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Abstract: The motivation of this paper is to extend the concept of

Neutrosophic soft matrix (NSM) theory. Some basic definitions of

classical matrix theory in the parlance of neutrosophic soft set the-

ory have been presented with proper examples. Then, a theoretical

studies of some traditional operations of NSM have been developed.

Finally, a decision making theory has been proposed by developing

an appropriate solution algorithm, namely, score function algorithm

and it has been illustrated by suitable examples.
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1 Introduction

Researchers in economics, sociology, medical science, engineer-

ing, environment science and many other several fields deal daily

with the vague, imprecise and occasionally insufficient informa-

tion of modeling uncertain data. Such uncertainties are usually

handled with the help of the topics like probability, fuzzy sets

[1], intuitionistic fuzzy sets [2], interval mathematics, rough sets

etc. But, Molodtsov [3] has shown that each of the above topics

suffers from inherent difficulties possibly due to inadequacy of

their parametrization tool and there after, he initiated a novel con-

cept ‘soft set theory’ for modeling vagueness and uncertainties.

It is completely free from the parametrization inadequacy syn-

drome of different theories dealing with uncertainty. This makes

the theory very convenient, efficient and easily applicable in prac-

tice. Molodtsov [3] successfully applied several directions for the

applications of soft set theory, such as smoothness of functions,

game theory, operation research, Riemann integration, Perron in-

tegration and probability etc. In 2010, Cagman and Enginoglu [4]

introduced a new soft set based decision making method which

selects a set of optimum elements from the alternatives. Maji et

al. [5, 6] have done further research on soft set theory.

Presence of vagueness demanded ‘fuzzy soft set’ [7] to come

into picture. But satisfactory evaluation of membership values is

not always possible because of the insufficiency in the available

information situation. For that, Maji et al. [8, 9] have introduced

the notion ‘intuitionistic fuzzy soft set’ in 2001. Matrices play

an important role in the broad area of science and engineering.

Classical matrix theory sometimes fails to solve the problems in-

volving uncertainties. Hence, several authors proposed the ma-

trix representation of soft set, fuzzy soft set, intuitionistic fuzzy

soft set and applied these in certain decision making problems,

for instance Cagman and Enginoglu [10], Yong and Chenli [11],

Borah et al. [12], Neog and Sut [13], Broumi et al. [14], Mondal

and Roy [15], Chetia and Das [16], Basu et al. [17], Rajara-

jeswari and Dhanalakshmi [18].

Evaluation of non-membership values is also not always pos-

sible for the same reason as in case of membership values and

so, there exist an indeterministic part upon which hesitation sur-

vives. As a result, Smarandache [19, 20] has introduced the con-

cept of Neutrosophic Set (NS) which is a generalisation of clas-

sical sets, fuzzy set, intuitionistic fuzzy set etc. Later, Maji [21]

has introduced a combined concept Neutrosophic soft set (NSS).
Using this concept, several mathematicians have produced their

research works in different mathematical structures, for instance

Deli [22, 24], Broumi and Smarandache [25]. Later, this con-

cept has been modified by Deli and Broumi [26]. Accordingly,

Bera and Mahapatra [23, 27-31] introduce some view on alge-

braic structure on neutrosophic soft set. The development of de-

cision making algorithms over neutrosophic soft set theory are

seen in the literatures [32-37].

The present study aims to extend the NSM theory by develop-

ing the basic definitions of classical matrix theory and by estab-

lishing some results in NSS theory context. The organisation of

the paper is as following :

Section 2 deals some preliminary necessary definitions which

will be used in rest of this paper. In Section 3, the concept of

NSM has been discussed broadly with suitable examples. Then,

some traditional operators of NSM are proposed along with some

properties in Section 4. In Section 5, a decision making algo-

rithm has been developed and applied in two different situations.

Firstly, it has been adopted in a class room to select the best stu-

dent in an academic year and then in national security system to

emphasize the security management in five mega cities. This al-

gorithm is much more brief and simple rather than others. More-

over, a decision can be made with respect to a lot of parameters

concerning the fact easily by that. That is why, this algorithm is

more generous, we think. Finally, the conclusion of the present

work has been stated in Section 6.
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2 Preliminaries

In this section, we recall some necessary definitions related to

fuzzy set, intuitionistic fuzzy soft matrix, neutrosophic set, neu-

trosophic soft set, NSM for the sake of completeness.

2.1 Definition [28]

A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is continuous t -

norm if ∗ satisfies the following conditions:

(i) ∗ is commutative and associative.

(ii) ∗ is continuous.

(iii) a ∗ 1 = 1 ∗ a = a, ∀a ∈ [0, 1].
(iv) a ∗ b ≤ c ∗ d if a ≤ c, b ≤ d with a, b, c, d ∈ [0, 1].

A few examples of continuous t-norm are a ∗ b = ab, a ∗ b =
min{a, b}, a ∗ b = max{a+ b− 1, 0}.

2.2 Definition [28]

A binary operation � : [0, 1] × [0, 1] → [0, 1] is continuous t -

conorm (s - norm) if � satisfies the following conditions :

(i) � is commutative and associative.

(ii) � is continuous.

(iii) a � 0 = 0 � a = a, ∀a ∈ [0, 1].
(iv) a � b ≤ c � d if a ≤ c, b ≤ d with a, b, c, d ∈ [0, 1].

A few examples of continuous s-norm are a � b = a + b −
ab, a � b = max{a, b}, a � b = min{a+ b, 1}.

2.3 Definition [16]

Let U be an initial universe, E be the set of parameters and A ⊆
E. Let, (fA, E) be an intuitionistic fuzzy soft set over U . Then

a subset of U × E is uniquely defined by RA = {(u, e) : e ∈
A, u ∈ fA(e)} which is called a relation form of (fA, E). The

membership function and non-membership functions are written

by μRA
: U × E → [0, 1] and νRA

: U × E → [0, 1] where

μRA
(u, e) ∈ [0, 1] and νRA

(u, e) ∈ [0, 1] are the membership

value and non-membership value, respectively of u ∈ U for each

e ∈ E. If (μij , νij) = (μRA
(ui, ej), νRA

(ui, ej)), we can define

a matrix [(μij , νij)]m×n =

⎛
⎜⎜⎜⎝

(μ11, ν11) (μ12, ν12) . . . (μ1n, ν1n)
(μ21, ν21) (μ22, ν22) . . . (μ2n, ν2n)

...
...

. . .
...

(μm1, νm1) (μm2, νm2) . . . (μmn, νmn)

⎞
⎟⎟⎟⎠

which is called an m × n IFSM of the IFSS (fA, E) over U .

Therefore, we can say that a IFSS (fA, E) is uniquely charac-

terised by the matrix [(μij , νij)]m×n and both concepts are inter-

changeable. The set of all m × n IFS matrices over U will be

denoted by IFSMm×n.

2.4 Definition [20]

Let X be a space of points (objects), with a generic element

in X denoted by x. A neutrosophic set A in X is charac-

terized by a truth-membership function TA, an indeterminacy-

membership function IA and a falsity-membership function FA.

TA(x), IA(x) and FA(x) are real standard or non-standard sub-

sets of ]−0, 1+[. That is TA, IA, FA : X →]−0, 1+[. There

is no restriction on the sum of TA(x), IA(x), FA(x) and so,
−0 ≤ supTA(x) + sup IA(x) + supFA(x) ≤ 3+.

2.5 Definition [3]

Let U be an initial universe set and E be a set of parameters. Let

P (U) denote the power set of U . Then for A ⊆ E, a pair (F,A)
is called a soft set over U , where F : A → P (U) is a mapping.

2.6 Definition [21]

Let U be an initial universe set and E be a set of parameters. Let

NS(U) denote the set of all NSs of U . Then for A ⊆ E, a pair

(F,A) is called an NSS over U , where F : A → NS(U) is a

mapping.

This concept has been modified by Deli and Broumi [26] as

given below.

2.7 Definition [26]

Let U be an initial universe set and E be a set of parameters. Let

NS(U) denote the set of all NSs of U . Then, a neutrosophic soft

set N over U is a set defined by a set valued function fN repre-

senting a mapping fN : E → NS(U) where fN is called approx-

imate function of the neutrosophic soft set N . In other words, the

neutrosophic soft set is a parameterized family of some elements

of the set NS(U) and therefore it can be written as a set of or-

dered pairs,

N = {(e, {< x, TfN (e)(x), IfN (e)(x), FfN (e)(x) >: x ∈ U}) :
e ∈ E}

where TfN (e)(x), IfN (e)(x), FfN (e)(x) ∈ [0, 1] are respectively

called truth-membership, indeterminacy-membership, falsity-

membership function of fN (e). Since supremum of each T, I, F
is 1 so the inequality 0 ≤ TfN (e)(x)+IfN (e)(x)+FfN (e)(x) ≤ 3
is obvious.

2.7.1 Example

Let U = {h1, h2, h3} be a set of houses and E =
{e1(beautiful), e2(good location), e3, (green surrounding)} be a
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set of parameters describing the nature of houses. Let,

fN (e1) = {< h1, (0.5, 0.6, 0.3) >,< h2, (0.4, 0.7, 0.6) >,

< h3, (0.6, 0.2, 0.3) >}
fN (e2) = {< h1, (0.6, 0.3, 0.5) >,< h2, (0.7, 0.4, 0.3) >,

< h3, (0.8, 0.1, 0.2) >}
fN (e3) = {< h1, (0.7, 0.4, 0.3) >,< h2, (0.6, 0.7, 0.2) >,

< h3, (0.7, 0.2, 0.5) >}

Then N = {[e1, fN (e1)], [e2, fN (e2)], [e3, fN (e3)]} is an NSS

over (U,E). The tabular representation of the NSS N is given in

Table 1.

fN (e1) fN (e2) fN (e3)
h1 (0.5,0.6,0.3) (0.6,0.3,0.5) (0.7,0.4,0.3)

h2 (0.4,0.7,0.6) (0.7,0.4,0.3) (0.6,0.7,0.2)

h3 (0.6,0.2,0.3) (0.8,0.1,0.2) (0.7,0.2,0.5)

Table 1 : Tabular form of NSS N .

2.8 Definition [26]

1. The complement of a neutrosophic soft set N is denoted by

No and is defined by :

No = {(e, {< x,FfN (e)(x), 1− IfN (e)(x), TfN (e)(x) >: x ∈
U}) : e ∈ E}

2. Let N1 and N2 be two NSSs over the common universe (U,E).
Then N1 is said to be the neutrosophic soft subset of N2 if ∀e ∈
E and x ∈ U

TfN1
(e)(x) ≤ TfN2

(e)(x), IfN1
(e)(x) ≥ IfN2

(e)(x),
FfN1

(e)(x) ≥ FfN2
(e)(x).

We write N1 ⊆ N2 and then N2 is the neutrosophic soft superset

of N1.

3. Let N1 and N2 be two NSSs over the common universe (U,E).
Then their union is denoted by N1 ∪N2 = N3 and is defined by

N3 = {(e, {< x, TfN3
(e)(x), IfN3

(e)(x), FfN3
(e)(x) >: x ∈

U}) : e ∈ E}

where TfN3
(e)(x) = TfN1

(e)(x) � TfN2
(e)(x), IfN3

(e)(x) =
IfN1

(e)(x) ∗ IfN2
(e)(x), FfN3

(e)(x) = FfN1
(e)(x) ∗ FfN2

(e)(x).

4. Let N1 and N2 be two NSSs over the common universe (U,E).
Then their intersection is denoted by N1 ∩ N2 = N4 and is de-

fined by :

N4 = {(e, {< x, TfN4
(e)(x), IfN4

(e)(x), FfN4
(e)(x) >: x ∈

U}) : e ∈ E}

where TfN4
(e)(x) = TfN1

(e)(x) ∗ TfN2
(e)(x), IfN4

(e)(x) =
IfN1

(e)(x) � IfN2
(e)(x), FfN4

(e)(x) = FfN1
(e)(x) � FfN2

(e)(x).

2.9 Definition [26]

1. Let N be a neutrosophic soft set over N(U). Then a subset

of N(U)× E is uniquely defined by : RN = {(fN (x), x) : x ∈
E, fN (x) ∈ N(U)} which is called a relation form of (N,E).
The characteristic function of RN is written as :

ΘRN
: N(U)× E → [0, 1]× [0, 1]× [0, 1] by

ΘRN
(u, x) = (TfN (x)(u), IfN (x)(u), FfN (x)(u))

where TfN (x)(u), IfN (x)(u), FfN (x)(u) are truth-membership,

indeterminacy-membership and falsity-membership of u ∈ U ,

respectively.

2. Let U = {u1, u2, · · · , um}, E = {x1, x2, · · · , xn} and N be

a neutrosophic soft set over N(U). Then,

RN fN (x1) fN (x2) · · · fN (xn)
u1 ΘRN

(u1, x1) ΘRN
(u1, x2) · · · ΘRN

(u1, xn)
u2 ΘRN

(u2, x1) ΘRN
(u2, x2) · · · ΘRN

(u2, xn)
...

...
...

. . .
...

um ΘRN
(um, x1) ΘRN

(um, x2) · · · ΘRN
(um, xn)

If aij = ΘRN
(ui, xj), we can define a matrix

[aij ] =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎞
⎟⎟⎟⎠

such that aij = (TfN (xj)(ui), IfN (xj)(ui), FfN (xj)(ui)) =
(T a

ij , I
a
ij , F

a
ij), which is called an m × n neutrosophic soft ma-

trix (NS-matrix) of the neutrosophic soft set N over N(U).

According to this definition, a neutrosophic soft set N is

uniquely characterised by a matrix [aij ]m×n. Therefore, we shall

identify any neutrosophic soft set with it’s soft NS-matrix and

use these two concepts as interchangeable. The set of all m × n
NS-matrix over N(U) will be denoted by Ñm×n. From now on

we shall delete the subscripts m × n of [aij ]m×n, we use [aij ]

instead of [aij ]m×n, since [aij ] ∈ Ñm×n means that [aij ] is an

m× n NS-matrix for i = 1, 2, · · · ,m and j = 1, 2, · · · , n.

2.10 Definition [26]

Let [aij ], [bij ] ∈ Ñm×n. Then,

1. [aij ] is a zero NS-matrix, denoted by [0̃], if aij =
(0, 1, 1), ∀i, j.

2. [aij ] is a universal NS-matrix, denoted by [1̃], if aij =
(1, 0, 0), ∀i, j.

3. [aij ] is an NS-submatrix of [bij ], denoted by [aij ]⊆̃[bij ], if

T a
ij ≤ T b

ij , I
a
ij ≥ Ibij , F

a
ij ≥ F b

ij , ∀i, j.

4. [aij ] and [bij ] are equal NS- matrices, denoted by [aij ] = [bij ],

if aij = bij , ∀i, j.

5. Complement of [aij ] is denoted by [aij ]
o and is defined as

another NS-matrix [cij ] such that cij = (F a
ij , 1− Iaij , T

a
ij), ∀i, j.
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3 Neutrosophic soft matrix
In this section, we have introduced some definitions and have

included some new operations related to NSM.

3.1 Definition

Let U = {u1, u2, · · · , um} and E = {e1, e2, · · · , en} be the

universal set of objects and the parametric set, respectively. Sup-

pose, N be a neutrosophic soft set over (U,E) given by N = {<
(e, fN (e)) >: e ∈ E} where

fN (e) = {< u, (TfN (e)(u), IfN (e)(u), FfN (e)(u)) >: u ∈ U}.

Thus, fN (e) corresponds a relation on {e} × U i.e., fN (e) =
{(e, ui) : 1 ≤ i ≤ m} for each e ∈ E. It is obviously a sym-

metric relation. Now, consider a relation RE on U × E given

by RE = {(u, e) : e ∈ E, u ∈ fN (e)}. It is called a relation

form of the NSS N over (U,E). The characteristic function of

RE is χRE
: U × E → [0, 1] × [0, 1] × [0, 1] and is defined

as : χRE
(u, e) = (TfN (e)(u), IfN (e)(u), FfN (e)(u)). The tabular

representation of RE is given in Table 2.

e1 e2 · · · en
u1 χRE

(u1, e1) χRE
(u1, e2) · · · χRE

(u1, en)
u2 χRE

(u2, e1) χRE
(u2, e2) · · · χRE

(u2, en)
...

...
...

. . .
...

um χRE
(um, e1) χRE

(um, e2) · · · χRE
(um, en)

Table 2 : Tabular form of RE

If aij = χRE
(ui, ej), then we can define a matrix

[aij ]m×n =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎞
⎟⎟⎟⎠

where aij = (TfN (ej)(ui), IfN (ej)(ui), FfN (ej)(ui)) =
(T a

ij , I
a
ij , F

a
ij).

Thus, we shall identify any neutrosophic soft set with it’s NSM

and use these two concepts as interchangeable. Since we con-

sider the full parametric set E, so each NSS N over (U,E) cor-

responds a unique NSM [aij ]m×n where cardinality of U and E
are m and n, respectively. To get another NSM of the same order

over (U,E), we need to define another NSS over (U,E). The set

of all NSMs of order m×n is denoted by NSMm×n. Whenever

U and E are fixed, we get all NSMs of unique order i.e., to obtain

an NSM of distinct order, at least any of U and E will have to be

changed.

3.1.1 Example

Consider the Example [2.7.1]. The relation form of the NSS N
over the said (U,E) is

e1 e2 e3
h1 (0.5,0.6,0.3) (0.6,0.3,0.5) (0.7,0.4,0.3)

h2 (0.4,0.7,0.6) (0.7,0.4,0.3) (0.6,0.7,0.2)

h3 (0.6,0.2,0.3) (0.8,0.1,0.2) (0.7,0.2,0.5)

Hence, the NSM corresponding to this NSS N over (U,E) is :

[aij ]3×3 =

⎛
⎝ (0.5, 0.6, 0.3) (0.6, 0.3, 0.5) (0.7, 0.4, 0.3)

(0.4, 0.7, 0.6) (0.7, 0.4, 0.3) (0.6, 0.7, 0.2)
(0.6, 0.2, 0.3) (0.8, 0.1, 0.2) (0.7, 0.2, 0.5)

⎞
⎠

Next, let E1 = {e1(cheap), e2(moderate), e3(high), e4(very high)}
be another set of parameters describing the cost of houses in U .

The relation form of an NSS M over (U,E1) is written as :

e1 e2 e3 e4
h1 (.4, .5, .5) (.5, .7, .6) (.2, .5, .8) (.5, .6, .4)

h2 (.6, .4, .7) (.6, .3, .4) (.7, .6, .5) (.8, .4, .3)

h3 (.7, .3, .4) (.5, .2, .5) (.8, .4, .4) (.1, .6, .6)

Here, the NSM corresponding to the NSS M over (U,E1) is

[bij ]3×4 =

⎛
⎝ (.4, .5, .5) (.5, .7, .6) (.2, .5, .8) (.5, .6, .4)

(.6, .4, .7) (.6, .3, .4) (.7, .6, .5) (.8, .4, .3)
(.7, .3, .4) (.5, .2, .5) (.8, .4, .4) (.1, .6, .6)

⎞
⎠

3.2 Definition

Let A = [aij ] ∈ NSMm×n where aij = (T a
ij , I

a
ij , F

a
ij). Then,

1. A is called a square NSM if m = n i.e., if the number of rows

and the number of columns are equal. The NSS corresponding to

this NSM has the same number of objects and parameters.

2. A square NSM A = [aij ]n×n is called upper triangular NSM

if aij = (0, 1, 1), ∀i > j and is called lower triangular NSM if

aij = (0, 1, 1), ∀i < j.

A is called triangular NSM if it is either neutrosophic soft up-

per triangular or neutrosophic soft lower triangular matrix.

3. The transpose of a square NSM A = [aij ]n×n is another

square NSM of same order obtained from [aij ] by interchanging

it’s rows and columns. It is denoted by At. Thus At = [aij ]
t =

[(T a
ij , I

a
ij , F

a
ij)]

t = [(T a
ji, I

a
ji, F

a
ji)]. The NSS corresponding to

At becomes a new NSS over the same universe and the same

parametric set.

4. A square NSM A = [aij ]n×n is said to be a symmet-

ric NSM if At = A i.e., if aij = aji or (T a
ij , I

a
ij , F

a
ij) =

(T a
ji, I

a
ji, F

a
ji), ∀i, j.

3.3 Definition

Let A = [aij ] ∈ NSMm×n, where aij = (T a
ij , I

a
ij , F

a
ij). Then,

the scalar multiple of NSM A by a scalar k is defined by kA =
[kaij ]m×n where 0 ≤ k ≤ 1.
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3.3.1 Example

Let A = [aij ]2×3 =(
(0.4, 0.5, 0.5) (0.5, 0.7, 0.6) (0.5, 0.6, 0.4)
(0.6, 0.4, 0.7) (0.7, 0.3, 0.4) (0.8, 0.4, 0.3)

)

be an NSM. Then the scalar multiple of this matrix by k = 0.5
is kA = [kaij ]2×3 =(

(0.20, 0.25, 0.25) (0.25, 0.35, 0.30) (0.25, 0.30, 0.20)
(0.30, 0.20, 0.35) (0.35, 0.15, 0.20) (0.40, 0.20, 0.15)

)

3.4 Proposition
Let A = [aij ], B = [bij ] ∈ NSMm×n where aij =

(T a
ij , I

a
ij , F

a
ij). For two scalars s, k ∈ [0, 1],

(i) s(kA) = (sk)A. (ii) s ≤ k ⇒ sA ≤ kA. (iii) A ⊆ B ⇒
sA ⊆ sB.

Proof.

(i) s(kA) = s[kaij ] = s[(kT a
ij , kI

a
ij , kF

a
ij)]

= [(skT a
ij , skI

a
ij , skF

a
ij)] = sk[(T a

ij , I
a
ij , F

a
ij)]

= sk[aij ] = (sk)A.

(ii) Since T a
ij , I

a
ij , F

a
ij ∈ [0, 1], ∀i, j so, sT a

ij ≤ kT a
ij , sI

a
ij ≤

kIaij , sF
a
ij ≤ kF a

ij .

Now, sA = [(sT a
ij , sI

a
ij , sF

a
ij)] ≤ [(kT a

ij , kI
a
ij , kF

a
ij)] = kA.

(iii) A ⊆ B ⇒ [aij ] ⊆ [bij ]

⇒ T a
ij ≤ T b

ij , I
a
ij ≥ Ibij , F

a
ij ≥ F b

ij , ∀i, j
⇒ sT a

ij ≤ sT b
ij , sI

a
ij ≥ sIbij , sF

a
ij ≥ sF b

ij , ∀i, j
⇒ s[aij ] ⊆ s[bij ]

⇒ sA ⊆ sB

3.5 Theorem
Let A = [aij ]m×n be an NSM where aij = (T a

ij , I
a
ij , F

a
ij). Then,

(i) (kA)t = k At for k ∈ [0, 1] being a scalar.

(ii) (At)t = A.

(iii) If A = [aij ]n×n is an upper triangular (lower triangular)

NSM, then At is lower triangular (upper triangular) NSM.

Proof.(i) Here (kA)t, k At ∈ NSMn×m. Now,

(kA)t = [(kT a
ij , kI

a
ij , kF

a
ij)]

t = [(kT a
ji, kI

a
ji, kF

a
ji)]

= k[(T a
ji, I

a
ji, F

a
ji)] = k[(T a

ij , I
a
ij , F

a
ij)]

t = k At.

(ii) Here At ∈ NSMn×m and so (At)t ∈ NSMm×n. Now,

(At)t = ([(T a
ij , I

a
ij , F

a
ij)]

t)t = [(T a
ji, I

a
ji, F

a
ji)]

t

= [(T a
ij , I

a
ij , F

a
ij)] = A.

(iii) Straight forward.

3.6 Definition

Let A = [aij ] ∈ NSMm×n, where m = n and aij =

(T a
ij , I

a
ij , F

a
ij). Then, the trace of NSM A is denoted by tr(A)

and is defined as tr(A) =
∑m

i=1[T
a
ii − (Iaii + F a

ii)].

3.6.1 Example

Let A = [aij ]3×3 =

⎛
⎝ (0.5, 0.6, 0.3) (0.6, 0.3, 0.5) (0.7, 0.4, 0.3)

(0.4, 0.7, 0.6) (0.7, 0.4, 0.3) (0.6, 0.7, 0.2)
(0.6, 0.2, 0.3) (0.8, 0.1, 0.2) (0.7, 0.2, 0.5)

⎞
⎠

be an NSM. Then tr(A) = (0.5−0.6−0.3)+(0.7−0.4−0.3)+
(0.7− 0.2− 0.5) = −0.4

3.7 Proposition

Let A = [aij ] ∈ NSMn×n, where aij = (T a
ij , I

a
ij , F

a
ij). If

k ∈ [0, 1] is a scalar, then tr(kA) = k tr(A).

Proof. tr(kA) =
∑n

i=1[kT
a
ii − (kIaii + kF a

ii)] = k
∑n

i=1[T
a
ii −

(Iaii + F a
ii)] = k tr(A).

3.8 Max-Min Product of NSMs

Two NSMs A and B are said to be conformable for the

product A ⊗ B if the number of columns of the NSM

A be equal to the number of rows of the NSM B and

this product becomes also an NSM. If A = [aij ]m×n

and B = [bjk]n×p, then A ⊗ B = [cik]m×p where

aij = (T a
ij , I

a
ij , F

a
ij), bjk = (T b

jk, I
b
jk, F

b
jk) and cik =

(maxj min(T a
ij , T

b
jk),minj max(Iaij , I

b
jk),minj max(F a

ij , F
b
jk)).

Clearly, B ⊗A can not be defined here.

3.8.1 Example

Let A = [aij ]3×2 =

⎛
⎝ (0.5, 0.6, 0.3) (0.6, 0.3, 0.5)

(0.4, 0.7, 0.6) (0.7, 0.4, 0.3)
(0.6, 0.2, 0.3) (0.8, 0.1, 0.2)

⎞
⎠

and B = [bjk]2×3 =

(
(0.4, 0.5, 0.5) (0.5, 0.7, 0.6) (0.5, 0.6, 0.4)
(0.6, 0.4, 0.7) (0.7, 0.3, 0.4) (0.8, 0.4, 0.3)

)

be two NSMs. Then, A⊗B = [cik]3×3 =

⎛
⎝ (0.6, 0.4, 0.5) (0.6, 0.3, 0.5) (0.6, 0.4, 0.4)

(0.6, 0.4, 0.6) (0.7, 0.4, 0.4) (0.7, 0.4, 0.3)
(0.6, 0.4, 0.5) (0.7, 0.3, 0.4) (0.8, 0.4, 0.3)

⎞
⎠
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One calculation is provided herewith for convenience of A⊗B.

T c
21 = max

j
{min(T a

21, T
b
11),min(T a

22, T
b
21)}

= max{min(0.4, 0.4),min(0.7, 0.6)} = 0.6

Ic21 = min
j

{max(Ia21, I
b
11),max(Ia22, I

b
21)}

= min{max(0.7, 0.5),max(0.4, 0.4)} = 0.4

F c
21 = min

j
{max(F a

21, F
b
11),max(F a

22, F
b
21)}

= min{max(0.6, 0.5),max(0.3, 0.7)} = 0.6

Thus, c21 = (0.6, 0.4, 0.6) and so on.

3.9 Theorem

Let A = [aij ]m×n, B = [bjk]n×p be two NSMs where

aij=(T a
ij , I

a
ij , F

a
ij). Then, (A⊗B)t = Bt ⊗At

Proof. Let A⊗B = [cik]m×p. Then (A⊗B)t = [cki]p×m, At =

[aji]n×m, Bt = [bkj ]p×n and so the order of (Bt⊗At) is (p×m).
Now,

(A⊗B)t

= [(T c
ki, I

c
ki, F

c
ki)]p×m

= [(max
j

min(T b
kj , T

a
ji), min

j
max(Ibkj , I

a
ji),

min
j

max(F b
kj , F

a
ji))]p×m

= [(T b
kj , I

b
kj , F

b
kj)]p×n ⊗ [(T a

ji, I
a
ji, F

a
ji)]n×m = Bt ⊗At.

4 Operators of NSMs

Let A = [(T a
ij , I

a
ij , F

a
ij)], B = [(T b

ij , I
b
ij , F

b
ij)] ∈ NSMm×n.

Then,

(i) Union A ∪ B = C where T c
ij = T a

ij � T b
ij , I

c
ij = Iaij ∗

Ibij , F
c
ij = F a

ij ∗ F b
ij , ∀i, j.

(ii) Intersection A ∩ B = C where T c
ij = T a

ij ∗ T b
ij , I

c
ij =

Iaij � Ibij , F c
ij = F a

ij � F b
ij , ∀i, j.

(iii)Arithmetic mean A � B = C where T c
ij =

Ta
ij+T b

ij

2 , Icij =
Ia
ij+Ib

ij

2 , F c
ij =

Fa
ij+F b

ij

2 , ∀i, j.

(iv) Weighted arithmetic mean A �w B = C where T c
ij =

w1T
a
ij+w2T

b
ij

w1+w2
, Icij =

w1I
a
ij+w2I

b
ij

w1+w2
, F c

ij =
w1F

a
ij+w2F

b
ij

w1+w2
, ∀i, j and

w1, w2 > 0.

(v) Geometric mean A�B = C where T c
ij =

√
T a
ij · T b

ij , I
c
ij =√

Iaij · Ibij , F c
ij =

√
F a
ij · F b

ij , ∀i, j.

(vi) Weighted geometric mean A�w B = C where

T c
ij =

(w1+w2)

√
(T a

ij)
w1 · (T b

ij)
w2 ,

Icij =
(w1+w2)

√
(Iaij)

w1 · (Ibij)w2 ,

F c
ij =

(w1+w2)

√
(F a

ij)
w1 · (F b

ij)
w2 , ∀i, j and w1, w2 > 0.

(vii) Harmonic mean A � B = C where T c
ij =

2Ta
ijT

b
ij

Ta
ij+T b

ij

, Icij =

2Ia
ijI

b
ij

Ia
ij+Ib

ij

, F c
ij =

2Fa
ijF

b
ij

Fa
ij+F b

ij

, ∀i, j.

(viii) Weighted harmonic mean A �w B = C where T c
ij =

w1+w2
w1
Ta
ij

+
w2
Tb
ij

, Icij =
w1+w2
w1
Ia
ij

+
w2
Ib
ij

, F c
ij =

w1+w2
w1
Fa
ij

+
w2
Fb
ij

, ∀i, j and w1, w2 > 0.

4.1 Proposition

Let A = [aij ], B = [bij ] ∈ NSMm×n, where aij =

(T a
ij , I

a
ij , F

a
ij). Then,

(i) (A ∪B)t = At ∪Bt, (A ∩B)t = At ∩Bt.

(ii) (A�B)t = At �Bt, (A�w B)t = At �w Bt.

(iii) (A�B)t = At �Bt, (A�w B)t = At �w Bt.

(iv) (A�B)t = At �Bt, (A�w B)t = At �w Bt.

Proof. (i) Here A ∪B, (A ∪B)t, At, Bt, At ∪Bt ∈ NSMm×n.

Now,

(A ∪B)t = [(T a
ij � T b

ij , I
a
ij ∗ Ibij , F a

ij ∗ F b
ij)]

t

= [(T a
ji � T b

ji, I
a
ji ∗ Ibji, F a

ji ∗ F b
ji)]

= [(T a
ji, I

a
ji, F

a
ji)] ∪ [(T b

ji, I
b
ji, F

b
ji)]

= [(T a
ij , I

a
ij , F

a
ij)]

t ∪ [(T b
ij , I

b
ij , F

b
ij)]

t

= At ∪Bt.

Next A ∩B, (A ∩B)t, At ∩Bt ∈ NSMm×n. Now,

(A ∩B)t = [(T a
ij ∗ F b

ij , I
a
ij � (1− Ibij), F

a
ij � T b

ij)]
t

= [(T a
ji ∗ F b

ji, I
a
ji � (1− Ibji), F

a
ji � T b

ji)]

= [(T a
ji, I

a
ji, F

a
ji)] ∩ [(T b

ji, I
b
ji, F

b
ji)]

= [(T a
ij , I

a
ij , F

a
ij)]

t ∩ [(T b
ij , I

b
ij , F

b
ij)]

t

= At ∩Bt.

Remaining others can be proved in the similar manner.

4.2 Proposition

Let A = [aij ], B = [bij ] are upper triangular (lower triangular)

NSMs of same order. Then (i) A∪B, A∩B (ii) A�B, A�wB
(iii) A � B, A �w B all are upper triangular (lower triangular)

NSMs.

Proof. Straight forward.

4.3 Theorem

Let A = [aij ], B = [bij ] be two symmetric NSMs of same order.

Then,

(i) A∪At, A∪B,A∩B,A�B,A�w B,A�B,A�w B,A�
B,A�w B are so.
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(ii) A⊗B is symmetric iff A⊗B = B ⊗A.

(iii) A⊗At, At ⊗A both are symmetric.

Proof. Here At = A and Bt = B as both are symmetric NSMs.

Clearly A ∪ At, A ∪ B,A ∩ B,A � B,A �w B,A � B,A �w

B,A�B,A�w B,A⊗B,B ⊗A,A⊗At, At ⊗A all are well

defined as both the NSMs are same order and square. Now,

(i) These are left to the reader.

(ii) (A⊗B)t = Bt ⊗At = B ⊗A = A⊗B.

(iii) (A ⊗ At)t = (At)t ⊗ At = A ⊗ At and (At ⊗ A)t =
At ⊗ (At)t = At ⊗A.

4.4 Proposition

Let A = [(T a
ij , I

a
ij , F

a
ij)], B = [(T b

ij , I
b
ij , F

b
ij)] ∈ NSMm×n.

Then,

(i) (A ∪B)o = Ao ∩Bo, (A ∩B)o = Ao ∪Bo.

(ii) (A�B)o = Ao �Bo, (A�w B)o = Ao �w Bo.

Proof. (i) Here (A ∪B)o, Ao ∩Bo ∈ NSMm×n. Now,

(A ∪B)o = [(T a
ij � T b

ij , I
a
ij ∗ Ibij , F a

ij ∗ F b
ij)]

o

= [(F a
ij ∗ F b

ij , 1− (Iaij ∗ Ibij), T a
ij � T b

ij)]

= [(F a
ij ∗ F b

ij , (1− Iaij) � (1− Ibij), T
a
ij � T b

ij)]

= [(F a
ij , 1− Iaij , T

a
ij)] ∩ [(F b

ij , 1− Ibij , T
b
ij)]

= [(T a
ij , I

a
ij , F

a
ij)]

o ∩ [(T b
ij , I

b
ij , F

b
ij)]

o

= Ao ∩Bo.

Next, (A ∩B)o, Ao ∪Bo ∈ NSMm×n. Now,

(A ∩B)o = [(T a
ij ∗ T b

ij , I
a
ij � Ibij , F a

ij � F b
ij)]

o

= [(F a
ij � F b

ij , 1− (Iaij � Ibij), T a
ij ∗ T b

ij)]

= [(F a
ij � F b

ij , (1− Iaij) ∗ (1− Ibij), T
a
ij ∗ T b

ij)]

= [(F a
ij , 1− Iaij , T

a
ij)] ∪ [(F b

ij , 1− Ibij , T
b
ij)]

= [(T a
ij , I

a
ij , F

a
ij)]

o ∪ [(T b
ij , I

b
ij , F

b
ij)]

o

= Ao ∪Bo.

Note : Here, (1 − Iaij) � (1 − Ibij) = 1 − (Iaij ∗ Ibij) and (1 −
Iaij) ∗ (1 − Ibij) = 1 − (Iaij � Ibij) hold for dual pairs of non-

parameterized t-norms and s-norms e.g., a ∗ b = min{a, b} and

a � b = max{a, b}, a ∗ b = max{a + b − 1, 0} and a � b =
min{a+ b, 1} etc.

(ii) Here (A�B)o, Ao �Bo ∈ NSMm×n.

(A�B)o = [(
T a
ij + T b

ij

2
,
Iaij + Ibij

2
,
F a
ij + F b

ij

2
)]o

= [(
F a
ij + F b

ij

2
, 1− Iaij + Ibij

2
,
T a
ij + T b

ij

2
)]

= [(
F a
ij + F b

ij

2
,
(1− Iaij) + (1− Ibij)

2
,
T a
ij + T b

ij

2
)]

= [(F a
ij , 1− Iaij , T

a
ij)]� [(F b

ij , 1− Ibij , T
b
ij)]

= [(T a
ij , I

a
ij , F

a
ij)]

o � [(T b
ij , I

b
ij , F

b
ij)]

o

= Ao �Bo.

Next, for w1, w2 > 0, we have,

(A�w B)o

= [(
w1T

a
ij + w2T

b
ij

w1 + w2
,
w1I

a
ij + w2I

b
ij

w1 + w2
,
w1F

a
ij + w2F

b
ij

w1 + w2
)]o

= [(
w1F

a
ij + w2F

b
ij

w1 + w2
, 1− w1I

a
ij + w2I

b
ij

w1 + w2
,
w1T

a
ij + w2T

b
ij

w1 + w2
)]

= [(
w1F

a
ij + w2F

b
ij

w1 + w2
,
w1(1− Iaij) + w2(1− Ibij)

w1 + w2
,

w1T
a
ij + w2T

b
ij

w1 + w2
)]

= [(F a
ij , 1− Iaij , T

a
ij)]�w [(F b

ij , 1− Ibij , T
b
ij)]

= [(T a
ij , I

a
ij , F

a
ij)]

o �w [(T b
ij , I

b
ij , F

b
ij)]

o = Ao �w Bo.

4.5 Proposition (Commutative law)
Let A = [(T a

ij , I
a
ij , F

a
ij)], B = [(T b

ij , I
b
ij , F

b
ij)] ∈ NSMm×n.

Then,

(i) A∪B = B∪A, A∩B = B∩A (ii) A�B = B�A, A�w

B = B �w A (iii) A�B = B � A, A�w B = B �w A (iv)

A�B = B �A, A�w B = B �w A.

Proof. Obvious

4.6 Proposition (Associative law)
Let A = [(T a

ij , I
a
ij , F

a
ij)], B = [(T b

ij , I
b
ij , F

b
ij)], C =

[(T c
ij , I

c
ij , F

c
ij)] ∈ NSMm×n. Then,

(i) (A∪B)∪C = A∪ (B ∪C) (ii) (A∩B)∩C = A∩ (B ∩C)
(iii) (A�B)�C �= A�(B�C) (iv) (A�B)�C �= A�(B�C)
(v) (A�B)� C �= A� (B � C).

Proof. (i) Clearly (A∪B)∪C,A∪ (B∪C) ∈ NSMm×n. Now,

(A ∪B) ∪ C

= [(T a
ij � T b

ij , I
a
ij ∗ Ibij , F a

ij ∗ F b
ij)] ∪ [(T c

ij , I
c
ij , F

c
ij)]

= [((T a
ij � T b

ij) � T c
ij , (I

a
ij ∗ Ibij) ∗ Icij , (F a

ij ∗ F b
ij) ∗ F c

ij)]

= [(T a
ij � (T b

ij � T c
ij), I

a
ij ∗ (Ibij ∗ Icij), F a

ij ∗ (F b
ij ∗ F c

ij))]

= A ∪ (B ∪ C)

Similarly, the other results can be verified.

4.7 Proposition (Distributive law)
Let A = [(T a

ij , I
a
ij , F

a
ij)], B = [(T b

ij , I
b
ij , F

b
ij)], C =

[(T c
ij , I

c
ij , F

c
ij)] ∈ NSMm×n. Then,

(i) A ∩ (B � C) = (A ∩ B) � (A ∩ C), (A � B) ∩ C =
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(A ∩ C)� (B ∩ C).
(ii) A ∪ (B � C) = (A ∪ B) � (A ∪ C), (A � B) ∪ C =
(A ∪ C)� (B ∪ C).

Proof. (i) Here A∩ (B �C), (A∩B)� (A∩C) ∈ NSMm×n.

Now,

A ∩ (B � C)

= [(T a
ij , I

a
ij , F

a
ij)] ∩ [(

T b
ij + T c

ij

2
,
Ibij + Icij

2
,
F b
ij + F c

ij

2
)]

= [(T a
ij ∗

T b
ij + T c

ij

2
, Iaij �

Ibij + Icij
2

, F a
ij �

F b
ij + F c

ij

2
)]

= [(
T a
ij ∗ T b

ij + T a
ij ∗ T c

ij

2
,
Iaij � Ibij + Iaij � Icij

2
,

F a
ij � F b

ij + F a
ij � F c

ij

2
)]

= [(T a
ij ∗ T b

ij , I
a
ij � Ibij , F a

ij � F b
ij)]

�[(T a
ij ∗ T c

ij , I
a
ij � Icij , F a

ij � F c
ij)]

= (A ∩B)� (A ∩ C)

Next (A�B) ∩ C, (A ∩ C)� (B ∩ C) ∈ NSMm×n. Now,

(A�B) ∩ C

= [(
T a
ij + T b

ij

2
,
Iaij + Ibij

2
,
F a
ij + F b

ij

2
)] ∩ [(T c

ij , I
c
ij , F

c
ij)]

= [(
T a
ij + T b

ij

2
∗ T c

ij ,
Iaij + Ibij

2
� Icij ,

F a
ij + F b

ij

2
� F c

ij)]

= [(
T a
ij ∗ T c

ij + T b
ij ∗ T c

ij

2
,
Iaij � Icij + Ibij � Icij

2
,

F a
ij � F c

ij + F b
ij � F c

ij

2
)]

= [(T a
ij ∗ T c

ij , I
a
ij � Icij , F a

ij � F c
ij)]

�[(T b
ij ∗ T c

ij , I
b
ij � Icij , F b

ij � F c
ij)]

= (A ∩ C)� (B ∩ C)

In a similar way, the remaining can be established.

4.8 Proposition (Distributive law)

Let A = [(T a
ij , I

a
ij , F

a
ij)], B = [(T b

ij , I
b
ij , F

b
ij)], C =

[(T c
ij , I

c
ij , F

c
ij)] ∈ NSMm×n.

If a ∗ b = min{a, b} and a � b = max{a, b}, then

(i) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), (A ∪ B) ∩ C =
(A ∩ C) ∪ (B ∩ C).

(ii) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C), (A ∩ B) ∪ C =
(A ∪ C) ∩ (B ∪ C).

(iii)A � (B ∪ C) = (A � B) ∪ (A � C), (A ∪ B) � C =
(A� C) ∪ (B � C).
A � (B ∩ C) = (A � B) ∩ (A � C), (A ∩ B) � C =
(A� C) ∩ (B � C).

(iv) A � (B ∪ C) = (A � B) ∪ (A � C), (A ∪ B) � C =

(A� C) ∪ (B � C).
A � (B ∩ C) = (A � B) ∩ (A � C), (A ∩ B) � C =
(A� C) ∩ (B � C).

(v) A � (B ∪ C) = (A � B) ∪ (A � C), (A ∪ B) � C =
(A� C) ∪ (B � C).
A � (B ∩ C) = (A � B) ∩ (A � C), (A ∩ B) � C =
(A� C) ∩ (B � C).

Proof. We shall here prove (i), (iv) and (v) only. The others can

be proved in the similar fashion.

(i) Here A ∩ (B ∪ C), (A ∩B) ∪ (A ∩ C) ∈ NSMm×n. Now,

A ∩ (B ∪ C)

= [(T a
ij , I

a
ij , F

a
ij)] ∩ [(max{T b

ij , T
c
ij},min{Ibij , Icij},

min{F b
ij , F

c
ij})]

= [(min{T a
ij ,max{T b

ij , T
c
ij}},max{Iaij ,min{Ibij , Icij}},

max{F a
ij ,min{F b

ij , F
c
ij}})]

= [(max{min{T a
ij , T

b
ij},min{T a

ij , T
c
ij}}, min{max{Iaij , Ibij},

max{Iaij , Icij}},min{max{F a
ij , F

b
ij},max{F a

ij , F
c
ij}})]

= [(min{T a
ij , T

b
ij},max{Iaij , Ibij},max{F a

ij , F
b
ij})]

∪[(min{T a
ij , T

c
ij},max{Iaij , Icij},max{F a

ij , F
c
ij})]

= (A ∩B) ∪ (A ∩ C)

Next (A ∪B) ∩ C, (A ∩ C) ∪ (B ∩ C) ∈ NSMm×n. Now,

(A ∪B) ∩ C

= [(max{T a
ij , T

b
ij},min{Iaij , Ibij},min{F a

ij , F
b
ij})]

∩[(T c
ij , I

c
ij , F

c
ij)]

= [(min{max{T a
ij , T

b
ij}, T c

ij},max{min{Iaij , Ibij}, Icij},
max{min{F a

ij , F
b
ij}, F c

ij})]
= [(max{min{T a

ij , T
c
ij},min{T b

ij , T
c
ij}}, min{max{Iaij , Icij},

max{Ibij , Icij}},min{max{F a
ij , F

c
ij},max{F b

ij , F
c
ij}})]

= [(min{T a
ij , T

c
ij},max{Iaij , Icij},max{F a

ij , F
c
ij})]

∪[(min{T b
ij , T

c
ij},max{Ibij , Icij},max{F b

ij , F
c
ij})]

= (A ∩ C) ∪ (B ∩ C)

(iv) Here A� (B ∪C), (A�B)∪ (A�C) ∈ NSMm×n. Now,

A� (B ∪ C)

= [(T a
ij , I

a
ij , F

a
ij)]� [(max{T b

ij , T
c
ij},min{Ibij , Icij},

min{F b
ij , F

c
ij})]

= [(
√
T a
ij ·max{T b

ij , T
c
ij},

√
Iaij ·min{Ibij , Icij},√

F a
ij ·min{F b

ij , F
c
ij})]

= [(max{
√

T a
ij · T b

ij ,
√

T a
ij · T c

ij}, min{
√
Iaij · Ibij ,√

Iaij · Icij},min{
√
F a
ij · F b

ij ,
√

F a
ij · F c

ij})]
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= [(
√

T a
ij · T b

ij ,
√

Iaij · Ibij ,
√

F a
ij · F b

ij)]

∪[(
√
T a
ij · T c

ij ,
√

Iaij · Icij ,
√

F a
ij · F c

ij)]

= (A�B) ∪ (A� C)

Next (A ∪B)� C, (A� C) ∪ (B � C) ∈ NSMm×n. Now,

(A ∪B)� C

= [(max{T a
ij , T

b
ij},min{Iaij , Ibij},min{F a

ij , F
b
ij})]

�[(T c
ij , I

c
ij , F

c
ij)]

= [(
√

max{T a
ij , T

b
ij} · T c

ij ,
√

min{Iaij , Ibij} · Icij ,√
min{F a

ij , F
b
ij} · F c

ij , )]

= [(max{
√
T a
ij · T c

ij ,
√

T b
ij · T c

ij}, min{
√
Iaij · Icij ,√

Ibij · Icij},min{
√

F a
ij · F c

ij ,
√

F b
ij · F c

ij})]

= [(
√
T a
ij · T c

ij ,
√

Iaij · Icij ,
√

F a
ij · F c

ij)]

∪[(
√
T b
ij · T c

ij ,
√

Ibij · Icij ,
√

F b
ij · F c

ij)]

= (A� C) ∪ (B � C)

(v) Here A� (B ∪C), (A�B) ∪ (A�C) ∈ NSMm×n. Now,

A� (B ∪ C)

= [(T a
ij , I

a
ij , F

a
ij)]�

[(max{T b
ij , T

c
ij},min{Ibij , Icij},min{F b

ij , F
c
ij})]

= [(
2 · T a

ij ·max{T b
ij , T

c
ij}

T a
ij +max{T b

ij , T
c
ij}

,
2 · Iaij ·min{Ibij , Icij}
Iaij +min{Ibij , Icij}

,

2 · F a
ij ·min{F b

ij , F
c
ij}

F a
ij +min{F b

ij , F
c
ij}

)]

= [(max{ 2T a
ijT

b
ij

T a
ij + T b

ij

,
2T a

ijT
c
ij

T a
ij + T c

ij

}, min{ 2IaijI
b
ij

Iaij + Ibij
,

2IaijI
c
ij

Iaij + Icij
},min{ 2F a

ijF
b
ij

F a
ij + F b

ij

,
2F a

ijF
c
ij

F a
ij + F c

ij

})]

= [(
2T a

ijT
b
ij

T a
ij + T b

ij

,
2IaijI

b
ij

Iaij + Ibij
,
2F a

ijF
b
ij

F a
ij + F b

ij

)]

∪[( 2T a
ijT

c
ij

T a
ij + T c

ij

,
2IaijI

c
ij

Iaij + Icij
,
2F a

ijF
c
ij

F a
ij + F c

ij

)]

= (A�B) ∪ (A� C)

Next (A ∪B)� C, (A� C) ∪ (B � C) ∈ NSMm×n. Now,

(A ∪B)� C

= [(max{T a
ij , T

b
ij},min{Iaij , Ibij},min{F a

ij , F
b
ij})]

�[(T c
ij , I

c
ij , F

c
ij)]

= [(
2 ·max{T a

ij , T
b
ij} · T c

ij

max{T b
ij , T

c
ij}+ T c

ij

,
2 ·min{Iaij , Ibij} · Icij
min{Ibij , Icij}+ Icij

,

2 ·min{F a
ij , F

b
ij} · F c

ij

min{F b
ij , F

c
ij}+ F c

ij

)]

= [(max{ 2T a
ijT

c
ij

T a
ij + T c

ij

,
2T b

ijT
c
ij

T b
ij + T c

ij

}, min{ 2IaijI
c
ij

Iaij + Icij
,

2IbijI
c
ij

Ibij + Icij
},min{ 2F a

ijF
c
ij

F a
ij + F c

ij

,
2F b

ijF
c
ij

F b
ij + F c

ij

})]

= [(
2T a

ijT
c
ij

T a
ij + T c

ij

,
2IaijI

c
ij

Iaij + Icij
,
2F a

ijF
c
ij

F a
ij + F c

ij

)]

∪[( 2T b
ijT

c
ij

T b
ij + T c

ij

,
2IbijI

c
ij

Ibij + Icij
,
2F b

ijF
c
ij

F b
ij + F c

ij

)]

= (A� C) ∪ (B � C)

4.9 Proposition (Idempotent law)

Let A = [(T a
ij , I

a
ij , F

a
ij)] ∈ NSMm×n. Then,

(i) A�w A = A (ii) A�w A = A (iii) A�w A = A.

Proof. For all i, j and w1, w2 > 0 we have,

(i) A �w A = [(
w1T

a
ij+w2T

a
ij

w1+w2
,
w1I

a
ij+w2I

a
ij

w1+w2
,
w1F

a
ij+w2F

a
ij

w1+w2
, )] =

[(T a
ij , I

a
ij , F

a
ij)] = A.

(ii) A�w A = [( (w1+w2)

√
(T a

ij)
w1 · (T a

ij)
w2 ,

(w1+w2)

√
(Iaij)

w1 · (Iaij)w2 , (w1+w2)

√
(F a

ij)
w1 · (F a

ij)
w2)]

= [( (w1+w2)

√
(T a

ij)
w1+w2 , (w1+w2)

√
(Iaij)

w1+w2 ,

(w1+w2)

√
(F a

ij)
w1+w2)] = [(T a

ij , I
a
ij , F

a
ij)] = A.

(iii) A �w A = [( w1+w2
w1
Ta
ij

+
w2
Ta
ij

, w1+w2
w1
Ia
ij

+
w2
Ia
ij

, w1+w2
w1
Fa
ij

+
w2
Fa
ij

)] =

[(T a
ij , I

a
ij , F

a
ij)] = A.

5 Neutrosophic soft matrix theory in de-
cision making (score function algo-
rithm)

5.1 Definition

1. Let A = [aij ]m×n be an NSM where aij = (T a
ij , I

a
ij , F

a
ij).

Then the value of the matrix A is denoted by V (A) and is defined

as : V (A) = [vaij ]m×n where vaij = T a
ij − Iaij − F a

ij , ∀i, j.

2. The score of two NSMs A and B is defined as S(A,B) =
[sij ]m×n where sij = vaij + vbij . So, S(A,B) = V (A) + V (B).

3. The total score for each object in U is Σn
j=1sij .
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5.2 Properties of Score Function

Value matrices are classical real matrices which follow all prop-

erties of classical real matrices. The score function is basically

a real matrix in classical sense derived from two or more value

matrices. So score functions obey all properties of real matrices.

5.3 Methodology

Suppose, N number of decision makers wish to select an ob-

ject jointly from m number of objects i.e., universal set U with

respect to n number of features i.e., parametric set E. Each deci-

sion maker forms an NSS over (U,E) and corresponding to each

NSS, each get an NSM of order m × n. It needs to compute the

value matrix corresponding to each matrix. Then the score matrix

and finally, the total score of each object will be calculated.

5.3.1 Algorithm

Step 1 : Construct the NSMs from the given NSSs.

Step 2 : Calculate the value matrices of corresponding NSMs.

Step 3 : Compute the score matrix from value matrices and the

total score for each object in U .

Step 4 : Find the object of maximum score and it is the optimal

solution.

Step 5 : If score is maximum for more than one object, then find

Σn
j=1(sij)

k, k ≥ 2 successively. Choose the object of maximum

score and hereby the optimal solution.

5.3.2 Case study 1 (application in class room)

Three students {s1, s2, s3} from class - x in a school have been

shortened to win the best student award in an academic session.

A team of three teachers {T1, T2, T3} has been formed by the

Head Master of that school for this purpose. Final selection is

based on the set of parameters {e1, e2, e3, e4, e5} indicating the

quality of student, participation in school cultural programme,

class room interactions, maintenance of discipline in class room,

daily attendance, respectively. Teachers have given their valuable

opinions by the following NSSs separately i.e., first NSS given by

first teacher and so on.

M = {fM (e1), fM (e2), fM (e3), fM (e4), fM (e5)} where

fM (e1) = {< s1, (0.7, 0.2, 0.6) >,< s2, (0.6, 0.3, 0.5) >,

< s3, (0.8, 0.3, 0.5) >}
fM (e2) = {< s1, (0.4, 0.6, 0.7) >,< s2, (0.7, 0.6, 0.3) >,

< s3, (0.5, 0.5, 0.4) >}
fM (e3) = {< s1, (0.5, 0.5, 0.3) >,< s2, (0.7, 0.4, 0.4) >,

< s3, (0.6, 0.4, 0.6) >}
fM (e4) = {< s1, (0.6, 0.6, 0.5) >,< s2, (0.5, 0.8, 0.6) >,

< s3, (0.4, 0.7, 0.4) >}

N = {fN (e1), fN (e2), fN (e3), fN (e4), fN (e5)} where

fN (e1) = {< s1, (0.6, 0.4, 0.5) >,< s2, (0.7, 0.4, 0.2) >,

< s3, (0.9, 0.4, 0.2) >}
fN (e2) = {< s1, (0.5, 0.5, 0.6) >,< s2, (0.8, 0.5, 0.1) >,

< s3, (0.6, 0.7, 0.5) >}
fN (e3) = {< s1, (0.7, 0.3, 0.4) >,< s2, (0.8, 0.5, 0.3) >,

< s3, (0.5, 0.6, 0.7) >}
fN (e4) = {< s1, (0.7, 0.5, 0.3) >,< s2, (0.6, 0.7, 0.5) >,

< s3, (0.5, 0.5, 0.5) >}
fN (e5) = {< s1, (0.6, 0.4, 0.6) >,< s2, (0.6, 0.3, 0.7) >,

< s3, (0.8, 0.3, 0.3) >}}

P = {fP (e1), fP (e2), fP (e3), fP (e4), fP (e5)} where

fP (e1) = {< s1, (0.8, 0.3, 0.3) >,< s2, (0.8, 0.5, 0.3) >,

< s3, (1.0, 0.4, 0.2) >}
fP (e2) = {< s1, (0.6, 0.4, 0.5) >,< s2, (0.7, 0.6, 0.2) >,

< s3, (0.8, 0.5, 0.4) >}
fP (e3) = {< s1, (0.8, 0.4, 0.1) >,< s2, (0.7, 0.5, 0.5) >,

< s3, (0.6, 0.7, 0.3) >}
fP (e4) = {< s1, (0.6, 0.6, 0.2) >,< s2, (0.8, 0.6, 0.4) >,

< s3, (0.7, 0.3, 0.6) >}
fP (e5) = {< s1, (0.8, 0.4, 0.2) >,< s2, (0.6, 0.4, 0.3) >,

< s3, (0.7, 0.5, 0.4) >}}

The above three NSSs are represented by the NSMs A, B and C,

respectively, as following :

⎛
⎝ (.7, .2, .6) (.4, .6, .7) (.5, .5, .3) (.6, .6, .5) (.8, .3, .4)

(.6, .3, .5) (.7, .6, .3) (.7, .4, .4) (.5, .8, .6) (.7, .2, .6)
(.8, .3, .5) (.5, .5, .4) (.6, .4, .6) (.4, .7, .4) (.9, .1, .2)

⎞
⎠

⎛
⎝ (.6, .4, .5) (.5, .5, .6) (.7, .3, .4) (.7, .5, .3) (.6, .4, .6)

(.7, .4, .2) (.8, .5, .1) (.8, .5, .3) (.6, .7, .5) (.6, .3, .7)
(.9, .4, .2) (.6, .7, .5) (.5, .6, .7) (.5, .5, .5) (.8, .3, .3)

⎞
⎠

⎛
⎝ (.8, .3, .3) (.6, .4, .5) (.8, .4, .1) (.6, .6, .2) (.8, .4, .2)

(.8, .5, .4) (.7, .6, .2) (.7, .5, .5) (.8, .6, .4) (.6, .4, .3)
(1, .4, .2) (.8, .5, .4) (.6, .7, .3) (.7, .3, .6) (.7, .5, .4)

⎞
⎠

Then the corresponding value matrices are :

V (A) =

⎛
⎝ −.1 −.9 −.3 −.5 0.1

−.2 −.2 −.1 −.9 −.1
0.0 −.4 −.4 −.7 0.6

⎞
⎠

V (B) =

⎛
⎝ −.3 −.6 0.0 −.1 −.4

0.1 0.2 0.0 −.6 −.4
0.3 −.6 −.8 −.5 0.2

⎞
⎠

V (C) =

⎛
⎝ 0.2 −.3 0.3 −.2 0.2

−.1 −.1 −.3 −.2 −.1
0.4 −.1 −.4 −.2 −.2

⎞
⎠
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The score matrix is :

S(A,B,C) =

⎛
⎝ −0.2 −1.8 00.0 −0.8 −0.1

−0.2 −0.1 −0.4 −1.7 −0.6
00.7 −1.1 −1.6 −1.4 00.6

⎞
⎠

and the total score =

⎛
⎝ −2.9

−3.0
−2.8

⎞
⎠

Hence, the student s3 will be selected for the best student award

from class-x in that academic session.

5.3.3 Case study 2 (application in security management)

An important discussion on internal security management has

been arranged by the order of Home Minister. Two officers

have mate in that discussion to analyse and arrange the secu-

rity management in five mega-cities e.g., Delhi(D), Mumbai(M),

Kolkata(K), Chennai(C), Bengaluru(B). The priority of manage-

ment is given to the cities based on the set of parameters {a, b, c}
indicating their geographical position(e.g., having international

boarder line, having sea coast etc ), population density, past his-

tory of terrorist attack, respectively. Following NSSs refer the

opinions of two officers individually regarding that matter.

N1 = {fN1
(a), fN1

(b), fN1
(c)} where

fN1
(a) = {< D, (0.9, 0.4, 0.5) >,< M, (0.8, 0.5, 0.4) >,

< K, (0.7, 0.6, 0.6) >,< C, (0.6, 0.4, 0.7) >,

< B, (0.5, 0.3, 0.8) >}
fN1(b) = {< D, (0.8, 0.5, 0.5) >,< M, (0.9, 0.3, 0.3) >,

< K, (0.7, 0.6, 0.5) >,< C, (0.6, 0.7, 0.8) >,

< B, (0.6, 0.8, 0.5) >}
fN1(c) = {< D, (0.7, 0.5, 0.4) >,< M, (0.9, 0.3, 0.2) >,

< K, (0.5, 0.6, 0.7) >,< C, (0.7, 0.4, 0.6) >,

< B, (0.6, 0.3, 0.4) >}

N2 = {fN2
(a), fN2

(b), fN2
(c)} where

fN2
(a) = {< D, (1.0, 0.5, 0.4) >,< M, (0.9, 0.4, 0.5) >,

< K, (0.7, 0.7, 0.5) >,< C, (0.6, 0.5, 0.3) >,

< B, (0.6, 0.7, 0.4) >}
fN2

(b) = {< D, (0.9, 0.4, 0.5) >,< M, (0.9, 0.2, 0.3) >,

< K, (0.8, 0.5, 0.4) >,< C, (0.7, 0.7, 0.6) >,

< B, (0.6, 0.8, 0.7) >}
fN2

(c) = {< D, (0.8, 0.3, 0.2) >,< M, (0.9, 0.2, 0.1) >,

< K, (0.4, 0.5, 0.6) >,< C, (0.5, 0.6, 0.6) >,

< B, (0.7, 0.4, 0.3) >}

These two NSSs are represented by the NSMs A and B, respec-

tively, as following :

A =

⎛
⎜⎜⎜⎜⎝

(0.9, 0.4, 0.5) (0.8, 0.5, 0.5) (0.7, 0.5, 0.4)
(0.8, 0.5, 0.4) (0.9, 0.3, 0.3) (0.9, 0.3, 0.2)
(0.7, 0.6, 0.6) (0.7, 0.6, 0.5) (0.5, 0.6, 0.7)
(0.6, 0.4, 0.7) (0.6, 0.7, 0.8) (0.7, 0.4, 0.6)
(0.5, 0.3, 0.8) (0.6, 0.8, 0.5) (0.6, 0.3, 0.4)

⎞
⎟⎟⎟⎟⎠

B =

⎛
⎜⎜⎜⎜⎝

(1.0, 0.5, 0.4) (0.9, 0.4, 0.5) (0.8, 0.3, 0.2)
(0.9, 0.4, 0.5) (0.9, 0.2, 0.3) (0.9, 0.2, 0.1)
(0.7, 0.7, 0.5) (0.8, 0.5, 0.4) (0.4, 0.5, 0.6)
(0.6, 0.5, 0.3) (0.7, 0.7, 0.6) (0.5, 0.6, 0.6)
(0.6, 0.7, 0.4) (0.6, 0.8, 0.7) (0.7, 0.4, 0.3)

⎞
⎟⎟⎟⎟⎠

Then the corresponding value matrices are :

V (A) =

⎛
⎜⎜⎜⎜⎝

0.0 −.2 −.2
−.1 0.3 0.4
−.5 −.4 −.8
−.5 −.9 −.3
−.6 −.7 −.1

⎞
⎟⎟⎟⎟⎠

V (B) =

⎛
⎜⎜⎜⎜⎝

0.1 0.0 0.3
0.0 0.4 0.6
−.5 −.1 −.7
−.2 −.6 −.7
−.5 −.9 0.0

⎞
⎟⎟⎟⎟⎠

The score matrix and the total score for selection are :

S(A,B) =

⎛
⎜⎜⎜⎜⎝

00.1 −0.2 00.1
−0.1 00.7 01.0
−1.0 −.5 −1.5
−0.7 −1.5 −1.0
−1.1 −1.6 −0.1

⎞
⎟⎟⎟⎟⎠

Total score =

⎛
⎜⎜⎜⎜⎝

00.0
01.6
−3.0
−3.2
−2.8

⎞
⎟⎟⎟⎟⎠

Hence, the priority of security management should be given in

descending order to Mumbai, Delhi, Bangaluru, Kolkata and

Chennai.

6 Conclusion
In this paper, some definitions regarding neutrosophic soft ma-

trices have been brought and some new operators have been in-

cluded, illustrated by suitable examples. Moreover, application

of neutrosophic soft matrix theory in decision making problems

have been made. We expect, this paper will promote the future

study on different algorithms in several other decision making

problems.
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