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intuitionistic fuzzy set. In this paper, we first delep some similarity measures of neutrosophic sit& will present a method to calculate the
distance betweeneutrosophic sets (NS) on the basis of the Haustladfstance. Then we will use this distance to geriera new similarity
measure to calculate the degree of similarity betw®S. Finally we will prove some properties of the posed similarity measures.

Keywords-Neutrosophic Set, M atching Function, Hausdor ff Distance, Similarity Measure.

I-INTRODUCTION

Smarandache introduced a concept of neutrosophiwtseh has been a mathematical tool for handlirebfems involving
imprecise, indeterminacy, and inconsistent data2]IThe concept of similarity is fundamentally inpant in almost every
scientific field. Many methods have been proposedieasuring the degree of similarity between fuzets (Chen, [11]; Chen
et al., [12]; Hyung, Song, & Lee, [14]; Pappis&Kaapilidis, [10]; Wang, [13]...). But these methae unsuitable for dealing
with the similarity measures of neutrosophic se8JN-ew researchers have dealt with similarity raessfor neutrosophic set
([3, 4]). Recently, Jun [3] discussed similarity asares on interval neutrosophic set (which an m#taof NS) based on
Hamming distance and Euclidean distance and shdveed these measures may be used in decision makiolglems.
Furthermore, A.A.Salama [4] defined the correlatamefficient, on the domain of neutrosophic setsiclv is another kind of
similarity measurement. In this paper we first extéhe Hausdorff distance to neutrosophic set wpiays an important role
in practical application, especially in many visuakks, computer assisted surgery and so on. Alfi@r a new series of
similarity measures has been proposed for neutias@et using different approaches.

Similarity measures have extensive application énesal areas such as pattern recognition, imageepsing, region
extraction, psychology [5], handwriting recognitif8}, decision making [7], coding theory etc.

This paper is organized as follows: Section2 byieflviews the definition of Hausdorff distance ahé neutrosophic set.
Section 3 presents the new extended Hausdorff nitistdoetween neutrosophic sets. Section 4 providesnew series of
similarity measure between neutrosophic sets, sohis properties are discussed. In section 5 aparative study was done.
Finally the section 6 outlines some conclusions.

[I-PRELIMINARIES

In this section we briefly review some definitioausd examples which will be used in rest of the pape
Definition 2.1: Hausdorff Distance

The Hausdorff distance (Nadler, 1978) is the imar distance of a set to the nearest point inother set. More formal
description is given by the following

Given two finite sets A={a..., a} and B = {by, ..., y}, the Hausdorff distance H (A, B) is defined as:

H (A, B) = max {h (A, B), h (B, A)}
where
H (A, B) = max mind (a, b)
acA beB

a and b are elements of sets A and B respectiddlg; b) is any metric between these elements.
The two distances h (A, B) and h (B, A) are cali@@cted Hausdorff distances



The function h (A, B) (the directed Hausdorff diste from A to B) ranks each elemeffitA based on its distance to the
nearest element of B, and then the largest raskeld element (the most mismatched element of Adiipe the value
of the distance. Intuitively, if h(A, B) = c, thezach element of A must be within distance c of seteenent of B, and
there also is some element of A that is exactlyadise ¢ from th@earest element of B (the most mismatched element).
In general h (A, B) and h (B, A) can attain verffatient values (the directed distances are not sgiriao).

Let us consider the real space R, for any two uaterA= [a,a] and B= [k,b,], the Hausdorff distance H(A,B) is given
by

H (A, B) =max {la; — by, lay — by}

Definition 2.2 (see [2])Let U be an universe of discourdden the neutrosophic set A is an object havingfdhe A = {< x:
Taw.lac:Fax >X € U}, where the functions T, I, F : 8]70,1'[ define respectively the degree of membershipTgaith) , the
degree of indeterminacy, and the degree of non-reeship (or Falsehood) of the elemere ¥ to the set A with the condition.

_O S TA(X) + IA(X) + FA(X) S 3+.
From philosophical point of view, the neutrosopsét takes the value from real standard or non-atansuibsets of §,17.
So instead of P,1 we need to take the interval [0,1] for techniagblications, becausé&Q} 1 [will be difficult to apply in the
real applications such as in scientific and engjiimg problems.

Definition 2.3 (see [2]) A neutrosophic set A is contained in another remaphic set B i.e. & B if Vx € U, Ta(X) < Tg(X), 1a(X)
> 1g(X), Fa(x) > Fg(X).
Definition 2.4 (see [2])The complement of a neutrosophic set A is denoyedtand is defined asafx = Taw), 14 = lax, and
F A% = Fag for every x in X.

A complete study of the operations and applicatibneutrosophic set can be found in [1] [2].

In this paper we are concerned with neutrosophis sdose F, I and R values are single points in [0, 1] instead of
subintervals/subsets in [0, 1].

I1l. EXTENDED HAUSDORFF DISTANCE BETWEEN TWO NEUTROSOPHICSETS

Based on the Hausdorff metric, Eulalia Szmidt dadusz Kacprzyk defined a new distance betweaeritionistic fuzzy
sets and/or interval-valued fuzzy sets in[8], tgkinto account three parameter representation (reeship, non-membership
values, and the hesitation margins) of A-IFSs wHidfill the properties of the Hausdorff distanc@seir definition is defined
by:

1 n
Hy(4,B) = = max{liaG) — mp (L vaG) = v (L Ima () = GOl
i=1

whereA = {< X, Ha(X), va(X), Ta(X) >} andB ={< X, Ug(X), va(X), ma(X)>}.
The terms and symbols used in [8] are changedatdhky are consistent with those in this section.

In this paper we are interested in extending theuddarff distance formulation in constructing a neigtance for
neutrosophic set due to its simplicity in the cédtion.

Let X={X1.X, ..., %} be a discrete finite set. Consider a neutrosopkicA in X, where I, lax) Fax) € [0, 1], for every
Xj € X, represent its membership, indeterminacy, amu-membership values respectively denoted by AX{Tax » laxi,
Faci >}

Then we propose a new distance betweenMS and B= NS defined by

1 n
dy(A,B) = HZ max{|Ta(x;) — Tex), Ta(x1) — Igx)|, [Fa(xi) — Fe(xp)[}

Wheredy (4, B) = H (A, B) denote the extenddthusdorff distance between tweutrosophic sets A and B.
Let A, B and C be three neutrosophic detsall x; € X we have:

du(A,B) = H (A, B) =max {| Ty (x;) — Te (x|, |Ia(x:) — Ipx,) |, [Fa(xi) — Fe(x)I}

The same between A and C are written as:

For allx; € X



H (A, C) =max {|Ta(x;) — Tcx)l, Ta(x) — Ic(xi) |, IFa(xi) — Fe(x) 1}

and between B and Cugritten as:

For allx; € X

H (B, €) = max {|Tg(x;) — Tc(x)|, Ilg(xi) — Ic(x;) |, [Fg (%) — Fe(x)[}

Proposition 3.1:

The above defined distaneg; (4, B) between NS A and B satisfies the following propsr{iD1-D4):

(DY dy(4,B) = 0.
(D2) dy (A, B) =0if and only if A= B; for all A, BE NS.
(D3)dy (A, B) =dy (B, A4).
(D4) If AcBCcC, Cisan NS in X, then

dy(A,C) =dy(AB)
And

dy(A,C)=dy(B,C)
Remark: Let A, B € NS, Ac B if and only if, for all xin X

Ta(x) < Tp(xy), Ia(xy) = Ip(x;), Fa(x;) = Fp(x;)

It is easy to see that the defined measdiyf€4, B) satisfies the above properties (D1)-(D3). Therfare only prove (D4).
Proof of (D4) for the extended Hausdorff distabegveen two neutrosophic sets. Since
Ac Bc Cimplies ,forallxinX T,(x;) < Tg(x;) < Te(xy), Ly (x;) = Ig(x;) = 1o (%), Fa(x;) = Fg(x;) = Fe(xy)
We prove thatdy(4,B) < dy(4,0C)
-1 |Ta(x) — Tex)l = Taxi) — Iex)l = [Fa(xi) — Fe(x)l

Then
H (A, C) =|Ta(x;) — Tc(x;)| but we have

() ForallxinX, Ta(x) — Ie(x)| < Ma(x) — Te(xp)|
< |Ta(xi) — T (x|
And ,forallxin X |[Fa(x) — Fp(xi)| < |Fa(xi) — Fc(x)l
< |Ta(xi) — Te(xi)l
(i) ForallxinX, [Ig(x;)— Icx)] < Ta(x) — Ic(xp)|
< |Ta(x) — Te(xi)l
And Sfor allx;in X |Fg(x;) — Fe(x)| < IFa(x)) — Fe(xp)I
< |Ta(xi) — Te(xi)l
On the other hand we haver, allx; in X

(i) |Tax) — Tex)| < |Ta(xi) — Te(xpI
and |Tg(x;) — Te(x)| < [Ta(x;) — Te (x|

Combining (i), (ii), and (iii) we obtain

Thereforefor all x in X

=¥ max {ITa() — Ta G, 1A () — 1506 [ IFAGx) — Fp(xDI} < =X max {| T (%) — TeGl, TaG) — e |, [Fa () — Fe(x) 1}
And
=¥ max {ITa() — TeG) p () = Ie () | IFp () = Fe ()1} < =28 max {ITo () — Tl Ta () = Ie () |, [FaCx) = Fe(x)I}
That is

dy(A,B) <dy(A,C) anddy (B,C) <dy(A,C0C).

ﬁ -If ITa(x) — Te(XD| < [Fa(x) — Fe(X)| < [Ta(x) — Ic(xi)|



Then
H (A, C) =|Ix(x;) — Ic(x;)| but we havédor allx; in X

@ [Ta(xi) — Te(x)| < [Ta(x;) — Te(xi)l
< a(x) = Iex)l
And  |Fa(x) — F(x)| < [Fa(x)) — Fe(x)l
< Ta(x) = Ie(xp)l
® [Te (%) — Te Gl < [TaCxi) — Te(x)I
< Ta(x) — Ie(x)l
And  |Fg(x) — Fc(x)l < [Fa(x;) — Fe (x|
< [Ia(x) — Il
On the other hand we have for:aH x:

© Ta(x) — Ig(x)| < [Ta(x;) — Ie(x)| and
(i) — IeG)| < [TaGi) — TGl

Combining (a) and (c) we obtain:

Therefore for all x; in X

ST max (I Ta(x) — Te(e)l, 1Ma () = s () | IFa(x) = Fg(x)} < 7 ¥ max {ITa(x) — Texl, 1 () = Le(xi) | IFa(x) = Fe(x)l}

And

iZ’l‘ max {|Tg(x;) — Tc(xp)|, [Te(xi) — Ic(xi) |, [Fe(x;) — Fe(x)[} < iZ’l’ max {|Ta(x;) — Tc(x) |, [Ta(x:) — Ic(x) |, [Fa(x;) — Fe(x) [}
That is

dy(A,B) <dy(A,C) anddy,(B,C) < dy(4,0)

Y - i ITa(x) — Te(x)| < [Ta(x) — Ie(x)] < [Fa(x;) — Fe(x)|
Then
H (A, C) =|Fa(x;) — Fc(x;)| but we havéor allx;in X

@ [Ta(x) — Te(xp)| < [Ta(x) — Tc(x)|
< [Fa(x) — Fe(xp)]

and [I5(x) — Igx)| < [Ta(x3) — Ie(xp)|
< |Fa(x)) — Fe(xy)|

) forallxinX |Te(x) — Tcx)| < [Tax;) — Te(x;)]
< |Fa (%) — Fe(xp)]
andfor allx, in X |Ig(x) — Le(x)| < [Ta(xp) — Ic(x)|

< |Fa(x)) — Fc(x)|
On the other hand we hafar allx; in X
© [Fa(x) — Fe(x)| < [Falx) — Fe(x)l and
[Fe(x) — Fe(x)| < [Falx) — Fe(x1)l
Combining (a), (b), and (c) we obtain

Thereforefor all x; in X

St max {|Ta(x) — To G, 11aG) = I5Gx) | IFaGxi) — Fe ()} < -2 max {ITaG) — Te Gl 1aG) = IeGxi) | IFAGx) = FeG)l-
And
=¥ max {ITa(4) — TeG) () = Ie () | IFg () = Fe ()1} < 228 max {|To(x) — TGl Ta () = Ie () |, [Fa(x) = Fe(x)I}
That is
dy(A,B) < dy(A,C) anddy (B, C) < dy(A,C).
Froma, B, and y, we can obtain the property (D4).

3.2 Weighted Extended Hausdorff Distance BetweemoINeutrosophic Sets.

In many situations the weight of the elemenexX should be taken into account. Usually the eleimen



have different importance. We need to considervieght of the element so that we have the following
weighted distance between NS. Assume that the weilgk € X is w; where X={x, Xo,.., X}, w; € [0,1],
i={1,2,3,.., n} and}.} w; =1. Then the weighted extended Hausdorff distanteden NS A and B is defined
as:

dyw(4,B) = X1 w; dy (A(x), B(x;)
It is easy to check thaty,, (A, B) satisfies the four properties D1-D4 defined above.

[VV. SOME NEW SIMILARITY MEASURES FOR NEUTROSOPHIC SETS

The distance measure between two NS is used imf@rtie similarity between neutrosophic sets.

We found in the literature different similarity nsemes, and we extend them to neutrosophic sets, (NS)
several of them defined below:

Liu [9] also gave an axiom definition for the siarity measure of fuzzy sets, which also can beesgad
for neutrosophic sets (NS) as follow:

Definition 4.1: Axioms of a Similarity Measure

A mapping S:NS(XXNS(X)—[0,1], NS(X) denotes the set of all NS in X5{x,,...,X,}, S(A, B) is said
to be the degree of similarity betweeg NS and Be NS, if S(A,B) satisfies the properties of conditso(P1-P4):

(P1) S (A, B) = S (B, A).

(P2) S(A,B) = (1,0,0) =L .If A=B forall A,B € NS.

(P3) St(A,B) = 0,S,(A,B) = 0,Sg(A,B) > 0.

(P4) If AcBCC for all A, B, CE NS, then S (A, BES (A, C) and S (B, C» S (A, C).

Numerical Example:
Let A<B < C.with Ta < Tg < Tc and h=I1g=Ilc and R=Fz=F for each y NS.

For example:

A={x,(0.2,0.5, 0.6); x(0.2,0.4,0.4) }

B={x; (0.2, 0.4, 0.4); x(0.4,0.2,0.3) }

C={x1(0.3, 0.3, 0.4); x(0.5,0.0,0.3) }

In the following we define a new similarity measwfeneutrosophic set and discuss its properties.

4.2 Similarity Measures Based on the Set —Theordtaproach.

In this section we extend the similarity measuneifituitionistic and fuzzy set defined by Hung avidng
[16] to neutrosophic set which is based on set+dtenapproach as follow.

Definition 4.2 Let A,B betwo neutrosophic sets in X={Xo,.., X}, if A = {< X, T a(X)), 1a(X), Fa(x;) >} and B=
{< X, Ts(X), Is(x), Fs(X;) >} are neutrosophic values of X in A and B redpeely, then the similarity
measure between the neutrosophic sets A and Bearndluated by the function

For all x in X
S(A,B) = (TN [M yin

Max(Ta(x),Tp(x)

S;(AB)=1-03Y [M])/n

Max(14(x).Ip(x))

Se(4,B)=1-CF [mm(FA(xl)FB(xl))])

Max(Fa(x),Fp(x;))
and S(4,B) = (Sr(4,B),S,(4,B),S:(4,B))  eq. (1)
where

St (A, B) denote the degree of similarity (where we takey dimé T's).

Si(A, B) denote the degree of indeterminate similarity (vwhee take only the I's).
Sk (A, B) denote degree of nonsimilarity (where we take anéyF's).

Min denotes the minimum between each element ahd B.

Max denotes the minimum between each element ofd\Ba

Proof of (P4) for theeq. (1).



Since AcBcC implies, for all x, in X

Ta(x;) < Tp(xy) < Te(x), 1o () = Ig(xy) = Ic(xy), Falxy) = Fp(x) = Fe(x;)
Then, for all xin X

min(T,(x;), T (x))  Ta(x;)
Max (T, (x), Tg (x))  Tp(x)
min(T,(x), Te(x))  Ta(x;)
Max(T,(x), Te (%))  Te(x)
min(TB(xi)'Tc(xi)) _ Tp(x;)
Max(Ty(x;), Tc(x;)) C Te(x)

Thereforefor all x in X
Tata) _ Tt | Tal)-Tp(xy) < Tp(xi) (1)
T(;(xi) T(;(xi) T(;(xi) - T(;(xi)

(sinceT,(x;) < Tg(x;))
Furthermorefor all x in X

min(T4(x;),Tp(x;)) - min(T 4(x),T¢(x;)) @)
Max(Ta(x;),Tp(x)) — Max(T4(x).T¢(x;))

Ta(xi) > Talxd) Ta(x;)
Tp(xi) — Tc(xi)

or Tp(x;) < Te(x:)
(sinceTc(x;) = Tp(x;) )
Inequality (2) implies that, for all,xn X

Ta(xi) _ Ta(xi)

Tc(xq) = Tp(x;) (3
From the inequalities (1) and (3), the property)(®4S5;(4, B) = Sr(4, C) is proven.
In a similar way we can prove th&t(4, B) andS(4, B).

We will to prove thas; (A, C) = S;(A, B). For allxe X we have:

L min(IA(xi)Jc(xi)): TG o 4 1BG)
SI(A‘ C) =1 Max(14(x).Ic(xp)) 1 Lalx) — ! laCxr)
Sincel(x;) < Iz(x;)

Similarly we proveSg(4, C) = Sz(4, B) for all x in X

SAAC)=1— min(FA(xi).Fc(xi)):1 _ Fclx) >1— Fg(x;)
#( ) Max(F4(x;),F¢(x;)) Falxy) — Fp(x;p)

SinceF¢(x;) < Fg(x;)
Then S(A, C)<S(A, B) where S(A,C)=86+(A, C), S;(A,C), Sg(A,C)) and
S (A, B) = 61(A,B), S1(A, B), Sk(A, B)).
In a similar way we can prove th&t(B, C)= S (A, C). ITACBCcC therefore S (A, B) satisfies (P4) of definitiol 4
By applying eq. (1), the degree of similarity betwéem neutrosophic sets (A, B), (A, C) and (B, C). are

S(A, B) X(S+(4, B), S;(4,B), Sz(4,B))=(0.75, 0.35, 0.30)

S (A, C) =(S7(4,0), S;(4,0), Sz(4,C)=(0.53, 0.7, 0.30)

S (B, C) =(S+(B, (), S;(B, (), Sx(B,C))=(0.73, 0.63, 0)

Then eq. (1) satisfies property A, C) < S(A, B) and S(A, C)< S(B, C).

Usually, the weight of the element & X should be taken into account, then we presemtfdhowing weighted similarity
between NS. Assume that the weight o X={1,2,...,n} is w; (i=1,2,..., n) when we [0,1] > w; = 1.

Denote ST(4,B) = XY w [mm(TA(xl) TB(xl))])

Max(TA(xl) TB(xl))

sta,B)=1-CYw [M])/n

Max(140x),Ip(x;))

S,f,(A, B)=1- (211\/ _ [mm(FA(xl) FB(xl))])

Max(FA(xl) FB(XL))

and $,,(4,B) = ( Sy, ((4,B), S\((4,B), S;,((4,B))



It is easy to check th&, (4, B) satisfies the four properties P1-P4 defined above.

4.3 Similarity Measure Based on the Typel Geomelistance Model
In the following, we express the definition of slarity measure between fuzzy sets based on the Inobde
geometric distance proposed by Pappis and Karagdisgih [10] to similarity of neutrosophic set.

Definition 4.3: Let A,B betwo neutrosophic sets in X={XXo,..., %}, if A = {< X, T a(Xi), 1a(Xi), Fa(x;) >} and
B= {< x, Ts(X), Is(X), Fs(X;) >} are neutrosophic values of X in A and B redpeely, then the similarity
measure between the neutrosophic sets A and Bearndluated by the function

For all x in X

Ta(x:) — Tg(x;

LT(A,B)=1—Z,:| a(Xi) B(Xi)|

LI(Ta(x) + Tg(xi))
2TIAx) — Ig(x)]
21Uax) + Ig(x1)

_ YHFa(x)- Fp(xp)l
Lr(4,B) = SE(FAGe)+ Fp(xp)) and
L(A,B) = (Ly(A,B), L;(A,B), Lg(A,B)) eg. (2)
We will prove this similarity measure satisfies theperties 1-4 as above. The property (P1) for the

similarity measure eq. (2) is obtained directlynfirthe definition 4.1.

Proof: obviously, eq. (2) satisfies P1-P3-P4 ofrdébn 4.1. In the following L (A, B) will be proed to satisfy (P2) and (P4).
Proof of (P2) for the eq. 2

For all xin X

L;(A,B) =

YHTAGD— Tei)I _
(Ta(xi)+ TB(X))

o |Ta(xi)) — Tg(x)| =0
o Ta(x;) = Tg(x;)

PULINCIERITED] _
TUaG)D+ IB(x1))

o [Ia(x) — Igx)| =0 o Ix(x5) = Ig(x1)

SHFAx)— Fp(x))l
Lo(A B) = 0 < 2FAGD-FeODl _
F(AB) =0 < Gn g 0T Feou)

o [Fa(x)) — Fe(xp)| = 0 © Fa(xy) = Fp(x)
Then L(A,B) = (Lt(A, B), Li(A,B), Lg(A,B)) = (1, 0, 0)if A=B for all A, B € NS.
Proof of P3 for the eq .(2) is obvious.

Firstofall,L;(4,B) =1 &

LI(A,B) = O A d

By applying eq.2 the degree of similarity betweenrthatrosophic sets (A, B), (A, C) and (B, C) are:
L (A, B) =(L+(A,B),L;(A4,B),Lr(4,B))= (0.8, 0.2, 0.17).

L (A, C)=(L:(4,C),Li(AC) Ls(A C))=(0.67,0.5,0.17).

L (B, C)=(Ly(B,C),L;(B,C),Lg(B,C))=(0.85, 0.33, 0).

The result indicates that the degree of similabtween neutrosophic sets A andeB[0, 1]. Then
Eq.(2patisfies property P4(A, C) < L(A, B) and L(A, C)< L(B, C).

4.4 Similarity Measure Based on the Type 2 GeonteDistance model
In this section we extend the similarity measureppsed by Yang and Hang [16] to neutrosophic set as
follow:

Definition 4.4: Let A, B betwo neutrosophic set in X={xX,,.., X%.}, if A = {< X, T a(Xi), 1a(X;), Fa(Xi) >} and B=
{<x, Te(X), Is(X), Fe(X;)) >} are neutrosophic values of X in A and B redpesly, then the similarity
measure between the neutrosophic set A and B candeated by the function:

For all x in X

T )—T i
My (A, B):%ZT(l — 'A(X)Z—B(x)')_
L ILa () —Tp (x|
M, (A, BF;Z?(%) _

1 |Fa(xi)—Fp(xi)l
My (A, B)= - TT (-2,

And Mt;r = (Mt (A, B),M;(A,B), Mr(A,B)) for all i={x1,X2,.., %} €q. (3)



The proofs of the properties P1-P2-P3 in definitlad (Axioms of a Similarity Measure) of the simitg measure in
definition 4.4 are obvious.

Proof of (P4) for the eq. (3).

Sincefor all x; in X

Ty(x;) < Tp(x) < Te(xp), Ly (x) = Ig(x;) = I (x;), Fa(x;) = Fp(x;) = Fe(x;) Then for all xin X

1- | Tc(x;:) — Ta(x)I —1— (Te(x3) — Ta(x1)

2 2
—-1- ((TC(Xi);TB(xi)) + (TB(Xi);TA(Xi)))
<1-— ((Tc(xi)—TB(xi)))

2

—1— ITc&i)-Te X))

2

Then M;(A, C) < M,(B, C).
Similarly, Mt(A, C) < M¢(A, B) can be proved easily.
For M;(A, C) = M;(B, C) andMg(A, C) = Mg(B, C) the proof is easy.
Then by the definition 4.4, (P4) for definition 4i& satisfied as well.
By applying eq. (3), the degree of similarity betwéesm neutrosophic sets (A, B), (A, C) and (B, C). are
M(A,B)=( M7 (A.B), M; (A,B), My (A,B))=(0.95 , 0.075 , 0.075)
M(A,C)= ( My (A,C), M; (A,C), My (A,C))=(0.9, 0.15 , 0.075)
M(B,C)= (M (B,C),M; (B,C),M; (B,C))=(0.9, 0.075 , 0)

Then eq. (3) satisfies property:P4
M (A, C) <M (A, B)and M (A, C) < M (B, C).

Another way of calculating similarity (degree) afutrosophic sets is based on their distance. Tdrerenore approaches on
how therelation between the two notions in form of a fuoetcan be expressed. Two of them are presentedvi@h section
4.5 and 4.6).

4.5 Similarity Measure Basedn the Type3 Geometric Distance Model.
In the following we extended the similarity measpreposed by Koczy in [15] theutrosophic setNS).

Definition 4.5: Let A, B betwo neutrosophic sets in X={},.., %}, if A = {< X, T a(Xi), Ia(Xi), Fa(x;) >} and
B= {< x, Tg(X), Is(Xi), Fs(X;) >} are neutrosophic values of x in A and B redpely, then the similarity
measure between the neutrosophic sets A and Bearndluated by the function

1

Ht(A B) = TaaB denotes the degree of similarity.
H;(AB)=1- m denotes the degree of indeterminate similarity.
Hp(A,B) =1 —m denotes degree of non-similarity

where dZ (A, B), dL (4, B), anddf (A, B) are the distance measure of two neutrosophicAsatsl B.
For all x in X

d%(A,B) = max{|Ta(x;) — Tg(xp)I}.

di.(A, B) = max{ |[I5(x;)) — Ip(x)|}.

d; (A, B) = max{ |Fa(x;) — Fp(xp|}.

and H (A, B) = H;(A B), H;(A B), Hz(A B)). Eq. (4)

By applying the Eq. (4) in numerical example weaitx
d,.(4,B)=(0.2,0.2,0.2 then H(A, B) = (0.83, 0.17, 0.17).
d,(4,C)=(0.3,0.4, 0.}, thenH (A, C) =(0.76, 0.29, 0.17).
d,(B,C)=(0.1,0.2, 9, thenH (B, C) = (0.90, 0.17, 0).

It can be verified that H (A, B) also has the prtipsr(P1)-(P4).



4.6 Similarity Measure Based on Extended Hausdoiffistance

It is well known that similarity measures can baemated from distance measures. Therefore, we may u
the proposed distance measure based on extendeddiffudistance to define similarity measures. Blase
the relationship of similarity measures and distameceasures, we can define a new similarity measure
between NS A and B as follows:

N(A,B) =1—-dy(A,B) eq.(5)

whered, (A, B) represent the extended Hausdorff distance betwesrirosophic set®NG) A and B.

According to the above distance properties (D1-D45.easy to check that the similarity measure(Bj satisfies
the four properties of axiom similarity defined4rn

By applying the eq. (5) in numerical example weadrin

N(4,B) =0.8
N(4,C) =0.7
N(B,C) =0.85

Theneq. (5)satisfies property P4
N(A, C) < N(A, B) and N(A, C)< N(B, C)

Remark: It is clear that the larger the value of N(A, Bhe more the similarity between NS A and B.
Next we define similarity measure between NS A Bngsing a matching function.

4.7 Similarity Measure of two Neutrosophic Setsd$ga on Matching Function.

Chen [11] and Chen et al. [12] introduced a maigHiimction to calculate the degreesimilarity between fuzzy sets. In the
following, we extend the matching function exteadieal with the similarity measure of NS.

Definition 4.7 Let F and E be two neutrosophic sets over U. Thersimilarity between them, denoted by K (F, GKerc
has been defined based on the matching function as:

For all x in X

21 (Tp () * T () + Ip () * I (%) + Fp(x;) * Fg(x;))
max (BT ((Tr(x))? + (Ur(x))* + (Fp(x;))2), X1 (T (x))? + (g (x))* + (Fg(x))?))

Eq. (6)

Considering the weight;v& [0, 1] of each element & X, we get the weighting similarity measure betwé&khas:

K(F,G) ZKF,G =

For all x in X
2 wi(Tp(x) - Te () + Ip () * I (%) + Fp(x;) - Fg(x;))
max (X7 w; ((Tr (x))? + (Ip(x))? + (Fp(x))2), X7 wi (T (x:))? + (g (x))? + (Fa (x:))?))
Eq. (7)

Ky (F,G) =

If each element;g X has the same importance, then Eq.(7) is redtmed. (6). The larger the value I6(F, G) the more
the similarity between F and G. H&€F, G) has all the properties described as listed ird#fanition 4.1.

By applying the eq. (6) in numerical example wéadi
K(A,B) =0.75 ,K(A,C) =0.66, andK (B,C) = 0.92
Then Eq. (6) satisfies property P4: K(A, & K(A, B) and K(A, C) < K(B, C)

V. COMPARISON OF VARIOUS SIMILARITY MEASURES

In this section, we make a comparison among siitlareasures proposed in the paper. Table | shew th
comparison of various similarity measures betw&anrneutrosophic sets respectively.

Table I. Example results obtained from the similarity measuretween neutrosophic sets A, B and C

A B A, C B, C

Eq. (1) (0.75, 0.35, 0.3) (0.53, 0.7, 0.3) (0.73, 0.63, D)
Eq. (2) (0.8,0.2,0.17) (0.67, 0.5, 0.17) (0.85, 0.33, 0)
Eq. (3) (0.95, 0.075, 0.075) (0.9, 0.15, 0.075 (0.9, 0,@5
Eq. (4) (0.83,0.17, 0.17) (0.76, 0.29, 0.17 (0.9, 0.37,
Eq. (5) 0.8 0.7 0.85

Eq. (6) 0.75 0.66 0.92




Each similarity measure expression has its own uregag they all evaluate the similarities in nestphic sets, and they can
meet all or most of the properties of similaritgasure

In definition 4.1, that is P1-P4. It seem from thble above that from the results of similarity s\@@s between neutrosophic
sets can be classified in two type of similantgasures: the first type which we called “crispikirity measure” is illustrated by
similarity measures (N and K) and the second tyglkeed “neutrosophic similarity measures” illusedtby similarity measures
(S, L, M and H). The computation of meashre N andS are much simpler than that &f, M andK

CONCLUSIONS

In this paper we have presented a new distancedcatktended Hausdorff distance for neutrosophic sets"
or "neutrosophic Hausdorff distance”, then we dsdim new series of similarity measures to calculate
similarity between neutrosophic sets. It's hopeattiour findings will help enhancing this study on
neutrosophic set for researchers.
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