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Abstract: We introduce the category NSet(H) consisting of neu-
trosophic H-sets and morphisms between them. And we study
NSet(H) in the sense of a topological universe and prove that it
is Cartesian closed over Set, where Set denotes the category con-

sisting of ordinary sets and ordinary mappings between them. Fur-
thermore, we investigate some relationships between two categories
ISet(H) and NSet(H).
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1 Introduction
In 1965, Zadeh [20] had introduced a concept of a fuzzy set as

the generalization of a crisp set. In 1986, Atanassov [1] proposed
the notion of intuitionistic fuzzy set as the generalization of fuzzy
sets considering the degree of membership and non-membership.
Moreover, in 1998, Smarandache [19] introduced the concept of
a neutrosophic set considering the degree of membership, the de-
gree of indeterminacy and the degree of non-membership.

After that time, many researchers [3, 4, 5, 6, 8, 9, 13, 15, 16,
17] have investigated fuzzy sets in the sense of category theory,
for instance, Set(H), Setf (H), Setg(H), Fuz(H). Among
them, the category Set(H) is the most useful one as the “stan-
dard” category, because Set(H) is very suitable for describ-
ing fuzzy sets and mappings between them. In particular, Car-
rega [3], Dubuc [4], Eytan [5], Goguen [6], Pittes [15], Ponasse
[16, 17] had studied Set(H) in topos view-point. However Hur
et al. investigated Set(H) in topological view-point. Moreover,
Hur et al. [9] introduced the category ISet(H) consisting of intu-
itionistic H-fuzzy sets and morphisms between them, and studied
ISet(H) in the sense of topological universe. In particular, Lim
et al. [13] introduced the new category VSet(H) and investi-
gated it in the sense of topological universe. Recently, Lee et al.
[10] define the category composed of neutrosophic crisp sets and
morphisms between neutrosophic crisp sets and study its some
properties.

The concept of a topological universe was introduced by Nel
[14], which implies a Cartesian closed category and a concrete
quasitopos. Furthermore the concept has already been up to ef-

fective use for several areas of mathematics.
In this paper, we introduce the category NSet(H) consisting

of neutrosophic H-sets and morphisms between them. And we
study NSet(H) in the sense of a topological universe and prove
that it is Cartesian closed over Set, where Set denotes the cate-
gory consisting of ordinary sets and ordinary mappings between
them. Furthermore, we investigate some relationships between
two categories ISet(H) and NSet(H).

2 Preliminaries
In this section, we list some basic definitions and well-known

results from [7, 12, 14] which are needed in the next sections.

Definition 2.1 [12] Let A be a concrete category and ((Yj , ξj))J
a family of objects in A indexed by a class J. For any set X , let
(fj : X → Yj)J be a source of mappings indexed by J . Then
an A-structure ξ on X is said to be initial with respect to (in
short, w.r.t.) (X, (fj), ((Yj , ξj)))J , if it satisfies the following
conditions:

(i) for each j ∈ J , fj : (X, ξ)→ (Yj , ξj) is an A-morphism,
(ii) if (Z, ρ) is an A-object and g : Z → X is a mapping such

that for each j ∈ J , the mapping fj ◦ g : (Z, ρ)→ (Yj , ξj) is an
A-morphism, then g : (Z, ρ)→ (X, ξ) is an A-morphism.

In this case, (fj : (X, ξ) → (Yj , ξj))J is called an initial
source in A.

Dual notion: cotopological category.
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Result 2.2 ([12], Theorem 1.5) A concrete category A is topo-
logical if and only if it is cotopological.

Result 2.3 ([12], Theorem 1.6) Let A be a topological category
over Set, then it is complete and cocomplete.

Definition 2.4 [12] Let A be a concrete category.

(i) The A-fibre of a set X is the class of all A-structures on X .

(ii) A is said to be properly fibred over Set if it satisfies the
followings:

(a) (Fibre-smallness) for each set X , the A-fibre of X is
a set,

(b) (Terminal separator property) for each singleton setX ,
the A-fibre of X has precisely one element,

(c) if ξ and η are A-structures on a set X such that id :
(X, ξ) → (X, η) and id : (X, η) → (X, ξ) are A-
morphisms, then ξ = η.

Definition 2.5 [7] A category A is said to be Cartesian closed if
it satisfies the following conditions:

(i) for each A-object A and B, there exists a product A×B in
A,

(ii) exponential objects exist in A, i.e., for each A-object A, the
functor A×− : A→ A has a right adjoint, i.e., for any A-
object B, there exist an A-object BA and an A-morphism
eA,B : A × BA → B (called the evaluation) such that for
any A-object C and any A-morphism f : A × C → B,
there exists a unique A-morphism f̄ : C → BA such that
eA,B ◦ (idA × f̄) = f , i.e., the diagram commutes:

eA,BA×BA B-

∃1A × f f

A× C

J
J
J
J
J
J
J]














�

Definition 2.6 [7] A category A is called a topological universe
over Set if it satisfies the following conditions:

(i) A is well-structured, i.e., (a) A is a concrete category; (b)
A satisfies the fibre-smallness condition; (c) A has the ter-
minal separator property,

(ii) A is cotopological over Set,

(iii) final episinks in A are preserved by pullbacks, i.e., for any
episink (gj : Xj → Y )J and any A-morphism f : W → Y ,
the family (ej : Uj →W )J , obtained by taking the pullback
f and gj , for each j ∈ J , is again a final episink.

Definition 2.7 [2, 11] A lattice H is called a complete Heyting
algebra if it satisfies the following conditions:

(i) it is a complete lattice,

(ii) for any a, b ∈ H , the set {x ∈ H : x ∧ a ≤ b} has
the greatest element denoted by a → b (called the relative
pseudo-complement of a and b), i.e., x ∧ a ≤ b if and only
if x ≤ (a→ b).

In particular, if H is a complete Heyting algebra with the
least element 0 then for each a ∈ H , N(a) = a → 0 is
called negation or the paudo-complement of a.

Result 2.8 ([2], Ex. 6 in p. 46) Let H be a complete Heyting
algebra and a, b ∈ H .

(1) If a ≤ b, then N(b) ≤ N(a), where N : H → H is an
involutive order reversing operation in (H,≤).

(2) a ≤ NN(a).

(3) N(a) = NNN(a).

(4) N(a ∨ b) = N(a) ∧N(b) and N(a ∧ b) = N(a) ∨N(b).

Throughout this paper, we will use H as a complete Heyting
algebra with the least element 0 and the greatest element 1.

Definition 2.9 [9] Let X be a set. Then A is called an intuition-
isticH-fuzzy set (in short, IHFS) inX if it satisfies the following
conditions:

(i) A is of the form A = (µ, ν), where µ, ν : X → H are
mappings,

(ii) µ ≤ N(ν), i.e., µ(x) ≤ N(ν)(x) for each x ∈ X .

In this case, the pair (X,A) is called an intuitionistic H-fuzzy
space (in short, IHFSp). We will denote the set of all IHFSs as
IHFS(X).

Definition 2.10 [9] The concrete category ISet(H) is defined as
follows:

(i) each object is an IHFSp (X,AX), where AX =
(µAX , νAX ) ∈ IHFS(X),

(ii) each morphism is a mapping f : (X,AX)→ (Y,AY ) such
that µAX ≤ µAY ◦ f and νAX ≥ νAY ◦ f , i.e., µAX (x) ≤
µAY ◦ f(x) and νAX (x) ≥ νAY ◦ f(x), for each x ∈ X . In
this case, the morphism f : (X,AX) → (Y,AY ) is called
an ISet(H)-mapping.

K. Hur, P. K. Lim, J. G. Lee, J. Kim, The category of neutrosophic sets

Neutrosophic Sets and Systems, Vol. 14, 2016  13 



3 Neutrosophic sets

In [18], Salama and Smarandache introduced the concept of a
neutrosophic crisp set in a set X and defined the inclusion be-
tween two neutrosophic crisp sets, the intersection [union] of
two neutrosophic crisp sets, the complement of a neutrosophic
crisp set, neutrosophic empty [resp., whole] set as more than two
types. And they studied some properties related to neutrosophic
set operations. However, by selecting only one type, we define
the inclusion, the intersection [union] and the neutrosophic empty
[resp., whole] set again and obtain some properties.

Definition 3.1 Let X be a non-empty set. Then A is called a
neutrosophic set (in short, NS) in X , if A has the form A =
(TA, IA, FA), where
TA : X →]−0, 1+[, IA : X →]−0, 1+[, FA : X →]−0, 1+[.

Since there is no restriction on the sum of TA(x), IA(x) and
FA(x), for each x ∈ X ,

−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

Moreover, for each x ∈ X , TA(x) [resp., IA(x) and FA(x)] rep-
resent the degree of membership [resp., indeterminacy and non-
membership] of x to A.

The neutrosophic empty [resp., whole] set, denoted by 0N
[resp., 1N ] is an NS in X defined by 0N = (0, 0, 1) [resp.,
1N = (1, 1, 0)], where 0, 1 : X →]−0, 1+[ are defined by
0(x) = 0 and 1(x) = 1 respectively. We will denote the set
of all NSs in X as NS(X).

From Example 2.1.1 in [18], we can see that every IFS (intu-
tionistic fuzzy set) A in a non-empty set X is an NS in X having 
the form

A = (TA, 1− (TA + FA), FA),

where (1− (TA + FA))(x) = 1− (TA(x) + FA(x)).

Definition 3.2 Let A = (TA, IA, FA), B = (TB , IB , FB) ∈
NS(X). Then

(i) A is said to be contained in B, denoted by A ⊂ B, if

TA(x) ≤ TB(x), IA(x) ≤ IB(x) and FA(x) ≥ FB(x)
for each x ∈ X ,

(ii) A is said to equal to B, denoted by A = B, if

A ⊂ B and B ⊂ A,

(iii) the complement of A, denoted by Ac, is an NCS in X de-
fined as:

Ac = (FA, 1− IA, TA),

(iv) the intersection of A and B, denoted by A ∩ B, is an NCS
in X defined as:

A ∩B = (TA ∧ TB , IA ∧ IB , FA ∨ FB),

where (TA ∧ TB)(x) = TA(x) ∧ TB(x), (FA ∨ FB) =
FA(x) ∨ FB(x) for each x ∈ X ,

(v) the union of A and B, denoted by A ∪ B, is an NCS in X
defined as:

A ∪B = (TA ∨ TB , IA ∨ IB , FA ∧ FB).

Let (Aj)j∈J ⊂ NS(X), where Aj = (TAj , IAj , FAj ). Then

(vi) the intersection of (Aj)j∈J , denoted by
⋂
j∈J Aj (simply,⋂

Aj), is an NS in X defined as:⋂
Aj = (

∧
TAj ,

∧
IAj ,

∨
FAj ),

(vii) the union of (Aj)j∈J , denoted by
⋃
j∈J Aj (simply,

⋃
Aj),

is an NCS in X defined as:⋃
Aj = (

∨
TAj ,

∨
IAj ,

∧
FAj ).

The followings are the immediate results of Definition 3.2.

Proposition 3.3 Let A,B,C ∈ NS(X). Then
(1) 0N ⊂ A ⊂ 1N ,
(2) if A ⊂ B and B ⊂ C, then A ⊂ C,
(3) A ∩B ⊂ A and A ∩B ⊂ B,
(4) A ⊂ A ∪B and B ⊂ A ∪B,
(5) A ⊂ B if and only if A ∩B = A,
(6) A ⊂ B if and only if A ∪B = B.

Also the followings are the immediate results of Definition 3.2.

Proposition 3.4 Let A,B,C ∈ NS(X). Then
(1) (Idempotent laws): A ∪A = A, A ∩A = A,
(2) (Commutative laws): A ∪B = B ∪A, A ∩B = B ∩A,
(3) (Associative laws): A ∪ (B ∪ C) = (A ∪B) ∪ C,

A ∩ (B ∩ C) = (A ∩B) ∩ C,
(4) (Distributive laws): A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),
(5) (Absorption laws): A ∪ (A ∩B) = A, A ∩ (A ∪B) = A,
(6) (De Morgan’s laws): (A ∪B)c = Ac ∩Bc,

(A ∩B)c = Ac ∪Bc,
(7) (Ac)c = A,
(8) (8a) A ∪ 0N = A, A ∩ 0N = 0N ,

(8b) A ∪ 1N = 1N , A ∩ 1N = A,
(8c) 1cN = 0N , 0cN = 1N ,
(8d) in general, A ∪Ac 6= 1N , A ∩Ac 6= 0N .

Proposition 3.5 Let A ∈ NS(X) and let (Aj)j∈J ⊂ NS(X).
Then

(1) (
⋂
Aj)

c =
⋃
Acj , (

⋃
Aj)

c =
⋂
Acj ,

(2) A ∩ (
⋃
Aj) =

⋃
(A ∩Aj), A ∪ (

⋂
Aj) =

⋂
(A ∪Aj).

Proof. (1) Let Aj = (TAj , IAj , FAj ).
Then

⋂
Aj = (

∧
TAj ,

∧
IAj ,

∨
FAj ).
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Thus

(
⋂
Aj)

c = (
∨
FAj , 1−

∧
IAj ,

∧
TAj )

= (
∨
FAj ,

∨
(1− IAj ),

∧
TAj )

=
⋃
Acj

Similarly, the second part is proved.
(2) Let A = (TA, IA, FA) and Aj = (TAj , IAj , FAj ).
Then

A ∪ (
⋂
Aj) = (TA ∨ (

∧
TAj , IA ∨ (

∧
IAj ), FA ∧ (

∨
FAj ))

= (
∧

(TA ∨ TAj ),
∧

(IA ∨ IAj ),
∨

(FA ∧ FAj )

=
⋂

(A ∪Aj).

Similarly, the first part is proved. �

Definition 3.6 Let f : X → Y be a mapping and let A ⊂ X ,
B ⊂ Y . Then

(i) the image of A under f , denoted by f(A), is an NS in Y
defined as:

f(A) = (f(TA), f(IA), f(FA)),

where for each y ∈ Y ,

[f(TA)](y) =

{ ∨
x∈f−1(y) TA(x) if f−1(y) 6= φ

0 if f−1(y) = φ,

(ii) the preimage of B, denoted by f−1(B), is an NCS in X
defined as:

f−1(B) = (f−1(TB), f−1(IB), f−1(FB)),

where f−1(TB)(x) = TB(f(x)) for each x ∈ X ,

in fact, f−1(B) = (TB ◦ f, IB ◦ f, FB ◦ f).

Proposition 3.7 Let f : X → Y be a mapping and let
A,B,C ∈ NCS(X), (Aj)j∈J ⊂ NCS(X) and D,E, F ∈
NCS(Y ), (Dk)k∈K ⊂ NCS(Y ). Then the followings hold:

(1) if B ⊂ C, then f(B) ⊂ f(C) and
if E ⊂ F , then f−1(E) ⊂ f−1(F ).

(2) A ⊂ f−1f(A)) and
if f is injective, then A = f−1f(A)),

(3) f(f−1(D)) ⊂ D and
if f is surjective, then f(f−1(D)) = D,

(4) f−1(
⋃
Dk) =

⋃
f−1(Dk), f−1(

⋂
Dk) =

⋂
f−1(Dk),

(5) f(
⋃
Dk) =

⋃
f(Dk), f(

⋂
Dk) ⊂

⋂
f(Dk),

(6) f(A) = 0N if and only ifA = 0N and hence f(0N ) = 0N ,
in particular if f is surjective, then f(1X,N ) = 1Y,N ,

(7) f−1(1Y,N ) = 1X,N , f−1(0Y,N ) = 0X,N .

4 Properties of NSet(H)

Definition 4.1 A is called a neutrosophic H-set (in short, NHS)
in a non-empty set X if it satisfies the following conditions:

(i) A has the form A = (TA, IA, FA), where TA, IA, FA) :
X → H are mappings,

(ii) TA ≤ N(FA) and IA ≥ N(FA).

In this case, the pair (X,A) is called a neutrosophic H-space
(in short, NHSp). We will denote the set of all the NHSs as
NHS(X).

Definition 4.2 Let (X,AX), (Y,AY ) be two NHSps and let f :
X → Y be a mapping. Then f : (X,AX)→ (Y,AY ) is called a
morphism if AX ⊂ f−1(AY ), i.e.,

TAX ≤ TAY ◦ f , IAX ≤ IAY ◦ f and FAX ≥ FAY ◦ f .
In particular, f : (X,AX) → (Y,AY ) is called an epimor-

phism [resp., a monomorphism and an isomorphism], if it is sur-
jective [resp., injective and bijective].

The following is the immediate result of Definition 4.2.

Proposition 4.3 For each NHSp (X,AX), the identity mapping
id : (X,AX)→ (X,AX) is a morphism.

Proposition 4.4 Let (X,AX), (Y,AY ), (Z,AZ) be NHSps and
let f : X → Y , g : Y → Z be mappings. If f : (X,AX) →
(Y,AY ) and f : (Y,AY )→ (Z,AZ) are morphisms, then g ◦f :
(X,AX)→ (Z,AZ) is a morphism.

Proof. Let AX = (TAX , IAX , FAX ), AY = (TAY , IAY , FAY ) 
and AZ = (TAZ , IAZ , FAZ ). Then by the hypotheses and Defi-
nition 4.2, AX ⊂ f−1(AY ) and AY ⊂ g−1(AZ ), i.e.,

TAX ≤ TAY ◦ f , IAX ≤ IAY ◦ f , FAX ≥ FAY ◦ f
and

TAY ≤ TAZ ◦ g, IAY ≤ IAZ ◦ g, FAZ ≥ FAZ ◦ g.
Thus TAX ≤ (TAZ ◦ g) ◦ f , IAX ≤ (IAZ ◦ g) ◦ f ,

FAX ≥ (FAZ ◦ g) ◦ f .
So TAX ≤ TAZ ◦ (g ◦ f), IAX ≤ IAZ ◦ (g ◦ f),

FAX ≥ FAZ ◦ (g ◦ f).
Hence g ◦ f is a morphism. �

From Propositions 4.3 and 4.4, we can form the concrete cat-
egory NSet(H) consisting of NHSs and morphisms between 
them. Every NSet(H)-morphism will be called an NSet(H)-
mapping.

Lemma 4.5 The category NSet is topological over Set.

Proof. Let X be any set and let ((Xj , Aj))j∈J be any family
of NHSps indexed by a class J , where Aj = (TAj , IAj , FAj ).
Suppose (fj : X → (Xj , Aj)J is a source of ordinary mappings.
We define mappings TAX , IAX , FAX : X → H as follows: for
each x ∈ X ,
TAX (x) =

∧
(TAj ◦ fj)(x), IAX (x) =

∧
(IAj ◦ fj)(x),

FAX (x) =
∨

(FAj ◦ fj)(x).
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Let j ∈ J and x ∈ X .
Since Aj = (TAj , IAj , FAj ) ∈ NHS(X),
TAj ≤ N(FAX ) and IAj ≥ N(FAX ). Then

N(FAX (x)) = N(
∨

(FAj ◦ fj)(x))

=
∧
N(FAj (fj(x)))

≥
∧
TAj (fj(x))

=
∧
TAj ◦ fj(x)

= TAX (x)
and

N(FAX (x)) =
∧
N(FAj (fj(x)))

≤
∧
IAj (fj(x))

=
∧
IAj ◦ fj(x)

= IAX (x)
Thus TAX ≤ N(FAX ) and IAX ≥ N(FAX ).
So AX =

⋂
f−1
j (Aj) ∈ NHS(X) and thus (X,AX) is an

NHSp. Moreover, by the definition of AX ,
TAX ≤ TAj ◦ fj , IAX ≤ IAj ◦ fj , FAX ≥ FAj ◦ fj .

Hence AX ⊂ f−1
j (Aj).

Therefore each fj : (X,AX) → (Xj , Aj) is an NSet(H)-
mapping.

Now let (Y,AY ) be any NHSp and suppose g : Y → X is an
ordinary mapping for which fj ◦ g : (Y,AY ) → (Xj , Aj) is an
NSet(H)-mapping for each j ∈ J . Then
AY ⊂ (fj ◦ g)−1(Aj) = g−1(f−1

j (Aj)) for each j ∈ J .
Thus

AY ⊂ g−1(
⋂
f−1
j (Aj)) = g−1(AX).

So g : (Y,AY ) → (X,AX) is an NSet(H)-mapping. Hence
(fj : (X,AX) → (Xj , Aj))J is an initial source in NSet(H).
This completes the proof. �

Example 4.6 (1) Let X be a set, let (Y,AY ) be an NHSp and
let f : X → Y be an ordinary mapping. Then clearly, there
exists a unique NHS AX ∈ NHS(X) for which f : (X,AX)→
(Y,AY ) is an NSet(H)-mapping. In fact, AX = f−1(AY ).

In this case,AX is called the inverse image under f of the NHS
structure AY .

(2) Let ((Xj , Aj))j∈J be any family of NHSps and let X =
Πj∈JXj . For each j ∈ J , let prj : X → Xj be the ordinary
projection. Then there exists a unique NHS AX ∈ NHS(X) for
which prj : (X,AX) → (Xj , Aj) is an NSet(H)-mapping for
each j ∈ J .

In this case, AX is called the product of (Aj)J , denoted by

AX = Πj∈JAj = (Πj∈JTAj ,Πj∈JIAj ,Πj∈JFAj )

and (X,AX) is called the product NHSp of ((Xj , Aj))J .
In fact, AX =

⋂
j∈J pr

−1(Aj)

and
Πj∈JTAj =

∧
TAj ◦ prj , Πj∈JIAj =

∧
IAj ◦ prj ,

Πj∈JFAj =
∨
FAj ◦ prj .

In particular, if J = {1, 2}, then

Πj∈JTAj = TA1
× TA2

= (TA1
◦ pr1) ∧ (TA2

◦ pr2),

Πj∈JIAj = IA1 × IA2 = (IA1 ◦ pr1) ∧ (IA2 ◦ pr2),

Πj∈JFAj = FA1
× FA2

= (FA1
◦ pr1) ∨ (FA2

◦ pr2).

The following is the immediate result of Lemma 4.5 and Result
2.3.

Corollary 4.7 The category NSet(H) is complete and cocom-
plete.

The following is obvious from Result 2.2. But we show 
directly it.

Corollary 4.8 The category NCSet is cotopological over Set.

Proof. Let X be any set and let ((Xj , Aj))J be any family of
NHSps indexed by a class J . Suppose (fj : Xj → X)J is a sink
of ordinary mappings. We define mappings TAX , IAX , FAX :
X → H as follows: for each x ∈ X ,

TAX (x) =

{ ∨
J

∨
xj∈f−1

j (x) TAj (xj) if f−1
j (x) 6= φ for all j

0 if f−1
j (x) = φ for some j,

IAX (x) =

{ ∨
J

∨
xj∈f−1

j (x) IAj (xj) if f−1
j (x) 6= φ for all j

0 if f−1
j = φ for some j,

FAX (x) =

{ ∧
J

∧
xj∈f−1

j (x) FAj (xj) if f−1
j 6= φ for all j

1 if f−1
j = φ for some j.

Since ((Xj , Aj))J is a family of NHSps, TAj ≤ N(FAj ) and
IAj ≥ N(FAj ) for each j ∈ J . We may assume that f−1

j 6= φ
without loss of generality. Let x ∈ X . Then

N(FAX (x)) = N(
∧
J

∧
xj∈f−1

j (x) FAj (xj))

=
∨
J

∨
xj∈f−1

j (x)N(FAj (xj))

≥
∨
J

∨
xj∈f−1

j (x) TAj (xj).
= TAX (x).

and
N(FAX (x)) =

∨
J

∨
xj∈f−1

j (x)N(FAj (xj))

≤
∨
J

∨
xj∈f−1

j (x) IAj (xj).
= IAX (x).

Thus TAX ≤ N(FAX ) and IAX ≥ N(FAX ).
So (X,AX) is an NHSp. Moreover, for each j ∈ J ,

f−1
j (AX) = f−1

j (
⋃
fj(Aj)) =

⋃
f−1
j (fj(Aj)) ⊃ Aj .

Hence each fj : (Xj , Aj)→ (X,AX) is an NSet(H)-mapping.
Now for each NHSp (Y,AY ), let g : X → Y be an ordinary

mapping for which each g ◦ fj : (Xj , Aj) → (Y,AY ) is an
NSet(H)-mapping. Then clearly for each j ∈ J ,

Aj ⊂ (g ◦ fj)−1(AY ), i.e., Aj ⊂ f−1
j (g−1(AY )).

Thus
⋃
Aj ⊂

⋃
f−1
j (g−1(AY )).

So fj(
⋃
Aj) ⊂ fj(

⋃
f−1
j (g−1(AY ))). By Proposition 3.7 and

the definition of AX ,

fj(
⋃
Aj) =

⋃
fj(Aj) = AX
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and

fj(
⋃
f−1
j (g−1(AY ))) =

⋃
(fj ◦ f−1

j )(g−1(AY )) = g−1(AY ).

Hence AX ⊂ g−1(AY ). Therefore g : (X,AX) → (Y,AY ) is
an NSet(H)-mapping. This completes the proof. �

Example 4.9 (1) Let (X,AX) ∈ NSet(H), let R be an ordi-
nary equivalence relation on X and let ϕ : X → X/R be the
canonical mapping. Then there exists the final NHS structure
AX/R in X/R for which ϕ : (X,AX) → (X/R,AX/R) is an
NSet(H)-mapping, where AX/R = (TAX/R , IAX/R , FAX/R) =
(ϕ(TAX ), ϕ(IAX ), ϕ(FAX )).

In this case, AX/R is called the neutrosophic H-quotient set
structure of X by R.

(2) Let ((Xα, Aα))α∈Γ be a family of NHSs, let X be the sum
of (Xα)α∈Γ, i.e., X =

⋃
(Xα × {α}) and let jα : Xα → X the

canonical (injective) mapping for each α ∈ Γ. Then there exists
the final NHSAX inX . In fact, AX = (TAX , IAX , FAX ), where
for each (x, α) ∈ X ,

TAX (x, α) =
∨

Γ TAα(x), IAX (x, α) =
∨

Γ IAα(x),

FAX (x, α) =
∧

Γ FAα(x).

In this case, AX is called the sum of ((Xα, Aα))α∈Γ.

Lemma 4.10 Final episinks in NSet(H) are prserved by pull-
backs.

Proof. Let (gj : (Xj , Aj) → (Y,AY ))J be any final episink in
NSet(H) and let f : (W,AW ) → (Y,AY ) be any NSet(H)-
mapping. For each j ∈ J , let

Uj = {(w, xj) ∈W ×Xj : f(w) = gj(xj)}.

For each j ∈ J , we define mappings TAUj , IAUj , FAUj : Uj →
H as follows: for each (w, xj) ∈ Uj ,

TAUj (w, xj) = TAW (w) ∧ TAj (xj),

IAUj (w, xj) = IAW (w) ∧ IAj (xj),

FAUj (w, xj) = FAW (w) ∨ FAj (xj).

Then clearly, AUj = (TAUj , IAUj , FAUj ) = (AW × Aj)∗ ∈
NHS(Uj). Thus (Uj , AUj ) is an NHSp, where (AW × Aj)∗
denotes the restriction of AW ×Aj under Uj .

Let ej and pj be ordinary projections of Uj . Let j ∈ J . Then
clearly,

AUj ⊂ e−1
j (AY ) and AUj ⊂ p−1

j (Aj).
Thus ej : (Uj , AUj ) → (W,AW ) and pj : (Uj , AUj ) →
(Xj , Aj) are NSet(H)-mappings. Moreover, gh ◦ ph = f ◦ ej
for each j ∈ J , i.e., the diagram is a pullback square in NCSet:

pj(Uj , AUj ) (Xj , Aj)-

ej gj

(W,AW )

? ?

f

- (Y,AY ).

Now in order to prove that (ej)J is an episink in NSet(H),
i.e., each ej is surjective, let w ∈ W . Since (gj)J is an episink,
there exists j ∈ J such that gj(xj) = f(w) for some xj ∈ Xj .
Thus (w, xj) ∈ Uj and w = ej(w, xj). So (ej)J is an episink in
NSet(H).

Finally, let us show that (ej)J is final in NSet(H). Let A∗W
be the final structure in W w.r.t. (ej)J and let w ∈W . Then

TAW (w) = TAW (w) ∧ TAW (w)
≤ TAW (w) ∧ f−1(TAY (w))

[since f : (W,AW )→ (Y,AY ))J) is an
NSet(H)-mapping]

= TAW (w) ∧ TAY (f(w))
= TAW (w) ∧ (

∨
J

∨
xj∈g−1

j (f(w)) TAj (xj))

[since (gj)J is final in NSet(H)]
=
∨
J

∨
xj∈g−1

j (f(w))(TAW (w) ∧ TAj (xj))
=
∨
J

∨
(w,xj)∈e−1

j (w)(TUj (w, xj))

= TA∗
W

(w).
Thus TAW ≤ TA∗

W
. Similarly, we can see that IAW ≤ IA∗

W
and

FAW ≥ FA∗
W

. So AW ⊂ A∗W . On the other hand, since ej :
(Uj , AUj ) → (W,A∗W ) is final, idW : (W,A∗W ) → (W,AW )
is an NSet(H)-mapping. So A∗W ⊂ AW . Hence AW = A∗W .
This completes the proof. �

For any singleton set {a}, since the NHS structure A{a} on 
{a} is not unique, the category NSet(H) is not properly fibred 
over Set. Then by Lemmas 4.5,4.9 and Definition 2.6, we obtain 
the following result.

Theorem 4.11 The category NSet(H) satisfies all the condi-
tions of a topological universe over Set except the terminal sep-
arator property.

Theorem 4.12 The category NSet(H) is Cartesian closed over
Set.

Proof. From Lemma 4.5, it is clear that NSet(H) has products. 
So it is sufficient to prove that NSet(H) has exponential objects.

For any NHSs X = (X,AX) and Y = (Y,AY ), let Y X be the
set of all ordinary mappings from X to Y . We define mappings
TAYX , IAYX , FAYX : Y X → H as follows: for each f ∈ Y X ,

TAYX (f) =
∨
{h ∈ H : TAX (x) ∧ h ≤ TAY (f(x)),

for each x ∈ X},

IAYX (f) =
∨
{h ∈ H : IAX (x) ∧ h ≤ IAY (f(x)),
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for each x ∈ X},

FAYX (f) =
∧
{h ∈ H : FAX (x) ∨ h ≥ FAY (f(x)),

for each x ∈ X}.
Then clearly, AY X = (TAYX , IAYX , FAYX ) ∈ NHS(Y X) and
thus (Y X , AY X ) is an NHSp. Let YX = (Y X , AY X ) and let
f ∈ Y X , x ∈ X . Then by the definition of AY X ,

TAX (x) ∧ TAYX (f) ≤ TAY (f(x)),

IAX (x) ∧ IAYX (f) ≤ IAY (f(x)),

FAX (x) ∨ FAYX (f) ≥ FAY (f(x)).

We define a mapping eX,Y : X × Y X → Y as follows: for
each (x, f) ∈ X × Y X ,

eX,Y (x, f) = f(x).

Then clearly, AX × AY X ∈ NHS(X × Y X), where AX =
(TAX , IAX , FAX )
and for each (x, f) ∈ X × Y X ,

TAX×AYX (x, f) = TAX (x) ∧ TAYX (f),
IAX×AYX (x, f) = IAX (x) ∧ IAYX (f),
FAX×AYX (x, f) = FAX (x) ∨ FAYX (f).

Let us show that AX × AY X ⊂ e−1
X,Y (AY ). Let (x, f) ∈

X × Y X . Then

e−1
X,Y (AY )(x, f) = AY (eX,Y (x, f)) = AY (f(x)).

Thus

Te−1
X,Y (AY )(x, f) = TAY (f(x))

≥ TAX (x) ∧ TAYX (f)

= TAX×AYX (x, f),

Ie−1
X,Y (AY )(x, f) = IAY (f(x))

≥ IAX (x) ∧ IAYX (f)

= IAX×AYX (x, f),

Fe−1
X,Y (AY )(x, f) = FAY (f(x))

≤ FAX (x) ∨ FAYX (f)

= FAX×AYX (x, f).

So AX × AY X ⊂ e−1
X,Y (AY ). Hence eX,Y : X×YX → Y

is an NSet(H)-mapping, where
X×YX = (X × Y X , AX ×AY X ) and Y = (Y,AY ).
For any Z = (Z,AZ) ∈ NSet(H), let h : X× Z→ Y be an

NSet(H)-mapping where X× Z = (X × Z,AX × AZ). We

define a mapping h̄ : Z → Y X as follows:

(h̄(z))(x) = h(x, z),

for each z ∈ Z and each x ∈ X . Let (x, z) ∈ X × Z. Then

TAX×AZ (x, z) = TAX (x) ∧ TAZ (z)

≤ TAY (h(x, z)) [since h : X× Z→ Y

is an NSet(H)-mapping]
= TAY (h̄(z))(x).

Thus by the definition of AY X ,

TAZ (z) ≤ TAYX (h̄(z)) = h̄−1(TAYX )(z).

So TAZ ≤ h̄−1(TAYX ). Similarly, we can see that IAZ ≤
h̄−1(IAYX ) and FAZ ≥ h̄−1(FAYX ). Hence h̄ : Z → YX

is an NSet(H)-mapping, where YX = (Y X , AY X ). Further-
more, we can prove that h̄ is a unique NSet(H)-mapping such
that eX,Y ◦ (idX × h̄) = h. �

5 The relation between NSet(H) and
ISet(H)

Lemma 5.1 Define G1, G2 : NSet(H)→ ISet(H) by:

G1(X, (T, I, F )) = (X, (T, F )),

G2(X, (T, I, F )) = (X, (T,N(T )))

and

G1(f) = G2(f) = f.

Then G1 and G2 are functors.

Proof. It is clear that G1(X, (T, I, F )) = (X, (T, F )) ∈
ISet(H) for each (X, (T, I, F ) ∈ NSet(H).

Let (X, (TX , IX , FX)), (Y, (TY , IY , FY )) ∈ NSet(H) and
let f : (X, (TX , IX , FX)) → (Y, (TY , IY , FY )) be an
NSet(H)-mapping. Then

TX ≤ TY ◦ f and FX ≥ FY ◦ f.
ThusG1(f) = f is an ISet(H)-mapping. SoG1 : NSet(H)→
ISet(H) is a functor.

Now let (X, (T, I, F )) ∈ NSet(H) and consider
(X, (T, N(T ))). Then by Result 2.8, T ≤ NN(T ). Thus G2(X, 
(T, I, F )) = (X, (T, N(T ))) ∈ NSet(H).

Let (X, (TX , IX , FX)), (Y, (TY , IY , FY )) ∈ NSet(H) and
let f : (X, (TX , IX , FX)) → (Y, (TY , IY , FY )) be an
NSet(H)-mapping. Then TX ≤ TY ◦ f . Thus N(TX) ≥
N(TY ) ◦ f .
So G2(f) = f : (X, (TX , N(TX)) → (Y, (TY , N(TY )) is an
ISet(H)-mapping. Hence G2 : NSet(H) → ISet(H) is a
functor. �
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Lemma 5.2 Define F1 : ISet(H)→ NSet(H) by:
F1(X, (µ, ν)) = (X, (µ,N(ν), ν)) and F1(f) = f .

Then F1 is a functor.

Proof. Let (X, (µ, ν)) ∈ ISet(H). Then
µ ≤ N(ν) and N(ν) ≤ N(ν).

Thus F1(X, (µ, ν)) = (X, (µ,N(ν), ν)) ∈ NSet(H).
Let (X, (µX , νX)), (Y, (µY , νY )) ∈ ISet(H) and let
f : (X, (µX , νX))→ (Y, (µY , νY )) be an ISet(H)-mapping.

Consider the mapping

F1(f) = f : F1(X, (µX , νX))→ F1(Y, (µY , νY )),

where

F1(X, (µX , νX)) = (X, (µX , N(νX), νX))

and
F1(Y, (µY , νY )) = (Y, (µY , N(νY ), νY )).

Since f : (X, (µX , νX)) → (Y, (µY , νY )) is an ISet(H)-
mapping, µX ≤ µY ◦ f and νX ≥ νY ◦ f . Thus N(νX) ≤
N(νY ) ◦ f . So F1(f) = f : (X, (µX , N(νX), νX)) →
(Y, (µY , N(νY ), νY )) is an NSet(H)-mapping. Hence F1 is a
functor. �

Lemma 5.3 Define F2 : ISet(H)→ NSet(H) by:

F2(X, (µ, ν)) = (X, (µ,N(ν), N(µ)) and F2(f) = f.

Then F2 is a functor.

Proof. Let (X, (µ, ν)) ∈ ISet(H). Then µ ≤ N(ν) and µ ≤ 
NN(µ), by Result 2.8. Also by Result 2.8, NN(µ) ≤ NNN(ν) = 
N(ν). Thus µ ≤ NN(µ) ≤ N(ν). So F2(X, (µ, ν)) = (X, (µ, 
N(ν), N(µ))) ∈ NSet(H).

Let (X, (µX , νX)), (Y, (µY , νY )) ∈ ISet(H) and f :
(X, (µX , νX))→ (Y, (µY , νY )) be an ISet(H)-mapping. Then

µX ≤ µY ◦ f2 and νX ≥ νY ◦ f2.
Thus N(νX) ≤ N(νY ) ◦ f2. So L(f) = f :
(X, (µX , N(νX), N(µX))) → (Y, (µY , N(νY ), N(µY ))) is an
NSet(H)-mapping. Hence F2 is a functor. �

Theorem 5.4 The functor F1 : ISet(H) → NSet(H) is a left
adjoint of the functor G1 : NSet(H)→ ISet(H).

Proof. For each (X, (µ, ν)) ∈ ISet(H), 1X : (X, (µ, ν)) →
G1F1(X, (µ, ν)) = (X, (µ, ν)) is an ISet(H)-mapping. Let
(Y, (TY , IY , FY )) ∈ NSet(H) and let f : (X, (µ, ν)) →
G1(Y, (TY , IY , FY )) = (Y, (TY , FY )) be an ISet(H)-mapping.

We will show that f : F1(X, (µ, ν)) = (X, (µ,N(ν), ν)) →
(Y, (TY , IY , FY )) is an NSet(H)-mapping. Since f :
(X, (µ, ν))→ (Y, (TY , FY )) is an ISet(H)-mapping,

µ ≤ TY ◦ f and ν ≥ FY ◦ f .
Then N(ν) ≤ N(FY ) ◦ f . Since (Y, (TY , IY , FY )) ∈
NSet(H), IY ≥ N(FY )). Thus N(ν) ≤ IY ◦ f . So f :
F1(X, (µ, ν)) = (X, (µ,N(ν), ν)) → (Y, (TY , IY , FY )) is an

NSet(H)-mapping. Hence 1X is a G1-universal mapping for
(X, (µ, ν)) ∈ ISet(H). This completes the proof. �

For each (X, (µ, ν)) ∈ ISet(H), F1(X, (µ, ν)) =
(X, (µ,N(ν), ν)) is called a neutrosophic H-space induced by
(X, (µ, ν)). Let us denote the category of all induced neutro-
sophic H-spaces and NSet(H)-mappings as NSet∗(H). Then
NSet∗(H) is a full subcategory of NSet(H).

Theorem 5.5 Two categories ISet(H) and NSet∗(H) are iso-
morphic.

Proof. From Lemma 5.2, it is clear that F1 : ISet(H) → 
NSet∗(H) is a functor. Consider the restriction G1 : NSet∗(H) 
→ ISet(H) of the functor G1 in Lemma 5.1. Let (X, (µ, ν)) ∈ 
ISet(H). Then by Lemma 5.2, F1(X, (µ, ν)) = (X, (µ, N(ν), 
ν)). Thus G1F1(X, (µ, ν)) = G1(X, (µ, N(ν), ν)) = (X, (µ, 
ν)). So G1 ◦ F1 = 1ISet(H).

Now let (X, (TX , IX , FX)) ∈ NSet∗(H). Then by definition
of NSet∗(H), there exists (X, (µ,N(ν), ν)) such that

F1(X, (µ, ν)) = (X, (µ,N(ν), ν)) = (X, (TX , IX , FX)).

Thus by Lemma 5.1,

G1(X, (TX , IX , FX)) = G1(X, (µ,N(ν), ν))

= (X, (µ, ν)).

So

F1G1(X, (TX , IX , FX)) = F1(X, (µ, ν))

= (X, (TX , IX , FX)).

Hence F1 ◦ G1 = 1NSet∗(H). Therefore F1 : ISet(H) →
NSet∗(H) is an isomorphism. This completes the proof. �

6 Conclusions
In the future, we will form a category NCRel composed of

neutrosophic crisp relations and morphisms between them [resp.,
NRel(H) composed of neutrosophic relations and morphisms
between them, NCTop composed of neutrosophic crisp topo-
logical spaces and morphisms between them and NTop com-
posed of neutrosophic topological spaces and morphisms be-
tween them] and investigate each category in view points of topo-
logical universe. Moreover, we will form some subcategories of
each category and study their properties.
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