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Abstract. In this paper, we introduce for the first time the discounting of a 

neutrosophic mass in terms of reliability and respectively the importance of 

the source. 

We show that reliability and importance discounts commute when 

dealing with classical masses. 

 

1. Introduction. Let Φ = {Φ1, Φ2, … , Φn} be the frame of discernment, 

where 𝑛 ≥ 2, and the set of focal elements: 

𝐹 = {𝐴1, 𝐴2, … , 𝐴𝑚}, for 𝑚 ≥ 1, 𝐹 ⊂ 𝐺𝛷. (1) 

Let 𝐺𝛷 = (𝛷,∪,∩, 𝒞) be the fusion space. 

A neutrosophic mass is defined as follows: 

𝑚𝑛: 𝐺 → [0, 1]3 

for any 𝑥 ∈ 𝐺, 𝑚𝑛(𝑥) = (𝑡(𝑥), 𝑖(𝑥), 𝑓(𝑥)), (2) 

where 𝑡(𝑥) = believe that 𝑥 will occur (truth); 

  𝑖(𝑥) = indeterminacy about occurence; 

and 𝑓(𝑥) = believe that 𝑥 will not occur (falsity). 
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Simply, we say in neutrosophic logic: 

  𝑡(𝑥) = believe in 𝑥; 

  𝑖(𝑥) = believe in neut(𝑥)  

[the neutral of 𝑥, i.e. neither 𝑥 nor anti(𝑥)]; 

and 𝑓(𝑥) = believe in anti(𝑥) [the opposite of 𝑥]. 

Of course, 𝑡(𝑥), 𝑖(𝑥), 𝑓(𝑥) ∈ [0, 1], and 

∑ [𝑡(𝑥) + 𝑖(𝑥) + 𝑓(𝑥)] = 1,𝑥∈𝐺  (3) 

while 

𝑚𝑛(ф) = (0, 0, 0).  (4) 

It is possible that according to some parameters (or data) a source is 

able to predict the believe in a hypothesis 𝑥 to occur, while according to other 

parameters (or other data) the same source may be able to find the believe 

in 𝑥 not occuring, and upon a third category of parameters (or data) the 

source may find some indeterminacy (ambiguity) about hypothesis 

occurence. 

An element 𝑥 ∈ 𝐺 is called focal if  

𝑛𝑚(𝑥) ≠ (0, 0, 0), (5) 

i.e. 𝑡(𝑥) > 0 or 𝑖(𝑥) > 0 or 𝑓(𝑥) > 0.   

Any classical mass: 

𝑚 ∶ 𝐺ф → [0, 1] (6) 

can be simply written as a neutrosophic mass as: 

𝑚(𝐴) = (𝑚(𝐴), 0, 0). (7) 
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2. Discounting a Neutrosophic Mass due to Reliability of the 

Source. 

Let 𝛼 = (𝛼1, 𝛼2, 𝛼3) be the reliability coefficient of the source, 𝛼 ∈

[0,1]3. 

Then, for any 𝑥 ∈ 𝐺𝜃 ∖ {𝜃, 𝐼𝑡}, 

where 𝜃 = the empty set 

and 𝐼𝑡 = total ignorance, 

𝑚𝑛(𝑥)𝑎 = (𝛼1𝑡(𝑥), 𝛼2𝑖(𝑥), 𝛼3𝑓(𝑥)),  (8) 

and 

𝑚𝑛(𝐼𝑡)𝛼 = (𝑡(𝐼𝑡) + (1 − 𝛼1) ∑ 𝑡(𝑥)

𝑥∈𝐺𝜃∖{𝜙,𝐼𝑡}

,

𝑖(𝐼𝑡) + (1 − 𝛼2) ∑ 𝑖(𝑥), 𝑓(𝐼𝑡) + (1 − 𝛼3) ∑ 𝑓(𝑥)

𝑥∈𝐺𝜃∖{𝜙,𝐼𝑡}𝑥∈𝐺𝜃∖{𝜙,𝐼𝑡}

) 

(9), 

and, of course, 

𝑚𝑛(𝜙)𝛼 = (0, 0, 0). 

The missing mass of each element 𝑥, for 𝑥 ≠ 𝜙, 𝑥 ≠ 𝐼𝑡 , is transferred to 

the mass of the total ignorance in the following way: 

𝑡(𝑥) − 𝛼1𝑡(𝑥) = (1 − 𝛼1) ∙ 𝑡(𝑥) is transferred to 𝑡(𝐼𝑡),  (10) 

𝑖(𝑥) − 𝛼2𝑖(𝑥) = (1 − 𝛼2) ∙ 𝑖(𝑥) is transferred to 𝑖(𝐼𝑡), (11) 
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and 𝑓(𝑥) − 𝛼3𝑓(𝑥) = (1 − 𝛼3) ∙ 𝑓(𝑥) is transferred to 𝑓(𝐼𝑡).  (12) 

 

3. Discounting a Neutrosophic Mass due to the Importance of the 

Source. 

Let 𝛽 ∈ [0, 1] be the importance coefficient of the source. This discounting 

can be done in several ways. 

a. For any 𝑥 ∈ 𝐺𝜃 ∖ {𝜙}, 

𝑚𝑛(𝑥)𝛽1
= (𝛽 ∙ 𝑡(𝑥), 𝑖(𝑥), 𝑓(𝑥) + (1 − 𝛽) ∙ 𝑡(𝑥)), (13) 

which means that 𝑡(𝑥), the believe in 𝑥, is diminished to 𝛽 ∙ 𝑡(𝑥), and the 

missing mass, 𝑡(𝑥) − 𝛽 ∙ 𝑡(𝑥) = (1 − 𝛽) ∙ 𝑡(𝑥), is transferred to the believe in 

𝑎𝑛𝑡𝑖(𝑥). 

b. Another way: 

For any 𝑥 ∈ 𝐺𝜃 ∖ {𝜙}, 

𝑚𝑛(𝑥)𝛽2
= (𝛽 ∙ 𝑡(𝑥), 𝑖(𝑥) + (1 − 𝛽) ∙ 𝑡(𝑥), 𝑓(𝑥)), (14) 

which means that 𝑡(𝑥), the believe in 𝑥, is similarly diminished to 𝛽 ∙ 𝑡(𝑥), 

and the missing mass (1 − 𝛽) ∙ 𝑡(𝑥) is now transferred to the believe in 

𝑛𝑒𝑢𝑡(𝑥). 

c. The third way is the most general, putting together the first and second 

ways. 

For any 𝑥 ∈ 𝐺𝜃 ∖ {𝜙}, 

𝑚𝑛(𝑥)𝛽3
= (𝛽 ∙ 𝑡(𝑥), 𝑖(𝑥) + (1 − 𝛽) ∙ 𝑡(𝑥) ∙ 𝛾, 𝑓(𝑥) + (1 − 𝛽) ∙ 𝑡(𝑥) ∙

(1 − 𝛾)), (15) 
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where 𝛾 ∈ [0, 1] is a parameter that splits the missing mass (1 − 𝛽) ∙ 𝑡(𝑥) a 

part to  𝑖(𝑥) and the other part to 𝑓(𝑥). 

For 𝛾 = 0, one gets the first way of distribution, and when 𝛾 = 1, one 

gets the second way of distribution. 

 

4. Discounting of Reliability and Importance of Sources in General 

Do Not Commute. 

a. Reliability first, Importance second. 

For any 𝑥 ∈ 𝐺𝜃 ∖ {𝜙, 𝐼𝑡}, one has after reliability α discounting, where 

𝛼 = (𝛼1, 𝛼2, 𝛼3):  

𝑚𝑛(𝑥)𝛼 = (𝛼1 ∙ 𝑡(𝑥), 𝛼2 ∙ 𝑡(𝑥), 𝛼3 ∙ 𝑓(𝑥)), (16) 

and 

𝑚𝑛(𝐼𝑡)𝛼 = (𝑡(𝐼𝑡) + (1 − 𝛼1) ∙ ∑ 𝑡(𝑥)

𝑥∈𝐺𝜃∖{𝜙,𝐼𝑡}

, 𝑖(𝐼𝑡) + (1 − 𝛼2)

∙ ∑ 𝑖(𝑥)

𝑥∈𝐺𝜃∖{𝜙,𝐼𝑡}

, 𝑓(𝐼𝑡) + (1 − 𝛼3) ∙ ∑ 𝑓(𝑥)

𝑥∈𝐺𝜃∖{𝜙,𝐼𝑡}

)

≝ (𝑇𝐼𝑡
, 𝐼𝐼𝑡

, 𝐹𝐼𝑡
 ). 

(17) 

Now we do the importance β discounting method, the third importance 

discounting way which is the most general: 

𝑚𝑛(𝑥)𝛼𝛽3
= (𝛽𝛼1𝑡(𝑥), 𝛼2𝑖(𝑥) + (1 − 𝛽)𝛼1𝑡(𝑥)𝛾, 𝛼3𝑓(𝑥)

+ (1 − 𝛽)𝛼1𝑡(𝑥)(1 − 𝛾)) 
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(18) 

and 

𝑚𝑛(𝐼𝑡)𝛼𝛽3
= (𝛽 ∙ 𝑇𝐼𝑡

, 𝐼𝐼𝑡
+ (1 − 𝛽)𝑇𝐼𝑡

∙ 𝛾, 𝐹𝐼𝑡
+ (1 − 𝛽)𝑇𝐼𝑡

(1 − 𝛾)). (19) 

b. Importance first, Reliability second. 

For any 𝑥 ∈ 𝐺𝜃 ∖ {𝜙, 𝐼𝑡}, one has after importance β discounting (third 

way): 

𝑚𝑛(𝑥)𝛽3
= (𝛽 ∙ 𝑡(𝑥), 𝑖(𝑥) + (1 − 𝛽)𝑡(𝑥)𝛾, 𝑓(𝑥) + (1 − 𝛽)𝑡(𝑥)(1 − 𝛾))  (20) 

and 

𝑚𝑛(𝐼𝑡)𝛽3
= (𝛽 ∙ 𝑡(𝐼𝐼𝑡

), 𝑖(𝐼𝐼𝑡
) + (1 − 𝛽)𝑡(𝐼𝑡)𝛾, 𝑓(𝐼𝑡) + (1 − 𝛽)𝑡(𝐼𝑡)(1 − 𝛾)). 

(21) 

Now we do the reliability 𝛼 = (𝛼1, 𝛼2, 𝛼3) discounting, and one gets: 

𝑚𝑛(𝑥)𝛽3𝛼 = (𝛼1 ∙ 𝛽 ∙ 𝑡(𝑥), 𝛼2 ∙ 𝑖(𝑥) + 𝛼2(1 − 𝛽)𝑡(𝑥)𝛾, 𝛼3 ∙ 𝑓(𝑥) + 𝛼3 ∙

(1 − 𝛽)𝑡(𝑥)(1 − 𝛾)) (22) 

and 

𝑚𝑛(𝐼𝑡)𝛽3𝛼 = (𝛼1 ∙ 𝛽 ∙ 𝑡(𝐼𝑡), 𝛼2 ∙ 𝑖(𝐼𝑡) + 𝛼2(1 − 𝛽)𝑡(𝐼𝑡)𝛾, 𝛼3 ∙ 𝑓(𝐼𝑡) +

𝛼3(1 − 𝛽)𝑡(𝐼𝑡)(1 − 𝛾)). (23) 

 

Remark.  

We see that (a) and (b) are in general different, so reliability of sources 

does not commute with the importance of sources. 
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5. Particular Case when Reliability and Importance Discounting of 

Masses Commute. 

Let’s consider a classical mass  

𝑚: 𝐺𝜃 → [0, 1] (24) 

and the focal set 𝐹 ⊂ 𝐺𝜃 , 

𝐹 = {𝐴1, 𝐴2, … , 𝐴𝑚}, 𝑚 ≥ 1, (25) 

and of course 𝑚(𝐴𝑖) > 0, for 1 ≤ 𝑖 ≤ 𝑚.  

Suppose 𝑚(𝐴𝑖) = 𝑎𝑖 ∈ (0,1]. (26) 

 

a. Reliability first, Importance second. 

Let 𝛼 ∈ [0, 1] be the reliability coefficient of 𝑚 (∙). 

For 𝑥 ∈ 𝐺𝜃 ∖ {𝜙, 𝐼𝑡}, one has 

𝑚(𝑥)𝛼 = 𝛼 ∙ 𝑚(𝑥), (27) 

and 𝑚(𝐼𝑡) = 𝛼 ∙ 𝑚(𝐼𝑡) + 1 − 𝛼. (28) 

Let 𝛽 ∈ [0, 1] be the importance coefficient of 𝑚 (∙). 

Then, for 𝑥 ∈ 𝐺𝜃 ∖ {𝜙, 𝐼𝑡}, 

𝑚(𝑥)𝛼𝛽 = (𝛽𝛼𝑚(𝑥), 𝛼𝑚(𝑥) − 𝛽𝛼𝑚(𝑥)) = 𝛼 ∙ 𝑚(𝑥) ∙ (𝛽, 1 − 𝛽), (29) 

considering only two components: believe that 𝑥 occurs and, respectively, 

believe that 𝑥 does not occur. 

Further on, 
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𝑚(𝐼𝑡)𝛼𝛽 = (𝛽𝛼𝑚(𝐼𝑡) + 𝛽 − 𝛽𝛼, 𝛼𝑚(𝐼𝑡) + 1 − 𝛼 − 𝛽𝛼𝑚(𝐼𝑡) − 𝛽 + 𝛽𝛼) =

[𝛼𝑚(𝐼𝑡) + 1 − 𝛼] ∙ (𝛽, 1 − 𝛽). (30) 

 

b. Importance first, Reliability second. 

For 𝑥 ∈ 𝐺𝜃 ∖ {𝜙, 𝐼𝑡}, one has 

𝑚(𝑥)𝛽 = (𝛽 ∙ 𝑚(𝑥), 𝑚(𝑥) − 𝛽 ∙ 𝑚(𝑥)) = 𝑚(𝑥) ∙ (𝛽, 1 − 𝛽), (31) 

and 𝑚(𝐼𝑡)𝛽 = (𝛽𝑚(𝐼𝑡), 𝑚(𝐼𝑡) − 𝛽𝑚(𝐼𝑡)) = 𝑚(𝐼𝑡) ∙ (𝛽, 1 − 𝛽). (32) 

Then, for the reliability discounting scaler α one has: 

𝑚(𝑥)𝛽𝛼 = 𝛼𝑚(𝑥)(𝛽, 1 − 𝛽) = (𝛼𝑚(𝑥)𝛽, 𝛼𝑚(𝑥) − 𝛼𝛽𝑚(𝑚)) (33) 

and 𝑚(𝐼𝑡)𝛽𝛼 = 𝛼 ∙ 𝑚(𝐼𝑡)(𝛽, 1 − 𝛽) + (1 − 𝛼)(𝛽, 1 − 𝛽) = [𝛼𝑚(𝐼𝑡) + 1 − 𝛼] ∙

(𝛽, 1 − 𝛽) = (𝛼𝑚(𝐼𝑡)𝛽, 𝛼𝑚(𝐼𝑡) − 𝛼𝑚(𝐼𝑡)𝛽) + (𝛽 − 𝛼𝛽, 1 − 𝛼 − 𝛽 + 𝛼𝛽) =

(𝛼𝛽𝑚(𝐼𝑡) + 𝛽 − 𝛼𝛽, 𝛼𝑚(𝐼𝑡) − 𝛼𝛽𝑚(𝐼𝑡) + 1 − 𝛼 − 𝛽 − 𝛼𝛽). (34) 

Hence (a) and (b) are equal in this case. 
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6. Examples. 

1. Classical mass. 

The following classical is given on 𝜃 = {𝐴, 𝐵} ∶ 

 A B AUB 

m 0.4 0.5 0.1 

   (35) 

 

Let 𝛼 = 0.8 be the reliability coefficient and 𝛽 = 0.7 be the importance 

coefficient. 

 

a. Reliability first, Importance second. 

 A B AUB 

𝑚𝛼 0.32 0.40 0.28 

𝑚𝛼𝛽  (0.224, 0.096) (0.280, 0.120) (0.196, 0.084) 

(36) 

We have computed in the following way: 

𝑚𝛼(𝐴) = 0.8𝑚(𝐴) = 0.8(0.4) = 0.32, (37) 

𝑚𝛼(𝐵) = 0.8𝑚(𝐵) = 0.8(0.5) = 0.40, (38) 

𝑚𝛼(𝐴𝑈𝐵) = 0.8(AUB) + 1 − 0.8 = 0.8(0.1) + 0.2 = 0.28, (39) 

and 

𝑚𝛼𝛽(𝐵) = (0.7𝑚𝛼(𝐴), 𝑚𝛼(𝐴) − 0.7𝑚𝛼(𝐴)) = (0.7(0.32), 0.32 −

0.7(0.32)) = (0.224, 0.096), (40) 
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𝑚𝛼𝛽(𝐵) = (0.7𝑚𝛼(𝐵), 𝑚𝛼(𝐵) − 0.7𝑚𝛼(𝐵)) = (0.7(0.40), 0.40 −

0.7(0.40)) = (0.280, 0.120), (41) 

𝑚𝛼𝛽(𝐴𝑈𝐵) = (0.7𝑚𝛼(𝐴𝑈𝐵), 𝑚𝛼(𝐴𝑈𝐵) − 0.7𝑚𝛼(𝐴𝑈𝐵)) =

(0.7(0.28), 0.28 − 0.7(0.28)) = (0.196, 0.084). (42) 

 

b. Importance first, Reliability second. 

 A B AUB 

m 0.4 0.5 0.1 

𝑚𝛽  (0.28, 0.12) (0.35, 0.15) (0.07, 0.03) 

𝑚𝛽𝛼 (0.224, 0.096 (0.280, 0.120) (0.196, 0.084) 

(43) 

We computed in the following way: 

𝑚𝛽(𝐴) = (𝛽𝑚(𝐴), (1 − 𝛽)𝑚(𝐴)) = (0.7(0.4), (1 − 0.7)(0.4)) =

(0.280, 0.120), (44) 

𝑚𝛽(𝐵) = (𝛽𝑚(𝐵), (1 − 𝛽)𝑚(𝐵)) = (0.7(0.5), (1 − 0.7)(0.5)) =

(0.35, 0.15), (45) 

𝑚𝛽(𝐴𝑈𝐵) = (𝛽𝑚(𝐴𝑈𝐵), (1 − 𝛽)𝑚(𝐴𝑈𝐵)) = (0.7(0.1), (1 − 0.1)(0.1)) =

(0.07, 0.03), (46) 

and 𝑚𝛽𝛼(𝐴) = 𝛼𝑚𝛽(𝐴) = 0.8(0.28, 0.12) = (0.8(0.28), 0.8(0.12)) =

(0.224, 0.096), (47) 

𝑚𝛽𝛼(𝐵) = 𝛼𝑚𝛽(𝐵) = 0.8(0.35, 0.15) = (0.8(0.35), 0.8(0.15)) =

(0.280, 0.120), (48) 
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𝑚𝛽𝛼(𝐴𝑈𝐵) = 𝛼𝑚(𝐴𝑈𝐵)(𝛽, 1 − 𝛽) + (1 − 𝛼)(𝛽, 1 − 𝛽) = 0.8(0.1)(0.7, 1 −

0.7) + (1 − 0.8)(0.7, 1 − 0.7) = 0.08(0.7, 0.3) + 0.2(0.7, 0.3) =

(0.056, 0.024) + (0.140, 0.060) = (0.056 + 0.140, 0.024 + 0.060) =

(0.196, 0.084). (49) 

Therefore reliability discount commutes with importance discount of 

sources when one has classical masses. 

The result is interpreted this way: believe in 𝐴 is 0.224 and believe in 

𝑛𝑜𝑛𝐴 is 0.096, believe in 𝐵 is 0.280 and believe in 𝑛𝑜𝑛𝐵 is 0.120, and believe 

in total ignorance 𝐴𝑈𝐵 is 0.196, and believe in non-ignorance is 0.084. 

 

7. Same Example with Different Redistribution of Masses Related to 

Importance of Sources. 

Let’s consider the third way of redistribution of masses related to 

importance coefficient of sources. 𝛽 = 0.7, but 𝛾 = 0.4, which means that 

40% of 𝛽 is redistributed to 𝑖(𝑥) and 60% of 𝛽 is redistributed to 𝑓(𝑥) for 

each 𝑥 ∈ 𝐺𝜃 ∖ {𝜙}; and 𝛼 = 0.8. 

 

a. Reliability first, Importance second. 

 A B AUB 

m 0.4 0.5 0.1 

𝑚𝛼 0.32 0.40 0.28 

𝑚𝛼𝛽  (0.2240, 0.0384, 

0.0576) 

(0.2800, 0.0480, 

0.0720) 

(0.1960, 0.0336, 

0.0504). 

(50) 
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We computed 𝑚𝛼 in the same way. 

But: 

𝑚𝛼𝛽(𝐴) = (𝛽 ∙ 𝑚𝛼(𝐴), 𝑖𝛼(𝐴) + (1 − 𝛽)𝑚𝛼(𝐴) ∙ 𝛾, 𝑓𝛼(𝐴) +

(1 − 𝛽)𝑚𝛼(𝐴)(1 − 𝛾)) = (0.7(0.32), 0 + (1 − 0.7)(0.32)(0.4), 0 +

(1 − 0.7)(0.32)(1 − 0.4)) = (0.2240, 0.0384, 0.0576). (51) 

Similarly for 𝑚𝛼𝛽(𝐵) and 𝑚𝛼𝛽(𝐴𝑈𝐵). 

 

b. Importance first, Reliability second. 

 A B AUB 

m 0.4 0.5 0.1 

𝑚𝛽  (0.280, 0.048, 

0.072) 

(0.350, 0.060, 

0.090) 

(0.070, 0.012, 

0.018) 

𝑚𝛽𝛼 (0.2240, 0.0384, 

0.0576) 

(0.2800, 0.0480, 

0.0720) 

(0.1960, 0.0336, 

0.0504). 

(52) 

We computed 𝑚𝛽(∙) in the following way: 

𝑚𝛽(𝐴) = (𝛽 ∙ 𝑡(𝐴), 𝑖(𝐴) + (1 − 𝛽)𝑡(𝐴) ∙ 𝛾, 𝑓(𝐴) + (1 − 𝛽)𝑡(𝐴)(1 −

𝛾)) = (0.7(0.4), 0 + (1 − 0.7)(0.4)(0.4), 0 + (1 − 0.7)0.4(1 − 0.4)) =

(0.280, 0.048, 0.072). (53) 

Similarly for 𝑚𝛽(𝐵) and 𝑚𝛽(𝐴𝑈𝐵). 

To compute 𝑚𝛽𝛼(∙), we take 𝛼1 = 𝛼2 = 𝛼3 = 0.8, (54) 

in formulas (8) and (9). 
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𝑚𝛽𝛼(𝐴) = 𝛼 ∙ 𝑚𝛽(𝐴) = 0.8(0.280, 0.048, 0.072)

= (0.8(0.280), 0.8(0.048), 0.8(0.072))

= (0.2240, 0.0384, 0.0576). (55) 

Similarly 𝑚𝛽𝛼(𝐵) = 0.8(0.350, 0.060, 0.090) =

(0.2800, 0.0480, 0.0720). (56) 

For 𝑚𝛽𝛼(𝐴𝑈𝐵) we use formula (9): 

𝑚𝛽𝛼(𝐴𝑈𝐵) = (𝑡𝛽(𝐴𝑈𝐵) + (1 − 𝛼)[𝑡𝛽(𝐴) + 𝑡𝛽(𝐵)],  𝑖𝛽(𝐴𝑈𝐵)

+ (1 − 𝛼)[𝑖𝛽(𝐴) + 𝑖𝛽(𝐵)],

 𝑓𝛽(𝐴𝑈𝐵) + (1 − 𝛼)[𝑓𝛽(𝐴) + 𝑓𝛽(𝐵)])

= (0.070 + (1 − 0.8)[0.280 + 0.350], 0.012

+ (1 − 0.8)[0.048 + 0.060], 0.018 + (1 − 0.8)[0.072 + 0.090])

= (0.1960, 0.0336, 0.0504). 

Again, the reliability discount and importance discount commute. 

 

8. Conclusion. 

In this paper we have defined a new way of discounting a classical and 

neutrosophic mass with respect to its importance. We have also defined the 

discounting of a neutrosophic source with respect to its reliability. 

In general, the reliability discount and importance discount do not 

commute. But if one uses classical masses, they commute (as in Examples 1 

and 2). 

 

 



14 
 

Acknowledgement. 

The author would like to thank Dr. Jean Dezert for his opinions about 

this paper. 

 

References. 

1. F. Smarandache, J. Dezert, J.-M. Tacnet, Fusion of Sources of 

Evidence with Different Importances and Reliabilities, Fusion 2010 

International Conference, Edinburgh, Scotland, 26-29 July, 2010. 

2. Florentin Smarandache, Neutrosophic Masses & Indeterminate 

Models. Applications to Information Fusion, Proceedings of the International 

Conference on Advanced Mechatronic Systems [ICAMechS 2012], Tokyo, 

Japan, 18-21 September 2012. 

 

 

 


