e21, e31), { κ2

< .7, .6, .2 >
,

κ3

< .8, .7, .1 >
,

κ4

< .6, .5, .4 >
}),

((e12, e22, e31), { κ1

< .7, .8, .2 >
,

κ4

< .5, .6, .2 >
}),

((e11, e21, e32), { κ1

< .7, .9, .3 >
,

κ3

< .6, .7, .2 >
,

κ4

< .7, .8, .2 >
}),

((e11, e22, e32), { κ3

< .4, .7, .2 >
,

κ4

< .8, .9, .2 >
}),

((e12, e21, e32), { κ1

< .6, .3, .5 >
,

κ3

< .4, .6, .9 >
})
}

Let L =
{

((e11, e21, e31), { κ1

< .7, .5, .4 >
,

κ2

< .6, .7, .8 >
,

κ3

< .3, .6, .2 >
,

κ4

< .9, .6, .3 >
}),

((e11, e22, e31), { κ2

< .9, .5, .1 >
}),

((e12, e21, e31), { κ2

< .9, .8, .1 >
,

κ3

< .6, .8, .5 >
,

κ4

< .7, .5, .4 >
}),

((e11, e21, e32), { κ1

< .8, .5, .6 >
,

κ3

< .8, .6, .1 >
,

κ4

< .8, .6, .3 >
}),

((e12, e21, e32), { κ1

< .8, .5, .3 >
,

κ3

< .6, .8, .7 >
}),

((e13, e21, e31), { κ2

< .7, .1, .3 >
,

κ3

< .9, .3, .8 >
})
}

Then the lower and upper NHSS approximation of L are calculated as

aprNHSS(L) =
{

((e11, e21, e31), { κ2

< .2, .3, .8 >
}),

((e13, e21, e31),
κ3

< .4, .1, .9 >
})
}

aprNHSS(L) =
{

((e11, e21, e31), { κ1

< .7, .5, .3 >
,

κ2

< .7, .7, .2 >
,

κ3

< .9, .6, .1 >
,

κ4

< .9, .6, .3 >
}),

((e11, e22, e31), { κ2

< .9, .5, .1 >
}),

((e12, e21, e31), { κ2

< .9, .8, .1 >
,

κ3

< .8, .8, .1 >
,

κ4

< .7, .5, .4 >
}),

((e11, e21, e32), { κ1

< .8, .9, .1 >
,

κ3

< .6, .7, .8 >
,

κ4

< .8, .8, .2 >
}),

((e12, e21, e32), { κ1

< .8, .5, .3 >
,

κ3

< .6, .8, .7 >
}),

((e13, e21, e31), { κ2

< .9, .9, .2 >
,

κ3

< .9, .4, .1 >
})
}

aprNHSS(K)/aprNHSS(L) =
{

((e11, e21, e31), { κ2

< .2, .3, .9 >
})
}
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aprNHSS(K)/aprNHSS(L) =
{

((e11, e21, e31), { κ1

< .3, .4, .7 >
,

κ2

< .3, .3, .8 >
,

κ3

< .1, .4, .9 >
,

κ4

< .1, .4, .7 >
}),

((e11, e22, e31), { κ2

< .1, .5, .9 >
}),

((e12, e21, e31), { κ2

< .1, .2, .9 >
,

κ3

< .2, .2, .9 >
,

κ4

< .3, .5, .6 >
}),

((e11, e21, e32), { κ1

< .2, .1, .9 >
,

κ3

< .4, .3, .2 >
,

κ4

< .2, .2, .8 >
}),

((e12, e21, e32), { κ1

< .2, .5, .7 >
,

κ3

< .4, .2, .3 >
})
}

Lc =
{

((e11, e21, e31), { κ1

< .3, .5, .6 >
,

κ2

< .4, .3, .2 >
,

κ3

< .7, .4, .8 >
,

κ4

< .1, .4, .7 >
}),

((e11, e22, e31), { κ2

< .1, .5, .9 >
}),

((e12, e21, e31), { κ2

< .1, .2, .9 >
,

κ3

< .4, .2, .5 >
,

κ4

< .2, .4, .7 >
}),

((e11, e21, e32), { κ1

< .6, .3, .8 >
,

κ3

< .2, .5, .7 >
,

κ4

< .4, .2, .3 >
}),

((e12, e21, e32), { κ1

< .3, .9, .7 >
,

κ3

< .1, .7, .2 >
})
}

K \ L =
{

((e11, e21, e31), { κ1

< .3, .4, .9 >
,

κ2

< .4, .3, .9 >
,

κ3

< .2, .5, .8 >
,

κ4

< .1, .4, .7 >
}),

((e11, e22, e31), { κ2

< .1, .5, .9 >
}),

((e12, e21, e31), { κ2

< .1, .2, .9 >
,

κ3

< .4, .2, .8 >
,

κ4

< .2, .4, .8 >
}),

((e11, e21, e32), { κ1

< .6, .3, .8 >
,

κ3

< .2, .5, .7 >
,

κ4

< .4, .2, .8 >
}),

((e12, e21, e32), { κ1

< .3, .3, .8 >
,

κ3

< .1, .6, .9 >
})
}

aprNHSS(K \ L) =
{

((e11, e21, e31), { κ2

< .2, .3, .9 >
})
}

aprNHSS(K \ L) =
{

((e11, e21, e31), { κ1

< .5, .4, .3 >
,

κ2

< .7, .5, .2 >
,

κ3

< .9, .6, .1 >
,

κ4

< .4, .6, .8 >
}),

((e11, e22, e31), { κ2

< .6, .5, .3 >
}),

((e12, e21, e31), { κ2

< .5, .6, .3 >
,

κ3

< .8, .4, .1 >
,

κ4

< .6, .5, .4 >
}),

((e11, e21, e32), { κ1

< .7, .9, .3 >
,

κ3

< .6, .7, .7 >
,

κ4

< .7, .8, .2 >
}),

((e12, e21, e32), { κ1

< .6, .3, .5 >
,

κ3

< .4, .6, .9 >
})
}

Hence,

aprNHSS(K \ L) ⊆ aprNHSS(K) \ aprNHSS(L)

aprNHSS(K \ L) 6= aprNHSS(K) \ aprNHSS(L).
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4. Equality Properties on Neutrosophic Hypersoft Rough Sets

In this section, we define equity between neutrosophic hypersoft rough sets.

Definition 4.1. Let
(
U, N, Πn

j=1δj

)
be a neutrosophic hypersoft approximation space, then

∀ K,L ∈ PNH(U), we define the following binary relations:

(i). Sets K and L are in lower NHSS equal related iff

K 4NHSS L⇐⇒ aprNHSS(K) = aprNHSS(L).

(ii). Sets K and L are in upper NHSS equal related iff

K 2NHSS L⇐⇒ aprNHSS(K) = aprNHSS(L).

(iii). Sets K and L are NHSS equal related iff

K ≈NHSS L⇐⇒ aprNHSS(K) = aprNHSS(L) & aprNHSS(K) = aprNHSS(L) .

Theorem 4.2. Let
(
U, N, Πn

j=1δj

)
be a neutrosophic hypersoft approximation space, then ∀

K,L,M,N ∈ PNH(U). Then the following hold:

(i). If K ⊆ L and L 2NHSS 0(U,Πnj=1δj)
, then K 2NHSS 0(U,Πnj=1δj)

.

(ii). If K ⊆ L and K 2NHSS 1(U,Πnj=1δj)
, then L 2NHSS 1(U,Πnj=1δj)

.

(iii) K 2NHSS L⇐⇒ K 2NHSS (K ∪ L) 2NHSS L.

(iv) K 2NHSS L,M 2NHSS N =⇒ (K ∪M) 2NHSS (L ∪N).

Proof. (i). Given K ⊆ L and L 2NHSS 0(U,Πnj=1δj)
,

so that aprNHSS(K) ⊆ aprNHSS(L) and aprNHSS(L) = 0(U,Πnj=1δj)
.

Hence, aprNHSS(K) = 0(U,Πnj=1δj)
= aprNHSS(L).

(ii). Given, K 2NHSS 1(U,Πnj=1δj)
and K ⊆ L ,

then aprNHSS(K) = aprNHSS(1(U,Πnj=1δj)
) and aprNHSS(K) ⊆ aprNHSS(L).

But we know that aprNHSS(K) ⊆ aprNHSS(1(U,Πnj=1δj)
),

hence aprNHSS(K) = aprNHSS(1(U,Πnj=1δj)
).

We note here that K 2NHSS L iff K ∩ L 2NHSS K and K ∩ L 2NHSS L is not true in

general.

(iii) Assume that K 2NHSS L. By definition 4.1(ii), we have

aprNHSS(K) = aprNHSS(L).

From Theorem 3.3, it is known that aprNHSS(K ∪ L) = aprNHSS(K) ∪ aprNHSS(L). There

by we obtain aprNHSS(K ∪ L) = aprNHSS(K) = aprNHSS(L).

Consequently, K 2NHSS L⇒ K 2NHSS (K ∪ L) 2NHSS L.

Conversely, if K 2NHSS (K ∪ L) 2NHSS L then it is obvious that K 2NHSS L from the

transitivity of 2NHSS .

(iv) Suppose that K 2NHSS L and M 2NHSS N . By Definition 4.1(ii),

we can write aprNHSS(K) = aprNHSS(L) and aprNHSS(M) = aprNHSS(N). By considering

Theorem 3.3, we have aprNHSS(K∪L) = aprNHSS(K)∪aprNHSS(L) and aprNHSS(M∪N) =
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aprNHSS(M) ∪ aprNHSS(N).

Thereby, we conclude that aprNHSS(K ∪M) = aprNHSS(L ∪N) and

so aprNHSS(K ∪M) 2NHSS aprNHSS(L ∪N).

The converse of property (iv) in Theorem 4.2 does not hold.

Example 4.3. Let
(
U, N, Πn

j=1δj

)
be a neutrosophic hypersoft approximation space, then

∀ K,L ∈ PNH(U) based on Example 3.2, K 2NHSS L⇐⇒ aprNHSS(K) = aprNHSS(L),

K = {((e11, e21, e31), { x1

< .6, .4, .9 >
,

x2

< .5, .6, .9 >
,

x3

< .2, .5, .6 >
,

x4

< .8, .6, .6 >
}),

((e11, e22, e31), { x2

< .8, .5, .2 >
}),

((e12, e21, e31), { x2

< .7, .4, .9 >
,

x3

< .5, .7, .8 >
,

x4

< .6, .4, .8 >
}),

((e11, e21, e32), { x1

< .6, .3, .8 >
,

x3

< .6, .6, .2 >
,

x4

< .7, .5, .8 >
}),

((e12, e21, e32), { x1

< .6, .3, .8 >
,

x3

< .4, .6, .9 >
})}

The lower and upper NHSS approximation of K are calculated as

apr
NHSS

(K) = {((e11, e21, e31), { x2

< .2, .3, .9 >
})}

aprNHSS(K) = {((e11, e21, e31), { x1

< .6, .4, .3 >
,

x2

< .7, .6, .2 >
,

x3

< .9, .6, .1 >
,

x4

< .8, .6, .6 >
}),

((e11, e22, e31), { x2

< .8, .5, .2 >
}),

((e12, e21, e31), { x2

< .7, .6, .2 >
,

x3

< .8, .7, .1 >
,

x4

< .6, .5, .4 >
}),

((e11, e21, e32), { x1

< .7, .9, .3 >
,

x3

< .6, .7, .2 >
,

x4

< .7, .8, .2 >
}),

((e12, e21, e32), { x1

< .6, .3, .5 >
,

x3

< .4, .6, .9 >
})}

L = {((e11, e21, e31), { x1

< .6, .4, .5 >
,

x2

< .6, .6, .8 >
,

x3

< .8, .6, .4 >
,

x4

< .8, .6, .6 >
}),

((e11, e22, e31), { x2

< .8, .5, .2 >
}),

((e12, e21, e31), { x2

< .7, .5, .6 >
,

x3

< .6, .7, .4 >
,

x4

< .6, .4, .8 >
}),

((e11, e21, e32), { x1

< .7, .4, .6 >
,

x3

< .6, .7, .2 >
,

x4

< .7, .6, .5 >
}),

((e12, e21, e32), { x1

< .6, .3, .7 >
,

x3

< .4, .6, .9 >
})}

The lower and upper NHSS approximation of L are calculated as

apr
NHSS

(L) = {((e11, e21, e31), { x2

< .2, .3, .8 >
})}

Neutrosophic Sets and Systems, Vol. 58, 2023                                                                              238

V.S. Subha, R. Selvakumar, A New Approach to Neutrosophic Hypersoft Rough Sets



aprNHSS(L) = {((e11, e21, e31), { x1

< .6, .4, .3 >
,

x2

< .7, .6, .2 >
,

x3

< .9, .6, .1 >
,

x4

< .8, .6, .6 >
}),

((e11, e22, e31), { x2

< .8, .5, .2 >
}),

((e12, e21, e31), { x2

< .7, .6, .2 >
,

x3

< .8, .7, .1 >
,

x4

< .6, .5, .4 >
}),

((e11, e21, e32), { x1

< .7, .9, .3 >
,

x3

< .6, .7, .2 >
,

x4

< .7, .8, .2 >
}),

((e12, e21, e32), { x1

< .6, .3, .5 >
,

x3

< .4, .6, .9 >
})}

Theorem 4.4. Let
(
U, N, Πn

j=1δj

)
be a neutrosophic hypersoft approximation space, then ∀

K,L,M,N ∈ PNH(U). Then the following hold:

(i). If K ⊆ L and L 4NHSS 0(U,Πnj=1δj)
, then K 4NHSS 0(U,Πnj=1δj)

.

(ii). If K ⊆ L and L 4NHSS 1(U,Πnj=1δj)
, then K 4NHSS 1(U,Πnj=1δj)

.

(iii) K 4NHSS L⇐⇒ K 4NHSS (K ∪ L) 2NHSS L.

(iv) K 4NHSS L,M 4NHSS N =⇒ (K ∪M) 4NHSS (L ∪N).

Proof. By considering Definition 4.1(i), and Theorem 3.3, it can be proved similar to the proof

of Theorem 4.2.

The converse of property (iv) in Theorem 4.4. does not hold.

Example 4.5. Let
(
U, N, Πn

j=1δj

)
be a neutrosophic hypersoft approximation space, then

∀ K,L ∈ PNH(U) based on Example 3.2, K 4NHSS L⇐⇒ aprNHSS(K) = aprNHSS(L),

K = {((e11, e21, e31), { x1

< .6, .4, .9 >
,

x2

< .5, .6, .9 >
,

x3

< .2, .5, .6 >
,

x4

< .8, .6, .6 >
}),

((e11, e22, e31), { x2

< .8, .5, .2 >
}),

((e12, e21, e31), { x2

< .7, .4, .9 >
,

x3

< .5, .7, .8 >
,

x4

< .6, .4, .8 >
}),

((e11, e21, e32), { x1

< .6, .3, .8 >
,

x3

< .6, .6, .2 >
,

x4

< .7, .5, .8 >
}),

((e12, e21, e32), { x1

< .6, .3, .8 >
,

x3

< .4, .6, .9 >
})}

The lower and upper NHSS approximation of K are calculated as

apr
NHSS

(K) = {((e11, e21, e31), { x2

< .2, .3, .9 >
})}

1 1
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aprNHSS(K) = {((e11, e21, e31), { x1

< .6, .4, .3 >
,

x2

< .7, .6, .2 >
,

x3

< .9, .6, .1 >
,

x4

< .8, .6, .6 >
}),

((e11, e22, e31), { x2

< .8, .5, .2 >
}),

((e12, e21, e31), { x2

< .7, .6, .2 >
,

x3

< .8, .7, .1 >
,

x4

< .6, .5, .4 >
}),

((e11, e21, e32), { x1

< .7, .9, .3 >
,

x3

< .6, .7, .2 >
,

x4

< .7, .8, .2 >
}),

((e12, e21, e32), { x1

< .6, .3, .5 >
,

x3

< .4, .6, .9 >
})}

L = {((e11, e21, e31), { x1

< .7, .5, .4 >
,

x2

< .6, .7, .9 >
,

x3

< .3, .6, .2 >
,

x4

< .9, .6, .3 >
}),

((e11, e22, e31), { x2

< .9, .5, .1 >
}),

((e12, e21, e31), { x2

< .9, .8, .1 >
,

x3

< .6, .8, .5 >
,

x4

< .7, .5, .4 >
}),

((e11, e21, e32), { x1

< .8, .5, .6 >
,

x3

< .8, .6, .1 >
,

x4

< .8, .6, .3 >
}),

((e12, e21, e32), { x1

< .8, .5, .3 >
,

x3

< .6, .8, .7 >
})}

The lower and upper NHSS approximation of L are calculated as

apr
NHSS

(L) = {((e11, e21, e31), { x2

< .2, .3, .9 >
})}

aprNHSS(L) = {((e11, e21, e31), { x1

< .7, .5, .3 >
,

x2

< .7, .7, .2 >
,

x3

< .9, .6, .1 >
,

x4

< .9, .6, .3 >
}),

((e11, e22, e31), { x2

< .9, .5, .1 >
}),

((e12, e21, e31), { x2

< .9, .8, .1 >
,

x3

< .8, .8, .1 >
,

x4

< .7, .5, .4 >
}),

((e11, e21, e32), { x1

< .8, .9, .1 >
,

x3

< .6, .7, .8 >
,

x4

< .8, .8, .2 >
}),

((e12, e21, e32), { x1

< .8, .5, .3 >
,

x3

< .6, .8, .7 >
})}

5. Reduct and Core of Neutrosophic Hypersoft Rough Sets

In this section, we discuss reduct, core, dispensable, and indispensable neutrosophic

hypersoft rough sets.

Definition 5.1. Let (
´́
RN ,Π

n
j=1X́j), (

´́
SN ,Π

n
j=1Ýj) &

´́
TN ,Π

n
j=1Źj) be

NHSSs on U, where (Πn
j=1X́j ,Π

n
j=1Ýj ,Π

n
j=1Źj) ⊆

(
N,Πn

j=1δj

)
, and

´́
RN : Πn

j=1X́j → PN (U),
´́
SN : Πn

j=1Ýj → PN (U),
´́
TN : Πn

i=1Źi → PN (U) are mappings.

Let
(
N,Πn

j=1δj

)
= {( ´́

RN : Πn
j=1X́j), (

´́
SN : Πn

j=1Ýj)&(
´́
TN : Πn

j=1Źj)}.
We define approximate neutrosophic hypersoft set, which is denoted by APP .

APP
(
N,Πn

j=1δj
)

=APP
{

(
´́
RN ,Π

n
j=1X́i), (

´́
SN ,Π

n
j=1Ýj)&(

´́
TN ,Π

n
j=1Źj)

}
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=
{

(rΠnj=1αj
, sΠni=1βj

, tΠnj=1γj
),
⋂
{ ´́
RN , (rΠnj=1αj

),
´́
SN , (sΠnj=1βj

),
´́
TN , (tΠnj=1γj

)}/
1 ≤ αj , βj , γj ≤ n

}
=
{

(Πn
j=1ej , N,Πn

j=1(ej)) \Πn
j=1ej ∈

(
N,Πn

j=1δj

)}
,

where rΠnj=1αj
∈ ´́
RN , sΠnj=1βj

∈ ´́
SN , tΠnj=1γj

∈ ´́
TN and

Πn
j=1ej ∈

(
N,Πn

j=1δi

)
⊆ ´́
RN × ´́

SN × ´́
TN ,

(N,Πn
j=1(ej)) =

⋂{ ´́
RN , (rΠnj=1αj

),
´́
SN , (sΠnj=1βj

),
´́
TN , (tΠnj=1γj

)
}
.

Also we write the difference in approximate neutrosophic hypersoft sets as

APP
((

N,Πn
j=1δj

)
− (

´́
RN ,Π

n
j=1X́j)

)
= APP

(
(

´́
SN ,Π

n
j=1Ýj), (

´́
TN ,Π

n
j=1Źj)

)
.

Definition 5.2. Two approximate neutrosophic hypersoft sets APP (G,Πn
j=1

´́
Bj) and

APP (H,Πn
k=1

´́
Ck) are said to be equal, that is APP (G,Πn

j=1
´́
Bj) = APP (H,Πn

k=1
´́
Ck) if for

every Πn
j=1bj ∈ Πn

j=1
´́
Bj there exists one Πn

k=1ck ∈ Πn
k=1

´́
Ck such that G, (Πn

j=1bj) = H, (Πn
k=1ck)

for some 1 ≤ j, k ≤ n and for every Πn
k=1ck ∈ Πn

k=1
´́
Ck there exists one Πn

j=1bj ∈ Πn
j=1

´́
Bj such

that H, (Πn
k=1ck) = H, (Πn

k=1ck) for some 1 ≤ j, k ≤ n, where Πn
j=1

´́
Bj ,Π

n
k=1

´́
Ck ⊆ Πn

j,k=1∆jk

and G : Πn
j=1

´́
Bj → PN (U), H : Πn

k=1
´́
Ck → PN (U).

Definition 5.3. The neutrosophic hypersoft set (
´́
RN ,Π

n
j=1X́j)) is dispensable in{

(
´́
RN ,Π

n
j=1X́i), (

´́
SN ,Π

n
j=1Ýj), (

´́
TN ,Π

n
j=1Źj))

}
if APP

((
N,Πn

j=1δj

))
= APP

((
N,Πn

j=1δj

)
− (

´́
RN ,Π

n
j=1X́j)

)
.

Suppose if APP
((

N,Πn
j=1δj

)
6= APP

((
N,Πn

j=1δj

)
− (

´́
RN ,Π

n
j=1X́j)

)
,

then (
´́
RN ,Π

n
j=1X́j) is indispensable in

(
N,Πn

j=1δj

)
.

Definition 5.4. The neutrosophic hypersoft set APP (
(
N,Πn

j=1δj

)
) is independent if each

(
´́
RN ,Π

n
j=1X́j) ⊆ (N,Πn

j=1δj) is indispensable in (N,Πn
j=1δj). Otherwise neutrosophic hypersoft

set (N,Πn
j=1δj) is dependent.

Definition 5.5. The set of all indispensable neutrosophic hypersoft sets in APP
(
N,Πn

j=1δj

)
is called the core of APP

(
N,Πn

j=1δj

)
and is denoted CORE

(
APP

(
N,Πn

j=1δj

))
.

Theorem 5.6. CORE
(
APP

(
N,Πn

j=1δj

))
=
⋂
RED

(
APP

(
N,Πn

j=1δj

))
,

where RED
(
APP

(
N,Πn

j=1δj

))
is the family of all reducts of APP

(
N,Πn

j=1δj

)
.

Proof. If (
´́
RN ,Π

n
j=1X́j) is a reduct of

(
N,Πn

j=1δj

)
and

(
´́
SN ,Π

n
j=1Ýj) ∈

(
N,Πn

j=1δYj

)
− (

´́
RN ,Π

n
j=1X́j),

then APP
(
N,Πn

j=1δj

)
= APP (

´́
RN ,Π

n
j=1X́j),

(
´́
RN ,

´́
RN ,Π

n
j=1X́j) ⊆

(
N,Πn

j=1δj

)
−
{

(
´́
RN ,Π

n
j=1Ýj)

}
⊆
(
N,Πn

j=1δj

)
.
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Note that, if
(
N,Πn

j=1δj

)
, (

´́
RN ,Π

n
j=1X́j), (

´́
SN ,Π

n
j=1Ýj),

then APP (
´́
RN ,Π

n
j=1X́j) = APP (

´́
SN ,Π

n
j=1Ýj).

Assuming that (
´́
SN ,Π

n
j=1Ýj) =

(
N,Πn

j=1δj

)
−
{

(
´́
SN ,Π

n
j=1δYj)

}
we conclude that (

´́
SN ,Π

n
j=1Ýj)

is superfluous, i.e. (
´́
SN ,Π

n
j=1δYj) /∈ CORE

((
N,Πn

j=1δj

))
and

CORE
((

N,Πn
j=1δj

))
⊆
⋂{

(
´́
RN ,Π

n
j=1X́j) : (

´́
RN ,Π

n
j=1X́j) ∈ RED

((
N,Πn

j=1δj

))}
.

Suppose
´́
SN ,Π

n
j=1Ýj) /∈ CORE

((
N,Πn

j=1δj

))
, i.e. (

´́
SN ,Π

n
j=1Ýj) is superfluous in(

N,Πn
j=1δj

)
. That means APP (

(
N, prodnj=1δj

)
) = APP

((
N,Πn

j=1δj

)
−
{

(
´́
SN ,Π

n
j=1Ýj)

})
,

which implies that there exists an independent subset
´́
TN ,Π

n
j=1Źj ⊆

(
N,Πn

j=1δj

)
−

{ ´́
SN ,Π

n
j=1Ýj)}, such that APP (

´́
TN ,Π

n
j=1źj) = APP (

(
N,Πn

j=1δj

)
). Obviously

´́
TN is reduct of(

N,Πn
j=1δj

)
and

´́
SN ,Π

n
j=1Ýj) ∈

´́
TN ,Π

n
j=1Źj . This shows that

CORE
((

N,Πn
j=1δj

))
⊇
⋂{

(
´́
RN ,Π

n
j=1X́j) : (

´́
RN ,Π

n
j=1X́j) ∈ RED

((
N,Πn

j=1δj

))}

Example 5.7. Now we consider an apartment evaluation problem. Suppose U =

{κ1,κ2, ...,κ9} be a set of nine apartments, E = {∆1,∆2,∆3,∆4} be the set of attributes,

where {∆1−rate; ∆2−condition; ∆3−infra−structure; ∆4−environs}. The values of rate are

{e11−high; e12−normal; e13−low}, the values of condition are {e21−worth; e22−not worth},
the values of infra-structure are {e31− super; e32−ok; e33−worst}, and the values of environs

are {e41− quiet; e42−a little noisy; e43−noisy; e44− quite noisy}. The evaluation results are

listed below. The reduct and core are evaluated as follows.

Here, Π4
j=1δj =

{
Π3
j=1Ẃj ,Π

2
j=1X́j ,Π

3
j=1Ýj ,Π

4
j=1Źj

}
For attribute rate

Ẃj : e11-high = {κ1,κ4,κ5,κ7}, e12-normal = {κ2,κ8}, e13-low = {κ3,κ6,κ9};
For attribute condition:

X́j : e21-worth = {κ1,κ2,κ3,κ6}, e22-not worth = {κ4,κ5,κ7,κ8,κ9};
For attribute infrastructure:

Ýj : e31-super = {κ1,κ2,κ3}, e32-ok = {κ4,κ5,κ6,κ7,κ8}, e33-worst = {x9};
For attribute environs:

Źj : e41-quiet = {κ1,κ2}, e42-a little noisy = {κ3,κ6}, e43-noisy = {κ4,κ5,κ7}, e44-quite

noisy = {κ8,κ9};
Let

´́
QN ,Π

n
j=1Ẃj = {∆1 − rate} ´́

RN ,Π
n
j=1X́j = {∆2 − condition}, ´́

SN ,Π
n
j=1Ýj = {∆3 −

infrastructure}, ´́
TN ,Π

n
j=1Źj = {∆4 − environs} ⊆ Π4

j=1∆j .
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(
´́
QN ,Π

n
j=1Ẃj) =

{
((e11, e12, e13),

´́
QN (e11, e12, e13))

}
=
{

((e11, e12, e13), { κ1

< .3, .4, .9 >
,

κ4

< .5, .6, .6 >
,

κ5

< .2, .8, .6 >
,

κ7

< .8, .9, .6 >
},

{ κ2

< .8, .2, .7 >
,

κ8

< .7, .9, .4 >
},

{ κ3

< .6, .4, .8 >
,

κ6

< .6, .3, .2 >
,

κ9

< .7, .8, .8 >
})
}

(
´́
RN ,Π

n
j=1X́j) =

{
((e21, e22),

´́
RN (e21, e22))

}
=
{

((e21, e22), { κ1

< .8, .5, .3 >
,

κ2

< .5, .9, .4 >
,

κ3

< .9, .3, .4 >
,

κ6

< .4, .8, .6 >
},

{ κ4

< .8, .3, .2 >
,

κ5

< .6, .6, .2 >
,

κ7

< .6, .4, .9 >

κ8

< .5, .3, .1 >
,

κ9

< .9, .9, .2 >
})
}

(
´́
SN ,Π

n
j=1Ýj) =

{
((e31, e32, e33),

´́
SN (e31, e22, e33))

}
=
{

((e31, e32, e33), { κ1

< .6, .8, .7 >
,

κ2

< .2, .9, .2 >
,

κ3

< .3, .6, .1 >
},

{ κ4

< .7, .5, .3 >
,

κ5

< .9, .4, .6 >
,

κ6

< .2, .3, .8 >
,

κ7

< .6, .3, .9 >
,

κ8

< .6, .8, .3 >
},

{ κ9

< .6, .3, .8 >
})
}

(
´́
TN ,Π

n
i=1Źj) =

{
((e41, e42, e43, e44),

´́
TN (e41, e42, e43, e44))

}
=
{

((e41, e42, e43, e44), { κ1

< .6, .4, .9 >
,

κ2

< .5, .6, .9 >
},

{ κ3

< .8, .5, .2 >
,

κ6

< .7, .3, .4 >
},

{ κ4

< .7, .1, .9 >
,

κ5

< .8, .4, .1 >
,

κ7

< .5, .3, .8 >
},

{ κ8

< .7, .8, .2 >
,

κ9

< .6, .3, .8 >
})
}

APP
(

(N,Πn
j=1δj)

)
= APP

(
(

´́
QN ,Π

n
j=1Ẃj), (

´́
RN ,Π

n
j=1X́j), (

´́
SN ,Π

n
j=1Ýj), (

´́
TN ,Π

n
j=1Źj)

)
=
{

((e11, e12, e13), (e21, e22), (e31, e32, e33), (e41, e42, e43, e44), { κ1

< .3, .4, .9 >
},

{ κ4

< .5, .1, .9 >
,

κ5

< .2, .4, .6 >
,

κ7

< .5, .3, .9 >
},

{ κ2

< .2, .2, .9 >
},

{ κ8

< .5, .3, .4 >
},

{ κ3

< .3, .3, .8 >
},

{ κ6

< .2, .3, .8 >
},

{ κ9

< .6, .3, .8 >
})
}
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APP
(

(N,Πn
j=1δj)− (

´́
QN ,Π

n
j=1Ẃi)

)
= APP

(
(

´́
RN ,Π

n
j=1X́i), (

´́
SN ,Π

n
j=1Ýi), (

´́
TN ,Π

n
j=1Źj)

)
=
{

((e21, e22), (e31, e32, e33), (e41, e42, e43, e44), { κ1

< .6, .4, .9 >
,

κ2

< .2, .6, .9 >
},

{ κ4

< .7, .1, .9 >
,

κ5

< .6, .4, .6 >
,

κ7

< .5, .3, .9 >
},

{ κ3

< .3, .3, .4 >
},

{ κ6

< .2, .3, .8 >
},

{ κ8

< .5, .3, .3 >
},

{ κ9

< .6, .3, .8 >
})
}

6= APP
(

(N,Πn
j=1δj)

)

Hence, (
´́
QN ,Π

n
j=1Ẃj) is indispensable in(N,Πn

j=1δj).

APP
(

(N,Πn
j=1δj)− (

´́
RN ,Π

n
j=1X́j)

)
= APP

(
(

´́
QN ,Π

n
j=1Ẃj ,

´́
SN ,Π

n
j=1Ýj , (

´́
TN ,Π

n
j=1Źj)

)

=
{

((e11, e12, e13), (e31, e32, e33), (e41, e42, e43, e44), { κ1

< .3, .4, .9 >
},

{ κ4

< .5, .1, .9 >
,

κ5

< .2, .4, .6 >
,

κ7

< .5, .3, .9 >
},

{ κ2

< .2, .2, .9 >
},

{ κ8

< .6, .8, .4 >
},

{ κ3

< .3, .4, .8 >
},

{ κ6

< .2, .3, .8 >
},

{ κ9

< .6, .3, .8 >
})
}

= APP
(

(N,Πn
i=1δj)

)
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Hence, (
´́
RN ,Π

n
j=1X́j) is dispensable in(N,Πn

j=1δj).

APP
(

(N,Πn
j=1δj)− (

´́
SN ,Π

n
j=1Ýj)

)
= APP

(
(

´́
QN ,Π

n
j=1Ẃj ,

´́
RN ,Π

n
j=1X́j , (

´́
TN ,Π

n
j=1Źj)

)
=
{

((e11, e12, e13), (e21, e22), (e41, e42, e43, e44), { κ1

< .3, .4, .9 >
},

{ κ4

< .5, .1, .9 >
,

κ5

< .2, .4, .6 >
,

κ7

< .5, .3, .9 >
},

{ κ2

< .5, .2, .9 >
},

{ κ8

< .5, .3, .4 >
},

{ κ3

< .6, .3, .8 >
,

κ6

< .4, .3, .6 >
},

{ κ9

< .6, .3, .8 >
})
}

6= APP
(

(N,Πn
j=1δj)

)
Hence, (

´́
SN ,Π

n
j=1Ýj) is indispensable in(N,Πn

j=1δj).

APP
(

(N,Πn
j=1δj)− (

´́
TN ,Π

n
j=1Źj)

)
= APP

(
(

´́
QN ,Π

n
j=1Ẃj ,

´́
RN ,Π

n
j=1X́j , (

´́
SN ,Π

n
j=1Ýj)

)
=
{

((e11, e12, e13), (e21, e22), (e31, e32, e33), { κ1

< .3, .4, .9 >
},

{ κ4

< .5, .3, .6 >
,

κ5

< .2, .4, .6 >
,

κ7

< .6, .3, .9 >
},

{ κ2

< .2, .2, .7 >
},

{ κ8

< .5, .3, .4 >
},

{ κ3

< .3, .3, .8 >
},

{ κ6

< .2, .3, .8 >
},

{ κ9

< .6, .3, .8 >
})
}

= APP
(

(N,Πn
j=1δj)

)
Hence, (

´́
TN ,Π

n
j=1Źj) is dispensable in(N,Πn

j=1δj).

The set of four approximate neutrosophic hypersoft sets

APP
(

(
´́
QN ,Π

n
j=1Ẃj), (

´́
RN ,Π

n
j=1X́j), (

´́
SN ,Π

n
j=1Ýj), (

´́
TN ,Π

n
j=1Źj)

)
is the same as the

APP
(

(
´́
QN ,Π

n
j=1Ẃj), (

´́
SN ,Π

n
j=1Ýj), (

´́
TN ,Π

n
j=1Źj)

)
and APP

(
(

´́
QN ,Π

n
j=1Ẃj), (

´́
RN ,Π

n
j=1X́j), (

´́
SN ,Π

n
j=1Ýj)

)
. In order to find reducts of the ap-

proximate neutrosophic hypersoft sets

APP
(

(N,Πn
j=1δj)

)
= APP

(
(

´́
QN ,Π

n
j=1Ẃj), (

´́
RN ,Π

n
j=1X́j), (

´́
SN ,Π

n
j=1Ýj)

)
we have to check
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whether APP
(

(
´́
QN ,Π

n
j=1Ẃj), (

´́
RN ,Π

n
j=1X́j), (

´́
SN ,Π

n
j=1Ýj)

)
are independent or not.

Because APP
(

(
´́
QN ,Π

n
j=1Ẃj), (

´́
SN ,Π

n
j=1Ýj), (

´́
TN ,Π

n
j=1Źj)

)
6= APP ((

´́
QN ,Π

n
j=1Ẃj))

APP
(

(
´́
QN ,Π

n
j=1Ẃj), (

´́
SN ,Π

n
j=1Ýj), (

´́
TN ,Π

n
j=1Źj)

)
6= APP ((

´́
SN ,Π

n
j=1Ýj))

APP
(

(
´́
QN ,Π

n
j=1Ẃj), (

´́
SN ,Π

n
j=1Ýj), (

´́
TN ,Π

n
j=1Źj)

)
6= APP ((

´́
TN ,Π

n
j=1Źj)), hence the approx-

imate neutrosophic hypersoft sets are independent and consequently

APP
(

(
´́
QN ,Π

n
j=1Ẃj), (

´́
SN ,Π

n
j=1Ýj), (

´́
TN ,Π

n
j=1Źj)

)
is reduct of APP

(
(N,Πn

j=1δj)
)

. Proceed-

ing in the same way we find that APP
(

(
´́
QN ,Π

n
j=1Ẃj), (

´́
RN ,Π

n
j=1X́j), (

´́
SN ,Π

n
j=1Ýj)

)
is also a

reduct of APP
(

(N,Πn
j=1δj)

)
.

Thus there are two reducts of the approximate neutrosophic hypersoft sets

APP
(

(N,Πn
j=1δj)

)
,

APP
(

(
´́
QN ,Π

n
j=1Ẃj), (

´́
SN ,Π

n
j=1Ýj), (

´́
TN ,Π

n
j=1Źj)

)
and APP

(
(

´́
QN ,Π

n
j=1Ẃj), (

´́
RN ,Π

n
j=1X́j), (

´́
SN ,Π

n
j=1Ýj)

)
From Theorem 5.6,

CORE
(
APP

(
N,Πn

j=1δj
) )

=
⋂
RED

(
APP

(
N,Πn

j=1δj
) )

= {APP
(

(
´́
QN ,Π

n
j=1Ẃj), (

´́
SN ,Π

n
j=1Ýj), (

´́
TN ,Π

n
j=1Źj)

)
}⋂

{APP
(

(
´́
QN ,Π

n
j=1Ẃj), (

´́
RN ,Π

n
j=1X́j), (

´́
SN ,Π

n
j=1Ýj)

)
}

= APP
(

(
´́
QN ,Π

n
j=1Ẃj), (

´́
SN ,Π

n
j=1Ýj)

)
is the core of APP

(
(N,Πn

j=1δi)
)

and also APP
(

(
´́
QN ,Π

n
j=1Ẃj), ((

´́
SN ,Π

n
j=1Ýj)

)
is indispens-

able in APP
(

(N,Πn
j=1δj)

)
. If these nine houses are the training samples, then we have two dif-

ferent kinds of evaluation references for other input samples {rate; infrastructure; environs},
{rate; condition; infrastructure} and it is clear that the attributes {rate; infrastructure} is

the key attributes for the evaluation of apartments.

6. Conclusion

This article defines the neutrosophic hypersoft rough set by combining the notions three

sets: neutrosophic set, hypersoft set, and rough set. The study of fundamental properties

such as union, intersection, and complement are illustrated using examples. The lower and

upper rough neutrosophic hypersoft approximations are then specified and validated. The

relationship between the core and reduct on the neutrosophic hypersoft rough set is illustrated

with examples. The ideas of reduct and core can be used in data reduction and identification

of vital set of attributes in decision making problems. We propose to work on multi-attribute,
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multi-criteria decision making problems using the theoretical properties of reduct, core and

equity defined in this work as our future research direction.
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Abstract. In this paper, we consider the neutrosophic generalized Rayleigh distribution (NGRD). Various

neutrosophic properties of NGRD are developed and discussed. The developed distribution is specifically more

useful to model indeterminate data which are skewed lifetime data. Also, the neutrosophic parameters are

estimated using the well-known method of maximum likelihood (ML) estimation based on a neutrosophic

environment. A simulation study is carried out to establish the achievement of the estimated neutrosophic

parameters. As a final point, the proposed NGRD applications in the real world have been discussed with the

help of real data. A comparative studies also carried out with some recent proposed neutrosophic distributions.

Keywords: Neutrosophic Mean and variance; generating functions; parametric estimation; simulation study;

neutrosophic generalized Rayleigh distribution; survival function.

—————————————————————————————————————————-

1. Introduction

To model the real data, [9] invented twelve forms of new cumulative distribution functions.

More researchers pay attention to two distributions among the twelve new distributions: Burr-

Type X and Burr-Type XII distributions. The two-parameter Burr Type X distribution is

developed by [35] under the name of generalized Rayleigh distribution (GRD). Due to the

increasing and decreasing hazard function nature of GRD, it is more applicable in survival

analysis. The various applications of GRD in statistical inference, reliability, statistical quality

control, sampling plans were studied by [22], [1], [25], [7], [19], [12], [17], [16], [18], [10], [24].
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This paper aims to develop a new neutrosophic generalized Rayleigh distribution (NGRD)

in lifetime data application. Nevertheless, it is more sensible to consider that the GRD is the

best-depicted distribution for the lifetime data based on an interval set of quantities for vague

parameters. In this situation, neutrosophic statistics is the better environment to address

lifetimes based on interval data. The concept of the neutrosophic theory is invented and studied

extensively by [29] for indeterminacies in the data. The new school of thought on neutrosophic

theory is an expansion of fuzzy logics or fuzzy sets; for more details, see [6], [26], [30–32,34], [36].

Furthermore, neutrosophic statistics is pioneered by [33] and is an expansion of classical

statistics, which addresses uncertain or vague data and corresponding statistical probability

distributions. The generalization of interval statistics is neutrosophic and also studies fuzzy

interval sets. Neutrosophic statistics becomes classical statistics when data is known or deter-

ministic. Whereas in real-world applications, most of the data sets are vague, nondeterministic

or unclear, partially unknown or incomplete than determinate data; in these situations, neu-

trosophic statistical procedures are desirable; for more details, refer [4], [15], [23].

In recent years, few researchers have been attracted to work on neutrosophic probability

distributions. [5] developed neutrosophic Weibull distribution. Neutrosophic exponential dis-

tribution applications for complex data analysis studied by [11]. [28] presented neutrosophic

beta distribution with properties and applications. [2] explored neutrosophic Kumaraswamy

distribution with engineering application. [27] discussed the neutrosophic extension of the

Maxwell model. [14] attempted on statistical development of neutrosophic gamma distribu-

tion with applications to complex data analysis.

Developing a new model is to initiate neutrosophic adaptation of the GRD. This type of

conservatory can handle real-world practical issues dealing with undetermined data in either

univarite or multivariate situations, mainly when the data reported interval statistics. The

cumulative distribution function (cdf) and probability density function (pdf) of GRD are

respectively given below:

F (x; υ, σ) =

[
1− exp

{
−
(x
σ

)2}]υ
; x > 0, υ > 0, σ > 0. (1)

and

f(x; υ, σ) =
2υ

σ2
x exp{−

(x
σ

)2
}
[
1− exp

{
−
(x
σ

)2}]υ−1

; x > 0, υ > 0, σ > 0. (2)

Where υ and σ are shape and scale parameters, respectively.

The remaining paper is reported under a description of NGRD in Section 2. The various

statistical properties of NGRD are presented in Section 3. In Section 4, the estimation of

neutrosophic parameters is explained. The extensive simulation study is carried out in Section

5. An industrial application of the developed NGRD using the real-life data is given in Section

6, and Section 7 presents the concluding remarks and future study.

Neutrosophic Sets and Systems, Vol. 58, 2023                                                                               249

Mina Norouzirad, Gadde Srinivasa Rao and Danial Mazarei, Neutrosophic Generalized Rayleigh Distribution with Application



2. Neutrosophic Generalized Rayleigh Distribution

Neutrosophic statistics is the generalization of classical statistics. We administer with spe-

cific or crumple values in classical statistics, but in neutrosophic statistics, the sample values

are chosen from a population with uncertainty environment. In neutrosophic statistics, the

information can be vague, imprecise, ambiguous, uncertain, incomplete, or even unknown.

Neutrosophic numbers have a standard form based on classical statistics, which is given be-

low.

XN = E + I

Data is broken down into two parts, E and I, where E is the exact or determined data, and I

is the uncertain, inexact, or indeterminate part of the data. It is equivalent to XN ∈ [XL, XU ].

A subscript N is used to distinguish the neutrosophic random variable, for example, XN . Let

us assume that XNi ∈ [XL, XU ], i = 1, 2, . . . , nN is neutrosophic random variable following the

neutrosophic generalized Rayleigh distribution (NGRD) with neutrosophic shape parameter

υN ∈ [υL, υU ] and neutrosophic scale parameter σN ∈ [σL, σU ]. The neutrosophic cumulative

distribution fucntion (ncdf) and probability density function (npdf) of NGRD are respectively

given as follows:

F (xN ; υN , σN) =

[
1− exp

{
−
(
xN

σN

)2
}]υN

; xN > 0, υN > 0, σN > 0. (3)

and

f(xN ; υN , σN) =
2υN

σ2
N

xN exp

{
−
(
xN

σN

)2
}[

1− exp

{
−
(
xN

σN

)2
}]υN−1

;

xN > 0, υN > 0, σN > 0. (4)

Where υN and σN are neutrosophic shape and scale parameters, respectively.

The survival function and hazard function of NGRD are respectively given below:

s(xN ; υN , σN) = 1−

[
1− exp

{
−
(
xN

σN

)2
}]υN

(5)

and

h(xN) =

2υN
σ2
N
xN exp

{
−
(
xN
σN

)2}[
1− exp

{
−
(
xN
σN

)2}]υN−1

1−
(
1− exp{−

(
xN
σN

)2
}
)υN (6)

In Figure 1 presented various shapes of the NGRD for various scale and shape parameters.

From Figure 1 it is noticed that the nature of NGRD is right-skewed, left-skewed and symmet-

rical shapes for the given shape parameters. In Figure 2 the various forms of CDF curves are

displayed for various scale and shape parameters. The various natures of survival function and

hazard function are plotted in Figures 3 and 4. From Figure 4 it is noticed that when shape
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parameter υN less than or equal to [0.75,0.75] the nature of hazard function is approximately

bathtub type and when shape parameter υN greater than [0.75,0.75] the nature of hazard

function as increasing. Hence the proposed model is more applicable in industrial data where

the failure rate is in increasing tendency.
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3. Properties of NGRD

In this section, we discuss the some statistical properties of the NGRD and the result are

brought out as under:

Theorem 3.1. The kth moment about origin of NGRD is

µ′
k = υNσ

k
NΓ (υN) Γ

(
k

2
+ 1

) ∞∑
j=0

(−1)j

Γ (υN − j) j!(j + 1)
k
2
+1

(7)

Proof. By definition, the kth raw moment is given as

µ′
k = E

[
Xk

N

]
=

∫ ∞

0
xkNf (xN ; υN , σN) dxN

=

∫ ∞

0
xkN

2υN

σ2
N

xN exp

{
−x2N
σ2

N

}[
1− exp

{
−x2N
σ2

N

}]υN−1

dxN

=

∫ ∞

0
xkN

2υN

σ2
N

xN exp

{
−x2N
σ2

N

} ∞∑
j=0

(−1)jΓ (υN) exp
{
−j

x2
N

σ2
N

}
Γ (υN − j) j!

dxN

where

(1− z)b−1 =

∞∑
j=0

(−1)jΓ (b) zj

Γ (b− j) j!

Thus, we get

µ′
k =

∞∑
j=0

(−1)jΓ (υN)

Γ (υN − j) j!

∞∫
0

xkN
2υN

σ2
N

xN exp

{
−
(
xN

σN

)2
}
exp

{
−j

(
xN

σN

)2
}
dxN

=
∞∑
j=0

(−1)jΓ (υN)

Γ (υN − j) j!

∞∫
0

υNσ
k
Ny

k
2
N exp {− (j + 1) yN} dyN

where y = x2N/σ
2
N . Therefore, we get

µ′
k =

∞∑
j=0

(−1)jΓ (υN) υNσ
k
N

Γ (υN − j) j!

Γ
(
k
2 + 1

)
(j + 1)

k
2
+1

,

where υN ∈ [υL, υU] and σN ∈ [σL, σU]. □

For k = 1, in Eq. (7) we get the first raw moment (mean) of the NGRD is given by

Mean = µ′
1 = υNσNΓ (υN)

1

2
Γ

(
1

2

) ∞∑
j=0

(−1)j

Γ (υN − j) j!(j + 1)
3
2

. (8)

For k = 2, in Eq. 7 we get the second raw moment of the NGRD is given by

µ′
2 = υNσ

2
NΓ (υN)

∞∑
j=0

(−1)j

Γ (υN − j) j!(j + 1)2
.

Therefore, Neutrosophic variance (Nvar) is given by

Nvar (XN) = µ′
2 − (µ′

1)
2

Neutrosophic Sets and Systems, Vol. 58, 2023                                                                               256

Mina Norouzirad, Gadde Srinivasa Rao and Danial Mazarei, Neutrosophic Generalized Rayleigh Distribution with Application



Similarly, we can obtain other raw and central moments, using first four central moments

one can obtain skewness and kurtosis to study the nature of the NGRD.

3.1. Quantile function

A useful and the important statistical property of NGRD is a quantile function and it also

useful to generate random sample from NGRD for simulation work. The quantile function of

NGRD is given by

QN (q) = F−1
N (q) = σN

[
− ln

(
1− q

1
υN

)] 1
2
,

where υN ∈ [υL, υU] and σN ∈ [σL, σU]. Thus,

Median = QN (0.5) = σN

[
− ln

(
1− 0.5

1
υN

)] 1
2
.

3.1.1. Measures of Skewness and Kurtosis based on Quantile Function

The quantitative measure of skewness and Kurtosis based on quantile function is defined

by [13] and [20], respectively. The following formula is used to determine the neutrosophic

skewness and kurtosis of NGRD under neutrosophic environment.

Skewness =
QN

(
6
8

)
− 2QN

(
4
8

)
+QN

(
2
8

)
QN

(
6
8

)
−QN

(
2
8

)
and

Kurtosis =
QN

(
7
8

)
−QN

(
5
8

)
+QN

(
3
8

)
−QN

(
1
8

)
QN

(
6
8

)
−QN

(
2
8

)
The neutrosophic mean, neutrosophic variance, neutrosophic median, neutrosophic skew-

ness, and neutrosophic kurtosis for various neutrosophic scale and shape parameters are dis-

played in Table 1. The results from Table 1 shows that for various statistic values are increases

as neutrosophic share parametric values increases for fixed neutrosophic scale parameter.

4. Neutrosophic Parametric Estimation

To study the effectiveness of parametric estimation, a brief discussion is given in this section

about neutrosophic maximum likelihood estimator(NMLE) of the parameters of NGRD. The

asymptotic properties of NMLEs of υN and σN also discussed. A simulation study is carried

out to study the performance of classical MLEs of the parameters as well as other methods of

parametric estimations have been considered widely in [16].

Let XN1
, . . ., XNn be a random sample from NGRD, then the log-likelihood function can

be expressed as follows:

l (υN , σN ) ∼= n ln(2) + n ln(υN) + 2n ln(σN) +

n∑
i=1

ln(xNi
)

Neutrosophic Sets and Systems, Vol. 58, 2023                                                                               257

Mina Norouzirad, Gadde Srinivasa Rao and Danial Mazarei, Neutrosophic Generalized Rayleigh Distribution with Application



−
n∑

i=1

(
xNi

σN

)2

+ (υN − 1)
n∑

i=1

ln

(
1− exp{−

(
xN

σN

)2

}

)
(9)

The NMLEs of υN and σN can be obtained on maximize the Eq. (9) with respect to υN and

σN . Thus NMLEs υN and σN would be the solution of the following two non-linear equations:

∂l

∂υN

=
n

υN

+

n∑
i=1

ln

(
1− exp{−

(
xNi

σN

)2
}

= 0 (10)

and

∂l

∂σN

=
−2n

σN

+
2

σN

n∑
i=1

(
xNi

σN

)2

− 2 (υN − 1)

σN

n∑
i=1

(
xNi
σN

)2
exp

{
−
(
xNi
σN

)2}
[
1− exp{−

(
xNi
σN

)2
}
] = 0 (11)

The NLME of υN and σN , denoted by υ̂N and σ̂N respectively, can be obtained by solving

two non-linear Eqs. (10) and (11) simultaneously.

5. Simulation Study

To study the performance of the proposed NGRD distribution model, a simulation study

is carried out. The accomplishment of NGRD estimated parameters and their performance

are expressed as neutrosophic average estimates (AEs), neutrosophic average biased (Avg.

Biases) and neutrosophic measure square error (MSEs) using simulation investigation. The

simulation results of average Bias and MSE are summarized in Tables 2-4. It is noticed from

tables that the average Bias and MSE are decrease when size of the sample increases, as

Table 1. The mean, variance, median, skewness and kurtosis for different

neutrosophic parametric values

σN υN Mean Variance Median Skewness Kurtosis

[1, 1] [0.1, 0.35] [0.188, 0.502] [0.117, 0.211] [0.031, 0.385] [0.207, 0.747] [1.158, 1.936]

[1, 1] [0.5, 0.75] [0.626, 0.777] [0.221, 0.222] [0.536, 0.711] [0.094, 0.138] [1.167, 1.190]

[1, 1] [1, 1.5] [0.886, 1.039] [0.200, 0.215] [0.833, 0.997] [0.063, 0.076] [1.204, 1.219]

[1, 1] [2, 3] [0.779, 1.146] [0.187, 0.894] [1.108, 1.256] [0.056, 0.058] [1.227, 1.234]

[1, 2] [0.1, 0.35] [0.188, 1.003] [0.118, 0.845] [0.031, 0.771] [0.207, 0.747] [1.158, 1.936]

[1, 2] [0.5, 0.75] [0.626, 1.554] [0.222, 0.884] [0.536, 1.422] [0.094, 0.138] [1.167, 1.190]

[1, 2] [1, 3] [0.886, 2.659] [0.215, 1.069] [0.833, 1.994] [0.063, 0.076] [1.204, 1.219]

[1, 2] [2, 3] [1.146, 1.557] [0.187, 3.574] [1.108, 2.513] [0.056, 0.058] [1.227, 1.234]

[2, 3] [0.1, 0.35] [0.376, 1.505] [0.470, 1.901] [0.063, 1.156] [0.207, 0.747] [1.158, 1.936]

[2, 3] [0.5, 0.75] [1.252, 2.331] [0.886, 1.989] [1.073, 2.133] [0.094, 0.138] [1.167, 1.190]

[2, 3] [1, 2] [1.7723.988] [0.858, 2.404] [1.665, 2.991] [0.063, 0.076] [1.204, 1.219]

[2, 3] [2, 3] [2.292, 2.336] [0.749, 8.043] [2.216, 3.769] [0.056, 0.058] [1.227, 1.234]
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expected. According to Tables 2-4, Bias of shape parameters is negative and scale parameter

is positive at different values of shape parametric and scale parametric values.

Table 2. υN = [1, 1], σN = [0.5, 0.75]

AEs Avg. Biases MSEs

υ̂N σ̂N υ̂N σ̂N υ̂N σ̂N

30 1.1005 [0.4902,0.7377] 0.1005 [-0.0098,-0.0123] 0.3204 [0.0604,0.0894]

50 1.0562 [0.4942,0.7425] 0.0562 [-0.0058,-0.0075] 0.2154 [0.0465,0.0686]

100 1.0274 [0.4974,0.7452] 0.0274 [-0.0026,-0.0048] 0.1415 [0.0326,0.0493]

200 1.0132 [0.4985,0.7474] 0.0132 [-0.0015,-0.0026] 0.0948 [0.0231,0.0347]

500 1.0051 [0.4994,0.7494] 0.0051 [-0.0006,-0.0005] 0.0598 [0.0146,0.0221]

1000 1.0025 [0.4998,0.7497] 0.0025 [-0.0002,-0.0003] 0.0419 [0.0103,0.0155]

Table 3. υN = [0.5, 0.75], σN = [1, 1]

AEs Avg. Biases MSEs

α̂N σ̂N υ̂N σ̂N υ̂N σ̂N

30 [0.5388,0.8168] 0.9802 [0.0388,0.0668] -0.0198 [0.1364,0.2132] 0.1383

50 [0.5225,0.7888] 0.9873 [0.0225,0.0388] -0.0127 [0.0942,0.1524] 0.1070

100 [0.5108,0.7692] 0.9933 [0.0108,0.0192] -0.0067 [0.0625,0.1008] 0.0760

200 [0.5052,0.7591] 0.9963 [0.0052,0.0091] -0.0037 [0.0424,0.0676] 0.0536

500 [0.5018,0.7538] 0.9988 [0.0018,0.0038] -0.0012 [0.0264,0.0434] 0.0341

1000 [0.5015,0.7525] 0.9992 [0.0015,0.0025] -0.0008 [0.0226,0.0363] 0.029

Table 4. υN = [0.5, 0.75], σN = [1, 3]

AEs Avg. Biases MSEs

α̂N σ̂N υ̂N σ̂N υ̂N σ̂N

30 [0.5397,0.8185] [0.9757,2.9472] [0.0397,0.0685] [-0.0243,-0.0528] [0.1363,0.2205] [0.1484,0.3877]

50 [0.5225,0.7888] [0.9854,2.9676] [0.0225,0.0388] [-0.0146,-0.0324] [0.0942,0.1524] [0.1149,0.2977]

100 [0.5108,0.7692] [0.9936,2.9791] [0.0108,0.0192] [-0.0064,-0.0209] [0.0625,0.1008] [0.0807,0.2138]

200 [0.5052,0.7591] [0.9963,2.9889] [0.0052,0.0091] [-0.0037,-0.0111] [0.0424,0.0676] [0.057,0.1508]

500 [0.5018,0.7538] [0.9985,2.9974] [0.0018,0.0038] [-0.0015,-0.0026] [0.0264,0.0434] [0.0361,0.0962]

1000 [0.5015,0.7525] [0.9988,2.9989] [0.0015,0.0025] [-0.0012,-0.0011] [0.0226,0.0363] [0.0307,0.0818]

6. Real Data Applications

A realistic attempt of NGE distribution model is studied with help a real data in this sec-

tion. The Parameter estimates along with the values of AIC (Akaike’s Information criteria),
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BIC (Bayesian Information criteria) and KS (Kolmogorov–Smirnov) statistic are provided for

comparison neutrosophic exponential distribution (NED), neutrosophic generalized exponen-

tial distribution (NGED), neutrosophic Weibull distribution (NWD), neutrosophic Rayleigh

distribution (NRD) and neutrosophic generalized Rayleigh distribution (NGRD).

To demonstrate a real example here we considered an rough population compactness of few

villages in rural USA. This data is taken from [3] and they studied for neutrosophic W/S

test based on the data follows to neutrosophic normal distribution. This data consists of the

population of 17 villages in USA and their neutrosophic data, which is reproduced in Table 5

for ready reference. The results in Table 6 also shows that NGED is more suitable to fit the

data than the NED.

Table 5. Neutrosophic population density of some villages in the USA

Villages Population density Villages Population density

Aranza [4.13,4.14] Charapan [5.10,5.12]

Corupo [4.53,4.55] Comachuen [5.25,5.27]

San Lorenzo [4.69,4.70] Pichataro [5.36,5.38]

Cheranatzicurin [4.76,4.78] Quinceo [5.94,5.96]

Nahuatzen [4.77,4.79] Nurio [6.06,6.08]

Pomacuaran [4.96,4.98] Turicuaro [6.19,6.21]

Servina [4.97,4.99] Urapicho [6.30,6.32]

Arantepacua [5.00,5.06] Capacuaro [7.73,7.98]

Cocucho [5.04,5.06]

Table 6. Estimates and Goodness-of-fit statistics for village data set

Model Parameter Estimates LogLikelihood AIC BIC KS

NED υ [0.1861,0.1873] [-45.58152,-45.4788] [94.9576,95.16304] [102.2905,102.4959] [0.5385,0.5372]

NGED
shape [41.6889,44.5078] [-20.86095,-20.2097] [44.4194,45.72189] [51.7523,53.0547] [0.2707,0.3270]

rate [7.7599,8.3348]

NWD
shape [5.5773,5.8981] [-23.94168,-23.04169] [103.9359,107.1836] [111.2687,114.5164] [0.6552,0.6579]

scale [5.7621,5.7143]

NRD
υ [3.8224,3.8495] [-34.4533,-34.3024] [72.6048,72.9067] [79.9377,80.2395] [0.4438,0.4457]

σ - - - - -

NGRD
υ [47.075,0.6187] [-19.8662,-19.30757] [42.6151,43.7323] [49.9480,51.06525] [0.1695,0.1728]

σ [2.5501,2.5915]

7. Conclusions

In this article, a generalization Rayleigh distribution is developed under neutrosophic statis-

tics environment. Very few researchers are studied probability distributions based on neutro-

sophic statistics. The mathematical properties of the developed neutrosophic generalization
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Rayleigh distribution are studied. The nature of the distribution is studies through various

neutrosophic parametric combinations. Using the maximum likelihood method the parameters

are estimated. A simulation study is carried out under neutrosophic environment. The average

Bias and MSE are decreases as sample size increases, as expected. Finally, the application of

the proposed neutrosophic generalized Rayleigh distribution is presented through a real data

set. A comparative study with other distribution is also done based real data set. Based on

real data example, we conclude that the proposed distribution furnishes better performance

over existing distributions.
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Abstract: The pursuit of Sustainable Supply Chain Management (SSCM) has become increasingly vital in 

the face of escalating environmental, social, and economic challenges. This paper presents a novel approach 

that harnesses the power of m-generalized q-neutrosophic numbers (mGqNN) within the MULTIMOORA-

mGqNN method to evaluate and select SSCM performance and theory. By integrating mGqNN, we offer a 

versatile framework that adeptly navigates the uncertainties and vagueness inherent to SSCM decision-

making. Through systematic linguistic assessments by multiple decision makers, our approach ranks SSCM 

alternatives, facilitating the identification of optimal strategies that enhance sustainability performance. 

This paper contributes to the evolving discourse on SSCM by introducing a robust methodological 

framework that addresses the multifaceted complexities of sustainability in supply chains. In an era where 

sustainability is paramount, the MULTIMOORA-mGqNN method offers researchers and practitioners a 

valuable tool to make informed decisions and guide supply chain strategies towards a more sustainable 

and responsible future. This innovative approach has the potential to reshape the landscape of SSCM, 

empowering organizations to forge a path towards enduring environmental stewardship, social 

responsibility, and economic resilience.    

Keywords: Neutrosophic Sets, Sustainable Supply Chain Management (SSCM), m-Generalized q-

Neutrosophic Numbers (mGqNN),  MULTIMOORA-mGqNN Method, Decision-making, Uncertainty 

handling 

 

 

I. Introduction 

Sustainable Supply Chain Management (SSCM) is a multidisciplinary approach that encompasses 

the integration of environmental, social, and economic considerations into all stages of a supply chain, from 

the sourcing of raw materials to the final delivery of products or services. It revolves around the responsible 

and ethical practices that organizations adopt to minimize their environmental footprint, support social 

well-being, and ensure economic viability while meeting the demands of the present without 

compromising the needs of future generations. SSCM extends beyond traditional supply chain 

optimization by recognizing that sustainability goes hand in hand with profitability and resilience. In 
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essence, SSCM strives for a harmonious coexistence between ecological conservation, social equity, and 

economic growth within the context of supply chain operations [1-3]. 

The past few decades have witnessed a paradigm shift in the global business landscape, where 

sustainability has emerged as a central concern in supply chain management. This shift is driven by a 

growing awareness of the finite nature of natural resources, the social and ethical obligations of businesses, 

and the increasing scrutiny from consumers, regulators, and stakeholders [4]. The urgency to address 

climate change, reduce carbon emissions, and combat social inequalities has propelled sustainability to the 

forefront of corporate strategies. Businesses are recognizing that integrating sustainability into supply 

chains is not just a moral imperative but also a strategic advantage. It enhances brand reputation, mitigates 

risks associated with environmental and social disruptions, fosters innovation, and ultimately improves 

long-term financial performance. Consequently, the importance of sustainability in supply chains has never 

been more pronounced, making SSCM a critical field of study and practice [5]. 

SSCM is uniquely positioned to tackle a range of pressing challenges facing our planet today. 

Firstly, SSCM plays a pivotal role in addressing environmental challenges by minimizing the 

environmental footprint of supply chain activities. This involves reducing waste, conserving resources, 

optimizing transportation, and adopting eco-friendly technologies and practices. Secondly, SSCM is 

integral to addressing social challenges, such as labor rights, fair wages, and safe working conditions in 

global supply chains. It promotes the well-being of workers and the communities in which supply chain 

operations are embedded. Finally, SSCM is closely linked to economic challenges by fostering supply chain 

resilience and adaptability [6].  

The contemporary landscape of SSCM is characterized by an intricate web of interdependencies, 

uncertainties, and dynamic challenges. In this complex environment, the need for systematic evaluation 

and assessment becomes paramount. Traditional supply chain management approaches often fall short in 

adequately addressing the multifaceted nature of sustainability, which includes environmental, social, and 

economic dimensions. Moreover, the pervasive presence of uncertainties, ambiguities, and indeterminacies 

in SSCM decision-making processes makes it imperative to adopt innovative methodologies capable of 

capturing and handling such complexities [7]. Robust evaluation and assessment techniques are the 

cornerstone of informed decision-making, allowing organizations to gauge the effectiveness of their 

sustainability initiatives, identify areas for improvement, and align their strategies with evolving global 

sustainability goals.  SSCM has witnessed the application of various existing approaches and 

methodologies aimed at incorporating sustainability principles into supply chain operations. These 

traditional methods, although valuable, often confront inherent limitations when applied to SSCM [8]. 

Conventional supply chain management techniques tend to focus primarily on cost efficiency and 

optimization, overlooking the broader environmental and social impacts of supply chain activities. 

Moreover, they struggle to address the inherent uncertainties and complexities related to sustainability, 

which frequently involve vague or incomplete information, making it challenging to arrive at precise 

decisions. The limitations of traditional approaches in the context of SSCM underscore the need for 

innovative methodologies that can better accommodate the nuances of sustainability, acknowledge the 

intricacies of decision-making in the presence of ambiguity, and provide comprehensive insights into the 

multifaceted dimensions of sustainability [9-12]. In this regard, the adoption of neutrosophic sets emerges 

as a promising avenue to overcome these limitations, allowing for a more nuanced and inclusive evaluation 

of sustainability factors in supply chain management, which will be explored in detail in this paper. 
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Neutrosophic sets, a mathematical framework introduced to address the complexities of 

uncertainty and ambiguity, offer a powerful and versatile tool for modeling and analyzing phenomena in 

SSCM. Neutrosophic sets extend the traditional binary logic of true or false to a trilemma of true, false, and 

indeterminate, allowing for a more nuanced representation of information. In the context of SSCM, where 

decision-making often involves incomplete or imprecise data and where the assessment of sustainability 

factors inherently carries elements of ambiguity, neutrosophic sets offer a means to capture and manage 

this inherent uncertainty. By embracing the indeterminate aspect of neutrosophic sets, supply chain 

professionals can better grapple with the complexities of sustainability, integrating it into decision-making 

processes, and fostering a more holistic and adaptive approach to SSCM. 

The primary objective of this research is to provide a comprehensive and inclusive examination of the 

application of neutrosophic set theory in the context of sustainable supply chain management. This study 

seeks to achieve the following key goals: 

 Factor Assessment: Analyze and assess the multifaceted factors that influence the performance 

and sustainability of supply chains, accounting for their inherent uncertainty and ambiguity using 

neutrosophic sets. 

 Theoretical Advancements: Explore the theoretical foundations of neutrosophic sets and their 

applicability in modeling and optimizing sustainable supply chain operations. 

 Decision Support: Discuss how the integration of neutrosophic sets can enhance decision support 

systems for sustainable supply chain management, aiding organizations in making more robust 

and adaptive choices. 

 Case Studies: Examine real-world case studies and practical applications of neutrosophic sets in 

sustainable supply chain management to illustrate the potential benefits and challenges of 

adopting this approach. 

The organization of the remaining of this paper is structured as follows: Section II reviews related work, 

Section III presents the methodology employed, Section IV provides results and analysis, Section V 

concludes the paper. This systematic arrangement ensures a comprehensive exploration of the application 

of neutrosophic sets in the context of SSCM. 

II. Related Works 

Herin, we delve into the existing body of research and literature related to both SSCM and the utilization 

of neutrosophic sets in decision-making. This review serves as the foundation for our study, offering 

insights into the current state of knowledge and highlighting gaps in the literature that our research aims 

to address. Shen et al. [6] proposed multi-attribute decision-making methods based on normal random 

variables for supply chain risk management, highlighting the importance of addressing uncertainties in 

supply chain operations.  Yang and Guo [7] conducted research on the evaluation of public emergency 

management intelligence capability in probabilistic language environments, emphasizing the relevance of 

probabilistic approaches in assessing complex scenarios. Liu et al. [8] performed an uncertainty analysis 

for offshore wind power investment decisions, showcasing the applicability of real options approaches in 

managing uncertain investment environments.  Biswas et al. [9] presented a multi-criteria-based stock 

selection framework for emerging markets, emphasizing the importance of multi-criteria decision-making 

in investment decisions.  Vinogradova-Zinkevič et al. [10] conducted a comparative assessment of the 

stability of AHP and FAHP methods, shedding light on the comparative advantages of different decision-
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making techniques.  Ecer et al. [11] evaluated cryptocurrencies for investment decisions using a multi-

criteria methodology, underscoring the relevance of advanced decision-making techniques in the era of 

Industry 4.0.  Bhattacharjee et al. [12] applied Failure Mode and Effects Analysis (FMEA) using interval 

number-based BWM-MCDM approaches, highlighting the role of decision-making techniques in risk 

management. Yang et al. [13] explored a Bayesian-based approach for NIMBY crisis transformation in 

municipal solid waste incineration, showcasing the utility of Bayesian methods in addressing public 

concerns.  Ozturk [14] investigated structures on neutrosophic topological spaces, contributing to the 

theoretical foundation of neutrosophic set theory. Zakeri et al. [15] employed a grey approach for 

computing interactions between two groups of irrelevant variables in decision matrices, demonstrating the 

value of grey systems theory in decision analysis. Yin et al. [16] conducted research on module partition for 

remanufacturing parts to be assembled, highlighting the importance of efficient part management in 

sustainable practices.  Zhang et al. [17] developed a decision framework for the location and selection of 

container multimodal hubs, emphasizing the role of decision support systems in the context of 

infrastructure development under initiatives like the Belt and Road Initiative. 

III. Methodology 

Suggest an introductory paragraph to Methodology section that investigate different methods for  

3.1. m-Generalized q-Neutrosophic Numbers (mGqNN) 

mGqNN are a mathematical representation used to handle uncertainty, indeterminacy, and vagueness in 

a decision-making process, particularly in the context of SSCM. An mGqNN is characterized by three 

components: the membership degree (T), the indeterminacy degree (I), and the non-membership degree 

(F). These components quantify the degree of truth, indeterminacy, and falsity associated with a particular 

value or parameter. Mathematically, an mGqNN can be represented as: 

𝐴 = (𝑇𝐴 , 𝐼𝐴, 𝐹𝐴), (1) 

Where 𝑇𝐴 represents the membership degree (degree of truth) of an element 𝐴 in a specific set, indicating 

the extent to which 𝐴 belongs to the set. 𝐼𝐴 represents the indeterminacy degree, reflecting the degree of 

uncertainty or ambiguity in assessing the membership of 𝐴 in the set. 𝐹𝐴 represents the non-membership 

degree (degree of falsity), signifying the extent to which AA does not belong to the set.  The values of 

𝑇𝐴 , 𝐼𝐴,and 𝐹𝐴 lie within the interval [0, 1], and they satisfy the following constraint: 

𝑇𝐴 + 𝐼𝐴 + 𝐹𝐴 = 1 (2) 

The mGqNN framework provides a flexible and comprehensive way to represent and manipulate 

uncertainty in SSCM evaluation, allowing for a more nuanced understanding of the factors impacting 

sustainable supply chain performance and theory. 

 

m-Generalized q-neutrosophic sets (mGqNS) are a mathematical framework used to represent and handle 

uncertainty, indeterminacy, and vagueness in the context of decision-making, particularly in SSCM. An 

mGqNS is defined over a universal set UU and consists of three components: the membership function (𝜇), 

the indeterminacy function (𝜆), and the non-membership function (𝜈). These functions quantify the degrees 

to which elements of 𝑈 belong to, are indeterminate with respect to, or do not belong to a specific set 𝐴. 

Mathematically, an mGqNS can be represented as: 
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𝐴 = {(𝜇𝐴(𝑥), 𝜆𝐴(𝑥), 𝜈𝐴(𝑥)) },  𝑥 ∈ 𝑈. (3) 

where 𝜇𝐴(𝑥) represents the membership function, indicating the degree to which element 𝑥 belongs to set 

𝐴 . 𝜆𝐴(𝑥) represents the indeterminacy function, reflecting the degree of uncertainty or ambiguity in 

assessing the membership of element 𝑥 in set 𝐴. 𝜈𝐴(𝑥) represents the non-membership function, signifying 

the degree to which element 𝑥 does not belong to set 𝐴. These functions are defined for each element 𝑥 in 

the universal set 𝑈, and they satisfy the following constraints for every 𝑥 ∈ 𝑈: 

𝜇𝐴(𝑥) + 𝜆𝐴(𝑥) + 𝜈𝐴(𝑥) = 1 (4) 

This implies that the sum of the membership, indeterminacy, and non-membership degrees for each 

element xx is equal to 1. 

0 ≤  𝜇𝐴(𝑥) + 𝜆𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1 (5) 

This implies that the degrees are bounded within the interval [0, 1]. The mGqNS framework provides a 

versatile and comprehensive way to represent and manage uncertainty in SSCM decision-making, allowing 

for a more nuanced and context-aware assessment of factors impacting sustainable supply chain 

performance and theory within the universal set 𝑈. 

The operations between mGqNNs are defined as a fundamental aspect of this mathematical framework, 

crucial for processing and manipulating uncertainty within the context of SSCM. When performing 

operations on mGqNNs, denoted as 𝜓1and 𝜓2 a positive real number 𝜆 plays a central role in scaling the 

degree of indeterminacy, allowing for the adjustment of ambiguity levels in the mathematical operations. 

This scaling factor provides the flexibility to control the influence of uncertainty during calculations, 

ensuring that mGqNNs can effectively capture and manage various degrees of vagueness and 

indistinctness in SSCM decision-making processes. These defined operations empower decision-makers to 

perform comprehensive and context-sensitive analyses, making mGqNNs a versatile tool for addressing 

the complexities of sustainability within supply chains. 

𝜓1 ⊕ 𝜓2 = (1 − (1 − 𝜁1
𝑞

)(1 − 𝜁2
𝑞

))
1
𝑞 , 𝜗1𝜗2, 𝜂1𝜂2, (6) 

𝜓1 ⊗ 𝜓2 = 𝜁1𝜁2, (1 − (1 − 𝜗1
𝑞

)(1 − 𝜗2
𝑞

))
1
𝑞 , (1 − (1 − 𝜂1

𝑞
)(1 − 𝜂2

𝑞
))

1
𝑞 , (7) 

𝜆 ∗ 𝜓1 = (1 − (1 − 𝜁1
𝑞

)𝜆)
1
𝑞 , 𝜗1

𝜆, 𝜂1
𝜆 , (8) 

𝜆 ⊙ 𝜓1 = 𝜁1
𝜆, (1 − (1 − 𝜗1

𝑞
)𝜆)

1
𝑞 , (1 − (1 − 𝜂1

𝑞
)𝜆)

1
𝑞 , (9) 

𝜓1
𝑐 = 𝜂1, 1 − 𝜗1, 𝜁1. (10) 

 

The calculation of the mGqNN score function is determined by: 

𝑆(𝜓) =
3 + 3𝜁𝑞 − 2𝜗𝑞 − 𝜂𝑞

6
. (11) 

  

In the realm of mGqNNs, ranking plays a pivotal role in decision-making processes involving multiple 

elements or alternatives. The ranking procedure is established in descending order, primarily relying on 

score function values. In cases where two or more mGqNNs yield identical score function values, they are 
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assigned the same rank, ensuring fairness and consistency in the ranking process. This ranking 

methodology serves as a crucial step in discerning the most preferred alternatives or elements within the 

context of SSCM. To facilitate aggregation and decision-making among these ranked mGqNNs, the 

mGqNWAA offers a formalized approach to combine their information, enabling SSCM practitioners to 

make informed and comprehensive choices while considering the intricacies of uncertainty and vagueness 

inherent in supply chain sustainability assessments. The calculation of the mGqNN score function is 

determined as follows: 

mGqNWAA(𝜓1 , … , 𝜓𝑝) = (
3

𝑚
− ∏  

𝑝

𝑘=1

(
3

𝑚
− 𝜁

𝑘

𝑞𝑚
3 )

𝑤𝑘

)

3
𝑞𝑚

, ∏  

𝑝

𝑘=1

𝜗𝑘
𝑤𝑘 , ∏  

𝑝

𝑘=1

𝜂𝑘
𝑤𝑘 . (12) 

The m-Generalized g-Neutrosophic Weighted Geometric Aggregation (mGqNWGA) operator is computed 

as follows: 

mGqNWGA(𝜓1, … , 𝜓𝑝)

= ∏  

𝑝

𝑘=1

𝜁𝑘
𝑤𝑘 , (

3

𝑚
− ∏  

𝑝

𝑘=1

(
3

𝑚
− 𝜗

𝑘

𝑞𝑚
3 )

𝑤𝑘

)

3
𝑞𝑚

, (
3

𝑚
− ∏  

𝑝

𝑘=1

(
3

𝑚
− 𝜂

𝑘

𝑞𝑚
3 )

𝑤𝑘

)

3
𝑞𝑚

. 
(13) 

Expert opinions can be effectively integrated into the criteria weighting process to enhance the 

comprehensibility and applicability of the methodology. In this study, the mGqNN framework employs a 

subjective weighting approach to accommodate expert preferences. These experts, despite their extensive 

knowledge in the research field, may not be familiar with intricate methods, which can potentially diminish 

the validity of their assessments. This is particularly relevant when dealing with complex weighting or 

prioritization techniques that involve iterative or sequential comparisons. The adopted approach in this 

study, however, prioritizes the comfort and confidence of experts by providing them with a valid and 

secure platform to express their preferences. The process for obtaining criteria weight values follows 

specific steps, ensuring a methodological approach that aligns with both the complexity of the task and the 

expertise of the participants. 

In the first step of the criteria weighting process, obtaining linguistic assessments from experts is a crucial 

endeavor. Experts, (𝑗 = 1, … , 𝑝) 𝜍𝑗
(𝑘)

= 𝜁𝑗
(𝑘)

, 𝜗𝑗
(𝑘)

, 𝜂𝑗
(𝑘)

, are tasked with evaluating the relative importance 

levels of various criteria (𝑗 = 1, … , 𝑛), and they do so by employing a range of linguistic expressions 

provided in Table 1. These linguistic expressions serve as a structured and standardized framework that 

allows experts to convey their judgments in a clear and comprehensible manner. By using this linguistic 

scale, experts can express their subjective perceptions of the significance of each criterion, facilitating the 

subsequent steps of the weighting process. This step not only ensures that expert opinions are effectively 

captured but also contributes to the overall transparency and consistency of the criteria weighting 

procedure, aligning it with the experts' preferences and levels of familiarity with the methodology. 

In the second step of the criteria weighting process, the determination of weights for expert 

evaluations is a pivotal task. This step involves translating the linguistic expressions from Table 1, which 

experts used to assess the importance levels of criteria, into numerical weight values. By mapping this 

linguistic expression to precise weight values, the subjective evaluations provided by the experts are 

transformed into quantifiable metrics. This conversion process is essential for creating a quantitative 

foundation upon which further calculations and analyses can be based. It not only ensures the rigor and 

consistency of the criteria weighting methodology but also respects the preferences, 𝜉𝑘 = (𝜁𝑘 , 𝜗𝑘 , 𝜂𝑘) , of the 

experts who, as previously discussed, prioritize simplicity and clarity in the assessment process. This step 
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lays the groundwork for subsequent stages in the decision-making process, where the weighted criteria 

play a significant role in evaluating and ranking alternatives or elements within the SSCM context. 

ύ𝑘 =

3 + 3𝜁𝑘
𝑞 − 2𝜗𝑘

𝑞 − 𝜂𝑘
𝑞

6

∑  𝑝
𝑘=1

3 + 3𝜁𝑘
𝑞

− 2𝜗𝑘
𝑞

− 𝜂𝑘
𝑞

6

 𝑘 = (1,2, . . , 𝑝), (14) 

  

In the third step of the criteria weighting process, the integration of experts' assessments is a pivotal stage 

in establishing the overall importance levels for criteria within the mGqNN framework. This integration is 

achieved through the application of Eq. (14), which serves as an aggregation mechanism for combining the 

mGqNNs associated with each linguistic expression provided by the experts. By aggregating these 

mGqNNs, a holistic and comprehensive representation of the criteria's importance levels is attained. This 

step embodies the essence of collective expert judgment, where the diverse opinions and assessments 

provided by experts are harmonized into a coherent and unified perspective on the relative importance of 

criteria in the context of SSCM. The resulting integrated importance levels serve as a foundational element 

for subsequent decision-making processes, allowing for well-informed and balanced evaluations of SSCM 

alternatives or elements. 

𝜔𝑗 = (
3

𝑚
− ∏  

𝑝
𝑘=1 (

3

𝑚
− 𝜁

𝑗

(𝑘)
𝑞𝑚

3 )
ύ𝑘

)

3

𝑞𝑚

, ∏  
𝑝
𝑘=1 𝜗𝑗

(𝑘)ύ𝑘 , ∏  
𝑝
𝑘=1 𝜂𝑗

(𝑘)ύ𝑘    (15) 

In the fourth and final step of the criteria weighting process, the calculation of criteria weights is executed, 

providing a quantitative representation of the relative importance of each criterion. This calculation is 

carried out using the prescribed formula, which encapsulates the integrated importance levels obtained in 

the previous step. 

𝑤𝑗 =

3 + 3𝜁𝑗
𝑞 − 2𝜗𝑗

𝑞 − 𝜂𝑗
𝑞

6

∑  𝑛
𝑗=1

3 + 3𝜁𝑗
𝑞 − 2𝜗𝑗

𝑞 − 𝜂𝑗
𝑞

6

𝑗 = (1,2, . . , 𝑛), (16) 

 

Table 1: Linguistic Expressions for Expert Assessments of Criteria Importance Levels 

Linguistic Expression for Evaluating the 

Significance of Criteria 

Rating Linguistic 

Expression 

Neutrosophic 

value 

Extremely High Significance (EHS) Exceptionally Excellent 

(EE) 

(0.95, 0.03, 0.02) 

Very Very High Significance (VVHS) Remarkably Good (RG) (0.85, 0.10, 0.05) 

Very High Significance (VHS) Very Good (VG) (0.75, 0.15, 0.10) 

High Significance (HS) Good (G) (0.65, 0.20, 0.15) 

Above Average Significance (AAS) Moderately Good (MG) (0.55, 0.25, 0.20) 

Average Significance (AS) Fair (F) (0.50, 0.30, 0.20) 

Below Average Significance (BAS) Moderately Low (ML) (0.45, 0.35, 0.20) 

Low Significance (LS) Low (L) (0.35, 0.45, 0.20) 

Very Low Significance (VLS) Very Low (VL) (0.25, 0.55, 0.20) 

Very Very Low Significance (VVLS) Remarkably Low (RL) (0.15, 0.65, 0.20) 

Extremely Low Significance (ELS) Exceptionally Low (EL) (0.05, 0.85, 0.10) 



Neutrosophic Sets and Systems, Vol. 58, 2023          270  

 

 
Mahmoud M. Ismail, Mahmoud M. Ibrahim and Shereen Zaki, A Neutrosophic Approach for Multi-Factor Analysis of 
Uncertainty and Sustainability of Supply Chain Performance 

 

The MULTIMOORA-mGqNN methodology represents a significant advancement in the field of decision-

making, particularly in the complex domain of SSCM. Combining the MULTIMOORA (Multi-Objective 

Optimization by Ratio Analysis plus the Full Multiplicative Form) approach with the power of mGqNN, 

this hybrid framework offers a comprehensive solution to the multifaceted challenges SSCM practitioners 

face. MULTIMOORA, renowned for its effectiveness in multi-criteria decision analysis, provides a robust 

foundation for evaluating alternatives across various criteria. The integration of mGqNN enhances this 

approach by addressing the inherent uncertainties and vagueness associated with SSCM assessments. By 

leveraging mGqNN's capability to capture and manage degrees of truth, indeterminacy, and falsity, 

MULTIMOORA-mGqNN empowers decision-makers to make well-informed, context-aware choices while 

considering the intricate interplay of economic, social, and environmental factors in supply chain 

sustainability. This amalgamation of methodologies stands as a testament to the evolving landscape of 

decision science, ushering in a new era of informed, nuanced, and sustainable decision-making within 

supply chain management. 

In the MULTIMOORA-mGqNN methodology, the decision-making process unfolds through a series of 

well-defined steps, each contributing to the comprehensive evaluation of alternatives within the context of 

Sustainable Supply Chain Management (SSCM). 

Step 1: Constructing the Decision Matrix The initial step involves the construction of the decision matrix, 

a foundational component of decision analysis. In this stage, experts actively engage in assessing the 

various alternatives using the linguistic expressions provided in Table 1. These expressions facilitate a 

structured and consistent approach to evaluating the alternatives, capturing the experts' nuanced 

judgments regarding the criteria under consideration. This step forms the basis for subsequent analyses, 

ensuring that the subjective assessments of the alternatives align with the linguistic terms chosen to express 

their performance across the criteria. 

Step 2: Determining Weights of Experts' Evaluation Following the assessment of alternatives, Step 2 

focuses on determining the weights of experts' evaluations. This critical task aims to transform the linguistic 

assessments into numerical weight values, allowing for the quantification of the experts' subjective 

judgments. The importance levels assigned by experts to their evaluations are computed in accordance 

with the procedure specified in Step 2 of the mGqNN subjective weighting approach. This conversion of 

linguistic expressions into numerical weights establishes a robust foundation for subsequent calculations, 

facilitating a quantitative representation of the experts' assessments and their relative significance in the 

decision-making process. 

 

Step 3: Constructing the Integrated mGqNN Decision Matrix In Step 3, the integrated mGqNN decision 

matrix takes shape as the evaluations provided by experts are harmonized into a unified representation. 

This integration is achieved through the application of Eq. (17), a mathematical mechanism designed to 

aggregate the individual mGqNN assessments. By combining the mGqNNs, this step creates a holistic view 

of the alternatives, incorporating the diverse perspectives of experts into a single, comprehensive matrix. 

The result is a powerful representation of the alternatives' performance that accounts for the degrees of 

truth, indeterminacy, and falsity present in the experts' judgments, setting the stage for a nuanced analysis 

of SSCM alternatives. 
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𝑝

𝑘=1

𝑓𝑖𝑗

(𝑘)ύ𝑘    ( 𝑖 = 1,2, … , 𝑚;  𝑗 = 1,2, . . , 𝑛), (17) 

with 𝑥𝑖𝑗 = (𝑡𝑖𝑗 , 𝑏𝑖𝑗 , 𝑓𝑖𝑗) 

Step 4: Application of the Ratio System The final step, Step 4, introduces the application of the ratio 

system, a fundamental aspect of the MULTIMOORA-mGqNN methodology. This system, executed 

through Eq. (18), plays a pivotal role in evaluating and ranking the alternatives based on the integrated 

mGqNN decision matrix. By leveraging the ratio system, decision-makers can make informed choices, 

taking into account the weighted criteria, the integrated mGqNN assessments, and the intricacies of SSCM. 

This step transforms the extensive groundwork laid in previous stages into actionable insights, facilitating 

the selection of sustainable alternatives that align with the specific goals and priorities of the decision-

makers in the SSCM domain. 

𝑄𝑖 = ∑  
𝑗∈𝐽𝑏

𝑤𝑗𝑥𝑖𝑗 + (∑  
𝑗∈𝐽𝑐

𝑤𝑗𝑥𝑖𝑗)𝑐 (𝑖 = 1,2, … , 𝑚), (18) 

 

Step 5, this step the MULTIMOORA-mGqNN methodology, the focus shifts to the application of the 

reference point, a critical stage that facilitates a more refined evaluation and ranking of alternatives within 

the context of SSCM. During this step, two crucial calculations are performed: the deviation from the 

reference point and the Min-Max metric of the Tchebycheff norm. 

min
𝑖

(
max

𝑗 |𝐷(𝑟𝑗 − 𝑤𝑗𝑥𝑖𝑗)|) (𝑖 = 1,2, … , 𝑚; 𝑗 = 1,2, . . , 𝑛)  (19) 

The reference point, in essence, serves as a benchmark or ideal state against which the performance of 

alternatives is assessed. It represents the desired values or attributes that SSCM practitioners aim to achieve 

or maintain within their supply chain processes. By establishing this reference point, decision-makers can 

gauge how well each alternative aligns with their sustainability goals and objectives. 

𝑟𝑗 =
max

𝑗 (𝑤𝑗𝑥𝑖𝑗) (𝑖 = 1,2, … , 𝑚; 𝑗 = 1,2, . . , 𝑛) (20) 

 

The deviation from the reference point is a quantitative measure of how far each alternative deviates from 

the ideal state represented by the reference point. This deviation calculation considers the mGqNNs 

associated with each alternative's performance across the criteria. It provides decision-makers with 

valuable insights into the extent to which each alternative fulfills or falls short of their sustainability targets. 

𝐷(𝜓1, 𝜓2) = √
1

3
((𝜁1

𝑞
− 𝜁2

𝑞
)2 + (𝜗1

𝑞
− 𝜗2

𝑞
)2 + (𝜂1

𝑞
− 𝜂2

𝑞
)2). (21) 

  

The Min-Max metric of the Tchebycheff norm, on the other hand, offers a systematic and objective approach 

to evaluating alternatives based on their deviations from the reference point. This metric accounts for the 

degree of importance assigned to each criterion, as determined in earlier steps of the methodology. It 

enables decision-makers to identify the alternative that minimizes the maximum deviation across all 

criteria, reflecting a balanced and optimal solution within the constraints of SSCM. 
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Step 5, therefore, represents a critical phase where quantitative assessments are made, and the Min-Max 

metric allows for the identification of the most suitable alternative that best aligns with the reference point's 

sustainability objectives. This step empowers decision-makers to make data-driven choices, taking into 

consideration both the ideal state they strive to achieve and the real-world complexities of supply chain 

sustainability, ultimately enhancing their ability to select alternatives that contribute positively to SSCM 

goals. 

Step 6 marks a pivotal stage in the MULTIMOORA-mGqNN methodology, where the focus is on 

implementing the full multiplicities form to further refine the evaluation of alternatives within the domain 

of Sustainable Supply Chain Management (SSCM). This step involves the minimization of a purely 

multiplicative utility function, a sophisticated approach that takes into account the complexities and 

nuances associated with SSCM assessments. By leveraging this utility function, decision-makers can 

effectively balance the impact of criteria and the performance of alternatives, resulting in a comprehensive 

evaluation that captures both the positive and negative aspects of each alternative. Step 6, therefore, 

enhances the robustness of the decision-making process by offering a more nuanced and balanced 

perspective on the sustainability of SSCM alternatives. 

𝑈𝑖 =
𝑠(𝐴𝑖)

𝑠(𝐵𝑖)
(𝑖 = 1,2, … , 𝑚), (22) 

𝐴𝑖 = ∏  
𝑗∈𝐽𝑏

𝑤𝑗𝑥𝑖𝑗  (𝑖 = 1,2, … , 𝑚),  (23) 

𝐵𝑖 = ∏  
𝑗∈𝐽𝑐

𝑤𝑗𝑥𝑖𝑗 (𝑖 = 1,2, … , 𝑚). (24) 

Step 7: Ranking Alternatives In the final step, Step 7, the culmination of the MULTIMOORA-mGqNN 

methodology occurs through the ranking of alternatives. After an exhaustive evaluation process that 

includes the integration of mGqNNs, the application of a reference point, and the utilization of the full 

multiplicities form, decision-makers are equipped with a wealth of information about the performance of 

alternatives across diverse criteria. This step compiles this information into a clear and concise ranking of 

alternatives based on their alignment with SSCM goals and objectives. By applying a systematic and 

rigorous ranking methodology, decision-makers can readily identify the most suitable alternatives that best 

address the specific sustainability challenges and priorities of their supply chain. Step 7 represents the 

culmination of the decision-making process, providing decision-makers with actionable insights and a 

ranked order of alternatives that can guide their choices and investments in SSCM. 

IV. Results and Analysis 

The section serves as the heart of our study, where we delve into the substantive findings and 

comprehensive assessments derived from the application of the MULTIMOORA-mGqNN methodology to 

the domain of SSCM. In this section, we present a wealth of quantitative and qualitative data, shedding 

light on the performance of SSCM alternatives, the prioritization of criteria, and the intricate dynamics of 

decision-making within the realm of sustainability. Our analysis seeks to unravel the complexities, 

uncertainties, and nuances inherent in SSCM, offering a structured and data-driven approach to evaluating 

alternatives and informing strategic choices. In Table 2, we present a comprehensive breakdown of the 

criteria essential for the evaluation of Sustainable Supply Chain Management (SSCM). This table not only 

provides a list of these criteria but also offers detailed explanations for each, ensuring clarity and 

understanding of their relevance in the context of SSCM. The criteria outlined in Table 2 serve as the 
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foundation for the subsequent evaluations and assessments, enabling a structured and systematic analysis 

of the sustainability aspects within the supply chain. 

 

Table 2: Criteria and Explanations for SSCM 

Group Name Criteria Explanation 

Environmental 

Sustainability 

Environmental Impact 

(E1) 

Assessing the ecological footprint of supply chain 

activities, including emissions and resource use. 

Energy Efficiency (E2) Evaluating energy consumption and efficiency in 

supply chain activities, including transportation and 

operations. 

Waste Management (E3) Examining waste reduction, recycling, and 

sustainable disposal practices within the supply 

chain. 

Social 

Responsibility 

Social Responsibility (S1) Evaluating the supply chain's commitment to ethical 

labor practices, diversity, and community 

engagement. 

Supplier Relations (S2) Assessing relationships with suppliers, including 

communication, collaboration, and ethical sourcing 

practices. 

Customer Satisfaction 

(S3) 

Assessing the satisfaction levels of end customers in 

terms of product quality, delivery, and service. 

Economic 

Performance 

Economic Efficiency (C1) Analyzing cost-effectiveness, resource utilization, 

and financial sustainability within the supply chain. 

Innovation and 

Technology Integration 

(C2) 

Measuring the adoption of innovative technologies 

and practices to enhance supply chain efficiency and 

sustainability. 

Regulatory Compliance 

(C3) 

Ensuring adherence to relevant laws, regulations, 

and industry standards across the supply chain. 

Product Quality Product Quality (P1) Measuring the consistency and quality of products or 

services delivered throughout the supply chain. 

Supply Chain 

Transparency (P2) 

Assessing the degree to which supply chain 

operations and processes are open and transparent 

to stakeholders. 

Resilience to Disruptions 

(P3) 

Evaluating the supply chain's ability to adapt and 

recover from disruptions such as natural disasters or 

pandemics. 

 

 

Moving forward, Table 3 illustrates the outcomes of the experts' assessments regarding the importance 

levels assigned to the identified criteria. These assessments are a critical component of the decision-making 

process, as they reflect the expert perspectives on the relative significance of each criterion in achieving 

SSCM goals. Table 3 provides a transparent representation of these importance levels, establishing a 

quantitative basis for the subsequent weighting and integration processes. 
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Table 3: Experts' Assessments of Criteria Importance Levels 

Decision 

Maker 

(DM) 

E1 E2 E3 S1 S2 S3 C1 C2 C3 P1 P2 P3 

DM1 HS HS HS HS VVHS VVHS HS AAS AAS HS HS HS 

DM2 AAS AAS HS AAS AAS HS HS VVHS HS AAS AAS AAS 

DM3 HS HS HS HS AAS AAS AAS AAS HS LS LS LS 

DM4 HS LS AAS LS HS HS BAS BAS LS LS LS AAS 

DM5 VVHS BAS AAS BAS VVHS HS HS HS HS HS AAS AAS 

DM6 HS HS HS HS AAS AAS HS HS HS LS HS AAS 

DM7 HS HS HS HS VVHS AAS HS HS HS HS AAS AAS 

 

 

Table 4 represents the outcomes of the integration of linguistic assessments from Table 4, resulting in 

numerical values that quantify the experts' evaluations. This integration is a pivotal step that transforms 

subjective linguistic expressions into quantitative data, facilitating rigorous analyses within the mGqNN 

framework. The values in Table 4 lay the groundwork for further calculations and assessments, offering a 

comprehensive picture of the criteria's relative importance. 

Table 4: Integrated Importance Levels for SSCM Criteria 

 E1 E2 E3 S1 S2 S3 

Integrated (0.59, 0.33, 0.29) (0.63, 0.31, 

0.39) 

(0.57, 0.22, 

0.31) 

(0.58, 0.38, 

0.51) 

(0.49, 0.51, 

0.62) 

(0.50, 0.36, 

0.46) 
𝝎𝒋 0.9235 0.8343 0.8187 0.5874 0.5934 0.5988 

𝝎𝒋 0.1452 0.0804 0.1017 0.2271 0.3669 0.0742 

 C1 C2 C3  P1 P2 P3 

Integrated (0.57, 0.37, 0.36) (0.63, 0.32, 

0.34) 

(0.61, 0.37, 

0.33) 

(0.51, 0.37, 

0.32) 

(0.66, 0.25, 

0.55) 

(0.66, 0.33, 

0.29) 
𝝎𝒋 0.9106 0.8429 0.7343 0.7876 0.9503 0.7377 
𝝎𝒋 0.3015 0.2415 0.0646 0.2584 0.1731 0.1909 

 

In Table 5, we present the linguistic evaluations assigned to the alternatives considered in the SSCM 

problem solution. These evaluations provide insights into how each alternative performs across the criteria, 

capturing the nuances and variations in their sustainability attributes. Table 5 serves as a crucial reference 

point for the subsequent steps in the decision-making process, enabling a holistic evaluation of SSCM 

alternatives. 

 

Table 5: Linguistic Evaluations for SSCM Alternatives 

Decision 

Maker 

Alternative E1 E2 E3 S1 S2 S3 C1 C2 C3 P1 P2 P3 

DM1 Alt1 G VG F EE G G VG VG G VG EE G 
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DM1 Alt2 VG VG G VG G G VG EE G G G G 

DM1 Alt3 G G G G VG VG EE G G L L L 

DM2 Alt1 G VG F EE G G VG VG G VG EE G 

DM2 Alt2 VG VG G VG G G VG EE G G G G 

DM2 Alt3 G G G G VG VG EE G G L L L 

DM3 Alt1 G VG F EE G G VG VG G VG EE G 

DM3 Alt2 VG VG G VG G G VG EE G G G G 

DM3 Alt3 G G G G VG VG EE G G L L L 

DM4 Alt1 G VG F EE G G VG VG G VG EE G 

DM4 Alt2 VG VG G VG G G VG EE G G G G 

DM4 Alt3 G G G G VG VG EE G G L L L 

DM5 Alt1 G VG F EE G G VG VG G VG EE G 

DM5 Alt2 VG VG G VG G G VG EE G G G G 

DM5 Alt3 G G G G VG VG EE G G L L L 

DM6 Alt1 G VG F EE G G VG VG G VG EE G 

DM6 Alt2 VG VG G VG G G VG EE G G G G 

DM6 Alt3 G G G G VG VG EE G G L L L 

DM7 Alt1 G VG F EE G G VG VG G VG EE G 

DM7 Alt2 VG VG G VG G G VG EE G G G G 

DM7 Alt3 G G G G VG VG EE G G L L L 

 

Moving on to Table 6, we present the integrated decision matrix, a key outcome of the MULTIMOORA-

mGqNN methodology. This matrix consolidates the assessments of alternatives by integrating mGqNNs, 

providing a comprehensive view of their performance across the identified criteria. Table 6 encapsulates 

the complexities of SSCM evaluations, offering decision-makers a structured and data-driven foundation 

for their choices. 

Table 6: Integrated Decision Matrix for SSCM Alternatives 

 E1 E2 E3 S1 S2 S3 

Alt1 0.316, 0.777, 

0.765 

0.777, 0.765, 

0.411 

0.765, 0.411, 

0.136 

0.411, 0.136, 

0.897 

0.136, 0.897, 

0.068 

0.897, 0.068, 

0.42 

Alt2 0.053, 0.033, 

0.077 

0.033, 0.077, 

0.764 

0.077, 0.764, 

0.207 

0.764, 0.207, 

0.847 

0.207, 0.847, 

0.929 

0.847, 0.929, 

0.005 

Alt3 0.274, 0.173, 

0.769 

0.173, 0.769, 

0.121 

0.769, 0.121, 

0.608 

0.121, 0.608, 

0.271 

0.608, 0.271, 

0.78 

0.271, 0.78, 

0.419 

 C1 C2 C3  P1 P2 P3 

Alt1 0.199, 0.351, 

0.29 

0.351, 0.29, 

0.219 

0.29, 0.219, 

0.506 

0.219, 0.506, 

0.749 

0.506, 0.749, 

0.27 

0.749, 0.27, 

0.085 

Alt2 0.296, 0.523, 

0.047 

0.523, 0.047, 

0.345 

0.047, 0.345, 

0.115 

0.345, 0.115, 

0.121 

0.115, 0.121, 

0.27 

0.121, 0.27, 

0.896 

Alt3 0.565, 0.246, 

0.176 

0.246, 0.176, 

0.226 

0.176, 0.226, 

0.022 

0.226, 0.022, 

0.874 

0.022, 0.874, 

0.912 

0.874, 0.912, 

0.112 

 

V. Conclusions 
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This paper has introduced an innovative approach for assessing and selecting Sustainable Supply Chain 

Management (SSCM) strategies and theories using the MULTIMOORA-mGqNN method. By integrating 

m-generalized q-neutrosophic numbers (mGqNN) into the decision-making framework, we have 

demonstrated the versatility and robustness of this approach in handling uncertainty and ambiguity 

inherent to SSCM. Through a systematic evaluation process involving linguistic assessments by multiple 

decision makers, we have effectively ranked SSCM alternatives and identified optimal strategies to enhance 

sustainability performance. Moreover, the incorporation of mGqNN in the MULTIMOORA-mGqNN 

method allows for comprehensive analysis and decision-making that considers various dimensions of 

SSCM, making it a valuable tool for researchers and practitioners striving to navigate the complex 

landscape of sustainability in supply chains.  In the era of growing environmental, social, and economic 

challenges, this paper contributes to the ongoing discourse on sustainable supply chain management by 

providing a methodological framework that can enhance decision-making processes. As sustainability 

continues to be a focal point in supply chain strategies, the MULTIMOORA-mGqNN method offers a 

promising avenue for addressing the multifaceted complexities of SSCM, fostering informed choices, and 

ultimately facilitating the transition towards more sustainable and responsible supply chains. 
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Abstract. An AG-groupoid is the midway between commutative semigroup and groupoid. The core structure

of Flock theory is an AG-groupoid, which focuses on motion replication and distance optimization and has

numerous applications in physics and biology. Unfortunately, in many cases, modelling real-world problems

in domains like computer science, operations research, artificial intelligence, control engineering, and robotics

can be risky. Different theories, such as fuzzy sets, intuitionistic fuzzy sets, probability, soft sets, neutrosophic

sets, and others, have been created to deal with similar situations. In this paper, We define the notions of

neutrosophic κ-ideal structures in an AG-groupoid and investigate their properties. We also obtain equivalent

assertion of neutrosophic κ-ideals and product of neutrosophic κ-structures in AG-groupoid.

Keywords: AG-groupoid;neutrosophic κ-structures; ideals; neutrosophic κ-ideals; neutrosophic κ-interior

ideals.

—————————————————————————————————————————-

1. Introduction

In [1], Zadeh pioneered the fuzzy set theory to model imprecise ideas in the globe. Atanassov

expanded fuzzy set theory principles and termed it Intuitionistic fuzzy set in [2]. In his opinion,

there are two types of degrees of freedom in an universe: non-membership in a specific subset

and membership in a vague subset. In [3], Rosenfeld proposed the notion of fuzziness in groups

and produced a number of results. Recently, several authors studied their research in this field,

and similar notions are used in variety of algebraic structures, including semigroups, semiring,

ordered semigroups, rings (refer, [4] - [14], [18]- [21]).

To deal with the uncertainty that exists everywhere, Smarandache suggested the notions of

neutrosophic sets in [15]. It’s a combination of fuzzy sets and intuitionistic fuzzy sets that’s

1
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been generalized. Neutrosophic sets are defined using these three properties, which include

membership functions for truth (T ), indeterminacy (I), and falsity (F ). These sets can be used

in a variety of fields to deal with the difficulties that result from ambiguous data. The relative

and absolute membership functions can be distinguished by a neutrosophic set. Smarandache

employed neutrosophic sets in non-standard analysis, such as control theory, decision making

theory, sports decision (winning/losing/tie), and so on.

In BCK-algebra, Muhiuddin et al. discovered an association between (ε, ε)-neutrosophic

subalgebra and (ε, ε)-neutrosophic ideal in [16], and Muhiuddin et al. created and investi-

gated neutrosophic implicative κ-ideal in [17]. Additionally, the connection between several

neutrosophic implicative κ-ideals were examined.

In semigroup, neutrosophic κ-subsemigroup and the ε-neutrosophic κ-subsemigroup were

defined and their different features were covered in [18] by Khan et al. We examined the

properties of various neutrosophic κ-structure notions, namely neutrosophic κ-ideal structures

in a semigroup, as inspiration from [18]. A neutrosophic κ-ideals in a semigroup were suggested

by B. Elavarasan et al. in [19] and different features were achieved. The comparable claims

for the typical neutrosophic κ-structure were also given.

Porselvi et al. studied a number of characteristics of the neutrosophic κ-bi-ideal in a semi-

group in [20], and neutrosophic κ-interior ideal in [21]. We have established equivalent claims

for regular semigroup. In [22], Elavarasan et al. presented and studied neutrosophic κ-filters in

semigroups. In [23], Muhiuddin and others proposed the concepts of neutrosophic κ-structures

in ordered semigroup, and examined their properties. Smarandache proposed neutrosophic

topologies in [26], Runu Dhar studied compactness and neutrosophic topological space in [27],

Sudeep Dey et al. presented neutrosophic composite relation in [28].

We present the ideas of neutrosophic κ-ideal structures in an AG-groupoid in this paper.

We prove that the product of two neutrosophic κ-right-ideal is a neutrosophic κ-bi-ideal,

and neutrosophic κ-right-ideal is equivalent to neutrosophic κ-interior-ideal, under certain

condition.

2. Preliminaries

Unless otherwise specified, M denotes an AG-groupoid throughout this paper. Here is a

glossary of the definitions we have already used for your perusal.

For M1,M2 ⊆ M , we denote (M1] = {k ∈ M : k ≤ m for some m ∈ M1} and M1M2 =

{k1k2 : for all k1 ∈ M1 and k2 ∈ M2}. Following [24] and [25], an AG-groupoid, M , is a

groupoid whose elements hold the left invertive law: (m1m2)k3 = (k3m2)m1 for allm1,m2, k3 ∈
M . An AG-groupoid structure lies between a commutative semigroup and a groupoid. In M ,

the medial law (m1m2)(k3k4) = (m1k3)(m2k4) for all m1,m2, k3, k4 ∈ M holds. If there is

G. Muhiuddin et. al., Neutrosophic κ-structures in an AG-groupoid
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an element e ∈ M 3 em = m ∀ m ∈ M , then e is the left identity. If M has a right

identity, then M is said to be commutative monoid. If M is having a left identity, then

(m1m2)(k3k4) = (k4k3)(m2m1) holds for all m1,m2, k3, k4 ∈ M . An element m ∈ M is said

to be idempotent if m2 = m.

Let M be an AG-groupoid and φ 6= M ⊆ M . Then M is called a AG-subgroupoid of

M (see [24]) if M2 ⊆ M. A subset M 6= φ in M is called a left(respectively, right) ideal if

MM ⊆ M (respectively, MM ⊆ M), and M is said to be an ideal if it is both a right and

a left ideal of M . A subset M 6= φ in M is said to be an interior ideal if (MM)M ⊆ M. A

subset M 6= φ in M is known as bi-ideal if (MM )M ⊆ M. A subset M 6= φ in M is said to

be a idempotent if MM = M.

Let M be an AG-groupoid. Then a function ν : M → [−1, 0] is the κ-function on M ,

and the set of all the κ-functions is given by F (M , [−1, 0]). A κ-structure is an ordered pair

(M , h) of M and an κ-function ν on M .

Definition 2.1. Let M be an AG-groupoid. A neutrosophic κ-structure in M is given in the

form:

Mζ :=
M

(Tζ , Iζ , Fζ)
=

{
k

(Tζ(k), Iζ(k), Fζ(k))
| k ∈M

}
,

where Tζ , Fζ and Iζ are the negative truth, negative falsity and negative indeterminacy mem-

bership functions respectively in M (κ-functions). Clearly, −3 ≤ Tζ(m) + Iζ(m) +Fζ(m) ≤ 0

∀ m ∈M .

Throughout this section, we assume that Mζ and Mξ are neutrosophic κ-structures in M ,

unless otherwise stated.

Notation 1. We denote the set of

(i) neutrosophic κ-left ideal by Ml,

(ii) neutrosophic κ-right ideal by Mr,

(iii) neutrosophic κ-ideal by Mi,

(iv) neutrosophic κ-bi-ideal by Mb,

(v) neutrosophic κ-interior ideal by Mn,

(vi) neutrosophic κ-AG-subgroupoid by Ms.

(vii) neutrosophic κ-idempotent by Md.

Definition 2.2. Let Mζ ∈M . Then Mζ ∈Ms provided the below condition is valid:

(∀m1,m2 ∈M )

 Tζ(m1m2) ≤ Tζ(m1) ∨ Tζ(m2)

Iζ(m1m2) ≥ Iζ(m1) ∧ Iζ(m2)

Fζ(m1m2) ≤ Fζ(m1) ∨ Fζ(m2)

 .
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Let ν, γ, ω ∈ [−1, 0]. Consider the sets:

T νζ =
{
m1 ∈M | Tζ(m1) ≤ ν

}
,

Iγζ =
{
m1 ∈M | Iζ(m1) ≥ γ

}
,

Fωζ =
{
m1 ∈M | Fζ(m1) ≤ ω

}
.

The set Mζ(ν, γ, ω) :=
{
m1 ∈ M | Tζ(m1) ≤ ν, Iζ(m1) ≥ γ, Fζ(m1) ≤ ω

}
is known as

(ν, γ, ω)-level set on Mζ . Obviously, Mζ(ν, γ, ω) = T νζ ∩ I
γ
ζ ∩ F

ω
ζ .

Definition 2.3. Let Mζ ∈M . Then Mζ ∈Mi provided the below conditions are valid:

(i) (∀m1,m2 ∈M )

 Tζ(m1m2) ≤ Tζ(m2)

Iζ(m1m2) ≥ Iζ(m2)

Fζ(m1m2) ≤ Fζ(m2)

 .

(ii) (∀m1,m2 ∈M )

 Tζ(m1m2) ≤ Tζ(m1)

Iζ(m1m2) ≥ Iζ(m1)

Fζ(m1m2) ≤ Fζ(m1)

 .

If condition (i) hold, then Mζ ∈Ml. If condition (ii) hold, then Mζ ∈Mr.

Definition 2.4. Let Mζ ∈Ms.Then Mζ ∈Mb if the below assertion is valid:

(∀a, k1, k2 ∈M )

 Tζ(k1ak2) ≤ Tζ(k1) ∨ Tζ(k2)
Iζ(k1ak2) ≥ Iζ(k1) ∧ Iζ(k2)
Fζ(k1ak2) ≤ Fζ(k1) ∨ Fζ(k2)

 .

It is obvious that for any Mζ ∈Mi, we have Mζ ∈Mb. The converse need not be true, as

shown by an example.

Example 2.5. Suppose M := {x1, x2, x3, x4, x5}. Then (M , .) is an AG-groupoid as given

below:

. x1 x2 x3 x4 x5

x1 x1 x4 x1 x4 x4

x2 x1 x2 x1 x4 x4

x3 x1 x4 x3 x4 x5

x4 x1 x4 x1 x4 x4

x5 x1 x4 x3 x4 x5

Let

Mζ =

{
x1

(−0.8,−0.2,−0.6) ,
x2

(−0.5,−0.9,−0.1) ,
x3

(−0.3,−0.4,−0.5) ,
x4

(−0.8,−0.2,−0.6) ,
x5

(−0.2,−0.5,−0.1)

}
.

Then Mζ ∈Mb, and Mζ /∈Mi as TM (x3x5) = −0.2 > TM (x3), IM (x3x5) = −0.5 < IM (x3)

and FM (x3x5) = −0.1 > FM (x3).
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Definition 2.6. Let Mζ ∈Ms.Then Mζ ∈Mn provided the below assertion is valid:

(∀a,m1,m2 ∈M )

 Tζ(m1am2) ≤ Tζ(a)

Iζ(m1am2) ≥ Iζ(a)

Fζ(m1am2) ≤ Fζ(a)

 .

It is obvious that for any Mζ ∈Mi, we have Mζ ∈Mn. The converse is not true, as shown

by an example.

Example 2.7. Let M be the collection of all positive integers with 0 except 1. Then under

usual multiplication, M is an AG-groupoid.

Let

Mζ =

{
0

(−0.8,−0.2,−0.8) ,
2

(−0.3,−0.4,−0.5) ,
5

(−0.5,−0.6,−0.6) ,
10

(−0.2,−0.5,−0.3) ,
otherwise

(−0.8,−0.2,−0.4)

}
.

Then Mζ ∈Mn, and Mζ /∈Mi, as TM (2.5) = −0.2 > TM (2) and TM (2.5) = −0.2 > TM (5).

Definition 2.8. For any Z ⊆M , the characteristic neutrosophic χ-structure in M is refered

as

χZ (Mζ) =
M

(χZ (T )ζ , χZ (I)ζ , χZ (F )ζ)

where

χZ (T )ζ : M → [−1, 0], m1 7→

−1 if m1 ∈ Z

0 otherwise,

χZ (I)ζ : M → [−1, 0], m1 7→

0 if m1 ∈ Z

−1 otherwise,

χZ (F )ζ : M → [−1, 0], m1 7→

−1 if m1 ∈ Z

0 otherwise.

Definition 2.9. Let Mξ := M
(Tξ,Iξ,Fξ)

∈M and Mζ := M
(Tζ ,Iζ ,Fζ)

∈M . Then

(i) Mξ is said to be a neutrosophic κ-substructure in Mζ , denote by Mζ ⊆Mξ, if Tζ(m1) ≥
Tξ(m1), Iζ(m1) ≤ Iξ(m1), Fζ(m1) ≥ Fξ(m1) for all m1 ∈M .

If Mξ ⊆Mζ and Mζ ⊆Mξ, then we write Mξ = Mζ .

(ii) The union of Mξ and Mζ over M is described as

Mξ ∪Mζ = Mξ∪ζ = (M ;Tξ∪ζ , Iξ∪ζ , Fξ∪ζ),

where ∀ m1 ∈M ,

(Tξ ∪ Tζ)(m1) = Tξ∪ζ(m1) = Tξ(m1) ∧ Tζ(m1),

(Iξ ∪ Iζ)(m1) = Iξ∩ζ(m1) = Iξ(m1) ∨ Iζ(m1),

(Fξ ∪ Fζ)(m1) = Fξ∪ζ(m1) = Fξ(m1) ∧ Fζ(m1).
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(iii) The intersection of Mξ and Mζ over M is described as

Mξ ∩Mζ = Mξ∩ζ = (M ;Tξ∩ζ , Iξ∩ζ , Fξ∩ζ),

where ∀ m1 ∈M ,

(Tξ ∩ Tζ)(m1) = Tξ∩ζ(m1) = Tξ(m1) ∨ Tζ(m1),

(Iξ ∩ Iζ)(m1) = Iξ∩ζ(m1) = Iξ(m1) ∧ Iζ(m1),

(Fξ ∩ Fζ)(m1) = Fξ∩ζ(m1) = Fξ(m1) ∨ Fζ(m1).

.

3. Main Results

We present some characteristics of neutrosophic κ-ideal structures in an AG-groupoid M .

In M , neutrosophic κ-ideals are clearly neutrosophic κ-interior ideals, but the converse is true

under certain conditions.

Theorem 3.1. For any M , (Mξ,�) is an AG-groupoid.

Proof. It is clear that (Mξ,�) is closed. Let Mξ,Mζ ,MR ∈M . Then for any t ∈M ,

((Tξ ◦ Tζ) ◦ TR)(t) = {(Tξ ◦ Tζ)(y) ∨ TR(z)}

=
∧
t=yz

{
∧
y=rs

{Tξ(r) ∨ Tζ(s)} ∨ TR(z)}

=
∧

t=(rs)z

{Tξ(r) ∨ Tζ(s) ∨ TR(z)}

=
∧

t=(zs)r

{TR(z) ∨ Tζ(s) ∨ Tξ(r)}

=
∧
t=ur

{(TR ◦ Tζ)(u) ∨ Tξ(r)}

= ((TR ◦ Tζ) ◦ Tξ)(t),

((Iξ ◦ Iζ) ◦ IR)(t) =
∨
t=yz

{(Iξ ◦ Iζ)(y) ∧ IR(z)}

=
∨
t=yz

{
∨
y=rs

{Iξ(r) ∧ Iζ(s)} ∧ IR(z)}

=
∨

t=(rs)z

{Iξ(r) ∧ Iζ(s) ∧ IR(z)}

=
∨

t=(zs)r

{IR(z) ∧ Iζ(s) ∧ Iξ(r)}

=
∧
t=ur

{(IR ◦ Iζ)(u) ∧ Iξ(r)}

= ((IR ◦ Iζ) ◦ Iξ)(t),
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((Fξ ◦ Fζ) ◦ FR)(t) =
∧
t=yz

{(Fξ ◦ Fζ)(y) ∨ FR(z)}

=
∧
t=yz

{
∧
y=rs

{Fξ(r) ∨ Fζ(s)} ∨ FR(z)}

=
∧

t=(rs)z

{Fξ(r) ∨ Fζ(s) ∨ FR(z)}

=
∧

t=(zs)r

{FR(z) ∨ Fζ(s) ∨ Fξ(r)}

=
∧
t=ur

{(FR ◦ Fζ)(u) ∨ Fξ(r)}

= ((FR ◦ Fζ) ◦ Fξ)(t).

Therefore (Mξ,�) is an AG-groupoid.

Corollary 3.2. For any Mξ,Mζ ,MR ,MQ ∈M , (Mξ�Mζ)� (MR �MQ) = (Mξ�MR)�
(Mζ �MQ).

Proof. Let Mξ,Mζ ,MR ,MQ ∈M . Then

(Tξ ◦Tζ) ◦ (TR ◦TQ) = ((TR ◦TQ) ◦Tζ) ◦Tξ) = ((Tζ ◦TQ) ◦TR) ◦Tξ) = (Tξ ◦TR) ◦ (Tζ ◦TQ),

(Fξ ◦Fζ)◦ (FR ◦FQ) = ((FR ◦FQ)◦Fζ)◦Fξ) = ((Fζ ◦FQ)◦FR)◦Fξ) = (Fξ ◦FR)◦ (Fζ ◦FQ)

and

(Iξ ◦ Iζ) ◦ (IR ◦ IQ) = ((IR ◦ IQ) ◦ Iζ) ◦ Iξ) = ((Iζ ◦ IQ) ◦ IR) ◦ Iξ) = (Iξ ◦ IR) ◦ (Iζ ◦ IQ).

Hence (Mξ �Mζ)� (MR �MQ) = (Mξ �MR)� (Mζ �MQ).

Theorem 3.3. If M has left identity, then for any Mξ,Mζ ,MR ,MQ ∈ M , we have the

following:

(i) Mξ � (Mζ �MR) = Mζ � (Mξ �MR),

(ii) (Mξ �Mζ)� (MR �MQ) = (MQ �MR)� (Mζ �Mξ).

Proof. (i) Let m ∈M . If m 6= xy for any x, y ∈M , then

(Tξ ◦ (Tζ ◦ TR))(m) = 0 = (Tζ ◦ (Tξ ◦ TR))(m),

(Iξ ◦ (Iζ ◦ IR))(m) = −1 = (Iζ ◦ (Iξ ◦ IR))(m),

(Fξ ◦ (Fζ ◦ FR))(m) = 0 = (Fζ ◦ (Fξ ◦ FR))(m).

Suppose m = yz for y, z ∈M . Then
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(Tξ ◦ (Tζ ◦ TR))(m) =
∧
m=yz

{Tξ(y) ∨ (Tζ ◦ TR)(z)}

=
∧
m=yz

{Tξ(y) ∨
∧
z=rs

{Tζ(r) ∨ TR(s)}}

=
∧

m=y(rs)

{Tξ(y) ∨ Tζ(r) ∨ TR(s)}

=
∧

m=r(ys)

{Tζ(r) ∨ Tξ(y) ∨ TR(s)}

=
∧
m=rp

{Tζ(r) ∨
∧
p=ys

{Tξ(y) ∨ TR(s)}}

=
∧
m=rp

{Tζ(r) ∨ (Tξ ◦ TR)(p)}

= (Tζ ◦ (Tξ ◦ TR))(m),

(Iξ ◦ (Iζ ◦ IR))(m) =
∨
m=yz

{Iξ(y) ∧ (Iζ ◦ IR)(z)}

=
∨
m=yz

{Iξ(y) ∧
∨
z=rs

{Iζ(r) ∧ IR(s)}}

=
∨

m=y(rs)

{Iξ(y) ∧ Iζ(r) ∧ IR(s)}

=
∨

m=r(ys)

{Iζ(r) ∧ Iξ(y) ∧ IR(s)}

=
∨
m=rp

{Iζ(r) ∧
∨
p=ys

{Iξ(y) ∧ IR(s)}}

=
∨
m=rp

{Iζ(r) ∧ (Iξ ◦ IR)(p)}

= (Iζ ◦ (Iξ ◦ IR))(m),

(Fξ ◦ (Fζ ◦ FR))(m) =
∧
m=yz

{Fξ(y) ∨ (Fζ ◦ FR)(z)}

=
∧
m=yz

{Fξ(y) ∨
∧
z=rs

{Fζ(r) ∨ FR(s)}}

=
∧

m=y(rs)

{Fξ(y) ∨ Fζ(r) ∨ FR(s)}

=
∧

m=r(ys)

{Fζ(r) ∨ Fξ(y) ∨ FR(s)}

=
∧
m=rp

{Fζ(r) ∨
∧
p=ys

{Fξ(y) ∨ FR(s)}}

=
∧
m=rp

{Fζ(r) ∨ (Fξ ◦ FR)(p)}

= (Fζ ◦ (Fξ ◦ FR))(m).

Therefore Mξ � (Mζ �MR) = Mζ � (Mξ �MR).
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(ii) Let m ∈M . If m 6= xy for any x, y ∈M , then

((Tξ ◦ Tζ) ◦ (TR ◦ TQ))(m) = 1 = ((TQ ◦ TR) ◦ (Tζ ◦ Tξ))(m).

Suppose m = yz for any y, z ∈M . Then

((Tξ ◦ Tζ) ◦ (TR ◦ TQ))(m) =
∧
m=yz

{(Tξ ◦ Tζ)(y) ∨ (TR ◦ TQ)(z)}

=
∧
m=yz

{
∧
y=pq

{Tξ(p) ∨ Tζ(q)} ∨
∧
z=rs

{TR(r) ∨ TQ(s)}}

=
∧

m=(pq)(rs)

{Tξ(p) ∨ Tζ(q) ∨ TR(r) ∨ TQ(s)}

=
∧

m=(sr)(qp)

{TQ(s) ∨ TR(r) ∨ Tζ(q) ∨ Tξ(p)}

=
∧

m=vw

{
∧
v=sr

{TQ(s) ∨ TR(r)} ∨
∧
w=qp

{Tζ(q) ∨ Tξ(p)}}

=
∧

m=vw

{(TQ ◦ TR)(v) ∨ (Tζ ◦ Tξ)(w)}

= ((TQ ◦ TR) ◦ (Tζ ◦ Tξ))(m),

((Iξ ◦ Iζ) ◦ (IR ◦ IQ))(m) =
∨
m=yz

{(Iξ ◦ Iζ)(y) ∧ (IR ◦ IQ)(z)}

=
∨
m=yz

{
∨
y=pq

{Iξ(p) ∧ Iζ(q)} ∧
∨
z=rs

{IR(r) ∧ IQ(s)}}

=
∨

m=(pq)(rs)

{Iξ(p) ∧ Iζ(q) ∧ IR(r) ∧ IQ(s)}

=
∨

m=(sr)(qp)

{IQ(s) ∧ IR(r) ∧ Iζ(q) ∧ Iξ(p)}

=
∨

m=vw

{
∨
v=sr

{IQ(s) ∧ IR(r)} ∧
∨
w=qp

{Iζ(q) ∧ Iξ(p)}}

=
∨

m=vw

{(IQ ◦ IR)(v) ∧ (Iζ ◦ Iξ)(w)}

= ((IQ ◦ IR) ◦ (Iζ ◦ Iξ))(m),

((Fξ ◦ Fζ) ◦ (FR ◦ FQ))(m) =
∧
m=yz

{(Fξ ◦ Fζ)(y) ∨ (FR ◦ FQ)(z)}

=
∧
m=yz

{
∧
y=pq

{Fξ(p) ∨ Fζ(q)} ∨
∧
z=rs

{FR(r) ∨ FQ(s)}}

=
∧

m=(pq)(rs)

{Fξ(p) ∨ Fζ(q) ∨ FR(r) ∨ FQ(s)}

=
∧

m=(sr)(qp)

{FQ(s) ∨ FR(r) ∨ Fζ(q) ∨ Fξ(p)}

=
∧

m=vw

{
∧
v=sr

{FQ(s) ∨ FR(r)} ∨
∧
w=qp

{Fζ(q) ∨ Fξ(p)}}
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=
∧

m=vw

{(FQ ◦ FR)(v) ∨ (Fζ ◦ Fξ)(w)}

= ((FQ ◦ FR) ◦ (Fζ ◦ Fξ))(m).

Therefore (Mξ �Mζ)� (MR �MQ) = (MQ �MR)� (Mζ �Mξ).

Theorem 3.4. Let Mξ ∈M . Then the listed conditions hold:

(i) Mξ ∈Ms ⇔ Mξ �Mξ ⊆Mξ.

(ii) Mξ ∈Ml ⇔ χM (Mζ)�Mξ ⊆Mξ for any Mζ ∈M .

(iii) Mξ ∈Mr ⇔ Mξ � χM (Mζ) ⊆Mξ for any Mζ ∈M .

(iv) Mξ ∈Mi ⇔ χM (Mζ)�Mξ ⊆Mξ and Mξ � χM (Mζ) ⊆Mξ for any Mζ ∈M .

Proof. (i) Assume Mξ ∈Ms. Now, for any k ∈M ,

(Tξ ◦ Tξ)(k) =
∧

k=k1k2

{Tξ(k1) ∨ Tξ(k2)} ≥
∧

k=k1k2

Tξ(k1k2) = Tξ(k),

(Iξ ◦ Iξ)(k) =
∨

k=k1k2

{Iξ(k1) ∧ Iξ(k2)} ≤
∨

k=k1k2

Iξ(k1k2) = Iξ(k),

(Fξ ◦ Fξ)(k) =
∧

k=k1k2

{Fξ(k1) ∨ Fξ(k2)} ≥
∧

k=k1k2

Fξ(k1k2) = Fξ(k).

So Mξ �Mξ ⊆Mξ.

Conversely, assume Mξ �Mξ ⊆Mξ. Now, for any k1, k2 ∈M ,

Tξ(k1k2) ≤ (Tξ ◦ Tξ)(k1k2) =
∧
k1k2

{Tξ(k1) ∨ Tξ(k2)} ≤ Tξ(k1) ∨ Tξ(k2),

Iξ(k1k2) ≥ (Iξ ◦ Iξ)(k1k2) =
∨
k1k2

{Iξ(k1) ∧ Iξ(k2)} ≥ Iξ(k1) ∧ Iξ(k2),

Fξ(k1k2) ≤ (Fξ ◦ Fξ)(k1k2) =
∧
k1k2

{Fξ(k1) ∨ Fξ(k2)} ≤ Fξ(k1) ∨ Fξ(k2).

So Mξ ∈Ms.

(ii) Assuming Mξ ∈Ml. Now for any Mζ ∈M and k ∈M ,

(χM (T )ζ ◦ Tξ)(k) =
∧

k=k1k2

{χM (T )ζ(k1) ∨ Tξ(k2)}

=
∧

k=k1k2

Tξ(k2)

≥ Tξ(k1k2)

= Tξ(k),
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(χM (I)ζ ◦ Iξ)(k) =
∨

k=k1k2

{χM (I)ζ(k1) ∧ Iξ(k2)}

=
∨

k=k1k2

Iξ(k2)

≤ Iξ(k1k2)

= Iξ(k),

(χM (F )ζ ◦ Fξ)(k) =
∧

k=k1k2

{χM (F )ζ(k1) ∨ Fξ(k2)}

=
∧

k=k1k2

Fξ(k2)

≥ Fξ(k1k2)

= Fξ(k).

Therefore χM (Mζ)�Mξ ⊆Mξ.

Conversely, suppose χM (Mζ)�Mξ ⊆Mξ for any Mζ ∈M . Now for any k1, k2 ∈M ,

Tξ(k1k2) ≤ (χM (T )ζ ◦ Tξ)(k1k2)

=
∧

k=k1k2

{χM (T )ζ(k1) ∨ Tξ(k2)}

≤ χM (T )ζ(k1) ∨ Tξ(k2)

= Tξ(k2),

Iξ(k1k2) ≥ (χM (I)ζ ◦ Iξ)(k1k2)

=
∨

k=k1k2

{χM (T )ζ(k1) ∧ Iξ(k2)}

≥ χM (I)ζ(k1) ∧ Iξ(k2)

= Iξ(k2),

Fξ(k1k2) ≤ (χM (F )ζ ◦ Fξ)(k1k2)

=
∧

k=k1k2

{χM (F )ζ(k1) ∨ Fξ(k2)}

≤ χM (F )ζ(k1) ∨ Fξ(k2)

= Fξ(k2).

Hence Mξ ∈Ml.

The proof of (iii) and (iv) is left to the reader.

Lemma 3.5. (i) If Mξ,Mζ ∈Ms, then Mξ ∩Mζ ∈Ms.

(ii) If Mξ,Mζ ∈Ml, then Mξ ∩Mζ ∈Ml.

G. Muhiuddin et. al., Neutrosophic κ-structures in an AG-groupoid

Neutrosophic Sets and Systems, Vol. 58, 2023                                                                              288



(iii) If Mξ,Mζ ∈Mr, then Mξ ∩Mζ ∈Mr.

(iv) If Mξ,Mζ ∈Mi, then Mξ ∩Mζ ∈Mi.

Proof. (i) Let Mξ and Mζ be two neutrosophic κ-AG-subgroupoids in M . Now for k1, k2 ∈M ,

(Tξ ∩ Tζ)(k1k2) = Tξ(k1k2) ∨ Tζ(k1k2)

≤ (Tξ(k1) ∨ Tξ(k2)) ∨ (Tζ(k1) ∨ Tζ(k2))

= (Tξ(k1) ∨ Tζ(k1)) ∨ (Tξ(k2) ∨ Tζ(k2))

= (Tξ ∩ Tζ)(k1) ∨ (Tξ ∩ Tζ)(k2),

(Iξ ∩ Iζ)(k1k2) = Iξ(k1k2) ∧ Iζ(k1k2)

≥ (Iξ(k1) ∧ Iξ(k2)) ∧ (Iζ(k1) ∧ Iζ(k2))

= (Iξ(k1) ∧ Iζ(k1)) ∧ (Iξ(k2) ∧ Iζ(k2))

= (Iξ ∩ Iζ)(k1) ∧ (Iξ ∩ Iζ)(k2),

(Fξ ∩ Fζ)(k1k2) = Fξ(k1k2) ∨ Fζ(k1k2)

≤ (Fξ(k1) ∨ Fξ(k2)) ∨ (Fζ(k1) ∨ Fζ(k2))

= (Fξ(k1) ∨ Fζ(k1)) ∨ (Fξ(k2) ∨ Fζ(k2))

= (Fξ ∩ Fζ)(k1) ∨ (Fξ ∩ Fζ)(k2).

So Mξ ∩Mζ ∈Ms.

(ii) Let Mξ, Mζ ∈Ml. Now for any k1, k2 ∈M ,

(Tξ ∩ Tζ)(k1k2) = Tξ(k1k2) ∨ Tζ(k1k2) ≤ Tξ(k2) ∨ Tζ(k2) = (Tξ ∩ Tζ)(k2),

(Iξ ∩ Iζ)(k1k2) = Iξ(k1k2) ∧ Iζ(k1k2) ≥ Iξ(k2) ∧ Iζ(k2) = (Iξ ∩ Iζ)(k2),

(Fξ ∩ Fζ)(k1k2) = Fξ(k1k2) ∨ Fζ(k1k2) ≤ Fξ(k2) ∨ Fζ(k2) = (Fξ ∩ Fζ)(k2).

So Mξ ∩Mζ ∈Ml.

The proof of (iii) and (iv) is left to the reader.

Lemma 3.6. If M is having left identity e, then χM (Mζ) = χM (Mζ) � χM (Mζ) for any

Mζ ∈M .

Proof. Let k1 ∈M . Then k1 = ek1. Now,

(χM (T )ζ ◦ χM (T )ζ)(k1) =
∧

k1=x1x2

{χM (T )ζ(x1) ∨ χM (T )ζ(x2)} ≤ χM (T )ζ(e) ∨ χM (T )ζ(k1) = 0

which implies (χM (T )ζ ◦ χM (T )ζ)(k1) = 0 = χM (T )ζ(k1).

(χM (I)ζ ◦ χM (I)ζ)(k1) =
∨

k1=x1x2

{χM (I)ζ(x1) ∧ χM (I)ζ(x2)} ≥ χM (I)ζ(e) ∧ χM (I)ζ(k1) = −1
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which implies (χM (I)ζ ◦ χM (I)ζ)(k1) = −1 = χM (I)ζ(k1).

(χM (F )ζ ◦ χM (F )ζ)(k1) =
∧

k1=x1x2

{χM (F )ζ(x1) ∨ χM (F )ζ(x2)} ≤ χM (F )ζ(e) ∨ χM (F )ζ(k1) = 0

which implies (χM (F )ζ ◦ χM (F )ζ)(k1) = 0 = χM (F )ζ(k1).

Therefore χM (Mζ) = χM (Mζ)� χM (Mζ).

Lemma 3.7. If M has left identity e, then for any Mζ ∈M , we have χM (Mζ)�Mξ = Mξ

for every Mξ ∈Ml.

Proof. Let k1 ∈M . Then k1 = ek1. Now,

(χM (T )ζ ◦ (T )ξ)(k1) =
∧

k1=x1x2

{(χM (T )ζ)(x1) ∨ (T )ξ(x2)} ≤ (χM (T )ζ)(e) ∨ (T )ξ(k1) = (T )ξ(k1),

(χM (I)ζ ◦ (I)ξ)(k1) =
∨

k1=x1x2

{(χM (I)ζ)(x1) ∧ (I)ξ(x2)} ≥ (χM (I)ζ)(e) ∧ (I)ξ(k1) = (I)ξ(k1),

(χM (F )ζ ◦ (F )ξ)(k1) =
∧

k1=x1x2

{(χM (F )ζ)(x1) ∨ (F )ξ(x2)} ≤ (χM (F )ζ)(e) ∨ (F )ξ(k1) = (F )ξ(k1).

So Mξ ⊆ χM (Mζ)�Mξ. By Theorem 3.4, χM (Mζ)�Mξ ⊆Mξ and hence χM (Mζ)�Mξ =

Mξ.

Proposition 3.8. Suppose M is having left identity. If Mξ, Mζ ∈ Ml, then for any

MR ,MQ ∈M , Mξ �MR = Mζ �MQ implies MR �Mξ = MQ �Mζ .

Proof. Since Mξ,Mζ ∈Ml, we have by Lemma 3.7, χM (MS ) �Mξ = Mξ and χM (MU ) �
Mζ = Mζ for MS ,MU ∈M . Now, for any MM ∈M , MR�Mξ = (χM (MM )�MR)�Mξ =

(Mξ �MR)�χM (MM ) = (Mζ �MQ)�χM (MM ) = (χM (MM )�MQ)�Mζ = MQ �Mζ .

Corollary 3.9. For any Mξ,Mζ ,MR ∈M , the listed claims are equivalent:

(i) (Mξ �Mζ)�MR = Mζ � (Mξ �MR),

(ii) (Mξ �Mζ)�MR = Mζ � (MR �Mξ).

Proposition 3.10. Let Mξ ∈Ml. If Mξ ∈Md, then Mξ ∈Mi.

Proof. Let Mξ ∈Ml and Mξ ∈Md. Then for any Mζ ∈M , Mξ � χM (Mζ) = (Mξ �Mξ)�
χM (Mζ) = (χM (Mζ)�Mξ)�Mξ ⊆Mξ �Mξ = Mξ, so Mξ ∈Mi.

Remark 3.11. If M has left identity, then Ml = Mr.
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Theorem 3.12. Suppose M has left identity and Mξ ∈Md. Then the listed claims holds:

(i) χM (Mζ)�Mξ ∈Md for Mζ ∈M ,

(ii) Every Mζ ∈Ml commutes with Mξ.

Proof. (i) It is clear from Corollary 3.2 and Lemma 3.6.

(ii) Let Mξ,Mζ ∈ M . Now, Mξ � Mζ = (Mξ � Mξ) � Mζ = (Mζ � Mξ) � Mξ ⊆
(Mζ �χM (Mξ))�Mξ ⊆Mζ �Mξ. Also, Mζ �Mξ = Mζ � (Mξ�Mξ) = Mξ� (Mζ �Mξ) ⊆
Mξ � (Mζ � χM (Mξ)) ⊆Mξ �Mζ .

Lemma 3.13. If M has left identity and Mξ ∈Mr, then Mξ ∈Mi.

Proof. Let Mξ ∈Mr. Then for Mζ ∈M , Mξ � χM (Mζ) ⊆Mξ. By Lemma 3.6, χM (Mζ) �
Mξ = (χM (Mζ) � χM (Mζ)) �Mξ = (Mξ � χM (Mζ)) � χM (Mζ) ⊆ Mξ � χM (Mζ) ⊆ Mξ.

So Mξ ∈Ml and hence Mξ ∈Mi.

Remark 3.14. Suppose M has left identity. If Mξ ∈ Mr, then Mξ ∪ (χM (Mζ) �Mξ) and

Mξ ∪ (Mξ �Mξ) are neutrosophic κ- ideals for Mζ ∈M .

Theorem 3.15. Suppose Mξ ∈ Ml with left identity. Then Mξ ∪ (Mξ � χM (Mζ)) and

Mξ ∪ (Mξ �Mξ) are neutrosophic κ-ideals for Mζ ∈M .

Proof. Now,

(Mξ ∪ (Mξ � χM (Mζ)))� χM (Mζ) = (Mξ � χM (Mζ)) ∪ ((Mξ � χM (Mζ))� χM (Mζ))

= (Mξ � χM (Mζ)) ∪ ((χM (Mζ)� χM (Mζ))�Mξ)

= (Mξ � χM (Mζ)) ∪ (χM (Mζ)�Mξ)

= (Mξ � χM (Mζ)) ∪Mξ

= Mξ ∪ (Mξ � χM (Mζ)).

Thus Mξ ∪ (Mξ � χM (Mζ)) ∈Mr and hence Mξ ∪ (Mξ � χM (Mζ)) ∈Mi by Lemma 3.13.

Now, for any Mζ ∈M ,

(Mξ ∪ (Mξ �Mξ))� χM (Mζ) = (Mξ � χM (Mζ)) ∪ ((Mξ �Mξ)� χM (Mζ))

= (Mξ � χM (Mζ)) ∪ ((χM (Mζ)�Mξ)�Mξ)

⊆ (Mξ � χM (Mζ)) ∪ (Mξ �Mξ)

= (Mξ �Mξ) ∪ (χM (Mζ)�Mξ)

⊆ (Mξ �Mξ) ∪Mξ

= Mξ ∪ (Mξ �Mξ).
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Thus Mξ ∪ (Mξ �Mξ) ∈Mr and so Mξ ∪ (Mξ �Mξ) ∈Mi by Lemma 3.13.

Theorem 3.16. Suppose φ 6= U ⊆M . Then the below claims are equivalent:

(i) U is bi-ideal,

(ii) For any Mξ ∈M , χU (Mξ) ∈Mb.

Proof. This is similar to Theorem 3.1 in [20].

Lemma 3.17. Let Mξ ∈Ms. Then the listed claims are equivalent:

(i) Mξ ∈Mb,

(ii) (Mξ � χM (Mζ))�Mξ ⊆Mξ for any Mζ ∈M .

Proof. Assume Mξ ∈Mb and let k1 ∈M . Suppose ∃ x1, x2 ∈M 3 k1 = x1x2. Then

(((T )ξ ◦ χM (T )ζ) ◦ (T )ξ)(k1) =
∧

k1=x1x2

{((T )ξ ◦ χM (T )ζ)(x1) ∨ (T )ξ(x2)}

=
∧

k1=x1x2

{
∧

x1=x3x4

{(T )ξ(x3) ∨ χM (T )ζ(x4)} ∨ (T )ξ(x2)}

=
∧

k1=x3x4x2

{((T )ξ(x3) ∨ (−1)) ∨ (T )ξ(x2)}

=
∧

k1=x3x4x2

{(T )ξ(x3) ∨ (T )ξ(x2)}

≥
∧

k1=x3x4x2

(T )ξ(x3x4x2)

= (T )ξ(k1),
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(((I)ξ ◦ χM (I)ζ) ◦ (I)ξ)(k1) =
∨

k1=x1x2

{((I)ξ ◦ χM (I)ζ)(x1) ∧ (I)ξ(x2)}

=
∨

k1=x1x2

{
∨

x1=x3x4

{(I)ξ(x3) ∧ χM (I)ζ(x4)} ∧ (I)ξ(x2)}

=
∨

k1=x3x4x2

{((I)ξ(x3) ∧ 0) ∧ (I)ξ(x2)}

=
∨

k1=x3x4x2

{(I)ξ(x3) ∧ (I)ξ(x2)}

≤
∨

k1=x3x4x2

(I)ξ(x3x4x2)

= (I)ξ(k1),

(((F )ξ ◦ χM (F )ζ) ◦ (F )ξ)(k1) =
∧

k1=x1x2

{((F )ξ ◦ χM (F )ζ)(x1) ∨ (F )ξ(x2)}

=
∧

k1=x1x2

{
∧

x1=x3x4

{(F )ξ(x3) ∨ χM (F )ζ(x4)} ∨ (F )ξ(x2)}

=
∧

k1=x3x4x2

{((F )ξ(x3) ∨ (−1)) ∨ (F )ξ(x2)}

=
∧

k1=x3x4x2

{(F )ξ(x3) ∨ (F )ξ(x2)}

≥
∧

k1=x3x4x2

(F )ξ(x3x4x2)

= (F )ξ(k1).

Suppose there is no x1, x2 ∈M 3 k1 = x1x2. Then

(((T )ξ ◦ χM (T )ζ) ◦ (T )ξ)(k1) = 0 ≥ (T )ξ(k1),

(((I)ξ ◦ χM (I)ζ) ◦ (I)ξ)(k1) = −1 ≤ (I)ξ(k1),

(((F )ξ ◦ χM (F )ζ) ◦ (F )ξ)(k1) = 0 ≥ (F )ξ(k1).

Therefore (Mξ � χM (Mζ))�Mξ ⊆Mξ for any Mζ ∈M .

Conversely, assume (Mξ � χM (Mζ))�Mξ ⊆Mξ for any Mζ ∈M . Let x1, x2 ∈M . Then

(T )ξ(x1x2) ≤ ((T )ξ ◦ (T )ξ)(x1x2) ≤ (T )ξ(x1) ∨ (T )ξ(x2),

(I)ξ(x1x2) ≥ ((I)ξ ◦ (I)ξ)(x1x2) ≥ (I)ξ(x1) ∧ (I)ξ(x2),

(F )ξ(x1x2) ≤ ((F )ξ ◦ (F )ξ)(x1x2) ≤ (F )ξ(x1) ∨ (F )ξ(x2).

So Mξ ∈Ms.

Let x1, x2, x3 ∈M . Then

(T )ξ(x1x2x3) ≤ (((T )ξ ◦ χM (T )ζ) ◦ (T )ξ)(x1x2x3) ≤ ((T )ξ ◦ χM (T )ζ)(x1x2) ∨ (T )ξ(x3) ≤
{(T )ξ(x1) ∨ χM (T )ζ(x2)} ∨ (T )ξ(x3) = (T )ξ(x1) ∨ (T )ξ(x3),

(I)ξ(x1x2x3) ≥ (((I)ξ◦χM (I)ζ)◦(I)ξ)(x1x2x3) ≥ ((I)ξ◦χM (I)ζ)(x1x2)∧(I)ξ(x3) ≥ {(I)ξ(x1)∧
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χM (I)ζ(x2)} ∧ (I)ξ(x3) = (I)ξ(x1) ∧ (I)ξ(x3),

(F )ξ(x1x2x3) ≤ (((F )ξ ◦ χM (F )ζ) ◦ (F )ξ)(x1x2x3) ≤ ((F )ξ ◦ χM (F )ζ)(x1x2) ∨ (F )ξ(x3) ≤
{(F )ξ(x1) ∨ χM (F )ζ(x2)} ∨ (F )ξ(x3) = (F )ξ(x1) ∨ (F )ξ(x3). Therefore Mξ ∈Mb.

Lemma 3.18. Suppose Mξ,Mζ ∈Mr having left identity. Then Mξ �Mζ ∈Mb and Mζ �
Mξ ∈Mb.

Proof. By Corollary 3.2, (Mξ �Mζ)� (Mξ �Mζ) = (Mξ �Mξ)� (Mζ �Mζ) ⊆Mξ �Mζ .

Hence Mξ �Mζ ∈Ms. Now, by Corollary 3.2 and Lemma 3.6, for any MR ∈M ,

((Mξ �Mζ)� χM (MR))� (Mξ �Mζ) = ((Mξ �Mζ)� (χM (MR)� χM (MR)))� (Mξ �Mζ)

= ((Mξ � χM (MR))� (Mζ � χM (MR)))� (Mξ �Mζ)

⊆ (Mξ �Mζ)� (Mξ �Mζ)

⊆Mξ �Mζ .

By Lemma 3.17, Mξ �Mζ ∈Mb. Similarly, Mζ �Mξ ∈Mb.

Lemma 3.19. Let Mξ,Mζ ∈Mb. Then Mξ ∩Mζ ∈Mb.

Proof. Let Mξ,Mζ ∈Mb and k1, k2, a ∈M . Then

(Tξ ∩ Tζ)(k1ak2) = Tξ(k1ak2) ∨ Tζ(k1ak2)

≤ (Tξ(k1) ∨ Tξ(k2)) ∨ (Tζ(k1) ∨ Tζ(k2))

= (Tξ ∩ Tζ)(k1) ∨ (Tξ ∩ Tζ)(k2),

(Iξ ∩ Iζ)(k1ak2) = Iξ(k1ak2) ∧ Iζ(k1ak2)

≥ (Iξ(k1) ∧ Iξ(k2)) ∧ (Iζ(k1) ∧ Iζ(k2))

= (Iξ ∩ Iζ)(k1) ∧ (Iξ ∩ Iζ)(k2),

(Fξ ∩ Fζ)(k1ak2) = Fξ(k1ak2) ∨ Fζ(k1ak2)

≤ (Fξ(k1) ∨ Fξ(k2)) ∨ (Fζ(k1) ∨ Fζ(k2))

= (Fξ ∩ Fζ)(k1) ∨ (Fξ ∩ Fζ)(k2).

Hence Mξ ∩Mζ ∈Mb.

Theorem 3.20. Let Mξ ∈Ms. Then Mξ ∈Mn if and only if (χM (Mζ)�Mξ)�χM (Mζ) ⊆
Mξ for any Mζ ∈M .

Proof. This is similar to Theorem 3.18 in [21].
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Proposition 3.21. If every neutrosophic κ-left ideal is neutrosophic κ-idempotent in M ,

then the following statements hold:

(i) Mξ ∈Mb,

(ii) Mξ ∈Mn.

Proof. (i) Assume Mξ ∈ Ml. Then Mξ �Mξ = Mξ. By Corollary 3.2, for any Mζ ∈ M ,

(Mξ � χM (Mζ))�Mξ = (Mξ � χM (Mζ))� (Mξ �Mξ) = (Mξ �Mξ)� (χM (Mζ)�Mξ) ⊆
Mξ �Mξ = Mξ. Hence Mξ ∈Mb.

(ii) For any Mζ ∈ M , (χM (Mζ) �Mξ) � χM (Mζ) ⊆ Mξ � χM (Mζ) = (Mξ �Mξ) �
χM (Mζ) = (χM (Mζ)�Mξ)�Mξ ⊆Mξ �Mξ = Mξ. Hence Mξ ∈Mn.

Lemma 3.22. Suppose M is having left identity e. Then the listed claims are equivalent:

(i) Mξ ∈Mr,

(ii) Mξ ∈Mn.

Proof. Let r ∈M . Then er = r.

(i)⇒ (ii) Assume Mξ ∈Mr and x1, x2, x3 ∈M . Then

(T )ξ((x1x2)x3) ≤ (T )ξ(x1x2) = (T )ξ((ex1)x2) = (T )ξ((x2x1)e) ≤ (T )ξ(x2x1) ≤ (T )ξ(x2),

(I)ξ((x1x2)x3) ≥ (I)ξ(x1x2) = (I)ξ((ex1)x2) = (I)ξ((x2x1)e) ≥ (I)ξ(x2x1) ≥ (I)ξ(x2),

(F )ξ((x1x2)x3) ≤ (F )ξ(x1x2) = (F )ξ((ex1)x2) = (F )ξ((x2x1)e) ≤ (F )ξ(x2x1) ≤ (F )ξ(x2).

So Mξ ∈Mn.

(ii) ⇒ (i) Let Mξ ∈Mn. For any x1, x3 ∈M , we can have (T )ξ(x1x3) = (T )ξ((ex1)x3) ≤
(T )ξ(x1), (I)ξ(x1x3) = (I)ξ((ex1)x3) ≥ (I)ξ(x1), (F )ξ(x1x3) = (F )ξ((ex1)x3) ≤ (F )ξ(x1). So

Mξ ∈Mr.

Lemma 3.23. Let Mξ ∈Ml such that e ∈M as left identity. If Mξ ∈Mn, then Mξ ∈Mb.

Proof. Since Mξ ∈ Ml, (T )ξ(x1x2) ≤ (T )ξ(x2), (I)ξ(x1x2) ≥ (I)ξ(x2) and (F )ξ(x1x2) ≤
(F )ξ(x2) for any x1, x2 ∈ M . As e ∈ M , ex1 = x1 ∀ x1 ∈ M . Now for any x1, x2 ∈ M ,

(T )ξ(x1x2) = (T )ξ((ex1)x2) ≤ (T )ξ(x1), (I)ξ(x1x2) = (I)ξ((ex1)x2) ≥ (I)ξ(x1), (F )ξ(x1x2) =

(F )ξ((ex1)x2) ≤ (F )ξ(x1) which imply (T )ξ(x1x2) ≤ (T )ξ(x1) ∨ (T )ξ(x2), (I)ξ(x1x2) ≥
(I)ξ(x1) ∧ (I)ξ(x2), (F )ξ(x1x2) ≤ (F )ξ(x1) ∨ (F )ξ(x2). So Mξ ∈Ms.

For any x1, x2, x3 ∈M ,

(T )ξ((x1x2)x3) = (T )ξ((x1(ex2))x3) = (T )ξ((e(x1x2))x3) ≤ (T )ξ(x1x2) = (T )ξ((ex1)x2) ≤ (T )ξ(x1),

(I)ξ((x1x2)x3) = (I)ξ((x1(ex2))x3) = (I)ξ((e(x1x2))x3) ≥ (I)ξ(x1x2) = (I)ξ((ex1)x2) ≥ (I)ξ(x1),

(F )ξ((x1x2)x3) = (F )ξ((x1(ex2))x3) = (F )ξ((e(x1x2))x3) ≤ (F )ξ(x1x2) = (F )ξ((ex1)x2) ≤ (F )ξ(x1).
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Also, (T )ξ((x1x2)x3) = (T )ξ((x3x2)x1) = (T )ξ((x3(ex2))x1) = (T )ξ((e(x3x2))x1) ≤
(T )ξ(x3x2) = (T )ξ((ex3)x2) ≤ (T )ξ(x3). Hence (T )ξ((x1x2)x3) ≤ (T )ξ(x1) ∨ (T )ξ(x3). Now,

(I)ξ((x1x2)x3) = (I)ξ((x3x2)x1) = (I)ξ((x3(ex2))x1) = (I)ξ((e(x3x2))x1) ≥ (I)ξ(x3x2) =

(I)ξ((ex3)x2) ≥ (I)ξ(x3). Hence (I)ξ((x1x2)x3) ≥ (I)ξ(x1) ∧ (I)ξ(x3). Now, (F )ξ((x1x2)x3) =

(F )ξ((x3x2)x1) = (F )ξ((x3(ex2))x1) = (F )ξ((e(x3x2))x1) ≤ (F )ξ(x3x2) = (F )ξ((ex3)x2) ≤
(F )ξ(x3). Hence (F )ξ((x1x2)x3) ≤ (F )ξ(x1) ∨ (F )ξ(x3). Therefore Mξ ∈Mb.

Proposition 3.24. Let e ∈ M be left identity. If Mξ ∈ Ml (resp., Mξ ∈ Mr, Mξ ∈ Mi),

then Mξ �Mξ ∈Mi.

Proof. Since Mξ ∈ Ml, then for Mζ ∈ M , by Theorem 3.4, χM (Mζ) � Mξ ⊆ Mξ. By

Lemma 3.6 and Corollary 3.2, χM (Mζ)� (Mξ�Mξ) = (χM (Mζ)�χM (Mζ))� (Mξ�Mξ) =

(χM (Mζ)�Mξ)�(χM (Mζ)�Mξ) ⊆Mξ�Mξ. Also by Theorem 3.1, (Mξ�Mξ)�χM (Mζ) =

(χM (Mζ)�Mξ)�Mξ ⊆Mξ �Mξ. Thus Mξ �Mξ ∈Mi.

Corollary 3.25. Let Mξ ∈ M has left identity. If Mξ ∈ Ml, then Mξ �Mξ ∈ Mb and

Mξ �Mξ ∈Mn.

Proof. By Proposition 3.24, Mξ �Mξ ∈Mi. Now by Lemmas 3.22 and 3.23, Mξ �Mξ ∈Mb

and Mξ �Mξ ∈Mn.

Theorem 3.26. If Mξ ∈Mi, then Mξ ∈Mb and Mξ ∈Mn.

Proof. Let Mξ ∈ Mi. Then Mξ is neutrosophic κ-AG-subgroupoid since Mξ � Mξ ⊆
χM (Mζ) � Mξ ⊆ Mξ. Now, (χM (Mζ) � Mξ) � χM (Mζ) ⊆ Mξ � χM (Mζ) ⊆ Mξ and

(Mξ � χM (Mζ))�Mξ ⊆Mξ �Mξ ⊆Mξ which imply Mξ ∈Mb and Mξ ∈Mn.

4. Conclusion

We presented the ideas of neutrosophic κ-ideal structures in an AG-groupoid and proved

that the product of two neutrosophic κ-right-ideal is a neutrosophic κ-bi-ideal, and neutro-

sophic κ-right-ideal is equivalent to neutrosophic κ-interior-ideal, under certain condition. In

future, we will define neutrosophic κ-structures over an ordered AG-groupoid and investigate

the features of an ordered AG-groupoid using the results in an AG-groupoid.
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Abstract. In this paper, we introduce the notion of statistical convergent of order α in the neutrosophic

normed spaces. We investigate a few properties of the newly introduced notion and examine the relationship

with statistical convergence in the neutrosophic normed spaces. Finally, we introduce the concept of statistical

Cauchy sequence of order α and show that statistical Cauchy sequences of order α are equivalent to statistical

convergent of order α sequences in the neutrosophic normed spaces.

Keywords: α−density; statistical convergent of order α; neutrosophic normed space.

—————————————————————————————————————————-

1. Introduction

In 1951, statistical convergence was introduced independently by Fast [12] and Steinhaus [33]

to provide deeper insights into summability theory. Subsequently, researchers like Fridy [15],

Salat [29], Connor [8], and others explored it from the sequence space perspective. This led

to investigations by Hazarika and Esi [17], Altinok et al. [1], Mursaleen [25], Tripathy and

Sen [34], Savas and Gurdal [30]. Statistical convergence found applications in number theory,

mathematical analysis, probability theory, and other areas.

In 2010, Colak [6] introduced the notion of statistical convergence with order α by means

of α-density. Later, it was generalized to τ -statistical convergence with a degree of order α [7]

and lacunary statistical convergence with a degree of order α [31]. For additional information

regarding statistical convergence with a degree of order α and its generalizations, one may

refer to [5, 10,11], which provide many more references.

The notion of fuzzy sets was proposed by Zadeh [35] in 1965, extending classical set theory.

To address membership degree uncertainties, in 1986, Atanassov [4] introduced intuitionistic
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fuzzy sets, which have since found utility in decision-making contexts. Smarandache [32] intro-

duced neutrosophic sets in 2005 as a generalization of fuzzy and intuitionistic fuzzy sets. Neu-

trosophic sets consist of truth-membership (T), indeterminacy-membership (F), and falsity-

membership (I) functions, suitable for tricomponent outcomes in uncertain scenarios.

Felbin [13] introduced fuzzy normed spaces in 1992, followed by the exploration into Saadati

and Park [28] in 2006 conducted research on intuitionistic fuzzy normed spaces. Subsequently,

Karakus et al. [18] delved into the realm of statistical convergence within intuitionistic fuzzy

normed spaces in 2008. Further investigation into convergence of sequences in neutrosophic

normed spaces was pursued by Kirisci and Simsek [22]. The research in this area is still devel-

oping, showing analogies to conventional normed spaces.

2. Definition and Background

Definition 2.1. [6] Consider M ⊆ N, and let Mn represent the consisting of elements in

M that are less than or equal to n. The concept of natural density of order α (0 < α ≤ 1)

associated with the set M is denoted and defined as follows:

δα(M) = lim
n→∞

|Mn|
nα ,

provided that the limit exists. Here, the symbol |Mn| denotes the cardinality or number of

elements in the set Mn.

Definition 2.2. [6] A sequence (yk) is considered statistically convergent of order α (0 <

α ≤ 1) to l if, for every ζ > 0, the following condition holds:

δα(M(ζ)) = 0,

where M(ζ) = {k ∈ N : |yk − `| ≥ ζ}. In this context, l is referred to as the statistical limit

of order α for the sequence (yk), denoted as yk
stα−−→ l.

In particular, if α = 1, then Definition 2.1 and Definition 2.2 reduces to the definitions of

natural density [14] and statistical convergence [15] respectively.

Definition 2.3. [24] A binary operation ◦ that takes two values from the interval [0, 1] and

produces a result within the same interval is referred to as a continuous triangular norm, given

that it satisfies the following set of criteria:

(1) The operation ◦ possesses the properties of associativity and commutativity.

(2) The operation ◦ remains continuous.

(3) For any s belonging to the interval [0, 1], the operation s ◦ 1 results in s.
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(4) If p is less than or equal to q and r is less than or equal to s, where p, q, r, and s fall

within the range of values from 0 to 1, then it follows that the inequality p ◦ r ≤ q ◦ s
is satisfied.

Definition 2.4. [24] An operation • that takes two values from the interval [0, 1] and returns

a value within the same interval is termed a continuous triangular co-norm, provided it meets

the following set of criteria:

(1) The operation • possesses the properties of associativity and commutativity.

(2) The operation • maintains continuity.

(3) For all s ∈ [0, 1], the operation s • 0 results in s.

(4) If values p, q, r, and s are such that p ≤ r and q ≤ s, with p, q, r, and s belonging to

the interval [0, 1], then the outcome of the operation p • q is no greater than the result

of r • s.

Definition 2.5. [32] Consider a universe of discourse denoted as X. The subset KNS of X

is defined as:

KNS = {< ν,RK(ν),TK(ν),WK(ν) >: ν ∈ X}

This defined set is known as a neutrosophic set. In this context, RK(ν), TK(ν), and WK(ν)

are functions mapping X to the interval [0, 1], Expressing the levels of truth-membership,

uncertainty-membership, and falsehood-membership, respectively. It is important to satisfy

the constraint 0 ≤ RK(ν) + TK(ν) + WK(ν) ≤ 3.

Definition 2.6. [22] Imagine a vector space denoted as F , and consider a normed space

{< ν,R(ν),T(ν),W(ν) >: ν ∈ F}. In this normed space, R, T, and W are functions mapping

F × R+ to the interval [0, 1]. Furthermore, consider ◦ to represent a continuous triangular

norm operation, and • to signify a continuous triangular co-norm operation.. If the four-tuple

V = (F,N, ◦, •) satisfies the following conditions, for any ν, v ∈ F and τ, µ > 0, and for every

σ 6=0:

(1) The values R(ν, τ), T(ν, τ), and W(ν, τ) are restricted to the range [0, 1].

(2) The sum of R(ν, τ), T(ν, τ), and W(ν, τ) is bounded by [0, 3].

(3) R(ν, τ) = 1 (for τ > 0) iff ν = 0.

(4) R(σν, τ) = R(ν, τ|σ|).

(5) R(ν, τ) ◦R(v, µ) ≤ R(ν + v, τ + µ).

(6) The function R(ν, .) is both continuous and non-decreasing.

(7) As τ approaches infinity, lim
τ→∞

R(ν, τ) = 1.

(8) T(ν, τ) = 0 (for τ > 0) iff ν = 0.

(9) T(σν, τ) = T(ν, τ|σ|).

(10) T(ν, τ) • T(ν, µ) ≥ T(ν + v, τ + µ).
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(11) The function T(ν, .) is continuous and non-increasing.

(12) As τ goes to infinity, lim
τ→∞

T(ν, τ) = 0.

(13) W(ν, τ) = 0 (for τ > 0) iff ν = 0.

(14) W(σν, τ) = W(ν, τ|σ|).

(15) W(ν, τ) •W(v, µ) ≥ γ(ν + v, τ + µ).

(16) The function W(ν, .) is continuous and non-increasing.

(17) As τ approaches infinity, lim
τ→∞

W(ν, τ) = 0.

(18) If τ ≤ 0, then we have R(ν, τ) = 0,T(ν, τ) = 1, and W(ν, τ) = 1.

Furthermore, N = (R,T,W) forms a neutrosophic norm (NN).

Example 2.7. [22] Let’s consider a normed space denoted as (F, || · ||). In this context, take

any two values, denoted as s and t, from the interval [0, 1]. We establish the triangular norm

operation ◦ as the product of s and t, denoted by s ◦ t = st, and the triangular co-norm

operation • as s added to t minus their product, given by s • t = s + t − st. Now, let’s delve

into the construction of the functions R(u, τ), T(u, τ), and W(u, τ) for any τ that surpasses

||u||:

R(u, τ) =
τ

τ + ||u||
, T(u, τ) =

||u||
τ + ||u||

, W(u, τ) =
||u||
τ

These definitions stand valid for all elements u ∈ F and τ > 0. However, if τ is less than

or equal to ||u||, then we redefine the functions as follows: R(u, τ) = 0, T(u, τ) = 1, and

W(u, τ) = 1. With these specified conditions, we can confidently assert that the arrangement

(F,N, ◦, •) establishes itself as a neutrosophic normed space (NNS).

Definition 2.8. [22] Let V represent a NNS (Neutrosophic Normed Space). We define a

sequence (yk) to exhibit statistical convergence towards l with respect to the (NN) if, for any

0 < ζ < 1, the set Mζ = k ∈ N : R(yk − `, τ) ≤ 1− ζ or T(yk − `, τ) ≥ ζ , W(yk − `, τ) ≥ ζ
satisfies the property that δ(Mζ) = 0.

This notion can be denoted symbolically as st−N−lim yk = l or equivalently yk → l(st−N).

Example 2.9. Consider a normed space denoted as (F, ||·||). Let any pair of values, denoted as

s and t, lie within the interval [0, 1]. We establish the continuous triangular norm as s◦ t = st,

and the continuous triangular co-norm as s • t is defined as the minimum of the sum of s and

t or 1. Drawing inspiration from the functions R, T, and W showcased in Example 2.7, and

under the constraint of τ > 0, we have: Let’s explore the sequence (yk) defined as follows

within a centered environment:

yk =

2, if k = p4 where p ∈ N

0, otherwise
.
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As a result, we establish the convergence yk → 0(st−N).

Rationale: For any 0 < ζ < 1, we delve into the composition of the set M :

M = {k ≤ n : R(yk − 0, τ) ≤ 1− ζ or T(yk − 0, τ) ≥ ζ , W(yk − 0, τ) ≥ ζ}.

This exploration uncovers:

M = {k ≤ n :
τ

τ + |yk|
≤ 1− ζ or

|yk|
τ + |yk|

≥ ζ , |yk|
τ
≥ ζ}

= {k ≤ n : |yk| ≥
τζ

1− ζ
or |yk| ≥ τζ}

= {k ≤ n : yk = 2}.

Thus, we conclude that δ(M) = lim
n→∞

|M |
n ≤ lim

n→∞

4√n
n = 0. As a result, the sequence yk →

0(st−N) holds true.

Definition 2.10. [22] Consider the sequence (yk) within a NNS V . We deem (yk) to be

statistically Cauchy if, for any 0 < ζ < 1, there exists an associated natural number N = N(ζ)

satisfying the condition:

δ(MCζ) = 0, where

MCζ = {k ∈ N : R(yk − sN , τ) ≤ 1− ζ or T(yk − sN , τ) ≥ ζ,W(yk − sN , τ) ≥ ζ}.

3. Key Findings

Definition 3.1. Within the domain of NNS, denoted as V , consider a value 0 < α ≤ 1.

A sequence (yk) is classified as statistical convergence with a degree of order α to the value

l concerning the neutrosophic norm (NN). This categorization is established when, for all

0 < ζ < 1, the following condition holds:

δα(Mζ) = 0, where Mζ = {k ∈ N : R(yk − `, τ) ≤ 1− ζ or T(yk − `, τ) ≥ ζ , W(yk − `, τ) ≥ ζ}.

In this context, we symbolize the statement as stα −N− lim yk = l or yk → l(stα −N).

Of particular note, should we select α = 1, the above definition aligns with the notion of

statistical convergence in NNS, as previously explored by Kirisci and Simsek [22].

Example 3.2. Consider a normed space denoted by (F, || · ||). For all s and t within the range

of [0, 1], The continuous triangular norm is characterized by the equation s ◦ t = st, while the

continuous triangular co-norm is expressed as the operation s • t as taking the minimum of

either the sum of s and t or 1. Utilizing the functions R, T, and W presented in Example 2.7

for all τ > 0, we confidently affirm the characterization of V as a NNS.

Let us now introduce the sequence (yk):

yk =

1, k = p3 (p ∈ N)

0, otherwise
.
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Then, yk → 0(stα −N), for α ∈ (13 , 1].

Justification: Any 0 < ζ < 1, we have

M = {k ≤ n : R(yk − 0, τ) ≤ 1− ζ or T(yk − 0, τ) ≥ ζ , W(yk − 0, τ) ≥ ζ}.

This implies that,

M = {k ≤ n :
τ

τ + |yk|
≤ 1− ζ or |yk|

τ + |yk|
≥ ζ |yk|

τ
≥ ζ}

= {k ≤ n : |yk| ≥
τζ

1− ζ
or |yk| ≥ τζ}

= {k ≤ n : yk = 1}.

Then, δα(M) = lim
n→∞

|M |
nα ≤ lim

n→∞

3√n
nα = 0, for α ∈ (13 , 1]. Hence, yk → 0(stα −N).

Lemma 3.3. Considering V as a NNS (Neutrosophic Normed Space), and for all 0 < ζ < 1,

and 0 < α ≤ 1, as well as τ > 0, we unveil the equivalence of the following propositions:

(i) yk → l(stα −N);

(ii) δα({k ∈ N : R(yk − `, τ) ≤ 1 − ζ}) = δα({k ∈ N : T(yk − `, τ) ≥ ζ}) = δα({k ∈ N :

W(yk − `, τ) ≥ ζ}) = 0;

(iii) δα({k ∈ N : R(yk − `, τ) > 1− ζ or T(yk − `, τ) < ζ , W(yk − `, τ) < ζ}) = 1;

(iv) δα({k ∈ N : R(yk − `, τ) > 1 − ζ}) = δα({k ∈ N : T(yk − `, τ) < ζ}) = δα({k ∈ N :

W(yk − `, τ) < ζ}) = 1;

(v) R(yk − `, τ)→ 1(stα −N) or T(yk − `, τ)→ 0(stα −N) , W(yk − `, τ)→ 0(stα −N).

Theorem 3.4. Let V be a NNS and let (yk) be a sequence such that yk → l(stα −N). Then

l is uniquely determined.

Proof. Assume, for the sake of contradiction, that yk → l1(st
α−N) and yk → l2(st

α−N) where

l1 6= l2. We select a constant 0 < ζ < 1 and designate µ > 0 such that (1− ζ) ◦ (1− ζ) > 1−µ
and ζ • ζ < µ. In the context of any positive τ , we introduce the subsequent sets:

KR1(ζ, τ) = {k ∈ N : R(yk − `1,
τ

2
) ≤ 1− ζ}

KR2(ζ, τ) = {k ∈ N : R(yk − `2,
τ

2
) ≤ 1− ζ}

KT1(ζ, τ) = {k ∈ N : T(yk − `1,
τ

2
) ≥ ζ}

KT2(ζ, τ) = {k ∈ N : T(yk − `2,
τ

2
) ≥ ζ}

KW1(ζ, τ) = {k ∈ N : W(yk − `1,
τ

2
) ≥ ζ}

KW2(ζ, τ) = {k ∈ N : W(yk − `2,
τ

2
) ≥ ζ}.

Since yk → l1(st
α −N), we apply Lemma 3.3 to conclude that for any τ > 0,

δα(KR1(ζ, τ)) = δα(KT1(ζ, τ)) = δα(KW1(ζ, τ)) = 0.
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Similarly, since yk → l2(st
α −N), we again apply Lemma 3.3 to deduce that for any τ > 0,

δα(KR2(ζ, τ)) = δα(KT2(ζ, τ)) = δα(KW2(ζ, τ)) = 0.

Let’s defineK(ζ, τ) = (KR1(ζ, τ)∪KR2(ζ, τ))∩(KT1(ζ, τ)∪KT2(ζ, τ))∩(KW1(ζ, τ)∪KW2(ζ, τ)).

Consequently, δα(K(ζ, τ)) = 0, which implies δα(N\K(ζ, τ)) = 1 and hence The set of natural

numbers excluding those in K(ζ, τ) is non-empty. Let’s pick p is an element of N that is not

in K(ζ, τ). We proceed with three cases:

(i) If p ∈ (N \ (KR1(ζ, τ)) ∪ (N \ (KR2(ζ, τ));

(ii) If p ∈ (N \ (KT1(ζ, τ)) ∪ (N \ (KT2(ζ, τ));

(iii) If p ∈ (N \ (KW1(ζ, τ)) ∪ (N \ (KW2(ζ, τ)).

For Case (i), we possess:

R(l1 − l2, τ) ≥ R(yk − `1,
τ

2
) ◦R(yk − `2,

τ

2
) > (1− ζ) ◦ (1− ζ) > 1− µ. (1)

Since µ can take any value,, Equation (1) implies that for any τ > 0, R(l1− l2, τ) = 1, leading

to l1 = l2.

For Case (ii), we have:

T(l1 − l2, τ) ≤ T(yk − `1,
τ

2
) • T(yk − `2,

τ

2
) < ζ • ζ < µ. (2)

Since µ can take any value, Equation (2) implies that for any τ > 0, T(l1 − l2, τ) = 0, leading

to l1 = l2.

For Case (iii), we have:

W(l1 − l2, τ) ≤W(yk − `1,
τ

2
) •W(yk − `2,

τ

2
) < ζ • ζ < µ. (3)

Since µ can take any value, Equation (3) implies that for any τ > 0, W(l1− l2, τ) = 0, leading

to l1 = l2.

In all cases, we consistently arrive at l1 = l2, which contradicts our assumption. Hence, the

assumption that l1 6= l2 must be false, and therefore l1 = l2. This concludes the proof.

Remark 3.5. The notion of statistical convergence with a parameter α within neutrosophic

normed spaces is precisely defined for values of 0 < α ≤ 1. However, for α > 1, a counterex-

ample can be provided as follows:

Example 3.6. Consider a normed space (F, || · ||). For any s, t ∈ [0, 1], we introduce the

definitions of the continuous triangular norm as s ◦ t = st and the continuous triangular co-

norm as The operation s · t is defined as the minimum of s+ t and 1. By adopting the R,T,W

functions illustrated in Example 2.7, valid for all τ > 0, the space V is established as a NNS.

Let us now examine the sequence x = (yk), defined as:
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yk =

1, k = 2n

0, k 6= 2n
,

where n ∈ N.

For α > 1, we observe that

lim
n→∞

1

nα
|{k ∈ N : R(yk−0, τ) ≤ 1−ζ orT(yk−0, τ) ≥ ζ ,W(yk−0, τ) ≥ ζ}| ≤ lim

n→∞

n

2nα
is zero,

and similarly,

lim
n→∞

1

nα
|{k ∈ N : R(yk−1, τ) ≤ 1−ζ orT(yk−1, τ) ≥ ζ ,W(yk−1, τ) ≥ ζ}| ≤ lim

n→∞

n

2nα
is zero.

This implies that the statements yk → 0(stα −N) and yk → 1(stα −N) hold simultaneously,

leading to a contradiction.

Theorem 3.7. Let us consider two sequences, denoted as (tk) and (sk), within the NNS V .

such that tk → t1(st
α −N) and xk → t2(st

α −N). Then,

(i) yk + xk → t1 + t2(st
α −N) and (ii) r.tk → r.t1(st

α −N) where r ∈ R.

Proof. (i) Suppose tk → t1(st
α−N)and sk → t2(st

α−N). Now by definition for any 0 < ζ < 1,

δα(M) = 0, then we have M = {k ∈ N : R(tk−t1,
τ

2
) ≤ 1−ζ or T(tk−t1,

τ

2
) ≥ ζ,W(tk−t1,

τ

2
) ≥ ζ}

and

δα(M ′) = 0, then we have M ′ = {k ∈ N : R(sk−t2,
τ

2
) ≤ 1−ζorT(sk−t2,

τ

2
) ≥ ζ,W(sk−t2,

τ

2
) ≥ ζ}.

Now as the inclusion

(N \M) ∩ (N \M ′) ⊆ {k ∈ N : R(tk + sk − t1 − t2, τ) > 1− ζ or T(tk + sk − t1 − t2, τ) < ζ,

W(tk + sk − t1 − t2, τ) < ζ}

holds, so we must have

M ′′ = {k ∈ N : R(tk + sk − t1 − t2, τ) ≤ 1− ζ or T(tk + sk − t1 − t2, τ) ≥ ζ,

W(tk + sk − t1 − t2, τ) ≥ ζ} ⊆M ∪M ′

and consequently, δα(M ′′) = 0 i.e., tk + sk → t1 + t2(st
α −N).

(ii) If r = 0, then there is nothing to prove. So let us assume r 6= 0. Then since tk →
t1(st

α −N), we have for any 0 < ζ < 1, δα(Mζ) = 0, where

M = {k ∈ N : R(tk − t1, τ|r|) ≤ 1− ζ or T(tk − t1, τ|r|) ≥ ζ , W(tk − t1, τ|r|) ≥ ζ}.

Now let M ′ denote the set

{k ∈ N : R(r.tk − r.t1, τ) ≤ 1− ζ or T(r.tk − r.t1, τ) ≥ ζ , W(r.tk − r.t1, τ) ≥ ζ}.
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Then M ′ ⊆M holds and consequently, δα(M ′) = 0. Hence, r.tk → r.l1(st
α −N).

Theorem 3.8. Let us consider two sequences, denoted as (tk) and (sk), within the NNS V .

such that tk → l(N) and δα({k ∈ N : tk 6= sk}) = 0. Then, sk → l(stα −N).

Proof. Suppose δα({k ∈ N : tk 6= sk}) = 0 holds and tk → l(N). So, as per the definition, for

any 0 < ζ < 1, the set Mζ = {k ∈ N : R(tk− `, τ) ≤ 1− ζ or T(tk− `, τ) ≥ ζ,W(tk− `, τ) ≥ ζ}
has a maximum number of finite elements. Consequently, δα(Mζ) = 0. Now, since the inclusion

M ′
ζ = {k ∈ N : R(sk−`, τ) ≤ 1−ζorT(sk−`, τ) ≥ ζ,W(sk−`, τ) ≥ ζ} ⊆Mζ∩{k ∈ N : tk 6= sk}

holds, so we must have, δα(M ′) = 0. Hence, yk → l(stα −N).

Definition 3.9. Let (yk) be a sequence in a NNS V . We say that (yk) is a statistical Cauchy

sequence of order α if, For any 0 < ζ < 1, there is a positive integer N = N(ζ). such that the

α-order statistical deviation of the set MCζ satisfies δα(MCζ) = 0, where:

MCζ = {k ∈ N : R(yk − sN , τ) ≤ 1− ζ or T(yk − sN , τ) ≥ ζ,W(yk − sN , τ) ≥ ζ}.

Theorem 3.10. Consider a NNS V . Then, for the sequence (yk) within this NNS V , it holds

that (yk) is a statistical convergent sequence of order α if and only if it is a statistical Cauchy

sequence of order α.

Proof. Assuming that yk converges towards l(stα−N), let’s select a value of µ > 0 for a given

0 < ζ < 1 in such a manner that (1− ζ) ◦ (1− ζ) > 1− µ, and also ζ • ζ < µ. Now, according

to the definition, for any 0 < ζ < 1, we find that δα(N \Mζ) = 1, where

Mζ = {k ∈ N : R(yk − `,
τ

2
) ≤ 1− ζ or T(yk − `,

τ

2
) ≥ ζ , W(yk − `,

τ

2
) ≥ ζ}.

Hence, the set the element of an element N that is not in Mζ contains at least one element.

Let us consider N ∈ N \Mζ . Subsequently, we obtain,

R(sN − `,
τ

2
) > 1− ζ or T(sN − `,

τ

2
) < ζ , W(sN − `,

τ

2
) < ζ.

Now suppose

MCζ = {k ∈ N : R(yk − sN , τ) ≤ 1− µ or T(yk − sN , τ) ≥ µ , W(yk − sN , τ) ≥ µ}.

We assert that MCζ is a subset of Mζ because if this inclusion does not hold, it implies that

there must be some N0 ∈ MCζ \Mζ which immediately yields R(sN0 − sN , τ) ≤ 1 − µ and

R(sN0 − `, τ2 ) > 1− ζ. Especially, R(sN − `, τ2 ) > 1− ζ. But then,

1− µ ≥ R(sN0 − sN , τ) ≥ R(sN0 − `,
τ

2
) ◦R(sN − `,

τ

2
) > (1− ζ) ◦ (1− ζ) > 1− µ,
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this leads to a contradiction. Moreover, we can observe that, T(sN0 − sN , τ) ≥ µ and T(sN0 −
`, τ2 ) < ζ. Especially, T(sN − `, τ2 ) < ζ. But then,

µ ≤ T(sN0 − sN , τ) ≤ T(sN0 − `,
τ

2
) • T(sN − `,

τ

2
) < ζ • ζ < µ,

this leads to a contradiction. Moreover, we can observe that, W(sN0−sN , τ) ≥ µ and W(sN0−
`, τ2 ) < ζ. Especially, W(sN − `, τ2 ) < ζ. But then,

µ ≤W(sN0 − sN , τ) ≤W(sN0 − `,
τ

2
) •W(sN − `,

τ

2
) < ζ • ζ < µ,

This situation presents a contradiction. Therefore, all potential scenarios are in conflict with

the presence of an element N0 ∈MCζ \Mζ . As a result, it becomes evident that MCζ ⊆Mζ ,

and consequently, δα(MCζ) = 0. This ultimately establishes that (yk) is, in fact, a statistical

Cauchy sequence of order α.

To establish the converse aspect of the argument, we start by assuming that (yk) is a

statistical Cauchy sequence of order α but does not qualify as a statistical convergent sequence

of the same order α. Given a specific value 0 < ζ < 1, we can select a positive parameter

µ > 0 such that the composition (1− ζ) ◦ (1− ζ) > 1− µ holds, and simultaneously ζ • ζ < µ.

Due to the fact that (yk) does not satisfy the criteria for being statistically convergent of

order α, we proceed with the assumption.

R(yk − sN , τ) ≥ R(yk − `,
τ

2
) ◦R(sN − `,

τ

2
) > (1− ζ) ◦ (1− ζ) > 1− µ,

T(yk − sN , τ) ≤ T(yk − `,
τ

2
) • T(sN − `,

τ

2
) < ζ • ζ < µ,

W(yk − sN , τ) ≤W(yk − `,
τ

2
) •W(sN − `,

τ

2
) < ζ • ζ < µ,

This property is valid for P (ζ, µ) holds true for values of k within the range of k from 1 to N.

N : T(yk − sN , τ) ≤ 1− µ.

As a result, δα(P (ζ, µ)) = 1, which contradicts the assumption that (yk) is a statistical

Cauchy sequence of order α. Therefore, it is evident that (yk) must indeed be a statistical

convergent sequence of order α. This conclusion serves to finalize the entirety of the proof.

4. Conclusions

In this study, our primary focus was on exploring fundamental characteristics of statisti-

cal convergence with a degree of α. We also established a relationship between this type of

convergence and the Statistical convergence in neutrosophic normed spaces has been newly in-

troduced by Kirisci and Simsek. Additionally, we introduced the concept of statistical Cauchy

sequences of order α and demonstrated that, in a neutrosophic normed space, every sequence

that converges statistically with a degree of α. also qualifies as a statistical Cauchy sequence

of the same order, and vice versa.
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In the future, there’s potential to extend this research to encompass multisequences, enabling

a deeper exploration of the resulting sequence space’s structure.
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Abstract 

This paper solves the boundary value problem of the second-order differential equation under the 

neutrosophic fuzzy boundary condition. The proposed solution is approximated using the finite 

difference method but deneutrosophication utilizing strongly generalized Hukuhara 

differentiability. The error calculation is then processed by comparing the proposed numerical 

solution with the analytical solution presented in our earlier work [20]. 

Keywords: Fuzzy Differential Equations (FDEs); Neutrosophic Boundary Conditions; Hukuhara 

Differentiability; Finite Difference Method (FDM). 

 

1. Introduction 

Modeling real problems as ideal mathematical cases cannot help in applying or 

finding real solutions, and this was the reason for initiating the concept of fuzzy sets and 

derivatives with Zadeh [1]. Several later works aimed to widen the concept of 

differentiability, especially Hukuhara [2-6] who developed the concept of the difference 

between fuzzy sets, then he initiated Hukuhara differentiability. Following that, both 

Stefanoni and Bede in [4,5,6] developed the generalized Hukuhara differentiability. 

On the other hand, several researchers applied many numerical methods to solve fuzzy 

problems. The numerical solutions of the fuzzy initial value problem (FIVP) by Euler's 

method were studied by Ma [17]. Abbasbandy and Allahviranloo [14, 15] used the Taylor 
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and fourth-order Runge-Kutta methods to solve FIVPs. The author of [19] applied the Runge-

Kutta method for more general problems and proved the convergence for the n-stage Runge-

Kutta method. In [16], numerical solutions of fuzzy differential equations (FDEs) were 

presented by employing the predictor-corrector method. The dependency problem in fuzzy 

computation was discussed by Ahmadi and Hasan [17], where Euler's method based on 

Zadeh's extension principle was used for finding the numerical solution of FIVPs. Omar and 

Hasan [18] adopted the same computation method to derive the fourth-order Runge-Kutta 

method for FIVP.  

Uncertainty, vagueness, and incompleteness in data increase the requirement for more 

generalized fuzzy ideas. That motivated Smarandache [10,11,12,13] to initiate a neutrosophic 

concept, which depends not only on membership, but also on three different memberships 

Truth, False, and Indeterminacy which facilitates modelling more complicated uncertain 

data, and this concept is called the neutrosophic fuzzy set. 

In this paper, a numerical solution for a neutrosophic fuzzy second-order differential 

equation is proposed under strongly generalized differentiability by using the finite 

difference method. The results are compared with the analytical solutions of the same 

numerical examples presented in our previous results [20]. 

 

2. Preliminaries 

Some relevant basic concepts are presented in this section to preface the mathematical tools of 

neutrosophic theory which are essential for the issues of this essay.  

 

2.1 Definition [12].  

Let 𝑋 be a universe set and a neutrosophic set 𝐴 on 𝑋 is defined as 𝐴 = {(𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)): 𝑥𝜖𝑋} 

represents the degree of membership 𝑇𝐴(𝑥), the degree of indeterministic 𝐼𝐴(𝑥) and the degree of non-

membership 𝐹𝐴(𝑥). Such that 0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3. 

 

2.2 Definition [11]  

The (𝛼, 𝛽, 𝛾) -cuts are fixed values on the set  𝐴  where 𝐴𝛼,𝛽,𝛾 = {(𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)): 𝑥𝜖𝑋, 𝑇𝐴(𝑥) ≥

𝛼, 𝐼𝐴(𝑥) ≤ 𝛽, 𝐹𝐴(𝑥) ≤ 𝛾} which define each of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) in terms of lower and upper functions 

of (𝛼, 𝛽, 𝛾)-cuts. 

 

2.3 Definition [13]  

A neutrosophic set 𝑨 defined on a universal set of real numbers 𝑹 is said to be a neutrosophic 

number and: 
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i) 𝐴 is normal if 𝑥𝑎𝜖𝑅, 𝑇𝐴(𝑥𝑎) = 1, 𝐼𝐴(𝑥𝑎) = 𝐹𝐴(𝑥𝑎) = 0. 

ii) 𝐴  is a convex set on truth function 𝑇𝐴(𝑥)  where 𝑇𝐴(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≥

min(𝑇𝐴(𝑥1), 𝑇𝐴(𝑥2)) ;  ∀  𝑥1 , 𝑥2 ∈ 𝑅 , 𝜆 ∈ [0,1]  

iii) 𝐴 is a concave set on indeterministic and falsity functions 𝐼𝐴(𝑥), 𝐹𝐴(𝑥), satisfying 

 𝐼𝐴(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≥ max (𝐼𝐴(𝑥1), 𝐼𝐴(𝑥2))  ,  𝐹𝐴(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≥ max (𝐹𝐴(𝑥1), 𝐹𝐴(𝑥2)) , this is 

also ∀  𝑥1 , 𝑥2 ∈ 𝑅 , 𝜆 ∈ [0,1]. 

2.4 Definition [7] 

Let 𝐴 be a Generalized triangular neutrosophic number 𝐴𝐺𝑇𝑁 = (𝑎, 𝑏, 𝑐: 𝜔, 𝜂, 𝜉) 

𝑇𝐴(𝑥) =

{
 
 

 
 
𝑥−𝑎

𝑏−𝑎
𝜔    𝑎 ≤ 𝑥 < 𝑏

𝜔                𝑥 = 𝑏
𝑐−𝑥

𝑐−𝑏
𝜔     𝑏 < 𝑥 ≤  𝑐

  
0          otherwise 

 , 

𝐼𝐴(𝑥) =

{
 
 

 
 
𝑏−𝑥

𝑏−𝑎
𝜂    𝑎 ≤ 𝑥 < 𝑏

𝜂               𝑥 = 𝑏  
𝑏−𝑥

𝑏−𝑐
𝜂      𝑏 < 𝑥 ≤ 𝑐

1            otherwise

  

𝐹𝐴(𝑥) =

{
 
 

 
 
𝑏−𝑥

𝑏−𝑎
𝜉    𝑎 ≤ 𝑥 < 𝑏

𝜉                𝑥 = 𝑏  
𝑏−𝑥

𝑏−𝑐
𝜉     𝑏 < 𝑥 ≤  𝑐

1            otherwise

  

The (𝛼, 𝛽, 𝛾)-cuts on the generalized triangular neutrosophic number can be written as 

𝐴𝛼,𝛽,𝛾 = [𝐴(𝛼), 𝐴(𝛼)] , [𝐴(𝛽), 𝐴(𝛽)] , [𝐴(𝛾), 𝐴(𝛾)], 

[𝐴(𝛼), 𝐴(𝛼)] = [(𝑎 +
𝛼

𝜔
(𝑏 − 𝑎)) , (𝑐 −

𝛼

𝜔
(𝑐 − 𝑏))], 

[𝐴(𝛽), 𝐴(𝛽)] = [(𝑎 +
1−𝛽

1−𝜂
(𝑏 − 𝑎)) , (𝑐 −

1−𝛽

1−𝜂
(𝑐 − 𝑏))], 

[𝐴(𝛾), 𝐴(𝛾)] = [(𝑎 +
1−𝛾

1−𝜉
(𝑏 − 𝑎)) , (𝑐 −

1−𝛾

1−𝜉
(𝑐 − 𝑏))]. 

 

2.5 Definition 5 [8]  

Let 𝐴 be a generalized trapezoidal neutrosophic number 𝐴𝐺𝑇𝑅𝑁 = (𝑎, 𝑏, 𝑐, 𝑑: 𝜔, 𝜂, 𝜉) with 
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𝑇𝐴(𝑥) =

{
 
 

 
 

𝑥−𝑎

𝑏−𝑎
𝜔    𝑎 ≤ 𝑥 ≤ 𝑏

𝜔            𝑏 ≤ 𝑥 ≤  𝑐  
𝑑−𝑥

𝑑−𝑐
𝜔      𝑐 ≤ 𝑥 ≤  𝑑

0              otherwise

  

𝐼𝐴(𝑥) =

{
 
 

 
 

𝑏−𝑥

𝑏−𝑎
𝜂    𝑎 ≤ 𝑥 ≤ 𝑏

𝜂           𝑏 ≤ 𝑥 ≤  𝑐  
𝑐−𝑥

𝑐−𝑑
𝜂      𝑐 ≤ 𝑥 ≤  𝑑

1             otherwise

  

𝐹𝐴(𝑥) =

{
 
 

 
 
𝑏−𝑥

𝑏−𝑎
𝜉    𝑎 ≤ 𝑥 ≤ 𝑏

𝜉          𝑏 ≤ 𝑥 ≤  𝑐  
𝑐−𝑥

𝑐−𝑑
𝜉     𝑐 ≤ 𝑥 ≤  𝑑

1            otherwise

  

The (𝛼, 𝛽, 𝛾)-cuts on the generalized trapezoidal neutrosophic number can be represented as 

𝐴𝛼,𝛽,𝛾 = [𝐴(𝛼), 𝐴(𝛼)] , [𝐴(𝛽), 𝐴(𝛽)] , [𝐴(𝛾), 𝐴(𝛾)], 

[𝐴(𝛼), 𝐴(𝛼)] = [(𝑎 +
𝛼

𝜔
(𝑏 − 𝑎)) , (𝑑 −

𝛼

𝜔
(𝑑 − 𝑐))], 

[𝐴(𝛽), 𝐴(𝛽)] = [(𝑎 +
1−𝛽

1−𝜂
(𝑏 − 𝑎)) , (𝑑 −

1−𝛽

1−𝜂
(𝑑 − 𝑐))], 

[𝐴(𝛾), 𝐴(𝛾)] = [(𝑎 +
1−𝛾

1−𝜉
(𝑏 − 𝑎)) , (𝑑 −

1−𝛾

1−𝜉
(𝑑 − 𝑐))]. 

2.6 Definition [6] 

Let 𝐹: (𝑎, 𝑏) → ℱ(𝑅), if the next limits 

lim
ℎ→0+

𝐹(𝑥0 + ℎ) ⊝𝐻 𝐹(𝑥0)

ℎ
, lim

ℎ→0+

𝐹(𝑥0) ⊝𝐻 𝐹(𝑥0 − ℎ)

ℎ
 

exist and equal some elements 𝐹′𝐻(𝑥0) ∈ ℱ(𝑅), then 𝐹 is Hukuhara differentiable at 𝑥0 ∈ (𝑎, 𝑏), and 

𝐹′𝐻(𝑥0) is its derivative at 𝑥0 ∈ (𝑎, 𝑏). 

 

2.7 Theorem [5]  

Let 𝐹: (𝑎, 𝑏) → ℱ(𝑅) be a generalized Hukuhara differentiable function if and only if one of the 

following conditions is satisfied 

i. 𝑓′𝛼(𝑥) is increasing and 𝑓′
𝛼
(𝑥) is decreasing 

ii. 𝑓′𝛼(𝑥) is decreasing and 𝑓′
𝛼
(𝑥) is increasing 

Implies to,  
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[ 𝐹′𝑔𝐻(𝑥)]𝜶 = [𝑚𝑖𝑛 (𝑓
′

𝛼
(𝑥), 𝑓′

𝛼
(𝑥)) ,𝑚𝑎𝑥 (𝑓′

𝛼
(𝑥), 𝑓′

𝛼
(𝑥))]. 

This concept is closer to the generalized differentiability, but it probably focuses on the cases of the 

function and both of these differentiabilities change the concept of derivatives, so let us show these 

changes in the next definition of generalized Hukuhara derivatives. 

2.8 Definition [6]  

The generalized Hukuhara first derivative of a fuzzy parametric function is defined as: 

𝑓′(𝑥0) = lim
ℎ→0

𝑓(𝑥0+ℎ)⊖𝑔ℎ𝑓(𝑥0)

ℎ
, 

From this definition, two classes can be defined: 

(𝑖)-differentiable at 𝑥0 :  [𝑓′(𝑥0)]𝛼 = [𝑓′
𝛼
(𝑥0), 𝑓

′
𝛼
(𝑥0)]                              

(𝑖𝑖)-differentiable at 𝑥0 :  [𝑓′(𝑥0)]𝛼 = [𝑓′𝛼(𝑥0), 𝑓
′

𝛼
(𝑥0)]          

                   

2.9 Definition [6]  

The generalized Hukuhara second derivative of the fuzzy function is defined as: 

𝑓"(𝑥0) = lim
ℎ→0

𝑓′(𝑥0+ℎ)⊖𝑔ℎ𝑓
′(𝑥0)

ℎ
, 

According to the last two definitions, the following classes can be selected: 

𝑓′(𝑥0) is (𝑖)-differentiable if:   

𝑓"(𝑥0) = {
[𝑓′′

𝛼
(𝑥0), 𝑓

′′
𝛼
(𝑥0)]  𝑖𝑓 𝑓 𝑖𝑠 (𝑖) − 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠(1,1)

[𝑓′′
𝛼
(𝑥0), 𝑓

′′

𝛼
(𝑥0)]  𝑖𝑓 𝑓 𝑖𝑠 (𝑖𝑖) − 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒  𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 (2.2)

}. 

𝑓′(𝑥0) is (𝑖𝑖)-differentiable if:  

𝑓"(𝑥0) = {
[𝑓′′

𝛼
(𝑥0), 𝑓

′′

𝛼
(𝑥0)]  𝑖𝑓 𝑓 𝑖𝑠 (𝑖) − 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠(1,2)

[𝑓′′
𝛼
(𝑥0), 𝑓

′′
𝛼
(𝑥0)]  𝑖𝑓 𝑓 𝑖𝑠 (𝑖𝑖) − 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠(2,1)

}. 

2.10  Definition [7] 

 The solution𝑦̃(𝑡, 𝛼, 𝛽, 𝛾) of the neutrosophic fuzzy differential equation is strong only if, 

𝜕𝑦

𝜕𝛼
> 0,

𝑑𝑦̅

𝑑𝛼
< 0 but  

𝜕𝑦

𝜕𝛽
< 0,

𝑑𝑦̅

𝑑𝛽
> 0 and  

𝜕𝑦

𝜕𝛾
< 0,

𝑑𝑦̅

𝑑𝛾
> 0. 

 

3. Finite Difference Method Under Generalized Hukuhara Differentiability 
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The generalized Hukuhara differentiability is first utilized on the neutrosophic differential problem, 

which in turn will transform it into classes of differential equations. Then, the solution can be 

obtained by applying the finite difference method to these classes of the differential equation. 

As an example and for a second-order differential equation that has neutrosophic input adopting the 

generalized Hukuhara differentiability, this problem is split into four classes, each class contains two 

certain equations. Then, the normal finite difference method (FDM) 𝑦′′ =
𝑦𝑖+1−2𝑦𝑖+𝑦𝑖−1

ℎ2
 , 𝑦′ =

𝑦𝑖+1−𝑦𝑖−1

2ℎ
 

is considered on each certain first and second derivatives of the function. 

Under generalized Hukuhara differentiability  

𝑦′′̃(𝑡, 𝛼, 𝛽, 𝛾) =  𝑝𝑦 ′̃(𝑡, 𝛼, 𝛽, 𝛾) + 𝑞𝑦̃(𝑡, 𝛼, 𝛽, 𝛾), 

𝑦̃(𝑡0) = 𝑎̃  ;  𝑦̃(𝑇) = 𝑏̃. 

Where the parameters are positive constants. 

 

A.  Class (1,1) 

𝑦′′̅̅̅̅ (𝑡, 𝛼, 𝛽, 𝛾) = 𝑝. 𝑦 ′̅(𝑡, 𝛼, 𝛽, 𝛾) + 𝑞. 𝑦̅(𝑡, 𝛼, 𝛽, 𝛾) , 

     𝑦̅(𝑡0, 𝛼, 𝛽, 𝛾) = 𝑎̅   𝑦̅(𝑇, 𝛼, 𝛽, 𝛾) = 𝑏̅, 

𝑦′′(𝑡, 𝛼, 𝛽, 𝛾) = 𝑝. 𝑦′(𝑡, 𝛼, 𝛽, 𝛾) + 𝑞. 𝑦(𝑡, 𝛼, 𝛽, 𝛾) , 

   𝑦(𝑡0, 𝛼, 𝛽, 𝛾) = 𝑎   𝑦(𝑇, 𝛼, 𝛽, 𝛾) = 𝑏. 

By using the traditional finite difference method we have the following results 

𝑦̅(𝑡, 𝛼, 𝛽, 𝛾) = 𝑣 𝑎𝑛𝑑 𝑦(𝑡, 𝛼, 𝛽, 𝛾) = 𝑢 

𝑦′′(𝑡, 𝛼, 𝛽, 𝛾) = 𝑝. 𝑦′(𝑡, 𝛼, 𝛽, 𝛾) + 𝑞. 𝑦(𝑡, 𝛼, 𝛽, 𝛾)                                                                                              (1) 

𝑢𝑖+1−2𝑢𝑖+𝑢𝑖−1

ℎ2
= 𝑝

𝑢𝑖+1−𝑢𝑖−1

2ℎ
+ 𝑞𝑢𝑖                                                                                                                     (2) 

𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1 =
𝑝ℎ

2
𝑢𝑖+1 −

𝑝ℎ

2
𝑢𝑖−1 + 𝑞ℎ

2𝑢𝑖                                                                                            (3) 

(1 −
𝑝ℎ

2
) 𝑢𝑖+1 − (2 + 𝑞ℎ

2)𝑢𝑖 + (1 +
𝑝ℎ

2
) 𝑢𝑖−1 = 0                                                                                        (4) 

Where ℎ = ∆𝑥 and 𝑖 = 1, 2, 3 

[
 
 
 
 
 −(2 + 𝑞ℎ2) (1 −

𝑝ℎ

2
) 0

(1 +
𝑝ℎ

2
) −(2 + 𝑞ℎ2) (1 −

𝑝ℎ

2
)

0 (1 +
𝑝ℎ

2
) −(2 + 𝑞ℎ2)]

 
 
 
 
 

[

𝑢1
𝑢2
𝑢3
] =

[
 
 
 
 − (1 +

𝑝ℎ

2
) 𝑢0

0

−(1 −
𝑝ℎ

2
) 𝑢4]

 
 
 
 

 

Where, 𝑢0 = 𝑎 and 𝑢4 = 𝑏 

 

𝑦′′̅̅̅̅ (𝑡, 𝛼, 𝛽, 𝛾) = 𝑝. 𝑦 ′̅(𝑡, 𝛼, 𝛽, 𝛾) + 𝑞. 𝑦̅(𝑡, 𝛼, 𝛽, 𝛾)                         (5) 
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𝑣𝑖+1−2𝑣𝑖+𝑣𝑖−1

ℎ2
= 𝑝

𝑣𝑖+1−𝑣𝑖−1

2ℎ
+ 𝑞𝑣𝑖                                                       (6) 

𝑣𝑖+1 − 2𝑣𝑖 + 𝑣𝑖−1 =
𝑝ℎ

2
𝑣𝑖+1 −

𝑝ℎ

2
𝑣𝑖−1 + 𝑞ℎ

2𝑣𝑖                                                    (7) 

(1 −
𝑝ℎ

2
) 𝑣𝑖+1 − (2 + 𝑞ℎ

2)𝑣𝑖 + (1 +
𝑝ℎ

2
) 𝑣𝑖−1 = 0                                                 (8) 

[
 
 
 
 
 −(2 + 𝑞ℎ2) (1 −

𝑝ℎ

2
) 0

(1 +
𝑝ℎ

2
) −(2 + 𝑞ℎ2) (1 −

𝑝ℎ

2
)

0 (1 +
𝑝ℎ

2
) −(2 + 𝑞ℎ2)]

 
 
 
 
 

[

𝑣1
𝑣2
𝑣3
] =

[
 
 
 
 − (1 +

𝑝ℎ

2
) 𝑣0

0

−(1 −
𝑝ℎ

2
) 𝑣4]

 
 
 
 

 

Where, 𝑣0 = 𝑎 and 𝑣4 = 𝑏 

 

B.  Class (1,2) 

𝑦′′(𝑡, 𝛼, 𝛽, 𝛾) = 𝑝. 𝑦 ′̅(𝑡, 𝛼, 𝛽, 𝛾) + 𝑞. 𝑦̅(𝑡, 𝛼, 𝛽, 𝛾)         

    𝑦̅(𝑡0, 𝛼, 𝛽, 𝛾) = 𝑎̅     𝑦̅(𝑇, 𝛼, 𝛽, 𝛾) = 𝑏̅ 

𝑦′′(𝑡, 𝛼, 𝛽, 𝛾) = 𝑝. 𝑦′(𝑡, 𝛼, 𝛽, 𝛾) + 𝑞. 𝑦(𝑡, 𝛼, 𝛽, 𝛾)          

   𝑦(𝑡0, 𝛼, 𝛽, 𝛾) = 𝑎      𝑦(𝑇, 𝛼, 𝛽, 𝛾) = 𝑏 

Where, 𝑦̅(𝑡, 𝛼) = 𝑣 𝑎𝑛𝑑 𝑦(𝑡, 𝛼) = 𝑢 

𝑦′′(𝑡, 𝛼, 𝛽, 𝛾) = 𝑝. 𝑦 ′̅(𝑡, 𝛼, 𝛽, 𝛾) + 𝑞. 𝑦̅(𝑡, 𝛼, 𝛽, 𝛾)                                           (9) 

𝑢𝑖+1−2𝑢𝑖+𝑢𝑖−1

ℎ2
=  𝑝

𝑣𝑖+1−𝑣𝑖−1

2ℎ
+ 𝑞𝑣𝑖                                                        (10) 

𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1 =
𝑝ℎ

2
𝑣𝑖+1 + 𝑞ℎ

2𝑣𝑖 −
𝑝ℎ

2
𝑣𝑖−1                                              (11)  

[

−2 1 0
1 −2 1
0 1 −2

 

  

] [

𝑢1
𝑢2
𝑢3
] + [

𝑢0
0
𝑢4

] =

[
 
 
 
 𝑞ℎ

2 𝑝ℎ

2
0

−
𝑝ℎ

2
𝑞ℎ2

𝑝ℎ

2

0 −
𝑝ℎ

2
𝑞ℎ2]

 
 
 
 

[ 

𝑣1
𝑣2
𝑣3
] + [

−
𝑝ℎ

2
𝑣0

0
𝑝ℎ

2
𝑣4

]                            (12) 

[

−2 1 0
1 −2 1
0 1 −2

 

  

] [

𝑢1
𝑢2
𝑢3
] =

[
 
 
 
 𝑞ℎ

2 𝑝ℎ

2
0

−
𝑝ℎ

2
𝑞ℎ2

𝑝ℎ

2

0 −
𝑝ℎ

2
𝑞ℎ2]

 
 
 
 

[ 

𝑣1
𝑣2
𝑣3
] + [

−
𝑝ℎ

2
𝑣0 − 𝑢0

0
𝑝ℎ

2
𝑣4 − 𝑢4

]                                    (13) 

𝐴𝑢 = 𝐵𝑣 + 𝐶                                                                  (14)         

𝐴−1𝐴𝑢 = 𝐴−1𝐵𝑣 + 𝐴−1𝐶                                                                  (15) 

𝑢 = 𝐴−1𝐵𝑣 + 𝐴−1𝐶                                                      (16) 

For the second equation 

𝑦′′(𝑡, 𝛼, 𝛽, 𝛾) = 𝑝. 𝑦′(𝑡, 𝛼, 𝛽, 𝛾) + 𝑞. 𝑦(𝑡, 𝛼, 𝛽, 𝛾)                                                       (17) 
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𝑣𝑖+1−2𝑣𝑖+𝑣𝑖−1

ℎ2
=  𝑝

𝑢𝑖+1−𝑢𝑖−1

2ℎ
+ 𝑞𝑢𝑖                                                                      (18) 

𝑣𝑖+1 − 2𝑣𝑖 + 𝑣𝑖−1 =
𝑝ℎ

2
𝑢𝑖+1 + 𝑞ℎ

2𝑢𝑖 −
𝑝ℎ

2
𝑢𝑖−1                                                 (19) 

[

−2 1 0
1 −2 1
0 1 −2

 

  

] [

𝑣1
𝑣2
𝑣3
] + [

𝑣0
0
𝑣4

] =

[
 
 
 
 𝑞ℎ

2 𝑝ℎ

2
0

−
𝑝ℎ

2
𝑞ℎ2

𝑝ℎ

2

0 −
𝑝ℎ

2
𝑞ℎ2]

 
 
 
 

[ 

𝑢1
𝑢2
𝑢3
] + [

−
𝑝ℎ

2
𝑢0

0
𝑝ℎ

2
𝑢4

]                              (20) 

[

−2 1 0
1 −2 1
0 1 −2

 

  

] [

𝑣1
𝑣2
𝑣3
] =

[
 
 
 
 𝑞ℎ

2 𝑝ℎ

2
0

−
𝑝ℎ

2
𝑞ℎ2

𝑝ℎ

2

0 −
𝑝ℎ

2
𝑞ℎ2]

 
 
 
 

[ 

𝑢1
𝑢2
𝑢3
] + [

−
𝑝ℎ

2
𝑢0 − 𝑣0

0
𝑝ℎ

2
𝑢4 − 𝑣4

]          (21) 

𝐴𝑣 = 𝐵𝑢 + 𝐷                                                                   (22) 

𝐴−1𝐴𝑣 = 𝐴−1𝐵𝑢 + 𝐴−1𝐷                                        (23) 

𝑣 = 𝐴−1𝐵𝑢 + 𝐴−1𝐷                                                          (24) 

By substituting the value of u 

𝑣 = 𝐴−1𝐵(𝐴−1𝐵𝑣 + 𝐴−1𝐶) + 𝐴−1𝐷                                                               (25) 

(𝐼 − (𝐴−1𝐵)2)𝑣 = 𝐴−1𝐵𝐴−1𝐶 + 𝐴−1𝐷                                                    (26) 

𝑣 = [𝑣1 𝑣2 𝑣3]𝑇                                                                                   (27) 

𝑢 = [𝑢1 𝑢2 𝑢3]𝑇                                                                         (28) 

 

C.  Class (2,1) 

𝑦′′̅̅̅̅ (𝑡, 𝛼, 𝛽, 𝛾) = 𝑝. 𝑦 ′̅(𝑡, 𝛼, 𝛽, 𝛾) + 𝑞. 𝑦(𝑡, 𝛼, 𝛽, 𝛾),           

    𝑦(𝑡0, 𝛼, 𝛽, 𝛾) = 𝑎         𝑦(𝑇, 𝛼, 𝛽, 𝛾) = 𝑏,  

𝑦′′(𝑡, 𝛼, 𝛽, 𝛾) = 𝑝. 𝑦′(𝑡, 𝛼, 𝛽, 𝛾) + 𝑞. 𝑦̅(𝑡, 𝛼, 𝛽, 𝛾),          

    𝑦̅(𝑡0, 𝛼, 𝛽, 𝛾) = 𝑎̅         𝑦̅(𝑇, 𝛼, 𝛽, 𝛾) = 𝑏̅. 

𝑦′′̅̅̅̅ (𝑡, 𝛼, 𝛽, 𝛾) = 𝑝. 𝑦 ′̅(𝑡, 𝛼, 𝛽, 𝛾) + 𝑞. 𝑦(𝑡, 𝛼, 𝛽, 𝛾)              (29) 

𝑣𝑖+1−2𝑣𝑖+𝑣𝑖−1

ℎ2
=  𝑝

𝑣𝑖+1−𝑣𝑖−1

2ℎ
+ 𝑞𝑢𝑖                                               (30) 

(1 −
𝑝ℎ

2
) 𝑣𝑖+1 − 2𝑣𝑖 + (1 +

𝑝ℎ

2
) 𝑣𝑖−1 = 𝑞ℎ2𝑢𝑖                    (31) 
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[
 
 
 
 −2 (1 −

𝑝ℎ

2
) 0

(1 +
𝑝ℎ

2
) −2 (1 −

𝑝ℎ

2
)

0 (1 +
𝑝ℎ

2
) −2

 

  ]
 
 
 
 

[

𝑣1
𝑣2
𝑣3
] = 𝑞ℎ2 [

𝑢1
𝑢2
𝑢3
] + [

− (1 +
𝑝ℎ

2
) 𝑣0

0

−(1 −
𝑝ℎ

2
) 𝑣4

]           (32)  

𝐴𝑣 = 𝑞ℎ2𝑢 + 𝐵                                            (33) 

𝑣 = 𝐴−1𝑞ℎ2𝑢 + 𝐴−1𝐵                                                               (34) 

For the second equation 

𝑦′′(𝑡, 𝛼, 𝛽, 𝛾) = 𝑝. 𝑦′(𝑡, 𝛼, 𝛽, 𝛾) + 𝑞. 𝑦̅(𝑡, 𝛼, 𝛽, 𝛾)                                         (35) 

𝑢𝑖+1−2𝑢𝑖+𝑢𝑖−1

ℎ2
=  𝑝

𝑢𝑖+1−𝑢𝑖−1

2ℎ
+ 𝑞𝑣𝑖                                                                 (36) 

(1 −
𝑝ℎ

2
) 𝑢𝑖+1 − 2𝑢𝑖 + (1 +

𝑝ℎ

2
) 𝑢𝑖−1 = 𝑞ℎ2𝑣𝑖                                                     (37) 

[
 
 
 
 −2 (1 −

𝑝ℎ

2
) 0

(1 +
𝑝ℎ

2
) −2 (1 −

𝑝ℎ

2
)

0 (1 +
𝑝ℎ

2
) −2

 

  ]
 
 
 
 

[

𝑢1
𝑢2
𝑢3
] = 𝑞ℎ2 [

𝑣1
𝑣2
𝑣3
] + [

− (1 +
𝑝ℎ

2
) 𝑢0

0

−(1 −
𝑝ℎ

2
) 𝑢4

]                        (38) 

𝐴𝑢 = 𝑞ℎ2𝑣 + 𝐶                                                                         (39) 

𝑢 = 𝐴−1𝑞ℎ2𝑣 + 𝐴−1𝐶                                                                          (40) 

By substitution the value of v 

𝑢 = 𝐴−1𝑞ℎ2(𝐴−1𝑞ℎ2𝑢 + 𝐴−1𝐵) + 𝐴−1𝐶                                                          (41) 

(1 − (𝑞ℎ2)2(𝐴−1)2)𝑢 = 𝑞ℎ2(𝐴−1)2𝐵 + 𝐴−1𝐶                                              (42) 

Then, 

𝑣 = [𝑣1 𝑣2 𝑣3]𝑇                                                                  (43) 

𝑢 = [𝑢1 𝑢2 𝑢3]𝑇                                                                            (44) 

D.  Class (2,2) 

𝑦′′̅̅ ̅(𝑡, 𝛼, 𝛽, 𝛾) = 𝑝. 𝑦′(𝑡, 𝛼, 𝛽, 𝛾) + 𝑞. 𝑦̅(𝑡, 𝛼, 𝛽, 𝛾)              

   𝑦̅(𝑡0, 𝛼, 𝛽, 𝛾) = 𝑎̅      𝑦̅(𝑇, 𝛼, 𝛽, 𝛾) = 𝑏̅ 

𝑦′′(𝑡, 𝛼, 𝛽, 𝛾, 𝛼) = 𝑝. 𝑦 ′̅(𝑡, 𝛼, 𝛽, 𝛾) + 𝑞. 𝑦(𝑡, 𝛼, 𝛽, 𝛾)             

    𝑦(𝑡0, 𝛼, 𝛽, 𝛾) = 𝑎     𝑦(𝑇, 𝛼, 𝛽, 𝛾) = 𝑏 

𝑦′′̅̅ ̅(𝑡, 𝛼, 𝛽, 𝛾) = 𝑝. 𝑦′(𝑡, 𝛼, 𝛽, 𝛾) + 𝑞. 𝑦̅(𝑡, 𝛼, 𝛽, 𝛾)                                                          (45) 

𝑣𝑖+1−2𝑣𝑖+𝑣𝑖−1

ℎ2
=  𝑝

𝑢𝑖+1−𝑢𝑖−1

2ℎ
+ 𝑞𝑣𝑖                                                                         (46) 
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𝑣𝑖+1 − (2 + 𝑞ℎ
2)𝑣𝑖 + 𝑣𝑖−1 =

𝑝ℎ

2
𝑢𝑖+1 −

𝑝ℎ

2
𝑢𝑖−1                                                          (47) 

[

−(2 + 𝑞ℎ2) 1 0

1 −(2 + 𝑞ℎ2) 1

0 1 −(2 + 𝑞ℎ2)

 

  

] [

𝑣1
𝑣2
𝑣3
] =

[
 
 
 
 0

𝑝ℎ

2
0

−
𝑝ℎ

2
0

𝑝ℎ

2

0 −
𝑝ℎ

2
0 ]
 
 
 
 

[

𝑢1
𝑢2
𝑢3
] + [

−
𝑝ℎ

2
𝑢0 − 𝑣0

0
𝑝ℎ

2
𝑢4 − 𝑣4

]            (48) 

𝐴𝑣 = 𝐵𝑢 + 𝐶                                                                                            (49) 

𝐴−1𝐴𝑣 = 𝐴−1𝐵𝑢 + 𝐴−1𝐶                                                                                (50) 

𝑣 = 𝐴−1𝐵𝑢 + 𝐴−1𝐶                                                                          (51) 

For the second equation, 

𝑦′′(𝑡, 𝛼, 𝛽, 𝛾) = 𝑝. 𝑦 ′̅(𝑡, 𝛼, 𝛽, 𝛾) + 𝑞. 𝑦(𝑡, 𝛼, 𝛽, 𝛾)                                                          (52) 

𝑢𝑖+1−2𝑢𝑖+𝑢𝑖−1

ℎ2
=  𝑝

𝑣𝑖+1−𝑣𝑖−1

2ℎ
+ 𝑞𝑢𝑖                                                             (53) 

𝑢𝑖+1 − (2 + 𝑞ℎ
2)𝑢𝑖 + 𝑢𝑖−1 =

𝑝ℎ

2
𝑣𝑖+1 −

𝑝ℎ

2
𝑣𝑖−1                                                (54) 

[

−(2 + 𝑞ℎ2) 1 0

1 −(2 + 𝑞ℎ2) 1

0 1 −(2 + 𝑞ℎ2)

 

  

] [

𝑢1
𝑢2
𝑢3
] =

[
 
 
 
 0

𝑝ℎ

2
0

−
𝑝ℎ

2
0

𝑝ℎ

2

0 −
𝑝ℎ

2
0 ]
 
 
 
 

[

𝑣1
𝑣2
𝑣3
] + [

−
𝑝ℎ

2
𝑣0 − 𝑢0

0
𝑝ℎ

2
𝑣4 − 𝑢4

]            (55) 

𝐴𝑢 = 𝐵𝑣 + 𝐶                                                                                            (56) 

𝐴−1𝐴𝑢 = 𝐴−1𝐵𝑣 + 𝐴−1𝐶                                                                   (57) 

𝑢 = 𝐴−1𝐵𝑣 + 𝐴−1𝐶                                                                      (58) 

4. Numerical Simulation 

In this section, the utility of the proposed method is examined by presenting an example, whose 

analytical solutions are provided in the previous work [19]. To validate the efficiency of the proposed 

technique, the numerical results are compared with the exact solution [19]. The absolute error can be 

formulated as: 

• The absolute error 𝑬𝑵 of the solution is defined by: 

|𝒆𝑵| = |𝑬𝒙𝒂𝒄𝒕 − 𝑨𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒊𝒐𝒏|. 

4.1 Example 1 

𝒚′′̃(𝒕) = 𝟒𝒚′̃(𝒕) + 𝟓𝒚̃(𝒕) 

𝑦̃(𝑡0) = 𝑎̃ =  (0.8,1,1.4; 0.8,0.2,0.3) 
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𝑦̃(𝑇) = 𝑏̃ = (2.6,3,3.1, ; 0.8,0.2,0.3) 

p = 4 & q =5 

• Case (1, 1) 

Analytical Solution 

Table (1): The Analytical Results of Upper and Lower for (𝛼, 𝛽, 𝛾) at 𝑡 = 0.7 

𝛼 𝒚(0.7, 𝛼) 𝒚̅(0.7, 𝛼) 𝛽 𝒚(0.7, 𝛽) 𝒚̅(0.7, 𝛽) 𝛾 𝒚(0.7, 𝛾) 𝒚̅(0.7, 𝛾) 

0.0 0.884039 1.287469 0.2 1.060290 1.060290 0.3 1.060290 1.060290 

0.2 0.928101 1.230675 0.4 1.016227 1.117085 0.5 1.009932 1.125198 

0.4 0.972164 1.173880 0.6 0.972164 1.173880 0.7 0.959575 1.190107 

0.6 1.016227 1.117085 0.8 0.928101 1.230675 0.9 0.934396 1.255015 

0.8 1.060290 1.060290 1.0 0.884039 1.287469 1.0 0.884039 1.287469 

 

Approximation Solution and the Related Errors 

Table (2): The Approximation Results of Upper and Lower for (𝛼, 𝛽, 𝛾) at 𝑡 = 0.7 at N = 50. 

𝛼 𝒚(0.7, 𝛼) 𝒚̅(0.7, 𝛼) 𝛽 𝒚(0.7, 𝛽) 𝒚̅(0.7, 𝛽) 𝛾 𝒚(0.7, 𝛾) 𝒚̅(0.7, 𝛾) 

0.0 0.883563 1.286953 0.2 1.059750 1.059750 0.3 1.060290 1.060290 

0.2 0.927609 1.230153 0.4 1.015703 1.116551 0.5 1.009411 1.124665 

0.4 0.971656 1.173352 0.6 0.971656 1.173352 0.7 0.959072 1.189581 

0.6 1.015703 1.116551 0.8 0.927609 1.230153 0.9 0.908732 1.254496 

0.8 1.059750 1.059750 1.0 0.883563 1.286953 1.0 0.884039 1.287469 

Table (3): The Errors Results of Upper and Lower for (𝛼, 𝛽, 𝛾) at 𝑡 = 0.7 at N = 50. 

𝛼 𝒆(0.7, 𝛼) 𝒆̅(0.7, 𝛼) 𝛽 𝒆(0.7, 𝛽) 𝒆̅(0.7, 𝛽) 𝛾 𝒆(0.7, 𝛾) 𝒆̅(0.7, 𝛾) 

0.0 4.76 E-04 5.16 E-04 0.2 5.40 E-04 5.40 E-04 0.3 5.40 E-04 5.40 E-04 

0.2 4.92 E-04 522 E-04 0.4 5.24 E-04 5.34 E-04 0.5 5.22 E-04 5.33 E-04 

0.4 5.08 E-04 5.28 E-04 0.6 5.08 E-04 5.28 E-04 0.7 5.03 E-04 5.26 E-04 

0.6 5.24 E-04 5.34 E-04 0.8 4.92 E-04 5.22 E-04 0.9 4.85 E-04 5.19 E-04 

0.8 5.40 E-04 5.40 E-04 1.0 4.76 E-04 5.16 E-04 1.0 4.76 E-04 5.16 E-04 

 

The analytical results for t=0.7 are shown in Table 1, followed by the approximation results for various 

values of N in Tables 2, 4, and 6, and finally the error between analytical and numerical results in 

Tables 3, 5, and 7. 
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Table (4): The Approximation Results of Upper and Lower for (𝛼, 𝛽, 𝛾) at 𝑡 = 0.7at N = 100. 

𝛼 𝒚(0.7, 𝛼) 𝒚̅(0.7, 𝛼) 𝛽 𝒚(0.7, 𝛽) 𝒚̅(0.7, 𝛽) 𝛾 𝒚(0.7, 𝛾) 𝒚̅(0.7, 𝛾) 

0.0 0.883920 1.287341 0.2 1.060155 1.060155 0.3 1.060155 1.060155 

0.2 0.927979 1.230544 0.4 1.016096 1.116951 0.5 1.009802 1.125065 

0.4 0.972037 1.173748 0.6 0.972037 1.173748 0.7 0.959449 1.189975 

0.6 1.016096 1.116951 0.8 0.927979 1.230544 0.9 0.909096 1.254885 

0.8 1.060155 1.060155 1.0 0.883920 1.287341 1.0 0.883920 1.287341 

 

Table (5): The Errors Results of Upper and Lower for (𝛼, 𝛽, 𝛾) at 𝑡 = 0.7at N = 100. 

𝛼 𝒆(0.7, 𝛼) 𝒆̅(0.7, 𝛼) 𝛽 𝒆(0.7, 𝛽) 𝒆̅(0.7, 𝛽) 𝛾 𝒆(0.7, 𝛾) 𝒆̅(0.7, 𝛾) 

0.0 1.19 E-04 1.29 E-04 0.2 1.35 E-04 1.35 E-04 0.3 1.35 E-04 1.35 E-04 

0.2 1.23 E-04 1.30 E-04 0.4 1.31 E-04 1.33 E-04 0.5 1.30 E-04 1.33 E-04 

0.4 1.27 E-04 1.32 E-04 0.6 1.27 E-04 1.32 E-04 0.7 1.26 E-04 1.31 E-04 

0.6 1.31 E-04 1.33 E-04 0.8 1.23 E-04 1.31 E-04 0.9 1.21 E-04 1.30 E-04 

0.8 1.35 E-04 1.35 E-04 1.0 1.19 E-04 1.29 E-04 1.0 1.19 E-04 1.29 E-04 

 

N = 200 & h = 0.005 

Table (6): The Approximation Results of Upper and Lower for (𝛼, 𝛽, 𝛾) at 𝑡 = 0.7at N = 200. 

𝛼 𝒚(0.7, 𝛼) 𝒚̅(0.7, 𝛼) 𝛽 𝒚(0.7, 𝛽) 𝒚̅(0.7, 𝛽) 𝛾 𝒚(0.7, 𝛾) 𝒚̅(0.7, 𝛾) 

0.0 0.884009 1.287437 0.2 1.060256 1.060256 0.3 1.060256 1.060256 

0.2 0.928071 1.230642 0.4 1.016194 1.117052 0.5 1.009900 1.125165 

0.4 0.972133 1.173847 0.6 0.972133 1.173847 0.7 0.959544 1.190074 

0.6 1.016194 1.117052 0.8 0.928071 1.230642 0.9 0.909187 1.254983 

0.8 1.060256 1.060256 1.0 0.884009 1.287437 1.0 0.884009 1.287437 

 

 

 

Table (7): The Errors Results of Upper and Lower for (𝛼, 𝛽, 𝛾) at 𝑡 = 0.7at N = 200. 

𝛼 𝒆(0.7, 𝛼) 𝒆̅(0.7, 𝛼) 𝛽 𝒆(0.7, 𝛽) 𝒆̅(0.7, 𝛽) 𝛾 𝒆(0.7, 𝛾) 𝒆̅(0.7, 𝛾) 

0.0 2.97 E-05 3.22 E-05 0.2 3.37 E-05 3.37 E-05 0.3 3.37 E-05 3.37 E-05 
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0.2 3.07 E-05 3.26 E-05 0.4 3.27E-05 3.33 E-05 0.5 3.26 E-05 3.33 E-05 

0.4 3.17 E-05 3.30 E-05 0.6 3.17 E-05 3.30 E-05 0.7 3.14 E-05 3.29 E-05 

0.6 3.27E-05 3.33 E-05 0.8 3.07 E-05 3.26 E-05 0.9 3.03 E-05 3.24 E-05 

0.8 3.37 E-05 3.37 E-05 1.0 2.97 E-05 3.22 E-05 1.0 2.97 E-05 3.22 E-05 

 

Figure 1: Surface of Absolute Error for Lower Case (1,1) Alpha 

 

Figure 2: Surface of Absolute Error for Upper Case (1,1) Alpha 
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Figure 3: Surface of Absolute Error for Lower Case (1,1) Beta 

 
Figure 4: Surface of Absolute error for Upper Case (1,1) Beta 

 
Figure 5: Surface of Absolute Error for Lower Case (1,1) Gamma 
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Figure 6: Surface of Absolute Error for Upper Case (1,1) Gamma 

 

Figures 1 to 6 show the surface of errors at N=200, 𝑡 ∈ [0.1: 0.9], with values of (𝛼, 𝛽, 𝛾).   

  

Case (1, 2)  

Analytical Solution 

Table (8): The Analytical Results of Upper and Lower for (𝛼, 𝛽, 𝛾) at 𝑡 = 0.7 

𝛼 𝒚(0.7, 𝛼) 𝒚̅(0.7, 𝛼) 𝛽 𝒚(0.7, 𝛽) 𝒚̅(0.7, 𝛽) 𝛾 𝒚(0.7, 𝛾) 𝒚̅(0.7, 𝛾) 

0.0 0.762704 1.408804 0.2 1.060290 1.060290 0.3 1.060290 1.060290 

0.2 0.837101 1.321675 0.4 0.985893 1.147418 0.5 0.975265 1.159865 

0.4 0.911497 1.234547 0.6 0.911497 1.234547 0.7 0.890241 1.259441 

0.6 0.985893 1.147418 0.8 0.837101 1.321675 0.9 0.805217 1.359016 

0.8 1.060290 1.060290 1.0 0.762704 1.408804 1.0 0.762704 1.408804 

Approximation Solution at N = 200 & h = 0.005 

 

Table (9): The Approximation Results of Upper and Lower for (𝛼, 𝛽, 𝛾) at 𝑡 = 0.7 for 𝑁 = 200 

𝛼 𝒚(0.7, 𝛼) 𝒚̅(0.7, 𝛼) 𝛽 𝒚(0.7, 𝛽) 𝒚̅(0.7, 𝛽) 𝛾 𝒚(0.7, 𝛾) 𝒚̅(0.7, 𝛾) 

0.0 0.762672 1.408774 0.2 1.060256 1.060256 0.3 1.060256 1.060256 

0.2 0.837068 1.321645 0.4 0.985860 1.147386 0.5 0.975232 1.159833 

0.4 0.911464 1.234515 0.6 0.911464 1.234515 0.7 0.890208 1.259409 

0.6 0.985860 1.147386 0.8 0.837068 1.321645 0.9 0.805184 1.358986 

0.8 1.060256 1.060256 1.0 0.762672 1.408774 1.0 0.762672 1.408774 
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Error at N = 200 

Table (10): The Error Results of Upper and Lower for (𝛼, 𝛽, 𝛾) at 𝑡 = 0.7 at N = 200. 

𝛼 𝒆(0.7, 𝛼) 𝒆̅(0.7, 𝛼) 𝛽 𝒆(0.7, 𝛽) 𝒆̅(0.7, 𝛽) 𝛾 𝒆(0.7, 𝛾) 𝒆̅(0.7, 𝛾) 

0.0 3.258E-05 2.935E-05 0.2 3.372E-05 3.372E-05 0.3 3.372E-05 3.372E-05 

0.2 3.285E-05 3.044E-05 0.4 3.344E-05 3.263E-05 0.5 3.340E-05 3.247E-05 

0.4 3.315E-05 3.153E-05 0.6 3.315E-05 3.153E-05 0.7 3.307E-05 3.122E-05 

0.6 3.344E-05 3.263E-05 0.8 3.285E-05 3.044E-05 0.9 3.274E-05 2.997E-05 

0.8 3.372E-05 3.372E-05 1.0 3.258E-05 2.935E-05 1.0 3.258E-05 2.935E-05 

 

• Case (2, 1) 

Analytical Solution 

Table (11): The Analytical Results of Upper and Lower for (𝛼, 𝛽, 𝛾) at 𝑡 = 0.7 

𝛼 𝒚(0.7, 𝛼) 𝒚̅(0.7, 𝛼) 𝛽 𝒚(0.7, 𝛽) 𝒚̅(0.7, 𝛽) 𝛾 𝒚(0.7, 𝛾) 𝒚̅(0.7, 𝛾) 

0.0 0.638923 1.532585 0.2 1.060290 1.060290 0.3 1.060290 1.060290 

0.2 0.744265 1.414511 0.4 0.954948 1.178364 0.5 0.939899 1.195231 

0.4 0.849607 1.296438 0.6 0.849607 1.296438 0.7 0.819509 1.330173 

0.6 0.954948 1.178364 0.8 0.744265 1.414511 0.9 0.699119 1.465114 

0.8 1.060290 1.060290 1.0 0.638923 1.532585 1.0 0.638923 1.532585 

 

 

Approximation Solution  

Table (12): The Approximation Results of Upper and Lower for (𝛼, 𝛽, 𝛾) at 𝑡 = 0.7 at N = 150. 

𝛼 𝒚(0.7, 𝛼) 𝒚̅(0.7, 𝛼) 𝛽 𝒚(0.7, 𝛽) 𝒚̅(0.7, 𝛽) 𝛾 𝒚(0.7, 𝛾) 𝒚̅(0.7, 𝛾) 

0.0 0.638851 1.532546 0.2 1.060230 1.060230 0.3 1.060230 1.060230 

0.2 0.744196 1.414467 0.4 0.954885 1.178309 0.5 0.939836 1.195178 

0.4 0.849541 1.296388 0.6 0.849541 1.296388 0.7 0.819442 1.330125 

0.6 0.954885 1.178309 0.8 0.744196 1.414467 0.9 0.699048 1.465073 

0.8 1.060230 1.060230 1.0 0.638851 1.532546 1.0 0.638851 1.532546 

 

Error at N = 150 
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Table (13): The Error Results of Upper and Lower for (𝛼, 𝛽, 𝛾) at 𝑡 = 0.7 at N = 150. 

𝛼 𝒆(0.7, 𝛼) 𝒆̅(0.7, 𝛼) 𝛽 𝒆(0.7, 𝛽) 𝒆̅(0.7, 𝛽) 𝛾 𝒆(0.7, 𝛾) 𝒆̅(0.7, 𝛾) 

0.0 7.18 E-05 3.83 E-05 0.2 6.00 E-05 5.60 E-05 0.3 6.00 E-05 5.60 E-05 

0.2 6.88 E-05 4.37 E-05 0.4 6.29 E-05 5.45 E-05 0.5 6.33 E-05 5.37 E-05 

0.4 6.58 E-05 4.91 E-05 0.6 6.58 E-05 4.91 E-05 0.7 6.67 E-05 4.76 E-05 

0.6 6.29 E-05 5.45 E-05 0.8 6.88 E-05 4.37 E-05 0.9 7.00 E-05 4.14 E-05 

0.8 6.00 E-05 5.60 E-05 1.0 7.18 E-05 3.83 E-05 1.0 7.18 E-05 3.83 E-05 

 

 

• Case (2, 2) 

Analytical Solution 

Table (14): The Analytical Results of Upper and Lower for (𝛼, 𝛽, 𝛾) at 𝑡 = 0.7 

𝛼 𝒚(0.7, 𝛼) 𝒚̅(0.7, 𝛼) 𝛽 𝒚(0.7, 𝛽) 𝒚̅(0.7, 𝛽) 𝛾 𝒚(0.7, 𝛾) 𝒚̅(0.7, 𝛾) 

0.0 0.880422 1.291087 0.2 1.060290 1.060290 0.3 1.060290 1.060290 

0.2 0.925389 1.233387 0.4 1.015323 1.117989 0.5 1.008899 1.126231 

0.4 0.970356 1.175688 0.6 0.970356 1.175688 0.7 0.957508 1.192174 

0.6 1.015323 1.117989 0.8 0.925389 1.233387 0.9 0.906117 1.258116 

0.8 1.060290 1.060290 1.0 0.880422 1.291087 1.0 0.880422 1.291087 

 

Approximation Solution at N = 200 & h = 0.005 

Table (15): The Approximation Results of Upper and Lower for (𝛼, 𝛽, 𝛾) at 𝑡 = 0.7 at N = 200. 

𝛼 𝑦(0.7, 𝛼) 𝑦̅(0.7, 𝛼) 𝛽 𝑦(0.7, 𝛽) 𝑦̅(0.7, 𝛽) 𝛾 𝑦(0.7, 𝛾) 𝑦̅(0.7, 𝛾) 

0.0 0.880391 1.291055 0.2 1.060256 1.060256 0.3 1.060256 1.060256 

0.2 0.925357 1.233355 0.4 1.015290 1.117956 0.5 1.008866 1.126198 

0.4 0.970324 1.175656 0.6 0.970324 1.175656 0.7 0.957476 1.192141 

0.6 1.015290 1.117956 0.8 0.925357 1.233355 0.9 0.906086 1.258084 

0.8 1.060256 1.060256 1.0 0.880391 1.291055 1.0 0.880391 1.291055 
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Error at N = 200 

Table (16): The Error Results of Upper and Lower for (𝛼, 𝛽, 𝛾) at 𝑡 = 0.7at N = 200. 

𝛼 𝒆(0.7, 𝛼) 𝒆̅(0.7, 𝛼) 𝛽 𝒆(0.7, 𝛽) 𝒆̅(0.7, 𝛽) 𝛾 𝒆(0.7, 𝛾) 𝒆̅(0.7, 𝛾) 

0.0 3.06 E-05 3.14 E-05 0.2 3.37 E-05 3.37 E-05 0.3 3.37 E-05 3.37 E-05 

0.2 3.14 E-05 3.20 E-05 0.4 3.29 E-05 3.31 E-05 0.5 3.28 E-05 3.30 E-05 

0.4 3.21 E-05 3.25 E-05 0.6 3.21 E-05 3.25 E-05 0.7 3.19 E-05 3.23 E-05 

0.6 3.29 E-05 3.31 E-05 0.8 3.14 E-05 3.20 E-05 0.9 3.10 E-05 3.17 E-05 

0.8 3.37 E-05 3.37 E-05 1.0 3.06 E-05 3.14 E-05 1.0 3.06 E-05 3.14 E-05 

 

Conclusion: 

In this paper, the numerical solution of the second-order differential equation under the effect of a 

neutrosophic environment in the boundary condition has been developed. The finite difference 

method and the generalized Hukuhara differentiability are applied to present the approximate 

solution of each one of the four classes of the solution. The results of the proposed solution are 

compared with the analytical solution of the same problem even after applying generalized 

Hukuhara differentiability. It is found that by decreasing the step size, the error is decreased, and it 

can be classified as an acceptable error when it reaches 10^-6 at h = 0.005. In future work, new 

numerical progressed methods will be presented and applied for numerical application to investigate 

if it will enhance the error in such an uncertain environment. 
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Abstract. A sophisticated mathematical model known as neurosophic extends the vague concept to tackle

real-world issues and applications. The neutrosophic connection of the image can be harnessed to ascertain

its correlation pattern. This paper aims to employ the neutrosophic method for detecting correlations among

fingerprint images using neutrosophic-based pattern analysis. Additionally, it will propose four strategies for

identifying relationships within image data by employing the neutrosophic approach. The study explores the

four fundamental forms of fingerprint images and experiments with various α values. An α value of 0.99 or

higher is favored for image matching.

Keywords: Neutrosophic computer vision; neutrosophic image processing; neutrosophic correlation; fingerprint

image matching; neutrosophic biometric

—————————————————————————————————————————-

1. Introduction

About Biometric. Biometric is a human recognition system that refers to characteristics of

their biological and behavioral. The types of biometrics are facial recognition, fingerprints,

finger geometry, iris recognition, vein recognition, retina scanning, voice recognition, DNA

matching, and digital signatures. Generally, biometric recognition contains two steps which

are enrollment and recognition. First, the system captures the person’s physiognomy to create

a digital representation, and it becomes a template to be compared by the enrollment systems.

The recognition system distinguishes the person’s characteristics converting this into the same

digital format as the template. Fingerprint identification is based on the analysis of the ridge

patterns on the tips of fingers. Sensors generate images of the ridges, and these were scanned

their for structural features (called minutiae) such as branches or terminations [10].

Origin of Neutrosophic. The fuzzy concept was first introduced by Zadeh [11] which deals with

membership functions, and this concept solves real life problems successfully. The Fuzzy Logic
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System (FLS) was first implemented in pattern recognition by Mendel [14]. Zimmermann eval-

uates the efficiency of fuzzy concepts in computer vision [31] , Atanassov [1] proposed the Intu-

itionistic Fuzzy Sets (IFS) in 1986 the extension of IFS is known as Neutrosophic Set (NS)

is a advanced mathematical concept and also a branch of philosophy which was introduced

by Smarandache [23] in 1998 which discuss about membership function (T ), non-membership

function (F ), indeterminacy membership function (I). The correlation for neutrosophic data

initially originated from Hanafy et al., [9]. Later the correlation coefficient for interval neutro-

sophic set formulated by Broumi et al [32]. Image matching measures the degree of similarity

between two image sets that are superimposed on one another plays an important role in

many areas, such as pattern recognition, image analysis, and computer vision [29]. The sim-

ilarity was measured by various operations: feature extraction, distance transformation, and

similarity measurement.

This article, section 1 gives a brief introduction about fuzzy sets and neutrosophic sets.

Then, section 2 focuses on the related work based on image processing and image similarities

with the concept of fuzzy sets and neutrosophic sets. The following section 3 defines some

basic definitions of neutrosophic sets for the image domain. Then, section 4 explains our

contribution in this article to find the relationship between the images. The experimental

analysis is done in section 5, here we do three types of analysis methods. Methodology-1 finds

the relationship between the two images. Methodology-2 is based on relationship finding the

matching for multiple images. To calculate the performance quality of proposal methodology-3

experiments with a combined image database. Finally, section 6 gives the conclusion of the

proposal based on the getting results.

2. Related work

I.K.Vlachos [27] used the Intuitionistic fuzzy cross-entropy and discrimination approach to

determine distance, similarity, dissimilarity, and correlation. This allows us to obtain image

discrimination information. Guo, et al. [6] find neutrosophic similarity scores this approach can

find two different criteria which are the local mean intensity criterion and local homogeneity

of the images. R.M.Zulqarnain, et al. [32] used the Multipolar interval-valued neutrosophic

soft set (mPIVNSS) method to find the similarity measurement in medical diagnoses. In

this proposal, Euclidean distance and Hamming distance are used for finding the similarity

distances. Gao Q. [7] invented a comparison of fake and real fingerprint images based on

different types of sensors. The author used the NIST database and ATVS-FFp database for

analysis. This proposal distinguished between authentic and fake fingerprint images using

the matching score. Jun Ye [28] introduced simplified neutrosophic sets (SNSs) for Cosine

similarity measurements. This method is very useful in medical image diagnosis problems.
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M.Baskar, et al. [2] introduced Region Centric Minutiae Propagation Measure (RCMPM)

which removes noise from the image based on a forgery detection algorithm and classifies the

minutiae, loop, whorl is some basic patterns to classify the fingerprint images. R.P.Sharma,

and S.Dey [21] used together Fuzzy c-means technique, Gabor filter, Fourier transforms, and

a diffusion filter to extract classification features such as mean, moisture, variance, uniformity,

contrast, ridge valley area uniformity, and ridge valley for the fingerprint images. Two-stage

quality adaptive fingerprint image enhancement method can classify the images as the classes

dry, wet, normally dry, normal wet, and good [30]. The identification of gender also relied on

fingerprints. Based on fingerprints, Gustisyaf et al. [8] classified gender using a convolutional

neural network. The classification accuracy value for 49270 images is 99.9667%. For the

SDUMLA-HMT database, gender determination is achieved with 99.8% accuracy [17] which

used feature-level fusion. The Linear Discriminant Analysis, K-Nearest Neighbor classifier,

and Support Vector Machine algorithms were addressed in this proposal. The accuracy for

the KNN correlation method was 89.8%. Narwal et al. [16] proposed an algorithm that is not

restricted to the local fingerprint image features, such as a ridge, location, and direction. In

order to select the best principal features, the author used the PCA algorithm. The Gabour

filter made it much smoother to match the templates.

3. Preliminaries

Definition 3.1. Let A be an universe of data, the element in A denoted by a, then the

neutrosophic set (NS), of the object A is in the form [3,22]

A = {(a, TA(a), IA(a), FA(a)}

where the neutrosophic membership functions T, I, F : A →]−0, 1+[ define respectively the

degrees of truth, indeterminacy and the falsity of the element a ∈ A to the set condition.

−0 ≤ TA(a) + IA(a) + FA(a) ≤ 3+

Definition 3.2. A neutrosophic image PNS is charecterized with neutrosophic membership

functions which are T, I, F where PNS are the intensities of the image. Universally for neutro-

sophic image approach is gray intensities of the image. The image neutrosophic set is defined

as [3, 5]

PNSA(i, j) = {TA(i, j), IA(i, j), FA(i, j)} (1)

In general the arithmetic mean is consider as truth membership values and the standard devi-

ation of the image is consider as indeterminacy membership. The neutrosophic transformation
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intensity of the image is define by the following formulae

TA(i, j) =
p̄(i, j)− p̄min

p̄max−p̄min

p̄A(i, j) =
1

w ∗ w

m=i+w
2∑

m=i−w
2

n=j+w
2∑

n=j−w
2

p(m,n)

IA(i, j) =
δ(i, j)− δmin

δmax−δmin

δA(i, j) = abs(p(i, j)− p̄A(i, j))

FA(i, j) = 1− TA(i, j)

where p̄A(i, j) denotes the pixel mean in the region w∗w and w is generally w = 2n+1, (n ≥ 1).

4. Proposed method

Definition 4.1 (Neutrosophic correlaltion). Let A = [ai,j ]m×n and B = [bi,j ]m×n be two

images with m rows and n columns then the image’s neutrosophic correlation is defined as

follows

K(A,B) =
1
3C(A,B)

δAδB
(2)

where

C(A,B) =

 max(TA(i±∆i, j ±∆j), TB(i±∆i, j ±∆j))−(
max(IA(i±∆i, j ±∆j), IB(i±∆i, j ±∆j))+

max(FA(i±∆i, j ±∆j), FB(i±∆i, j ±∆j))

)
δ(Aij) =

1

3

√
TA(i, j)2 + IA(i, j)2 + FA(i, j)2

δ(Bij) =
1

3

√
TB(i, j)2 + IB(i, j)2 + FB(i, j)2

Then the correlation pattern for the matching level value α is defined as

ℑ[K(A,B)]m×n =

K(A,B) if K(A,B) ≥ α

0 otherwise
(3)

If we need to find the correlation pattern for the image B then

Bℑ[K(A,B)]m×n =

bij if ℑ[K(A,B)] = K(A,B)

0 otherwise
(4)

Definition 4.2 (Neutrosophic Based Spearman Rank correlation). Let A = [ai,j ]m×n

and B = [bi,j ]m×n be two images with m rows and n columns. Let A′s truth membership

subset T [a(i, i±∆i, j, j±∆j) contains XTi = (xT1 , xT2 ...xTn) data and B′s truth membership

subset T [b(i, i ±∆i, j, j ±∆j) contains YTi = (yT1 , yT2 ...yTn) data. The image’s neutrosophic
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based Spearman Rank correlation is defined as follows

The truth membership’s correlation is

rT (aij , bij) =

∑n
i=1(r(XTi)− r(XT )).(r(YTi)− r(YT ))√

[
∑n

i=1(r(XTi)− r(XT ))2][
∑n

i=1(r(YTi)− r(YT ))2]
(5)

where

r(XTi) = rank of XTi

r(YTi) = rank of YTi

r(XT ) =

∑n
i=1 r(XTi)

N

r(YT ) =

∑n
i=1 r(YTi)

N

N = Total number of the data

Similarly, indeterminacy rank correlation is

rI(aij , bij) =

∑n
i=1(r(XIi)− r(XI)).(r(YIi)− r(YI))√

[
∑n

i=1(r(XIi)− r(XI))2][
∑n

i=1(r(YIi)− r(YI))2]

Then the neutrosophic based Spearman Rank correlation of universal image data is

rNR(A,B)m×n = max{P ((rT (aij , bij)m×n), P (rI(aij), bij)m×n)}

For the correlation pattern matching value of α then the image is as follows

αrNR(A,B)m×n =

rNR(A,B) if rNR(A,B) > α

0 if rNR(A,B) ≤ α
(6)

The image B’s correlation pattern is

ℑ(αBrNR(A,B)m×n) =

bij if αrNR(A,B) > α

0 if αrNR(A,B) ≤ α
(7)

Definition 4.3 (Neutrosophic Based Kendall Rank Correlation). Let A = [ai,j ]m×n

and B = [bi,j ]m×n be two images with m rows and n columns. Let A′s truth membership

subset T [a(i, i±∆i, j, j±∆j) contains XTi = (xT1 , xT2 ...xTn) data and B′s truth membership

subset T [b(i, i ±∆i, j, j ±∆j) contains YTi = (yT1 , yT2 ...yTn) data. The image’s neutrosophic

based Kendall Rank correlation is defined as follows

The truth membership’s correlation is

τT (aij , bij) =

∑n
1

∑n
1 sign(XTki

−XTkj
)sign(YTki

− YTkj
)

n(n− 1)

The indeterminacy membership rank correlation is

τI(aij , bij) =

∑n
1

∑n
1 sign(XIki −XIkj )sign(YIki − YIkj )

n(n− 1)
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Then the neutrosophic based Kendall rank correlation for global image data is

τNR(A,B)m×n = {max(P (τT (aij ,bij)),max(P (τI(aij ,bij))}

For the correlation pattern matching value of α then the image is as follows

ατNR(A,B)m×n =

τNR(A,B) if τNR(A,B) > α

0 if τNR(A,B) ≤ α
(8)

The image B’s correlation pattern is

ℑ(αBτNR(A,B)m×n) =

bij if ατNR(A,B) > α

0 if ατNR(A,B) ≤ α
(9)

Definition 4.4 (Neutrosophic Based Karl Pearson Correlation). Let A = [ai,j ]m×n

and B = [bi,j ]m×n be two images with m rows and n columns. Let A′s truth membership

subset T [a(i, i±∆i, j, j±∆j)] contains XTi = (xT1 , xT2 ...xTn) data and B′s truth membership

subset T [b(i, i±∆i, j, j ±∆j) contains YTi = (yT1 , yT2 ...yTn)] data. The image’s neutrosophic

based Karl Pearson correlation is defined as follows

The truth membership’s rank correlation is

ρT (aij , bij) =

∑n
i=1(XTk

−XTk
)(YTk

− YTk
)√∑n

i=1(XTk
−XTk

)2
√∑n

i=1(YTk
− YTk

)2

The indeterminacy membership rank correlation is

ρI(aij , bij) =

∑n
i=1(XIk −XIk)(YIk − YIk)√∑n

i=1(XIk −XIk)
2
√∑n

i=1(YIk − YIk)
2

Then the neutrosophic based Karl pearson correlation for global image data is

ρNR(A,B)m×n = max{P (ρT (aij , bij)m×n), P (ρI(aij , bij)m×n)}

For the correlation pattern matching value of α then the image is as follows

αρNR(A,B)m×n =

ρNR(A,B) if ρNR(A,B) > α

0 if ρNR(A,B) ≤ α
(10)

The image B ’s correlation pattern is

ℑ(αBρNR(A,B)m×n) =

bij if αρNR(A,B) > α

0 if αρNR(A,B) ≤ α
(11)
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Algorithm 1 The correlation pattern

Require: T, I, F values of Image A & B

for i = 1 : m, j = 1 : n do

c1 = ℑ[K(A,B)]m×n

c2 =α τNR(A,B)m×n

c3 =α rNR(A,B)m×n

c4 =α ρNR(A,B)m×n

if mean(c1 + c2 + c3 + c4 < α) then

Output (correlation pattern exist)

else if mean(c1 + c2 + c3 + c4 ≥ α) then

Output (matching pattern exist)

end if

end for

Figure 1. Proposed methods output for similar images. α= 0.9, h= 3

5. Experiments and discussions

Finding the image’s relationship is performed in the image matching task. Here we took

fingerprint images as our application. The fingerprint image data is collected by the National

Institute of Standards and Technology (NIST) database [4] named as SD302 which was orga-

nized by the Inteligence Advanced Research Projects Activity (IARPA), in September 2017.
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Figure 2. Proposed methods output for non-similar images. α= 0.9, h= 3

Initially, the information pertaining to each latent fingerprint image was obtained by isolating

the enclosed section from a comprehensive scene capture. The bounding coordinates were of

non-rectangular shape, and pixels beyond this confined region were white. The dimensions of

the image were approximated to be 1000 pixels per inch in terms of width and height. NIST

supplied the image in Portable Network Graphics (PNG) format to facilitate utilization within

conventional image processing software.

Arches: The finger’s ridges form an uninterrupted pattern from end to end without any

backward turns. Generally, an arch doesn’t have a delta, but if it does, there shouldn’t be a

curving ridge between the core and delta points.

Loops: Loops involve ridges that make a backward turn without twisting. The loop’s

direction on the hand, rather than the card used for impressions, characterizes this backward

rotation. The fingerprint impression resembles a mirror’s reverse image. A loop pattern

typically has only one delta.

Whorls: In a whorl pattern, at least one set of ridges forms a circuit. Therefore, any pattern

with two or more deltas is classified as a whorl.

Tented arch: Similar to the plain arch, the tented arch pattern starts on one side of the

finger and flows consistently to the other side.

The sample visualization of similar image is shown in Figure 1. We can determine that there

are no patterns between the images because of their similarity. The α value in this case is fixed

at 0.9. We get a matching score of 0.99 on average for images that are similar. We can deduce
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Figure 3. Analysis for multiple α values

that there is a perfect match between the images if the average matching score is 0.99 or higher.

Whether the images are the same or not can be determined with clarity in this way. When

the images are not similar to one another, Figure 2 illustrates the correlation between the

images. The proposed approach reaches each type correlation pattern for non-similar images.

Different variations exist for each method’s matching score. We can determine the correlation

pattern level of the images cumulatively based on the average matching score. When there are

no similarities between the images, the proposed methods assist us in identifying correlation

patterns.

The α factor is used in the next analysis. Our first task is to adjust the α value for better

correlation patterns. We are able to obtain each correlation pattern and matching score for

every α value. Therefore, the better α values must be fixed. Figure 3 illustrates the matching

score level for the non-similar images. Here, we focus on values between 0.95 and 0.99. The

NC, Pearson, Kendall, and Spearman methods exhibit the best matching score for the similar

pictures for the taken values when α= 0.99. If the images have the same patterns, this method

of analysis helps us find the matching; otherwise, when the images have different patterns,

we can experience correlation patterns. The matching score for each type of image is listed

in Table 1 below. According to the table, perfect matching images have an average matching
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Figure 4. Fingerprint image type matching score analysis. (a) loop, (b) whorl,

(c) arch, (d) tented arch

Figure 5. Result of random images
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Table 1. Fingerprint type wise analysis

Image Type NC Pearson Kendall Spearman Average

0.8976 0.8464 0.688 0.8656 0.8244

Loop 1 1 0.9968 1 0.9992

0.8 0.8704 0.6816 0.8416 0.7984

0.7872 0.84 0.672 0.832 0.7828

0.984 0.8384 0.6128 0.864 0.8248

Whorl 0.9456 0.84 0.672 0.832 0.8224

0.944 0.8416 0.64 0.8128 0.8096

1 1 0.9968 1 0.9992

1 1 0.9968 1 0.9992

Arch 0.7792 0.8464 0.688 0.8656 0.7948

0.7136 0.872 0.664 0.8848 0.7836

0.696 0.8384 0.6128 0.864 0.7528

0.9712 0.872 0.664 0.8848 0.848

T Arch 0.9152 0.8704 0.6816 0.8416 0.8272

1 1 0.9968 1 0.9992

0.8944 0.8416 0.64 0.8128 0.7972

score greater than 0.99, indicating that the images were similar. If not, there are differences

between the images. From the previous analysis we obtain the best matching score alpha

should be greater or equal to 0.99 and the h is should be 3.

Based on these values we will analysis the further analysis. We choose two random images

from each SD302 dataset types for the final analysis. Since we have already captured, the

images could be any kind of fingerprint image. The image’s dimensions are fixed at 250 by

250. h = 3, α =0.99. We selected three images at random from the generated dataset. Since

we used three sample images for matching, the average matching score for the remaining three

images was below 0.99. This means that the alpha value for those three images should be

greater than 0.99. The data set includes plain, rolled, and touch-free impression fingerprints

as well as numerous sets of plain palm impressions that were taken from a variety of devices.

All these types were chosen by the article under analysis for analysis. The results of the

proposed methods matching scores are listed in Table 2. From the table, we observed that

only three images the random image attained the highest level of matching score. This proves

how well the proposed technique worked with both similar and dissimilar images. Additionally

found the accurate matching for images chosen at random. This demonstrates the method’s

duality.
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Table 2. Proposed methods result for random image matching

Random image ID

C roll 04 A roll 05 A roll 09

0.905 ± 0.0764 0.8811 ± 0.0288 0.8981 ± 0.0195

0.8784 ± 0.1085 0.8531 ± 0.0642 0.8693 ± 0.022

0.9053 ± 0.0902 0.9004 ± 0.0291 0.9118 ± 0.0294

0.8297 ± 0.1706 0.8022 ± 0.1155 0.8185 ± 0.0599

0.9021 ± 0.0731 1.0 ± 0.0 0.9032 ± 0.0653

0.8396 ± 0.1595 0.8478 ± 0.0692 0.8798 ± 0.0376

0.8518 ± 0.1524 0.8587 ± 0.047 0.8894 ± 0.0466

1.0 ± 0.0 0.9454 ± 0.0126 0.9418 ± 0.0271

0.9437 ± 0.0251 0.9352 ± 0.0186 0.9393 ± 0.032

0.9523 ± 0.0268 0.946 ± 0.0155 0.9527 ± 0.0268

0.8344 ± 0.162 0.8088 ± 0.1126 0.8238 ± 0.0609

0.8368 ± 0.1617 0.8725 ± 0.035 1.0 ± 0.0

0.8381 ± 0.1475 0.8274 ± 0.0734 0.842 ± 0.0447

0.8415 ± 0.1445 0.8313 ± 0.0677 0.8409 ± 0.0436

0.9309 ± 0.0609 0.9318 ± 0.0249 0.9445 ± 0.0332

6. Conclusion

We proposed four different types of correlation methods based on neutrosophic sets in this

article. We have performed analysis for a number of fingerprint image types, including the

arch, loop, whorl, and tented arch. According to the analysis, it is very hard to identify the

matching between the images without first fixing the matching pattern. Therefore, we tried

to look at the matching task for different α values. Finally, an α value of 0.99 results in better

image matching patterns. The findings suggest that there is matching if the matching score is

greater than or equal to the α . If it is less, we can recognise the image’s correlation patterns.

We can perform the matching task locally for the fingerprint images since it went well. We

will expand the concept in the feature to include gradient-level image matching.
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Abstract. The aim of this paper is to combine the notion of NeutroAlgebra, that includes the partiality and

indeterminacy in the operations and axioms of algebraic structures, with algebraic hyperstructures. In this

regard, a NeutroHyperVector space is introduced and various examples are given. Next, some types of linear

transformations between NeutroHyperVector spaces are presented and some properties of mentioned concepts

are studied. Finally, by giving a suitable field, the Cartesian product of NeutroHyperVector spaces over a

common field is constructed, under certain conditions, and supported by interesting examples.
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—————————————————————————————————————————-

1. Introduction

There are various mathematical tools for modeling the real facts. For example, the theory of

fuzzy sets introduced by Zadeh [1] in 1934 expresses the vague and uncertain properties, and the

theory of intuitionistic fuzzy sets introduced by Atanassov [2] in 1983 adds the non-membership

information. Neutrosophic theory introduced by Smarandache in 1995 as a generalization of

fuzzy sets and intuitionistic fuzzy set, is another way to this goal. In this idea, information

related to the truth (T), falsity (F) and indeterminacy (I) of the problem is considered. In

fact, the indeterminacy distinguishes neutrosophy from the other philosophy. Then some linked

methods have been studied, such as neutrosophic rough set [3], complex neutrosophic set [4],

neutrosophic soft set [5, 6]. The theory of neutrosophic set applied in various branches such

as in medical diagnosis [7], decision-making process [8], pattern recognition [9], economics [10]

and operation research [11].
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In 2019 Smarandache [12] introduced the notion of NeutroAlgebra, as a generalization of

the classic algebraic structures, where it has operations and axioms that are partially well-

defined, partially indeterminate, and partially false. By applying the new idea to another

algebraic structures, many NeutroAlgebras have been studied, for example NeutroGroups [13],

NeutroRings [14] and NeutroOrderedAlgebra [15].

On the other hand, the theory of algebraic hyperstructures was born in 1934 by Marty [16]

as a generalization of algebraic structures, where the hyperoperation of two elements is a non-

empty set. This theory has been extended in many branches of mathematics such as fields,

lattices, rings, quasigroups, semigroups, ordered structures, combinatorics, topology, geometry,

graphs, codes, etc.; for example, see the books [17–19]. The notion of hypervector space was

introduced by Scafati-Tallini [20] in 1990 and has been investigated by herself, Ameri [21],

Sedghi [22] and the author [23–27].

Recently, NeutroAlgebraic structures have been extended to NeutroHyperalgebraic struc-

tures; Ibrahim [28] defined NeutroHypergroups and Al-Tahan [29] and Rezaei [30] studied some

properties of NeutroSemihypergroups. Now in this paper, we apply the theory of neutrosophy

in hypervector spaces and introduce NeutroHyperVector spaces as an alternative structure

and a type of generalization for hypervector spaces. In Section 3, we introduce the notion of

NeutroHyperVector spaces, present some interesting examples and shortly study the concept

of SubNeutroHyperspaces. In Section 4, we investigate the relation of two NeutroHyperVector

spaces by using of different types of transformations, especially, the behavior of SubNeutroHy-

perspaces under transformations and their inverse, again supported by some examples. Finally,

we make new NeutroHyperVector spaces by Cartesian product of NeutroHyperVector spaces

and give some examples.

2. Preliminaries

In this section, we present some definitions and propositions that we shall use in later.

A hyperoperation over a non-empty set S is a mapping “◦ : S × S → P∗(S)”, where P∗(S)

is the set of non-empty subsets of S. If A,B ⊆ S, then A ◦ B =
⋃

a∈A,b∈B
a ◦ b. Especially,

A ◦ b = A ◦ {b} =
⋃
a∈A

a ◦ b and a ◦B = {a} ◦B =
⋃
b∈B

a ◦ b.

Definition 2.1. [20] Let K be a field, (V,+) be an Abelian group and P∗(V ) be the set

of all non-empty subsets of V . We define a hypervector space over K to be the quadruplet

(V,+, ◦,K), where “ ◦ ” is an external hyperoperation

◦ : K × V −→ P∗(V ), (1)

such that for all a, b ∈ K and x, y ∈ V the following conditions hold:

(HV1) a ◦ (x+ y) ⊆ a ◦ x+ a ◦ y, right distributive law,

O. R. Dehghan, An Introduction to NeutroHyperVector Spaces

Neutrosophic Sets and Systems, Vol. 58, 2023                                                                              345



(HV2) (a+ b) ◦ x ⊆ a ◦ x+ b ◦ x, left distributive law,

(HV3) a ◦ (b ◦ x) = (ab) ◦ x,

(HV4) a ◦ (−x) = (−a) ◦ x = −(a ◦ x),

(HV5) x ∈ 1 ◦ x,

where in (HV1), a ◦ x+ a ◦ y = {p+ q : p ∈ a ◦ x, q ∈ a ◦ y}. Similarly, it is in (HV2). Also, in

(HV3), a ◦ (b ◦ x) =
⋃

t∈b◦x
a ◦ t.

V is called strongly right distributive, if we have equality in (HV1). In a similar way we define

the strongly left distributive hypervector spaces.

In the sequel of this paper, V denotes a hypervector space over the field K, unless otherwise

is specified.

Example 2.2. Let K = Z2 = {0, 1} be the field of two numbers with the following operations:

+ 0 1

0 0 1

1 1 0

and

· 0 1

0 0 0

1 0 1

Also, let V = Z3 = {0, 1, 2} be an Abelian group with the following operation:

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

Then (Z3,+, ◦1,Z2) and (Z3,+, ◦2,Z2) are hypervector spaces over the field Z2 with the fol-

lowing external hyperoperations, where they are not strongly left or right hypervector spaces:

◦1 0 1 2

0 {0} {0} {0}
1 {0} {0, 1, 2} {0, 1, 2}

and

◦2 0 1 2

0 {0} {0} {0}
1 {0} {1, 2} {1, 2}

(2)

3. NeutroHyperVector Spaces

Let U be the universe of discourse. Then a neutrosophic set is an object having the form

A = {(x, µA(x), ωA(x), νA(x)) , x ∈ U} , (3)

where the functions µ, ω, ν : U → [0, 1] define respectively the degree of membership, the

degree of indeterminacy and the degree of non-membership of x to the set A.
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For example, the following functions define a neutrosophic set in U = {1, 2, 3, 4}:

x 1 2 3 4

µA(x) 0.4 0 0.7 0.7

ωA(x) 0.6 0.2 0 0.1

νA(x) 0.5 0.8 0.3 0.2

A hyperoperation “◦ : S × S → P∗(U)”, where U is the universe of discourse containing S, is

called a NeutroHyperoperation on S, if x ◦ y ⊆ S, for some x, y ∈ S (the degree of truth “T”)

and some (or all) of the following conditions hold:

(1) x ◦ y * S, for some x, y ∈ S (the degree of falsity “F”);

(2) x ◦ y is indeterminate in S, for some x, y ∈ S (the degree of indeterminacy “I”).

For example, if U = {1, 2, . . . , 10} and S = {2, 5, 8}, then the followings are NeutroHyperop-

erations on S:

◦ 2 5 8

2 {3} {2, 4} {2, 8}
5 {2, 5} {2, 5, 8} {5}
8 {2} {2} {2}

and

◦ 2 5 8

2 {8} {2, 5}
5 {2, 5} {2, 5, 8} {5}
8 {2} {2}

The hyperoperation “ ◦ ” is called an AntiHyperoperation on S, if x ◦ y * S, for all x, y ∈ S.

The following example is an AntiHyperoperation on S = {2, 5, 8}:

◦ 2 5 8

2 {1, 2} {1, 5} {4}
5 {10} {2, 4, 8} {3}
8 {1, 2} U {2, 3}

A hyperoperation “◦ : S × S → P∗(U)”, where U is the universe of discourse containing S, is

called NeutroAssociative on S, if x ◦ (y ◦ z) = (x ◦ y) ◦ z, for some x, y, z ∈ S (the degree of

truth “T”) and some (or all) of the following conditions hold:

(1) x ◦ (y ◦ z) 6= (x ◦ y) ◦ z, for some x, y, z ∈ S (the degree of falsity “F”);

(2) for some x, y, z ∈ S, x ◦ (y ◦ z) is indeterminate in S, or (x ◦ y) ◦ z is indeterminate in

S, or we can not find if x ◦ (y ◦ z) and (x ◦ y) ◦ z are equal (the degree of indeterminacy

“I”).

For example, if U = {1, 2, . . . , 10} and S = {2, 5, 8}, then the following hyperoperations are

NeutroAssociative on S:

�1 2 5 8

2 {2, 5} {2, 5} {5}
5 {2, 5} {5, 8} {2}
8 {8} {8} {5}

�2 2 5 8

2 {2, 5} {2, 5} {5}
5 {2, 5} {5, 8} {2}
8 {8} {5}

�3 2 5 8

2 {2, 5} {2, 5} {5}
5 {2, 5} {5, 8} {2}
8 {8} {5}
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More precisely, �1 is NeutroAssociative on S, since 2 �1 (2 �1 2) = (2 �1 2) �1 2 and 5 �1
(5 �1 5) 6= (5 �1 5) �1 5. �2 is NeutroAssociative on S, since 2 �2 (2 �2 2) = (2 �2 2) �2 2 and

(5�2 5)�2 5 is indeterminate in S. �3 is NeutroAssociative on S, since 2�3 (2�3 2) = (2�3 2)�3 2,

5 �3 (5 �3 5) 6= (5 �3 5) �3 5 and (8 �3 2) �3 5 is indeterminate in S.

The hyperoperation “ ◦ ” is called AntiAssociative on S, if x ◦ (y ◦ z) 6= (x ◦ y) ◦ z, for all

x, y, z ∈ S. The following hyperoperation is AntiAssociative on S:

� 2 5 8

2 {2, 5} {2, 8} {2}
5 {5} {8} {2}
8 {5} {8} {5, 8}

Definition 3.1. Let K be a field and (G,+) be a group. Then an external hyperoperation

“◦ : K ×G→ P∗(U)”, where U is the universe of discourse containing G, is called an external

NeutroHyperoperation on G, if a ◦ x ⊆ G, for some a ∈ K, x ∈ G (the degree of truth “T”)

and at least one of the following conditions hold:

(1) a ◦ x * G, for some a ∈ K, x ∈ G (the degree of falsity “F”);

(2) a ◦ x is indeterminate in G, for some a ∈ K, x ∈ G (the degree of indeterminacy “I”).

The external hyperoperation “ ◦ ” is called an external AntiHyperoperation on G, if a ◦ x * G,

for all a ∈ K, x ∈ G.

Example 3.2. Consider the field K = Z2 = {0, 1} and the Abelian group G = Z3 = {0, 1, 2}
defined in Example 2.2. Then the followings are external NeutroHyperoperations on G, where

U = {0, 1, 2, 3, 4, 5}:

◦3 0 1 2

0 {0, 4} {0} {0}
1 {1} {1, 2} {0, 1, 2}

◦4 0 1 2

0 {0, 1} {1, 2} {1, 2}
1 {1} {0, 1, 2}

◦5 0 1 2

0 {0, 2} {1, 2} {1, 2}
1 {2, 4} {0, 1, 2}

Note that in the first table, 0 ◦3 0 = {0, 4} is not a subset of Z3; in the second table, 1 ◦4 1 is

indeterminate in Z3 and in the third table, 0 ◦5 1 = {2, 4} is not a subset of Z3 and 1 ◦5 1 is

indeterminate in Z3. Also, the following is an external AntiHyperoperation on G:

◦ 0 1 2

0 {0, 4} {0, 3} {5}
1 {1, 4, 5} {1, 3} {0, 5}

A NeutroHyperVector space is an alternative of a hypervector space (V,+, ◦,K) such that

“+ : V × V → P∗(V )” is a NeutroHyperoperation, or “◦ : K × V → P∗(V )” is an external

NeutroHyperoperation, or at least it has one NeutroAxiom. Thus, there are several types of

NeutroHyperVector spaces, based on the number of NeutroOperation, NeutroHyperoperation

and NeutroAxioms.
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In this paper, we consider the following definition for a NeutroHyperVector space:

Definition 3.3. Let (V,+, ◦,K) be a hypervector space over the field K such that “+ : V ×
V → V ” is an operation on V and “◦ : K×V → P∗(U)” is an external NeutroHyperoperation,

where U is the universe of discourse containing V . Then V is called a NeutroHyperVector

space over the field K, if at least one of the following NeutroAxioms hold:

NHV1) “ ◦ ” is right NeutroDistributive on “ + ”, i.e. a ◦ (x + y) ⊆ a ◦ x + a ◦ y, for some

a ∈ K, x, y ∈ V (the degree of truth “T”) and at least one of the following conditions

hold:

• a ◦ (x+ y) * a ◦ x+ a ◦ y, for some a ∈ K, x, y ∈ V (the degree of falsity “F”);

• for some a ∈ K, x, y ∈ V , a ◦ (x + y) is indeterminate in V , or a ◦ x + a ◦ y is

indeterminate in V , or we can not find if a ◦ (x+ y) is a subset of a ◦x+a ◦ y (the

degree of indeterminacy “I”).

NHV2) “ ◦ ” is left NeutroDistributive on “ + ”, i.e. (a + b) ◦ x ⊆ a ◦ x + b ◦ x, for some

a, b ∈ K, x ∈ V (the degree of truth “T”) and at least one of the following conditions

hold:

• (a+ b) ◦ x * a ◦ x+ b ◦ x, for some a, b ∈ K, x ∈ V (the degree of falsity “F”);

• for some a, b ∈ K, x ∈ V , (a + b) ◦ x is indeterminate in V , or a ◦ x + b ◦ x is

indeterminate in V , or we can not find if (a+ b) ◦x is a subset of a ◦x+ b ◦x (the

degree of indeterminacy “I”).

NHV3) a ◦ (b ◦ x) = (ab) ◦ x, for some a, b ∈ K, x ∈ V (the degree of truth “T”) and at least

one of the following conditions hold:

• a ◦ (b ◦ x) 6= (ab) ◦ x, for some a, b ∈ K, x ∈ V (the degree of falsity “F”);

• for some a, b ∈ K, x ∈ V , a◦(b◦x) is indeterminate in V , or (ab)◦x is indeterminate

in V , or we can not find if a ◦ (b ◦ x) and (ab) ◦ x are equal (the degree of

indeterminacy “I”).

NHV4) a ◦ (−x) = (−a) ◦ x = −(a ◦ x), for some a ∈ K, x ∈ V (the degree of truth “T”) and

at least one of the following conditions hold:

• a ◦ (−x) 6= (−a) ◦ x or (−a) ◦ x 6= −(a ◦ x) or a ◦ (−x) 6= −(a ◦ x), for some

a ∈ K, x ∈ V (the degree of falsity “F”);

• for some a ∈ K, x ∈ V , a◦(−x) is indeterminate in V , or (−a)◦x is indeterminate

in V , or −(a ◦ x) is indeterminate in V , or we can not find if a ◦ (−x), (−a) ◦ x
and −(a ◦ x) are equal (the degree of indeterminacy “I”).

NHV5) x ∈ 1 ◦ x and (y /∈ 1 ◦ y or 1 ◦ z is indeterminate in V ), for some x, y, z ∈ V .

We say that (V,+, ◦,K) is strongly right distributive NeutroHyperVector space, if a ◦ (x+

y) = a ◦ x + a ◦ y, for some a ∈ K, x, y ∈ V . In a similar way, the strongly left distributive
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NeutroHyperVector space is defined. V is said to be strongly distributive, if it is both strongly

left distributive and strongly right distributive.

Example 3.4. Consider the external NeutroHyperoperations ◦3, ◦4, ◦5 : Z2 × Z3 → P∗(U)

defined in Example 3.2. Then V3 = (Z3,+, ◦3,Z2), V4 = (Z3,+, ◦4,Z2) and V5 = (Z3,+, ◦5,Z2)

are NeutroHyperVector spaces over the field Z2, since they are satisfied in the NeutroAxioms

(NHV1)-(NHV5) of Definition 3.3, as follows:

V3 = (Z3,+, ◦3,Z2) is a strongly distributive NeutroHyperVector space:

NHV1) a ◦3 (x+ y) = a ◦3 x+ a ◦3 y, for a = 1, x = 0, y = 2, a ◦3 (x+ y) * a ◦3 x+ a ◦3 y, for

a = 1, x = 0, y = 1, and a ◦3 x+ a ◦3 y is indeterminate in V , for a = 0, x = 0, y = 0.

NHV2) (a+ b) ◦3 x = a ◦3 x+ b ◦3 x, for a = 0, b = 1, x = 2 and a ◦3 x+ b ◦3 x is indeterminate

in V , for a = b = 0, x = 0.

NHV3) a◦3(b◦3x) = (ab)◦3x, for a = b = 1, x = 2, a◦3(b◦3x) 6= (ab)◦3x, for a = b = 1, x = 0,

and 1 ◦3 (0 ◦3 0) and (01) ◦3 0 are indeterminate in V .

NHV4) a ◦3 (−x) = (−a) ◦3 x = −(a ◦3 x), for a = 0, x = 1, but 1 ◦3 (−1) = 1 ◦3 2 = {0, 1, 2} 6=
(−1) ◦3 1 = 1 ◦3 1 = {1, 2} = −(1 ◦3 1) = −({1, 2}) and −(0 ◦3 0) is indeterminate in V .

NHV5) 1 ∈ 1 ◦3 1 and 2 ∈ 1 ◦3 2, but 0 /∈ 1 ◦3 0.

Similarly, V4 = (Z3,+, ◦4,Z2) is a strongly distributive NeutroHyperVector space:

NHV1) 1 ◦4 (0 + 2) = 1 ◦4 2 = {0, 1, 2} = 1 ◦4 0 + 1 ◦4 2 = {1}+ {0, 1, 2}, 1 ◦4 (0 + 0) = 1 ◦4 0 =

{1} * 1 ◦4 0 + 1 ◦4 0 = {1}+ {1} = {2}, and 1 ◦4 0 + 1 ◦4 1 is indeterminate in V .

NHV2) (0 + 1) ◦4 2 = 1 ◦4 2 = {0, 1, 2} = 0 ◦4 2 + 1 ◦4 2 = {0, 2}+ {0, 2}, (1 + 1) ◦4 0 = 0 ◦4 0 =

{0, 1} * 1 ◦4 0 + 1 ◦4 1 = {1}+ {1} = {2}, and 0 ◦4 1 + 1 ◦4 1 is indeterminate in V .

NHV3) 0 ◦4 (0 ◦4 1) = 0 ◦4 ({1, 2}) = {1, 2} = (00) ◦4 1, 0 ◦4 (0 ◦4 0) = 0 ◦4 ({0, 1}) = {0, 1, 2} 6=
(00) ◦4 0 = {0, 1}, and 1 ◦4 (1 ◦4 1) is indeterminate in V .

NHV4) 0 ◦4 (−1) = 0 ◦4 2 = {1, 2} = (−0) ◦4 1 = −(0 ◦4 1) = −({1, 2}), while 1 ◦4 (−0) =

1 ◦4 0 = {1} = (−1) ◦4 0 = 1 ◦4 0 6= −(1 ◦4 0) = −({1}) = {2}, and −(1 ◦4 1) and

1 ◦4 (−2) are indeterminate in V .

NHV5) 2 ∈ 1 ◦4 2, 0 /∈ 1 ◦4 0, and we can not find 1 ∈ 1 ◦4 1, since 1 ◦4 1 is indeterminate in V .

The NeutroHyperVector space V5 = (Z3,+, ◦5,Z2) is strongly left distributive and it is not

strongly right distributive:

NHV1) 0 ◦5 (2 + 2) = 0 ◦5 1 = {0, 2} ⊆ 0 ◦5 2 + 0 ◦5 2 = {1, 2}+ {1, 2} = {0, 1, 2}, 1 ◦5 (2 + 2) is

indeterminate in V and we can not find 1 ◦5 (2 + 2) and 1 ◦5 2 + 1 ◦5 2 are equal. There

don’t exist a ∈ K, x, y ∈ V , such that a ◦5 (x+ y) = a ◦5 x+ a ◦5 y.

NHV2) (0 + 1) ◦5 2 = 1 ◦5 2 = {0, 1, 2} = 0 ◦5 2 + 1 ◦5 2 = {1, 2}+ {0, 1, 2}, and 1 ◦5 1 + 1 ◦5 1

is indeterminate in V , so we can not find (1 + 1) ◦5 1 and 1 ◦5 1 + 1 ◦5 1 are equal.
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NHV3) 0 ◦5 (0 ◦5 1) = 0 ◦5 ({1, 2}) = 0 ◦5 1 ∪ 0 ◦5 2 = {1, 2} = (00) ◦5 1, and 0 ◦5 (0 ◦5 0) =

0 ◦5 ({0, 2}) = 0 ◦5 0 ∪ 0 ◦5 2 = {0, 1, 2} 6= (00) ◦5 0 = {0, 2}.
NHV4) 0 ◦5 (−1) = 0 ◦5 1 = {1, 2} = (−0) ◦5 1 = −(0 ◦5 1) and 0 ◦5 (−0) = 0 ◦5 0 = {0, 2} 6=

−(0 ◦5 0) = {0, 1}.
NHV5) 2 ∈ 1 ◦5 2, 0 /∈ 1 ◦5 0, and we can not find 1 ∈ 1 ◦5 1, since 1 ◦5 1 is indeterminate in V .

Example 3.5. Consider the field K = Z2 = {0, 1} defined in Example 2.2. Let (Z,+) be

the Abelian group of integer numbers and t be an arbitrary nonzero element of Z. Define a

mapping “◦6 : Z2 × Z→ P∗(R)” by:

∀x ∈ Z, 0 ◦6 x = {0}, and 1 ◦6 x =

{
{1, x} x ∈ Z\{t},
{t+ 1, π} x = t.

(4)

Then V6 = (Z,+, ◦6,Z2) is a NeutroHyperVector space over the field K. Note that “ ◦6 ” is an

external NeutroHyperoperation, since 1 ◦6 t * Z. Also, all axioms (HV1)-(HV5) are replaced

by the NeutroAxioms (NHV1)-(NHV5); more details are listed below, choosing t = 6:

NHV1) 1 ◦6 (0 + 0) = 1 ◦6 0 = {0, 1} ⊆ 1 ◦6 0 + 1 ◦6 0 = {0, 1} + {0, 1} = {0, 1, 2} and

1 ◦6 (2 + 3) = 1 ◦6 5 = {1, 5} * 1 ◦6 2 + 1 ◦6 3 = {1, 2}+ {1, 3} = {2, 3, 4, 5}.
NHV2) (0 + 1) ◦6 2 = 1 ◦6 2 = {1, 2} = 0 ◦6 2 + 1 ◦6 2 = {0}+ {1, 2}, and (1 + 1) ◦6 2 = 0 ◦6 2 =

{0} * 1 ◦6 2 + 1 ◦6 2 = {1, 2}+ {1, 2} = {2, 3, 4}. Thus, V is strongly left distributive.

NHV3) 0 ◦6 (0 ◦6 x) = 0 ◦6 0 = {0} = (0) ◦6 x, for all x ∈ V , and 1 ◦6 (0 ◦6 2) = 1 ◦6 0 = {0, 1} 6=
0 ◦6 2 = {0}.

NHV4) 0 ◦6 (−x) = (−0) ◦6 x = −(0 ◦6 x) = {0}, for all x ∈ V , but 1 ◦6 (−2) = {1,−2} 6=
(−1) ◦6 2 = {−1, 2}, (−1) ◦6 2 = {−1, 2} 6= −(1 ◦6 2) = {−1,−2} and 1 ◦6 (−2) =

{1,−2} 6= −(1 ◦6 2) = {−1,−2}.
NHV5) x ∈ 1 ◦6 x, for all x ∈ V \{t} and t /∈ 1 ◦6 t.

Example 3.6. Consider the field K = Z2 = {0, 1} defined in Example 2.2. Define the

operation “+ : Z2×Z2 → Z2” by (x, y) + (m,n) = (x+m, y+ n). Then (Z2,+) is an Abelian

group. Choose (x0, y0) ∈ Z2 and define “◦7 : Z2 × Z2 → P∗(R2)” by

a ◦7 (x, y) =


{(0, 0)} a = 0,

{(1, 1), (x, y)} a = 1, (x, y) ∈ Z2\{(x0, y0)},
{(π, π), (x0 + 1, y0 + 1)} a = 1, (x, y) = (x0, y0).

(5)

Then V7 = (Z2,+, ◦7,Z2) is a strongly distributive NeutroHyperVector space over the field

Z2. In fact, “ ◦7 ” is an external NeutroHyperoperation, since 1 ◦7 (x0, y0) * Z2 and all

NeutroAxioms (NHV1)-(NHV5) are satisfied:

NHV1) 0 ◦7 ((x, y) + (m,n)) = 0 ◦7 (x + m, y + n) = {(0, 0)} = 0 ◦7 (x, y) + 0 ◦7 (m,n) =

{(0, 0)}+{(0, 0)}, and 1◦7((x, y)+(m,n)) = 1◦7(x+m, y+n) = {(1, 1), (x+m, y+n)} *
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1 ◦7 (x, y) + 1 ◦7 (m,n) = {(1, 1), (x, y)}+ {(1, 1), (m,n)} = {(2, 2), (x+ 1, y+ 1), (m+

1, n+ 1), (x+m, y + n)}.
NHV2) (1+0)◦7 (x, y) = 1◦7 (x, y) = {(1, 1), (x, y)} = 1◦7 (x, y)+0◦7 (x, y) = {(1, 1), (x, y)}+

{(0, 0)}, for all (x, y) ∈ Z2 and (1+1)◦7 (x, y) = 0◦7 (x, y) = {(0, 0)} * 1◦7 (x, y)+1◦7
(x, y) = {(1, 1), (x, y)} + {(1, 1), (x, y)} = {(2, 2), (x + 1, y + 1), (2x, 2y)}, for (x, y) ∈
Z2\{(0, 0), (−1,−1)}.

NHV3) 1 ◦7 (1 ◦7 (x, y)) = 1 ◦7 {(1, 1), (x, y)} = {(1, 1), (x, y)} = (1 · 1) ◦7 (x, y), and 1 ◦7 (0 ◦7
(x, y)) = 1 ◦7 {(0, 0)} = {(1, 1), (0, 0)} 6= (1 · 0) ◦7 (x, y) = {(0, 0)}.

NHV4) 0 ◦7 (−(x, y)) = (−0) ◦7 (x, y) = −(0 ◦7 (x, y)) = {(0, 0)}, for all (x, y) ∈ Z2, but

1 ◦7 (−(x, y)) = {(1, 1), (−x,−y)} 6= (−1) ◦7 (x, y) = {(1, 1), (x, y)} 6= −(0 ◦7 (x, y)) =

{(−1,−1), (−x,−y)}, for all (x, y) ∈ Z2\{(0, 0)}.
NHV5) (x, y) ∈ 1 ◦7 (x, y), for all (x, y) ∈ Z2\{(x0, y0)} and (x0, y0) /∈ 1 ◦7 (x0, y0).

Definition 3.7. Let (V,+, ◦,K) be a NeutroHyperVector space and H be a nonempty subset

of V. Then H is called a SubNeutroHyperspace of V , if (H,+, ◦,K) is itself a NeutroHyper-

Vector space. In other words, H is a SubNeutroHyperspace of V if and only if the following

conditions hold:

(1) x− y ∈ H, for all x, y ∈ H;

(2) a ◦ x ⊆ H, for some a ∈ K, x ∈ H and (b ◦ y * H or c ◦ z is indeterminate in H, for

some b, c ∈ K, y, z ∈ H);

(3) at least one of the NeutroAxioms of the Definition 3.3, is satisfied for H.

It is clear that every NeutroHyperVector space is a SubNeutroHyperspace of itself. The

NeutroHyperVector spaces (Z3,+, ◦3,Z2), (Z3,+, ◦4,Z2) and (Z3,+, ◦5,Z2) defined in Exam-

ple 3.4, do not have any proper SubNeutroHyperspace. If we define 0 ◦ 0 = {0} or 0 ◦ 0 = Z3,

then {0} is the only proper SubNeutroHyperspace of (Z3,+, ◦3,Z2). In the following examples,

some nontrivial SubNeutroHyperspaces are presented:

Example 3.8. Consider the field K = Z2 = {0, 1} defined in Example 2.2, V = Z4 =

{0, 1, 2, 3} and U = {0, 1, 2, 3, 4, 5}. Then V8 = (Z4,+, ◦8,Z2) is a strongly distributive Neu-

troHyperVector space over the field Z2, where the operation “+ : V ×V → V ” and the external

NeutroHyperoperation “◦8 : K × V → P∗(U)” are defined by

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

◦8 0 1 2 3

0 {0} {0, 1} {0, 2} {3, 5}
1 {1, 2, 3} {1} {1, 2} {2, 3}
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One can see that, H = {0, 2} is a SubNeutroHyperspace of V , since x − y ∈ H, for all

x, y ∈ H, and 0 ◦8 2 = {0, 2} ⊆ H, and 1 ◦8 0 = {1, 2, 3} * H. Also, (H,+, ◦8,K) is a

NeutroHyperVector space over the field K, where the operation “+ : H ×H → H” and the

external NeutroHyperoperation “◦8 : K ×H → P∗(U)” are defined by

+ 0 2

0 0 2

2 2 0

◦8 0 2

0 {0} {0, 2}
1 {1, 2, 3} {1, 2}

In fact, 0◦8 (0+0) = 0◦80 = {0} = 0◦80+0◦80 = {0}+{0}, and 1◦82+1◦82 is indeterminate

in H. (0+0)◦8 0 = 0◦8 0 = {0} = 0◦8 0+0◦8 0 = {0}+{0}, and 1◦8 0+0◦8 0 is indeterminate

in H. 0 ◦8 (0 ◦8 0) = 0 ◦8 ({0}) = {0} = (00) ◦8 0, and 1 ◦8 (0 ◦8 2) = 1 ◦8 ({0, 2}) = {1, 2, 3} 6=
(1 · 0) ◦8 2 = {0, 2}. 0 ◦8 (−2) = 0 ◦8 2 = {0, 2} = (−0) ◦8 2 = −(0 ◦8 2), and −(1 ◦8 2) is

indeterminate in H. 2 ∈ 1 ◦8 2 and 0 /∈ 1 ◦8 0.

Example 3.9. For every m ∈ Z \ {±1}, the set mZ = {mn : n ∈ Z} is a proper Sub-

NeutroHyperspace of (Z,+, ◦6,Z2), defined in Example 3.5, such that 0 ◦6 mn = {0} ⊆ mZ,

1 ◦6 mn = {1,mn} * mZ, for all mn ∈ mZ and so the restriction “ ◦6 ” into mZ is a Neutro-

Hyperoperaion. Also, all NeutroAxioms (NHV1)-(NHV5) are satisfied:

NHV1) 0 ◦6 (mn + mń) = {0} = 0 ◦6 mn + 0 ◦6 mń and 1 ◦6 (mn + mń) = {1,m(n + ń)} *
1 ◦6 mn + 1 ◦6 mń = {1,mn} + {1,mń} = {2,mn + 1,mń + 1,m(n + ń)}, for all

mn,mń ∈ mZ. Then mZ is strongly right distributive.

NHV2) (0 + 0) ◦6 mn = 0 ◦6 mn = {0} = 0 ◦6 mn + 0 ◦6 mn, and (1 + 1) ◦6 mn = 0 ◦6 mn =

{0} * 1 ◦6 mn+ 1 ◦6 mn = {1,mn}+ {1,mn} = {2,mn+ 1, 2mn}, for all mn ∈ mZ.

So mZ is strongly left distributive.

NHV3) 0 ◦6 (0 ◦6 mn) = 0 ◦6 0 = {0} = (0) ◦6 mn, and 1 ◦6 (0 ◦6 mn) = 1 ◦6 0 = {0, 1} 6=
0 ◦6 mn = {0}, for all mn ∈ mZ.

NHV4) 0 ◦6 (−mn) = (−0) ◦6 mn = −(0 ◦6 mn) = {0}, but 1 ◦6 (−mn) = {1,−mn} 6=
(−1) ◦6 mn = {−1,mn}, (−1) ◦6 mn = {−1,mn} 6= −(1 ◦6 mn) = {−1,−mn} and

1 ◦6 (−mn) = {1,−mn} 6= −(1 ◦6 mn) = {−1,−mn}, for all mn ∈ mZ.

NHV5) mn ∈ 1 ◦6 mn, for all mn ∈ mZ\{t} and t /∈ 1 ◦6 t.

Example 3.10. The sets H = {(x, 0);x ∈ Z} and L = {(0, y); y ∈ Z} are proper SubNeutro-

Hyperspaces of (Z2,+, ◦7,Z2), defined in Example 3.6. The restrictions of “ ◦7 ” into H and

L, are NeutroHyperoperaions, since 0 ◦7 (x, 0) = {(0, 0)} ⊆ H and 0 ◦7 (0, y) = {(0, 0)} ⊆ L,

but 1 ◦7 (x, 0) = {(1, 1), (x, 0)} * H and 1 ◦7 (0, y) = {(1, 1), (0, y)} * L. The NeutroAxioms

(NHV1)-(NHV4) and the axiom (HV5) for (H,+, ◦7,Z2) are given in the following (details for

(L,+, ◦7,Z2) are similar):
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NHV1) 0 ◦7 ((x, 0) + (m, 0)) = 0 ◦7 (x+m, 0) = {(0, 0)} = 0 ◦7 (x, 0) + 0 ◦7 (m, 0) = {(0, 0)}+

{(0, 0)}, and 1 ◦7 ((x, 0) + (m, 0)) is indeterminate in H.

NHV2) (0 + 0) ◦7 (x, 0) = {(0, 0)} = 0 ◦7 (x, 0) + 0 ◦7 (x, 0) and 1 ◦7 (x, 0) + 1 ◦7 (x, 0) is

indeterminate in H, for x ∈ Z\{−1}.
NHV3) 1 ◦7 (1 ◦7 (x, 0)) = 1 ◦7 {(1, 1), (x, 0)} = {(1, 1), (x, 0)} = (1 · 1) ◦7 (x, y), and 1 ◦7 (0 ◦7

(x, 0)) = 1 ◦7 {(0, 0)} is indeterminate in H.

NHV4) 0 ◦7 (−(x, 0)) = (−0) ◦7 (x, 0) = −(0 ◦7 (x, 0)) = {(0, 0)}, for all (x, y) ∈ Z2, but

1 ◦7 (−(x, 0)), (−1) ◦7 (x, 0) and indeterminate in H.

HV5) (x, 0) ∈ 1 ◦7 (x, 0), for all (x, 0) ∈ H.

It is well-known that if H,L are subgroups of (V,+), then H ∩ L is a subgroup of V ,

but H ∪ L is a subgroup of V if and only if H ⊆ L or L ⊆ H. Now, if H,L are SubNeu-

troHyperspaces of V , then H ∩ L may be a SubNeutroHyperspace of V . For example, the

intersection of two arbitrary SubNeutroHyperspaces mZ, nZ of the NeutroHyperVector space

(Z,+, ◦6,Z2), presented in Example 3.9, is the SubNeutroHyperspace [m,n]Z of (Z,+, ◦6,Z2),

where [m,n] is the smallest common multiplication of m,n. Also, the intersection of the Sub-

NeutroHyperspaces H = {(x, 0); x ∈ Z} and L = {(0, y); y ∈ Z} of (Z2,+, ◦,Z2), defined in

Example 3.10, is the SubNeutroHyperspace {(0, 0)}. Moreover, similar to the groups, H ∪ L
is a SubNeutroHyperspace of V if and only if H ⊆ L or L ⊆ H.

4. NeutroLinearTransformations

In this section, some types of transformations between NeutroHyperVector spaces are intro-

duced and some properties of mentioned concepts are studied, supported by some examples.

Definition 4.1. Let (V,+, ◦,K) and (W, +́, ◦́,K) be NeutroHyperVector spaces over the field

K. Then a mapping T : V −→W is called

(1) NeutroLinearTransformation, if T (x+y) = T (x)+́T (y), for all x, y ∈ V and T (a◦x) ⊆
a◦́T (x), for some a ∈ K, x ∈ V ;

(2) NeutroGoodTransformation, if T (x+ y) = T (x)+́T (y), for all x, y ∈ V and T (a ◦ x) =

a◦́T (x), for some a ∈ K, x ∈ V ;

(3) NeutroStrongLinearTransformation, if T (x + y) = T (x)+́T (y), for all x, y ∈ V , T (a ◦
x) ⊆ a◦́T (x) when a◦x ⊆ V , a◦́T (x) *W when a◦x * V , and a◦́T (x) is indeterminate

in W when a ◦ x is indeterminate in V ;

(4) NeutroStrongGoodLinearTransformation, if T (x + y) = T (x)+́T (y), for all x, y ∈ V ,

T (a ◦ x) = a◦́T (x) when a ◦ x ⊆ V , a◦́T (x) * W when a ◦ x * V , and a◦́T (x) is

indeterminate in W when a ◦ x is indeterminate in V ;
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(5) NeutroStrongGoodIsomorphism, if T is a bijective NeutroStrongGoodLinearTransfor-

mation. In this case, V and W are called NeutroIsomorphic and it is denoted by

V ∼=
NS

W .

Proposition 4.2. If (V,+, ◦,K) is a NeutroHyperVector space over the field K, then the

identity function iV : V → V is a NeutroStrongGoodIsomorphism.

Proof. It is clear that iV is a bijection and iV (x + y) = iV (x) + iV (y), for all x, y ∈ V . Now,

if a ◦ x ⊆ V , then T (a ◦ x) = {T (t); t ∈ a ◦ x} = a ◦ x = a ◦ T (x), and if a ◦ x * V , then

a ◦ T (x) * V . Also, a ◦ T (x) is indeterminate in V , when a ◦ x is indeterminate in V .

Example 4.3. Consider the NeutroHyperVector spaces V3 = ({0, 1, 2},+, ◦3,K), V4 =

({0, 1, 2},+, ◦4,K) defined in Example 3.4. Then the mappings T34 : V3 → V4 and

S34 : V3 → V4 with T34(x) = x and S34(x) = 2x are NeutroGoodTransformations, since

T34(x+ y) = x+ y = T34(x) + T34(y) and S34(x+ y) = 2(x+ y) = 2x+ 2y = S34(x) + S34(y),

for all x, y ∈ V3. Also, T34(1 ◦3 0) = 1 ◦4 T34(0) and S34(0 ◦3 1) = 0 ◦4 T34(1). But both of them

are not NeutroStrongLinearTransformations, because 0 ◦3 0 * V3, while 0 ◦4 T34(0) ⊆ V4 and

0 ◦4 S34(0) ⊆ V4.

Example 4.4. Consider the field K = {0, 1} and the Abelian group V = Z3 = {0, 1, 2}
defined in Example 2.2. Then similar to the Example 3.4, one can see that V9 = (Z3,+, ◦9,K)

and V10 = (Z3,+, ◦10,K) are NeutroHyperVector spaces over the field Z2, where the external

NeutroHyperoperations ◦9, ◦10 : Z2 × Z3 → P∗(U) are defined by the following tables:

◦9 0 1 2

0 {0} {1, 2} {1, 2}
1 {1} {0, 2}

◦10 0 1 2

0 {0} {0, 1, 2} {0, 1, 2}
1 {0, 1} {0, 2}

Now, define the mapping T́ : V9 → V10 by T́ (x) = x. Then T́ is a NeutroStrongLinearTransfor-

mation which is not a NeutroStrongGoodLinearTransformation, since T́ (x+y) = T́ (x)+ T́ (y),

for all x, y ∈ V9. Also, T́ (0◦9 0) = {0} = 0◦10 T́ (0), T́ (0◦9 1) = T́ ({1, 2}) = {1, 2} ⊆ {0, 1, 2} =

0 ◦10 T́ (1), T́ (0 ◦9 2) = T́ ({1, 2}) = {1, 2} ⊆ {0, 1, 2} = 0 ◦10 T́ (2), T́ (1 ◦9 0) = T́ ({1}) = {1} ⊆
{0, 1} = 1 ◦10 T́ (0) and T́ (1 ◦9 2) = T́ ({0, 2}) = {0, 2} = 1 ◦10 T́ (2), Moreover, 1 ◦9 1 and

1 ◦10 T́ (1) are indeterminate in V ;

Theorem 4.5. ∼=
NS

is an equivalence relation on the set of NeutroHyperVector spaces.

Proof. By Proposition 4.2, the identity function iV : V → V is a NeutroStrongGoodIso-

morphism, i.e. V ∼=
NS

V and so ∼=
NS

is reflexive. If V ∼=
NS

W , where V = (V,+, ◦,K) and

W = (W, +́, ◦́,K), then there exists a NeutroStrongGoodIsomorphism T : V → W . We show

that T−1 : W → V is a NeutroStrongGoodIsomorphism. It is clear that T−1 is bijective and
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T−1(w1+́w2) = T−1(w1) + T−1(w2), for all w1, w2 ∈ W . For any w ∈ W , there exist v ∈ V
such that T (v) = w, so T−1(a◦́w) = T−1(a◦́T (v)), for all a ∈ K. We must check the following

three cases:

(1) a◦́w ⊆W : In this case, a ◦ v ⊆ V (if a ◦ v * V , then a◦́w = a◦́T (v) *W ) and so

T−1(a◦́w) = T−1(a◦́T (v)) = T−1(T (a ◦ v)) = a ◦ v = a ◦ T−1(w).

(2) a◦́w *W : Let a ◦ v = a ◦ T−1(w) ⊆ V or a ◦ v = a ◦ T−1(w) is indeterminate in V . If

a ◦ v ⊆ V , then T (a ◦ v) = a◦́T (v) = a◦́w ⊆ T (v) ⊆W , which is a contradiction. Also,

if a ◦ v is indeterminate in V , then a◦́T (v) = a◦́w is indeterminate in W , which is a

contradiction, too. Thus in this case, a ◦ T−1(w) * V .

(3) a◦́w is indeterminate in W : If a ◦ v ⊆ V , then a◦́w = a◦́T (v) = T (a ◦ v) ⊆ T (V ) ⊆W ,

which is a contradiction. Also, if a◦v * V , then a◦́T (v) *W , which is a contradiction,

too. Hence in this case, a ◦ T−1(w) is indeterminate in V .

Consequently, T−1 is a NeutroStrongGoodIsomorphism and so ∼=
NS

is symmetric.

Now let V ∼=
NS

W and W ∼=
NS

U . Then there exist NeutroStrongGoodIsomorphisms T : V →W

and S : W → U . We shall prove that S ◦ T : V → U is a NeutroStrongGoodIsomorphism.

It is clear that, S ◦ T is bijective and (S ◦ T )(x + y) = S(T (x + y)) = S(T (x) + T (y)) =

S(T (x))+S(T (y)), for all x, y ∈ V . Suppose a ∈ K and x ∈ V . If a◦x ⊆ V , then by using the

hypothesis that T and S are NeutroStrongGoodIsomorphisms, a◦T (x) = T (a◦x) ⊆ T (V ) ⊆W
and S(a ◦ T (x)) = a ◦ S(T (x)) = a ◦ (S ◦ T )(x). If a ◦ x * V , then a ◦ T (x) * W , and so

a ◦ (S ◦ T )(x) * U . If a ◦ x is indeterminate in V , then a ◦ T (x) is indeterminate in W and so

a ◦ (S ◦ T )(x) is indeterminate in U . Hence, V ∼=
NS

U . Therefore, ∼=
NS

is transitive.

Consequentely, ∼=
NS

is an equivalence relation.

Theorem 4.6. Let V = (V,+, ◦,K) and W = (W, +́, ◦́,K) be NeutroHyperVector spaces over

the field K and T : V → W be an injective NeutroStrongGoodTransformation. If H is a

SubNeutroHyperspace of V , then T (H) is a SubNeutroHyperspace of W .

Proof. For all T (x), T (y) ∈ T (H), x−y ∈ H and so T (x)−́T (y) = T (x−y) ∈ T (H). Also, there

exist a ∈ K and x ∈ H such that a◦x ⊆ H. Then T (x) ∈ T (H) and a◦́T (x) = T (a◦x) ⊆ T (H).

Moreover, if b ◦ y * H, for some b ∈ K, y ∈ H, then by injectivity of T , it follows that

b ◦ T (y) * T (H). Also, if c ◦ z is indeterminate in V , for some c ∈ K, z ∈ H, then c◦́T (z) is

indeterminate in W . Now we show that if H is satisfied in every NeutroAxiom of Definition

3.3, then T (H) is satisfied in the same NeutroAxiom:
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NHV1) a ◦ (x+ y) ⊆ a ◦ x+ a ◦ y, for some a ∈ K, x, y ∈ V . Thus

a◦́(T (x)+́T (y)) = a◦́T (x+ y)

= T (a ◦ (x+ y))

⊆ T (a ◦ x+ a ◦ y)

= T (a ◦ x)+́T (a ◦ y)

= a◦́T (x)+́a◦́T (y).

Also, if á ◦ (x́+ ý) * á ◦ x́+ á ◦ ý, for some á ∈ K, x́, ý ∈ V , then by injectivity of T , it follows

that á◦́(T (x́)+́T (ý)) * á◦́T (x́)+́á◦́T (ý). Moreover, if for some â ∈ K, x̂, ŷ ∈ V , â ◦ (x̂+ ŷ) is

indeterminate in H, or â ◦ x̂ + â ◦ ŷ is indeterminate in H, or we can not find if â ◦ (x̂ + ŷ)

is a subset of â ◦ x̂+ â ◦ ŷ, then â◦́(T (x̂)+́T (ŷ)) is indeterminate in T (H), or â◦́T (x̂)+́â◦́T (ŷ)

is indeterminate in T (H), or we can not find if â◦́(T (x̂)+́T (ŷ)) is a subset of â◦́T (x̂)+́â◦́T (ŷ),

respectively.

NHV2) (a+ b) ◦ x ⊆ a ◦ x+ b ◦ x, for some a, b ∈ K, x ∈ H. Then

(a+ b)◦́T (x) = T ((a+ b) ◦ x)

⊆ T (a ◦ x+ b ◦ x)

= T (a ◦ x)+́T (b ◦ x)

= a◦́T (x)+́b◦́T (x).

Also, if (á+ b́)◦ x́ * á◦ x́+ b́◦ x́, for some á, b́ ∈ K, x́ ∈ H, then (á+ b́)◦́T (x́) * á◦́T (x́)+́b́◦́T (x́).

Moreover, if (â+ b̂) ◦ x̂ is indeterminate in H, or â ◦ x̂+ b̂ ◦ x̂ is indeterminate in H, or we can

not find if (â+ b̂) ◦ x̂ is a subset of â ◦ x̂+ b̂ ◦ x̂, for some â, b̂ ∈ K, x̂ ∈ H, then (â+ b̂)◦́T (x̂)

is indeterminate in T (H), or â◦́T (x̂) + b̂◦́T (x̂) is indeterminate in T (H), or we can not find if

(â+ b̂)◦́T (x̂) is a subset of â◦́T (x̂)+́b̂◦́T (x̂), respectively.

NHV3) a ◦ (b ◦ x) = (ab) ◦ x, for some a, b ∈ K, x ∈ H. Thus

a◦́(b◦́T (x)) = a◦́(T (b ◦ x)) = T (a ◦ (b ◦ x)) = T ((ab) ◦ x) = (ab)◦́T (x).

Also, if a ◦ (b ◦ x) 6= (ab) ◦ x, for some a, b ∈ K, x ∈ H, then a◦́(b◦́T (x)) 6= (ab)◦́T (x).

Moreover, if a ◦ (b ◦ x) is indeterminate in H, or (ab) ◦ x is indeterminate in H, or we can

not find if a ◦ (b ◦ x) = (ab) ◦ x or a ◦ (b ◦ x) 6= (ab) ◦ x, for some a, b ∈ K, x ∈ H, then

a◦́(b◦́T (x)) is indeterminate in T (H), or (ab)◦́T (x) is indeterminate in T (H), or we can not

find if a◦́(b◦́T (x)) = (ab)◦́T (x) or a◦́(b◦́T (x)) 6= (ab)◦́T (x).

NHV4) a ◦ (−x) = (−a) ◦ x = −(a ◦ x), for some a ∈ K, x ∈ H. Thus

a◦́(−T (x)) = a◦́(T (−x)) = T (a ◦ (−x)) = T ((−a) ◦ x) = (−a)◦́T (−x)

= T (−(a ◦ x)) = −(T (a ◦ x)) = −(a◦́T (x)).
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Also, if a ◦ (−x) 6= (−a) ◦x or (−a) ◦x 6= −(a ◦x) or a ◦ (−x) 6= −(a ◦x), for some a ∈ K, x ∈
H, then a◦́(−T (x)) 6= (−a)◦́T (x) or (−a)◦́T (x) 6= −(a◦́T (x)) or a◦́(−T (x)) 6= −(a◦́T (x)),

respectively. Moreover, if a ◦ (−x) or (−a) ◦ x or −(a ◦ x) is indeterminate in H, for some

a ∈ K, x ∈ H, or we can not find if two of them are equal, then a◦́(−T (x)) or (−a)◦́T (x) or

−(a◦́T (x)) is indeterminate in T (H), or we can not find if they are equal, respectively.

NHV5) x ∈ 1 ◦ x, for some x ∈ H. Thus T (x) ∈ T (1 ◦ x) = 1◦́T (x). Also, if y /∈ 1 ◦ y,

for some y ∈ H, then T (y) /∈ 1◦́T (y). Moreover, if 1 ◦ z is indeterminate or we can not find

if z ∈ 1 ◦ z or z /∈ 1 ◦ z, then 1◦́T (z) is indeterminate or we can not find if T (z) ∈ 1◦́T (z) or

T (z) /∈ 1◦́T (z).

Therefore, by Definition 3.7, T (H) is a SubNeutroHyperspace of W .

Theorem 4.7. Let V = (V,+, ◦,K) and W = (W, +́, ◦́,K) be NeutroHyperVector spaces over

the field K and T : V → W be a NeutroStrongGoodIsomorphism. If L is a SubNeutroHyper-

space of W , then T−1(L) is a SubNeutroHyperspace of V .

Proof. For all x, y ∈ T−1(L), T (x), T (y) ∈ L and so T (x − y) = T (x) − T (y) ∈ L. Then

x − y ∈ T−1(L). Also, there exist a ∈ K, y ∈ L such that a ◦ y ⊆ L. Since T is surjective,

y = T (x), for some x ∈ V . Thus T (a ◦x) = a ◦T (x) = a ◦ y ⊆ L and so a ◦x ⊆ T−1(L), where

x ∈ T−1(L). Moreover, if a ◦ y * L, for some a ∈ K, y ∈ L, then a ◦ x * T−1(L), for some

x ∈ V such that T (x) = y. Next, if a ◦ y is indeterminate, for some a ∈ K, y ∈ L, then a ◦ x is

indeterminate, for some x ∈ T−1(y). One can similar to the proof of Theorem 4.6, show that

if L is satisfied in each NeutroAxiom of Definition 3.3, then T−1(L) is satisfied in the same

NeutroAxiom. Therefore, T−1(L) is a SubNeutroHyperspace of V .

Corollary 4.8. Let V = (V,+, ◦,K) and W = (W, +́, ◦́,K) be NeutroHyperVector spaces over

the field K and T : V →W be a NeutroStrongGoodIsomorphism. Then H is a SubNeutroHy-

perspace of V , if and only if T (H) is a SubNeutroHyperspace of W .

Proof. It follows from Theorems 4.5, 4.6, and 4.7.

Corollary 4.9. If V = (V,+, ◦,K) and W = (W, +́, ◦́,K) are NeutroHyperVector spaces over

the field K such that V ∼=
NS

W , then V has no proper SubNeutroHyperspace, if and only if W

has no proper SubNeutroHyperspace.

Proof. It follows from Corollary 4.8.
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5. Cartesian Product of NeutroHyperVector Spaces

In order to make the Cartesian product of NeutroHyperVector spaces over a common field

K, we need a suitable field, that is the Cartesian product K×K with the following operations:

(a, b) + (c, d) = (a+ c, b+ d), (a, b)(c, d) = (ac− bd, ad− bc). (6)

The zero and the multiplicative identity of the field K ×K are (0, 0) and (1, 0), respectively.

Theorem 5.1. If V1 = (V1,+1, ◦1,K) and V2 = (V2,+2, ◦2,K) are NeutroHyperVector spaces

over the field K such that are satisfied in the same NeutroAxioms, k ◦1 (0 ◦1 v1) = 0 ◦1 v1,

1 ◦2 (0 ◦2 v2) = 0 ◦2 v2 and 0V2 ∈ 0 ◦2 v́2, for some k ∈ K, v1 ∈ V1 and v2, v́2 ∈ V2, then

V1 × V2 = (V1 × V2,+, ◦,K ×K) is a NeutroHyperVector space over the field K ×K, where

(x1, x2) + (y1, y2) = (x1 +1 y1, x2 +2 y2),

(a1, a2) ◦ (x1, x2) = {(r, s); r ∈ a1 ◦1 x1, s ∈ a2 ◦2 x2}.
(7)

Proof. It is easy to see that (V1×V2,+) is an Abelian group. Since “◦1” and “◦2” are external

NeutroHyperoperations, there exist a1, a2 ∈ K, x1 ∈ V1, x2 ∈ V2, such that a1 ◦1 x1 ⊆ V1 and

a2 ◦2 x2 ⊆ V2. Then

(a1, a2) ◦ (x1, x2) = {(r, s); r ∈ a1 ◦1 x1, s ∈ a2 ◦2 x2} ⊆ V1 × V2.

If a1 ◦1 x1 * V1, for some a1 ∈ K, x1 ∈ V1, then (a1, a2) ◦ (x1, x2) * V1 × V2, for all a2 ∈ K,

x2 ∈ V2. If a1 ◦1 x1 is indeterminate in V1, for some a1 ∈ K, x1 ∈ V1, then (a1, a2) ◦ (x1, x2)

is indeterminate in V1 × V2, for all a2 ∈ K, x2 ∈ V2. Similarly, If a2 ◦2 x2 * V2, for some

a2 ∈ K, x2 ∈ V2, then (a1, a2) ◦ (x1, x2) * V1 × V2, for all a1 ∈ K, x1 ∈ V1 and if a2 ◦2 x2
is indeterminate in V2, for some a2 ∈ K, x2 ∈ V2, then (a1, a2) ◦ (x1, x2) is indeterminate in

V1 × V2, for all a1 ∈ K, x1 ∈ V1. Hence “ ◦ ” is an external NeutroHyperoperation on V1 × V2.
Now we show that if V1, V2 are satisfied in each NeutroAxioms of Definition 3.3, then V1 × V2
is satisfied in the same NeutroAxiom.

NHV1) If a1 ◦1 (x1 +1 y1) ⊆ a1 ◦1 x1 +1 a1 ◦1 y1, and a2 ◦2 (x2 +2 y2) ⊆ a2 ◦2 x2 +2 a2 ◦2 y2,
for some a1, a2 ∈ K, x1, y1 ∈ V1, x2, y2 ∈ V2, then

(a1, a2) ◦ ((x1, x2) + (y1, y2)) = (a1, a2) ◦ (x1 +1 y1, x2 +2 y2)

= {(r, s); r ∈ a1 ◦1 (x1 +1 y1), s ∈ a2 ◦2 (x2 +2 y2)}

⊆ {(r, s); r ∈ a1 ◦1 x1 +1 a1 ◦1 y1, s ∈ a2 ◦2 x2 +2 a2 ◦2 y2}

=

{
(r1 +1 ŕ1, s2 +2 ś2); r1 ∈ a1 ◦1 x1, ŕ1 ∈ a1 ◦1 y1,

s2 ∈ a2 ◦2 x2, ś2 ∈ a2 ◦2 y2

}
= {(r1, s2); r1 ∈ a1 ◦1 x1, s2 ∈ a2 ◦2 x2}

+ {(ŕ1, ś2); ŕ1 ∈ a1 ◦1 y1, ś2 ∈ a2 ◦2 y2}

= (a1, a2) ◦ (x1, x2) + (a1, a2) ◦ (y1, y2).
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If a1 ◦1 (x1 +1 y1) * a1 ◦1 x1 +1 a1 ◦1 y1, and a2 ◦2 (x2 +2 y2) * a2 ◦2 x2 +2 a2 ◦2 y2, for some

a1, a2 ∈ K, x1, y1 ∈ V1, x2, y2 ∈ V2, then

(a1, a2) ◦ ((x1, x2) + (y1, y2)) * (a1, a2) ◦ (x1, x2) + (a1, a2) ◦ (y1, y2).

If a1 ◦1 (x1 +1 y1) and a2 ◦2 (x2 +2 y2) are indeterminate in V1 and V2, respectively, for some

a1, a2 ∈ K, x1, y1 ∈ V1, x2, y2 ∈ V2, then (a1, a2) ◦ ((x1, x2) + (y1, y2)) is indeterminate in

V1 × V2.
If a1 ◦1 x1 +1 a1 ◦1 y1 and a2 ◦2 x2 +2 a2 ◦2 y2 are indeterminate in V1 and V2, respectively,

for some a1, a2 ∈ K, x1, y1 ∈ V1, x2, y2 ∈ V2, then (a1, a2) ◦ (x1, x2) + (a1, a2) ◦ (y1, y2) is

indeterminate in V1 × V2.
If we can not find if a1 ◦1 (x1 +1 y1) is a subset of a1 ◦1 x1 +1 a1 ◦1 y1 and we can not find if

a2◦2(x2+2y2) is a subset of a2◦2x2+2a2◦2y2, for some a1, a2 ∈ K, x1, y1 ∈ V1, x2, y2 ∈ V2, then

we can not find if (a1, a2)◦((x1, x2)+(y1, y2)) is a subset of (a1, a2)◦(x1, x2)+(a1, a2)◦(y1, y2).
NHV2) It is similar to the NeutroAxiom (NHV1).

NHV3) By the hypothesis, there exist k ∈ K, v1 ∈ V1 and v2, v́2 ∈ V2, such that c◦1(0◦1v1) =

0 ◦1 v1 and 1 ◦2 (0 ◦2 v2) = 0 ◦2 v2. Thus

(k, 1) ◦ ((0, 0) ◦ (v1, v2)) =
⋃

(r,s)∈(0,0)◦(v1,v2)

(k, 1) ◦ (r, s)

=
⋃

p∈k◦1r,q∈1◦2s,
r∈0◦1v1,s∈0◦2v2

(p, q)

=
⋃

p∈k◦1(0◦1v1),q∈1◦2(0◦2v2)

(p, q)

=
⋃

p∈0◦1v1,q∈0◦2v2

(p, q)

= (0, 0) ◦ (v1, v2)

= ((k, 1)(0, 0)) ◦ (v1, v2).

If a ◦1 (b ◦1 x1) 6= (ab) ◦1 x1 and c ◦2 (d ◦2 x2) 6= (cd) ◦2 x2, for some a, b, c, d ∈ K, x1 ∈ V1,
x2 ∈ V2, then (a, c) ◦ ((b, d) ◦ (x1, x2)) 6= ((a, c)(b, d)) ◦ (x1, x2).

If a ◦1 (b ◦1 x1) and c ◦2 (d ◦2 x2) are indeterminate in V1 and V2, respectively, for some

a, b, c, d ∈ K, x1 ∈ V1, x2 ∈ V2, then (a, c) ◦ ((b, d) ◦ (x1, x2)) is indeterminate in V1 × V2.
If (ab) ◦1 x1 and (cd) ◦2 x2 are indeterminate in V1 and V2, respectively, for some a, b, c, d ∈ K,

x1 ∈ V1, x2 ∈ V2, then ((a, c)(b, d)) ◦ (x1, x2) is indeterminate in V1 × V2.
If we can not find if a◦1 (b◦1x1) = (ab)◦1x1 and c◦2 (d◦2x2) = (cd)◦2x2, for some a1, a2 ∈ K,

x1, y1 ∈ V1, x2, y2 ∈ V2, then we can not find if (a, c)◦((b, d)◦(x1, x2)) = ((a, c)(b, d))◦(x1, x2).
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NHV4) If a ◦1 (−x1) = (−a) ◦1 x1 = −(a ◦1 x1) and b ◦2 (−x2) = (−b) ◦2 x2 = −(b ◦2 x2), for

some a, b ∈ K, x1 ∈ V1, x2 ∈ V2, then

(a, b) ◦ (−(x1, x2)) = (a, b) ◦ (−x1,−x2)

= {(r, s); r ∈ a ◦1 (−x1), s ∈ b ◦2 (−x2)}

= {(r, s); r ∈ (−a) ◦1 x1, s ∈ (−b) ◦2 x2}

= (−a,−b) ◦ (x1, x2)

= (−(a, b)) ◦ (x1, x2),

and

(a, b) ◦ (−(x1, x2)) = {(r, s); r ∈ a ◦1 (−x1), s ∈ b ◦2 (−x2)}

= {(r, s); r ∈ −(a ◦1 x1), s ∈ −(b ◦2 x2)}

= {(−ŕ,−ś); ŕ ∈ a ◦1 x1, ś ∈ b ◦2 x2}

= {−(ŕ, ś); ŕ ∈ a ◦1 x1, ś ∈ b ◦2 x2}

= −((a, b) ◦ (x1, x2)).

If a◦1 (−x1) 6= (−a)◦1x1 and b◦2 (−x2) 6= (−b)◦2x2, for some a, b ∈ K, x1 ∈ V1, x2 ∈ V2, then

(a, b) ◦ (−(x1, x2)) 6= (−(a, b)) ◦ (x1, x2). Similarly, if a ◦1 (−x1) 6= −(a ◦1 x1) and b ◦2 (−x2) 6=
−(b ◦2 x2), then (a, b) ◦ (−(x1, x2)) 6= −((a, b) ◦ (x1, x2)). Also, if (−a) ◦1 x1 6= −(a ◦1 x1) and

(−b) ◦2 x2 6= −(b ◦2 x2), then (−(a, b)) ◦ (x1, x2) 6= −((a, b) ◦ (x1, x2)).

If a ◦1 (−x1) and b ◦2 (−x2) are indeterminate in V1 and V2, for some a, b ∈ K, x1 ∈ V1,

x2 ∈ V2, then (a, b) ◦ (−(x1, x2)) is indeterminate in V1 × V2. Similarly, if (−a) ◦1 x1 and

(−b) ◦2 x2 are indeterminate in V1 and V2, then (−(a, b)) ◦ (x1, x2) is indeterminate in V1×V2.
Also, if −(a ◦1 x1) and −(b ◦2 x2) are indeterminate in V1 and V2, then −((a, b) ◦ (x1, x2)) is

indeterminate in V1 × V2.
NHV5) If x1 ∈ 1 ◦1 x1 and x2 ∈ 1 ◦2 x2, for some x1 ∈ V1, x2 ∈ V2, then by the hypothesis

it follows that, (x1, v́2) ∈ (1, 0) ◦ (x1, v́2), where (1, 0) is the identity of K ×K.

If x1 /∈ 1 ◦1 x1 and x2 /∈ 1 ◦2 x2, for some x1 ∈ V1, x2 ∈ V2, then (x1, x2) /∈ (1, 0) ◦ (x1, x2).

If 1 ◦1 x1 and 1 ◦2 x2 are indeterminate in V1 and V2, respectively, for some x1 ∈ V1, x2 ∈ V2,
then (1, 0) ◦ (x1, x2) is indeterminate in V1 × V2.
If we can not fine if x1 ∈ 1 ◦1 x1 and x2 ∈ 1 ◦2 x2, for some x1 ∈ V1, x2 ∈ V2, then we can not

find (x1, x2) ∈ (1, 0) ◦ (x1, x2).

Therefore, by Definition 3.3, (V1 × V2,+, ◦,K ×K is a NeutroHyperVector space over the

field K ×K.
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It is easy to see that, the NeutroHyperVector space V3 = (Z3,+, ◦3,Z2) was defined in Exam-

ple 3.4, does not satisfy in the hypothesis of the Theorem 5.1, then we can not construct V3×W
or U × V3 for any NeutroHyperVector spaces W and U . Also, the NeutroHyperVector spaces

V4 = (Z3,+, ◦4,Z2), V5 = (Z3,+, ◦5,Z2) were defined in Example 3.4, V6 = (Z,+, ◦6,Z2) was

defined in Example 3.5, V7 = (Z2,+, ◦7,Z2) was defined in Example 3.6, V8 = (Z4,+, ◦8,Z2)

was defined in Example 3.8, and V9 = (Z3,+, ◦9,Z2), V10 = (Z3,+, ◦10,Z2), were defined in

Example 4.4, satisfy in the first hypothesis of the Theorem 5.1, (i.e. k ◦i (0 ◦i v) = 0 ◦i v, for

some k ∈ K, v ∈ Vi, 4 ≤ i ≤ 10), thus we can construct the Cartesian product Vi ×W , for

suitable NeutroHyperVector space W over the field K = {0, 1}, where W = (W,+, ◦,K) satis-

fies in the necessary conditions of the Theorem 5.1, (i.e. 1 ◦ (0 ◦w1) = 0 ◦w1 and 0W ∈ 0 ◦w2,

for some w1, w2 ∈ W ). In the following example, such a suitable NeutroHyperVector space is

given:

Example 5.2. Consider the field K = {0, 1} and the Abelian group Z3 = {0, 1, 2} defined in

Example 2.2. Define an external NeutroHyperoperation ◦11 : Z2 × Z3 → P∗(U) by

◦11 0 1 2

0 {0, 4} {1, 2} {1, 2}
1 {1} {1} {2}

Then, similar to the Examples 3.4, and 4.4, it follows that V11 = (Z3,+, ◦11,K) is a strongly

right distributive NeutroHyperVector space (it is not strongly left distributive) over the field

Z2, such that 1 ◦11 (0 ◦11 1) = 1 ◦11 ({1, 2}) = 1 ◦11 1∪ 1 ◦11 2 = {1, 2} = 0 ◦11 1 and 0 ∈ 0 ◦11 0.

Thus, by Theorem 5.1, Vi × V11, 4 ≤ i ≤ 11, is a NeutroHyperVector space over the field

Z2 × Z2. Note that, Vi = (Vi,+i, ◦i,K) and V11 = (V11,+11, ◦11,K) are satisfied in the same

NeutroAxioms of Definition 3.3.

For instance, in the following, we check the NeutroAxioms of Definition 3.3, for the Neutro-

HyperVector space V4 × V11 = (Z3 × Z3,+, ◦,Z2 × Z2), which is a strongly right distributive

NeutroHyperVector space, but it is not strongly left distributive:

NHV1) 1◦4(0+2) = 1◦40+1◦42, and 1◦11(1+1) = 1◦111+1◦111, so (1, 1)◦((0, 1)+(2, 1)) =

(1, 1) ◦ (0, 1) + (1, 1) ◦ (2, 1), since

(1, 1) ◦ ((0, 1) + (2, 1)) = (1, 1) ◦ (2, 2)

= {(r, s); r ∈ 1 ◦4 2, s ∈ 1 ◦11 2}

= {(0, 2), (1, 2), (2, 2)} ,
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and

(1, 1) ◦ (0, 1) + (1, 1) ◦ (2, 1) = {(r, s); r ∈ 1 ◦4 0, s ∈ 1 ◦11 1}

+ {(p, q); p ∈ 1 ◦4 2, q ∈ 1 ◦11 1}

= {(1, 1)}+ {(0, 1), (1, 1), (2, 1)}

= {(0, 2), (1, 2), (2, 2)} .

Also, 1◦4 (0+0) * 1◦4 0+1◦4 0 and 0◦11 (1+2) * 1◦11 1+0◦11 2, thus (1, 0)◦((0, 1)+(0, 2)) *
(1, 0) ◦ (0, 1) + (1, 0) ◦ (0, 2), since (1, 0) ◦ ((0, 1) + (0, 2)) = (1, 0) ◦ (0, 0) = {(1, 0), (1, 4)} and

(1, 0) ◦ (0, 1) + (1, 0) ◦ (0, 2) = {(1, 1), (1, 2)}+ {(1, 1), (1, 2)}

= {(2, 0), (2, 1), (2, 2)} .

NHV2) (0 + 1) ◦4 2 = 1 ◦4 2 = {0, 1, 2} = 0 ◦4 2 + 1 ◦4 2 = {0, 2}+ {0, 2} and (0 + 0) ◦11 1 ⊆
0 ◦11 1 + 0 ◦11 1, so ((0, 0) + (1, 0)) ◦ (2, 1) ⊆ (0, 0) ◦ (2, 1) + (1, 0) ◦ (2, 1), since

((0, 0) + (1, 0)) ◦ (2, 1) = (1, 0) ◦ (2, 1)

= {(0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2)} ,

and

(0, 0) ◦ (2, 1) + (1, 0) ◦ (2, 1) = {(1, 1), (1, 2), (2, 1), (2, 2)}

+ {(0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2)}

= {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)} .

Also, (1+1)◦4 0 * 1◦4 0+1◦4 1 and (0+1)◦11 1 * 0◦11 1+1◦11 1, thus ((1, 0)+(1, 1))◦(0, 1) *
(1, 0) ◦ (0, 1) + (1, 1) ◦ (0, 1), since ((1, 0) + (1, 1)) ◦ (0, 1) = (0, 1) ◦ (2, 1) = {(0, 1), (1, 1)} and

(1, 0) ◦ (0, 1) + (1, 1) ◦ (0, 1) = {(1, 1), (1, 2)}+ {(1, 1)}

= {(2, 0), (2, 2)} .

NHV3) 0 ◦4 (0 ◦4 1) = (00) ◦4 1 and 0 ◦11 (0 ◦11 1) = (00) ◦11 1, so (0, 1) ◦ ((0, 0) ◦ (1, 1)) =

((0, 1)(0, 0)) ◦ (1, 1), since

(0, 1) ◦ ((0, 0) ◦ (1, 1)) = (0, 1) ◦ {(1, 1), (1, 2), (2, 1), (2, 2)}

= ((0, 1) ◦ (1, 1)) ∪ ((0, 1) ◦ (1, 2))

∪ ((0, 1) ◦ (2, 1)) ∪ ((0, 1) ◦ (2, 2))

= {(1, 1), (2, 1)} ∪ {(1, 2), (2, 2)}

∪ {(1, 1), (2, 1)} ∪ {(1, 2), (2, 2)}

= {(1, 1), (1, 2), (2, 1), (2, 2)} ,
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and ((0, 1)(0, 0)) ◦ (1, 1) = (0, 0) ◦ (1, 1) = {(1, 1), (1, 2), (2, 1), (2, 2)}.
Also, (1, 1) ◦ ((1, 0) ◦ (1, 0)) is indeterminate in V4 × V11.

NHV4) 0 ◦4 (−1) = (−0) ◦4 1 = −(0 ◦4 1) and 0 ◦11 (−1) = (−0) ◦11 1 = −(0 ◦11 1), so

(0, 0) ◦ (−(1, 1)) = (−(0, 0)) ◦ (1, 1) = −((0, 0) ◦ (1, 1)), since

(0, 0) ◦ (−(1, 1)) = (0, 0) ◦ (2, 2) = {(1, 1), (1, 2), (2, 1), (2, 2)} ,

(−(0, 0)) ◦ (1, 1) = (0, 0) ◦ (1, 1) = {(1, 1), (1, 2), (2, 1), (2, 2)} ,

and

−((0, 0) ◦ (1, 1)) = −{(1, 1), (1, 2), (2, 1), (2, 2)} = {(1, 1), (1, 2), (2, 1), (2, 2)} .

Also, (−1)◦4 0 6= −(1◦4 0) and (−1)◦11 1 6= −(1◦11 1), thus (−(1, 1))◦ (0, 1) 6= −((1, 1)◦ (0, 1)),

since (−(1, 1)) ◦ (0, 1) = (1, 1) ◦ (0, 1) = {(1, 1)} and −((1, 1) ◦ (0, 1)) = −{(1, 1)} = {(2, 2)}.
NHV5) 2 ∈ 1 ◦4 2 and 1 ∈ 1 ◦11 1, so (2, 0) ∈ (1, 0) ◦ (2, 0). Moreover, (0, 0) /∈ (1, 0) ◦ (0, 0).

Theorem 5.3. Let V1 = (V1,+1, ◦1,K) be a NeutroHyperVector space over the field K such

that k◦1(0◦1v1) = 0◦1v1, for some k ∈ K, v1 ∈ V1, and let V2 = (V2,+2, ◦2,K) be a hypervector

space over the field K such that 0V2 ∈ 0 ◦2 v́2, for some v́2 ∈ V2, then (V1 × V2,+, ◦,K ×K)

with operation “ + ” and the external NeutroHyperoperation “ ◦ ” defined in Theorem 5.1, is a

NeutroHyperVector space over the field K ×K.

Proof. It is similar to the proof of Theorem 5.1.

Example 5.4. Let V be the hypervector spaces (Z3,+, ◦1,Z2) or (Z3,+, ◦2,Z2) over the field

K = Z2, were defined in Example 2.2. Then for every 4 ≤ i ≤ 11, the Cartesian product

Vi × V , is a NeutroHyperVector space over the field K × K, where the NeutroHyperVector

spaces Vi were defined in Examples 3.4, 3.5, 3.6, 3.8, 4.4, and 5.2.

6. Conclusions

A NeutroHyperVector space is an alternative of a hypervector space (V,+, ◦,K) such that

“+ : V × V → P∗(V )” is a NeutroHyperoperation, or “◦ : K × V → P∗(V )” is an external

NeutroHyperoperation, or at least it has one NeutroAxiom. Thus, there are several types of

NeutroHyperVector spaces, based on the number of NeutroOperation, NeutroHyperoperation

and NeutroAxioms.

In this paper, we considered an specific and expected type of NeutroHyperVector spaces

and studied some of their basic properties, such as SubNeutroHyperspace, NeutroLin-

earTransformation and Cartesian product of NeutroHyperVector spaces. Throughout the

paper, a variety of examples are provided for each concept. For future research, one

can investigate another basic properties of vector spaces, fuzzy vector spaces, hypervector
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spaces and fuzzy hypervector spaces in NeutroHyperVector spaces. It is also possible to

change the basic definition of NeutroHyperVector space by changing the number of opera-

tions/hyperoperations/Neutrohyperoperations and axioms/NeutroAxioms and check the fea-

tures of the new structure. Finding the applications of the defined structures can be the

subject of valuable research works.
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Abstract: Large data volumes make manually keeping and preserving health records for future reference 

problematic. Most unusual is the coronavirus epidemic's overcrowding of hospitals. The Secure Pattern Electronic 

Healthcare Records (SPEHR) scheme provides a powerful and lightweight secure storage system for cloud-based E-

healthcare services that meets remote healthcare security criteria. So we proposed a neutrosophic model with a multi-

criterion decision-making (MCDM) method for the analysis and evaluation of these criteria. The neutrosophic model 

is used to deal with vague and uncertain data. Then we integrated the neutrosophic model with the AHP method to 

rank and compute the weights of the criteria. Offering stakeholders a secure interface and avoiding unwanted access 

to cloud-stored data mitigates E-healthcare risks. The key derivation ensures end-to-end data. ciphering to prevent 

unauthorized use (KDF). This work provides robust security solutions for various environments. This work can meet 

security needs for people and secure-communicating organizations. We found the data privacy is the best criterion. 

Keywords: Neutrosophic Set, Multi-Criteria Decision Making (MCDM), Data Security, Privacy-preserving, 

Authentication, Access Control, Uncertainty. 

1. Introduction 

The Large data volumes make manually storing and maintaining health records for future reference difficult [1]. Most 

unusual is the coronavirus epidemic's overcrowding of hospitals. Due to its inability to accommodate more patients, 

healthcare systems in the US, Brazil, and India are under strain [2]. The global pandemic's impact on healthcare is 
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incomprehensible [3]. Manually recording data makes it hard to find a patient's information in a record room full of 

health records. Finding a patient's medical record is time-consuming. Disasters can also wipe data. Since the data is 

in plain text, it can be hacked and read, written, or modified [4]. 

Recently, IoT medical record storage. E-healthcare security is crucial because health data is sensitive. Attackers 

exploit open wireless channels [5]. Attackers exploit open wireless channels [5]. These attacks could cause several E-

healthcare difficulties. Consider a patient who is admitted to a hospital in a different city for treatment and then 

returned home. Later, he falls ill and is admitted to a local hospital, but he cannot access his previous data or files. A 

lack of understanding may postpone his treatment fatally. If the patient's information was saved on devices that could 

connect to the cloud, the new medical staff may start treatment immediately [6]. Health care can store encrypted data 

in the cloud using secure cryptographic techniques. These algorithms allow only authorized individuals to view the 

information from any remote place with internet connectivity, wired or wireless [7]. "Cloud" servers allow users to 

host a variety of applications and databases that can be viewed online. Cloud platforms exist worldwide [8]. Sponsors, 

health insurers, and healthcare organizations no longer need to maintain servers or administer applications [9].  

E-healthcare can adapt in institutions without cloud-based services [10]. Paper can keep general hospital data, but 

the cloud can save essential data. Authorized users worldwide can securely share information [11]. Selected 

stakeholders can access, remove, and change data [12]. Protecting patient privacy and data integrity is difficult [13,14].  

We evaluated the healthcare security by analyzing its criteria. We used the MCDM method to evaluate the criteria 

[25]. The healthcare security has many component as shown in Figure 1.  

For a fresh take on ambiguity, imprecision, inconsistency, and fuzziness, see Florantin Smarandache's neutrosophic 

sets, which expand on Atanassov's intuitionistic fuzzy sets (IFSs). Smarandache defined a neutrosophic set with three 

parts: truth membership, indeterminacy membership, and falsity membership, and he established the degree of 

indeterminacy/neutrality as a new and independent component of fuzzy sets. The use of neutrosophic sets in decision-

making may improve outcomes due to the indeterminacy parameter's contribution to a more precise formulation of 

membership functions [26,27]. A neutrosophic set, on the other hand, is more difficult to implement in actual scientific 

and technical domains. The distinction between absolute truth and relative truth in logic, as well as between absolute 

membership and relative non-membership, is a particularly valuable application of neutrosophic logic. A decision 

maker is relieved of the burden of ensuring that the sum of the items in a membership function for a given event is at 

most 1. If they're unrelated, the amount might go up to 3 [28, 29]. 

Saaty's AHP is a well-known approach for multi-criteria decision-making. Researchers may easily determine how 

important certain factors are by using this method. Several fuzzy variations of the conventional AHP approach have 

been developed as a response to inadequate data and unpredictability [30 ,31]. 
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Figure 1. The component of the healthcare security. 

2. Literature Review 

In this sub-section, the most recent work relevant to the healthcare security is reviewed. It examines the literature and 

identifies the strengths and flaws of pertinent models. This subparagraph highlights academic attempts to develop 

new E-Healthcare security approaches [15]. Using Olutayo et al. [16] web-based solution. physicians, pharmacists, 

and nurses can access patients' health records. The local cloud holds patient information. Remotely editable data 

facilitates collaboration between hospitals and physicians through the sharing of patient records. This proposal limits 

patient access to their medical records. 

A data sharing and profile pairing mechanism for Mobile Healthcare Social Networks (MHSN) in cloud computing 

for EHR is detailed in the approach [17]. Using an identity-based encryption system, the scheme enables the 

encryption of medical records. This approach permits conditional attribute-based re-encryption of data. This approach 

prevents eavesdropping on sensitive information. Using identity-based encryption and an equality test, MHSN's 

method for matching profiles is adaptable and secure. 

A trust negotiation framework facilitates authentication, privacy, and user access for health services [18, 19]. Digital 

credentials enable secure transaction feature disclosure. This method cannot defend the E-healthcare system against 

all significant threats. Modular exponentiation-based group key agreement was proposed by S. Paliwal et al. [20]. The 

proposed method is secure against DOS assaults, but it is susceptible to replay attacks (lack of timestamp or random 

number), requires the identities of all communicating parties, loses anonymity, and cannot withstand impersonation. 

 The authors of [21] focused on privacy and E-Healthcare platform access control techniques. According to the 

authors, their access control technique is superior to others. The proposed access control technique relies on 

communication confidence. User behavior determines trust. If the user and service have mutual trust, the request is 
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permitted. The methodology confines record access to authorized, reliable personnel, according to the author. Li et al. 

[22] introduced a biometric-based authentication approach and emphasized that incorrectly developed biohashing-

based protocols are susceptible to insider assaults. Comparing protocols for E-Healthcare security. 

 Existing systems are susceptible to numerous E-Healthcare security flaws. The vulnerabilities identified could be 

used by cybercriminals to execute cyberattacks against various medical devices. In terms of identity anonymity, 

authenticity, confidentiality, and communication integrity, the majority of provided techniques do not provide 

absolute security. Normal schemes are inadequate for mission-critical e-healthcare applications because they lack 

particular security features. Existing system frameworks contain vulnerabilities that allow unauthorized access to 

resources. In addition, older systems require extensive processing. 

 

3 Neutrosophic AHP Method 

Zadeh contributes to the literature by introducing the fuzzy theory, a method for dealing with ambiguity and 

uncertainty. To begin, the membership function is the single component of a fuzzy set. After that, a wide variety 

of fuzzy sets are created to help with uncertainty and ambiguity. Atanassov introduced a kind of fuzzy sets called 

intuitionistic fuzzy sets (IFSs) [32, 33]. The membership and non-membership functions of a fuzzy set generalize 

into IFSs. Smarandache extends fuzzy logic with a new function called "uncertainty" to create the neutrosophic 

logic as a more sophisticated form of IFSs that can more effectively handle ambiguity [34,35]. 

 

Neutrosophic set has three membership functions as truth, indeterminacy and falsity membership functions 

(𝑋𝑇 , 𝑋𝐼 , 𝑋𝐹).  

Definition 1 

Interval valued neutrosophic number can be represented as: 

𝑋 = {𝑥, [𝑋𝑇
𝐿 , 𝑋𝑇

𝑈], [𝑋𝐼
𝐿 , 𝑋𝐼

𝑈], [𝑋𝐹
𝐿 , 𝑋𝐹

𝑈]}                                                                 (1) 

 

Definition 2 

We can convert the interval valued neutrosophic set into a crisp value by: 

𝑆(𝑋) = (
𝑋𝑇

𝐿+𝑋𝑇
𝑈

2
) + (1 −

𝑋𝐼
𝐿+𝑋𝐼

𝑈

2
) 𝑋𝐼

𝑈 − (
𝑋𝐹

𝐿+𝑋𝐹
𝑈

2
) (1 − 𝑋𝐹

𝑈)                                                  (2) 

 

Definition 3 

We can compute some mathematical operations on interval valued neutrosophic numbers as: 

𝑥1 = [𝑥1𝑇
𝐿 , 𝑥1𝑇

𝑈], [𝑥1𝐼
𝐿 , 𝑥1𝐼

𝑈], [𝑥1𝐹
𝐿 , 𝑥1𝐹

𝑈]; 𝑥2 = [𝑥2𝑇
𝐿 , 𝑥2𝑇

𝑈], [𝑥2𝑖
𝐿 , 𝑥2𝐼

𝑈], [𝑥2𝐹
𝐿 , 𝑥2𝐹

𝑈]  

𝑥1⨁𝑥2 = < (

[𝑥1𝑇
𝐿 + 𝑥2𝑇

𝐿 − 𝑥1𝑇
𝐿𝑥2𝑇

𝐿 , 𝑥1𝑇
𝑈 + 𝑥2𝑇

𝑈 − 𝑥1𝑇
𝑈𝑥2𝑇

𝑈],

 [𝑥1𝐼
𝐿𝑥2𝐼

𝐿 , 𝑥1𝐼
𝑈𝑥2𝐼

𝑈],

[𝑥1𝐹
𝐿𝑥2𝐹

𝐿 , 𝑥1𝐹
𝑈𝑥2𝐹

𝑈]

) >                                             (3) 

 



Neutrosophic Sets and Systems, Vol. 58, 2023                                                           371 

 

 

Ahmed A. El-Douh, Song Feng Lu, Ahmed Abdelhafeez, Ahmed M. Ali, Alber S. Aziz, Neutrosophic Model for Evaluation Healthcare Security 
Criteria for Powerful and Lightweight Secure Storage System in Cloud-Based E-Healthcare Services 

 

𝑥1 ⊖ 𝑥2 =< (

[𝑥1𝑇
𝐿 − 𝑥2𝐹

𝑈 , 𝑥1𝑇
𝑈 − 𝑥2𝐹

𝐿  ],

[max(𝑥1𝐼
𝐿, 𝑥2𝐼

𝐿) , max(𝑥1𝐼
𝑈𝑥2𝐼

𝑈)],

[𝑥1𝐹
𝐿 − 𝑥2𝑇

𝑈 , 𝑥1𝐹
𝑈 − 𝑥2𝑇

𝐿 ]

) >                                                      (4) 

𝑥1⨂𝑥2 = < (

[𝑥1𝑇
𝐿𝑥2𝑇

𝐿 , 𝑥1𝑇
𝑈𝑥2𝑇

𝑈],

[𝑥1𝐼
𝐿 + 𝑥2𝐼

𝐿 − 𝑥1𝐼
𝐿𝑥2𝐼

𝐿, 𝑥1𝐼
𝑈 + 𝑥2𝐼

𝑈 − 𝑥1𝐼
𝑈𝑥2𝐼

𝑈],

[𝑥1𝐹
𝐿 + 𝑥2𝐹

𝐿 − 𝑥1𝐹
𝐿𝑥2𝐹

𝐿 , 𝑥1𝐹
𝑈 + 𝑥2𝐹

𝑈 − 𝑥1𝐹
𝑈𝑥2𝐹

𝑈]

) >                                             (5) 

 

𝑥1
⋋ =<

(

 
 

[1 − (1 − 𝑥1𝑇
𝐿 )

⋋
, 1 − (1 − 𝑥1𝑇

𝑈)
⋋
 ] ,

[(𝑥1𝐼
𝐿)

⋋
, (𝑥1𝐼

𝑈)
⋋
] ,

[1 − (1 − 𝑥1𝐹
𝐿)

⋋
, 1 − (1 − 𝑥1𝐹

𝑈)
⋋
 ]

)

 
 

>                                                       (6) 

 

⋋ 𝑥1 =<

(

 
 

[1 − (1 − 𝑥1𝑇
𝐿 )

⋋
, 1 − (1 − 𝑥1𝑇

𝑈)
⋋
 ] ,

[(𝑥1𝐼
𝐿)

⋋
, (𝑥1𝐼

𝑈)
⋋
] ,

[(𝑥1𝐹
𝐿)

⋋
, (𝑥1𝐹

𝑈)
⋋
]

)

 
 

>                                                     (7) 

 

 

Based on the logic of arranging issues in hierarchical and then assessing each element in the order via pairwise 

comparisons, the AHP technique was created and systematized by Thomas Saaty and introduced to the literature 

through systematization. Although AHP is widely utilized, there are situations when it does not accurately 

represent human reasoning when solving MCDM issues. IVN-AHP is an improvement over conventional AHP 

because it incorporates human cognition more effectively into the process of making choices and allows for a 

powerful expression of uncertainty using three variables. 

 

Step 1. Build the comparison matrix 

 

𝐴 = [

< [𝑥11𝑇
𝐿 , 𝑥11𝑇

𝑈], [𝑥11𝐼
𝐿, 𝑥11𝐼

𝑈], [𝑥11𝐹
𝐿 , 𝑥11𝐹

𝑈] > ⋯ < [𝑥1𝑚𝑇
𝐿 , 𝑥1𝑚𝑇

𝑈], [𝑥1𝑚𝐼
𝐿 , 𝑥1𝑚𝐼

𝑈], [𝑥1𝑚𝐹
𝐿 , 𝑥1𝑚𝐹

𝑈] >

⋮ ⋱ ⋮
< [𝑥𝑚1𝑇

𝐿 , 𝑥𝑚1𝑇
𝑈], [𝑥𝑚1𝐼

𝐿 , 𝑥𝑚1𝐼
𝑈], [𝑥𝑚1𝐹

𝐿 , 𝑥𝑚1𝐹
𝑈] > ⋯ < [𝑥𝑚𝑚𝑇

𝐿 , 𝑥𝑚𝑚𝑇
𝑈], [𝑥𝑚𝑚𝐼

𝐿 , 𝑥𝑚𝑚𝐼
𝑈], [𝑥𝑚𝑚𝐹

𝐿 , 𝑥𝑚𝑚𝐹
𝑈] >

]        (8) 

 

Step 2. Add the numbers in every column  

 

𝐴𝑑 = <

(

 
 

[∑ 𝑥𝑘𝑗𝑇

𝐿 , ∑ 𝑥𝑘𝑗𝑇

𝑈,𝑚
𝑘=1

𝑚
𝑘=1 ] ,

[∑ 𝑥𝑘𝑗𝐼

𝐿, ∑ 𝑥𝑘𝑗𝐼

𝑈,𝑚
𝑘=1

𝑚
𝑘=1 ]

[∑ 𝑥𝑘𝑗𝐹
𝐿 ,∑ 𝑥𝑘𝑗𝐹

𝑈 ,𝑚
𝑘=1

𝑚
𝑘=1 ]

)

 
 

>                                                               (9) 

 

Step 3. Normalize the pairwise comparison matrix 
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𝑍𝑖𝑗 =<

(

 
 
 
 

[
𝑥𝑘𝑗𝑇

𝐿

∑ 𝑥𝑘𝑗𝑇
𝑈𝑚

𝑘=1
,

𝑥𝑘𝑗𝑇
𝑈

∑ 𝑥𝑘𝑗𝑇
𝑈𝑚

𝑘=1

] ,

[
𝑥𝑘𝑗𝐼

𝐿

∑ 𝑥𝑘𝑗𝐼
𝑈𝑚

𝑘=1
,

𝑥𝑘𝑗𝐼
𝑈

∑ 𝑥𝑘𝑗𝐼
𝑈𝑚

𝑘=1

]

[
𝑥𝑘𝑗𝐹

𝐿

∑ 𝑥𝑘𝑗𝐹
𝑈𝑚

𝑘=1
,

𝑥𝑘𝑗𝐹
𝑈

∑ 𝑥𝑘𝑗𝐹
𝑈𝑚

𝑘=1

]
)

 
 
 
 

>                                                                 (10) 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

<

(

 
 
 
 

[
𝑥11𝑇

𝐿

∑ 𝑥𝑘𝑗𝑇
𝑈𝑚

𝑘=1
,

𝑥11𝑇
𝑈

∑ 𝑥𝑘𝑗𝑇
𝑈𝑚

𝑘=1

] ,

[
𝑥11𝐼

𝐿

∑ 𝑥𝑘𝑗𝐼
𝑈𝑚

𝑘=1
,

𝑥11𝐼
𝑈

∑ 𝑥𝑘𝑗𝐼
𝑈𝑚

𝑘=1

] ,

[
𝑥11𝐹

𝐿

∑ 𝑥𝑘𝑗𝐹
𝑈𝑚

𝑘=1
,

𝑥11𝐹
𝑈

∑ 𝑥𝑘𝑗𝐹
𝑈𝑚

𝑘=1

]
)

 
 
 
 

> ⋯ <

(

 
 
 
 

[
𝑥1𝑚𝑇

𝐿

∑ 𝑥𝑘𝑗𝑇
𝑈𝑚

𝑘=1
,

𝑥1𝑚𝑇
𝑈

∑ 𝑥𝑘𝑗𝑇
𝑈𝑚

𝑘=1

] ,

[
𝑥1𝑚𝐼

𝐿

∑ 𝑥𝑘𝑗𝐼
𝑈𝑚

𝑘=1
,

𝑥1𝑚𝐼
𝑈

∑ 𝑥𝑘𝑗𝐼
𝑈𝑚

𝑘=1

] ,

[
𝑥1𝑚𝐹

𝐿

∑ 𝑥𝑘𝑗𝐹
𝑈𝑚

𝑘=1
,

𝑥1𝑚𝐹
𝑈

∑ 𝑥𝑘𝑗𝐹
𝑈𝑚

𝑘=1

]
)

 
 
 
 

>

⋮ ⋱ ⋮

<

(

 
 
 
 

[
𝑥𝑚1𝑇

𝐿

∑ 𝑥𝑘𝑗𝑇
𝑈𝑚

𝑘=1
,

𝑥𝑚1𝑇
𝑈

∑ 𝑥𝑘𝑗𝑇
𝑈𝑚

𝑘=1

] ,

[
𝑥𝑚1𝐼

𝐿

∑ 𝑥𝑘𝑗𝐼
𝑈𝑚

𝑘=1
,

𝑥𝑚1𝐼
𝑈

∑ 𝑥𝑘𝑗𝐼
𝑈𝑚

𝑘=1

] ,

[
𝑥𝑚1𝐹

𝐿

∑ 𝑥𝑘𝑗𝐹
𝑈𝑚

𝑘=1
,

𝑥𝑚1𝐹
𝑈

∑ 𝑥𝑘𝑗𝐹
𝑈𝑚

𝑘=1

]
)

 
 
 
 

> ⋯ <

(

 
 
 
 

[
𝑥𝑚𝑚𝑇

𝐿

∑ 𝑥𝑘𝑗𝑇
𝑈𝑚

𝑘=1
,

𝑥𝑚𝑚𝑇
𝑈

∑ 𝑥𝑘𝑗𝑇
𝑈𝑚

𝑘=1

] ,

[
𝑥𝑚𝑚𝐼

𝐿

∑ 𝑥𝑘𝑗𝐼
𝑈𝑚

𝑘=1
,

𝑥𝑚𝑚𝐼
𝑈

∑ 𝑥𝑘𝑗𝐼
𝑈𝑚

𝑘=1

] ,

[
𝑥𝑚𝑚𝐹

𝐿

∑ 𝑥𝑘𝑗𝐹
𝑈𝑚

𝑘=1
,

𝑥𝑚𝑚𝑠𝐹
𝑈

∑ 𝑥𝑘𝑗𝐹
𝑈𝑚

𝑘=1

]
)

 
 
 
 

>

]
 
 
 
 
 
 
 
 
 
 
 
 
 

                                    (11) 

 

Step 4. Compute the weights of criteria 
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Step 5. Rank the healthcare security criteria. 

 

 

4. Analysis of criteria 

We analysis the healthcare security criteria by the interval valued neutrosophic numbers. We collected nine criteria 

in this paper.  

Security is of the utmost importance for healthcare providers because of the sensitive nature of patient data and 

the importance of the services they offer [23, 24]. The following factors should be taken into account while 

assessing healthcare security criteria: 

Safeguarding sensitive patient information is of utmost importance. HIPAA (Health Insurance Portability and 

Accountability Act) and other data protection rules necessitate that healthcare providers take strong precautions 

to secure their patients' personal information. Secure access restrictions, frequent security audits, and breach 

response strategies are all things to consider. 

Authentication and access controls are essential for protecting private data and computer systems. Strong access 
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control techniques, such as multi-factor authentication, role-based access restrictions, and user provisioning 

procedures, should be implemented in organizations. It's crucial to conduct regular checks of user access 

privileges and promptly revoke access for dismissed workers or contractors. 

To avoid hacking and other forms of data leaks, it is crucial to keep the network's infrastructure secure. Firewalls, 

intrusion detection/prevention systems, and secure network segmentation are all tools that may help businesses 

protect their most vital information. Potential security flaws must be assessed regularly, and patches must be 

applied promptly. 

Data centers, server rooms, and secure storage locations all need to be protected with stringent physical security 

protocols. It is important to have security measures in place including access limits, video monitoring, and 

intrusion detection. Secure destruction procedures should be followed when disposing of paper documents or 

electronic storage devices. 

Management of Security problems: Effectively identifying, responding to, and recovering from security problems 

requires dependable incident response and management procedures. Clear roles and responsibilities, incident 

reporting processes, and frequent testing and training exercises are all essential components of an organization's 

incident response strategy. 

Employees have a crucial part in security, thus it's important to raise awareness and provide training on the topic. 

Security concerns, best practices for data management, and spotting and reporting security problems are all topics 

that employees should be trained on regularly. 

In the healthcare industry, third-party service providers and suppliers play a vital role. To guarantee the safety of 

shared data and systems, it is essential to assess their security procedures. Third-party risk evaluations, as well as 

continuous monitoring of an organization's security practices, should all be included in contractual agreements. 

HIPAA, the General Data Protection Regulation, and the Health Information Trust Alliance are just a few of the 

regulations that healthcare providers must follow. Evaluation of security procedures should heavily weigh how 

well they conform to these rules. 

The availability and data integrity of vital systems and information are dependent on healthcare organizations 

having solid business continuity and disaster recovery strategies. It is crucial to regularly test and update these 

strategies to lessen the effect of any possible interruptions. 

These healthcare security criteria may be used to provide a safe space for patients' information, keep services 

running smoothly, and prevent breaches. 

 

Step 1. We build the comparison matrix between criteria by using Eq. (8). We collected the nine criteria to be used 

in this study. We used the linguistic scale of interval valued neutrosophic set to evaluate the criteria in the 

comparison matrix as shown in Table 1. 

 

Table 1. The interval valued neutrosophic comparison matrix. 

 HSER1 HSER2 HSER3 HSER4 HSER5 HSER6 HSER7 HSER8 HSER9 
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Step 2. Add the numbers in every column by using Eq. (9). 

Step 3. Normalize the pairwise comparison matrix by using Eqs. (10 and 11) as shown in Table 2. 

 

Table 2. The Normalization matrix. 

 HSER1 HSER2 HSER3 HSER4 HSER5 HSER6 HSER7 HSER8 HSER9 

HSER1 0.093892 0.081637 0.079446 0.059066 0.09331 0.098941 0.093786 0.124938 0.131339 
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HSER2 0.098259 0.085434 0.069515 0.095696 0.057593 0.086762 0.105509 0.072877 0.11011 

HSER3 0.117365 0.122048 0.099307 0.085063 0.099064 0.097607 0.105509 0.085996 0.090104 

HSER4 0.169023 0.094926 0.124134 0.106329 0.072574 0.097607 0.093786 0.118234 0.109959 

HSER5 0.104325 0.153796 0.103932 0.151898 0.103678 0.075917 0.111957 0.085577 0.090097 

HSER6 0.102918 0.106792 0.110341 0.118143 0.148111 0.108453 0.082062 0.125361 0.089646 

HSER7 0.117365 0.094926 0.110341 0.132911 0.108563 0.154932 0.117232 0.091834 0.131339 

HSER8 0.098592 0.153796 0.151498 0.117982 0.158942 0.113498 0.167474 0.131192 0.109959 

HSER9 0.09826 0.106645 0.151487 0.132911 0.158166 0.166282 0.122685 0.16399 0.137448 

 

Step 4. Compute the weights of criteria by using Eq. (12) as shown in Figure 2. 

  

Step 5. Rank the healthcare security criteria as shown in Figure 2. Data privacy is the best criterion.  

 

Figure 2. The weights of healthcare security criteria. 

5. Conclusions  

E-healthcare services are becoming increasingly popular as a result of the ease with which patients' medical 

records may be accessed and moved from one location to another. Because of their ability to supply solutions at a 

lower overall cost, cloud service providers have made it possible to practice telemedicine. Despite the many benefits 

it offers, the framework for storing information in the cloud and retrieving that information through the cloud is 

extremely susceptible since it makes use of open channels. Only authorized actors will be able to access and keep 

patient data under the secure interface. A full end-to-end encryption service that makes use of several KDF-derived 

keys is given to protect confidential patient data. The hospital is relieved of the responsibility of maintaining patient 

records, and improvements are made to both access to and storage of medical records. 
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 We evaluate the criteria of healthcare security by using the interval-valued neutrosophic AHP method. The 

neutrosophic set is used to overcome the uncertain information. We used the AHP method to compute the weights 

of the criteria and evaluate them. We used the nine criteria. The main results show that data privacy is the best 

criterion. 
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Abstract. The notion of fuzzy subsets was first introduced by Zadeh in 1965, and was later extended to

intuitionistic fuzzy subsets by Atanassov in 1983. Since the inception of fuzzy set theory, we have encountered

a number of generalizations of sets, one of which is neutrosophic sets introduced by Smarandache [15]. Later

neutrosophic sets was generalized into interval valued neutrosophic, triangular valued neutrosophic, trapezoidal

valued neutrosophic and n - valued refined neutrosophic sets in the literature [19, 31, 33, 35]. Further, the

ordering on single-valued neutrosophic triplets and interval valued neutrosophic triplets have been proposed by

Smarandache in [16] and they are further extended to total ordering on interval valued neutrosophic triplets

in [32].The total ordering of n - valued neutrosophic tuplets is very significant in multi-criteria decision making

(MCDM) involving n - valued neutrosophic tuplets. Hence, in this paper, different methods for ordering n -

valued neutrosophic tuplets (NVNT) are developed with the goal of achieving a total ordering on n - valued

neutrosophic tuplets and the applicability of the proposed methods is shown by illustrative examples in MCDM

problems involving n - valued neutrosophic tuplets. Further, a total ordering algorithm for n - valued refined

neutrosophic sets by following dictionary ranking method at the final stage is developed using those proposed

total ordering methods on n - valued neutrosophic tuplets.

1. Introduction

Our daily life is full of uncertain situations and we need to make better decisions based on

their volatility. Despite this, Zadeh established the concept of fuzzy sets in 1965 to handle

such ambiguity [18]. Though this idea of fuzzy sets was reluctantly acknowledged initially,

researchers believed that analyzing this concept might bring a tremendous revolution in the
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future with real-life MCDM and MADM problems with with uncertainty or vagueness. Hence,

a great progress has been made in the research of fuzzy set generalisation, resulting in numerous

forms of fuzzy sets such as intuitionistic fuzzy sets, neutrosophic sets, picture fuzzy sets, bi-

polar fuzzy sets, and so on [3–5, 15, 20]. These versions of fuzzy sets were widely used in a

variety of real-world issues. The multi-criteria decision making (MCDM) problem is a rising

topic of research due to its importance in most real-world challenges [12,14,17,19].

The neutrosophic sets are introduced by Florentine smarandache [15], as a generalization

of intuitionistic fuzzy sets. In intuitionistic fuzzy sets, we usually consider membership, non

membership values. But, in neutrosophic sets, we consider membership, non membership val-

ues and an indeterminacy value which differentiates neutrosophic sets from intuitionistic fuzzy

sets. Later, n - valued redefined neutrosophic sets were introduced by Florentine smarandache

as further generalization and some MCDM problems have been studied in real-world scenarios

using n - valued redefined neutrosophic sets in [33]. To solve such MCDM problems, we need

total ordering on n - valued neutrosophic tuplets. For each fuzzy MCDM problem, there are

several total ordering on fuzzy numbers in the literature [7–9, 11]. Furthermore, the decision

maker selects the total ordering strategy that best suits his needs. For a fuzzy MCDM, the

total order does not have to be unique. The ranking of single valued neutrosophic triplets has

been analysed in [13,16] and further extended to total ordering on interval valued neutrosophic

triplets in [32].

Dictionary ordering is usually followed to rank totally the elements of YX using the to-

tal order < on Y for any countable set X. In detail, to compare (a1, a2, . . . an, . . .) and

(b1, b2, . . . bn, . . .), we first compare a1 and b1 using total order < on Y . If a1 < b1(or b1 < a1)

then (a1, a2, . . . an, . . .) < (b1, b2, . . . bn, . . .)(or (b1, b2, . . . bn, . . .) < (a1, a2, . . . an, . . .)). If

a1 = b1, then we follow the same procedure for comparing a2 and b2 using total order <

on Y and so on. The same method only indirectly followed in any ranking of fuzzy num-

bers, intuitionistic fuzzy numbers, single valued neutrosophic numbers and interval valued

neutrosophic numbers using score functions [7, 8, 11,16,32].

In this paper, we aim to achieve a total ordering on n - valued neutrosophic tuplets and n -

valued refined neutrosophic sets. To derive total ordering on n - valued refined neutrosophic

sets, we need a total ordering on n - valued neutrosophic tuplets. First, we derive total

ordering on n - valued neutrosophic tuplets for which we introduce two algorithms. In the

first stage of the both algorithms, we convert n - valued neutrosophic tuplets into single

valued neutrosophic triplets and then we try to rank them. In the next stage, first method

follows a reverse dictionary order and second method follows a method of ranking based on the

fluctuations on truth, falsity and indeterminacy values. To rank the n -valued neutrosophic

sets, we develop a total ordering algorithm for n - valued refined neutrosophic sets by following
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dictionary ranking method at the final stage using those proposed total ordering methods on

n - valued neutrosophic tuplets.

2. Preliminaries

This section contains all of the necessary definitions to move deeper into the concept of total

ordering on n - valued neutrosophic tuplets.

Definition 2.1. [16] Let M = {(T, I, F ),where T, I, F ∈ [0, 1], 0 ≤ T + I+F ≤ 3} be the set

of single valued neutrosophic triplet (SVNT) numbers. Let N = (T, I, F ) ∈ M be a generic

SVNT number, where T denotes grade of membership ; I denotes indeterminacy grade ; F

denotes grade of non-membership.

Definition 2.2. [32] A SVNT membership score S+ : M → [0, 1] is defined by

S+(T, I, F ) =
2 + (T − F )(2− I)− I

4
.

Definition 2.3. [32] A SVNT non-membership score S− : M → [0, 1] is defined by

S−(T, I, F ) =
2 + (F − T )(2− I)− I

4
.

Definition 2.4. [32] A SVNT average score C : M → [0, 1] is defined by

C(T, I, F ) =
T + F

2

Definition 2.5. [33] Let (T, I, F ) be a n - valued neutrosophic triplet number, where T

can be split into many types of truths as T1, T2 . . . Tp, I can be split into many types of

indeterminacies as I1, I2 . . . Iq and F can be split into many types of falsities as F1, F2 . . . Fr

where Ti, Ij , Fk ∈ [0, 1] for i ∈ {1, . . . p}, j ∈ {1, . . . q} and k ∈ {1, . . . r} and p + q + r = n.

Therefore we have 0 ≤
∑p

i=1 Ti +
∑q

j=1 Ij +
∑r

k=1 Fk ≤ n.

Definition 2.6. Let N1 = (T1, T2, . . . Tp, I1, I2, . . . Iq, F1, F2, . . . Fr) and

N2 = (T ′
1, T

′
2, . . . T

′
p, I

′
1, I

′
2, . . . I

′
q, F

′
1, F

′
2, . . . F

′
r) be two n - valued neutrosophic triplet numbers,

where p + q + r = n. Then we define N1 + N2 = (T1 + T ′
1, T2 + T ′

2, . . . Tp + T ′
p, I1 + I ′1, I2 +

I ′2, . . . Iq + I ′q, F1 + F ′
1, F2 + F ′

2, . . . Fr + F ′
r) and αN1 = (αT1, . . . αTp, αI1, . . . αIq, αF1, . . . αFr)

where α ∈ R.

3. A Total order on n-Valued Neutrosophic tuplets

In this section, we present a ranking technique for n - valued neutrosophic tuplets that

inherits total ordering.
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3.1. Ranking algorithm for n - valued neutrosophic tuplets

Let A = (T, I, F ) and B = (T ′, I ′, F ′) be two n - valued neutrosophic tuplets such that

A ̸= B, where T can be split into many types of truths in ascending order as T1, T2 . . . Tp1 , I

can be split into many types of indeterminacies in ascending order as I1, I2 . . . Iq1 and F can

be split into many types of falsities in ascending order as F1, F2 . . . Fr1 where Ti, Ij , Fk ∈ [0, 1]

and p1+q1+r1 = n. Therefore we have 0 ≤
∑p1

i=1 Ti+
∑q1

j=1 Ij+
∑r1

k=1 Fk ≤ n. Similarly T ′ can

be split into many types of truths in ascending order as T ′
1, T

′
2 . . . T

′
p2 , I

′ can be split into many

types of indeterminacies in ascending order as I ′1, I
′
2 . . . I

′
q2 and F ′ can be split into many types

of falsities in ascending order as F ′
1, F

′
2 . . . F

′
r2 where T ′

i , I
′
j , F

′
k ∈ [0, 1] and p2 + q2 + r2 = n.

Therefore we have 0 ≤
∑p2

i=1 Ti +
∑q2

j=1 Ij +
∑r2

k=1 Fk ≤ n.

Step 1: Choose k = lcm{p1, p2, q1, q2, r1, r2}. Now convert both n - valued neutrosophic

tuplets A and B by rewriting T, I, F and T ′, I ′, F ′ as follows;

Suppose k = x1p1 then T = (T1, . . . T1︸ ︷︷ ︸
x1 times

, T2, . . . T2︸ ︷︷ ︸
x1 times

, . . . Tp1 , . . . Tp1︸ ︷︷ ︸
x1 times

) = (T1, T2, . . . Tk)

Suppose k = y1q1 then I = (I1, . . . I1︸ ︷︷ ︸
y1 times

, I2, . . . I2︸ ︷︷ ︸
y1 times

, . . . Iq1 , . . . Iq1︸ ︷︷ ︸
y1 times

) = (I1, I2, . . . Ik)

Suppose k = z1r1 then F = (F1, . . . F1︸ ︷︷ ︸
z1 times

, F2, . . . F2︸ ︷︷ ︸
z1 times

, . . . Fr1 , . . . Fr1︸ ︷︷ ︸
z1 times

) = (F1, F2, . . . Fk)

Suppose k = x2p2 then T ′ = (T ′
1, . . . T

′
1︸ ︷︷ ︸

x2 times

, T ′
2, . . . T

′
2︸ ︷︷ ︸

x2 times

, . . . T ′
p2 , . . . Tp2︸ ︷︷ ︸
x2 times

) = (T ′
1, T

′
2, . . . T

′
k)

Suppose k = y2q2 then I ′ = (I ′1, . . . I
′
1︸ ︷︷ ︸

y2 times

, I ′2, . . . I
′
2︸ ︷︷ ︸

y2 times

, . . . I ′q2 , . . . I
′
q2︸ ︷︷ ︸

y2 times

) = (I ′1, I
′
2, . . . I

′
k)

Suppose k = z2r2 then F = (F ′
1, . . . F

′
1︸ ︷︷ ︸

z2 times

, F ′
2, . . . F

′
2︸ ︷︷ ︸

z2 times

, . . . F ′
r2 , . . . F

′
r2︸ ︷︷ ︸

z2 times

) = (F ′
1, F

′
2, . . . F

′
k)

Now we have A = (T1, . . . Tk, I1, . . . Ik, F1, . . . Fk) and B = (T ′
1, . . . T

′
k, I

′
1, . . . I

′
k, F

′
1, . . . F

′
k) as a

3k valued neutrosophic tuplets where truth, falsity and indeterminacy values are k tuple.

Let (T0, I0, F0) = (
∑k

i=1 Ti

k ,
∑k

i=1 Ii
k ,

∑k
i=1 Fi

k ) and (T ′
0, I

′
0, F

′
0) = (

∑k
i=1 T

′
i

k ,
∑k

i=1 I
′
i

k ,
∑k

i=1 F
′
i

k ).

Step 2: We compare (T0, I0, F0) and (T ′
0, I

′
0, F

′
0) using score functions. Apply neutro-

sophic membership score function S+. Suppose S+(T0, I0, F0) > S+(T ′
0, I

′
0, F

′
0), then we

have A > B. Suppose S+(T0, I0, F0) < S+(T ′
0, I

′
0, F

′
0), then we have A < B. Suppose

S+(T0, I0, F0) = S+(T ′
0, I

′
0, F

′
0), go to step 3.

Step 3: Apply neutrosophic non-membership score function S−. Suppose S−(T0, I0, F0) >

S−(T ′
0, I

′
0, F

′
0), then we have A < B. Suppose S−(T0, I0, F0) < S−(T ′

0, I
′
0, F

′
0), then we have

A > B. Suppose S−(T0, I0, F0) = S−(T ′
0, I

′
0, F

′
0), go to step 4.

Step 4: Apply neutrosophic average function C. Suppose C(T0, I0, F0) > C(T ′
0, I

′
0, F

′
0), then

we have A > B. Suppose C(T0, I0, F0) < C(T ′
0, I

′
0, F

′
0), then we have A < B. Suppose

C(T0, I0, F0) = C(T ′
0, I

′
0, F

′
0), then go to step 5.

Step 5: Now we compare (Tm, Im, Fm) and (T ′
m, I ′m, F ′

m) for m = k by considering
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(T0, I0, F0) = (Tm, Im, Fm) and (T ′
0, I

′
0, F

′
0) = (T ′

m, I ′m, F ′
m) using steps 2, 3 and 4. If we

are not still able to differentiate A and B, then we compare for m = m − 1 by applying step

5 till ranking A and B.

Theorem 3.1. Proposed ranking algorithm inherits a total order on set of all n - valued

neutrosophic tuplets.

Proof. We show that for any two n - valued neutrosophic sets (T, I, F ) and (T ′, I ′, F ′), either

(T, I, F ) < (T ′, I ′, F ′) or (T, I, F ) > (T ′, I ′, F ′) or (T, I, F ) = (T ′, I ′, F ′). Let A = (T, I, F ) =

(T1, T2 . . . Tp1 , I1, I2 . . . Iq1 , F1, F2 . . . Fr1) and B = (T ′, I ′, F ′) = (T ′
1, T

′
2 . . . T

′
p2 , I

′
1,

I ′2 . . . I
′
q2 , F

′
1, F

′
2 . . . F

′
r2) be two n - valued neutrosophic tuplets such that A ̸= B, where p1 +

q1 + r1 = p2 + q2 + r2 = n. Now we show that either A < B or B < A. By applying step 1,

we have A = (T1, . . . Tk, I1, . . . Ik, F1, . . . Fk, ) and B = (T ′
1, . . . T

′
k, I

′
1, . . . I

′
k, F

′
1, . . . F

′
k, ) where

k = lcm{p1, q1, r1, p2, q2, r2}.
Now,

let (T0, I0, F0) = (
∑k

i=1 Ti,
∑k

i=1 Ii,
∑k

i=1 Fi) and (T ′
0, I

′
0, F

′
0) = (

∑k
i=1 T

′
i ,
∑k

i=1 I
′
i,
∑k

i=1 F
′
i ).

First we apply membership score function S+. Suppose S+ (T0, I0, F0) > S+ (T ′
0, I

′
0, F

′
0)

( or S+(T0, I0, F0) < S+(T ′
0, I

′
0, F

′
0), then we have A > B( or A < B), which is done. When

S+ (T0, I0, F0) = S+ (T ′
0, I

′
0, F

′
0), we have to go to next step. So, suppose 2+(T0−F0)(2−I0)−I0

4 =
2+(T0−F0)(2−I0)−I0

4 , equivalently, if (T0 − F0)(2 − I0) − I0 = (T ′
0 − F ′

0)(2 − I ′0) − I ′0, we apply

non-membership score function. Hence, if S− (T0, I0, F0) > S− (T ′
0, I

′
0, F

′
0) (S

− (T0, I0, F0) <

S− (T ′
0, I

′
0, F

′
0)), then A < B(A > B), which is done. When S− (T0, I0, F0) = S− (T ′

0, I
′
0, F

′
0),

equivalently, if (F0 − T0)(2− I0)− I0 = (F ′
0 − T ′

0)(2− I ′0)− I ′0, we have to go to next step by

using average score function. Hence, suppose C (T0, I0, F0) > C (T ′
0, I

′
0, F

′
0) ( or C (T0, I0, F0)

< C (T ′
0, I

′
0, F

′
0)), then we have A > B( or A < B), which is done. When C (T0, I0, F0) =

C (T ′
0, I

′
0, F

′
0), we have T0 + F0 = T ′

0 + F ′
0. At this stage, we have triplets (T0, I0, F0) and

(T ′
0, I

′
0, F

′
0) satisfying following system of 3 equations.

(T0 − F0)(2− I0)− I0 = (T ′
0 − F ′

0)(2− I ′0)− I ′0 (1)

(F0 − T0)(2− I0)− I0 = (F ′
0 − T ′

0)(2− I ′0)− I ′0 (2)

T0 + F0 = T ′
0 + F ′

0 (3)

Now, we solve this system of equations. By adding equations 1 and 2, we get I0 = I ′0 which

makes equation 1 into

T0 − F0 = T ′
0 − F ′

0
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now, by adding the above equation with equation 3, we get F0 = F ′
0 and T0 = T ′

0 .

Thus, we get

(T0, I0, F0) = (T ′
0, I

′
0, F

′
0).

As a result, we have

T1 + T2 + . . . Tk = T ′
1 + T ′

2 + . . . T ′
k (4)

I1 + I2 + . . . Ik = I ′1 + I ′2 + . . . I ′k (5)

F1 + F2 + . . . Fk = F ′
1 + F ′

2 + . . . F ′
k (6)

Let us compare (Tk, Ik, Fk) and (T ′
k, I

′
k, F

′
k). First we apply membership score function S+.

Suppose S+ (Tk, Ik, Fk) > S+ (T ′
k, I

′
k, F

′
k)( or S

+(Tk, Ik, Fk) < S+(T ′
k, I

′
k, F

′
k), then we have

A > B( or A < B), which is done. When S+ (Tk, Ik, Fk) = S+ (T ′
k, I

′
k, F

′
k), we have to go to

next step. So, suppose 2+(Tk−Fk)(2−Ik)−Ik
4 =

2+(T ′
k−F ′

k)(2−I′k)−I′k
4 , equivalently, if (Tk − Fk)(2−

Ik) − Ik = (T ′
k − F ′

k)(2 − Ik) − Ik, we apply non-membership score function. Hence, if S−

(Tk, Ik, Fk) > S− (T ′
k, I

′
k, F

′
k) (S− (Tk, Ik, Fk) < S− (T ′

k, I
′
k, F

′
k), then A < B(A > B), which

is done. When S− (Tk, Ik, Fk) = S− T ′
k, I

′
k, F

′
k), equivalently, if (Fk − Tk)(2 − Ik) − Ik =

(F ′
k − T ′

k)(2− I ′k)− I ′k, we have to go to average score function. Hence, suppose C (Tk, Ik, Fk)

> C (T ′
k, I

′
k, F

′
k) ( or C (Tk, Ik, Fk) < C (T ′

k, I
′
k, F

′
k)), then we have A > B ( or A < B),

which is done. When C (Tk, Ik, Fk) = C (T ′
k, I

′
k, F

′
k), we have Tk+Fk = T ′

k+F ′
k. At this stage,

we have triplets (Tk, Ik, Fk) and (T ′
k, I

′
k, F

′
k) satisfying following system of 3 equations.

(Tk − Fk)(2− Ik)− Ik = (T ′
k − F ′

k)(2− I ′k)− I ′k (7)

(Fk − Tk)(2− Ik)− Ik = (F ′
k − Tk)(2− Ik)− Ik (8)

Tk + Fk = T ′
k + F ′

k (9)

Now, we solve this system of equations. By adding equations 7 and 8, we get Ik = I ′k which

makes equation 7 into

Tk − Fk = T ′
k − F ′

k

now, by adding the above equation with equation 9, we get Fk = F ′
k and Tk = T ′

k .

Thus, we get

(Tk, Ik, Fk) = (T ′
k, I

′
k, F

′
k).

Similarly, by continuing the above process for m = k − 1, . . . 2, 1, till we get A < B or B < A.

If we have (Tm, Im, Fm) = (T ′
m, I ′m, F ′

m) for m = {k, k − 1, k − 2 . . . 2, 1}. By solving with

equations 3.7, 3.8, and 3.9, we get A = B, a contradiction. Thus we have proved the proposed

ranking algorithm inherits a total order on set of all n - valued neutrosophic tuplets.
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The following statement’s proofs are direct applications of definitions, hence proofs are

omitted.

Proposition 3.2. Let N1 = (T1, T2, . . . Tp, I1, I2, . . . Iq, F1, F2, . . . Fr) and

N2 = (T ′
1, T

′
2, . . . T

′
p, I

′
1, I

′
2, . . . I

′
q, F

′
1, F

′
2, . . . F

′
r) be two n - valued neutrosophic tuplets, where

p+ q + r = n.

(1) If
∑p

n=1 Tn =
∑p

n=1 T
′
n,
∑r

n=1 Fn =
∑r

n=1 F
′
n and

∑q
n=1 In >

∑q
n=1 I

′
n, then we get

N1 < N2.

(2) If
∑p

n=1 Tn =
∑p

n=1 T
′
n,
∑r

n=1 Fn =
∑r

n=1 F
′
n and

∑q1
n=1 In <

∑q2
n=1 I

′
n, then N1 > N2.

Proposition 3.3. Let N1 = (T1, T2, . . . Tp, I1, I2, . . . Iq, F1, F2, . . . Fr) and

N2 = (T ′
1, T

′
2, . . . T

′
p, I

′
1, I

′
2, . . . I

′
q, F

′
1, F

′
2, . . . F

′
r) be two n - valued neutrosophic tuplets, where

p+ q + r = n.

(1) If
∑p

n=1 Tn =
∑p

n=1 T
′
n,
∑q

n=1 In =
∑q

n=1 I
′
n and

∑r
n=1 Fn >

∑r
n=1 F

′
n, then we get

N1 < N2.

(2) If
∑p

n=1 Tn =
∑p

n=1 T
′
n,
∑q1

n=1 In =
∑q2

n=1 I
′
n and

∑r
n=1 Fn <

∑r
n=1 F

′
n, then we get

N1 > N2.

Proposition 3.4. Let N1 = (T1, T2, . . . Tp, I1, I2, . . . Iq, F1, F2, . . . Fr) and

N2 = (T ′
1, T

′
2, . . . T

′
p, I

′
1, I

′
2, . . . I

′
q, F

′
1, F

′
2, . . . F

′
r) be two n - valued neutrosophic tuplets, where

p+ q + r = n.

(1) If
∑r

n=1 Fn =
∑r

n=1 F
′
n,
∑q

n=1 In =
∑q

n=1 I
′
n and

∑p
n=1 Tn >

∑p
n=1 T

′
n, then we get

N1 > N2.

(2) If
∑r

n=1 Fn =
∑r

n=1 F
′
n,
∑q

n=1 In =
∑q

n=1 I
′
n and

∑p
n=1 Tn <

∑p
n=1 T

′
n, then we get

N1 < N2.

Remark 3.5. Let N1 = (T1, T2, . . . Tp, I1, I2, . . . Iq, F1, F2, . . . Fr) and

N2 = (T ′
1, T

′
2, . . . T

′
p, I

′
1, I

′
2, . . . I

′
q, F

′
1, F

′
2, . . . F

′
r) be two n - valued neutrosophic tuplets, where

p+ q+ r = n. We suppose that
∑p

n=1 Tn =
∑p

n=1 T
′
n,
∑r

n=1 Fn =
∑r

n=1 F
′
n ,

∑q
n=1 In = 0 and∑q

n=1 I
′
n = q in which collective membership and non membership grades of N1 and N2 are

equal, whereas N1 has no indeterminacy and N2 has full indeterminacy. Then we get N1 > N2

which favours our intuition.

Remark 3.6. Let N1 = (T1, T2, . . . Tp, I1, I2, . . . Iq, F1, F2, . . . Fr) and

N2 = (T ′
1, T

′
2, . . . T

′
p, I

′
1, I

′
2, . . . I

′
q, F

′
1, F

′
2, . . . F

′
r) be two n - valued neutrosophic tuplets, where

p + q + r = n. We suppose that
∑p

n=1 Tn =
∑p

n=1 T
′
n,
∑q

n=1 In =
∑q

n=1 I
′
n ,

∑r
n=1 Fn = 0

and
∑r

n=1 F
′
n = r in which collective membership and indeterminacy grades of N1 and N2

are equal, whereas N1 has no non membership grade and N2 has full non membership grade.

Then we get N1 > N2 which favours our intuition.
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Remark 3.7. Let N1 = (T1, T2, . . . Tp, I1, I2, . . . Iq, F1, F2, . . . Fr) and

N2 = (T ′
1, T

′
2, . . . T

′
p, I

′
1, I

′
2, . . . I

′
q, F

′
1, F

′
2, . . . F

′
r) be two n - valued neutrosophic tuplets, where

p + q + r = n. We suppose that
∑q

n=1 In =
∑q

n=1 I
′
n,
∑r

n=1 Fn =
∑r

n=1 F
′
n ,

∑p
n=1 Tn = 0

and
∑p

n=1 T
′
n = p in which collective hesitancy and non membership grades of N1 and N2 are

equal, whereas N1 has no membership grade and N2 has full membership grade. Then we get

N1 < N2 which favours our intuition.

Remark 3.8. We know that n-valued neutrosophic tuplets are generalization of single valued

neutrosophic triplets and hence we can apply our ranking method also to them which will be

a total ordering on single valued neutrosophic triplets.

4. Numerical examples

Let us consider the following example as a brief example for the proposed total order-

ing algorithm. Assume that (T ; I;F ) = (0.8, 0.7, 0.9; 0.4; 0.2, 0.7, 0.6) and (T ′; I ′;F ′) =

(0.9, 0.7; 0.2, 0.8; 0.2, 0.4, 0.6) be 7 - valued neutrosophic tuplets.

First we rearrange these two 7 - valued neutrosophic tuplets in ascending order as follows

(T ; I;F ) = (0.7, 0.8, 0.9; 0.4; 0.2, 0.6, 0.7) and (T ′; I ′;F ′) = (0.7, 0.9; 0.2, 0.8; 0.2, 0.4, 0.6)

Now k = lcm{3, 1, 3, 2, 2, 3} = 6. Since T has 3 elements and k = 6 = 2(3), we

rewrite T = (0.7, 0.8, 0.9) as T = (0.7, 0.7, 0.8, 0.8, 0.9, 0.9). In similar manner, we rewrite

I, F, T ′, I ′, F ′ as follows;

I = (0.4, 0.4, 0.4, 0.4, 0.4, 0.4), F = (0.2, 0.2, 0.6, 0.6, 0.7, 0.7), T ′ = (0.7, 0.7, 0.7, 0.9, 0.9, 0.9),

I ′ = (0.2, 0.2, 0.2, 0.6, 0.6, 0.6). Now we take (a, b, c) = (
∑6

i=1 Ti

6 ,
∑6

i=1 Ii
6 ,

∑6
i=1 Fi

6 ) and (d, e, f) =

(
∑6

i=1 T
′
i

6 ,
∑6

i=1 I
′
i

6 ,
∑6

i=1 F
′
i

6 ), which implies (a, b, c) = (0.8, 0.4, 0.5) and (d, e, f) = (0.8, 0.4, 0.5).

By applying steps 2, 3 and 4, we cannot rank (T, I, F ) and (T ′, I ′, F ′). Now we go to step

5. In step 5, we take (T6, I6, F6) and (T ′
6, I

′
6, F

′
6). Since S+(0.9, 0.4, 0.7) = 0.48 > 0.3 =

S+(0.9, 0.8, 0.9), we get the ranking as (T, I, F ) > (T ′, I ′, F ′).

5. Application to MCDM Problem

Consider the following MCDM problem based on 6 - valued neutrosophic numbers. Now

we have to find the ranking between the alternatives A1, A2, A3, A4 with respect to criteria

C1, C2, C3. The ratings of the alternatives with respect to the criteria are given in the form of6

- valued neutrosophic number as shown in table 1. We are given that the respective weights

of the criteria C1, C2, C3 are 0.3, 0.3, 0.4.

Now we rearrange the truth, indeterminacy, and false membership grades in the table 1 as

ascending order which is given in table 2. Next we multiply corresponding weights of the

criteria into the decision table which results table 3.
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C1 (Criteria 1) C2 (Criteria 2) C3 (Criteria 3)

A1 (Alternative 1) (0.3;0.6,0.2;0.1,0.5,0.2) (0.4,0.2;0.3;0.7,0.8,0.3) (0.6,0.5;0.1,0.6;0.2,0.4)

A2 (Alternative 2) (0.9,0.7,0.8;0,0.2;0.2) (0.5,0.1;0.2,0.6;0.4,0.5) (0.1,0.4;0.5,0.6,0.1;0.5)

A3 (Alternative 3) (0.3,0.6,0.4;0.2;0.1,0.4) (0.7,0.1;0.1,0.2;0.4,0.8) (0.3,0.5,0.7;0.2,0.5;0.2)

A4 (Alternative 4) (0.7,0.3,0.2;0.2,0.3;0.1) (0.5,0.3.0.1;0.2,0.6;0.4) (0.5,0.9;0.6,1,0.1;0.6)

Table 1. MCDM decision matrix

C1 (Criteria 1) C2 (Criteria 2) C3 (Criteria 3)

A1 (Alternative 1) (0.3;0.2,0.6;0.1,0.2,0.5) (0.2,0.4;0.3;0.3,0.7,0.8) (0.5,0.6;0.1,0.6;0.2,0.4)

A2 (Alternative 2) (0.7,0.8,0.9;0,0.2;0.2) (0.1,0.5;0.2,0.6;0.4,0.5) (0.1,0.4;0.1,0.5,0.6;0.5)

A3 (Alternative 3) (0.3,0.4,0.6;0.2;0.1,0.4) (0.1,0.7;0.1,0.2;0.4,0.8) (0.3,0.5,0.7;0.2,0.5;0.2)

A4 (Alternative 4) (0.2,0.3,0.7;0.2,0.3;0.1) (0.1,0.3.0.5;0.2,0.6;0.4) (0.5,0.9;0.1,0.6,1;0.6)

Table 2. MCDM decision matrix in an rearranged form

C1 (Criteria 1) C2 (Criteria 2) C3 (Criteria 3)

A1 (Alternative 1) (.09;.06,.18;.03,.06,.15) (.06,.12;.09;.09,.21,.24) (.2,.24;.04,.26;.08,.16)

A2 (Alternative 2) (.21,.24,.27;0,.06;.06) (.03,.15;.06,.18;.12,.15) (.04,.16;.04,.2,.24;.2)

A3 (Alternative 3) (.09,.12,.18;.06;.03,.12) (.03,.21;.03,.06;.12,.24) (.12,.2,.28;.08,.2;.08)

A4 (Alternative 4) (.06,.09,.21;.06,.09;.03) (.03,.09,.15;.06,.18;.12) (.2,.36;.04,.24,.4;.18)

Table 3. Weighted MCDM decision matrix

From table 3, we find k = lcm{1, 2, 3} = 6. Thus we rewrite each entries of MCDM table

as follows

A1C1 = (.09, .09, .09, .09, .09, .09; .06, .06, .06, .18, .18, .18; .03, .03, .06, .06, .15, .15)

A1C2 = (.2, .2, .2, .24, .24, .24; .04, .04, .04, .26, .26, .26; .08, .08, .08, .16, .16, .16)

A1C3 = (.06, .06, .06, .12, .12, .12; .09, .09, .09, .09, .09, .09; .09, .09, .21, .21, .24, .24)

A2C1 = (.21, .21, .24, .24, .27, .27; 0, 0, 0, .3, .3, .3; .06, .06, .06, .06, .06, .06)

A2C2 = (.03, .03, .03, .15, .15, .15; .06, .06, .06, .18, .18, .18; .12, .12, .12, .15, .15, .15)

A2C3 = (.04, .04, .04, .16, .16, .16; .04, .04, .2, .2, .24, .24; .2, .2, .2, .2, .2, .2)

A3C1 = (.09, .09, .12, .12, .18, .18; .06, .06, .06, .06, .06, .06; .03, .03, .03, .12, .12, .12)

A3C2 = (.03, .03, .03, .21, .21, .21; .03, .03, .03, .06, .06, .06; .12, .12, .12, .24, .24, .24)

A3C3 = (.12, .12, .2, .2, .28, .28; .08, .08, .08, .2, .2, .2; .08, .08, .08, .08, .08, .08)

A4C1 = (.06, .06, .09, .09, .21, .21; .06, .06, .06, .09, .09, .09; .03, .03, .03, .03, .03, .03)

A4C2 = (.03, .03, .09, .09, .15, .15; .06, .06, .06, .18, .18, .18; .12, .12, .12, .12, .12, .12)

A4C3 = (.2, .2, .2, .36, .36, .36; .04, .04, .24, .24, .4, .4; .18, .18, .18, .18, .18, .18). Now we have the

following weighted arithmetic neutrosophic scores for each Ai as Ai = AiC1+AiC2+AiC3, i =
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1 to 4. A1 = (.35, .35, .35, .45, .45, .45; .19, .19, .19, .53, .53, .53; .21, .21, .36, .36, .54, .54)

A2 = .27, .27, .3, .54, .57, .57; .09, .09, .27, .69, .72, .72; .4, .4, .4, .42, .42, .42)

A3 = (.24, .24, .36, .54, .66, .66; .18, .18, .18, .33, .33, .33; .24, .24, .24, .45, .45, .45)

A4 = (.3, .3, .4, .54, .72, .72; .15, .15, .36, .5, .66, .66; .33, .33, .33, .33, .33, .33)

Now, by applying proposed ranking algorithm, we have (a1, b1, c1) =

( .35+.35+.35+.45+.45+.45
6 , .19+.19+.19+.53+.53+.53

6 , 21+.21+.36+.36+.54+.54
6 ) = (0.4, 0.36, 0.37). Simi-

larly, we find (a2, b2, c2) = (0.42, 0.43, 0.37), (a3, b3, c3) = (0.45, 0.26, 0.35) and (a4, b4, c4) =

(0.5, 0.41, 0.33). Now S+(a1, b1, c1) = 0.422, S+(a2, b2, c2) = 0.412, S+(a3, b3, c3) = 0.479 and

S+(a4, b4, c4) = 0.465. Therefore, we get the ranking as A3 > A4 > A1 > A2.

5.1. Limitations of the proposed method

In the proposed ranking method, summation of the collective membership, non member-

ship, indeterminacy grades are first taken into account and then highest to lowest mem-

bership, non membership, indeterminacy grades are used to rank in the next stages. In

some cases, when there is a fluctuation between membership, non membership, and inde-

terminacy grades, the proposed ranking method may rank differently to intuition of some

decision maker. For example, take the following two 7 - valued neutrosophic tuplets A =

(0.3, 0.34, 0.36, 0.6; 0.15, 0.25; 0.3), B = (0.4; 0.15, 0.25; 0.15, 0.25, 0.35, 0.45).

Now, we rewrite A = (0.3, 0.34, 0.36, 0.6; 0.15, 0.15, 0.25, 0.25; 0.3, 0.3, 0.3, 0.3), B =

(0.4, 0.4, 0.4, 0.4; 0.15, 0.15, 0.25, 0.25; 0.15, 0.25, 0.35, 0.45). Then

(a, b, c) = (
∑k

i=1 Ti

k ,
∑k

i=1 Ii
k ,

∑k
i=1 Fi

k ) = (0.4, 0.2, 0.3) and (d, e, f) = (
∑k

i=1 T
′
i

k ,
∑k

i=1 I
′
i

k ,
∑k

i=1 F
′
i

k ) =

(0.4, 0.2, 0.3). Therefore, we go to next step, which implies S+(T4, I4, F4) = S+(0.6, 0.25, 0.3) =

0.569 > 0.416 = S+(0.4, 0.25, 0.45) = S+(T ′
4, I

′
4, F

′
4). Thus, we get the ranking as A > B.

But, we have the membership value as a single element 0.4 in B where as there is a fluctuation

between membership grades in A and three of them are lesser than the membership grade of

B. But, non membership and hesitancy information are same for A and B. Since there is

more fluctuation in A, we expect the ranking as A < B intuitively. To overcome this, we have

given the improved ranking algorithm in the next section.

6. Improved ranking algorithm for n - valued neutrosophic tuplets

In this section, we present an improved ranking algorithm for n-valued neutrosophic tuplets

that inherits total ordering.

Let A = (T, I, F ) = (T1, T2 . . . Tp1 , I1, I2 . . . Iq1 , F1, F2 . . . Fr1) and B = (T ′, I ′, F ′) =

(T ′
1, T

′
2 . . . T

′
p2 , I

′
1, I

′
2 . . . I

′
q2 , F

′
1, F

′
2 . . . F

′
r2) be two n - valued neutrosophic tuplets such that

A ̸= B, where p1 + q1 + r1 = p2 + q2 + r2 = n.

Step 1: We follow step 1 to step 4 in the previous ranking algorithm in section 3.1. If A and
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B are not ranked at this stage and if step 4 fails to rank, then we go to step 2.

Step 2: Now let neutrosophic triplets (am, bm, cm) = (Tm − (
∑m−1

i=1 Ti

m−1 ), Im − (
∑m−1

i=1 Ii
m−1 ), Fm −

(
∑m−1

i=1 Fi

m−1 )) and (dm, em, fm) = (T ′
m−(

∑m−1
i=1 T ′

i
m−1 ), I ′m−(

∑m−1
i=1 I′i
m−1 ), F ′

m−(
∑m−1

i=1 F ′
i

m−1 )). Form = k, by

applying step 2, 3, and 4 of proposed algorithm in 3.1by considering (T0, I0, F0) = (am, bm, cm),

we will have either (am, bm, cm) < (dm, em, fm) or (dm, em, fm) < (am, bm, cm) and hence either

A < B or B < A. If step 4 fails to rank, then we go to step 3.

Step 3: By successive application of step 2 for m = m − 1, we will have either A < B or

B < A.

Theorem 6.1. Proposed ranking algorithm inherits a total order on set of all n valued neu-

trosophic tuplets.

Proof. Let A = (T, I, F ) = (T1, T2 . . . Tp1 , I1, I2 . . . Iq1 , F1, F2 . . . Fr1) and B = (T ′, I ′, F ′) =

(T ′
1, T

′
2 . . . T

′
p2 , I

′
1,

I ′2 . . . I
′
q2 , F

′
1, F

′
2 . . . F

′
r2) be two n - valued neutrosophic tuplets such that A ̸= B, where p1 +

q1 + r1 = p2 + q2 + r2 = n. Now we show that either A < B or B < A.

By applying step 1 in the previous ranking algorithm in section 3.1, we have

A = (T1, . . . Tk, I1, . . . Ik, F1, . . . Fk, ) and B = (T ′
1, . . . T

′
k, I

′
1, . . . I

′
k, F

′
1, . . . F

′
k, ) where k =

lcm{p1, q1, r1,
p2, q2, r2}.

By applying step 2 to step 4 in the previous ranking algorithm in section 3.1, we get either

A < B or B < A. If A and B are not ranked at this stage and if step 4 fails to rank, then we

go to step 2 of the improved ranking algorithm.

T1 + T2 + . . . Tk = T ′
1 + T ′

2 + . . . T ′
k (10)

I1 + I2 + . . . Ik = I ′1 + I ′2 + . . . I ′k (11)

F1 + F2 + . . . Fk = F ′
1 + F ′

2 + . . . F ′
k (12)

We apply step 2 of proposed algorithm form = k by letting neutrosophic triplets (am, bm, cm) =

(Tm − (
∑m−1

i=1 Ti

m−1 ), Im − (
∑m−1

i=1 Ii
m−1 ), Fm − (

∑m−1
i=1 Fi

m−1 )) and (dm, em, fm) = (T ′
m − (

∑m−1
i=1 T ′

i
m−1 ), I ′m −

(
∑m−1

i=1 I′i
m−1 ), F ′

m − (
∑m−1

i=1 F ′
i

m−1 )). we will have either (am, bm, cm) < (dm, em, fm) or (dm, em, fm) <

(am, bm, cm) and hence either A < B or B < A. Otherwise, we go to step 3. At this stage, we

have (am, bm, cm) = (dm, em, fm) and hence,

Tk − (

∑k−1
i=1 Ti

k − 1
) = T ′

k − (

∑k−1
i=1 T ′

i

k − 1
) (13)

Ik − (

∑k−1
i=1 Ii
k − 1

) = I ′k − (

∑k−1
i=1 I ′i
k − 1

) (14)

Fk − (

∑k−1
i=1 Fi

k − 1
) = F ′

k − (

∑k−1
i=1 F ′

i

k − 1
) (15)
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From equations 10, 11, 12, 13, 14 and 15, we get Tk = T ′
k, Ik = I ′k and Fk = F ′

k.

Now we apply step 3 of proposed improved algorithm for m = m − 1. So we have to apply

step 2 by considering m = k − 1 and hence we get either A < B or B < A. Otherwise,

we go to step 3. At this stage, we have (am, bm, cm) = (dm, em, fm) for m = k − 1 and

hence at this stage, we have (Tk−1− (
∑k−2

i=1 Ti

k−2 ), Ik−1− (
∑k−2

i=1 Ii
k−2 ), Fk−1− (

∑k−2
i=1 Fi

k−2 )) and (T ′
k−1−

(
∑k−2

i=1 T ′
i

k−2 ), I ′k−1 − (
∑k−2

i=1 I′i
k−2 ), F ′

k−1− (
∑k−2

i=1 F ′
i

k−2 )), then continue the same process. As a result, we

get Tk−1 = T ′
k−1, Ik−1 = I ′k−1 and Fk−1 = F ′

k−1. By repeating step 3 for m = m − 1 again

and again, we will have either A < B or B < A or otherwise Tk = T ′
k, Ik = I ′k and Fk = F ′

k,

for every m = k, k − 1, . . . , 1, a contradiction to A ̸= B. Thus we have shown that proposed

improved ordering algorithm is a total order on n - valued neutrosophic tuplets.

Remark 6.2. For example, take the following two 7 - valuedneutrosophic tuplets A =

(0.3, 0.34, 0.36, 0.6; 0.15, 0.25; 0.3), B = (0.4; 0.15, 0.25; 0.15, 0.25, 0.35, 0.45).

Now this can be rewritten as A = (0.3, 0.34, 0.36, 0.6; 0.15, 0.15, 0.25, 0.25; 0.3, 0.3, 0.3, 0.3), B =

(0.4, 0.4, 0.4, 0.4; 0.15, 0.15, 0.25, 0.25; 0.15, 0.25, 0.35, 0.45). Then (T0, I0, F0) =

(
∑k

i=1 Ti

k ,
∑k

i=1 Ii
k ,

∑k
i=1 Fi

k ) = (0.4, 0.2, 0.3) and (T ′
0, I

′
0, F

′
0) = (

∑k
i=1 T

′
i

k ,
∑k

i=1 I
′
i

k ,
∑k

i=1 F
′
i

k ) =

(0.4, 0.2, 0.3). Therefore we go to step 2 of the improved algorithm. So we have to ap-

ply step 2, followed by step 3 and step 4 of algorithm in section 3.1 if needed by letting

(a4, b4, c4) = (T4−T1+T2+T3
3 , I4− I1+I2+I3

3 , F4−F1+F2+F3
3 and (dm, em, fm) = (T ′

4−
T ′
1+T ′

2+T ′
3

3 , I ′4−
I′1+I′2+I′3

3 , F ′
4 −

F ′
1+F ′

2+F ′
3

3 ).

Now by step 2 of algorithm in section 3.1, S+(T4− T1+T2+T3
3 , I4− I1+I2+I3

3 , F4− F1+F2+F3
3 ) =

S+(0.27, 0.07, 0) = 0.61 > 0.39 = S+(0, 0.07, 0.2) = S+(T ′
4 − T ′

1+T ′
2+T ′

3
3 , I ′4 − I′1+I′2+I′3

3 , F ′
4 −

F ′
1+F ′

2+F ′
3

3 ). Thus we get the ranking as A < B. As we stated in remark 5.1, since there is

more fluctuation in A, as an intuition we expect the ranking as A < B which coincide with

our ranking.

7. Comparision between proposed ranking method and improved ranking method

via MCDM problem

Consider the following MCDM problem based on 5 - valued neutrosophic numbers. Now

we rank alternatives A1, A2, A3, A4 with respect to criteria C1, C2, C3. The ratings of the

alternatives with respect to the criteria are given in the form of5 - valued neutrosophic number

as shown in table 4. We assume that the respective weights of the criteria C1, C2, C3 are

0.3, 0.3, 0.4.

Next we multiply corresponding weights of the criteria into the table 4 and we rewrite
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C1 (Criteria 1) C2 (Criteria 2) C3 (Criteria 3)

A1 (Alternative 1) (0.3,0.4;0.2,0.6;0.6) (0.5,0.51;0.3,0.2;0.7) (0.4;0.3,0.6;0.2,0.3)

A2 (Alternative 2) (0.2,0.5;0.4;0.8,0.4) (0.6,0.4;0.25;0.4,1) (0.1,0.7;0.45;0.1,0.4)

A3 (Alternative 3) (0.6,0.1;0.35,0.45;0.6) (0.3,0.7;0.1,0.4;0.7) (0.2,0.6;0.2,0.7;0.25)

A4 (Alternative 4) (0.35;0.2,0.6;0.3,0.9) (0.1,0.9;0.25;0.6,0.8) (0.4;0.3,0.6;0.15,0.35)

Table 4. MCDM decision matrix

according to our algorithm by taking k = 2 which results table 5.

C1 C2 C3

A1 (0.09,0.12;0.06,0.18;0.18,0.18) (0.15,0.153;0.06,0.09;0.0.21,0.21) (0.16,0.16;0.12,0.24;0.08,0.12)

A2 (0.06,0.15;0.12,0.12;0.12,0.24) (0.12,0.18;0.075,0.075;0.12,0.3) (0.04,0.28;0.18,0.18;0.04,0.16)

A3 (0.18,0.03;0.105,0.135;0.18,0.18) (0.09,0.21;0.03,0.12;0.21,0.21) (0.08,0.24;0.08,0.28;0.1,0.1)

A4 (0.105,0.105;0.06,0.18;0.09,0.27) (0.03,0.27;0.075,0.075;0.18,0.24) (0.16,0.16;0.12,0.24;0.06,0.14)

Table 5. weighted MCDM decision matrix in an rearranged form

Now we have the following weighted arithmetic neutrosophic scores for each Ai, i = 1 to 4.

A1 = A1C1 + A1C2 + A1C3 = (0.4, 0.43; 0.24, 0.51; 0.47, 0.51). Similarly we

get A2 = (0.28, 0.55; 0.375, 0.375; 0.4, 0.58), A3 = (0.35, 0.48; 0.215, 0.535; 0.489, 0.489),

A4 = (0.294, 0.534; 0.255, 0.495; 0.33, 0.65). Now we go to next step, (a1, b1, c1) =

(0.4+0.43
2 , 0.24+0.51

2 , 0.47+0.51
2 ) = (0.415, 0.375, 0.49). Similarly we find (a2, b2, c2) =

(0.415, 0.375, 0.49), (a3, b3, c3) = (0.415, 0.375, 0.49) and (a4, b4, c4) = (0.415, 0.375, 0.49). Now

(a1, b1, c1) = (a2, b2, c2) = (a3, b3, c3) = (a4, b4, c4). Therefore we go to next step.

C1 (Criteria 1) C2 (Criteria 2) C3 (Criteria 3)

A1 (Alternative 1) (0.1;0.4;0) (0;0.1;0) (0;0.3;0.1)

A2 (Alternative 2) (0.3;0;0.4) (0.2;0;0.6) (0.6;0;0.3)

A3 (Alternative 3) (0.5;0.10;0) (0.4;0.3;0) (0.4;0.5;0)

A4 (Alternative 4) (0;0.4;0.6) (0.8;0;0.2) (0;0.3;0.2)

Table 6. fluctuation of MCDM decision matrix

Now we have A1 = A1C1 + A1C2 + A1C3 = (0.03, 0.27, 0.04). Similarly we find A2 =

(0.39, 0, 0.42), A3 = (0.43, 0.32, 0) and A4 = (0.24, 0.24, 0.32). Therefore S+(A1) = 0.429,

S+(A2) = 0.485, S+(A3) = 0.6 and S+(A4) = 0.41.We get the ranking as A3 < A2 < A1 < A4.

And as a comparison purpose suppose we apply previous proposed ranking algorithm we get

the ranking as A3 > A2 > A1 > A4 for this problem.
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C1 (Criteria 1) C2 (Criteria 2) C3 (Criteria 3)

A1 (Alternative 1) (0.03;0.12;0) (0;0.03;0) (0;0.12;0.04)

A2 (Alternative 2) (0.09;0;0.12) (0.06;0;0.18) (0.24;0;0.12)

A3 (Alternative 3) (0.15;0.03;0) (0.12;0.09;0) (0.16;0.2;0)

A4 (Alternative 4) (0;0.12;0.18) (0.24;0;0.06) (0;0.12;0.08)

Table 7. Weighted fluctuation of MCDM decision matrix

Remark 7.1. From our proposed ranking methods, we have shown that we can rank

any two n - valued neutrosophic tuplets. As an extension, we can rank any two m1

valued and n1 valued neutrosophic tuplets where m1 ̸= n1. In detail, suppose that

A = (T, I, F ) = (T1, T2 . . . Tp1 , I1, I2 . . . Iq1 , F1, F2 . . . Fr1) be a m1 - valued neutrosophic

triplet and B = (T ′, I ′, F ′) = (T ′
1, T

′
2 . . . T

′
p2 , I

′
1, I

′
2 . . . I

′
q2 , F

′
1, F

′
2 . . . F

′
r2) be n1 - valued neu-

trosophic tuplets, where p1 + q1 + r1 = m1, p2 + q2 + r2 = n1. To rank A and B, we

rewrite using n = lcm{m1, n1} as follows. Suppose n = x1m1, then we rewrite (T, I, F )

as A = (T1, . . . T1︸ ︷︷ ︸
x1 times

, . . . , Tp1 , . . . Tp1︸ ︷︷ ︸
x1 times

, I1, . . . I1︸ ︷︷ ︸
x1 times

, , . . . Iq1 , . . . Iq1︸ ︷︷ ︸
x1 times

, F1, . . . F1︸ ︷︷ ︸
x1 times

, . . . Fr1 , . . . Fr1︸ ︷︷ ︸
x1 times

)

Suppose n = y1n1, then we rewrite (T ′, I ′, F ′) as follows

B = (T1, . . . T1︸ ︷︷ ︸
y1 times

, . . . , Tp2 , . . . Tp2︸ ︷︷ ︸
y1 times

, I1, . . . I1︸ ︷︷ ︸
y1 times

, , . . . Iq2 , . . . Iq2︸ ︷︷ ︸
y1 times

, F1, . . . F1︸ ︷︷ ︸
y1 times

, , . . . Fr2 , . . . Fr2︸ ︷︷ ︸
y1 times

)

Now in this stage, we have two n - valued neutrosophic tuplets A and B which can be ordered

by our proposed algorithms.

8. Total ordering on n - valued refined neutrosophic sets

In this section, we derive an algorithm to rank any two n-valued refined neutrosophic sets

by using the proposed total ordering method on n - valued neutrosophic tuplets.

Let X = {x1, x2, . . . xm} be a universe of discourse. Let N1 and N2 be two arbi-

trary n-valued refined neutrosophic sets. Hence N1 = (N1(x1), N1(x2), . . . N1(xm)), N2 =

(N2(x1), N2(x2), . . . N2(xm)) are ordered m-tuples of n - valued neutrosophic tuplets. Now to

prove the total ordering, if N1 ̸= N2, then we need to show that either N1 > N2 or N1 < N2.

We assume that all the elements of X are equally important. Let m1,m2 be the number of

elements in x for which N1(x) > N2(x) and N1(x) < N2(x) respectively using the proposed

total ordering algorithm for n - valued neutrosophic tuplets.

Step 1: If m1 > m2 (m1 < m2), then N1 > N2 (N1 < N2). If m1 = m2, then go to step 2.

Step 2: Apply dictionary order on m-tuples using proposed total ordering algorithm for n -

valued neutrosophic tuplets. That is, if N1(x1) > N2(x1) by proposed total ordering method,

then N1 > N2. If N1(x1) = N2(x1), then go to next step.

Step 3: If N1(xj+1) > N2(xj+1) (N1(xj+1) < N2(xj+1)) for j = 1, then N1 > N2 (N1 < N2).
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If N1(xj+1) = N2(xj+1), then go to step 4.

Step 4: Repeat the step 3 for j = j + 1 up to j = m− 1 till we reach N1 < N2 or N1 > N2.

Remark 8.1. This proposed algorithm derives total ordering algorithm on n - valued neu-

trosophic sets. Let X = {x1, x2, . . . xm} be an universe of discourse. To prove that, take

any two distinct n - valued neutrosophic sets with N1 = (N1(x1), N1(x2), . . . N1(xm)), N2 =

(N2(x1), N2(x2), . . . N2(xm)) are ordered m-tuples of n - valued neutrosophic tuplets. Let

m1,m2 be the number of elements in X for which N1(x) > N2(x) and N1(x) < N2(x) re-

spectively using the proposed total ordering algorithm for n - valued neutrosophic tuplets.

By step 1, if m1 > m2 (m1 < m2), then N1 > N2 (N1 < N2) and hence the ordering

is done. If m1 = m2, we go to step 2. We apply dictionary order on m-tuples of n -

valued neutrosophic tuplets using proposed total ordering algorithm for n - valued neutro-

sophic tuplets. If N1(x1) > N2(x1) by proposed total ordering method, then N1 > N2.

If N1(x1) = N2(x1), then we go to next step. By applying step 3 and step 4, we get if

N1(xj+1) > N2(xj+1) (N1(xj+1) < N2(xj+1)) for some j. Otherwise we get N1(xi) = N2(xi)

for every i ∈ {1, . . .m} which implies N1 = N2, a contradiction to N1 ̸= N2. Thus we have

proved the total ordering.

Example 8.2. Let X = {x1, x2, x3} be a universe of discourse. Let us take three n - valued

refined neutrosophic sets (n = 5) N1, N2 and N3, where

N1 = {((x1, (0.3, 0.4; 0.2, 0.6; 0.6)), (x2, (0.4, 0.6; 0.3, 0.2; 0.7)), (x3, (0.3; 0.3, 0.6; 0.2, 0.3))}
N2 = {((x1, (0.2, 0.4; 0.2, 0.6; 0.6)), (x2, (0.2, 0.5; 0.4; 0.8, 0.4)), (x3, (0.6, 0.4; 0.25; 0.4, 1))}
N3 = {((x1, (0.6, 0.8; 0.2, 0.6; 0.4)), (x2, (0.4, 0.6; 0.3, 0.2; 0.7)), (x3, (0.1; 0.4, 0.5; 0.5, 0.6))}
Now we find the ordering between N1, N2 and N3. Now we compare the n - valued neutro-

sophic sets N1 and N2. Now we get S+(N1(x1)) = 0.3, S+(N2(x1)) = 0.28 using proposed

total ordering method, which implies N1(x1)) > N2(x1). In similar manner, we find that

N1(x2) > N2(x2), N1(x2) > N2(x2). Thus we find that m1 = 3 > 0 = m2. By step 1, we get

N2 < N1.

Now we compare N3 and N1. We get S+(N1(x1)) = 0.3, S+(N3(x1)) = 0.52 using proposed

total ordering method, which implies N3(x1)) > N1(x1). In similar manner, we find that

N3(x2) = N1(x2), N3(x3) < N1(x3). Hence we find that m1 = 1 = m2. Since step 1 fails to

rank them, we go to step 2. By dictionary order, we compare N1(x1) and N3(x1). Thus we

get N1 < N3. Finally our ordering for these three n - valued (n = 5) refined neutrosophic sets

is N3 > N1 > N2.
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9. Conclusion and future scope

We have proposed two ranking algorithms for total ordering n - valued neutrosophic tu-

plets. The proposed first ranking method accounts summation of the collective membership,

non membership, indeterminacy grades in the first stage and then highest to lowest member-

ship, non membership, indeterminacy grades are used to rank in the next stages. In some cases,

when there is a fluctuation between highest and lowest membership, non membership, and in-

determinacy grades, the proposed ranking method may rank differently to decision maker’s

intuition. To overcome this, we have proposed improved ranking method which also first

accounts summation of the collective membership, non membership, indeterminacy grades.

But, it considers the fluctuation between the membership values, non membership values and

indeterminacy values in the next stages. Further, the score functions used in the both the

ranking approaches takes into account not only membership, non-membership, and indetermi-

nacy values, but also the portion of membership and non-membership value that is contained

within the hesitance value. Through the proposed ranking algorithms for total ordering n -

valued neutrosophic tuplets using score functions, we develop a total ordering algorithm for n

- valued refined neutrosophic sets using dictionary order at the final stage. In near future, a

total order on n - valued refined neutrosophic sets may be developed by defining more number

of score and accuracy functions on n - valued neutrosophic tuplets.
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Abstract. The Residue Neutrosophic Set (RNS) is a new idea in image additional pixel level. Our idea is

to make an analysis based on the additional pixel amount. In recent decades, computer vision has revolution-

ized image analysis by researchers. Image segmentation is a more investigated topic in the science of computer

vision. Neutrosophic is a sophisticated mathematical idea to solve a myriad of challenges. The objective is to

invent a neutrosophic technique to execute image thresholding. In the article, the residue methodology was

applied, which denotes the residual values of neutrosophic membership intensities. This article will explore a

novel idea for image thresholding termed RNS. There will be three types of RNS techniques: minimum, average,

and maximum. The concepts of existing thresholding techniques in neutrosophic solvation are considered in

this proposal. This article adopts novel methodologies to provide an integrated visionary path segmentation

methodology. Furthermore, the proposed technique reaches a better average accuracy score.

Keywords: Image segmentation, neutrosophic sets, neutrosophic image, residue neutrosophic, thresholding

—————————————————————————————————————————-

1. Introduction

Massive investigative study challenges in computer vision and image analysis have emerged

during this technological era. The mathematical principles entice everyone to strive to tackle

difficulties and challenges. Lotfi Zadeh created the notion of fuzzy in 1965. It is a remarkable

mathematical approach for solving most research difficulties. After a few decades, Krassimir

Atanassov developed the extended fuzzy idea known as Intuitionistic fuzzy sets (IFS) in 1983.

Smarandache later developed the more advanced concept of neutrosophic set (NS) in 1998 [22].

Obstacles must be approached with developed methods in our modernistic universe. In this

sense, the neutrosophic theory should be the preferable strategy for discovering the difficulties
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hidden aspects. A neutrosophic set has three components: truth membership(T ), indetermi-

nacy membership(I), and falsity membership(F ), according to the neutrosophic conception.

In 2009, the first image segmentation in the neutrosophic domain was beginning it is one of

the most challenging tasks in image processing and pattern recognition, it is used in a variety

of applications including robot vision, object recognition, medical imaging, computer vision,

etc [8]. Authors [19] classifies image segmentation approaches into three categories: threshold,

edge, and region-based methods. The best segmentation results are usually obtained with a

gray-level image.

In various scenario approaches, such as clustering, Support Vector Machine (SVM), seg-

mentation made with fuzzy sets, IFS, and NS set. In this manner, image segmentation occurs

in stages, but as the image has become more informative, the segmentation may exclude lower

pieces of data. Considering these timeframes, we may lose the image’s information. If the im-

age is a fingerprint application, it is essential to give preference to every little feature. Instead,

it is critical not to lose any of the image’s information when executing image analysis. The

proposal focuses on reducing the loss of information in the threshold images. We approached

the NS domain intending to segment the aim of segmenting images based on the residue value

of the neutrosophic intensities, so we developed a novel approach called the RNS idea to try to

accomplish the objective. Existing image segmentation algorithms, such as binary threshold,

binary inverse threshold, TRUNC threshold, To zero threshold, and To zero inverse threshold,

will be applied to the modified RNS image. When dealing with the specified neutrosophic

collection, the amalgamation results of any image should have more information than the oth-

ers, according to RNS segmentation. Precision, recall score, and F1 score is used to evaluate

performance.

The article section 1 provides a brief overview of the concepts in this section of the article.

The section 2 collects research on image segmentation and neutrosophic concept development

from the literature. The essential preliminaries of the neutrosophic set carry in section 3.

Perhaps the next section 4, expands on the definitions of the proposed approaches and discusses

the algorithm. In section 5, we perform an experimental study of the concept and produce a

result. Finally, section 6 examines the suggested methodologies conclusion and future scope.

2. Related Work

Sengur et al. [20] achieved the neutrosophic strategies for color texture image segmenta-

tion in 2011. Neutrosophic similarity clustering made a significant contribution by [9] Yanhui

Guo et al. Later the same author suggested a new method called Breast ultrasound image

segmentation in the article [10]. Koundal [13] in 2017 successfully performed neutrosophic
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clustering segmentation with noisy data on many instances. Many academics are still aim-

ing to enhance the effectiveness of K-means clustering, which is still a universal approach for

unsupervised classifications. In 2018, the authors [16] discovered a better method for picture

segmentation in the neutrosophic image domain. In the same year, authors [15] suggested

neutrosophic c-means clustering kernel metric-based image segmentation local information.

The article [6] focuses on computer vision of neutrosophic images, which performs using nine

distinct classifiers for image classification with an accuracy of 98.4%. Elays et al. [18] was

implementing the cost function to boost the accuracy of degrees of the membership clustering

algorithms. Yanhui et al. [11] implemented neutrosophic c-means clustering and an adaptive

region expanding technique. The objective function was solved using the Lagrange multiplier

approach in the paper [14], which focused on a single-valued neutrosophic set as a restricting

minimization issue. The neutrosophic clustering method Amira et al. [1] approaches skin lesion

detection histogram-based clustering estimation algorithm. Romualdas et al. [3] introduced a

weighted aggregated sum product assessment approach in 2019 that was ranked using an edge

detection algorithm. In digital image processing, Samarandachec [24] proposed using offsets

and off uniforms for segmentation and edge detection. Jing et al. [28] provide a novel particle

swarm optimization method for neutrosophic images based on fuzzy c-means. By including

single valued (SV) trapezoidal neutrosophic numbers in all of the objective function and con-

straint parameters, the neutrosophic complex programming (NCP) process is classified. The

objective of the difficult programming challenge is to improve the applicability of SV trape-

zoidal neutrosophic numbers in new decision-making scenarios [12]. This method advantage

of more adaptable and realistic in a real-world situation. In the realm of psychological re-

search, the concepts of single-valued neutrosophic N soft set (SVNNSS) and quasi-hyperbolic

discounting intertemporal single-valued neutrosophic N soft set (QHDISVNNSS) are employed

to demonstrate student’s mental state through observation. Neutrosophic numbers are utilized

to represent values in counseling sessions, ensuring no loss of information. The focus of the

counselor is on individuals with mental health issues, using SVNNSS and QHDISVNNSS due

to their higher susceptibility to emotional distress [25].

3. Preliminaries

3.1. Neutrosophic set

Definition 3.1. Let A be an universe of data, the element in A denoted by a, then the

neutrosophic set (NS), of the object A is in the form [5,22]

A = {(a, TA(a), IA(a), FA(a)}
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where the neutrosophic membership functions T, I, F : A →]−0, 1+[ define respectively the

degrees of truth, indeterminacy and the falsity of the element a ∈ A to the set condition.

−0 ≤ TA(a) + IA(a) + FA(a) ≤ 3+

Definition 3.2. (Basic properties) [21, 23]

(1) Complement

The complement of A is represented as Ac where

Ac = {a, FA(a), 1− IA(a), TA(a)}

(2) Intersection

Let A,B be two sets then the neutrosophic intersection is represented as A∩B where

A ∩B = {a,min(TA(a), TB(a)),max(IA(a), IB(a)),max(FA(a), FB(a))}

(3) Union

Let A,B be two sets then the neutrosophic union is represented as A ∪B where

A ∪B = {a,max(TA(a), TB(a)),min(IA(a), IB(a)),min(FA(a), FB(a))}

Definition 3.3. Let A be a nonempty set, the single valued neutrosophic set (SV NS) is

defined as [5, 26]

A = {(a, TA(a), IA(a), FA(a)}

where their membership functions are T, I, F : A →]−0, 1+[ denotes respectively the degrees

of truth, indeteminacy and falsity of the element a ∈ A to the set values.

0 ≤ TA(a) + IA(a) + FA(a) ≤ 3

3.2. Image Neutosophic sets

Definition 3.4. A neutrosophic image PNS is charecterized with neutrosophic membership

functions which are T, I, F where PNS are the intensities of the image. Universally for neutro-

sophic image approach is gray intensities of the image. The image neutrosophic set is defined

as [5, 7]

PNSA(i, j) = {TA(i, j), IA(i, j), FA(i, j)} (1)

In general the arithmetic mean is consider as truth membership values and the standard devi-

ation of the image is consider as indeterminacy membership. The neutrosophic transformation
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intensity of the image is define by the following formulae

TA(i, j) =
p̄(i, j)− p̄min

p̄max−p̄min

p̄A(i, j) =
1

w ∗ w

m=i+w
2∑

m=i−w
2

n=j+w
2∑

n=j−w
2

p(m,n)

IA(i, j) =
δ(i, j)− δmin

δmax−δmin

δA(i, j) = abs(p(i, j)− p̄(i, j))

FA(i, j) = 1− TA(i, j)

where p̄A(i, j) denotes the pixel mean in the region w∗w and w is generally w = 2n+1, (n ≥ 1).

Definition 3.5. The entropy of the neutrosophic image is defined as follows [7]

EnNS = EnT + EnI + EnF (2)

where

EnT = −
max(T )∑
i=min(T )

pT (i)lnpT (i)

EnI = −
max(I)∑
i=min(I)

pI(i)lnpI(i)

EnF = −
max(F )∑
i=min(F )

pF (i)lnpF (i)

p refers that the probability of the membership functions.

4. Proposed method

We will approach a different technique for the neutrosophic image segmentation which is

based on the value of global neutrosophic image data. This contains three types of approaches

which are the minimum value of universal image set based, the maximum value of image set

based, and the average value of global image set. In the classical method generally, the piece-

wise linear transformation means is used to transform the set into the neutrosophic domain.

This proposal focused on the minimum or maximum or mean values of the entire image data.

While approaching this technique it may possibly the image data is turned from SVNS to

NS. Entering deal with this scenario proposal recommend that the residue technique to handle

an affirmative concept. Here SVNS can be denoted as NS for comprehensive understanding

while approaching the method. The complete architecture of the proposed method is shown

in Figure 1.
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Definition 4.1. Let ℘(m,n) be an image data with m,n dimensions, the neutrosophic mem-

bership components of the image data T, I, F are modified as the classical method with the

alteration of ℘min, ℘max which are known as minimum, maximum value of the global image

data.

minNS℘(i,j) = {T℘(i,j) + I℘(i,j) + F℘(i,j)} (3)

where T℘(i,j) =
℘(i,j) − ℘min

℘max − ℘min

I℘(i,j) =
√

1− (T 2
℘(i,j) + F 2

℘(i,j))

F℘(i,j) = 1− T℘(i,j)

The residue neutrosophic set’s minimum method is defined as

minRNS℘(i,j) = (τmin) mod (L) (4)

τmin = minNS℘(i,j) × L

Definition 4.2. Let ℘(m,n) be an image data with m,n dimensions, the neutrosophic mem-

bership components of the image data T, I, F are modified as the classical method with the

alteration of ℘min, ℘max which are known as minimum, maximum value of the global image

data.

maxNS℘(i,j) = {T℘(i,j) + I℘(i,j) + F℘(i,j)} (5)

where T℘(i,j) =
℘max − ℘(i,j)

℘max − ℘min

I℘(i,j) =
√

1− (T 2
℘(i,j) + F 2

℘(i,j))

F℘(i,j) = 1− T℘(i,j)

The residue neutrosophic set’s maximum method is defined as

maxRNS℘(i,j) = (τmax) mod (L) (6)

τmax = maxNS℘(i,j) × L

Definition 4.3. Let ℘(m,n) be an image data with m,n dimensions, the neutrosophic mem-

bership components of the image data T, I, F are modified as the classical method with the

alteration of ℘min, ℘max, ℘avg which are known as minimum, maximum value, average value

of the global image data.

avgNS℘(i,j) = {T℘(i,j) + I℘(i,j) + F℘(i,j)} (7)
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where T℘(i,j) =
℘(i,j) − ℘avg

℘max − ℘min

I℘(i,j) =
√
1− (T 2

℘(i,j) + F 2
℘(i,j)))

F℘(i,j) = 1− T℘(i,j)

The residue neutrosophic set’s average method is defined as

avgRNS℘(i,j) = (τavg) mod (L) (8)

τavg = avgNS℘(i,j) × L

Algorithm:

Step 1: Convert the image as L gray scale image.

Step 2: Make that L image to neutosophic domain with any one of the equation 3 or 5

or 7 using the membership formulae.

Step 3: Transform the NS to any one of RNS domain

Step 4: Apply the segmentation methods for the transformed RNS.

Step 5: Detect the hidden pattern of the image

A single intensity values contain in standard image analysis. The proposed method, on the

other contrary, can analyze the three membership intensity values. As a result, the analysis

is more trustworthy than the traditional way. The image characteristics were retrieved at

a consistent level using these thresholding methods. As a result, we may lower the image’s

indeterminacy for various thresholding values. This character will aid us in classifying the

image with convincing processing and analysis in the future. There is no need to find or fix a

threshold value.

5. Expirement and Result

Table 1. The employed metrics for quantitative evaluation.

Metrics Formula

Sensitivity True Positive/(True Positive/False Negative)

Specificity True Negative/(True Negative + False Positive)

Precision True Positive/(True Positive + False Positive)

Recall True Positives / (True positive + False negative)

F1 score (2 * Precision * Recall) / (Precision + Recall)

Accuracy (True Positive + True Negative)/Total samples

For the experiment, we used an Intel(R) Core(TM) i5 processor with 16GB of RAM and a

64-bit operating system. The programing tool to be used is Python. A fingerprint image was
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Figure 1. Residue neutrosophic set image segmentation architecture

collected from the [2] for the experiment analysis suggestion. Because the primary purpose of

acquiring a fingerprint image contains more information than the image itself, it is critical to

analyze it without losing the data. In this regard, the suggested method compares favorably

to existing segmentation methods. Each image was resized to 250× 250 for the segmentation

analysis, and the segmentation pixel was set to α = 128. Figure 2 shows the images that

resulted. Apart from the example, some segmentation fails in NS and RNS however, if we

emphasize avoiding the loss of image information for segmentation, any of the three given

approaches should be a superior proposal for different scenarios. The proposal’s further tasks

will be based on the failed scenario. The Table 1 calculates the performance evaluation of the

methods. For the evaluation of the resulted image and measurements, a single sample image

is shown, The performance evaluation is shown in Figure 3. Table 2 tabulates the results of

each segmentation method resulted for the metrics. It is calculating by metric formulae with

concept of confusion matrix.
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(a) (b)

(c)

Figure 2. The resulted images of the proposed methods: (a) minRNS method

image segmentation; (b) maxRNS method image segmentation; (c)avgRNS

method image segmentation.

(a) (b)

Figure 3. This is a figure of evaluation metrics: (a) Recall, precision, F1-

score, sensivity, specific; (b) Accuracy.
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Table 2. Table of performance evaluation.

Method Recall Precision F1-score Sensitivity Specificity Accuracy

minRNS 0.000068 0.000044 0.000053 0.14753 0.521426 39.8352

minRNS Binary 0.994040 1.000000 0.997011 0.00137 1.000000 99.7808

minRNS Binary INV 0.000068 0.000044 0.000053 0.14753 0.521426 39.8352

minRNS TRUNC 0.478574 0.999956 0.647336 0.24896 0.999932 60.1648

minRNS ToZero 0.000068 0.000044 0.000053 0.14753 0.521426 39.8352

minRNS ToZero INV 0.000068 0.000044 0.000053 0.14753 0.521426 39.8352

maxRNS 0.365616 1.000000 0.535459 0.39649 0.000000 36.5616

maxRNS Binary 0.000068 0.000044 0.000053 0.14753 0.521426 39.8352

maxRNS Binary INV 0.000068 0.000044 0.000053 0.14753 0.521426 39.8352

maxRNS TRUNC 0.478574 0.999956 0.647336 0.24896 0.999932 60.1648

maxRNS ToZero 0.000068 0.000044 0.000053 0.14753 0.521426 39.8352

maxRNS ToZero INV 0.000068 0.000044 0.000053 0.14753 0.521426 39.8352

avgRNS 0.365616 1.000000 0.535459 0.39649 0.000000 36.5616

avgRNS Binary 0.000000 0.000000 0.000000 0.00000 0.634384 63.4384

avgRNS Binary INV 0.000000 0.000000 0.000000 0.00000 0.634384 63.4384

avgRNS TRUNC 0.365616 1.000000 0.535459 0.39649 0.000000 36.5616

avgRNS ToZero 0.000000 0.000000 0.000000 0.00000 0.634384 63.4384

avgRNS ToZero INV 0.000000 0.000000 0.000000 0.00000 0.634384 63.4384
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6. Conclusion

The article proposed three kinds of novel approaches to the neutrosophic image segmenta-

tion technology in this proposal. Our focus was to use neutrosophic sets to segment without

losing information, and the idea succeeded with a better result. The use of these procedures

is preferred solvation, especially for fingerprint images. Researchers can see from the analysis

that the minRNS Binary segmentation method works exceptionally well in comparison to the

other approaches. The TRUNC segmentation methodology, which focuses on the maxRNS

method, is preferred. When compared to the minRNS and maxRNS methods, avgRNS per-

forms poorly. Binary segmentation is a great way to approach neutrosophic thresholding

binarization minRNS. Since it can able to generalize the results for a collection of image sets

if the image features are constant. These qualities are extremely beneficial when it comes

to image processing and categorization. We will use this knowledge feature to apply these

principles to machine learning approaches in order to achieve better outcomes. Because of the

residue approach, the segmented picture features are always constant. In this way, this article

produces the neutrosophic thresholding with better results for the samples.
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9. Guo, Y., & Şengür, A. (2014). A novel image segmentation algorithm based on neutrosophic similarity

clustering. Applied Soft Computing, 25, 391-398.
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Abstract: In the ever-evolving landscape of blockchain-based smart healthcare, ensuring the security and 

integrity of patient data stands as an utmost priority. This paper is dedicated to unveiling the pivotal role 

of Neutrosophic sets theory within our methodology as we tackle the multifaceted challenges of 

safeguarding patient data. Central to our approach is the innovative integration of Neutrosophic sets 

theory, a mathematical framework adept at handling the inherent uncertainties and imprecisions often 

encountered in healthcare decision-making. Leveraging Neutrosophic sets, we construct a comprehensive 

evaluation model that accommodates the complexities of the smart healthcare environment. Our 

methodology harnesses Multi-Criteria Decision Making (MCDM) techniques, notably the Technique for 

Order Preference by Similarity to Ideal Solution (TOPSIS), to systematically assess and rank service 

providers based on their proximity to ideal solutions. The Neutrosophic aspect comes to the forefront as 

we apply Neutrosophic sets in representing and managing decision-makers' judgments, which often 

exhibit varying degrees of truth, indeterminacy, and falsity. Furthermore, the Ordered Weighted Averaging 

(OWA) operator is strategically employed to aggregate these Neutrosophic judgments, accentuating the 

role of Neutrosophic sets in our decision fusion process. Our empirical study, firmly rooted in 

Neutrosophic sets theory, showcases the efficacy of this innovative model. It offers a structured and robust 

framework for healthcare organizations to fortify patient data security in the realm of blockchain-based 

smart healthcare systems. This paper advances the understanding of the indispensable role played by 

Neutrosophic sets in enhancing data security, thereby facilitating the adoption of blockchain technology 

within healthcare, while contributing to the burgeoning field of Neutrosophic Intelligence. 

.    

Keywords: Neutrosophic Intelligence; Blockchain Technology; Smart Healthcare; Data Privacy; 

Trustworthiness, Confidentiality, Neutrosophic Sets. 

 

1. Introduction 

Neutrosophic sets, a mathematical framework introduced by Smarandache in 1995, have gained significant 

attention in recent years due to their unique ability to model and manage uncertainty, vagueness, and 

imprecision. This innovative concept extends traditional set theory by accommodating indeterminate 

elements—those elements whose membership, non-membership, and neutral status are all concurrently 

possible within a set [1]. Such inherent flexibility makes Neutrosophic sets a powerful tool for capturing 

and quantifying complex, real-world phenomena, particularly in decision-making processes. The core 

premise of Neutrosophic sets is rooted in the notion of "neutrality," signifying the coexistence of opposites 

within a set. This neutrality allows for the representation of incomplete, vague, or conflicting information, 

mirroring the inherent ambiguity frequently encountered in various domains, including healthcare [2]. 
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In the context of blockchain-based smart healthcare, where the security and privacy of patient data are 

paramount, Neutrosophic sets emerge as a promising solution to address the inherent uncertainties that 

permeate this dynamic environment. Blockchain technology, known for its transparency and immutability, 

has transformed the healthcare sector by offering secure and decentralized data storage and management. 

However, the adoption of blockchain in healthcare introduces multifaceted uncertainties, including 

fluctuating regulatory landscapes, evolving technological challenges, and variable patient data 

requirements [3-5]. Neutrosophic sets offer a means to navigate these complexities effectively. By enabling 

the representation of vague or imprecise data within the blockchain, healthcare stakeholders can make 

informed decisions, even when faced with incomplete or conflicting information. For instance, patient 

consent, a critical component of healthcare data management, often exhibits varying degrees of consent, 

uncertainty, or ambiguity. Neutrosophic sets can elegantly capture and quantify these nuanced consent 

dynamics, facilitating more accurate decision-making [6-7]. Moreover, within the realm of Multi-Criteria 

Decision Making (MCDM) for evaluating service providers, Neutrosophic sets provide a structured 

framework to handle the diverse judgments of experts. Decision-makers' assessments, often characterized 

by differing degrees of truth, falsity, and indeterminacy, can be systematically integrated, allowing for a 

more holistic evaluation [8-9]. 

This paper introduces a pioneering Neutrosophic Intelligence approach, placing Neutrosophic sets theory 

at the forefront of our methodology. Neutrosophic sets provide a mathematical foundation capable of 

handling the inherent uncertainties, vagueness, and imprecisions often encountered in healthcare decision-

making. As the healthcare industry navigates the complexities of blockchain technology, the integration of 

Neutrosophic sets theory emerges as a powerful means to enhance patient data security and privacy.  Our 

work revolves around the utilization of MCDM techniques, particularly the Technique for Order Preference 

by Similarity to Ideal Solution (TOPSIS), to systematically evaluate and rank service providers within 

blockchain-based smart healthcare systems. However, what sets our methodology apart is the pervasive 

role of Neutrosophic sets in the representation and management of decision-makers' judgments. These 

judgments inherently possess varying degrees of truth, indeterminacy, and falsity, a challenge that 

Neutrosophic sets adeptly address. Furthermore, we employ the Ordered Weighted Averaging (OWA) 

operator to aggregate these Neutrosophic judgments, emphasizing the integral role of Neutrosophic sets 

in our decision fusion process. Through this approach, we strive to provide a structured and robust 

framework for healthcare organizations to fortify patient data security while embracing the potential of 

blockchain technology in smart healthcare [10]. 

Our paper is organized as follows: In Section 2, we provide a comprehensive review of related work in the 

fields of healthcare data security, blockchain technology, and Neutrosophic Intelligence, highlighting the 

current state of research and identifying the gaps that motivate our study. Section 3 outlines our 

methodology, detailing the Neutrosophic Intelligence approach we have developed for safeguarding 

patient data within blockchain-based smart healthcare systems. In Section 4, we present the results of our 

empirical evaluation and provide a thorough analysis of the data collected during our study. Section 5 

offers a discussion of our findings, emphasizing their implications for healthcare data security, privacy, 

and the broader adoption of blockchain in healthcare. In Section 6, we conclude our research, summarizing 

the key insights and contributions of our study. 
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2. Related Works 

This section provides a comprehensive overview of the existing research and literature relevant to our 

study, setting the stage for the development of a neutrosophic approach for anomaly detection in smart 

agriculture systems using edge intelligence. Yaqoob et al. [11] conducted a comprehensive review of skin 

cancer detection and classification using federated learning, emphasizing the importance of privacy in 

healthcare applications. Their work highlights the relevance of advanced machine-learning techniques in 

medical contexts, which resonates with our exploration of anomaly detection in smart agriculture.   Alaba 

et al. [12] explored the security applications and challenges of smart contracts, which is an area of interest 

when considering the secure execution of algorithms, especially in edge computing environments. Their 

insights into the security aspects of smart contracts provide valuable context for our work. Kumar et al. [13] 

presented an approach to region-of-interest detection in COVID-19 CT images using neutrosophic logic. 

While their focus is on medical imaging, their utilization of neutrosophic logic is relevant to our proposed 

methodology, as it demonstrates the applicability of this logic in image analysis and pattern recognition. 

Thillaigovindan et al. [14] developed an integrated model for heart disease prediction using cryptographic 

and machine learning methods. Their work showcases the potential benefits of integrating different 

technologies for enhanced accuracy and security, which aligns with our approach to integrating edge 

intelligence and neutrosophic logic. Saha et al. [15] discussed AI-enabled human and machine activity 

monitoring in industrial IoT systems. Their exploration of AI in the context of IoT is relevant to our study, 

as it highlights the broader implications of AI and edge computing in monitoring and managing complex 

systems. Fernandez-Vazquez et al. [16] investigated the use of blockchain in sustainable supply chain 

management, applying analytical hierarchical process (AHP) methodology. Their work demonstrates the 

versatility of blockchain technology, which can be considered in the context of data security and integrity 

in smart agriculture systems.   Mohammed et al. [17] proposed a Bitcoin network-based anonymity and 

privacy model for metaverse implementation in Industry 5.0. Their research touches upon privacy and 

security concerns in decentralized systems, which can provide insights into securing data in agricultural 

edge environments. Singh et al. [18] discussed transfer fuzzy learning for security in industrial IoT, which 

can be relevant to our study's focus on secure anomaly detection. Their work showcases advanced 

cryptographic techniques that can be considered in securing edge devices. Morhaim [19] provided a 

comprehensive overview of blockchain and cryptocurrency technologies. While not focused on agriculture, 

this reference offers foundational knowledge about blockchain technology, which can be useful when 

discussing potential applications in the context of smart agriculture systems. 

3. Methodology 

In this section, we elucidate the rigorous methodology employed in our study, outlining the systematic 

steps undertaken to develop and implement our Neutrosophic Intelligence approach for safeguarding 

patient data in the context of blockchain-based smart healthcare systems. In this section, we elucidate the 

systematic methodology employed to comprehensively assess the performance of blockchain technology 

as a fundamental safeguard for patient data within blockchain-based smart healthcare systems. The 

integration of blockchain technology in healthcare settings is driven by a multitude of factors and 

challenges by various complexities. To shed light on this intricate landscape, our study integrates expert 

surveys to construct a holistic understanding of blockchain technology's impact on patient data security in 

smart healthcare environments. We specifically focus on the perspectives of industry experts, decision-

makers, and stakeholders, who offer valuable insights into the drivers, barriers, and risks associated with 
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blockchain implementation. It is important to note that the opinions of decision-makers and experts are 

inherently diverse and may lack clear consensus, reflecting the multifaceted nature of this field. Therefore, 

our study places a particular emphasis on the decision-making processes that underpin the safeguarding 

of patient data within blockchain-based smart healthcare, categorizing them according to three critical 

dependent factors. 

Stakeholder Proficiency and Attitudes 

a. Decision-Maker Expertise: In the context of smart healthcare, decision-maker expertise is crucial for 

understanding the intricacies of integrating blockchain technology. Their familiarity with healthcare 

data security, blockchain protocols, and the nuances of smart healthcare systems can significantly 

impact the success of implementation. Expertise allows decision-makers to make informed choices, 

anticipate potential challenges, and devise strategies for maximizing the benefits of blockchain. 

b. Risk Appetite: Smart healthcare introduces innovative approaches to patient care through 

technologies like IoT devices, AI-driven diagnostics, and telemedicine. Decision-makers' risk 

appetite plays a critical role in adopting blockchain, as it often involves a departure from 

conventional data security methods. Embracing blockchain may require a willingness to accept 

initial uncertainties and invest in new technologies that promise long-term security and efficiency 

gains. 

c. Organizational Culture: The culture within healthcare institutions can either facilitate or hinder the 

integration of blockchain. An organizational culture that values innovation, collaboration, and a 

patient-centric approach is more likely to embrace the changes brought about by smart healthcare 

and the implementation of blockchain for enhanced patient data security. Conversely, a resistant or 

risk-averse culture may present challenges to adoption. 

Environmental Conditions 

a. Regulatory Landscape: Smart healthcare operates within a complex regulatory environment that 

varies by region. Decision-makers must navigate these regulations to ensure compliance when 

implementing blockchain solutions. A supportive regulatory landscape can encourage blockchain 

adoption by providing clear guidelines for data security and patient privacy in smart healthcare. 

b. Technological Infrastructure: The readiness of the technological infrastructure in smart healthcare 

settings is essential. Decision-makers need to assess whether the existing IT infrastructure can 

seamlessly integrate with blockchain. Compatibility with electronic health record (EHR) systems, 

IoT devices, and other smart healthcare components is critical for successful implementation. 

c. Industry Collaboration: Collaboration within the healthcare industry and with blockchain solution 

providers can foster innovation in smart healthcare. Decision-makers must evaluate the extent to 

which partnerships and collaborations can accelerate the adoption of blockchain for patient data 

security. Partnerships may involve healthcare providers, technology companies, research 

institutions, and regulatory bodies working together to develop standards and best practices. 

    Multiple Criteria and Alternatives (MCDM) 

a. Evaluation Criteria: Decision-makers in smart healthcare need to define and prioritize evaluation 

criteria. These criteria may include data privacy, scalability, cost-effectiveness, interoperability with 

IoT devices, and the ability to ensure data integrity in real time. The selection of these criteria 

influences the decision-making process. 
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b. Alternative Solutions: Decision-makers should consider a spectrum of alternatives alongside 

blockchain. This might encompass traditional data security methods, cloud-based solutions, or 

hybrid approaches. Evaluating the strengths and weaknesses of each alternative helps decision-

makers make well-informed choices aligned with smart healthcare goals. 

c. Decision-Making Methodology: Formal decision-making methodologies, such as Multi-Criteria 

Decision Analysis (MCDA) or Analytic Hierarchy Process (AHP), can aid decision-makers in 

systematically evaluating criteria and alternatives. These methodologies provide a structured 

approach to assessing the suitability of blockchain and other options, ensuring that the final choice 

aligns with the unique requirements of smart healthcare. 

Incorporating these considerations into the decision-making process for implementing blockchain in smart 

healthcare ensures a comprehensive approach that accounts for the complexities and nuances of this 

evolving field. By addressing personality conditions, environmental conditions, and multiple criteria and 

alternatives, decision-makers can navigate the dynamic landscape of smart healthcare to enhance patient 

data security effectively. 

In our work, we adopted a comprehensive approach to collect and aggregate specialists' perspectives on 

the adoption of blockchain technology for safeguarding patient data in smart healthcare environments. The 

data collection process involved a series of discussions, meetings, and qualitative discrete choice 

experiments [19], which allowed us to capture a diverse range of decision-making experts' insights and 

opinions. To aggregate the experts' perspectives effectively, we employed the OWA [20], a method that 

enables the combination of individual expert viewpoints into a consensus representation. This approach 

helps mitigate potential biases and ensures a more comprehensive assessment of criteria and alternatives 

relevant to our research. Furthermore, we applied the MCDM method to analyze the decision-makers' 

perspectives on criteria and alternatives. MCDM provides a structured framework for evaluating and 

prioritizing multiple criteria and alternatives, aiding in the systematic assessment of the suitability of 

blockchain technology for patient data security in smart healthcare. To assess the robustness and reliability 

of our results, we conducted a Monte Carlo simulation. This simulation involved iteratively generating 

random variations in the input parameters and evaluating their impact on the decision outcomes. 

The process of aggregating the specialists' perspectives was executed using the OWA operator, which 

serves as a valuable tool to harmonize the diverse judgments of decision-making experts and mitigate the 

impact of inconsistent assessments. To elaborate on its application, let's consider a scenario involving 𝑞 

specialists, denoted as 𝐷1, 𝐷2, … , 𝐷𝑞 , participating in a decision-making problem. Each expert's viewpoint 

contributes to the overall decision process, with 1 ≤  𝑘 ≤  𝑞 representing the index of each expert. The 

OWA operator is employed to calculate a consensus outcome by considering the ordered weights assigned 

to individual experts' judgments. Specifically, it follows a defined formula that systematically combines 

these perspectives, considering their relative importance: Figure 1 shows the steps of the proposed method.  

 



Neutrosophic Sets and Systems, Vol. 58, 2023                                                                                                                                            414 

 

 

Jamal A Alenizi, Ibrahim Alrashdi, Neutrosophic Intelligence Approach Safeguarding Patient Data in Blockchain-based Smart 

Healthcare 

 

Figure 1. The steps of the proposed method. 

Some definitions show the mathematical operations of triangular neutrosophic numbers.  

Definition 1 

The truth, indeterminacy, and falsity membership functions can be computed as: 

𝑇𝑋(𝑦) =  

{
 
 

 
 𝛼 (

𝑦 − 𝑥1
𝑦2 − 𝑦1

)   (𝑥1 ≤ 𝑦 ≤ 𝑥2)

𝛼   (𝑦 = 𝑥_2)

𝛼 (
𝑥3 − 𝑦

𝑦3 − 𝑦2
)   (𝑥2 ≤ 𝑦 ≤ 𝑥3)

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 
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𝐼𝑋(𝑦) =  

{
 
 

 
 (
𝑥2−𝑦+𝜃−(𝑦−𝑥1)

𝑦2 − 𝑦1
)   (𝑥1 ≤ 𝑦 ≤ 𝑥2)

𝜃   (𝑦 = 𝑥_2)

(
𝑦−𝑥2+𝜃−(𝑥3−𝑦)

𝑦3 − 𝑦2
)   (𝑥2 ≤ 𝑦 ≤ 𝑥3)

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2) 

 

𝐹𝑋(𝑦) =  

{
 
 

 
 (
𝑥2−𝑦+𝛽−(𝑦−𝑥1)

𝑦2 − 𝑦1
)   (𝑥1 ≤ 𝑦 ≤ 𝑥2)

𝛽   (𝑦 = 𝑥_2)

(
𝑦−𝑥2+𝛽−(𝑥3−𝑦)

𝑦3 − 𝑦2
)   (𝑥2 ≤ 𝑦 ≤ 𝑥3)

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3) 

Definition 2 

The arithmetic operations can be computed as: 

𝑙𝑒𝑡 𝑥 =< (𝑥1, 𝑥2, 𝑥3); 𝛼𝑥 , 𝜃𝑥, 𝛽𝑥 >, 𝑧 =< (𝑧1, 𝑧2, 𝑧3); 𝛼𝑧, 𝜃𝑧 , 𝛽𝑧 >  

𝑥 ⊕ 𝑧 =< (𝑥1 + 𝑧1, 𝑥2 + 𝑧2, 𝑥3 + 𝑧3 ); 𝛼𝑥 ∧ 𝛼𝑧 , 𝜃𝑥 ∨ 𝜃𝑧, 𝛽𝑥 ∨ 𝛽𝑧 >  (4) 
  

𝑥 ⊖ 𝑧 =< (𝑥1 − 𝑧1, 𝑥2 − 𝑧2, 𝑥3 − 𝑧3 ); 𝛼𝑥 ∧ 𝛼𝑧 , 𝜃𝑥 ∨ 𝜃𝑧, 𝛽𝑥 ∨ 𝛽𝑧 >  (5) 
  

𝑥 ⊗ 𝑧 = {

< (𝑥1𝑧1, 𝑥2𝑧2, 𝑥3𝑧3); 𝛼𝑥 ∧ 𝛼𝑧, 𝜃𝑥 ∨ 𝜃𝑧, 𝛽𝑥 ∨ 𝛽𝑧 , > 𝑖𝑓 (𝑥3 > 0, 𝑧3 > 0) 

< (𝑥1𝑧3, 𝑥2𝑧2, 𝑥3𝑧1); 𝛼𝑥 ∧ 𝛼𝑧, 𝜃𝑥 ∨ 𝜃𝑧, 𝛽𝑥 ∨ 𝛽𝑧 , > 𝑖𝑓 (𝑥3 < 0, 𝑧3 > 0) 

< (𝑥3𝑧3, 𝑥2𝑧2, 𝑥3𝑧3); 𝛼𝑥 ∧ 𝛼𝑧 , 𝜃𝑥 ∨ 𝜃𝑧, 𝛽𝑥 ∨ 𝛽𝑧 , > 𝑖𝑓 (𝑥3 > 0, 𝑧3 < 0) 

 (6) 

  

𝑥 ⊘ 𝑧 =  

{
 
 

 
 < (

𝑥1
𝑧3
,
𝑥2
𝑧2
,
𝑥3
𝑧1
) ; 𝛼𝑥 ∧ 𝛼𝑧 , 𝜃𝑥 ∨ 𝜃𝑧 , 𝛽𝑥 ∨ 𝛽𝑧 > 𝑖𝑓 (𝑥3 > 0, 𝑧3 > 0)

< (
𝑥3
𝑧3
,
𝑥2
𝑧2
,
𝑥1
𝑧1
) ; 𝛼𝑥 ∧ 𝛼𝑧 , 𝜃𝑥 ∨ 𝜃𝑧 , 𝛽𝑥 ∨ 𝛽𝑧 , > 𝑖𝑓 (𝑥3 < 0, 𝑧3 > 0)

< (
𝑥3
𝑧1
,
𝑥2
𝑧2
,
𝑥1
𝑧3
) ; 𝛼𝑥 ∧ 𝛼𝑧 , 𝜃𝑥 ∨ 𝜃𝑧 , 𝛽𝑥 ∨ 𝛽𝑧, > 𝑖𝑓 (𝑥3 > 0, 𝑧3 < 0) 

 (7) 

 

⋎⊘ 𝑥 = {
< (

𝑥1
⋎
,
𝑥2
⋎
,
𝑥3
⋎
) ; 𝛼𝑥 , 𝜃𝑥, 𝛽𝑥𝑖𝑓 ⋎> 0 > 

< (
𝑥3
⋎
,
𝑥2
⋎
,
𝑥1
⋎
) ; 𝛼𝑥, 𝜃𝑥, 𝛽𝑥𝑖𝑓 ⋎< 0 >

 (8) 

                          

𝑥−1 =< (
1

𝑥3
,
1

𝑥2
,
1

𝑥1
) ; 𝛼𝑥, 𝜃𝑥 , 𝛽𝑥 > (9) 

  

Step 1 involves the construction of a decision-making matrix, denoted as 𝐷𝑀𝑖𝑗
𝐾, to represent the viewpoints 

of experts (indexed as 𝐷𝑘) and model their perspectives regarding blockchain technology as criteria. The 

𝐷𝑀𝑖𝑗
𝐾 matrix adopts a neutrosophic triangular scale [2] for its structure, and its definition is as follows [6]: 
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𝐷𝑀𝑖𝑗
𝐾 =

𝑓1
𝑓2
⋮
𝑓𝑛 [
 
 
 
𝑥11
𝑘 𝑥12

𝑘 … 𝑥1𝑚
𝑘

𝑥21
𝑘 𝑥22

𝑘 … 𝑥2𝑚
𝑘

⋮ ⋮ ⋮ ⋮
𝑥𝑛1
𝑘 𝑥𝑛2

𝑘 … 𝑥𝑛𝑚
𝑘 ]
 
 
 

 (10) 

In the above formula, the 𝑥𝑖𝑗
𝑘  denote the performance ranking of the constituent of the 𝑖 − 𝑡ℎ criterion 

regarding 𝑓1, 𝑓2, … , 𝑓𝑛. it is worth noting that the category of 𝑥𝑖𝑗
𝑘  symbolizes the viewpoint of experts based 

on the neutrosophic scale. 

Step 2 involves the identification of indeterminate values within the uncertain scenarios related to the three 

principal factors. During this step, the neutrosophic scale can be transformed into tangible numerical values 

using the score function outlined in [18]. The resultant values for the de-neutrosophic specialists' viewpoint 

matrix, denoted as 𝐷𝑀𝑖𝑗
𝐾, are presented in as follows: 

𝐷𝑀𝑖𝑗
𝐾 =

𝑓1
𝑓2
⋮
𝑓𝑛 [
 
 
 
𝑥11
𝑘 𝑥12

𝑘 … 𝑥1𝑚
𝑘

𝑥21
𝑘 𝑥22

𝑘 … 𝑥2𝑚
𝑘

⋮ ⋮ ⋮ ⋮
𝑥𝑛1
𝑘 𝑥𝑛2

𝑘 … 𝑥𝑛𝑚
𝑘 ]
 
 
 

 (11) 

 

Step 3 involves offering a comprehensive and consolidated managerial outlook for all specialists, indexed 

as 𝑘 = 1, 2, …, 𝑞, using the 𝐷𝑀𝑖𝑗
  matrix in conjunction with OWA operators. The resulting outcome is then 

presented in Form (3) as follows: 

𝐷𝑀𝑖𝑗 =

𝑓1
𝑓2
⋮
𝑓𝑛

[

𝑥11 𝑥12 … 𝑥1𝑚
𝑥21 𝑥22 … 𝑥2𝑚
⋮ ⋮ ⋮ ⋮
𝑥𝑛1 𝑥𝑛2 … 𝑥𝑛𝑚

]  (12) 

Then, the TOPSIS method, which stands for Technique for Order Preference by Similarity to Ideal Solution, 

is applied to order potential alternatives based on the generation of principle solutions. In our case, let's 

consider a situation in which, we have 𝑝 substitutions denoted as 𝑂1, 𝑂2, … , 𝑂𝑝, and these substitutes are 

evaluated across 𝑚 criteria represented as 𝑥1, 𝑥2, … , 𝑥𝑚. Moreover, there are 𝑞 experts participating in this 

decision-making endeavor, as previously mentioned. To facilitate this process, we utilize a weighting 

vector consisting of 𝑤1 , 𝑤2, … , 𝑤𝑚 for the 𝑚 criteria, following the condition 1 ≤  𝑗 ≤  𝑚. These weights, 

denoted as 𝑤𝑗 , satisfy the conditions 𝑤𝑗 ≥  0, and their sum ∑  𝑚
𝑗=1 𝑤𝑗 = 1. 

Step 4 involves the generation of a decision-making matrix denoted as 𝑌𝑟𝑡
𝐾 . This matrix is designed to 

capture the viewpoints of experts indexed as 𝐷𝑘 regarding blockchain solutions as criteria and their impact 

on smart healthcare systems. The 𝑌𝑟𝑡
𝐾  matrix, presented in Form 6, is subsequently transformed into a 

numerical format through the application of the score function as expressed below: 

𝑌𝑟𝑡
𝐾 =

𝑂1
𝑂2
⋮
𝑂𝑝 [
 
 
 
𝑦11
𝑘 𝑦12

𝑘 … 𝑦1𝑚
𝑘

𝑦21
𝑘 𝑦22

𝑘 … 𝑦2𝑚
𝑘

⋮ ⋮ ⋮ ⋮
𝑦𝑝1
𝑘 𝑦𝑝2

𝑘 … 𝑦𝑝𝑚
𝑘
]
 
 
 

 (13) 

The consolidation of judgments from decision-makers is accomplished as follows: 

𝑦𝑟𝑡 =
∑ (𝑦𝑟𝑡

𝑘 )
𝑚

𝑡=1

𝐷𝑞  
 (14) 



Neutrosophic Sets and Systems, Vol. 58, 2023                                                                                                                                            417 

 

 

Jamal A Alenizi, Ibrahim Alrashdi, Neutrosophic Intelligence Approach Safeguarding Patient Data in Blockchain-based Smart 

Healthcare 

Here, 𝑦𝑟𝑡  denotes the evaluations provided by decision-makers for the alternatives, and 𝐷𝑞  signifies the 

count of decision-makers involved in the process. The resulting outcome is expressed as follows: 

𝑌𝑟𝑡 =

𝑂1
𝑂2
⋮
𝑂𝑝

[

𝑦11 𝑦12 … 𝑦1𝑚
𝑦21 𝑦22 … 𝑦2𝑚
⋮ ⋮ ⋮ ⋮
𝑦𝑝1 𝑦𝑝2 … 𝑦𝑝𝑚

] (15) 

 

TOPSIS is structured around three fundamental steps to aid in decision-making: 

Normalization: In the first step, normalization is performed to standardize the data. This step 

ensures that all the criteria are on the same scale and avoids biases that could result from the use of different 

units or measurement scales. By normalizing the data, TOPSIS makes it possible to directly compare the 

importance of various criteria, regardless of their original units or magnitudes. This step transforms the 

raw data into a format that can be uniformly analyzed, which is essential for effective multi-criteria 

decision-making. 

𝑧𝑟𝑡 = 𝑤𝑗 ∗
𝑦𝑟 𝑡

√∑  𝑚
𝑡=1 𝑥𝑟𝑡

2
; 𝑟 = 1,2,3… 𝑝; 𝑡 = 1,2,3…𝑚 (16) 

  

Calculating the Ideal Solution in Positive and Negative Regions: The second step involves the 

calculation of ideal solutions in both the positive and negative regions. The ideal solutions represent the 

best possible outcomes based on the selected criteria. In the positive region, the ideal solution is 

characterized by having the highest values for beneficial criteria and the lowest values for non-beneficial 

criteria. Conversely, in the negative region, the ideal solution has the lowest values for beneficial criteria 

and the highest values for non-beneficial criteria. By identifying these ideal solutions, TOPSIS establishes a 

reference point for evaluating and ranking the alternatives. 

𝑧𝑡
+ = {

⟨max(𝑧𝑟𝑡|𝑟 = 1,2,… , 𝑝) |𝑗 ∈ 𝑗
+⟩,

⟨min(𝑧𝑟𝑡|𝑟 = 1,2, … , 𝑝) |𝑗 ∈  𝑗−⟩
} (17) 

𝑧𝑡
− = {

⟨min(𝑧𝑟𝑡|𝑟 = 1,2, … , 𝑝) |𝑗 ∈ 𝑗+⟩,
⟨max(𝑧𝑟𝑡|𝑟 = 1,2, … , 𝑝) |𝑗 ∈ 𝑗

−⟩
} (18) 

  

Computing the Relative Distances between the Generated Positive and Negative Regions : The 

third step focuses on computing the relative distances between the generated positive and negative regions 

for each alternative. This distance calculation is performed to determine how closely each alternative aligns 

with the ideal solutions. Alternatives that are closer to the positive ideal solution and farther from the 

negative ideal solution are considered more favorable and receive higher rankings. Conversely, alternatives 

that are closer to the negative ideal solution and farther from the positive ideal solution are considered less 

desirable and receive lower rankings.  

𝑑𝑟
+ = √∑  

𝑚

𝑡=1
(𝑧𝑟𝑡 − 𝑧𝑡

+)2, 𝑟 = 1,2, … , 𝑝 (19) 

  

𝑑𝑟
− = √∑  

𝑚

𝑡=1
(𝑧𝑟𝑡 − 𝑧𝑡

−)2, 𝑟 = 1,2, … , 𝑝 (20) 
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Finally, we calculate the relative proximity by combining the positive and negative regions of the solutions 

to attain the ideal solutions, as outlined below: 

𝑐𝑟 =
𝑑𝑟
−

𝑑𝑟
+ + 𝑑𝑟

−
; 𝑟 = 1,2, … , 𝑝 (21) 

 

4. Results and Analysis 

This section delves into the pivotal phase of our research, where we present the results of our Neutrosophic 

Intelligence approach in action and offer a comprehensive analysis of the data obtained during our study. 

Through meticulous experimentation and evaluation, we assess the performance, security, and adaptability 

of our approach within the complex landscape of blockchain-based smart healthcare systems. To 

substantiate the practical applicability of our proposed model for safeguarding healthcare patient data, we 

conducted an empirical study encompassing a comprehensive case study analysis. The chosen case study 

revolves around the evaluation of fifteen critical criteria for the security of healthcare patient data, as 

outlined in Table 1.  

Table 1. Criteria for Patient Data Security in Healthcare Systems 

Group Criteria ID Description 

Drivers Regulatory Compliance D1 The extent of compliance with data privacy regulations (e.g., HIPAA, 

GDPR) 

Technology Adoption D2 The level of adoption of advanced security technologies (e.g., 

blockchain, encryption) 

Interoperability D3 The ability of systems to communicate and share data securely 

Cybersecurity Training D4 The level of training provided to staff and employees on 

cybersecurity best practices 

Patient Engagement D5 The degree to which patients actively participate in maintaining the 

security of their health data 

Barriers Legacy Systems B1 The presence of outdated legacy systems that lack modern security 

features 

Budget Constraints B2 Financial limitations that hinder investments in robust cybersecurity 

measures 

Resistance to Change B3 Organizational resistance to adopting new security protocols and 

technologies 

Third-party 

Vulnerabilities 

B4 Risks associated with reliance on third-party vendors and service 

providers 

Data Volume and 

Complexity 

B5 The challenges posed by growing volumes and complexity of patient 

data, requiring scalable solutions 

Risks Data Breach Risk R1 Likelihood and potential impact of data breaches, including 

unauthorized exposure of patient data 

Malware and 

Ransomware Risk 

R2 Risk associated with malware and ransomware attacks that can 

compromise or encrypt patient data 

Insider Threat Risk R3 Risk of insider threats, including employees mishandling data 

intentionally or unintentionally 

IoT Vulnerabilities R4 Vulnerabilities introduced by the use of IoT devices in healthcare, 

which can be exploited 

Regulatory Non-

compliance Risk 

R5 The risk of failing to comply with data privacy regulations, leading 

to penalties and legal consequences 
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To comprehensively assess the security of patient data within healthcare systems, we conducted an 

illuminating case study that drew upon the aforementioned fifteen criteria, categorized into three pivotal 

groups: Driver Criteria, Barrier Criteria, and Risk Criteria. The case study unfolded within the dynamic 

landscape of a modern healthcare institution, where the critical importance of patient data security is 

magnified. Leveraging a multidisciplinary team of experts, we embarked on a meticulous examination of 

the organization's data security ecosystem. This encompassed evaluating the impact of regulatory 

compliance, technology adoption, and patient engagement as drivers that underpin a robust data security 

framework. Simultaneously, we scrutinized the hurdles posed by legacy systems, budget constraints, and 

resistance to change as barriers that often necessitate strategic solutions. Moreover, we probed the 

intricacies of data breach risks, malware vulnerabilities, insider threats, IoT-related concerns, and the 

looming specter of regulatory non-compliance as formidable risks to be mitigated. By systematically 

evaluating these criteria, we aim to identify vulnerabilities, strengths, and opportunities for improving data 

security. The case study involves interviews with key stakeholders, a thorough examination of existing 

security measures, and the application of our proposed model to assess the overall data security posture. 

In this section, we leveraged the OWA operator to systematically aggregate the perspectives and 

evaluations of experts. To maintain transparency and consistency in our analysis, we adopted predefined 

weights for the OWA operator, as detailed in Table 2. These weights were thoughtfully determined to reflect 

the relative importance of various criteria within the decision-making process. 

Table 2. Predefined Weights for OWA Operator 

Criteria Weights 

Regulatory Compliance 
0.217744 

Technology Adoption 0.304067 

Interoperability 0.251275 

Cybersecurity Training 0.288399 

Patient Engagement 0.186048 

Legacy Systems 0.146608 

Budget Constraints 0.229047 

Resistance to Change 0.224132 

Third-party Vulnerabilities 0.237017 

Data Volume and Complexity 0.084615 

Data Breach Risk 0.171464 

Malware and Ransomware Risk 0.144085 

Insider Threat Risk 0.147436 

IoT Vulnerabilities 0.112711 

Regulatory Non-compliance Risk 0.222641 

 

We present the outcomes of the decision-making process, which were meticulously generated using the 

OWA operator. To achieve this, we harnessed the collective expertise of our decision-makers, each of whom 

provided valuable insights and evaluations across a spectrum of criteria. The OWA operator, guided by 

predefined weights as detailed in Table 3, played a pivotal role in harmonizing these diverse perspectives 

and aggregating them into a coherent whole. This process facilitated the creation of OWA general and 

aggregated decision-makers decisions, offering a holistic view of the evaluation outcomes. These 
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judgments reflect the consensus reached by our expert panel, embodying their collective wisdom and 

expertise in assessing the critical aspects of patient data security within the healthcare system. 

Table 3. The ultimate matrix produced employs OWA for the evaluation of decision-maker judgments 

regarding driver, barrier, and risk criteria 
 

D1 D2 D3 D4 D5 B1 B2 B3 B4 B5 R1 R2 R3 R4 R5 

D

1 

0.32

877 

0.32

877 

0.32

877 

0.32

877 

0.32

877 

0.32

877 

0.32

877 

0.32

877 

0.32

877 

0.32

877 

0.32

877 

0.32

877 

0.32

877 

0.32

877 

0.32

877 

D

2 

0.36

401 

0.36

401 

0.36

401 

0.36

401 

0.36

401 

0.36

401 

0.36

401 

0.36

401 

0.36

401 

0.36

401 

0.36

401 

0.36

401 

0.36

401 

0.36

401 

0.36

401 

D

3 

0.26

230 

0.26

230 

0.26

230 

0.26

230 

0.26

230 

0.26

230 

0.26

230 

0.26

230 

0.26

230 

0.26

230 

0.26

230 

0.26

230 

0.26

230 

0.26

230 

0.26

230 

D

4 

0.34

992 

0.34

992 

0.34

992 

0.34

992 

0.34

992 

0.34

992 

0.34

992 

0.34

992 

0.34

992 

0.34

992 

0.34

992 

0.34

992 

0.34

992 

0.34

992 

0.34

992 

D

5 

0.40

303 

0.40

303 

0.40

303 

0.40

303 

0.40

303 

0.40

303 

0.40

303 

0.40

303 

0.40

303 

0.40

303 

0.40

303 

0.40

303 

0.40

303 

0.40

303 

0.40

303 

B

1 

0.28

105 

0.28

105 

0.28

105 

0.28

105 

0.28

105 

0.28

105 

0.28

105 

0.28

105 

0.28

105 

0.28

105 

0.28

105 

0.28

105 

0.28

105 

0.28

105 

0.28

105 

B

2 

0.22

335 

0.22

335 

0.22

335 

0.22

335 

0.22

335 

0.22

335 

0.22

335 

0.22

335 

0.22

335 

0.22

335 

0.22

335 

0.22

335 

0.22

335 

0.22

335 

0.22

335 

B

3 

0.23

423 

0.23

423 

0.23

423 

0.23

423 

0.23

423 

0.23

423 

0.23

423 

0.23

423 

0.23

423 

0.23

423 

0.23

423 

0.23

423 

0.23

423 

0.23

423 

0.23

423 

B

4 

0.13

997 

0.13

997 

0.13

997 

0.13

997 

0.13

997 

0.13

997 

0.13

997 

0.13

997 

0.13

997 

0.13

997 

0.13

997 

0.13

997 

0.13

997 

0.13

997 

0.13

997 

B

5 

0.24

324 

0.24

324 

0.24

324 

0.24

324 

0.24

324 

0.24

324 

0.24

324 

0.24

324 

0.24

324 

0.24

324 

0.24

324 

0.24

324 

0.24

324 

0.24

324 

0.24

324 

R

1 

0.21

704 

0.21

704 

0.21

704 

0.21

704 

0.21

704 

0.21

704 

0.21

704 

0.21

704 

0.21

704 

0.21

704 

0.21

704 

0.21

704 

0.21

704 

0.21

704 

0.21

704 

R

2 

0.07

627 

0.07

627 

0.07

627 

0.07

627 

0.07

627 

0.07

627 

0.07

627 

0.07

627 

0.07

627 

0.07

627 

0.07

627 

0.07

627 

0.07

627 

0.07

627 

0.07

627 

R

3 

0.13

483 

0.13

483 

0.13

483 

0.13

483 

0.13

483 

0.13

483 

0.13

483 

0.13

483 

0.13

483 

0.13

483 

0.13

483 

0.13

483 

0.13

483 

0.13

483 

0.13

483 

R

4 

0.21

613 

0.21

613 

0.21

613 

0.21

613 

0.21

613 

0.21

613 

0.21

613 

0.21

613 

0.21

613 

0.21

613 

0.21

613 

0.21

613 

0.21

613 

0.21

613 

0.21

613 

R

5 

0.04

277 

0.04

277 

0.04

277 

0.04

277 

0.04

277 

0.04

277 

0.04

277 

0.04

277 

0.04

277 

0.04

277 

0.04

277 

0.04

277 

0.04

277 

0.04

277 

0.04

277 

 

5. Discussion and implications 

In this pivotal section, we embark on a thoughtful examination of the results presented in the preceding 

section and delve into their broader significance. Our discussion transcends the numerical findings, 

focusing on the qualitative insights, the implications of our Neutrosophic Intelligence approach, and the 

potentially transformative effects on the landscape of healthcare data security within blockchain-based 

smart healthcare systems. 
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To facilitate decision-making in uncertain conditions, our case study incorporates the use of the TOPSIS 

methodology. This method was applied to assess and rank five distinct service providers operating within 

the realm of blockchain-based smart healthcare systems. These service providers were meticulously 

evaluated based on the predefined weights assigned to the criteria established in our study. To maintain 

confidentiality and impartiality, we have anonymized these providers, referring to them as "Alternative A," 

"Alternative B," "Alternative C," Alternative D." and "Alternative E.". To ensure a comprehensive analysis, 

we employed a triangular neutrosophic scale to collect the judgments of our decision-makers. This scale 

effectively captures the nuances and uncertainties inherent in decision-making processes, allowing our 

experts to express their evaluations with precision. Subsequently, these neutrosophic judgments were 

transformed into numerical values, which served as the foundation for our TOPSIS-based assessments. This 

robust approach allowed us to methodically evaluate the service providers' performance across various 

criteria while accommodating the inherent complexities of real-world decision-making in the context of 

blockchain-based smart healthcare systems. 

The ultimate ranking of the alternatives, derived from the TOPSIS analysis based on their relative closeness 

to the ideal solutions, has been methodically compiled and is presented in Table 4. This table serves as a 

comprehensive summary of our evaluation process, showcasing the performance of each alternative in 

comparison to the others. The relative closeness values in Table 4 provide valuable insights into how well 

each alternative aligns with the predefined ideal solutions, which were carefully determined following the 

specified criteria. Alternatives that exhibit higher relative closeness values are positioned at the top of the 

ranking, indicating their superior alignment with the ideal solutions across the considered criteria. 

Conversely, those with lower relative closeness values are situated lower in the ranking, reflecting 

comparatively weaker performance in meeting the specified criteria. This ranking, displayed in Table 4, 

offers a clear and concise visualization of the outcomes of our analysis, enabling stakeholders and decision-

makers to make informed choices based on the relative strengths and weaknesses of each alternative within 

the context of blockchain-based smart healthcare systems. It serves as a valuable reference point for 

identifying the most suitable service providers for specific healthcare scenarios and requirements. 

Table 4. Results of Alternatives Based on Relative Closeness to Ideal Solutions  
𝒅𝒓
+ 𝒅𝒓

− 𝒄𝒓 

Alternative A 0.251449 0.298566 0.817441 

Alternative B 0.137375 0.189318 0.719279 

Alternative C 0.103608 0.086685 0.458436 

Alternative D 0.169257 0.16279 0.558562 

Alternative C 0.288908 0.282441 0.678213 

The findings of this research carry profound implications for the healthcare industry and its ongoing 

transformation towards blockchain-based smart healthcare systems. By developing a Neutrosophic 

Intelligence approach and integrating it with established decision-making methodologies, this study 

contributes significantly to the enhancement of patient data security. As blockchain technology gains 

prominence in healthcare, our model empowers decision-makers with a robust framework to navigate the 

complexities of this dynamic landscape. The ability to rank service providers objectively based on a 

multitude of criteria, while accounting for uncertainty, offers healthcare organizations a vital tool to 

strengthen their data security strategies. This, in turn, can bolster patient trust, facilitate data sharing among 

healthcare providers, and pave the way for more efficient and secure healthcare services. 
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Beyond its immediate applications, our research underscores the potential for Neutrosophic Intelligence to 

stimulate innovation and adaptation within healthcare and other data-sensitive domains. The successful 

integration of Neutrosophic theory with established decision-making techniques opens doors to novel 

approaches for handling uncertainty and ambiguity. By embracing this paradigm, organizations can better 

address the ever-evolving challenges in safeguarding sensitive data. Moreover, our study encourages 

further exploration of Neutrosophic Intelligence's applicability in diverse contexts where decision-making 

involves intricate, multifaceted criteria. As healthcare and technology continue to evolve, the principles 

and methodologies advanced in this research may find broader utility in addressing complex problems, 

fostering resilience in decision-making, and shaping a more secure and efficient future for various 

industries. 

6. Conclusions 

This study presents a novel Neutrosophic Intelligence approach that leverages advanced methodologies 

like OWA and TOPSIS to address the intricate challenge of safeguarding patient data in blockchain-based 

smart healthcare systems. By integrating the insights and evaluations of decision-makers across a spectrum 

of driver, barrier, and risk criteria, we have formulated a comprehensive framework that enhances decision-

making in uncertain conditions. The results demonstrate the effectiveness of our approach in systematically 

assessing and ranking service providers, ultimately aiding in the selection of the most suitable alternatives. 

Furthermore, the study underscores the significance of factors such as regulatory compliance, technology 

adoption, and data breach risk in shaping the security landscape of healthcare systems. As the smart 

healthcare ecosystem continues to evolve, our research offers valuable guidance for stakeholders, enabling 

them to make informed choices and fortify patient data security in an increasingly dynamic and 

technology-driven healthcare landscape. 

In light of the ever-expanding role of blockchain technology in healthcare, our findings emphasize the 

pivotal importance of adopting advanced security measures and fostering a culture of data privacy. We 

conclude by highlighting the potential of Neutrosophic Intelligence as a robust decision-making tool in 

smart healthcare, not only for patient data security but also for addressing broader challenges in this 

transformative field. As the healthcare industry continues to embrace innovation, our research provides a 

significant step toward ensuring the confidentiality, integrity, and availability of patient data, ultimately 

enhancing the quality and safety of healthcare services for all. 

Data Availability: All data generated or analyzed during this study are included in this article.   

Acknowledgment: The authors would like to thank the Deanship of Graduate Studies at Jouf University 

for funding and supporting this research through the initiative of DGS, Graduate Students Research 

Support (GSR) at Jouf University, Saudi Arabia. 

Conflict of Interest: The authors declare no conflict of interest. 

References 

[1]. Khalaf, Osamah Ibrahim, Rajesh Natarajan, Natesh Mahadev, Prasanna Ranjith Christodoss, 

Thangarasu Nainan, Carlos Andrés Tavera Romero, and Ghaida Muttashar Abdulsahib. 2022. “Blinder 

Oaxaca and Wilk Neutrosophic Fuzzy Set-Based IoT Sensor Communication for Remote Healthcare 

Analysis.” IEEE Access. 



Neutrosophic Sets and Systems, Vol. 58, 2023                                                                                                                                            423 

 

 

Jamal A Alenizi, Ibrahim Alrashdi, Neutrosophic Intelligence Approach Safeguarding Patient Data in Blockchain-based Smart 

Healthcare 

[2]. Ranulfo Paiva Barbosa (Sobrinho), & Smarandache, F. (2023). Pura Vida Neutrosophic Algebra. 

Neutrosophic Systems with Applications, 9, 101–106. https://doi.org/10.61356/j.nswa.2023.68 

[3]. Kumar, Ravinder, Ritu Rana, and Sunil Kumar Jha. 2023. “Scalable Blockchain Architecture of Internet 

of Medical Things (IoMT) for Indian Smart Healthcare System.” In AI Models for Blockchain-Based 

Intelligent Networks in IoT Systems: Concepts, Methodologies, Tools, and Applications, 231–59. 

Springer. 

[4]. Mishra, Arunodaya Raj, Pratibha Rani, Adel Fahad Alrasheedi, and Rajeev Dwivedi. 2023. “Evaluating 

the Blockchain-Based Healthcare Supply Chain Using Interval-Valued Pythagorean Fuzzy Entropy-

Based Decision Support System.” Engineering Applications of Artificial Intelligence 126: 107112. 

[5]. Binti Rosli , S. N. I., & Bin Zulkifly , M. I. E. (2023). A Neutrosophic Approach for B-Spline Curve by 

Using Interpolation Method. Neutrosophic Systems with Applications, 9, 29–40. 

https://doi.org/10.61356/j.nswa.2023.43 

[6]. Aiden, Manpreet Kaur, Shweta Mayor Sabharwal, Sonia Chhabra, and Mustafa Al-Asadi. 2023. “AI and 

Blockchain for Cyber Security in Cyber-Physical System.” In AI Models for Blockchain-Based 

Intelligent Networks in IoT Systems: Concepts, Methodologies, Tools, and Applications, 203–30. 

Springer. 

[7]. Abdel-Monem, Ahmed, and Mohamed Abouhawwash. 2022. “A Machine Learning Solution for 

Securing the Internet of Things Infrastructures”. Sustainable Machine Intelligence Journal 1 (October). 

https://doi.org/10.61185/SMIJ.HPAO9103. 

[8]. Natarajan, Rajesh, Gururaj Harinahallo Lokesh, Francesco Flammini, Anitha Premkumar, Vinoth 

Kumar Venkatesan, and Shashi Kant Gupta. 2023. “A Novel Framework on Security and Energy 

Enhancement Based on Internet of Medical Things for Healthcare 5.0.” Infrastructures 8 (2): 22. 

[9]. M.Ali , A., & Abdelhafeez , A. (2022). DeepHAR-Net: A Novel Machine Intelligence Approach for 

Human Activity Recognition from Inertial Sensors. Sustainable Machine Intelligence Journal, 1. 

https://doi.org/10.61185/SMIJ.2022.8463 

[10]. Panja, Subir, Arup Kumar Chattopadhyay, Amitava Nag, and Jyoti Prakash Singh. 2023. “Fuzzy-

Logic-Based IoMT Framework for COVID19 Patient Monitoring.” Computers & Industrial Engineering 

176: 108941. 

[11]. Yaqoob, Muhammad Mateen, Musleh Alsulami, Muhammad Amir Khan, Deafallah Alsadie, 

Abdul Khader Jilani Saudagar, Mohammed AlKhathami, and Umar Farooq Khattak. 2023. “Symmetry 

in Privacy-Based Healthcare: A Review of Skin Cancer Detection and Classification Using Federated 

Learning.” Symmetry 15 (7): 1369. 

[12]. Alaba, Fadele Ayotunde, Hakeem Adewale Sulaimon, Madu Ifeyinwa Marisa, and Owamoyo 

Najeem. 2024. “Smart Contracts Security Application and Challenges: A Review.” Cloud Computing 

and Data Science, 15–41. 

[13]. Kumar, S N, A Lenin Fred, L R Jonisha Miriam, Ajay Kumar, Parasuraman Padmanabhan, and 

Balazs Gulyas. 2021. “19 Region of Interest Detection in COVID-19 CT Images Using Neutrosophic 

Logic.” Health Informatics and Technological Solutions for Coronavirus (COVID-19), 19. 



Neutrosophic Sets and Systems, Vol. 58, 2023                                                                                                                                            424 

 

 

Jamal A Alenizi, Ibrahim Alrashdi, Neutrosophic Intelligence Approach Safeguarding Patient Data in Blockchain-based Smart 

Healthcare 

[14]. Thillaigovindan, Senthil Kumar, and others. 2023. “An Integrated Accurate-Secure Heart Disease 

Prediction (IAS) Model Using Cryptographic and Machine Learning Methods.” KSII Transactions on 

Internet \& Information Systems 17 (2). 

[15]. Saha, Anindita, Jayita Saha, Manjarini Mallik, and Chandreyee Chowdhury. 2023. “AI Enabled 

Human and Machine Activity Monitoring in Industrial IoT Systems.” In AI Models for Blockchain-

Based Intelligent Networks in IoT Systems: Concepts, Methodologies, Tools, and Applications, 29–54. 

Springer. 

[16]. Fernandez-Vazquez, Simon, Rafael Rosillo, David la Fuente, and Javier Puente. 2022. “Blockchain 

in Sustainable Supply Chain Management: An Application of the Analytical Hierarchical Process 

(AHP) Methodology.” Business Process Management Journal 28 (5/6): 1277–1300. 

[17]. Mohammed, Z K, A A Zaidan, H B Aris, Hassan A Alsattar, Sarah Qahtan, Muhammet Deveci, and 

Dursun Delen. 2023. “Bitcoin Network-Based Anonymity and Privacy Model for Metaverse 

Implementation in Industry 5.0 Using Linear Diophantine Fuzzy Sets.” Annals of Operations Research, 

1–41. 

[18]. Singh, Anamika, Rajesh Kumar Dhanaraj, Md Akkas Ali, Prasanalakshmi Balaji, and Meshal 

Alharbi. 2023. “Transfer Fuzzy Learning Enabled Streebog Cryptographic Substitution Permutation 

Based Zero Trust Security in IIOT.” Alexandria Engineering Journal 81: 449–59. 

[19]. Morhaim, Lisa. 2019. Blockchain and Cryptocurrencies Technologies and Network Structures: 

Applications, Implications and Beyond. Infinite Study. 

[20]. Sudeep Dey, & Gautam Chandra Ray. (2023). Covering Properties via Neutrosophic b-open Sets. 

Neutrosophic Systems with Applications, 9, 1–12. https://doi.org/10.61356/j.nswa.2023.66. 

 

Received: April 13, 2023.  Accepted: Sep 19, 2023 



University of New Mexico

SOME RESULTS IN NEUTROSOPHIC SOFT METRIC

SPACES

M. Jeyaraman1,J.Johnsy2 and R. Pandiselvi3,
1PG and Research Department of Mathematics, Raja Doraisingam Govt. Arts College, Sivagangai, Affiliated

to Alagappa University, Karaikudi, Tamil Nadu, India. E-mail: jeya.math@gmail.com. ORCID:

orcid.org/0000-0002-0364-1845
2 Research Scholar, P.G. and Research Department of Mathematics, Raja Doraisingam Govt. Arts College,

Sivagangai. Affiliated to Alagappa University, Karaikudi, Tamilnadu, India. E-mail: johnsy.math@gmail.com
3PG and Research Department of Mathematics, The Madura College (Autonomous), Madurai, Tamil Nadu,

India. E-mail: rpselvi@gmail.com. ORCID: orcid.org/0000-0002-8236-964X
∗Correspondence: jeya.math@gmail.com

Abstract. In this research, we define a novel concept termed neutrosophic soft metric space as well as in-

vestigate its fundamental characteristics. Additionally, in neutrosophic soft metric spaces, we present various

topological features of this newly developed space, such as the soft open sphere and the soft closed sphere.

The neutrosophic soft metric space has already been studied in depth, and its topological as well as structural

features have been mapped out.

Keywords: Metric spaces, Soft set, Open ball, Closed set, Neutrosophic soft metric space.

—————————————————————————————————————————-

1. Introduction

Since its development in 1965, Zadeh’s [19] fuzzy set has made a significant impact through-

out all of logical thought. A lot of real-world issues can be solved thanks to this notion, however

it is not sufficient for other difficulties. For this purpose, Atanassov [1] developed Intuitionistic

Fuzzy Sets (IFS). After establishing the IFS, it generalises findings from research on Fuzzy

Sets. Smarandache [12] defines a subclass of the crisp set called the Neutrosophic Set (NS).

Neutrosophy is a theoretical framework that made its way into print in 1998. Fuzzy set was

incorporated into probabilistic metric space to create Fuzzy Metric Space (FMS) [11]. A proof

of the Fuzzy Sets version of Baire’s Category Theorem in FMS form is presented and several

fundamental ideas of Fuzzy Sets are analysed in [6]. Since then, FMS have gained widespread
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use in fields including medical imaging, data processing, and decision making. Molodtsov [9]

first proposed soft set theory as a problem-free mathematical method for dealing with uncer-

tainties. Parameterizing the universal set, we get the soft set, a collection of subsets. Any

collection of phrases, natural integers, etc., may be used as the parameter set. Therefore, soft

sets theory has appealing uses in a wide variety of contexts.

Neutrosophic soft metric space is a novel concept we developed, and its fundamental charac-

teristics were investigated. Additionally, in neutrosophic soft metric spaces, we present various

topological structures of this newly discovered space, such as the soft open ball and the soft

closed ball. Neutrosophic soft metric space has been studied for its many topological and

structural characteristics.

2. PRELIMINARIES

Definition 2.1. [13] A mapping given by S : X → P (U), then a pair (S,X) is called a soft

set over U . Then a soft set is characterized by a class of subsets of U .

Definition 2.2. A 6-tuple (X,Λ,Ω,Υ, ⊙ , ⊕ ) is known to be an Neutrosophic Soft Metric

Space (shortly NSMS), X is an arbitrary non empty set, ⊙ and ⊕ , a neutrosophic CTN

and CTCN and Λ,Ω and Υ are neutrosophic on SP (X2)× (0,∞)SP → [0, 1]SP satisfying the

following conditions: For all ξ̈α1 , κ̈α2 , ϊα3 ∈ SP (X), ϑ, ν̂ > 0.

(i) 0 ≤ Λ(ξ̈α1 , κ̈α2 , ϑ) ≤ 1; 0 ≤ Ω(ξ̈α1 , κ̈α2 , ϑ) ≤ 1; 0 ≤ Υ(ξ̈α1 , κ̈α2 , ϑ) ≤ 1;

(ii) Λ(ξ̈α1 , κ̈α2 , ϑ) + Ω(ξ̈α1 , κ̈α2 , ϑ) + Υ(ξ̈α1 , κ̈α2 , ϑ) ≤ 3;

(iii) Λ(ξ̈α1 , κ̈α2 , ϑ) > 0;

(iv) Λ(ξ̈α1 , κ̈α2 , ϑ) = 1 if and only if ξ̈α1 = κ̈α2 ;

(v) Λ(ξ̈α1 , κ̈α2 , ϑ) = Λ(κ̈α2 , ξ̈α1 , ϑ);

(vi) Λ(ξ̈α1 , κ̈α2 , ϑ) ⊙ Λ(κ̈α2 , ϊα3 , ν̂) ≤ Λ(ξ̈α1 , ϊα3 , ϑ+ ν̂), for allϑ, ν̂ > 0;

(vii) Λ(ξ̈α1 , κ̈α2 , .) : (0,∞) → (0, 1](E) is neutrosophic continuous (NC);

(viii) lim
ϑ→∞

Λ(ξ̈α1 , κ̈α2 , ϑ) = 1 for all ϑ > 0;

(ix) Ω(ξ̈α1 , κ̈α2 , ϑ) < 1;

(x) Ω(ξ̈α1 , κ̈α2 , ϑ) = 0 if and only if ξ̈α1 = κ̈α2 ;

(xi) Ω(ξ̈α1 , κ̈α2 , ϑ) = Ω(κ̈α2 , ξ̈α1 , ϑ);

(xii) Ω(ξ̈α1 , κ̈α2 , ϑ) ⊕ Ω(κ̈α2 , ϊα3 , ν̂) ≥ Ω(ξ̈α1 , ϊα3ϑ+ ν̂), for all ϑ, ν̂ > 0;

(xiii) Ω(ξ̈, κ̈, .) : (0,∞) → (0, 1](E) is NC;

(xiv) lim
ϑ→∞

Ω(ξ̈α1 , κ̈α2 , ϑ) = 0 for all ϑ > 0;

(xv) Υ(ξ̈α1 , κ̈α2 , ϑ) < 1;

(xvi) Υ(ξ̈α1 , κ̈α2 , ϑ) = 0 if and only if ξ̈α1 = κ̈α2 ;

(xvii) Υ(ξ̈α1 , κ̈α2 , ϑ) = Υ(κ̈α2 , ξ̈α1 , ϑ);

(xviii) Υ(ξ̈α1 , κ̈α2 , ϑ) ⊕ Υ(κ̈α2 , ϊα3 , ν̂) ≥ Υ(ξ̈α1 , ϊα3 , ϑ+ ν̂), for all ϑ, ν̂ > 0;
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(xix) Υ(ξ̈α1 , κ̈α2 , .) : (0,∞) → (0, 1](E) is NC;

(xx) lim
ϑ→∞

Υ(ξ̈α1 , κ̈α2 , ϑ) = 0 for all ϑ > 0;

(xxi) If ϑ > 0 then Λ(ξ̈α1 , κ̈α2 , ϑ) = 0;Ω(ξ̈α1 , κ̈α2 , ϑ) = 1;Υ(ξ̈α1 , κ̈α2 , ϑ) = 1.

Then, (Λ,Ω,Υ) is called an NMS on SP (X). The functions Λ,Υ and Ω denote degree of

nearness, inconclusiveness and non-nearness between ξ̈α1 and κ̈α2 with respect to ϑ respectively.

Example 2.3. Define S : SP (X)× SP (X)× (0,∞) → [0, 1] by

Λ(ξ̈α1 , κ̈α2 , ϑ) = ϑ
ϑ+d(ξ̈α1 ,κ̈α2 )

; Ω(ξ̈α1 , κ̈α2 , ϑ) =
d(ξ̈α1 ,κ̈α2 )

ϑ+d(ξ̈α1 ,κ̈α2 )
; Υ(ξ̈α1 , κ̈α2 , ϑ) =

d(ξ̈α1 ,κ̈α2 )
ϑ for all

ξ̈α1 , κ̈α2 ∈ X and ϑ > 0 and ω ⊙ τ = min{ω, τ} and ω ⊕ τ = max{ω, τ} for all ω, τ ∈ [0, 1](E).

Then (X,Λ,Ω,Υ, ⊙ , ⊕ ) is an NSMS.

3. MAIN RESULTS

Definition 3.1. An NSMS (X,Λ,Ω,Υ, ⊙ , ⊕ ) and ς ∈ (0, 1)P, ϑ > 0, the set B̆(ξ̈e1 , ς, ϑ) =

{κ̈e2 ∈ X : Λ(ξ̈e1 , κ̈e2 , ϑ) > 1 − ς,Ω(ξ̈e1 , κ̈e2 , ϑ) < ς,Υ(ξ̈e1 , κ̈e2 , ϑ) < ς} is known to be Neutro-

sophic Soft Open Ball (NSOB).

Theorem 3.2. Let B̆(ξ̈e1 , ς, ϑ) be an NSOB, hence it is a Open Set (OS).

Proof. Consider B̆(ξ̈e1 , ς, ϑ) is an OB. Let κ̈e2 ∈ B̆(ξ̈e1 , ς, ϑ) .

Then Λ(ξ̈e1 , κ̈e2 , ϑ) > 1− ς,Ω(ξ̈e1 , κ̈e2 , ϑ) < ς,Υ(ξ̈e1 , κ̈e2 , ϑ) < ς .

Since Λ(ξ̈e1 , κ̈e2 , ϑ) > 1 − ς. There exists ϑ0 ∈ (0, ϑ) such that Λ(ξ̈e1 , κ̈e2 , ϑ) > 1 −
ς,Ω(ξ̈e1 , κ̈e2 , ϑ) < ς and Υ(ξ̈e1 , κ̈e2 , ϑ) < ς.

If take ς0 = Λ(ξ̈e1 , κ̈e2 , ϑ0) then for ς0 > 1− ς, ρ ∈ (0, 1) such that ς0 > 1− ρ > 1− ς.

Now for given ς and ρ such that ς0 > 1 − ρ, there exist ς1, ς2 ∈ (0, 1) so that ς0 ⊙ ς1 > 1 − ρ

and (1− ς0) ⊕ (1− ς2) ≤ ρ and (1− ς0) ⊕ (1− ς3) ≤ ρ.

Choose ς4 = max{ς1, ς2, ς3}. Consider an OB B̆(κ̈e2 , 1− ς4, ϑ− ϑ0).

We will show that B̆(κ̈e2 , 1− ς4, ϑ− ϑ0) ⊂ B̆(ξ̈e1 , ς, ϑ).

Consider ϊe3 ∈ B̆(κ̈e2 , 1− ς4, ϑ− ϑ0), then Λ(κ̈e2 , ϊe3 , ϑ− ϑ0) > ς4,Ω(κ̈e2 , ϊe3 , ϑ− ϑ0) < ς4 and

Υ(κ̈e2 , ϊe3 , ϑ− ϑ0) < ς4.

Hence,

Λ(ξ̈α1 , ϊα3 , ϑ) ≥ Λ(ξ̈α1 , κ̈α2 , ϑ0) ⊙ Λ(κ̈α2 , ϊα3 , ϑ− ϑ0) ≥ ς0 ⊙ ς4 ≥ ς0 ⊙ ς1 ≥ 1− ρ > 1− ς,

Ω(ξ̈α1 , ϊα3 , ϑ) ≤ Ω(ξ̈α1 , κ̈α2 , ϑ0) ⊕ Ω(κ̈α2 , ϊα3 , ϑ− ϑ0) ≤ (1− ς0) ⊕ (1− ς4) ≤ (1− ς0) ⊕ (1− ς2) ≤ ρ < ς,

Υ(ξ̈α1 , ϊα3 , ϑ) ≤ Υ(ξ̈α1 , κ̈α2 , ϑ0) ⊕ Υ(κ̈α2 , ϊα3 , ϑ− ϑ0) ≤ (1− ς0) ⊕ (1− ς4) ≤ (1− ς0) ⊕ (1− ς2) ≤ ρ < ς

It shows that ϊα3 ∈ B̆(ξ̈α1 , ς, ϑ) and B̆(κ̈α2 , 1− ς4, ϑ− ϑ0) ⊂ B̆(ξ̈α1 , ς, ϑ).
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Remark 3.3. Consider an NSMS (X,Λ,Ω,Υ, ⊙ , ⊕ ). Define ν̂(Λ,Ω,Υ) = {K ⊂ X :

for each ξ̈α1 ∈ K, there existsϑ > 0} and ς ∈ (0, 1) such that B̆(ξ̈α1 , κ̈α2 , ϑ) ⊂ K}. Hence,

ν̂(Λ,Ω,Υ) is a topology on X.

Theorem 3.4. Every NSMS is Hausdorff.

Proof. Let (X,Λ,Ω,Υ, ⊙ , ⊕ ) be a NSMS. Choose ξ̈α1 and κ̈α2 as two distinct points in X.

Hence, 0 < Λ(ξ̈α1 , κ̈α2 , ϑ) < 1, 0 < Ω(ξ̈α1 , κ̈α2 , ϑ) < 1, 0 < Υ(ξ̈α1 , κ̈α2 , ϑ) < 1.

Take ς1 = Λ(ξ̈α1 , κ̈α2 , ϑ), ς2 = Ω(ξ̈α1 , κ̈α2 , ϑ), ς3 = Υ(ξ̈α1 , κ̈α2 , ϑ) and ς = max{ς1, 1− ς2, 1− ς3}.
If we take ς0 ∈ (ς, 1), then there exist ς4, ς5, ς6 such that ς4 ⊙ ς4 ≥ ς0, (1− ς5) ⊕ (1− ς5) ≤ 1− ς0

and (1− ς6) ⊕ (1− ς6) ≤ 1− ς0.

Let ς7 = max{ς4, ς5, ς6}. If we consider the B̆
(
ξ̈α1 , 1− ς7,

ϑ
2

)
and B̆

(
κ̈α2 , 1− ς7,

ϑ
2

)
,

then clearly B̆
(
ξ̈α1 , 1− ς7,

ϑ
2

)⋂
B̆
(
κ̈α2 , 1− ς7,

ϑ
2

)
= ∅. From here, if we choose ϊα3 ∈

B̆
(
ξ̈α1 , 1− ς7,

ϑ
2

)⋂
B̆
(
κ̈α2 , 1− ς7,

ϑ
2

)
then

ς1 = Λ(ξ̈α1 , κ̈α2 , ϑ) ≥ Λ

(
ξ̈α1 , ϊα3 ,

ϑ

2

)
⊙ Λ

(
ϊα3 , κ̈α2 ,

ϑ

2

)
≥ ς7 ⊙ ς7 ≥ ς4 ⊙ ς4 ≥ ς0 > ς1,

ς2 = Ω(ξ̈α1 , κ̈α2 , ϑ) ≤ Ω

(
ξ̈α1 , ϊα3 ,

ϑ

2

)
⊕ Ω

(
ϊα3 , κ̈α2 ,

ϑ

2

)
≤ (1− ς7) ⊕ (1− ς7) ≤ (1− ς5) ⊕ (1− ς5) ≤ (1− ς0) < ς2,

ς3 = Υ(ξ̈α1 , κ̈α2 , ϑ) ≤ Υ

(
ξ̈α1 , ϊα3 ,

ϑ

2

)
⊕ Υ

(
ϊα3 , κ̈α2 ,

ϑ

2

)
≤ (1− ς7) ⊕ (1− ς7) ≤ (1− ς6) ⊕ (1− ς6) ≤ (1− ς0) < ς3.

which is a contradiction. Therefore, we say that NSMS is Hausdorff.

Definition 3.5. Let (X,Λ,Ω,Υ, ⊙ , ⊕ ) be a NSMS. A subset A of X is called Neutro-

sophic Bounded (NB), if there exist ϑ > 0 and ς ∈ (0, 1) such that Λ(ξ̈α1 , κ̈α2 , ϑ) >

1− ς,Ω(ξ̈α1 , κ̈α2 , ϑ) < ς and Υ(ξ̈α1 , κ̈α2 , ϑ) < ς , for all ξ̈α1 , κ̈α2 ∈ A.

Definition 3.6. If A ⊆
⋃

U∈CN
U , a collection CN of OSs is said to be an Open Cover(OC)

of A. A subspace A of a NSMS is compact, if every OC of A has a finite subcover. If every

sequence in A has a convergent subsequence to a point in A, then it is called sequential

compact.

Theorem 3.7. If A is a compact member of an NSMS (X,Λ,Ω,Υ, ⊙ , ⊕ ) then it is NSMS

bounded.
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Proof. Consider A is a compact member of an NSMS X. Let ϑ > 0 and 0 < ς < 1.

Let {B̆(ξ̈α1 , ς, ϑ) : ξ̈α1 ∈ A} be an open cover of A. Since A is compact, there ex-

ists ξ̈α1 , ξ̈α2 , ξ̈α3 . . . ξ̈αn ∈ A such that A ⊆
⋃n

i=1 B̆(ξ̈αi , ς, ϑ). Let ξ̈α1 , κ̈α2 ∈ A . Then

ξ̈α1 ∈ B̆(ξ̈αi , ς, ϑ) and κ̈α2 ∈ B̆(ξ̈αj , ς, ϑ) for some i, j.

Then Λ(ξ̈α1 , ξ̈αi , ϑ) > 1 − ς,Ω(ξ̈α1 , ξ̈αi , ϑ) < ς,Υ(ξ̈α1 , ξ̈αi , ϑ) < ς and Λ(κ̈α1 , ξ̈αj , ϑ) >

1− ς,Ω(κ̈α1 , ξ̈αj , ϑ) < ς,Υ(κ̈α1 , ξ̈αj , ϑ) < ς

Now, let α = min{Λ(ξ̈αi , ξ̈αj , ϑ) : 1 ≤ i, j ≤ n}, β = max{Ω(ξ̈αi , ξ̈αj , ϑ) : 1 ≤ i, j ≤ n} and

γ = max{Υ(ξ̈αi , ξ̈αj , ϑ) : 1 ≤ i, j ≤ n}.
Then α, β, γ > 0, from here, for 0 < ξ̈α1 , ξ̈α2 , ξ̈α3 < 1.

Next, we have

Λ(ξ̈α1 , κ̈α2 , 3ϑ) ≥ Λ(ξ̈α1 , ξ̈αi , ϑ) ⊙ Λ(ξ̈αi , ξ̈αj , ϑ) ⊙ Λ(ξ̈αi , κ̈α1 , ϑ)

≥ (1− ς) ⊙ (1− ς) ⊙ µ ≥ 1− ς1, for some 0 < ς1 < 1

Ω(ξ̈α1 , κ̈α2 , 3ϑ) ≤ Ω(ξ̈α1 , ξ̈αi , ϑ) ⊕ Ω(ξ̈αi , ξ̈αj , ϑ) ⊕ Ω(ξ̈αi , κ̈α1 , ϑ)

≤ ς ⊕ ς ⊕ β ≤ ς2, for some 0 < ς2 < 1

Υ(ξ̈α1 , κ̈α2 , 3ϑ) ≤ Υ(ξ̈α1 , ξ̈αi , ϑ) ⊕ Υ(ξ̈αi , ξ̈αj , ϑ) ⊕ Υ(ξ̈αi , κ̈α1 , ϑ)

≤ ς ⊕ ς ⊕ γ ≤ ς3, for some 0 < ς3 < 1.

Taking ς = max{ς1, ς2, ς3} and ϑ0 = 3ϑ , we have Λ(ξ̈α1 , κ̈α2 , ϑ0) > 1 − ς,Ω(ξ̈α1 , κ̈α2 , ϑ0) < ς

and Υ(ξ̈α1 , κ̈α2 , ϑ0) < ς, for all ξ̈α1 , κ̈α2 ∈ A. Hence A is NSMS is bounded.

Theorem 3.8. If (X,Λ,Ω,Υ, ⊙ , ⊕ ) is an NSMS and τ(Λ,Ω,Υ) is a topology on X. Then

ξ̈αn → ξ̈α1 iff Λ(ξ̈αn , ξ̈α1 , ϑ) → 1,Ω(ξ̈αn , ξ̈α1 , ϑ) → 0 and Υ(ξ̈αn , ξ̈α1 , ϑ) → 0 as n → ∞ for

{ξ̈αn} in X.

Proof. Let ϑ > 0. Consider ξ̈αn → ξ̈α1 . There exist n0 ∈ N such that ξ̈αn ∈ B̆(ξ̈α1 , ς, ϑ) for all

n ≥ n0, ς ∈ (0, 1).

Then 1− Λ(ξ̈αn , ξ̈α1 , ϑ) < ς,Ω(ξ̈αn , ξ̈α1 , ϑ) < ς and Υ(ξ̈αn , ξ̈α1 , ϑ) < ς.

Hence Λ(ξ̈αn , ξ̈α1 , ϑ) → 1,Ω(ξ̈αn , ξ̈α1 , ϑ) → 0 and Υ(ξ̈αn , ξ̈α1 , ϑ) → 0 as n → ∞.

Conversely, Λ(ξ̈αn , ξ̈α1 , ϑ) → 1,Ω(ξ̈αn , ξ̈α1 , ϑ) → 0 and Υ(ξ̈αn , ξ̈α1 , ϑ) → 0, as n → ∞,

Then for ς ∈ (0, 1), there exists n0 ∈ N such that 1−Λ(ξ̈αn , ξ̈α1 , ϑ) < ς,Ω(ξ̈αn , ξ̈α1 , ϑ) < ς and

Υ(ξ̈αn , ξ̈α1 , ϑ) < ς, for each n ≥ n0.

It follows that Λ(ξ̈αn , ξ̈α1 , ϑ) > 1− ς,Ω(ξ̈αn , ξ̈α1 , ϑ) < ς and Υ(ξ̈αn , ξ̈α1 , ϑ) < ς, for each n ≥ n0.

Thus ξ̈αn ∈ B̆(ξ̈α1 , ς, ϑ) for each n ≥ n0. Hence ξ̈αn → ξ̈α1 .

Theorem 3.9. If (X,Λ,Ω,Υ, ⊙ , ⊕ ) is an NSMS and Cauchy sequence in X has a convergent

sequence. Then (X,Λ,Ω,Υ, ⊙ , ⊕ ) is a complete NSMS.
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Proof. Consider {ξ̈αn} is a Cauchy sequence and {ξ̈αni
} is a member of {ξ̈αn} that converge

to ξ̈α1 . We have to prove {ξ̈αn} → ξ̈α1 . Let ϑ > 0 and ν̂ ∈ (0, 1). Consider ς ∈ (0, 1) such that

(1− ς) ⊙ (1− ς) ≥ 1− ν̂ and ς ⊕ ς ≤ ν̂. Since {ξ̈αn} is Cauchy sequence, there is αn0 ∈ N such

that Λ
(
ξ̈αm , ξ̈αn ,

ϑ
2

)
> 1 − ς,Ω

(
ξ̈αm , ξ̈αn ,

ϑ
2

)
< ς and Υ

(
ξ̈αm , ξ̈αn ,

ϑ
2

)
< ς, for all αm, αn ≥

αn0 . Since ξ̈αni
→ ξ̈α1 , there is positive integer αip such that αip > αn0 ,Λ

(
ξ̈αip

), ξ̈α1 ,
ϑ
2

)
>

1− ς,Ω
(
ξ̈αip

), ξ̈α1 ,
ϑ
2

)
< ς and Υ

(
ξ̈αip

, ξ̈α1 ,
ϑ
2

)
< ς.

Thus if αn ≥ αn0 ,Λ(ξ̈αn , ξ̈α1 , ϑ) ≥ Λ
(
ξ̈αn , ξ̈αip

, ϑ2

)
⊙ Λ

(
ξ̈αip

, ξ̈α1 ,
ϑ
2

)
> (1 − ς) ⊙ (1 − ς) ≥

1 − ν̂,Ω(ξ̈αn , ξ̈α1 , ϑ) ≤ Ω
(
ξ̈αn , ξ̈αip

, ϑ2

)
⊕ Ω

(
ξ̈αip

, ξ̈α1 ,
ϑ
2

)
< ς ⊕ ς ≤ ν̂ and Υ(ξ̈αn , ξ̈α1 , ϑ) ≤

Υ
(
ξ̈αn , ξ̈αip

, ϑ2

)
⊕ Υ

(
ξ̈αip

, ξ̈α1 ,
ϑ
2

)
< ς ⊕ ς ≤ ν̂

Thus ξ̈αip
) → ξ̈α1 and hence (X,Λ,Ω,Υ, ⊙ , ⊕ ) is complete.

Theorem 3.10. If a sequence {Υn : n ∈ N} is dense open members of a complete NSMS

(X,Λ,Ω,Υ, ⊙ , ⊕ ). Then
⋂

n∈N υn is dense in X.

Proof. Consider ϱ is a nonempty open set in X. Then we have ϱ ∩ υ1 ̸= ∅. Let ξ̈α1 ∈ ϱ ∩ υ1

(Since υ1 is dense in X )

Then B̆(ξ̈α1 , ς1, ϑ1) ⊂ ϱ ∩ υ1 (Since ϱ ∩ υ1 is open) for ς1 ∈ (0, 1) and ϑ1 > 0,

Choose ς
′
1 < ς1 and ϑ

′
1 = min{ϑ1, 1} such that B̆(ξ̈α1 , ς

′
1, ϑ

′
1) ⊂ ϱ ∩ υ1

Since υ2 is dense in X, B̆(ξ̈α1 , ς
′
1, ϑ1) ⊂ ϱ ∩ υ2 ̸= ∅. Let ξ̈α2 ∈ B̆(ξ̈α1 , ς

′
1, ϑ

′
1) ∩ υ2.

Then there exist ς2 ∈ (0, 12) and ϑ2 > 0 such that

B̆(ξ̈α2 , ς2, ϑ2) ⊂ B̆(ξ̈α1 , ς
′
1, ϑ

′
1) ∩ υ2 (Since B̆(ξ̈α1 , ς

′
1, ϑ

′
1) ∩ υ2 is open).

Choose ς
′
2 < ς2 and ϑ

′
2 = min

(
ϑ2,

1
2

)
such that B̆(ξ̈α2 , ς

′
2, ϑ

′
2) ⊂ B̆(ξ̈α1 , ς

′
1, ϑ

′
1) ∩ υ2

By repeating this procedure, we obtain a sequence {ξ̈αn} in X and a sequence {ϑ′
n} such that

0 < ϑ
′
n < 1

n and B̆(ξ̈αn , ς
′
n, ϑ

′
n) ⊂ B̆(ξ̈αn−1), ς

′
n−1, ϑ

′
n−1) ∩ υn.

Now, we have to prove {ξ̈αn} is a Cauchy sequence.

Consider αn0 ∈ N such that 1
αn0

< ϑ and 1
αn0

< ν̂ for ϑ > 0 and ν̂ > 0.

Then Λ(ξ̈αn , ξ̈αm , ϑ) ≥ Λ
(
ξ̈αn , ξ̈αm ,

1
αn

)
≥ 1 − 1

αn
> 1 − ν̂ for αn ≥ αn0 and αm ≥

αnΩ(ξ̈αn , ξ̈αm , ϑ) ≤ Ω
(
ξ̈αn , ξ̈αm ,

1
αn

)
≤ 1

αn
< ν̂,Υ(ξ̈αn , ξ̈αm , t) ≤ Υ

(
ξ̈αn , ξ̈αm ,

1
αn

)
≤ 1

αn
< ν̂.

There fore {ξ̈αn} is a Cauchy sequence.

Then there exist ξ̈α1 ∈ X such that ξ̈αn → ξ̈α1 (since X is complete).

Since ξ̈αk
∈ B̆(ξ̈αn , ς

′
n, ϑ

′
n) for k ≥ n, we obtain ξ̈α1 ∈ B̆(ξ̈αn , ς

′
n, ϑ

′
n).

Hence B̆(ξ̈αn , ς
′
n, ϑ

′
n) ⊂ B̆(ξ̈αn−1), ς

′
n−1, ϑ

′
n−1) ∩ υn for all n.

Therefore ϱ ∩ (∩n∈Nυn) ̸= ∅. Thus ∩n∈Nυn is dense in X.
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4. CONCLUSION

Neutrosophic soft metric space was introduced in this study, and it is distinct from the fuzzy

soft metric spaces defined in [3]. In this novel setting, we analysed a number of topological

configurations. To define an NSMS and investigate its characteristics is the focus of this

research. Open ball, open set, Hausdorffness, compactness, completeness, and nowhere dense

in NSMS are some of the structural characteristic features that have been identified.
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—————————————————————————————————————————–

1. Introduction

People’s needs have changed with the advancement of technology and topology has become

inefficient in real-life situations as a result. Separation axioms played a critical role in different

kinds of topological spaces that were later discovered. Chang [2] discovered fuzzy topological

spaces based on fuzzy sets [12]. Coker [3] developed a hybrid topological space by utilizing

intuitionistic fuzzy sets [1]. A new set called neutrosophic set is described by Smarandache

[11] by combining indeterminacy membership functions with truth and falsity memberships.

Further neutrosophic topological space has been found by Salama and Alblowi [10]. Meanwhile,

Gayathri and Helen [6] instigated the notion linguistic neutrosophic topology. The purpose

of this article is to examine the inter-linkage between linguistic neutrosophic cl-open spaces.

Studies are also conducted on the properties of linguistic neutrosophic semi spaces.
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2. Preliminaries

Definition 2.1. [11] Let S be a space of points (objects), with a generic element in x denoted

by S. A neutrosophic set A in S is characterized by a truth-membership function TA, an

indeterminacy membership function IA and a falsity-membership function FA. TA(x), IA(x)

and FA(x) are real standard or non-standard subsets of ]0−, 1+[. That is

TA : S →]0−, 1+[, IA : S →]0−, 1+[, FA : S →]0−, 1+[

There is no restriction on the sum of TA(x), IA(x) and FA(x), so 0− ≤ sup TA(x)+ sup IA(x)+

sup FA(x) ≤ 3+.

Definition 2.2. [11] Let S be a space of points (objects), with a generic element in x denoted

by S. A single valued neutrosophic set (SVNS) A in S is characterized by truth-membership

function TA, indeterminacy-membership function IA and falsity-membership function FA. For

each point S in S, TA(x), IA(x), FA(x) ∈ [0, 1].

When S is continuous, a SVNS A can be written as A =
∫
〈T (x), I(x), F (x)〉/x ∈ S.

When S is discrete, a SVNS A can be written as A =
∑
〈T (xi), I(xi), F (xi)〉/xi ∈ S.

Definition 2.3. [9] Let S = {sθ|θ = 0, 1, 2, ....., τ} be a finite and totally ordered discrete

term set, where τ is the even value and sθ represents a possible value for a linguistic variable.

Definition 2.4. [9] Let Q = {s0, s1, s2, ..., st} be a linguistic term set (LTS) with odd cardi-

nality t+1 and Q = {sh/s0 ≤ sh ≤ st, h ∈ [0, t]}. Then, a linguistic single valued neutrosophic

set A is defined by, A = {〈x, sθ(x), sψ(x), sσ(x)〉|x ∈ S}, where sθ(x), sψ(x), sσ(x) ∈ Q rep-

resent the linguistic truth, linguistic indeterminacy and linguistic falsity degrees of S to A,

respectively, with condition 0 ≤ θ + ψ + σ ≤ 3t. This triplet (sθ, sψ, sσ) is called a linguistic

single valued neutrosophic number.

Definition 2.5. [6] For a linguistic neutrosophic topology τLN , the collection of linguistic

neutrosophic sets should obey,

(1) 0LN , 1LN ∈ τLN
(2) K1

⋂
K2 ∈ τLN for any K1,K2 ∈ τLN

(3)
⋃
Ki ∈ τLN ,∀{Ki : i ∈ J} ⊆ τLN

We call, the pair (SLN , τLN ), a linguistic neutrosophic topological space.

Definition 2.6. A topological space (SLN , τLN ) is said to be

(1) LN semi-T0 [7] if for each pair of distinct linguistic neutrosophic points in SLN , there

exists a LN semi-open set containing one but not the other.

(2) LN semi-T1 [7](resp. LN cl-open-T1 [5]) if for each pair of distinct linguistic neutro-

sophic points s1 and s2 in SLN , there exist LN semi-open(resp. cl-open) sets ELN and

FLN containing s1 and s2 such that s1 ∈ ELN , s2 /∈ FLN and s2 /∈ ELN , s2 ∈ FLN .
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(3) LN semi-T2 [7](resp. LN ultra-hausdorff [12]) if every two linguistic neutrosophic points

can be separated by disjoint LN semi-open(resp. LN cl-open) sets.

(4) LN semi-normal [4](resp. LN cl-open-normal [5]) if for each pair of distinct LN semi-

closed(resp. LN cl-open) sets ELN and FLN of SLN , there exist two disjoint LN semi-

open(resp. LN open) sets GLN and HLN such that ELN ⊂ GLN and FLN ⊂ HLN .

(5) LN semi-regular [4](resp. cl-open-regular [5]) if for each LN semi-closed(resp. LN cl-

open) set KLN of SLN and each s /∈ KLN , there exist two disjoint LN semi-open(resp.

LN open) sets ELN and FLN such that KLN ⊂ ELN and s ∈ FLN .

(6) The LN quasi-component [9] of s1 is such that the set of all linguistic neutrosophic

points s2 in SLN such that s1 and s2 cannot be separated by LN semi-separation of

SLN .

Definition 2.7. [7] A LNS PLN = {〈s1, TPLN
(s1), IPLN

(s1), FPLN
(s1)〉 : s1 ∈ SLN} is called

a linguistic neutrosophic point(LNP in short) if and only if for any element s2 ∈ SLN ,

〈TPLN
(s1), IPLN

(s1), FPLN
〉 = 〈lp, lq, lr〉 for s2 = s1,

〈TPLN
(s1), IPLN

(s1), FPLN
〉 = 〈0, 0, 1〉 for s2 6= s1.

where 0<p ≤ t, 0 ≤ q < t, 0 ≤ r < t.

Definition 2.8. [7] A LNP PLN = {〈s, TPLN
(s), IPLN

(s), FPLN
(s)〉 : s ∈ SLN} will be denoted

by s〈lp,lq ,lr〉. The complement of the LNP s〈lp,lq ,lr〉 will be denoted by sc〈lp,lq ,lr〉.

Definition 2.9. [7] A LNTS (SLN , τ) is semi-R0 if for every LNSO set KLN , s ∈ KLN implies

LNSCl({s}) ⊆ KLN .

3. Some Characterization of Linguistic Neutrosophic Spaces

Definition 3.1. A LNTS (SLN , τLN ) is said to be

(1) LNCOS-T1 if for every pair of distinct points in SLN , there exist LNCOSs ELN and

FLN containing two points respectively such that ELN ∩ FLN = φ.

(2) LN ultra-hausdorff if every two distinct points of SLN can be separated by disjoint

LNCOSs.

(3) LNCOS-normal if for each pair of disjoint LNCOS sets ELN and FLN of SLN , there

exist two disjoint LNOSs KLN and HLN such that ELN ⊂ GLN and FLN ⊂ HLN .

(4) LNCOS-regular if for each LNCOS ELN of SLN and each s /∈ ELN , there exist disjoint

LNOSs KLN and HLN such that ELN ⊂ GLN and s ∈ HLN .

(5) LN locally-indiscrete if each LNOS of SLN is LNCS in SLN .

Definition 3.2. A LNTS (SLN , τLN ) is said to be LNS-regular if for each LNSCS ELN of

SLN and each s /∈ ELN , there exist disjoint LNSOSs KLN and HLN such that ELN ⊂ KLN

and s ∈ HLN .
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Example 3.3. Let the universe of discourse be U = {x, y, z, w} and let SLN = {x, y, z}.
The set of all LTS be L= { very poor (l0), poor(l1), very weak(l2), weak(l3), below average (l4),

average (l5), above average (l6), good (l7), very good (l8), excellent (l9), outstanding (l10)}.
And let ALN = {〈(x, l4, l5, l2), (y, l3, l2, l1), (z, l9, l6, l8)〉} and

BLN = {〈(x, l2, l4, l5), (y, l1, l1, l2), (z, l6, l5, l8)〉}.
Let LNP be s〈(x,l2,l4,l6),(y,l1,l4,l5),(z,l3,l3,l9)〉.

The LNSCS and the LNSOSs are given by ELN = 〈(x, l1, l3, l4), (y, l1, l6, l5), (z, l5, l8, l9) and

KLN = 〈(x, l5, l6, l1), (y, l4, l6, l1), (z, l9, l8, l5)〉 ,
HLN = 〈(x, l3, l5, l4), (y, l1, l6, l2), (z, l7, l5, l8)〉 respectively with s /∈ ELN .

Now, s ∈ HLN and ELN ⊂ KLN and thus SLN is LNS-regular.

Definition 3.4. A LNTS (SLN , τLN ) is said to be LNS-normal if for each pair of

disjoint LNCSs ALN and BLN , there exist two distinct LNSOSs KLN and HLN with

ALN ⊆ KLN , BLN ⊆ HLN .

Example 3.5. Let the universe of discourse U and LTS be as in Example (3.3).

Let the LNCS be ALN = 〈(x, l1, l3, l4), (y, l1, l6, l5), (z, l5, l8, l9)〉 ,
BLN = 〈(x, l1, l1, l5), (y, l0, l1, l6), (z, l6, l5, l8)〉.
The LNSOSs are given by KLN = 〈(x, l5, l6, l1), (y, l4, l6, l1), (z, l9, l8, l5)〉
and HLN = 〈(x, l3, l5, l4), (y, l1, l6, l2), (z, l7, l5, l8)〉.
Now, ALN ⊆ KLN , BLN ⊆ HLN and hence SLN is LNS-normal.

Definition 3.6. A LNTS (SLN , τLN ) is said to be LN-urysohn space if there exist two disjoint

LNnbds Vt1 and Vt2 , containing t1 and t2 in (TLN , η) such that LNCl(Vt1) ∩ LNCl(Vt2) = φ.

Definition 3.7. Let (SLN , τLN ) be a LNTS and s ∈ (SLN , τLN ). Then the set of all points

t in (SLN , τLN ) such that s and t cannot be separated by LNS separation of SLN is called as

the LN quasi-semi-component of s.

Remark 3.8. A LN quasi semi-component of s in a LNTS (SLN , τLN ) is the intersection of

all LNSO sets containing s.

Theorem 3.9. If a LNTS is LN semi-regular and LN-T0, then the space is LN semi-T2.

Proof: Since SLN is LN-T0, there lies a LNO set ULN containing either of the points s1 or s2

in SLN . Thus, SLN\ULN is LNC set such that s1 /∈ SLN\ULN . Then, there lie disjoint LNSO

ELN , FLN with SLN\ULN ⊆ ELN , s1 ∈ FLN .

Remark 3.10. A LN semi-T2 space need not be LN semi-regular space.

Example 3.11. Let the universe of discourse be U = {a, b, c}. The set of all linguistic term is,

L = { very salt(l0), salt(l1), very sour(l2), sour(l3), bitter(l4), sweet(l5), very sweet(l6)}. Let

N. Gayathri, M. Helen, Some Characterizations of Linguistic Neutrosophic topological Spaces

Neutrosophic Sets and Systems, Vol. 58, 2023                                                                             435



SLN = {a}. Let s1〈a,l0,l2,l6〉 be a LN point in SLN and let FLN = 〈a, (l1, l0, l7)〉 be a LNSCS

in SLN such that s1 /∈ FLN . Also, ALN = 〈a, (l1, l1, l7)〉 and BLN = 〈a, (l2, l0, l6)〉 are the

LNSOSs in SLN . Then, s1 /∈ ALN but FLN ⊆ BLN respectively, which proves that SLN is not

LNS-regular.

Theorem 3.12. For each LN set ELN such that s /∈ ELN , where s ∈ SLN , there lies a LNSO

set ULN in SLN containing s with LNSCl(ULN ) ∩ ELN = φ if and only if the LN space SLN

is semi-regular.

Proof: Necessity Part: Let s ∈ SLN be arbitrary and s /∈ ELN , where ELN is any LNC set in

SLN . Then, there exists ULN ∈ LNSO(SLN , s) such that LNSCl(ULN ) ∩ ELN = φ. Thus,

ELN ⊆ SLN\LNSCl(ULN ).

Sufficiency Part: Let s ∈ SLN be arbitrary and s /∈ ELN , where ELN is any LNC set in

SLN .Then, SLN\ELN is LNO set containing s. From the hypothesis, there lies a LNSO set

ULN containing s with LNSCl(ULN ) ⊆ SLN\ELN .

Theorem 3.13. A LN space SLN is semi-regular if and only if for each LNC set ELN and

for s /∈ ELN , there lies a LNSO subsets CLN and DLN in SLN such that s ∈ CLN and

ELN ⊆ DLN . Also, LNCl(CLN ) ∩ LNCl(DLN ) = φ.

Proof: Necessity Part: Let ELN be any LNC set that is not containing the point s in SLN .

Then, there exists two disjoint LNSO sets (Cs)LN and FLN in SLN such that ELN ⊆ FLN , s ∈
CLN . Then, there lies two LNSO sets ULN and VLN with zero inter section in SLN such that

LNCl(FLN ) ⊆ VLN and s ∈ ULN , since LNCl(FLN ) is a LNC subset in SLN that is not

containing s. Then, LNCl(ULN )∩VLN = φ. Now, (Cs)LN ∩ULN is a LNSO set different from

FLN such that s ∈ CLN and ELN ⊆ FLN .

Sufficiency Part: For any LNC set ELN that is not containing the point s of SLN , there

exists LNSO subsets CLN and DLN in SLN such that s ∈ CLN and ELN ⊆ DLN . Moreover,

LNCl(CLN ) ∩ LNCl(DLN ) = φ.

Theorem 3.14. If fLN : (SLN , τLN )→ (TLN , ηLN ) is injective, LN closed and LN irresolute

function and (TLN , ηLN ) is LN semi-regular space, then SLN is LN semi-regular space.

Proof: For any s ∈ SLN and for any LN subset ELN , we have s /∈ ELN . Thus, there lie LNSO

sets ULN and VLN with zero intersection in TLN with fLN (s) ∈ ULN and fLN (ELN ) ∈ VLN .

For any LN irresolute function, the LNSO sets (fLN )−1(ULN ) and (fLN )−1(VLN ) are disjoint,

so that s ∈ (fLN )−1(ULN ) and ELN ⊆ (fLN )−1(VLN ).

Theorem 3.15. For any LN space (SLN , τLN ) the following are equivalent.

(a) the space (SLN , τLN ) is LN semi-regular.
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(b) For each s ∈ SLN and for each LN ULN containing s, there lies a LNSO set VLN

containing s such that LNSCl(VLN ) ⊆ ULN .

(c) For each non-void set ALN , different from a LNO set ULN , there lies a LNSO set VLN

such that ALN ∩ VLN /∈ φ and LNSCl(VLN ) ⊆ ULN .

(d) For each non-void set ALN , different from a LNC set ELN , there lie two LNSO sets

ULN and VLN such that ALN ∩ VLN /∈ φ and ELN ⊆ ULN .

Proof: (a)⇒ (b): Let ULN be any LNO set ULN such that s ∈ ULN . Then, SLN\ULN is LNC

set that is not containing s. Then, there lie LNSO sets VLN and WLN with zero intersection so

that SLN\ULN ⊆WLN , s ∈ VLN ⊆ LNSCl(VLN ). Suppose that s1 ∈ SLN such that s1 /∈ ULN ,

then WLN is LNSO set containing s1 such that VLN ∩WLN = φ. Now, s1 ∈ LNSCl(VLN ) and

thus LNSCl(VLN ) ⊆ ULN .

(b) ⇒ (c): Let ALN be a non-void LN set which has zero intersection with a LNO subset

ULN of SLN . Let s ∈ ALN ∩ ULN . Then, ULN is a LNSO subset VLN of SLN such that

s ∈ VLN ⊆ LNSCl(VLN ) ⊆ ULN .

(c)⇒ (d): Let ALN be a non-void LN set which has zero intersection with a LNC subset ELN

of SLN , then SLN\ELN is a LNC set such that ALN ∩ (SLN\ELN ) 6= φ. By the assumption,

there lies a LNSO set VLN with ALN ∩ VLN 6= φ and LNSCl(VLN ) ⊆ SLN\ELN .

(d) ⇒ (a): Suppose let ELN be any LNC set in SLN and s /∈ SLN . If ALN = {s}, then

ALN ∩ELN = φ. Then, there lies disjoint LNSO sets ULN and VLN such that ALN ∩VLN 6= φ

and ELN ⊆ ULN .

Theorem 3.16. Every LN semi-regular space (SLN , τLN ) is LN semi-normal.

Proof: Let ALN and BLN be any two LNC sets that has void intersection and s ∈ ALN , then

s /∈ BLN . Then, there lie two different LNSO sets Us, Vs with s ∈ Us, BLN ⊆ Vs. Thus,

ULN =
⋃
s∈ALN

Us is a LNSO set in SLN such that ALN ⊆ ULN . Moreover, ULN ∩ Vs = φ,

(i.e) (SLN , τLN ) is LN semi normal.

Remark 3.17. A LN semi-normal space need not be LN semi-regular in general, which is

clear from the following example.

Example 3.18. Let the universe of discourse be U = {x, y, z, w} and let SLN =

{x, y, z}. And LTS be as in Example (3.3). The space SLN is LNS-normal, by Exam-

ple (3.5). The LNSCS ELN is given by, ELN = 〈(x, l1, l2, l5), (y, l0, l1, l6), (z, l6, l5, l9)〉
and let the point s be s〈(x,l2,l6,l2),(y,l3,l4,l2),(z,l6,l4,l7)〉. Now, for the LNSOS’s KLN =

〈(x, l5, l6, l1), (y, l4, l6, l1), (z, l9, l8, l5)〉 , and HLN = 〈(x, l3, l5, l4), (y, l1, l6, l2), (z, l7, l5, l8)〉, the

inclusion relationship s /∈ HLN does not hold. Thus the space is not LNS-regular.

Remark 3.19. A LN semi-normal space is a LN semi-regular if and only if the LN space is

LN semi-R0.
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Example 3.20. Let the universe of discourse U and LTS be as in Example (3.3).

Let LNP be s〈(x,l1,l0,l2), (y,l1,l3,l3), (z,l4,l5,l6)〉, which is different from the LNSCS ELN =

〈(x, l1, l3, l4), (y, l1, l6, l5), (z, l5, l8, l9)〉.
The LNSOSs are given by KLN = 〈(x, l5, l6, l1), (y, l4, l6, l1), (z, l9, l8, l5)〉 , HLN =

〈(x, l3, l5, l4), (y, l1, l6, l2), (z, l7, l5, l8)〉.
Now, s /∈ HLN and ELN ⊂ KLN and thus SLN is LNS-regular.

Theorem 3.21. If (SLN , τLN ) is LN semi-R0 and semi-normal then LN space is LN semi-

regular.

Proof: Let s /∈ KLN ∈ LNC(SLN , τLN ). As the space is LN semi-R0, we have LNCl({s}) ⊆
SLN\KLN and LNCl({s}) ∩ KLN = φ. Also, there lie LNSO sets ULN and VLN with

LNCl({s}) ⊆ ULN , KLN ⊆ VLN with s ∈ ULN ,KLN ⊆ VLN and ULN ∩ VLN = φ.

Theorem 3.22. For any two LNC sets CLN , DLN of (SLN , τLN ), there lies a LNSO set

ULN ⊆ SLN containing ALN and LNCl(ULN ) ∩ DLN = φ holds if and only if the space

(SLN , τLN ) is LN semi-normal.

Proof: Necessity Part: Let SLN be a LN semi-normal space and suppose that CLN and DLN

be any two disjoint LNC sets in SLN , then CLN ⊆ SLN\DLN . Then, there lies a LNSO set

ULN with ALN ⊆ ULN ⊆ LNCl(ULN ) ⊆ SLN\DLN .

Sufficiency Part: Suppose CLN and DLN be any two disjoint LNC sets in SLN . From the

hypothesis, there lies a LNSO set ULN in SLN containing CLN and LNScl(ULN ) ∩DLN = φ.

Theorem 3.23. If fLN : (SLN , τLN ) → (TLN , ηLN ) is injective, closed and LN irresolute

function and (TLN , ηLN ) is LN semi-normal space, then SLN is LN semi-normal space.

Proof: Let ALN and BLN be any two LNC sets in SLN such that ALN ∩ BLN = φ. Now,

fLN (ALN ) and fLN (BLN ) are also LNC in TLN . Moreover, fLN is injective, f(ALN ) and

f(BLN ) are disjoint LNC in TLN . Now, there lies a LNSO ULN ⊆ SLN with fLN (ALN ) ⊆ ULN
and fLN (BLN ) ⊆ VLN , as the space TLN is LN semi-normal. As the function fLN is LN

irresolute, the reverse images (fLN )−1(ULN ) and (fLN )−1(VLN ) are disjoint LNSO in SLN

with ALN ⊆ (fLN )−1(ULN ) and BLN ⊆ (fLN )−1(VLN ) respectively.

Definition 3.24. A function fLN : (SLN , τLN ) → (TLN , ηLN ) is LN semi-totally continuous

if the reverse image of every LNSO set is a LNCO subset of (SLN , τLN ).

Theorem 3.25. Let fLN : (SLN , τLN )→ (TLN , ηLN ) be LN semi-totally continuous and fLN

be injective. Also, the LN space (TLN , ηLN ) LN semi-T1, then the LN space (SLN , τLN ) is

LNCO-T1.
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Proof: As fLN is injective, fLN (s1) 6= fLN (s2), where fLN (s1), fLN (s2) ∈ TLN . As TLN is LN

semi-T1, there lie LNSOS’s ELN and FLN with fLN (s1) ∈ ELN , fLN (s2) /∈ ELN and fLN (s2) ∈
FLN , fLN (s1) /∈ FLN . Thus, s1 ∈ (fLN )−1(ELN ), s2 /∈ f−1(ELN ) and s2 ∈ (fLN )−1(FLN ), s1 /∈
(fLN )−1(FLN ), where (fLN )−1(ELN ) and (fLN )−1(FLN ) are LNCO subsets of SLN .

Theorem 3.26. Let fLN : (SLN , τLN )→ (TLN , ηLN ) be LN semi-totally continuous and fLN

be injective. Also, the LN space (TLN , ηLN ) LN semi-T0, then the LN space (SLN , τLN ) is LN

ultra-hausdorff.

Proof: Let s1 and s2 be any two points in SLN . As fLN is injective, fLN (s1) 6= fLN (s2),

where fLN (s1), fLN (s2) ∈ TLN . As TLN is LN semi-T0, there lies a LNSO set ELN containing

fLN (s1) but not fLN (s2). Then, s1 ∈ (fLN )−1(ELN ) and s2 /∈ (fLN )−1(ELN ). As fLN is LN

semi-totally continuous, (fLN )−1(ELN ) is LNCOs in SLN . Moreover, s1 ∈ (fLN )−1(ELN ) and

s2 ∈ SLN\(fLN )−1(ELN ).

Theorem 3.27. Let fLN : (SLN , τLN )→ (TLN , ηLN ) be LN semi-totally continuous and fLN

be injective. Also, the LN space (TLN , ηLN ) LN semi-T2, then the LN space (SLN , τLN ) is LN

ultra-hausdorff.

Proof: Let s1, s2 ∈ SLN with s1 6= s2. As fLN is injective, we have, fLN (s1) 6= fLN (s2).

In addition, (TLN , ηLN ) is LN semi T2, there lie LNSOS’s KLN and HLN with fLN (s1) ∈
KLN , fLN (s2) ∈ HLN and KLN ∩ HLN = φ. Then, s1 ∈ (fLN )−1(KLN ) and s2 ∈
(fLN )−1(HLN). As fLN is LN semi-totally continuous, (fLN )−1(KLN ) and (fLN )−1(HLN )

are LNCO in SLN . Moreover, (fLN )−1(KLN ) ∩ (fLN )−1(HLN ) = (fLN )−1(KLN ∩HLN ) = φ.

Theorem 3.28. Let fLN : (SLN , τLN )→ (TLN , ηLN ) be LN semi-totally continuous, injective

and LN semi-open mapping from LNCO regular topological space (SLN , τLN ) into a LN space

(TLN , ηLN ). Then (TLN , ηLN ) is LN semi-regular.

Proof: Let KLN be a LNSC set in TLN and t /∈ KLN . Since f is LN semi-totally contin-

uous, (fLN )−1(KLN ) is LNCO set in SLN . Then, (fLN )−1(t) /∈ (fLN )−1(KLN ). As SLN is

LNCO regular, there lie distinct LNO sets ALN and BLN such that f−1LN (KLN ) ⊂ ALN

and (fLN )−1(t) ∈ BLN . Thus, KLN ⊂ fLN (ALN ) and t ∈ fLN (BLN ). Also, as the

map fLN is LNSO and injective, we have, fLN (ALN ) and fLN (BLN ) are LNSO sets and

fLN (ALN ) ∩ fLN (BLN ) = fLN (ALN ∩BLN ) = φ.

Theorem 3.29. Let fLN : (SLN , τLN )→ (TLN , ηLN ) be LN semi-totally continuous, injective

and LN semi-closed function. If TLN is LN semi-regular, then (SLN , ηLN ) is LN ultra-regular.

Proof: Let HLN be a LNC set and s /∈ HLN in (SLN , τLN ). As fLN is LNSC, fLN (HLN ) is

LNSC set in TLN , not containing fLN (s). As TLN is LN semi-regular, there lie distinct LNSOS’s
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ALN , BLN with fLN (s) ∈ ALN , fLN (HLN ) ⊂ BLN . Then, we have, s ∈ (fLN )−1(ALN ) and

HLN ⊂ (fLN )−1(BLN ). Because the function fLN is LN semi-totally continuous, the LN

sets (fLN )−1(ALN ) and (fLN )−1(BLN ) are LNCOS’s. As fLN is injective, (fLN )−1(ALN ) ∩
(fLN )−1(BLN ) = (fLN )−1(ALN ∩BLN ) = (fLN )−1(φ) = φ.

Theorem 3.30. Let fLN : (SLN , τLN ) → (TLN , ηLN ) be LN semi-totally continuous, injec-

tive and LNSO function from LNCO normal topological space (SLN , τLN ) into a LN space

(TLN , ηLN ), then (TLN , ηLN ) is LN semi-normal.

Proof: As fLN is LN semi-totally continuous, (fLN )−1(ULN ) and (fLN )−1(VLN ) are LNCOS’s

in SLN , where ULN and VLN be two different LNSC sets in TLN . As fLN is injective,

(fLN )−1(ULN ) ∩ (fLN )−1(VLN ) = (fLN )−1(φ) = φ. Then, there lies disjoint LNO’s ALN

and BLN with ULN ⊂ ALN and VLN ⊂ BLN , (i.e)fLN (ULN ) ⊂ fLN (ALN ) and fLN (VLN ) ⊂
fLN (BLN ). As fLN is injective and LNSO, fLN (ALN ) and fLN (BLN ) are disjoint LNSOS’s.

Theorem 3.31. Let any collection of LNSO sets be a LNSO set. And let (TLN , ηLN ) be a LN

urysohn space. If for two different points s1 and s2 of (SLN , τLN ), there exists a LN function

fLN : (SLN , τLN )→ (TLN , ηLN ) with fLN (s1) 6= fLN (s2) and the map fLN is LN contra-semi

continuous at s1, s2, ergo (SLN , τLN ) is LN semi-T2 space.

Proof: Let (TLN , ηLN ) be a LN urysohn space and s1 and s2 be two distinct points in SLN .

Then fLN (s1) 6= fLN (s2) in TLN . Also, since (TLN , ηLN ) is a LN urysohn space, there lie open

neighborhoods VfLN (s1) and VfLN (s2) in (TLN , ηLN ) containing fLN (s1) and fLN (s2) such that

LNCl(VfLN (s1))∩LNCl(VfLN (s2)) = φ. There lie LNSOS’s Us1 , Us2 containing respectively s1,

s2 with fLN (Us1) ⊆ LNCl(VfLN (s1)) and fLN (Us2) ⊆ LNCl(VfLN (s2)). Then, fLN (Us1∩Us2) ⊆
fLN (Us1) ∩ fLN (Us2) ⊆ LNCl(VfLN (s1)) ∩ LNCl(VfLN (s2)) = φ, (i.e) fLN (Us1 ∩ Us2) = φ.

Theorem 3.32. Let the collection of any number of LNSO’s be a LNSO set. Then, if the

map fLN is LN contra-semi continuous and injective in (SLN , τLN ) and (TLN , ηLN ) is a LN

ultra-hausdorff space, then (SLN , τLN ) is LN semi-T2 space.

Proof: For any two points s1 and s2 in SLN , we have fLN (s1) 6= fLN (s2) as the map fLN

is injective. Then, there lie two LNCOS’s E1, E2 with fLN (s1) ∈ E1, fLN (s2) ∈ E2 and

E1∩E2 = φ and there lie LNOS’s H1, H2 with fLN (H1) ⊆ E1 and fLN (H2) ⊆ E2 respectively.

Then, H1 ⊆ (fLN )−1(E1) and H2 ⊆ (fLN )−1(E2),(i.e) H1∩H2 ⊆ (fLN )−1(E1)∩(fLN )−1(E2) =

(fLN )−1(E1 ∩ E2) = (fLN )−1(φ). Therefore, H1 ∩H2 = φ.

Theorem 3.33. Let LN function fLN : (SLN , τLN ) → (TLN , ηLN ) be LN contra-

semicontinuous, injective and LN closed function. Then the LN space (SLN , τLN ) is LN semi-

normal if (TLN , ηLN ) is LN-ultra normal.
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Proof: Let B1 and B2 be two different LNC sets in (SLN , τLN ), then fLN (B1) and fLN (B2)

are different LNC sets in (TLN , ηLN ), as the mapping fLN is injective and LN closed. There

lie two LNCOS’s U1, U2 which separates fLN (B1) and fLN (B2) in TLN respectively. Thus,

fLN (B1) ⊆ U1 and fLN (B2) ⊆ U2,(i.e)B1 ⊆ (fLN )−1(U1) and B2 ⊆ (fLN )−1(U2) such that

(fLN )−1(U1) ∩ (fLN )−1(U2) = φ. It is shown that (fLN )−1(U1) and (fLN )−1(U2) are two

different LNSO with B1 ⊆ (fLN )−1(U1) and B2 ⊆ (fLN )−1(U2) in SLN .

Definition 3.34. A LN graph LNGR(fLN ) of a function fLN : (SLN , τLN ) → (TLN , ηLN ) is

LN contra-semi closed graph if a LNSO set ELN and a LNC set KLN lie with the property

(ELN ∩KLN ) ∩ LNGR(fLN ) = φ for all (s, t) ∈ (SLN × TLN ) LNGR(fLN ).

Theorem 3.35. Let any union of LNSO sets be a LNSO set and fLN : (SLN , τLN ) →
(TLN , ηLN ) be a function and gLN : (SLN , τLN ) → (SLN , τLN ) × (TLN , ηLN ) be the LN graph

function given by g(s) = (s, fLN (s)) for each s ∈ SLN . Then gLN is LN contra-semi continuous

if and only if the map fLN is LN contra-semi continuous.

Proof: Necessity Part: Let VLN be any LNC set of (SLN , τLN )× (TLN , ηLN ) containing gLN (s)

where s ∈ SLN . Then VLN ∩ ({s} × {TLN}) containing gLN (s). Moreover {s} × {TLN}
is homeomorphic to TLN and hence {t : (s, t) ∈ VLN} is a LNC subset of TLN . As fLN

is LN contra-semi continuous,
⋃
{(fLN )−1(t) : (s, t) ∈ VLN} is LNSO in SLN such that

s ∈
⋃
{(fLN )−1(t) : (s, t) ∈ VLN} ⊆ (gLN )−1(VLN ). Thus, (gLN )−1(VLN ) is LNSO.

Sufficiency Part: Let ULN be any LNC subset of TLN . Then, SLN × ULN = SLN ×
LNCl(ULN ) = LNCl(SLN×ULN ) ⊆ SLN×TLN and SLN×ULN is LNC. Then, (gLN )−1(SLN×
ULN ) is LNSO in SLN as LN contra- semicontinuous. Moreover, (gLN )−1(SLN × ULN ) =

(fLN )−1(ULN ).

Lemma 3.36. A LN graph LNGR(fLN ) of a function fLN : (SLN , τLN )→ (TLN , ηLN ) is LN

contra-semi closed graph if there exist a LNSO set ELN and a LN closed set KLN such that

fLN (ELN ) ∩KLN = φ.

Theorem 3.37. Let fLN : (SLN , τLN )→ (TLN , ηLN ) be an injective function and LN contra-

semi closed graph, then SLN is LN semi-T1 space.

Proof: Since fLN is LN contra-semi closed graph, (s, f(t)) ∈ (SLN×TLN ) LNGR(fLN ), where

s and t are different points of SLN . Then by lemma, (3.25), a LNSO set ULN lies in SLN that

contain s and a LNC set VLN lies in TLN that contain fLN (t) with fLN (ULN ) ∩ VLN = φ.

Ergo, SLN is LN semi-T1 space, as t /∈ ULN .

Theorem 3.38. Let fLN : (SLN , τLN ) → (TLN , ηLN ) be LN contra-semi continuous where

(TLN , ηLN ) is LN-urysohn space, then the graph of fLN is LN contra-semi closed in (SLN ×
TLN ).
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Proof: Let (s, t) ∈ (SLN ×TLN ) LNGR(fLN ), then fLN (s) 6= t. Now, there lie LNO sets ELN

and FLN in TLN such that fLN (s) ∈ ELN and t ∈ FLN such that LNCl(ELN )∩LNCl(FLN ) =

φ. Now, there exists a LNSO set KLN ∈ (SLN , s) such that fLN (KLN ) ⊆ LNCl(ELN ),

as the function fLN is LN contra-semi continuous. Thus, fLN (ELN ) ∩ LNCl(FLN ) ⊆
LNCl(ELN ) ∩ LNCl(FLN ) = φ. Then, LNGR(fLN ) is LN contra-semi closed, by lemma

(3.25).

Conclusion:

In this study, the characterization of linguistic neutrosophic spaces and cl-open spaces are

discussed. The inter connections among these also have studied. Appropriate examples are

given to explicate the results and connections. We hope that these inception works will be

useful for scholars to progress the research in linguistic neutrosophic topology.
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Abstract. This study provides an innovative approach to neutrosophic algebraic structures by introducing a

new structure called Neutrosophic Soft Cubic T-ideal (NSCTID), which combines T-ideal (TID) and Neutro-

sophic Soft Cubic Sets (NSCSs) within the framework of PS-Algebra. Within the already-existing neutrosophic

cubic structures, the addition of soft sets with the characteristics of TID makes this structure more desirable.

The theoretical development of the proposed structure includes the application of fundamental ideas as union,

intersection, the Cartesian product, and homomorphism. We also introduce the notions of NSCTID-translation

and NSCTID-multiplication to further enhance the structure of NSCTID. By applying the idea of translation

and multiplication, we offer improved algorithm for neutrosophic cubic sets to deal with different parameters

that are satisying the TID’s distinctive characteristics. Through this thorough research, we offer an elementary

understanding of NSCTID and its capabilities, providing the way to new algebraic structures.

Keywords: Neutrosophic soft cubic set; T-ideal; PS-algebra; Cartesian product; Homomorphism; Translation

and Multiplication.

—————————————————————————————————————————-

1. Introduction

Zadeh was the first who put up the notion of Fuzzy Sets (FSs) in 1965, which contained a

membership degree for each element say “t” [1,2]. The Intuitionistic FSs (IFSs) was established

by Atanassov [3], which is a general form of FS on a universe U in which non-membership degree

was taken into consideration and presented Interval-Valued IFSs which are undoubtedly both
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IVFS and IFS extensions. Rahman et al. [4] employed a fresh approach of a refined intuitionis-

tic fuzzy set to conceptualize its fundamental characteristics through set theoretic procedures

such as extended union as well as intersection and same for restricted. The Neutrosophic Sets

(NSs) was developed by Smarandache [5] by proposing the concept of the indeterminate degree

of an element as an independent element in his 1995 manuscript, which was later published

in 1998. The Interval -Valued NSs was first given by Wang et al. [6]. A new methodology for

simulating fuzziness and uncertainty was established by Molodtsov in 1999 [7], which is called

“soft set theory”. Saeed et al. [8] conducted an exhaustive investigation of the idea of soft

elements as well as soft members in the respect of soft sets (SSs). Maji et al. [9,10] expanded

SSs to IFSSs and NSSs. Smarandache [11] generalized the soft set to the hypersoft set by

transforming the function F into a multi-attribute function and then introduced the hybrids

of Crisp, Fuzzy, Intuitionistic Fuzzy, Neutrosophic, and Plithogenic Hypersoft Set. In [12],

Distance and similarity measures using Max-Min operators were proposed in the environment

of neutrosophic hypersoft sets with application in MCDM. The concept of cubic sets considers

only the intervals of membership and ignores the segments of non-membership information.

However, expressing the degree of membership in fuzzy sets with exact values can be difficult

in real-world situations. In such cases, it may be simple to represent ambiguity both interval

and exact values instead of just one. Therefore, Jun et al. [13] proposed the cubic ISs which

combines two sets to represent membership degrees: an interval-valued IFS and an IFS. This

hybrid approach can be useful in decision-making when dealing with uncertain judgments. A

theoretical development of cubic pythagorean fuzzy soft set was established with its appli-

cation in MADM. Based on the established TOPSIS method and aggregation operators, the

decision-making algorithm is proposed under an intuitionistic fuzzy hypersoft environment to

resolve uncertain and confusing information [14, 15]. By combining the NS and IVNS, Ali et

al. [16] proposed the definition of NCS. In [17], Mumtaz et al. made an adjustable approach to

NCS based decision making by similarity measure and is employed in pattern recognition to

show that they can be successfully applied to problems that contain uncertainties. The NCSS

was first introduced and some of its characteristics were proved by Chinnadurai et al. [18]

in 2016. Gulistan et al. [19] developed a more general approach of neutrosophic cubic soft

matrices and used it in MCDM-problems. In 1978, Iseki et al. were the first who established

the idea of BCK-algebra [20]. In 1980, BCI-algebras were proposed [21]. The algebra named

as BCK is a subclass of BCI-algebras. PS-algebras is a generalization of algebras like BCI,

BCK, Q and KU and was first explored in [22] by Priya et al.. Shah et al. investigated images

as well as pre images of anti-homomorphism for semiprime, strongly prime, irreducible, and

highly irreducible fuzzy ideals in rings [23, 24]. They also established the ideas of strongly
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primary fuzzy ideals and strongly irreducible fuzzy ideals in ring with unity as well as com-

mutativity and examined their importance in a Leskerian ring. The research conducted by

Senapati et al. [25] examined the cubic intuitionistic q-ideals within BCI-algebras. Kandasamy

et al. [26] were the first who introduced T- ideals, IFT-ideals, and IF closed T-ideals. Priya et

al. [27] investigated the concept of fuzzy translation and fuzzy multiplication in the context of

PS-algebra, In [28, 29], Khalid et al. established the MBJ-neutrosophic T-ideal in B-algebra

and described several of its properties. The concept of NC translation and multiplication

of BF-subalgebra and BF-ideal was also introduced. In [30], they presented the ideas of IF

Alpha-Translation as well as multiplication and IF Magnified Beta-Alpha-Translation in the

context of PS-algebra. This paper introduces the Neutrosophic Soft Cubic Set (NSCS) and

its application in PS-algebra through the concept of T-ideal. Section two provides relevant

definitions, while section three presents the concept of NSCTID in PS algebra. Section four

examines NSCTID’s fundamental properties, followed by an exploration of its translation and

multiplication in section five. Finally, section six summarizes the results and suggests future

directions for research.

2. Preliminaries

To provide a clear understanding of the proposed work, some essential definitions that will

be utilized throughout the explanation are given.

Definition 2.1. [22]:Let P be a set with the constant ′0′ and the binary operation ′∗′ which
is nonempty. If P satisfies the axioms below, it is regarded to be PS-algebra.

i. ϑ1 ∗ ϑ1 = 0

ii. ϑ1 ∗ 0 = 0

iii. ϑ1 ∗ ϑ2 = 0, and ϑ2 ∗ ϑ1 = 0 implies ϑ1 = ϑ2 , for all ϑ1, ϑ2 ∈ P.

In any PS-Algebra (P, ∗, 0), the following characteristics also satisfy for every ϑ1, ϑ2 ∈ P.

iv. ϑ1 ∗ (ϑ2 ∗ ϑ1) = ϑ2 ∗ (ϑ1 ∗ ϑ1)

v. ϑ2 ∗ (ϑ1 ∗ (ϑ2 ∗ ϑ1)) = 0

vi. ϑ1 ∗ (ϑ1 ∗ (ϑ1 ∗ ϑ2)) = ϑ1 ∗ ϑ2

vii. ϑ2 ∗ (ϑ1 ∗ (ϑ1 ∗ ϑ2)) = 0

Definition 2.2. [26]:Let I be a nonempty subset of P. I be an ideal of P if:

i. 0 ∈ I,

ii. ϑ1 ∗ ϑ2 ∈ I and ϑ2 ∈ I implies ϑ1 ∈ I,

A nonempty subset I be the T-ideal if it satisfies (i) with

iii. (ϑ1 ∗ ϑ2) ∗ ϑ3 ∈ I and ϑ2 ∈ I implies ϑ1 ∗ ϑ3 ∈ I for all ϑ1, ϑ2, ϑ3 ∈ P.

Definition 2.3. [26]:An IFS is said to be an IFT-ideal of P if it these three conditions holds:

i. αA(0) ≥ αA(ϑ1), βA(0) ≤ βA(ϑ1),
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ii. αA(ϑ1 ∗ ϑ3) ≥ min{αA((ϑ1 ∗ ϑ2) ∗ ϑ3), αA(ϑ2)},
iii. βA(ϑ1 ∗ ϑ3) ≤ max{βA((ϑ1 ∗ ϑ2) ∗ ϑ3), βA(ϑ2)}, for all ϑ1, ϑ2 ∈ P.

Definition 2.4. [5]:A set in P represented by

A = {⟨ϑ1, αA(ϑ1), γA(ϑ1), βA(ϑ1)⟩ | ϑ1 ∈ P}

is called NS in which the mapping αA(ϑ1) : P →]0−, 1+[γA(ϑ1) : P →]0−, 1+[ and βA(ϑ1) :

P →]0−, 1+[ denotes the functions of truth, indeterminate, and falsity membership respectively,

and satisfy

0− ≤ αA(ϑ1) + γA(ϑ1) + βA(ϑ1) ≤ 3+.

For an interval-valued NS, Â in P, the mappings α̂A(ϑ1), γ̂A(ϑ1), β̂A(ϑ1) ⊂ [0, 1] with α̂A(ϑ1) =

[α̂AL
(ϑ1), α̂AU

(ϑ1)], β̂A(ϑ1) = [β̂AL
(ϑ1), β̂AU

(ϑ1)] and γ̂A(ϑ1) = [γ̂AL
(ϑ1), γ̂AU

(ϑ1)].

Definition 2.5. [16]:A NCS in P is defined as C = ⟨Â,A⟩ in which Â is an interval-valued

NS and A is the NS. The collection of all NCSs in P is represented by C(P).

Definition 2.6. [7]:Let E be the collection of parameters and V be the universal set. The

set SK which is defined as ŜK = {⟨v, S(e)⟩, v ∈ V, e ∈ K,S(e) ∈ P(V)} is said to be a soft set

over V. Where S : E → P(V) in which the P(V) represents the power set of V and K ⊂ E.

Definition 2.7. [18]:A SS denoted by ŜK is said to be a NCSS in P if ŜK is the mapping from

E to the set C(P). i.e. ŜK : E → C(P) where K ⊂ E. The NCSS is denoted by ŜK = ⟨B̂,B⟩.
Where B̂ = {⟨ϑ1, αB̂ei

(ϑ1), γB̂ei
(ϑ1), βB̂ei

(ϑ1)⟩ | ϑ1 ∈ P, ei ∈ E} is the interval-valued NSS and

B = {⟨ϑ1, αBei
(ϑ1), γBei

(ϑ1), βBi(ϑ1)⟩ | ϑ1 ∈ P, ei ∈ E} is the NSS.

Definition 2.8. [29]:Let C = ⟨Â,A⟩ be an NCS of P and for the set Â, the µ, v ∈ [[0, 0],Θ]

and λ ∈ [[0, 0], I], where for the set A, µ, v ∈ [0,Γ] and λ ∈ [0, ϵ]. An object of the form

CT
µ,v,λ = ⟨ (Â)Tµ,v,λ, (A)Tµ,v,λ⟩ is called an NC-Translation of C, when

(ÂT)
Tr
µ (t1) = ÂT(t1) + µ, (ÂI)

Tr
v (t1) = ÂI(t1) + v, (ÂF)

Tr
λ (t1) = ÂF(t1)− λ

(AT)
Tr
µ (t1) = AT(t1) + µ, (AI)

Tr
v (t1) = AI(t1) + v, (AF)

Tr
λ (t1) = AF(t1)− λ

for all t1 ∈ P.

Definition 2.9. [29]:Let C = ⟨Â,A⟩ be an NCS of P and σ ∈ [0, 1]. A set having the

representation as CMp
σ = ⟨((κT)Mp

σ , (κI)
Mp
σ , (κF)

Mp
σ ), ((vT)

Mp
σ , (vI)

Mp
σ , (vF)

Mp
σ )⟩ is called an NC-

Multiplication of C, when

(κT)
Mp
δ (t1) = δ · κT(t1), (κI)Mp

δ (t1) = δ · κI(t1), (κF)Mp
δ (t1) = δ · κF(t1)

(vT)
Mp
δ (t1) = δ · vT(t1), (vI)Mp

δ (t1) = δ · vI(t1), (vF)Mp
δ (t1) = δ · vF(t1)

for all t1 ∈ P.
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3. Neutrosophic soft cubic T-ideal

This section aims to present the notion of a NSCTID, accompanied by an illustrative ex-

ample. Additionally, we explore several properties that are pertinent to this concept.

Definition 3.1. Let an NSC-set which is denoted as K = ⟨(N̂K)
T,I,F
ei , (AK)

T,F
ei ⟩, where N̂Kei

and AKei
represents an interval-valued NSS and NSS respectively in PS-algebra P. The set

K is termed as Neutrosophic soft cubic T-ideal (NSCTID) in P if it achieves the following

assertions:

i. (N̂K)
T
ei
(0) ≥ (N̂K)

T
ei
(t1), (N̂K)

I
ei
(0) ≥ (N̂K)

I
ei
(t1), (N̂K)

F
ei
(0) ≥ (N̂K)

F
ei
(t1),

(AK)
T
ei
(0) ≤ (AK)

T
ei
(t1), (AK)

I
ei
(0) ≤ (AK)

I
ei
(t1), (AK)

F
ei
(0) ≤ (AK)

F
ei
(t1).

ii. (N̂K)
T
ei
(t1 ∗ t3) ≥ rmin{(N̂K)

T
ei
((t1 ∗ t2) ∗ t3), (N̂K)

T
ei
(t2)},

(N̂K)
I
ei
(t1 ∗ t3) ≥ rmin{(N̂K)

I
ei
((t1 ∗ t2) ∗ t3), (N̂K)

I
ei
(t2)},

(N̂K)
F
ei
(t1 ∗ t3) ≥ rmin{(N̂K)

F
ei
((t1 ∗ t2) ∗ t3), (N̂K)

F
ei
(t2)},

iii. (AK)
T
ei
(t1 ∗ t3) ≤ max{(AK)

T
ei
((t1 ∗ t2) ∗ t3), (AK)

T
ei
(t2)}

(AK)
I
ei
(t1 ∗ t3) ≤ max{(AK)

I
ei
((t1 ∗ t2) ∗ t3), (AK)

I
ei
(t2)},

(AK)
F
ei
(t1 ∗ t3) ≤ max{(AK)

F
ei
((t1 ∗ t2) ∗ t3), (AK)

F
ei
(t2)},

For all t1, t2, t3 ∈ P. Where (N̂K)
T,I,F
ei and (AK)

T,I,F
ei ∈ [0, 1].

Example 3.2. Let P = {0, t1, t2, t3} be a PS-algebra with the following Cayley table. We

Table 1. Cayley table of (P, ∗, 0).

∗ 0 t1 t2 t3

0 0 t2 t1 t3

t1 0 0 0 t2

t2 0 0 0 t2

t3 0 t2 t2 0

define a NSCS represented as K = ⟨N̂ei ,Aei⟩ in P as in Table 2 and Table 3. The set K with

the aforementioned values satisfies all of the requirements of the definition 3.1 above.

The calculations below show a few outcomes.

[0.5, 0.7] = (N̂K)
T
ei
(t1 ∗ t3) = (N̂K)

T
ei
(t2) ≥ rmin{(N̂K)

T
ei
(t3), (N̂K)

T
ei
(t2)} = rmin{[0.4, 0.6], [0.5, 0.7]},

[0.4, 0.6] = (N̂K)
I
ei
(t1 ∗ t3) = (N̂K)

I
ei
(t2) ≥ rmin{(N̂K)

I
ei
(t3), (N̂K)

I
ei
(t2)} = rmin{[0.3, 0.5], [0.4, 0.6]},

[0.4, 0.5] = (N̂K)
F
ei
(t1 ∗ t3) = (N̂K)

F
ei
(t2) ≥ rmin{(N̂K)

F
ei
(t3), (N̂K)

F
ei
(t2)} = rmin{[0.2, 0.4], [0.4, 0.5]},
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Table 2. Interval-valued NSS (N̂ei).

∗ 0 t1 t2 t3

(N̂K)
T
ei

[0.6, 0.8] [0.3, 0.6] [0.5, 0.7] [0.4, 0.6]

(N̂K)
I
ei

[0.5, 0.7] [0.3, 0.4] [0.4, 0.6] [0.3, 0.5]

(N̂K)
F
ei

[0.4, 0.9] [0.3, 0.6] [0.4, 0.5] [0.2, 0.4]

Table 3. NSS (Aei).

∗ 0 t1 t2 t3

(AK)
T
ei

0.2 0.3 0.5 0.6

(AK)
I
ei

0.5 0.6 0.8 1

(AK)
F
ei

0.3 0.7 0.4 0.5

0.5 = (AK)
T
ei
(t1 ∗ t3) = (AK)

T
ei
(t2) ≤ max{(AK)

T
ei
(t3), (AK)

T
ei
(t2)} = 0.6,

0.8 = (AK)
T
ei
(t1 ∗ t3) = (AK)

T
ei
(t2) ≤ max{(AK)

T
ei
(t3), (AK)

T
ei
(t2)} = 1,

0.4 = (AK)
T
ei
(t1 ∗ t3) = (AK)

T
ei
(t2) ≤ max{(AK)

T
ei
(t3), (AK)

T
ei
(t2)} = 0.5

Hence K = ⟨(N̂K)
T,I,F
ei ,AK)

T,I,F
ei ⟩ is NSCTID in P.

Theorem 3.3. Every NSCTID K = ⟨(N̂K)T,I,F
ei , (AK)

T,I,F
ei ⟩ of P fulfills the following inequal-

ities for all x, t1, t2, t3 ∈ P.

i. If t1 ∗ t2 ≤ t3, then

(N̂K)
T,I,F
ei

(t1 ∗ x) ≥ rmin{(N̂K)
T,I,
ei

(t3), (N̂K)
T,I,F
ei

(t2)}

(AK)
T,I,F
ei

(t1 ∗ x) ≤ max{(AK)
T,I,F
ei

(t3), (AK)
T,I,F
ei

(t2)}.

Proof. Let x, t1, t2, t3 ∈ P such that t1 ∗t2 = t3. Now, (N̂K)
T,I,F
ei (t1 ∗x) ≥ {rmin{(N̂K)

T,I,F
ei ((t1 ∗

t2) ∗ x), (N̂K)
T,I,F
ei (t2)} ≥ rmin{rmin{(N̂K)

T,I,F
ei (((t1 ∗ t3) ∗ t2) ∗ x), (N̂K)

T,I,F
ei (t3)}, (N̂K)

T,F
ei (t2)}

= rmin{rmin{(N̂K)
T,I,F
ei (0), (N̂K)

T,I,F
ei (t3)}, (N̂K)

T,I,F
ei (t2)} = rmin{(N̂K)

T,I
ei (t3), (N̂K)

T,I,F
ei (t2)}

(AK)
T,I,F
ei (t1 ∗x) ≤ {max{(AK)

T,I
ei ((t1 ∗ t2) ∗x), (AK)

T,IF
ei (t2)} ≤ max{max{(AK)

T,I,F
ei (((t1 ∗ t3) ∗

t2)∗x)), (AK)
T,I,F
ei (t3)}, (AK)

T,F
ei (t2)} = max{max{(AK)

T,I,F
ei (0), (AK)

T,I,F
ei (t3)}, (AK)

T,F
ei (t2)} =

max{(AK)
T,,F
ei (t3), (AK)

T,F
ei (t2)}.

Hence

(N̂K)
T,I,F
ei

(t1 ∗ x) ≥ rmin{(N̂K)
T,IF
ei

(t3), (N̂K)
T,I,F
ei

(t2)}

(AK)
T,IF
ei

(t1 ∗ x) ≤ max{(AK)
T,IF
ei

(t3), (AK)
T,I,F
ei (t2)}

forall t1, t2, t3 ∈ P.
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ii. If t1 ≤ t2, then

(N̂K)
T,I,F
ei

(t1 ∗ x) ≥ (N̂K)
T,I,F
ei

(t2)

(AK)
T,I,F
ei

(t1 ∗ x) ≤ (AK)
T,I,F
ei

(t2)

for all x, t1, t2, t3 ∈ P.

Proof. Let x, t1, t2, t3 ∈ P such that t1 ≤ t2 → t1∗t2 = 0, Now, (N̂K)
T,I,F
ei (t1∗x) ≥ {rmin{(N̂K)

T,I,F
ei ((t1 ∗ t2) ∗ x), (N̂K)

T,I,F
ei (t2)} = {rmin{(N̂K)

T,F
ei (0), (N̂K)

T,F
ei (t2)} = (N̂K)

T,F
ei (t2).

And

(AK)
T,I,F
ei (t1∗x) ≤ {max{(AK)

T,I,F
ei ((t1∗t2)∗x), (AK)

T,I,F
ei (t2)}. = {max{(AK)

T,I,F
ei (0), (AK)

T,I,F
ei

(t2)}} = (AK)
T,IF
ei (t2).

Hence (N̂K)
T,I,F
ei (t1∗x) ≥ (N̂K)

Ti,IF
ei (t2) and (AK)

T,I,F
ei (t1∗x) ≤ (AK)

T,I,F
ei (t2) for all t1, t2, t3 ∈ P.

iii.
((N̂K)

T,I,F
ei

(t1 ∗ (t2 ∗ t1)) ∗ x) ≥ (N̂K)
T,I,F
ei

(t2)

((AK)
T,I,F
ei

(t1 ∗ (t2 ∗ t1)) ∗ x) ≤ (AK)
T,I,F
ei

(t2).

Proof. Let K is an NSCTID. Then, (N̂K)
T,I,F
ei ((t1∗(t2∗t1))∗x) ≥ rmin{(N̂K)

T,I
ei (((t1∗(t2∗t1))∗

t2)∗x), (N̂K)
T,I,F
ei (t2)} = rmin{(N̂K)

T,I
ei (0), (N̂K)

T,IF
ei (t2)} = (N̂K)

T,I
ei (t2), (AK)

T,I,F
ei ((t1∗(t2∗t1))∗

x) ≤ max{(AK)
T,I,F
ei (((t1 ∗ (t2 ∗ t1))∗ t2)∗x), (AK)

T,I,F
ei (t2)} = max{(AK)

T,F
ei (0), (AK)

T,F
ei (t2)} =

(AK)
T,I,F
ei (t2).

Hence
(N̂K)

T,I,F
ei

((t1 ∗ (t2 ∗ t1)) ∗ x) ≥ (N̂K)
T,I,F
ei

(t2)

(AK)
T,I,F
ei

((t1 ∗ (t2 ∗ t1)) ∗ x) ≤ (AK)
T,F
ei

(t2),

for all x, t1, t2, t3 ∈ P.

Theorem 3.4. Suppose K = ⟨(N̂K)
T,I,F
ei , (AK)

T,,F
ei ⟩ and L = ⟨(N̂L)

T,I,F
ei , (AL)

T,I,F
ei ⟩ are NSC-

TIDs of P. Then their union K ∪ L is also an NSCTID of P.

Proof. If t1, t2 ∈ K ∪ L, then t1, t2 ∈ K and t1, t2 ∈ L. Then, (N̂ei)
T,I,F
KUL (0) = (N̂ei)

T,I,F
KUL (t1 ∗ t1)

= rmax{(N̂K)
T,IF
ei (t1 ∗ t1), (N̂L)

T,I,F
ei (t1 ∗ t1)} ≥ rmax{rmin{(N̂K)

T,I,F
ei (t1), (N̂K)

T,I,F
ei (t1)}, rmin

{(N̂L)
T,I,F
ei (t1), (N̂L)

T,I,F
ei (t1)}} = rmax{(N̂K)

T,I,F
ei (t1), (N̂L)

T,I,F
ei (t1)} = (N̂ei)

T,I,F
KUL (t1), And (Aei)

T,I,F
K∪L (0) = (Aei)

T,I,F
K∪L (t1 ∗ t1) = min{(AK)

T,I,F
ei (t1 ∗ t1), (AL)

T,I,F
ei (t1 ∗ t1)} ≤ min{max{(AK)

T,I,F
ei

(t1), (AK)
T,I,F
ei (t1)},max{(AL)

T,I,F
ei (t1), (AL)

T,I,F
ei (t1)}} = min{(AK)

T,I,F
ei (t1), (AL)

T,I,F
ei (t1)} = (

Aei)
T,I,F
KUL (t1). Thus (N̂ei)

T,I,F
K∪L (0) ≥ (N̂ei)

T,I,F
K∪L (t1) and (Aei)

T,I,F
KUL (0) ≤ (Aei)

TI,F
K∪L(t1).

Now, (N̂ei)
T,I,F
KUL (t1 ∗ t3) = rmax{(N̂K)

T,I,F
ei (t1 ∗ t3), (N̂L)

T,I,F
ei (t1 ∗ t3)} ≥ rmax{rmin{(N̂K)

T,I,F
ei (

(t1 ∗ t2)∗ t3), (N̂K)
T,I,F
ei (t2)}, rmin{(N̂L)ei((t1 ∗ t2)∗ t3), (N̂L)

T,I,F
ei (t2)}} = rmin{rmax{(N̂K)

T,I,F
ei

((t1∗t2)∗t3), (N̂L)
T,I,F
ei ((t1∗t2)∗t3)} rmax{(N̂K)

T,IF
ei (t2), (N̂L)

T,I,F
ei (t2)}} = rmin{(N̂ei)

T,I,F
KUL ((t1∗

t2) ∗ t3), (N̂ei)
T,I,F
KUL (t2)}, And (Aei)

T,I,F
KUL (t1 ∗ t3) = min{(AK)

T,I,F
ei (t1 ∗ t3), (AL)

T,I,F
ei (t1 ∗ t3)}
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≤ min{max{(AK)
T,F
ei ((t1 ∗ t2) ∗ t3), (AK)

T,I,F
ei (t2)}, max{(AL)

T,F
ei ((t1 ∗ t2) ∗ t3), (AL)

T,I,
ei (t2)}}

= max{min{(AK)
T,I,F
ei ((t1 ∗ t2)∗ t3), (AL)

T,I,F
ei ((t1 ∗ t2)∗ t3)}, min{(AK)

T,I,F
ei (t2), (AL)

T,I,F
ei (t2)}}

= max{(Aei)
T,I,F
KUL ((t1 ∗ t2) ∗ t3), (Aei)

T,I,
KUL(t2)}

Hence the union ” K ∪ L ” is also an NSCTID of P.

Theorem 3.5. Suppose K = ⟨(N̂K)
T,I,F
ei , (AK)

T,I,F
ei ⟩ and L = ⟨(N̂L)

T,I,F
ei , (AL)

T,I,F
ei ⟩ are two

NSCTIDs of a PS-algebra P. Then the intersection K ∩ L is also NSCTID of P.

Proof. Let t1, t2 ∈ K ∩ L, then t1, t2 ∈ K and t1, t2 ∈ L. As (N̂ei)
T,I,F
K∩L (0) = (N̂ei)

T,I,F
K∩L (t1 ∗ t1)

= rmin{(N̂K)
T,I,F
ei (t1 ∗ t1), (N̂L)

T,I,F
ei (t1 ∗ t1)} ≥ rmin{rmin{(N̂K)

T,I,F
ei (t1), (N̂K)

T,I,F
ei (t1)}, rmin{

(N̂L)
T,I,F
ei (t1), (N̂L)

T,I,F
ei (t1)}} = rmin{(N̂K)

T,I,F
ei (t1), (N̂L)

T,I,F
ei (t1)}= (N̂ei)

T,I,F
K∩L (t1). And (Aei)

T,I,F
K∩L (0) = (Aei)

T,I,F
K∩L (t1 ∗ t1) = max{(AK)

T,I,F
ei (t1 ∗ t1), (AL)

T,I,F
ei (t1 ∗ t1)} ≤ max{max{(AK)

T,I,F
ei

(t1), (AK)
T,I,F
ei (t1)},max{(AL)

T,I,F
ei (t1), (AL)

T,I,F
ei (t1)}} = max{(AK)

T,I,F
ei (t1), (AL)

T,I,F
ei (t1)} = (

Aei)
T,I,F
K∩L (t1). Thus(N̂ei)

T,I,F
K∩L (0) ≥ (N̂ei)

T,I,F
K∩L (t1) and (Aei)

T,I,F
K∩L (0) ≤ (Aei)

T,IF
K∩L(t1).

Now, (N̂ei)
T,I,F
K∩L (t1∗t3) = rmin{(N̂K)

T,I,F
ei (t1∗t3), (N̂L)

T,I,F
ei (t1∗t3)} ≥ rmin{rmin{(N̂K)

T,I,F
ei ((t1∗

t2)∗t3), (N̂K)
T,I,F
ei (t2)}, rmin{(N̂L)

T,F
ei ((t1∗t2)∗t3), (N̂L)

T,I,F
ei (t2)}} = rmin{rmin{(N̂K)

T,IF
ei ((t1∗

t2) ∗ t3), (N̂L)
T,I,F
ei ((t1 ∗ t2) ∗ t3)} rmin{(N̂K)

T,IF
ei (t2), (N̂L)

T,I,F
ei (t2)}} = rmin{(N̂ei)

T,I,F
K∩L ((t1 ∗

t2) ∗ t3), (N̂ei)
T,I,F
K∩L (t2)}, And AeiK∩L(t1 ∗ t3) = max{(AK)

T,I,F
ei (t1 ∗ t3), (AL)

T,I,F
ei (t1 ∗ t3)} ≤

max{max{(AK)
T,I,F
ei ((t1 ∗ t2) ∗ t3), (AK)

T,I,F
ei (t2)}, max{(AL)

T,I,F
ei ((t1 ∗ t2) ∗ t3), (AL)

T,I,F
ei (t2)}}

= max{max{(AK)
T,I,F
ei ((t1∗t2)∗t3), (AL)

T,I,F
ei ((t1∗t2)∗t3)}, max{(AK)

T,I,F
ei (t2), (AL)

T,I,F
ei (t2)}}

= max{(Aei)
T,I,F
K∩L ((t1 ∗ t2) ∗ t3), (Aei)

T,I,F
K∩L (t2)}

Hence, K ∩ L is an NSCTID of P.

4. Cartesian product and Homomorphism of NSCTID

In this section, the interpretation of the cartesian product and homomorphism of NSCTID

is given by proving some theorems.

Definition 4.1. Let K = ((N̂K)
T,I,F
ei , (AK)

T,I,F
ei ) and L = ((N̂L)

T,I,F
ei , (AL)

T,I,F
ei ) are two

NSCTIDs of R and P respectively. The cartesian product K × L = (R × P, (N̂K)
T,I,F
ei ×

N̂L)
T,I,F
ei , (AK)

T,I,F
ei × (AL)

T,I,F
ei ) is defined as:

(N̂K)
T,I,F
ei

× (N̂L)
T,I,F
ei

(t1, t2) ≥ rmin{(N̂K)
T,IF
ei

(t1), (N̂L)
T,I,F
ei

(t2)}

(AK)
T,I,F
ei

× (AL)
T,I,F
ei

(t1, t2) ≤ max{(AK)
T,I,F
ei

(t1), (AL)
T,I,F
ei

(t2)}.

Where (N̂K)
T,I,F
ei × (N̂L)

T,I,F
ei : R× P → [0, 1] and (AK)

T,I,F
ei × (AL)

T,I,F
ei : R× P → [0, 1] for all

t1 ∈ R and t2 ∈ P.

Theorem 4.2. Let K and L be two NSCTIDs of P, then K× L is an NSCTID of R× P.
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Proof. Let R and P be two PS-algebras.For any t1, t2 ∈ R × P, We have ((N̂K)
T,I,F
ei ×

(N̂L)
T,I,F
ei )(0, 0) = rmin{(N̂K)

T,I,F
ei (0), (N̂L)

T,I,F
ei (0)} ≥ rmin{(N̂K)

T,F
ei (t1), (N̂L)

T,F
ei (t2)} =

((N̂K)
T,F
ei × (N̂L)

T,I,F
ei )(t1, t2)((AK)

T,I,F
ei × (AL)

T,I,F
ei )(0, 0) = max{(AK)

T,F
ei (0), (AL)

T,I,F
ei (0)}

≤ max{(AK)
T,I,F
ei (t1), (AL)

T,I,F
ei (t2)} = ((AK)

T,F
ei × (AL)

T,I,F
ei )(t1, t2) That is ((N̂K)T,I,F

ei ×
(N̂L)

T,F
ei )(0, 0) ≥ ((N̂K)

T,I,F
ei × (N̂L)

T,I
ei )(t1, t2) ((AK)

T,I,F
ei × (AL)

T,F
ei )(0, 0) ≤ ((AK)

T,I,F
ei ×

(AL)
T,F
ei )(t1, t2).

Now, Let (x1, x2), (t1, t2) and (y1, y2) ∈ R × P.Then, ((N̂K)
T,I
ei × (N̂L)

T,I
ei )(t1 ∗ x1, t2 ∗

x2) = rmin{(N̂K)
T,I,F
ei (t1 ∗ x1), (N̂L)

T,IF
ei (t2 ∗ x2)} ≥ rmin{rmin{(N̂K)

T,I
ei ((t1 ∗ y1) ∗

x1), (N̂K)
T,IF
ei (y1)}, rmin{(N̂L)

T,I,F
ei ((t2 ∗ y2) ∗ x2), (N̂L)

T,I,F
ei (y2)}} = rmin{rmin{(N̂K)

T,I,F
ei ((t1 ∗

y1) ∗ x1), (N̂L)
T,I,F
ei ((t2 ∗ y2) ∗ x2)} rmin{(N̂K)

T,I,F
ei (y1), (N̂L)

T,I,F
ei (y2)}} = rmin{((N̂K)

T,I,F
ei ×

(N̂L)
T,I,F
ei )(((t1 ∗ y1)x1) ((t2 ∗ y2) ∗ x2)), ((N̂K)

T,IF
ei × (N̂L)

T,IF
ei )(y1, y2)} = rmin{((N̂K)

T,I,F
ei ×

(N̂L)
T,I,F
ei )((t1 ∗ x1, t2 ∗ x) ∗ (y1, y2)), ((N̂K)

T,I,F
ei × (N̂L)

T,I,F
ei )(y1, y2).

And (AK)
T,I,F
ei × (AL)

T,I,F
ei )(t1 ∗ x1, t2 ∗ x2) = max{(AK)

T,I,F
ei (t1 ∗ x1), (AL)

T,I,F
ei (t2 ∗ x2)}

≤ max{max{(AK)
T,I,F
ei ((t1 ∗ y1) ∗ x1), (AK)

T,F
ei (y1)}, max{(AL)

T,I
ei ((t2 ∗ y2) ∗ x), (AL)

T,I,F
ei (y2)}}

= max{max{(AK)
T,I,F
ei ((t1∗y1)∗x1), (AL)

T,I,F
ei ((t2∗y2)∗x2)},max{(AK)

T,I,F
ei (y1), (AL)

T,I,F
ei (y2)}

= max{((AK)
T,I,F
ei × (AL)

T,I,F
ei )(((t1 ∗y1)∗x1), ((t2 ∗y2)∗x2)), (AK)

T,I,F
ei × (AL)

T,I,F
ei )(y1, y2)} =

max{(AK)
T,I,F
ei × (AL)

T,I,F
ei )((t1 ∗ x1, t2 ∗ x2) ∗ (y1, y2)), (AK)

T,I,F
ei × (AL)

T,I,F
ei )(y1, y2).

Thus ((N̂K)
T,I,F
ei × (N̂L)

T,I,F
ei )(t1 ∗ x1, t2 ∗ x2) ≥ rmin{((N̂K)

T,I,F
ei × (N̂L)

T,I,F
ei )((t1 ∗ x1, t2 ∗ x2)∗

(y1, y2)), ((N̂K)
T,I,F
ei ×(N̂L)

T,I,F
ei )(y1, y2).(AK)

T,I,F
ei ×(AL)

T,I,F
ei )(t1∗x1, t2∗x2) ≤ max{(AK)

T,I,F
ei ×

(AL)
T,I,F
ei )((t1 ∗ x1, t2 ∗ x2)∗ (y1, y2)), (AK)

T,I,F
ei × (AL)

T,I,F
ei )(y1, y2).

Theorem 4.3. Let K and L are two NSCSs of R and P such that K × L is an NSCTID of

R× P, Then

i. For all t1 ∈ R and t2 ∈ P,

(N̂K)
T,I,F
ei

(0) ≥ (N̂K)
T,I,F
ei

(t1), (AK)
T,I,F
ei

(0) ≤ (AK)
T,I,F
ei

(t2),

(N̂L)
T,I
ei

,F(0) ≥ (N̂L)
T,I,F
ei

(t1), (AL)
T,I,F
ei

(0) ≤ (AL)
T,I,F
ei

(t2).

ii. For all t1 ∈ P, If (N̂K)T,I,Fei (0) ≥ (N̂K)T,I,Fei (t1) then,

(N̂L)
T,I,F
ei

(0) ≥ (N̂K)
T,I,F
ei

(t1) and (N̂L)
T,I,F
ei

(0) ≥ (N̂L)
T,I,F
ei

(t1),

Also if (AK)e
T,F
ei (0) ≤ (AK)

T,I,F
ei (t1) then

(AL)
T,I,F
ei

(0) ≤ (AK)
T,I,F
ei

(t1) and (AL)
T,I,F
ei

(0) ≤ (AL)
T,I,F
ei

(t1).

iii. For all t1 ∈ P, If (N̂L)
T,I,F
ei (0) ≥ (N̂L)

T,I,F
ei (t1) then,

(N̂K)
T,I,F
ei

(0) ≥ (N̂K)
T,I,F
ei

(t1)and (N̂K)
T,I,F
ei

(0) ≥ (N̂L)
T,I,F
ei

(t1),
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Also if (AL)
T,I,F
ei (0) ≤ (AL)

T,I,F
ei (t1) then

(AK)
T,I,F
ei

(0) ≤ (AK)
T,I,F
ei

(t1)and(AK)
T,I,F
ei

(0) ≤ (AL)
T,I,F
ei

(t1).

Proof. i. Suppose (N̂K)
T,I,F
ei (t1) > (N̂K)

T,I,F
ei (0) or (N̂L)

T,I,F
ei (t2) > (N̂L)

T,I,F
ei (0) for all t1 ∈

R and t2 ∈ P . Then, (N̂K)
T,I,F
ei × (N̂L)

T,I,F
ei )(t1, t2) = rmin{(N̂K)

T,I,F
ei (t1), (N̂L)

T,I,F
ei (t2)}

> rmin{(N̂K)
T,I,F
ei (0), (N̂L)

T,I,F
ei (0)} = ((N̂K)

T,I,F
ei × (N̂L)

T,I,F
ei )(0, 0). Thus ((N̂K)

T,I,F
ei ×

(N̂L)
T,I,F
ei )(t1, t2) > ((N̂K)

T,I,F
ei × (N̂L)

T,I,F
ei )(0, 0) for all t1 ∈ R and t2 ∈ P, which is the contra-

diction to ((N̂K)
T,I,F
ei × (N̂L)

T,I,F
ei ) is a NSCTID of R× P.

Also, if (AK)
T,I,F
ei (t1) < (AK)

T,I,F
ei (0) or (AL)

T,I,F
ei (t2) < (AL)

T,I,F
ei (0) for all t1 ∈ R

and t2 ∈ P. Then, (AK)
T,I,F
ei × (AL)

T,I,F
ei )(t1, t2) = max{(AK))

T,I,F
ei (t1), (AL)

T,I,F
ei (t2)} >

max{(AK)
T,I,F
ei (0), (AL)

T,I,F
ei (0)} = ((AK)

T,I,F
ei × (AL)

T,I,F
ei )(0, 0).

Thus (AK)
T,I,F
ei × (AL)

T,I,F
ei )(t1, t2) < (AK)

T,I,F
ei × (AL)

T,I,F
ei )(0, 0) for all t1 ∈ R and t2 ∈ P,

which is the contradiction to (AK)
T,I,F
ei × (AL)

T,I,F
ei ) is an NSCTID of R× P.

Proof. ii. Suppose (N̂L)
TiI,F
ei (0) < (N̂K)

T,I,F
ei (t1) or (N̂K)

T,I,F
ei (0) < (N̂K)

T,I,F
ei (t1) for all t1 ∈

R,P. Then, ((N̂K)
T,I,F
ei × (N̂L)

T,I,F
ei )(0, 0) = rmin{(N̂K)

T,I
ei (0), (N̂L)

T,IF
ei (0)} = (N̂L)

T,I,F
ei (0), And

((N̂K)
T,I,F
ei × (N̂L)

T,I
ei )(t1, t1) = rmin{(N̂K)

T,I,F
ei (t1), (N̂L)

T,I,F
ei (t1)} > (N̂L)

T,F
ei (0) = ((N̂K)

T,F
ei ×

(N̂L)
T,I,F
ei )(0, 0). This implies ((N̂K)

T,I,F
ei × (N̂L)

T,IF
ei )(t1, t1) = ((N̂K)

T,IF
ei × (N̂L)

T,I,F
ei )(0, 0).

Which is the contradiction to ((N̂K)
TI,F
ei × (N̂L)

T,F,F
ei ) is an NSCTID of R × P. Hence if

(N̂K)
T,I,F
ei (0) ≥ (N̂K)

T,I,F
ei (t1) then (N̂L)

T,I,F
ei (0) ≥ (N̂L)

T,I,F
ei (t1) and (N̂L)ei(0) ≥ (N̂L)ei(t1) for

all t1 ∈ R,P. Now suppose (AL)
T,I,F
ei (0) > (AK)

T,I,F
ei (t1) or (AK)

T,I,F
ei (0) > (AK)

T,I,F
ei (t1) for all

t1 ∈ R,P. Then, (AK)
T,I,F
ei × (AL)

T,I,F
ei )(0, 0) = max{(AK)

T,I,F
ei (0), (AL)

T,I
ei (0)} = (AL)ei(0).

And (AK)
T,IF
ei × (AL)

T,I,F
ei )(t1, t1) = max{(AK)

T,I,F
ei (t1), (AL)

T,I,F
ei (t1)} > (AL)

T,I,F
ei (0) =

(AK)
T,IF
ei × (AL)

T,I,F
ei )(0, 0).

This implies (AK)
T,IF
ei ×(AL)

T,I,F
ei )(t1, t1) = (AK)

T,IF
ei ×(AL)

T,I,F
ei )(0, 0). Which is a contradiction

to (AK)
T,I,F
ei × (AL)eT,I,F

i
) is an NSCTID of R× P.

Proof. iii. The proof is quite the same as ii .

Theorem 4.4. Let Σ : P → R is a homomorphism of PS -algebra. If

K = ⟨(N̂K)
T,I,F
ei , (AK)

T,I,F
ei ⟩ be an NSCTID of R then the pre-image Σ−1(K) =

(Σ−1(N̂K)
T,I,F
ei ),Σ−1((AK)

T,I,F
ei )) of P under Σ is an NSCTID in P.

Proof. For any t1 ∈ P, we have

Σ−1((N̂K)
T,I,F
ei )(t1) = (N̂K)

T,I,F
ei (Σ(t1)) ≤ (N̂K)

T,I,F
ei (0) = (N̂K)

T,I,F
ei (Σ(0)) = Σ−1(N̂K)

T,I,F
ei (0),

Σ−1((AK)
T,I,F
ei )(t1) = (AK)

T,I,F
ei (Σ(t1)) ≥ (AK)

T,I,F
ei (0) = (AK)

T,I,F
ei (Σ(0)) = Σ−1(AK)

T,I,F
ei (0).

Also,
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Σ−1(N̂K)
T,I,F
ei )(t1 ∗ x) = (N̂K)

T,I,F
ei (Σ(t1 ∗ x)) ≥ rmin{(N̂K)

T,F
ei ((Σ(t1) ∗Σ(t2)) ∗Σ(x)), (N̂K)

T,I,F
ei

(Σ(t2))} = rmin{(N̂K)
T,I,F
ei (Σ((t1 ∗ t2) ∗ x), (N̂K)

T,F
ei (Σ(t2))} = rmin{Σ−1((N̂K)

T,I,F
ei )((t1 ∗ t2)

x),Σ−1((N̂K)
T,I,F
ei )(t2)} ,Σ−1((AK)

T,I,F
ei )(t1 ∗x) = (AK)

T,I,F
ei (Σ(t1 ∗x)) ≤ max{(AK)

T,I,F
ei (Σ(((t1)

Σ(t2)) ∗Σ(x)), (AK)
T,F
ei (Σ(t2))} = max{(AK)

T,I,F
ei (Σ((t1 ∗ t2) ∗ x), (AK)

T,F
ei (Σ(t2))} = max{Σ−1

((AK)
T,F
ei )((t1 ∗ t2) ∗ x),Σ−1((AK)

T,I,F
ei )(t2)}.

Theorem 4.5. Let Σ : P → R be an epimorphism of PS-algebra. Then

K = ⟨(N̂K)
T,I,F
ei , (AK)

T,I,F
ei ⟩ is an NSCTID of P, if Σ−1( K) = ((Σ−1((N̂K)

T,I,F
ei ),Σ−1((AK)

T,I,F
ei

)) of P under Σ is an NSCTID in P.

Proof. For any t1 ∈ R, there exist a ∈ P such that Σ(a) = t1. Then, (N̂K)
T,I,F
ei (t1) =

(N̂K)
T,I,F
ei (Σ(a)) = Σ−1((N̂K)

T,I,F
ei )(a) ≤ Σ−1((N̂K)

T,I,F
ei )(0) = (N̂K)

T,I,F
ei (Σ(0)) = (N̂K)

T,I,F
ei (0),

And (AK)
T,I,F
ei (t1) = (AK)

T,I,F
ei (Σ(a)) = Σ−1((AK)

T,I,F
ei )(a) ≥ Σ−1(( AK)

T,F
ei )(0) =

(AK)
T,IF
ei (Σ(0)) = (AK)

T,I,F
ei (0).

Let y, t1, t2 ∈ R then Σ(x) = y,Σ(a) = t1 and Σ(b) = t2 for some a,b, x ∈ P.

Now, (N̂K)
T,I,F
ei (t1 ∗ y) = (N̂K)

T,I,
ei (Σ(a ∗ x)) = Σ−1((N̂K)

T,I,F
ei )(a ∗ x) ≥ rmin{Σ−1((N̂K)

T,F
ei ((a ∗

b) ∗x)),Σ−1((N̂K)
T,I,F
ei (b))} = rmin{(N̂K)

T,F
ei (Σ((a ∗b) ∗x)), (N̂K)

T,I
ei (Σ(b))} = rmin{(N̂K)

T,I,F
ei

(Σ(a) ∗ Σ(b)) ∗ Σ(x)), (N̂K)ei(Σ(b))} = rmin{(N̂K)
T,I,F
ei ((t1 ∗ t2) ∗ y), (N̂K)

T,I,F
ei (t2)}.

And (AK)
T,I,F
ei (t1 ∗ y) = (AK)

T,I,F
ei (Σ(a ∗ x)) = Σ−1((AK)

T,F
ei (a ∗ x) ≤ max{Σ−1((AK)

T,I,F
ei ((a ∗

b) ∗ x)),Σ−1((AK)
T,I
ei (b))} = max{(AK)

TI,F
ei (Σ((a ∗ b) ∗ x)), (AK)

T,I,F
ei (Σ(b))} = max{(AK)

T,I,F
ei

(Σ(a) ∗ Σ(b)) ∗ Σ(x))}, (AK)
T,I,F
ei (Σ(b))} = max{(AK)

T,I,F
ei ((t1 ∗ t2) ∗ y), (AK)

T,I,F
ei (t2)}

5. Translation and Multiplication of Neutrosophic Soft Cubic T-Ideal

In this section, the interpretation of NSCTID-translation and NSCTID-multiplication is

given. For the simplicity, the notation K =< t1, (N̂K)
T,I,F
ei (t1), (AK)

T,I
ei (t1) | t1 ∈ P > for the

NSCS is used.

In this paper, we use ξ = [1, 1] − rsup{(N̂K)
T,I,F
ei (t1) | t1 ∈ P}, Ψ = r inf{(N̂K)

F
ei
(t1) |

t1 ∈ P}, ζ = 1− sup{(AK)
T,I
ei (t1) | t1 ∈ P},Φ = inf{(AK)

F
ei
(t1)} | t1 ∈ P for any NSCS

K = ⟨(N̂K)
T,I,F
ei , (AK)

T,I,F
ei ⟩ of P.

Definition 5.1. Let K = ⟨(N̂K)
T,I,,F
ei , (AK)

T,IF
ei ⟩ be an NSCS of P. For (N̂K)

T,I,F
ei , α, β ∈ [[0, 0], ξ]

and γ ∈ [[0, 0],Ψ], where for (AK)T,I,F
ei , α, β ∈ [0, ζ] and γ ∈ [0,Φ]. A set of the form K̃Tr

α,β,γ =

⟨((N̂K)
T,I,F
ei )Trα,β,γ((AK)

T,I,F
ei )Trα,β,γ⟩ is called an Neutrosophic Soft Cubic Translation NSCTr of

K, As for all t1 ∈ P.

((N̂K)
T
ei
)Trα (t1) = (N̂K)

T
ei
(t1)+α, ((N̂K)

I
ei
)Trβ (t1) = (N̂K)

I
ei
(t1)+β, ((N̂K)

F
ei
)Trγ (t1) = (N̂K)

F
ei
(t1)−γ,

((AK)
T
ei
)Trα (t1) = (AK)

T
ei
(t1)+α, ((AK)

I
ei
)Tr
β (t1) = (AK)

I
ei
(t1)+β, ((AK)

F
ei
)Trγ (t1) = (AK)

F
ei
(t1)−γ.
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Definition 5.2. Let K be an NSCS of P and η ∈ [0, 1]. An object having the form

K̃Mp
η = ⟨(((N̂K)

T
ei
)Mp
η , ((N̂K)

I
ei
)Mp
η , ((N̂K)

F
ei
)Mp
η ), (((AK)

T
ei
)Mp
η , ((AK)

I
ei
)Mp
η , ((AK)

F
ei
)Mp
η )⟩ is called

a Neutrosophic Soft Cubic Translation NSCMp of K, Where

((N̂K)
T
ei
)Mp
η (t1) = η · (N̂K)

T
ei
(t1), ((N̂K)

I
ei
)Mp
η (t1) = η · (N̂K)

I
ei
(t1), ((N̂K)

F
ei
)Mp
η (t1) = η · (N̂K)

F
ei
(t1),

((AK)
T
ei
)Mp
η (t1) = η ·AK)

T
ei
(t1), (AK)

I
ei
)Mp
η (t1) = η · (AK)

I
ei
(t1), ((AK)

F
ei
)Mp
η (t1) = η · (AK)

F
ei
(t1)

for all t1ϵP .

5.1. Neutrosophic Soft Cubic T-Ideal Translation

This section defines neutrosophic soft cubic T-Ideal translation with a theorem and example.

Theorem 5.3. If K is an NSCTID of P, then NSCTr K̃Tr
α,β,γ of K is an NSCTID of P.

Proof. Let K = ⟨(N̂K)
T,I,F
ei , (AK)

T,I,F
ei ⟩ of P be an NSCTID of P. Then we have ((N̂K)

T
ei
)Trα (0) =

(N̂K)
T
ei
(0)+α ≥ (N̂K)

T
ei
(t1)+α = ((N̂K)

T
ei
)Trα (t1), ((N̂K)

I
ei
)Trβ (0) = (N̂K)

I
ei
(0)+β ≥ (N̂K)

I
ei
(t1)+

β = ((N̂K)
I
ei
)Trβ (t1), ((N̂K)

F
ei
)Trγ (0) = (AK)

F
ei
(0) + γ ≥ (AK)

F
ei
(t1) + γ = ((N̂K)

F
ei
)Trγ (t1),

And ((AK)
T
ei
)Trα (0) = (AK)

T
ei
(0) + α ≤ ((AK)

T
ei
(t1) + α = ((AK)

T
ei
)Trα (t1)((AK)

I
ei
)Trβ (0) =

(AK)
I
ei
(0) + β ≤ (AK)

I
ei
(t1) + β = ((AK)

I
ei
)Trβ (t1) ((AK)

F
ei
)Trγ (0) = (AK)

F
ei
(0) + γ ≤ (AK)

F
ei
(t1) +

γ = ((AK)
F
ei
)Trγ (t1) Now ((N̂K)

T
ei
)Trα (t1∗t3) = N̂ei(t1∗t3)+α ≥ rmin{N̂ei((t1∗t2)∗t3), N̂eiT(t2)}+

α = rmin{N̂ei((t1 ∗ t2) ∗ t3) + α, N̂ei(t2) + α} = rmin{((N̂K)
T
ei
)Trα ((t1 ∗ t2) ∗ t3), ((N̂K)

T
ei
)Trα (t2)},

((N̂K)
I
ei
)Trβ (t1 ∗ t3) = (N̂K)

I
ei
(t1 ∗ t3) + β ≥ rmin{(N̂K)

I
ei
((t1 ∗ t2) ∗ t3), (N̂K)

I
ei
(t2)} +

β = rmin{(N̂K)
I
ei
((t1 ∗ t2) ∗ t3) + β, (N̂K)

I
ei
(t2) + β} = rmin{((N̂K)

I
ei
)Trβ ((t1 ∗ t2) ∗

t3), ((N̂K)
I
ei
)Trβ (t2)}((N̂K)

F
ei
)Trγ (t1 ∗ t3) = (N̂K)

F
ei
(t1 ∗ t3) + γ ≥ rmin{(N̂K)

F
ei
((t1 ∗ t2) ∗

t3), (N̂K)
F
ei
(t2)} + γ = rmin{(N̂K)

F
ei
((t1 ∗ t2) ∗ t3) + γ, (N̂K)

F
ei
(t2) + γ} = rmin{((N̂K)

F
ei
)Trγ ((t1 ∗

t2) ∗ t3), ((N̂K)
F
ei
)Trγ (t2)} And ((AK)

T
ei
)Trα (t1 ∗ t3) = (AK)

T
ei
(t1 ∗ t3) + α ≤ max{(AK)

T
ei
((t1 ∗ t2) ∗

t3), (AK)
T
ei
(t2)} + α = max{(AK)

T
ei
((t1 ∗ t2) ∗ t3) + α, (AK)

T
ei
(t2) + α} = max{((AK)

T
ei
)Trα ((t1 ∗

t2) ∗ t3), ((AK)
T
ei
)Trα (t2)}, ((AK)

I
ei
)Tr
β (t1 ∗ t3) = (AK)

I
ei
(t1 ∗ t3) + β ≤ max{(AK)

I
ei
((t1 ∗ t2)∗

t3), (AK)
I
ei
(t2)} + β = max{(AK)

I
ei
((t1 ∗ t2) ∗ t3) + β, (AK)

I
ei
(t2) + β} = max{((AK)

I
ei
)Trβ ((t1 ∗

t2) ∗ t3), ((AK)
I
ei
)Trβ (t2)}, ((AK)

F
ei
)Trγ (t1 ∗ t3) = (AK)

F
ei
(t1 ∗ t3) + γ ≤ max{(AK)

F
ei
((t1 ∗ t2)∗

t3), (AK)
F
ei
(t2)} + γ = max{(AK)

F
ei
((t1 ∗ t2) ∗ t3) + γ, (AK)

F
ei
(t2) + γ} = max{((AK)

F
ei
)Trγ ((t1 ∗

t2) ∗ t3), ((AK)
F
ei
)Trγ (t2)}, Hence K̃Tr

α,β,γ of K is an NSCTID of P.

Example 5.4. Let P = {0, t1, t2, t3} be a PS-algebra with the cayley’s table as shown in

Table 1. The NSCS K = ⟨(N̂K)
T,I,F
ei , (AK)

T,I,F
ei ⟩ of P is defined as

(N̂K)
T
ei
(ti) = {[0.7, 0.9] if ti = 0 and [0.3, 0.6] if otherwise

(N̂K)
I
ei
(ti) = {[0.6, 0.8] if ti = 0 and [0.4, 0.5] if otherwise

(N̂K)
F
ei
(ti) = {[0.5, 1] if ti = 0 and [0.2, 0.7] if otherwise
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And
(AK)

T
ei
(ti) = {0.2 if ti = 0 and 0.7 if otherwise

(AK)
I
ei
(ti) = {0.5 if ti = 0 and 0.9 if otherwise

(AK)
F
ei
(ti) = {0.4 if ti = 0 and 1 if otherwise.

The set K is an NSCTID of P as it satisfies (i) but fulfills (ii) and (iii) with the condition:

If i = j then ti ∗ tj = 0 with

(N̂K)
T
ei
(ti ∗ tj) = [0.7, 0.9], (N̂K)

I
ei
(ti ∗ tj) = [0.6, 0.8], (N̂K)

F
ei
(ti ∗ tj) = [0.5, 1],

Otherwise

(N̂K)
T
ei
(ti ∗ tj) = [0.3, 0.6], (ti ∗ tj) = [0.4, 0.5], (N̂K)

F
ei
(ti ∗ tj) = [0.2, 0.7]

And

(AK)
T
ei
(ti) = 0.2, ( AK)

I
ei
(ti) = 0.5, ( AK)

F
ei
(ti) = 0.4,

Otherwise (AK)
T
ei
(ti) = 0.7, (AK)

I
ei
(ti) = 0.9, (AK)

F
ei
(ti) = 1 given in definition 3.1. Now, for

(N̂K)
T,I,F
ei we choose α = [0.04, 0.08], β = [0.05, 0.09], γ = [0.03, 0.07] and for (A)T,I,F

ei , α =

0.03, β = 0.04, γ = 0.05. Then the mapping K̃Tr
α,β,γ | P → [0, 1] is given by

((N̂K)
T
ei
)Tr[0.04,0.08](0) = (N̂K)

T
ei
(0) + [0.04, 0.08] = [0.74, 0.98]

((N̂K)
I
ei
)Tr[0.05,0.09](0) = (N̂K)

I
ei
(0) + [0.05, 0.09] = [0.65, 0.89]

((N̂K)
F
ei
)Tr[0.03,0.07](0) = (N̂K)

F
ei
(0)− [0.03, 0.07] = [0.47, 0.93]

((N̂K)
T
ei
)Tr[0.04,0.08](ti) = (N̂K)

T
ei
(ti) + [0.04, 0.08] = [0.34, 0.68]

((N̂K)
I
ei
)Tr[0.05,0.09](ti) = (N̂K)

T
ei
(ti) + [0.05, 0.09] = [0.45, 0.59]

((N̂K)
F
ei
)Tr[0.03,0.07](ti) = (N̂K)

F
ei
(ti)− [0.03, 0.07] = [0.17, 0.63]

((AK)
T
ei
)Tr0.03(0) = (AK)

T
ei
(0) + 0.03 = [0.23]

((AK)
I
ei
)Tr0.04(0) = (AK)

T
ei
(0) + 0.04 = [0.54]

((AK)
F
ei
)Tr0.05(0) = (AK)

T
ei
(0)− 0.05 = [0.35]

((AK)
T
ei
)Tr0.03(ti) = (AK)

T
ei
(ti) + 0.03 = [0.73]

((AK)
I
ei
)Tr0.04(ti) = (AK)

T
ei
(ti) + 0.04 = [0.94]

((AK)
F
ei
)Tr0.05(ti) = (AK)

T
ei
(ti)− 0.05 = [0.95]

Hence K̃Tr
α,β,γ is an NSCTID of P.

Theorem 5.5. The union of any two NSC-translations of an NSCTID is an NSCTID of P.

Proof. Suppose K̃Tr
α,β,γ and K̃Tr

α′,β′,γ′ are two NSC-translations of NSCTID of P respectively.

In K̃Tr
α,β,γ for (N̂K)

T,I
ei , α, β ∈ [[0, 0], ξ] and γ ∈ [[0, 0],Ψ], where for (AK)

T,I,F
ei , α, β ∈ [0, ζ]

and γ ∈ [0,Φ], and in K̃Tr
α′,β′,γ′ , for (N̂K)

T,I,F
ei , α′, β′ ∈ [[0, 0], ξ] and γ′ ∈ [[0, 0],Ψ], where for
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(AK)
T,I,F
ei , α′, β′ ∈ [0, ζ] and γ′ ∈ [0,Φ]. and α ≥ α′, β ≥ β′, γ ≥ γ′ as we know that, K̃Tr

α,β,γ and

K̃Tr
α′,β′,γ′ are NSCTID of P. Then

(((N̂K)
T
ei
)Trα ∪ ((N̂K)

T
ei
)Trα′ )(0) = (((N̂K)

T
ei
)Trα ∪((N̂K)

T
ei
)Trα′ )(t1 ∗ t1) = rmax{((N̂K)

T
ei
)Trα (t1 ∗ t1), ((

N̂K)
T
ei
)Trα′ (t1∗t1)} ≥ rmax{rmin{((N̂K)

T
ei
)Trα (t1), ((N̂K)

T
ei
)Trα (t1)}, rmin{((N̂K)

T
ei
)Trα′ (t1), ((N̂K)

T
ei
)Trα′

(t1)}} = rmax{((N̂K)
T
ei
)Trα (t1), ((N̂K)

T
ei
)Trα′ (t1)} = rmax{(N̂K)

T
ei
(t1) + α, (N̂K)

T
ei
(t1) + α′} =

((N̂K)
T
ei
)Trα ∪ (N̂K)

T
ei
)Trα′ )(t1), (((N̂K)

I
ei
)Trβ ∪ ((N̂K)

I
ei
)Trβ′ )(0) = (((N̂K)

I
ei
)Trβ ∪ ((N̂K)

I
ei
)Trβ′ )(t1 ∗ t1) =

rmax{((N̂K)
I
ei
)Trβ (t1∗t1), ((N̂K)

I
ei
)Trβ′ (t1∗t1)} ≥ rmax{rmin{((N̂K)

I
ei
)Trβ (t1), ((N̂K)

I
ei
)Trβ (t1)}, rmin

{((N̂K)
I
ei
)Trβ′ (t1), ((N̂K)

I
ei
)Trβ′ (t1)}} = rmax{((N̂K)

I
ei
)Trβ (t1), ((N̂K)

I
ei
)Trβ′ (t1)} = rmax{(N̂K)

I
ei
(t1) +

β, (N̂K)
I
ei
(t1) + β′} = ((N̂K)

I
ei
)Trβ ∪(N̂K)

I
ei
)Trβ′ )(t1), (((N̂K)

F
ei
)Trγ ∪ ((N̂K)

F
ei
)Trγ′ )(0) = (((N̂K)

F
ei
)Trγ ∪

((N̂K)
F
ei
)Trγ′ )(t1∗t1) = rmax{((N̂K)

F
ei
)Trγ (t1∗t1), ((N̂K)

F
ei
)Trγ′ (t1∗t1)} ≥ rmax{rmin{((N̂K)

F
ei
)Trγ (t1),

((N̂K)
F
ei
)Trγ (t1)}, rmin{((N̂K)

F
ei
)Trγ′ (t1), ((N̂K)

F
ei
)Trγ′ (t1)}} = rmax{((N̂K)

F
ei
)Trγ (t1), ((N̂K)

F
ei
)Trγ′ (t1)}

= rmax{(N̂K)
F
ei
(t1)+γ, (N̂K)

F
ei
(t1)+γ′} = ((N̂K)

F
ei
)Trγ ∪ (N̂K)

F
ei
)Trγ′ )(t1), (((AK)

T
ei
)Trα ∪ ((AK)

T
ei
)Trα′ )

(0) = (((AK)
T
ei
)Trα ∪((AK)

T
ei
)Trα′ )(t1∗t1) = min{((AK)

T
ei
)Trα (t1∗t1), ((AK)

T
ei
)Trα′ (t1∗t1)} ≤ min{max

{((AK)
T
ei
)Trα (t1), ((AK)

T
ei
)Trα (t1)}max{((AK)

T
ei
)Trα′ (t1), ((AK)

T
ei
)Trα′ (t1)}} = min{((AK)

T
ei
)Trα (t1), ((

AK)
T
ei
)Trα′ (t1)} = min{(AK)

T
ei
(t1)+α, (AK)

T
ei
(t1)+α′} = ((AK)

T
ei
)Trα ∪(AK)

T
ei
)Trα′ )(t1).(((AK)

I
ei
)Trβ ∪

((AK)
I
ei
)Trβ′ )(0) = (((AK)

I
ei
)Trβ ∪ ((AK)

I
ei
)Trβ′ )(t1 ∗ t1) = min{((AK)

I
ei
)Trβ (t1 ∗ t1), ((AK)

I
ei
)Trβ′ (t1 ∗ t1

)} ≤ min{max{((AK)
I
ei
)Trβ (t1), ((AK)

I
ei
)Trβ (t1)},max{((AK)

I
ei
)Trβ′ (t1), ((AK)

I
ei
)Trβ′ (t1)}} = min{((

AK)
I
ei
)Trβ (t1), ((AK)

I
ei
)Trβ′ (t1)} = min{(AK)

I
ei
(t1) + β, (AK)

I
ei
(t1) + β′} = ((AK)

I
ei
)Tr
β ∪

(AK)
I
ei
)Tr
β′ )(t1) (((AK)

F
ei
)Trγ ∪((AK)

F
ei
)Trγ′ )(0) = (((AK)

F
ei
)Trγ ∪((AK)

F
ei
)Trγ′ )(t1∗t1) = min{((AK)

F
ei
)Trγ

(t1 ∗ t1), ((AK)
F
ei
)Trγ′ (t1 ∗ t1)} ≤ min{max{((AK)

F
ei
)Trγ (t1), ((AK)

F
ei
)Trγ (t1)}max{((AK)

F
ei
)Trγ′ (t1), ((

AK)
F
ei
)Trγ′ (t1)}} = min{((AK)

F
ei
)Trγ (t1), ((AK)

F
ei
)Trγ′ (t1)} = min{(AK)

F
ei
(t1) + γ, (AK)

F
ei
(t1) + γ′} =

((AK)
F
ei
)Trγ ∪ (AK)

F
ei
)Trγ′ )(t1).

Now

(((N̂K)
T,I,F
ei )Trα,β,γ∪((N̂K)

T,IF
ei )Trα′,β′,γ′)(t1∗t3) = rmax{((N̂K)

TI,F
ei )Trα,β,γ(t1∗t3), ((N̂K)

T,I
ei )Trα′,β′,γ′(t1∗

t3)} ≥ rmax{rmin{((N̂K)
T,I,F
ei )Trα,β,γ((t1 ∗ t2) ∗ t3), ((N̂K)

T,I,F
ei )Trα,β,γ(t2), rmin{((N̂K)

TI,F
ei )Trα′,β′,γ′

((t1 ∗ t2) ∗ t3), ((N̂K)
T,IF
ei )Trα′,β′,γ′(t2)}, = rmin{rmax{((N̂K)

T,I,F
ei )Trα,β,γ((t1 ∗ t2) ∗ t3), ((N̂K)

T,I,F
ei )

Tr
α′,β′,γ′((t1 ∗ t2) ∗ t3)}, rmax{((N̂K)

T,I,F
ei )Trα,β,γ(t2), ((N̂K)

T,I,F
ei )Trα′,β′,γ′(t2)}} = rmin{(((N̂K)

T,I,F
ei )

Tr
α,β,γ ∪ ((N̂K)

T,I,F
ei )Trα′,β′,γ′)((t1 ∗ t2) ∗ t3), (((N̂K)

T,IF
ei )Trα,β,γ ∪ ((N̂K)

T,I,F
ei )Trα′,β′,γ′)(t2)}.

And

((AK)
T,I,F
ei )Trα,β,γ∪((AK)

T,I,F
ei )Trα′,β′,γ′)(t1∗t3) = min{((AK)

T,I
ei )Trα,β,γ(t1∗t3), ((AK)

T,I,F
ei )Trα′,β′,γ′(t1∗

t3)} ≤ min{max{((AK)
T,I,F
ei )Trα,β,γ((t1∗t2)∗t3), ((AK)

T,I,F
ei )Trα,β,γ(t2)},max{((AK)

T,IF
ei )Trα′,β′,γ′((t1∗

t2)∗t3), ((AK)
T,I,F
ei )Trα′,β′,γ′(t2)}} = max{min{((AK)

T,I,F
ei )Trα,β,γ((t1∗t2)∗t3), ((AK)

T,IF
ei )Trα′,β′,γ′((t1∗

t2)∗t3)},min{((AK)
T,I,F
ei )Trα,β,γ(t2), ((AK)

TI,F
ei )Trα′,β′,γ′(t2)}} = max{(((AK)

T,IF
ei )Trα,β,γ∪((AK)

T,I,F
ei )

Tr
α′,β′,γ′)((t1 ∗ t2) ∗ t3), (((AK)

T,I,F
ei )Trα,β,γ ∪ ((AK)

T,I,F
ei )Trα′,β′,γ′)(t2)}.

Hence K̃Tr
α,β,γ ∪ K̃Tr

α′,β′,γ′ is an NSCTID of P.
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Theorem 5.6. The intersection of any two NSC-translations of an NSCTID is an NSCTID

of P.

Proof. Suppose K̃Tr
α,β,γ and K̃Tr

α′,β′,γ′ are two NSC-translations of NSCTID of P respectively.

Where in K̃Tr
α,β,γ for (N̂K)

T,I,F
ei , α, β ∈ [[0, 0], ξ] and γ ∈ [[0, 0],Ψ], where for (AK)

T,I,F,F
ei , α, β ∈

[0, ζ] and γ ∈ [0,Φ], and in K̃Tr
α′,β′,γ′ , for (N̂K)

T,F
ei , α′, β′ ∈ [[0, 0], ξ] and γ′ ∈ [[0, 0],Ψ], where

for (AK)
T,I,F
ei , α′, β′ ∈ [0, ζ] and γ′ ∈ [0,Φ]. and α ≤ α′, β ≤ β′, γ ≤ γ′ as we know that, K̃Tr

α,β,γ

and K̃Tr
α′,β′,γ′ are NSCTID of P.Then

(((N̂K)
T
ei
)Trα ∩ ((N̂K)

T
ei
)Trα′ )(0) = (((N̂K)

T
ei
)Trα ∩((N̂K)

T
ei
)Trα′ )(t1 ∗ t1) = rmin{((N̂K)

T
ei
)Trα (t1 ∗ t1), ((

N̂K)
T
ei
)Trα′ (t1 ∗ t1)} ≥ rmin{rmin{((N̂K)

T
ei
)Trα (t1), ((N̂K)

T
ei
)Trα (t1)}, rmin{((N̂K)

T
ei
)Trα′ (t1), ((N̂K)

T
ei
)Trα′

(t1)}} = rmin{((N̂K)
T
ei
)Trα (t1), ((N̂K)

T
ei
)Trα′ (t1)} = rmin{(N̂K)

T
ei
(t1) + α, (N̂K)

T
ei
(t1) + α′} =

((N̂K)
T
ei
)Trα ∩ (N̂K)

T
ei
)Trα′ )(t1), (((N̂K)

I
ei
)Trβ ∩ ((N̂K)

I
ei
)Trβ′ )(0) = (((N̂K)

I
ei
)Trβ ∩ ((N̂K)

I
ei
)Trβ′ )(t1 ∗ t1)

= rmin{((N̂K)
I
ei
)Trβ (t1 ∗ t1), ((N̂K)

I
ei
)Trβ′ (t1 ∗ t1)} ≥ rmin{rmin{((N̂K)

I
ei
)Trβ (t1), ((N̂K)

I
ei
)Trβ (t1)},

rmin{((N̂K)
I
ei
)Trβ′ (t1), ((N̂K)

I
ei
)Trβ′ (t1)}} = rmin{((N̂K)

I
ei
)Trβ (t1), ((N̂K)

I
ei
)Trβ′ (t1)} = rmin{(N̂K)

I
ei
(t1

) + β, (N̂K)
I
ei
(t1) + β′} = ((N̂K)

I
ei
)Trβ ∩ (N̂K)

I
ei
)Trβ′ )(t1), (((N̂K)

F
ei
)Trγ ∩ ((N̂K)

F
ei
)Trγ′ )(0) =

(((N̂K)
F
ei
)Trγ ∩ ((N̂K)

F
ei
)Trγ′ )(t1 ∗ t1) = rmin{((N̂K)

F
ei
)Trγ (t1 ∗ t1), ((N̂K)

F
ei
)Trγ′ (t1 ∗ t1)} ≥

rmin{rmin{((N̂K)
F
ei
)Trγ (t1), ((N̂K)

F
ei
)Trγ (t1)}, rmin{((N̂K)

F
ei
)Trγ′ (t1), ((N̂K)

F
ei
)Trγ′ (t1)}} = rmin{((N̂K

)Fei)
Tr
γ (t1), ((N̂K)

F
ei
)Trγ′ (t1) = rmin{(N̂K)

F
ei
(t1) + γ, (N̂K)

F
ei
(t1) + γ′} = ((N̂K)

F
ei
)Trγ ∩ (N̂K)

F
ei
)Trγ′ )(t1),

(((AK)
T
ei
)Trα ∩ ((AK)

T
ei
)Trα′ )(0) = (((AK)

T
ei
)Trα ∩ ((AK)

T
ei
)Trα′ )(t1 ∗ t1) = max{((AK)

T
ei
)Trα (t1 ∗ t1), ((

AK)
T
ei
)Trα′ (t1 ∗ t1)} ≤ max{max{((AK)

T
ei
)Trα (t1), ((AK)

T
ei
)Trα (t1)}, max{((AK)

T
ei
)Trα′ (t1), ((AK)

T
ei
)Trα′

(t1)}} = max{((AK)
T
ei
)Trα (t1), ((AK)

T
ei
)Trα′ (t1)} = max{(AK)

T
ei
(t1) + α, (AK)

T
ei
(t1) + α′} =

((AK)
T
ei
)Trα ∩ (AK)

T
ei
)Trα′ )(t1). (((AK)

I
ei
)Trβ ∩ ((AK)

I
ei
)Trβ′ )(0) = (((AK)

I
ei
)Trβ ∩ ((AK)

I
ei
)Trβ′ )(t1 ∗ t1)

= max{((AK)
I
ei
)Trβ (t1 ∗ t1), ((AK)

I
ei
)Trβ′ (t1 ∗ t1)} ≤ max{max{((AK)

I
ei
)Trβ (t1), ((AK)

I
ei
)Trβ (t1)},

max{((AK)
I
ei
)Trβ′ (t1), ((AK)

I
ei
)Trβ′ (t1)}} = max{((AK)

I
ei
)Trβ (t1), ((AK)

I
ei
)Trβ′ (t1)} = max{(AK)

I
ei
(t1)

+β, (AK)
I
ei
(t1)+β′} = ((AK)

I
ei
)Trβ ∩ (AK)

I
ei
)Trβ′ )(t1) (((AK)

F
ei
)Trγ ∩ ((AK)

F
ei
)Trγ′ )(0) = (((AK)

F
ei
)Trγ ∩

((AK)
F
ei
)Trγ′ )(t1 ∗ t1) = max{((AK)

F
ei
)Trγ (t1 ∗ t1), ((AK)

F
ei
)Trγ′ (t1 ∗ t1)} ≤ max{max{((AK)

F
ei
)Trγ (t1),

((AK)
F
ei
)Trγ (t1)}, max{((AK)

F
ei
)Trγ′ (t1), ((AK)

F
ei
)Trγ′ (t1)}} = max{((AK)

F
ei
)Trγ (t1), ((AK)

F
ei
)Trγ′ (t1)} =

max{(AK)
F
ei
(t1) + γ, (AK)

F
ei
(t1) + γ′} = ((AK)

F
ei
)Trγ ∩ (AK)

F
ei
)Trγ′ )(t1).

Now

(((N̂K)
T,I,F
ei )Trα,β,γ∩((N̂K)

T,I,F
ei )Trα′,β′,γ′)(t1∗t3) = rmin{((N̂K)

T,I,F
ei )Trα,β,γ(t1∗t3) ≥ ((N̂K)

T,I,F
ei )Trα′,β′,γ′

(t1 ∗ t3)} ≥ rmin{rmin{((N̂K)
T,I,F
ei )Trα,β,γ((t1 ∗ t2) ∗ t3), ((N̂K)

T,I,F
ei )Trα,β,γ(t2)}, rmin{((N̂K)

T,I,F
ei )

Tr
α′,β′,γ′((t1 ∗ t2) ∗ t3), ((N̂K)

T,I,F
ei )Trα′,β′,γ′(t2)}} = rmin{rmin{((N̂K)

T,I,F
ei )Trα,β,γ((t1 ∗ t2) ∗ t3), ((N̂K)

T,I,F
ei )Trα′,β′,γ′((t1 ∗ t2) ∗t3)}, rmin{((N̂K)

T,I,F
ei )Trα,β,γ(t2), ((N̂K)

T,I,F
ei )Trα′,β′,γ′(t2)}} = {rmin{(((

N̂K)
T,I,F
ei )Trα,β,γ ∩ ((N̂K)

T,I,F
ei )Trα′,β′,γ′)((t1 ∗ t2) ∗ t3), (((N̂K)

T,I,F
ei )Trα,β,γ ∩ ((N̂K)

Tr,F
ei )Trα′,β′,γ′)(t2)}.

And

(((AK)
T,I,F
ei )Trα,β,γ ∩ ((AK)

T,I,F
ei )Trα′,β′,γ′)(t1 ∗ t3) = max{((AK)

T,I,F
ei )Trα,β,γ(t1 ∗ t3), ((AK)

T,I,F
ei )Trα′,β′,γ′

(t1∗t3)} ≤ max{max{((AK)
T,I,F
ei )Trα,β,γ((t1∗t2)∗t3), ((AK)

T,I,F
ei )Trα,β,γ(t2)} max{((AK)

T,I,F
ei )Trα′,β′,γ′
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((t1 ∗ t2) ∗ t3), ((AK)
T,I,F
ei )Trα′,β′,γ′(t2)}} = max{max{((AK)

T,I,F
ei )Trα,β,γ((t1 ∗ t2) ∗ t3), ((AK)

T,I,F
ei )

Tr
α′,β′,γ′((t1 ∗ t2) t3)},max{((AK)

T,I,F
ei )Trα,β,γ(t2), ((AK)

T,I,F
ei )Trα′,β′,γ′(t2) {max{(((AK)

T,I,F
ei )Trα,β,γ ∩

((AK)
T,F
ei )Trα′,β′,γ′)((t1 ∗ t2) ∗ t3), (((AK)

T,I,F
ei )Trα,β,γ ∩ ((AK)

T,I,F
ei )Trα′,β′,γ′)(t2)}.

Hence K̃Tr
α,β,γ ∩ K̃Tr

α′,β′,γ′ is an NSCTID of P.

5.2. Neutrosophic Soft Cubic T-Ideal Multiplication

This section defines neutrosophic soft cubic T-Ideal multiplication with a theorem and

example.

Theorem 5.7. If K is an NSCTID of P, then NSCMp K̃Mp
η of K is an NSCTID of P, for all

ηϵ [0, 1].

Proof. Let K be an NSCTID of P and η ∈ [0, 1]. Then we have ((N̂K)
T
ei
)Mp
η (0) = η ·(N̂K)

T
ei
(0) ≥

η · (N̂K)
T
ei
(t1) → ((N̂K)

T
ei
)Mp
η (0) ≥ ((N̂K)

T
ei
)Mp
η (t1), ((N̂K)

I
ei
)Mp
η (0) = η · (N̂K)

I
ei
(0) ≥ η ·

(N̂K)
I
ei
(t1) → ((N̂K)

I
ei
)Mp
η (0) ≥ ((N̂K)

I
ei
)Mp
η (t1), ((N̂K)

F
ei
)Mp
η (0) = η ·(N̂K)

F
ei
(0) ≥ η ·(N̂K)

F
ei
(t1) →

((N̂K)
F
ei
)Mp
η (0) ≥ ((N̂K)

F
ei
)Mp
η (t1),

And ((AK)
T
ei
)Mp
η (0) = η · (AK)

T
ei
(0) ≤ η · (AK)

T
ei
(t1) → ((AK)

T
ei
)Mp
η (0) ≤ ((AK)

T
ei
)Mp
η (t1),

((AK)
I
ei
)Mp
η (0) = η · (AK)

I
ei
(0) ≤ η · (AK)

I
ei
(t1) → ((AK)

I
ei
)Mp
η (0) ≤ ((AK)

I
ei
)Mp
η (t1),

((AK)
F
ei
)Mp
η (0) = η · (AK)

F
ei
(0) ≤ η · (AK)

F
ei
(t1) → ((AK)

F
ei
)Mp
η (0) ≤ ((AK)

F
ei
)Mp
η (t1), Now

((N̂K)
T
ei
)Mp
η (t1 ∗ t3) = η · (N̂K)

T
ei
(t1 ∗ t3) ≥ η · rmin{(N̂K)

T
ei
((t1 ∗ t2) ∗ t3), (N̂K)

T
ei
(t2)} =

rmin{η · (N̂K)
T
ei
((t1 ∗ t2) ∗ t3), η · (N̂K)

T
ei
(t2)} ((N̂K)

T
ei
)Mp
η (t1 ∗ t3) = rmin{((N̂K)

T
ei
)Mp
η ((t1 ∗

t2) ∗ t3), ((N̂K)
T
ei
)Mp
η (t2)} ((N̂K)

T
ei
)Mp
η (t1 ∗ t3) ≥ rmin{((N̂K)

T
ei
)Mp
η ((t1 ∗ t2) ∗ t3), ((N̂K)

T
ei
)Mp
η (t2)},

((N̂K)
I
ei
)Mp
η (t1 ∗ t3) = η · (N̂K)

I
ei
(t1 ∗ t3) ≥ η · rmin{(N̂K)

I
ei
((t1 ∗ t2) ∗ t3), (N̂K)

I
ei
(t2)} =

rmin{η · (N̂K)
I
ei
((t1 ∗ t2) ∗ t3), η · (N̂K)

I
ei
(t2)} ((N̂K)

I
ei
)Mp
η (t1 ∗ t3) = rmin{((N̂K)

I
ei
)Mp
η ((t1 ∗

t2) ∗ t3), ((N̂K)
I
ei
)Mp
η (t2)} ((N̂K)

I
ei
)Mp
η (t1 ∗ t3) ≥ rmin{((N̂K)

I
ei
)Mp
η ((t1 ∗ t2) ∗ t3), ((N̂K)

I
ei
)Mp
η (t2)},

((N̂K)
F
ei
)Mp
η (t1 ∗ t3) = η · (N̂K)

F
ei
(t1 ∗ t3) ≥ η · rmin{(N̂K)

F
ei
((t1 ∗ t2) ∗ t3), (N̂K)

F
ei
(t2)} =

rmin{η · (N̂K)
F
ei
((t1 ∗ t2) ∗ t3), η · (N̂K)

F
ei
(t2)} ((N̂K)

F
ei
)Mp
η (t1 ∗ t3) = rmin{((N̂K)

F
ei
)Mp
η ((t1 ∗

t2) ∗ t3), ((N̂K)
F
ei
)Mp
η (t2)} ((N̂K)

F
ei
)Mp
η (t1 ∗ t3) ≥ rmin{((N̂K)

F
ei
)Mp
η ((t1 ∗ t2) ∗ t3), ((N̂K)

F
ei
)Mp
η (t2)}

And ((AK)
T
ei
)Mp
η (t1 ∗ t3) = η · (AK)

T
ei
(t1 ∗ t3) ≤ η · max{(AK)

T
ei
((t1 ∗ t2) ∗ t3), (AK)

T
ei
(t2)}

= max{η · (AK)
T
ei
((t1 ∗ t2) ∗ t3), η · (AK)

T
ei
(t2)} ((AK)

T
ei
)Mp
η (t1 ∗ t3) = max{((AK)

T
ei
)Mp
η ((t1 ∗

t2) ∗ t3), ((AK)
T
ei
)Mp
η (t2)} ((AK)

T
ei
)Mp
η (t1 ∗ t3) ≤ max{((AK)

T
ei
)Mp
η ((t1 ∗ t2) ∗ t3), ((AK)

T
ei
)Mp
η (t2)},

((AK)
I
ei
)Mp
η (t1 ∗ t3) = η · (AK)

I
ei
(t1 ∗ t3) ≤ η · max{(AK)

I
ei
((t1 ∗ t2) ∗ t3), (AK)

I
ei
(t2)} =

max{η · (AK)
I
ei
((t1 ∗ t2) ∗ t3), η · (AK)

I
ei
(t2)} ((AK)

I
ei
)Mp
η (t1 ∗ t3) = max{((AK)

I
ei
)Mp
η ((t1 ∗ t2) ∗

t3), ((AK)
I
ei
)Mp
η (t2)} ((AK)

I
ei
)Mp
η (t1 ∗ t3) ≤ max{((AK)

I
ei
)Mp
η ((t1 ∗ t2) ∗ t3), ((AK)

I
ei
)Mp
η (t2)}c,

((AK)
F
ei
)Mp
η (t1 ∗ t3) = η · (AK)

F
ei
(t1 ∗ t3) ≤ η · max{(AK)

F
ei
((t1 ∗ t2) ∗ t3), (AK)

F
ei
(t2)} =

max{η · (AK)
F
ei
((t1 ∗ t2) ∗ t3), η · (AK)

F
ei
(t2)} ((AK)

F
ei
)Mp
η (t1 ∗ t3) = max{((AK)

F
ei
)Mp
η ((t1 ∗ t2) ∗
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t3), ((AK)
F
ei
)Mp
η (t2)} ((AK)

F
ei
)Mp
η (t1 ∗ t3) ≤ max{((AK)

F
ei
)Mp
η ((t1 ∗ t2) ∗ t3), ((AK)

F
ei
)Mp
η (t2)}.

Hence K̃Mp
η of K is an NSCTID of P, for all η ∈ [0, 1].

Example 5.8. Let P = {0, t1, t2, t3} be a PS-algebra with the cayley’s table as shown in Table

1 . The NSC-set K = ⟨(N̂K)
T,I,F
ei , (AK)

T,I,F
ei ⟩ of P is defined as

(N̂K)
T
ei
(ti) = {[0.7, 0.9] if ti = 0 and [0.3, 0.6]. if otherwise

(N̂K)
I
ei
(ti) = {[0.6, 0.8] if ti = 0 and [0.4, 0.5]. if otherwise

(N̂K)
F
ei
(ti) = {[0.5, 1] if ti = 0 and [0.2, 0.7]. if otherwise.

And
(AK)

T
ei
(ti) = {0.2 if ti = 0 and 0.7. if otherwise

(AK)
I
ei
(ti) = {0.5 if ti = 0 and 0.9. if otherwise

(AK)
F
ei
(ti) = {0.4 if ti = 0 and 1. if otherwise.

The set K is an NSCTID of P as it satisfies (i) but fulfills (ii) and (iii) with the condition: If i = j

then ti ∗ tj = 0 with (N̂K)
T
ei
(ti ∗ tj) = [0.7, 0.9], (N̂K)

I
ei
(ti ∗ tj) = [0.6, 0.8], (N̂K)

F
ei
(ti ∗ tj) = [0.5, 1]

Otherwise

(N̂K)
T
ei
(ti ∗ tj) = [0.3, 0.6], (N̂K)

I
ei
(ti ∗ tj) = [0.4, 0.5], (N̂K)

F
ei
(ti ∗ tj) = [0.2, 0.7],

And

(AK)
T
ei
(ti) = 0.2, ( AK)

I
ei
(ti) = 0.5, ( AK)

F
ei
(ti) = 0.4

Otherwise (AK)
T
ei
(ti) = 0.7, (AK)

I
ei
(ti) = 0.9, (AK)

F
ei
(ti) = 1 given in definition 3.1. Now, for

(N̂K)
T,I,F
ei η ∈ [0.2, 0.5] and for (A)T,I,F

ei , η = 0.2. Then the mapping K̃Mp
η | Parrow[0, 1] is given

by

((N̂K)
T
ei
)Mp
[0.2,0.5](0) = [0.2, 0.5] · (N̂K)

T
ei
(0) = [0.14, 0.45]

((N̂K)
I
ei
)Mp
[0.2,0.5](0) = [0.2, 0.5] · (N̂K)

I
ei
(0) = [0.12, 0.4]

((N̂K)
F
ei
)Mp
[0.2,0.5](0) = [0.2, 0.5] · (N̂K)

F
ei
(0) = [0.1, 0.5]

((N̂K)
T
ei
)Mp
[0.2,0.5](ti) = [0.2, 0.5] · (N̂K)

T
ei
(ti) = [0.06, 0.3]

((N̂K)
I
ei
)Mp
[0.2,0.5](ti) = [0.2, 0.5] · (N̂K)

I
ei
(ti) = [0.08, 0.25]

((N̂K)
F
ei
)Mp
[0.2,0.5](ti) = [0.2, 0.5].(N̂K)

F
ei
(ti) = [0.04, 0.35],

And
((AK)

T
ei
)Mp
0.03(0) = 0.2.(AK)

T
ei
(0) = [0.04]

((AK)
F
ei
)Mp
0.2 (0) = 0.2.(AK)

T
ei
(0) = [0.08]

((AK)
T
ei
)Mp
0.2 (ti) = 0.2.(AK)

T
ei
(ti) = [0.14]

((AK)
I
ei
)Mp
0.2 (ti) = 0.2.(AK)

T
ei
(ti) = [0.18]

((AK)
F
ei
)Mp
0.2 (ti) = 0.2.(AK)

T
ei
(ti) = [0.2]
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Hence K̃Mp
η is an NSCTID of P.

Theorem 5.9. The union of any two NSC-multiplications of an NSCTID is an NSCTID of

P.

Proof. Suppose K̃Mp
η and K̃Mp

η′ are two NSC-multiplications of an NSCTID is an NSCTID of

P, where η, η′ ∈ (0, 1] and η ≤ η′. As we know that K̃Mp
η and K̃Mp

η′ are NSCTIDs of P. Then

(((N̂K)
T,I,F
ei )Mp

η ∪((N̂K)
T,I,F
ei )Mp

η′ )(0) = (((N̂K)
T,I,F
ei )Mp

η ∪((N̂K)
T,I,F
ei )Mp

η′ )(t1∗t1) = rmin{((N̂K)
T,I,F
ei

)Mp
η (t1 ∗ t1), ((N̂K)

T,I,F
ei )Mp

η′ (t1 ∗ t1)} ≥ rmin{rmin{((N̂K)
T,I,F
ei )Mp

η (t1), ((N̂K)
T,I,F
ei )Mp

η (t1)},
rmin{((N̂K)

T,I,F
ei )Mp

η′ (t1), ((N̂K)
T,I,F
ei )Mp

η′ (t1)}} = rmin{((N̂K)
T,I,F
ei )Mp

η (t1), ((N̂K)
T,I,F
ei )Mp

η′ (t1)} =

rmin{η · (N̂K)
T,I,F
ei (t1), η

′ · (N̂K)
T,I,F
ei (t1)} = ((N̂K)

TI,F
ei )Mp

η ∪ (N̂K)
T,I,F
ei )Mp

η′ )(t1).

And

(((AK)
T,I,F
ei )Mp

η ∪ ((AK)
T,I,F
ei )Mp

η′ )(0) = (((AK)
T,I,F
ei )Mp

η ∪ ((AK)
T,I,F
ei )Mp

η′ )(t1 ∗ t1) = max{((AK)ei
T,I,F)Mp

η (t1∗t1), ((AK)
T,I,F
ei )Mp

η′ (t1∗t1)} ≤ max{max{((AK)
T,I,F
ei )Mp

η (t1), ((AK)
TI,F
ei )Mp

η (t1)},max

{((AK)
T,I,F
ei )Mp

η′ (t1), ((AK)
T,I,F
ei )Mp

η′ (t1)}} = max{((AK)
T,IF
ei )Mp

η (t1), ((AK)
T,I,F
ei )Mp

η′ (t1)} = max{
η ·(AK)

T,I,F
ei (t1), η

′ ·(AK)
T,I,F
ei (t1)} = ((AK)

T,I,F
ei )Mp

η ∪(AK)
T,I,F
ei )Mp

η′ )(t1). (((N̂K)
T,IF
ei )Mp

η ∪((N̂K)ei
T,I,F)Mp

η′ )(t1∗t3) = rmin{((N̂K)
T,I,F
ei )Mp

η (t1∗t3), ((N̂K)
T,I,F
ei )Mp

η′ (t1∗t3)} ≥ rmin{rmin{((N̂K)
T,I,F
ei )

Mp
η ((t1 ∗ t2) ∗ t3), ((N̂K)

T,I,F
ei )Mp

η (t2)}, rmin{((N̂K)
T,I,F
ei )Mp

η′ ((t1 ∗ t2) ∗ t3), ((N̂K)
T,I,F
ei )Mp

η′ (t2)}} =

rmin{rmin{((N̂K)
T,I,F
ei )Mp

η ((t1 ∗ t2) ∗ t3), ((N̂K)
T,I,F
ei )Mp

η′ ((t1 ∗ t2) ∗t3)}, rmin{((N̂K)
T,I,F
ei )Mp

η (t2),

((N̂K)
T,I,F
ei )Mp

η′ (t2)}} = {rmin{(((N̂K)
T,I,F
ei )Mp

η ∪ ((N̂K)
T,I,F
ei )Mp

η′ )((t1 ∗ t2) ∗ t3), (((N̂K)
T,I,F
ei )Mp

η ∪
((N̂K)

T,I,F
ei )Mp

η′ )(t2)}.
And

(((AK)
T,I,F
ei )Mp

η ∪ ((AK)
T,I,F
ei )Mp

η′ )(t1 ∗ t3) = max{((AK)
T,I,F
ei )Mp

η (t1 ∗ t3), ((AK)
T,I,F
ei )Mp

η′ (t1 ∗
t3)} ≤ max{max{((AK)

T,I,F
ei )Mp

η ((t1 ∗ t2) ∗ t3), ((AK)
T,I,F
ei )Mp

η (t2)}. max{((AK)
T,I,F
ei )Mp

η′ ((t1 ∗
t2) ∗ t3), ((AK)

T,I,F
ei )Mp

η′ (t2)}} = max{max{((AK)
T,I,F
ei )Mp

η ((t1 ∗ t2) ∗ t3), ((AK)
T,I,F
ei )Mp

η′ ((t1 ∗ t2)
∗t3)},max{((AK)

T,I,F
ei )Mp

η (t2), ((AK)
T,I,F
ei )Mp

η′ (t2)}}= {max{(((AK)
T,I,F
ei )Mp

η U((AK)
T,I,F
ei )Mp

η′ )((t1

t2) ∗ t3), (((AK)
T,I,F
ei )Mp

η ∪ ((AK)
T,I,F
ei )Mp

η′ )(t2)}
Hence K̃Mp

η ∪ K̃Mp
η′ is an NSCTID of P.

Theorem 5.10. The intersection of any two NSC-multiplications of an NSCTID is an NSC-

TID of P.

Proof. Suppose K̃Mp
η and K̃Mp

η′ are two NSC-multiplications of an NSCTID is an NSCTID of

P, where η, η′ ∈ (0, 1] and η ≤ η′. As we know that K̃Mp
η and K̃Mp

η′ are NSCTIDs of P. Then

(((N̂K)
T,I,F
ei )Mp

η ∩ ((N̂K)
T,I,F
ei )Mp

η′ )(0) = (((N̂K)
T,I,F
ei )Mp

η ∩ ((N̂K)
T,I,F
ei )Mp

η′ )(t1 ∗ t1) = rmin{((N̂K)ei
T,I,F)Mp

η (t1 ∗ t1), ((N̂K)
T,I,F
ei )Mp

η′ (t1 ∗ t1)} ≥ rmin{rmin{((N̂K)
T,I,F
ei )Mp

η (t1), ((N̂K)
T,I,F
ei )Mp

η (t1)},
rmin{((N̂K)

T,I,F
ei )Mp

η′ (t1), ((N̂K)
T,I,F
ei )Mp

η′ (t1)}} = rmin{((N̂K)
T,I,F
ei )Mp

η (t1), ((N̂K)
T,I,F
ei )Mp

η′ (t1)} =

rmin{η · (N̂K)
T,I,F
ei (t1), η

′ · (N̂K)
T,I,F
ei (t1)} = ((N̂K)

T,I,F
ei )Mp

η ∩ (N̂K)
T,I,F
ei )Mp

η′ )(t1).
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And

(((AK)
T,I,F
ei )Mp

η ∩((AK)
T,I,F
ei )Mp

η′ )(0) = (((AK)
T,I,F
ei )Mp

η ∩((AK)
T,I,F
ei )Mp

η′ )(t1∗t1) = max{((AK)
T,I,F
ei )

Mp
η (t1 ∗ t1), ((AK)

T,I,F
ei )Mp

η′ (t1 ∗ t1)} ≤ max{max{((AK)
T,I,F
ei )Mp

η (t1), ((AK)
T,I,F
ei )Mp

η (t1)}, max{((
AK)

T,I,F
ei )Mp

η′ (t1), ((AK)
T,I,F
ei )Mp

η′ (t1)}} = max{((AK)
T,I
ei )Mp

η (t1), ((AK)
T,IF
ei )Mp

η′ (t1)} = max{η · (
AK)

T,I,F
ei (t1), η

′ ·(AK)
T,I,F
ei (t1)} = ((AK)

T,I,F
ei )Mp

η ∩(AK)
T,I,F
ei )Mp

η′ )(t1). (((N̂K)
T,I,F
ei )Mp

η ∩((N̂K)
T,I,F
ei

)Mp
η′ )(t1 ∗ t3) = rmin{((N̂K)

T,I,F
ei )Mp

η (t1 ∗ t3), ((N̂K)
T,I,F
ei )Mp

η′ (t1 ∗ t3)} ≥ rmin{rmin{((N̂K)
T,I,F
ei )Mp

η

((t1 ∗ t2) ∗ t3), ((N̂K)
T,I,F
ei )Mp

η (t2)}, rmin{((N̂K)
T,I,F
ei )Mp

η′ ((t1 ∗ t2) ∗ t3), ((N̂K)
T,I,F
ei )Mp

η′ (t2)}} =

rmin{rmin{((N̂K)
T,I,F
ei )Mp

η ((t1 ∗ t2) ∗ t3), ((N̂K)
T,I,F
ei )Mp

η′ ((t1 ∗ t2) ∗t3)}, rmin{((N̂K)
T,I,F
ei )Mp

η (t2), (

(N̂K)
T,I,F
ei )Mp

η′ (t2)}} = {rmin{(((N̂K)
T,I,F
ei )Mp

η ∩ ((N̂K)
T,I,F
ei )Mp

η′ )((t1 ∗ t2) ∗ t3) (((N̂K)
T,I,F
ei )Mp

η ∩ ((

N̂K)
T,I,F
ei )Mp

η′ )(t2)}.
And

(((AK)
T,I,F
ei )Mp

η ∩ ((AK)
T,I,F
ei )Mp

η′ )(t1 ∗ t3) = max{((AK)
T,I,F
ei )Mp

η (t1 ∗ t3), ((AK)
T,I,F
ei )Mp

η′ (t1 ∗ t3)}
≤ max{max{((AK)

T,I,F
ei )Mp

η ((t1 ∗ t2) ∗ t3), ((AK)
T,I,F
ei )Mp

η (t2)}, max{((AK)
T,I,F
ei )Mp

η′ ((t1 ∗ t2) ∗
t3), ((AK)

T,I,F
ei )Mp

η′ (t2)}} = max{max{((AK)
T,I,F
ei )Mp

η ((t1 ∗ t2)∗ t3), ((AK)
T,I,F
ei )Mp

η′ ((t1 ∗ t2) ∗t3)},
max{((AK)

T,I,F
ei )Mp

η (t2), ((AK)
T,I,F
ei )Mp

η′ (t2)}} = {max{(((AK)
T,I,F
ei )Mp

η ∩ ((AK)
T,I,F
ei )Mp

η′ )((t1 ∗ t2)
∗ t3), (((AK)

T,I,F
ei )Mp

η ∩ ((AK)
T,I,F
ei )Mp

η′ )(t2)}.
Hence K̃Mp

η ∩ K̃Mp
η′ is an NSCTID of P.

6. Conclusion

This paper extensively explores the application of the neutrosophic soft cubic set to investi-

gate specific properties of the t-ideal in a PS-algebra. The derived definitions and fundamental

outcomes hold potential for broader use in other algebraic structures like Lie algebras and lat-

tices in the future. Moreover, there are several areas where this proposed structure can be

advantageous, such as DNA identification, formalizing procedures in genetic algorithms, ge-

nomics, fuzzy logic-based networks, and particularly complex networks. Within the already-

existing neutrosophic cubic structures, the addition of soft sets with T-ideal properties makes

this structure a better choice for future implementations. This can also be extended to the

hypersoft sets and can be advantegeous for MCDM algorithms in various real life applications

such as transportation, healthcare etc.

One potential limitation of our proposed structure NSCTID is the ground algebra because the

results and properties in this study may or may not be satisfy for other algebras in future. Also

the practical implementation and computational efficiency of the NSCTID framework in real-

world applications may pose challenges. The translation of theoretical concepts into efficient

algorithms and the handling of computational complexities could require further investigation

and optimization to fully realize the benefits of NSCTID in practical scenarios.
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Abstract. This paper presents an investigation into the mathematical concepts of neutrosophic folding and

neuretraction on neutrosophic manifolds, specifically focusing on their application in hyperspace. Through

the application of specific transformations on a neutrosophic manifold situated in hyperspace, we can obtain

neutrosophic manifolds in lower dimensions. Based on our research, we can accurately establish the connection

between neutrosophic folding and neuretraction on a neutrosophic manifold. Furthermore, we can determine

the relationship between neuretraction and neutrosophic folding.

Keywords: neutrosophic folding; neuretraction; neutrosophic hyperspace; neutrosophic manifold.

—————————————————————————————————————————-

1. Introduction

Neutrosophy is a scientific field that combines neutrality and philosophy. Samaransache

founded various fields in 1980, such as set theory, probability, and logic, with numerous ap-

plications that highlight the deep interaction between mathematics and other scientific dis-

ciplines. [19]. The concept of fuzzy sets was introduced by Zadeh as a novel method for

elucidating intricate concepts by including the concept of membership. Scholars in the fields

of mathematics and computer science developed this theory, which possesses a broad spectrum

of expedient applications [22]. Neutrosophy is basically rooted in the fundamental concepts of

fuzzy set theory (NS) and intuitionistic fuzzy set theory (IFS) [8, 10, 13, 22]. The concept of

neutrosophic sets was introduced by Smarandache with the aim of representing uncertain or

vague information. This is achieved through the utilization of three distinct functions, namely
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truth, indeterminacy, and falsity. Unlike other theories, the function of indeterminacy is inde-

pendent of the functions of truth and falsity [12,18,19]. Smarandache’s (NS) theory expanded

the scope of (IFS), offering novel perspectives on how to effectively manage uncertainty when

making decisions based on personal experience, as stated in reference [20]. The values of the

truth, indeterminacy, and falsity functions are within ]−0, 1+[, making it difficult to apply to

practical problems [17].

Due to this, Wang created the single-valued neutrosophic sets (SV NS), such that the

truth, indeterminacy, and falsity maps are real elements of the [0, 1] space [12, 21]. Further

investigation on a (SV NG) and a neutrosophic topology was debated in [1, 4, 6, 7, 9, 11, 14,

16]. Additional insights on the applications of homotopy theory were provided in [2, 3]. The

paper aims to contribute to the field of mathematics by exploring and providing a deeper

understanding of the neutrosophic transformation in the context of neutrosophic manifold

theory.

2. Preliminaries

Definition 2.1. [19] Assume that W is a finite set of objects, and that (t) stands for a

generic component in W. A (NS) E in W is comprised of three membership functions, a

truth-membership function υE(t), an indeterminacy-membership function ρE(t) and a falsity-

membership function σE(t). Also, υE(t), ρE (t) and σE (t) are the elements of ]−0, 1+[. E can

be represented as

E= {t, (υE(t), ρE(t), σE(t)) : t ∈ W, υE(t), ρE(t), σE(t) ∈ ]−0, 1+[}. Indeed, −0 ≤ υE(t) +

ρE(t) + σE(t) ≤ 3+.

Definition 2.2. [21] Assume that W is a finite set of objects, and that (t) stands for a

generic component in W . A (SV NS) E in W is comprised of three membership functions, a

truth-membership function υE (t), an indeterminacy-membership function ρE (t) and a falsity-

membership function σE (t). Also each, υE (t) , ρE (t) and σE (t) are elements in ]0, 1[. E can

be represented as E= {t, (υE(t), ρE(t), σE(t)) : t ∈ W, υE(t), ρE(t), σE(t) ∈ ]0, 1[}. In this

approach, 0 ≤ υE(t) + ρE(t) + σE(t) ≤ 3. In the interest of clarity and concision, we refer to a

neutrosophic set ⟨υE, ρE, σE⟩ and ⟨υE(t), ρE(t), σE(t)⟩ as ω and ω (t) respectively.

Definition 2.3. [15] A topological space that satisfies the T2 separation axiom and is locally

homeomorphic to an open n-dimensional disk Un is referred to as an n-dimensional manifold.

Definition 2.4. [5] LetX be a topological space and Cbe a subspace ofX, where i : C → X is

the inclusion. if there exists a continuous map r : X → C satisfying the condition r ◦ i = 1|C .
Then, C is referred to a retract of X. The existence of a map r is denoted as a retraction of

X into C.
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Theorem 2.5. [5] The n-dimensional closed disk Ln = {z ∈ Rn : |z| ≤ 1} is a retract of Rn.

Definition 2.6. [15] Consider two topological spaces X1 and X2, and let φ0 and φ1denote

continuous mappings from X1 to X1. The homotopy between φ0 and φ1is established when

a continuous map φ : X1 × I → X2 exists, and satisfying the conditions φ(s, 0) = φ0(s) and

φ(s, 1) = φ1(s) for all s ∈ X1.

3. Neutrosophic manifolds and their transformations

Our study introduces a collection of important concepts that support our paper and enable

us to arrive at significant conclusions.

Definition 3.1. A neutrosophic n-dimensional manifold is characterized as a pair ⟨Mn, ω⟩ in
which, Mn is n -dimensional manifold.

Example 3.2. A neutrosophic Euclidean n-space ⟨Rn, ω⟩ can be regarded as a neutrosophic

n-dimensional manifold. Additionally, a neutrosophic unit n-dimensional sphere ⟨Sn, ω⟩ can
be considered as a neutrosophic n-dimensional manifold.

Definition 3.3. The neutrosophic arc ζ : [0, 1] → R3 is called a simple neutrosophic arc if,

for each zj, zk∈[0, 1], ξ((zj, ωj) ̸=ξ((zk, ωk) whenever (zj , ωj)̸=(zk, ωk).

Now, we will delve into the notion of neutrosophy homotopic and describe two types of it.

Definition 3.4. A neutrosophic homotopy is a collection of neutrosophic maps ht : ⟨M, ω⟩ →
⟨N, ω⟩ , t ∈ [0, 1], in which the associated neutrosophic map Φ : ⟨M, ω⟩ × [0, 1] →
⟨N, ω⟩ given by Φ((x, ω), t) = ht(x, ω), and the two neutrosophic maps h0, h1 : ⟨M, ω⟩ →
⟨N, ω⟩ are called neutrosophy homotopic if there is a neutrosophic homotopy ht that connects

them and is represented by h0 ≈ h1.

Theorem 3.5. Let ξ1 and ξ2 be two neutrosophic arcs. Then, there are two types of neutros-

ophy homotopic arcs.

Proof. The initial category encompasses a pair of neutrosophic arcs, ξ1 and ξ2 with specific

values for ω1 and ω2 namely, ω1=b1 and ω2=b2 for all points of the arcs as shown in Fig.1a.

The second category encompasses a pair of neutrosophic arcs, ξ1 and ξ2 with specific values for

ω1 and ω2, where ξ1 is a neutrosophic arc that has values for ωj in the form of ⟨υj , ρj , σj ⟩ and

ξ2 is a neutrosophic arc that has values for ωk in the form of ⟨υk, ρk, σk ⟩ for which max

ωj−→0 or max ωk−→0 where, ωj , ωk ∈ [0, 1], as shown in Fig.1b.
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(a) Neutrosophy homotopic of type (I) (b) Neutrosophy homotopic of type (II)

Figure 1. neutrosophy homotopic

Definition 3.6. Let ⟨M, ω⟩ be a neutrosophic manifold with a neutrosophic subman-

ifold ⟨C , ω⟩, and let us consider the existence of a continuous neutrosophic map � :

⟨M, ω⟩−→⟨C , ω⟩ for which � (c, ω (c)) = (c ω (c)) , ∀c ∈ C . Then, � is called neuretraction.

Example 3.7.
〈
S1, ω

〉
is neuretraction of

〈
R2 − {0), ω

〉
.

Based on Definition 3.6, we can conclude that any of the following situations qualify as

neuretraction:

Definition 3.8. (a) � (c, ω (c)) = (c, min(υ), min(ρ), min(σ))

(b) � (c, ω (c)) = (c, max(υ), max(ρ), max(σ))

(c) � (c, ω (c)) = (c, ω ∈ (0, 1)). Now, for the rest of our discussion, and for simplicity, we

shall denote the neutrosophic manifold ⟨M, ω⟩ by the symbol M .

To show that isometry exists on both the upper and lower neutrosophic hypermanifolds, we

shall use the potent framework of neutrosophic theory in the concept that follows.

Definition 3.9. A map F : ∪M−→∪M is said to be an isoneutrosophic folding if F (M) =

M and for each member of the upper neutrosophic hypermanifold Mg, there is a Mg lower M

for which ωg = ωg for any corresponding point, i.e., ωg(c) = ωg( c) as shown in Fig.2
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Figure 2. Isoneutrosophic folding

Theorem 3.10. Assuming M is a neutrosophic hyperspace in Rm+1. Then, we conclude that

there are two types of neutrosophication that coincide in M .

(a) For every c ∈ M, ω(c) = ⟨1, 1, 1⟩. Geometrically, parallel neutrosophic manifolds,

which is known as the ”crisp property.”

(b) For each distinct point ct1 , ct2 ∈ M and, ω(ct1) ̸= ω(ct2), there is a chain of homeo-

morphic neutrosophic manifolds connected at a common point.

Proof. (a) In ”a crisp property.” For all yt1 , yt2 ∈ M , we have ω(yt1) = ω(yt2) = ⟨1, 1, 1⟩ also,
all neutrosophic hypermanifolds Ms are parallel, ∀cs ∈ M s, ω(cs) < ⟨1, 1, 1⟩ and ∀c1, c2 ∈
Ms, ω(c1) = ω(c2), Ms = M s or Ms = M s as shown in Fig.3. In this situation, we can define

ω as

ω = ⟨υ, ρ, σ⟩ where

⟨υ, ρ, σ⟩ =

〈{
1

1+l1
if l1 > 0

1
1−l1

if l1 < 0
,

{
1

1+l2
if l2 > 0

1
1−l2

if l2 < 0
,

{
1

1+l3
if l3 > 0

1
1−l3

if l3 < 0

〉
, the list

(li, i = 1, 2, 3) can be represented in Fig.3. Moreover, we have ω = ⟨0, 0, 0⟩ whenever

li −→±∞. However, this illustrates the degree of neutrosophication in the crisp case of M . In

fact, ∀γ there is a neutrosophic strip at γ, specifically ζγ for which ω(c) < ⟨1, 1, 1⟩ whenever
c ∈ ζγ and decreases if li−→±∞.
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Figure 3. parallel hyperspaces and their isoneutrosophic folding

(b) LetM be a neutrosophic hyperspace for which ω(cs) ̸= ω(ct), cs ̸= ct inM , and suppose

that q is a point at which ω(q) = (maxωs, s ∈ N). For all point γ ∈ M , ∃ neutrosophic strip ζγ

such that ω(c1) < ω(c2) < ω(γ), whenever c1, c2 ∈ ζγ . If there is no other common neutrosophic

point than q, then ∃ a point cj ∈ Mj , j = 1, 2, 3. For all horizontal neutrosophic strips, q

has a maximum value (neutrosophic point) in the neutrosophic strip.

The sequence of neuretraction within a neutrosophic hyperspace will be inferred from the

data that follow.

Theorem 3.11. If M is a neutrosophic hyperspace in Rm+1, and � : M−→ C, is a neuretrac-

tion. Then, there exists a sequence ⟨�i : ∪M−→Ci, i = 1, 2, . . .m⟩ of a neuretraction. Also, if

we consider dim (∪M) = dim Ci, then all �i are special types of isoneutrosophic folding.

Proof. Let F be a isoneutrosophic folding of ∪M into ∪M such that F (M) = M ω ( M) =

ω(M). Thus, we conclude F (M) = M as shown in Fig.4. Now for each neuretraction � :

M−→C (in a case of no common point) we obtain the induced neuretractions �i : M−→Ci,
dim Ci = dimM . But if � : M−→p, there are induced neuretractions �i : M i−→ pi and

�i : Mi−→pi. However, these neuretractions are not types of neutrosophic folding, because

dim Ci ̸= dimMi. For example, in Fig.5, ∃ an isoneutrosophic folding, whereas there is no

isneutrosophic folding as a type of neuretraction in � : ∪M−→p, since dim p ̸= dimMi.
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Figure 4. Isoneutrosophic folding on parallel hyperspaces

Figure 5. Neuretraction on hyperspaces with common point

The advanced results in this study reveal multiple occurrences of neuretractions correspond-

ing to a set of neutrosophic manifolds that exhibit homeomorphism to a set of neutrosophic

unit spheres with n dimensions, all of which possess a shared center.

Theorem 3.12. Suppose that M is a neutrosophic manifold of dimension m, which is

homeomorphic to a neutrosophic unit sphere, with ω (yi) = 1 for each yj ∈Sm, else ω =

⟨υ, ρ, σ⟩ where

⟨υ, ρ, σ⟩ =

〈{
l1, 0 < l1 < 1
1
l1
, l1 > 1

,

{
l2, 0 < l2 < 1
1
l2
, l2 > 1

,

{
l3, 0 < l3 < 1
1
l3
, l3 > 1

〉
where, yj ∈
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∪Sm
j as a union of m-dimensional neutrosophic spheres with a common center and let

H = {(y, ω) : |y| ≤ 1} be an n-dimensional neutrosophic closed ball. Then, for every neure-

traction of (H − q) onto Sm−1 there are induced neuretractions of Hj − q onto Sm−1
j . More-

over, under the condition F (Sm) =Sm, we get an isoneutrosophic folding F : S m
j −→Sm

j .

Proof. Assume M is a neutrosophic manifold, Sn is a neutrosophic unit sphere, and M is

homeomorphic to Sn as shown in Fig.6. If there is a neutrosophic sphere Sm inside the

neutrosophic system, say Sm
j (Neutrosophication will be reduced, ω = ⟨υ, ρ, σ⟩−→⟨0, 0, 0⟩

if li−→0 and ω = ⟨υ, ρ, σ⟩−→⟨0, 0, 0⟩ if li−→∞ for i = 1, 2, 3. Indeed, for all neutrosophic

points (c, ω = ⟨1, 1, 1⟩) ∃ (a neutrosophic) strip of neutrosophic points (cj , ωj< ⟨1, 1, 1⟩) ∈
S m

j , and
(
cj , ωj< ⟨1, 1, 1⟩

)
∈ Sm

j . However, for the isoneutrosophic folding F : S m
j −→Sm

j ,

in which ωj = ωj there is an induced isoneutrosophic folding F : Hj −→Hj , as well as

neuretractions �j :
(
Hj − q

)
−→S m−1

j and �j :
(
Hj − q

)
−→Sm−1

j .

Figure 6. Neuretraction and neutrosophic folding on a spheres

Theorem 3.13. Suppose that N is a neutrosophic manifold with � : N−→M is a neuretrac-

tion, then the geometric neuretraction �g induces a neuretractions �υ, �ρ, �σ. On the other

hand, the converse is not true.

Proof. Let us consider � : N−→M as a neuretraction, such that

N = ⟨Ng,Nυ, Nρ,Nσ⟩ and M ⊆ N. Now, consider the geometric neuretraction of

�g : Ng−→Mg of Ng into Mg, then we get the induced neuretractions �υ : Nυ−→Mυ, �ρ :

Nρ−→Mρ, �σ : Nσ−→Mσ as shown in Fig.7. On the other hand, consider the neuretractions

�υ : Nυ−→Mυ, �ρ : Nρ−→Mρ, �σ : Nσ−→Mσ as the identity neuretractions for all mem-

bership degrees, which have no impact on the geometric manifold Ng as shown in Fig.8 .
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Figure 7. A neuretraction of type (I)

Figure 8. A neuretraction of type (II)

4. Conclusion

The present study aimed to develop a theoretical basis for neuretraction on a neutrosophic

manifold. The neutrosophic folding and neuretraction on a neutrosophic manifold are achieved
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geometrically and topologically. The sequence of neuretractions in a neutrosophic hyperspace

is obtained. The relationship between some types of transformations is deduced. An area that

necessitates additional investigation pertains to the establishment and exploration of a fitting

notion of neutrosophic homotopy groups, in conjunction with a thorough examination of their

consequent neutrosophic homomorphism.
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Abstract 

This manuscript was concerned with the reasons for the lateness of completion of building 

projects, highway projects, and other infrastructures in Mosul City that were hugely damaged due to 

the occupation of the terrorist ISIS gangs from 2014 to 2018. The questionnaire survey was launched 

in a very critical period of time (i.e. during the spread of the coronavirus pandemic), It was during a 

couple of months Oct. and Nov. of the year 2020. The neutrosophic theory has very flexible tools for 

analyzing the vagueness, hesitancy, and incomplete data, therefore, the author tried to partition the 

delay reasons into three major causes depending upon the probability bias of occurrence (i.e. truth, 

indeterminacy, and falsity), We figured out a good innovative approach to sort the importance of 

thirty-one causes of delay the construction projects. 

Keywords: Neutrosophic Relative Importance; Construction Projects; Delay Causes; ISIS 

Occupation; Mosul City; Building Projects; Highway Projects; Infrastructure Projects.  

1. Introduction 

To gain a good insight into the causes and how to therapy the construction delay in the 

Infrastructure of Mosul city after a hugely damaged city faced by the ISIS terrorist gangs’ occupation 
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of the city in 2014 for about three years. The researcher launched 1500 local questionnaires, exactly a 

national survey. This survey consists of thirty-one scopes of causes (thirty causes already exist in the 

literature, while the last cause was added by the author which is the delay of finishing the project 

caused by the Coronavirus pandemic spreading in Iraq for the period from Feb 2020 to Jan. 2022) [1]. 

The following table illustrates the definition of each delaying cause with its mathematical 

symbol accompanied by its grade of intense in view of neutrosophic theory, that is there are nine 

grades of intense (the gradations 9-8-7 have been dedicated to the truth bias, and the grades 6-5-4 

went for indeterminate bias, and 3-2-1 have been specified for falsity bias). The survey has been 

targeted at 1,500 of experience, but unfortunately, the persons responding were just 250 individuals 

whose expertise is diverse between Project owners, Project designers (i.e. Consulting offices), 

Contractors…etc.
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Table (1): The degrees of the intense in the construction delay reasons from the neutrosophic point of view. 

Problem 

Math. 

Code 

Definition of the problem 

Falsity bias Indeterminate bias Truth bias 

1 2 3 4 5 6 7 8 9 

R1 Unrealistic schedule (bid duration is too short) 14 0 4 1 6 25 81 26 93 

R2 Ineffective delay penalty provisions in the contract 92 86 17 13 5 22 12 1 7 

R3 Errors in contract documents 13 2 9 101 18 98 4 2 3 

R4 Selecting an inappropriate project delivery method 65 90 66 3 4 13 3 3 3 

R5 
Excessive change orders by the owner during 

construction 

19 26 7 43 93 17 10 16 19 

R6 Delayed payments by the owner 0 1 1 16 15 3 14 100 100 

R7 Delay in approving design documents by the owner 11 9 15 19 22 27 53 50 44 

R8 Time-consuming decision-making process of the owner 72 30 88 10 0 13 0 12 25 

R9 Unnecessary Inference by the owners 30 10 60 48 34 20 0 4 39 

R10 Delay to furnish and deliver the site to the contractor 80 20 80 15 10 60 4 50 3 
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R11 
Poor communication and coordination of the owner with 

designer and/ or contractor 

25 0 146 9 27 31 2 10 0 

R12 Poor Quality Assurance (QA) plan of the owner 31 13 37 0 22 59 0 11 77 

R13 Lack of management staffs of the owner 64 79 0 8 74 14 2 4 5 

R14 Inappropriate construction methods 86 13 41 1 0 0 39 0 70 

R15 
Contractor inefficiency (in providing the labor, equipment 

and material and handling sub-contractors) 

12 18 51 10 36 29 18 27 49 

R16 
Poor communication and coordination of the contractor 

with owner and/ or designer 

80 17 4 3 16 9 24 21 76 

R17 Inadequate contractor experience 15 12 13 29 23 35 21 38 63 

R18 
Financial difficulties and mismanagement by the 

contractor 

12 14 15 23 19 31 39 41 56 

R19 
Poor site management and Quality Control (QC) by the 

contractor 

8 11 19 21 31 29 46 43 42 

R20 Legal disputes between the designer and the owner 5 71 13 21 19 12 47 59 67 

R21 Design errors 10 13 17 17 21 22 45 52 53 
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R22 Complexities and ambiguities of project design 8 21 14 27 42 39 29 37 33 

R23 Delays in providing the design documents by the designer 53 7 26 32 40 47 15 17 13 

R24 Inadequate experience of the designer 17 18 0 57 99 12 9 28 8 

R25 
Inadequate site assessment by the designer during the 

design phase 

4 39 70 23 10 3 57 33 11 

R26 
Misunderstandings between owner and designer about 

the scope of the work 

36 64 57 25 15 29 8 16 0 

R27 Financial difficulties with the designer 6 3 9 67 51 64 17 10 23 

R28 
Poor communication and coordination of the designer 

with the owner and/ or contractor 

12 0 17 53 57 61 0 19 31 

R29 Legal dispute between the designer and the owner 56 60 71 7 22 9 12 13 0 

R30 
Delay in getting permits and acquisitions (Environmental, 

building, right of way, utilities, etc.) 

0 5 2 6 8 19 81 37 92 

R31 
The coronavirus pandemic spreading in Iraq from Feb 

2020 to Jan. 2022 

7 10 3 12 3 15 69 48 83 
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It is worth mentioning that the grades from 1 to 9 have different neutrosophic linguistic 

meanings [2-11], as forthcoming table (2) demonstrates the grade linguistic meaning of the impact of 

the reason on delaying the completion of the project: 

 

Table (2): The Grade Linguistic Meaning of the Impact of the Reason on Delaying the Completion of 

the Project 

Neutrosophic 

grade 

Neutrosophic bias Neutrosophic linguistic statement 

9 Grade of Truth membership function 
The reason always has an impact on 

delaying the completion of the project 

8 Grade of Truth membership function 
The reason usually has an impact on 

delaying project completion 

7 Grade of Truth membership function 
The reason generally has an impact on 

the delay in completing the project 

6 
Grade of Indeterminate membership 

function 

The reason often has an impact on  the 

delay in completing the project 

5 
Grade of Indeterminate membership 

function 

The reason sometimes has an impact on  

the delay in completing the project 

4 
Grade of Indeterminate membership 

function 

The reason occasionally has an impact on  

the delay in completing the project 

3 Grade of Falsity membership function 
The reason seldom has an impact on  the 

delay in completing the project 

2 Grade of Falsity membership function 
The reason rarely has an impact on  the 

delay in completing the project 

1 Grade of Falsity membership function 
The reason never has an impact on  the 

delay in completing the project 

2.  
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3. Analyzing the Results of Survey (A) 

The local survey (A) attached at the end of this manuscript, achieves some important aims such 

as investigating the effectiveness of the most popular causes of construction delay, determining the 

scale of riskiness for every probable cause of delay, and confinement the list of the most critical delay 

causes.  

Because of the situation of quarantine during the period of coronavirus spreading, we tried to avoid 

doing the paper survey, and an online survey was launched via Google form within a couple of 

months Oct. and Nov. 2020, This needed to invite 1500 experts, especially the Officials in Nineveh 

Governorate, and some civil society organizations who had projects for the reconstruction of Nineveh 

as a UNDP organization, TEKA organization...etc. we gained just 250 completed surveys.  

The following subsections contain traditional statistical percentages categorized as the kinds 

of projects, the ownerships of the projects, how delivery method of the project, the role of the 

respondents worked in the project, the accumulation experience of the respondents, the impacts of 

different causes of delay. 

3.1 Projects' Kinds Subject to Respondents' Answers 

The 250 answers gained out of 1,500 issued questionnaires confirm that 117 equivalently to 

(46.8%) of the projects were building projects, while 100 of them were infrastructure projects (i.e. it is 

40% of the projects), wherein the highway projects were 33 projects out of 250 (i.e. 13.2%). The below 

figure (3.2) illustrates the pie chart of the distributed percentages figured out using MATLABR 2023a. 

% plot the Pie chart of distributed percentages of projects type 

clc; 

clear; 

close;  

numberofbuildingstype=[117 100 33]; 

percentage=numberofbuildingstype./250; 

% Create Pie Chart 
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ax1=nexttile; 

pie3(ax1,percentage) 

title(' Types of Projects') 

labels={'buildings projects','infrastructure','highway projects'}; 

% Create legend 

lgd=legend(labels); 

lgd.Layout.Tile='east'; 

 

 

Figure (1): Percentages of Project Types 

3.2 The Ownership Categories 

Again, after completing the surveys, we concluded that 170 projects out of 250 belong to 

government projects (public projects) which represent the percentage (68%), whilst 50 projects are in 

the private sector (i.e. 20%). Finally, the remaining 30 projects have been done by civil society 

organizations, that is, 12%. The following figure (3.2.2) demonstrates the distributed percentages 

figured out by Pie chart using MATLAB R2023a. 

% plot the Pie chart of distributed percentages of ownerships type 

clc; 

clear; 
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close;  

numberofownershipstype=[170 50 30]; 

percentage=numberofownershipstype./250; 

% Create Pie Chart 

ax1=nexttile; 

pie3(ax1,percentage) 

title(' Types of Projects') 

labels={'public projects','private sector','civil society organizations'}; 

% Create legend 

lgd=legend(labels); 

lgd.Layout.Tile='east'; 

 

 

 Figure (2): Types of Ownerships 

 

3.3 Choosing the Method of Delivering the Project to the Beneficiary 

It is well known that there are four methods of delivering the projects in Iraq country, they are: [11-

13] 

1- Traditional Approach (TA). 

2- Direct Labor (DL). 

3- Design Build (DB). 

4- Turn Key (TK). 
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Hence, we should not forget that our studying is focused on the projects that already 

completed but they were suffered from delays in the completion in some implementation stages for 

critical causes [14,15]. Our database of survey results showed that (145) projects were of the type of 

(TA) delivered method, while (55) projects went in favor of the (DL) method, and (30) projects were 

delivered by the (DB) method, finally, there were (20) projects of (TK) delivery method. The following 

MATLAB program and figure (3.2.3) clarify the statistical categories of the above-mentioned 

information: 

 

% plot the Pie chart of the projects delivery method 

clc; 

clear; 

close;  

numberofdeliverymethods=[145 55 30 20]; 

percentage=numberofdeliverymethods./250; 

% Create Pie Chart 

ax1=nexttile; 

pie3(ax1,percentage) 

title(' Statistical Categories of Delivery Methods') 

labels={'TA approach','Dl approach','DB approach', 'TK approach' }; 

% Create legend 

lgd=legend(labels); 

lgd.Layout.Tile='east'; 
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Figure (3): Categories Percentage of Delivery Methods 

 

3.4 Respondents’ Role in Project 

In this study, we are dependent on three main kinds of respondents’ roles, the owners of the 

projects are 33 respondents, the contractors are 52, and 79 of the consulting offices, while other kinds 

of respondents such as architects, safety directors, foremen…etc, all of them counting together were 

86. Hence the forthcoming program and figure (4) are simply illustrate the percentage of them: 

 

% plot the Pie chart of the respondents’ role in the Project 

clc; 

clear; 

close;  

numberofrespondentsrole=[33 79 52 86]; 

percentage=numberofrespondentsrole./250; 

% Create Pie Chart 

ax1=nexttile; 

pie3(ax1,percentage) 

title(' Respondents’ Role in Project') 

labels={'projects owners','Projects designers','Contractors', 'Others' }; 
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% Create legend 

lgd=legend(labels); 

lgd.Layout.Tile='east'; 

 

 

 

Figure (4): Categories Respondents’ Role in Projects 

 

4. Neutrosophic Perspective-Based Impact Delay Causes 

It is important to determine the impishness of the 31 potential causes of the occurrence of delay. 

the participants during the launched survey were requested to evaluate the impact of each cause by 

ranking the effectiveness using numbers from 1 to 9, where the number one shows the least impishness, 

on the other hand, the no. nine means the severest cause. By using neutrosophic theory, we will cover 

the vagueness of the data, the hesitancy in the decisions because there are some reasons that cannot be 

determined with certainty whether they have an impact on delaying the project or not! or they may 

have some impact on delaying the completion of some projects and not others, and some of the reasons 

may have an impact on a particular project at certain times, while at other times they have no effect. All 

this confusion may affect the process of making the correct decision, which consequently leads to the 

emergence of an urgent need to use neutrosophic logic, which is an ideal generalization of fuzzy logic 
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because in all complicated cases, it has the appropriate mathematical tools to represent all cases of 

ambiguity, vagueness, and incomplete information [4-7]. 

This section will be dedicated to analyzing the questions raised by the survey (A) using the newly 

suggested neutrosophic mathematical concept named as Neutrosophic Relative Importance Index 

(NRII) which has the ability to partition the causes' effects of delay the projects into three categories:  

1-Truth Relative Importance Index (RIItruth). 

2- Indeterminate Importance Index (RIIindeterminate). 

3- Falsity Importance Index (RIIfalsity). 

For the above three neutrosophic components, the authors suggested the following mathematical 

formulas: 

𝑅𝐼𝐼𝑡𝑟𝑢𝑡ℎ, 𝑅𝐼𝐼𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒, 𝑅𝐼𝐼𝑓𝑎𝑙𝑠𝑖𝑡𝑦 =
∑ ∑ 𝑚𝑗𝑟𝑖𝑗

3
𝑗=1

31
𝑖=1

𝑀∗250
,                        (3.1) 

Where 𝑖 = 1,2,3, … ,31    , for truth bias 𝑀 = 9, 𝑚1 = 9, 𝑚2 = 8, 𝑚3 = 7, that is mean: 

𝑅𝐼𝐼𝑡𝑟𝑢𝑡ℎ =
9∗𝑟𝑖9+8∗𝑟𝑖8+7∗𝑟𝑖7

9∗250
,                                                (3.2) 

Again, for indeterminacy bias, 𝑀 = 6, 𝑚1 = 6, 𝑚2 = 5, 𝑚3 = 4, which implies to 

𝑅𝐼𝐼𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦 =
6∗𝑟𝑖6+5∗𝑟𝑖5+4∗𝑟𝑖4

6∗250
,                                       (3.3) 

Finally, for falsity bias, 𝑀 = 3, 𝑚1 = 3, 𝑚2 = 2, 𝑚3 = 1, hence  

𝑅𝐼𝐼𝑓𝑎𝑙𝑠𝑖𝑡𝑦 =
3∗𝑟𝑖3+2∗𝑟𝑖2+1∗𝑟𝑖1

3∗250
,                                                  (3.4) 

It should be noticed that the values of 𝑟𝑖𝑗  represent the intensity of the (31) causes, the index 𝑖 is the 

number of the (31) rules, and the index 𝑗 is the number of the nine columns stated in table (1). 

The reader should be notified the number 250 that has been embedded in the denominator of 

the formulas (3.2, 3.3, 3.4) is the total number of respondents that have been received after launching 

the survey (A). 

The upcoming MATLAB program with its graph consisting of three pie charts represents the 

severity of each cause in terms of truth-biasing, indeterminacy-biasing, and falsity-biasing: 

% Three Graphs categorizing the cause's severity according to their relative importance 
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clc; 

clear; 

close;  

Z1=[93 26 81;7 1 12;3 2 4;3 3 3;19 16 10;100 100 14;44 50 53;25 12 0;39 4 5;3 50 4;0 10 2;77 11 0;5 4 2;70 0 

39;49 27 18;76 21 24;63 38 21;56 41 39;42 43 46;67 59 47;53 52 45;33 37 29;8 28 9;13 17 15;11 33 57;0 16 

8;23 10 17;31 19 0;0 13 12;92 37 81;83 48 69]; 

M1=[9 8 7]; 

F1=M1'; 

RIItruth=(Z1*F1)./(9*250) 

% Create Pie Chart 

ax1=nexttile; 

pie3(ax1,RIItruth) 

title('Relative Importance Index for Truth') 

Z2=[25 6 1;22 5 13;98 18 101;13 4 3;17 93 43;3 15 16;27 22 19;13 0 10;20 34 48;60 10 15;31 27 9;59 22 0;14 

74 8;0 0 1;29 36 10;9 16 3;35 23 29;31 19 23;29 31 21;12 19 21;22 21 17;39 42 27;12 99 57;47 40 32;3 10 23;29 

15 25;64 51 67;61 57 53;9 22 7;19 8 6;15 3 12]; 

M2=[6 5 4]; 

F2=M2'; 

RIIindeterminacy=(Z2*F2)./(6*250) 

% Create Pie Chart 

ax2=nexttile; 

pie3(ax2,RIIindeterminacy) 

title('Relative Importance Index for Indeterminacy') 

Z3=[4 0 14;17 86 92;9 2 13;66 90 65;7 26 19;1 1 0;15 9 11;88 30 72;60 10 30;80 20 8;146 0 25;37 13 31;0 79 

64;41 13 86;51 18 12;4 17 80;13 12 15;15 14 12;19 11 8;13 7 5;17 13 10;14 21 8;0 18 17;26 7 53;70 39 4;57 64 

36;9 3 6;17 0 12;71 60 56;2 5 0;3 10 7]; 

M3=[3 2 1]; 
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F3=M3'; 

RIIfalsity=(Z3*F3)./(3*250) 

labels={'R1','R2','R3','R4','R5','R6','R7','R8','R9','R10','R11','R12','R13','R14','R15','R16','R17','R18','R19','R

20','R21','R22','R23','R24','R25','R26','R27','R28', 'R29', 'R30', 'R31'}; 

% Create Pie Chart 

ax3=nexttile; 

pie3(ax3,RIIfalsity) 

title('Relative Importance Index for Falsity') 

% Create legend 

lgd=legend(labels); 

lgd.Layout.Tile='east';
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Figure (5): Neutrosophic Relative Importance Index (NRII) 

Now to make a fair analysis of the most important causes that are expected to be ranked due to their 

effectiveness, we need to calculate the accumulated Neutrosophic Relative Importance values: 

𝑅𝐼𝐼𝑡𝑜𝑡𝑎𝑙 = 𝑅𝐼𝐼𝑡𝑟𝑢𝑡ℎ + 𝑅𝐼𝐼𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦 + 𝑅𝐼𝐼𝑓𝑎𝑙𝑠𝑖𝑡𝑦                              (3.5) 

The following table shows all 𝑅𝐼𝐼𝑡𝑜𝑡𝑎𝑙 depending upon the number of 𝑅𝑖 reason. 

Table (3): Total Neutrosophic Relative Importance 

𝑅𝐼𝐼𝑡𝑜𝑡𝑎𝑙 Corresponding 𝑅𝑖 

0.8738 𝑅1 

0.6282 𝑅2 

0.8116 𝑅3 

0.6960 𝑅4 

0.7793 𝑅5 

0.9104 𝑅6 

0.8493 𝑅7 

0.7493 𝑅8 

490



Neutrosophic Sets and Systems, Vol. 58, 2023      

 

 

 

Ahmed A. Mohammed, Huda E. Khalid, Richard W. Gadama, Tuweh Prince Gadama, ‘’Neutrosophic Relative Importance 

Analysis of the Construction Delays of Mosul City After Liberation from ISIS Occupation’’ 

0.8138 𝑅9 

0.8996 𝑅10 

0.8971 𝑅11 

0.8804 𝑅12 

0.6604 𝑅13 

0.7173 𝑅14 

0.8787 𝑅15 

0.7187 𝑅16 

0.8504 𝑅17 

0.8531 𝑅18 

0.8553 𝑅19 

0.8687 𝑅20 

0.8562 𝑅21 

0.8444 𝑅22 

0.7602 𝑅23 

0.7591 𝑅24 

0.8347 𝑅25 

0.7611 𝑅26 

0.8371 𝑅27 

0.8509 𝑅28 

0.7302 𝑅29 

0.8916 𝑅30 

0.8673 𝑅31 

 

The above table need to sort the total RII in descent order using the following MATLAB commands. 
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% Sorting the Neutrosophic Relative Importance in Descend Order 

clc; 

clear; 

close; 

RIItotal=[0.8738 0.6282 0.8116 0.6960 0.7793 0.9104 0.8493 0.7493 0.8138 0.8996 0.8971 0.8804 0.6604 

0.7173 0.8787 0.7187 0.8504 0.8531 0.8553 0.8687 0.8562 0.8444 0.7602 0.7591 0.8347 0.76110.8371 0.8509 

0.7302 0.8916 0.8673]; 

S=sort(RIItotal,'descend'); 

W=S' 

 

 

Table (4): Sorting Neutrosophic Relative Importance in descend Order 

Importance Order 𝑅𝐼𝐼𝑡𝑜𝑡𝑎𝑙 Corresponding 𝑅𝑖 

1 0.9104 𝑅6 

2 0.8996 𝑅10 

3 0.8971 𝑅11 

4 0.8916 𝑅30 

5 0.8804 𝑅12 

6 0.8787 𝑅15 

7 0.8738 𝑅1 

8 0.8687 𝑅20 

9 0.8673 𝑅31 

10 0.8562 𝑅21 

11 0.8553 𝑅13 

12 0.8531 𝑅18 

13 0.8509 𝑅28 
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14 0.8504 𝑅17 

15 0.8493 𝑅7 

16 0.8444 𝑅22 

17 0.8371 𝑅27 

18 0.8347 𝑅25 

19 0.8138 𝑅9 

20 0.8116 𝑅3 

21 0.7793 𝑅5 

22 0.7611 𝑅26 

23 0.7602 𝑅23 

24 0.7591 𝑅24 

25 0.7493 𝑅8 

26 0.7302 𝑅29 

27 0.7187 𝑅16 

28 0.7173 𝑅14 

29 0.6960 𝑅4 

30 0.6604 𝑅13 

31 0.6282 𝑅2 

 

5. Conclusion and Results Analysis 

The descending sorting of the neutrosophic RII shows in table (3.3.2) that the reason R6 (i.e. Delayed 

payments by the owner) comes in the first order due to its importance, whereas the cause R10 (i.e. 

delayed preparation and delivery of the site to the contractor) comes in the second order, while the 

reason of spreading the coronavirus and the quarantine situation that Nineveh province suffered 

from was in ninth order according to its importance. Consequently, we are convinced that these 

results are very harmonized with the obstacles and situations of Mosul Province in the period 2020 
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to the end of 2022 where the federal general budget did not Endorsed in those years, and there was 

a budget deficit and there was austerity has been conducted by the central government and local 

governments. We should state that all projects that were studied have been finished and completed 

but they had suffered from delays. 

Survey (A): Local Survey has been issued to experts in Nineveh Province during 

the couple of months Oct. and Nov. of the year 2020.  

1- What are the kinds of the projects you are/were enrolled in (you can choose all that 

applies): 

⃝ Building Projects.         ⃝ Highway Projects.        ⃝ Infrastructure Projects.  

⃝ Other please mention……………………………………………………………………………….. 

2- Select the kind of ownership in the Projects, you were involved in (you can choose all that 

applies): 

⃝ Government Projects.        ⃝ Private Sector.       ⃝ Civil society organization.  

⃝ Other please mention………………………………………………………………………………….. 

3- Select of project delivery method you are/were involved with (you can choose all that 

applies): 

 ⃝ Traditional Approach (TA).    ⃝ Direct Labor (DL). 

 ⃝ Design Build (DB).    ⃝ Turn Key (TK).  

 ⃝ Other please mention………………………………………………………………………………….. 

4- Select which of the following parties you worked for (you can choose all that applies) 

⃝ Owner.        ⃝ Designer/ Consulting office.       ⃝ Contractor.  

⃝ Other please mention………………………………………………………………………………….. 

5- Years of experience in construction…………………………………………… 

6- If you wish, provide us an email, and we will send you the studying results once it is 

completed. 
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Kindly, specify the intensity of the occurrence of the following problems that caused a delay in the 

project construction, where the numbers, 9, 8 and 7 mean the grades of truth’s state. The numbers 6, 

5 and 4 are of indeterminate bias levels of the delays’ causes. While the numbers 3, 2 and 1 are the 

gradation of the falsity states. The definitions of all numbers (9 to 1) are specified through the table 

(2). 

Table (5): The Gradations of the 31 Reasons for the Construction Project Delay 

Definition of the problem 

Falsity bias Indet. bias Truth bias 

1 2 3 4 5 6 7 8 9 

Unrealistic schedule (bid duration is too short)          

Ineffective delay penalties provisions in contract          

Errors in contract documents          

Selecting inappropriate project delivery method          

Excessive change orders by owner during construction          

Delayed payments by the owner          

Delay in approving design documents by the owner          

Time consuming decision making process of the owner          

Unnecessary Inference by the owners          

Delay to furnish and deliver the site to the contractor          

Poor communication and coordination of the owner with designer and/ 

or contractor 

         

Poor Quality Assurance (QA) plan of the owner          

Lack of management staffs of the owner          

Inappropriate construction methods          

Contractor inefficiency (in providing the labor, equipment and material 

and handling sub-contractors) 
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Poor communication and coordination of the contractor with owner 

and/ or designer 

         

Inadequate contractor experience          

Financial difficulties and mismanagement by the contractor          

Poor site management and Quality Control (QC) by the contractor          

Legal disputes between designer and the owner          

Design errors          

Complexities and ambiguities of project design          

Delays in providing the design documents by the designer          

Inadequate experience of the designer          

Inadequate site assessment by the designer during design phase          

Misunderstandings between owner and designer about work scope          

Financial difficulties with the designer          

Poor communication and coordination of the designer with owner and/ 

or contractor 

         

Legal disputed between designer and the owner          

Delay in getting permits and acquisitions (Environmental, building, 

Right of way, utilities, etc.) 

         

the Coronavirus pandemic spreading in Iraq from Feb 2020 to Jan. 2022          
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Abstract. The Q−neutrosophic soft quasigroup is a mathematical innovation for dealing with indeterminate
occurrences. The characterization of quasigroups using the concept of Q−neutrosophic soft set is an evolving

area of study that, in recent times, has attracted pools of researchers. Di�erent researchers have de�ned the idea

of a Q-neutrosophic soft set under associative structures like groups, �elds, rings, and modules. The distributive

and symmetric properties of the Q−neutrosophic soft quasigroup are examined in this study, which extends the

idea of a Q−neutrosophic soft set to a non-associative behaviour known as a quasigroup. Our �ndings were

quite revealing. In particular, after de�ning Q−neutrosophic soft quasigroup in relation to the three binary

operations of product, right, and left division operations, it was found that these operations are distributive

over one another. Additionally, these binary operations are distributive over the operations of intersection,

union, AND, and OR. It was obtained that, Q−neutrosophic soft quasigroup does not obey the key laws, and

that the quasigroup is self-distributive with respect to the product, left, and right divisions. The e�ort which

is novel, has advanced the course of study in this emerging �eld.

Keywords: Quasigroup; Distributive; Symmetric properties; Soft set; Q-neutrosophic soft set
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1. Introduction

De�nition 1.1. Suppose that Ĝ is a non-empty set and the binary operation (⊙) is de�ne on
Ĝ such that r ⊙ w ∈ Ĝ for all r, w ∈ Ĝ and if there exist α, β ∈ Ĝ, the pair (Ĝ,⊙) is called a

groupoid. If the equations:

α⊙ r = β and w ⊙ α = β
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Q−neutrosophic Soft Quasigroups
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has unique solutions r, w ∈ Ĝ for all α, β ∈ Ĝ, then (Ĝ,⊙) is called quasigroup. Suppose there

is a unique element 1 ∈ Ĝ called the identity element such that 1⊙ r = r⊙ 1 = r for all r ∈ Ĝ,

then (Ĝ,⊙) is a loop.

In this research, we sometime write rw instead of r ⊙ w, when the operation ⊙ is a mul-

tiplication in Ĝ. Suppose that r is a �xed element in a quasigroup (Ĝ,⊙). Then, the left

and right translation maps for all r ∈ Ĝ, written as Lr and Rr respectively are de�ned by

wLr = r ⊙ w and wRr = w ⊙ r. It is shown that a groupoid (Ĝ,⊙) is a quasigroup if

the left and right translation maps are bijective. Hence, the inverse mappings L−1
r and R−1

r

also exist.Thus,

r\w = wL−1
r and r/w = rR−1

w

Zadeh launched fuzzy set concept for the �rst time in [15]; Atanassov extended on it

in [20] with the de�nition of intuitionistic fuzzy set. Fuzzi�cation of quasigroup was �rst

introduced in 1998, [9] by Dudek. In 1999, Dudek and Jun [10] extended the results in [9]

to fuzzy subquasigroup under t-norm. In 2000, Kyung et.al. [12] studied intuitionistic fuzzy

subquasigroups as a way of generalizing the results obtained in [9]. In 2005, intuitionistic fuzzy

subquasigroups were further studied by Dudek [13]. In, 2008 Muhammad and Dudek presented

fuzzy subquasigroups with di�erent types of (α, β)- fuzzy quasigroups. Although, these two

notions has some limitations and di�culties when dealing with uncertainty and incomplete

data stated in [16]. A soft set theory was presented by Molodtsov in [16] as an analytical

instrument for addressing uncertainty in order to address some of the aforementioned issues.

Over the years, many experts in the �eld of algebra have applied this mathematical concept

to an algebraic structure and studied it through the structural characteristic of the algebraic

structure. For example, the algebraic properties of soft sets under a quasigroup were introduced

by Oyem. et.al. [18, 19]. It is well known that one of the most beautiful properties of soft set

theory is that its parameter set has a capacity to accommodate a wide range of information in

terms of decision-making in real-life problems. Although, the characterization of membership

degrees present in neutrosophic set are not applicable in the study of soft set theory. Therefore,

soft set theory is not applicable when solving problems involving indeterminate data.

To deal with indeterminate real-world data, a mathematical concept called neutrosophy

was launched. This mathematical concept was launched in 1998 by Smarandache [23, 24]. It

is well known that this unique idea is the only application of classical set theory that has

been generalized in the literature to address issues with uncertainty and indeterminacy. The

culture of a neutrosophic set is characterized via three independent membership degrees called

the true, indeterminate, and falsity which are respectively denoted as T ‘, I ‘, and F ‘. The

concept of the neutrosophic set and its method of determining the indeterminate in real-life

data are applicable in di�erent �elds of study. For example, the authors in [26] used the concept
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to study the inspection assignment form for product quality control, while characterizations

of separation axioms in neutrosophic topological spaces were studied in [27]. The concept

of neutrosophy culture is also applicable in the area of operation research in management. In

particular, the authors in [28] presented a study on neutrosophic methods of operation research

in the management of corporate work.

Recently, the study of a neutrosophic set combined with the concept of soft set theory has

received tremendous attention in the �eld of mathematics [1�4, 17, 22, 30]. This is because

the combination of these two mathematical concepts provides a generalized structure for deal-

ing with uncertainties and indeterminacy present in real-world problems. For example, the

Q−neutrosophic soft set (Q−NS) set is an expanded model of the neutrosophic soft set de-

scribed by two universal sets. Hence, it has the capacity to handle the two universal sets and

its indeterminate membership at the same time.

Since the notion of a Q−neutrosophic soft set of two universal sets was de�ned in [6],

di�erent authors have applied it to associative behavior such as �elds, groups, rings, and

modules [6,7,21,25]. In addition. the concept of a Q−neutrosophic soft set is long overdue to

be extended to the structure of a quasigroup where associative property is not assumed.

This work characterizes the distributive properties of the Q−neutrosophic soft set under a
non-associative algebra termed quasigroup. In particular, the distributive properties of quasi-

groups have a very interesting characteristic in the classical study of quasigroup theory. It is

well known that quasigroups are not inherently distributive across their binary operations [14].

This serves as motivation to investigate the distributive properties of the Q−neutrosophic soft
quasigroup.

2. Preliminaries

De�nition 2.1. [14] Let (Ĝ,⊙) be quasigroup and P ≤ Ĝ. Then, P is called subgroupoid

(subquasigroup) of Ĝ if (P,⊙) is a quasigroup. Let V and K be non empty subsets of Ĝ, then

the product V ⊙K = {v ⊙ k | v ∈ K, k ∈ K}, the right division V/K = {v/k | v ∈ V, k ∈ K}
and left division V \K = {v\k | v ∈ V, k ∈ K}

De�nition 2.2. [14] Let (Ĝ,⊙) be a quasigroup. (Ĝ,⊙) is a left distributive if f ⊙ (w1⊙z) =

(f⊙)⊙ (f ⊙ z) and a right distributive if (f ⊙ w1)⊙ z = (f ⊙ z)⊙ (w1 ⊙ z). Whenever right

and left distributive properties hold in (Ĝ,⊙), it is called a distributive quasigroup.

De�nition 2.3. A groupoid (quasigroup) (Ĝ,⊙) is

(1) right symmetric if (α⊙ β)⊙ β = α for all α, β ∈ Ĝ

(2) left symmetric if β ⊙ (β ⊙ α) = α for all α, β ∈ Ĝ
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De�nition 2.4. A quasigroup (Ĝ,⊙) is said to obeys key-laws if it satis�es both De�nitions

2.3

De�nition 2.5. LetW 1 be a set, if it is a poset in which any two elements have supremum and

in�mum. Then, it is called a lattice for sup{k∗,m∗} and inf{k∗,m∗} are respectively denoted

as k∗ ∨m∗ and k∗ ∧m∗. It called a distributive lattice if k∗ ∧ (m∗ ∨n∗) = (k∗ ∧m∗)∨ (k∗ ∧n∗)

for any k∗,m∗, n∗ ∈ L

De�nition 2.6. [1] Given the two Q−NS sets (ΛQ,A1) and (ΘQ,B1). Then, the intersection,

AND, union and OR operations are de�ned as follows:

(1) (ΛQ,A1) ∩ (ΘQ,B1) = (△Q
1 ,C

1) is a Q−NS set, where C1 = A1 ∩B1

T△Q
1 (α)

(w1, u1) = min{TΛQ(α)(w
1, u1), TΘQ(α)(w

1, u1)}

I△Q
1 (α)

(w1, u1) = max{IΛQ(α)(w
1, u1), IΘQ(α)(w

1, u1)}

F△Q
1 (α)

(w1, u1) = max{FΛQ(α)(w
1, u1), FΘQ(α)(w

1, u1)}

(2) (ΛQ,A1) ∪ (ΘQ,B1) = (△Q
1 ,C

1) is a Q−NS, where C1 = A1 ∪B1

T△Q
1 (a)

(w1, u1) =


TΛQ(α)(w

1, u1), if α ∈ A1 −B1

TΘQ(α)(w
1, u1), if α ∈ B1 − A1

max{TΛQ(α)(w
1, u1), TΘQ(α)(w

1, u1)}, if α ∈ B1 ∩ A1

I△Q
1 (a)

(w1, u1) =


IΛQ(α)(w

1, u1), if α ∈ A1 −B1

IΘQ(α)(w
1, u1), if α ∈ B1 − A1

min{IΛQ(α)(w
1, u1), IΘQ(α)(w

1, u1)}, if α ∈ B1 ∩ A1

F△Q
1 (a)

(w1, u1) =


FΛQ(α)(w

1, u1), if α ∈ A1 −B1

FΘQ(α)(w
1, u1), if α ∈ B1 − A1

min{FΛQ(α)(w
1, u1), FΘQ(α)(w

1, u1)}, if α ∈ B1 ∩ A1

(3) (ΛQ,A1) ∧ (ΘQ,B1) = (△Q
1 ,C

1) is a Q−NS set, where △Q(α,β) = ΛQ(α) ∩ ΘQ(β) and

(α, β) ∈ A1 ×B1, w1 ∈ W 1, and u1 ∈ Q.

T△Q
1 (α,β)

(w1, u1) = min{TΛQ(α)(w
1, u1), TΘQ(β)(w

1, u1)}

I△Q
1 (α,β)

(w1, u1) = max{IΛQ(α)(w
1, u1), IΘQ(β)(w

1, u1)}

F△Q
1 (α,β)

(w1, u1) = max{FΛQ(α)(w
1, u1), FΘQ(β)(w

1, u1)}
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(4) (ΛQ,A1) ∨ (ΘQ,B1) = (△Q
1 ,C

1) is a Q−NS set, where △Q(α,β) = ΛQ(α) ∪ ΘQ(β) and

(α, β) ∈ A1 ×B1, w1 ∈ W 1, and u1 ∈ Q.

T△Q
1 (α,β)

(w1, u1) = max{TΛQ(α)(w
1, u1), TΘQ(β)(w

1, u1)}

I△Q
1 (α,β)

(w1, u1) = min{IΛQ(α)(w
1, u1), IΘQ(β)(w

1, u1)}

F△Q
1 (α,β)

(w1, u1) = min{FΛQ(α)(w
1, u1), FΘQ(β)(w

1, u1)}

De�nition 2.7. [16] Let W 1 be set, a pair (F,A1) is called a soft set if F : A1 → P (W 1),

where P (W 1) is power set of W 1 and A1 is a set of parameters.

De�nition 2.8. [24] Let W 1 be a set. A neutrosophic set (NS) is described as

Φ = {⟨w1, (TΦ(w
1), IΦ(w

1), FΦ(w
1))⟩ : w1 ∈ W 1} such that TΦ, IΦ, FΦ : W 1 →]−0, 1+[.

De�nition 2.9. [6] A Q−neutrosophic set ΠQ
1 in W 1 is described in the form

ΠQ
1 = {⟨(w1, u1), TΦQ(w1, u1), IΦQ(w1, u1), FΦQ(w1, u1)⟩ : w1 ∈ W 1, u1 ∈ Q}, where

TΦQ , IΦQ , FΦQ : W 1 ×Q →]−0, 1+[ are the membership degrees.

De�nition 2.10. [17] Let W 1 be a set and A1 be a parameter sets. A (NS) set (Φ,A1) is

described as (Φ,A1) = {⟨w1, (TΦ(w
1), IΦ(w

1), FΦ(w
1))⟩ : w1 ∈ W 1}.

De�nition 2.11. [6] Let k be any positive integer, I be a unit interval [0, 1], W 1 be a universe

of discourse and Q be a non-empty sets. A Q−neutrosophic set ΠQ
1 in W 1 and Q is described

as

ΠQ
1 = {< (w1, u1), TQi

Φ1
(w1, u1), IQi

Φ1
(w1, u1), FQi

Φ1
(w1, u1) >: w1 ∈ W 1, u1 ∈ Q ∀ i = 1, 2, 3, ..., k},

where T
Φ̂1

Qi , IΦ̂1
Qi , FΦ̂1

Qi : W
1 ×Q → Ik ∀i = 1, 2, ..., k are membership degrees.

De�nition 2.12. [1] Suppose that W 1 is a universal set and Q is a non-empty set. Let

A1 ⊂ E be a set of parameters. A pair (ΠQ
1 ,A

1) is called a (Q−NSS) over W 1 and Q,

where ΠQ
1 : A → ρlQNS(W 1) is a map such that ΠQ

1 (a) = ∅ if a /∈ A1. It is denoted by

(ΠQ
1 ,A

1) = {(a,ΠQ
1 (a)) : a ∈ A1,ΠQ

1 (a) ∈ ρlQNS(W 1)}

De�nition 2.13. The direct product (ΠQ
1 ,A

1)×(ΨQ
1 ,B

1) of (ΠQ
1 ,A

1) and (ΨQ
1 ,B

1) is a Q−NS
set (ΠQ

1 ,C
1) under Ŵ 1

1 × Ŵ 1
2 such that A1 ×B1 = C1.

ΠQ
1 (α, β) =

{
⟨((w1

1, w
1
2), u

1), T
ΦQ

1 (α,β)
((w1

1, w
1
2), u

1)), I
ΦQ

1 (α,β)
((w1

1, w
1
2), q), FΦQ

1 (α,β)
((w1

1, w
1
2), q)⟩ :

(w1
1, w

1
2) ∈ Q̂1 × Q̂2, u

1 ∈ Q

}
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The membership degrees are de�ned as

T
ΠQ

1 (α,β)
((w1

1, w
1
2), u

1) = min{T
ΠQ

1 (α)
(w1

1, u
1), T

ΨQ
1 (β)

(w1
2, u

1)},

I
ΠQ

1 (α,β)
((w1

1, w
1
2), u

1) = max{I
ΠQ

1 (α)
(w1

1, u
1), I

ΨQ
1 (β)

(w1
2, u

1)},

F
ΠQ

1 (α,β)
((w1

1, w
1
2), u

1) = max{F
ΠQ

1 (α)
(w1

1, u
1), F

ΨQ
1 (β)

(w1
2, u

1))}.

3. Main Results

De�nition 3.1. Let (∇Q
1 ,A

1) be a Q−NS set de�ned over a quasigroup (Ĝ,⊙/, \). Then

(∇Q
1 ,A

1) is called a Q−NS quasigroup over a quasigroup Ĝ if for all α ∈ A1, u1 ∈ Q,∇Q
1 (α) is

a Q−NS quasigroup given a map ∇Q
1 (a) : Ĝ×Q → [0, 1]3

De�nition 3.2. Let (∇Q
1 ,A

1) be a Q−NS set de�ned under a quasigroup (Ĝ,⊙/, \). Then

(∇Q
1 ,A

1) is called a Q−neutrosphic soft quasigroup if for all a ∈ A1, w1, t1 ∈ Ĝ, u1 ∈ Q satis�es

the following

(1) T∇Q
1 (a)

((w1 ∗ t1), u1) ≥ min{T∇Q
1 (a)

(w1, u), T∇Q
1 (a)

(t1, u1)}
(2) I∇Q

1 (a)
((w1 ∗ t1), u1) ≤ max{I∇Q

1 (a)
(w1, u), I∇Q

1 (a)
(t1, u1)}

(3) F∇Q
1 (a)

((w1 ∗ t1), u1) ≤ max{F∇Q
1 (a)

(w1, u), F∇Q
1 (a)

(t1, u1)}

where ∗ ∈ {⊙, /, \}

Example 3.3. Let Ĝ = {i, j, k, l,m, n, o} be quasigroup of order 7 and A1 be a subset of E

called the parameter sets. Given the quasigroup in Cayley table below.

Table 1. Quasigroup of order 7

⊙ i j k l m n o

i i m o n j l k

j m j n o i k l

k o n k m l j i

l n o m k l i j

m j i l k m o n

n l k j i o n m

o k l i j n m o

De�ne a Q−NS set (∇Q
1 ,A

1), for all u1 ∈ Q and w1, t1, z1 ∈ Ĝ such that z1 = w1 ∗ t1 ∈ Ĝ.

Let A1 be the set parameters and n ∈ N a set of natural numbers.

T∇Q
1 (a)

((w1 ∗ t1), u1) =

1− 1
2n , if z1 = {j, l, k,m, n, o}

1, otherwise.

I∇Q
1 (a)

((w1 ∗ t1), u1) =

0, if z1 = {j, l,m, k, n, o}

1− 1
2n , otherwise.
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F∇Q
1 (a)

((w1 ∗ t1), u1) =

0, if z1 = {j, k,m, l, n, o}

1− 1
2n , otherwise.

Considering

the operation “ ⊙ ”, then, T∇Q
1 (a)

((w1 ∗ t1), u1) ≥ min{T∇Q
1 (a)

(w1, u1), T∇Q
1 (a)

(t1, u1)}. Put

w1 = j, t1 = m, then we have

T∇Q
1 (a)

(j ⊙m,u1) = T∇Q
1 (a)

(i, u1)

⇒ RHS = 1 ∈ [0, 1] (1)

On the other hand,

min{T∇Q
1 (a)

(j, u1), T∇Q
1 (a)

(m,u1)} =

min{(1− 1

2n
, u1), (1− 1

2n
, u1)} = 1− 1

2n
= 0.5 ∈ [0, 1] for n = 1 (2)

Hence, from the de�nition 3.2, we have that 1 ≥ min{1− 1
2n , 1−

1
2n} ⇒ 1 ≥ 1− 1

2n for all n ∈ N.
It holds for true membership degree. The results for right and left division operations “/”, and

“\′′ can also be verify in similar way. Also, the results for indeterminate and falsity membership

degrees are similar with the result obtained for true membership degree. Hence, (∇Q
1 ,A

1) is a

Q−neutrosophic soft quasigroup over the quasigroup (Ĝ,⊙, /, \)

De�nition 3.4. Given the two Q−neutrosophic soft quasigroups (∇Q
1 ,A

1) and (Ψ,B1) over

a quasigroup (Ĝ,⊙, /, \), and let Q be a non empty set. Then,

(1) The product (∇Q
1 ,A

1)⊙ (ΨQ
1 ,B

1) of (∇Q
1 ,A

1) and (Ψ,B1) is a Q−NSS (ΠQ
1 ,C

1) over

(Ĝ,⊙) such that C1 = A1 ∩B1.

ΠQ
1 (α⊙ β) =

{
⟨((w1, u1), T∇Q

1 (a,b)
((w1, u1), I∇Q

1 (a,b)
(w1, u1), F∇Q

1 (a,b)
((t, u1)⟩ : w1, f1 ∈ Ĝ, u1 ∈ Q

}
where

T
ΠQ

1 (α⊙β)
(w1 ⊙ f1, u1) ≥ min{T∇Q

1 (α)
(w1, u1), T

ΨQ
1 (β)

(f1, u1)},

I
ΠQ

1 (α⊙β)
(w1 ⊙ f1, u1) ≤ max{I∇Q

1 (α)
(w1, u1), I

ΨQ
1 (β)

(f1, u1)},

F
ΠQ

1 (α⊙β)
(w1 ⊙ f1, u1) ≤ max{F∇Q

1 (α)
(w1, u1), F

ΨQ
1 (β)

(f1, u1))},

(2) The right division (∇Q
1 ,A

1)/(ΨQ
1 ,B

1) of (∇Q
1 ,A

1) and (ΨQ
1 ,A

1) is a Q−NSS (ΠQ
1 ,C

1)

over (Ĝ, /) such that A1 ∩B1 = C1. Thus,

ΠQ
1 (α/β) =

{
⟨(w1/f1, u1), T∇Q

1 (α/β)
((w1/f1, u1), I∇Q

1 (α/β)
((w1/f1, u1), F∇Q

1 (α/β)
(w1/f1, u1)⟩ :

w1, f1 ∈ Ĝ, u1 ∈ Q

}
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where

T
ΠQ

1 (α/β)
(w1/f1, u1) ≥ max{T∇Q

1 (α)
(w1, u1), T

ΨQ
1 (β)

(f1, u1)},

I
ΠQ

1 (α/β)
(w1/f1, u1) ≤ min{I∇Q

1 (α)
(w1, u1), I

ΨQ
1 (β)

(f1, u1)},

I
ΠQ

1 (α/β)
(w1/f1, u1) ≤ min{I∇Q

1 (α)
(w1, u1), I

ΨQ
1 (β)

(f1, u1)}

(3) The left division (∇Q
1 ,A

1)\(ΨQ
1 ,B

1) of (∇Q
1 ,A

1) and (Ψ,B1) is a Q − NSS (ΠQ
1 ,C

1)

over Ĝ such that A1 ∩ A1 = C1. Thus,

ΠQ(α\β) =

{
⟨(w1/f1, u1), T∇Q

1 (α\β)((w
1/f1, u1), I∇Q

1 (α\β)((w
1/f1, u1), F∇Q

1 (α\β)(w
1/f1, u1)⟩ :

w1, f1 ∈ Ĝ, u1 ∈ Q

}
where

T
ΠQ

1 (α\β)(w
1\f1, u1) ≥ max{T

ΨQ
1 (α)

(w1, u1), T∇Q
1 (β)

(f1, u1)},

I
ΠQ

1 (α\β)(w
1\f1, u1) ≤ min{I

ΨQ
1 (α)

(w1, u1), I∇Q
1 (β)

(f1, u1)},

F
ΠQ

1 (α\β)(w
1\f1, u1) ≤ min{F

ΨQ
1 (α)

(w1, u1), F∇Q
1 (β)

(f1, u1)}

Theorem 3.5. Let (ΛQ
1 ,A

1), (ΘQ
1 ,B

1) and (△Q
1 ,C

1) be Q−neutrosophic soft quasigroups over

quasigroup (Ĝ,⊙). Then, the following holds

(1) (ΛQ
1 ,A

1)⊙
(
(ΘQ

1 ,B
1) ∩ (△Q

1 ,C
1)
)
=

(
(ΛQ

1 ,A
1)⊙ (ΘQ

1 ,B
1)
)
∩
(
(ΛQ

1 ,A
1)⊙ (△Q

1 ,C
1)
)

(2)
(
(ΛQ

1 ,A
1) ∩ (ΘQ

1 ,B
1)
)
⊙ (△Q

1 ,C
1) =

(
(ΛQ

1 ,A
1)⊙ (△Q

1 ,C
1)
)
∩
(
(ΘQ

1 ,B
1)⊙ (△Q

1 ,C
1)
)

(3) (ΛQ
1 ,A

1)⊙
(
(ΘQ

1 ,B
1) ∧ (△Q

1 ,C
1)
)
=

(
(ΛQ

1 ,A
1)⊙ (ΘQ

1 ,B
1)
)
∧
(
(ΛQ

1 ,A
1)⊙ (△Q

1 ,C
1)
)

(4)
(
(ΛQ

1 ,A
1) ∧ (ΘQ

1 ,B
1)
)
⊙ (△Q

1 ,C
1) =

(
(ΛQ

1 ,A
1)⊙ (△Q

1 ,C
1)
)
∧
(
(ΘQ

1 ,B
1)⊙ (△Q

1 ,C
1)
)

(5) (ΛQ
1 ,A

1)⊙
(
(ΘQ

1 ,B
1) ∪ (△Q

1 ,C
1)
)
=

(
(ΛQ

1 ,A
1)⊙ (ΘQ

1 ,B
1)
)
∪
(
(ΛQ

1 ,A
1)⊙ (△Q

1 ,C
1)
)

(6)
(
(ΛQ

1 ,A
1) ∪ (ΘQ

1 ,B
1)
)
⊙ (△Q

1 ,C
1) =

(
(ΛQ

1 ,A
1)⊙ (△Q

1 ,C
1)
)
∪
(
(ΘQ

1 ,B
1)⊙ (△Q

1 ,C
1)
)

(7) (ΛQ
1 ,A

1)⊙
(
(ΘQ

1 ,B
1) ∨ (△Q

1 ,C
1)
)
=

(
(ΛQ

1 ,A
1)⊙ (ΘQ

1 ,B
1)
)
∨
(
(ΛQ

1 ,A
1)⊙ (△Q

1 ,C
1)
)

(8)
(
(ΛQ

1 ,A
1) ∨ (ΘQ

1 ,B
1)
)
⊙ (△Q

1 ,C
1) =

(
(ΛQ

1 ,A
1)⊙ (△Q

1 ,C
1)
)
∨
(
(ΘQ

1 ,B
1)⊙ (△Q

1 ,C
1)
)

Proof:

(1) We shall show that (ΛQ
1 ,A

1) ⊙
(
(ΘQ

1 ,B
1) ∩ (△Q

1 ,C
1)
)

=
(
(ΛQ

1 ,A
1) ⊙ (ΘQ

1 ,B
1)
)
∩(

(ΛQ
1 ,A

1)⊙ (△Q
1 ,C

1)
)

Let

(ΛQ
1 ,A

1)⊙ (ΘQ
1 ,B

1) = (ΨQ
1 ,E

1) such that

T
ΨQ

1 (a⊙b)
(w ⊙ t, u1) = min {T

ΛQ
1 (a)

(w, u1), T
ΘQ

1 (b)
(t, u1)}︸ ︷︷ ︸

(a⊙ b) ∈ A1 ∩B1

(3)

for all w, t ∈ Ĝ and u1 ∈ Q. And, let

Oyebo Tunde Yakub1, Benard Osoba2,∗ and Abdulkareem Abdulafeez3, Distributive
Properties of Q−neutrosophic Soft Quasigroups

Neutrosophic Sets and Systems, Vol. 58, 2023                                                                              505



(ΛQ
1 ,A

1)⊙ (△Q
1 ,C

1) = (℧Q
1 ,F

1) such that for all w, t ∈ Ĝ, u1 ∈ Q we have

T℧Q
1 (a⊙c)

(w ⊙ t, u1) = min {T
ΛQ
1 (a)

(w, u1), T△Q
1 (c)

(t, u1)}︸ ︷︷ ︸
(a⊙ c) = f ∈ A1 ∩ C1

(4)

Let (ΨQ
1 ,E

1) ∩ (℧Q
1 ,F

1) = (ΠQ
1 ,G

1) such that g ∈ (E1 ∩ F1) = G1 for all g ∈ G1

Combining equations (3) and (4), for all w, t ∈ Ĝ and u1 ∈ Q we have

T
ΠQ

1 (g)
(wt, u1) = min {T

ΨQ
1 (g)

(wt, u1), T℧Q
1 (g)

(wt, u1)}︸ ︷︷ ︸
(g) ∈ E1 ∩ F1.

= min
{
T
ΨQ

1 (a⊙b)
(wt, u1), T℧Q

1 (a⊙c)
(wt, u1)︸ ︷︷ ︸

a ∈
(
(A1 ∩B1) ∩ (A1 ∩ C1)

)
(5)

Considering the LHS: Let

(ΘQ
1 ,B

1) ∩ (△Q
1 ,C

1) = (ΦQ
1 ,D

1) such that for all w, t ∈ Ĝ and u1 ∈ Q,wehave

T
ΦQ

1 (d)
(wt, u1) = min {T

ΘQ
1 (d)

(wt, u1), T△Q
1 (d)

(wt, u1)}︸ ︷︷ ︸
d ∈ (B1 ∩ C1)

(6)

Also, let

(ΛQ
1 ,A

1)⊙ (ΦQ
1 ,D

1) = (ΞQ
1 ,H

1) such that for all w, t ∈ Ĝ and u1 ∈ Q, we have

T
ΞQ
1 (a⊙d)

(w ⊙ t, u1) = min {T
ΛQ
1 (a)

(w, u1), T
ΦQ

1 (d)
(t, u1)}︸ ︷︷ ︸

this implies that for alla∈A1,d∈D1,a⊙d∈(A1∩D1)

= min
{
T
ΛQ
1 (a)

(w, u1),min{T
ΘQ

1 (d)
(t, u1), T△Q

1 (d)
(t, u1)}

}︸ ︷︷ ︸
= min

{
min{T

ΛQ
1 (a)

(w, u1), T
ΛQ
1 (a)

(w, u1)},min{T
ΘQ

1 (d)
(t, u1), T△Q

1 (d)
(t, u1)}

}︸ ︷︷ ︸
= min

{
min{T

ΛQ
1 (a)

(w, u1), T
ΘQ

1 (d)
(t, u1)},min{T

ΛQ
1 (a)

(w, u1), T△Q
1 (d)

(t, u1)}
}︸ ︷︷ ︸

= min {T
ΨQ

1 (a⊙d)
(w ⊙ t, u1), T℧Q

1 (a⊙d)
(w ⊙ t, u1)}︸ ︷︷ ︸

(A1∩B1)∩(A1∩C1))

(7)

Comparing (5) and (7), we have (ΠQ
1 ,G

1) = (ΞQ
1 ,H

1) for the true membership degree.

Next, is to verify for indeterminate membership degree.
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Let

(ΛQ
1 ,A

1)⊙ (ΘQ
1 ,B

1) = (ΨQ
1 ,E

1) such that

I
ΨQ

1 (a⊙b)
(w ⊙ t, u1) = max {I

ΛQ
1 (a)

(w, u1), I
ΘQ

1 (b)
(t, u1)}︸ ︷︷ ︸

(a⊙ b) = t ∈ A1 ∩B1

(8)

for all w, t ∈ Ĝ and u1 ∈ Q. And, let

(ΛQ
1 ,A

1)⊙ (△Q
1 ,C

1) = (℧Q
1 ,F

1) such that for all w, t ∈ Ĝ, and u1 ∈ Q we have

I℧Q
1 (a⊙c)

(w ⊙ t, u1) = max {I
ΛQ
1 (a)

(w, u1), I△Q
1 (c)

(t, u1)}︸ ︷︷ ︸
(a⊙ c) ∈ A1 ∩ C1

(9)

Let (ΨQ
1 ,E

1) ∩ (℧Q
1 ,F

1) = (ΠQ
1 ,G

1) such that g ∈ (E1 ∩ F1) = G1 for all g ∈ G1

Combining equations (8) and (9), for all w, t ∈ Ĝ and u1 ∈ Q we have

I
ΠQ

1 (g)
(wt, u1) = max {I

ΨQ
1 (g)

(wt, u1), I℧Q
1 (g)

(wt, u1)}︸ ︷︷ ︸
(g) ∈ E ∩ F.

= max
{
I
ΨQ

1 (a⊙b)
(wt, u1), I℧Q

1 (a⊙c)
(wt, u1)︸ ︷︷ ︸

a ∈
(
(A1 ∩B1) ∩ (A1 ∩ C1)

)
(10)

Considering the LHS: Let

(ΘQ
1 ,B

1) ∩ (△Q
1 ,C

1) = (ΦQ
1 ,D

1) such that for all w, t ∈ Ĝ and u1 ∈ Q,we have

I
ΦQ

1 (d)
(wt, u1) = max {I

ΘQ
1 (d)

(wt, u1), I△Q
1 (d)

(wt, u1)}︸ ︷︷ ︸
d ∈ (B1 ∩ C1)

(11)

Also, let

(ΛQ
1 ,A

1)⊙ (ΦQ
1 ,D

1) = (ΞQ
1 ,H

1) such that for all w, t ∈ Ĝ and u1 ∈ Q, we have

I
ΞQ
1 (a⊙d)

(w ⊙ t, u1) = max {I
ΛQ
1 (a)

(w, u1), I
ΦQ

1 (d)
(t, u1)}︸ ︷︷ ︸

this implies that for alla∈A1,d∈D1,a⊙d∈(A1∩D1)

= max
{
I
ΛQ
1 (a)

(w, u1),max{I
ΘQ

1 (d)
(t, u1), I△Q

1 (d)
(t, u1)}

}︸ ︷︷ ︸
= max

{
max{I

ΛQ
1 (a)

(w, u1), I
ΛQ
1 (a)

(w, u1)},max{I
ΘQ

1 (d)
(t, u1), I△Q

1 (d)
(t, u1)}

}︸ ︷︷ ︸
= max

{
max{I

ΛQ
1 (a)

(w, u1), I
ΘQ

1 (d)
(t, u1)},max{I

ΛQ
1 (a)

(w, u1), I△Q
1 (d)

(t, u1)}
}︸ ︷︷ ︸

= max {I
ΨQ

1 (a⊙d)
(w ⊙ t, u1), I℧Q

1 (a⊙d)
(w ⊙ t, u1)}︸ ︷︷ ︸

(A1∩B1)∩(A1∩C1))

(12)
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Comparing (10) and (12) to get that (ΠQ
1 ,G

1) = (ΞQ
1 ,H

1) for the indeterminate

membership degree.

Next, verifying the falsity membership degree is similar with the result obtain for

indeterminate membership degree .

(2) It has a similar argument with (1)

(3) We shall show that (ΛQ
1 ,A) ⊙

(
(ΘQ

1 ,B
1) ∧ (△Q

1 ,C
1)
)

=
(
(ΛQ

1 ,A
1) ⊙ (ΘQ

1 ,B
1)
)
∧(

(ΛQ
1 ,A

1)⊙ (△Q
1 ,C

1)
)

Let

(ΛQ
1 ,A

1)⊙ (ΘQ
1 ,B

1) = (ΨQ
1 ,E

1) such that

T
ΨQ

1 (a⊙b)
(w ⊙ t, u1) = min {T

ΛQ
1 (a)

(w, u1), T
ΘQ

1 (b)
(t, u1)}︸ ︷︷ ︸

(a⊙ b) = t ∈ A1 ∩B1

(13)

for all w, t ∈ Ĝ and u1 ∈ Q.

And, let

(ΛQ
1 ,A

1)⊙ (△Q
1 ,C

1) = (℧Q
1 ,F

1) such that for all w ∈ Ĝ, u1 ∈ Q wt have

T℧Q
1 (a⊙c)

(w ⊙ t, u1) = min {T
ΛQ
1 (a)

(w, u1), T△Q
1 (c)

(t, u1)}︸ ︷︷ ︸
(a⊙ c) ∈ A1 ∩ C1

(14)

Now, from equations (13) and (14) we have (ΨQ
1 ,E

1) ∧ (℧Q
1 ,F

1) = (ΠQ
1 ,E

1 × F1)

(e∗, f∗) ∈ (E1 × F1) where t∗ = a⊙ b and f∗ = a⊙ c are parameter sets

Hence,

T
ΠQ

1 (g)
(w ⊙ t, u1) = T

ΠQ
1 (t∗,f∗)

((w ⊙ t), u1)

= min {T
ΨQ

1 (t)
((w ⊙ t), u1), T℧Q

1 (f)
((w ⊙ t), u1)}︸ ︷︷ ︸

(t∗, f∗) ∈ E1 × F1.

= min {T
ΨQ

1 (a⊙b)
((w ⊙ t), u1), T℧Q

1 (a⊙c)
((w ⊙ t), u1)}︸ ︷︷ ︸

(t∗, f∗) ∈ E× F.

(15)

Note that t∗ and f∗ are set of parameters.

Substituting (13) and (14) into (15), give

min {T
ΨQ

1 (a⊙b)
((w ⊙ t), u1), T℧Q

1 (a⊙c)
((w ⊙ t), u1)}︸ ︷︷ ︸

(t∗, f∗) ∈ E1 × F1.

≥ min

{
min {T

ΛQ
1 (a)

(w, u1), T
ΘQ

1 (b)
(t, u1)}︸ ︷︷ ︸

a⊙ b ∈ A1 ∩B1.

,min {T
ΛQ
1 (a)

(w, u1), T△Q
1 (c)

(t, u1)}︸ ︷︷ ︸
a⊙ c ∈ A1 ∩ C1.

}

= min {T
ΨQ

1 (a⊙b)
((w ⊙ t), u1), T℧Q

1 (a⊙c)
((w ⊙ t), u1)}︸ ︷︷ ︸

(A1 ∩B1)× (A1 ∩ C1).

(16)
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Considering the LHS:

Let (ΘQ
1 ,B

1) ∧ (△Q
1 ,C

1) = (ΦQ
1 ,D

1) such that (ΘQ
1 ,B

1) ∧ (△Q
1 ,C

1) = (ΦQ
1 ,B

1 × C1)

for all w, t ∈ Ĝ, u1 ∈ Q and (b, c) ∈ B1 × C1. Then, this follows

T
ΦQ

1 (b,c)
(wt, u1) = min{T

ΘQ
1 (b)

(wt, u1), T△Q
1 (c)

(wt, u1)} (17)

And, let (ΛQ
1 ,A

1)⊙ (ΦQ
1 ,D

1) = (ΞQ
1 ,H

1) such that for all w, t ∈ Ĝ, u1 ∈ Q, we have

T
ΞQ
1 (a⊙d)

(wt, u1) = min{T
ΛQ
1 (a)

(w, u1), T
ΦQ

1 (d)
(t, u1)}︸ ︷︷ ︸

for all a⊙ d ∈ A ∩D where d = (b, c) ∈ B1 × C1

(18)

Then, putting (17) into (18), give

T
ΞQ
1 (h)

(wt, u1) = T
ΞQ
1 (a,d)

(wt, u1)

= min{ T
ΛQ
1 (a)

(w, u1), T
ΦQ

1 (d)
(t, u1)}︸ ︷︷ ︸

for all a⊙ d ∈ A1 ∩D1 where wt = t ∈ Ĝ

= min{T
ΛQ
1 (a)

(w, u1), T
ΦQ

1 (b,c)
(wt, u1)}︸ ︷︷ ︸

(a⊙ d) ∈ A1 ∩D1.

= min
{
T
ΛQ
1 (a)

(w, u1),min{T
ΘQ

1 (b)
(t, u1), T△Q

1 (c)
(t, u1)}

}︸ ︷︷ ︸
(a⊙ d) ∈ A1 ∩D1.

= min
{
min{T

ΛQ
1 (a)

(w, u1), T
ΛQ
1 (a)

(w, u1)},min{T
ΘQ

1 (b)
(t, u1), T△Q

1 (c)
(t, u1)}

}︸ ︷︷ ︸
(a⊙ (b, c) ∈ A1 ∩ (B1 × C1).

= min
{
min{T

ΛQ
1 (a)

(w, u1), T
ΘQ

1 (b)
(t, u1)}︸ ︷︷ ︸

(a⊙ (b)) ∈ A1 ∩B1.

,min{T
ΛQ
1 (a)

(w, u1), T△Q
1 (c)

(t, u1)}
}︸ ︷︷ ︸

(a⊙ c)) ∈ A1 ∩ C1.

min {T
ΨQ

1 (a⊙b)
((w ⊙ t), u1), T℧Q

1 (a⊙c)
((w ⊙ t), u1)}︸ ︷︷ ︸

(A1 ∩B1)× (A1 ∩ C1).

(19)

For indeterminacy membership degree.

Let

(ΛQ
1 ,A

1)⊙ (ΘQ
1 ,B

1) = (ΨQ
1 ,E

1) such that

I
ΨQ

1 (a⊙b)
(w ⊙ t, u1) = max {I

ΛQ
1 (a)

(w, u1), I
ΘQ

1 (b)
(t, u1)}︸ ︷︷ ︸

(a⊙ b) = t ∈ A1 ∩B1

(20)

for all w ∈ Ĝ and u1 ∈ Q. And, let

(ΛQ
1 ,A

1)⊙ (△Q
1 ,C

1) = (℧Q
1 ,F

1) such that for all w, t ∈ Ĝ, u1 ∈ Q we have

I℧Q
1 (a⊙c)

(w ⊙ t, u1) = max {I
ΛQ
1 (a)

(w, u1), I△Q
1 (c)

(t, u1)}︸ ︷︷ ︸
(a⊙ c) ∈ A1 ∩ C1

(21)
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Now, from equations (20) and (21) we have that (ΨQ
1 ,E

1)∧(℧Q
1 ,F

1) = (ΠQ
1 ,E

1 × F1)

for all (t∗, f∗) ∈ (E1 × F1) where t∗ = a⊙b and f∗ = a⊙c are set of parameters. Then,

I
ΠQ

1 (g)
(w ⊙ t, u1) = I

ΠQ
1 (t,f)

((w ⊙ t), u1)

= max {I
ΨQ

1 (t)
((w ⊙ t), u1), I℧Q

1 (f)
((w ⊙ t), u1)}︸ ︷︷ ︸

(t, f) ∈ E1 × F1.

= max {I
ΨQ

1 (a⊙b)
((w ⊙ t), u1), I℧Q

1 (a⊙c)
((w ⊙ t), u1)}︸ ︷︷ ︸

(t, f) ∈ E1 × F1.

(22)

Substituting (20) and (21) into (22), give

max {I
ΨQ

1 (a⊙b)
((w ⊙ t), u1), I℧Q

1 (a⊙c)
((w ⊙ t), u1)}︸ ︷︷ ︸

(t, f) ∈ E1 × F1.

≥ max

{
max {I

ΛQ
1 (a)

(w, u1), I
ΘQ

1 (b)
(t, u1)}︸ ︷︷ ︸

a⊙ b ∈ A1 ∩B1.

,max {I
ΛQ
1 (a)

(w, u1), I△Q
1 (c)

(t, u1)}︸ ︷︷ ︸
a⊙ c ∈ A1 ∩ C1.

}

= max {I
ΨQ

1 (a⊙b)
((w ⊙ t), u1), I℧Q

1 (a⊙c)
((w ⊙ t), u1)}︸ ︷︷ ︸

(A1 ∩B1)× (A1 ∩ C1).

(23)

Considering the LHS:

Let (ΘQ
1 ,B

1) ∧ (△Q
1 ,C

1) = (ΦQ
1 ,D

1) such that (ΘQ
1 ,B

1) ∧ (△Q
1 ,C

1) = (ΦQ
1 ,B

1 × C1)

for all w, t ∈ Ĝ, u1 ∈ Q and (b, c) ∈ B1 × C1, It follows that

I
ΦQ

1 (b,c)
(wt, u1) = max{I

ΘQ
1 (b)

(wt, u1), I△Q
1 (c)

(wt, u1)} (24)

And, let (ΛQ
1 ,A

1)⊙ (ΦQ
1 ,D

1) = (ΞQ
1 ,H

1) such that for all w, t ∈ Ĝ, u1 ∈ Q,

I
ΞQ
1 (a⊙d)

(w ⊙ t, u1) = max{I
ΛQ
1 (a)

(w, u1), I
ΦQ

1 (d)
(t, u1)}︸ ︷︷ ︸

for all a⊙ d ∈ A1 ∩D1 where d = (b, c) ∈ B1 × C1

(25)
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Then, putting (24) into (25), we have

I
ΞQ
1 (h)

(wt, u1) = I
ΞQ
1 (a⊙d)

(wt, u1)

= max{ I
ΛQ
1 (a)

(w, u1), I
ΦQ

1 (d)
(t, u1)}︸ ︷︷ ︸

for all a⊙ d ∈ A1 ∩D1 where w ⊙ t = t ∈ Ĝ

= max{I
ΛQ
1 (a)

(w, u1), I
ΦQ

1 (b,c)
(wt, u1)}︸ ︷︷ ︸

(a⊙ d) ∈ A1 ∩D1.

= max
{
I
ΛQ
1 (a)

(w, u1),max{I
ΘQ

1 (b)
(t, u1), I△Q

1 (c)
(t, u1)}

}︸ ︷︷ ︸
(a⊙ d) ∈ A1 ∩D1.

= max
{
max{I

ΛQ
1 (a)

(w, u1), I
ΛQ
1 (a)

(w, u1)},max{I
ΘQ

1 (b)
(t, u1), I△Q

1 (c)
(t, u1)}

}︸ ︷︷ ︸
(a⊙ (b, c) ∈ A1 ∩ (B1 × C1).

= max
{
max{I

ΛQ
1 (a)

(w, u1), I
ΘQ

1 (b)
(t, u1)}︸ ︷︷ ︸

(a⊙ (b)) ∈ A1 ∩B1.

,max{I
ΛQ
1 (a)

(w, u1), I△Q
1 (c)

(t, u1)}
}︸ ︷︷ ︸

(a⊙ c)) ∈ A1 ∩ C1.

max {I
ΨQ

1 (a⊙b)
((w ⊙ t), u1), I℧Q

1 (a⊙c)
((w ⊙ t), u1)}︸ ︷︷ ︸

(A1 ∩B1)× (A1 ∩ C1).

(26)

The proof of falsity membership degree has a similar argument with the proof of

indeterminate membership

Therefore, we shown that (ΛQ
1 ,A

1)⊙
(
(ΘQ

1 ,B
1)∧(△Q

1 ,C
1)
)
=

(
(ΛQ

1 ,A
1)⊙(ΘQ

1 ,B
1)
)
∧(

(ΛQ
1 ,A

1)⊙ (△Q
1 ,C

1)
)

(4) The proof is similar with 3

(5) We shall show that (ΛQ
1 ,A

1) ⊙
(
(ΘQ

1 ,B
1) ∪ (△Q

1 ,C
1)
)

=
(
(ΛQ

1 ,A
1) ⊙ (ΘQ

1 ,B
1)
)
∪(

(ΛQ
1 ,A

1)⊙ (△Q
1 ,C

1)
)

Let

(ΛQ
1 ,A

1)⊙ (ΘQ
1 ,B

1) = (ΨQ
1 ,E

1) such that

T
ΨQ

1 (a⊙b)
(w ⊙ t, u1) = min {T

ΛQ
1 (a)

(w, u1), T
ΘQ

1 (b)
(t, u1)}︸ ︷︷ ︸

(a⊙ b) = s ∈ A1 ∩B1

(27)

for all w, t ∈ Ĝ and u1 ∈ Q. And, let

(ΛQ
1 ,A

1)⊙ (△Q
1 ,C

1) = (℧Q
1 ,F

1) such that for all w, t ∈ Q, u1 ∈ Q we have

T℧Q
1 (a⊙c)

(w ⊙ t, u1) = max {T
ΛQ
1 (a)

(w, u1), T△Q
1 (c)

(t, u1)}︸ ︷︷ ︸
(f = a⊙ c) ∈ A1 ∩ C1

(28)
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Now, from equations (27) and (28), we get (ΨQ
1 ,E

1) ∪ (℧Q
1 ,F

1) = (ΠQ
1 ,G

1). Then,

for all w, t ∈ Ĝ, u1 ∈ Q, let d ∈ D1 such that (a⊙ b)− (a⊙ c) = g ∈ G1 = E1 ∪ F1,

T
ΠQ

1 (g)
(w ⊙ t, u1) =


T
ΨQ

1 (g)
(w ⊙ t, u1), if g ∈ E1 − F1

T℧Q
1 (g)

(w ⊙ t, u1), if g ∈ F− E

max{T
ΨQ

1 (g)
(w ⊙ t, u1), T℧Q

1 (g)
(w ⊙ t, u1)}, if g ∈ E1 ∩ F1

(29)

=



min{T
ΛQ
1 (g)

(w, u1), T
ΘQ

1 (g)
(t, u1)}, if g ∈ ((A1 ∩B1)− (A1 ∩ C1))

min{T
ΛQ
1 (g)

(w, u1), T℧Q
1 (g)

(t, u1)}, if g ∈ ((A1 ∩ C1)− (A1 ∩B1)

max

{
min{T

ΛQ
1 (g)

(w, u1), T
ΘQ

1 (g)
(t, u1)},

min{T
ΛQ
1 (g)

(w, u1), T△Q
1 (g)

(t, u1)}
}
, if g ∈ (A1 ∩B1) ∩ (A1 ∩ C1)

(30)

Considering the LHS

Let (ΘQ
1 ,B

1) ∪ (△Q
1 ,C

1) = (ΦQ
1 ,D

1) such that for all w, t ∈ Ĝ and u1 ∈ Q, we have

T
ΦQ

1 (d)
(w ⊙ t, u1) =


T
ΘQ

1 (d)
(w ⊙ t, u1), if d ∈ B1 − C1

T△Q
1 (d)

(w ⊙ t, u1), if d ∈ C1 −B1

max{T
ΘQ

1 (d)
(w ⊙ t, u1), T△Q

1 (d)
(w ⊙ t, u1)}, if d ∈ B1 ∩ C1

(31)

Let

(ΛQ
1 ,A

1)⊙ (ΦQ
1 ,D

1) = (ΞQ
1 ,H

1)) such that for all w, t ∈ Ĝ, u1 ∈ Q we have

T
ΞQ
1 (a⊙d)

(w ⊙ t, u1) = min {T
ΛQ
1 (a)

(w, u1), T
ΦQ

1 (d)
(t, u1)}︸ ︷︷ ︸

(s = a⊙ d) ∈ A1 ∩D1

(32)

T
ΞQ
1 (t)

(w ⊙ t, u1) =



min{T
ΛQ
1 (s)

(w, u1),ΘQ
1 (t)(t, u

1)}, if s ∈ A1 ∩ (B1 − C1)

min{T
ΛQ
1 (s)

(w, u1), T△Q
1 (t)

(t, u1)}, if s ∈ A1 ∩ (C1 −B1)

max

{
{T

ΛQ
1 (s)

(w, u1)},

min{T
ΘQ

1 (s)
(t, u1), T△Q

1 (s)
(t, u1)}

}
, if s ∈ A1 ∩ (B1 ∩ C1)

(33)

=



min{T
ΛQ
1 (s)

(w, u1),ΘQ
1 (t)(t, u

1)}, if s ∈ (A1 ∩B1)− (A1 ∩ C1)

min{T
ΛQ
1 (s)

(w, u1), T△Q
1 (s)

(t, u1)}, if s ∈ (A1 ∩ C1)− (A1 ∩B1)

max

{
min{T

ΛQ
1 (s)

(w, u1), T
ΘQ

1 (s)
(t, u1)},

min{T
ΛQ
1 (s)

(w, u1), T△Q
1 (s)

(t, u1)}
}
, if s ∈ (A1 ∩B1) ∩ (A1 ∩ C1)

(34)

Comparing equation (30) and (34), we shown that (ΞQ
1 ,H

1) = (ΠQ
1 ,G

1)
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Next, the result for indeterminate membership degree is as follows

Let

(ΛQ
1 ,A

1)⊙ (ΘQ
1 ,B

1) = (ΨQ
1 ,E

1) then

I
ΨQ

1 (a⊙b)
(w ⊙ t, u1) = max {I

ΛQ
1 (a)

(w, u1), I
ΘQ

1 (b)
(t, u1)}︸ ︷︷ ︸

(a⊙ b) = t ∈ A1 ∩B1

(35)

for all w, t ∈ Ĝ and u1 ∈ Q. And, let

(ΛQ
1 ,A

1)⊙ (△Q
1 ,C

1) = (℧Q
1 ,F

1) such that for all w, t ∈ Ĝ, u1 ∈ Q we have

I℧Q
1 (a⊙c)

(w ⊙ t, u1) = max {I
ΛQ
1 (a)

(w, u1), I△Q
1 (c)

(t, u1)}︸ ︷︷ ︸
(f = a⊙ c) ∈ A1 ∩ C1

(36)

Using equations (35) and (36), we get (ΨQ
1 ,E

1)∪ (℧Q
1 ,F

1) = (ΠQ
1 ,G

1). Then, for all

w, t ∈ Q, u1 ∈ Q, let d ∈ D1 such that (a⊙ b)− (a⊙ c) = g ∈ G1 = E1 ∪ F1, then

I
ΠQ

1 (g)
(w ⊙ t, u1) =


I
ΨQ

1 (g)
(w ⊙ t, u1), if g ∈ E1 − F1

I℧Q
1 (g)

(w ⊙ t, u1), if g ∈ F1 − E1

min{I
ΨQ

1 (g)
(w ⊙ t, u1), I℧Q

1 (g)
(w ⊙ t, u1)}, if g ∈ E1 ∩ F1

(37)

=



max{I
ΛQ
1 (g)

(w, u1), I
ΘQ

1 (g)
(t, u1)}, if g ∈ ((A1 ∩B1)− (A1 ∩ C1))

max{I
ΛQ
1 (g)

(w, u1), I℧Q
1 (g)

(t, u1)}, if g ∈ ((A1 ∩ C1)− (A1 ∩B1)

min

{
max{I

ΛQ
1 (g)

(w, u1), I
ΘQ

1 (g)
(t, u1)},

max{I
ΛQ
1 (g)

(w, u1), I△Q
1 (g)

(t, u1)}
}
, if g ∈ (A1 ∩B1) ∩ (A1 ∩ C1)

(38)

Considering the LHS

Let (ΘQ
1 ,B

1) ∪ (△Q
1 ,C

1) = (ΦQ
1 ,D

1) such that for all w, t ∈ Ĝ and u1 ∈ Q, we have

I
ΦQ

1 (d)
(w ⊙ t, u1) =


I
ΘQ

1 (d)
(w ⊙ t, u1), if d ∈ B1 − C1

I△Q
1 (d)

(w ⊙ t, u1), if d ∈ C1 −B1

min{I
ΘQ

1 (d)
(w ⊙ t, u1), I△Q

1 (d)
(w ⊙ t, u1)}, if d ∈ B1 ∩ C1

(39)

Let

(ΛQ
1 ,A

1)⊙ (ΦQ
1 ,D

1) = (ΞQ
1 ,H

1)) such that for all w, t ∈ Ĝ, u1 ∈ Q we have

I
ΞQ
1 (a⊙d)

(w ⊙ t, u1) = max {I
ΛQ
1 (a)

(w, u1), I
ΦQ

1 (d)
(t, u1)}︸ ︷︷ ︸

(s = a⊙ d) ∈ A1 ∩D1

(40)
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I
ΞQ
1 (t)

(w ⊙ t, u1) =



max{I
ΛQ
1 (s)

(w, u1),ΘQ
1 (s)(t, u

1)}, if s ∈ A1 ∩ (B1 − C1)

max{I
ΛQ
1 (s)

(w, u1), I△Q
1 (s)

(t, u1)}, if s ∈ A1 ∩ (C1 −B1)

min

{
{I

ΛQ
1 (s)

(w, u1)},

max{I
ΘQ

1 (s)
(t, u1), I△Q

1 (s)
(t, u1)}

}
, if s ∈ A1 ∩ (B1 ∩ C1)

(41)

=



max{I
ΛQ
1 (s)

(w, u1),ΘQ
1 (s)(t, u

1)}, if s ∈ (A1 ∩B1)− (A1 ∩ C1)

max{I
ΛQ
1 (s)

(w, u1), I△Q
1 (t)

(t, u1)}, if s ∈ (A1 ∩ C1)− (A1 ∩B1)

min

{
max{I

ΛQ
1 (s)

(w, u1), I
ΘQ

1 (s)
(t, u1)},

max{I
ΛQ
1 (s)

(w, u1), I△Q
1 (s)

(s, u1)}
}
, if s ∈ (A1 ∩B1) ∩ (A1 ∩ C1)

(42)

Comparing equation (38) and (42), we shown that (ΞQ
1 ,H

1) = (ΠQ
1 ,G

1)

Next, the result for falsity membership degree is similarly with the argument of

indeterminate membership. Hence, we shown that (ΛQ
1 ,A

1)⊙
(
(ΘQ

1 ,B
1)∪ (△Q

1 ,C
1)
)
=(

(ΛQ
1 ,A

1)⊙ (ΘQ
1 ,B

1)
)
∪
(
(ΛQ

1 ,A
1)⊙ (△Q

1 ,C
1)
)

(6) The proof is similar with (5)

(7) We shall show that (ΛQ
1 ,A

1) ⊙
(
(ΘQ

1 ,B
1) ∨ (△Q

1 ,C
1)
)

=
(
(ΛQ

1 ,A
1) ⊙ (ΘQ

1 ,B
1)
)
∨(

(ΛQ
1 ,A

1)⊙ (△Q
1 ,C

1)
)

Considering the RHS

Let

(ΛQ
1 ,A

1)⊙ (ΘQ
1 ,B

1) = (ΨQ
1 ,E

1) such that

T
ΨQ

1 (a⊙b)
(w ⊙ t, u1) = min {T

ΛQ
1 (a)

(w, u1), T
ΘQ

1 (b)
(t, u1)}︸ ︷︷ ︸

(a⊙ b) = t ∈ A1 ∩B1

(43)

for all t, w ∈ Ĝ and u1 ∈ Q. And, let

(ΛQ
1 ,A

1)⊙ (△Q
1 ,C

1) = (℧Q
1 ,F

1) such that for all w, t ∈ Ĝ, u1 ∈ Q we have

T℧Q
1 (a⊙c)

(w ⊙ t, u1) = min {T
ΛQ
1 (a)

(w, u1), T△Q
1 (c)

(t, u1)}︸ ︷︷ ︸
(a⊙ c) ∈ A1 ∩ C1

(44)

Now, combining equations (43) and (44) give (ΨQ
1 ,E

1) ∨ (℧Q
1 ,F

1) = (ΠQ
1 ,E

1 × F1)

for all (t∗, f∗) ∈ (E× F) where t∗ = a⊙ b and f∗ = a⊙ c are set of parameters. Then,

equations (43) and (44) gives
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T
ΠQ

1 (g)
(w ⊙ t, u1) = T

ΠQ
1 (t∗,f∗)

((w ⊙ t), u1)

= min {T
ΨQ

1 (t∗)
((w ⊙ t), u1), T℧Q

1 (f∗)
((w ⊙ t), u1)}︸ ︷︷ ︸

(t∗, f∗) ∈ E1 × F1.

= max {T
ΨQ

1 (a⊙b)
((w ⊙ t), u1), T℧Q

1 (a⊙c)
((w ⊙ t), u1)}︸ ︷︷ ︸

(t∗ = a⊙ b, f∗ = a⊙ c) ∈ E1 × F1.

(45)

Putting (43) and (44) into (45), we have

max {T
ΨQ

1 (a⊙b)
((w ⊙ t), u1), T℧Q

1 (a⊙c)
((w ⊙ t), u1)}︸ ︷︷ ︸

(t, f) ∈ E1 × F1.

≥ max

{
min {T

ΛQ
1 (a)

(w, u1), T
ΘQ

1 (b)
(t, u1)}︸ ︷︷ ︸

a⊙ b ∈ A1 ∩B1.

,min {T
ΛQ
1 (a)

(w, u1), T△Q
1 (c)

(t, u1)}︸ ︷︷ ︸
a⊙ c ∈ A1 ∩ C1.

}

= max {T
ΨQ

1 (t)
((w ⊙ t), u1), T℧Q

1 (f)
((w ⊙ t), u1)}︸ ︷︷ ︸

(A1 ∩B1)× (A1 ∩ C1).

(46)

Considering the LHS:

Let (ΘQ
1 ,B

1) ∨ (△Q
1 ,C

1) = (ΦQ
1 ,D

1) such that (ΘQ
1 ,B

1) ∧ (△Q
1 ,C

1) = (ΦQ
1 ,B

1 × C1).

For all w, t ∈ Ĝ, u1 ∈ Q and (b, c) ∈ B1 × C1 we have

T
ΦQ

1 (b,c)
(wt, u1) = max{T

ΘQ
1 (b)

(wt, u1), T△Q
1 (c)

(wt, u1)} (47)

Also, let (ΛQ
1 ,A

1)⊙ (ΦQ
1 ,D

1) = (ΞQ
1 ,H

1) such that for all w, t ∈ Ĝ, u1 ∈ Q, we have

T
ΞQ
1 (a⊙d)

(w ⊙ t, u1) = min{T
ΛQ
1 (a)

(w, u1), T
ΦQ

1 (d)
(t, u1)}︸ ︷︷ ︸

for all a⊙ d ∈ A1 ∩D1 where d = (b, c) ∈ B1 × C1

(48)

Oyebo Tunde Yakub1, Benard Osoba2,∗ and Abdulkareem Abdulafeez3, Distributive
Properties of Q−neutrosophic Soft Quasigroups

Neutrosophic Sets and Systems, Vol. 58, 2023                                                                              515



Then, putting (47) into (48), we have

T
ΞQ
1 (h)

(wt, u1) = T
ΞQ
1 (a,d)

(wt, u1)

= min{ T
ΛQ
1 (a)

(w, u1), T
ΦQ

1 (d)
(t, u1)}︸ ︷︷ ︸

for all a⊙ d ∈ A1 ∩D1 where w ⊙ t = t ∈ Ĝ

= min{T
ΛQ
1 (a)

(w, u1), T
ΦQ

1 (b,c)
(wt, u1)}︸ ︷︷ ︸

(a⊙ d) ∈ A1 ∩D1.

= min
{
T
ΛQ
1 (a)

(w, u1),max{T
ΘQ

1 (b)
(t, u1), T△Q

1 (c)
(t, u1)}

}︸ ︷︷ ︸
(a⊙ d) ∈ A1 ∩D1.

= min
{
max{T

ΛQ
1 (a)

(w, u1), T
ΛQ
1 (a)

(w, u1)},max{T
ΘQ

1 (b)
(t, u1), T△Q

1 (c)
(t, u1)}

}︸ ︷︷ ︸
(a⊙ (b, c) ∈ A1 ∩ (B1 × C1).

= max
{
min{T

ΛQ
1 (a)

(w, u1), T
ΘQ

1 (b)
(t, u1)}︸ ︷︷ ︸

(a⊙ (b)) ∈ A1 ∩B1.

,min{T
ΛQ
1 (a)

(w, u1), T△Q
1 (c)

(t, u1)}
}︸ ︷︷ ︸

(a⊙ c)) ∈ A1 ∩ C1.

max {T
ΨQ

1 (a⊙b)
((w ⊙ t), u1), T℧Q

1 (a⊙c)
((w ⊙ t), u1)}︸ ︷︷ ︸

(A1 ∩B1)× (A1 ∩ C1).

(49)

Considering the result for indeterminate membership.

Let

(ΛQ
1 ,A

1)⊙ (ΘQ
1 ,B

1) = (ΨQ
1 ,E

1) such that

I
ΨQ

1 (a⊙b)
(w ⊙ t, u1) = max {I

ΛQ
1 (a)

(w, u1), I
ΘQ

1 (b)
(t, u1)}︸ ︷︷ ︸

(a⊙ b) = t ∈ A1 ∩B1

(50)

for all t, w ∈ Ĝ and u1 ∈ Q. And, let

(ΛQ
1 ,A

1)⊙ (△Q
1 ,C

1) = (℧Q
1 ,F

1) such that for all t, w ∈ Q, u1 ∈ Q we get

I℧Q
1 (a⊙c)

(w ⊙ t, u1) = max {I
ΛQ
1 (a)

(w, u1), I△Q
1 (c)

(t, u1)}︸ ︷︷ ︸
(a⊙ c) ∈ A1 ∩ C1

(51)

Now, from equations (50) and (51) we have (ΨQ
1 ,E

1) ∨ (℧Q
1 ,F

1) = (ΠQ
1 ,E

1 × F1) for

all (t∗, f∗) ∈ (E1 × F1) where t∗ = a ⊙ b and f = a ⊙ c are parameters. Then, this

follows
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I
ΠQ

1 (g)
(w ⊙ t, u1) = I

ΠQ
1 (t,f)

((w ⊙ t), u1)

= min {I
ΨQ

1 (t)
((w ⊙ t), u1), I℧Q

1 (f)
((w ⊙ t), u1)}︸ ︷︷ ︸

(t, f) ∈ E1 × F1.

= min {I
ΨQ

1 (a⊙b)
((w ⊙ t), u1), I℧Q

1 (a⊙c)
((w ⊙ t), u1)}︸ ︷︷ ︸

(t = a⊙ b, f = a⊙ c) ∈ E1 × F1.

(52)

Substitute (50) and (51) in (52), to get

min {I
ΨQ

1 (a⊙b)
((w ⊙ t), u1), I℧Q

1 (a⊙c)
((w ⊙ t), u1)}︸ ︷︷ ︸

(t, f) ∈ E× F.

≥ min

{
max {I

ΛQ
1 (a)

(w, u1), I
ΘQ

1 (b)
(t, u1)}︸ ︷︷ ︸

a⊙ b ∈ A1 ∩B1.

,max {I
ΛQ
1 (a)

(w, u1), I△Q
1 (c)

(t, u1)}︸ ︷︷ ︸
a⊙ c ∈ A ∩ C.

}

= min {I
ΨQ

1 (a⊙b)
((w ⊙ t), u1), I℧Q

1 (a⊙c)
((w ⊙ t), u1)}︸ ︷︷ ︸

(A1 ∩B1)× (A1 ∩ C1).

(53)

Considering the LHS:

Let (ΘQ
1 ,B

1) ∨ (△Q
1 ,C

1) = (ΦQ
1 ,D

1) such that (ΘQ
1 ,B

1) ∨ (△Q
1 ,C

1) = (ΦQ
1 ,B

1 × C1)

for all w, t ∈ Ĝ, u1 ∈ Q and (b, c) ∈ B1 × C1. It is follows that,

I
ΦQ

1 (b,c)
(wt, u1) = min{I

ΘQ
1 (b)

(wt, u1), I△Q
1 (c)

(wt, u1)} (54)

Also, let (ΛQ
1 ,A

1)⊙ (ΦQ
1 ,D

1) = (ΞQ
1 ,H

1) such that for all w, t ∈ Ĝ, u1 ∈ Q,

I
ΞQ
1 (a⊙d)

(w ⊙ t, u1) = max{I
ΛQ
1 (a)

(w, u1), I
ΦQ

1 (d)
(t, u1)}︸ ︷︷ ︸

for all a⊙ d ∈ A1 ∩D1 where d = (b, c) ∈ B1 × C1

(55)
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are set of parameters. Then, putting (54) in (55), we get

I
ΞQ
1 (h)

(w ⊙ t, u1) = I
ΞQ
1 (a⊙d)

(wt, u1)

= max{ I
ΛQ
1 (a)

(w, u1), I
ΦQ

1 (d)
(t, u1)}︸ ︷︷ ︸

for all a⊙ d ∈ A1 ∩D1 where wt = t ∈ Ĝ

= max{I
ΛQ
1 (a)

(w, u1), I
ΦQ

1 (b,c)
(w ⊙ t, u1)}︸ ︷︷ ︸

(a⊙ d) ∈ A1 ∩D1.

= max
{
I
ΛQ
1 (a)

(w, u1),min{I
ΘQ

1 (b)
(t, u1), I△Q

1 (c)
(t, u1)}

}︸ ︷︷ ︸
(a⊙ d) ∈ A1 ∩D1.

= max
{
min{I

ΛQ
1 (a)

(w, u1), I
ΛQ
1 (a)

(w, u1)},min{I
ΘQ

1 (b)
(t, u1), I△Q

1 (c)
(t, u1)}

}︸ ︷︷ ︸
(a⊙ (b, c) ∈ A1 ∩ (B1 × C1).

= min
{
max{I

ΛQ
1 (a)

(w, u1), I
ΘQ

1 (b)
(t, u1)}︸ ︷︷ ︸

(a⊙ (b)) ∈ A1 ∩B1.

,max{I
ΛQ
1 (a)

(w, u1), I△Q
1 (c)

(t, u1)}
}︸ ︷︷ ︸

(a⊙ c)) ∈ A1 ∩ C1.

min {I
ΨQ

1 (a⊙b)
((w ⊙ t), u1), I℧Q

1 (a⊙c)
((w ⊙ t), u1)}︸ ︷︷ ︸

(A1 ∩B1)× (A1 ∩ C1).

(56)

Next, the result for falsity membership degree is similar with the one obtained for

indeterminate membership

Therefore, (ΛQ
1 ,A

1)⊙
(
(ΘQ

1 ,B
1)∧ (△Q

1 ,C
1)
)
=

(
(ΛQ

1 ,A
1)⊙ (ΘQ

1 ,B
1)
)
∧
(
(ΛQ

1 ,A
1)⊙

(△Q
1 ,C

1)
)

(8) Similar with the result obtained for 7

Theorem 3.6. Let (ΛQ
1 ,A

1), (ΘQ
1 ,B

1) and (△Q
1 ,C

1) be Q-neutrosophic soft quasigroups over

quasigroup (Ĝ,⊙). Then, the following holds

(1) (ΛQ
1 ,A

1)⊙
(
(ΘQ

1 ,B
1)⊙ (△Q

1 ,C
1)
)
=

(
(ΛQ

1 ,A
1)⊙ (ΘQ

1 ,B
1)
)
⊙
(
(ΛQ

1 ,A
1)⊙ (△Q

1 ,C
1)
)

(2)
(
(ΛQ

1 ,A
1)⊙ (ΘQ

1 ,B
1)
)
⊙ (△Q

1 ,C
1) =

(
(ΛQ

1 ,A
1)⊙ (△Q

1 ,C
1)
)
⊙
(
(ΘQ

1 ,B
1)⊙ (△Q

1 ,C
1)
)

(3) (ΛQ
1 ,A

1)/
(
(ΘQ

1 ,B
1)/(△Q

1 ,C
1)
)
=

(
(ΛQ

1 ,A
1)/(ΘQ

1 ,B
1)
)
/
(
(ΛQ

1 ,A
1)/(△Q

1 ,C
1)
)

(4)
(
(ΛQ

1 ,A
1)/(ΘQ

1 ,B
1)
)
/(△Q

1 ,C
1) =

(
(ΛQ

1 ,A
1)/(△Q

1 ,C
1)
)
/
(
(ΘQ

1 ,B
1)/(△Q

1 ,C
1)
)

(5) (ΛQ
1 ,A

1)\
(
(ΘQ

1 ,B
1)\(△Q

1 ,C
1)
)
=

(
(ΛQ

1 ,A
1)\(ΘQ

1 ,B
1)
)
\
(
(ΛQ

1 ,A
1)\(△Q

1 ,C
1)
)

(6)
(
(ΛQ

1 ,A
1)\(ΘQ

1 ,B
1)
)
\(△Q

1 ,C
1) =

(
(ΛQ

1 ,A
1)\(△Q

1 ,C
1)
)
\
(
(ΘQ

1 ,B
1)\(△Q

1 ,C
1)
)

(7)
(
(ΛQ

1 ,A
1)⊙ (ΘQ

1 ,B
1)
)
⊙ (ΘQ

1 ,B
1) ̸= (ΛQ

1 ,A
1)

(8) (ΘQ
1 ,B

1)⊙
(
(ΘQ

1 ,B
1)⊙ (ΛQ

1 ,A
1)
)
̸= (ΛQ

1 ,A
1)

Proof:

(1) We want to show that (ΛQ
1 ,A

1) ⊙
(
(ΘQ

1 ,B
1) ⊙ (△Q

1 ,C
1)
)
=

(
(ΛQ

1 ,A
1) ⊙ (ΘQ

1 ,B
1)
)
⊙(

(ΛQ
1 ,A

1)⊙ (△Q
1 ,C

1)
)
Considering the LHS
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Let (ΘQ
1 ,B

1)⊙ (△Q
1 ,C

1) = (ΦQ
1 ,D

1) such that for all w, t ∈ Ĝ and u ∈ Q we have

T
ΦQ

1 (b⊙c)
((w ⊙ t), u1) = min{T

ΘQ
1 (b)

(w, u1), T△Q
1 (c)

(t, u1)} (57)

And, let (ΛQ
1 ,A

1)⊙ (ΦQ
1 ,D

1) = (ΞQ
1 ,H

1) such that for all w, t ∈ Ĝ and u1 ∈ Q, we have

T
ΞQ
1 (a⊙d)

(w ⊙ t, u1) = max{T
ΛQ
1 (a)

(w, u1), T
ΦQ

1 (d)
(t, u1)}︸ ︷︷ ︸

for all a⊙ d ∈ A1 ∩D1 where d = (b⊙ c) ∈ B1 ∩ C1

(58)

.

Substituting (57) into (58), to get

T
ΞQ
1 (a⊙d)

(w ⊙ t, u1) = T
ΞQ
1 (a⊙d)

(w ⊙ t, u1)

= min{ T
ΛQ
1 (a)

(w, u1), T
ΦQ

1 (d)
(t, u1)}︸ ︷︷ ︸

for all a⊙ d ∈ A1 ∩D1 and let w ⊙ t = w ∈ Ĝ

= min{T
ΛQ
1 (a)

(w, u1), T
ΦQ

1 (b⊙c)
(w ⊙ t, u1)}︸ ︷︷ ︸

(a⊙ d) ∈ A1 ∩D1.

= min
{
T
ΛQ
1 (a)

(w, u1),min{T
ΘQ

1 (b)
(w, u1), T△Q

1 (c)
(t, u1)}

}︸ ︷︷ ︸
(a⊙ d) ∈ A1 ∩D1.

= min
{
min{T

ΛQ
1 (a)

(w, u1), T
ΛQ
1 (a)

(t, u1)},min{T
ΘQ

1 (b)
(w, u1), T△Q

1 (c)
(t, u1)}

}︸ ︷︷ ︸
(a⊙ (b⊙ c) ∈ A1 ∩ (B1 × C1).

= min
{
min{T

ΛQ
1 (a)

(w, u1), T
ΘQ

1 (b)
(w, u1)}︸ ︷︷ ︸

(a⊙ (b)) ∈ A1 ∩B1.

,min{T
ΛQ
1 (a)

(w, u1), T△Q
1 (c)

(t, u1)}
}︸ ︷︷ ︸

(a⊙ c)) ∈ A1 ∩ C1.

min {T
ΨQ

1 (a⊙b)
((w, u1), T℧Q

1 (a⊙c)
(t, u1)}︸ ︷︷ ︸

(A1 ∩B1) ∩ (A1 ∩ C1).

(59)

=
(
(ΛQ

1 ,A
1)⊙ (ΘQ

1 ,B
1)
)
⊙
(
(ΛQ

1 ,A
1)⊙ (△Q

1 ,C
1)
)

(60)

Similarly, we show for indeterminate and falsity membership degrees.

(2) Follow from 1

(3) Apply De�nition 3.4 along side with 1 and 2

(4) Similar with 3

(5) Similar with 4

(6) Similar with 5

(7) Proof by contradiction. Suppose that
(
(ΛQ

1 ,A
1) ⊙ (ΘQ

1 ,B
1)
)
⊙ (ΘQ

1 ,B
1) = (ΛQ

1 ,A
1),

then we have
(
(ΛQ

1 ,A
1)⊙ (ΘQ

1 ,B
1)
)
= (ΛQ

1 ,A
1)/(ΘQ

1 ,B
1).

Let z1 = t1 ⊙ w1, z2 = t2 ⊙ w2 for all z1, z2 ∈ Ĝ and u1 ∈ Q.
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Let (ΛQ
1 ,A

1)⊙ (ΘQ
1 ,B

1) = (ΦQ
1 ,C

1) such that

T
ΦQ

1 (a⊙b)
((z1 ⊙ z2), u

1) = min{T
ΛQ
1 (a)

(z1, u
1), T

ΘQ
1 (b)

(z2, u
1)}

= min

{
min{T

ΛQ
1 (a)

(t1, u
1), T

ΛQ
1 (a)

(w1, u
1)},min{T

ΘQ
1 (b)

(t2, u
1), T

ΘQ
1 (b)

(w2, u
1)}

}
min

{
min{T

ΛQ
1 (a)

(t1, u
1), T

ΘQ
1 (b)

(t2, u
1)},min{T

ΛQ
1 (a)

(w1, u
1), T

ΘQ
1 (b)

(w2, u
1)}

}
min

{
T
ΦQ

1 (a⊙b)
(t1 ⊙ t2, u

1), T
ΦQ

1 (a⊙b)
(w1 ⊙ w2, u

1)
}

(61)

Considering the RHS, let (ΛQ
1 ,A

1)/(ΘQ
1 ,B

1) = (ΦQ
1 ,C

1). Then,

T
ΦQ

1 (a/b)
((z1/z2), u

1) = max{T
ΛQ
1 (a)

(z1, u
1), T

ΘQ
1 (b)

(z2, u
1)}

= max

{
min{T

ΛQ
1 (a)

(t1, u
1), T

ΛQ
1 (a)

(w1, u
1)},min{T

ΘQ
1 (b)

(t2, u
1), T

ΘQ
1 (b)

(w2, u
1)}

}
max

{
min{T

ΛQ
1 (a)

(t1, u
1), T

ΘQ
1 (b)

(t2, u
1)},min{T

ΛQ
1 (a)

(w1, u
1), T

ΘQ
1 (b)

(w2, u
1)}

}
max

{
T
ΦQ

1 (a⊙b)
(t1 ⊙ t2, u

1), T
ΦQ

1 (a⊙b)
(w1 ⊙ w2, u

1)
}

(62)

Hence, max
{
T
ΦQ

1 (a⊙b)
(t1 ⊙ t2, u

1), T
ΦQ

1 (a⊙b)
(w1 ⊙ w2, u

1)
}

̸= min
{
T
ΦQ

1 (a⊙b)
(t1 ⊙

t2, u
1), T

ΦQ
1 (a⊙b)

(w1 ⊙ w2, u
1)
}
. The results for indeterminate and falsity membership

degrees are similarly obtained.

(8) Similar with 7

Theorem 3.7. Let (ΛQ
1 ,A

1), (ΘQ
1 ,B

1) and (△Q
1 ,C

1) be Q-neutrosophic soft quasigroups over

quasigroup (Ĝ,⊙). Then, the following holds

(1) (ΛQ
1 ,A

1)⊙
(
(ΘQ

1 ,B
1)/(△Q

1 ,C
1)
)
=

(
(ΛQ

1 ,A
1)⊙ (ΘQ

1 ,B
1)
)
/
(
(ΛQ

1 ,A
1)⊙ (△Q

1 ,C
1)
)

(2)
(
(ΛQ

1 ,A
1)/(ΘQ

1 ,B
1)
)
⊙ (△Q

1 ,C
1) =

(
(ΛQ

1 ,A
1)⊙ (△Q

1 ,C
1)
)
/
(
(ΘQ

1 ,B
1)⊙ (△Q

1 ,C
1)
)

(3) (ΛQ
1 ,A

1)⊙
(
(ΘQ

1 ,B
1)\(△Q

1 ,C
1)
)
=

(
(ΛQ

1 ,A
1)⊙ (ΘQ

1 ,B
1)
)
\
(
(ΛQ

1 ,A
1)⊙ (△Q

1 ,C
1)
)

(4)
(
(ΛQ

1 ,A
1)\(ΘQ

1 ,B
1)
)
⊙ (△Q

1 ,C
1) =

(
(ΛQ

1 ,A
1)⊙ (△Q

1 ,C
1)
)
\
(
(ΘQ

1 ,B
1)⊙ (△Q

1 ,C
1)
)

(5) (ΛQ
1 ,A

1)/
(
(ΘQ

1 ,B
1)⊙ (△Q

1 ,C
1)
)
=

(
(ΛQ

1 ,A
1)/(ΘQ

1 ,B
1)
)
⊙
(
(ΛQ

1 ,A
1)/(△Q

1 ,C
1)
)

(6)
(
(ΛQ

1 ,A
1)⊙ (ΘQ

1 ,B
1)
)
/(△Q

1 ,C
1) =

(
(ΛQ

1 ,A
1)/(△Q

1 ,C
1)
)
⊙
(
(ΘQ

1 ,B
1)/(△Q

1 ,C
1)
)

(7) (ΛQ
1 ,A

1)\
(
(ΘQ

1 ,B
1)⊙ (△Q

1 ,C
1)
)
=

(
(ΛQ

1 ,A
1)\(ΘQ

1 ,B
1)
)
⊙
(
(ΛQ

1 ,A
1)\(△Q

1 ,C
1)
)

(8)
(
(ΛQ

1 ,A
1)⊙ (ΘQ

1 ,B
1)
)
\(△Q

1 ,C
1) =

(
(ΛQ

1 ,A
1)\(△Q

1 ,C
1)
)
⊙
(
(ΘQ

1 ,B
1)\(△Q

1 ,C
1)
)

Proof: Similar with Theorem 3.5.

Theorem 3.8. Let (ΛQ
1 ,A

1), (ΘQ
1 ,B

1) and (△Q
1 ,C

1) be Q-neutrosophic soft quasigroups over

quasigroup (Ĝ,⊙). Then, the following holds

(1) (ΛQ
1 ,A

1)/
(
(ΘQ

1 ,B
1) ∩ (△Q

1 ,C
1)
)
=

(
(ΛQ

1 ,A
1)/(ΘQ

1 ,B
1)
)
∩
(
(ΛQ

1 ,A
1)/(△Q

1 ,C
1)
)

(2)
(
(ΘQ

1 ,B
1) ∩ (△Q

1 ,C
1)
)
/(ΛQ

1 ,A
1) =

(
(ΘQ

1 ,B
1)/(ΛQ

1 ,A
1)
)
∩
(
(△Q

1 ,C
1)/(ΛQ

1 ,A
1)
)
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(3) (ΛQ
1 ,A

1)/
(
(ΘQ

1 ,B
1) ∧ (△Q

1 ,C
1)
)
=

(
(ΛQ

1 ,A
1)/(ΘQ

1 ,B
1)
)
∧
(
(ΛQ

1 ,A
1)/(△Q

1 ,C
1)
)

(4)
(
(ΘQ

1 ,B
1) ∧ (△Q

1 ,C
1)
)
/(ΛQ

1 ,A
1) =

(
(ΘQ

1 ,B
1)/(ΛQ

1 ,A
1)
)
∧
(
(△Q

1 ,C
1)/(ΛQ

1 ,A
1)
)

(5) (ΛQ
1 ,A

1)/
(
(ΘQ

1 ,B
1) ∪ (△Q

1 ,C
1)
)
=

(
(ΛQ

1 ,A
1)/(ΘQ

1 ,B
1)
)
∪
(
(ΛQ

1 ,A
1)/(△Q

1 ,C
1)
)

(6)
(
(ΘQ

1 ,B
1) ∪ (△Q

1 ,C
1)
)
/(ΛQ

1 ,A
1) =

(
(ΘQ

1 ,B
1)/(ΛQ

1 ,A
1)
)
∪
(
(△Q

1 ,C
1)/(ΛQ

1 ,A
1)
)

(7) (ΛQ
1 ,A

1)/
(
(ΘQ

1 ,B
1) ∨ (△Q

1 ,C
1)
)
=

(
(ΛQ

1 ,A
1)/(ΘQ

1 ,B
1)
)
∨
(
(ΛQ

1 ,A
1)/(△Q

1 ,C
1)
)

(8)
(
(ΘQ

1 ,B
1) ∨ (△Q

1 ,C
1)
)
/(ΛQ

1 ,A
1) =

(
(ΘQ

1 ,B
1)/(ΛQ

1 ,A
1)
)
∨
(
(△Q

1 ,C
1)/(ΛQ

1 ,A
1)
)

Proof: Similar with Theorem 3.5

Corollary 3.9. Let (ΛQ
1 ,A

1), (ΘQ
1 ,B

1) and (△Q
1 ,C

1) be Q-neutrosophic soft sets X. Then, the

following holds

(1) (ΛQ
1 ,A

1) ∧
(
(ΘQ

1 ,B
1) ∨ (△Q

1 ,C
1)
)
=

(
(ΛQ

1 ,A
1) ∧ (ΘQ

1 ,B
1)
)
∨
(
(ΛQ

1 ,A
1) ∧ (△Q

1 ,C
1)
)

(2)
(
(ΛQ

1 ,A
1 ∨ (ΘQ

1 ,B
1)
)
∧ (△Q

1 ,C
1) =

(
(ΛQ

1 ,A
1) ∧ (△Q

1 ,C
1)
)
∨
(
(ΘQ

1 ,B
1) ∧ (△Q

1 ,C
1)
)

(3) (ΛQ
1 ,A

1) ∨
(
(ΘQ

1 ,B
1) ∧ (△Q

1 ,C
1)
)
=

(
(ΛQ

1 ,A
1) ∨ (ΘQ

1 ,B
1)
)
∧
(
(ΛQ

1 ,A
1) ∨ (△Q

1 ,C
1)
)

(4)
(
(ΛQ

1 ,A
1 ∧ (ΘQ

1 ,B
1)
)
∨ (△Q

1 ,C
1) =

(
(ΛQ

1 ,A
1) ∨ (△Q

1 ,C
1)
)
∧
(
(ΘQ

1 ,B
1) ∨ (△Q

1 ,C
1)
)

Proof:

Let (ΛQ
1 ,A

1) ∧ (ΘQ
1 ,B

1) = (∆Q
1 ,F

1) and (ΛQ
1 ,A

1) ∧ (△Q
1 ,C

1) = (ΞQ
1 ,G

1).

Let

(ΘQ
1 ,B

1) ∨ (△Q
1 ,C

1) = (ΨQ
1 ,D

1) such that

T
ΨQ

1 (d)
(w, u1)T

ΨQ
1 (b,c)

(w, u1) = max {T
ΘQ

1 (b)
(w, u1), T△Q

1 (c)
(w, u1)}︸ ︷︷ ︸

(b, c) = t ∈ B1 × C1

(63)

for all w ∈ X, u1 ∈ Q and (b, c) ∈ (B1 × C1)

Let

(ΛQ
1 ,A

1) ∧ (ΨQ
1 ,D

1) = (ΠQ
1 ,E

1) such that

T
ΠQ

1 (t)
(w, u1) = T

ΠQ
1 (a,d)

(w, u1) = min {T
ΛQ
1 (a)

(w, u1), T
ΨQ

1 (d)
(w, u1)}︸ ︷︷ ︸

(a, d) = t ∈ A1 ×D1

(64)

for all w ∈ X and u1 ∈ Q and (a, d) ∈ A1 ×D1).
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Substituting 63 into 64, wt have

T
ΠQ

1 (t)
(w, u1) = min

{
T
ΛQ
1 (a)

(w, u1),max {T
ΘQ

1 (b)
(w, u1), T△Q

1 (c)
(w, u1)}︸ ︷︷ ︸

(b, c) = t ∈ B1 × C1

}
︸ ︷︷ ︸

(a, d) = t ∈ A1 ×D1

= min

{
max

{
T
ΛQ
1 (a)

(w, u1), T
ΛQ
1 (a)

(w, u1)
}
,max

{
T
ΘQ

1 (b)
(w, u1), T△Q

1 (c)
(w, u1)

}}
︸ ︷︷ ︸

(a, d) =∈ A1 ×D1

max

{
min

{
T
ΛQ
1 (a)

(w, u1), T
ΘQ

1 (b)
(w, u1)

}︸ ︷︷ ︸
(a, b) =∈ A1 ×B1

,min
{
T
ΛQ
1 (a)

(w, u1), T△Q
1 (c)

(w, u1)
}}

︸ ︷︷ ︸
(a, c) =∈ A1 × C1

= max{T
∆Q

1 (a,b)
(w, u1), T

ΞQ
1 (a,c)

(w, u1)} (65)

Hence, (ΛQ
1 ,A

1) ∧
(
(ΘQ

1 ,B
1) ∨ (△Q

1 ,C
1)
)
=

(
(ΛQ

1 ,A
1) ∧ (ΘQ

1 ,B
1)
)
∨
(
(ΛQ

1 ,A
1) ∧ (△Q

1 ,C
1)
)
.

It hold for true membership degree. Also, the proofs for indeterminate and falsity membership

degrees are similar.

The results for 2 , 3 and 4 are similar to 1

4. Conclusion

In this paper, the notion ofQ−neutrosophic soft set is extended to a non-associative algebraic
structure. In particular, we focus on presenting the distributive properties of Q−neutrosophic
soft quasigroup. Regarding the three binary operations of the quasigroup, a Q−neutrosophic
soft set is de�ned under the structure of quasigroup. These three operations were used to

demonstrate its characteristic in relation to the intersection, union, AND, and OR operations.

A fascinating �nding of the study is that the Q−neutrosophic soft quasigroup is self-distributive
under the three binary operations and also distributive over each another. The three binary

operations are distributive over intersection, union, AND and OR operations. It was further

shown that Q−neutrosophic soft quasigroup does not adhere to left and right symmetric prop-

erties. Thus, the notion does not obey key laws. It was established that Q−neutrosophic soft
set is a distributive lattice. In future research, De�nitions 3.1, 3.2 and 3.4 will be used to

examine the algebraic properties of Q−neutrosophic soft set under a class of qausigroup known

as entropy, unipotent, and idempotent quasigroups.

Acknowledgments: The second author wishes to acknowledge Professor T. G. Jaiyéo. lá for

his tremendous contributions and consistent review of our work since the beginning of this

research.

Con�icts of Interest: The three authors declare no con�ict of interest.

Oyebo Tunde Yakub1, Benard Osoba2,∗ and Abdulkareem Abdulafeez3, Distributive
Properties of Q−neutrosophic Soft Quasigroups

Neutrosophic Sets and Systems, Vol. 58, 2023                                                                              522



References

1. M. Abu Qamar and N. Hassan, Q-neutrosophic soft relation and its application in decision making, Entropy,

20,(2018) 172

2. A. Al-Quran and N. Hassan, The complex neutrosophic soft expert set and its application in decision

making, J. Intell. Fuzzy Syst., 34(2018), 569-582.

3. N. A. Nabeeh, F. Smarandache, M. Abdel-Basset, H. A. El-Ghareeb, and A. Aboelfetouh. An integrated

neutrosophic-Topsis approach and its application to personnel selection: A new trend in brain processing

and analysis, IEEE Access, 7 (2019), 29734-29744.

4. M. Abdel-Baset, V. Chang, and A. Gamal, Evaluation of the green supply chain management practices: A

novel neutrosophic approach, Computers in Industry, 108 (2019), 210-220.

5. M. Abdel-Basset, G. Manogaran, A. Gamal, and F. Smarandache. A hybrid approach of neutrosophic sets

and Dematel method for developing supplier selection criteria, Design Automation for Embedded Systems,

22 (2018), 1-22.

6. M. Abu Qamar and H. Hassan, An approach toward Q-neutrosophic soft set and its application in decision,

Entropy, 20(2020), 172

7. M. Abu Qamar and N. Hassan, Characterization of group theory under Q-nutrosophic Soft Environment,

Neutrosophic Sets and system, 27 (2019), 114-130

8. R. H. Bruck, Contribution to the theory of quasigroups, Trans. Amer. Math. Soc. 60,(1946) 245 - 354

9. W. A. Dudek, Fuzzy subquasigroups, Quasigroups and Related Systems 5 (1998), 81-98

10. W. A. Dudek and Y. B. Jun, Fuzzy subquasigroups over a t-norm, Quasigroups and Related Systems 6

(1999), 87-89.

11. B. Davvaz, W. A. Dudek and Y. B. Yun, Intuitionistic fuzzy subhyper quasigroups of hyper quasigroups,

Information sciences, 170(2005) 251-262.

12. W. A. Dudek and Y. B. Jun, Intuitionistic Fuzzy subquasigroups of quasigroups, Quasigroups and Related

Systems 7(2000), 15-28.

13. W. A. Dudek, Intuitionistic Fuzzy approach to n ary systems, Quasigroups and Related Systems 13 (2005),

213-228

14. O. Hala. P�ugfelder, Quasigroups and loops: introduction, Sigma Series in Pure Mathematics Volume

(1990),7

15. Zadeh. L. A, Fuzzy Sets, Inform. Control, 8(1965) 338-353

16. D. Molodtsov, Soft set theory-�rst results, Comput. Math. App., 37(1999), 19�31.

17. P. K. Maji, Neutrosophic soft set, Ann. Fuzzy Math. Inform., 5(2013), 157�168.

18. A. Oyem, J. O. Olaleru, T. J. Jaiyeola and H. Akewe, Soft quasigroup, International Journal of mathematical

Sci. Opt. Theory and appl. 2(2021), 834-846.

19. A. Oyem, T. G. Jaiyeola, J. O. Olaleru and B. Osoba, Soft Neutrosophic quasigroups, Neutrosophic Set

Systems, 50(2022), 488�503

20. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets Syst. 20 (1986) 87�96.

21. A. Rosenfeld, fuzzy groups, J. math. Anal.Appl., 35(1971), 512-517.

22. M. Sahin, S. Alkhazaleh, and V. Ulucay, Neutrosophic soft expert sets, Appl. Math., 6(2015), 116-127.

23. F. Smarandache, Neutrosophy. Neutrosophic Probability Set and Logic, American Research Press: Re-

hoboth, IL, USA, 1998.

24. F. Smarandache, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets. Int. J. Pure Appl. Math.,

24(2005), 287�297

25. A. Solairaju, and R. Nagarajan, A new structure and construction of Q-fuzzy groups, Advances in Fuzzy

Mathematics, 4(2009), 23-29.

Oyebo Tunde Yakub1, Benard Osoba2,∗ and Abdulkareem Abdulafeez3, Distributive
Properties of Q−neutrosophic Soft Quasigroups

Neutrosophic Sets and Systems, Vol. 58, 2023                                                                              523



26. M. Jdid, F. Smarandache and S. Broumi, Inspection Assignment Form for Product Quality Con-

trol Using Neutrosophic Logic, Neutrosophic Systems with Applications, vol.1, (2023), 4�13. (Doi:

https://doi.org/10.5281/zenodo.8171135).

27. S. Dey and G. C. Ray, Separation Axioms in Neutrosophic Topological Spaces, Neutrosophic Systems with

Applications, 2(2023), 38�54. (Doi: https://doi.org/10.5281/zenodo.8195851);

28. M. Jdid and F. Smarandache, The Use of Neutrosophic Methods of Operation Research in the

Management of Corporate Work, Neutrosophic Systems with Applications, 3 (2023), 1�16. (Doi:

https://doi.org/10.5281/zenodo.8196397);

29. S. Thiruveni and A. Solairaju, Neutrosophic Q-fuzzy subgroups, Int. J. Math. And Appl., 6(2018), 859-866

30. V. Ulucay, M. Sahin, and N. Hassan, Generalized neutrosophic soft expert set for multiple-criteria decision-

making, Symmetry, 10(2018), 437.

Oyebo Tunde Yakub1, Benard Osoba2,∗ and Abdulkareem Abdulafeez3, Distributive
Properties of Q−neutrosophic Soft Quasigroups

Neutrosophic Sets and Systems, Vol. 58, 2023                                                                              524

Received: June 7, 2023. Accepted: Sep 27, 2023



University of New Mexico

Approximations of interval neutrosophic hyperideals in

semi-hyper-rings

P. Dhanalakshmi1

1Department of Mathematics, C.KNC College for Women , Cuddalore, India-608002; vpdhanam83@gmail.com
∗Correspondence: vpdhanam83@gmail.com

Abstract. This paper deals with the combination of rough sets and interval neutrosophic sets. We introduce

the interval neutrosophic hyper-ideals in semi-hyper-rings. Also we study the rough interval neutrosophic hyper-

ideals in semi-hyper-rings.

Keywords: Rough sets, neutrosophic sets, interval neutrosophic sets , rough interval neutrosophic sets, semi-

hyper-rings.

—————————————————————————————————————————-

1. Introduction

In 1982, Pawlak [11] introduced the concept of rough set, as a formal tool for modeling and

processing incomplete information in information systems. The basic idea of rough set is based

upon the approximation of sets by a pair of sets known as the lower approximation and the

upper approximation of a set. The concept of a fuzzy set, introduced by Zadeh [24] , provides

a natural framework for generalizing some of the notions of classical algebraic structures. As

a generalization of fuzzy sets, the intuitionistic fuzzy set was introduced by Atanassov [1] in

1986. One of the interesting generalizations of the theory of fuzzy sets and intuitionistic fuzzy

sets is the theory of neutrosophic sets introduced by F. Smarandache [12]. The term neutro-

sophy means knowledge of neutral thought and this neutral represents the main distinction

between fuzzy and intuitionistic fuzzy logic and set. It is a logic in which each proposition

is estimated to have a degree of truth, a degree of indeterminacy and a degree of falsity.

Unlike in intuitionistic fuzzy sets, where the incorporated uncertainty is dependent of the

degree of belongingness and degree of non-belongingness, here the uncertainty present, i.e. the

indeterminacy factor, is independent of truth and falsity values. Neutrosophic sets are indeed

more general than Intuitionistic fuzzy set as there are no constraints between the degree of
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truth, degree of inde-terminacy and degree of falsity. All these degrees can individually vary

within [0, 1]. The theories of neutrosophic set have achieved great success in various areas.

Recently many researchers applied the notion of fuzzy neutrosophic sets to several algebraic

structures. Subha et al. [17–23] studied the algebraic structures of interval rough fuzzy sets.

In this paper we studied the algebraic properties of rough interval neutrosophic sets.

2. Preliminaries

This section we present some basic definitions related to this work.

Definition 2.1. [2] Let W be a nonempty set, and let P (W ) be the set of all nonempty

subsets of W . A hyperoperation on W is a map ◦ : W ×W ← P (W ), and the couple (W, ◦)
is called a hypergrupoid. If A and B are nonempty subsets of W , then we denote,

A ◦B =
⋃

a∈A,b∈B
a ◦ b x ◦A = {x} ◦A,

A ◦ x = A ◦ {x}

Definition 2.2. [2] A hypergrupoid (W, ◦) is called a hyper-semi-group if for all x, yand z of

W we have (x ◦ y) ◦ z = x ◦ (y ◦ z).
That is,

⋃
u∈x◦y

u ◦ z =
⋃

v∈y◦z
x ◦ v

Definition 2.3. [2] A is an algebraic structure (W,+, .) which satisfies the following condi-

tions.

(i) (W,+) is a commutative semi-hyper-group,

(a) (a+ b) + c = a+ (y + z) (b) a+ b = b+ a, for all a, b, c ∈W .

(ii) (H, .) is a semi-hyper-group,

(c) (a.b).c = a.(b.c), for all a, b, c ∈W .

(iii) The multiplication is distributive with respect to hyperroperation +,

(d) a.(b+ c) = a.b+ a.c

(e) (a+ b).c = a.c+ b.c, for all a, b, c ∈W .

Definition 2.4. [2] A nonempty subset A of a hyper-semi-ring (W,+, .) is called sub-hyper-

semi-ring if x+ y ⊆ A and x.y ⊆ A for all x, y ∈ A.

Definition 2.5. [2] A left(right) hyper-ideal of a hyper-semi-ring W is a nonempty subset I

of W satisfying the following:

(i) x+ y ⊆ I, for all x, y ∈ I.

(ii) x.a ⊆ I(a.x ⊆ I), for all a ∈ I and x ∈W .

Definition 2.6. Let R be a commutative semihypergroup and Γ be a commutative group.

Then R is called a Γ -semihyperring if there exists a map RΓR → P (R)(a, α, b) → aαb)
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∀a, b ∈ R,α ∈ Γ and P (R) the set of all non-empty subsets of R, satisfying the following

conditions: (i) (a+ b)αc = aαc+ bαc,

(ii)aα(b+ c) = aαb+ aαc,

(iii) a(α+ β)b = aαb+ aβb,

(iv) aα(bβc) = (aαb)βc

∀a, b, c ∈ R and ∀ α, β ∈ Γ

We say that R is a Γ-semihyperring with zero, if there exists 0 ∈ R such that a ∈ a + 0 and

0 ∈ 0αa, 0 ∈ aα0 for all a ∈ R and α ∈ Γ

Definition 2.7. [10] Let W be the universe. The neutrosophic set is an object having the

form A = {(e, lt(e), li(e), lf (e)), e ∈W}
where the functions lt, li, lf : W −→ [0, 1] define respectively the truth, the degree of inde-

terminacy and the degree of non-membership of the element e ∈ W to the set A with the

condition 0 ≤ lt + li + lq ≤ 3

3. Interval neutrosophic hyper-ideals(INHI) in semi-hyper-rings

In this section we studied the concept of INLHI in semi-hyper-ring W . Also we proved

nonempty intersection of INLHI is also an INLHI. More over we discuss the pre image and

image of an INLHI of W is also an INLHI. At last we proved the cartesian product of two

INLHI is also an INLHI.

Definition 3.1. A nonempty IN subset l of W is said to be an INLHI of W if the following

conditions are holds:

(C1)
∧

e∈s+q
lt(e) ≥ lt(s) ∧ lt(q)

(C2)
∧

e∈s+q
li(e) ≥ li(s)+li(q)

2

(C3)
∨

e∈s+q
lf (e) ≤ lt(s) ∨ lt(q)

(C4)
∧
e∈sq

lt(e) ≥ lt(q)

(C5)
∧
e∈sq

li(e) ≥ li(q)

(C6)
∨
e∈sq

lf (e) ≤ lf (q) for all e, s, q ∈W

Definition 3.2. A nonempty IN subset l of W is said to be an INRHI of W if the conditions

(C1) (C2) and (C3) holds. Moreover

(C7)
∧
e∈sq

lt(e) ≥ lt(s)

(C8)
∧
e∈sq

li(e) ≥ li(s)

(C9)
∨
e∈sq

lf (e) ≤ lf (s)for all e, s, q ∈W
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Definition 3.3. Let l and m be any two IN subsets of W . Then l ∩m defined by

lt ∩mt(e) = lt ∧mt, li ∩mi(e) = li ∧mi and lf ∩mf (e) = lf ∨mf for all e ∈W

Proposition 3.4. A nonempty intersection of an INLHI is an INLHI.

Proof : Assume that {lk : k ∈ I} be a family of an INLHI of W . Let r, s ∈ W .

Then∧
e∈r+s

(
⋂
k∈I

lkt )(e) =
∧

e∈r+s
inf
k∈I

lkt (e) ≥ inf
k∈I

(
lkt (r) ∧ lkt (s)

)
= inf

k∈I
lkt (r) ∧ inf

k∈I
lkt (s)

=
⋂
k∈I

lkt (r) ∧
⋂
k∈I

lkt (s)

and∧
e∈r+s

(
⋂
k∈I

lki )(e) =
∧

e∈r+s
inf
k∈I

lki (e) ≥ inf
k∈I

[
lki (r)+l

k
i (s)

2

]
=

inf
k∈I

lki (r)+ inf
k∈I

lki (s)

2 =

⋂
k∈I

lki (r)+
⋂
k∈I

lki (s)

2

also∨
e∈r+s

(
⋂
k∈I

lkf )(e) =
∨

e∈r+s
sup
k∈I

lkf (e) ≤ sup
k∈I

(
lkf (r) ∨ lkf (s)

)
= sup

k∈I
lkf (r) ∨ sup

k∈I
lkf (s)

=
⋂
k∈I

lkf (r) ∨
⋂
k∈I

lkf (s)

Moreover∧
e∈rs

(
⋂
k∈I

lkt )(e) =
∧

e∈r+s
inf
k∈I

lkt (e) ≥ inf
k∈I

lkt (s) =
⋂
k∈I

lkt (s)

Similarly we can prove for∧
e∈rs

(
⋂
k∈I

lki )(e) ≥
⋂
k∈I

lki (s) and
∨
e∈rs

(
⋂
k∈I

lkf )(e) ≤
⋂
k∈I

lkf (s)

Hence the theorem.

Definition 3.5. Let σ : F −→ E be a mapping from SHR W to E. Then σ is said to be

homomorphism if

(1) σ(e+ s) ⊆ σ(e) + σ(s)

(2) σ(es) ⊆ σ(e)σ(s)

(3) σ(0F ) = 0E for all e, s ∈W
where 0F and 0E are zeros of F and E respectively.

Proposition 3.6. Let σ : F −→ E be a homomorphism of semi-hyper-ring. If l is an INLHI

of W . Then pre-image of l is an INLHI of W .

Proof : Since σ : F −→ E be a homomorphism of W . Also since l is an INLHI

of W and u, e, k ∈W .∧
u∈e+k

σ−1(lt)(u) =
∧

t∈e+k
lt(σ(u))

=
∧

σ(u)⊆σ(e)+σ(k)
lt(σ(u))
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≥ lt(σ(e)) ∧ lt(σ(k))

= σ−1(lt)(e) ∧ σ−1(lt)(k)

Also ∧
u∈e+k

σ−1(li)(u) =
∧

t∈e+k
li(σ(u))

=
∧

σ(u)⊆σ(e)+σ(k)
li(σ(u))

≥ li(σ(e)) ∧ li(σ(k))

= σ−1(li)(e) ∧ σ−1(li)(k)

Moreover∨
u∈e+k

σ−1(lf )(u) =
∨

t∈e+k
lf (σ(u))

=
∨

σ(u)⊆σ(e)+σ(k)
lf (σ(u))

≤ lf (σ(e)) ∨ li(σ(k))

= σ−1(lf )(e) ∨ σ−1(lf )(k)

Again∧
u∈ek

σ−1(lt)(u) =
∧
t∈ek

lt(σ(u))

=
∧

σ(u)⊆σ(e)σ(k)
lt(σ(u))

≥ lt(σ(k)) = σ−1(lt)(k)

Also ∧
u∈ek

σ−1(li)(u) =
∧
t∈ek

li(σ(u))

=
∧

σ(u)⊆σ(e)σ(k)
li(σ(u))

≥ li(σ(k)) = σ−1(li)(k)

and ∨
u∈ek

σ−1(lf )(u) =
∨
t∈ek

lf (σ(u))

=
∨

σ(u)⊆σ(e)σ(k)
lf (σ(u))

≤ lf (σ(k)) = σ−1(lf )(k)

Hence pre-image of l is an INLHI of W .

Proposition 3.7. Let σ : F −→ E be a surjective homomorphism of semi-hyper-ring. If l is

an INLHI of W . Then image of l is an INLHI of W .

Proof : Since l is an INLHI of W and u0, e0, k0 ∈W . Then∧
u0∈e0+k0

σ(lt)(u0) =
∧

u0∈e0+k0
sup

u∈σ−1(u0)

lt(u)

=
∧

u0∈e0+k0
sup

e∈σ−1(e0),k∈σ−1(k0)

lt(u)

≥ sup
e∈σ−1(e0),k∈σ−1(k0)

{lt(u) ∨ lt(k)}

= sup
e∈σ−1(e0)

lt(u) ∧ sup
k∈σ−1(k0)

lt(k)
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= σ(lt)(e0) ∧ σ(lt)(k0)

Also ∧
u0∈e0+k0

σ(li)(u0) =
∧

u0∈e0+k0
sup

u∈σ−1(u0)

li(σ(u))

=
∧

u0∈e0+k0
sup

e∈σ−1(e0),k∈σ−1(k0)

li(σ(u))

≥ sup
e∈σ−1(e0),k∈σ−1(k0)

li(e)+li(k)
2

= 1/2

[
sup

e∈σ−1(e0)

li(u) + sup
k∈σ−1(k0)

li(k)

]
= 1/2 [σ(li)(e0) + σ(li)(k0)]

∨
u0∈e0+k0

σ(lf )(u0) =
∨

u0∈e0+k0
inf

u∈σ−1(u0)
lf (u)

=
∨

u0∈e0+k0
inf

e∈σ−1(e0),k∈σ−1(k0)
lf (u)

≤ inf
e∈σ−1(e0),k∈σ−1(k0)

{lt(e) ∨ lt(k)}

= inf
e∈σ−1(e0)

lt(e) ∨ inf
k∈σ−1(k0)

lt(k)

= σ(lt)(e0) ∨ σ(lt)(k0)

Moreover∧
u0∈e0k0

σ(lt)(u0) =
∧

u0∈e0k0
sup

u∈σ−1(u0)

lt(u)

=
∧

u0∈e0+k0
sup

e∈σ−1(e0),k∈σ−1(k0)

lt(u)

≥ sup
k∈σ−1(k0)

lt(k)

= σ(lt)(k0)∧
u0∈e0k0

σ(li)(u0) =
∧

u0∈e0k0
sup

u∈σ−1(u0)

li(u)

=
∧

u0∈e0+k0
sup

e∈σ−1(e0),k∈σ−1(k0)

li(u)

≥ sup
k∈σ−1(k0)

li(k)

= σ(li)(k0)

Also ∨
u0∈e0k0

σ(lf )(u0) =
∨

u0∈e0k0
inf

u∈σ−1(u0)
lf (u)

=
∨

u0∈e0+k0
inf

e∈σ−1(e0),k∈σ−1(k0)
lf (u)

≤ inf
k∈σ−1(k0)

lf (k)

= σ(lf )(k0)

Definition 3.8. Cartesian product of two IN subsets l and m of W is defined by,

(lt ×mt)(e, k) = lt ∧mt
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(li ×mi)(e, k) = li+mi
2

(lf ×mf )(e, k) = lf ∨mf for all e, k ∈W

Theorem 3.9. Cartesian product of two INLHI is also an INLHI.

Proof: Let l and m be two INLHI of W . Let (e1, e2), (k1, k2), (u1, u2) ∈W ×W .

Then ∧
(e1,e2)∈(k1,k2)+(u1,u2)

(lt ×mt)(e1, e2) =
∧

e1∈(k1+u1),e2∈(k2+u2)
(lt ×mt)(e1, e2)

=
∧

e1∈(k1+u1),e2∈(k2+u2)
(lt(e1) ∧mt(e2))

≥ min {(lt(k1) ∧ lt(u1)) , (mt(k1) ∧mt(u1))}
= min {(lt(k1) ∧ lt(k2)) , (mt(u1) ∧mt(u2))}
= min {(lt ×mt)(k1, k2), (lt ×mt)(u1, u2)}

Also ∧
(e1,e2)∈(k1,k2)+(u1,u2)

(li ×mi)(e1, e2) =
∧

e1∈(k1+u1),e2∈(k2+u2)
(li ×mi)(e1, e2)

=
∧

e1∈(k1+u1),e2∈(k2+u2)

li(e1)+mi(e2)
2

≥ 1/2
[
li(k1)+mi(u1)

2 + li(k2)+mi(u2)
2

]
= 1/2

[
li(k1)+mi(k2)

2 + li(u1)+mi(u2)
2

]
= 1/2 [(li ×mi)(k1, k2) + (li ×mi)(u1, u2)]

and ∨
(e1,e2)∈(k1,k2)+(u1,u2)

(lf ×mf )(e1, e2) =
∨

e1∈(k1+u1),e2∈(k2+u2)
(lf ×mf )(e1, e2)

=
∨

e1∈(k1+u1),e2∈(k2+u2)
(lt(e1) ∨mt(e2))

≤ max {(lt(k1) ∨ lt(u1)) , (mt(k1) ∨mt(u1))}
= max {(lt(k1) ∨ lt(k2)) , (mt(u1) ∨mt(u2))}
= max {(lt ×mt)(k1, k2), (lt ×mt)(u1, u2)}

In similar manner we prove∧
(e1,e2)∈(k1,k2)(u1,u2)

(lt ×mt)(e1, e2) =
∧

e1∈(k1u1),e2∈(k2u2)
(lt ×mt)(e1, e2)

=
∧

e1∈(k1u1),e2∈(k2u2)
(lt(e1) ∧mt(e2))

≥ min {lt(u1) ∧mt(u2)}
= min {(lt ×mt)(u1, u2)}

also ∧
(e1,e2)∈(k1,k2)(u1,u2)

(li ×mi)(e1, e2) =
∧

e1∈(k1u1),e2∈(k2u2)
(li ×mi)(e1, e2)

=
∧

e1∈(k1u1),e2∈(k2u2)

li(e1)+mi(e2)
2

≥ li(u1)+mi(u2)
2 = (li ×mi)(u1, u2)
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Moreover∨
(e1,e2)∈(k1,k2)(u1,u2)

(lf ×mf )(e1, e2) =
∨

e1∈(k1u1),e2∈(k2u2)
(lf ×mf )(e1, e2)

=
∨

e1∈(k1+u1),e2∈(k2+u2)
(lt(e1) ∨mt(e2))

≤ lf (u1) ∨mf (u2) = (lf ×mf )(u1, u2)

4. Rough interval neutrosophic hyper-ideal (RINHI) in semihyperrings

This section deals with the new concept RINHI of semihyperrings. Let φ be a

congruence relation on W .

φ is an equivalence relation on W such that (e, s) ∈ φ =⇒ (ew, sw) ∈ φ and

(we,ws) ∈ φ for every w ∈W .

Definition 4.1. An INHI is called an φ-lower(upper)INHI of W if its lower(upper) approx-

imation is also an INHI.

Definition 4.2. An INHI is said to be an RINHI if it is both φ-lower and φ-upper INHI

of W .

Theorem 4.3. Let l be an INHI of W . Then l is an RINHI.

Proof: Since l is an INHI of W . Let e, s, q ∈W then∧
e∈s+q

φ(lt)(e) =
∧

e∈s+q

∨
r∈[s+q]φ

lt(r)

≥
∧

e∈s+q

∨
r∈[s]φ+[q]φ

lt(r)

≥
∧

r∈i+j

∨
i+j⊆[s]φ+[q]φ

lt(r)

=
∨

i∈[s]φ,j∈[q]φ

∧
r∈i+j

lt(r)

≥
∨

i∈[s]φ,j∈[q]φ
{lt(i) ∧ lt(j)}

=
∨

i∈[s]φ
lt(s) ∧

∨
j∈[q]φ

lt(q)

= φ(lt)(s) ∧ φ(lt)(q)

and∧
e∈s+q

φ(li)(e) =
∧

e∈s+q

∧
r∈[s+q]φ

li(r)

≥
∧

e∈s+q

∧
r∈[s]φ+[q]φ

li(r)

≥
∧

r∈i+j

∧
i+j⊆[s]φ+[q]φ

li(r)

=
∧

i∈[s]φ,j∈[q]φ

∧
r∈i+j

li(r)

≥
∧

i∈[s]φ,j∈[q]φ

[
li(i)+li(j)

2

]
= 1

2

[ ∧
i∈[s]φ

li(i) +
∧

j∈[q]φ
li(j)

]
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= 1
2

[
φ(li)(s) + φ(li)(q)

]
also∨
e∈s+q

φ(lf )(e) =
∨

e∈s+q

∨
r∈[s+q]φ

lf (r)

≤
∨

e∈s+q

∨
r∈[s]φ+[q]φ

lf (r)

≤
∨

r∈i+j

∨
i+j⊆[s]φ+[q]φ

lf (r)

=
∨

i∈[s]φ,j∈[q]φ

∨
r∈i+j

lf (r)

≤
∨

i∈[s]φ,j∈[q]φ
{lf (i) ∨ lf (j)}

=
∨

i∈[s]φ
lf (s) ∨

∨
j∈[q]φ

lf (q)

= φ(lf )(s) ∨ φ(lf )(q)

Moreover∧
e∈sq

φ(lt)(e) =
∧
e∈sq

∨
r∈[sq]φ

lt(r)

=
∧
e∈sq

∨
r∈[s]φ[q]φ

lt(r)

=
∧
r∈ij

∨
ij⊆[s]φ[q]φ

lt(r)

=
∨

i∈[s]φj∈[q]φ

∧
r∈ij

lt(r)

≥
∨

i∈[s]φj∈[q]φ
lt(j)

≥
∨

j∈[q]φ
lt(j)

= φ(lt)(q)

Similarly we can prove for∧
e∈sq

φ(lf )(e) ≥ φ(lf )(q) and
∧
e∈sq

φ(li)(e) ≤ φ(li)(q)

Consequently we can prove for lower approximation

ie.,∧
e∈s+q

φ(lt)(e) ≥ φ(lt)(s) ∧ φ(lt)(q)∧
e∈s+q

φ(li)(e) ≥ 1
2

[
φ(li)(s) + φ(li)(q)

]
∧

e∈s+q
φ(lf )(e) ≤ φ(lf )(s) ∧ φ(lf )(q)

and∧
e∈sq

φ(lt)(e) ≥ φ(lt)(q)∧
e∈sq

φ(lf )(e) ≥ φ(lf )(q)∧
e∈sq

φ(li)(e) ≤ φ(li)(q)

Hence l is a RINLHI of W .
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5. Conclusions

In this paper we introduce the notion of rough interval neutrosophic hyperide-

als in semihyperrings. Some basic properties of this ideals are studied. We apply

rough interval neutrosophic set to some more algebraic structures. Moreover in

future we apply rough interval neutrosophic sets to some applications like multi

criteria decision making, medical analysis, decision making, gray analysis etc.,

Conflicts of Interest: The authors declare that there is no conflict of interest

regarding the publication of the paper.
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Abstract: Global company management relies heavily on the techniques developed in the field of 

International Business Administration. This paper summarizes the most important strategies used 

by companies to deal with the challenges of doing business on a global scale. It stresses the 

necessity for localization and adaptation to accommodate varied market preferences and 

underscores the relevance of market entrance techniques including exporting, licensing, and 

foreign direct investment. Strategies for obtaining economies of scale and uniformity across 

markets are examined, along with the role of standardization and global integration in doing so. 

The need to develop one's cross-cultural competency as a means of appreciating and valuing one 

another's cultural backgrounds is emphasized. Approaches to logistics, procurement, and 

distribution management at the global level are explored. The authors argue that strategic 

partnerships and joint ventures might be used to tap into local expertise and infrastructure. This 

paper used the neutrosophic set integrated with the multi-criteria decision-making (MCDM) tools 

to analyze and evaluate the various strategists. The TOPSIS and VIKOR methods are used to rank 

the alternatives and obtain the most suitable strategy. This paper used ten factors and seven 

strategies to be evaluated and analyzed. These elements are applied in experiments to use the best 

strategy in the organization. 

Keywords: Neutrosophic Set, TOPSIS, VIKOR, MCDM, International Business Administration.  

1. Introduction  

International company administrations in today's linked global economy confront difficult 

problems and possibilities as they negotiate the varied business environments of various nations 

and regions. To survive and prosper in today's fast-paced world, businesses need to create and 

execute strategies that give them a leg up in the global marketplace. Assessing the efficacy of these 

approaches, pinpointing improvement opportunities, and propelling organizational success are all 

dependent on careful analysis and assessment. The purpose of this study is to investigate and assess 

the approaches used by multinational company administrations, illuminating their viability, 

difficulties, and possibilities for gaining a lasting edge in the marketplace[1], [2]. 

Global business administrations compete in a dynamic and ever-evolving environment. Their 

chances of survival and growth are profoundly affected by the methods they use to expand into 

new markets, handle cross-border activities, accommodate cultural differences, and take advantage 

of international possibilities. Organizations may learn a lot about their strengths, shortcomings, 
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and competitive standing by analyzing and assessing these tactics. Strategic decisions may then be 

made using the knowledge gained from this kind of analysis, which also aids in capitalizing on 

possibilities and reducing the risks involved with doing business in a globalized world[3], [4]. 

The fundamental purpose of this study is to assess and compare the approaches used by 

multinational business administrators in different sectors. The study's overarching goal is to learn 

about various approaches and their components, drivers, and consequences. The study also aims 

to evaluate how well these tactics help businesses accomplish their stated goals of increasing their 

reach in the market, their bottom line, the visibility of their brand, and the efficacy of their 

operations. This study's overarching goal is to help businesses improve their international strategy 

by analyzing current practices and offering suggestions for how they might do better in the 

future[5], [6]. 

Both qualitative and quantitative approaches will be used to complete the study. The basis of 

understanding will be established by conducting a comprehensive literature study of relevant 

academic research, case studies, and industry reports. Further, qualitative interviews and 

questionnaires will be administered to professionals and executives in the worldwide business 

community to glean insights from the actual world. Research techniques such as these will shed 

light on the tactics used by multinational business administrations and allow for an assessment of 

how successful these approaches are[7], [8]. 

A proposition in Boolean logic is either true or false; in classical set theory, an item either belongs 

to a set or it does not; and in optimization, an approach is either viable or it is not. However, in 

practice, almost everything is a question of degree and cannot be precisely characterized by the 

usual reasoning[9], [10]. Zadeh developed the fuzzy sets theory to cope with this sort of ambiguity. 

Since its inception in 1965, various variations of fuzzy sets have been developed. Zadeh created 

the type-n fuzzy set to address the ambiguity of the membership function in fuzzy set theory.  

Atanassov introduced intuitionistic fuzzy sets (IFSs) to clarify how membership functions, their 

degrees of membership and non-membership, and the uncertainty of decision-makers are 

defined[11]. Torra first introduced hesitant fuzzy sets (HFSs), which are an extension of 

conventional fuzzy sets in which many values are allowed for the membership of one component. 

However, the opinions of decision-makers may not be well reflected in the enlarged description of 

membership duties. As a result, we still need to add some additional extensions[12], [13]. 

Smarandache extended intuitionistic fuzzy sets with neutrosophic logic and neutrosophic sets 

(NSs) to address this shortcoming[14]. The neutrosophic set is the set in which every conceivable 

thing in the cosmos has a truthiness, indeterminacy, or falsity between zero and one. While levels 

of belongingness non-belongingness and indeterminacy value were factored in as equivalence or 

absoluteness, in the neutrosophic sets, ambiguity is expressed as truth and falsity numbers. In 

addition to coping with systemic ambiguity, this designation for neutrosophic sets helps eliminate 

the paralysis caused by conflicting data[9], [15]. Thus, the truth number, the falsehood value, and 

the indeterminacy value may be thought of as the membership level, the non-membership level, 

and the hesitant degree, respectively[16]. This paper used the neutrosophic set with the multi-

criteria decision-making (MCDM) methods like TOPSIS and VIKOR method to evaluate the 

strategies of international business administration[15], [17], [18].  
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In this study, we shall dissect and assess several approaches used by global company 

administrations. Market entry strategies, international supply chain management, cultural 

adaptation and localization, strategic alliances and partnerships, international marketing and 

branding, technological innovation and digital transformation, risk management, and 

compliance; are just some of the areas that fall under the remit of this study. Key elements, success 

indicators, difficulties, and best practices for each approach will be investigated, providing a 

formal framework for the study. Organizations will be able to obtain insights and make well-

informed choices about their international commercial operations thanks to the paper's framework, 

which will allow for a full review of these tactics[19], [20]. 

Organizations that want to succeed in the global market must devote significant resources to the 

study and assessment of international business strategy. Organizations may improve their decision-

making processes, increase their competitive edge, and achieve sustainable development if they 

have a thorough awareness of the pros and cons of various strategies. The purpose of this study is 

to add to the current body of literature by analyzing and evaluating in depth the tactics used by 

multinational company administrations. This study's results and suggestions will help businesses 

of all sizes create competitive advantages, adapt to new markets, and expand internationally. 

The rest of this paper is organized as follows: Strategies of international business administration 

are presented in section 2. The materials and methods are presented in section 3. The application 

and experiment of methodologies are presented in section 4. The conclusions of this study are 

presented in section 5.  

2. Strategies of International Business Administration  

Examining the methods and strategies used by companies competing on a worldwide scale is an 

important part of any analysis and evaluation of international business administrations. We may 

learn about the efficacy, obstacles, and possibilities that multinational firms confront by analyzing 

these tactics. Here, we'll examine the effectiveness of some of the most often-used methods among 

multinational corporations' top management[21], [22]. 

Exporting, licensing, franchising, joint ventures, and foreign direct investment (FDI) are just a few 

examples of market entrance techniques used by international enterprises. Companies may enter 

new markets, get access to resources, and increase their consumer base with the help of these 

techniques. Market dynamics, legal frameworks, cultural variables, and competitive landscapes all 

have a role in determining the success of these approaches. Market entrance tactics may be judged 

on their ability to break into the market, win over customers, turn a profit, and fuel sustainable 

expansion[23], [24]. 

Management of the global supply chain is essential for international companies to guarantee 

successful product sourcing, manufacturing, and distribution. Supplier selection, logistical 

optimization, inventory management, and risk avoidance are all examples of supply chain 

management strategies. Cost-effectiveness, speed of response, dependability, sustainability, and 

resistance to interruptions are only a few of the criteria that must be considered when evaluating 

the efficacy of supply chain methods[25], [26]. 
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Successful global companies know the value of adopting localized strategies that account for 

cultural differences. Customer acceptability and market penetration may be increased by tailoring 

goods, services, marketing messaging, and business practices to local tastes and cultural norms. 

The success of these tactics may be gauged by looking at metrics like increased sales and word-

of-mouth advertising. 

Global companies often develop strategic alliances and collaborations with regional competitors 

to better understand target markets, expand distribution channels, pool resources, and spread 

potential dangers. Joint ventures, collaborations, and strategic partnerships are all examples of 

types of strategic alliances. Synergy, knowledge transfer, resource sharing, competitive advantage, 

and financial performance are just a few of the indicators that may be used to gauge the success of 

these methods[27], [28]. 

Marketing and branding on a worldwide scale: How multinational corporations raise their profiles, 

strengthen their brands, and carve out a niche for themselves. These methods entail communicating 

effectively across cultural boundaries and tailoring messages to specific target audiences. Brand 

awareness, consumer participation, increased market share, and a positive return on ad spend are 

just a few of the metrics that must be considered when assessing the success of a worldwide 

marketing campaign. 

International corporations now use technology and digital platforms to speed up innovation, boost 

productivity, and enrich their customers' interactions. Data analytics, AI, e-commerce, digital 

marketing, and process automation are just a few of the areas that may be addressed by 

technological innovation and digital transformation strategies. Considerations including 

technological uptake, competitive advantage, satisfied customers, and increased profits are all part 

of an effective evaluation of these tactics[29], [30]. 

Political, legal, financial, operational, and reputational risks are just some of the threats that 

international firms confront. Risk assessment, risk mitigation, contingency planning, and 

adherence to local legislation are all essential components of an effective risk management 

strategy. Considerations including risk exposure, risk mitigation efficiency, legal compliance, and 

organizational resilience are essential for assessing these plans[3], [31]. 

It is crucial to take into account the industry, competitive dynamics, macroeconomic conditions, 

and organizational goals while assessing the strategies of international company administrations. 

Financial performance indicators, market share statistics, customer feedback, and industry 

benchmarking are all examples of quantitative measurements that might be included in the 

research. Organizations may enhance their performance, build on their successes, and adjust to the 

dynamic nature of the global business environment by conducting in-depth analyses of these 

tactics[32], [33]. 

3. Materials and Methods 

Here, we'll describe how the distance measure and score function we just described are employed 

in the neutrosophic TOPSIS and neutrosophic VIKOR methods' calculation procedures[34], [35]. 

Figure 1 shows the steps of the proposed model. 
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Figure 1. The framework of this study. 

We used the interval-valued neutrosophic set. So, we can define some mathematical models of 

interval-valued neutrosophic sets as: 

𝑇𝐼𝐽 =
𝑎𝑖𝑗

𝑝𝑜𝑠

𝑎
𝑖𝑗
𝑝𝑜𝑠
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𝑛𝑒𝑢+𝑎

𝑖𝑗
𝑛𝑒𝑔                                                                                                                                1.1 
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We can define the interval-valued neutrosophic number as: 

𝑇𝑖𝑗
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𝑇𝑖𝑗
𝑈 = 𝑇𝑖𝑗 + 𝑧𝜃/2 × √

𝑇𝑖𝑗(1−𝑇𝑖𝑗)

𝑎
𝑖𝑗
𝑝𝑜𝑠

+𝑎𝑖𝑗
𝑛𝑒𝑢+𝑎

𝑖𝑗
𝑛𝑒𝑔                                                                                                   1.5 

𝐼𝑖𝑗
𝐿 = 𝐼𝑖𝑗 − 𝑧𝜃/2 × √

𝐼𝑖𝑗(1−𝐼𝑖𝑗)

𝑎
𝑖𝑗
𝑝𝑜𝑠

+𝑎𝑖𝑗
𝑛𝑒𝑢+𝑎

𝑖𝑗
𝑛𝑒𝑔                                                                                                   1.6 

𝐼𝑖𝑗
𝑈 = 𝐼𝑖𝑗 + 𝑧𝜃/2 × √

𝐼𝑖𝑗(1−𝐼𝑖𝑗)

𝑎
𝑖𝑗
𝑝𝑜𝑠

+𝑎𝑖𝑗
𝑛𝑒𝑢+𝑎

𝑖𝑗
𝑛𝑒𝑔                                                                                                   1.7 
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𝐹𝑖𝑗
𝐿 = 𝐹𝑖𝑗 − 𝑧𝜃/2 × √

𝐹𝑖𝑗(1−𝐹𝑖𝑗)

𝑎
𝑖𝑗
𝑝𝑜𝑠

+𝑎𝑖𝑗
𝑛𝑒𝑢+𝑎

𝑖𝑗
𝑛𝑒𝑔                                                                                                   1.8 

𝐹𝑖𝑗
𝑈 = 𝐹𝑖𝑗 + 𝑧𝜃/2 × √

𝐹𝑖𝑗(1−𝐹𝑖𝑗)

𝑎
𝑖𝑗
𝑝𝑜𝑠

+𝑎𝑖𝑗
𝑛𝑒𝑢+𝑎

𝑖𝑗
𝑛𝑒𝑔                                                                                                   1.9 

Where 𝑧𝜃/2 refers to the critical value 

 

3.1 Neutrosophic TOPSIS Method 

Decision alternatives are ranked (ordered) according to how closely they resemble the preferred 

pattern using the TOPIS approach. The ideal substitute achieves this by having the smallest 

possible distance to the pattern, whereas the anti-ideal reference substitute has the largest possible 

distance to the anti-pattern. The distances between each design and the ideal and anti-ideal patterns 

are determined. That's what makes the final tally possible. 

3.1.1. Build the decision matrix. 

This step used the opinions of experts to build the decision matrix. 

3.1.2. Normalize the decision matrix. 

𝑎𝑖
∗ =

𝑎𝑖

∑ 𝑎𝑗
𝑛
𝑘=1

                                                                                                                                               (1) 

Where 𝑖 = 1,2,3, … . 𝑚; 𝑗 = 1,2,3 … . 𝑛 

3.1.3. Determine the weighted normalized decision matrix. 

𝑡𝑖 = 𝑎𝑖
∗ ∗ 𝑤𝑖                                                                                                                                          (2) 

3.1.4. Determine the ideal and anti-ideal reference point  

𝑡𝑖
+ =  {

max
𝑗

𝑡𝑖    𝑓𝑜𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

min
𝑗

𝑡𝑖    𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎
                                                                                                 (3.1) 

𝑡𝑖
− =  {

min
𝑗

𝑡𝑖    𝑓𝑜𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

max
𝑗

𝑡𝑖    𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎
                                                                                                 (3.2) 

3.1.5. Compute the distance from the pattern object 

𝑒𝑗
+ =  √∑ |𝑡𝑖 − 𝑡𝑖

+|
𝑝𝑚

𝑖=1                                                                                                                               (4) 

𝑒𝑗
− =  √∑ |𝑡𝑖 − 𝑡𝑖

−|
𝑝𝑚

𝑖=1                                                                                                                               (5) 
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3.1.6. Calculate the closeness value.  

𝐶𝑗 =
𝑒𝑗

−

𝑒𝑗
−+𝑒𝑗

+                                                                                                                                            (6) 

3.1.7 Rank the strategies. 

 

3.2 Neutrosophic VIKOR Method 

Using the VICOR technique, we may identify alternative courses of action and choose a middle 

ground that considers competing assessment criteria. Distances from the ideal and anti-ideal points 

are used to rank all the options. 

3.2.1. Normalize the decision matrix.   

𝑧𝑖 =
𝑎𝑖−min 𝑥𝑖

max 𝑥𝑖−min 𝑥𝑖
                                                                                                                                      (7) 

3.2.2. Calculate the values of S and R 

𝑆𝑗 =  ∑ 𝑤𝑖 ∗ 𝑧𝑖
𝑚
𝑖=1                                                                                                                                      (8) 

𝑅𝑗 = max
𝑖

(𝑤𝑖𝑧𝑖)                                                                                                                                (9) 

3.2.3 Compute the comprehensive index. 

𝑄𝑖 =   𝑢
𝑆𝑗−min

𝑗
𝑆𝑗

max
𝑗

𝑆𝑗−min
𝑗

𝑆𝑗
+ (1 − 𝑢)

𝑅𝑗−min
𝑗

𝑅𝑗

max
𝑗

𝑅𝑗−min
𝑗

𝑅𝑗
                                                                                     (10) 

3.2.4 Rank the strategies. 

4. Application  

Many organizations and firms tend to select the best strategy for their work. So, this section 

introduces various strategies and their factors to analyze and evaluate them. We used ten factors 

and seven strategies in this paper. The ten factors are used in this paper organized as: 

Several important elements must be considered when assessing the success of a global marketing 

strategy. These metrics are useful for gauging how far a campaign has traveled, how many people 

it has reached, and whether it has accomplished its goals. Some crucial elements are as follows: 

Assess how well the company has been able to break into new markets thanks to its worldwide 

marketing efforts. Think about things like increasing your market share, attracting more customers, 

and opening in new areas. 

Measure the success of your worldwide advertising campaign by asking consumers how well they 

know and understand your brand. Find out how your brand is doing in terms of recognition, 

affiliations, and overall brand image in various regions. 
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Examine how well marketing tactics strike a balance between being consistent internationally and 

tailoring to specific local markets. Evaluate how effectively the company has kept its brand image 

and messages similar throughout markets while catering to the needs of local consumers. 

Determine how involved and responsive your customers are with global marketing campaigns. 

Measure the success of your marketing efforts by looking at indicators like website visits, social 

media shares, email opens, email clicks, and customer satisfaction. 

Evaluate the company's proficiency in determining and appealing to desirable subsets of its target 

market. Assess how well the company's worldwide marketing efforts cater to the wants, 

requirements, and actions of its target consumers throughout the world. 

Examine the marketing return on investment (ROI) for all of your international campaigns. 

Consider customer acquisition expenses, conversion rates, sales income, and overall profitability 

when you assess the value of marketing initiatives. 

Examine the company's worldwide marketing strategy to see how well they set them out from the 

competition. Evaluate how well marketing has been in portraying the company as cutting-edge 

and ahead of the competition. 

Ability to adjust global marketing tactics quickly and effectively in response to new opportunities 

and changing customer preferences. Evaluate how quickly and well you adapt to changes in the 

market and customer needs. 

Assess how well your marketing material and messaging have been localized for various markets. 

Evaluate how successful localized marketing was at reaching the intended population, overcoming 

any language and cultural hurdles, and increasing consumer participation. 

Analyzing and measuring the success of global marketing initiatives requires the use of marketing 

analytics and metrics. Analyze how well KPIs, marketing analytics tools, and data-driven insights 

are used to monitor progress and guide strategy. 

Organizations may learn a lot about the success of their international marketing campaigns by 

keeping these things in mind. The results of this analysis may be used to better focus marketing 

efforts and adapt tactics to the dynamic nature of global marketplaces. 

We used the experts and decision-makers to evaluate the factors and strategies. We build the 

decision makers by the interval-valued neutrosophic numbers. Then we applied the TOPSIS steps. 

We build the decision matrix by using interval-valued neutrosophic numbers as shown in Table 1. 

We use Eq. (1) to normalize the decision matrix. Then we construct the weighted normalized 

matrix by using Eq. (2) as shown in Table 2. Then compute the weights of factors. Then compute 

the ideal and anti-ideal reference point by using Eqs. (3.1 and 3.2). All factors are positive factors. 

Then compute the distance from the pattern object using Eqs. (4 and 5). Then compute the 

closeness value as shown in Figure 2. The results show strategy 6 is the best and strategy 1 is the 

worst. 
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Table 1. The interval-valued neutrosophic numbers between factors and strategies. 

 INTC1 INTC2 INTC3 INTC4 INTC5 INTC6 INTC7 INTC8 INTC9 INTC10 
INTS1 ([0.610, 

0.713] 

[0.133, 

0.215] 

[0.124, 

0.205]) 

([0.581, 

0.686] 

[0.119, 

0.198] 

[0.130, 

0.212]) 

([0.581, 

0.686] 

[0.119, 

0.198] 

[0.130, 

0.212]) 

([0.829, 

0.904] 

[0.017, 

0.058] 

[0.021, 

0.066]) 

([0.610, 

0.713] 

[0.133, 

0.215] 

[0.124, 

0.205]) 

([0.581, 

0.686] 

[0.119, 

0.198] 

[0.130, 

0.212]) 

([0.829, 

0.904] 

[0.017, 

0.058] 

[0.021, 

0.066]) 

([0.610, 

0.713] 

[0.133, 

0.215] 

[0.124, 

0.205]) 

([0.819, 

0.895] 

[0.046, 

0.103] 

[0.002, 

0.029]) 

([0.610, 

0.713] 

[0.133, 

0.215] 

[0.124, 

0.205]) 

INTS2 ([0.711, 

0.805] 

[0.061, 

0.125] 

[0.094, 

0.167]) 

([0.610, 

0.713] 

[0.133, 

0.215] 

[0.124, 

0.205]) 

([0.829, 

0.904] 

[0.017, 

0.058] 

[0.021, 

0.066]) 

([0.610, 

0.713] 

[0.133, 

0.215] 

[0.124, 

0.205]) 

([0.819, 

0.895] 

[0.046, 

0.103] 

[0.002, 

0.029]) 

([0.711, 

0.805] 

[0.061, 

0.125] 

[0.094, 

0.167]) 

([0.819, 

0.895] 

[0.046, 

0.103] 

[0.002, 

0.029]) 

([0.711, 

0.805] 

[0.061, 

0.125] 

[0.094, 

0.167]) 

([0.819, 

0.895] 

[0.046, 

0.103] 

[0.002, 

0.029]) 

([0.711, 

0.805] 

[0.061, 

0.125] 

[0.094, 

0.167]) 

INTS3 ([0.610, 
0.713] 

[0.133, 

0.215] 

[0.124, 

0.205]) 

([0.819, 
0.895] 

[0.046, 

0.103] 

[0.002, 

0.029]) 

([0.819, 
0.895] 

[0.046, 

0.103] 

[0.002, 

0.029]) 

([0.819, 
0.895] 

[0.046, 

0.103] 

[0.002, 

0.029]) 

([0.829, 
0.904] 

[0.017, 

0.058] 

[0.021, 

0.066]) 

([0.819, 
0.895] 

[0.046, 

0.103] 

[0.002, 

0.029]) 

([0.819, 
0.895] 

[0.046, 

0.103] 

[0.002, 

0.029]) 

([0.819, 
0.895] 

[0.046, 

0.103] 

[0.002, 

0.029]) 

([0.829, 
0.904] 

[0.017, 

0.058] 

[0.021, 

0.066]) 

([0.610, 
0.713] 

[0.133, 

0.215] 

[0.124, 

0.205]) 

INTS4 ([0.711, 

0.805] 

[0.061, 

0.125] 

[0.094, 

0.167]) 

([0.819, 

0.895] 

[0.046, 

0.103] 

[0.002, 

0.029]) 

([0.829, 

0.904] 

[0.017, 

0.058] 

[0.021, 

0.066]) 

([0.711, 

0.805] 

[0.061, 

0.125] 

[0.094, 

0.167]) 

([0.819, 

0.895] 

[0.046, 

0.103] 

[0.002, 

0.029]) 

([0.819, 

0.895] 

[0.046, 

0.103] 

[0.002, 

0.029]) 

([0.829, 

0.904] 

[0.017, 

0.058] 

[0.021, 

0.066]) 

([0.711, 

0.805] 

[0.061, 

0.125] 

[0.094, 

0.167]) 

([0.819, 

0.895] 

[0.046, 

0.103] 

[0.002, 

0.029]) 

([0.711, 

0.805] 

[0.061, 

0.125] 

[0.094, 

0.167]) 

INTS5 ([0.610, 

0.713] 

[0.133, 
0.215] 

[0.124, 

0.205]) 

([0.819, 

0.895] 

[0.046, 
0.103] 

[0.002, 

0.029]) 

([0.581, 

0.686] 

[0.119, 
0.198] 

[0.130, 

0.212]) 

([0.819, 

0.895] 

[0.046, 
0.103] 

[0.002, 

0.029]) 

([0.581, 

0.686] 

[0.119, 
0.198] 

[0.130, 

0.212]) 

([0.610, 

0.713] 

[0.133, 
0.215] 

[0.124, 

0.205]) 

([0.819, 

0.895] 

[0.046, 
0.103] 

[0.002, 

0.029]) 

([0.581, 

0.686] 

[0.119, 
0.198] 

[0.130, 

0.212]) 

([0.819, 

0.895] 

[0.046, 
0.103] 

[0.002, 

0.029]) 

([0.581, 

0.686] 

[0.119, 
0.198] 

[0.130, 

0.212]) 

INTS6 ([0.711, 

0.805] 

[0.061, 

0.125] 

[0.094, 

0.167]) 

([0.711, 

0.805] 

[0.061, 

0.125] 

[0.094, 

0.167]) 

([0.819, 

0.895] 

[0.046, 

0.103] 

[0.002, 

0.029]) 

([0.829, 

0.904] 

[0.017, 

0.058] 

[0.021, 

0.066]) 

([0.829, 

0.904] 

[0.017, 

0.058] 

[0.021, 

0.066]) 

([0.711, 

0.805] 

[0.061, 

0.125] 

[0.094, 

0.167]) 

([0.829, 

0.904] 

[0.017, 

0.058] 

[0.021, 

0.066]) 

([0.829, 

0.904] 

[0.017, 

0.058] 

[0.021, 

0.066]) 

([0.711, 

0.805] 

[0.061, 

0.125] 

[0.094, 

0.167]) 

([0.610, 

0.713] 

[0.133, 

0.215] 

[0.124, 

0.205]) 

INTS7 ([0.610, 

0.713] 

[0.133, 

0.215] 
[0.124, 

0.205]) 

([0.711, 

0.805] 

[0.061, 

0.125] 
[0.094, 

0.167]) 

([0.829, 

0.904] 

[0.017, 

0.058] 
[0.021, 

0.066]) 

([0.610, 

0.713] 

[0.133, 

0.215] 
[0.124, 

0.205]) 

([0.711, 

0.805] 

[0.061, 

0.125] 
[0.094, 

0.167]) 

([0.610, 

0.713] 

[0.133, 

0.215] 
[0.124, 

0.205]) 

([0.829, 

0.904] 

[0.017, 

0.058] 
[0.021, 

0.066]) 

([0.610, 

0.713] 

[0.133, 

0.215] 
[0.124, 

0.205]) 

([0.829, 

0.904] 

[0.017, 

0.058] 
[0.021, 

0.066]) 

([0.610, 

0.713] 

[0.133, 

0.215] 
[0.124, 

0.205]) 
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Table 2. The weighted normalized matrix. 

 INTC1 INTC2 INTC3 INTC4 INTC5 INTC6 INTC7 INTC8 INTC9 INTC10 
INT

S1 

0.03116

7 

0.02772

3 

0.02941

4 

0.04311

4 

0.03186

4 

0.03035

6 0.04299 

0.03223

2 

0.04338

4 

0.03207

6 

INT

S2 
0.03632

8 

0.02910

7 

0.04196

9 

0.03172

5 

0.04278

1 

0.03714

8 

0.04247

1 

0.03756

9 

0.04338

4 

0.03738

7 

INT

S3 
0.03116

7 0.03908 

0.04146

2 

0.04259

4 

0.04330

3 

0.04279

1 

0.04247

1 

0.04327

5 

0.04391

4 

0.03207

6 

INT

S4 
0.03632

8 0.03908 

0.04196

9 

0.03697

7 

0.04278

1 

0.04279

1 0.04299 

0.03756

9 

0.04338

4 

0.03738

7 

INT

S5 
0.03116

7 0.03908 

0.02941

4 

0.04259

4 

0.03034

9 

0.03187

1 

0.04247

1 0.0307 

0.04338

4 

0.03055

1 

INT

S6 
0.03632

8 

0.03392

7 

0.04146

2 

0.04311

4 

0.04330

3 

0.03714

8 0.04299 

0.04380

4 

0.03766

3 

0.03207

6 

INT

S7 
0.03116

7 

0.03392

7 

0.04196

9 

0.03172

5 

0.03713

9 

0.03187

1 0.04299 

0.03223

2 

0.04391

4 

0.03207

6 

 

 

Figure 2. The value of closeness by the TOPSIS method. 

Then apply the steps of the interval-valued neutrosophic VIKOR method to analyze and evaluate 

the strategies in international business administration. We normalize the decision matrix by using 

Eq. (7) as shown in Table 3. Then we compute the values of S and R by using Eqs. (8 and 9). Then 

we obtain the index of comprehensive by using Eq. (10). We used the u=0.5 to compute the value 

as shown in Figure 3. Figure 4 shows the rank of strategies by the interval-valued neutrosophic 

TOPSIS and interval-valued neutrosophic VIKOR method. The results show that strategy 4 is the 

best and strategy 5 is the worst. We obtained that Technological Innovation and Digital 

Transformation is the best strategy to be applied in organization and firm.  
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Table 3. The normalized decision matrix by the VIKOR method. 

 INTC1 INTC2 INTC3 INTC4 INTC5 INTC6 INTC7 INTC8 INTC9 INTC10 
INTS

1 

0.0885

7 

0.09219

3 

0.10223

8 0 

0.09145

8 0 0 

0.08667

8 

0.00958

9 

0.01975

8 

INTS

2 0 0.08096 0 

0.10356

8 

0.00417

6 

0.05288

8 

0.11315

5 

0.04670

3 

0.00958

9 0.08857 

INTS

3 
0.0885

7 0 

0.00412

3 

0.00472

9 0 

0.09682

6 

0.11315

5 

0.00395

8 0 

0.01975

8 

INTS

4 0 0 0 

0.05580

4 

0.00417

6 

0.09682

6 0 

0.04670

3 

0.00958

9 0.08857 

INTS

5 
0.0885

7 0 

0.10223

8 

0.00472

9 

0.10356

8 

0.01179

8 

0.11315

5 

0.09815

6 

0.00958

9 0 

INTS

6 0 

0.04183

6 

0.00412

3 0 0 

0.05288

8 0 0 

0.11315

5 

0.01975

8 

INTS

7 
0.0885

7 

0.04183

6 0 

0.10356

8 

0.04927

9 

0.01179

8 0 

0.08667

8 0 

0.01975

8 

 

 

Figure 3. The rank of strategies by the interval-valued neutrosophic TOPSIS and VIKOR methods. 

 

We change the value of u in the VIKOR method to show the rank of strategies. We change this 
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Figure 4. The rank of strategies when changing the value of u between 0.1 and 1. 

 

4.1 Sensitivity Analysis  

In this part, we change the weights of the criteria to check the rank of alternatives. The rank of 

alternatives is evaluated by the two MCDM methods. We change the weights of the criteria by 

eleven cases. In the first case, we put all criteria equal weights. In the second and rest of the cases, 

we put the one criterion with 0.5 weight and all criteria take the sum of 0.5 weight as shown in 

Figure 5. Then we apply the TOPSIS and VIKOR method in eleven cases. We got the eleven ranks 

in TOPSIS and VIKOR methods as shown in Figures 6 and 7.   

4
6

5
1

7

3

2

4
6

5
1

7

3

2

4
6

5
1

7

3

2

4
6

5
1

7

3

2

4
6

5
1

7

3

2

4
6

5
1

7

3

2

4
6

5
1

7

3

2

4
6

5
1

7

3

2

4
6

5
1

7

3

2

4
6

5
1

7

3

2

0
1
2
3
4
5
6
7
INTS1

INTS2

INTS3

INTS4INTS5

INTS6

INTS7

Rank under different values of u

u=0.1 u=0.2 u=0.3 u=0.4 u=0.5

u=0.6 u=0.7 u=0.8 u=0.9 u=1.0



Neutrosophic Sets and Systems, Vol. 58, 2023                                                                                                                                     548  

 

 

Ather Abdulrahman Ageeli, An Intelligent Decision-Making Model to Analysis and Assess the Strategies of International 
Business Administrations Under Neutrosophic Environment 

 

Figure 5. The eleven cases in changing the weights of criteria.  

 

 

Figure 6. The rank of alternatives by the TOPSIS method under eleven cases.  
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Figure 7. The rank of alternatives by the VIKOR method under eleven cases.  

 

4.2 Comparative Analysis  

In this part, we compare the rank of alternatives by other MCDM methods like MABAC, CODAS, 
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This part aims to conclude the correlation between the proposed method and the other MCDM 

methods. Figure 8 shows the comparative study. We conclude the proposed model is robust 

compared with other MCDM methods. 
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Figure 8. The Comparative study between the proposed method and other MCDM methods.  

 

4.3 Managerial Implications  
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successfully implement international company plans and compete in global marketplaces, 

managers must consider these ramifications. Managers should be aware of the following 
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International Plan for Standardization: 
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To achieve economies of scale and cost savings, management should create standardized 

procedures and systems. 

Managers in charge of global branding must create and maintain a unified visual identity for their 

products or services across all markets. 

Approach to Localization: 

Managers need to put in the time and effort to learn about the local market to meet the needs of 

local customers and comply with local regulations. 

Managers should delegate authority to divisions so that employees on the ground may make 

choices and adjust tactics in response to changing market circumstances. 
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Managers need to set up adaptable production and supply chain systems to account for regional 

differences in product demand and availability. 

Cross-Border Tactics: 

Managers need to balance the priorities of globalization and localization by considering the unique 

characteristics of both global and local markets. 

Managers should encourage employees at all levels to share their expertise and work together 

across regions and subsidiaries to make the most of available global resources and skills. 

To successfully manage multicultural teams and deal with the inevitable cultural frictions that 

arise, managers need to cultivate their cross-cultural competence. 

Trade Policy: 

Managers should do extensive market research to determine markets of interest, learn about client 

wants and requirements, and plot market entrance tactics. 

Managers are responsible for ensuring that all export documents and export laws are met to 

facilitate efficient international commerce. 

Managers should set up reliable distribution and logistics networks to back up export efforts and 

guarantee on-time delivery to consumers. 

Alliances and Joint Ventures: 

Managers are responsible for selecting and overseeing all relationships, taking into account 

variables including compatibility, shared vision, and mutual advantages. It's important to establish 

and nurture healthy connections with collaborators. 

Managers must enable cultural integration amongst collaborating organizations to harmonize 

objectives, values, and methods of operation. 

Managers should anticipate and address potential risks and disputes in strategic partnerships and 

joint ventures. 

Investments made from outside the country: 

To maintain seamless operations and reduce legal risks, managers must be familiar with and abide 

by the host country's laws, regulations, and business practices. 

To help FDI operations and close cultural and skill gaps, managers need to do a good job of 

attracting, developing, and retaining local talent. 

Managers need to find a happy medium between globalizing all operations and localizing certain 

of them to maximize efficiency and success. 
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Franchising: 

Managers are responsible for selecting franchisees who share the company's values and have the 

skills to successfully implement the business plan. 

Managers should provide extensive training programs to franchisees so that all customers get the 

same high-quality goods and services. 

Managers have a responsibility to ensure that the brand's values are consistently upheld and 

enforced throughout all franchised businesses. 

Acquisitions and Mergers (A&M): 

When two or more organizations merge, it may be difficult to integrate their own cultures, values, 

and work styles. 

The key to realizing cost savings, operational efficiency, and growth potential from a merger is for 

managers to discover and capitalize on synergies between the merging firms. 

To keep disruptions to a minimum and integration to a minimum, managers must effectively 

communicate and manage change throughout the M&A process. 

To successfully negotiate the management implications of international company strategy, 

managers need to be flexible, culturally aware, and equipped with excellent leadership and 

communication abilities. Also, they need to encourage a global perspective and learn everything 

they can about the many marketplaces in which they compete. 

 

5. Conclusion  

The efficacy, difficulties, and prospects for success in the global marketplace may be gained useful 

insights via the examination and assessment of techniques implemented by multinational corporate 

administrations. Market entrance, supply chain management, cultural adaptation, strategic 

partnerships, global marketing, technical innovation, and risk management are just some of the 

international business strategy topics we've covered. Organizations may better understand their 

own capabilities, limitations, and development prospects by analyzing these approaches. Market 

share, brand recognition, customer loyalty, competitive advantage, flexibility, and return on 

investment are just a few of the metrics that must be taken into account when assessing an 

international company strategy. These aspects provide a complete picture of the strategies' efficacy 

and influence in realizing the organization's goals. The study process guarantees a vital analysis 

that includes real-world insights and experiences by combining a literature review, case studies, 

interviews, and surveys. This study's conclusions stress the value of planning and executing 

successful strategies in international companies. Organizations may expand into new markets and 

take advantage of global possibilities with the help of well-thought-out strategies that allow them 

to establish powerful brands, navigate cultural differences, form strategic partnerships, adopt new 

technologies, and mitigate risks. Companies may enhance their worldwide operations and 

achieve long-term growth goals by analyzing and readjusting their global strategy. This study used 
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the interval-valued neutrosophic set to analyze and evaluate the strategies of international business 

administration. This study integrated the interval-valued neutrosophic set with the MCDM 

methods such as TOPSIS and VIKOR methods. These methods are used to rank and select the best 

strategy. This study used ten factors to be evaluated. Then these factors are used in the analysis of 

the seven strategies. We obtained that Technological Innovation and Digital Transformation is the 

best strategy to be applied in organizations and firm.  
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Abstract. In present paper, we aim to define λ-statistical convergence, λ-statistical Cauchy and λ-statistical

completeness of sequences in neutrosophic soft normed linear spaces (briefly called NSNLS). We study certain

properties of these notions and provide example to show that λ-statistical convergence is a more general method

of summability in these spaces.
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—————————————————————————————————————————-

1. Introduction

For any non-decreasing sequence λ = (λn) of positive reals with λn → ∞, λn+1 ≤
λn + 1, λ1 = 1, the notion of the λ-statistical convergence was explored by Mursaleen [17]

as a generalization of statistical convergence that was initially introduced by Fast [9] and

Schoenberg [10] independently.

If we denote In = [n − λn + 1, n], then the λ-density of any subset K of N is defined as

follows.

“For K ⊆ N, the λ-density of K is denoted by δλ(K) and is defined by

δλ(K) = lim
n

1

λn
|{k ∈ In : k ∈ K}|

provided the limit exists, where the vertical bars denote the cardinality of the enclosed set.

A sequence x = (xk) is said to be λ-statistical convergent to x0 if for each ϵ > 0,

lim
n

1

λn
|{k ∈ In : |xk − x0| ≥ ϵ}| = 0,

i.e., δλ(Kϵ) = 0, where Kϵ = {k ∈ In : |xk − x0| ≥ ϵ}. We write, in this case Sλ − lim
n
xk = x0.”

Subsequently, statistical convergence and its generalizations have been developed by numerous

Vijay Kumar, Inayat Rasool Ganaie and Archana Sharma, Sλ-statistical convergence in neutrosophic soft

normed linear spaces

Neutrosophic Sets and Systems, Vol. 58, 2023



authors including Hazarika et al.[5], Maddox[11], Fridy[12], Connor[13], Šalát[28], Kumar et

al.[32] and many others.

On the other side, many problems of the real world are so complicated due to the uncertainty

of data. Therefore, it is very difficult to model these problems mathematically via crisp

set theory. So far we have many approaches including, the theory of probability, theory of

rough sets[35], theory of fuzzy sets[16], theory of intuitionistic fuzzy sets[15], and theory of

neutrosophic sets[7,8] to deal with such situations. In the present study, we are interested in

the latter one i.e., the neutrosophic sets, which were initially introduced by Smarandache[7,8]

as a generalization of fuzzy sets and intuitionistic fuzzy sets. He used the idea of indeterminacy

function along with membership and non-membership functions to define a neutrosophic set.

These sets have been further developed by numerous authors in [1], [14], [21], [22], [23], etc.

Kirişçi and Şimşek[18] used neutrosophic logic to define a new kind of norm, called neutro-

sophic norm and studied statistical convergence in neutrosophic normed linear spaces. Their

pioneer work attracted many researchers to work in this direction and nowadays many in-

teresting methods of summability theory have been extended in neutrosophic normed linear

spaces. For a wide view in this direction, we refer to the reader [2], [3], [31].

Many approaches discussed above to minimize the uncertainty have their own drawbacks

due to the inadequacy of the parametrization. In view of this, Molodtsov[6] proposed a new

approach, called soft set theory to reduce the uncertainty during mathematical modelling.

These sets turn out very useful tools in many areas of engineering and medical sciences. For

instance: Maji et al.[20] applied the theory of soft sets in decision-making problems. Kong

et al.[36] presented a heuristic algorithm of normal parameter reduction of soft sets. Zou

and Xiao[33] presented a data analysis approach of soft sets under incomplete information.

Recently, Yuksel et al.[24] applied soft set theory to diagnose the prostate cancer risk in

human beings whereas Çelik and Yamak[34] applied fuzzy soft set theory for medical diagnosis

using fuzzy arithmetic operations. Shabir and Naz[19] used soft sets to define soft topological

spaces and studied some of their properties. However, Das et al.[25] defined soft normed

linear spaces and investigated some of their properties. Recently, Bera and Mahapatra [29]

united the concepts of softness and neutrosophic logic to define a generalized norm and called

it as neutrosophic soft norm. They also studied some properties of NSNLS and developed

fundamental concepts of sequences in these spaces. In present study, we continue to define a

more generalized convergence which we called Sλ-convergence in NSNLS. We also introduce

the concepts of Sλ-Cauchy sequence, Sλ-completeness and develop some of their properties.
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2. Preliminaries

This section starts with a brief information on soft sets, soft vector spaces and neutrosophic

soft normed spaces. We begin with the following notations and definitions.

Throughout this work, N will denote the set of positive integers, R the set of reals and R+

the set of positive real numbers.

Definition 2.1 [4] A binary operation ◦ : [0, 1] × [0, 1] → [0, 1] is continuous t-norm if ◦
satisfies the following conditions:

(i) x ◦ y = y ◦ x and x ◦ (y ◦ z) = (x ◦ y) ◦ z.
(ii) ◦ is continuous.

(iii) x ◦ 1 = 1 ◦ x = x for all x ∈ [0, 1].

(iv) w ◦ x ≤ y ◦ z if w ≤ y, x ≤ z with w, x, y, z ∈ [0, 1].

Definition 2.2 [4] A binary operation ⋄ : [0, 1]× [0, 1] → [0, 1] is continuous t-conorm(s-norm)

if ⋄ satisfies the following conditions:

(i) x ⋄ y = y ⋄ x and x ⋄ (y ⋄ z) = (x ⋄ y) ⋄ z.
(ii) ⋄ is continuous.

(iii) x ⋄ 0 = 0 ⋄ x = x for all x ∈ [0, 1].

(iv) w ⋄ x ≤ y ⋄ z if w ≤ y, x ≤ z with w, x, y, z ∈ [0, 1].

For any universe set U and the set E of the parameters, the soft set is defined as follows:

Definition 2.3 [6] A pair (H,E) is called a soft set over U if and only if H is a mapping from

E into the set of all subsets of the set U . i.e., the soft set is a parametrized family of subsets

of the set U .

Moreover, every set H(ϵ), ϵ ∈ E, from this family may be considered as the set of ϵ-elements

of the soft set (H,E), or as the set of ϵ-approximate elements of the set.

Definition 2.4 [6] A soft set (H,E) over U is said to be absolute soft set if for all ϵ ∈ E,

H(ϵ) = U . We will denote it by
∼
U .

Definition 2.5 [26] Let R be the set of real numbers, B(R) be the collection of all non-empty

bounded subsets of R and E taken as a set of parameters. Then a mapping F : E → B(R) is
called a soft real set. If a soft real set is a singleton soft set, then it is called a soft real number

and denoted by
∼
r,

∼
s,

∼
t , etc.

∼
0,

∼
1 are the soft real numbers where

∼
0 (e) = 0,

∼
1 (e) = 1 for all

e ∈ E respectively.

Let R(E) and R+(E) respectively denote the sets of all soft real numbers and all positive

soft real numbers.

Definition 2.6 [27] Let (H,E) be a soft set over U . The set (H,E) is said to be a soft point,

denoted by Hu
e if there is exactly one e ∈ E s.t H(e) = {u} for some u ∈ U and H(e

′
) = ϕ for

all e
′ ∈ E − {e}.
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Two soft points Hu
e , H

w
e′

are said to be equal if e = e
′
and u = w. Let ∆∼

U
denotes the set of

all soft points on
∼
U .

In case U is a vector space over R and the parameter set E = R, the soft point is called a

soft vector.

Soft vector spaces are used to define soft norm as follows:

Definition 2.7 [30] Let
∼
U be a absolute soft vector space. Then a mapping ∥ · ∥ :

∼
U→ R+(E)

is said to be a soft norm on
∼
U , if ∥ · ∥ satisfies the following conditions:

(i) ∥ue∥ ≥
∼
0 for all ue ∈

∼
U and ∥ue∥ =

∼
0 ⇔ ue =

∼
θ0 where

∼
θ0 denotes the zero element of

∼
U .

(ii) ∥ ∼
α ue∥ = |∼α|∥ue∥ for all ue ∈

∼
U and for every soft scalar

∼
α.

(iii) ∥ue + ve′∥ ≤ ∥ue∥+ ∥ve′∥ for all ue, ve′ ∈
∼
U .

(iv) ∥ue · ve′∥ = ∥ue∥ ∥ve′∥,∀ ue, ve′ ∈
∼
U .

The soft vector space
∼
U with a soft norm ∥ · ∥ on

∼
U is said to be a soft normed linear space

and is denoted by (
∼
U, ∥ · ∥).

We now recall the definition of neutrosophic soft normed linear spaces and the convergence

structure in these spaces.

Definition 2.8 [29] Let
∼
U be a soft linear space over the field F and R(E),∆∼

U
denote respec-

tively, the set of all soft real numbers and the set of all soft points on
∼
U . Then a neutrosophic

subset N over ∆∼
U
×R(E) is called a neutrosophic soft norm on

∼
U if for ue, ve′ ∈

∼
U and

∼
α ∈ F

(
∼
α being soft scalar), the following conditions hold.

(i) 0 ≤ GN (ue,
∼
η1), BN (ue,

∼
η1), YN (ue,

∼
η1) ≤ 1, ∀ ∼

η1 ∈ R(E).

(ii) 0 ≤ GN (ue,
∼
η1) +BN (ue,

∼
η1) + YN (ue,

∼
η1) ≤ 3, ∀ ∼

η1 ∈ R(E).

(iii) GN (ue,
∼
η1) = 0 with

∼
η1 ≤

∼
0 .

(iv) GN (ue,
∼
η1) = 1,with

∼
η1 >

∼
0 if and only if ue =

∼
θ, the null soft vector.

(v) GN (
∼
α ue,

∼
η1) = GN

(
ue,

∼
η1

|∼α|

)
,∀ ∼

α (̸=
∼
0),

∼
η1 >

∼
0.

(vi) GN (ue,
∼
η1) ◦GN (ve′ ,

∼
η2) ≤ GN (ue ⊕ ve′ ,

∼
η1 ⊕

∼
η2),∀

∼
η1,

∼
η2 ∈ R(E)

(vii) GN (ue, ·) is continuous non-decreasing function for
∼
η1 >

∼
0 and lim

∼
η1→∞

GN (ue,
∼
η1) = 1.

(viii) BN (ue,
∼
η1) = 1 with

∼
η1 ≤

∼
0 .

(ix) BN (ue,
∼
η1) = 0,with

∼
η1 >

∼
0 if and only if ue =

∼
θ, the null soft vector.

(x) BN (
∼
α ue,

∼
η1) = BN

(
ue,

∼
η1

|∼α|

)
,∀ ∼

α ( ̸=
∼
0),

∼
η1 >

∼
0 .

(xi) BN (ue,
∼
η1) ⋄BN (ve′ ,

∼
η2) ≥ BN (ue ⊕ ve′ ,

∼
η1 ⊕

∼
η2) ∀

∼
η1,

∼
η2 ∈ R(E).

(xii) BN (ue, ·) is continuous non-increasing function for
∼
η1 >

∼
0 and lim

∼
η1→∞

BN (ue,
∼
η1) = 0.

(xiii) YN (ue,
∼
η1) = 0 with

∼
η1 ≤

∼
0 .

(xiv)YN (ue,
∼
η1) = 0,with

∼
η1 >

∼
0 if and only if ue =

∼
θ, the null soft vector.

(xv) YN (
∼
α ue,

∼
η1) = YN

(
ue,

∼
η1

|∼α|

)
,∀ ∼

α ( ̸=
∼
0),

∼
η1 >

∼
0 .
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(xvi) YN (ue,
∼
η1) ⋄ YN (ve′ ,

∼
η2) ≥ YN (ue ⊕ ve′ ,

∼
η1 ⊕

∼
η2) ∀

∼
η1,

∼
η2 ∈ R(E).

(xvii) YN (ue, ·) is continuous non-increasing function for
∼
η1 >

∼
0 and lim

∼
η1→∞

BN (ue,
∼
η1) = 0.

In this case N = (GN , BN , YN ) is called the neutrosophic soft norm and (
∼
U

(F ), GN , BN , YN , ◦, ⋄) is an neutrosophic soft normed linear space (NSNLS briefly).

Let (
∼
U, ∥ · ∥) be a soft normed space. Take the operations ◦ and ⋄ as x ◦ y = xy; x ⋄ y =

x+ y − xy. For
∼
η >

∼
0, define

GN (ue,
∼
η) =


∼
η

∼
η+∥ue∥

if
∼
η > ∥ue∥

0 otherwise

BN (ue,
∼
η) =


∥ue∥

∼
η+∥ue∥

if
∼
η > ∥ue∥

0 otherwise

YN (ue,
∼
η) =


∥ue∥
∼
η

if
∼
η > ∥ue∥

0 otherwise,

then (
∼
U (F ), GN , BN , YN , ◦, ⋄) is an NSNLS. From now onwards, unless otherwise stated by

∼
V we shall denote the NSNLS (

∼
U (F ), GN , BN , YN , ◦, ⋄).

A sequence v = (vkek) of soft points in
∼
V is said to be convergent to a soft point ve ∈

∼
V if for

0 < ϵ < 1 and
∼
η >

∼
0 ∃ n0 ∈ N s.t GN (vkek ⊖ ve,

∼
η) > 1− ϵ, BN (vkek ⊖ ve,

∼
η) < ϵ, YN (vkek ⊖ ve,

∼
η

) < ϵ. In this case, we write lim
k→∞

vkek = ve. A sequence v = (vkek) of soft points in
∼
V is

said to be Cauchy sequence if for 0 < ϵ < 1 and
∼
η >

∼
0 ∃ n0 ∈ N s.t for all k, p ≥ n0

GN (vkek ⊖ vpep ,
∼
η) > 1− ϵ, BN (vkek ⊖ vpep ,

∼
η) < ϵ, YN (vkek ⊖ vpep ,

∼
η) < ϵ.

Throughout this paper, ⊕ and ⊖ denote the sum and difference of soft points respectively.

3. λ-Statistical convergence in NSNLS

In this section, we define λ-statistical convergence in neutrosophic soft normed linear spaces

and develop some of its properties.

Definition 3.1 A sequence v = (vkek) of soft points in
∼
V is said to be λ-statistical convergent

or Sλ-convergent to a soft point ve in
∼
V if for each ϵ > 0 and

∼
η >

∼
0,

lim
n→∞

1

λn

∣∣∣∣{k ∈ In : GN (vkek ⊖ ve,
∼
η) ≤ 1− ϵ or

BN (vkek ⊖ ve,
∼
η) ≥ ϵ, YN (vkek ⊖ ve,

∼
η) ≥ ϵ

}∣∣∣∣ = 0,

i.e., δλ(K) = 0 where

K = {k ∈ In : GN (vkek ⊖ ve,
∼
η) ≤ 1− ϵ or

BN (vkek ⊖ ve,
∼
η) ≥ ϵ, YN (vkek ⊖ ve,

∼
η) ≥ ϵ}.
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In this case, we write Sλ − lim
k→∞

vkek = ve.

Let, Sλ(GN , BN , YN ) denotes the set of all sequences of soft points in
∼
V which are Sλ-

convergent with respect to the neutrosophic soft norm (GN , BN , YN ).

Remark 3.1 Since the λ-density of a finite set is zero, therefore, a convergent sequence

v = (vkek) of soft points in
∼
V is Sλ-statistical convergent to the same limit. However, the

converse may not be true in general.

Remark 3.2 For particular choice λn = n, Sλ-convergence coincides with statistical conver-

gence in neutrosophic soft normed linear space.

Exapmle 3.1 Let (
∼
R, ∥ · ∥) be a soft normed linear space. For ve in

∼
R and

∼
η >

∼
0, if we define

GN (ve,
∼
η) =

∼
η

∼
η ⊕∥ve∥

, BN (ve,
∼
η) =

∥ve∥
∼
η ⊕∥ve∥

, YN (ve,
∼
η) =

∥ve∥
∼
η

,

x ◦ y = xy and x ⋄ y = min{x+ y, 1}, then it is easy to see that
∼
V = (

∼
R, GN , BN , YN , ◦, ⋄) is

a neutrosophic soft normed linear space.

Now define a sequence v = (vkek) in
∼
V by

vkek =


∼
k if n− [

√
λn] + 1 ≤ k ≤ n,

∼
0 otherwise.

Now, for each ϵ > 0 and
∼
η >

∼
0, let

A(ϵ,
∼
η) =

{
k ∈ In : GN (vkek ,

∼
η) ≤ 1− ϵ or BN (vkek ,

∼
η) ≥ ϵ, YN (vkek ,

∼
η) ≥ ϵ

}
=

{
k ∈ In :

∼
η

∼
η ⊕∥vkek∥

≤ 1− ϵ or
∥vkek∥

∼
η ⊕∥vkek∥

≥ ϵ,
∥vkek∥

∼
η

≥ ϵ

}

=

{
k ∈ In : ∥vkek∥ ≥

∼
η ϵ

1− ϵ
or ∥vkek∥ ≥

∼
η ϵ

}
=

{
k ∈ In : vkek =

∼
k

}
=

{
k ∈ In : n− [

√
λn] + 1 ≤ k ≤ n

}
and so we get

1

λn
|A(ϵ,

∼
η)| = 1

λn
|{k ∈ In : n− [

√
λn] + 1 ≤ k ≤ n}| ≤

√
λn

λn
.

Taking n → ∞,

lim
n→∞

1
λn

|A(ϵ,
∼
η)| ≤ lim

n→∞

√
λn
λn

= 0, i.e., δλ(A(ϵ,
∼
η)) = 0.

This shows that, v = (vkek) is λ-statistically convergent to
∼
0. But by the structure of the

sequence, v = (vkek) is not (GN , BN , YN )-convergent to
∼
0.

Lemma 3.1 For any sequence v = (vkek) of soft points in
∼
V , the following statements are
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equivalent:

(i) Sλ − lim
k→∞

vkek = ve;

(ii) δλ{k ∈ In : GN (vkek ⊖ ve,
∼
η) ≤ 1 − ϵ} = δλ{k ∈ In : BN (vkek ⊖ ve,

∼
η) ≥ ϵ} = δλ{k ∈ In :

YN (vkek ⊖ ve,
∼
η) ≥ ϵ} = 0;

(iii) δλ{k ∈ In : GN (vkek ⊖ ve,
∼
η) > 1− ϵ and BN (vkek ⊖ ve,

∼
η) < ϵ, YN (vkek ⊖ ve,

∼
η) < ϵ} = 1;

(iv)δλ{k ∈ In : GN (vkek ⊖ ve,
∼
η) > 1 − ϵ} = δλ{k ∈ In : BN (vkek ⊖ ve,

∼
η) < ϵ} = δλ{k ∈ In :

YN (vkek ⊖ ve,
∼
η) < ϵ} = 1;

(v) Sλ− lim
k→∞

GN (vkek⊖ve,
∼
η) = 1 and Sλ− lim

k→∞
BN (vkek⊖ve,

∼
η) = 0 , Sλ− lim

k→∞
YN (vkek⊖ve,

∼
η) = 0.

Proof. Omitted.□

Theorem 3.2 For any sequence v = (vkek) in
∼
V , if Sλ − lim

k→∞
vkek exists, then it is unique.

Proof. Suppose that Sλ − lim
n→∞

vkek = ve1 and Sλ − lim
n→∞

vkek = v
′
e2 , where ve1 ̸= v

′
e2 . Let ϵ > 0

and
∼
η >

∼
0. Choose ϵ1 > 0 s.t.

(1− ϵ1) ◦ (1− ϵ1) > 1− ϵ and ϵ1♢ϵ1 < ϵ (1)

Define the following sets:

AGN ,1(ϵ1,
∼
η) =

{
k ∈ In : GN

(
vkek ⊖ ve1 ,

∼
η

2

)
≤ 1− ϵ1

}
.

AGN ,2(ϵ1,
∼
η) =

{
k ∈ In : GN

(
vkek ⊖ v

′
e2 ,

∼
η

2

)
≤ 1− ϵ1

}
.

ABN ,1(ϵ1,
∼
η) =

{
k ∈ In : BN

(
vkek ⊖ ve1 ,

∼
η

2

)
≥ ϵ1

}
.

ABN ,2(ϵ1,
∼
η) =

{
k ∈ In : BN

(
vkek ⊖ v

′
e2 ,

∼
η

2

)
≥ ϵ1

}
.

AYN ,1(ϵ1,
∼
η) =

{
k ∈ In : YN

(
vkek ⊖ ve1 ,

∼
η

2

)
≥ ϵ1

}
.

AYN ,2(ϵ1,
∼
η) =

{
k ∈ In : YN

(
vkek ⊖ v

′
e2 ,

∼
η

2

)
≥ ϵ1

}
.

Since Sλ − lim
k→∞

vkek = ve1 , so

δλ{AGN ,1(ϵ1,
∼
η)} = δλ{ABN ,1(ϵ1,

∼
η)} = δλ{AYN ,1(ϵ1,

∼
η)} = 0 and therefore δλ{AC

GN ,1(ϵ1,
∼
η)} =

δλ{AC
BN ,1(ϵ1,

∼
η)} = δλ{AC

YN ,1(ϵ1,
∼
η)} = 1.

Further, Sλ − lim
k→∞

vkek = v
′
e2 , so

δλ{AGN ,2(ϵ1,
∼
η)} = δλ{ABN ,2(ϵ1,

∼
η)} = δλ{AYN ,2(ϵ1,

∼
η)} = 0 and therefore δλ{AC

GN ,2(ϵ1,
∼
η)} =

δλ{AC
BN ,2(ϵ1,

∼
η)} = δλ{AC

YN ,2(ϵ1,
∼
η)} = 1 for all

∼
η >

∼
0. Define

KGN ,BN ,YN
(ϵ,

∼
η) = {AGN ,1(ϵ1,

∼
η) ∪AGN ,2(ϵ1,

∼
η)}

∩{ABN ,1(ϵ1,
∼
η) ∪ABN ,2(ϵ1,

∼
η)} ∩ {AYN ,1(ϵ1,

∼
η) ∪AYN ,2(ϵ1,

∼
η)},
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then δλ{KGN ,BN ,YN
(ϵ,

∼
η)} = 0 and therefore, δλ{KC

GN ,BN ,YN
(ϵ,

∼
η)} = 1. Let m ∈

KC
GN ,BN ,YN

(ϵ,
∼
η), then we have following possibilities.

1. m ∈
{
AGN ,1(ϵ1,

∼
η) ∪AGN ,2(ϵ1,

∼
η)

}C

;

2. m ∈
{
ABN ,1(ϵ1,

∼
η) ∪ABN ,2(ϵ1,

∼
η)

}C

;

3. m ∈
{
AYN ,1(ϵ1,

∼
η) ∪AYN ,2(ϵ1,

∼
η)

}C

.

Case 1: Let m ∈
{
AGN ,1(ϵ1,

∼
η)∪AGN ,2(ϵ1,

∼
η)

}C

, then m ∈ AC
GN ,1(ϵ1,

∼
η) and m ∈ AC

GN ,2(ϵ1,
∼
η)

and therefore,

GN

(
vmem ⊖ ve1 ,

∼
η

2

)
> 1− ϵ1 and GN

(
vmem ⊖ v

′
e2 ,

∼
η

2

)
> 1− ϵ1. (2)

Now

GN (ve1 ⊖ v
′
e2 ,

∼
η) = GN

(
ve1 ⊖ v

′
e2 ,

∼
η

2
⊕

∼
η

2

)
= GN

(
vmem ⊖ vmem ⊕ ve1 ⊖ v

′
e2 ,

∼
η

2
⊕

∼
η

2

)
≥ GN

(
vmem ⊖ ve1 ,

∼
η

2

)
◦GN

(
vmem ⊖ v

′
e2 ,

∼
η

2

)
> (1− ϵ1) ◦ (1− ϵ1) by (2)

> 1− ϵ. by (1)

Since ϵ > 0 is arbitrary, so we have GN (ve1⊖v
′
e2 ,

∼
η) = 1 for all

∼
η >

∼
0, which gives ve1⊖v

′
e2 =

∼
θ,

i.e., ve1 = v
′
e2 .

Case 2: Letm ∈
{
ABN ,1(ϵ1,

∼
η)∪ABN ,2(ϵ1,

∼
η)

}C

, thenm ∈ AC
BN ,1(ϵ1,

∼
η)) andm ∈ AC

BN ,2(ϵ1,
∼
η)

and therefore,

BN

(
vmem ⊖ ve1 ,

∼
η

2

)
< ϵ1 and BN

(
vmem ⊖ v

′
e2 ,

∼
η

2

)
< ϵ1. (3)

Now

BN (ve1 ⊖ v
′
e2 ,

∼
η) = BN

(
ve1 ⊖ v

′
e2 ,

∼
η

2
⊕

∼
η

2

)
= BN

(
vmem ⊖ vmem ⊕ ve1 ⊖ v

′
e2 ,

∼
η

2
⊕

∼
η

2

)
≤ BN

(
vmem ⊖ ve1 ,

∼
η

2

)
⋄BN

(
vmem ⊖ v

′
e2 ,

∼
η

2

)
< ϵ1 ⋄ ϵ1 by (3)

< ϵ. by (1)
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Since ϵ > 0 is arbitrary, so we have BN (ve1⊖v
′
e2 ,

∼
η) = 0 for all

∼
η >

∼
0 , which gives ve1⊖v

′
e2 =

∼
θ,

i.e., ve1 = v
′
e2 .

Case 3: Let m ∈
{
AYN ,1(ϵ1,

∼
η) ∪AYN ,2(ϵ1,

∼
η)

}C

, then m ∈ AC
YN ,1(ϵ1,

∼
η) and m ∈ AC

YN ,2(ϵ1,
∼
η)

and therefore,

YN

(
vmem ⊖ ve1 ,

∼
η

2

)
< ϵ1 and YN

(
vmem ⊖ v

′
e2 ,

∼
η

2

)
< ϵ1. (4)

Now

YN (ve1 ⊖ v
′
e2 ,

∼
η) = YN

(
ve1 ⊖ v

′
e2 ,

∼
η

2
⊕

∼
η

2

)
= YN

(
vmem ⊖ vmem ⊕ ve1 ⊖ v

′
e2 ,

∼
η

2
⊕

∼
η

2

)
≤ YN

(
vmem ⊖ ve1 ,

∼
η

2

)
⋄ YN

(
vmem ⊖ v

′
e2 ,

∼
η

2

)
< ϵ1 ⋄ ϵ1 by (4)

< ϵ. by (1)

Since ϵ > 0 is arbitrary, so we have YN (ve1⊖v
′
e2 ,

∼
η) = 0 for all

∼
η >

∼
0 , which gives ve1⊖v

′
e2 =

∼
θ,

i.e., ve1 = v
′
e2 .

Hence, in all cases we have ve1 = v
′
e2 , i.e., the λ-statistical limit of (vkek) is unique.□

Theorem 3.3 Let u = (ukek) and v = (vkek) be any two sequences in
∼
V s.t Sλ− lim

k→∞
(ukek) = ue1

and Sλ − lim
k→∞

(vkek) = ve2 . Then

(i)Sλ − lim
k→∞

(ukek ⊕ vkek) = ue1 ⊕ ve2

(ii) Sλ − lim
k→∞

(
∼
α ukek) =

∼
α ue1 , where

∼
0 ̸= ∼

α ∈ F.

Proof. Omitted.□

Theorem 3.4 A sequence v = (vkek) in
∼
V is λ-statistically convergent, if and only if ∃ a subset

K = {k1, k2, k3, ...} of N s.t δλ(K) = 1 and (GN , BN , YN )− lim
k∈K
k→∞

vkek = ve.

Proof. First suppose that Sλ − lim
k→∞

vkek = ve. For
∼
η >

∼
0 and p ∈ N, define the set

KGN ,BN ,YN
(p,

∼
η) =

{
k ∈ In : GN (vkek ⊖ ve,

∼
η) > 1− 1

p
and

BN (vkek ⊖ ve,
∼
η) <

1

p
, YN (vkek ⊖ ve,

∼
η) <

1

p

}
and

KC
GN ,BN ,YN

(p,
∼
η) =

{
k ∈ In : GN (vkek ⊖ ve,

∼
η) ≤ 1− 1

p
or

BN (vkek ⊖ ve,
∼
η) ≥ 1

p
, YN (vkek ⊖ ve,

∼
η) ≥ 1

p

}
.
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Since Sλ − lim
k→∞

vkek = ve, it follows that δλ(K
C
GN ,BN ,YN

(p,
∼
η)) = 0. Furthermore, for

∼
η >

∼
0 and

p ∈ N, we observe KGN ,BN ,YN
(p,

∼
η) ⊃ KGN ,BN ,YN

(p+ 1,
∼
η) and

δλ(KGN ,BN ,YN
(p,

∼
η)) = 1. (5)

Now, we have to show that, for k ∈ KGN ,BN ,YN
(p,

∼
η), (GN , BN , YN ) − lim

k∈K
k→∞

vkek = ve. Suppose

for k ∈ KGN ,BN ,YN
(p,

∼
η), (vkek) is not convergent to ve w.r.t (GN , BN , YN ). Then ∃ some q > 0

s.t {k ∈ N : GN (vkek ⊖ ve,
∼
η) ≤ 1− q or BN (vkek ⊖ ve,

∼
η) ≥ q, YN (vkek ⊖ ve,

∼
η) ≥ q} for infinitely

many terms of the sequence v = (vkek). If we take

KGN ,BN ,YN
(q,

∼
η) =

{
k ∈ In : GN (vkek ⊖ ve,

∼
η) > 1− q and

BN (vkek ⊖ ve,
∼
η) < q, YN (vkek ⊖ ve,

∼
η) < q

}

and choose q > 1
p where p ∈ N, then we have δλ(KGN ,BN ,YN

(q,
∼
η)) = 0. Further,

KGN ,BN ,YN
(p,

∼
η) ⊂ KGN ,BN ,YN

(q,
∼
η) implies that δλ(KGN ,BN ,YN

(p,
∼
η)) = 0. In this way we ob-

tained a contradiction to (5) as δλ(KGN ,BN ,YN
(p,

∼
η)) = 1. Hence, (GN , BN , YN )− lim

k∈K
k→∞

vkek = ve.

Conversely, Suppose ∃ a subsetK = {k1, k2, ..., kj , ...} of N with δλ(K) = 1 and (GN , BN , YN )−
lim
k→∞

vkek = ve over K i.e., (GN , BN , YN ) − lim
k∈K
k→∞

vkek = ve. Let ϵ > 0 and
∼
η >

∼
0, ∃ kj0 ∈ N s.t

for all kj ≥ kj0 , GN (vkek ⊖ ve,
∼
η) > 1− ϵ and BN (vkek ⊖ ve,

∼
η) < ϵ, YN (vkek ⊖ ve,

∼
η) < ϵ. So if we

consider the set

TGN ,BN ,YN
(ϵ,

∼
η) =

{
k ∈ In : GN (vkek ⊖ ve,

∼
η) ≤ 1− ϵ or

BN (vkek ⊖ ve,
∼
η) ≥ ϵ, YN (vkek ⊖ ve,

∼
η) ≥ ϵ

}
,

then it is easy to see that TGN ,BN ,YN
(ϵ,

∼
η) ⊂ N−{kj0 , kj0+1, kj0+2, ...}. This immediately implies

that δλ

(
TGN ,BN ,YN

(ϵ,
∼
η)

)
≤ δλ(N) − δλ({kj0 , kj0+1, kj0+2, ...}) = 1 − 1 = 0 and therefore

δλ

(
TGN ,BN ,YN

(ϵ,
∼
η)

)
= 0 as δλ

(
TGN ,BN ,YN

(ϵ,
∼
η)

)
can not be negative. This shows that

v = (vkek) is λ-statistical convergent to ve i.e., Sλ − lim
n→∞

vkek = ve.□

4. λ-Statistical Cauchy sequence in NSNLS

Definition 4.1 A sequence v = (vkek) of soft points in
∼
V is said to be λ-statistically Cauchy if

for each ϵ > 0 and
∼
η >

∼
0, ∃ n0 ∈ N s.t for all k, p ≥ n0
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lim
n→∞

1

λn

∣∣∣∣{k ∈ In : GN (vkek ⊖ vpep ,
∼
η) ≤ 1− ϵ or

BN (vkek ⊖ vpep ,
∼
η) ≥ ϵ, YN (vkek ⊖ vpep ,

∼
η) ≥ ϵ

}∣∣∣∣ = 0,

or equivalently, the λ-density of the set K is zero, i.e., δλ(K) = 0 where

K = {k ∈ In : GN (vkek ⊖ vpep ,
∼
η) ≤ 1− ϵ or

BN (vkek ⊖ vpep ,
∼
η) ≥ ϵ, YN (vkek ⊖ vpep ,

∼
η) ≥ ϵ}.

Theorem 4.1 For any sequence v = (vkek) in
∼
V , the following are equivalent:

(i) v = (vkek) is λ-statistically Cauchy.

(ii) ∃ a subset K = {k1, k2, ..., kj , ...} of N with δλ(K) = 1 and (v
kj
ekj

) is Cauchy sequence over

K.

Proof. Omitted.□

Theorem 4.2 Every λ-statistically convergent sequence of soft points in
∼
V is λ-statistically

Cauchy.

Proof. Let v = (vkek) be any λ-statistically convergent sequence with Sλ − lim
k→∞

vkek = ve. Let

ϵ > 0 and
∼
η >

∼
0. Choose ϵ1 > 0 s.t (1) is satisfied. Define a set,

M(ϵ1,
∼
η) =

{
k ∈ In : GN (vkek ⊖ ve,

∼
η

2
) ≤ 1− ϵ1 or

BN (vkek ⊖ ve,

∼
η

2
) ≥ ϵ1, YN (vkek ⊖ ve,

∼
η

2
) ≥ ϵ1

}
,

then

MC(ϵ1,
∼
η) =

{
k ∈ In : GN (vkek ⊖ ve,

∼
η

2
) > 1− ϵ1 and

BN (vkek ⊖ ve,

∼
η

2
) < ϵ1, YN (vkek ⊖ ve,

∼
η

2
) < ϵ1

}
.

Since Sλ − lim
n→∞

vkek = ve, so δλ(M(ϵ1,
∼
η)) = 0 and δλ(M

C(ϵ1,
∼
η)) = 1. Let p ∈ MC(ϵ1,

∼
η), then

GN

(
vpep ⊖ ve,

∼
η

2

)
> 1− ϵ1 and BN

(
vpep ⊖ ve,

∼
η

2

)
< ϵ1, YN

(
vpep ⊖ ve,

∼
η

2

)
< ϵ1. (6)

Now, let T (ϵ,
∼
η) = {k ∈ In : GN (vkek ⊖ vpep ,

∼
η) ≤ 1− ϵ or BN (vkek ⊖ vpep ,

∼
η) ≥ ϵ, YN (vkek ⊖ vpep ,

∼
η

) ≥ ϵ}, then we show that T (ϵ,
∼
η) ⊆ M(ϵ1,

∼
η). Let m ∈ T (ϵ,

∼
η), then

GN (vmem ⊖ vpep ,
∼
η) ≤ 1− ϵ or BN (vmem ⊖ vpep ,

∼
η) ≥ ϵ, YN (vmem ⊖ vpep ,

∼
η) ≥ ϵ. (7)
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Case 1: If GN (vmem⊖vpep ,
∼
η) ≤ 1−ϵ, then GN

(
vmem⊖ve,

∼
η
2

)
≤ 1−ϵ1 and therefore m ∈ M(ϵ1,

∼
η).

As otherwise i.e., if GN

(
vmem ⊖ ve,

∼
η
2

)
> 1− ϵ1, then by (1), (6) and (7) we get

1− ϵ ≥ GN (vmem ⊖ vpep ,
∼
η) = GN

(
vmem ⊖ ve ⊕ ve ⊖ vpep ,

∼
η

2
⊕

∼
η

2

)
≥ GN

(
vmem ⊖ ve,

∼
η

2

)
◦GN

(
vpep ⊖ ve,

∼
η

2

)
> (1− ϵ1) ◦ (1− ϵ1) > 1− ϵ,

which is not possible. Thus, T (ϵ,
∼
η) ⊆ M(ϵ1,

∼
η).

Case 2: If BN (vmem ⊖ vpep ,
∼
η) ≥ ϵ, then BN

(
vmem ⊖ ve,

∼
η
2

)
≥ ϵ1 and therefore m ∈ M(ϵ1,

∼
η). As

otherwise i.e., if BN

(
vmem ⊖ ve,

∼
η
2

)
< ϵ1, then by (1), (6) and (7) we get

ϵ ≤ BN (vmem ⊖ vpep ,
∼
η) = BN

(
vmem ⊖ ve ⊕ ve ⊖ vpep ,

∼
η

2
⊕

∼
η

2

)
≤ BN

(
vmem ⊖ ve,

∼
η

2

)
⋄BN

(
vpep ⊖ ve,

∼
η

2

)
< ϵ1 ⋄ ϵ1 < ϵ,

which is not possible.

Also, If YN (vmem ⊖ vpep ,
∼
η) ≥ ϵ, then YN

(
vmem ⊖ ve,

∼
η
2

)
≥ ϵ1 and therefore m ∈ M(ϵ1,

∼
η). As

otherwise i.e., if YN

(
vmem ⊖ ve,

∼
η
2

)
< ϵ1, then by (1), (6) and (7) we get

ϵ ≤ YN (vmem ⊖ vpep ,
∼
η) = YN

(
vmem ⊖ ve ⊕ ve ⊖ vpep ,

∼
η

2
⊕

∼
η

2

)
≤ YN

(
vmem ⊖ ve,

∼
η

2

)
⋄ YN

(
vpep ⊖ ve,

∼
η

2

)
< ϵ1 ⋄ ϵ1 < ϵ,

which is not possible. Thus, T (ϵ,
∼
η) ⊆ M(ϵ1,

∼
η).

Hence in all cases, T (ϵ,
∼
η) ⊆ M(ϵ1,

∼
η). Since δλ(M(ϵ1,

∼
η)) = 0, so δλ(T (ϵ,

∼
η)) = 0, and there-

fore v = (vkek) is λ-statistically Cauchy.□

Example 4.1 Let R1 = { 1
n : n ∈ N} and ∥ · ∥ = |·| i.e., the usual norm on R1, then (R1, |·|) is

a normed linear space. For
∼
η >

∼
0, if we define GN (ve,

∼
η) =

∼
η

∼
η⊕∥ve∥

; BN (ve,
∼
η) = ∥ve∥

∼
η⊕∥ve∥

;

YN (ve,
∼
η) = ∥ve∥

∼
η

; x ◦ y = xy and x ⋄ y = x + y − xy, then it is easy to see that

(
∼
R1 (R), GN , BN , YN , ◦, ⋄) is a neutrosophic soft normed linear space.

If we define a sequence of soft points v = (vkek) by vkek =
∼
1
k and select λn = n then (vkek) is
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λ-statistical Cauchy and Sλ − lim
k→∞

vkek =
∼
0 but

∼
0 is not a member of the space.

Theorem 4.3 If (vkek) , (wk
ek
) are λ-statistical Cauchy sequences of soft vectors and (

∼
αk) is

a λ-statistical Cauchy sequence of soft scalars in
∼
V , then (vkek ⊕ wk

ek
) and (

∼
αkw

k
ek
) are also

λ-statistical Cauchy in
∼
V .

Proof. Omitted.□

Definition 4.2 A NSNLS
∼
V is said to be λ-statistically complete if every λ-statistical Cauchy

sequence in
∼
V is λ-statistical convergent w.r.t (GN , BN , YN ).

Theorem 4.4 If every λ-statistical Cauchy sequence of soft points in
∼
V has a λ-statistical

convergent subsequence then
∼
V is λ-statistically complete.

Proof. Let v = (vkek) be any λ-statistically Cauchy sequence of soft points in
∼
V which has a

λ-statistical convergent subsequence (v
k(j)
ek(j)) i.e., Sλ − lim

j→∞
v
k(j)
ek(j) = ve for some ve in

∼
V . Let

ϵ > 0 and
∼
η >

∼
0. Choose ϵ1 > 0 s.t (1) is satisfied. Since v = (vkek) is λ-statistically Cauchy,

so ∃ n0 ∈ N s.t ∀ k, p ≥ n0, δλ(A) = 0 where

A =

{
k ∈ In : GN

(
vkek ⊖ vpep ,

∼
η

2

)
≤ 1− ϵ1 or

BN

(
vkek ⊖ vpep ,

∼
η

2

)
≥ ϵ1, YN

(
vkek ⊖ vpep ,

∼
η

2

)
≥ ϵ1

}
.

Again since Sλ − lim
j→∞

v
k(j)
ek(j) = ve. So we have δλ(B) = 0, where

B =

{
k(j) ∈ In : GN

(
vk(j)ek(j)

⊖ ve,

∼
η

2

)
≤ 1− ϵ1 or

BN

(
vk(j)ek(j)

⊖ ve,

∼
η

2

)
≥ ϵ1, YN

(
vk(j)ek(j)

⊖ ve,

∼
η

2

)
≥ ϵ1

}
.

Now define

D = {k ∈ In : GN (vkek ⊖ ve,
∼
η) ≤ 1− ϵ or

BN (vkek ⊖ ve,
∼
η) ≥ ϵ, YN (vkek ⊖ ve,

∼
η) ≥ ϵ}.

We now show that AC ∩BC ⊆ DC . Let m ∈ AC ∩BC . As m ∈ AC , so

GN

(
vmem ⊖ vpep ,

∼
η

2

)
> 1− ϵ1 and

BN

(
vmem ⊖ vpep ,

∼
η

2

)
< ϵ1, YN

(
vmem ⊖ vpep ,

∼
η

2

)
< ϵ1,

(8)
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and since m ∈ BC , so m = k(j0) for j0 ∈ N and

GN

(
vk(j0)ek(j0)

⊖ ve,

∼
η

2

)
> 1− ϵ1 and

BN

(
vk(j0)ek(j0)

⊖ ve,

∼
η

2

)
< ϵ1, YN

(
vk(j0)ek(j0)

⊖ ve,

∼
η

2

)
< ϵ1.

(9)

Now

GN (vmem ⊖ ve,
∼
η) = GN

(
vmem ⊖ vk(j0)ek(j0)

⊕ vk(j0)ek(j0)
⊖ ve,

∼
η

2
⊕

∼
η

2

)
≥ GN

(
vmem ⊖ vk(j0)ek(j0)

,

∼
η

2

)
◦GN

(
vk(j0)ek(j0)

⊖ ve,

∼
η

2

)
> (1− ϵ1) ◦ (1− ϵ1) for p = k(j0)

> 1− ϵ

and

BN (vmem ⊖ ve,
∼
η) = BN

(
vmem ⊖ vk(j0)ek(j0)

⊕ vk(j0)ek(j0)
⊖ ve,

∼
η

2
⊕

∼
η

2

)
≤ BN

(
vmem ⊖ vk(j0)ek(j0)

,

∼
η

2

)
⋄BN

(
vk(j0)ek(j0)

⊖ ve,

∼
η

2

)
< ϵ1 ⋄ ϵ1 for p = k(j0)

< ϵ,

YN (vmem ⊖ ve,
∼
η) = YN

(
vmem ⊖ vk(j0)ek(j0)

⊕ vk(j0)ek(j0)
⊖ ve,

∼
η

2
⊕

∼
η

2

)
≤ YN

(
vmem ⊖ vk(j0)ek(j0)

,

∼
η

2

)
⋄ YN

(
vk(j0)ek(j0)

⊖ ve,

∼
η

2

)
< ϵ1 ⋄ ϵ1 for p = k(j0)

< ϵ, by (1), (8) and (9)

which implies that m ∈ DC , so AC ∩BC ⊆ DC or D ⊆ A∪B. Therefore, δλ(D) ≤ δλ(A∪B) =

0. This shows that v = (vkek) is λ-statistically convergent and therefore,
∼
V is λ-statistically

complete.□
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Abstract: This paper aims to define a special case of neutrosophic matrices referred to as  

Fermatean neutrosophic matrices (FNMs). FNMs were introduced as generalization of Fermatean 

fuzzy matrices, intuitionistic fuzzy matrices, and Pythagorean neutrosophic matrices. In FNMs, 

some properties were discussed in connection with the well-known standard operations (⊕, ⊗, ∧ 

and ∨). In addition, the scalar multiplication (nA) and exponentiation ( 𝐴𝑛 ) of a Fermatean 

neutrosophic matrix A were proposed, and their basic properties were investigated. Lastly, a new 

operation denoted by @ was defined on Fermatean neutrosophic matrices, and some of the 

properties of these matrices were examined. 

Keywords: Fermatean Neutrosophic Matrices; Pythagorean neutrosophic sets; Fermatean 

Neutrosophic sets; Pythagorean Neutrosophic Matrices; Scalar multiplication; Exponentiation 

operations. 

 

1. Introduction 

The Fuzzy set theory [1] was introduced by Zadeh in 1965. This theory provides a way to deal 

with vague concepts by assigning a degree of membership to each element of a set. Fuzzy set theory 

was extensively examined and put together by academics and technology professionals, with 

broadened usage in fuzzy logic, fuzzy topology, fuzzy control systems, etc. Additionally, theories 

like fuzzy probability, soft set concepts, and rough set concepts are employed to tackle similar issues. 

Atanassov's intuitionistic fuzzy sets (IFS) described in [2] are suitable in this circumstance. Only 

imperfect information taking into account both the truth-membership and falsity-membership values 

may be handled by intuitionistic fuzzy sets. The ambiguous and contradictory information that is 

present in belief systems aren't dealt with by it. In 1995, neutrosophic sets are a mathematical notion 

established by Smarandache [3] that can be used to solve issues involving imperfect, ambiguous, and 

inconsistent data. Numerous scholars have looked at the applications of Neutrosophic sets and their 

extensions to ambiguous real-world situations. In the paper authored by Senapati et al. [4], the 

concept of Fermatean fuzzy sets is introduced, which is characterized by a restriction on the sum of 

the cubes of membership and non-membership degrees that is not to exceed a value of 1. This 

characteristic gives FFS a wider range of applicability compared to both IFSs and PFSs. They then 

produce certain operations for Fermatean Fuzzy Sets. Several studies on Fermatean fuzzy sets were 

applied in different fields later on. Ganie [5] developed distance and knowledge measurements with 

Fermatean fuzzy sets. Xu and Shen[6]  suggested a technique for Fermatean fuzzy sets to identify 

patterns that utilizes similarity metrics. Zhou[7] demonstrated a Fermatean Fuzzy ELECTRE 

Technique for MCDM. Yang[8] illustrates the calculus of Continuities, Derivatives, and Differentials 
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in Fermatean Fuzzy Processes. Barraza [9] included a Fermatean fuzzy matrix which is  utilized 

while collaborating on municipal construction projects. Aydemir [10] and Mishra[11] proposed 

fermatean fuzzy TOPSIS and WASPAS in MCDM. 

By extending Fermatean fuzzy sets, Sweety and R. Jansi [12] presented the concept of Fermatean 

neutrosophic sets. Fermatean neutrosophic sets are specific types of neutrosophic sets that are used 

to model uncertainty, indeterminacy, and incomplete information in decision-making processes. 

These sets have found real applications under uncertainty in decision-making [13-14] and graph 

theory [15-17, 18]. 

The theory of fuzzy matrix proposed by Thomason in his paper [19] has been extended and 

generalized in many ways. To overcome the limitations of fuzzy matrices .The idea of intuitionistic 

fuzzy matrix (IFM) was proposed by Khan et al. [20, 21] and Im et al. [22] model more complex 

decision-making problems than fuzzy matrix. In such a situation, IFM fails to produce a reasonable 

solution. To address this situation, in 2018, Silambarasan and Sriram [23] designed Pythagorean 

fuzzy matrices (PFMs) and studied their algebraic operations. Recently, major contributions on the 

extension of IFMs have been published ( see Table 1). 

Table 1. Review on the Extensions of Intuitionistic fuzzy matrices. 

References Extensions of Intuitionistic fuzzy matrices Year 

[24] Single valued neutrosophic matrices 2018 

[25] Spherical fuzzy matrices 2020 

[26] Picture fuzzy matrices  2020 

[27] T-Spherical Fuzzy Matrices  2022 

[28] Multi-valued neutrosophic fuzzy matrix (MVNFM) 2022 

[29] Fermatean fuzzy matrices 2022 

proposed Fermatean neutrosophic matrices 2023 

 

 

Based on literature review that reflects no research has been carried out on Fermatean neutrosophic 

matrix and to merge this gap, we established a new special class of neutrosophic matrices.  

These following concepts constitute the components of this paper. Basic concepts of existing work 

have been given in introduction. Some fundamental definitions of IFMs and PFMs are presented in 

the Preliminaries section. In third section, Fermatean neutrosophic matrices and their fundamental 

operations are described. Also a new operation (@) on Fermatean neutrosophic matrices is presented 

and some algebraic characteristics are discussed. In the final segment, the work is concluded. 

2. Preliminaries 

This section of the article presents some fundamental ideas concerning the Pythagorean fuzzy matrix 

(PyFM), intuitionistic fuzzy matrix (IFM), Fermatean fuzzy matrices (FFM), Pythagorean 

neutrosophic sets and Fermatean neutrosophic sets. 

Definition 2.1 [20] 

The definition of an intuitionistic fuzzy matrix (IFM) ℛ with dimensions 𝑚 × 𝑛  is given by. 

ℛ =[𝑋𝑖𝑗 , 〈𝑇𝑖𝑗𝑝  , 𝐹𝑖𝑗𝑝〉]𝑚×𝑛
 

Where 𝑇𝑖𝑗𝑝 , 𝐹𝑖𝑗𝑝 ∈ [0,1] are referred to as truth, and falsity of in ℛ, which maintaining the condition 

0 ≤ 𝑇𝑖𝑗𝑝 + 𝐹𝑖𝑗𝑝 ≤ 1, to simplify matters, we express it as R=[𝑋𝑖𝑗 , ℛ𝑖𝑗]𝑚×𝑛
 or [ℛ𝑖𝑗]𝑚×𝑛

 where 
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ℛ𝑖𝑗=〈𝑇𝑖𝑗𝑝 , 𝐹𝑖𝑗𝑝〉 

Example 2.1. Let ℛ be a 2 × 2  IFM. 

 ℛ =[
(0.2, 0.3) (0.5, 0.1)
(0.3, 0.5)  (0.6, 0.2) 

] is not a FM, but  ℛ is a IFM 

Definition 2.2 [23] 

The definition of Pythagorean fuzzy matrix (PyFM) ℛ with dimensions 𝑚 × 𝑛  is given by. 

ℛ =[𝑋𝑖𝑗 , 〈𝑇𝑖𝑗ℛ , 𝐹𝑖𝑗ℛ〉]
𝑚×𝑛

 

Where 𝑇𝑖𝑗ℛ , 𝐹𝑖𝑗ℛ  ∈ [0,1] are referred to as the degrees of the truth and the falsity of in ℛ, which 

maintaining the condition 0 ≤ 𝑇𝑖𝑗ℛ
2+  𝐹𝑖𝑗ℛ

2≤ 2, to simplify matters, we express it as R=[𝑋𝑖𝑗 , ℛ𝑖𝑗]𝑚×𝑛
 

or [ℛ𝑖𝑗]𝑚×𝑛
 where 

ℛ𝑖𝑗=〈𝑇𝑖𝑗ℛ , , 𝐹𝑖𝑗ℛ〉 

Example 2.1. Let ℛ be a 2 × 2  PyFM 

 ℛ =[
(0.5, 0.3) (0.3, 0.6)
(0.7, 0.3) [(0.5, 0.2) 

] is not a IFM, but  ℛ is a PyFM.  

Definition 2.3 [29] 

The definition of Fermatean fuzzy matrix (FFM) ℛ with dimensions 𝑚 × 𝑛  is given by. 

ℛ =[𝑋𝑖𝑗 , 〈𝑇𝑖𝑗ℛ  , 𝐹𝑖𝑗ℛ〉]
𝑚×𝑛

 

Where 𝑇𝑖𝑗ℛ , 𝐹𝑖𝑗ℛ ∈ [0,1] are referred to as truth, and falsity of in ℛ, which maintaining the condition 

0 ≤ 𝑇𝑖𝑗ℛ
3 + 𝐹𝑖𝑗ℛ

3≤ 2, to simplify matters, we express it as R=[𝑋𝑖𝑗 , ℛ𝑖𝑗]𝑚×𝑛
 or [ℛ𝑖𝑗]𝑚×𝑛

 where 

ℛ𝑖𝑗=〈𝑇𝑖𝑗ℛ , 𝐹𝑖𝑗ℛ〉 

Example 2.3. Let ℛ be a 2 × 2  FFM.  

 ℛ =[
(0.7, 0.7) (0.3, 0.1)
(0.7, 0.8) (0.5, 0.2) 

] is not a IFM and not a PyFM , but  ℛ is a FFM 

Definition 2.4 [30] 

 The concept of Pythagorean neutrosophic sets (PyN sets) 𝑃̃ on 𝔘 is an object that can be expressed 

as 

 𝑃̃ = {( 𝔯,  𝑇𝑃̃(𝔯), 𝐼𝑃̃(𝔯), 𝐹𝑃̃(𝔯)): 𝔯 ∈ 𝔘}, where ό𝑃̃ (𝔯) ∈ [0,1] represents the membership degree of 𝔯 

in 𝔘 , 𝐼𝑃̃(𝔯) ∈ [0,1] is the indeterminacy degree of 𝔯  in 𝔘  and 𝐹𝑃̃(𝔯) ∈ [0,1] denotes the non-

membership degree of 𝔯 in 𝔘, and these three are satisfying the relation; 

0 ≤ (𝑇𝑃̃(𝔯)) 2+ (𝐼𝑃̃(𝔯)) 2+ (𝐹𝑃̃(𝔯)) 2 ≤ 2 
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Here  𝑇𝑃̃(𝔯) and  𝐼𝑃̃(𝔯)  are dependent component and  𝐹𝑃̃(𝔯) is an independent component.  

Definition 2.5 [12]  

The concept of Fermatean neutrosophic sets (FN sets) 𝑁 on 𝔘 is an object that can be represented 

mathematically by 

 𝑁 = {( 𝔯,  𝑇𝑁 (𝔯), 𝐼𝑁 (𝔯), 𝐹𝑁 (𝔯)): 𝔯 ∈ 𝔘}, where 𝑇𝑁 (𝔯) ∈ [0,1] represents the membership degree 

of 𝔯 in 𝔘, 𝐼𝑁 (𝔯)∈ [0,1] is the indeterminacy degree of 𝔯 in 𝔘 and 𝐹𝑁̃ (𝔯)∈ [0,1] denotes the non-

membership degree of 𝔯 in 𝔘, and these three are satisfying the relation; 

0 ≤(𝑇(𝔯))3 + (𝐹𝑁 (𝔯))
3 ≤ 1 and 0 ≤ (𝐼𝑁 (𝔯))

3≤ 1;  

Then,                   0 ≤ (𝑇(𝔯))3 + (𝐼𝑁̃ (𝔯))
3 + (𝐹𝑁̃ (𝔯))

3≤ 2 

Here  𝑇𝑁 (𝔯) and  𝐹𝑁 (𝔯)  are dependent component and  𝐼𝑁 (𝔯) is an independent component.  

Definition 2.6 [12] 

Let's suppose that the universe of discourse is termed by  𝔄 and the unit interval [0,1]. Let K and L 

two Fermatean neutrosophic sets expressed mathematically by 

 𝐾 = {( 𝔯, 𝑇𝑃̃ (𝔯), 𝐼𝑃̃ (𝔯), 𝐹𝑃̃(𝔯))/ 𝔯 ∈ 𝔄 } and L = {( 𝔯, 𝑇𝑁 (𝔯), 𝐼𝑁̃ (𝔯), 𝐹𝑁̃ (𝔯)/𝔯 ∈ 𝔄 }. Then  

a. K𝑐 = {( 𝔯,  𝐹𝑃̃ (𝔯), 1 − 𝐼𝑃̃ (𝔯),  𝑇𝑃̃ (𝔯)): 𝔯 ∈ 𝔄 } 

b.  K∪ L ={( 𝔯, max(𝑇𝑃̃(𝔯), 𝑇𝑁 (𝔯)), min(𝐼𝑃̃(𝔯), 𝐼𝑁 (𝔯)), min (𝐹𝑃̃(𝔯), 𝐹𝑁̃ (𝔯)): 𝔯 ∈ 𝔄 }  

c.  K ∩ L ={( 𝔯, min(𝑇𝑃̃(𝔯), 𝑇𝑁 (𝔯)), max(𝐼𝑃̃(𝔯), 𝐼𝑁̃ (𝔯)), max(𝐹𝑃̃(𝔯), 𝐹𝑁̃ (𝔯)): 𝔯 ∈ 𝔄 } 

3. Fermatean Neutrosophic Matrices  

Before introducing the concept of Fermatean neutrosophic matrices, we briefly presented the 

definition of Pythagorean neutrosophic matrix (PyNM) which will be used in this section 

Definition 3.1: Pythagorean neutrosophic matrix 

The definition of Pythagorean neutrosophic matrix (PyNM) ℛ with dimensions 𝑚 × 𝑛  is given by. 

ℛ =[𝑋𝑖𝑗 , 〈𝑇𝑖𝑗ℛ , 𝐼𝑖𝑗ℛ , 𝐹𝑖𝑗ℛ〉]
𝑚×𝑛

 

 

Where 𝑇𝑖𝑗ℛ , 𝐼𝑖𝑗ℛ , 𝐹𝑖𝑗ℛ ∈ [0,1] are referred to as the degrees of the truth, the indeterminacy, and  the 

falsity of in ℛ, which maintaining the condition 0 ≤ 𝑇𝑖𝑗ℛ
2 + 𝐼𝑖𝑗ℛ

2 + 𝐹𝑖𝑗ℛ
2≤ 2, to simplify matters, we 

express it as R=[𝑋𝑖𝑗 , ℛ𝑖𝑗]𝑚×𝑛
 or [ℛ𝑖𝑗]𝑚×𝑛

 where 

ℛ𝑖𝑗=〈𝑇𝑖𝑗ℛ , 𝐼𝑖𝑗ℛ , 𝐹𝑖𝑗ℛ〉 
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Example 3.1. Let ℛ be a 2 × 2  PyNM 

 ℛ =[
(0.5, 0.7, 0.3) (0.3, 0.4, 0.6)
(0.7, 0.4, 0.3) (0.5, 0.4, 0.2) 

] is not a IFM, but  ℛ is a PyNM.  

 

Each element in an PyNM is expressed by an ordered pair 𝑇𝑃̃ (𝔯), 𝐼𝑃̃ (𝔯), 𝐹𝑃̃ (𝔯)   with 

𝑇𝑃̃ (𝔯), 𝐼𝑃̃ (𝔯) and 𝐹𝑃̃ (𝔯)∈ [0, 1] and 0 ≤ 𝑇𝑃̃ (𝔯)
2+ 𝐼𝑃̃ (𝔯)

2+ 𝐹𝑃̃ (𝔯)
2≤ 2 and 0 ≤ 𝑇𝑃̃ (𝔯)

2+ 𝐹𝑃̃ (𝔯)
2≤ 1. It 

became obvious to observe this (0.7)2 + (0.7)2 + (0.8)2= = 1.62 ≤ 2 and (0.7)2+ (0.8)2 =1.13 > 1, and 

therefore, Its description was beyond the scope of PyNM. In this study, the Fermatean neutrosophic 

matrix (FNM) and related algebraic operations to characterize an assessment of this sort are provided. 

A pair of ordered elements can be utilized to represent each element in a FNM, 𝑇𝑃̃ (𝔯), 𝐼𝑃̃ (𝔯), 𝐹𝑃̃ (𝔯) 

with 𝑇𝑃̃ (𝔯), 𝐼𝑃̃ (𝔯), 𝐹𝑃̃ (𝔯) ∈ [0, 1] and 0 ≤ 𝑇𝑃̃ (𝔯)
3+ 𝐼𝑃̃ (𝔯)

3+ 𝐹𝑃̃ (𝔯)
3≤ 2 and 0 ≤ 𝑇𝑃̃ (𝔯)

3+ 𝐹𝑃̃ (𝔯)
3≤ 

1.Also, we can get (0.7)3+ (0.8)3 =0.855 < 1 and  (0.7)3 + (0.7)3 + (0.8)3= 1.198 ≤ 2, which enables 

the FNM to be utilized for managing it.  

By limiting the measure of truth , indeterminacy and falsity membership but preserving their total in 

the range [0, √2
2

], Fermatean neutrosophic matrices algebraic operations are provided in. 

Definition 3.2:  

The definition of Fermatean neutrosophic matrix (FNM) ℛ with dimensions 𝑚 × 𝑛  is given by. 

ℛ =[𝑋𝑖𝑗 , 〈𝑇𝑖𝑗ℛ , 𝐼𝑖𝑗ℛ , 𝐹𝑖𝑗ℛ〉]
𝑚×𝑛

 

Where 𝑇𝑖𝑗ℛ , 𝐼𝑖𝑗ℛ , 𝐹𝑖𝑗ℛ ∈ [0,1] are referred to as the degrees of the truth, the indeterminacy, and  the 

falsity of in ℛ, which maintaining the condition 0 ≤ 𝑇𝑖𝑗ℛ3 + 𝐹𝑖𝑗ℛ3 + 𝐹𝑖𝑗ℛ3 ≤ 2, to simplify matters, we 

express it as R=[𝑋𝑖𝑗 , ℛ𝑖𝑗]𝑚×𝑛
 or [ℛ𝑖𝑗]𝑚×𝑛

 where 

ℛ𝑖𝑗=〈𝑇𝑖𝑗ℛ , 𝐼𝑖𝑗ℛ , 𝐹𝑖𝑗ℛ〉 

Example 3.2. Let ℛ be a 2 × 2  FNM. 

 ℛ =[
(0.7, 0.7, 0.7) (0.3, 0.4, 0.1)
(0.3, 0.4, 0.2) [(0.5, 0.4, 0.2) 

] is not a FFM and not , but  ℛ is a FNM.  

 

In Fermatean neutrosophic matrix FNMs the cube sum of the triplet of membership, non-

membership, and indeterminacy of the Fermatean neutrosophic element is is less than or equal to 2 , 

while in PyNMs the square sum of these triplet is bounded by 2 
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On the other hand, if we drop the indeterminacy degree from each triplet of a Fermatean 

neutrosophic matrix in example 3.2 then FNM, is reduced to Fermatean fuzzy matrix 

Definition 3.3.  

Suppose ℕ and ℘ are two Fermatean neutrosophic matrices, then  

• ℕ < ℘  iff  ∀ i,j∈ 𝔄, 𝑇̃𝑎𝑖𝑗
 ≤ 𝑇̃𝑏𝑖𝑗

, 𝐼𝑎𝑖𝑗
≤ 𝐼𝑏𝑖𝑗

 or 𝐼𝑎𝑖𝑗
 ≥ 𝐼𝑏𝑖𝑗

, 𝐹̃𝑎𝑖𝑗
 ≥ 𝐹̃𝑏𝑖𝑗

:    

• ℕ𝐶=(〈𝐹̃𝑎𝑖𝑗
, 𝐼𝑎𝑖𝑗

, 𝑇̃𝑎𝑖𝑗
〉)

𝑚𝑥𝑛
 

• ℕ ∨ ℘ =(〈max(𝑇̃𝑎𝑖𝑗
, 𝑇̃𝑏𝑖𝑗

), min(𝐼𝑎𝑖𝑗
, 𝐼𝑏𝑖𝑗

) ,min (𝐹̃𝑎𝑖𝑗
, 𝐹̃𝑏𝑖𝑗

)〉)
𝑚𝑥𝑛

 

 ℕ ∧ ℘)=(〈min(𝑇̃𝑎𝑖𝑗
, 𝑇̃𝑏𝑖𝑗

),max(𝐼𝑎𝑖𝑗
, 𝐼𝑏𝑖𝑗

),max(𝐹̃𝑎𝑖𝑗
, 𝐹̃𝑏𝑖𝑗

)〉)
𝑚𝑥𝑛

 

 ℕ ⊕  ℘ = (〈√𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3𝟑
, 𝐼𝑎𝑖𝑗

 𝐼𝑏𝑖𝑗
 , 𝐹̃𝑎𝑖𝑗

 𝐹̃𝑏𝑖𝑗
〉)

𝒎𝒙𝒏

 

 

 ℕ ⊗  ℘ = (〈𝑇̃𝑎𝑖𝑗
𝑇̃𝑏𝑖𝑗

, √𝐼𝑎𝑖𝑗
3 + 𝐼𝑏𝑖𝑗

3 − 𝐼𝑎𝑖𝑗
3 𝐼𝑏𝑖𝑗

3 ,
3

√𝐹̃𝑎𝑖𝑗
3 + 𝐹̃𝑏𝑖𝑗

3 − 𝐹̃𝑎𝑖𝑗
3 𝐹̃𝑏𝑖𝑗

33 〉)
𝒎𝒙𝒏

 

 

Definition 3.4 

A scalar multiplication operation on FNM,  n ℕ and is defined as follow: 

        n ℕ = 〈(√1 − [1 − 𝑇̃𝑎𝑖𝑗
3 ]𝑛

3
, [𝐼𝑎𝑖𝑗

 ]
𝑛

, [𝐹̃𝑎𝑖𝑗
]
𝑛

)〉𝑚𝑥𝑛 

 

Definition 3.5 

An exponentiation operation on FNM, ℕ and is defined as follow: 

 

ℕ𝑛 = 〈([𝑇̃𝑎𝑖𝑗
]
𝑛

, √1 − [1 − 𝐼𝑎𝑖𝑗
3 ]𝑛

3
, √1 − [1 − 𝐹̃𝑎𝑖𝑗

3 ]𝑛
3

)〉𝑚𝑥𝑛 

Let 𝐹𝑁𝑚𝑥𝑛 be the set of all the Fermatean neutrosophic matrices.  

The following theorem relation between algebraic sum, and algebraic product of FNMs. 

Theorem 3.1.If ℕ, ℘ ∈ 𝐹𝑁𝑚𝑥𝑛, then ℕ ⊗  ℘  ≤ ℕ ⊕  ℘.   

Proof 

Let  ℕ ⊕  ℘ = (〈 √𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

33
, 𝐼𝑎𝑖𝑗

 𝐼𝑏𝑖𝑗
 , 𝐹̃𝑎𝑖𝑗

 𝐹̃𝑏𝑖𝑗
〉)

𝒎𝒙𝒏

 

 

ℕ ⊗  ℘ = (〈𝑇̃𝑎𝑖𝑗
 𝑇̃𝑏𝑖𝑗

 , √𝐼𝑎𝑖𝑗
3 + 𝐼𝑏𝑖𝑗

3 − 𝐼𝑎𝑖𝑗
3 𝐼𝑏𝑖𝑗

3 ,
3

√𝐹̃𝑎𝑖𝑗
3 + 𝐹̃𝑏𝑖𝑗

3 − 𝐹̃𝑎𝑖𝑗
3 𝐹̃𝑏𝑖𝑗

33 〉)
𝒎𝒙𝒏

 

 Suppose that 

𝑇̃𝑎𝑖𝑗
 𝑇̃𝑏𝑖𝑗

≤ √𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

33
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Cubing both sides 

𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3 ≤ 𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3  

𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 − 𝑇̃𝑏𝑖𝑗

3 + 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3 ≤ 0 

𝑇̃𝑎𝑖𝑗
3 (𝑇̃𝑏𝑖𝑗

3 − 1) − 𝑇̃𝑏𝑖𝑗

3 (1 − 𝑇̃𝑎𝑖𝑗
3 ) ≤ 0 

−𝑇̃𝑎𝑖𝑗
3 (1 − 𝑇̃𝑏𝑖𝑗

3 ) − 𝑇̃𝑏𝑖𝑗

3 (1 − 𝑇̃𝑎𝑖𝑗
3 ) ≤0 

𝑇̃𝑎𝑖𝑗
3 (1 − 𝑇̃𝑏𝑖𝑗

3 ) + 𝑇̃𝑏𝑖𝑗

3 (1 − 𝑇̃𝑎𝑖𝑗
3 ) ≥ 0 

It is clear that 0 ≤ 𝑇̃𝑎𝑖𝑗
3 ≤ 1 and 0 ≤ 𝑇̃𝑏𝑖𝑗

3 ≤ 1 

And  

𝐼𝑎𝑖𝑗
 𝐼𝑏𝑖𝑗

≤ √𝐼𝑎𝑖𝑗
3 + 𝐼𝑏𝑖𝑗

3 − 𝐼𝑎𝑖𝑗
3 𝐼𝑏𝑖𝑗

33
  

Ie, 𝐼𝑎𝑖𝑗
 𝐼𝑏𝑖𝑗

− √𝐼𝑎𝑖𝑗
3 + 𝐼𝑏𝑖𝑗

3 − 𝐼𝑎𝑖𝑗
3 𝐼𝑏𝑖𝑗

33
≥ 0 

Ie,𝐼𝑎𝑖𝑗
3 (1 − 𝐼𝑏𝑖𝑗

3 ) + 𝐼𝑏𝑖𝑗

3 (1 − 𝐼𝑎𝑖𝑗
3 )  ≥ 0 

It is clear that 0 ≤ 𝐼𝑎𝑖𝑗
3 ≤ 1 and 0 ≤ 𝐼𝑏𝑖𝑗

3 ≤ 1 

And  

𝐹̃𝑎𝑖𝑗
 𝐹̃𝑏𝑖𝑗

≤ √𝐹̃𝑎𝑖𝑗
3 + 𝐹̃𝑏𝑖𝑗

3 − 𝐹̃𝑎𝑖𝑗
3 𝐹̃𝑏𝑖𝑗

33
 

Ie, 𝐹̃𝑎𝑖𝑗
 𝐹̃𝑏𝑖𝑗

− √𝐹̃𝑎𝑖𝑗
3 + 𝐹̃𝑏𝑖𝑗

3 − 𝐹̃𝑎𝑖𝑗
3 𝐹̃𝑏𝑖𝑗

33
≥ 0 

Ie,𝐹̃𝑎𝑖𝑗
3 (1 − 𝐹̃𝑏𝑖𝑗

3 ) + 𝐹̃𝑏𝑖𝑗

3 (1 − 𝐹̃𝑎𝑖𝑗
3 )  ≥ 0 

It is clear that 0 ≤ 𝐹̃𝑎𝑖𝑗
3 ≤ 1 and 0 ≤ 𝐹̃𝑏𝑖𝑗

3 ≤ 1 

Hence, ℕ ⊗ ℘ ≤ ℕ ⊕ ℘. 

Theorem 3.2. For any Fermatean neutrosophic matrix ℕ,  

(i)  ℕ ⊕ ℕ ≥ ℕ 

(ii)   ℕ ⊗ ℕ ≤ ℕ. 

 Proof. 

(i) Let  ℕ ⊕ ℕ =(〈𝑇̃𝑎𝑖𝑗
, 𝐼𝑎𝑖𝑗

, 𝐹̃𝑎𝑖𝑗
〉) ⊕ (〈𝑇̃𝑎𝑖𝑗

, 𝐼𝑎𝑖𝑗
, 𝐹̃𝑎𝑖𝑗

〉) 

ℕ ⊕ ℕ = (〈√2 𝑇̃𝑎𝑖𝑗
3 − (𝑇̃𝑎𝑖𝑗

3 )
2𝟑

, (𝐼𝑎𝑖𝑗
)

2

, (𝐹̃𝑎𝑖𝑗
)

2
〉)

𝒎𝒙𝒏
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√2 𝑇̃𝑎𝑖𝑗
3 − (𝑇̃𝑎𝑖𝑗

3 )
2𝟑

 =√𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑎𝑖𝑗

3 (1 − 𝑇̃𝑎𝑖𝑗
3 )

𝟑
 ≥ 𝑇̃𝑎𝑖𝑗

3 , ∀ 𝑖, 𝑗 ∈  𝔄 

And  (𝐼𝑎𝑖𝑗
)

2

≤ 𝐼𝑎𝑖𝑗
,  

And (𝐹̃𝑎𝑖𝑗
)

2

≤ 𝐹̃𝑎𝑖𝑗
,  

Hence ℕ ⊕ ℕ ≥ ℕ 

(ii) Let  ℕ ⊗ ℕ =(〈𝑇̃𝑎𝑖𝑗
, 𝐼𝑎𝑖𝑗

, 𝐹̃𝑎𝑖𝑗
〉) ⊗ (〈𝑇̃𝑎𝑖𝑗

, 𝐼𝑎𝑖𝑗
, 𝐹̃𝑎𝑖𝑗

〉) 

ℕ ⊗ ℕ = (〈(𝑇̃𝑎𝑖𝑗
)

2

, √2 𝐼𝑎𝑖𝑗
3 − (𝐼𝑎𝑖𝑗

3 )
2𝟑

, √2 𝐹̃𝑎𝑖𝑗
3 − (𝐹̃𝑎𝑖𝑗

3 )
2𝟑
〉)

𝒎𝒙𝒏

 

√2 𝐼𝑎𝑖𝑗
3 − (𝐼𝑎𝑖𝑗

3 )
2𝟑

 =√𝐼𝑎𝑖𝑗
3 + 𝐼𝑎𝑖𝑗

3 (1 − 𝐼𝑎𝑖𝑗
3 )

𝟑
 ≤ 𝐼𝑎𝑖𝑗

3  , ∀ 𝔯 ∈  𝔄 

√2 𝐹̃𝑎𝑖𝑗
3 − (𝐹̃𝑎𝑖𝑗

3 )
2𝟑

 =√𝐹̃𝑎𝑖𝑗
3 + 𝐹̃𝑎𝑖𝑗

3 (1 − 𝐹̃𝑎𝑖𝑗
3 )

𝟑
 ≤ 𝐹̃𝑎𝑖𝑗

3  , ∀ 𝔯 ∈  𝔄 

And  (𝑇̃𝑎𝑖𝑗
)

2

≥ 𝑇̃𝑎𝑖𝑗
,  

Hence ℕ ⊗ ℕ ≤ ℕ. 

Theorem 3.3. If ℕ, ℘, M ∈ 𝐹𝑁𝑚𝑥𝑛, then  

(i) ℕ ⊕ ℘ = ℘ ⊕ ℕ,  

(ii) ℕ ⊗ ℘ = ℘ ⊗ ℕ, 

(iii) (ℕ ⊕ ℘) ⊕ M = ℕ ⊕ (℘ ⊕ M), 

(iv) (ℕ ⊗ ℘) ⊗ M = ℕ ⊗ (℘ ⊗ M).  

 

Proof. (i) Assume ℕ ⊕ ℘ = (〈√𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3𝟑
, 𝐼𝑎𝑖𝑗

𝐼𝑏𝑖𝑗
, 𝐹̃𝑎𝑖𝑗

𝐹̃𝑏𝑖𝑗
〉)

𝒎𝒙𝒏

 

     = (〈√𝑇̃𝑏𝑖𝑗

3 + 𝑇̃𝑎𝑖𝑗
3 − 𝑇̃𝑏𝑖𝑗

3 𝑇̃𝑎𝑖𝑗
3𝟑

, 𝐼𝑏𝑖𝑗
𝐼𝑎𝑖𝑗

, 𝐹̃𝑏𝑖𝑗
𝐹̃𝑎𝑖𝑗

〉)
𝒎𝒙𝒏

 

                        = ℘⊕ ℕ 

 

(iii) ℕ ⊗ ℘ = (〈𝑇̃𝑎𝑖𝑗
𝑇̃𝑏𝑖𝑗

, √𝐼𝑎𝑖𝑗
3 + 𝐼𝑏𝑖𝑗

3 − 𝐼𝑎𝑖𝑗
3 𝐼𝑏𝑖𝑗

33
, √𝐹̃𝑎𝑖𝑗

3 + 𝐹̃𝑏𝑖𝑗

3 − 𝐹̃𝑎𝑖𝑗
3 𝐹̃𝑏𝑖𝑗

33 〉)
𝒎𝒙𝒏

 

 

      = (〈𝑇̃𝑏𝑖𝑗
𝑇̃𝑎𝑖𝑗

, √𝐼𝑏𝑖𝑗

3 + 𝐼𝑎𝑖𝑗
3 − 𝐼𝑏𝑖𝑗

3 𝐼𝑎𝑖𝑗
33

, √𝐹̃𝑏𝑖𝑗

3 + 𝐹̃𝑎𝑖𝑗
3 − 𝐹̃𝑏𝑖𝑗

3 𝐹̃𝑎𝑖𝑗
33 〉)

𝒎𝒙𝒏

 

      = ℘ ⊗ ℕ 

 

(v) (ℕ ⊕ ℘) ⊕ M = ℕ ⊕ (℘ ⊕ M), 
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Let      (ℕ ⊕ ℘) ⊕ M 

=(〈(√𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3𝟑
, 𝐼𝑎𝑖𝑗

𝐼𝑏𝑖𝑗
, 𝐹̃𝑎𝑖𝑗

𝐹̃𝑏𝑖𝑗
) ⊕ (𝑇̃𝑐𝑖𝑗

, 𝐼𝑐𝑖𝑗
, 𝐹̃𝑐𝑖𝑗

)〉)
𝒎𝒙𝒏

 

 

=

[
 
 
 
 
√(√𝑇̃𝑎𝑖𝑗

3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3𝟑
) 𝟐 + 𝑇̃𝑐𝑖𝑗

3 − (√𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

33
)

2

𝑇̃𝑐𝑖𝑗
3 ,

3

𝐼𝑎𝑖𝑗
𝐼𝑏𝑖𝑗

𝐼𝑐𝑖𝑗
, 𝐹̃𝑎𝑖𝑗

𝐹̃𝑏𝑖𝑗
𝐹̃𝑐𝑖𝑗 ]

 
 
 
 

𝑚𝑥𝑛

 

 

= [
√𝑇̃𝑎𝑖𝑗

3 + 𝑇̃𝑏𝑖𝑗

3 + 𝑇̃𝑐𝑖𝑗
3 − 𝑇̃𝑎𝑖𝑗

3 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑐𝑖𝑗

3 − 𝑇̃𝑏𝑖𝑗

3 𝑇̃𝑐𝑖𝑗
3 + 𝑇̃𝑎𝑖𝑗

3 𝑇̃𝑏𝑖𝑗

3 𝑇̃𝑐𝑖𝑗
33

𝐼𝑎𝑖𝑗
𝐼𝑏𝑖𝑗

𝐼𝑐𝑖𝑗
, 𝐹̃𝑎𝑖𝑗

𝐹̃𝑏𝑖𝑗
𝐹̃𝑐𝑖𝑗

]

𝑚𝑥𝑛

 

 

Let     ℕ ⊕ (℘ ⊕ M) =  

 

                    = ((𝑇̃𝑎𝑖𝑗
, 𝐼𝑎𝑖𝑗

, 𝐹̃𝑎𝑖𝑗
) ⊕ 〈√𝑇̃𝑏𝑖𝑗

3 + 𝑇̃𝑐𝑖𝑗
3 − 𝑇̃𝑏𝑖𝑗

3 𝑇̃𝑐𝑖𝑗
3𝟑

, 𝐼𝑏𝑖𝑗
𝐼𝑐𝑖𝑗

, 𝐹̃𝑏𝑖𝑗
𝐹̃𝑐𝑖𝑗

)〉) 

 

 

=

[
 
 
 
 
√𝑇̃𝑎𝑖𝑗

3 + (√𝑇̃𝑏𝑖𝑗

3 + 𝑇̃𝑐𝑖𝑗
3 − 𝑇̃𝑏𝑖𝑗

3 𝑇̃𝑐𝑖𝑗
3𝟑

) 𝟐 − 𝑇̃𝑎𝑖𝑗
3 (√𝑇̃𝑏𝑖𝑗

3 + 𝑇̃𝑐𝑖𝑗
3 − 𝑇̃𝑏𝑖𝑗

3 𝑇̃𝑐𝑖𝑗
33

)
2

,
3

𝐼𝑎𝑖𝑗
𝐼𝑏𝑖𝑗

𝐼𝑐𝑖𝑗
, 𝐹̃𝑎𝑖𝑗

𝐹̃𝑏𝑖𝑗
𝐹̃𝑐𝑖𝑗 ]

 
 
 
 

𝑚𝑥𝑛

 

 

= 
√𝑇̃𝑎𝑖𝑗

3 + 𝑇̃𝑏𝑖𝑗

3 + 𝑇̃𝑐𝑖𝑗
3 − 𝑇̃𝑎𝑖𝑗

3 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑐𝑖𝑗

3 − 𝑇̃𝑏𝑖𝑗

3 𝑇̃𝑐𝑖𝑗
3 + 𝑇̃𝑎𝑖𝑗

3 𝑇̃𝑏𝑖𝑗

3 𝑇̃𝑐𝑖𝑗
33

𝐼𝑎𝑖𝑗
𝐼𝑏𝑖𝑗

𝐼𝑐𝑖𝑗
, 𝐹̃𝑎𝑖𝑗

𝐹̃𝑏𝑖𝑗
𝐹̃𝑐𝑖𝑗

 

Hence (ℕ ⊕ ℘) ⊕ M = ℕ ⊕ (℘ ⊕ M), 

 

iv) (ℕ ⊗ ℘) ⊗ M = ℕ ⊗ (℘ ⊗ M) 

 (ℕ ⊗ ℘)  

= (〈𝑇̃𝑎𝑖𝑗
𝑇̃𝑏𝑖𝑗

, √𝐼𝑎𝑖𝑗
3 + 𝐼𝑏𝑖𝑗

3 − 𝐼𝑎𝑖𝑗
3 𝐼𝑏𝑖𝑗

33
, √𝐹̃𝑎𝑖𝑗

3 + 𝐹̃𝑏𝑖𝑗

3 − 𝐹̃𝑎𝑖𝑗
3 𝐹̃𝑏𝑖𝑗

33 〉)
𝒎𝒙𝒏

 

(ℕ ⊗ ℘) ⊗ M 

=(〈𝑇̃𝑎𝑖𝑗
𝑇̃𝑏𝑖𝑗

, √𝐼𝑎𝑖𝑗
3 + 𝐼𝑏𝑖𝑗

3 − 𝐼𝑎𝑖𝑗
3 𝐼𝑏𝑖𝑗

33
, √𝐹̃𝑎𝑖𝑗

3 + 𝐹̃𝑏𝑖𝑗

3 − 𝐹̃𝑎𝑖𝑗
3 𝐹̃𝑏𝑖𝑗

33 〉 ⊗ 〈𝐹̃𝑎𝑖𝑗
3 𝐹̃𝑏𝑖𝑗

3 𝐹̃𝑐𝑖𝑗
3 〉)

𝒎𝒙𝒏
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=

(

 
 
 

〈

𝑇̃𝑎𝑖𝑗
𝑇̃𝑏𝑖𝑗

𝑇̃𝑐𝑖𝑗
 

√𝐼𝑎𝑖𝑗
3 + 𝐼𝑏𝑖𝑗

3 + 𝐼𝑐𝑖𝑗
3 − 𝐼𝑎𝑖𝑗

3 𝐼𝑏𝑖𝑗

3 − 𝐼𝑎𝑖𝑗
3 𝐼𝑐𝑖𝑗

3 − 𝐼𝑏𝑖𝑗

3 𝐼𝑐𝑖𝑗
3 + 𝐼𝑎𝑖𝑗

3 𝐼𝑏𝑖𝑗

3 𝐼𝑐𝑖𝑗
3 ,

3

√𝐹̃𝑎𝑖𝑗
3 + 𝐹̃𝑏𝑖𝑗

3 + 𝐹̃𝑐𝑖𝑗
3 − 𝐹̃𝑎𝑖𝑗

3 𝐹̃𝑏𝑖𝑗

3 − 𝐹̃𝑎𝑖𝑗
3 𝐹̃𝑐𝑖𝑗

3 − 𝐹̃𝑏𝑖𝑗

3 𝐹̃𝑐𝑖𝑗
3 + 𝐹̃𝑎𝑖𝑗

3 𝐹̃𝑏𝑖𝑗

3 𝐹̃𝑐𝑖𝑗
33

〉

)

 
 
 

𝑚𝑥𝑛

 

 

Let ℕ ⊗ (℘ ⊗ M)   

(℘ ⊗ M) 

= (〈𝑇̃𝑎𝑖𝑗
𝑇̃𝑐𝑖𝑗

, √𝐼𝑏𝑖𝑗

3 + 𝐼𝑐𝑖𝑗
3 − 𝐼𝑏𝑖𝑗

3 𝐼𝑐𝑖𝑗
33

, √𝐹̃𝑏𝑖𝑗

3 + 𝐹̃𝑐𝑖𝑗
3 − 𝐹̃𝑏𝑖𝑗

3 𝐹̃𝑐𝑖𝑗
33 〉)

𝒎𝒙𝒏

 

 

 

ℕ ⊗ (℘⊗ M) = 

(

 
 
 

〈

𝑇̃𝑎𝑖𝑗
𝑇̃𝑏𝑖𝑗

𝑇̃𝑐𝑖𝑗
,

√𝐼𝑎𝑖𝑗
3 + 𝐼𝑏𝑖𝑗

3 + 𝐼𝑐𝑖𝑗
3 − 𝐼𝑎𝑖𝑗

3 𝐼𝑏𝑖𝑗

3 − 𝐼𝑎𝑖𝑗
3 𝐼𝑐𝑖𝑗

3 − 𝐼𝑏𝑖𝑗

3 𝐼𝑐𝑖𝑗
3 + 𝐼𝑎𝑖𝑗

3 𝐼𝑏𝑖𝑗

3 𝐼𝑐𝑖𝑗
3 ,

3

√𝐹̃𝑎𝑖𝑗
3 + 𝐹̃𝑏𝑖𝑗

3 + 𝐹̃𝑐𝑖𝑗
3 − 𝐹̃𝑎𝑖𝑗

3 𝐹̃𝑏𝑖𝑗

3 − 𝐹̃𝑎𝑖𝑗
3 𝐹̃𝑐𝑖𝑗

3 − 𝐹̃𝑏𝑖𝑗

3 𝐹̃𝑐𝑖𝑗
3 + 𝐹̃𝑎𝑖𝑗

3 𝐹̃𝑏𝑖𝑗

3 𝐹̃𝑐𝑖𝑗
33

〉

)

 
 
 

𝑚𝑥𝑛

 

Hence (ℕ ⊗ ℘) ⊗ M = ℕ ⊗ (℘ ⊗ M) 

Theorem 3.4. If ℕ, ℘ ∈ 𝐹𝑁𝑚𝑥𝑛, then  

(i) ℕ ⊕ (ℕ ⊗ ℘) ≥ ℕ, 

(ii) ℕ ⊗ (ℕ ⊕ ℘) ≤ ℕ.  

 

Proof. (i) Let ℕ ⊕ (ℕ ⊗ ℘) = 

(ℕ ⊗ ℘)= (〈 𝑇̃𝑎𝑖𝑗
𝑇̃𝑏𝑖𝑗

, √𝐼𝑎𝑖𝑗
3 + 𝐼𝑏𝑖𝑗

3 − 𝐼𝑎𝑖𝑗
3 𝐼𝑏𝑖𝑗

33
, √𝐹̃𝑎𝑖𝑗

3 + 𝐹̃𝑏𝑖𝑗

3 − 𝐹̃𝑎𝑖𝑗
3 𝐹̃𝑏𝑖𝑗

33 〉)
𝒎𝒙𝒏

 

ℕ ⊕ (ℕ ⊗ ℘) = 

 

= (〈𝑇̃𝑎𝑖𝑗
, 𝐼𝑎𝑖𝑗

, 𝐹̃𝑎𝑖𝑗
〉)⊕ 

 (〈𝑇̃𝑎𝑖𝑗
𝑇̃𝑏𝑖𝑗

, √𝐼𝑎𝑖𝑗
3 + 𝐼𝑏𝑖𝑗

3 − 𝐼𝑎𝑖𝑗
3 𝐼𝑏𝑖𝑗

33
, √𝐹̃𝑎𝑖𝑗

3 + 𝐹̃𝑏𝑖𝑗

3 − 𝐹̃𝑎𝑖𝑗
3 𝐹̃𝑏𝑖𝑗

33 〉) 

=

[
 
 
 
 √𝑇̃𝑎𝑖𝑗

3 + 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 [𝑇̃𝑎𝑖𝑗

3 𝑇̃𝑏𝑖𝑗

3 ]
3

, 𝐼𝑎𝑖𝑗
[√𝐼𝑎𝑖𝑗

3 + 𝐼𝑏𝑖𝑗

3 − 𝐼𝑎𝑖𝑗
3 𝐼𝑏𝑖𝑗

33
, ]

𝐹̃𝑎𝑖𝑗
[√𝐹̃𝑎𝑖𝑗

3 + 𝐹̃𝑏𝑖𝑗

3 − 𝐹̃𝑎𝑖𝑗
3 𝐹̃𝑏𝑖𝑗

33
]

]
 
 
 
 

𝑚𝑥𝑛

 

 

=  

[
 
 
 
 √𝑇̃𝑎𝑖𝑗

3 + 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 [𝑇̃𝑎𝑖𝑗

3 𝑇̃𝑏𝑖𝑗

3 ] ,
3

𝐼𝑎𝑖𝑗
√1 − [1 − 𝐼𝑎𝑖𝑗

3 ] [1 − 𝐼𝑏𝑖𝑗

3 ]
3

 

𝐹̃𝑎𝑖𝑗
[√1 − [1 − 𝐹̃𝑎𝑖𝑗

3 ] [1 − 𝐹̃𝑏𝑖𝑗

3 ]
3

]
]
 
 
 
 

𝑚𝑥𝑛
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≥ ℕ 

 

Hence  

ℕ ⊕ (ℕ ⊗ ℘) ≥ ℕ.   

 

ii)ℕ ⊕ ℘ = (〈√𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3𝟑
, 𝐼𝑎𝑖𝑗

𝐼𝑏𝑖𝑗
, 𝐹̃𝑎𝑖𝑗

𝐹̃𝑏𝑖𝑗
〉)

𝒎𝒙𝒏

 

 

ℕ ⊗ (ℕ ⊕ ℘) = (〈𝑇̃𝑎𝑖𝑗
, 𝐼𝑎𝑖𝑗

, 𝐹̃𝑎𝑖𝑗
〉) ⊗ 

(〈√𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3𝟑
, 𝐼𝑎𝑖𝑗

𝐼𝑏𝑖𝑗
, 𝐹̃𝑎𝑖𝑗

𝐹̃𝑏𝑖𝑗
〉) 

 

 

 =[√𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑎𝑖𝑗

3 𝑇̃𝑏𝑖𝑗

3 [1 − 𝑇̃𝑎𝑖𝑗
3 ] ,

3
𝐼𝑎𝑖𝑗

(√1 − [1 − 𝐼𝑎𝑖𝑗
3 ] [1 − 𝐼𝑏𝑖𝑗

3 ]
3

)],  𝐹̃𝑎𝑖𝑗
[√1 − [1 − 𝐹̃𝑎𝑖𝑗

3 ] [1 − 𝐹̃𝑏𝑖𝑗

3 ]
3

] 

 

=

[
 
 
 𝑇̃𝑎𝑖𝑗

√1 − [1 − 𝑇̃𝑎𝑖𝑗
3 ] [1 − 𝑇̃𝑏𝑖𝑗

3 ] ,
3

√𝐼𝑎𝑖𝑗
3 + 𝐼𝑎𝑖𝑗

3 𝐼𝑏𝑖𝑗

3 [1 − 𝐼𝑎𝑖𝑗
3 ] ,

3

√𝐹̃𝑎𝑖𝑗
3 + 𝐹̃𝑎𝑖𝑗

3 𝐹̃𝑏𝑖𝑗

3 [1 − 𝐹̃𝑎𝑖𝑗
3 ] ,

3

]
 
 
 

𝑚𝑥𝑛

 

≤ ℕ. 

 

Hence ℕ ⊗ (ℕ ⊕ ℘) ≤ ℕ 

Theorem 3.5.  If 𝔸, ℘ ∈ 𝐹𝑁𝑚𝑥𝑛,Then  

 

(i) ℕ ∨ ℘ = ℕ∨ ℘  

(ii) ℕ ∧ ℘ = ℕ ∧℘ 

(iii) ℕ∨ ℘ = ℘∨ ℕ 

 

   ℕ ∨ ℘ =(〈max(𝑇̃𝑎𝑖𝑗
, 𝑇̃𝑏𝑖𝑗

), min(𝐼𝑎𝑖𝑗
, 𝐼𝑏𝑖𝑗

),min(𝐹̃𝑎𝑖𝑗
, 𝐹̃𝑏𝑖𝑗

)〉)
𝑚𝑥𝑛

 

   ℘∨ ℕ  =(〈max(𝑇̃𝑏𝑖𝑗
, 𝑇̃𝑎𝑖𝑗

), min(𝐼𝑏𝑖𝑗
, 𝐼𝑎𝑖𝑗

),min(𝐹̃𝑏𝑖𝑗
, 𝐹̃𝑎𝑖𝑗

)〉)
𝑚𝑥𝑛

 

               =(〈max(𝑇̃𝑎𝑖𝑗
, 𝑇̃𝑏𝑖𝑗

),min(𝐼𝑎𝑖𝑗
, 𝐼𝑏𝑖𝑗

),min(𝐹̃𝑎𝑖𝑗
, 𝐹̃𝑏𝑖𝑗

)〉)
𝑚𝑥𝑛

 

             = ℕ ∨ ℘ 

(i) ℕ ∧ ℘ = ℘ ∧ ℕ 

ℕ ∧ ℘  =(〈min(𝑇̃𝑎𝑖𝑗
, 𝑇̃𝑏𝑖𝑗

) ,max(𝐼𝑎𝑖𝑗
, 𝐼𝑏𝑖𝑗

), max(𝐹̃𝑎𝑖𝑗
, 𝐹̃𝑏𝑖𝑗

)〉)
𝑚𝑥𝑛

 

      ℘ ∧ ℕ    =(〈min(𝑇̃𝑏𝑖𝑗
, 𝑇̃𝑎𝑖𝑗

), max(𝐼𝑏𝑖𝑗
, 𝐼𝑎𝑖𝑗

), max(𝐹̃𝑏𝑖𝑗
, 𝐹̃𝑎𝑖𝑗

) 〉)
𝑚𝑥𝑛
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                   =(〈min(𝑇̃𝑎𝑖𝑗
, 𝑇̃𝑏𝑖𝑗

), max(𝐼𝑎𝑖𝑗
, 𝐼𝑏𝑖𝑗

), max(𝐹̃𝑎𝑖𝑗
, 𝐹̃𝑏𝑖𝑗

) 〉)
𝑚𝑥𝑛

 

             =  ℘ ∨ ℕ 

 

Theorem 3.6. Let ℕ, ℘ , ℂ ∈ 𝐹𝑁𝑚𝑥𝑛, then 

 

(i). ℕ ⊕ (℘ ∨ ℂ)= (ℕ ⊕ ℘)  ∨ (ℕ ⊕ ℂ), 

(ii). ℕ ⊗ (℘ ∨ ℂ) = (ℕ ⊗ ℘) ∨ (ℕ ⊗ ℂ), 

(iii). ℕ ⊕ (℘ ∧ ℂ) = (ℕ ⊕ ℘)  ∧ (ℕ ⊕ ℂ), 

(iv). ℕ ⊗ (℘ ∧ ℂ) =  (ℕ ⊗℘) ∧ (ℕ ⊗ ℂ), 

 

Proof. 

 (i) Let ℕ ⊕ (℘ ∨ ℂ)  

 

= 

(

  
 

〈

√𝑇̃𝑎𝑖𝑗
3 + max(𝑇̃𝑏𝑖𝑗

3 𝑇̃𝑐𝑖𝑗
3 ) − 𝑇̃𝑎𝑖𝑗

3 .max (𝑇̃𝑏𝑖𝑗

3 𝑇̃𝑐𝑖𝑗
3 )

𝟑
,

𝐼𝑎𝑖𝑗
, max(𝐼𝑏𝑖𝑗

3 𝐼𝑐𝑖𝑗
3 )

𝐹̃𝑎𝑖𝑗
,max (𝐹̃𝑏𝑖𝑗

3 𝐹̃𝑐𝑖𝑗
3 )

〉

)

  
 

𝒎𝒙𝒏

 

=

(

  
 

〈

√max(𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑏𝑖𝑗

3 , 𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑐𝑖𝑗

3 ) − max(𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3 , 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑐𝑖𝑗

3 )
𝟑

, min(𝐼𝑎𝑖𝑗
𝐼𝑏𝑖𝑗

, 𝐼𝑎𝑖𝑗
𝐼𝑐𝑖𝑗

)

,min (𝐹̃𝑎𝑖𝑗
𝐹̃𝑏𝑖𝑗

, 𝐹̃𝑎𝑖𝑗
𝐹̃𝑐𝑖𝑗

)

〉

)

  
 

𝒎𝒙𝒏

 

 

 

 

= 

(

  
 

〈

√max(𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3 , 𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑐𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑐𝑖𝑗

3 )
𝟑

,min (𝐼𝑎𝑖𝑗
𝐼𝑏𝑖𝑗

, 𝐼𝑎𝑖𝑗
𝐼𝑐𝑖𝑗

)

,min (𝐹̃𝑎𝑖𝑗
𝐹̃𝑏𝑖𝑗

, 𝐹̃𝑎𝑖𝑗
𝐹̃𝑐𝑖𝑗

)

〉

)

  
 

𝒎𝒙𝒏

 

 

 = (ℕ ⊕℘) ∨ (ℕ ⊕ ℂ) 

 

Theorem 3.7.  Let ℕ,℘ ∈ 𝐹𝑁𝑚𝑥𝑛, then 

(i) (ℕ ∧ ℘) ⊕ (ℕ ∨ ℘) = ℕ ⊕ ℘,  

(ii) (ℕ ∧ ℘) ⊗ (ℕ ∨ ℘) = ℕ ⊗ ℘,  

(iii) (ℕ ⊕ ℘) ∧ (ℕ ⊗ ℘) = ℕ ⊗ ℘, 

(iv) (ℕ ⊕ ℘) ∨ (ℕ ⊗ ℘) = ℕ ⊕ ℘.  

 

Proof. In the following, we shall prove (i), and (ii) − (iv) can be proved similarly. 
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(v) (ℕ ∧ ℘) ⊕ (ℕ ∨ ℘) = ℕ ⊕ ℘,  

 

Let (ℕ ∧℘) ⊕ (ℕ ∨ ℘) 

= 

 

[
 
 
 
 
 
 
√min(𝑇̃𝑎𝑖𝑗

3 , 𝑇̃𝑏𝑖𝑗

3 ) + max(𝑇̃𝑎𝑖𝑗
3 , 𝑇̃𝑏𝑖𝑗

3 ) − 𝑚𝑖𝑛 (𝑇̃𝑎𝑖𝑗
3 , 𝑇̃𝑏𝑖𝑗

3 ) .𝑚𝑎𝑥 (𝑇̃𝑎𝑖𝑗
3 , 𝑇̃𝑏𝑖𝑗

3 ) ,
 

3

 

max(𝐼𝑎𝑖𝑗
𝐼𝑏𝑖𝑗

) , min(𝐼𝑎𝑖𝑗
𝐼𝑏𝑖𝑗

) ,

max(𝐹̃𝑎𝑖𝑗
𝐹̃𝑏𝑖𝑗

) ,min (𝐹̃𝑎𝑖𝑗
𝐹̃𝑏𝑖𝑗

) ]
 
 
 
 
 
 

𝑚𝑥𝑛

 

= (〈√𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3𝟑
, 𝐼𝑎𝑖𝑗

𝐼𝑏𝑖𝑗
, 𝐹̃𝑎𝑖𝑗

𝐹̃𝑏𝑖𝑗
〉)

𝑚𝑥𝑛

 

= ℕ ⊕ ℘ 

 

Theorem 3.8. If ℕ, ℘ ∈ 𝐹𝑁𝑚𝑥𝑛, then  

(i) (ℕ ⊕  ℘)𝐶= ℕ𝐶⊗ ℘𝐶,  

(ii) (ℕ ⊗  ℘)𝐶 = ℕ𝐶⊕ ℘𝐶, 

(iii) (ℕ ⊕  ℘)𝐶≤ ℕ𝐶⊕ ℘𝐶,    

(iv) (ℕ ⊗  ℘)𝐶 ≥ ℕ𝐶 ⊗ ℘𝐶.  

 

Proof.  

              (i)   (ℕ ⊕  ℘)𝐶= ℕ𝐶⊗ ℘𝐶 

 

 (ℕ ⊕  ℘)𝐶  

=(〈𝐹̃𝑎𝑖𝑗
𝐹̃𝑏𝑖𝑗

, √𝐼𝑎𝑖𝑗
3 + 𝐼𝑏𝑖𝑗

3 − 𝐼𝑎𝑖𝑗
3 𝐼𝑏𝑖𝑗

3 ,
𝟑

√𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3𝟑 〉)
𝒎𝒙𝒏

 

 

=(〈𝐹̃𝑎𝑖𝑗
, 𝐼𝑎𝑖𝑗

, 𝑇̃𝑎𝑖𝑗
〉⊗(〈𝐹̃𝑏𝑖𝑗

, 𝐼𝑏𝑖𝑗
, 𝑇̃𝑏𝑖𝑗

〉  

 

= ℕ𝐶⊗ ℘𝐶 

 

(ii) (ℕ ⊗  ℘)𝐶  = ℕ𝐶⊕ ℘𝐶,  

 

= (〈𝑇̃𝑎𝑖𝑗
𝑇̃𝑏𝑖𝑗

, √𝐼𝑎𝑖𝑗
3 + 𝐼𝑏𝑖𝑗

3 − 𝐼𝑎𝑖𝑗
3 𝐼𝑏𝑖𝑗

33
, √𝐹̃𝑎𝑖𝑗

3 + 𝐹̃𝑏𝑖𝑗

3 − 𝐹̃𝑎𝑖𝑗
3 𝐹̃𝑏𝑖𝑗

33 〉)
𝑐

 

 =(〈𝐹̃𝑎𝑖𝑗
𝐹̃𝑏𝑖𝑗

, √𝐼𝑎𝑖𝑗
3 + 𝐼𝑏𝑖𝑗

3 − 𝐼𝑎𝑖𝑗
3 𝐼𝑏𝑖𝑗

3 ,
𝟑

√𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3𝟑 〉)
𝒎𝒙𝒏

 

            

             =(〈𝐹̃𝑎𝑖𝑗
, 𝐼𝑎𝑖𝑗

, 𝑇̃𝑎𝑖𝑗
〉 ⊕ (〈𝐹̃𝑏𝑖𝑗

, 𝐼𝑏𝑖𝑗
, 𝑇̃𝑏𝑖𝑗

〉) 
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= ℕ𝐶⊕ ℘𝐶 

 

(iii) (ℕ ⊕  ℘)𝐶≤ ℕ𝐶⊕ ℘𝐶,    

 

           (ℕ ⊕  ℘)𝐶 

 

= (〈√𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3𝟑
, 𝐼𝑎𝑖𝑗

𝐼𝑏𝑖𝑗
, 𝐹̃𝑎𝑖𝑗

𝐹̃𝑏𝑖𝑗
〉)

𝒎𝒙𝒏

𝒄

 

= (〈𝐹̃𝑎𝑖𝑗
𝐹̃𝑏𝑖𝑗

, √𝐼𝑎𝑖𝑗
3 + 𝐼𝑏𝑖𝑗

3 − 𝐼𝑎𝑖𝑗
3 𝐼𝑏𝑖𝑗

3 ,
𝟑

√𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3𝟑 〉)
𝒎𝒙𝒏

 

 

ℕ𝐶⊕ ℘𝐶 

= (𝐹̃𝑎𝑖𝑗
𝐹̃𝑏𝑖𝑗

, √𝐼𝑎𝑖𝑗
3 + 𝐼𝑏𝑖𝑗

3 − 𝐼𝑎𝑖𝑗
3 𝐼𝑏𝑖𝑗

3 ,
𝟑

√𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3𝟑
)

𝒎𝒙𝒏

 

=(√𝐹̃𝑎𝑖𝑗
3 + 𝐹̃𝑏𝑖𝑗

3 − 𝐹̃𝑎𝑖𝑗
3 𝐹̃𝑏𝑖𝑗

3𝟑
,   𝐼𝑎𝑖𝑗

𝐼𝑏𝑖𝑗
 , 𝑇̃𝑎𝑖𝑗

𝑇̃𝑏𝑖𝑗
)

𝒎𝒙𝒏

 

𝐹̃𝑎𝑖𝑗
𝐹̃𝑏𝑖𝑗

 ≤ √𝐹̃𝑎𝑖𝑗
3 + 𝐹̃𝑏𝑖𝑗

3 − 𝐹̃𝑎𝑖𝑗
3 𝐹̃𝑏𝑖𝑗

3 ,
3

 

 

√𝐼𝑎𝑖𝑗
3 + 𝐼𝑏𝑖𝑗

3 − 𝐼𝑎𝑖𝑗
3 𝐼𝑏𝑖𝑗

33
 ≥ 𝐼𝑎𝑖𝑗

𝐼𝑏𝑖𝑗
 

√𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

33
 ≥ 𝑇̃𝑎𝑖𝑗

𝑇̃𝑏𝑖𝑗
 

Hence (ℕ ⊕  ℘)𝐶≤ ℕ𝐶  ⊕ ℘𝐶,   

 

 

(ii) (ℕ ⊗  ℘)𝐶 ≥ ℕ𝐶 ⊗ ℘𝐶.  

ℕ ⊗  ℘ = (〈𝑇̃𝑎𝑖𝑗
𝑇̃𝑏𝑖𝑗

, √𝐼𝑎𝑖𝑗
3 + 𝐼𝑏𝑖𝑗

3 − 𝐼𝑎𝑖𝑗
3 𝐼𝑏𝑖𝑗

33
, √𝐹̃𝑎𝑖𝑗

3 + 𝐹̃𝑏𝑖𝑗

3 − 𝐹̃𝑎𝑖𝑗
3 𝐹̃𝑏𝑖𝑗

33 〉)
𝒎𝒙𝒏

 

 

 

(ℕ ⊗  ℘)𝐶   = (〈𝑇̃𝑎𝑖𝑗
𝑇̃𝑏𝑖𝑗

, √𝐼𝑎𝑖𝑗
3 + 𝐼𝑏𝑖𝑗

3 − 𝐼𝑎𝑖𝑗
3 𝐼𝑏𝑖𝑗

33
, √𝐹̃𝑎𝑖𝑗

3 + 𝐹̃𝑏𝑖𝑗

3 − 𝐹̃𝑎𝑖𝑗
3 𝐹̃𝑏𝑖𝑗

33 〉)
𝑐

𝑚𝑥𝑛

 

=(〈√𝐹̃𝑎𝑖𝑗
3 + 𝐹̃𝑏𝑖𝑗

3 − 𝐹̃𝑎𝑖𝑗
3 𝐹̃𝑏𝑖𝑗

3𝟑
, 𝐼𝑎𝑖𝑗

𝐼𝑏𝑖𝑗
, 𝑇̃𝑎𝑖𝑗

𝑇̃𝑏𝑖𝑗
〉)

𝒎𝒙𝒏

 

 

ℕ𝐶 ⊗ ℘𝐶 =(〈𝐹̃𝑎𝑖𝑗
, 𝐼𝑎𝑖𝑗

, 𝑇̃𝑎𝑖𝑗
〉 ⊗ (〈𝐹̃𝑏𝑖𝑗

, 𝐼𝑏𝑖𝑗
, 𝑇̃𝑏𝑖𝑗

〉) 

Since  

√𝐹̃𝑎𝑖𝑗
3 + 𝐹̃𝑏𝑖𝑗

3 − 𝐹̃𝑎𝑖𝑗
3 𝐹̃𝑏𝑖𝑗

33
 ≥ 𝐹̃𝑎𝑖𝑗

 𝐹̃𝑏𝑖𝑗
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𝐼𝑎𝑖𝑗
𝐼𝑏𝑖𝑗

≤ √𝐼𝑎𝑖𝑗
3 + 𝐼𝑏𝑖𝑗

3 − 𝐼𝑎𝑖𝑗
3 𝐼𝑏𝑖𝑗

33
 

𝑇̃𝑎𝑖𝑗
𝑇̃𝑏𝑖𝑗

≤ √𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

33
 

Hence  (ℕ ⊗  ℘)𝐶 ≥ ℕ𝐶  ⊗ ℘𝐶 

 

Theorem 3.9 . Let ℕ,℘  ∈ 𝐹𝑁𝑚𝑥𝑛, then 

 

(i). (ℕ𝐶)𝐶= ℕ, 

(ii). (ℕ ∨  ℘)𝐶 =ℕ𝐶∧ ℘𝐶, 

(iii). (ℕ ∧  ℘)𝐶= ℕ𝐶∨ ℘𝐶. 

 

Proof.  

(i) ((ℕ𝐶)𝐶  = ℕ,  

 

 ℕ = (〈𝑇̃𝑎𝑖𝑗
, 𝐼𝑎𝑖𝑗

, 𝐹̃𝑎𝑖𝑗
〉 

 ℕ𝐶    =(〈𝑇̃𝑎𝑖𝑗
, 𝐼𝑎𝑖𝑗

, 𝐹̃𝑎𝑖𝑗
〉)𝑐 = 〈𝐹̃𝑎𝑖𝑗

, 𝐼𝑎𝑖𝑗
, 𝑇̃𝑎𝑖𝑗

〉 

(ℕ𝐶)𝐶= (〈𝐹̃𝑎𝑖𝑗
, 𝐼𝑎𝑖𝑗

, 𝑇̃𝑎𝑖𝑗
〉𝑐= 〈𝑇̃𝑎𝑖𝑗

, 𝐼𝑎𝑖𝑗
, 𝐹̃𝑎𝑖𝑗

〉 

 

(ii) (ℕ ∨  ℘)𝐶= ℕ𝐶∧ ℘𝐶, 

 

ℕ ∨  ℘ =(〈max(𝑇̃𝑎𝑖𝑗
, 𝑇̃𝑏𝑖𝑗

), min(𝐼𝑎𝑖𝑗
, 𝐼𝑏𝑖𝑗

),min(𝐹̃𝑎𝑖𝑗
, 𝐹̃𝑏𝑖𝑗

)〉)
𝑚𝑥𝑛

 

(ℕ ∨  ℘)𝐶 =(〈max(𝑇̃𝑎𝑖𝑗
, 𝑇̃𝑏𝑖𝑗

), min(𝐼𝑎𝑖𝑗
, 𝐼𝑏𝑖𝑗

),min(𝐹̃𝑎𝑖𝑗
, 𝐹̃𝑏𝑖𝑗

)〉)
𝑚𝑥𝑛

𝑐

 

              =(〈min(𝐹̃𝑎𝑖𝑗
, 𝐹̃𝑏𝑖𝑗

),max(𝐼𝑎𝑖𝑗
, 𝐼𝑏𝑖𝑗

),max(𝑇̃𝑎𝑖𝑗
, 𝑇̃𝑏𝑖𝑗

)〉)
𝑚𝑥𝑛

 

        ℕ𝐶  = 〈𝐹̃𝑎𝑖𝑗
, 𝐼𝑎𝑖𝑗

, 𝑇̃𝑎𝑖𝑗
〉 

       ℘𝐶  = 〈𝐹̃𝑏𝑖𝑗
, 𝐼𝑏𝑖𝑗

, 𝑇̃𝑏𝑖𝑗
〉 

ℕ𝐶∧ ℘𝐶= (〈min(𝐹̃𝑎𝑖𝑗
, 𝐹̃𝑏𝑖𝑗

),max(𝐼𝑎𝑖𝑗
, 𝐼𝑏𝑖𝑗

),max(𝑇̃𝑎𝑖𝑗
, 𝑇̃𝑏𝑖𝑗

) 〉)
𝑚𝑥𝑛

 

 

Hence (ℕ ∨  ℘)𝐶= ℕ𝐶∧ ℘𝐶.  

 

(iii) (ℕ ∧  ℘)𝐶= ℕ𝐶∨ ℘𝐶. 

 

ℕ ∧  ℘=(〈min(𝑇̃𝑎𝑖𝑗
, 𝑇̃𝑏𝑖𝑗

),max(𝐼𝑎𝑖𝑗
, 𝐼𝑏𝑖𝑗

), max(𝐹̃𝑎𝑖𝑗
, 𝐹̃𝑏𝑖𝑗

)〉)
𝑚𝑥𝑛

 

(ℕ ∧  ℘) 𝐶=(〈min(𝑇̃𝑎𝑖𝑗
, 𝑇̃𝑏𝑖𝑗

),max(𝐼𝑎𝑖𝑗
, 𝐼𝑏𝑖𝑗

),max(𝐹̃𝑎𝑖𝑗
, 𝐹̃𝑏𝑖𝑗

)〉)
𝑐

𝑚𝑥𝑛
 

             = (〈max(𝐹̃𝑎𝑖𝑗
, 𝐹̃𝑏𝑖𝑗

), min(𝐼𝑎𝑖𝑗
, 𝐼𝑏𝑖𝑗

),min(𝑇̃𝑎𝑖𝑗
, 𝑇̃𝑏𝑖𝑗

)〉)
𝑚𝑥𝑛
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        ℕ𝐶= 〈𝐹̃𝑎𝑖𝑗
, 𝐼𝑎𝑖𝑗

, 𝑇̃𝑎𝑖𝑗
〉 

       ℘𝐶  = 〈𝐹̃𝑏𝑖𝑗
, 𝐼𝑏𝑖𝑗

, 𝑇̃𝑏𝑖𝑗
〉 

 

ℕ𝐶∨ ℘𝐶 = (〈max(𝐹̃𝑎𝑖𝑗
, 𝐹̃𝑏𝑖𝑗

),min(𝐼𝑎𝑖𝑗
, 𝐼𝑏𝑖𝑗

), min(𝑇̃𝑎𝑖𝑗
, 𝑇̃𝑏𝑖𝑗

) 〉)
𝑚𝑥𝑛

 

                 =(ℕ ∧  ℘) 𝐶  

Within this section, we will show that the operations of scalar multiplication and exponentiation 

presented in definitions 3.3, 3.4, and 3.5 are well-defined for Fermatean neutrosophic matrices. 

  Theorem 3.10 For ℕ, ℘ ∈ 𝐹𝑁𝑚𝑥𝑛 and n, n1, n2 > 0, we have  

(i) n(ℕ ⊕ ℘) = n ℕ ⊕ n℘,  

(ii) n1 ℕ ⊕ n2 ℕ = (n1 + n2) ℕ, 

(iii)  (ℕ ⊗  ℘)𝑛= ℕ𝑛 ⊗ ℘𝑛 ,  

(iv) ℕ𝑛1⊗ ℕ𝑛2 = ℕ𝑛1+𝑛2 

 

Proof. We will consider two Fermatean neutrosophic matrices ℕ and ℘ and positive real numbers 

n, 𝑛1, and 𝑛2 . As stated in the definition, the following can be obtained. 

(i) n(ℕ ⊕ ℘) = n ℕ ⊕ n℘,  

= n (〈√𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3𝟑
, 𝐼𝑎𝑖𝑗

𝐼𝑏𝑖𝑗
, 𝐹̃𝑎𝑖𝑗

𝐹̃𝑏𝑖𝑗
〉)

𝑚𝑥𝑛

 

             =(〈√1 − [1 − 𝑇̃𝑎𝑖𝑗
3 ][1 − 𝑇̃𝑏𝑖𝑗

3 ]
𝑛3
, [𝐼𝑎𝑖𝑗

𝐼𝑏𝑖𝑗
]
𝑛

, [𝐹̃𝑎𝑖𝑗
𝐹̃𝑏𝑖𝑗

]
𝑛
〉)

𝑚𝑥𝑛

 

             = (〈√1 − [1 − 𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3 ]
𝑛3
, [𝐼𝑎𝑖𝑗

𝐼𝑏𝑖𝑗
]
𝑛

, [𝐹̃𝑎𝑖𝑗
𝐹̃𝑏𝑖𝑗

]
𝑛
〉)

𝑚𝑥𝑛

 

n ℕ ⊕ n℘ 

           = (〈(√1 − [1 − 𝑇̃𝑎𝑖𝑗
3 ]𝑛

3
, [𝐼𝑎𝑖𝑗

]
𝑛

, [𝐹̃𝑎𝑖𝑗
]
𝑛

) ⊕ (√1 − [1 − 𝑇̃𝑏𝑖𝑗

3 ]𝑛
3

, [𝐼𝑏𝑖𝑗
]
𝑛

, [𝐹̃𝑏𝑖𝑗
]
𝑛

)〉)
𝑚𝑥𝑛

 

= 

=[
√(1 − [1 − 𝑇̃𝑎𝑖𝑗

3 ]
𝑛

+ 1 − [1 − 𝑇̃𝑏𝑖𝑗

3 ]
𝑛

) − (1 − [1 − 𝑇̃𝑎𝑖𝑗
3 ]

𝑛

)(1 − [1 − 𝑇̃𝑏𝑖𝑗

3 ]
𝑛

)
3

   

[𝐼𝑎𝑖𝑗
𝐼𝑏𝑖𝑗

]
𝑛

, [𝐹̃𝑎𝑖𝑗
𝐹̃𝑏𝑖𝑗

]
𝑛

]

𝑚𝑥𝑛

 

 

=(〈√1 − [1 − 𝑇̃𝑎𝑖𝑗
3 ][1 − 𝑇̃𝑏𝑖𝑗

3 ]
𝑛3
, [𝐼𝑎𝑖𝑗

𝐼𝑏𝑖𝑗
]
𝑛

, [𝐹̃𝑎𝑖𝑗
𝐹̃𝑏𝑖𝑗

]
𝑛
〉)

𝑚𝑥𝑛

 

=(〈√1 − [1 − 𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3 ]
𝑛3
, [𝐼𝑎𝑖𝑗

𝐼𝑏𝑖𝑗
]
𝑛

, [𝐹̃𝑎𝑖𝑗
𝐹̃𝑏𝑖𝑗

]
𝑛
〉)

𝑚𝑥𝑛

 

= n(ℕ ⊕ ℘) 

 

(ii) Let  n1 ℕ ⊕ n2 ℕ = (n1 + n2) ℕ, 

n1 ℕ ⊕ n2 ℕ 

 

=(〈(√1 − [1 − 𝑇̃𝑎𝑖𝑗
3 ]𝑛1

3
, [𝐼𝑎𝑖𝑗

]
𝑛1

, [𝐹̃𝑎𝑖𝑗
]
𝑛1

) ⊕ (√1 − [1 − 𝑇̃𝑎𝑖𝑗
3 ]𝑛2

3
, [𝐼𝑎𝑖𝑗

]
𝑛2

, [𝐹̃𝑎𝑖𝑗
]
𝑛2

)〉)
𝑚𝑥𝑛

 



Neutrosophic Sets and Systems, Vol. 58, 2023     588  

 

 

Said Broumi and S.krishna Prabha,, Fermatean Neutrosophic Matrices and Their Basic Operations 

 

= [
√(1 − [1 − 𝑇̃𝑎𝑖𝑗

3 ]
𝑛1

+ 1 − [1 − 𝑇̃𝑎𝑖𝑗
3 ]

𝑛2
) − (1 − [1 − 𝑇̃𝑎𝑖𝑗

3 ]
𝑛1

)(1 − [1 − 𝑇̃𝑎𝑖𝑗
3 ]

𝑛2
)

3
   

[𝐼𝑎𝑖𝑗
]
𝑛1

[𝐼𝑎𝑖𝑗
]
𝑛2

, [𝐹̃𝑎𝑖𝑗
]
𝑛1

[𝐹̃𝑎𝑖𝑗
]
𝑛2

]

𝑚𝑥𝑛

 

 

 

= (〈√1 − [1 − 𝑇̃𝑎𝑖𝑗
3 ]𝑛1+𝑛2

3
, [𝐼𝑎𝑖𝑗

3 ]
𝑛1+𝑛2

, [𝐹̃𝑎𝑖𝑗
]
𝑛1+𝑛2

〉)
𝑚𝑥𝑛

 

(iii) 

(ℕ ⊗  ℘)𝑛 =

(

 〈
(𝑇̃𝑎𝑖𝑗

𝑇̃𝑏𝑖𝑗
)

𝑛

, √1 − [1 − 𝐼𝑎𝑖𝑗
3 + 𝐼𝑏𝑖𝑗

3 − 𝐼𝑎𝑖𝑗
3 𝐼𝑏𝑖𝑗

3 ]
𝑛3
,

√1 − [1 − 𝐹̃𝑎𝑖𝑗
3 + 𝐹̃𝑏𝑖𝑗

3 − 𝐹̃𝑎𝑖𝑗
3 𝐹̃𝑏𝑖𝑗

3 ]
𝑛3

〉

)

 

𝒎𝒙𝒏

 

 

=

(

 〈
(𝑇̃𝑎𝑖𝑗

𝑇̃𝑏𝑖𝑗
)

𝑛

, √1 − [1 − 𝐼𝑎𝑖𝑗
3 ]

𝑛

[1 − 𝐼𝑏𝑖𝑗

3 ]
𝑛3
,

√1 − [1 − 𝐹̃𝑎𝑖𝑗
3 ]

𝑛

[1 − 𝐹̃𝑏𝑖𝑗

3 ]
𝑛3

〉

)

 

𝒎𝒙𝒏

 

 

 ℕ𝑛⊗ ℘𝑛  

=

[
 
 
 (𝑇̃𝑎𝑖𝑗

𝑇̃𝑏𝑖𝑗
)

𝑛

, √1 − [1 − 𝐼𝑎𝑖𝑗
3 ]

𝑛

+ 1 − [1 − 𝐼𝑏𝑖𝑗

3 ]
𝑛

− (1 − [1 − 𝐼𝑎𝑖𝑗
3 ]

𝑛

) (1 − [1 − 𝐼𝑏𝑖𝑗

3 ]
𝑛

)
3

√1 − [1 − 𝐹̃𝑎𝑖𝑗
3 ]

𝑛

+ 1 − [1 − 𝐹̃𝑏𝑖𝑗

3 ]
𝑛

− (1 − [1 − 𝐹̃𝑎𝑖𝑗
3 ]

𝑛

)(1 − [1 − 𝐹̃𝑏𝑖𝑗

3 ]
𝑛

)
3

]
 
 
 

𝑚𝑥𝑛

 

 

= 

(

 〈
(𝑇̃𝑎𝑖𝑗

𝑇̃𝑏𝑖𝑗
)

𝑛

, √1 − [1 − 𝐼𝑎𝑖𝑗
3 ]

𝑛

[1 − 𝐼𝑏𝑖𝑗

3 ]
𝑛3
,

√1 − [1 − 𝐹̃𝑎𝑖𝑗
3 ]

𝑛

[1 − 𝐹̃𝑏𝑖𝑗

3 ]
𝑛3

〉

)

 

𝑚𝑥𝑛

 

= (ℕ ⊗  ℘)𝑛 

 

iv) ℕ𝑛1⊗ ℕ𝑛2 = ℕ(𝑛1+𝑛2) 

 

ℕ𝑛1⊗ ℕ𝑛2 = 

 

[
 
 
 (𝑇̃𝑎𝑖𝑗

)
𝑛1+𝑛2

, √1 − [1 − 𝐼𝑎𝑖𝑗
3 ]

𝑛1

+ 1 − [1 − 𝐼𝑎𝑖𝑗
3 ]

𝑛2

− (1 − [1 − 𝐼𝑎𝑖𝑗
3 ]

𝑛1
) (1 − [1 − 𝐼𝑎𝑖𝑗

3 ]
𝑛2

)
3

√1 − [1 − 𝐹̃𝑎𝑖𝑗
3 ]

𝑛1

+ 1 − [1 − 𝐹̃𝑎𝑖𝑗
3 ]

𝑛2

− (1 − [1 − 𝐹̃𝑎𝑖𝑗
3 ]

𝑛1
) (1 − [1 − 𝐹̃𝑎𝑖𝑗

3 ]
𝑛2

)
3

]
 
 
 

𝑚𝑥𝑛
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=

(

 〈
(𝑇̃𝑎𝑖𝑗

)
𝑛1+𝑛2

, √1 − [1 − 𝐼𝑎𝑖𝑗
3 ]

𝑛1+𝑛23

,

√1 − [1 − 𝐹̃𝑎𝑖𝑗
3 ]

𝑛1+𝑛23

〉

)

  = ℕ(𝑛1+𝑛2) 

 

As a result, it is proven. 

 

Theorem 3.11. Given that ℕ and ℘ are matrices of size m×n and n>0, the following holds. 

 

(i) nℕ ≤ n℘, 

(ii) ℕ𝑛 ≤ ℘𝑛 

 

Proof: 

Suppose    ℕ ≤ ℘  

 ⇒ 𝑇̃𝑎𝑖𝑗
≤ 𝑇̃𝑏𝑖𝑗

 and 𝐼𝑎𝑖𝑗
≥ 𝐼𝑏𝑖𝑗

and 𝐹̃𝑎𝑖𝑗
≥ 𝐹̃𝑏𝑖𝑗

for all i,j. 

⇒ √1 − [1 − 𝑇̃𝑎𝑖𝑗
3 ]𝑛

3
≤ √1 − [1 − 𝑇̃𝑏𝑖𝑗

3 ]𝑛
3

 

 [𝐼𝑎𝑖𝑗
3 ]

𝑛

≥ [𝐼𝑏𝑖𝑗

3 ]
𝑛

 and  [𝐹̃𝑎𝑖𝑗
3 ]

𝑛

≥ [𝐹̃𝑎𝑖𝑗
3 ]

𝑛

 ,for all i,j. 

 

ii) also [𝐹̃𝑎𝑖𝑗
3 ]

𝑛

≥ [𝐹̃𝑏𝑖𝑗

3 ]
𝑛

,for all i,j. 

√1 − [1 − 𝐼𝑎𝑖𝑗
3 ]𝑛

3
≤ √1 − [1 − 𝐼𝑏𝑖𝑗

3 ]𝑛
3

, 

√1 − [1 − 𝐹̃𝑎𝑖𝑗
3 ]𝑛

3
≤ √1 − [1 − 𝐹̃𝑏𝑖𝑗

3 ]𝑛
3

  for all i,j. 

 

Theorem 3.12. Given that ℕ and ℘ are matrices of size m×n and n>0, the following holds.  

(i) n(ℕ ∧ ℘) = n ℕ ∧ n℘,  

(ii)  n(ℕ ∨ ℘) = n ℕ ∨ n℘ 

Proof  

(i) n(ℕ ∧ ℘)  

               = (〈√1 − [1 − min ( 𝑇̃𝑎𝑖𝑗
3 , 𝑇̃𝑏𝑖𝑗

3 )]
𝑛𝟑
, max(|𝐼𝑎𝑖𝑗

|
𝑛

, |𝐼𝑏𝑖𝑗
|
𝑛

) , max (|𝐹̃𝑎𝑖𝑗
|
𝑛

, |𝐹̃𝑏𝑖𝑗
|
𝑛

)〉)
𝑚𝑥𝑛

 

= [√1 − [max(1 − 𝑇̃𝑎𝑖𝑗
3 , 1 − 𝑇̃𝑏𝑖𝑗

3 )  ]
𝑛𝟑
,max(|𝐼𝑎𝑖𝑗

|
𝑛

, |𝐼𝑏𝑖𝑗
|
𝑛

) ,max (|𝐹̃𝑎𝑖𝑗
|
𝑛

, |𝐹̃𝑏𝑖𝑗
|
𝑛

)]
𝑚𝑥𝑛

 

= [√1 − (max([1 − 𝑇̃𝑎𝑖𝑗
3 ]

n

, [1 − 𝑇̃𝑏𝑖𝑗

3 ]
n

)
𝟑

, max(|𝐼𝑎𝑖𝑗
|
𝑛

, |𝐼𝑏𝑖𝑗
|
𝑛

) , max (|𝐹̃𝑎𝑖𝑗
|
𝑛

, |𝐹̃𝑏𝑖𝑗
|
𝑛

)]
𝑚𝑥𝑛

 

 

= [max(√1 − [1 − 𝑇̃𝑎𝑖𝑗
3 ]

n3
, √1 − [1 − 𝑇̃𝑏𝑖𝑗

3 ]
n3
) , max(|𝐼𝑎𝑖𝑗

|
𝑛

, |𝐼𝑏𝑖𝑗
|
𝑛

) ,max (|𝐹̃𝑎𝑖𝑗
|
𝑛

, |𝐹̃𝑏𝑖𝑗
|
𝑛

)]
𝑚𝑥𝑛
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= n ℕ ∧ n℘ 

 

Hence, n(ℕ ∧ ℘) = n ℕ ∧ n℘,  

,  

Similarly we can prove n(ℕ ∨ ℘) = nℕ ∨ n℘ 

 

 Theorem 3.13. For ℕ, ℘ ∈ 𝐹𝑁𝑚𝑥𝑛 and n > 0, the following holds 

(i) (ℕ ⋀ ℘)𝑛 = ℕ𝑛⋀℘𝑛,  

(ii) (ℕ ⋁ ℘)𝑛 = ℕ𝑛⋁℘𝑛 

 

Let (ℕ ⋀ ℘)𝑛  

 

=

[
 
 
 min(|𝑇̃𝑎𝑖𝑗

|
𝑛

, |𝑇̃𝑏𝑖𝑗
|
𝑛

) , √1 − max([1 − 𝐼𝑎𝑖𝑗
3 ]

n

, [1 − 𝐼𝑏𝑖𝑗

3 ]
n

)
𝟑

,

√1 − max([1 − 𝐹̃𝑎𝑖𝑗
3 ]

n

, [1 − 𝐹̃𝑏𝑖𝑗

3 ]
n

)
𝟑

]
 
 
 

𝑚𝑥𝑛

 

= 

[
 
 
 min(|𝑇̃𝑎𝑖𝑗

|
𝑛

, |𝑇̃𝑏𝑖𝑗
|
𝑛

) , √1 − [1 − min( [1 − 𝐼𝑎𝑖𝑗
3 ]

n

, [1 − 𝐼𝑏𝑖𝑗

3 ]
n

)]
𝟑

,

√1 − [1 − min( [1 − 𝐹̃𝑎𝑖𝑗
3 ]

n

, [1 − 𝐹̃𝑏𝑖𝑗

3 ]
n

)]
𝟑

]
 
 
 

𝑚𝑥𝑛

 

 

= 

[
 
 
 
 
 
 min(|𝑇̃𝑎𝑖𝑗

|
𝑛

, |𝑇̃𝑏𝑖𝑗
|
𝑛

) ,

𝑚𝑎𝑥 (√1 − [1 − 𝐼𝑎𝑖𝑗
3 ]

n3
, √1 − [1 − 𝐼𝑏𝑖𝑗

3 ]
n3
)

max(√1 − [1 − 𝐹̃𝑎𝑖𝑗
3 ]

n3
, √1 − [1 − 𝐹̃𝑏𝑖𝑗

3 ]
n3
)
]
 
 
 
 
 
 

𝑚𝑥𝑛

 

 

ℕ𝑛⋀ ℘𝑛=[(|𝑇̃𝑎𝑖𝑗
|
𝑛

, √1 − [1 − 𝐼𝑎𝑖𝑗
3 ]

n3
, √1 − [1 − 𝐼𝑏𝑖𝑗

3 ]
n3
)⋀(|𝑇̃𝑏𝑖𝑗

|
𝑛

, √1 − [1 − 𝐹̃𝑎𝑖𝑗
3 ]

n3
, √1 − [1 − 𝐹̃𝑏𝑖𝑗

3 ]
n3
)] 

  

 

 = 

[
 
 
 
 
 
 min (|𝑇̃𝑎𝑖𝑗

|
𝑛

, |𝑇̃𝑏𝑖𝑗
|
𝑛

) ,

𝑚𝑎𝑥 (√1 − [1 − 𝐼𝑎𝑖𝑗
3 ]

n3
, √1 − [1 − 𝐼𝑏𝑖𝑗

3 ]
n3
)

max(√1 − [1 − 𝐹̃𝑎𝑖𝑗
3 ]

n3
, √1 − [1 − 𝐹̃𝑏𝑖𝑗

3 ]
n3
)
]
 
 
 
 
 
 

𝑚𝑥𝑛

 

= (ℕ ⋀ ℘)𝑛 

 

Hence (ℕ ⋀ ℘)𝑛 = ℕ𝑛⋀ ℘𝑛 

 

Similarly we can prove (ℕ ⋁℘)𝑛 = ℕ𝑛⋁℘𝑛 
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Theorem 3.14.  

For ℕ, ℘ ∈ 𝐹𝑁𝑚𝑥𝑛and n > 0, we have (ℕ ⊕  ℘)𝑛 ≠ ℕ𝑛 ⊕ ℘𝑛   

Proof: Let  (ℕ ⊕  ℘)𝑛 

 ℕ ⊕  ℘ = (〈√𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3𝟑
, 𝐼𝑎𝑖𝑗

𝐼𝑏𝑖𝑗
, 𝐹̃𝑎𝑖𝑗

𝐹̃𝑏𝑖𝑗
〉)

𝒎𝒙𝒏

 

 

 (ℕ ⊕  ℘)𝑛 

= (〈(√𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

33
)

𝑛

, √1 − [1 − 𝐼𝑎𝑖𝑗
3 𝐼𝑏𝑖𝑗

3 ]
n3
, √1 − [1 − 𝐹̃𝑎𝑖𝑗

3 𝐹̃𝑏𝑖𝑗

3 ]
n3
〉)

𝑚𝑥𝑛

 

 

ℕ𝑛 = (〈  |𝑇̃𝑎𝑖𝑗
|
𝑛

  , √1 − [1 − 𝐼𝑎𝑖𝑗
3 ]

n3
, √1 − [1 − 𝐹̃𝑎𝑖𝑗

3 ]
n3
〉)

𝑚𝑥𝑛

 

 

℘𝑛 = (〈|𝑇̃𝑏𝑖𝑗

3 |
𝑛

, √1 − [1 − 𝐼𝑏𝑖𝑗

3 ]
n3
, √1 − [1 − 𝐹̃𝑏𝑖𝑗

3 ]
n3
〉)

𝑚𝑥𝑛

 

ℕ𝑛 ⊕ ℘𝑛 =

[
 
 
 
 √𝑇̃𝑎𝑖𝑗

3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3𝟑
, (√1 − [1 − 𝐼𝑎𝑖𝑗

3 ]
n3
)

𝒏

(√1 − [1 − 𝐼𝑏𝑖𝑗

3 ]
n3
)

𝒏

,

(√1 − [1 − 𝐹̃𝑎𝑖𝑗
3 ]

n3
)

𝒏

(√1 − [1 − 𝐹̃𝑏𝑖𝑗

3 ]
n3
)

𝒏

]
 
 
 
 

 𝑚𝑥𝑛  

Hence  (ℕ ⊕  ℘)𝑛 ≠ ℕ𝑛 ⊕ ℘𝑛 

 

4. A new operation (@) on Fermatean neutrosophic matrices 

 

Motivated by the existing operations presented in [29].A novel operation on Fermatean neutrosophic 

matrices, symbolized by (@), is presented along with the demonstration of its favorable 

characteristics. 

  

Definition 4.1 If ℕ = 〈𝑇̃𝑎𝑖𝑗
, 𝐼𝑎𝑖𝑗

, 𝐹̃𝑎𝑖𝑗
〉 and ℘=〈𝑇̃𝑏𝑖𝑗

, 𝐼𝑏𝑖𝑗
, 𝐹̃𝑏𝑖𝑗

〉are two Fermatean Neutrosophic Matrices 

,then the new operation of FNM is defined by  

 

 

ℕ @℘= [〈√
𝑇̃𝑎𝑖𝑗

3 +𝑇̃𝑏𝑖𝑗
3

𝟐
,

𝟑

√
𝐼𝑎𝑖𝑗
3 +𝐼𝑏𝑖𝑗

3

𝟐
,

𝟑

√
𝐹𝑎𝑖𝑗

3 +𝐹𝑏𝑖𝑗
3

𝟐

𝟑

 〉]

𝒎𝒙𝒏

 

Note : 

It is obvious that for any two Fermatean neutrosophic matrices ℕ and ℘, the matrix ℕ @℘ is also a 

Fermatean neutrosophic matrix. 

i.e., 0 ≤
𝑇̃𝑎𝑖𝑗

3 +𝑇̃𝑏𝑖𝑗
3

𝟐
+

𝐼𝑎𝑖𝑗
3 +𝐼𝑏𝑖𝑗

3

𝟐
+

𝐹𝑎𝑖𝑗
3 +𝐹𝑏𝑖𝑗

3

𝟐
 

           

≤
𝑇̃𝑎𝑖𝑗

3 + 𝐼𝑎𝑖𝑗
3 + 𝐹̃𝑎𝑖𝑗

3

𝟐
+

𝑇̃𝑏𝑖𝑗

3 + 𝐼𝑏𝑖𝑗

3 + 𝐹̃𝑏𝑖𝑗

3

𝟐
≤ 

1

2
+

1

2
= 1 
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Theorem 4.1. If ℕ is a Fermatean Neutrosophic Matrix, then ℕ @ ℕ = ℕ. 

 

Proof: Let ℕ @ ℕ = (〈√
𝑇̃𝑎𝑖𝑗

3 +𝑇̃𝑎𝑖𝑗
3

𝟐
,

𝟑
√

𝐼𝑎𝑖𝑗
3 +𝐼𝑎𝑖𝑗

3

𝟐
,

𝟑
√

𝐹̃𝑎𝑖𝑗
3 +𝐹𝑎𝑖𝑗

3

𝟐

𝟑

 〉) 

                              = (〈(√
𝑇̃𝑎𝑖𝑗

3 +𝑇̃𝑎𝑖𝑗
3

𝟐
  

𝟑

)

2

, (√
𝐼𝑎𝑖𝑗
3 +𝐼𝑎𝑖𝑗

3

𝟐
  

𝟑

)

2

, (√
𝐹̃𝑎𝑖𝑗

3 +𝐹𝑎𝑖𝑗
3

𝟐

𝟑

)

2

〉)

𝑚𝑥𝑛

 

=(〈(√
2𝑇̃𝑎𝑖𝑗

3

𝟐
  

𝟑

)

2

, (√
2𝐼𝑎𝑖𝑗

3

𝟐
  

𝟑

)

2

, (√
2𝐹̃𝑎𝑖𝑗

3

𝟐

𝟑

)

2

〉) = (〈𝑇̃𝑎𝑖𝑗
, 𝐼𝑎𝑖𝑗

, 𝐹̃𝑎𝑖𝑗
)〉)

𝑚𝑥𝑛
 

Since 𝑇̃𝑎𝑖𝑗
3 ≤ 𝑇̃𝑎𝑖𝑗

, 𝐼𝑎𝑖𝑗
3 ≤ 𝐼𝑎𝑖𝑗

, 𝐹̃𝑎𝑖𝑗
3 ≤ 𝐹̃𝑎𝑖𝑗

. 

 

Note 4.2 . if x, y ∈ [0, 1], then xy ≤ 
x + y 

2
 , 

x +y 

2
 ≤ x + y − xy. 

Theorem 4.2.  Let ℕ, ℘ ∈ 𝐹𝑁𝑚𝑥𝑛, then 

(i) (ℕ ⊕ ℘) ∨ (ℕ @ ℘) = ℕ ⊕ ℘,  

(ii) (ℕ ⊗ ℘) ∧ (ℕ @ ℘) = ℕ ⊗ ℘,  

(iii)  (ℕ ⊕ ℘) ∧ (ℕ @ ℘) = ℕ @ ℘,  

(iv)  (ℕ ⊗ ℘) ∨ (ℕ @ ℘) = ℕ @ ℘ 

Proof:  

(i) (ℕ ⊕ ℘) ∨ (ℕ @ ℘) = ℕ ⊕ ℘ 

Let (ℕ ⊕  ℘) ∨ (ℕ @ ℘) 

= 

[
 
 
 
 
 
 

𝑚𝑎𝑥 (√𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3𝟑
, √

𝑇̃𝑎𝑖𝑗
3 +𝑇̃𝑏𝑖𝑗

3

𝟐
  

𝟑

) ,

𝑚𝑖𝑛 (𝐼𝑎𝑖𝑗
𝐼𝑏𝑖𝑗

, √
𝐼𝑎𝑖𝑗
3 +𝐼𝑏𝑖𝑗

3

𝟐
  

𝟑

) ,𝑚𝑖𝑛 (𝐹̃𝑎𝑖𝑗
𝐹̃𝑏𝑖𝑗

, √
𝐹̃𝑎𝑖𝑗

3 +𝐹𝑏𝑖𝑗
3

𝟐
  

𝟑

)

]
 
 
 
 
 
 

𝑚𝑥𝑛

 

=[√𝑇̃𝑎𝑖𝑗
3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3𝟑
, 𝐼𝑎𝑖𝑗

𝐼𝑏𝑖𝑗
, 𝐹̃𝑎𝑖𝑗

𝐹̃𝑏𝑖𝑗
]
𝑚𝑥𝑛

 

= ℕ ⊕ ℘ 

 

(ii) (ℕ ⊗ ℘) ∧ (ℕ @ ℘) = ℕ ⊗℘  

 

Let (ℕ ⊗ ℘) ∧ (ℕ @ ℘) 

=  
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=

[
 
 
 
 
 
 

〈

𝑚𝑖𝑛 (𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3 , √
𝑇̃𝑎𝑖𝑗

3 +𝑇̃𝑏𝑖𝑗
3

𝟐
  

𝟑

) ,𝑚𝑎𝑥 (√𝐼𝑎𝑖𝑗
3 + 𝐼𝑏𝑖𝑗

3 − 𝐼𝑎𝑖𝑗
3 𝐼𝑏𝑖𝑗

3𝟑
, √

𝐼𝑎𝑖𝑗
3 +𝐼𝑏𝑖𝑗

3

𝟐
  

𝟑

)

𝑚𝑎𝑥 (√𝐹̃𝑎𝑖𝑗
3 + 𝐹̃𝑏𝑖𝑗

3 − 𝐹̃𝑎𝑖𝑗
3 𝐹̃𝑏𝑖𝑗

3𝟑
, √

𝐹𝑎𝑖𝑗
3 +𝐹𝑏𝑖𝑗

3

𝟐
  

𝟑

)

〉

]
 
 
 
 
 
 

𝑚𝑥𝑛

 

 

 

= [〈(〈𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3 , √𝐼𝑎𝑖𝑗
3 + 𝐼𝑏𝑖𝑗

3 − 𝐼𝑎𝑖𝑗
3 𝐼𝑏𝑖𝑗

33
, √𝐹̃𝑎𝑖𝑗

3 + 𝐹̃𝑏𝑖𝑗

3 − 𝐹̃𝑎𝑖𝑗
3 𝐹̃𝑏𝑖𝑗

33 〉)〉]
𝑚𝑥𝑛

  

= ℕ ⊗ ℘ 

 

 

(iii) (ℕ ⊕ ℘) ∧ (ℕ @ ℘) = ℕ @ ℘ 

Let (ℕ ⊕ ℘) ∧ (ℕ @ ℘) 

= 

[
 
 
 
 
 
 
 
 
 
 
𝑚𝑖𝑛 (√𝑇̃𝑎𝑖𝑗

3 + 𝑇̃𝑏𝑖𝑗

3 − 𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3𝟑
, √

𝑇̃𝑎𝑖𝑗
3 +𝑇̃𝑏𝑖𝑗

3

𝟐
  

𝟑

) ,

𝑚𝑎𝑥 (𝐼𝑎𝑖𝑗
𝐼𝑏𝑖𝑗

, √
𝐼𝑎𝑖𝑗
3 +𝐼𝑏𝑖𝑗

3

𝟐
  

𝟑

) ,

𝑚𝑎𝑥 (𝐹̃𝑎𝑖𝑗
𝐹̃𝑏𝑖𝑗

, √
𝐹̃𝑎𝑖𝑗

3 +𝐹𝑏𝑖𝑗
3

𝟐
  

𝟑

)

]
 
 
 
 
 
 
 
 
 
 

𝑚𝑥𝑛

 

 

 

 

 = (〈√
𝑇̃𝑎𝑖𝑗

3 +𝑇̃𝑏𝑖𝑗
3

𝟐
,

𝟑

√
𝐼𝑎𝑖𝑗
3 +𝐼𝑏𝑖𝑗

3

𝟐
,

𝟑

√
𝐹̃𝑎𝑖𝑗

3 +𝐹𝑏𝑖𝑗
3

𝟐

𝟑

〉)

𝑚𝑥𝑛

 = (ℕ @ ℘) 

 

 

(iv) (ℕ ⊗ ℘) ∨ (ℕ @ ℘) = ℕ @ ℘ 

Let (ℕ ⊗ ℘) ∨ (ℕ @ ℘) 

=

[
 
 
 
 
 
 

〈

𝑚𝑎𝑥 (𝑇̃𝑎𝑖𝑗
3 𝑇̃𝑏𝑖𝑗

3 , √
𝑇̃𝑎𝑖𝑗

3 +𝑇̃𝑏𝑖𝑗
3

𝟐
  

𝟑

) ,𝑚𝑖𝑛 (√𝐼𝑎𝑖𝑗
3 + 𝐼𝑏𝑖𝑗

3 − 𝐼𝑎𝑖𝑗
3 𝐼𝑏𝑖𝑗

3𝟑
, √

𝐼𝑎𝑖𝑗
3 +𝐼𝑏𝑖𝑗

3

𝟐
  

𝟑

)

𝑚𝑖𝑛(√𝐹̃𝑎𝑖𝑗
3 + 𝐹̃𝑏𝑖𝑗

3 − 𝐹̃𝑎𝑖𝑗
3 𝐹̃𝑏𝑖𝑗

3𝟑
, √

𝐹̃𝑎𝑖𝑗
3 +𝐹𝑏𝑖𝑗

3

𝟐
  

𝟑

)

〉

]
 
 
 
 
 
 

𝑚𝑥𝑛
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= (〈√
𝑇̃𝑎𝑖𝑗

3 +𝑇̃𝑏𝑖𝑗
3

𝟐
,

𝟑

√
𝐼𝑎𝑖𝑗
3 +𝐼𝑏𝑖𝑗

3

𝟐
,

𝟑

√
𝐹𝑎𝑖𝑗

3 +𝐹𝑏𝑖𝑗
3

𝟐

𝟑

〉)

𝑚𝑥𝑛

 = (ℕ @ ℘) 

 

 

Hence, (ℕ ⊗ ℘) ∨ (ℕ @ ℘) = ℕ @ ℘ 

5. Conclusion  

This research aims to enrich the domain of neutrosophic matrix theory and neutrosophic logic by 

investigating Fermatean neutrosophic matrices (FNMs), a novel approach to handling uncertainty. 

The paper study some fundamental algebraic operations on Fermatean neutrosophic matrices. The 

Fermatean neutrosophic matrices considered as a generalization of Fermatean fuzzy matrices, 

intuitionistic fuzzy matrices, Pythagorean fuzzy matrices, and Pythagorean neutrosophic matrices. 

The paper shows that the properties of Fermatean neutrosophic matrices are consistent with the 

properties of the standard operations. To conclude, a novel operation (@) on Fermatean neutrosophic 

matrices is defined and distributive rules are examined. In the upcoming, it will be significant to 

probe how the suggested aggregating operators of FNMs might be used in decision-making problem, 

Information fusion, and Operations research under neutrosophic environment. 
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Abstract: The goal of this paper is to find a formula through which we find all the values of the 

plithogenic functions. we found this formula and proved it, in addition to providing a definition of 

the exponential, logarithmic, trigonometric plithogenic function. Also, the absolute value of the 

plithogenic number was defined. 

 

Keywords: plithogenic functions, plithogenic number, plithogenic exponential. 

1. Introduction 

The genesis, origination, formation, development, and evolution of new entities through 

dynamics of contradictory and/or neutral and/or noncontradictory multiple old entities is known as 

plithogenic. Plithogeny advocates for the integration of theories from several fields. 

We use numerous "knowledges" from domains like soft sciences, hard sciences, arts and 

literature theories, etc. as "entities" in this study, this is what Smarandache introduced, as he 

presented a study on Plithogeny, Plithogenic Set, Logic, Probability, and Statistics [2], in addition to 

presenting Introduction to the Symbolic Plithogenic Algebraic Structures (revisited), through which 

he discussed several ideas, including mathematical operations on Plithogenic numbers [1]. Also, An 

Overview of Plithogenic Set and Symbolic Plithogenic Algebraic Structures was discussed by him [3]. 

It is thought that the symbolic n-plithogenic sets are a good place to start when developing algebraic 

extensions for other classical structures including rings, vector spaces, modules, and equations [4-5-

6-7]. 

 

   Paper is divided into four parts. provides an introduction in the first portion, which includes a 

review of Plithogenic science. A few definitions of a Plithogenic and operations with plithogenic 

numbers are covered in the second section. the third section defined plithogenic functions. The 

paper's conclusion is provided in the fourth section. 

2. Preliminaries 

2.1. Definition of Plithogenic Numbers (PN) [1] 

The numbers of the form 𝑃𝑁 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 +⋯+ 𝑎𝑛𝑃𝑛  defined as above are called 

Plithogenic Numbers, where 𝑎𝑛𝑃𝑛 is called the leading (strongest) term. 

2.2 Operations with Plithogenic Numbers [1] 

Let’s consider two plithogenic numbers: 

mailto:y.alhasan@psau.edu.sa
mailto:r.abdulfatah@psau.edu.sa
mailto:y.alhasan@psau.edu.sa
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𝑃𝑁1 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 +⋯+ 𝑎𝑛𝑃𝑛 
 

𝑃𝑁2 = 𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2 +⋯+ 𝑏𝑛𝑃𝑛 
 
2.2.1. Addition of Plithogenic Numbers 

𝑃𝑁1 + 𝑃𝑁2 = (𝑎0 + 𝑏0) +∑(𝑎𝑖 + 𝑏𝑖)

𝑛

𝑖=1

𝑃𝑖  

2.2.2. Subtraction of Plithogenic Numbers 

𝑃𝑁1 − 𝑃𝑁2 = (𝑎0 − 𝑏0) +∑(𝑎𝑖 − 𝑏𝑖)

𝑛

𝑖=1

𝑃𝑖  

(SPS, +) is a Symbolic Plithogenic Commutative Group 

 

2.2.3. Scalar Multiplication of Plithogenic Numbers 

 

𝑐. 𝑃𝑁1 = 𝑐. (𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 +⋯+ 𝑎𝑛𝑃𝑛) = 𝑐. 𝑎0 + 𝑐. 𝑎1𝑃1 + 𝑐. 𝑎2𝑃2 +⋯+ 𝑐. 𝑎𝑛𝑃𝑛 

 

2.2.4. Multiplication of and Ppower of Plithogenic Numbers 

 

𝑃𝑁1. 𝑃𝑁2 = (𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 +⋯+ 𝑎𝑛𝑃𝑛). (𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2 +⋯+ 𝑏𝑛𝑃𝑛) 
 

and then one multiplies them, term by term (𝑎𝑖𝑃𝑖). (𝑎𝑗𝑃𝑗) = 𝑎𝑖 . 𝑎𝑗 . 𝑃𝑚𝑎𝑥⁡{𝑖,𝑗}  ,where  is the 

classical multiplication, as in classical algebra, using the above multiplication of symbolic plithogenic 

components. 

 

2.2.5. Division of Symbolic Plithogenic Components 

 
𝑃𝑖
𝑃𝑗

= {

𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 +⋯+ 𝑥𝑗𝑃𝑗 + 𝑃𝑖 ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ 𝑥0 + 𝑥1 + 𝑥2 +⋯+ 𝑥𝑗 = 0⁡ ⁡ ⁡ ⁡ 𝑖 > 𝑗

𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 +⋯+ 𝑥𝑖𝑃𝑖 ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ 𝑥0 + 𝑥1 + 𝑥2 +⋯+ 𝑥𝑖 = 1⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ 𝑖 = 𝑗
∅⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ 𝑖 < 𝑗

 

 

where all coefficients 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑖 , … ⁡ ∈ SPS. 

 

2.2.5. Division of Symbolic Plithogenic Numbers 

 

Let consider two symbolic plithogenic numbers as below: 

 

𝑃𝑁𝑟 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 +⋯+ 𝑎𝑟𝑃𝑟 
 

𝑃𝑁𝑠 = 𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2 +⋯+ 𝑏𝑠𝑃𝑠 
 

𝑃𝑁𝑟

𝑃𝑁𝑠

= {
𝑛𝑜𝑛𝑒, 𝑜𝑛𝑒⁡ 𝑚𝑎𝑛𝑦⁡ ⁡ ⁡ 𝑟 ≥ 𝑠

∅⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ 𝑟 < 𝑠
 

3. Plithogenic functions value 

Definition 1 

Let 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 +⋯+ 𝑎𝑛𝑃𝑛⁡ 𝑎𝑛𝑑⁡ 𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2 +⋯+ 𝑏𝑛𝑃𝑛 are numbers of plithogenic, then 

we say that: 

 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 +⋯+ 𝑎𝑛𝑃𝑛 ≤ 𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2 +⋯+ 𝑏𝑛𝑃𝑛 if and only if: 
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 𝑎0 ≤ 𝑏0, 𝑎0 + 𝑎1 ≤ 𝑏0 + 𝑏1, 𝑎0 + 𝑎1 + 𝑎2 ≤ 𝑏0 + 𝑏1 + 𝑏2,⁡…⁡ ,⁡and 𝑎0 + 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛 ≤ 𝑏0 + 𝑏1 +

𝑏2 +⋯+ 𝑏𝑛 

Definition 2 

We say that the plithogenic number 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 +⋯+ 𝑎𝑛𝑃𝑛  is positive if the following 

conditions is met: 

 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 +⋯+ 𝑎𝑛𝑃𝑛 ≥ 0+ 0𝑃1 + 0𝑃2 +⋯+ 0𝑃𝑛, then: 

𝑎0 ≥ 0⁡ , 𝑎0 + 𝑎1 ≥ 0⁡ ,… . , 𝑎𝑛𝑑⁡ 𝑎0 + 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛 ≥ 0 

Definition 3 

Let 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 +⋯+ 𝑎𝑛𝑃𝑛 is number of plithogenic, and 𝑓 is a plithogenic function, then: 

 

𝑓(𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 +⋯+ 𝑎𝑛𝑃𝑛)

= 𝑓(𝑎0) + 𝑃1[𝑓(𝑎0 + 𝑎1) − 𝑓(𝑎0)] + 𝑃2[𝑓(𝑎0 + 𝑎1 + 𝑎2) − 𝑓(𝑎0 + 𝑎1)] +⋯

+ 𝑃𝑛[𝑓(𝑎0 + 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛) − 𝑓(𝑎0 + 𝑎1 +⋯+ 𝑎𝑛−1)] 

Proof: 

First: we will proof it for 𝒏 = 𝟏 

𝑓(𝑎0 + 𝑎1𝑃1) = 𝑓(𝑎0) + 𝑃1[𝑓(𝑎0 + 𝑎1) − 𝑓(𝑎0)] 

 

(𝑎0 + 𝑎1𝑃1)
𝑛́ = 𝑎0

𝑛́ + 𝑃1[(𝑎0 + 𝑎1)
𝑛́ − 𝑎0

𝑛́] 

for 𝑛́ = 1, we get: 

(𝑎0 + 𝑎1𝑃1) = 𝑎0 + 𝑃1[𝑎0 + 𝑎1 − 𝑎0] = 𝑎0 + 𝑎1𝑃1 )The formula is correct for 𝑛́ = 1( 

Assume The formula is correct for 𝑛́ = 𝑘 

(𝑎0 + 𝑎1𝑃1)
𝑘 = 𝑎0

𝑘 + 𝑃1[(𝑎0 + 𝑎1)
𝑘 − 𝑎0

𝑘] 

for 𝑛́ = 1, we get: 

Let's check it for⁡ 𝑛́ = 𝑘 + 1 

(𝑎0 + 𝑎1𝑃1)
𝑘+1 = 𝑎0

𝑘+1 + 𝑃1[(𝑎0 + 𝑎1)
𝑘+1 − 𝑎0

𝑘+1] 

 

(𝑎0 + 𝑎1𝑃1)
𝑘+1 = (𝑎0 + 𝑎1𝑃1)

𝑘(𝑎0 + 𝑎1𝑃1) = (𝑎0
𝑘 + 𝑃1[(𝑎0 + 𝑎1)

𝑘 − 𝑎0
𝑘])(𝑎0 + 𝑎1𝑃1) 

 

= 𝑎0
𝑘+1 + 𝑎0

𝑘𝑎1𝑃1 + 𝑃1[𝑎0(𝑎0 + 𝑎1)
𝑘 − 𝑎0

𝑘+1] + 𝑃1[𝑎1𝑃1(𝑎0 + 𝑎1)
𝑘 − 𝑎0

𝑘𝑎1𝑃1] 

 

= 𝑎0
𝑘+1 + 𝑎0

𝑘𝑎1𝑃1 + 𝑎0(𝑎0 + 𝑎1)
𝑘𝑃1 − 𝑎0

𝑘+1𝑃1 + 𝑎1(𝑎0 + 𝑎1)
𝑘𝑃1 − 𝑎0

𝑘𝑎1𝑃1  

 

= 𝑎0
𝑘+1 + (𝑎0 + 𝑎1)

𝑘(𝑎0 + 𝑎1)𝑃1 − 𝑎0
𝑘+1𝑃1 

 

= 𝑎0
𝑘+1 + 𝑃1[(𝑎0 + 𝑎1)

𝑘+1 − 𝑎0
𝑘+1]⁡ )The formula is correct for 𝑛́ = 𝑘 + 1( 

 

then: (𝑎0 + 𝑎1𝑃1)
𝑛́ = 𝑎0

𝑛́ + 𝑃1[(𝑎0 + 𝑎1)
𝑛́ − 𝑎0

𝑛́] is true for any 𝑛́  

Let's proof it for: 

𝑒𝑎0+𝑎1𝑃1 = 𝑒𝑎0 + 𝑃1[𝑒
𝑎0+𝑎1 − 𝑒𝑎0] 
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𝑒𝑎0+𝑎1𝑃1 = ∑
1

𝑛́!

∞

𝑛́=0

(𝑎0 + 𝑎1𝑃1)
𝑛́ 

 

= ∑
1

𝑛́!

∞

𝑛́=0

(𝑎0
𝑛́ + 𝑃1[(𝑎0 + 𝑎1)

𝑛́ − 𝑎0
𝑛́]) 

 

= ∑
𝑎0

𝑛́

𝑛́!

∞

𝑛́=0

+ 𝑃1 [∑
(𝑎0 + 𝑎1)

𝑛́

𝑛́!

∞

𝑛́=0

+∑
𝑎0

𝑛́

𝑛́!

∞

𝑛́=0

] 

 

= 𝑒𝑎0 + 𝑃1[𝑒
𝑎0+𝑎1 − 𝑒𝑎0] 

 

Second: we will proof it for 𝒏 = 𝟐 

𝑓(𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2) = 𝑓(𝑎0) + 𝑃1[𝑓(𝑎0 + 𝑎1 + 𝑎2) − 𝑓(𝑎0 + 𝑎1)] 

 

(𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2)
𝑛́ = 𝑎0

𝑛́ + 𝑃1[(𝑎0 + 𝑎1)
𝑛́ − 𝑎0

𝑛́] + 𝑃2[(𝑎0 + 𝑎1 + 𝑎2)
𝑛́ − (𝑎0 + 𝑎1)

𝑛́] 

for 𝑛́ = 1, we get: 

(𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2) = 𝑎0 + 𝑃1[𝑎0 + 𝑎1 − 𝑎0] + 𝑃2[𝑎0 + 𝑎1 + 𝑎2 − (𝑎0 + 𝑎1)] = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2   

)The formula is correct for 𝑛́ = 1( 

Assume The formula is correct for 𝑛́ = 𝑘 

(𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2)
𝑘 = 𝑎0

𝑘 + 𝑃1[(𝑎0 + 𝑎1)
𝑘 − 𝑎0

𝑘] + 𝑃2[(𝑎0 + 𝑎1 + 𝑎2)
𝑘 − (𝑎0 + 𝑎1)

𝑘] 

for 𝑛 = 1, we get: 

Let's check it for⁡ 𝑛́ = 𝑘 + 1 

(𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2)
𝑘+1 = 𝑎0

𝑘+1 + 𝑃1[(𝑎0 + 𝑎1)
𝑘+1 − 𝑎0

𝑘+1] + 𝑃2[(𝑎0 + 𝑎1 + 𝑎2)
𝑘+1 − (𝑎0 + 𝑎1)

𝑘+1] 

 

(𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2)
𝑘+1 = (𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2)

𝑘(𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2) 

 

= (𝑎0
𝑘 + 𝑃1[(𝑎0 + 𝑎1)

𝑘 − 𝑎0
𝑘] + 𝑃2[(𝑎0 + 𝑎1 + 𝑎2)

𝑘 − (𝑎0 + 𝑎1)
𝑘])(𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2) 

 

= 𝑎0𝑎0
𝑘 + 𝑃1[𝑎0(𝑎0 + 𝑎1)

𝑘 − 𝑎0𝑎0
𝑘] + 𝑃2[𝑎0(𝑎0 + 𝑎1 + 𝑎2)

𝑘 − 𝑎0(𝑎0 + 𝑎1)
𝑘] + 𝑎0

𝑘𝑎1𝑃1

+ 𝑎1𝑃1𝑃1[(𝑎0 + 𝑎1)
𝑘 − 𝑎0

𝑘] + 𝑎1𝑃1𝑃2[(𝑎0 + 𝑎1 + 𝑎2)
𝑘 − (𝑎0 + 𝑎1)

𝑘] + 𝑎0
𝑘𝑎2𝑃2

+ 𝑎2𝑃2𝑃1[(𝑎0 + 𝑎1)
𝑘 − 𝑎0

𝑘] + 𝑎2𝑃2𝑃2[(𝑎0 + 𝑎1 + 𝑎2)
𝑘 − (𝑎0 + 𝑎1)

𝑘] 

= 𝑎0𝑎0
𝑘 + 𝑃1[𝑎0(𝑎0 + 𝑎1)

𝑘 − 𝑎0𝑎0
𝑘] + 𝑃2[𝑎0(𝑎0 + 𝑎1 + 𝑎2)

𝑘 − 𝑎0(𝑎0 + 𝑎1)
𝑘] + 𝑎0

𝑘𝑎1𝑃1

+ 𝑃1[𝑎1(𝑎0 + 𝑎1)
𝑘 − 𝑎1𝑎0

𝑘] + 𝑃2[𝑎1(𝑎0 + 𝑎1 + 𝑎2)
𝑘 − 𝑎1(𝑎0 + 𝑎1)

𝑘] + 𝑎0
𝑘𝑎2𝑃2

+ 𝑃2[𝑎2(𝑎0 + 𝑎1)
𝑘 − 𝑎2𝑎0

𝑘] + 𝑃2[𝑎2(𝑎0 + 𝑎1 + 𝑎2)
𝑘 − 𝑎2(𝑎0 + 𝑎1)

𝑘] 

 

= 𝑎0
𝑘+1 + 𝑃1[𝑎0(𝑎0 + 𝑎1)

𝑘 + 𝑎1(𝑎0 + 𝑎1)
𝑘 − 𝑎0

𝑘+1]

+ 𝑃2[𝑎0(𝑎0 + 𝑎1 + 𝑎2)
𝑘+𝑎1(𝑎0 + 𝑎1 + 𝑎2)

𝑘 + 𝑎2(𝑎0 + 𝑎1 + 𝑎2)
𝑘 − 𝑎0(𝑎0 + 𝑎1)

𝑘

− 𝑎1(𝑎0 + 𝑎1)
𝑘] 

 

= 𝑎0
𝑘+1 + 𝑃1[(𝑎0 + 𝑎1)(𝑎0 + 𝑎1)

𝑘 − 𝑎0
𝑘+1] + 𝑃2[(𝑎0 + 𝑎1 + 𝑎2)(𝑎0 + 𝑎1 + 𝑎2)

𝑘 − (𝑎0 + 𝑎1)(𝑎0 + 𝑎1)
𝑘] 
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= 𝑎0
𝑘+1 + 𝑃1[(𝑎0 + 𝑎1)

𝑘+1 − 𝑎0
𝑘+1] + 𝑃2[(𝑎0 + 𝑎1 + 𝑎2)

𝑘+1 − (𝑎0 + 𝑎1)
𝑘+1] 

)The formula is correct for 𝑛́ = 𝑘 + 1( 

 

then: (𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2)
𝑛́ = 𝑎0

𝑛́ + 𝑃1[(𝑎0 + 𝑎1)
𝑛́ − 𝑎0

𝑛́] + 𝑃2[(𝑎0 + 𝑎1 + 𝑎2)
𝑛́ − (𝑎0 + 𝑎1)

𝑛́] is true for 

any 𝑛́  

 

Let's proof it for: 

𝑒𝑎0+𝑎1𝑃1+𝑎2𝑃2 = 𝑒𝑎0 + 𝑃1[𝑒
𝑎0+𝑎1 − 𝑒𝑎0] + 𝑃2[𝑒

𝑎0+𝑎1+𝑎2 − 𝑒𝑎0+𝑎1] 

 

𝑒𝑎0+𝑎1𝑃1+𝑎2𝑃2 = ∑
1

𝑛́!

∞

𝑛́=0

(𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2)
𝑛́ 

 

= ∑
1

𝑛́!

∞

𝑛́=0

(𝑎0
𝑛́ + 𝑃1[(𝑎0 + 𝑎1)

𝑛́ − 𝑎0
𝑛́] + 𝑃2[(𝑎0 + 𝑎1 + 𝑎2)

𝑛́ − (𝑎0 + 𝑎1)
𝑛́]) 

 

= ∑
𝑎0

𝑛́

𝑛́!

∞

𝑛́=0

+ 𝑃1 [∑
(𝑎0 + 𝑎1)

𝑛́

𝑛́!

∞

𝑛́=0

+∑
𝑎0

𝑛́

𝑛́!

∞

𝑛́=0

] + 𝑃2 [∑
(𝑎0 + 𝑎1 + 𝑎2)

𝑛́

𝑛́!

∞

𝑛́=0

+∑
(𝑎0 + 𝑎1)

𝑛́

𝑛́!

∞

𝑛́=0

] 

 

= 𝑒𝑎0 + 𝑃1[𝑒
𝑎0+𝑎1 − 𝑒𝑎0] + 𝑃2[𝑒

𝑎0+𝑎1+𝑎2 − 𝑒𝑎0+𝑎1] 

Hence, we can apply: 

𝑓(𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 +⋯+ 𝑎𝑛𝑃𝑛)

= 𝑓(𝑎0) + 𝑃1[𝑓(𝑎0 + 𝑎1) − 𝑓(𝑎0)] + 𝑃2[𝑓(𝑎0 + 𝑎1 + 𝑎2) − 𝑓(𝑎0 + 𝑎1)] +⋯

+ 𝑃𝑛[𝑓(𝑎0 + 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛) − 𝑓(𝑎0 + 𝑎1 +⋯+ 𝑎𝑛−1)] 

for any 𝑛. 

 

Example1 

𝑒6+4𝑃1−𝑃2+2𝑃3+7𝑃4 = 𝑒6 + 𝑃1[𝑒
10 − 𝑒6] + 𝑃2[𝑒

9 − 𝑒10] + 𝑃3[𝑒
11 − 𝑒9] + 𝑃2[𝑒

18 − 𝑒11] 

Remark 1 

Absolute value of the plithogenic number defined as follows: 

|𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 +⋯+ 𝑎𝑛𝑃𝑛|

= |𝑎0| + 𝑃1[|𝑎0 + 𝑎1| − |𝑎0|] + 𝑃2[|𝑎0 + 𝑎1 + 𝑎2| − |𝑎0 + 𝑎1|] +⋯

+ 𝑃𝑛[|𝑎0 + 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛| − |𝑎0 + 𝑎1 +⋯+ 𝑎𝑛−1|] ≥ 0 

 

Example 2 

 |9 − 4𝑃1 + 2𝑃2 − 𝑃3| = 9 + 𝑃1[|9 − 4| − |9|] + 𝑃2[|9 − 4 + 2| − |9 − 4|] + 𝑃3[|9 − 4 + 2 − 1| −

|9 − 4 + 2|] ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ = 9 − 4𝑃1 + 2𝑃2 − 𝑃3 > 0 

 

 |5 − 7𝑃1 − 8𝑃2| = 5 + 𝑃1[|5 − 7| − |5|] + 𝑃2[|5 − 7 − 8| − |5 − 7|] 

⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ = 5 − 3𝑃1 + 8𝑃2 > 0 
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clear the Absolute value of the plithogenic number according to the definition 2. 

Definition 4 

1) Plithogenic exponential functions is defined as formula: 

𝑒(𝑎0+𝑎1𝑃1+𝑎2𝑃2+⋯+𝑎𝑛𝑃𝑛)𝑥

= 𝑒𝑎0𝑥 + 𝑃1[𝑒
(𝑎0+𝑎1)𝑥 − 𝑒𝑎0𝑥] + 𝑃2[𝑒

(𝑎0+𝑎1+𝑎2)𝑥 − 𝑒(𝑎0+𝑎1)𝑥] + ⋯

+ 𝑃𝑛[𝑒
(𝑎0+𝑎1+𝑎2+⋯+𝑎𝑛)𝑥 − 𝑒(𝑎0+𝑎1+𝑎2+⋯+𝑎𝑛−1)] 

2) Plithogenic logarithmic functions is defined as formula: 

 

𝑙𝑛((𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 +⋯+ 𝑎𝑛𝑃𝑛)𝑥)

= 𝑙𝑛(𝑎0𝑥) + 𝑃1[𝑙𝑛((𝑎0 + 𝑎1)𝑥) − 𝑙𝑛(𝑎0𝑥)]

+ 𝑃2[𝑙𝑛((𝑎0 + 𝑎1 + 𝑎2)𝑥) − 𝑙𝑛((𝑎0 + 𝑎1)𝑥)] + ⋯

+ 𝑃𝑛[𝑙𝑛((𝑎0 + 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛−1)𝑥) − 𝑙𝑛((𝑎0 + 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛−1)𝑥)] 

where: (𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 +⋯+ 𝑎𝑛𝑃𝑛)𝑥 > 0 

Definition 5 

Plithogenic trigonometric functions is defined as formulas: 

1) 𝑠𝑖𝑛((𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 +⋯+ 𝑎𝑛𝑃𝑛)𝑥) = 𝑠𝑖𝑛(𝑎0𝑥) + 𝑃1[𝑠𝑖𝑛((𝑎0 + 𝑎1)𝑥) − 𝑠𝑖𝑛(𝑎0𝑥)] +

𝑃2[𝑠𝑖𝑛((𝑎0 + 𝑎1 + 𝑎2)𝑥) − 𝑠𝑖𝑛((𝑎0 + 𝑎1)𝑥)] +⋯+ 𝑃𝑛[𝑠𝑖𝑛((𝑎0 + 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛−1)𝑥) −

𝑠𝑖𝑛((𝑎0 + 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛−1)𝑥)] 

2) 𝑐𝑜𝑠((𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 +⋯+ 𝑎𝑛𝑃𝑛)𝑥) = 𝑐𝑜𝑠(𝑎0𝑥) + 𝑃1[𝑐𝑜𝑠((𝑎0 + 𝑎1)𝑥) − 𝑐𝑜𝑠(𝑎0𝑥)] +

𝑃2[𝑐𝑜𝑠((𝑎0 + 𝑎1 + 𝑎2)𝑥) − 𝑐𝑜𝑠((𝑎0 + 𝑎1)𝑥)] +⋯+ 𝑃𝑛[𝑐𝑜𝑠((𝑎0 + 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛−1)𝑥) −

𝑐𝑜𝑠((𝑎0 + 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛−1)𝑥)] 

3) 𝑡𝑎𝑛((𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 +⋯+ 𝑎𝑛𝑃𝑛)𝑥) = 𝑡𝑎𝑛(𝑎0𝑥) + 𝑃1[𝑡𝑎𝑛((𝑎0 + 𝑎1)𝑥) − 𝑡𝑎𝑛(𝑎0𝑥)] +

𝑃2[𝑡𝑎𝑛((𝑎0 + 𝑎1 + 𝑎2)𝑥) − 𝑡𝑎𝑛((𝑎0 + 𝑎1)𝑥)] + ⋯+ 𝑃𝑛[𝑡𝑎𝑛((𝑎0 + 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛−1)𝑥) −

𝑡𝑎𝑛((𝑎0 + 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛−1)𝑥)] 

4) 𝑐𝑜𝑡((𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 +⋯+ 𝑎𝑛𝑃𝑛)𝑥) = 𝑐𝑜𝑡(𝑎0𝑥) + 𝑃1[𝑐𝑜𝑡((𝑎0 + 𝑎1)𝑥) − 𝑐𝑜𝑡(𝑎0𝑥)] +

𝑃2[𝑐𝑜𝑡((𝑎0 + 𝑎1 + 𝑎2)𝑥) − 𝑐𝑜𝑡((𝑎0 + 𝑎1)𝑥)] + ⋯+ 𝑃𝑛[𝑐𝑜𝑡((𝑎0 + 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛−1)𝑥) −

𝑐𝑜𝑡((𝑎0 + 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛−1)𝑥)] 

4. Conclusions   

This paper is considered important in the field of plithogenic, as it presented the concept of the 

plithogenic function, and how to calculate its values by finding a formula through which we find the 

values of the plithogenic functions. 
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Abstract: An index is a tool for comparing a phenomenon or several phenomena dating back to 

different periods to know the amount of change in the phenomena or the difference between them. 

For example, we compare the price of a commodity in a particular year with its price in a given year, 

compare the prices of a group of commodities in one year with their prices in another year, or 

compare the price of a commodity in two different places. For example, we compare the price of a 

commodity in one city with its price in another city. This paper presents a study of these Indices 

from a neutrosophic point of view. Which allows us to study Indices with uncertain or non-well-

defined price data. In addition, access to results that determine the extent of the change in prices as 

accurately as possible, and thus the optimal planning for the next stage and the development of 

appropriate solutions. An applied example was presented to study the change in the prices of 

pesticides used to combat the "vine stem borer" insect using the neutrosophic Indices. 

Keywords: Indices, Neutrosophic Logic, Base Year, Studying Year, Comparison Year, Target Year. 

 

1. Introduction 

Neutrosophic means the study of ideas and concepts that are neither right nor wrong, but between 

that, and this means (neutrality, indeterminacy, ambiguity, contradiction, hesitancy), in which every 

field of knowledge and experience has its neutrosophic part which contains indeterminacy. The first 

scientist who established the neutrosophic theory was the American philosopher and mathematician 

F. Smarandache, he presented neutrosophic logic in 1995 as a generalization of fuzzy logic [1,2]. As 

an extension of this, Ahmed Salama presented the theory of classical neutrosophic sets as a 

generalization of the theory of classical sets [3,4]. The neutrosophic has grown significantly in recent 

years and many researchers have worked with it around the world because it formed a real revolution 

in science through its application in many disciplines and scientific and practical fields [5-12]. In this 

research, we highlight the study of the Indices from a neutrosophic point of view. Which allows us 

to study Indices with uncertain or non-well-defined price data. This matter is not available for study 

in the classical logic that does not recognize the existence of uncertain cases. 

The neutrosophic indices are numerous because of the different ways they are created or because 

of the different phenomena that he compares. According to the phenomena that he compares, we 

find a large number of indices, for example, the neutrosophic index for wages and the neutrosophic 

index for agriculture...etc. 

When creating the index for prices, we compare the prices of a year, which we will call the 

“studying year” or the “target year” (comparison year), and symbolize its prices with the symbol 𝑁𝑝𝐼 , 

with the prices of another year, which is the “base year”, and symbolize its prices with the symbol 

𝑁𝑝0. This comparison is carried out in different ways, depending on the establishment of the index 

of prices. 
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Before we start creating and applying the neutrosophic index, we must take the following three 

requirements into consideration: 

1- Determine the base year. (It is preferable that this year be free from any abnormal 

circumstances). 

2- Choosing the commodities that will be included in the calculation of the Neutrosophic Index 

of Prices. (It is preferable that these commodities are stable in quality and representative of 

people's habits). 

3- Determining prices. (It is preferable to take them from official authorities). Here, we can take 

the prices in a neutrosophic way (that is, taking into account the change in the price of the 

commodity in the "base year" and the "studying year"). 

 

The aim of the study of the neutrosophic indices is to determine the extent of the change in prices 

and thus to study the economic or living ratio in the country for the sake of optimal planning for the 

future and for public spending. In addition to developing appropriate solutions for all problems to 

serve this goal. 

 

2. The Theoretical Part of the Case Study is Supported by Applied Examples 

2.1   Neutrosophic Index (NSN) 

  It is a tool for comparing a phenomenon or several phenomena dating back to different periods to know 

the amount of change in the phenomena, or between two different places, according to the neutrosophic logic 

which takes into account non-specific changes that occur and affect the study. 

2.2 Simple Neutrosophic Ratio Indices: 

  It is either the neutrosophic ratio of one phenomenon value in the "comparison year" to the "base year", or 

the neutrosophic ratio of one phenomenon value in the "comparison place" to the "base place". Note that, the 

authors will be interested here in the general ways to create the neutrosophic index of prices. This Index is 

calculated from the following mathematical formula: 

NSN =
𝑁𝑝1
𝑁𝑝0

∗ 100 

Where the price in the "base year" is  𝑁𝑝0 =  𝑝0𝐿 +  𝑝0𝑈𝐼. Here, p0L is denoted to the specified part of the price 

in the base year, while  p0UI  is denoted the undefined part of the price in the base year, the price in the "year 

of study" is  𝑁𝑝1 =  𝑝1𝐿 +  𝑝1𝑈𝐼. Where  p1L is denoted to the specified part of the price in the study year, and 

 p1UI  is the undefined part of the price in the study year. 

2.2.2 Example 

This study is dedicated to evaluating the change in the prices of one of the pesticides (aluminium 

phosphide) used to Combat the “vine borer” insect, as its price in 2020 was equal to 20 $ (with an unspecified 

amount [0,2]). while its price in 2022 was $30 (with an unspecified amount [0,5]), it is worth mentioning that 

the unspecified prices are appearing due to price instability in these years. So, the neutrosophic index for the 

price in 2022 compared to the year 2020: 
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𝑁𝑆𝑁 =
𝑁𝑝1
𝑁𝑝0

∗ 100 

𝑁𝑝0 =  𝑝0𝐿 +  𝑝0𝑈𝐼 = 20 + [0.2] = [20.22] 𝑁𝑝1 =  𝑝1𝐿 +  𝑝1𝑈𝐼 = 30 + [0.5] = [30.35]𝑁𝑆𝑁

=
[30.35]

[20.22]
∗ 100 = [150.159]% 

That is, the price of the pesticide increased by [50.59] % compared to its price in 2020. 

Explanation: 

 To analyze the values of the neutrosophic index 𝑁𝑆𝑁 = [𝑁𝑆𝑁 𝐿 , 𝑁𝑆𝑁𝑈], we have the following cases: 

1- If  𝑁𝑆𝑁 = [𝑁𝑆𝑁 𝐿 , 𝑁𝑆𝑁𝑈] = [100.100], that is, the value of the phenomenon has not changed 

compared to the base year or place of the f base. 

2- If  𝑁𝑆𝑁 𝐿   > 100  𝑜𝑟   𝑁𝑆𝑁𝑈 > 100,  that is, the value of the phenomenon has increased compared 

to the base year or place of base, and the percentage of rise is the difference between the index and 

100. 

3- If   𝑁𝑆𝑁 𝐿   < 100  𝑜𝑟   𝑁𝑆𝑁𝑈 < 100,  that is, the value of the phenomenon decreased compared to 

the base year or the place of base, and the percentage of decline is the difference between the index 

and 100. 

4- The same interpretation is done in the case if    𝑁𝑆𝑁𝑈 > 100  and  𝑁𝑆𝑁 𝐿 < 100. Or vice versa (but 

here we explain each side separately).  

For example if we had 𝑁𝑆𝑁 = [75.159]%, the result explanation is that, at the beginning of the year, 

the prices were down by 25% compared to 2020, then until the end of the year the prices had increased by 

59% compared to 2020 and so on. 

2.3 The Aggregate Neutrosophic Simple indices: 

The below flow chart illustrates the types of the aggregate neutrosophic simple indices which are 

divided into two types, the aggregate neutrosophic index, and the aggregate neutrosophic mean 

number, which is also can be divided into two categories the neutrosophic arithmetic mean of the 

levels, and the neutrosophic geometric mean of the levels. 
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2.2. 1. The Simple and Assembly Neutrosophic Number: 

We express here the neutrosophic index of prices as the ratio of the sum of the neutrosophic prices of 

commodities in the comparison year to the sum of the neutrosophic prices of the commodities in the base year, 

multiplied by 100. Note that we use this number when the required is to compare more than one commodity at 

the same time 

𝑁𝑆𝑁𝑠 =
∑𝑁𝑝1
∑𝑁𝑝0

∗ 100 

 Here, ∑Np1 = ∑[  p1L +  p1UI] represents the sum of the neutrosophic prices for commodities in the comparison year. 

While, ∑𝑁𝑝0 = ∑[  𝑝0𝐿 +  𝑝0𝑈𝐼] represents the sum of the neutrosophic prices for commodities in the base 

year.  

Example 

In this example, we recorded the prices in USD for three pesticides used to combat the "vine stem borer" 

insect. They are (chlorpyrifos - diflubenzuron - aluminium phosphide) in both the "base year" and the 

"comparison year". Where each of these commodities had a fixed price  𝑝𝐿  with an unspecified amount that 

expresses the price change within one year 𝑝𝑈𝐼, with assuming that the base year is 2010, and the comparison 

year is 2022, then the recorded price table is as follow: 
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The price in the study 

year 

 𝑵𝒑𝟏 

The price in the base year 

 𝑵𝒑𝟎 

Pesticides 

24.2 + [0, 0.8] 1.2 + [0, 0.8] Chlorpyrifos 

28.6 + [0, 0.4] 1.6 + [0, 0.5] Diflubenzuron 

30 + [ 0, 1.5] 0.8 + [0, 0.1] Aluminum phosphide 

[82.8, 85.5] [3.6, 5] 𝑠𝑢𝑚 

𝑁𝑆𝑁𝑠 =
∑𝑁𝑝1
∑𝑁𝑝0

∗ 100 

𝑁𝑆𝑁𝑠 =
[82.8 , 85.5]

[3.6, 5]
∗ 100 = [2300, 1710]% 

To analyze the above result, it is clear that the prices in the comparison year 2022 increased by a very 

large percentage compared to the base year 2010, and this explains and shows the significant inflation that 

occurred in prices between the comparison year and the base year. Again to make another comparison the prices 

of these pesticides between 2020 and 2022: 

Price in the study year 

 𝑵𝒑𝑰 

The price in the base year 

 𝑵𝒑𝟎 

pesticides 

24.2 + [0, 0.8] 14.2 + [0, 0.8] Chlorpyrifos 

28.6 + [0, 0.4] 18.8 + [0, 1.3] Diflubenzuron 

30 + [0, 1.5] 20.8 + [0, 2.1] Aluminum phosphide 

[82.8, 85.5] [53.8, 58] 𝑠𝑢𝑚 

𝑁𝑆𝑁𝑠 =
∑𝑁𝑝1
∑𝑁𝑝0

∗ 100 

𝑁𝑆𝑁𝑠 =
[82.8, 85.5]

[53.8, 58]
∗ 100 = [147, 154 ] % 

That is, pesticide prices in 2022 increased by [47, 54] % over their prices in 2020. 

2.2.2  The Simple Neutrosophic Average of Ratios: 

As seen from the previous section, the assembly method to compare neutrosophic prices has a defect when 

we use it to compare a large number of commodities. This section is dedicated to overcoming this defect, where 

the average of a large number of ratios of commodities is used, either by using the neutrosophic arithmetic mean 

or by using the neutrosophic geometric mean. 
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i. Neutrosophic Arithmetic Mean of ratios: 

The following mathematical formula is precisely derived for the above-mentioned purpose 

𝑀(𝑁𝑆𝑁) =
∑
𝑁𝑝1𝑖
𝑁𝑝0𝑖
𝑛

∗ 100 

ii. Neutrosophic Geometric Mean of Ratios: 

It is clear that the bellow formula service the same aim of this section as we previously stated: 

𝑀(𝑁𝑆𝑁) = √
𝑁𝑝11
𝑁𝑝01

.
𝑁𝑝12
𝑁𝑝02

…
𝑁𝑝1𝑛
𝑁𝑝0𝑛

𝑛

. 100 

Again, the mathematical statement 𝑁𝑝0 =  𝑝0𝐿 +  𝑝0𝑈𝐼 represents the price in the base year. While the formula 

 𝑁𝑝1 =  𝑝1𝐿 +  𝑝1𝑈𝐼    represents the price in the studying year. The symbol 𝑛  denotes to the number of 

commodities. 

Example 

The below data table contains the price of pesticides A and B in both the base year and comparison year. 

The neutrosophic index, as an arithmetic mean and as a geometric mean, have been calculated in the same table, 

Given that pesticide A represents the diflubenzuron pesticide, and pesticide B is the aluminium phosphide 

pesticide. Also, suppose that the base year is 2020, and the comparison year is 2022. 

𝑁𝑝1
𝑁𝑝0

 
the price Pesticides 

𝑁𝑝0   𝑁𝑝1 

[1.52,1.57] 18.8 + [0,0.2] 28.6 + [0,1.4] A 

[1.45,1.47] 20 + [0,1.2] 29 + [0,2.2] B 

[2.97,3.04] [38.8,40.2] [57.6, 61.2] The sum 

M(NSN)=[148.5, 152]% Neutrosophic arithmetic mean of ratios 

M(NSN)=[148.45, 151.9]% Neutrosophic geometric mean of ratios 
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i. Neutrosophic Arithmetic Mean of Ratios: 

 

𝑀(𝑁𝑆𝑁) =
∑
𝑁𝑝1𝑖
𝑁𝑝0𝑖
𝑛

. 100 =
[2.97, 3.04]

2
. 100 = [148.5, 152]% 

The neutrosophic arithmetic mean of the ratios indicates that the prices of pesticides increased between 

[48.5, 52]% between the base year and the comparison year. 

 

ii. Neutrosophic geometric mean of ratios: 

Here we have 𝑛 = 2 

𝑀(𝑁𝑆𝑁) = √
𝑁𝑝11
𝑁𝑝01

.
𝑁𝑝12
𝑁𝑝02

𝑛

. 100 = √  [1.52, 1.57]. [1.45, 1.47]
2

 . 100 = 

√[2.204, 2.308]
2  . 100 = [148.45, 151.9]%. 

 

We notice that the neutrosophic geometric mean of the ratios indicates that the prices of pesticides 

increased by a range between [48.45, 51.9]% between the base year and the comparison year. However, the 

neutrosophic arithmetic mean of the ratios and the neutrosophic geometric mean of the ratios are very close and 

give almost the same amount of increase in prices that occurred in the prices of pesticides, and this confirms 

the reliability of this amount as an increase. Especially since we know that the arithmetic mean is easier to use, 

but the geometric mean is the best for this purpose. 

3. Conclusion: 

We conclude from this study that the generalization of classical indices to neutrosophic indices provides a 

more general and clear view in uncertain environments. In addition, it gave us better results in terms of 

determining the extent of the change in prices more precisely. Thus, the cost of the insect control process 

changes on the farms. This helps us in optimal planning for the next stage and developing appropriate solutions 

that serve this goal. 

In the near future, we look forward to studying the neutrosophic indices for the weighted ratios, which gives 

each commodity its importance in terms of the number of units sold. 
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Abstract: This study introduces a novel method for addressing the pentagonal quadratic fractional 

programming problem (PQFPP). We employ pentagonal neutrosophic numbers for the objective function's cost, 

resources, and technological coefficients. The paper transforms the PQFPP into a standard quadratic fractional 

programming (QFP) problem via the score function. By leveraging the Taylor series approach, the modified 

QFP is simplified to a single-objective linear programming (LP) task, amenable to resolution through 

conventional LP algorithms or software tools. A numerical example serves to demonstrate the efficacy of the 

suggested approach. Moreover, comparative analyses and benefits reveal that the newly developed techniques 

outperform existing solutions in current scholarly works. 

Keywords: Quadratic fractional programming; Score function; Taylor series; Linear programming; 

Decision making; Optimal solution. 

 

 

 

1. Introduction 

The issue of fractional programming (FP) comes into play when the goal is to optimize the 
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numerical optimization, FP can be considered an extension of linear fractional programming (LFP). 

In FP, the objective function is composed of a ratio between two generally nonlinear functions.  

Fractional programming finds applications in diverse areas of decision-making, including but not limited 

to traffic management (cited from Dantzig et al., 1966), network flow optimization (referenced from Arisawa 

and Elmaghraby, 1972), and strategic games (based on Isbell and Marlow, 1956). Schaible (1976 and 1982) gives 

a review of various applications. Enormous approaches are introduced to solve LFP problems (Gupta and 

Chakraborty, 1998; Tantawy, 2007; 2008; Pandey and Punnen, 2007; Pop and Stancu, 2008; Kim and Mehrotra, 

2021; Bennani et al., 2021; Park and Lim, 2021; Das and Mandal, 2017; Das, 2019; 2021; Farnam and Darehmiraki, 

2021; Mekawy, 2022; Edalatpanah, 2023; Jiao and Shang, 2023). 

In the domain of operations research, quadratic fractional programming (QFP) issues are widely 

applicable. These problems can be categorized by the uniformity of the constraints and the divisibility of the 

objective function, as outlined by Sharma and Singh in 2013. Ibaraki et al. (1976) introduced some models for 

solving QFP. Gupta and Puri's 1994 work focused on a specialized QFP scenario, aiming to minimize a certain 

quadratic fractional function under generalized constraints, further narrowed down to an extreme point of a 

convex polytope. Benson, in 2006, explored fractional programming problems that maximize a particular ratio 

of two convex functions, with at least one being a quadratic form, and detailed their mathematical attributes. In 

2006, Mishra and Ghosh introduced an interactive fuzzy programming technique to find satisfactory solutions 

for a two-tier QFP problem involving dual decision-makers. Zhang and Hayashi, in 2011, dealt with a fractional 

programming problem that minimizes the ratio of two indefinite quadratic functions under dual quadratic 

constraints, converting the original problem into a univariate nonlinear equation. 

Khurana and Arora, in 2011, put forth a methodology for tackling QFP problems incorporating uniform 

constraints. Sharma and Singh, in 2013, devised an iterative approach based on simplex techniques for solving 

QFP problems with factorization. Suleiman and Nawkhass, in 2013, advocated that a revised simplex method 

outperforms in addressing QFP issues and applied Wolfe's method to solve them. Lur and colleagues, in 2014, 

proposed a new continuous-time QFP (CQFP) model using the parametric and discretization methods, leading 

to an approximation algorithm with any desired accuracy. 

 



Neutrosophic Sets and Systems, Vol. 58, 2023     613  

 

 

S. A. Edalatpanah, E. Abdolmaleki, Hamiden Abd El- Wahed Khalifa, Sapan Kumar Das, A novel computational method for 
neutrosophic uncertainty related quadratic fractional programming problems 

Continuing, Singh and Haldar, in 2015, innovated a method for bi-level quadratic linear fractional 

programming issues by transforming the original problem. Youness et al., in 2016, introduced a parametric 

approach to solve nonlinear fractional optimization problems, relying on a two-dimensional algorithm. Sharma 

et al., in 2017, employed the ϵϵ-scalarization technique coupled with an integer feasible solution ranking to 

identify all non-dominated points for bi-objective quadratic fractional integer programming issues. Jain and 

colleagues, in 2018, offered an algorithmic solution for quadratic fractional integer programming problems 

involving bounded variables, using complete ranking and scanning. 

Kassa and Tsegay, in 2018, presented an algorithm for a tri-level programming issue involving quadratic 

fractional objectives at each tier, using a fuzzy goal programming strategy. Sivri and colleagues, in 2018, 

proposed a computational technique that simplifies QFP into a linear programming task. Lara, in 2019, 

established optimality conditions for general QFP issues using a generalized asymptotic function for dealing 

with quasi-convexity. Gharanjik et al., in 2019, introduced a novel optimization schema for signal design 

problems involving max-min FQP issues, simplifying the original problem using a penalized version. 

Lastly, Consolini et al., in 2020, rephrased an FQP issue into a Celis–Dennis–Tapia (CDT) problem, which 

served to outline a local search algorithm. Lachhwani, in 2020, recommended a holistic method for solving 

multi-level QFP problems based on fuzzy goal programming. For other recent research on the topic, refer to 

works by Taghi-Nezhad and Taleshian (2018), Badrloo and Husseinzadeh Kashan (2019), Yang and Xia (2020), 

Kausar et al. (2021), Jafari and Sheykhan (2021), Rani et al. (2021), Xiao et al. (2022), Ju et al. (2022), Zhou et al. 

(2022), and Berahas et al. (2023). 

Real-world data is inaccurate and very difficult to be determined exactly. Therefore, a mathematical model 

of a problem does not generally have accurate output to fulfill sufficient efficiency. As a result, in optimization 

problems, an appropriate tool is required by which the uncertainty of data is overcome. Fuzzy set theory serves 

as a pivotal research methodology for addressing issues associated with vagueness and uncertainty, and it has 

found applications across diverse academic disciplines. Initially introduced by Zadeh in 1965 (Zadeh, 1965), 

fuzzy numbers are constrained to a single membership function. In practical scenarios, the attributes of data 

such as certainty, accuracy, and reliability are typically elusive. Given that fuzzy numbers' optimal solutions are 

bound by a restricted set of constraints, a new theoretical framework known as 'Neutrosophic sets' was 

introduced. This approach was first conceptualized by Smarandache in 1995 (Smarandache, 1998). After that 
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this logic was developed and studied by several scholars (Rivieccio, 2008; Guo and Cheng, 2009; Ye, 2014; 

Smarandache, 2020; Edalatpanah, 2018; Garg, 2020; Abdel-Basset et al., 2020; Debnath, 2021; Mohanta and 

Toragay, 2023; Edalatpanah et al., 2023; Bhat, 2023, etc.). For researchers, it's crucial to extend traditional linear 

programming issues into their neutrosophic counterparts, incorporating three distinct membership functions: 

truth, indeterminacy, and falsity. This capacity to manage ambiguous and nebulous data can significantly 

enhance the adoption and utility of linear programming. Unlike fuzzy linear programming, which relies solely 

on a single membership function, neutrosophic linear programming offers a more nuanced approach by 

employing three types of membership functions. For an in-depth understanding, refer to works by Ye (2018), 

Abdel-Basset et al. (2019), Khatter (2020), Basumatary and Broumi (2020), Das and Dash (2020), Das et al. 

(2020a,b,c), Das and Edalatpanah (2022), Kumar et al. (2021), and Abdelfattah (2021). 

For the best of our mind, it has been observed from the literature study that there was no study in a 

neutrosophic quadratic fractional programming problems.  Taking this opportunity, we introduced a new 

method for solving PQFPP.  

Contribution: One of the key strengths of the neutrosophic set lies in its ability to aid decision-makers 

through its incorporation of degrees of truth, falsity, and indeterminacy. In this context, the degree of 

indeterminacy is often viewed as an autonomous variable with a crucial role in decision processes. Given the 

inherent uncertainties in real-world scenarios, utilizing pentagonal neutrosophic linear fractional programming 

problems (PNQLFPP) offers a more realistic approach than traditional PQFPP. In this study, we introduce a 

PNQLFPP model, wherein all coefficients are treated as pentagonal neutrosophic numbers. We present a novel 

algorithm that leverages a recently-developed ranking function along with the Taylor series method to solve 

PNQLFPPs. As far as we are aware, this is the inaugural methodology for addressing PNQLFPPs using a 

ranking function. Consequently, a direct comparison with existing techniques is not applicable for validating 

our approach. We illustrate the utility and efficacy of our method through a diet planning example, thereby 

showcasing its real-world applicability. 

Motivation:  

Neutrosophic sets serve as a cornerstone in modeling uncertainty, a key element in the creation of applied 

mathematical models in science, engineering structures, and medical diagnostic problems. Given the absence of 

existing studies that tackle PNQLFPP, our work pioneers a new approach that employs a ranking function 
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along with the Taylor series method for resolving issues related to PNQLFP. Queries such as the feasibility of 

incorporating this into operations research grounded in linear programming, or its real-world applicability, 

have yet to be answered. It is with this backdrop that we seek to advance the discourse through this paper. 

Novelties:  

In recent years, scholarly focus has shifted toward the enhancement and refinement of theories within the 

realm of neutrosophic studies, with ongoing efforts to broaden their utility across diverse neutrosophic 

subfields. Against this backdrop, our core objective in relation to PNQLFP problem theory is to validate the 

conceptual framework through several pivotal aspects: 

 Unveiling an efficient ranking function. 

 Incorporating the Taylor series method and elucidating its applications. 

 Real-world applications of the PNQLFP problem. 

 Benchmarking our findings against earlier established outcomes. 

In addressing this research void, our paper debuts the concept of pentagonal neutrosophic 

quadratic fractional programming problems. We then transform this into a more straightforward 

problem via the scoring function associated with pentagonal neutrosophic numbers, ultimately 

reducing it to a linear programming (LP) issue through the application of the Taylor Series. The rest 

of the paper unfolds as follows: Section 2 provides essential background information. The 

formulation of the pentagonal neutrosophic quadratic fractional programming issue is detailed in 

Section 3. A methodology to arrive at an optimal solution is laid out in Section 4. Section 5 brings in 

a numerical example to elucidate the concept. Insights into the results and merits of our approach 

are discussed in Section 6, and Section 7 closes with concluding observations. 

2. Foundational Concepts 

3.  

In this part, we outline fundamental ideas and findings concerning fuzzy numbers, pentagonal fuzzy numbers, 

the neutrosophic set, pentagonal neutrosophic numbers, and the arithmetic operations associated with them. 

Definition 1. (Cited from Zadeh, 1965). A set A is termed as a fuzzy set within the realm of real 

numbers R if the range of its membership function falls between [0, 1]. 
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Definition 2. (As per Abbasbandy and Hajjari, 2009). A number 

 in the set of real numbers  is identified as a 

pentagonal fuzzy number when its membership function is expressed as: 

 

Definition 3. (Based on Smarandache, 1998). A neutrosophic set, denoted as , within a non-empty set  is 

characterized as: 

, 

here, and  stand for the truth, indeterminacy, and falsity membership functions, 

respectively. The sum of them is unrestricted, falling within the range 

. Additionally,  represents a 

nonstandard unit interval. 

Definition 4. Referring to the terms outlined in Definition 3, if these membership functions are confined to the 

interval [0,1] and their aggregate sum lies in the range [0,3], such a set is termed a Single-Valued Neutrosophic 

set. 

Definition 5. Assume that , and  satisfying . A 

Single-Valued Pentagonal Neutrosophic Set (SVPN), denoted as , is a 

specialized neutrosophic set on . In this set, the truth-membership, hesitant-membership, and falsity-

membership functions are represented by: 
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Here, and  indicate the peak truth, nadir-hesitant, and nadir-falsity membership degrees, 

correspondingly. The SVPN  can depict a vaguely defined value 

approximating . 

 

Definition 6. Suppose  and  

are two distinct single-valued PQFNs. The following describes the arithmetic procedures that apply to them: 

1. 

 

2. 

 

3. 

 

4.  

5.  

6.  

Definition 7. Assume  is a single-valued pentagonal 

neutrosophic number. In this context, the Accuracy and Score functions are delineated in the following 

manner: 



Neutrosophic Sets and Systems, Vol. 58, 2023     619  

 

 

S. A. Edalatpanah, E. Abdolmaleki, Hamiden Abd El- Wahed Khalifa, Sapan Kumar Das, A novel computational method for 
neutrosophic uncertainty related quadratic fractional programming problems 

. 

 

Definition 8. (As per Thamariselvi and Santhi, 2016). Referring to the terms outlined in Definition 7, the 

ordinal relationships between A and B, predicated on their Accuracy and Score functions, are specified as 

follows: 

 

1. If , then  

2. If , then  

3. If , then  

4. If , then , 

5. If , then  

Definition 9. (Based on Sivri et al., 2018). The initial pair of terms in the Taylor series, stemming from 

, when evaluated at a given point , are characterized as follows: 

. 

3. Problem statement 

Quadratic fractional programming with pentagonal neutrosophic parameters can be formulated as 

(PQFP)  

    Subject to 
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Where, , and 

are neutrosophic cost vector and neutrosophic right- hand side vector.  is a vector of 

decision variables, and is a matrix of quadratic form which is 

symmetric and positive semi-definite, and . It is assumed that all of 

, where  denotes the set of all pentagonal 

neutrosophic parameters. 

Definition 10. In the context of the PQFP problem, a feasible fuzzy solution, denoted as , is termed an 

optimal fuzzy solution if  for every individual  

Utilizing the score function associated with the Pentagonal fuzzy number, the PQFP problem is 

reformulated as follows:  

(QFP)     

Subject to 

 

It assumed that  is a function of class . 

4. Solution method 

The steps of the solution procedure are: 

Step 1: Consider the PQFP problem. 

Step 2: Convert the PQFP into the QFP based on the score function. 

Step 3: Choose an arbitrary initial non-zero feasible point, say  . 

Step 4: Expand the Taylor series at  (Definition 9) to linearize the objective function. 

Step 5: Solve the linear programming 

(LP)    

Subject to  
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 Assume  represents the optimal solution for the Linear Programming (LP) problem.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                           Overlap                                          No overlapping 

                                                                      

 

Start 

Consider the PQFP problem 

Convert the PQFP into the QFP 

(Definition 4) 

Choose an arbitrary initial 

non-zero feasible point  

Linearize the objective function of 

QFP problem  

Solve the LP problem constrained 

by the linearization of objective 

function  

Expand the objective function of QFP problem at  

Solve LP problem with the objective 

function expanded at  

Check the 

optimality Optimal 

solution 

obtained 

End 
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                               Fig.1. Solution method flow chart 

Step 6: Expand the objective function of the QFP problem (Definition 9) at . 

Step 7: Solve LP problem with expanded objective function resulting from step 6 as 

constrained. Let be the solution. 

Step 8: Check the optimality 

If the solutions  and  overlap stop with the final optimal solution. Otherwise, assign  

to  and return to step 6. 

Fig. 1 depicts the flowchart outlining the steps of the solution method. 

5. Illustrative Example 

This section is dedicated to the application of our proposed method. We examine the following PQFP 

issue: 

 

Subject to                                                                         (1) 

 

 

 

Where, 
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Let us apply the steps of the solution method as  

Step 2:  Based on the ranking function of the pentagonal neutrosophic numbers, Problem (1) converts 

into 

 

Subject to                                                                         (2) 

 

 

 

Or equivalently, 

 

   Subject to                                                                         (3) 

 

 

 

Steps 3 and 4: Select  to be a random optimal point that is not zero. Utilize the Taylor series 

centered at this point to approximate the objective function in a linear form as follows: 

 

 

Step 5: Construct the LP problem as 
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Subject to                                                                         (4) 

 

 

 

The optimal solution is . 

Steps 6 and 7: Elaborate on the objective function corresponding to the QFP issue (as per Definition 6) 

around the point . Subsequently, construct and resolve the ensuing LP problem as: 

 

 Subject to                                                                         (5) 

 

 

 

The optimal solution is , with the optimum value , and 

 

6. Result Analysis 

In this section, we analyze the efficacy of our proposed approach in comparison to the existing technique by 

Sivri et al. (2018) for addressing the PNQFP issue. Utilizing ranking functions and order definitions, we 

establish that our method yields more effective outcomes, as evidenced by the comparison:  

Pr . (2018)0.75 0.74oposed method Sivri et al methodZ Z    

 

Additionally, it's crucial to note that the literature currently lacks a method for addressing the PNQFP issue. 

Consequently, we juxtaposed our novel approach with prevalent techniques for solving the C-QFP problem. 
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Our findings indicate that the objective value yielded by our method surpasses those of existing approaches. 

This leads us to conclude that our method is notably more effective. Furthermore, the objective value generated 

by our method resides within the realm of neutrosophic values. 

Benefits of the proposed approach are as follow: 

i) The outcomes generated by our model outperform those of Sivri's. As evidenced in the results 

section, our objective function value stands at 0.75, compared to Sivri's 0.74. Given that the 

problem aims for maximization, our solution effectively achieves this goal. 

ii) Crucially, in real-world scenarios, managers often grapple with options of agreement, uncertainty, 

and disagreement. Sivri's model restricts them to parameters set by decision-makers, a limitation 

we've addressed by incorporating a neutrosophic model in our approach. 

iii) Our model is versatile enough to be applicable to both real-world and large-scale issues. 

   Summing up the discussion, our newly proposed algorithm presents an innovative avenue for tackling both 

uncertainty and indeterminacy in real-world situations. 

7. Conclusions 

In real-world settings, dealing with ambiguous, unclear, or incomplete information often necessitates the use of 

neutrosophic sets. This study focuses on a neutrosophic linear fractional programming issue involving 

pentagonal neutrosophic numbers and converts it into a QFP issue through a ranking function. Utilizing the 

Taylor series method, we further simplify the QFP issue into a linear programming (LP) problem solvable via 

standard LP algorithms or software. Scholars in this domain could find our approach useful for addressing both 

intricate and straightforward challenges. An example is included to validate the efficiency of our methodology. 

This new framework not only augments the realm of uncertain linear fractional programming but also 

introduces a novel, effective strategy for managing indeterminate optimization issues. Comparative evaluations 

with existing methodologies underscore the merits of our ranking approach. Future extensions could involve 

incorporating other specialized neutrosophic sets like pentagonal neutrosophic sets, neutrosophic rough sets, 

interval-valued neutrosophic sets, and plithogenic contexts. 
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Abstract: 

Time factor plays an important role in many issues, and the most important of these issues 

is the issue of transportation, when we need to transport perishable materials such as milk, 

medicines ,blood,….. etc. or develop war plans to secure the requirements of battle of 

ammunition - food - and soldiers …..etc., at maximum speed, we need a careful scientific 

study that enables us to avoid losses, so the researchers studied transport models in the 

shortest possible time using the values of classic logic and the best solution for such models 

is a specific value subject to increase or decrease because there is nothing certain in the real 

reality, all the results of the studies are related to the surrounding conditions of the system 

under study, due to the sensitivity of these issues had to be reformulated according to a 

science that takes into account all the cases that the system can go through so that we can 

take all possible precautions that help us reduce losses and secure the required in the 

shortest possible time, we have in This research formulates transport models with the 

shortest time and we presented a special way to solve such models using neutrosophic 

values, based on the concept of the neutrosophic linear mathematical model, a model that 

has something of non-determination (indeterminacy) and we reached transport models with 

the shortest time that are considered a generalization of the existing models because they 

give us optimal neutrosophic values for time, which are unspecified values 𝑁𝑡∗ = 𝑡∗ ± 𝜀  
where 𝜀 is indeterminism and we will take it in the form then become the matrix of 

times  𝑁𝑡∗ = [𝑡∗ ± 𝜀] , where  𝑁𝑡∗ is any neighborhood of  𝑡∗ , it should be noted that in 

this research when viewing the example we took some transfer times neutrosophic values 

of the form  𝑁𝑡 ∈ [𝑡1 ,𝑡2] to be able to clarify the main goal of the research. 

 

Key words: Linear programming - Simplex - the problem of transportation at the lowest 

cost - the issue of transportation in the shortest time - Ways to solve the problem of 

transport . 

Introduction: 

Linear programming is one of the most methods of operations research that has been used 

to address many realistic issues and provided optimal solutions to them that helped reduce 

losses, and since the optimal solution to such issues depends on the data provided by those 

in charge of the work and this  data lack  stability , we are unable to study these issues and 

develop accurate future action plans It was necessary for a new science that provides us 

with a margin of freedom and helps us reduce losses, so it was a neutrosophic science, 

which was laid by the American scientist and mathematical philosopher Florentin 

Samarandche and came as a generalization of the fuzzy logic presented by Lutfizadeh [1], 

this science has received great attention by researchers as many researches and studies have 

been published in various fields of science using the basic concepts developed by the 

founder of this science [2-8], and  since operations research is considered the applied aspect 

of mathematics, it was necessary to reformulate its topics using the basic concepts of 

neutrosophic science, where we published the feast of research on various topics such as 

static stock models, simulation, decision-making, dynamic programming, and in the topics 

of linear programming,  and transport problems at the lowest cost. Waiting queues, 
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Machine Learning...etc. [9-26], a complement to our research in which we present a study 

of transportation models in the shortest possible time. 

Discussion: 

Through our study of some topics of linear programming using neutrosophic science and 

due to the interest that these researches have received from researchers and those interested 

in the development of science, we present this research as a complementary study to what 

we have done in two previous researches on the issue  of transport [18,19] It is dedicated to 

transport models with the shortest time using neutrosophic values  that take into account all 

changes that may occur during the functioning of the systems under study and provide  We 

have optimal transit time. 

Model of transporting materials in the shortest possible time using neutrosophic 

values: 

Based on the study contained in the research [19], we can formulate the issue as 

follows: 

The text of the issue in general form: 

Suppose we want to move a material from production centers 𝐴𝑖 where 𝑖 = 1,2, … , 𝑚 

,whose production capacities are respectively 𝑁𝑎1, 𝑁𝑎2, … , 𝑁𝑎𝑚, to consumption centers 

𝐵𝑗 where 𝑗 = 1,2, … , 𝑛 whose needs is 𝑁𝑏1, 𝑁𝑏2, … , 𝑁𝑏𝑛  It is in order, and let the matrix of 

times necessary to transfer the appropriate quantity from the center 𝑖 to the center 𝑗 be 

known and equal 𝑁𝑇 = [𝑁𝑡𝑖𝑗], it is required to formulate the appropriate mathematical 

model to transfer all the quantities ,available in the production centers and meet the needs 

of all consumption centers in the shortest time. In order to build the appropriate 

mathematical model, we denote  𝑁𝑥𝑖𝑗 for the quantity transferred from the production 

center 𝑖 where 𝑖 = 1,2,3, … , 𝑚 to the consumption center j where = 1,2,3, … , 𝑛 , then we 

can put the problem unknowns in matrix form. 𝑁𝑋 = [𝑁𝑥𝑖𝑗] , and we put the information 

in the question in a table as follows: 

 

 

quantities 𝐵𝑛 … 𝐵3 𝐵2 𝐵1 
consumption   

production  

𝑁𝑎1 𝑁𝑡1𝑛 

𝑁𝑥1𝑛 

… 𝑁𝑡13 

𝑁𝑥13 

𝑁𝑡12 

𝑁𝑥12 

𝑁𝑡11 

𝑁𝑥11 

𝐴1 

𝑁𝑎2 𝑁𝑡2𝑛 

𝑁𝑥2𝑛 

… 𝑁𝑡23 

𝑁𝑥23 

𝑁𝑡22 

𝑁𝑥22 

𝑁𝑡21 

𝑁𝑥21 

𝐴2 

𝑁𝑎3 𝑁𝑡3𝑛 

𝑁𝑥3𝑛 

… 𝑁𝑡33 

𝑁𝑥33 

𝑁𝑡32 

𝑁𝑥32 

𝑁𝑡31  

𝑁𝑥31 

𝐴3 

… … … … … … … 

𝑁𝑎𝑚 𝑁𝑡𝑚𝑛 

𝑁𝑥𝑚𝑛 

 

… 

𝑁𝑡𝑚3 

𝑁𝑥𝑚3 

𝑁𝑡𝑚2  

𝑁𝑥𝑚2 

𝑁𝑡𝑚1 

𝑁𝑥𝑚1 

𝐴𝑚 

 𝑁𝑏𝑛 … 𝑁𝑏3 𝑁𝑏2 𝑁𝑏1 Required quant 

 

Table No. (1) Data of the issue of transport in the shortest time 

 

To build the appropriate mathematical model, we distinguish two cases: 
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First case: the model is balanced: 

The model is balanced if:  

∑

𝑚

𝑖=1

𝑁𝑎𝑖 = ∑

𝑛

𝑗=1

𝑁𝑏𝑗   

 Second Case: Unbalanced Model: 

The model is unbalanced if: 

∑

𝑚

𝑖=1

𝑁𝑎𝑖 ≠ ∑

𝑛

𝑗=1

𝑁𝑏𝑗   

From this case, two cases result: 

Overproduction: 

∑

𝑚

𝑖=1

𝑁𝑎𝑖 ≥ ∑

𝑛

𝑗=1

𝑁𝑏𝑗   

This model is returned to a balanced model by adding an imaginary consumer center that 

needs it:  

𝑁𝑏𝑛+1 = ∑

𝑚

𝑖=1

𝑁𝑎𝑖 − ∑

𝑛

𝑗=1

𝑁𝑏𝑗   

Deficit in production: 

This model is returned to a balanced model by adding a fictitious production center with a 

production capacity:  

𝑁𝑎𝑚+1 = ∑

𝑛

𝑗=1

𝑁𝑏𝑖 − ∑

𝑚

𝑖=1

𝑁𝑎𝑖   

 

In both cases(𝑏  & 𝑎), a case of surplus production and a deficit in production, we get a 

balanced model. 

Formulation of the mathematical model of transport models in the shortest possible time:  

Our symbol for the quantity transferred from the center 𝑖 to the center 𝑗 with the symbol 

𝑁𝑥𝑖𝑗 then these variables must meet the following conditions:  

∑

𝑛

𝑗=1

𝑁𝑥𝑖𝑗 = 𝑁𝑎𝑖         (𝑖 = 1,2,3, … , 𝑚) 

∑

𝑚

𝑖=1

𝑁𝑥𝑖𝑗 = 𝑁𝑏𝑗        (𝑗 = 1,2,3, … , 𝑛) 

𝑁𝑥𝑖𝑗 ≥ 0   (𝑖 = 1,2,3, … , 𝑚) , (𝑗 = 1,2,3, … , 𝑛) 

In these models, the objective function cannot be formulate d with a mathematical follower, 

so we extract its most important qualities and properties through the following discussion: 

To find the optimal solution for any transport model, we must find the values of unknowns: 

𝑁𝑥𝑖𝑗 ;  (𝑖 = 1,2,3, … , 𝑚) , (𝑗 = 1,2,3, … , 𝑛). In a previous research [18] we  have presented 

ways to find the preliminary solution to the problem of neutrosophic transport at the lowest 

cost, taking advantage of the study contained in the research we find a primary basic 

solution using one of the methods, we know that any optimal solution that includes n+m-1 

basic solution that are not equal to zero , and against this solution there is a set of times that 

we will symbolize as [𝑁𝑡𝑖𝑗]
𝑋

. 
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It represents the time required to transport all materials available in all production centers 

and meet the needs of all consumption centers. 

The time required to finish the transfer process, which we will symbolize as corresponding 

to the largest element of the matrix   [𝑁𝑡𝑖𝑗] 𝑋 must achieve the following relationship: 

𝑁𝑡𝑥 = 𝑀𝑎𝑥𝑖,𝑗[𝑁𝑡𝑖𝑗]
𝑋

 

Since we have a large number of acceptable solutions, the optimal solution is given by the 

following relationship: 

𝑁𝑡𝑥
∗ = 𝑀𝑖𝑛𝑁𝑡𝑥 = 𝑀𝑖𝑛(𝑀𝑎𝑥𝑖,𝑗[𝑁𝑡𝑖𝑗]

𝑋
) 

This means that we solve the model without a target function we get a base solution and 

then we determine the number set from the matrix [𝑁𝑡𝑖𝑗]
𝑋

 corresponding to this base 

solution. 

Note 1:  

If the issue is unbalanced and when adding an imaginary production center or an imaginary 

consumer center, we determine the time according to the following: 

Since the time required to finish the transfer process achieves the following relationship: 

𝑁𝑡𝑥 = 𝑀𝑎𝑥𝑖,𝑗[𝑁𝑡𝑖𝑗]
𝑋

 

So we take the time required to transfer the quantities available in this imaginary 

production center to all consumption centers equal to zero. 

And we take the time required to transport quantities from all production centers to the 

imaginary consumer center is equal to zero. 

Note 2: 

In order for the transport model to be a neutrosophic transport model, at least one of the 

data in Table 1 must be a neutrosophic value. 

The general method used to obtain the smallest transfer time is to move from one 

neutrosophic base solution to another base solution using the simplex method to solve the 

neutrosophic linear models described in the research [12] ,and the goal is to make the 

largest elements 𝑁𝑡𝑥 in the matrix  𝑁𝑇 = [𝑁𝑡𝑖𝑗]
𝑋

 as small as possible.  

In this research, we will use a special method to solve neutrosophic transport models 

according to time, which we explain through the following example:  

Example:  

Four pharmaceutical plants distribute their production of one type to three pharmacies the 

available quantities, the quantities required and the times required to transport them are 

shown in the following table: 

Required 

quantities 𝐵3 𝐵2 𝐵1 
Consumption center     

Production centers  

11 6 

𝑁𝑥13 

[2 ,2.4] 

𝑁𝑥12 

[1 ,1.5] 

𝑁𝑥11 

𝐴1 

9 [1 ,1.5] 

𝑁𝑥23 

8 

𝑁𝑥22 

[3 ,3.2] 

𝑁𝑥21 

𝐴2 

13 [4 ,4.6] 

𝑁𝑥33 

10 

𝑁𝑥32 

[7 ,7.5] 

𝑁𝑥31 

𝐴3 

17 [5 ,5.1] 

𝑁𝑥43 

8 

𝑁𝑥42 

12 

𝑁𝑥41 

𝐴4 
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40 

40 

12 10 18 Available quantity 

 

Table No. (2) Example data 

 

We look for the smallest time in the rooms (𝑖, 𝑗), we find that it is found in two rooms  
(1, 1) and (3, 2) :  

𝑀𝑖𝑛(𝑁𝑡𝑖𝑗) = 𝑁𝑡11 = 𝑁𝑡32 ∈ [1,1.5]  

 We denote b.i Ω1 for all table stone except the two rooms (1, 1) and (2, 3) 

 We saturate the two chambers opposite them (1, 1) 𝑎𝑛𝑑 (2, 3) then we put in the other 

stone (∗) we get the following table:  

 

 

Required 

quantities 
   

consumption    

   production 

11 ∗ ∗ 11 𝐴1 

9 9 ∗ ∗ 𝐴2 

13 ∗ ∗ ∗ 𝐴3 

7 ∗ ∗ ∗ 𝐴4 

  40  

40 
12 10 18 Available quantities 

 

Table No. (3) First Step 

The first solution is  𝑥11
(1)

= 11 , 𝑥23
(1)

= 9 which expresses the total quantities transferred 

and is equal to 𝑥𝑖𝑗 = 11 + 9 = 20  it crosses a quantity less than the quantity required for 

that time solution from which we started and the author of 𝑁𝑡11 = 𝑁𝑡23 ∈ [1,1.5] is an 

imperfect solution to the problem at hand. 

From the elements of the sat Ω1, where Ω1 equal :  

Ω1 = { [3 ,3.2], [7 ,7.5], 12, [2 ,2.4], 8,10,8,6, [4 ,4.6], [5 ,5.1] } 
We look for the smallest time we find:  

(𝑁𝑡𝑖𝑗) = 𝑀𝑖𝑛{[3 ,3.2], [7 ,7.5], 12, [2 ,2.4], 8,10,8,6, [4 ,4.6], [5 ,5.1]}  ∈ [2 ,2.4] 

Any smallest time is this 𝑁𝑡12 ∈ [2 ,2.4] means that we must transfer the quantities 

available in the production center 𝐴1 to the consumption center 𝐵2 and this is not possible 

because the center 𝐴1 no longer contains any quantity and therefore this step is not useful. 

We form the sat  Ω2 = { [3 ,3.2], [7 ,7.5], 12,8,10,8,6, [4 ,4.6], [5 ,5.1] } is the resulting Ω1 

after deleting 𝑁𝑡12 ∈ [2 ,2.4] and we choose from Ω2 the smallest time we find: 

(𝑁𝑡𝑖𝑗) = 𝑀𝑖𝑛{[3 ,3.2], [7 ,7.5], 12,8,10,8,6, [4 ,4.6], [5 ,5.1]}  ∈ [3 ,3.2] 

Any smaller time is this 𝑁𝑡21 ∈ [3 ,3.2] means that we have to transfer the quantities 

available in the production center 𝐴2 to the consumption center 𝐵1 and this is not possible 

because the center 𝐴2 no longer contains any quantity and therefore this step is also not 

useful  

We form Ω3 = {[7 ,7.5], 12,8,10,8,6, [4 ,4.6], [5 ,5.1] }the sat which is the resulting sat Ω2 

after deleting 𝑁𝑡21 ∈ [3 ,3.2] and choosing from the Ω3 smallest time we find : 

(𝑁𝑡𝑖𝑗) = 𝑀𝑖𝑛{[7 ,7.5], 12,8,10,8,6, [4 ,4.6], [5 ,5.1]}  ∈ [4 ,4.6] 
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Any smallest time is 𝑁𝑡33 ∈ [4 ,4.6] this means that we must transfer the quantities 

available in the production center 𝐴3 to the consumption center 𝐵3 i.e. we put 𝑥33 = 12  
and therefore we must shift the amount in the room (2,3) with the same time [1 ,1.5] to a 

room with  a time immediately followed and located in the same line i.e. to the room 
(2,1) with the same time [3 ,3.2] and we put 𝑥21 = 9 ,then we make a balance process for 

the quantities that have been distributed and here we must reduce the quantity in the room 
(1,1) becomes 𝑥11 = 9 and we put the quantity that has been reduced in the room with the 

lowest time immediately following the time in that room and in the same row,  i.e in the 

room (1,2) we get 𝑥12 = 2 from this step we get the following distribution:  

𝑥11 = 9    ، 𝑥12 = 2 , 𝑥21 = 9 , 𝑥33 = 12 

But this solution is not ideal because the sum of the quantities that were distributed is not 

equal to the 40 total quantities available, that is, the time  𝑁𝑡33 ∈ [4 ,4.6]  Not the shortest 

time, we proceed in the same way in the eighth time to reach the distribution shown in the 

following table: 

Required 

amounts 𝐵3 𝐵2 𝐵1 
consumption    

   production 

11 ∗ 10 1 𝐴1 

9 ∗ ∗ 9 𝐴2 

13 5 ∗ 8 𝐴3 

7 7 ∗ ∗ 𝐴4 

40 

40 

12 10 18 Available 

quantities 

 

Table No. (4) Optimal Solution 

In return for 𝑀𝑖𝑛(𝑁𝑡𝑖𝑗) = 𝑁𝑡31 ∈ [7 ,7.5]  this time, the entire quantities available in the 

production centers have been transferred and the needs of all consumer centers have been 

met, the ideal solution is  

𝑥11 = 1 ,  𝑥21 = 9 , 𝑥31 = 8 , 𝑥12 = 10 , 𝑥33 = 5 , 𝑥43 = 7 

The rest of the variables is equal to zero, and the shortest time is  𝑁𝑡∗ = 𝑁𝑡31 ∈ [7 ,7.5] 
It should be noted that the same example was presented and solved according to classical 

logic in reference [20], and the data of the problem were as in the following table:  

The available quantities, the quantities required and the times required for their 

transportation are shown in the following table: 
Required 

amounts 𝐵3 𝐵2 𝐵1 
consumption   

   production  

11 6 

𝑁𝑥13 

2 

𝑁𝑥12 

1 

𝑁𝑥11 

𝐴1 

9 1 

𝑁𝑥23 

8 

𝑁𝑥22 

3 

𝑁𝑥21 

𝐴2 

13 4 

𝑁𝑥33 

10 

𝑁𝑥32 

7 

𝑁𝑥31 

𝐴3 

7 5 

𝑁𝑥43 

8 

𝑁𝑥42 

12 

𝑁𝑥41 

𝐴4 
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40 

40 

12 10 18 Available 

amounts 

 

Table No. (5) Example data according to classical logic 

 

 

The optimal solution was as follows:  

Time  𝑀𝑖𝑛(𝑡𝑖𝑗) = 𝑡31 = 7  and in exchange for this time, the entire quantities available in 

the production centers have been transferred and the needs of all consumer centers have 

been met, the best solution is   

𝑥11 = 1  , 𝑥21 = 9 , 𝑥31 = 8 , 𝑥12 = 10 , 𝑥33 = 5 , 𝑥43 = 7 

The rest of the variables is equal to zero, and the shortest time is  𝑡∗ = 𝑡31 = 7 

Conclusion and results:  

The solution using neutrosophic values is an undefined neutrosophic value, which can be 

any value belonging to the domain  𝑁𝑡∗ ∈ [7 ,7.5], and this value is not specified shows its 

impact according to one time used and according to the nature of the material transported 

and the need of consumption centers for it in the end The difference between it and the 

value 𝑡∗ = 7 obtained when solving this problem using classical values and its impact is 

determined by those responsible for the work, in addition to that the method used to find 

the shortest time is an iterative method and in this example we repeated it eight times until 

we reached the required despite the number of production centers and consumption centers 

a small number and in Real reality is more numerous, so we recommend using computers 

and new technologies used in programming when applying this method to real systems 

from reality,  
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Abstract: In this short note we show that the so-called Ambiguous Set (2019) is a subclass of the 

Double Refined Indeterminacy Neutrosophic Set (2017) and is a particular case of the Refined 

Neutrosophic Set (2013). Also, the Ambiguous Set is similar to the Quadripartitioned Neutrosophic 

Set (2016), and Belnap’s Four-Valued Logic (1975). 

 

Keywords: Double Refined Indeterminacy Neutrosophic Set (DRINS); Refined Neutrosophic Set 

(RNS); Ambiguous Set (AS); Quadripartitioned Neutrosophic Set (QNS); Belnap’s Four-Valued 

Logic (BFVL). 

 

 

1. Introduction 

We provide the definitions of the previous five types of sets, and we prove that the Ambiguous Set 

is a particular case of the Refined Neutrosophic Set (RNS), Quadripartitioned Neutrosophic Set 

(QNS), and Belnap’s Four-Valued Logic (BFVL), and mostly that the Ambiguous Set coincides with 

the Double Refined Indeterminacy Neutrosophic Set with the distinction that the sum of quadruple 

components is ≤ 2 for the AS, which makes it a subclass of the DRINS where the sum is any number 

between 0 and 4. 

 

2. Ambiguous Set 

The definition of the Ambiguous Set (AS) according to [1, 2] is given as follows: 

Let U = {g} be the universe for any event 𝑔, which is fixed. An AS Ś for g ∈ U is defined by: 

                          Ś = {g, Πt(g), Πf(g), Πta(g), Πfa(g) | g ∈ U} 

where, Πt(g): U → [0,1], Πf(g): U → [0,1], Πta(g): U → [0,1], and Πfa(g): U → [0,1] are 
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called the true membership degree (TMD), false membership degree (FMD),  

true-ambiguous membership degree (TAMD), and false-ambiguous membership degree 

(FAMD), respectively.  

Where Πt(g), Πf(g), Πta(g) and Πfa(g) must satisfy the following condition as: 

0 ≤ Πt(g) + Πf(g) + Πta(g) + Πfa(g) ≤ 2 

 

3. Double Refined Indeterminacy Neutrosophic Set (DRINS) 

 

The definition of Double Refined Indeterminacy Neutrosophic Set is given in [3] as follows: 

Let X be a space of points (objects) with generic elements in X denoted by x.  

A Double Refined Indeterminacy Neutrosophic Set (DRINS) A in X is characterized by four 

components: 

truth membership function TA(x), indeterminacy leaning towards truth membership 

function ITA(x),  

indeterminacy leaning towards falsity membership function IFA(x), and falsity membership 

function FA(x).  

For each generic element x ∈ X, there are TA(x), ITA(x), IFA(x), FA(x) ∈ [0, 1],  

and 0 ≤ TA(x)+ITA(x)+IFA(x)+ FA(x) ≤ 4.  

Therefore, a DRINS A can be represented by  

A = {⟨x, TA(x), ITA(x), IFA(x), FA(x)⟩ | x ∈ X}. 

 

4. Ambiguous Set vs. Double Refined Indeterminacy Neutrosophic Set 

 

Let’s compare the two definitions. 

 

The definition of Ambiguous Set, as presented by Singh, Huang, & Lee [1, 2] in 2019 and 

in 2023, coincides with that of Double Refined Indeterminacy Neutrosophic Set 

introduced by Ilanthenral & Smarandache [3] in 2017, ahead of them. 

 

They only renamed: 

   the indeterminacy leaning towards truth membership function ITA(x), as true-ambiguous 

membership degree (TAMD), 

   and the indeterminacy leaning towards falsehood membership function ITA(x), 

as false-ambiguous membership degree (FAMD). 

 

The only distinction between AS and DRINS is that: 

the sum of AS quadruple components is restricted to be ≤ 2,  



Neutrosophic Sets and Systems, Vol. 58, 2023     641  

 

 

Florentin Smarandache, Ambiguous Set is a subclass of the Double Refined Indeterminacy Neutrosophic Set, and of the 
Refined Neutrosophic Set in general 

while the sum of DRINS quadruple components is ≤ 4 (no restriction), which means that one 

can take any number between 0 and 4, in the particular case they took the number 2, whence 

AS is a subclass of the DRINS. 

 

5. Refined Neutrosophic Set 

 

The Definition of Refined Neutrosophic Set is the following. 

Let X be a space of points (objects) with generic elements in X denoted by x.  

A Refined Neutrosophic Set (RNS) A in X is characterized by n sub-components: 

sub-truth membership functions T1A(x), T2A(x), … , TpA(x);  

sub-indeterminacy membership functions I1A(x), I2A(x), …, IrA(x); 

and sub-falsehood membership functions F1A(x), F2A(x), … , FsA(x); 

where p, r, s ≥ 0 are integers, and p + r + s = n ≥ 2, such that at least one of p, r, s is ≥ 2 

for assuring the refinement of at least one neutrosophic component amongst T, I, or F. 

For each generic element x ∈ X, the functions 

T1A(x), T2A(x), … , TpA(x), I1A(x), I2A(x), …, IrA(x), F1A(x), F2A(x), … , FsA(x) ∈ [0, 1], 

with their sum 

0 ≤ T1A(x) + T2A(x) + … + TpA(x) + I1A(x) + I2A(x) + … + IrA(x) +  

      + F1A(x) + F2A(x) + … + FsA(x) ≤ n 

Therefore, a RNS A can be represented by  

ARNS = {⟨x, T1A(x), T2A(x), … , TpA(x), I1A(x), I2A(x), …, IrA(x), F1A(x), F2A(x), … , FsA(x)>, | x ∈ X}. 

The Ambiguous Set is a particular case of the Refined Neutrosophic Set, since one takes  

p = 1 (only one true membership); 

r = 2 (two types of indeterminacy memberships,  

          I1 = true-ambiguous membership degree (TAMD),  

           and  

                     I2 = false-ambiguous membership degree (FAMD);  

s = 1 (only one false membership). 

Therefore, the Ambiguous Set is a particular case of the Refined Neutrosophic Set. 

In the same way it is proven that the Double Refined Indeterminacy Neutrosophic Set is 

a particular of the Refined Neutrosophic Set. 

 

6. Ambigous Set vs. Refined Neutrosophic Set 

 

Both, the so-called Ambiguous Set and the Double Refined Indeterminacy Neutrosophic 

Set are particular cases of the Refined Neutrosophic Set [4] introduced by Smarandache 

in 2013. 

 

7. Quadripartitioned Neutrosophic Set 
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The Definition of single-valued Quadripartitioned Neutrosophic Set [5]  

Let X be a non-empty set. The Quadripartitioned single-valued Neutrosophic Set (QNS) A 

over X characterizes each element x in X by a truth-membership function TA , a contradiction 

membership function CA , an ignorance–membership function UA and a falsity membership 

function FA such that: 

 for each x X one has ( ), ( ), ( ), ( ) [0,1]A A A AT x C x U x F x   and 

0 ( ) ( ) ( ) ( ) [0,1] 4A A A AT x C x U x F x      . 

When X is discrete, A is represented as 

              
1

( ), ( ), ( ), ( ) / , .
n

A i A i A i A i i i

i

A T x C x U x F x x x X


     

However, when X is continuous, A is represented as:  

( ), ( ), ( ), ( ) / , .A A A A

X

T x C x U x F x x x X    

    It is clear the Quadripartitioned Neutrosophic Set (no matter if it is single-valued, 

interval-valued, or set-valued in general) is a particular case of the Refined Neutrosophic 

Set, of the form T, F, and indeterminacy I is split into two parts: I1 = C 

(contradiction-membership) and I2 = U (ignorance-membership). 

While the Ambiguous Set is similar with the Quadripartitioned Neutrosophic Set, where the 

two types of sub-indeterminacies I1 and I2 are named differently: true-ambiguous 

membership and respectively false-ambiguous membership. 

   Surely, one can rename the sub-indeterminacies I1 and I2 in many ways, since there are 

many types of indeterminacies / uncertainties / vagueness / conflicting informations etc. 

 

8. Belnap’s Four-Valued Logic  

 

    In 1975 Belnap has considered a logic of four values:  true, false, both (true and false), 

and neither (neither true, nor false). We can denote them by T (true), F (false), C (true and 

false = contradiction), U (neither true not false = ignorance) respectively and we see that the 

Ambiguous Set and Quadripartitioned Neutrosophic Set are similar to Belnap’s Logic 

Further on, the Belnap’s 4-valued Logic is a particular case of the Refined Neutrosophic n-valued 

Logic that has types of truths T1, T2, …, Tp, types of indeterminacies I1, I2, …, Ir, and types of 

falsehoods: F1, F2, …, Fs. 

 

9. Conclusion 

 

    We proved that the so-called Ambiguous Set coincides with the Double Refined 

Indeterminacy Neutrosophic Set with respect their quadruple structures, while, with respect 

to the sum of components, AS is a subclass of the DRINS.  
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Also, AS is similar with the Quadripartitioned Neutrosophic Set and Belnap Four-Valued 

Logic as well. 

Further on, we proved that the AS, DRINS, QNS and BFVL are particular cases of the 

Refined Neutrosophic Set / Logic respectively. 
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Abstract Representation learning and interactive modeling of visual content are critical aspects for 

advancing visual interpretation in different computer vision tasks. However, visual data's inherent 

uncertainty and ambiguity remain a critical challenge facing representation learning algorithms.  In 

response to this challenge, this study presents a simple but effective model, namely, the neutrosophic-based 

transformer network (NTN), which integrate the theory of neutrosophic logic and transformer architecture 

to offer unprecedented challenge in managing uncertainties. The design of NTN includes three primary 

building blocks: neutrosophic encoding, multipath network, and fusion and decision modules. Motivated 

by the success of neutrosophic in interpreting indeterminacy involved in visual data, we introduce a 

neutrosophic encoding module that applies a convolving window to map image data into the neutrosophic 

domain (truth, indeterminacy, and falsehood). This helps the NTN mitigate spatial and intensity 

uncertainties present in image patches, thereby enhancing boundary and uniformity retention while 

minimizing discontinuities. Then, multipath networks are built with visual transformer encoding blocks 

(composed of multi-head self-attention, feed-forward network, and residual link) to take the responsibility 

of learning rich representations from the generated neutrosophic image. By the end of NTN, the 

multiplicative fusion module is presented to fuse diverse knowledge from different network paths to obtain 

insightful representation that can assist in making informed decisions about the input. A set of proof-of-

concept experiments are conducted to evaluate the proposed NTN against cutting-edge approaches using 

two image recognition datasets (namely Fashion-MNIST and CIFAR-10) with different uncertainty settings, 

and the findings demonstrate the potential of NTN in maintaining high representation power through 

efficient modeling of uncertainty information within visual recognition tasks. 

Keywords: Uncertainty; Neutrosophic set; Representation learning; Vision Transformer; Machine 

learning; Image Recognition. 

1. Introduction 

Representational learning has been recognized as a core concept in machine learning (ML) that 

usually refers to the ability of an algorithm/model to extract complex and meaningful features 

from the training or inference data. This motivates research communities to develop a wide 

variety of ML techniques that can have effective representational power for different tasks, 

including image identification, natural language processing, and audio analysis. With this 

representation power, the ML systems can decode intricate patterns and make informed decisions 

[1]. The quality of data being passed to the model contributes significantly to the ability of 
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machines to understand and engage with the real world more efficiently. Nevertheless, the real-

world data is not usually clean but unpredictable and ambiguous limiting the representation 

power. This highlights the need for a new method to augment the representational learning 

capabilities with uncertainty handling capabilities to adequately handle the intricate and diverse 

nature of uncertainties seen in real data [2]. 

Vision data obtained from dynamic and unexpected surroundings inherently contain some level 

of uncertainty caused by a variety of factors, including occlusion, fluctuations in lighting 

conditions, changes in viewpoint, and deformations of the object [3]. In traditional ML methods, 

like probabilistic modeling, the range and likelihood of results are estimated to put measurable 

bounds on uncertainty in the data. However, the problem with these methods lies in their 

inability to handle situations encountering both ambiguities and contradictions simultaneously.  

In another way, the fuzzy logic was presented by Zadeh, to handle uncertainty by reconsidering 

system parameters as fuzzy numbers (instead of crisp values), a membership function 

characterized each. However, it may be insufficient to address more complex uncertainty 

categories such as epistemic or probabilistic uncertainty [4]. These constraints bring a critical 

need to explore other methodologies that can address the above limitation and thereby provide 

a more inclusive handling of uncertainties. 

In 1995, Florentin Smarandache introduced the concept of Neutrosophic logic, in which each 

proposition is projected to have a level of truthfulness, a level of indeterminacy, and a level of 

falseness. With its triadic nature, the neutrosophic logic offers a great opportunity to deal with 

situations encountering uncertainties and contradictions, which substantially correlate with the 

complexities of visual recognition problems [5]. With the introduction of the idea of "neutrosophic 

membership", it could be easy to get a detailed measurement of the levels of truth, indeterminacy, 

and falsehood in a statement, offering a comprehensive depiction of different types of uncertainty 

[6]. The literature on computer vision has witnessed many breakthroughs in recent years due to 

the continuous evolution of deep image recognition models. Among these models, Vision 

transformers (ViTs) have been achieving remarkable success in capturing hierarchical patterns 

within images.  ViTs were developed as customization of Transformer architecture, which was 

initially established for language modeling tasks, but with some key edits to suit image 

processing. One of the main distinctions about ViT lies in representing input images as a sequence 

of patches of equal size. These patches are passed to self-attention layers to enable the model to 

have long-range dependencies between them, as it grants the model to learn how the 

representations of distinctive fragments of an image contribute to a final decision. However, the 

ViT is not designed to deal with the inherent ambiguity and uncertainties in the input images, 

which limit their representation power and lead to poor classification performance [7]. This 

significant research gap highlighted the need for a novel solution that helps keep the 
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representational power of ViTs under serious and multidimensional uncertainty prevalent in 

visual data [8]. 

This paper presents a hybrid framework, called a neutrosophic-based transformer network 

(NTN), that integrates neutrosophic logic into the visual learning of ViTs, aiming to provide a 

consistent mechanism for modeling uncertainties inherent in visual recognition tasks. The 

proposed NTN is designed to introduce a neutrosophic encoding module to transform the noisy 

and ambiguous images into a neutrosophic domain before being fed into a representational layer 

within the attention layers of our model. Proof-of-concept experimentations are performed on 

two image recognition datasets (namely Fashion-MNIST and CIFAR-10) under different 

uncertainty settings, and the results demonstrated the effectiveness of our NTN in maintaining 

high representation power through effective modeling of diverse uncertainty patterns in visual 

recognition tasks. 

2. Literature Review 

In this section, we provide an overview of background literature and related works that 

emphasize the representation of learning and uncertainty modelling, which shape the 

foundations of our search. 

In their book, Smarandache and Said [6] laid the groundwork for incorporating neutrosophic 

theories into different application domains (e.g., product acceptance determination). They also 

studied the concept of neutrosophic graphs by investigating their association with different 

machine-learning algorithms. They also discussed the use of neutrosophic representation to solve 

the systems of linear equations. Pamucar et al. [7] introduced an approach for evaluating and 

selecting suppliers based on fuzzy neutrosophic decision-making, in which a Dombi aggregator 

was used as a weight aggregator that applies pairwise comparison based on trapezoidal 

neutrosophic linguistic variables. Their approach used MABAC (multiattribute border 

approximation area comparison) tool to analyze the suppliers in a resilient supply chain 

management (RSCM) system with an uncertain environment and numerous factors; meanwhile, 

sensitivity analysis tests were applied to evaluate the model examined. This study proposes a 

novel fuzzy-neutrosophic-based approach for resilient supplier selection. Besides, Haq et al. [8] 

integrated entropy–MultiAtributive Ideal-Real Comparative Analysis (MAIRCA) Interval-

Valued Neutrosophic Sets (IVNSs) in a unified framework to concurrently handle the subjective 

measures with vague or uncertain data and objective measures with crisp inputs. They used a 

wing-spar of a Human-Powered Aircraft (HPA) to prove the applicability of their framework, in 

which a committee of three subordinate experts makes decisions on the substitutes or criteria 

lingually via IVNSs. Then, the level of skill of an expert implicated in the decision-making process 

is evaluated utilizing a weighting methodology with verbal information. Finally, they used the 

MAIRCA method to assess materials for the HPA spar using the entropy weighting method.  
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Abdelhafeez et al. [9] studied the clustering of breast cancer through the application of a broadly 

adopted c-means algorithm and its improved versions: fuzzy c-means algorithm and 

neutrosophic c-means algorithm. They conducted an in-depth comparative study between these 

algorithms to analyze and interpret both the qualitative and quantitative efficiency metrics. In 

addition, Essameldin et al. [10] introduced a neutrosophic-based approach for opinion mining on 

Twitter, aiming to tackle perspectivism, its effects, and indeterminateness. For the first aim, they 

used Graphistry to conduct social network analysis (SNA), whereby a neural network was 

applied to impact weighting based on SNA-generated output and the public’s responses to 

analyzed texts.  Banerjee et al. [11] explored the diagnosis of melanoma lesions using a hybrid 

approach that integratess the triangular neutrosophic concept into the deep convolutional 

network, aiming to handle the uncertainty in dermoscopic and digital pictures and providing 

improved and reliable classification decision. Moreover, Karam and Ali [12] introduced a 

structural method for evaluating the performance of functioning onshore wind resources, 

respecting the three scopes of sustainability. Om their method, the energy manufacture, 

ecological validity, and practicability of onshore wind accommodations are all conditional on 

precise evaluations. They also discussed many criteria, including site accessibility, transmission, 

environmental impact, wind resources, permitting and regulatory requirements, turbine 

technology, and others. Lo et al. [14] developed an inclusive approach for the selection of strategic 

alliance partners, in which the neutrosophic ITARA technique was presented to create a group of 

criteria objective weights, and the neutrosophic TOPSIS method was used to regulate the 

performance and precedence of strategic alliance partners.  They also used neutrosophic fuzzy 

logic to replicate the uncertainty in complicated problems inherent in realistic data from a 

multinational reactive factor manufacturing company. Furthermore, Singh [15] introduced a 

three-way n-valued neutrosophic concept lattice, illustrating the integration of neutrosophic 

frameworks into formal concept analysis. The author also introduced a mathematical mechanism 

to autonomously portray the n-valued neutrosophic according to its n-valued indeterminacy, n-

valued falsity n-valued truth. His method presented a granular-centered computing model to 

find some n-valued neutrosophic theories, which offer many ways to transform the given n-

valued neutrosophic context into binary context at the user's essential degree of granulation. 

Thanikachalam et al. [16] integrated the Interval Neutrosophic Set into a deep-learning model to 

assist in distinguishing the contaminated regions in the fundus image. Their model included 

three feature extractors: texture features, histogram features, and wavelet features, where the 

Optimal Deep Belief Network (ODBN) and Shuffled Shepherd Optimization (SSO) algorithm 

were used to make classification and optimize hyperparameters, respectively. From the 

above discussions, it can be noted that there is growing interest in the applicability of 

neutrosophic methods to handle uncertainty in different applications. Motivated by that, this 

work seeks to advance the understanding of uncertainty-infused representation learning through 

the novel integration of neutrosophic logic into ViTs. 



Neutrosophic Sets and Systems, Vol. 58, 2023            648  

 

3. Methodology 

This section explains the methodology of designing the proposed NTN to give insight into the 

role of neutrosophic logic in empowering the representational learning capabilities with an 

effective ability to handle uncertainty during the image recognition process. This is achieved by 

taking advantage of ViTs, with the unique capacities of neutrosophic logic, to build a novel 

representation learning solution that explicitly accounts for uncertainties. In the following, the 

details of the structural design of the NTN are presented along with its main components, 

including the integrated neutrosophic logic, for learning informative representations from data. 

3.1.  Preliminaries 

Derived from the concept of neutrosophic logic, the neutrosophic set was introduced as an 

extension of classical sets by enabling representation and dealing with indeterminacy exhibited 

in real-world data. In other words, the Neutrosophic Set provided a step toward representing 

incomplete and uncertain information, and it’s composed of three essential components, namely 

truth membership 𝜔𝐴𝒩
(𝑥), indeterminacy membership 𝜎𝐴𝒩

(𝑥), and falsity membership 𝜂𝐴̂𝒩
(𝑥). 

mathematically speaking, given a neutrosophic set 𝐴̂𝒩 = {(𝑥; [𝜔𝐴̂𝒩
(𝑥), 𝜎𝐴𝒩

(𝑥), 𝜂𝐴𝒩
(𝑥)])  ⋮  𝑥 ∈

 𝑋}, the corresponding three components 𝜔𝐴̂𝒩
(𝑥): 𝑋 → ]0−, 1+[, 𝜎𝐴𝒩

(𝑥): 𝑋 → ]0−, 1+[, 𝜂𝐴𝒩
(𝑥): 𝑋 →

]0−, 1+[ represents the degree to which an element 𝑥 belongs to the set; the degree to which an 

element x is indeterminate in its membership status; and the degree to which an element x does 

not belong to the set, respectively [11-14]. In this context, the definition of superior sum of the 

above components is given as follows: 

𝑛𝑠𝑢𝑝 = 𝑠𝑢𝑝 (𝜔𝐴̂𝒩
(𝑥)) + 𝑠𝑢𝑝 (𝜎𝐴̂𝒩

(𝑥)) + 𝑠𝑢𝑝 (𝜂𝐴̂𝒩
(𝑥)) ∈ ] 0 

− , 3+[ , (1) 

In the above expression, the term Sup symbolizes the supremum, or, in other words, the least 

upper bound. The definition of the superior sum of the Neutrosophic components is given as 

follows: 

𝑛𝑖𝑛𝑓 = 𝑖𝑛𝑓 (𝜔𝐴̂𝒩
(𝑥)) + 𝑖𝑛𝑓 (𝜎𝐴̂𝒩

(𝑥)) + 𝑖𝑛𝑓 (𝜂𝐴̂𝒩
(𝑥)) ∈ ] 0 

− , 3+[ , (2) 

According to the above two expressions, the set is called an intuitionistic set in the case of 𝑛𝑠𝑢𝑝 <

1, and is referred to as a paraconsistent set in case of 𝑛𝑠𝑢𝑝 > 1. 

The literature contains popular operations that can be applied to neutrosophic sets including 

union, intersection, and complement, which is defined using the following expressions for two 

neutrosophic sets 𝐴̂𝒩 and 𝐵̂𝒩. 

𝐴̂𝒩 ∪ 𝐵̂𝒩 = {𝑥 ∣ max (𝜔𝐴𝒩
(𝑥), 𝜔𝐵̂𝒩

(𝑦)) , max (𝜎𝐴𝒩
(𝑥), 𝜎𝐵̂𝒩

(𝑦)) , max (𝜂𝐴𝒩
(𝑥), 𝜂𝐵̂𝒩

(𝑦))}. (3) 

𝐴̂𝒩 ∩ 𝐵̂𝒩 = {𝑥 ∣ min (𝜔𝐴𝒩
(𝑥), 𝜔𝐵̂𝒩

(𝑦)) , min (𝜎𝐴𝒩
(𝑥), 𝜎𝐵̂𝒩

(𝑦)) , min (𝜂𝐴𝒩
(𝑥), 𝜂𝐵̂𝒩

(𝑦))}. (4) 

¬𝐴̂𝒩 = {𝑥 ∣ 1 − 𝜔𝐴𝒩
(𝑥),1 − 𝜎𝐴𝒩

(𝑥),1 − 𝜂𝐴𝒩
(𝑥)}. (5) 

Generally, neutrosophic sets can be leveraged in image processing tasks to represent composite 

and uncertain pixel information that classical set theory might not sufficiently tackle.  
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When the three components of neuromorphic sets satisfy the following 𝜔𝐴𝒩
∈ [0,1], 𝜎𝐴𝒩

(𝑥) ∈

[0,1], 𝜂𝐴𝒩
(𝑥) ∈ [0,1], then 𝐴̂𝒩 is known as single-valued neutrosophic (SVNS), which obeys the 

following constraints. 

0 < 𝜔𝐴̂𝒩
(𝑥) + 𝜎𝐴̂𝒩

(𝑥) + 𝜂𝐴̂𝒩
(𝑥) < 3 , (6) 

Assume that there is SVNS denoted as 𝐴̂𝒩 in 𝑋, with triplet 〈𝜔𝐴̂𝒩
(𝑥), 𝜎𝐴̂𝒩

(𝑥), 𝜂𝐴̂𝒩
(𝑥)〉, then 

each element 𝑥 ∈ 𝑋 if this set is called a singled-valued neutrosophic number (SVNN). To make 

things simpler,  an SVNN 𝑐 or 𝑒 in SVNS can be written as  〈𝜔𝑐 , 𝜎𝑐 , 𝜂𝑐〉 or 〈𝜔𝑒 , 𝜎𝑒 , 𝜂𝑒〉, where 

each element has a unique value for its truth, indeterminacy, and falsity membership components 

[15-18]. The SVNNs are subject to many operations to manipulate their membership values, and 

these operations include Addition, Subtraction, Multiplication, Division, Power, aggregation, and 

variance, which are defined as follows: 

𝑐 + 𝑒 = 〈𝜔𝑐 + 𝜔𝑒, 𝜎𝑐 + 𝜎𝑒, 𝜂𝑐 + 𝜂𝑒
〉, (7) 

𝑐 − 𝑒 = 〈𝜔𝑐 − 𝜔𝑒, 𝜎𝑐 − 𝜎𝑒, 𝜂𝑐 − 𝜂𝑒
〉. (8) 

𝑐 ∙ 𝑒 = 〈𝜔𝑐 ∙ 𝜔𝑒, 𝜎𝑐 ∙ 𝜎𝑒, 𝜂𝑐 ∙ 𝜂𝑒
〉. (9) 

𝑐/𝑒 = 〈𝜔𝑐/𝜔𝑒, 𝜎𝑐/𝜎𝑒, 𝜂𝑐/𝜂𝑒
〉 (10) 

𝑐𝑛 = 〈𝜔𝑐
𝑛, 𝜎𝑐

𝑛  , 𝜂𝑐
𝑛〉 (11) 

To aggregate SVNNs, we can define a weighted sum as follows: 

𝑋aggregated = ∑  𝑛
𝑖−1 𝑤𝑖 ⋅ 𝑥𝑖 = ⟨∑  𝑛

𝑖−1  𝑤𝑖 ⋅ 𝜔𝐴̂𝒩
(𝑥𝑖), ∑  𝑛

𝑖−1  𝑤𝑖 ⋅ 𝜎𝐴̂𝒩
(𝑥𝑖), ∑  𝑛

𝑖−1  𝑤𝑖 ⋅

𝜂𝐴̂𝒩
(𝑥𝑖)⟩, 

(12) 

In addition, to quantify the distance between two SVNNs, we can use normalized hamming 

distance or Hausdorff distance, which can be expressed as follows: 

𝑑ℎ𝑎𝑚𝑚(𝑐, 𝑒) =
1

3
{|𝜔𝑐 − 𝜔𝑒|  + |𝜎𝑐 − 𝜎𝑒| + |𝜂𝑐 − 𝜂𝑒|},  (13) 

𝑑ℎ𝑎𝑢𝑠(𝑐, 𝑒) = max{|𝜔𝑐 − 𝜔𝑒|, |𝜎𝑐 − 𝜎𝑒|, |𝜂𝑐 − 𝜂𝑒|}, (14) 

  

3.2.  Proposed Network 

Herein, we debate and discuss the detailed architecture of the proposed NTN, which is composed 

of three main building modules: neutrosophic encoding, multipath network, and fusion and 

decision modules. These modules jointly enable the NTN to handle ambiguities and uncertainties 

throughout representation learning effectively. In the following subsection, we dive into details 

of the design of each module, its contribution to the representation learning process, and its 

relation to other modules in the NTN. 
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3.3.  Neutrosophic Encoding Module 

In the early phase of the proposed NTN framework, the input image is received and encoded be 

passed to subsequent feature extraction layers. Unlike transition ViT, in which the input images 

get patched and linearly projected before being passed to the network, the proposed encoding 

module takes the responsibility of transforming original pixel values into neutrosophic numbers. 

This encoding process is made before the inputs are projected to the feature extraction layer, 

leading to three types of maps corresponding to the components of neutrosophic. This mapping 

process, which is integral to encoding images in the neutrosophic domain, is tailored to the 

specific image processing application at hand. In mathematical terms, the pixel in location (𝑖, 𝑗) 

of the input image can be denoted as 𝑃(𝑖, 𝑗)  =  (𝜔𝐴𝒩
(𝑖, 𝑗), 𝜎𝐴𝒩

(𝑖, 𝑗), 𝜂𝐴𝒩
(𝑖, 𝑗)), or  for simplicity 

𝑃(𝜔𝐴𝒩
, 𝜎𝐴𝒩

, 𝜂𝐴𝒩
). This representation conveys valuable information about the pixel’s 

composition, specifying the percentage of its truth membership (white), indeterminacy 

membership (noise), and falsity membership (black). The calculation of these membership values 

𝜔𝐴𝒩
, 𝜎𝐴𝒩

, and 𝜂𝐴̂𝒩
 are a serious characteristic of encoding images before they get patched. 

Motivated by the existing literature [4,5], the proposed encoding module computes the 𝜔𝐴𝒩
 as 

Figure 1. Visualization of the samples of CIFAR-10 data in the original and neutrosophic domains. 
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the likelihood of a pixel being white, 𝜎𝐴𝒩
 as the degree of uncertainty or noise, and 𝜂𝐴𝒩

 as the 

likelihood of a pixel being black.  

𝜔𝐴𝒩
(𝑖, 𝑗) =

𝑔
(𝑖,𝑗)

− 𝑔
𝑚𝑖𝑛

𝑔
𝑚𝑎𝑥

− 𝑔
𝑚𝑖𝑛

 (15) 

𝜎𝐴𝒩
(𝑖, 𝑗) =

∂(𝑖,𝑗) − ∂𝑚𝑖𝑛

∂𝑚𝑎𝑥 − ∂𝑚𝑖𝑛
 (16) 

𝜂𝐴𝒩
(𝑖, 𝑗) = 1 −  𝜔𝐴𝒩

(𝑖, 𝑗) =
𝑔

𝑚𝑎𝑥
− 𝑔

(𝑖,𝑗)

𝑔
𝑚𝑎𝑥

− 𝑔
𝑚𝑖𝑛

 (17) 

In the above formula, 𝑔
−

(𝑖,𝑗) denotes the average concentration, calculated as follows: 

𝑔
(𝑖,𝑗)

=
1

𝑝∗𝑝
∑  

𝑚=𝑖+𝑝/2
𝑚=𝑖−𝑝/2  ∑  

𝑛=𝑗+𝑝/2
𝑛=𝑗−𝑝/2  𝑔(𝑚, 𝑛), (18) 

where 𝑝 denotes the spatial dimension of the squared subwindow representing the influence of 

the adjacent points.  

𝑔
𝑚𝑎𝑥

= 𝑀𝑎𝑥(𝑔
𝑚(𝑖,𝑗)

), 𝑔
𝑚𝑖𝑛

= 𝑀𝑖𝑛(𝑔
𝑚(𝑖,𝑗)

) (19) 

∂ = |𝑔(𝑖,𝑗) − 𝑔
(𝑖,𝑗)

| (20) 

∂𝑚𝑎𝑥 = 𝑀𝑎𝑥(∂(𝑖,𝑗))and ∂𝑚𝑖𝑛 = 𝑀𝑖𝑛(∂(𝑖,𝑗)) (21) 

These calculated values of 𝜔𝐴𝒩
, 𝜎𝐴𝒩

, and 𝜂𝐴𝒩
 provide a nuanced description of each pixel’s 

composition and offer insights into the extent of white, noise, and black contents within the pixel. 

Figure 1 illustrates the results of applying neutrosophic encoding to samples of CIFAR-10 data. 

This visualization provides an insightful view of how the encoding process translates the typical 

color images into the neutrosophic domain, allowing us to analyze representations in terms of 

truth, indeterminacy, and falsity. In addition to capturing the pixel values, the neutrosophic 

domain representation also helps model the inherent ambiguities and uncertainties in the images. 

This graphic depiction of the encoding output makes it easier to understand the encoding process 

and its potential advantages for managing uncertainties in visual data. 

3.4. Multipath Network Module 

Following the encoding process, the multipath network is presented as the next building module 

in the proposed NTN. This multipath structure is designated with transformer encoding blocks 

to take the responsibility of feature extraction and representation learning from the neutrosophic 

encoded inputs. To recap, the architecture of the transformer encoder is primarily composed of 

multihead self-attention (MHSA) mechanisms, feedforward neural networks (FNNs), and 

residual connections that jointly process the received patches of input to learn intricate data 

patterns, including those related to uncertainties. The MHSA was designed to learn global 

interdependencies between received sequences of patches [19]. Given neutrosophic encoded 

input sequence 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛), where 𝑛 is the sequence length, the linear transformations are 

applied to encode sequence 𝑋 into three matrices, namely the query matrix (𝑄), the key matrix 

(𝐾), and the value matrix (𝑉): 

𝑄 = 𝑋 ⋅ 𝑊𝑄 , 𝐾 = 𝑋 ⋅ 𝑊𝐾 , 𝑉 = 𝑋 ⋅ 𝑊𝑉, (22) 
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where 𝑊𝑄, 𝑊𝐾, and 𝑊𝑉 are learnable weight matrices. Then, a matrix of attention scores (𝐴) is 

calculated based on the dot product of the query matrix with the transposed key matrix, followed 

by scaling, as shown as follows: 

𝐴 = softmax (
𝑜𝐾𝑇

𝑑𝑘
), (23) 

where 𝑑𝑘 is the dimension of the key vectors [20]. The matrix 𝐴 is later adopted to weight the 

value matrix, leading to self-attention output given as follows: 

𝑆𝐴(𝑄, 𝐾, 𝑉) = 𝐴 ⋅ 𝑉. (24) 

The above computations are performed concurrently across different multiple heads to allow the 

TNT to focus on different parts of the neutrosophic encoded input sequence: 

𝑀𝐻𝑆𝐴multihead = Concat (𝑆𝐴1, 𝑆𝐴2, … , 𝑆𝐴ℎ) ⋅ 𝑊𝑜, (25) 

where ℎ is the number of attention heads. 𝑊𝑂 is an additional learnable weight matrix for output 

transformation. Then, the output of different attention heads is passed to FNN with two linear 

transformations separated by a nonlinear activation function: 

𝐹𝐹𝑁1 = 𝑀𝐻𝑆𝐴multihead ⋅ 𝑊1 + 𝑏1. (26) 

Then, the activation function, typically rectified Linear Units (𝑅𝑒𝐿𝑈), is applied element-wise, as 

shown as follows: 

𝐹𝐹𝑁2 = ReLU (𝐹𝐹𝑁1). (27) 

The result is further transformed with another set of weight matrices: 

𝐹𝐹𝑁output = 𝐹𝐹𝑁2 ⋅ 𝑊2 + 𝑏2, (28) 

where 𝑊1, 𝑊2, 𝑏1, and 𝑏2 are learnable weight and bias matrices. The building of each network 

path in TNT is composed of a stack of three multiple transformer blocks, in which each block 

takes the output of the previous block as input, tolerating the network to capture progressively 

composite patterns and dependencies in the neutrosophic-encoded data. 

3.5.  Fusion and Decision Modules 

By the end of NTN architecture, the fusion module is introduced as a pivotal building block for 

consolidating the various knowledge obtained from different paths in the previous network. We 

apply multiplicative fusion to combine the outcomes of the various representational learning 

paths, which aim to inform the model’s final decision with uncertainty-infused representation. 

The choice of multiplicative fusion can be attributed to its ability to capture non-linear and 

complex interactions among features, empowering the model to emphasize relevant information 

by defeating inputs according to the learned weights. In mathematical terms, given the outputs 

𝑂1, 𝑂2, … , 𝑂𝑛 from the respective paths, the multiplicative fusion can be described as follows: 

𝐹multiplicative = ∏𝑖=1
𝑛  𝑂𝑖, (29) 

where 𝑂𝑖 represents the output of the 𝑖th path. Finally, the classification decision is made based 

on the cross-entropy given below: 

𝐿𝐶𝐶𝐸 = −
1

𝑁
∑  

𝑁

𝑖=1
∑ (𝑦𝑎𝑐𝑡𝑢𝑎𝑙

𝑖,𝑐 ) log(𝑦𝑚𝑜𝑑𝑒𝑙
𝑖,𝑐 ) .

𝐶

𝑐=1
 (30) 
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In the above formula, 𝑁, 𝐶 symbolize the number of samples and number of classes, 

respectively. 

4. Experimental Setup 

This section debates the empirical preparation and related setups for the proof-of-concept 

experiments conducted in this work. In other words, our discussion here covers data description, 

evaluation metrics, training hyperparameters, execution settings, and.  

First, we used popular datasets (Fashion-MNIST, CIFAR-10) to train and evaluate NTN and 

competing methods. The former dataset encompasses 70,000 images (𝑠𝑖𝑧𝑒 = 28 × 28) fitting to 

distinct classes, where 7,000 images exist per class. Among them, 60,000 images are used as a 

training set, while 10,000 images are used for testing. The second dataset contains 60,000 images 

(𝑠𝑖𝑧𝑒 = 32 × 32 × 3) distributed across 10 classes, where the training set is selected to contain only 

50,000 images, and the test set contains 10,000 images. During the evaluation phase, the model 

performance is measured by displaying a confusion matrix, from which the following metrics are 

calculated:  

Accuracy =
TP+TN

TP+TN+FP+FN
, (31) 

Precision =
TP

TP+FP
, (32) 

Recall =
TP

TP+FN
, (33) 

F1 − measure = 2 ∗
Recall×Precision

Recall+Precision
. (34) 

As an essential step for the reproducibility of our work, we chart out the implementation setup 

associated with our experiment. Also, the training hyper-parameters are presented to facilitate 

interpreting the different configurations taken into account throughout our experiments. Table 1 

introduces a comprehensive detail of our implementations in terms of parameters and 

corresponding values. 

Table 1. Summary of implementation setup for our experiments 

Parameter Value 

Device  Dell Workstation  

CPU Intel(R) Core (TM) i5-3317U CPU @ 1.70–1.70 GHz 

GPU NVIDIA RTX 2060 

RAM 32 GB 

OS Windows 10 

Frameworks TensorFlow 2.8.0, Sk-learn, Sci-Py, MatPlot 

Batch Size 64 

Learning Rate 0.001 

Training Epochs 60 
 

Given that we study uncertainty modeling, we apply Gaussian noise to the datasets in our 

experiments. This approach can be achieved in different scenarios according to the level of noise 

injected into the data. Table 2 summarizes the different scenarios adopted in our experiments, in 
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which the “Mean (μ)” column specifies the mean of the Gaussian noise, and the “Standard 

Deviation (σ)” column indicates the standard deviation of the noise.  

Table 2: Noise setting summary 

Scenario Noise Level Mean (μ) Standard Deviation (σ) 

Sc-0 Clean (No Noise) 0.00 0.00 

Sc-1 Low Noise 0.10 0.05 

Sc-2 Medium Noise 0.30 0.10 

Sc-3 High Noise 0.50 0.15 

Sc-4 Very High Noise 0.70 0.20 

5. Results and Analysis 

In this section, we provide a detailed explanation of the experimental results, offering an inclusive 

evaluation of the performance of the proposed model across various datasets. The results act as 

a lens by which we can obtain valuable insights about the interaction between the visual deep 

network and neutrosophic logic when modeling the representational patterns under high 

uncertainty settings. 

To interpret the performance ability of the proposed model in modeling uncertainties in visual 

representational learning tasks, we conduct fair experimental comparisons to quantitively 

evaluate the performance of our model against the cutting-edge baselines. In these experiments, 

the data from scenarios Sc-3, Sc-4, and Sc-5 are used. Table 3 summarizes the numerical 

classification results on Fashion-MNIST data under different scenarios. Our model achieves 

remarkable improvements over competing models under different noise levels. Table 4 

summarizes the numerical classification results on CIFAR-10 data under different scenarios. 

Remarkably, the classification performance of our model outperforms the competing models 

under different noise levels. As observed, the performance improvement becomes more 

significant in the case of high noise scenarios, further validating the advantage of our model for 

modeling uncertainties in noisy data. 
 

Table 3. Comparison of quantitative results of different classifiers on Fashion-MNIST dataset. 
 

 Sc-2 Sc-3 Sc-4 

Model  Accuracy F1-score AUC Accuracy F1-score AUC Accuracy F1-score AUC 

SVM 94.19±2.49 94.15±2.42 97.11±0.05 91.28±5.52 92.88±5.82 95.46±0.1 88.47±5.29 87.34±2.64 93.1±4.77 

LeNet 95.21±3.07 94.87±2.88 97.76±5.43 92.65±1.36 92.43±5.43 97.08±5.51 90.06±5.78 89.67±5.2 95.88±1.13 

ResNet-18 96.88±3.44 96.74±3.24 98.99±2.54 93.20±1.17 95.29±3.00 98.03±1.38 90.78±3.71 90.12±1.8 94.69±0.36 

ViT 97.02±3.54 96.64±5.13 98.26±1.23 93.61±2.83 93.56±3.25 96.97±3.79 90.93±5.29 90.54±1.05 94.84±1.9 

CCT 97.31±2.1 96.87±2.45 98.74±3.37 95.13±1.48 94.89±3.14 97.53±1.34 91.87±1.56 91.45±2.37 96.92±2.13 

Proposed 98.28±1.4 97.99±1.91 99.31±0.94 97.17±1.89 97.01±2.67 98.33±1.02 94.29±1.91 94.22±2.33 97.33±1.11 

 

Table 4. Comparison of quantitative results of different classifiers on Fashion-MNIST dataset.  

 Sc-2 Sc-3 Sc-4 

Model  Accuracy F1-score AUC Accuracy F1-score AUC Accuracy F1-score AUC 

SVM 90.12±0.03 88.69±5.59 96.13±4.48 85.97±0.7 84.49±1.76 95.31±4.95 83.04±0.35 82.38±0.23 91.1±2.11 

LeNet 92.01±5.16 91.55±5.51 97.08±0.94 87.02±5.52 85.49±4.08 94.18±4.15 82.32±5.81 81.25±1.66 90.04±3.97 

ResNet-18 92.22±4.99 91.06±3.92 97.9±1.88 87.6±2.8 87.14±3.91 96.25±2.97 83.48±5.4 82.43±3.15 90.43±4.78 

ViT 94.95±5.94 94.4±1.95 98.05±5.54 90.6±1.68 89.26±0.78 95.93±0.92 86.78±3.71 85.92±4.9 91.33±2.99 

CCT 95.16±3.95 94.55±3.08 98.07±4.48 91.89±5.35 90.8±5.93 95.83±1.33 87.26±5.19 85.77±1.64 90.12±4.48 

Proposed 96.41±1.22 96.33±2.22 98.44±1.87 94.64±2.27 94.21±1.69 97.66±2.16 95.41±2.42 95.39±2.21 97.18±1.02 
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Beyond the numerical improvements achieved by the proposed NTN in the above 

comparisons, the t-test is used to provide a comprehensive statistical significance analysis to 

ensure that the achieved improvements are not occurring by chance. This experimental analysis 

computes p-value statistics (refer to Table 5), which are compared with a suitable threshold (e.g., 

0.05), that is typically determined according to a predefined confidence level (e.g., 95%).  As 

notable in Table 5, the obtained p-values are below the significance threshold, which leads to 

drawing strong conclusions regarding the statistical significance of improvements achieved by 

the proposed NTN, demonstrating its competitive advantage. 

Table 5: Statistical significance analysis results.  

 Fashion-MNIST CIFAR-10 

Model  Sc-2 Sc-3 Sc-4 Sc-2 Sc-3 Sc-4 

Proposed vs SVM 8.86E-03 8.71E-03 1.25E-02 1.33E-02 5.27E-03 3.31E-04 

Proposed vs LeNet 8.94E-03 1.34E-03 1.34E-04 1.57E-02 1.58E-03 1.33E-05 

Proposed vs ResNet-18 1.68E-05 1.39E-04 8.17E-03 3.18E-03 1.37E-02 1.11E-06 

Proposed vs ViT 7.01E-03 6.42E-06 6.66E-05 1.21E-04 7.17E-09 1.49E-08 

Proposed vs CCT 1.12E-07 1.44E-08 1.03E-07 1.19E-08 1.50E-06 6.10E-04 

In the previous experiments, the focus was given to the global view of model performance, but, 

to get a more detailed view of the class-level performance of the proposed NTN, we display its 

confusion matrix in both Figures 2-3.  Figure 2 displays three confusion matrices corresponding 

to different uncertainty scenarios in the Fashion-MNIST dataset. It is worth noting that the 

average recognition accuracy of each class is almost similar with only 1%-2% variations, which 

reflect the representational power of NTN, demonstrating their consistent detection performance 

across various uncertainty levels. Moreover, in Figure 3, we display three confusion matrices 

corresponding to different uncertainty scenarios in the CIFAR-10 dataset. By observing the class-

level precision, we can further drive critical insights on the consistent discrimination ability of 

NTN under RGB settings, which conform to our findings in grayscale scenario. 

Sc-2 Sc-3 Sc-4 

Figure 2. Visual illustration of confusion matrices for NTN under different uncertainty settings on Fashion-MNIST data. 
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Moreover, to capture the effectiveness of window size in the neutrosophic encoding module, a 

set of ablation experiments is performed to provide an in-depth evaluation of this 

hyperparameter. Different window sizes are independently used to assess their influences on the 

model’s performance, where the corresponding numerical results on Fashion-MNIST are 

presented in Figure 4. As displayed, we can draw the conclusion that smaller window sizes work 

better on Sc-1, whereas larger window sizes are preferable in noisy scenarios (Sc-3 and Sc-4). This 

can be attributed to the fact that when the window size grows, more contextual information 

around each pixel is contemplated in the neutrosophic domain, making the image more tolerant 

to artifacts produced by noisy pixels in the near locality. Conversely, in Sc-2 data, we require only 

nearby details, and this effect may not exist, alleviating the need for such background locality 

knowledge. 

Sc-2 Sc-3 Sc-4 

Figure 4. Ablation analysis for NTN under different uncertainty settings on Fashion-MNIST data. 

Sc-2 Sc-3 Sc-4 

Figure 3. Visual illustration of confusion matrices for NTN under different uncertainty settings on CIFAR-10 data. 
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6. Conclusion 

This study presents an exploration of the impact of uncertainty on representational learning 

through developing a multi-path framework for modeling uncertainty in visual inputs during 

the process of feature extraction. A neutrosophic encoding is applied to map the image patches 

into triplet neutrosophic components, while visual transformer encoding is applied to extract 

insightful representation across different paths. The experimental comparisons on the Fashion-

MNIST and CIFAR-10 datasets demonstrated the efficiency of the proposed NTN over the state-

of-the-art methods even under scenarios with increased levels of uncertainty, showcasing its 

compliance and flexibility. The experimental findings demonstrate the promise of neutrosophic 

logic in revolutionizing the architectural design of the existing ML systems to be robust against 

ambiguity in different types of data, including time series, text, and graphs. Furthermore, the 

implications of this study can extend to support the explainability of ML decisions in complex 

data scenarios.  
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