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Abstract: In this paper, we develop a neutrosophic optimi-

zation (NSO) approach for optimizing the design of plane 

truss structure with single objective subject to a specified set 

of constraints. In this optimum design formulation, the ob-

jective functions are the weight of the truss and the deflec-

tion of loaded joint; the design variables are the cross-

sections of the truss members; the constraints are the stress-

es in members. A classical truss optimization example is 

presented to demonstrate the efficiency of the neutrosophic

optimization approach. The test problem includes a two-bar 

planar truss subjected to a single load condition. This single-

objective structural optimization model is solved by fuzzy 

and intuitionistic fuzzy optimization approach as well as 

neutrosophic optimization approach. A numerical example 

is given to illustrate our NSO approach. The result shows 

that the NSO approach is very efficient in finding the best  

optimal solutions. 

Keywords: Neutrosophic Set, Single Valued Neutrosophic Set, Neutrosophic Optimization, Non-linear Membership Function, 

Structural Optimization.

1 Introduction 

In the field of civil engineering nonlinear structural 
design optimizations are of great importance. So the 
description of structural geometry and mechanical 
properties like stiffness are required for a structural system. 
However the system description and system inputs may not 
be exact due to human errors or some unexpected si-
tuations. At this juncture fuzzy set theory provides a 
method which deals with ambiguous situations like vague 
parameters, non-exact objective and constraint. In 
structural engineering design problems, the input data and 
parameters are often fuzzy/imprecise with nonlinear 
characteristics that necessitate the development of fuzzy 
optimum structural design method. Fuzzy set (FS) theory 
has long been introduced to handle inexact and imprecise 
data by Zadeh [2], Later on Bellman and Zadeh [4] used 
the fuzzy set theory to the decision making problem. The 
fuzzy set theory also found application in structural design. 
Several researchers like Wang et al. [8] first applied α-cut 
method to structural designs where the non-linear problems 
were solved with various design levels α, and then a 
sequence of solutions were obtained by setting different 
level-cut value of α. Rao [3] applied the same α-cut 
method to design a four–bar mechanism for function 
generating problem. Structural optimization with fuzzy 

parameters was developed by Yeh et al. [9]. Xu [10] used 
two-phase method for fuzzy optimization of structures. 
Shih et al. [5] used level-cut approach of the first and 

second kind for structural design optimization problems 
with fuzzy resources. Shih et al. [6] developed an 
alternative α-level-cuts methods for optimum structural 
design with fuzzy resources. Dey et al. [11] used 
generalized fuzzy number in context of a structural design. 
Dey et al used basic t-norm based fuzzy optimization tech-

nique for optimization of structure. Dey et al. [13] 
developed parameterized t-norm based fuzzy optimization 
method for optimum structural design. Also, Dey et.al [14] 
Optimized shape design of structural model with imprecise 
coefficient by parametric geometric programming.   

In such extension, Atanassov [1] introduced Intuition-

istic fuzzy set (IFS) which is one of the generalizations of 
fuzzy set theory and is characterized by a membership 
function, a non- membership function and a hesitancy 
function. In fuzzy sets the degree of acceptance is only 
considered but IFS is characterized by a membership func-
tion and a non-membership function so that the sum of 

both values is less than one.  A transportation model was 
solved by Jana et al.[15]using multi-objective intuitionistic 
fuzzy linear programming. Dey et al. [12] solved two bar 
truss non-linear problem by using intuitionistic fuzzy op-
timization problem. Dey et al. [16] used intuitionistic fuzzy 

Neutrosophic Sets and Systems, Vol. 13, 2016 62



Mridula Sarkar,Samir Dey,Tapan Kumar Roy, Truss Design Optimization using Neutrosophic Optimization Technique

optimization technique for multi objective optimum struc-
tural design. Intuitionistic fuzzy sets consider both truth 
membership and falsity membership. Intuitionistic fuzzy 
sets can only handle incomplete information not the inde-
terminate information and inconsistent information. 

In neutrosophic sets indeterminacy is quantified 

explicitly and truth membership, indeterminacy 
membership and falsity membership are independent. 
Neutrosophic theory was introduced by Smarandache [7]. 
The motivation of the present study is to give 
computational algorithm for solving multi-objective 
structural problem by single valued neutrosophic 

optimization approach. Neutrosophic optimization 
technique is very rare in application to structural 
optimization. We also aim to study the impact of truth 
membership, indeterminacy membership and falsity 
membership function in such optimization process. The 
results are compared numerically both in fuzzy 

optimization technique, intuitionistic fuzzy optimization 
technique and neutrosophic optimization technique. From 
our numerical result, it is clear that neutrosophic 
optimization technique provides better results than fuzzy 
optimization and intuitionistic fuzzy optimization.  

. 

2 Single-objective structural model 

In sizing optimization problems,the aim is to minimize 
single objective function,usually the weight of the structure 
under certain behavioural constraints on constraint and 
displacement. The design variables are most frequently 
chosen to be dimensions of the cross sectional areas of the 

members of the structures. Due to fabrications limitations 
the design variables are not continuous but discrete for 
belongingness of cross-sections to a certain set. A discrete 
structural optimization problem can be formulated in the 
following form 

 Minimize WT A

  0, 1,2,.........,isubject to A i m    

, 1,2,...........,d
jA R j n 

where  WT A represents objective function,  i A is the 

behavioural constraints, m and n are the number of 

constraints and design variables respectively. A given set 

of discrete value is expressed by 
dR and in this paper 

objective function is taken as  
1

m

i i ii
WT A l A


 and 

constraint are chosen to be stress of structures as follows 

 i iA   with allowable tolerance

0

i for 1,2,.........,i m where i and il are weight of unit 

volume and length of 
thi element respectively, m  is the 

number of structural element, i  and 
0

i  are the 

thi stress ,allowable stress respectively. 

3 Mathematical preliminaries 

3.1 Fuzzy set 

Let X be a fixed set. A fuzzy set A  set of X  is an ob-

ject having the form    , :AA x T x x X  where the 

function  : 0,1AT X   defined the truth membership of 

the element x X to the set A . 

3.2 Intuitionistic fuzzy set 

Let a set X be fixed. An intuitionistic fuzzy set or IFS 
iA in X  is an object of the form 

    , ,i

A AA X T x F x x X     where 

 : 0,1AT X  and  : 0,1AF X 

define the truth membership and falsity membership re-
spectively, for every element of x X 0 1A AT F   . 

3.3 Neutrosophic set 

Let a set X be a space of points (objects) and x X .A 

neutrosophic set nA in X is defined by a truth membership 

function  AT x , an indeterminacy-membership function 

 AI x and a falsity membership function  AF x ,and de-

noted by       , , ,n

A A AA x T x I x F x x X    . 

 AT x
 

 AI x and  AF x are real standard or non-standard 
subsets of ]0 ,1 [ 

.That is 

  : ]0 ,1 [ ,AT x X     : ]0 ,1 [ ,AI x X    and 

  : ]0 ,1 [ ,AF x X   .There is no restriction on the sum of 

 ,AT x  AI x and

 AF x so      0 sup sup sup 3A A AT x I x F x     . 

3.4 Single valued neutrosophic set 

Let a set X be the universe of discourse. A single val-

ued neutrosophic set nA   over X is an object having the 

form       , , ,n

A A AA x T x I x F x x X    where 

 : 0,1 ,AT X   : 0,1 ,AI X  and  : 0,1AF X  with 

     0 3A A AT x I x F x     for all x X .

3.5  Complement of neutrosophic Set 

Complement of a single valued neutrosophic set A is 

denoted by  c A and  is defined by 
     ,Ac A

T x F x

     1 ,Ac A
I x F x 

     Ac A
F x T x .
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3.6  Union of neutrosophic sets 

The union of two single valued neutrosophic sets 
A and B is a single valued neutrosophic set C , written as 
C A B  ,whose truth membership, indeterminacy-
membership and falsity-membership functions are given 
by 

        max , ,A Bc A
T x T x T x

        max , ,A Bc A
I x I x I x

        min ,A Bc A
F x F x F x for all x X . 

3.7 Intersection of neutrosophic sets 

The intersection of two single valued neutrosophic sets 

A and B is a single valued neutrosophic set C  , written as 

C A B  ,whose truth membership, indeterminacy-

membership and falsity-membership functions are given 

by  

        min , ,A Bc A
T x T x T x

        min , ,A Bc A
I x I x I x

        max ,A Bc A
F x F x F x for all x X . 

4 Mathematical analyses 

4.1 Neutrosophic optimization technique to solve 
minimization type Single-Objective  

  Let a nonlinear single-objective optimization problem 
be 

 Minimize f x     (2) 

Such that 

  1,2,.............,j jg x b j m    

0x   

Usually constraints goals are considered as fixed quanti-

ty .But in real life problem ,the constraint goal cannot be 

always exact. So we can consider the constraint goal for 

less than type constraints at least jb  and it may possible to 

extend to 0
j jb b .This fact seems to take the constraint 

goal as a neutrosophic fuzzy set and which will be more 

realistic descriptions than others. Then the NLP becomes 

NSO problem with neutrosophic resources, which can be 

described as follows 

 Minimize f x        (3) 

Such that 

  1,2,.............,n

j jg x b j m 

0x   

To solve the NSO (3), we are presenting a solution proce-
dure for single-objective NSO problem (3) as follows 

Step-1: Following warner’s approach solve the single ob-

jective non-linear programming problem without tolerance 

in constraints   . j ji e g x b , with tolerance of ac-

ceptance in constraints (i.e   0

j j jg x b b  ) by appropriate 

non-linear programming technique 

Here they are  
Sub-problem-1 

 Minimize f x    (4) 

Such that 

  1,2,.............,j jg x b j m   

0x   

Sub-problem-2 

 Minimize f x    (5) 

Such that 

  0 , 1,2,.............,j j jg x b b j m  

0x   

We may get optimal solution    * 1 * 1,x x f x f x  and 

   * 1 * 1,x x f x f x 

Step-2: From the result of step 1 we now find the lower 

bound and upper bound of objective functions. 

If
     

, ,T I F

f x f x f x
U U U  be the upper bounds of truth, indeter-

minacy , falsity function for the objective respectively 

and
     

, ,T I F

f x f x f x
L L L be the lower bound of truth, indetermi-

nacy, falsity membership functions of objective respective-

ly. then 

                , 0F T F T T T

f x f x f x f x f x f x f x f x
U U L L where U L      

                , 0F T F T T T

f x f x f x f x f x f x f x f x
U U L L where U L      

                , 0I T I T T T

f x f x f x f x f x f x f x f x
L L U L where U L      

Step-3:  In this step we calculate membership for truth, in-

determinacy and falsity  membership function of objective 

as follows 

    

   

   

   
     

   

1

1 exp

0

f x

T

f x

T

f x T T

f x f xT T

f x f x

T

f x

T f x

if f x L

U f x
if L f x U

U L

if f x U





 

     

      
     



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    

   

   

   
     

   

1

exp

0

f x

I

f x

I

f x I I

f x f xI I

f x f x

I

f x

I f x

if f x L

U f x
if L f x U

U L

if f x U



 

    

   
   




    

   

 
   

       

   

0

1 1
tanh

2 2 2

1

f x

F

f x

F F

f x f x F F

f x f x f x

F

f x

F f x

if f x L

U L
f x if L f x U

if f x U





 

     

      
     




where ,  are non-zero parameters prescribed by the deci-

sion maker. 

Step-4:  In this step using exponential and hyperbolic 
membership function we calculate truth , indeterminacy 
and falsity membership function for constraints as follows 

    

 

   

   

 

 

0

0

1

1 exp

0

j

j

j j

jg x

j j

T

jg x

j j j jT T

g x g x

j j j

T g x

if g x b

U g x
if b g x b b

U L

if g x b b





 


            
     


 

    

 

    

 

   

   

1

exp

0

j

j

j

j

j

jg x

j j

j jg x

j j j g x

g x

j j g x

I g x

if g x b

b g x
if b g x b

if g x b










 

   
  

    
  

 
  


    

   

 
 

     

 

0

0

0

0

21 1
tanh

2 2 2

1

j

j

j

j j

jg x

j j g x

j j g x

j j j j jg x g x

j j j

F g x

if g x b

b b
g x if b g x b b

if g x b b




 



  

              

     


 


where ,  are non-zero parameters prescribed by the deci-

sion maker and for 
   

01,2,....., 0 ,
j j

jg x g x
j m b    .  

Step-5:  Now using NSO for single objective optimization 

technique the optimization problem (2) can be formulated 
as 

 Maximize     (6) 

Such that 

    ;
f x

T x     ;
jgT x   

 
  ;

f x
I x     ;

jgI x 

 
  ;

f x
F x     ;

jgF x 

3;      ; ;      

    , , 0,1     

where 

            min ,n
j

jf x g xD
T x T f x T g x  

for 1,2,...,j m

            min ,n
j

jf x g xD
I x I f x I g x  

for 1,2,...,j m    and 

            min ,n
j

jf x g xD
F x F f x F g x    for 

1,2,...,j m

are the truth ,indeterminacy and falsity membership func-

tion of decision set    
1

m
n n n

j

j

D f x g x


 . Now if non-

linear membership be considered the above problem (6) 

can be reduced to following crisp linear programming 

problem 

 Maximize       (7) 

Such that 

 
    

 
;

T T

f x f x T

f x

U L
f x U




 

     
;T

f x f x
f x U  b

 
 

     
;

2

T T

f x f x f x

f x

U L
f x





 
   

 
0

0 ;
j

j j j

b
g x b b


    

     
0 ;

j j
j jg x g x

g x b     

 
 

 
02

;
2

j
j j g x

j

g x

b b
g x





 
 

3;    

; ;    
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     , , 0,1    

where  ln 1 ;    4;   

    
6

;
f x F F

f x f x
U L

 


   0

6
, 1,2,........,

jg x

j j

for j m
b




 


ln ; 

 1tanh 2 1 .     

This crisp nonlinear programming problem can be solved 

by appropriate mathematical algorithm. 

5. Solution of Single-objective Structural
Optimization Problem (SOSOP) by Neutrosophic 
Optimization Technique 

To solve the SOSOP (1), step 1 of 4 is used and we will 

get optimum solutions of two sub problem as 
1A  and 

2A .After that according to step 2 we find upper and lower 

bound of  membership function of objective function as 

     , ,T I F
WT A WT A WT A

U U U and 
     

, ,T I F

WT A WT A WT A
U U U  where 

             1 2 1 2max , , min , ,T T

WT A WT A
U WT A WT A L WT A WT A 

 
                , 0F T F T T T

WT A WT A WT A WT A WT A WT A WT A WT A
U U L L where U L      

                , 0I T I T T T

WT A WT A WT A WT A WT A WT A WT A WT A
L L U L where U L      

Let the  non-linear membership function for objective 

function  WT A  be  

    
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where ,  are non-zero parameters prescribed by the deci-

sion maker and for 
   

01,2,....., 0 ,
i i

iA A
j m

 
    

then  neutrosophic optimization problem can be formulated 

as  

 Max      (8) 

 such that 

     ;
WT A

T WT A        ;
i

iA
T A


   

 
   ;

WT A
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
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 3; , ;            

 , , 0,1   

The above problem can be reduced to following crisp line-
ar programming problem, for non-linear membership as 

 Maximize      (9) 

such that
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     
0 ;

i i
i iA A

A
 

     

 
 

 
02

;
2
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



 
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where 
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    
6

;
WT A F F

WT A WT A
U L

 


ln ;   1tanh 2 1 .   
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    
6

;
A F F

A A

and
U L



 

 


 

This crisp nonlinear programming problem can be solved 

by appropriate mathematical algorithm. 

6 Numerical illustration 

A well-known two-bar [17] planar truss structure is 

considered. The design objective is to minimize weight of 
the structural  1 2, , BWT A A y of a statistically loaded two-
bar planar truss subjected to stress  1 2, ,i BA A y con-
straints on each of the truss members 1,2i  . 

Figure 1. Design of the two-bar planar truss 

The multi-objective optimization problem can be stated as 
follows  

    22 2 2

1 2 1 2, , B B B B BMinimize WT A A y A x l y A x y     (10) 

Such that 

 
 

22

AB 1 2

1

, , ;
B B T

B AB

P x l y
A A y

lA
 

 
      

 
2 2

BC 1 2

2

, , ;
B B C

B BC

P x y
A A y

lA
 


      

       0.5 1.5By   

1 20, 0;A A 

where P   nodal load ;   volume density ; l  length 

of AC ;
Bx   perpendicular distance from AC to point B .

1A  Cross section of bar- AB ; 2A Cross section of bar-

BC .  T   maximum allowable tensile stress , 

 C  maximum allowable compressive stress 

and By y -co-ordinate of node B . 

Input data for crisp model (10) is in table 1. 
Solution : According to step 2 of 4,we find upper and 
lower bound of  membership function of objective function 
as  

     
, ,T I F

WT A WT A WT A
U U U

and 
     

, ,T I F

WT A WT A WT A
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Now using the bounds we calculate the membership 

functions for objective as follows 
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 Similarly the membership functions for tensile stress are  
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where      

and the membership functions for compressive stress con-
straint are 
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where     . 

Now , using above mentioned  truth, indeterminacy and 

falsity membership function NLP (7) can be solved by 

NSO technique for different values of , ,
T CWT     and 

, ,
T CWT     . The optimum solution of SOSOP(10) is 

given in table (2) and the solution is compared with fuzzy 

and intuitionistic fuzzy optimization technique.

Table 1: Input data for crisp model (10) 

Applied 
load

 P KN

Volume density

 3/KN m

Length 

 l m

Maximum allowable 

tensile stress 

T    Mpa

Maximum allowable 

compressive stress 

C    Mpa

Distance of 

Bx from AC   m

100 7.7 2 130 with tolerance 20 90 with tolerance 10 1 

Table 2: Comparison of Optimal solution of SOSOP (10) based on different methods 

Methods  2

1A m  2

2A m   1 2,WT A A KN  By m

Fuzzy single-objective non-linear programming (FSONLP) 

with non-linear membership functions 
.5883491 .7183381 14.23932 1.013955 

Intuitionistic fuzzy single-objective nonlinear programming (IFSONLP) 

with non-linear membership functions 1 2 30.8, 16, 8     .6064095 .6053373 13.59182 .5211994 

Neutosophic optimization(NSO) with non-linear membership functions 

1 2 30.8, 16, 8     1 2 30.66506, 8, 4     .5451860 .677883 13.24173 .7900455 
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Here we get best solutions for the different tolerance 1 2, 
 

and 3  for indeterminacy exponential membership 

function of objective functions for this structural 

optimization problem. From the table 2, it shows that NSO 

technique gives better Pareto optimal result in the 

perspective of Structural Optimization. 

7 Conclusions 

The main objective of this work is to illustrate how 
neutrosophic optimization technique using non-linear 
membership function can be utilized to solve a nonlinear 
structural problem. The concept of neutrosophic 
optimization technique allows one to define a degree of 
truth membership, which is not a complement of degree of 
falsity; but rather they are independent with degree of 
indeterminacy. The numerical illustration shows the 
superiority of neutrosophic optimization over fuzzy 
optimization as well as intuitionistic fuzzy optimization. 
The results of this study may lead to the development of 
effective neutrosophic technique for solving other model of 
nonlinear programming problem in other engineering field.  
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