Introduction to Neutrosophic Automata

International Webinar on '"Neutrosophic Sets"
SSN College of Engineering

Kavikumar Jacob

Associate Profesor of Mathematics
Faculty of Applied Sciences & Technology
Universiti Tun Hussein Onn Malaysia
Malaysia

August 3, 2020



Fuzzy Sets

Fuzzy Logic
@ logic of graded truth or intermediate truth
@ provides a way to express subtle nuances in reasoning
@ successful in modeling uncertainty

Th original Zadeh’s definition of a fuzzy set is:

o fuzzy subset of a set A is a function p : A — [0, 1], where [0,1]
is the real unit closed interval.

@ For z € A, the membership degree p4(x) is interpreted as the
degree of satisfaction of elements to the property corresponding
to the collection.

o if ua(z) takes values only in the set {0,1}, then it is treated
as the ordinary crisp subset of A.



Interval-valued Fuzzy Sets!(IVFS)

IVES represent the membership degrees with interval values in [0,1]
in order to reflect the uncertainty in assigning membership degrees.

An IVF set A is formally defined by membership functions of the form

A={(o [pa(@), mx(@)]) le € X}, (@), uia(@) € [0,1]

Basic Operations:

ey o = | () = max(p ), ()
paus () = [paup (@), paup ()] = { Maui(x) = maX{Ma(ﬂf),Mg(ﬂﬁ)}
il ). " I ug(T) = min{yy(z), pl(2)}
tanB(@) = [wanp (), wanp ()] = { Mﬁmi(x) = mm{ua(x)?ltg(m)}

!L.Zadeh. The concept of a linguistic variable and its application to
annroximate reaconine Part 1 Information Science & (1075) 100.-240



Intuitionistic Fuzzy Sets?(IFS)

IFS represent the membership degrees that are a pair of membership
degree and non-membership degree.

An IFS set A is formally defined by membership functions of the form
For every z € X, 0 < pua(z) +va(x) <1,

A= {(z,pa(z),va(z)) |z € X}, pa(z),valz) € [0,1].

@ The amount

ma(r) =1~ (na(r) +va(z))

is called the hesitation part or intuitionistic index, which may
cater to either membership degree or non-membership degree.

@ It means that the IFS are a representation to express the un-
certainty in assigning membership degrees to elements.

2K.T.Atanassov. Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20
(1986), 87-96.



Intuitionistic Fuzzy Sets (IFS)

Basic Operations:

_ _ ) paup(e) = max{pa(z), pp(e)}
AB = U v (), vavn(2))} = { vaus (@) = min{va(e),vs(e)}

min{pa(z), pp(z)}
max{va(x),vp(z)}

ANB = {(z, panp(r),vanB(x))}

{ pAnB ()

VANB (ac)

A — ilx),vilx)x = Haz) = vals)
A={(z,ps(x),vi(z)lz € X} { yﬁ(m):/m(m)



Bipolar Fuzzy Sets®(BFS)

o BFS represent the membership degrees (MD) ranges from the
interval [-1,1] which is extended from [0,1].

o MD: pua(z) € (0,1] — elements somewhat satisfy the property.

@ MD: pa(x) = 0 — elements are irrelevant to the corresponding
property.

@ MD: pa(x) € [—1,0) — elements somewhat satisfy the implicit
counter-property.

@ Two kinds of representation: canonical and reduced.

3Wen-Ran Zhang, Bipolar fuzzy sets and relations: a computational
framework for cognitive modeling and multiagent decision analysis,
NAFIPS/IFIS/NASA '94. San Antonio, TX, USA, 1994, 305-309.



Bipolar Fuzzy Sets (BFS)

Canonical Representation

Membership degrees are expressed with a pair of a positive mem-
bership value in [0,1] and a negative membership value in [-1,0].

A= {(z, (14 (@), g4 (2))) ] € X}

where
ph(z): X = [0,1] pl(z): X - [-1,0]

Remarks:
o 1k (x) # 0 and p¥ (x) = 0 — positive satisfaction.
o ki (z) =0 and pf () # 0 - satisfies counter-property.
o ki (z) # 0 and pl (z) # 0 — overlaps property



Bipolar Fuzzy Sets (BFS)

Basic Operations:

AUB = {(va,IZUB(x)7N]XUB(~T))} = { M%uBQ@ z min{u%(m),ug(x)}

= {(a, pli g (), kN p(x)} = Ha B
AﬂB—{( nuAﬂB( )7NAOB( ))} { H&ni(fﬂ) :max{ﬂg(x 7#%}7 x}

—~~
8
~

= 22, 1N (z)|z = Hy(e) =
A—{(ac,uA( )aMA( )‘ GX} { M§($):—1—Mg($)



Bipolar Fuzzy Sets (BFS)

Reduced Representation

Membership degrees are presented with a value in [-1,1].
A={(z,i*@)le € X} Wh:X > [-1,1]
Member degree:

" () i 1 (@) = 0
i (@) if () = 0
F(uh(@), 1Y (2)) otherwise

v

where f(uf(x), u (z)) is an aggregation function to merge a pair
of positive and negative membership values into a value.



IVES vs. IFS

@ IFS can be regarded as another expression for IVFS.

@ Deduce the basic operations of IVFS and IFS have the same
roles, by using the boundary values of IVFS such as

(@) = pa(e) and W (x) = 1 - va(2)

@ IVFS and IFS have the same expressive power and the same
basic set operations.

@ The intuitionistic fuzzy set representation is useful when there
are some uncertainties in assigning membership degrees.



We can compare BFS with IFS under the conditions

ph(x) = pale)
and

iy (z) =

—va(z)

DA



We can compare

with IFS under the conditions
and

DA



We can compare

and

Q>



We can compare

Q>



We can compare

and

Q>



IFS vs. BFS

positive membership membership degree
satisfies the property A satisfies the property of A

We can compare BES with IFS under the conditions

ph(a) = pa(z)
and
pi (z) = —va(z)
satisfies an implicit satisfies the
counter-property of A not-property A

Both BFS and IFS are the different extensions of fuzzy sets, since
a counter-property is not usually equivalent to not-property of A.



IVES vs. IFS vs. BFS

Element 2 with membership value (0,0)

In BFS, element = does not satisfy both the property and
counter-property of BFS which means that it is indifferent or
neutral.
In IFS, element x does not satisfy both the property and not-
property.

In IVFS, element with the mv (0,0) in IFS has the mv [0,1] in
IVFS which means that no knowledge about the element.

v

The IFS representation is useful when there are some uncer-
tainties in assigning membership degrees.

The BFS representation is useful when irrelevant elements and
contrary elements are needed to be discriminated.



-
Example: Fuzzy concept frog's prey

o IVFS for frog's prey:
frog’s prey={(mosqito,[1,1]), (dragon fly,[0.4,0.7]), (turtle,[0,0]), (snake,[0,0])}

@ IFS for frog's prey:
frog’s prey={(mosgqito,1,0), (dragon fly,0.4,0.3), (turtle,0,1), (snake,0,1)}

@ BFS for frog's prey:
frog’s prey={(mosgito,1,0), (dragon fly,0.4,0), (turtle,0,0), (snake,0,-1)}



In Neutrosophic sets, we can connect an idea with its opposite and
with its neutral and get common parts.

< A > A < non — A >= nonempty set
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Neutrosophic Sets

In Neutrosophic sets, we can connect an idea with its opposite and

with its neutral and get common parts. common part of

the uncommon
/ things

(< A= A < non — A = nonempty set]

It is true in a restricted case because most of the investigation only
considers the dynamics of opposite interacts such as

<A> and <anti— A >

In our everyday life, we not only interact with opposite things, but
with neutrals between them too

< neut — A >

For example, if you fight with a man (so you both are the opposites
to each other), but neutral people around both of you (especially
the police) interfere to reconcile both of you.



Characterisation of Neutrosophic Sets

A neutrosophic set is characterised by
e < A > — a truth-membership function (T)
e < anti-A> ( the opposite of < A =) — an indeterminancy-
membership function (1)
@ < neut-A> (the neutral between < A > and < anti-A>) in-
teract among themselves — a falsity-membership function (F)
where T, | F are subsets of the unit interval [0,1].
e If T, I, F are crisp numbers in [0,1], then we have a single-valued
neutrosophic set.
e If T, I, F areintervals included in [0,1], then we have an interval-
valued neutrosophic set.

Neutrosophic logic introduces a percentage of "indeterminacy" due
to unexpected parameters hidden in some propositions.



Neutrosophic Set*

Definition
Let X be a universe of discourse and A C X. The neutrosophic set
is an object having the form

A={<z,T(x),I(x),F(z) - |Vr € X}
where the functions can be defined by
T,I,F:X —[0,1]
with the condition

0<T(z)+I(z)+ F(z) <3.

*Smarandache, F. (1999). A unifying field in logics: Neutrosophy, neutro-
sophic probability, set and logic. Rehoboth, VA: American Research Press.



Overview of Fuzzy Automata

Concept of fuzzy automata
@ natural generalization of the concept of non-deterministic au-
tomata
Mockor, Bélohlavek, Li and Pedrycz
@ Mockor-fuzzy automata represented as nested systems of non-
deterministic automata
@ Bélohlavek-deterministic automata with fuzzy sets of final states
represented as nested systems of deterministic automata
@ Li and Pedrycz-fuzzy automata represented as automata with
fuzzy transition relations taking membership values in a lattice
ordered monoid



Non-deterministic automaton

e atuple A= (A, X,0,0,7)
A # (0 - set of states, X # () - input alphabet
JCAXxXxA (6 CAxA)- transition relation
(a,z,b) € 0 < (a,b) € 0y, for all a,be A, z € X
o C A, 7 C A - sets of initial and terminal states

Transition relations, sets of initial and terminal states

z,Y x @ represented by Boolean matrices
T and vectors:
1 10 0
start — y Sp=10 1 11,6,= 1
100 1
T Y

11
0 0
0 0
[100 {]




Fuzzy Automata

o 6-tuple o = (Q,%,4,R, Z,w)
Q is a finite set of states, Q@ = {q1,¢2, " ,qn}

Y is a finite set of input symbols, ¥ = {a1,as, - ,a,}.
R € Q is the (possibly fuzzy) start state of Q.
Z is a finite set of output symbols, Z = {b1,bs,- - ,b}.

§:Q x X xQ — (0,1] - fuzzy transition function
w : Q — Z- is the output function which is used to map a
(fuzzy) state to the output set.

v

@ associated with each fuzzy transition, there is a membership
value in (0, 1], i.e. the weight of the transition.

@ the transition from state ¢; to state ¢; upon input a; is denoted
by d(q:, ak, qj)-



Neutrosophic Automata

e Tahir & Khan, 2016
- the interval neutrosophic finite switchboard state machine
@ Tahir, 2018

- concepts of single-valued neutrosophic finite state machine and
switchboard state machine

@ Kavikumar et al, 2019

- concepts of neutrosophic general fuzzy automata and neutro-
sophic general switchboard automata

o Kavikumar et al, 2020

- concept of distinguishabilty and inverse of neutrosophic finite
automata



Neutrosophic Automata

@ 5-tuple 4 = (Q,%,Z,6,0)
Q is a finite set of states, Q = {q1,492, - ,qn}
Y is a finite set of input symbols, ¥ = {1, 22, -+ ,x,}.
Z is a finite set of output symbols, Z = {y1,y2, -+ ,yn}-
0 is a neutrosophic subset of @ x X x @ which represents neu-
trosophic transition function.
o is a neutrosophic subset of Q x ¥ x Z which represents neu-
trosophic output function.

-




Neutrosophic Automata

Neutrosophic Automaton: Neutrosophic Transition Function

0 =< 51,52,53 -

is a neutrosophic subset of ) x ¥ x @ such that the neutrosophic
transition function

0:QxXxQ—1[0,1] x[0,1] x [0, 1]

is defined as follows: Vg;,q; € Q and z1,22 € %,

1 ifg =g
61(qi, A, g5) = 0 ifg # ‘Ij'
0 if ;=g
d2(qi, A, qj) = 1 ifg # qj-
0 ifg=gqj
03(qi, A, q;) = 1 if g # qj-




Neutrosophic Automata

Neutrosophic Automaton: Neutrosophic Transition Function

61(@5,@'1332, QJ) = \/ {51(%755177") A\ 61(T7 m27QJ)}
reqQ

82(qi, w12, q5) = J\ {02(qi, x1,7) V ba(r, 22, ¢5)}
reqQ

83(qi, 122, q5) = /\ {03(qi, x1,7) V 83(r, 32, 5)}
reqQ




Neutrosophic Automata

Neutrosophic Automaton: Neutrosophic Output Function

o =<01,02,03 >~

is a neutrosophic subset of @ x X X Z such that the neutrosophic
output function

0c:QXXXZ—->LXLxL

is defined as follows: V¢;,q; € Q,z1,22 € ¥ and y1,y2 € Z,

@ )= 1 ifoy =y =A
01\4i, T1,95) = 0 ifey =Ayr #AAorzy ANy =A

@ )= 0 if o1 =y1 = A
02\9i, 11, 95) = 1 ifer=Ay1 #Aorzy Ay =A

, N 0 if.’L‘1:y1:A
0'3(%,:171’%) - 1 |fx1 :A7y1 #Aor I #Aﬁljl :A




Neutrosophic Automata

Neutrosophic Automaton: Neutrosophic Output Function

o1(qi, w12, 192) = \/ {01(@i, 21, 91) A61 (a5, x1,7) Ao (r, z2,2)}
reQ

oa(qi, w122, y192) = )\ {02(ai, 21, 91) V2(¢s, @1, 7) Voo (r, m2, 32) }
reqQ

o3(qi, w122, y192) = /\ {03(ai, 21, 91) VO3(¢s, 21, 7) Vos(r, x2,52)}
reQ

4




-
Distinguishable

N =(Q,%,Z,6,0) and N = (Q', X', Z,0',0") be a neutrosophic
finite automata.

a pair of states (g, ¢’) is indistinguishable if

o(q,z,y) =0o'(d,2',y)

forevert ¢; €Q, ¢, € Q andforallz €3, ye Z.



Rational

State ¢ € @Q is said to be rational

When the inputs {z,} € X are ultimately periodic
sequence which yields an ultimately periodic sequence
of outputs {y,} € Z

U(Q7 {CL‘n}, {yn}) >0= {U(anxmyn)} >0

where ¢; = ¢ and for n > 2, 6(gn—1, Tn—1,qn) > 0.
@ It is clear that if ¢ is a rational state of a neutrosophic finite
automata and p is indistinguishable from g, then p is rational.

o To check the given ¢ € (@ is rational state it is enough to
assume that the sequence {z,,} € ¥ is an infinite.
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