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Abstract— This paper describes the integration of neural
network ensembles and interval neutrosophic sets using bagging
technique for predicting regional-scale potential for mineral
deposits as well as quantifying uncertainty in the predictions.
Uncertainty in the types of error and vagueness are considered
in this paper. Each component in the ensemble consists of
a pair of neural networks trained for predicting the degrees
of favourability for deposit and barren. They are considered
as the truth-membership and the false-membership values,
respectively. Errors occurred in the prediction are estimated
using multidimensional scaling and interpolation methods.
Vagueness is computed as the difference between truth- and
false-membership values. In this study, uncertainty of type
vagueness is determined as the indeterminacy-membership
value. Together these three membership values form an interval
neutrosophic set. In order to combine and classify outputs
from components in the ensemble, three aggregation methods
are proposed in this paper. Our proposed model improves the
classification performance as compared to the simple majority
vote and averaging methods.

Keywords— uncertainty, bagging, feed-forward backpropaga-
tion neural network, interval neutrosophic set, mineral prospec-
tivity mapping

I. INTRODUCTION

In mineral exploration, searching for new mineral deposit
locations is the most important task. In recent years, neural
networks were found to give better accuracy result in the
prediction than other approaches based on the empirical
statistical methods [1]. Nowadays, there are several methods
for mineral prospectivity prediction based on Geographic
Information Systems (GIS) and neural networks [1], [2], [3],
[4]. Although, these methods can predict accurate results,
uncertainty in the prediction still exists. Hence, assessment
of uncertainty in mineral prospectivity prediction is one of
important tasks in mining industry. This paper proposes a
number of methods for predicting the regional-scale prospec-
tivity for gold deposits as well as quantifying the uncertainty
in the prediction. The approaches adopted are based on
bagging technique applied to ensemble of neural networks
and interval neutrosophic sets.

From the experiment conducted in this study, ensemble
of neural networks was found to give better results and less
error than a single network [5]. Neural network ensembles
can be constructed in two steps. First, each neural network

is trained in an ensemble. Second, the outputs from the
components in the ensemble are combined. In this paper, a
bagging technique is applied. Bagging is based on bootstrap
resampling in which several training sets are created from
the original training data [6]. The component networks in
the ensemble are then trained with these data sets. Bagging
method has been applied in various applications as reported
in [7], [8], and [9].

In this paper, we consider two types of uncertainty in
mineral prospectivity prediction. They are uncertainty of type
error, and, uncertainty of type vagueness. In general, error
can result from several sources such as measurement, data
entry, or processing as well as a lack of knowledge about the
data [10]. In our study, we concentrate only on errors in the
process of prediction. Vagueness deals with the concept of
boundaries which cannot be defined precisely [10]. In [11],
vague objects can be separated into three types: vague point,
value line, and vague region in which vague point can be
defined as a finite set of disjoint sites with known location,
but the existence of the sites may be uncertain.

In addition, this study involves gridded map layers in a
GIS database in which each grid cell represents a site with a
known location, but the existence of favourability for deposit
is considered as uncertain. Hence, uncertainty occurs in the
boundary zone in which the boundary between degree of
favourability for deposit and degree of favourability for non-
deposit is not sharp. Some cells may have one hundred
percent of favourability for deposits. Some cells may have
zero percent of favourability for mineral deposits and they
are referred to as non-deposit or barren cells. Most cells have
degrees of favourability between these two extremes.

A variety of methods can be used to deal with these two
types of uncertainties such as stochastic models, probability
theory, and fuzzy logic [12], [10]. These methods deal
with different types of uncertainty to different degrees. For
example, Sunila et al. [13] applied a fuzzy model and kriging
to estimate uncertainty of type vagueness in the boundary
zone of soil data. Twaroch [14] used intuitionistic fuzzy logic
to manage uncertainty of regions with vague boundaries.
In [7], Generalized Regression Neural Networks (GRNN)
is used to predict errors from known errors produced from
training neural networks. These errors were then used as
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dynamically weights in the determination of results from the
ensemble of neural networks.

In this paper, ensemble of neural networks based on
bagging technique is used for mineral prospectivity pre-
diction. The uncertainty of type error in the prediction is
estimated using multidimensional scaling and interpolation
methods. Uncertainty of type vagueness is computed from
the predicted outputs for each cell on the map. The prediction
outputs and their uncertainties are represented using an
interval neutrosophic set and are used to classify the cell
into either deposit or barren. In this study, three methods
are proposed for combining and classifying outputs from the
ensemble.

The rest of this paper is organized as follows. Section II
presents the basic theory of interval neutrosophic sets. Sec-
tion III explains the proposed methods used for the prediction
and quantification of uncertainties. These proposed meth-
ods based on ensemble neural networks, bagging, interval
neutrosophic sets, and interpolation techniques. Section IV
describes the GIS data set and the results of our experiments.
Conclusions and future work are presented in Section V.

II. INTERVAL NEUTROSOPHIC SET

An interval neutrosophic set is generalized from the con-
cept of a classical set, fuzzy set, interval-valued fuzzy set,
intuitionistic fuzzy set, interval-valued intuitionistic fuzzy
set, paraconsistent set, dialetheist set, paradoxist set, and
tautological set [15]. The membership of an element be-
longing to the interval neutrosophic set is expressed by
three values: t, i, and f , which represent truth-membership,
indeterminacy-membership, and false-membership, respec-
tively. These membership values can represent several kinds
of imperfection such as imprecise, incomplete, inconsistent,
and uncertain information [16]. The three memberships can
be any real sub-unitary subsets. For example, let A be an
interval neutrosophic set, then x(85, (20 − 35), (30, 40, 50))
belongs to A means that x is in A to a degree of 85%, x is
uncertain to a degree between 20% to 35%, and x is not in A
to a degree of 30% or 40% or 50%. This research follows the
definition of interval neutrosophic set that is defined in [15].
This definition is described below.

Let X be a space of points (objects). An interval neutro-
sophic set in X is defined as:

A = {x(TA(x), IA(x), FA(x))|x ∈ X ∧
TA : X −→ [0, 1] ∧
IA : X −→ [0, 1] ∧
FA : X −→ [0, 1]}

(1)

where
TA is the truth-membership function,
IA is the indeterminacy-membership function, and
FA is the false-membership function.

In this study, an interval neutrosophic set is used to repre-
sent the result of mineral prospectivity prediction. The truth-,
indeterminacy-, and false-membership values are interpreted
to represent the degree to which the pattern of mineral

exploration data for grid cell on a map corresponds to a
deposit, the degree to which the classification of the pattern
is uncertain, and the degree to which the pattern corresponds
to a barren cell, respectively. The indeterminacy-membership
value applied in this study is considered as the degree of
uncertainty of type vagueness.

III. QUANTIFICATION OF UNCERTAINTY USING

ENSEMBLE OF NEURAL NETWORKS, INTERVAL

NEUTROSOPHIC SETS, AND INTERPOLATION TECHNIQUES
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Fig. 1. The proposed prediction model based on the neural networks and
bagging technique.

In this paper, we apply ensemble neural networks and a
bagging technique to the mineral prospectivity prediction.
A bagging technique is used to train neural networks in
the ensemble. The bagging algorithm uses bootstrap re-
sampling to generate multiple training sets. In this study,
each bootstrap sample or bag of data is created by random
selection of input patterns from the training data set with
replacement. Each bag contains the same number of training
patterns as the original data set. Fig.1 shows our proposed
prediction model. Co-register cells in GIS data layers are
used to create multiple data sets or bags for components in
the ensemble. Each component in the ensemble consists of
a pair of neural networks. Both networks use the same bag



for training. One network is trained to predict degrees of
favourability for deposit which are interpreted as the truth-
membership values. The other network is trained to predict
degrees of favourability for barren which are interpreted as
the false-membership values. This network is trained with
the complement of the target output values presented to the
network used to predict the favourability for deposits. For
example, if the target output for the deposit network is 1,
its complement, 0, is used as the target value in the Barren
network for the same input training pattern. Furthermore,
errors produced from both networks can be used to estimate
uncertainty of type error for the unknown or test data set.
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Fig. 2. The proposed prediction and uncertainty model based on the
integration of interval neutrosophic sets (INS) with neural networks and
uncertainty estimation.

Fig.2 shows our proposed model for the prediction of
unknown or test data set. A pair of neural networks trained
for each component in the ensemble is then used for the
prediction of new data set. We consider the output from each
component as an interval neutrosophic set. From equation 1,
we define Xj as an output from component j, where j =
1, 2, 3, ...,m.

Let Aj be an interval neutrosophic set of Xj . Aj can
be defined as Aj = {x(TAj

(x), IAj
(x), FAj

(x))} where
TAj

is the truth (deposit) membership function, IAj
is the

indeterminacy membership function, and FAj
is the false

(barren) membership function.
In this study, we consider the indeterminacy-membership

value as the degree of uncertainty of type vagueness in
which the boundary between truth-membership and false-
membership values cannot be defined precisely. Therefore,
the indeterminacy-membership value for each cell depends
on both truth-membership and false-membership values. If
the difference between these two values is high (e.g. truth
membership = 1 and false-membership = 0), then the degree
of uncertainty is low. In contrast, if the difference between
the two values is low then the degree of uncertainty is
high (e.g. truth membership = 0.5 and false-membership
= 0.5). Consequently, for each cell in the map grid, the
indeterminacy membership value (IAj

) can be defined as the
following.

IAj
(x) = 1 − |TAj

(x) − FAj
(x)|. (2)

The next step is to combine the outputs from all compo-
nents and then classify the cell into deposit or barren classes.
In this study, we propose three methods for combining the
outputs.

1) Averaging based on equal weight combination.
In this method, co-register cells in the output lay-
ers are averaged for the truth-membership and false-
membership values. After that, the average truth-
membership and the complement of the average false-
membership for each cell are combined using a sim-
ple averaging method. Let Tavg(xi) be an average
truth-membership value for the cell at location i. Let
Favg(xi) be an average false-membership value for the
cell at location i. The combined output O(xi) can be
computed as the following.

O(xi) =
Tavg(xi) + (1 − Favg(xi))

2
(3)

Tavg(xi) =

∑m
j=1 TAj

(xi)
m

(4)

Favg(xi) =

∑m
j=1 FAj

(xi)
m

(5)

In order to classify the cell into deposit or barren, we
apply the threshold value to classify the cell type. A
range of threshold values ranging from 0.1 to 0.9 in
steps of 0.1 are created and compared to the output
O(xi). If the output is greater than the threshold value
then the cell is classified as a deposit cell. Otherwise,
the cell is classified as barren. The threshold value that
can produce the best accuracy in the classification will
be used in the prediction. In this study, the threshold
value of 0.5 is the best threshold for this method.
Uncertainty of type vagueness for each classified cell
can be computed as the different between the average
truth-membership and the average false-membership
values: 1 − |Tavg(xi) − Favg(xi)|.



2) Majority vote based on equal weight combination.
In this method, the truth-membership and the com-
plement of the false-membership values for each cell
in each output layer are combined using a simple
averaging method. Let Oj(xi) be the combination
output for the cell xi in the output j. Oj(xi) can be
computed as the following.

Oj(xi) =
TAj

(xi) + (1 − FAj
(xi))

2
(6)

A range of threshold values are then compared to
the result of the combination, Oj(xi). In this study,
we found that the threshold value that frequently
produces the best accuracy in the classifications is
0.5. Hence, we decided to apply the threshold value
of 0.5 for the classification for all components in
the ensemble. After that, the majority vote is used
to make a final classification. If at least half of the
outputs yield a deposit classification then the cell is
classified as a deposit. Otherwise, the cell is classified
as barren. In this method, we consider uncertainty of
type vagueness for each classified cell as the average
indeterminacy-membership value from co-register
cells in the output layers.

3) Majority vote based on dynamic weight combination.
In this method, uncertainty of type error is also con-
sidered in the prediction. Fig.3 shows our proposed
combination method using uncertainty of type error
for weighting the combination between the truth- and
false-membership values. In order to estimate errors in
the prediction of the truth (deposit) membership values,
the errors produced from the training truth NN are
plotted in the multidimensional feature space of the
training input patterns. After that, a multidimensional
scaling technique [17], [18] is used to reduce the
dimension of input feature space to two and then
applying a Delauney triangulation based interpolation
method [19] to estimate the uncertainty of type er-
ror for the new input patterns. Error estimation for
the prediction of false (barren) membership value is
also calculated in the same way as the technique
used for the truth-membership. Let errTj(xi) be an
estimated uncertainty of type error in the prediction
of the truth-membership at cell xi in the output j.
Let errFj(xi) be an estimated uncertainty of type
error in the prediction of the false-membership at
cell xi in the output j. We determine the weights
dynamically based on these estimated uncertainties.
The weight for the truth-membership is computed as
the complement of the error estimated for the truth-
membership. The weight for the false-membership is
calculated as the complement of the error estimated
for the false-membership. These two types of weight
are considered as the certainty in the prediction of
the truth- and false-membership values, respectively.

In this study, we consider the certainty for predicting
the false-membership is equal to the certainty for
predicting the non false-membership value, which is
the complement of the false-membership value. Let
wTj(xi) be the weight for the truth-membership value,
and wF ′

j(xi) be the weight for the complement of
the false-membership value, the dynamic combination
output Oj(xi) can be calculated as follows.

Oj(xi) = (wTj(xi) × TAj
(xi)) +

(wF ′
j(xi) × (1 − FAj

(xi)))
(7)

wTj(xi) =
1 − errTj(xi)

(1 − errTj(xi)) + (1 − errFj(xi))
(8)

wF ′
j(xi) =

1 − errFj(xi)
(1 − errTj(xi)) + (1 − errFj(xi))

(9)

Similar to the previous method, a range of threshold
values are applied and then the majority vote is used
to classify the cell. Uncertainty of type vagueness
for each classified cell is the average indeterminacy-
membership value from co-register cells in the output
layers.
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Fig. 3. The proposed combination method based on the integration of
interval neutrosophic sets (INS) with neural networks as well as error and
vagueness estimation.

IV. EXPERIMENTS

A. GIS data set

The study area corresponds to an approximately 100 ×
100 square km region of the Archaean Yilgarn Block, near
Kalgoorlie, Western Australia. The data set created from this
area consists of ten layers in raster format. Each Geographic
Information System (GIS) database layer contains a separate
variable that is used to help predict the favourability for gold
deposits. Examples of the variables in these GIS layers are
solid geology, distance to the nearest fault, and distance to
the nearest magnetic anomaly. Each GIS layer is divided into
a grid of square cells of 100 m side. Hence, the map area
contains 1,254,000 cells. Each cell stores a single attribute
value which is scaled to a range [0, 1]. A training set of 268
cells were selected for this experiment. For the purposes of



testing the performance of our predictive system, each cell
is classified as a deposit or a barren cell. A cell is labeled
as deposit if it contains greater than 1,000 kg total contained
gold, otherwise it is classified as a barren cell. Our data set
consists of 120 deposit cells and 148 barren cells. We use 85
deposit cells and 102 barren cells for training. The rest; i.e.,
35 deposit cells and 46 barren cells were used for testing.

B. Experimental methodology and results

In this study, thirty bags of training data are created for
thirty components in the ensemble. We use feed-forward
backpropagation neural networks for both truth NN and
falsity NN for all components. All networks have the same
architecture which composes of ten input units, twenty hid-
den layer units, and a single output unit. All experiments are
performed using the Matlab software package. The training
algorithm is traingdx which is based on gradient descent with
momentum and an adaptive learning rate [20]. However, the
falsity NN is trained using the complement of the target
output values used to train the truth NN. Uncertainty of
type error is also estimated using Matlab. Multidimensional
scaling is used to reduce the dimensionality of the input
feature space and then the nearest neighbour interpolation
based on Delauney triangulation is used to estimate the error.

In order to combine the output from the components within
the ensemble, we apply three proposed methods described
in the previous section. In this paper, we do not consider
the optimization of the prediction but concentrate only on
the improvement of the prediction together with the quan-
tification of uncertainty. The results from our three methods
are compared in Table I to those obtained by applying two
existing methods that uses a threshold of 0.5 to only the
truth-membership of single neural networks instead of a pair
of networks in the ensemble. The results show that our three
methods outperform the simple averaging and majority vote
methods that apply to only the truth-membership value.

TABLE I

CLASSIFICATION ACCURACY FOR THE TEST DATA SET USING NEURAL

NETWORK ENSEMBLES (A THRESHOLD OF 0.5 IS APPLIED TO EACH

METHOD).

Deposit Barren All
Ensemble Method % correct % correct % correct
Averaging using
equal weight combination 82.86 78.26 80.25
Majority Vote using
equal weight combination 80.00 76.09 77.78
Majority Vote using
Dynamic weight combination 80.00 73.91 76.54
Averaging using
Truth membership 77.14 73.91 75.31
Majority Vote using
Truth membership 80.00 69.57 74.07

Table II shows a selection of the classification results
for the test set (from a total of 81 input patterns) obtained
using a majority vote based on equal weighted combination
(method A), dynamic weighted combination (method B), and
applying only truth-membership values (method C) together

with the estimates of uncertainty for method A and B. These
uncertainty values are the average of the indeterminacy-
membership values from co-register cells in the output layers.
For example, the fourth row corresponds to a deposit pattern
that has been classified correctly as a deposit using our pro-
posed methods with an uncertainty value of 0.76. However,
this cell has been classified incorrectly as a barren when
using the existing majority vote and there is no uncertainty
information in the classification. The eighth row corresponds
to a barren pattern which is incorrectly classified as a deposit
cell with an uncertainty value of 0.82, indicating that the pre-
diction for the eighth cell involved more uncertainty than the
prediction for the fourth cell. This uncertainty information
can support degree of confidence in the prediction.

TABLE II

SAMPLE CLASSIFICATIONS OF TEST SET PATTERNS FROM A MAJORITY

VOTE USING EQUAL WEIGHTED COMBINATION (METHOD A), DYNAMIC

WEIGHTED COMBINATION (METHOD B), AND APPLYING ONLY

TRUTH-MEMBERSHIP VALUES (METHOD C).

Actual Uncertainty
Cell Type Method A Method B Method C Value for

Method A & B
Deposit Deposit Deposit Deposit 0.50
Deposit Barren Barren Barren 0.74
Deposit Barren Barren Deposit 0.79
Deposit Deposit Deposit Barren 0.76
Barren Barren Deposit Barren 0.77
Barren Barren Barren Barren 0.32
Barren Barren Barren Deposit 0.68
Barren Deposit Deposit Deposit 0.82

A selection of the classification results for test data set
using our proposed averaging based on equal weight combi-
nation are shown in Table III. All cells shown in this table
are the same cells shown in Table II. A threshold value of
0.5 is also used in this experiment. Considering the fourth
row of Table III, the average truth-membership value for this
cell is 0.44. If we use the existing averaging method using
only truth-membership value in the classification, this cell
will be classified incorrectly as a barren. However, if we use
our proposed averaging based on equal weight combination
method, this cell is classified correctly as a deposit since
the combination result used for the classification is 0.57.
Moreover, our proposed method also has an advantage of
the ability to represent uncertainty in the prediction in which
this cell contains uncertainty value of 0.87. If both truth-
and false-membership values are equal such as the cell in
the eighth row of this table, then the uncertainty represented
for this cell is high. This advantage can help users for their
decision making.

V. CONCLUSION AND FUTURE WORK

This paper has applied a bagging technique and interval
neutrosophic sets to ensemble of neural networks for mineral
prospectivity prediction and uncertainty assessment. A pair
of neural networks was created for each component in the
ensemble in order to produce degrees of favourability for
deposit and degrees of favourability for barren cells. These



TABLE III

SAMPLE CLASSIFICATIONS OF TEST SET PATTERNS FROM AN EQUAL

WEIGHTED COMBINATION BETWEEN AVERAGE TRUTH-MEMBERSHIP

AND AVERAGE FALSE-MEMBERSHIP VALUES.

Predicted Truth- False- Combined Uncertainty
Cell Type Membership Membership Value value
Deposit 0.68 0.20 0.74 0.52
Barren 0.43 0.61 0.41 0.83
Deposit 0.64 0.63 0.50 0.99
Deposit 0.44 0.30 0.57 0.87
Barren 0.17 0.19 0.49 0.98
Barren 0.22 0.90 0.16 0.32
Barren 0.47 0.77 0.35 0.69
Barren 0.47 0.48 0.49 0.99

values are corresponding to the truth- and false-membership
values, respectively. Two types of uncertainty are presented
in this paper. First, uncertainty of type vagueness represented
in the form of indeterminacy-membership value is calculated
as the difference between truth- and false-memberships.
These three memberships constitute an interval neutrosophic
set. Second, uncertainties of type error in the prediction of
truth- and false-memberships are estimated using multidi-
mensional scaling and interpolation methods. The three pro-
posed techniques of combing the outputs from components of
the ensemble outperform simple majority vote and averaging
methods which are applied only to truth-membership values.
In this paper, we found that the proposed methods using
an equal weight combination produces a better accuracy
results than those using a dynamic weight combination. The
interpolation technique used to estimate errors for the new
data set may be the cause of this effect. In future work,
we plan to apply other interpolation techniques for error
estimation. We have also planned to apply our methods used
in this paper to boosting neural networks.
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