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Abstract. This paper defines basic operations of neutro-

sophic numbers and neutrosophic number functions for 

objective functions and constraints in optimization mod-

els. Then, we propose a general neutrosophic number op-

timization model for the optimal design of truss struc-

tures. The application and effectiveness of the neutro-

sophic number optimization method are demonstrated

through the design example of a two-bar truss structure 

under indeterminate environment to achieve the mini-

mum weight objective under stress and stability con-

straints. The comparison of the neutrosophic number op-

timal design method with traditional optimal design 

methods proves the usability and suitability of the pre-

sented neutrosophic number optimization design method 

under an indeterminate/neutrosophic number environ-

ment. 
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1 Introduction 

In the real-world, there is incomplete, unknown, and
indeterminate information. How to express incomplete, 
unknown, and indeterminate information is an important 
problem. Hence, Smarandache [1-3] firstly introduced a 
concept of indeterminacy, which is denoted by the symbol 
“I” as the imaginary value, and defined a neutrosophic 
number as N = a + bI for a, b ∈ R (all real numbers),
which consists of both the determinate part a and the 
indeter-minate part bI. So it can express determinate and/or 
inde-terminate information in incomplete, uncertain, and 
inde-terminate problems. After that, Ye [4, 5] applied 
neutro-sophic numbers to decision making problems. 
Then, Kong et al. [6] and Ye [7] applied neutrosophic 
numbers to fault diagnosis problems under indeterminate 
environments. Further, Smarandache [8] introduced an 
interval function (so-called neutrosophic function/thick 
function g(x) = [g1(x), g2(x)] for x ∈ R) to describe
indeterminate problems by the interval functions. And 
also, Ye et al. [9] introduced neutrosophic/interval 
functions of the joint roughness coef-ficient and the shear 
strength in rock mechanics under in-determinate 
environments.  It is obvious that neutrosophic numbers are very suita-
ble for the expression of determinate and/or indeterminate 
information. Unfortunately, existing optimization design 
methods [10-13] cannot express and deal with indetermi-
nate optimization design problems of engineering struc-
tures under neutrosophic number environments. Further-

more, the Smarandache’s neutrosophic function [8] cannot 

also express such an indeterminate function involving neu-
trosophic numbers. Till now, there are no concepts of neu-
trosophic number functions and neutrosophic number op-
timization designs in all existing literature. Therefore, one 

has to define new functions containing NNs to handle inde-
terminate optimization problems of engineering designs 
under a neutrosophic number environment. To handle this 
issue, this paper firstly defines a new concept of neutro-
sophic number functions for the neutrosophic number ob-
jective functions and constraints in engineering optimiza-

tion design problems with determinate and indeterminate 
information, and then proposes a general neutrosophic 
number optimization model and a solution method to real-
ize neutrosophic number optimization problems of truss 
structure design, where the obtained neutrosophic number 
optimal solution can satisfy the design requirements in in-

determinate situations.  
The remainder of this paper is structured as follows. 

Section 2 defines some new concepts of neutrosophic 
number functions to establish the neutrosophic number ob-
jective functions and constraints in indeterminate optimiza-
tion design problems, and proposes a general neutrosophic 

number optimization model for truss structure designs. In 
Section 3, the neutrosophic number optimal design of a 
two-bar truss structure is presented under a neutrosophic 
number environment to illustrate the application and effec-
tiveness of the proposed neutrosophic number optimization 
design method. Section 4 contains some conclusions and 

future research directions. 
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2 Neutrosophic numbers and optimization models 

2.1 Some basic operations of neutrosophic num-
bers 

It is well known that there are some indeterminate de-
sign parameters and applied forces in engineering design 
problems. For example, the allowable compressive stress 
of some metal material is given in design handbooks by a 

possible range between 420 MPa and 460 MPa, denoted by 
p = [420, 460], which reveals the value of p is an inde-
terminate range within the interval [420, 460]. Then a neu-
trosophic number N = a + bI for a, b  R (all real numbers) 
can effectively express the determinate and/or indetermi-
nate information as N = 420 + 40I for I  [0, 1], where its 

determinate part is a = 420, its indeterminate part bI = 40I, 
and the symbol “I” denotes indeterminacy and belongs to 
the indeterminate interval [inf I, sup I] = [0, 1]. For another 
example, if some external force is within [2000, 2500] kN, 
then it can be expressed as the neutrosophic number N = 
2000 + 50I kN for I [0, 10] or N = 2000 + 5I kN for I  

[0, 100] corresponding to some actual requirement. 
It is noteworthy that there are N = a for bI = 0 and N = 

bI for a = 0 in two special cases. Clearly, the neutrosophic 
number can easily express its determinate and/or indeter-
minate information, where I is usually specified as a possi-

ble interval range [inf I, sup I] in actual applications. 
Therefore, neutrosophic numbers can easily and effectively 
express determinate and/or indeterminate information un-
der indeterminate environments.  

For convenience, let Z be all neutrosophic numbers (Z 
domain), then a neutrosophic number is denoted by N = a 

+ bI = [a + b(inf I), a + b(sup I)] for I  [inf I, sup I] and N 
 Z. For any two neutrosophic numbers N1, N2  Z, we can 
define the following operations: 

(1) 
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1 2 1 2

1 2 1 2

( )
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2.2 Neutrosophic number functions and neutro-
sophic number optimization model 

In engineering optimal design problems, a general op-
timization model consists of the objective function and 
constrained functions. In indeterminate optimization prob-
lems of engineering designs, then, objective functions and 
constrained functions may contain indeterminate infor-

mation. To establish an indeterminate optimization model 
in a neutrosophic number environment, we need to define 
neutrosophic number functions in Z domain. 

Definition 1. A neutrosophic number function with n de-
sign variables in Z domain is defined as 

F(X, I): Zn  Z.             (1) 

where X = [x1, x2, …, xn]T for X  Zn is a n-dimensional 
vector and F(X, I) is either a neutrosophic number linear 
function or a neutrosophic number nonlinear function.  

For example, 
1 1 2( , ) (1 2 ) (2 3)F I I x x I    X

for X = [x1, x2]T  Z2 is a neutrosophic number linear func-

tion, then 2 2

2 1 2( , ) (3 )F I Ix I x  X  for X = [x1, x2]T Z2 

is a neutrosophic number nonlinear function. 
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2.3 General neutrosophic number optimization 
model 

Generally speaking, neutrosophic number optimization 
design problems with n design variables in Z domain can 
be defined as the general form of a neutrosophic number 
optimization model: 

min F(X, I)  

s.t. Gk(X, I)  0, k = 1, 2, …, m           (2) 

 Hj(X, I)=0, j = 1, 2, …, s 

XZn, I  [inf I, sup I], 

where F(X, I) is a neutrosophic number objective function 
and G1(x), G2(x), …, Gm(x) and H1(x), H2(x), …, Hs(x): Zn 

 Z are neutrosophic number inequality constraints and 
neutrosophic number equality constraints, respectively, for 
X  Zn and I  [inf I, sup I]. 

However, if the neutrosophic number optimal solution 
of design variables satisfies all these constrained condi-
tions in a neutrosophic number optimization model, the op-

timal solution is feasible and otherwise is unfeasible. Gen-
erally speaking, the optimal solution of design variables 
and the value of the neutrosophic number objective func-
tion usually are neutrosophic numbers/interval ranges (but 
not always). 

To solve the neutrosophic number optimization model 

(2), we use the Lagrangian multipliers for the neutrosophic 
number optimization model. Then the Lagrangian function 
that one minimizes is structured as the following form: 

1 1

( , , ) ( , )

( , ) ( , )
m s

k k j j

k j

L F I

G I H I 
 

 

 

X μ λ X

X X

,          (3) 

        Zm, Zs, XZn, I[inf I, sup I]. 

The common Karush-Kuhn-Tucker (KKT) necessary 
conditions are introduced as follows: 

1 1

( , ) { ( , )} { ( , )} 0
m s

k k j j

k j

F I G I H I 
 

      X X X     (4) 

combined with the original constraints, complementary 
slackness for the inequality constraints and k ≥ 0 for k = 1, 
2, …, m. 

However, it may be difficult to solve neutrosophic non-
linear optimization models in indeterminate nonlinear op-
timization design problems, such as multiple-bar truss 
structure designs under neutrosophic number environments, 
by the Karush-Kuhn-Tucker (KKT) necessary conditions. 
Hence, this paper will research on the neutrosophic number 

optimization design problem of a simple two-bar truss 
structure in the following section to realize the primal in-
vestigation of the truss structure optimal design in a neu-
trosophic number environment. 

3 Optimal design of a two-bar truss structure un-
der a neutrosophic number environment 

To demonstrate the neutrosophic number optimal de-
sign of a truss structure in an indeterminate environment, a 
simply two-bar truss structure is considered as an illustra-
tive design example and showed in Fig.1. In this example, 

the two bars use two steel tubes with the length L, in which 
the wall thick is T=25mm. The optimal design is per-
formed in a vertically external loading case. The vertical 
applied force is 2F = (3+0.4I)105N, the material Young’s 
modulus and density E=2.1105 MPa and ρ = 7800 kg/m3, 
respectively, and the allowable compressive stress is p = 

420 + 40I. 
The optimal design objective of the truss structure is to 

minimize the weight of the truss structure in satisfying the 
constraints of stress and stability. In this class of optimiza-
tion problems, the average diameter D of the tube and the 
truss height H are taken into account as two design varia-

bles, denoted by the design vector X = [x1, x2]T = [D, H].  
Due to the geometric structure symmetry of the two-

bar truss, we only consider the optimal model of one bar of 
both. 

First, the total weight of the tube is expressed by the 
following formula: 

2 2 1/2

1 22 2 (B )M AL Tx x    , 

where A is the cross-sectional area A = Tx1 and 2B is the 
distance between two supporting points. 

Then, the compressive force of the steel tube is 
2 2 1/2

2
1

2 2

( )F B xFL
F

x x


   , 

where L is the length of the tube and F1 is the compressive 
force of the tube. Thus, the compressive stress of the tube 
is represented as the following form: 

2 2 1/2

1 2

1 2

( )F F B x

A Tx x





  . 

Hence, the constrained condition of the strength for the 
tube is written as 

2 2 1/2

2

1 2

( )
p

F B x

Tx x





 . 

Fig. 1 Two-bar truss structure 
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For the stability of the compressive bar, the critical 
force of the tube is given as follows: 

2 2 2 2

1

2 2 2

2

( )

8( )

I
c

EW EA T x
F

L B x

  
 


 , 

where WI is the inertia moment of the cross-section of the 

tube. 
The critical stress of the tube is given as 

2 2 2

1

2 2

2

( )

8( )

c
c

F E T x

A B x





 


. 

Thus, the constrained condition of the stability for the 

tube is written as 

2 2 1/2 2 2 2

2 1

2 2

1 2 2

( ) ( )

8( )

F B x E T x

Tx x B x





 



. 

Finally, the neutrosophic optimization model of the 
truss structure can be formulated as: 

2 2 1/2

1 2min ( , ) 2 ( )M I Tx B x X  

2 2 1/2

2
1

1 2

2 2 1/2 2 2 2

2 1
2 2 2

1 2 2

( )
. . ( , ) 0

( ) ( )
( , ) 0

8( )

p

F B x
s t G I

Tx x

F B x E T x
G I

Tx x B x









  

 
  



X

X

. 

By solving the neutrosophic optimization model, the 
neutrosophic number optimal solution of the two design 
variables is given as follows: 

*

* 1

*

2

5

2

(420 40 )

1.414(1.5 0.2 ) 10

7.85(420 40 )

760

F
x

X T I
x

B

I

I



 
   

     
    

  
 

 
 
  

 , 

In this case, the neutrosophic number optimal value of 
the objective function is obtained as follows: 

* 4 2371.2(1.5 0.2 )
( , )

(420 40 )p

FB I
M X I

I






 


. 

Since there exists the indeterminacy I in these neutro-
sophic number optimal values, it is necessary that we dis-

cuss them when the indeterminacy I is specified as possible 
ranges according to actual indeterminate requirements in 
the actual application. 

Obviously, the neutrosophic number optimization 
problem reveals indeterminate optimal results (usually 
neutrosophic number optimal solutions, but not always). If 

the indeterminacy I is specified as different possible ranges 
of I =0, I  [0, 1], I  [1, 3], I  [3, 5], I  [5, 7], and I  
[7, 10] for convenient analyses, then all the results are 
shown in Table 1. 

Table 1. Optimal results of two-bar truss structure design in different specified ranges of I  [inf I, sup I] 

I  [inf I, sup I] D =x1
* (mm) H =x2

* (mm) M(X*, I) (kg) 

I = 0 64.3312 760 8.4686 
I  [0, 1] [58.7372, 72.9087] 760 [7.7322, 9.5977] 
I  [1, 3] [56.7068, 82.2321] 760 [7.4649, 10.8250] 

I  [3, 5] [61.0109, 83.3923] 760 [8.0315, 10.9778] 
I  [5, 7] [64.3312, 84.2531] 760 [8.4686, 11.0911] 
I  [7, 10] [63.7036, 90.0637] 760 [8.3860, 11.8560] 

In Table 1, if I = 0, it is clear that the neutrosophic 
number optimization problem is degenerated to the crisp 
optimization problem (i.e., traditional determinate optimi-
zation problem). Then under a neutrosophic number envi-

ronment, neutrosophic number optimal results are changed 
as the indeterminate ranges are changed. Therefore, one 
will take some interval range of the indeterminacy I in ac-
tual applications to satisfy actual indeterminate require-
ments of the truss structure design. For example, if we take 
the indeterminate range of I  [0, 1], then the neutrosophic 

number optimal solution is D =x1
* = [58.7372, 72.9087] 

mm and H = x2
* = 760mm. In actual design, we need the 

de-neutrosophication in the neutrosophic optimal solution 
to determinate the suitable optimal design values of the de-
sign variables to satisfy some indeterminate requirement. 

For example, if we take the maximum values of the opti-
mal solution for I  [0, 1], we can obtain D = 73mm and H 
= 760mm for the two-bar truss structure design to satisfy 
this indeterminate requirement. 

However, traditional optimization design methods [10-
13] cannot express and handle the optimization design

problems with neutrosophic number information and are 
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special cases of the neutrosophic number optimization de-
sign method in some cases. The comparison of the pro-
posed neutrosophic number optimization design method 
with traditional optimization design methods demonstrates 
the usability and suitability of this neutrosophic number 
optimization design method under a neutrosophic number 

environment. 

4 Conclusion 

Based on the concepts of neutrosophic numbers, this 
paper defined the operations of neutrosophic numbers and 
neutrosophic number functions to establish the neutrosoph-
ic number objective function and constraints in neutro-

sophic number optimization design problems. Then, we 
proposed a general neutrosophic number optimization 
model with constrained optimizations for truss structure 
design problems. Next, a two-bar truss structure design ex-
ample was provided to illustrate the application and effec-
tiveness of the proposed neutrosophic number optimization 

design method.  
However, the indeterminate (neutrosophic number) op-

timization problems may contain indeterminate (neutro-
sophic number) optimal solutions (usually neutrosophic 
numbers, but not always), which can indicate possible op-
timal ranges of the design variables and objective function 

when indeterminacy I is specified as a possible interval 
ranges in actual applications.  

In general, indeterminate designs usually imply inde-
terminate optimal solutions from an indeterminate view-
point. Then in the de-neutrosophication satisfying actual 
engineering design requirements we can determinate the 
suitable optimal design values of design variables in the 
obtained optimal interval solution corresponding to de-

signers’ attitudes and/or some risk situations to be suitable 
for actual indeterminate requirements. 

It is obvious that the neutrosophic number optimization 
design method in a neutrosophic number environment is 
more useful and more suitable than existing optimization 
design methods of truss structures since the traditional de-

terminate/indeterminate optimization design methods can-
not express and handle the neutrosophic number optimiza-
tion design problems under an indeterminate environment. 
Therefore, the neutrosophic number optimization design 
method provides a new effective way for the optimal de-
sign of truss structures under indeterminate/neutrosophic 

number environments. 
Nonetheless, due to existing indeterminacy “I” in the 

neutrosophic number optimization model, it may be diffi-
cult to solve complex neutrosophic number optimization 
models. In the future, therefore, we shall further study 
solving algorithms/methods for neutrosophic number op-
timization design problems and apply them to mechanical 
and civil engineering designs under indeterminate / neutro-
sophic number environments. 
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