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PREFACE

In this book we introduce mainly three new classes of linear
algebras; neutrosophic group linear algebras, neutrosophic
semigroup linear algebras and neutrosophic set linear algebras.
The authors also define the fuzzy analogue of these three
structures.

This book is organized into seven chapters. Chapter one is
introductory in content. The notion of neutrosophic set linear
algebras and neutrosophic neutrosophic set linear algebras are
introduced and their properties analysed in chapter two. Chapter
three introduces the notion of neutrosophic semigroup linear
algebras and neutrosophic group linear algebras. A study of
their substructures are systematically carried out in this chapter.

The fuzzy analogue of neutrosophic group linear algebras,
neutrosophic semigroup linear algebras and neutrosophic set
linear algebras are introduced in chapter four of this book.
Chapter five introduces the concept of neutrosophic group
bivector spaces, neutrosophic bigroup linear algebras,
neutrosophic semigroup (bisemigroup) linear algebras and
neutrosophic biset bivector spaces. The fuzzy analogue of these
concepts are given in chapter six. An interesting feature of this
book is it contains nearly 424 examples of these new notions.
The final chapter suggests over 160 problems which is another
interesting feature of this book.



Finally it is an immense pleasure to thank Dr. K.
Kandasamy for proof-reading and Kama and Meena without
whose help the book would have been impossibility.

W.B.VASANTHA KANDASAMY
FLORENTIN SMARANDACHE
KILANTHENRAL



Chapter One

INTRODUCTION

In this chapter we assume fields to be of any desired
characteristic and vector spaces are taken over any field. We
denote the indeterminacy by ‘I’ as i will make a confusion, as it

denotes the imaginary value, viz. i* = —1 that is V-1 =i. The
indeterminacy I is such that I . I=1%=1.

In this chapter we just recall some of the basic neutrosophic
structures used in this book.

In this chapter we recall the notion of neutrosophic groups.
Neutrosophic groups in general do not have group structure. We
also define yet another notion called pseudo neutrosophic
groups which have group structure. As neutrosophic groups do
not have group structure the classical theorems viz. Sylow,
Lagrange or Cauchy are not true in general which forces us to
define notions like Lagrange neutrosophic groups, Sylow
neutrosophic groups and Cauchy elements.

We just give the basic definition alone as we use it only in
the construction of neutrosophic group vector spaces and
neutrosophic group linear algebras which are analogous



structures of neutrosophic set vector spaces, neutrosophic semi
group vector spaces, neutrosophic set linear algebras and
neutrosophic semigroup linear algebras.

DEFINITION 1.1: Let (G, *) be any group, the neutrosophic
group is generated by I and G under * denoted by N(G) = {(G
vl *L

Example 1.1: Let Z,= {0, 1, 2, ..., 6} be a group under addition
modulo 7. N(G) = {(Z; U I), “+> modulo 7} is a neutrosophic
group which is in fact a group. For N(G)={a+bl |a,b € Z;} is
a group under ‘+’ modulo 7. Thus this neutrosophic group is
also a group.

Example 1.2: Consider the set G =Zs\ {0}, G is a group under
multiplication modulo 5. N(G) = {(G v I), under the binary
operation, multiplication modulo 5}. N(G) is called the
neutrosophic group generated by G U 1. Clearly N(G) is not a
group, for I’ = I and I is not the identity but only an
indeterminate, but N(G) is defined as the neutrosophic group.

Thus based on this we have the following theorem:

THEOREM 1.1: Let (G, *) be a group, N(G) = {(G U 1), *} be
the neutrosophic group.

1. N(G) in general is not a group.
2. N(G) always contains a group.

Proof: To prove N(G) in general is not a group it is sufficient
we give an example; consider (Zs\ {0} U ) =G ={1,2,4, 3,1,
21,41, 3 1}; Gis not a group under multiplication modulo 5. In
fact {1, 2, 3, 4} is a group under multiplication modulo 5.

N(G) the neutrosophic group will always contain a group
because we generate the neutrosophic group N(G) using the

group G and I. So G < N(G); hence N(G) will always contain a
#*
group.



Now we proceed onto define the notion of neutrosophic
subgroup of a neutrosophic group.

DEFINITION 1.2: Let N(G) = (G U 1) be a neutrosophic group
generated by G and I. A proper subset P(G) is said to be a
neutrosophic subgroup if P(G) is a neutrosophic group i.e. P(G)
must contain a (sub) group.

Example 1.3: Let N(Z,) = (Z, v I) be a neutrosophic group
under addition. N(Z,) = {0, 1, I, 1 + I}. Now we see {0, [} is a
group under + in fact a neutrosophic group {0, 1 + I} is a group
under ‘+’ but we call {0, I} or {0, 1 + I} only as pseudo
neutrosophic groups for they do not have a proper subset which
is a group. So {0, I} and {0, 1 + I} will be only called as pseudo
neutrosophic groups (subgroups).

We can thus define a pseudo neutrosophic group as a
neutrosophic group, which does not contain a proper subset
which is a group. Pseudo neutrosophic subgroups can be found
as a substructure of neutrosophic groups. Thus a pseudo
neutrosophic group though has a group structure is not a
neutrosophic group and a neutrosophic group cannot be a
pseudo neutrosophic group. Both the concepts are different.

Now we see a neutrosophic group can have substructures which
are pseudo neutrosophic groups which is evident from the
following example:

Example 1.4: Let N(Zs) = (Z4 v I) be a neutrosophic group
under addition modulo 4.{Z, w 1)={0,1,2,3, 1,1 +1, 2,31, 1
+21+3L2+1L2+2[,2+3,3+1,3+2I3+31}. oZy U
1) =4

Thus neutrosophic group has both neutrosophic subgroups and
pseudo neutrosophic subgroups. For T = {0, 2, 2 + 2I, 2]} is a
neutrosophic subgroup as {0 2} is a subgroup of Z; under
addition modulo 4. P = {0, 2I} is a pseudo neutrosophic group
under ‘+’” modulo 4.



DEFINITION 1.3: Let N(G) be a neutrosophic group. The
number of distinct elements in N(G) is called the order of N(G).
If the number of elements in N(G) is finite we call N(G) a finite
neutrosophic group, otherwise we call N(G) an infinite
neutrosophic group, we denote the order of N(G) by o(N(G)) or
IN(G)|.

DEFINITION 14: Let S be a semigroup, the semigroup
generated by S and I i.e. S U I denoted by (S U 1) is defined to
be a neutrosophic semigroup.

It is interesting to note that all neutrosophic semigroups contain
a proper subset, which is a semigroup.

Example 1.5: Let Z;, = {0, 1, 2, ..., 11} be a semigroup under
multiplication modulo 12. Let N(S) = (Z;; U I) be the
neutrosophic semigroup. Clearly Z;, < (Z;, U 1) and Z, is a
semigroup under multiplication modulo 12.

Example 1.6: Let Z = {the set of positive and negative integers
with zero}, Z is only a semigroup under multiplication. Let
N(S) = {{Z v I)} be the neutrosophic semigroup under
multiplication. Clearly Z < N(S) is a semigroup.

Now we proceed on to define the notion of the order of a
neutrosophic semigroup.

DEFINITION 1.5: Let N(S) be a neutrosophic semigroup. The
number of distinct elements in N(S) is called the order of N(S),
denoted by o(N(S)).

If the number of elements in the neutrosophic semigroup N(S) is
finite we call the neutrosophic semigroup to be finite otherwise
infinite. The neutrosophic semigroup given in example 1.5 is
finite where as the neutrosophic semigroup given in example
1.6 is of infinite order.

Now we proceed on to define the notion of neutrosophic
subsemigroup of a neutrosophic semigroup N(S).
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DEFINITION 1.6: Let N(S) be a neutrosophic semigroup. A
proper subset P of N(S) is said to be a neutrosophic
subsemigroup, if P is a neutrosophic semigroup under the
operations of N (S). A neutrosophic semigroup N(S) is said to
have a subsemigroup if N(S) has a proper subset, which is a
semigroup under the operations of N(S).

It is interesting to note a neutrosophic semigroup may or may
not have a neutrosophic subsemigroup but it will always have a
subsemigroup.

Now we proceed on to illustrate these by the following
examples:

Example 1.7: Let Z"U {0} denote the set of positive integers
together with zero. {Z" U {0}, +} is a semigroup under the
binary operation ‘+’. Now let N(S) =(Z" U {0} U {I}). N(S) is
a neutrosophic semigroup under ‘+’. Consider (2Z" U I) =P, P
is a neutrosophic subsemigroup of N(S). Take R = (3Z" U I); R
is also a neutrosophic subsemigroup of N(S).

DEFINITION 1.7: Let K be the field of reals. We call the field
generated by K U I to be the neutrosophic field for it involves
the indeterminacy factor in it. We define [ =1, 1+ 1= 2l i.e. I
+..+ 1 =nl and if k € K then kI = ki, 0 = 0. We denote the
neutrosophic field by K(I) which is generated by K U I that is
K =K vl) (K vl)denotes the field generated by K and 1.

Example 1.8: Let R be the field of reals. The neutrosophic field
of reals is generated by R and I denoted by (R U I) i.e. R(I)
clearly Rc (R U I).

Example 1.9: Let Q be the field of rationals. The neutrosophic
field of rationals is generated by Q and I denoted by Q(I).

DEFINITION 1.8: Let K(I) be a neutrosophic field we say K(I) is

a prime neutrosophic field if K(I) has no proper subfield, which
is a neutrosophic field.
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Example 1.10: Q(]) is a prime neutrosophic field where as R(I)
is not a prime neutrosophic field for Q(I) = R(I).

Likewise we can define neutrosophic subfield.

DEFINITION 1.9: Let K(I) be a neutrosophic field, P c K(I) is a
neutrosophic subfield of P if P itself'is a neutrosophic field. K(I)
will also be called as the extension neutrosophic field of the
neutrosophic field P.

We can also define neutrosophic fields of prime characteristic p
(p is a prime).

DEFINITION 1.10: Let Z, = {0,1, 2, ..., p — 1} be the prime field
of characteristic p. (Z, U 1) is defined to be the neutrosophic
field of characteristic p. Infact (Z, U 1) is generated by Z, and 1
and (Z, U1)is a prime neutrosophic field of characteristic p.

Example 1.11: 7Z; = {0, 1, 2, 3, ..., 6} be the prime field of
characteristic 7. (Z;, w )= {0, 1,2, ...,6,,2I, ..., 6, 1 + [, 1 +
21, ..., 6+ 61} is the prime field of characteristic 7.

DEFINITION 1.11: Let G(I) by an additive abelian neutrosophic
group and K any field. If G(I) is a vector space over K then we
call G(I) a neutrosophic vector space over K.

Elements of K(I) or (Z, U I) or Q(I) or R(I) will also be
known as neutrosophic numbers.

For more about neutrosophy please refer [10-7, 19, 25-6].
These concepts have good relevance in research, notably
Smarandache’s neutrosophic method which is a generalization
of Hegel’s dialectic, and suggests that scientific research will
progress via studying the opposite ideas and the neutral ideas
related to them in order to have a bigger picture.

12



Chapter Two

SET NEUTROSOPHIC LINEAR ALGEBRA

In this chapter we for the first time introduce the notion of set
neutrosophic vector spaces and set neutrosophic linear algebras
and study their properties.

This chapter has four sections. Section one introduces the
concept of neutrosophic sets. The notion of set neutrosophic
vector spaces are introduced in section two. Section three
introduces the concept of set neutrosophic linear algebras.
Mixed set neutrosophic rational vector spaces and their
properties are discussed in section four.

2.1 Types of Neutrosophic Sets

In this section we introduce a few types of neutrosophic sets
essential to define the notions of set neutrosophic vector spaces
and set neutrosophic linear algebras. Throughout this book set
implies subset of integers or subset of rationals or subset of

13



complex numbers or subset of modulo integers modulo n (n €
N) or subset of reals. By finite set we mean a set S with finite
number of distinct elements in them. If a set S has infinite
number of elements in them, then we say S is of infinite
cardinality.

DEFINITION 2.1.1: Let S = {x;, ..., x,}; n € N; if each x; is a
neutrosophic number say of the form a; + b; I, b; #0, a;, b; € Z
then we call S a pure neutrosophic set of integers or pure
integer neutrosophic subset of pure integer neutrosophic set.

Example 2.1.1: Let S= {5+ 21,7 -3, 15+ 8,-9 + 31, 8§ +
271, 12 — 431, 431, — 501}, S is a pure integer neutrosophic
subset of the pure integer neutrosophic set.

Note: Let PN(Z)={a+Dbl|a,b e Zand b = 0}, we call PN(Z)
to be the pure integer neutrosophic set or pure neutrosophic
integer set. N(Z) = {a + bl | a, b € Z} is the mixed set of
neutrosophic integers or mixed neutrosophic set of integers.

Clearly PN(Z) < N(2), i.e., pure neutrosophic set of integers is
always a proper subset of mixed neutrosophic set of integers.

P(N(Z)) v {0} is called the pure neutrosophic set of
integers with zero.

Example 2.1.2: 1et P = {21,0,31+1,9,41 -5, 8 — 91, —14,
101}, P is a mixed neutrosophic subset of N (Z). Clearly P is not
a pure neutrosophic subset of N(Z).

THEOREM 2.1.1: Every pure neutrosophic subset of N(Z) is a
subset of mixed subset of neutrosophic set and not conversely.

Proof: Since PN(Z) is a proper subset of N(Z), every subset of
PN(Z) is also a subset of N(Z). Hence the claim.

Now consider T = {9 + 31, 2I, 3 — 51, 191, 20 — 311, 0, 5, 7, 41 +
2} = N(Z). Since {5, 7, 0} x PN(Z) we see T is not a pure
neutrosophic subset of PN(Z), it is only a mixed neutrosophic
subset of N(Z).

14



Likewise we define N(Q) to be the mixed neutrosophic set of
rationals, i.e., N(Q)={a + bl | a, b € Q} and PN(Q) = {a + bl |
ae Q,b=0 e Q} is defined as the pure neutrosophic set of
rationals. Clearly PN(Q) is a proper subset of N(Q).

Example 2.1.3: Let
T= {HLH EI, U +1, -3 +2I, _—181,8+251}.
5 4 3 4 7

T is clearly a pure neutrosophic rational subset of PN(Q).

Example 2.1.4: Let B= {0, 3, 51 + 1, 71 + 8, 141, 171, -26} <
N(Q). Clearly B is a mixed neutrosophic rational subset of
N(Q). We see B 5, PN(Q).

It is however interesting to note that T = N(Q).
In view of this we have the following theorem.

THEOREM 2.1.2: Every pure neutrosophic rational subset is a
subset of N(Q). However a mixed neutrosophic rational subset
is not a subset of PN(Q).

The proof is left as an exercise for the reader.

DEFINITION 2.1.2: Let N(C) = {a + bl | a, b € C} (C, the field
of complex numbers);, N(C) is defined as the mixed neutrosophic
complex number set or mixed neutrosophic set of complex
numbers. Let PN(C) ={a+bl|a € C, b=0,b € C}, PN(C) is
defined as the pure neutrosophic set of complex numbers or
pure neutrosophic complex number set. Thus we see PN(C) <
N(C).

We have following relations;

N(Z) = N(Q) = N(C) and
PN(2) < PN(Q) < PN(C).

15



So the relation Z < Q < C is preserved under the mixed
neutrosophy and pure neutrosophy. Now if Z, denotes the set of
integers modulonie., Z,={0, 1, 2, ... n—1}. N(Z,) = {a + bl |
a b € Z,); N(Z,) is defined as the mixed neutrosophic set of
modulo integers Z, or mixed neutrosophic modulo set of
integers.

PN(Z,)={a+bl|acZ,b=0 b e, is defined as the pure
neutrosophic set of modulo integers Z,, or the pure neutrosophic
modulo integers set.

N(Z,) = {a + bl | a, b € Z,)} is defined as the mixed
neutrosophic set of modulo integers. Clearly PN(Z,) c N(Z,).

Example 2.1.5: Let Z; = {0, 1, 2} be the ring of integers
modulo 3. N(Z;) = {0, 1, 2, L2, 1 + [ 1 + 2L, 2 + 2, 2 + [} is
the mixed neutrosophic set of integers modulo 3.

PN(Z)) = {I, 21, 1 + I, 1 + 2, 2 + I, 2 + 2I} is the pure
neutrosophic set of integers modulo 3 and PN(Z;) U {0} = {0, I,
21, 1 + 1,2 + 1, 1 + 21, 2 + 21} is the pure neutrosophic set of
integers with zero modulo 3. T={I, 2+ 21, 1 + 2, 1 + 1, 21}
PN(Z5) is a pure neutrosophic subset of integers modulo 3. P =
{0, I, 2, 2I, 1 + I} < N(Z3) is a mixed neutrosophic subset of
integers modulo 3. S = {0, 2, I+ 2, 1 + I} < PN(Z3) U {0} isa
pure neutrosophic subset of modulo integers with zero.

Thus we have given the basic concepts of the types of
neutrosophic subsets and sets which will be used in this book.

2.2 Set Neutrosophic Vector Spaces
In this section we proceed onto define the new notion of set
neutrosophic vector spaces and discuss a few of the properties

associated with them.

DEFINITION 2.2.1: Let S = {x;, ..., x,} be a mixed neutrosophic
subset of integers. Let P < Z be the subset of integers. If for

16



every x; € S and for every p € P we have px;, x; p € S then we
call S to be a mixed neutrosophic set vector space of integers
over the set P (|P| >2).

We shall now illustrate this by some examples.

Example 2.2.1: Let S={0,1,2,3,4,1+5,-3+1,14 +4[,3 +
21} be the mixed subset of neutrosophic integers. Let P = {0, 1}
be a subset of Z. S is a mixed neutrosophic set vector space of
integers over the set P.

Example 2.2.2: Let T={0,2+1,7—1, 811, 40 — 511, — 64, 6401
+ 1} be a proper subset of mixed neutrosophic set N(Z). T is a
mixed neutrosophic set vector space over the set P = {0, 1}.

Example 2.2.3: Let D = {0, £(2 — 5I), £ (17 + 3I), £(16 — D),
71, (- 81), £9, £(-7 + 31)} be a mixed neutrosophic subset of
N(Z). Take P = {-1, 0, 1} < Z. D is a mixed neutrosophic set
vector space over P.

Example 2.2.4: Let P = {0, 1, 21, 31, 41, 51, 3 + 31, 5 + 51, 8 + &I,
61, 101, 161} < PN(Z) be the pure neutrosophic subset of PN(Z)
with {0}. We see P is a not a mixed neutrosophic set vector
space over the set T = {0, 1, I} < N(Z), further T 5 Z, so this
is not even neutrosophic set vector space as it is not defined
over a proper subset of Z. This will be dealt later.

We proceed onto define more new concepts.

DEFINITION 2.2.2: Let S = {y;, ..., yu} € PN(Z) U {0} yi €
PN(Z) v {0}); 1 <i <m; m € N be a proper subset of PN(Z) U
{0}, Take ¢ #P < Z to be a subset of Z with |P| = 2. If for every
vi € Sand t € P; yit, ty; € S then we call S to be a pure
neutrosophic integer set vector space over P < Z with zero or
simply pure neutrosophic integers set vector space over S.

We now illustrate this situation by an example.

17



Example 2.2.5: Let T=1{0, 1 + 1,2+ 1, 3+1,1 21, 31, 91 + 4,
201 — 5, 61 — 71, 81 — 351} < PN(Z) be a proper subset of
PN(Z). Take S = {0, 1} < Z. T is clearly a pure neutrosophic
integer set vector space over S.

Example 2.2.6: Let V=1{0,1+1,2+2I, 3 + 31, 42, 80, 41, 81, 6
+ 61} < PN(Z). V is a pure neutrosophic integer set vector space
over the set S = {0, 1}. We see V is not a pure neutrosophic
integer set vector space over the set T = {0, 2} or any P = {0,
n};ne N\ {l}.

Example 2.2.7: Let V= {0, m[, m | m € N} c N(Z); Vis a
mixed neutrosophic integer set vector space over the set S = Z"
U {0}; Z" the set of positive integers. However it is easily
verified that V is a mixed neutrosophic integer set vector space
over any proper subset of S. But it can also be verified that V is
not a mixed neutrosophic integer set vector space over P=7" U
{0}; Z is the set of negative integers or any subset of P.

Example 2.2.8: Let V=1{0,3nl |lne Z} cPN(Q)uU {0}. Visa
pure neutrosophic integer set vector space over every proper
subset of Z.

Example 2.2.9: Let W= {0, mI, m | m € Z} c N(Z). Wis a
mixed neutrosophic integer set vector space over any subset of
Z.

Example 2.2.10: Let W= {m, 0,nl |[m,n € 2Z"} = N(Z). W is
a mixed neutrosophic integer set vector space over every subset
of Z". However W is not a mixed neutrosophic integer set vector
space over any subset of Z~ U {0} or on Z.

Now we proceed onto define the notion of mixed neutrosophic
integer set vector subspace and pure neutrosophic integer set
vector subspace of a mixed neutrosophic integer set vector
space.

DEFINITION 2.2.3: Let V be a mixed neutrosophic integer set
vector space over a subset S of Z. Let W # ¢ be a proper subset

18



of V. If W itself is a mixed neutrosophic integer set vector space
over S then we call W to be a mixed neutrosophic integer set
vector subspace of V over the set S.

We first illustrate this situation by some examples.

Example 2.2.11: Let V= {n +nl | n € Z} < N(Z) be a mixed
neutrosophic integer set vector space over S = {Z U {0}} < Z.
Let W={m+ml|m e 5Z} c V< N(Z). We see W is a mixed
neutrosophic integer set vector space over S. Hence W is a
mixed neutrosophic integer set vector subspace of V over S.

Example 2.2.12: Let V = {0, 3, 21, 31, 5 + 21, 16, 3 - 31, 14, 17
+ 21, —15, 151 + 1} < N(Z) be a mixed neutrosophic integer set
vector space over S = {0, 1} < Z.

Take W = {0, 21, 16, 17 + 21} < V; W is a mixed neutrosophic
integer set vector subspace of V over S. It is interesting to see
that every subset of V which contains 16 or —15 or 3 or 14 is a
mixed neutrosophic integer set vector subspace of V over S =

{0, 1}.

Example 2.2.13: Let V= {0,31+1,3+5I,2-5I, 171 + 3, 151
+ 30, 21, 171 — 153, 15, 412, 3171} < N(Z); V is a mixed
neutrosophic integer set vector space over S = {0, 1} . Every
subset W which contains 15 or 21 or 412 is a mixed
neutrosophic integer set vector subspace of V over S. Take W,
= {0, 171 + 3} < V; W, is a pure neutrosophic integer set vector
space contained in V over the set S= {0, 1} < Z.

Example 2.2.14: Let V = {np, mpl, np + mpl |n, m € Z" and p
= 3} < N(Z) be a mixed neutrosophic integer set vector space
over the set S=Z"c Z. Take W = {3 + 31, 6 + 61, 21 + 211, 15
+ 151, 27 + 271, 279 + 2791} < V. W is not a mixed
neutrosophic integer set vector subspace over the set S =Z". We
see no finite proper subset of V is a mixed neutrosophic integer
set vector subspace of V over the set S=Z".
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Example 2.2.15: Let V= {0, 1, 1 + [} < N(Z); V is a mixed
neutrosophic integer set vector space over S = {0, 1} < Z. V has
no proper subset, hence V has no mixed neutrosophic integer set
vector subspace over S = {0, 1} < Z.

Example 2.2.16: Let V={m+ml, m,ml |m e Z} cN(@Z); V
is a mixed neutrosophic integer set vector space over the set 3Z"
cZ W={n+nl|ne?2Z} cVcN(Z);W is not a mixed
neutrosophic integer set vector subspace of V over the set 3Z".

It is interesting to note that 0 ¢ V so V cannot have the zero
element as the usual set vector space.

In view of this we have the following example, definition and
result.

Example 2.2.17: Let V = {9,091, 0, 2 + 31, 4 + 51, 7, =81, 27,
511, 911} < N(Z). V is a mixed neutrosophic integer set vector
space over the set S= {0, 1} c Z.

Take P={0,9, 7, -81, 27} < V, P is a set vector space over the
set S= {0, 1}. We call P to be a pseudo neutrosophic integer set
vector subspace of V over S.

DEFINITION 2.2.4: Let V = {x;, ..., x,} < N(Z) be a mixed
neutrosophic integer set vector space over the set S < Z.
Suppose P < V such that (0) # P < Z and if P is a set vector
space over S then we call P to be a pseudo mixed neutrosophic
integer set vector subspace of V over S.

We will illustrate this by some examples.

Example 2.2.18: Let V= {n+nl, Z" | n € Z} < N(Z) be a
mixed neutrosophic integer set vector space over Z" = S. Take P
= 3Z" < V, P is a pseudo neutrosophic integer set vector
subspace of V over S.
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Example 2.2.19: Let V= {nl, mZ' | n,m € Z'} < N(Z) be a
mixed neutrosophic integer set vector space over S = Z". Take P
={mZ" |m e Z'} c V, P is a pseudo neutrosophic integer set
vector subspace of V over Z .

Example 2.2.20: Let V= {0,3,4+3,2+1 -1, 3-8, 8+ 51,
7, 250, 49, -560, 2069, 421 + 3} < N(Z) be a mixed
neutrosophic integer set vector space over the set S = {0, 1} <
Z. Take P = {0, 7, 2069, 560} < V, P is a pseudo neutrosophic
integer set vector subspace over the set S= {0, 1} < Z.

Now we proceed onto define pseudo pure neutrosophic integer
set vector subspace.

DEFINITION 2.2.5: Let W = {x;, ..., x,} < N(Z) be a mixed
neutrosophic integer set vector space over the set S < Z. Let V
< W, where V. < PN(Z) (V a subset of W containing only
elements from PN(Z)). If V is a pure neutrosophic integer set
vector space over the set S < Z, then we define V to be a pseudo
pure neutrosophic integer set vector subspace of W.

We illustrate this by some examples.

Example 2.2.21: Let V = {nl, 3Z" | n € N} be a mixed
neutrosophic integer set vector space over the set Z “— Z. Take
P={nl|n € N} cV; P is a pure neutrosophic integer set vector
space over the set Z". P is clearly a pseudo pure neutrosophic
integer set vector subspace of V over the set Z".

Example 2.2.22: Let W = {31, 0, 46 + 71, 911 + 27, 51, 7, 982,
471, 61, -257, 96 + 21} < N (Z) be a mixed neutrosophic integer
set vector space over the set S = {0, 1} < Z. Take V = {0, 7,
982, 61, -257} < W. V is a pseudo neutrosophic integer set
vector subspace of W over S.

Example 2.2.23: Let V= {ml, mZ" | m € N} < N(Z) be a
mixed neutrosophic integer set vector space defined over the set
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P=27Z"cZ TakeP={ml |m e Z} c V. P is a pseudo pure
neutrosophic integer set vector over the set Z"=P.

Now these concepts cannot be even imitated in case of pure
neutrosophic integer set vector space V as it cannot contain a
proper subset which is mixed(i.e., integers). Now we proceed on
to define yet another substructure of both pure and mixed
neutrosophic integer set vector spaces.

DEFINITION 2.2.6: Let V = {x, ..., x,,} be a mixed neutrosophic
set vector space over the set S < Z. Let W < V be a proper
subset of V, if there exists a proper subset T < S such that Wis a
mixed neutrosophic integer set vector space over T then we call
W to be a mixed neutrosophic integer subset vector subspace of
V over the subset T of S. If W < V is such that W is a proper
subset of PN(Z) and W is a pseudo mixed neutrosophic vector
space over T, then we call W to be a pseudo mixed neutrosophic
integer subset vector subspace of V over the subset T of S.

If W < Vis such that W is a subset of Z and S has a proper
subset of integers say B c Z (for B < S) and if W is a set vector
space over B then we call W to be a pseudo set integer subset
vector subspace of V over the subset B of S.

We will illustrate this by the following examples.

Example 2.2.24: V = {0, £ I, + 41, £(3 + 2I), £(-5, 71), £(8 -
251), £ 20, £ 246, £ 2841, + 261, + 85, + 98} be a mixed
neutrosophic integer set vector space over the set S = {0, -1, 1}
< Z. Consider W = {0, 41, 3 + 21, 246, 20} < V. Let T = {0, 1}
cScZ.

W is a mixed neutrosophic integer subset vector subspace of
V over the subset T of S. Take X = {#£I, = 41, £(3 + 2I), £(8 —
251)} < V and the subset A = {-1, 1} < {0, 1, -1}, X is a
pseudo pure neutrosophic integer subset vector subspace of V
over the subset X of S. Consider Y = {0, +261, 85, + 20, + 98,
1246} < V. Take D = {-1, 1} <{0, -1, + 1}, Y is a pseudo set
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integer subset vector subspace of V over the set of integers {-1,
1}, a subset of S.

Example 2.2.25: Let V= {3ml,n(2l +2),Z" |m,n e Z'} be a
mixed neutrosophic integer set vector space over the set S = Z*
c”Z.

Take W = {n(2I+2), Z'| n €Z"}; W is a mixed neutrosophic
integer subset set vector subspace over 3Z" < Z' . Take X =
{52} <V, X is a pseudo set integer subset vector subspace of
V over the subset 2Z" < Z". Consider Y = {3ml |m € Z"} c V;
V is a pseudo pure neutrosophic integer subset of the vector
subspace V over the subset 6Z" of Z".

Now having seen several new substructures of a mixed
neutrosophic integer set vector space we now proceed on to
define the notion of mixed neutrosophic integer set linear
algebra over a subset of integers.

DEFINITION 2.2.7: Let V = {x, ..., x,} be a mixed neutrosophic
integer set vector space over the set S < A If on V we can
define a closed binary operation ‘+’ such that for all x;, x; € V,
x; + x; € V then we define V to be a mixed neutrosophic integer
set linear algebra over S.

We illustrate this situation by some examples.

Example 2.2.26: Let V = {3ml, 0, 3m, 3m +3ml |m e Z'}, V
is a mixed neutrosophic integer set linear algebra over the set Z"
Example 2.2.27: Let

c”Z.
ml O 0 0
V= , meZ"
{[ 0 mI] [0 Oj }

be a mixed neutrosophic integer set linear algebra over the set
Z'cZ

Example 2.2.28: Let
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ml ml ml 0O 0 O ml ml ml
V= , , meZ ;.
{[ 0 0 Oj {m m mJ (m m mj }

V is a mixed neutrosophic integer set linear algebra over the set
32°cZ.

Example 2.2.29: Let V= {0, nl, #n | n € Z}, V is not a mixed
neutrosophic integer set linear algebra over any subset of Z. It is
only a mixed neutrosophic set vector space over every proper
subset of Z and including Z.

In view of this we have the following theorem.

THEOREM 2.2.1: Let V be a mixed neutrosophic integer set
linear algebra over a subset S of Z. Then V is a mixed
neutrosophic set vector space over the subset S of Z.

Proof: Clear from the definition of mixed neutrosophic integer
set linear algebra over S.

COROLLARY 2.2.1: A mixed neutrosophic integer set vector
space V over a set S (S < Z) in general is not a mixed
neutrosophic integer set linear algebra over S.

Proof: The proof is given using an example.

Consider V= {2, 0, 21, 41, 31 + 1, 21 — 27, 28, 411 - 38, 1}
c N(Z). V is a mixed neutrosophic integer set vector space over
the set S = {0, 1} < Z. Clearly V is not closed under addition
for2+2I ¢ V,21-27 + 28 ¢ V and so on.

Thus a mixed neutrosophic integer set vector space in
general is not a mixed neutrosophic integer set linear algebra
over S. Hence the claim.

Now we proceed onto define substructures in mixed
neutrosophic integer set linear algebra.

DEFINITION 2.2.8: Let V be a mixed neutrosophic integer set

linear algebra over the set S (S < Z). Let W be a subset of V
such that W itself is a mixed neutrosophic integer set linear
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algebra over S; then we call W to be a mixed neutrosophic
integer set linear subalgebra of V over the set S < Z.

We now illustrate this situation by some examples.

Example 2.2.30: Let V = {5nl, 0, 5n, 5nl + 5n | n € N} be a
mixed neutrosophic integer set linear algebra over the set S =
{0, 1} < Z. Take W = {0, 25n, 25nl, 25n + 25nl | n € N} c V;
W is clearly a mixed neutrosophic integer set linear subalgebra
of V over the set S = {0, 1}.

Example 2.2.31: Let V= {0, m + ml | m € Z'} be a mixed
neutrosophic integer set linear algebra of V over S = mZ" ¢ Z.
Take W = {0, 3m + 3ml | m € Z"} < V; clearly W is a mixed
neutrosophic integer set linear subalgebra of V over S = mZ".

Now we proceed onto define the notion of yet another new
substructure.

DEFINITION 2.2.9: Let V be a mixed neutrosophic integer set
linear algebra over the subset S ¢ Z. Let W < V be such that W
c Z If Witselfis a set linear algebra over the set S then we call
W to be a pseudo integer set linear subalgebra over S; S c Z.

We shall illustrate this by some examples.

Example 2.2.32: Let V= {3nl + 3n,3nl,3n|n € Z"} = N(Z) be
a mixed neutrosophic integer set linear algebra over the set S =
Z'cZ.P={3n|neZ} cVisa pseudo integer set linear
subalgebra of V over S c Z.

Example 2.2.33: Let V = {27 + 271, 27, 271} < N(Z) be a
mixed neutrosophic integer set linear algebra over the set S =
Z'. Take W = {2Z"} < V; W is a pseudo integer set linear
subalgebra of V over S=Z".

Example 2.2.34: Let V = {271, 27, 27 + 271} < N(Z) be a
mixed neutrosophic integer set linear algebra over the set S =
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72" < Z. Take P = {16Z} < V; P is a pseudo integer set linear
subalgebra of V over S=7Z"c Z.

DEFINITION 2.2.10: Let V be a pure neutrosophic integer set
vector space over the set S < Z. If in addition for every x, y € V;
x +y e Vwecall Vto be a pure neutrosophic integer set linear
algebra over the set S c Z.

We illustrate this situation by some examples.

Example 2.2.35: Let V = {2Z1} < PN(Z) be pure neutrosophic
integer set linear algebra over the set S =Z"c Z.

Example 2.2.36: Let V = {3Z1} < PN(Z). V is a pure
neutrosophic integer set linear algebra over the set 3Z" < Z.

Example 2.2.37: Let
271 47
V= .
47 8Z1
V is a pure neutrosophic integer set linear algebra over 2Z " < Z.

Example 2.2.38: Let V={mZ + mZl|m € Z} cPN(Z). Visa
pure neutrosophic integer set linear algebra over 5Z" < Z.

Now we proceed onto describe the substructure of pure
neutrosophic integer set linear algebra.

DEFINITION 2.2.11: Let V be a pure neutrosophic integer set
linear algebra over a set S c Z. Let W < V be a proper subset of
V; if W is pure neutrosophic integer set linear algebra over S;
then we call W to be a pure neutrosophic integer set linear
subalgebra of V over the set S.

We shall illustrate this situation by some examples.

Example 2.2.39: Let V = {3Z + 3Z1} < PN(Z) be a pure
neutrosophic integer set linear algebra over the set S = Z" ¢ Z.
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Take W = {6Z + 6Z1} < V < PN(Z); W is a pure neutrosophic
integer set linear subalgebra of V over the set S.

27 371
V=
3721 27
be a pure neutrosophic integer set linear set linear algebra over

thesetS=27".
87 1271
W =
1271 8Z

Take
W is a pure neutrosophic integer set linear subalgebra of V over
the set S=7".

Example 2.2.40: Let

Example 2.2.41: Let

32 37 37
V= c PN(2),
471 471 471

be a pure neutrosophic integer set linear algebra over the set S =

3Z.
Take
6Z 6Z 6Z
W= cV
8Z1 8ZI 8ZI
to be a proper subset of V. W is a pure neutrosophic integer set

linear subalgebra of V over 3Z.

Now we proceed onto define yet another type of substructure in
pure neutrosophic integer set linear algebra.

DEFINITION 2.2.12: Let V be a pure neutrosophic integer set
linear algebra over the set S < Z. Let W be a proper subset of V
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and T < S be a proper subset of S. If W is a pure neutrosophic
integer set linear algebra over the set T, (T < S) then we call W
to be a pure neutrosophic integer subset linear subalgebra of V
over the subset T of S.

We illustrate this definition by some examples.

Example 2.2.42: Let V = {3Z + 3Z1} < PN(Z) U {0} be a pure
neutrosophic integer set linear algebra over S = Z" . Take W =
{272 + 2771} < Vand T =3Z"c Z' =S. W is a pure
neutrosophic integer subset linear subalgebra of V over the
subset T of S.

Example 2.2.43: Let

{7 )

V is a pure neutrosophic integer set linear algebra over S = Z.

Take
10ZI 57
W= cV,
57 2071

W is a pure neutrosophic integer subset linear subalgebra of V
over the subset T=Z"cZ=S.

It is pertinent to mention here that pure neutrosophic integer set
linear algebras do not have proper pseudo neutrosophic integer
substructures. It is also important to mention here that every
pure neutrosophic integer set linear algebra is a pure
neutrosophic integer set linear algebra.

We prove the later part of the claim by the following example:

Example 2.2.44: Let V= {21+ 2,0, 5 + 51, 71, -281, 19-211}
PN (Z) be a pure neutrosophic integer set vector space over the
set S= {0, 1} < Z. We see V is not a pure neutrosophic integer
set linear algebraas 5+ 51+ 71=5+ 121 ¢ V, 281+ 71 =-211
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¢ V and so V is not an integer set linear algebra of S = {0, 1} <
Z.

We now proceed onto define two more new concepts on the
integer set Z.

DEFINITION 2.2.13: Let V < NP(Z) be a pure neutrosophic
integer set linear algebra over a set S < Z. If V has no pure
neutrosophic integer subset linear subalgebra then we call V to
be a pure neutrosophic integer set simple linear algebra.

We first illustrate this by some examples.
Example 2.2.45: Let V = {nl | n € Z \ {0}} be the pure

neutrosophic integer set linear algebra over S = {0, 1}. V is not
a pure neutrosophic integer set simple linear algebra.
Example 2.2.46: Let

nl ml
V= mmneZ ;.
ml nl

V is a pure neutrosophic integer set simple linear algebra over S
= {0, 1}.

DEFINITION 2.2.14: Let V < NP(Z) be a pure neutrosophic
integer set linear algebra over the set S < Z. If V has no proper
subset W < V < NP(Z) such that W is a pure neutrosophic
integer set linear subalgebra or W is not a pure neutrosophic
integer subset linear subalgebra for any subset T < S < Z over
any subset T < S < Z; then we call V to be pure neutrosophic
integer set weakly simple linear algebra.

We illustrate this by some simple examples.

Example 2.2.47: Let
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be a pure neutrosophic integer set linear algebra over {0, 1} =S
c Z. Since S has no proper subsets, V is a pure neutrosophic
integer set weakly simple linear algebra over S = {0, 1} < Z.

Example 2.2.48: Let

nl 0 tI
V =
{ml ql plj

be a pure neutrosophic integer set linear algebra over the set S =
{0, 1} < Z. It is easily verified V is a pure neutrosophic integer
set weakly simple linear algebra.

n,t,m,p,qez*}

Now we proceed onto define the notion of set neutrosophic
integer set linear transformation and set neutrosophic integer set
linear operator.

DEFINITION 2.2.15: Let V and W be any two mixed
neutrosophic integer set vector spaces over the same set S C Z.
Let T be a map from V into W satisfying the following
conditions:
(1) T =1
(2) T(sv) = sT(v) for all s € S and for all v € V and
T(v) e W.

We define T to be a set neutrosophic integer linear
transformation of V into W. If V.= W then we call the set
neutrosophic integer set linear transformation to be the set
neutrosophic integer set linear operator on V.

We illustrate this by simple examples.

Example 2.2.49: Let V = {81, 0, 51, 221, 46, 3 + 251} and W =
{0,46 + 1, 81 221 + 3, 71, 21 51 251, 631} be mixed neutrosophic
integer set vector space over the set S= {0, 1} cZ. Let T: V —
W be a map such that

T =1
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T(8I) = 81

T(0)=0
T(51) = 51
T(221) =221 +3
T(46) =21
T(3 + 25I) = 251
T =1

Clearly T(0.x) = 0.T(x) i.e.,
T(0)=0and T(1x)=1T(x) =T (x);
as0.x=0and l.x=xforallx e V.

Example 2.2.50: Let V = {0, 2nl + 2n | n € Z'} be a pure
neutrosophic integer set vector space over Z'. Define the map T
:V—o>Vas
T0)=0
TOH=1
T(2nl + 2n) =2(n + 2)I +2(n + 2),
i.e., T(x) = 2x for all x € V. Clearly T is a linear operator on V.

Note: It is interesting and important to note that V and W can be
both mixed neutrosophic integer set vector spaces or both can
be pure mixed neutrosophic integer set vector spaces or one can
be mixed neutrosophic integer set vector space and other can be
pure neutrosophic integer set vector space; still the definition of
the set neutrosophic integer set linear transformation remains
the same.

The only main criteria is that T(I) = I for any set
neutrosophic integer set linear transformation T from V to W
except in case of the zero linear transformation O(I) = 0; but
however this special transformation is of no use to the real
world problems or applications.

Now we proceed onto give the definition of set neutrosophic
integer set linear transformation of mixed neutrosophic integer
set linear algebras and pure neutrosophic integer set linear
algebras.

DEFINITION 2.2.16: Let V and W be any two mixed
neutrosophic integer set linear algebras defined over the same
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set S. Let T be a set neutrosophic integer set linear
transformation from V to W such that T: V — W is a semigroup
homomorphism with respect to addition then we define T to be a
set neutrosophic integer set linear algebra transformation from
Vito W If V=W then we define T to be a set neutrosophic
integer set linear algebra operator from V to W.

We illustrate this by some examples.

Example 2.2.51: Let V = {2n], 2n,2m + 2t | m, t,n € Z" {m, t
and n need not be taking always distinct values} } and

W= 2nl 0) (O O 2ml 0
0 0)0 2n)( 0 2t
be two mixed neutrosophic integer set linear algebras over S =
{0,1}. Let T : V — W be defined as

T 2nl) (an OJ
n =
0 0

0 O
T(2n) = [0 2nj

2t 0
T (2m + 2tI) =
0 2m

n,m,t eZ*}

for 2nl, 2n, 2m + 2t € V we see T is a set neutrosophic integer
set linear algebra transformation of V to W.
mmne Z*}

Example 2.2.52: Let
V= 2n 0 0 2ml 2n  2ml
0 2n)(2mI 0 )J(2mI 2n
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be a mixed neutrosophic integer set linear algebra over the set S
={0, 1}. Let T: V > V be defined by

T 2n 0 B 2n+2 0
0 2n 0 2n+2

T 0 2ml B 0 2ml + 21
2ml 0 2ml + 21 0 '

Clearly T is a set neutrosophic integer set linear algebra
operator over the set S = {0,1}.

Example 2.2.53: Let V= {(2n+2nl)|n € Z"} and

2n + 2nl 0
W= neZ'
0 2n + 2nl

be two pure neutrosophic integer set linear algebras over the set
S ={0,1}. Define T: V—> W by

2n+2nl 0
T(n + 2nl) = ;

0 2n + 2nl

T is a set neutrosophic integer set linear algebra transformation
of V into W.

Example 2.2.54: Let

be a pure neutrosophic integer set linear algebra over the set S =
{0,1} = Z.Let T : V> V be defined by
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T 2n 2nl) (2n+2 2nl+2
2nl  2n 2nl+2 2n+2 )
T is easily verified to be a set neutrosophic integer set linear
operator on V.

It is left as a problem for the reader to prove Homg (V, W) is a
set of all neutrosophic integer set vector spaces over S < Z
where V and W are mixed (pure) neutrosophic integer set vector
spaces over the set S < Z. Let Homg (V, V) denote the
collection of all set neutrosophic integer set linear operators of
V over the set S ¢ Z; where V is the pure (mixed) neutrosophic
set vector space over S. What is the structure of Homg(V, V)?

If V and W are mixed (pure) neutrosophic integer set linear
algebras defined over S, will Homg(V, W) be a mixed (pure)
neutrosophic integer set linear algebras?

Let us define some more properties of set neutrosophic integer
set linear algebra.

DEFINITION 2.2.17: Let T be a set neutrosophic integer set
linear transformation from V to W. If atleast one vector
subspace P of V is mapped into a vector subspace of W then we
say T weakly preserves subspaces i.e., T(P) is a vector subspace
of W for atleast one vector subspace P of V; we define T to be a
set neutrosophic integer set weak subspace preserving linear
transformation of Vto W.

If every subspace P of V is preserved by a set neutrosophic
integer set linear transformation then we call T to a set
neutrosophic integer set strong subspace preserving linear
transformation of Vto W.

In an analogous way one can define these two concepts for
set neutrosophic integer set linear operator on V.

We illustrate these definitions by some examples.

Example 2.2.55: Let V= {0,31+2,71+4, -2 +1, 801, 92 — &I,
—47, 61, -4, 50 — 2I} and W = {0, 61 + 4, 35 141+ 8, 4 + 21,
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—121,-8,25-91, —48 + 1, 97— 41, 521, 21, 401} be two mixed
neutrosophic integer set vector spaces over the set S = {0,1} <
Z.LetT: V—> W given by
T0)=0
T@I+2)=61+4
T(71+4)=141+8
T(2+1)=-4+2I

T(811) = 401
T(92 — 81) = 97 — 41
T(-47)=-35
T(- 61) = — 121
T(-4)=-8
T (50 - 21) = - 2L

We see P = {0, 31 + 2, 71 + 4, -2 + I, —61, -4} is a mixed
neutrosophic integer set vector subspace of V. Also we see T(P)
= {0, 61 +4, 141 + 8, — 4 + 2I, —12I, — 8} < W is a mixed
neutrosophic integer set vector subspace of W. So T is a set

neutrosophic integer set weak linear transformation of V into
W.

Example 2.2.56: Let V = {20, 1, 0, 10L, 26 + I} < N(Z) be a
mixed neutrosophic integer set vector space over S = {0, 1} <
Z. The mixed neutrosophic subspaces of V are

P, = {0,1, 20},

P, = {0, 1, 20, 101}
Py={0,1,2026 +1}
P, = {0, 101, 20}

Ps = {0, 101, 20 26 + I}
P = {0, 26 +1, 20}

Define a set neutrosophic integer set linear operator T on such
that T(0) = 0 and T(20) = 0 and others in any compatible way
then T is not a set neutrosophic integer set weak linear operator
on V or T is not a set neutrosophic integer set strong linear
operator on V. Now define T, : V — V as follows.

T, (0)=(0)

T, (20) =20
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T, (D=1
T((10D=26+1
T, is a set neutrosophic integer set weak linear operator on V.

We shall discuss about the generating subset of a mixed (pure)
neutrosophic integer set vector spaces.

DEFINITION 2.2.18: Let V = {x;, ..., x,} be a mixed (pure)
neutrosophic integer set vector space over the set S < Z.
Suppose T = {x;, ..., Xy | m <n} < Vis such every x; € V can be
represented as sx; for some s € S and x; € T i.e., x; = sx;, then
we say T generates V over S and T is called the mixed (pure)
neutrosophic integer set generator subset of V over S.

Note: It may at times so happen that T = V.
We shall illustrate this situation by some examples.

Example 2.2.57: Let V = {0, 21, 24,2 + 31, 41 — 1, 37 + 441}
N(Z) be a mixed neutrosophic integer set vector space over S =
{0, 1} cZ. T = {21, 24,2 + 31,41 — 1, 37 + 441} < V is the
mixed neutrosophic integer set generator subset of V over the
set S={0,1}. Wesee V=T.

Example 2.2.58: Let V= {£ 31, + I, + (22 + 1), + (51 — 20), +
701, £ (81 + 4)} < N(Z) be a mixed neutrosophic integer set
vector space over the set S = {—1, 1}. Wesee T = {31, 1,22 + 1,
51— 20, 701, 81 + 4} < V is a mixed neutrosophic integer set
generator subset of V over the set S={-—1,1}. Wesee V=#T.
Infact|V|=12and | T |=6.

Example 2.2.59: Let V = {3Z1, 82} < N(Z) be a mixed
neutrosophic integer set vector space over Z. The mixed
neutrosophic integer set generator subset of V over the set Z is
given by T = {31, 8} c V. Wesee | T|=2 whereas | V | = .

Example 2.2.60: Let V = {2nl | n € Z} be a pure neutrosophic
integer set vector space over S= {0, 1} cZ. T={2nl |n € Z\
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{0}} < V is the pure neutrosophic integer set generator of V
over S= {0, 1}.

Example 2.2.61: Let V = {21, 91, -8I, 141, 271 + 4, 44 — 21, 0,
141 — 9} < PN(Z) be a pure neutrosophic integer set vector
space with zero over S = {0,1} < Z. T = {21, 91, -8I, 141, 271 +
4, 44 — 21, 141 — 9} < V ie, V \ {0} = T is the pure
neutrosophic integer set generator of V over S.

Example 2.2.62: Let V = {3ZI} be the pure neutrosophic
integer set vector space over the set S=7. T = {3} < V is the

pure neutrosophic integer set generator of V over S = Z. Thus
| T|=1.

Remark: We see the pure (mixed) neutrosophic integer set
generator of a vector space may be finite or infinite. The
cardinality in some case depends on the set over which they are
defined.

This is proved by the following examples:

Example 2.2.63: Let V = {5ZI} be a pure neutrosophic integer
set vector space over S = {0, 1} < Z. T = 5ZI \ {0} is the pure
neutrosophic integer set generator of V over S. Clearly | T | =
infact | T|=| V\ {0}|.

Now we consider the same pure neutrosophic integer set vector
space V over a different set S  Z and find the cardinality of the
pure neutrosophic integer set generator of V.

Example 2.2.64: Let V = {5Z1} be a pure neutrosophic integer
set vector space over the set S = Z. Now T = {51} is the pure
neutrosophic integer generator of V over S =Z. Clearly | T | = 1.
So we see depending on the set S over which V is defined the
cardinality may be one or .

Now we define the pure (mixed) neutrosophic integer set

generator of a pure (mixed) neutrosophic integer set linear
algebra over the set S < Z.
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Let T c V;ifevery v € V can be represented as v = st or

V= Zsiti ,
i

for some s;, s € S and t;, t € T then we define T to be a pure
(mixed) neutrosophic integer set generator of V over S.

We shall now illustrate this situation by some examples.

Example 2.2.65: Let V={n+nl|ne Z" U {0}} < PN(Z) be
the pure neutrosophic integer set linear algebra over S = {0, 1}.
T = {1 + 11} is the pure neutrosophic integer set generator of V
over S. Thus | T |=1.

Example 2.2.66: Let V= {n,nl, m+tl | m,n,t € Z} c N(Z) be
a mixed neutrosophic integer set linear algebra over Z" < Z.
Take T = {£1, £I, 0} < V; T is a mixed neutrosophic integer set

generator of Vover Z". | T|=5.

Example 2.2.67: Let
{[nl 0 J
V=
p ml
be a pure neutrosophic integer set linear algebra over Z.
Take
I 0)(0 0)(O0 O
T= , , cV;
0 00 I)(1 O

T is the pure neutrosophic integer set generator of the linear
algebra over Z.

n,m,peZ}

If we change the set over which these spaces are defined then
their generating set are also different. This is described by the
following examples:
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Example 2.2.68: Let V= {n+nl |n e Z U {0}} be the pure
neutrosophic integer set linear algebra over S= {0, 1}. T= {1 +
I} < V is the pure neutrosophic integer set generator of V over
S=1{0, 1}.

If we replace S= {0, 1} by M=Z"U {0}. Wesee T= {1 +1} c
V is the pure neutrosophic integer set generator of V over S =
{0, 1}.

Suppose V= {n+nl |n e Z U {0}} is a pure neutrosophic
integer set linear algebra over any subset S ¢ Z" U {0} < Z
have same T = {1 + I} to be the pure neutrosophic integer set
generator of V over S.

Example 2.2.69: Let V = {272, 0, mZ +nZl |m,n € Z'}
N(Z) be a mixed neutrosophic integer set linear algebra over Z"
U{0; T={2,m+nl|mneZ} cV;Tis the mixed
neutrosophic integer set generator of V over Z U {0}.

We just wish to show that a V treated as a mixed (pure)
neutrosophic integer set vector space in general has a distinct
generator set from the same V treated as a mixed (pure)
neutrosophic integer set linear algebra.

The following example shows the above claim.

Example 2.2.70: Take V={m+ml|m e Z"U {0}} cPN(Z) a
pure neutrosophic integer set vector space over S = {0, 1} < Z.
T =V \ {0} < V is the pure neutrosophic integer set generator
of V.

Clearly | T |=o0. Now V={m+ml |me Z U {0}}isa
pure neutrosophic integer set linear algebra over S= {0, 1}. T =
{1 + 1} is the pure neutrosophic set generator of V. We see | T |
=1.

From this example the reader can understand the vast difference
between the pure (mixed) neutrosophic integer set linear algebra
V and pure (mixed) neutrosophic integer set vector space V
(same V) over the same set S.
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2.3 Neutrosophic-Neutrosophic Integer Set Vector Spaces

In this section we introduce yet another new type of vector
spaces called neutrosophic-neutrosophic integer set vector
spaces. Here we cannot have two types of vector spaces. Recall
N(Z) = {a+Dbl|a, b e Z} is the set of neutrosophic integers.

DEFINITION 2.3.1: Let V = {v;, ..., v,} where v; e N(Z); 1 <i <
n. We say V' is a neutrosophic-neutrosophic integer set vector
space over S c N(Z) (S < Z) if sv, = vis € V for every v; € V

and s € S. We shall for easy representation write neutrosophic-
neutrosophic integer vector space as n-n integer set vector
space.

We now illustrate this new structure by some examples.

Example 2.3.1: Let V= {0, 1 +(2"- DI |n=1,2, ..., 0} C
N(Z). V is a n-n integer set vector space over S= {0, 1 + [, 1}
N(2).

Example 2.3.2: Let V = {1, 21, 51, 71, 0, 81, 271} = N(Z). Vis a
n-n integer set vector space over S = {0, [} < N(Z).

Example 2.3.3: Let V=71 c N(Z), V is a n-n integer set vector
space over Z = {0, I}.

Example 2.3.4: Let V = {ZI} < N(Z); V is a n-n integer set
vector space over ZI < N(Z).

Example 2.3.5: Let V= {0, 1 — I} < PN(Z) U {0} be the n-n
integer set vector space over the set S = {0, 1, 1+21} < N(2).

Note: It is important and interesting to note that if V is a n-n
integer set vector space then V cannot contain any integer from

Z;ie., ifanya € Vthena ¢ Z.

DEFINITION 2.3.2: Let V be a n-n set vector space over a set S
< N(Z). Suppose W is a proper subset of V and W is itself a n-n
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set vector space over the same set S < N(Z), then we call W to
be a n-n set vector subspace of V over S.

We will illustrate this situation by some examples.

Example 2.3.6: Let V = {ZI} be a n-n set vector space over the
set S =Z'1. Take W = {2ZI}  V; V is a n-n set vector subspace
of Vover Z'1.

Example 2.3.7: Let V= {0, m + ml | m € Z"} be the n-n set
vector space over the set S = {0, 1, 1 — I} < N(Z). Take W =
{2m +2ml | m € Z'} be the n-n set vector subspace of V over
S = N(©2).

Example 2.3.8: Let V= {ZI, m +ml | m € Z"} be a n-n set
vector space over the set S = {0, 1, 1 — I} < N(Z). Take W =
{Z1} < V; W is a n-n set subvector space of V over S.

Now we will proceed onto define the notion to neutrosophic-
neutrosophic set linear algebra (n-n set linear algebra).

DEFINITION 2.3.3: Let V be a n-n set vector space over S <
N(Z), a subset of N(Z). If V is such that for every a, b € V, a +
b, b+ a eVthen we call V to be a neutrosophic-neutrosophic

set linear algebra over S (n-n set linear algebra over S).

We first illustrate this definition by some examples before we
prove some properties about them.

Example 2.3.9: Let V={m —ml | m € Z'} be a n-n set linear
algebra over the set S = {1, 1 — I} = N(Z).

Example 2.3.10: Let V = {Z1} < PN(Z). V is a n-n set linear
algebra over the set S = {0, 1, 1 — I} < N(Z).

Example 2.3.11: Let
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1 71
V= ,
V is a n-n set linear algebra over the set S = {0, 1, 1 —I}.

It is important and interesting to note that as in case of linear
algebra, n-n linear algebras is a set vector space but in general a
n-n set vector space is not a n-n linear algebra. The following
examples show that a n-n set vector space is not a n-n set linear
algebra.

Example 2.3.12: Let V = {31, 241, 411, 261, 0, —131, 481} <
PN(Z). V is a n-n set vector space over the set S = {0, 1, I} <
N(Z). We see V is not a n-n set linear algebra over S; as 31 +
241 =271 ¢ V and so on.

Thus in general a n-n set vector space is not a n-n set linear
algebra over S. Now we proceed onto define the new concept of
n-n set linear subalgebra.

DEFINITION 2.3.4: Let V be a n-n set linear algebra over the set
S cN(Z). (S = Z). Suppose W is a subset of V such that W is a

n-n set linear algebra over the set S < N(Z) the we call W to be
a n-n set linear subalgebra of V over the set S.

We will illustrate this situation by some examples.

Example 2.3.13: Let V = {3Z1} be a n-n set linear algebra over
the set S = Z'1. Take W = {9ZI} < V; W is a n-n set linear
algebra of V over S.

Example 2.3.14: Let V= {m —ml | m € Z'} be a n-n set linear

algebra over the set S= {0, I, 1 — [} < N(Z). W = {3m — 3ml |
m € Z'} < V is a n-n set linear subalgebra of V over S.

meZ*}

Example 2.3.15: Let
V= m-ml O m-ml 0
3271 710 0 0
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be a n-n linear algebra over the set S = {0, 1, 1 — I} < N(2).

Take
m-ml 0
W:
)

W is a n-n linear subalgebra over the set S = {0, 1, 1 —I}.

meZ"} cV;

Example 2.3.16: Let

0 —-nl p-pl
V= n—-nl p-p
t—tl 0 0

be a n-n set linear algebra over the set S = {0, 1, 1 — I} < N(Z).

W= 0 2n—-2nl 2p-—2pl
2t —2tl 0 0

is a n-n set linear subalgebra of V over the set S.

n,p,teZ*}

n,p,teZ*} cV

Now we proceed onto define yet another new substructure.
DEFINITION 2.3.5: Let V be a n-n set linear algebra over S.
Suppose W is a proper subset of V and W is only a n-n set
vector space over S then we call W to be a pseudo n-n set vector
subspace of V over S.

We will illustrate this by some simple examples.

Example 2.3.17: Let

V= m-ml 0)(0 0 m—ml 0
0 00 m-mI){ o0 m—ml

be a n-n set linear algebra over the set S = {0, 1, 1 —I}.

meZ+}
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Take
m-ml O 0 0
W= ,
{( 0 Oj [0 m—mlj

W is a pseudo n-n set vector subspace of V over S.

meZZ+} c V.

Example 2.3.18: Let V= {m = ml | m € 2Z"} be a n-n set linear
algebra over the set S = {0, 1, 1 — [} < N(Z). Take W = {3 + 31,
3-3L5-51,5+51,27+271,0} V. W is only a pseudo n-n
set vector space over the set S= {0, 1, 1 — I} < N(2).

Example 2.3.19: Let V = {271,27,2nZ + 2mZl |[m,n € Z'} <
N(Z) be a n-n set linear algebra over the set S = {0, 1, 1 — I}.
Take W = {2ZI, 2Z} < V; W is a pseudo n-n set vector
subspace of V over the set S.

Now we define yet another new substructure.

DEFINITION 2.3.6: Let V be a n-n set linear algebra over the set
S © N(Z). Let W <V be a proper subset of Vand T < S be a
proper subset of S. If W is a n-n subset linear algebra over T
then we call W to be a n-n subset linear subalgebra of V over
the subset T of S.

We will illustrate this by some simple examples.

Example 2.3.20: Let

Ve m—ml 0 0 0 m—ml 0
0 m-ml 0)\m-ml 0 m-ml )

m, —-mI m,-m,I 0
m,-m,] m,-m,] m;-ml

m,meZ" u{O};lSiSS}

be a n-n set linear algebra over the set S = {0, 1, 1 — I} < N(Z).
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Take
0 m—ml 0
W:
m—ml 0 m—ml

W is a n-n set linear algebra over the subset T = {0, 1 — I} of S.
Hence W is a n-n subset linear subalgebra of V over T.

meZ+} c V.

Example 2.3.21: Let V = {2Z'1, 721, 3Z"1, 5Z'T} =« N(Z) be a
n-n set linear algebra over S=Z"1. W = {2Z'} c V is a n-n
subset linear subalgebra of V over the subset P=3Z" 1 of S.

We now proceed onto define the notion of pseudo n-n subset
vector subspace of a n-n set linear algebra.

DEFINITION 2.3.7: Let V be a n-n set linear algebra over the set
S © N(Z). Let W be a subset of V and if W is a n-n set vector
space over a subset T of S then we define W to be a pseudo n-n
subset vector subspace of V over the subset T of S.

We illustrate this definition by some examples.

Example 2.3.22: LetV={m-ml |m € Z" U {0}} be a n-n set
linear algebra over the set S = {0, 1, 1 — [} < N(Z). Take W =
{551, 28 — 281,40 - 401, 0, 18 — 181} — V; W is a pseudo n-n
subset vector subspace of V over the subset T = {0, 1 — I} of S.

m-ml 0
V=
{m —ml OJ}
such that m € Z" U {0} be a n-n set linear algebra over the set S
={0,1, 1 -1}.

Take
W 5-51 0)(8-=8I 0)(7-71 0
ls5=51 o)\8-81 0)\7-71 0/

Example 2.3.23: Let
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25-251 0)(0 O
; cV;
25-251 0)10 0
W is a pseudo n-n subset vector subspace of V over the subset T
={0,1 -1} of S.

Now we proceed onto define the notion of linear transformation
and linear operator of n-n set vector spaces defined over a set S
= N(2).

DEFINITION 2.3.8: Let V and W be any two n-n set vector
spaces over the same set S < N(Z). A map T: V — W is said to
be a n-n set linear transformation of Vinto Wif T (I) = and T
(av) = aT (v) for every a € S and for every v € V. If W=V in
this definition we call T from V to V to be a n-n set linear
operator of V.

We illustrate this by some simple examples.

Example 2.3.24: Let V= {2 £ 21, 8 + 81, 27 £ 271, 45 £ 451, 0,
35+ 351} and W= {0, 1 %1, 6 +6l 20 + 201, 49 + 491, 26 +
261, 11 £ 111, 8 + 8I, 17 £ 171} be two n-n set vector spaces
defined over the set S = {0, 1, 1 -1} < N(Z).

Define T: V> Wby T (0)=0;
T2+ 2I)=6+ 6l
T(8 £ 81)=20= 20I,
T(27 £271) =26 + 261
T(45 +451) =49 + 491 and
T(B5+35)=11+111L

T is a n-n set linear transformation of V to W.

Example 2.3.25: Let V= {0, 2m + 2ml, 5m + 5ml | m € Z'} be
a n-n set neutrosophic vector space over S = {0, 1, 1 -1} and W
= {27m + 27ml, 0, 8m + 8ml | m € Z"} be a set neutrosophic
vector space over te set S = {0, 1, 1 —I}.
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Define T: V—> Was T (0)=0.
T(2m £ 2ml) = 8m + 8ml.
T(Sm £+ Sml) = 27m + 27ml
then T is a n-n set linear transformation of V into W.

Now we give some examples of n-n set linear operators on V, V
a n-n set vector space defined over the set S.

Example 2.3.26: Let V= {7 £ 71, 0, 21 + 211, 63 * 631, 31, 91,
271, 451, 631, 151} be a n-n set vector space over the set S = {0,
1,1-1}.
Define T: V> V by
T0)=0
TN =1
T(7+£71)=21+211
T(21 £ 211) =63 + 631
T(63 £ 631) = 631
T3 =91
TOD) =271
T(451) = 151
T(7L) =271
T(15I) = 451 and
T(631) =63 + 631.

T is a n-n set linear operator on V.

Example 2.3.27: Let V = {2ZI, 81ZI, 4771, 0} be a n-n set
vector space over the set S=27"1.
T:V —>V as follows:
Define T (0)=0

T(ZI)=4771

T(81Z1) = 2Z1

T(47Z1) = 8171,

T is a n-n set linear operator on V.

DEFINITION 2.3.9: Let V and W be n-n set linear algebra
defined on the same set S c N(Z). A map T: V — W is said to a
n-n set linear transformation from V to W if the following
conditions are satisfied:
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=1
T(vitv)=T(v)+T(v)
T(av)=aT(v)
forall vi, viy veVand aa € S. If W =V then the n-n set linear
transformation is defined to be a n-n set linear operator on V.

We shall illustrate this situation by the following examples:

Example 2.3.28: Let

m-ml 0O

V=
i
and W={m -ml | m e Z U {0}} be two n-n set linear

algebras over the set S= {0, 1, 1 — I} < N(2).
Define T: V—> W by

meZ' u{O}}

m-ml O
T =2m-—2ml

m-ml 0
eV
0 0
and T(0) = 0. Thus T is a n-n set linear transformation of V into
W.

for every

Example 2.3.29: Let V = {271} and

271 0
W =
{( 0 m- mIJ

be two n-n set linear algebras over the set S= {0, 1, 1 — I} <
N(2).

meZ’ u{O}}

Define T: V> W by
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T(2ZI)=(2ZI 0] and T(O)=[0 Oj
0 0 0 0)

T is a n-n set linear transformation of V into W.

Example 2.3.30: Let

7zl 271 371
V=4<12Z1 0 0
321 0 0

be a n-n set linear algebra over the set S =Z" U {0}.
DefineamapT:V >V

0 00 0 00
T|I0O 0 0|=(0 0 O
0 00 0 00

Z1 271 371 271 471 6Z1
T(2Z21 O 0 |=14Z21 O 0
321 0 0 6Z1 0 0

It is easily verified that T is a n-n set linear operator on V.

Example 2.3.31: Let V = {12Z1} be a n-n set linear algebra over
the set S =271 = N(Z).

Define T: V — V by T(12ZI) = 24Z1I, it is easily verified to be a
n-n set linear operator on V.

DEFINITION 2.3.10: Let V and W be n-n set linear algebras
over the set S < N(Z). If T: V. — W be a n-n set linear
transformation of V into W such that T preserves atleast one n-n
set linear subalgebra of V then we define T to be a weak n-n set
subalgebra preserving linear transformation. If T preserves
every n-n set linear subalgebra of V then T we define T to be a
strong n-n set subalgebra preserving linear transformation. If
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W =V then we call T to be a strong (weak) n-n set subalgebra
preserving operator on V.

We shall illustrate these concepts by some examples.

Example 2.3.32: Let V={m—-ml |m e Z" U {0}} and
m—ml 0
W=
{[m -ml m- ij

be two n-n set linear algebras over the set S = {0, 1, 1 — I}
N(Z). If T: V— W be such that

meZ' u{O}}

m-ml m-ml

0 0
T(0) = (0 OJ

then T is a strong n-n set subalgebra preserving linear
transformation of V into W.

[m—ml 0 j
T(m—ml) =

and

Example 2.3.33: Let V = {ZI} and W = {5ZI} be two n-n set
linear algebras over the set Z" 1 U {0}. The map T: V - W
given by T(0) = 0, T(I) = 5I is a strong n-n set subalgebra
preserving linear transformation of V into W.

Example 2.3.34: Let V={m —ml, 0 | m € Z'} be a n-n set
linear algebra over the set S= {0, 1, 1 —2I}. Themap T: V>V
such that T(m — ml) = 2m — 2ml, for every m —ml € V is a
strong n-n set subalgebra preserving linear operator on V.

Now we proceed onto define the notion of generator for n-n set
vector space and n-n set linear algebra.
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DEFINITION 2.3.11: Let V be a n-n set vector space over the set
S © N(Z). Suppose B < V is a non empty subset of V such that
every v € V can be represented by v = sb for some b € B and s
€ S then we call B to be the n-n generator set (or n-n
generating set) of V over the set S.

We illustrate this by some simple examples.

Example 2.3.35: Let V= {3 £31,0,7 + 71, 15 £ 151, 20 £ 201}
< N(Z) be a n-n set vector space over the set S= {0, 1,1 -1} <
N(Z). Take B= {3 + 31, 7+ 71, 15 + 151, 20 + 201} < V. It is
easily verified B is a n-n generator of V over the set S.

Example 2.3.36: Let V = {271, 0, 15Z1} < N(Z) be the n-n set
vector space over the set S = Z'I < N(Z). Take B = {#21, £15I,
0} <V, B is n-n generator set V over the set S.

DEFINITION 2.3.12: Let V be a n-n set linear algebra over the
set S c N(Z). Let C <V be a subset of V such that every element
v € V can be represented as v = sc or v= Zsl.cl. for some s, s;

e S and ¢, ¢; € C then we call C to be a n-n generator set
(generating set) of the n-n set linear algebra V over the set S.

We illustrate this by some simple examples.

Example 2.3.37: LetV={m-ml |m e Z" U {0}} be a n-n set
linear algebra over the set S = {0, 1, 1 —I}. Take C = {m — mlI |
m € Z'} < V is the n-n generator set of V over S.

Example 2.3.38: Let V = {2Z1} < N(Z) be a n-n set linear
algebra over the set S=Z" = N(Z). Let C= {+2I} c V,Cis a
n-n generator set of V over the set S = Z" < N(Z). When the n-n
generator set C of V (V; n-n set linear algebra or V a n-n set
vector space) has finite number of elements in C then we say V
has n-n finite generator C. If C has infinite cardinality then we
say V has n-n infinite generator set.
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2.4 Mixed Set Neutrosophic Rational Vector Spaces and
their Properties

In the section we introduce the notion of mixed (pure) set
neutrosophic rational vector space and describe some of their
properties. Throughout this book Q(I) denotes the neutrosophic
rational field; i.e., Q = Q(I) = {a + bl | a, b € Q}. PN(Q)
contains only neutrosophic rational numbers of the form {a + bl
|b=0anda, b e Q}. So PN(Q) hereafter will be known as pure
set neutrosophic rational numbers.

DEFINITION 2.4.1: Let V < N(Q) (PN(Q)) be a proper subset of
N(Q) or V contains elements from N(Q) (PN(Q)) (V < Q). Let S

< N(Q) be a proper subset of N(Q). We say V is a mixed (pure)
set neutrosophic rational vector space over S if sv € V for every
seSandvevV.

Example 2.4.1: Let
{2 21 19 191 27 271

b b b b

77 2 275 5

171, 48 — 481, 25 _ 281 4711 ).
13 1375

Take

11 11
S={0,1, ———,1-1} cN
{ P y € N(Q).

It is easily verified V is a pure set neutrosophic rational vector

space over the set S.

Example 2.4.2: Let

Y et

b b b b 2 b

V= 27 27 271 48 48 481 191 8I -
5°5 5 77 77 23]

be a mixed set neutrosophic rational vector space over the set S
={0,1,1-1}.
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Now we proceed to define mixed (pure) set neutrosophic
rational linear algebra over the set S < N(Q).

DEFINITION 2.4.2: Let V < N(Q) (or V contains entries from
N(Q)) be a mixed (pure) set neutrosophic rational vector space
over a set S < N(Q). If in V we have for every v, u, € Vu +v
and v + u € V then we call V to be a mixed (pure) set
neutrosophic rational linear algebra over the set S.

We shall illustrate this by the following examples:

Example 2.4.3: Let V={m-ml | m € Q} < PN(Q) U {0}. V
is a pure set neutrosophic rational linear algebra over the set S =
Example 2.4.4: Let

{0,1,1-11}.
V={[ QI m—ijmeQ};
m—ml QI

V is a pure set neutrosophic rational linear algebra over S = {0,
1,1-1}.

Example 2.4.5: Let V={QI,Q,Q+ QI} = {ml,n, t+pl| m, n,
t,p € Q} < N(Q). V is a mixed set neutrosophic rational linear
algebra over S= {1, 0, 1 —I}.

Remark: The following facts are interesting about these new
structures.

(1)  We can define them over Q or N(Q) or PN(Q); we do
not want to distinguish it by different names. We have
to show that they are different whenever the set over
which they are defined are different. However the
reader can know the difference by the context.
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2)

)

4)

We have just said SC N(Q)soScZorScQorS c
N(Q) and S < Q. But while studying the reader can
understand over which they are defined.

Further we understand all mixed (pure) set neutrosophic
integer vector spaces (linear algebras) are mixed (pure)
set neutrosophic rational vector spaces (linear algebras).
However the mixed (pure) set neutrosophic rational
vector space (or linear algebra) in general is not a mixed
(pure) set neutrosophic integer vector spaces (or linear
algebras).

The notion of n-n set integer vector space is merged in
case of neutrosophic set rational vector space.

However the difference in the structure is evident to any reader.

Now we proceed onto define the substructures of these new
structures.

DEFINITION 2.4.3: Let V be any mixed set neutrosophic rational
vector space over the set S < N(Q). Let W be any proper subset
of V. If W is a mixed set neutrosophic rational vector space over
S, then we define W to be a mixed set neutrosophic rational
vector subspace of V over S.

We will illustrate this by some simple examples.

Example 2.4.6: Let

B B B B s Yo

3 3°7 7°7°8 8°3°°19 19°

vo [ 2 o s,

122 1221 122

31 31 ?} NQ

be a mixed set neutrosophic rational vector space over S = {0, 1,
1 —1}. Take

0,— —-=— - -_=

b b

W= 20 20 20I 5 5 SI N
7°7 7733 3
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W is a mixed set neutrosophic rational vector subspace of V
over S. It is interesting to note that every subset of V need not in
general be a mixed set neutrosophic rational vector subspace of
V over S.
For take

W, = E,é—ﬂ cV;
7°3 3

W, is not a mixed set neutrosophic rational vector subspace of
V over S as

—(1—)—§—&¢W11 0.2 _oew,
7 7 303

Example 2.4.7: Let V= {m —ml, ml |m € Q" U {0}} be the
pure set neutrosophic rational vector space over the set S = {0,
LLI-T} cN@Q). Take W={ml | me Q" U {0}}cV;Wisa
pure set neutrosophic rational vector subspace of V over S.

DEFINITION 2.4.4: Let V be a set neutrosophic rational linear
algebra over the set S < N(Q). Let W be a subset of V; if Wis a
set neutrosophic rational linear algebra over the set S < N(Q)
then we call W to be a set neutrosophic linear subalgebra of V
over the set S.

We will illustrate this by some examples.

Example 2.4.8: Let V= {0, m — ml | m € Q') be a set
neutrosophic set linear algebra over the set S = {0, 1, 1 — I}
N(Q).

Take W = {0, 3m — 3ml | m € Z'} < V; W is a set
neutrosophic rational linear subalgebra of V over S. Infact W is
a set neutrosophic integer set linear subalgebra of V over S.
Take W, = {0,m —ml |m € {I/2n} |[n € Z"} = V. W, is a set
neutrosophic rational linear subalgebra of V over S.

Infact W, is not a set neutrosophic integer set linear
subalgebra of V over S.
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Example 2.4.9: Let

ol AP

be a set neutrosophic rational linear algebra over the set S = {0,

1,1, 1-1}.
m-ml O
W:
0 0

Take
W is a set neutrosophic rational linear subalgebra of V over S.

vl

is also a set neutrosophic rational linear subalgebra of V over S.

p,meQ’ U {0}}

m€Q+U{0}} cV;

peQ’ U{O}}

DEFINITION 2.4.5: Let V be a set neutrosophic rational vector
space over the set S. Suppose W < V is such that W is a set
neutrosophic rational vector space over a proper subset T < S;
then we call W to be a subset neutrosophic rational vector
subspace of V over the subset T of S.

We will illustrate this by some examples.

Example 2.4.10: Let V = {5 — 51, 0, 251, 41 — 411, 60 — 601, 60,
601} be a set neutrosophic rational vector space over the set S =
{0, 1, I, 1 —I}. W = {0, 60, 601, 60 — 60I, 251} c V is a subset
neutrosophic rational vector subspace of V over {0, 1,1 -1} =T
cS.

Example 2.4.11: Let
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Ve 251 0 0 9-9I\ (5 21-211
0 41)\8-81 0 (481 51-511)

0 0)(50 0Y(0 21-21I
0 01481 0)10 51-51I

be a set neutrosophic rational vector space over the set S = {0,

1,1, 1-1}.
0 0Y(5I 0)(251 O
W= , , cV
0 0)\481 0 0 41

Take
is a subset neutrosophic rational vector subspace over T = {0, I}
c S.

Now we proceed onto define yet another new substructure.

DEFINITION 2.4.6: Let V be a set neutrosophic rational vector
space over the set S. Let W < V be a proper subset of V if Wis a
set neutrosophic rational linear algebra over the set S; then we
call W to be a pseudo set neutrosophic rational linear
subalgebra of V over the set S.

We illustrate this situation by some examples.
Example 2.4.12: Let

V = {25p — 25pl, 25, 251, %—% :

0,

~| oo
<X

I 31 41 .
,—,—,42l|peZ
=3 Ip }

be a set neutrosophic rational vector space over the set S={0, 1,
L1-1}.Let W= {25p-25pL,0|p € Z'} V. Wis a pseudo
set neutrosophic rational linear subalgebra of V over the set S.
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Example 2.4.13: Let

83 8371379

Ve m—ml 0 22 221 421 881
0 m—ml

meQ”’ U{O}}

be a set neutrosophic rational vector space over the set S = {0,
1,1, 1-1}.

Take
m—ml 0
W =
{[ 0 m-— ij

W is a pseudo set neutrosophic rational linear subalgebra of V
over the set S.

m€Q+U{0}} cV,

DEFINITION 2.4.7: Let V be a set neutrosophic rational linear
algebra over the set S. Let W <V be a set neutrosophic rational
linear algebra over a proper subset T of S. We define W to be a

subset neutrosophic rational linear subalgebra of V over the
subset T of S.

We will illustrate this situation by some examples.

Example 2.4.14: Let V={m —ml | m € Q" U {0}} be a set
neutrosophic rational linear algebra over the set S = {Z'1, 0, 1 —
I, 1} € N(Q). Choose W={m-ml |m e Z U {0}} cV; Wis
a subset neutrosophic rational sublinear algebra over the subset
T=1{2Z"1,0} cS.

Example 2.4.15: Let
221 m-ml .
V= meQ
{(m -ml  3ZI j }

be a set neutrosophic rational linear algebra over the set {1 — I,
1,2-21,5-51,-191+ 19} =S.
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Take
{[ 1671 2m—2mI]
W=
S5m—5ml 15Z1
W is a subset neutrosophic rational linear subalgebra over the
setT={1-1,1,19-191I} c S.

As in case of neutrosophic integer set vector spaces (linear
algebras) we can define the notion of set neutrosophic linear
transformation, set neutrosophic linear operator, set
neutrosophic subspace (sublinear algebra) preserving linear
transformation and linear operator. Interested reader can
construct examples of them as the analogous definition are
identical. Now we proceed on to give the notion of set
neutrosophic real set vector spaces and set neutrosophic real set
linear algebra.

Throughout this book N(R) will denote the set of all
neutrosophic reals, i.e., N(R) = {a + bl | a, b € R}; PN(R)
denote the pure neutrosophic reals i.e., elements of the form {a
+bl|b=#0;a b e R}. Clearly PN(R) = N(R), R = N(R) but R
= PN(R) and (R U I) = N(R) in our usual notation.

me(Y}gV;

DEFINITION 2.4.8: Let V < N(R) (or PN(R)) we say V is a set
neutrosophic real vector space over a set S < N(R) if for every v
€ Vand for everys €8, sv, vs € V.

We will illustrate this by some examples.
Example 2.4.16: Let V= {r—1l |r € R"U{0}} cN(R); Visa
set neutrosophic real vector space over the set S = {R'T} <

PN(R).

Example 2.4.17: Let
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take S = {R'T}. V is a set neutrosophic real vector space over
the set S.

It is interesting to note that all neutrosophic integer set vector
spaces and set neutrosophic rational vector spaces are also set
neutrosophic real vector spaces. However when we work with
real world problems according to need we can choose any of
these set neutrosophic vector spaces.

Further, as we do not need all the axioms of a neutrosophic
vector space to be satisfied by these structures these structures
can be realized as the most generalized structures in
neutrosophic vector spaces.

DEFINITION 2.4.9: Let V be a subset of N(R) or PN(R) (or has
entries from N(R) or PN(R)). We say V is a set neutrosophic
real linear algebra if

1. foreveryu,v e V,u+vandv+u € Vand

2. foreverys e Sandv e V;vsandsv €V.

All set neutrosophic real linear algebras are set neutrosophic
real vector spaces but a set neutrosophic real vector space in
general need not be a set neutrosophic real linear algebra.

We shall illustrate this by some simple examples.

Example 2.4.17: Let

Ve [ NEING) 0 ]
~J191++419  0.14-0.141)

20-201I 0
J7 -7 =
0 g_g ’
NERNE)
31 41-411
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jﬁ ‘\‘/6_1 121+ 1142, 41, £—QO}

be a set neutrosophic real vector space over the set S= {1, 1 — 1,
5—513.

We see clearly V is not a set neutrosophic real linear
algebra over S.

Example 2.4.18: Let

8m 8mI

be a set neutrosophic real linear algebra over the set

= {(ml, 0, 4m — 4ml, —= m e Z'} < N(R)

Example 2.4.19: Let

V= meR"
3m 3m m—ml

NG
be a set neutrosophic real linear algebra over the set

Soqp AL 40 2 2 21 om

Y ETE R A T a

Now all substructures pseudo substructures and set neutrosophic
real transformation, set neutrosophic real operator can be
defined as in case of neutrosophic integer set vector space and
set neutrosophic rational vector space.

The following results can be easily proved by the reader.
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(1) Set neutrosophic real vector space is not a set
neutrosophic rational vector space or a neutrosophic
integer set vector space.

(2) {The class of neutrosophic integer set vector space} <
{The class of set neutrosophic rational vector space}
{The class of set neutrosophic real vector space} —
prove.

(3) Study set neutrosophic real linear transformation of set
neutrosophic real vector spaces V and W over a set S.

(4) Study and obtain some interesting properties about set
neutrosophic real linear operator of the set neutrosophic
real vector space V over the set S.

(5) Obtain interesting results about set neutrosophic real
linear transformation(operator) = which  preserves
subspaces.

Next we proceed onto define the new notion of
neutrosophic modulo integers. (Z,w ) ={a+Dbl|a,b e Z,} =
N(Z,) will denote the neutrosophic modulo integers. PN(Z,) =
{a+bl|be Z,\ {0}} denotes the pure neutrosophic modulo
integers.

DEFINITION 2.4.10: Let V < N(Z,) or a subset of PN(Z,) (V can
be a set with has entries from N(Z,) or PN(Z,). Let S < N(Z,).
We say V is a set neutrosophic modulo integer vector space if
foreveryv e Vands € Svs for svisin V.

We will illustrate this by some examples.

Example 2.4.20: Let V = {0, 2, 6, 4, 61, 81, 10I} < N(Z,,) and S
= {0, 3} < Nj,. V is a set neutrosophic modulo integer vector
space over the set S.

Example 2.4.21: Let V = {0, 21, 81, 61, 41, 2, 4, 6, 8} < N(Z1)

and S < {0, 1, 2, I, 2I} < N(Z0). V is a set neutrosophic modulo
integer vector space over the set S.
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Example 2.4.22: Let V = {0, 11, 21, 31, 41, 51, 61} < N(Z,). S =
{0, 1, I} = N(Z7). V is a set neutrosophic modulo integer vector
space over the set S.

DEFINITION 2.4.11: Let V < N(Z,) (or V has entries from N(Z,))
and S € N(Z,). If V in addition being a set neutrosophic modulo
integer vector space over S satisfies the condition, that for every
pairv,u € V,u +vandv +u €V, then we call V to be a set
neutrosophic modulo integer linear algebra over S.

We illustrate this by some simple examples.

Example 2.4.23: Let V = {0, 1, 21, 31, 41, 51, 6I, 71, 81, 91, 101}
c N(Zj)and S=1{0, 1,1, 5, 3, 21, 6I, 81} < N(Z,;). V is a set
neutrosophic modulo integer linear algebra over S.

Example 2.4.24: Let V = {0, 21, 41, 61, 81, 101, 121, 141, 161} <
N(Zi), S=1{0, 1, 2, 4, 8, 21, 61, 10I}. V is a set neutrosophic
modulo integer linear algebra over S.

Example 2.4.25: Let V={0,1+91,2+ 81,3+ 71,4 +6I, 51, 8
+ 21,7+ 31, 6 + 41, I + 9} < N(Zyp). V is a set neutrosophic
modulo integer linear algebra over S = {0, 1, 1 + 9, I+ 9} <
N(Z ).

It is left as an exercise for the reader to prove “A set
neutrosophic modulo integer vector space in general is not a set
neutrosophic modulo integer linear algebra and every set
neutrosophic modulo integer linear algebra is a set neutrosophic
modulo integer vector space”.

Example 2.4.26: Let V = {1, 0, 21, 8I, 241, 171, 17, 221} <
N(Zys) and S = {0, 1, I} < N(Zys5). V is a set neutrosophic
modulo integer vector space over S only and is not a set
neutrosophic modulo integer linear algebra over S.

Now we proceed on to define set neutrosophic modulo
integer vector space.
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DEFINITION 2.4.12: Let V < N(Z,) be a set neutrosophic
modulo integer vector space over the set S < N(Z,). Suppose W
< V' is a proper subset of V such that W is a set neutrosophic
modulo integer vector space over S then we define W to be a set
neutrosophic modulo integer vector subspace of V over S.

We will illustrate this by some examples.

Example 2.4.27: Let V = {2, 0, 41, 261, 141, 4, 121, 201, 20, 24,
241} < N(Zs) be a set neutrosophic modulo integer vector
space over the set S = {0, 1, I} < N(Zys). Take W = {0, 41, 121,
201, 261, 141} < V; W is a set neutrosophic modulo integer set
vector subspace of V over S.

Example 2.4.28: Let V = {31, 0, 6I, 211, 91, 3, 9, 6, 181} <
N(Zy;) and S = {0, 1, 31, 3} < N(Zy7). V is a set neutrosophic
modulo integer vector space over the set S. Take W = {0, 3, 31,
61, 18I, 91} < V; W is a set neutrosophic modulo integer vector
subspace of V over the set S.

Now we proceed onto define the notion of subset neutrosophic
modulo integer vector subspace of V over a subset T of S.

DEFINITION 2.4.13: Let V < N(Z,) be a set neutrosophic
modulo integer vector space over the set S c N(Z,). Let W < V;
W is said to be a subset neutrosophic modulo integer vector
space of V over the subset T of S if W is a set neutrosophic
modulo integer vector space over the set T.

We will illustrate this by some examples.

Example 2.4.29: Let V = {0, 31, 12, 41, 51, 4, 121, 101, 5, 3} <
N(Z;5) be a set neutrosophic modulo integer vector space over
the set S = {0, 3, 31, 5, 5I} < N(Z;5). Take W = {0, 31, 3, 51, 5}
cVand T = {0, 3, 31} < S. W is a subset neutrosophic modulo
integer vector subspace of V over the subset T of S.
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Example 2.4.30: Let V = {0, 1, 1, 18, 18I, 16, 161, 13, 131, 20,
201} < N(Zy) be a set neutrosophic modulo integer vector
space over the set S = {0, 1, I} < N(Z,;3). Take W = {0, 20, 201,
16, 161, 13, 131} <« Vand T = {0, I} < S, W is a subset
neutrosophic modulo integer vector subspace of V over the
subset T of S.

It is important and interesting to note that all set neutrosophic
modulo integer vector spaces have only finite number of
elements in them. It also implies the set neutrosophic generator
subset of a set neutrosophic modulo integer vector space is
always finite.

DEFINITION 24.14: Let V < N(Z,) be a set neutrosophic
modulo integer vector space over the set S € N(Z,). Let W <V
be such that W is a set neutrosophic modulo integer linear
algebra over S then we call (or define) W to be a pseudo set
neutrosophic modulo integer linear subalgebra of V over S.

We will illustrate this situation by some examples.

Example 2.4.31: Let V = {0, 21, 41, 61, 81, 101, 121, 14I, 16I,
181, 17, 171, 11, 111, 191} < N(Zy) and S = {0, 1, 21, I} <
N(Zy). V is a set neutrosophic modulo integer vector space over
S.

Take W = {0, 21, 41, 61, 81, 101, 121, 141, 161, 181} c V; W
is a pseudo set neutrosophic modulo integer linear subalgebra of
V over the set S.

Take W, = {0, 41, 81, 121, 161} < V; W, is a pseudo set
neutrosophic modulo integer linear subalgebra of V over S.

Example 2.4.32: Let V = {0, 31, 3, 61, 91, 121, 151, 181, 211, 24I,
271, 12, 18, 21} < N(Zs0) be a set neutrosophic modulo integer
vector space over the set S = {0, 1, I} < N(Z3).

Take W = {0, 31, 61 91, 121, 151, 18I, 211, 241, 271} c V. W
is a pseudo set neutrosophic modulo integer linear subalgebra of
V over S.
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Now we proceed on to define the notion of substructures in set
neutrosophic modulo integer linear algebras.

DEFINITION 2.4.15: Let V < N(Z,) be a set neutrosophic
modulo integer linear algebra over the set S < N(Z,). Suppose
W < V and if W is a set neutrosophic modulo integer linear
algebra over the same set S < N(Z,); the we define W to be a set

neutrosophic modulo integer linear subalgebra of V over the set
S.

We shall illustrate this situation by some examples.

Example 2.4.33: Let V= {0, 1, 21, 31, 41, ..., 231} < N(Zy) be a
set neutrosophic modulo integer linear algebra over the set S =
{0, 1, I, 21} < N(Z,4). Take W = {0, 21, 41, 61, 81, 101, 121, 141,
161, 181, 201, 221} < V; W is a set neutrosophic modulo integer
linear subalgebra of V over the set S < N(Z,4).

Example 2.4.34: Let V= {Tnl,0|n=1,2, ..., 6} < N(Zy); i.c.,
V ={0, 71, 141, 211, 281, 351, 421} < N(Z49) over the set S = {0,
3, 1, I, 2I} < N(Z49). V is a set neutrosophic modulo integer
linear algebra. But V has no set neutrosophic modulo integer
sublinear algebra over S.

Example 2.4.35: Let V= {0, L 2L, ..., (p — DI} = N(Z,) be a set
neutrosophic modulo integer linear algebra over S = {0, 1, 21,
3L, I, 5SI} < N(Z,). V has no set neutrosophic modulo integer
linear subalgebras.

Now we proceed onto define pseudo set neutrosophic modulo
integer vector subspace of a set neutrosophic modulo integer
vector linear algebra.

DEFINITION 2.4.16: Let V < N(Z,) be a set neutrosophic
modulo integer linear algebra over the set S < N(Z,). Suppose
W < V; Wis a subset of V such that W is a set neutrosophic
modulo integer vector space over S then we define W to be a
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pseudo set neutrosophic integer vector subspace of V over the
set S.

Example 2.4.36: Let V = {0, [, 21, 41, 31, ..., 241} < N(Zy5) be a
set neutrosophic modulo integer linear algebra over the set S =
{0, 1, I, 1-1} = N(Zys). Take W = {0, 1, 41, 21,241} c V; Wisa
pseudo set neutrosophic modulo integer vector subspace of V
over the set S.

Example 2.4.37: Let V={0,1+6I, 1+ 6,2 +5I,21+5, 3 +4I,
4 + 31} < N(Z;) be a set neutrosophic modulo integer set linear
algebra over the set S= {0, 1, I, 1 + 61} < N(Z;). We see W =
{0, 2 + 51, 3 + 41} < V is a pseudo set neutrosophic modulo
integer vector subspace of V over the set S.

It is left as a research problem for the reader to characterize
those set neutrosophic modulo integer linear algebra V over a
set S such that every subset of V is a pseudo set neutrosophic
modulo integer vector subspace of V over the set S. Now we
proceed onto define the notions of subset neutrosophic modulo
integer linear subalgebra and pseudo subset neutrosophic
modulo integer vector subspace of a set neutrosophic modulo
integer linear algebra over the set S.

DEFINITION 2.4.17: Let V < N(Z,) be a set neutrosophic
modulo integer linear algebra over the set S c N(Z,). Let W <V
be a set neutrosophic modulo integer vector space over a subset
T of S. We call W to be a pseudo subset neutrosophic modulo
integer vector subspace of V over the subset T < S.

We will illustrate this by some examples.

Example 2.4.38: Let V={0,1+ 281,28 +1,2+ 271,27 +2I, 3
+26l, 26 + 31, 4 + 251, 25 + 41, 5 + 241, 24 + 51, 6 + 231, 23 +
61, 7 +221,22+ 71,21 + 81, 8 + 211, 9 + 201, 20 + 91, 19 + 101,
10+ 191, 11 + 181, 18 + 111, 17 + 121, 12 + 171, 13 + 161, 16 +
131, 14 + 151, 15 + 141} < N(Zy) be a set neutrosophic modulo
integer linear algebra over the set S = {0, 1, I, 1 + 28I} <
N(Zo9).
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Take W = {0, 1 + 28I, 9 + 201, 15 + 141, 12 + 171, 7 + 221,
3+26l} cVand T = {0, 1,1} < S; W is a pseudo subset
neutrosophic modulo integer vector subspace of V over the
subset T of S.

Example 2.4.39: Let V= {0, 1, 21, 31, ..., 261} < N(Z,7) be a set
neutrosophic modulo integer linear algebra over the set S = {0,
1, I, 1 + 261} € N(Zy7). Take W = {0, I, 31, 61, 141, 111, 101}
Vand T = {0, 1, 1+261} < S. W is a pseudo subset neutrosophic
modulo integer vector subspace over the subset T of S.

DEFINITION 2.4.18: Let V < N(Z,) be a set neutrosophic
modulo integer linear algebra over a set S < N(Z,). Suppose W
< V be such that W is a set neutrosophic modulo integer linear
algebra over a subset T of S with cardinality of T greater than
one ie., |T| > 1, then we call W to be a subset neutrosophic
modulo integer linear subalgebra of 'V over the subset T of S.

We will illustrate this by some simple examples.

Example 2.4.40: Let V = {0, 1, 21, 31, 41, ... , 481} < N(Z4) be
a set neutrosophic modulo integer linear algebra over the set S =
{0, 1, I, 7 + 241} < N(Z49). Take W = {0, 71, 141, 211, 28I, 35],
421} < V;and T = {0, 7+ 421} < S. W is a subset neutrosophic
modulo integer linear subalgebra of V over the set T < S.

Example 2.4.41: Let V={0,1+ 141, 14 + 1, 2 + 131, 13 + 2I,
121 +3,31+ 12,41+ 11, 111 + 4, 10I + 5, 51+ 10, 6 + 91, 61 +
9,71+ 8, 8+ 71} < N(Z,5) be a set neutrosophic modulo integer
linear algebra over the set S = {0, 1, I, 1 + 141, 14 + I} <
N(Z;s5). Take W= {1 + 14, 14+ 1,0} cVand T= {0, I, I}; W
is a subset neutrosophic modulo integer linear subalgebra of V
over the subset T < S.

Now we study some more properties of set neutrosophic
modulo integer linear algebra.
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DEFINITION 2.4.19: Let V < N(Z,) be a set neutrosophic
modulo integer linear algebra over the set S < N(Z,). If V has
no proper subset W such that W is a set neutrosophic modulo
integer linear subalgebra of V over the set S then we call W to
be a simple set neutrosophic modulo integer linear algebra or
set neutrosophic modulo integer simple linear algebra.

We illustrate this situation by some simple examples.

Example 2.4.42: Let V = {0, 1, 21, 31, 41, 61, 71, 81, 91, 101} <
N(Z1,) be a set neutrosophic modulo integer linear algebra over
theset S= {0, 1,1, 1 + 10I, 10 + 11, 5 + 61} < N(Zy;). V has no
proper subset W such that W is a set neutrosophic modulo
integer linear subalgebra of V. Thus V is a simple set
neutrosophic modulo integer linear algebra over the set S.

Example 2.4.43: Let V= {0, 1 + 401, 40 + I} < N(Z4) be a set
neutrosophic modulo integer linear algebra over the set S = {0,
1,4+ 371,37 + 41, I} < N(Z4). V is a simple set neutrosophic
modulo integer linear algebra over S.

We now proceed onto define the notion of weakly simple set
neutrosophic modulo integer linear algebra.

DEFINITION 2.4.20: Let V < N(Z,) be a set neutrosophic
modulo integer linear algebra over a set S < N(Z,). If V has no
proper subset W such that W is a subset neutrosophic modulo
integer linear subalgebra over any proper subset T of S then we
call W to be a weakly simple set neutrosophic modulo integer
linear algebra over the set S.

We will illustrate this situation by some simple examples.

Example 2.4.44: Let V = {0, I, 21, ..., 301} < N(Z;,) be a set
neutrosophic modulo integer linear algebra over the set S = {0,
I}. V is a weakly simple set neutrosophic modulo integer linear
algebra over the set S.
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Example 2.4.45: Let V = {0, 3 + 121} < N(Z;5) be a set
neutrosophic modulo integer set linear algebra over the set S =
{0, I} = N(Z;5). V is a weakly simple set neutrosophic modulo
integer linear algebra over S.

THEOREM 2.4.1: Let V < N(Z,) be a set neutrosophic modulo
integer linear algebra over a set S c N(Z,), | S| = 2 then Vis a
weakly simple set neutrosophic modulo integer linear algebra
over S.

Proof: Since | S| =2 even if W < V is such that W is a set
neutrosophic modulo integer linear subalgebra over S it cannot
be a subset neutrosophic modulo integer linear subalgebra over
asubset Tof Sas|S|=2and|T|> 1 is not possible unless | T |
=| S |. Hence the claim.

THEOREM 2.4.2: Let V = {0, I, ..., (p — )] } © N(Z,) where p is
a prime be a set neutrosophic modulo integer linear algebra
over a set S € N(Z,). V is both a simple set neutrosophic modulo
integer linear algebra and a weakly simple set neutrosophic
linear algebra.

Proof: We see V has no subset W such that W is a set
neutrosophic modulo integer linear subalgebra over S. So V is a
simple set neutrosophic modulo integer linear algebra.

Now since V has no set neutrosophic modulo integer linear
subalgebras even if | S| > 2 still we cannot find W in V such
that W is a set neutrosophic modulo integer inear algebra over
any proper subset of S. Hence the claim.

Now we proceed onto define the notion of set neutrosophic
linear transformation of V, W < N(Z,) V and W neutrosophic
modulo integer vector space and set neutrosophic linear
operator on when W =V,

DEFINITION 2.4.21: Let V and W be two set neutrosophic
modulo integer vector spaces over a set S < N(Z,). Amap T: V
— W such that T(sv) = sT(v) for all s € S and v € V is defined
to be a set neutrosophic modulo integer linear transformation V
toW.
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Let N(Homs(V, W)) be the collection of all set neutrosophic
modulo integer linear transformations from V to W then
|Ns(Hom (V, W)| < co. If W =V then we call T: V — V to be a
set neutrosophic modulo integer linear operator on V.

Clearly |Ns(Hom(V, V))| < co where Ns(Hom(V, V)) denotes
the collection of all set neutrosophic modulo integer linear
operators from Vito V.

The interested reader is expected to construct examples.

DEFINITION 2.4.22: Let V and W be two set neutrosophic
modulo integer linear algebras over the set S € N(Z,). A map T:
V' — W is said to be a set neutrosophic modulo integer linear
transformation of these linear algebras V and W if

(1) T(x+y) =Tkx) + T()
2) T(ox) = aT (x);
forallx,y € Vandforall a €S.
If V=W, we call the map T to be a set neutrosophic modulo
integer linear operator of V.

DEFINITION 2.4.23: Let V and W be two set neutrosophic
modulo integer linear algebras over the set S < N(Z,).

A set neutrosophic modulo integer linear transformation T
is said to be a strong set neutrosophic modulo integer
subalgebra preserving linear transformation if T preserves set
neutrosophic modulo integer linear subalgebras of V, i.e., if P is
a set neutrosophic modulo integer linear subalgebra of V and if
T(P) = Q then Q is a set neutrosophic modulo integer linear
subalgebra of W and this is true for every set neutrosophic
modulo integer linear subalgebra P of V.

If atleast one set neutrosophic modulo integer linear
subalgebra P of V is preserved under a set neutrosophic modulo
integer linear transformation T, then we call T; to be a set
neutrosophic modulo integer subalgebra preserving linear
transformation of Vto W.

It is left as an exercise for the reader to prove the following
theorem:
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THEOREM 2.4.3: Every strong set neutrosophic modulo integer
linear subalgebra preserving linear transformation of V to W
where V and W are set neutrosophic modulo integer vector
spaces over a set S < N(Z,) is a set neutrosophic modulo integer
linear subalgebra preserving linear transformation of Vand W.

Prove the converse is not true.

Several interesting results on set neutrosophic modulo
integer linear algebras over a set S < N(Z,). The task of
obtaining interesting and innovative results is left as an exercise
for the reader.

We give an example of a different type of set neutrosophic
modulo integer vector spaces.

Example 2.4.46: Let

31 41 71) (21 51 9I)(10I 0 O
v=1{l0 21 91 ||0 101 71|91 71 0|,
o0 o 1o1)lo o T1)l21 1 41

31 0 0 31 71 91y (0 0 O 0 0 O
0O 8 01,0 O O|8 I 7I|,;J]0 0 O
0 0 10I){0 O O 0 0 0)lel 71 1

where the entries of the neutrosophic matrices are from N(Zy).
Take S = {0, 1, I, 1 + 10L, 10 + I} < N(Zy;). V is a set
neutrosophic modulo integer vector space over the set S —
N(Z1y).

Example 2.4.47: Let

71 81
21 0) (121 31 0
V= {0, 31, : o1 0 |41,
71 91l 0 41 SI
101 111
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31+10 2I+10 O
41 51 0
61 71 0
81 0 0

where the entries in V are from N(Z;3). Take S= {0, I, I, 1 +
121, T+ 12, 10 + 3, 31 + 10} < N(Z;3). V is a set neutrosophic
modulo integer vector spaces over the set S < N(Z;3).

It can also so happen that S is also a collection of
neutrosophic matrices.

In view of this we define the new concept of set
neutrosophic modulo integer matrix vector spaces and set
neutrosophic modulo integer linear algebras.

DEFINITION 2.4.24: Let V = {Any collection of m x n matrices
with entries from N(Z)} and S < N(Z), if V is such that for every
MeVands €8, sMand Ms € V then we define V to be a set
neutrosophic integer matrix vector space over the set S. ( m and
n can vary depending on S).

We will exhibit this by some examples.

Example 2.4.48: Let

v 31 0) (141 7TIN( 1 421\ (161 121
41 71)\ 41 21)(231 551 )\ -981 91 )°
(21, 41, 71), (0 0 71 141), (0 0 0 111 141 -I),

2 0 31 eI 21 0 O
41 1 141}, 41 -1 I =21
0 51 -7I){-331 11II 0 -7I

the entries of the matrices are from N(Z). Take S = {1, I} <
N(Z), V is a set neutrosophic integer matrix vector space; which
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we can also call as set neutrosophic integer mixed vector space
over S.

Example 2.4.49: Let

I 41 0)(0 0 0)(I O 91
V=42 31 0|0 0 0,7 41 O |,
1 0 51)lo 0 0)(1 0 2
2) (1101 43I 470
50, 8 73 1
81 0 0 97

0 I
3 4
6 7

be the set of 3 x 3 matrices with entries from N(Z). Let

V is also a set neutrosophic integer matrix vector space over S
which is clearly not a mixed one.

On similar lines we can define set neutrosophic rational
matrix vector space over a set S or set neutrosophic real matrix
vector space over S or a set neutrosophic complex matrix vector
space over S or set neutrosophic modulo integer matrix vector
space over S. Here we do not demand S to be a collection of
neutrosophic numbers it can be matrices or row vectors.

We shall illustrate each one of these by examples.

Example 2.4.50: Let

V= 27 Oaﬂao s O-9I,25,ﬂ,§ >
7 17 7 8

(191, 225, 0, 1, 47, 5521),
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0 21
1 0 b (05 070’ 0)’ (0’03 05 0’0)’ (0’03 05 070’ O)’
I

£71 2115 1/7 ]

31 7/191 21/11

00
310 00 0)(0 0
’00’ >
/11 21/9 00 0/S0 0
00

be a collection of some matrices with entries from N(Q) = (Q U
I). V is a set neutrosophic rational matrix vector space over the
set S = {0, 1} < N(Q). Infact V is a set neutrosophic rational
mixed matrix vector space over S.

Example 2.4.51: Let

2 0 1 0
7
211 (000 0
0 41 0 1) g g o
V= o |0 0 0 o
=51 71 &1 ——
7 0 0 0 O
a o
5 3 11
41
oI = 1 o o o
1 81 0 —121 0 151/4 0 0
5 > | =51 71 81 —91/7 5
141 0 91 0 ~151 21
- 0o ==
0 121 0 1401 4 10
7 23
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—-151 0 7—1 0
4

0 191 O ﬂ

14

0 0 -—I11I 1

7

be the 4 x 4 neutrosophic matrices with entries from N(Q).
Take

1 0 00 I 0 00

01 00 01 00O
S={0, L1, ;

0010 00T1@O

0 0 0 1 0 0 0 I

V is a set neutrosophic rational matrix vector space which is
clearly not a mixed one.

Example 2.4.52: Let

V={213L01), (171, V131, 1141,0,0,0,1), (0,0, 0,
0), (0,0, 0,0,0,0,0), (v/81,+/71,0,1, /51), (0, 0,0, 0, 0),

| SNG)
(L6L 5L \6x,—3D),| 0 —J/71 31|,
NG S NG
[ M J 3 A2l
BN G
0 /14 Bl A

be a set of neutrosophic matrices with entries from the set N(R).
Take S={I, 1,1 -1, N \/51} < N(R). Clearly V is a set
neutrosophic real matrix vector space over the set S.
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Clearly V is a set neutrosophic real mixed matrix vector space
over the set S.

Example 2.4.53: Let

BI o 0 NG B N
v=1J71 51 o0 |,| =81 BT 0 |,
Jill 1 —101] |-141 0 171

I 4 1 I 151 —41

0 0 0
00 0,31 T —1/,]0 51 131
0 00 I 51 J71) (0 0 261

be the set of 3 x 3 set neutrosophic matrix from the set N(R).
Take

0 0 0)(I 0 O 1 0 0
S=40 0 0,0 I 0,0 1 O},

0 0 0)l0 0 I 0 01

1-1 0 0

0 1-I 0 [,0,L1

0 0 1-1

Clearly V is set neutrosophic real matrix vector space over S.
Example 2.4.54: Let

V={B+4i,a+bl, 1-1,5+2I (6 +5i) + (3 -4i)L, 0),
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a+bl 0
’(O’ 0’ 0’
0 c+dl

0.0) 00 00 3+41 x+yl 0 10+I
7o 0 0 0) 14 10-51U -171 0O
be a set of mixed matrices with entries from N(C). Take S = {0,
1} = N(C). V is a set neutrosophic complex matrix vector space

over the set S. Infact V is a set neutrosophic complex mixed
matrix vector space over the set S.

00
(0 O],(c+dI,I,e+ﬂ,0,7+4i),[

Example 2.4.55: Let

v (G301 0Y (0 0y (a2+71 171
- o 71)(0 0) 0 (-5

31 0 51 41 (7il 18il
0 (7+D1) (S5-I 1) 14 (-3+4i)I

be a set of 2 x 2 neutrosophic matrices from the set N(C). Take

S = {09 1, L H ’ ’
00 0 1 0 I

clearly V is a set neutrosophic complex matrix vector space
over the set S.

Now we proceed on to describe the set neutrosophic modulo
integer vector spaces.

Example 2.4.56: Let

V= {(, 31, 100), (0, 41, 0, 0, 51), (I, L, I),
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310
(91, 51, 31, 41, 61, 1, 0), { 1 }

21
21 1

3 1T 31 1 0 3I

I 31 I 31| 41 51
0 71

be a collection of mixed neutrosophic matrices with entries from
the set N(Zy;). Take S= {1, 1,1 + 101, 10 + I) c N(Zy;). Vis a
set neutrosophic modulo integer mixed matrix vector space over
the set S.

Example 2.4.57: Let
31 41|41 3I||0 O]|6I I
_]jer 21 I 511|0 O] |51 41
I s1|e6l 210 of|21 31|
21 1 51 610 O[4I 2I

I 6I[51 2r][21 51
21 31(|31 I ||41 6I
51 41|41 61|31 1
31 SI||1 4I]|6l 3I

be a 4 x 2 neutrosophic matrices from the set N(Z;). Take S =
0. , L1 +6L,T+6,2I+5,5+ 21} < N(Z;). V is a set
neutrosophic modulo integer matrix vector space over S. Clearly
V is not a mixed one.

Now we proceed onto define the simple notion of set
neutrosophic real (integer, modulo integer, rational, complex)
matrix linear algebra and set neutrosophic real (integer, modulo
integer, rational, complex) mixed matrix linear algebra does not
exist as in case of vector spaces.
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We will define for one type of set say reals and the same
definition holds good for all types of sets.

DEFINITION 2.4.25: Let V be a collection of n x m real
neutrosophic matrices 1 <m, n < ocowith entries from N(R) once
m and n are chosen they are fixed such that V is closed under
matrix addition. Let S < N(R). If for every v € Vand s € S, vs,
sv € V then we call V to be a set neutrosophic real matrix linear
algebra over the set S.

On similar lines, integer, rational, complex and modulo integer
linear algebras can be defined.

We will illustrate these types by some examples.

Example 2.4.58: Let

ml nl
V =
{( tl SIJ

be a set of 2 x 2 neutrosophic matrices with real entries. Take

oo [V O)fL 0
L e 1)

V is a set neutrosophic integer matrix linear algebra over S.

m,n,s,t eZ"}

Example 2.4.59: Let

0 O0)(nl nI
0 O||nl nI
V= , neZ
0 O0||nl nI
0 0)\nl nI
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be a collection of all 4 x 2 neutrosophic matrices with entries
from the set of neutrosophic integers N(Z). Take S = {0, 1, I, 5I,
4, 8,43, 71, — 141, 471, - 21} = N(2).

Clearly V is a set neutrosophic integer matrix linear algebra
over the set S.

Example 2.4.60: Let V={(mz*tml m+tml,m+tml, .., mzt
ml) | m € Q" U {0}} be a 1 x n neutrosophic rational row
vector. Take S = {0, Q"I, Q"} < N(Q). V is a set neutrosophic
rational matrix linear algebra over the set S.

Example 2.4.61: Let

ml 0 O
V=4/ml ml 0 ||meQ" uU{0}

ml ml ml

be the collection of 3 x 3 lower triangular neutrosophic matrices
with entries from the set N(Q). Set

I 0 0)(1 00
S={0,1,|0 I 00 1 01
00 1)l0 01

V is a set neutrosophic rational matrix linear algebra over set S.

Example 2.4.62: Let

ml
ml
ml
V= meR" U{0}
ml

ml

ml
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be the collection of 5 x 1 real neutrosophic column matrix. Let
S=1{0,1,1, R, N(R+)} < N(R). V is a set neutrosophic real
matrix linear algebra over the set S.

Example 2.4.63: Let

V= ml ml 0 0 ml ml
0 0)(ml mI)(nl nl
be the special collection of 2 x 2 real neutrosophic matrices.
Take

S={0,1,1,(1-1 1 R+10 Lo
_{7 ,,(—),(I‘—I‘)|I’€ 5 0 150 I .

m,neR" U {O}}

We see V is a set neutrosophic real matrix linear algebra over
the set S.

Next we proceed onto give some examples of set neutrosophic
modulo integer matrix linear algebra.

Example 2.4.64: Let

I 21][21 41][31 6I|[41 8I] [51 1
v 31 41(|61 8I|| 0 31||31 71| |61 21
T 3116l o |21 61| |71 31/

71 8L |ST 71|31 6I|| 1 SI| |8 4I

61 31[71 sI][8 71][0 O
0 6L[[31 I||6I 51//0 0O
31 0|8 61|41 3110 0
61 31||4I 21|21 1]|0 O
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be a special collection of neutrosophic matrices with entries
N(Zy). Take S= {0, 1,1, 1 + 8,8+ 1,3 + 6, 6 + 31} = N(Zy). V
is a set neutrosophic modulo integer matrix linear algebra over
the set S.

Example 2.4.65: Let V = {(21, 31, 41, 61, 71, 101, 1), (41, 61, 8L, I,
3L 9L 21), (61, 91, L, 71, 101, 8L, 31), (8L, 1, 51, 21, 61, 7L, 4I), (10L,
41, 91, 81, 21, 61, 51), (1, 71, 21, 31, 91, 51, 6I), (31, 101, 61, 91, 51,
41, 70), (51, 21, 101, 41, 1, 31, 81), (71, 51, 3L, 101, 8L, 21, 9I) (91,
81, 71, 51, 41, 1, 10I), (0, 0, 0, 0, 0, 0, 0) be a 1 x 7 neutrosophic
row vector with entries from N(Z;,)}. Take S= {0, 1, I, 1 + &I,
8+ 1,3 +8I, 8+ 31} < N(Zyy). V is a set neutrosophic modulo
integer matrix linear algebra over the set S.

Now we give some examples of set neutrosophic complex
matrix linear algebra over a set S < N(C).

Example 2.4.66: Let V= {(ml, ml, ..., ml)  me C}beal xn
complex neutrosophic row vector with entries from the set
N(C). Take S = {0, 1, I} < N(C). V is a set neutrosophic
Example 2.4.67: Let

complex matrix linear algebra over the set S.
al 0 al) (0 al O) (al bl al
V= , , a,beC
0 al 0)\al 0 al)\bl al bl

be a collection of 2 x 3 neutrosophic complex matrices with
entries from N(C). Let S= {0, I, 1, (1 — )} < N(C). Clearly V is
a set neutrosophic complex matrix linear algebra over the set S.
Having defined set neutrosophic matrix vector spaces and
linear algebras we can define their substructures, linear
transformations and linear operators analogously. This can be
taken up as a simple exercise by the reader.

These matrix structures have applications in fields which
include economic models, and neutrosophic bidirectional
associative memories.
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Next we proceed onto define the notion of set neutrosophic
integer polynomial vector spaces and linear algebras.

DEFINITION 2.4.26: Let N(Z) denote the set of neutrosophic
integers. Let

N@)[] = {fn,.x"

n, eN(Z)}

and x an indeterminate and m € Z'" U {0}, N(Z)[x] denotes the
neutrosophic integer coefficient polynomials in the variable x.
Similarly N(Q)[x] denotes the neutrosophic rational coefficient
polynomials in the variable x and N(R)[x], the neutrosophic
real coefficient polynomials in the variable x, N(C)[x] the
neutrosophic complex coefficient polynomial in the variable x
and N(Z,)[x] the neutrosophic modulo integer coefficient
polynomial in the variable x.

Further we see
N@)[x] = N(Q)[x] = N(R)[x] = N(C)[x]

the containment is strict; we will define only for one; viz.
neutrosophic integers coefficient polynomials vector space and
linear algebra. The reader can take the simple exercise of
defining using other coefficients. However we will give
examples for all cases which will make the situation simple and
easy to understand.

DEFINITION 2.4.27: Let V = N(Z)[x], and S c N(Z). We say V is
a set neutrosophic integer coefficient polynomial vector space
in the variable x if svand vs € V for every v e Vands € S.

We will illustrate this by some simple examples.

Example 2.4.68: Let

V={3+Dx’+(7-3D)x*-5Ix + 12— 171,
Ix*+ (1 = Dx’ — 7Ix* + (15 = 211)x* — 10Ix + 3, 0, Ix", 21x°,
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(3 + 5D)x*!, 27, -3 + 291, 491} = N(Z)[x].

Take S = {0, 1} < N(Z). V is a set neutrosophic integer
coefficient polynomial vector space over the set S.

The main advantage of using these structures is when we get a
solution for certain equations which is not in the vector space V
we can include it in V arbitrarily provided its scalar
multiplication with S alone is compatible and nothing more.
This sort of flexibility cannot be enjoyed by any of the algebraic
structures. Hence these structures have advantage over them.

Example 2.4.69: Let V = {Z'I[x]; that is Z'I[x] consists of all
polynomials in the variable x with coefficients from Z'1} <
N(2).

Take S = 3Z'T < N(Z). V is a set neutrosophic integer
coefficient polynomials vector space over the set S.

The reader is given the task of defining set neutrosophic rational
coefficient (real coefficient, complex coefficient and modulo
integer coefficient) vector spaces over a suitable set S
analogously.

We will give examples of these four types of vector spaces.

Example 2.4.70: Let V = {Q'T[x] U {0}} < N(Q)[x]. Take S =
{Q", Q'T} = N(Q). V is a set neutrosophic rational coefficients
polynomial vector space over the set S.

Example 2.4.71: Let

V= {i(mi +mDx' (m, Q} < N(Q)[x].

Take S = Q" < N(Q). V is a set neutrosophic rational coefficient

polynomial vector space over the set S.

Example 2.4.72: Let
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14

7 3 3 14
V={(—=-8Dx",(=+—1ID)x ",
{(5 ) (7 5 )

(2_7+ﬁl)x, 801 Ix’, 43x°,20111x"%,
137 7

271+ 3 3+ 7)) x* —4Ix" +
48x° — (50 - Dx’ + Ix* — (27 — T) x + 48} = N(Q) [x].

Take S = {0, 1} < N(Q), V is a set neutrosophic rational
coefficient polynomials vector space over the set S.

Example 2.4.73: Let

V= {i(ai +a,x'

i=1

a, € C} < N(O) [x].

Set S = {0, 1} < N(C). V is a set neutrosophic complex
coefficient polynomial vector space over S.

Example 2.4.74: Let V = {0, 1, (5 = 3Dx, [(§ + 2i) + (14 + 5)I]
X —[(3+20)+ (@ - DI+ [(11+8) + B - 11D x+ (3 —i) +
17 + 4, [(11 + 4i) + (21 = 5i)I) x7, 28, 41, (11 + 48i)I} <
[N(CO)[x]. Set S = {0, 1} < N(C). V is a set neutrosophic
complex coefficient polynomial vector space over S.

Example 2.4.75: Let

\Y ={i(ai +aiI)Xi

nelanda, eR*} c NR) [x].

SetS=1{0,1,1,b—bl|b e R} = N(R). V is a set neutrosophic
real coefficient polynomial vector space over the set S.

Example 2.4.76: Let

V= {aox+alx2+ .+ax" 0,1,
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V5 x + 17132 + B+ 27)x* — (41 - +f3) x*
+481x° — 27, %, \21x7, (481 — 4) X°
+(J/41 —71) x> — V20 where a; e R"} = N(R) [x].

Take S = {0, 1} < N(R). V is a set neutrosophic real coefficient
polynomial vector space over S.

Example 2.4.77: Let

V={0,T+x,Ix+1,
2x +Ix* +3x + 3Ix 2x — 3Ix [+ 1 +
B +2Dx +31-2)x* +3x° + Ix* +x°}
< N(Zy) [x].

Set S = {0, 1} < N(Z4). V is a neutrosophic modulo integer
coefficient polynomial vector space over the set S.

mieZS}.

Let S=1{0,1,1, 1 +4I, 1 +4} < N(Zs). V is a set neutrosophic
modulo integer coefficient polynomial vector space over the set
S.

Example 2.4.78: Let

V= {Z‘):(mi ~m.I)x'

i=0

Now we proceed onto define the notion of set neutrosophic
polynomial linear algebra over a set S.

DEFINITION 2.4.28: Let V < N(Z)[x] and S < N(Z). We say V is
a set neutrosophic integer coefficient polynomial linear algebra
over the set S if V is a set neutrosophic integer coefficient
polynomial vector space and V is a semigroup with respect to
addition; that is fora, b € V,a+bandb +a V.
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We can define analogously set neutrosophic real coefficient or
rational coefficient or complex coefficient or modulo integer
coefficient linear algebra over a set S.

This task is left for the reader. However to make the concept
clear we give examples of all these types of set neutrosophic
polynomial linear algebras.

Example 2.4.79: Let

V= {Zn:(mi ~m,I)x’'

i=0

meZ ,ne N} c N(©2)[x].

Set S={0, 1, I, m—ml} < N(Z). V is a set neutrosophic integer
coefficient polynomial linear algebra over the set S.
Example 2.4.80: Let

V= {Zn: m,Ix’

i=0

meZ v {O}} c N(2)[x]

and let S = {3Z'1, 13Z"} = N(Z). V is a set neutrosophic integer
coefficient polynomial linear algebra over the set S.

Example 2.4.81: Let

V= {i:(ai —aDx'
i=1

a,€Q U {0}} < N(Q)[x]

and S={0,1,1-1,5/7-5/71} < N(Q). V is a set neutrosophic
rational coefficient polynomial linear algebra over the set S.
Example 2.4.82: Let

V= {Zn:aib(i

i=0

a,eZ U {0}} SN [x]
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and S = {0, 1, 3Z "I} = N(Q). V is a set neutrosophic rational
coefficient polynomial linear algebra over the set S.

Example 2.4.83: Let

V= Z L In x'|n, eZ"U{0} < N(R) [x]

Ay

andlet S= {m—ml|m e R"} = N(R). V is a set neutrosophic
real coefficient polynomial linear algebra over the set S.

Example 2.4.84: Let

and S= {pl | p € R"U {0}} = N(R). V is a set neutrosophic
real coefficient linear algebra over the set S.

\/5€R+ u{0};geR"} = N(R)[X]

Example 2.4.85: Let

V= {i(m—ml)xi meZ7} < N(Z,) [x]

and S = {Z;I} < N(Z,). V is a set neutrosophic modulo integer
coefficient polynomial linear algebra over the set S.

Example 2.4.86: Let

V= {2@8

me 223} < N(Za) [x]
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and S={—-ml+m|m € Z,;} < N(Zy;). V is a set neutrosophic
modulo integer coefficient polynomial linear algebra over S.

The interested reader is expected to define the properties like
substructures, pseudo substructures, linear transformations and
linear operators, analogously for set neutrosophic polynomial
linear algebras of all types.
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Chapter Three

NEUTROSOPHIC SEMIGROUP LINEAR
ALGEBRA

In this chapter we for the first time introduce the notion of
neutrosophic semigroup vector space, neutrosophic group vector
space and the analogous neutrosophic linear algebras and
describe a few of its properties. This chapter has two sections.
Section one introduces the notion of neutrosophic semigroup
vector spaces and section two introduces the notion of
neutrosophic group vector spaces and their properties. Notions
about neutrosophic semigroups and neutrosophic groups are
given in chapter one of this book.

3.1 Neutrosophic Semigroup Linear Algebras
In this section we introduce the notion of neutrosophic

semigroup linear algebras and neutrosophic semigroup vector
spaces. Several interesting properties about them are derived.
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DEFINITION 3.1.1: Let V be a neutrosophic set of integers (V <
N(Z)). S any additive semigroup with 0. We call V to be a
semigroup neutrosophic vector space or neutrosophic
semigroup vector space over S if the following conditions hold:

(1) sveVforalls eSandveV.
(2) 0. v=0 eVforall veVand0 €S, 0 is the zero vector.
(3) (s; +s) v=s;v+s,vforall s, s, eSand v eV.

Note: Even if S is just a semigroup without zero then also V is a
neutrosophic semigroup vector space. The condition (2) of the
definition will become superfluous.

We will illustrate this situation by some examples.

Example 3.1.1: Let V = {1-1, 0, 251, 37, 8 + 81, 471, 52 — 31, 46
+ 231, 3} < N(Z). Take S = {0, 1, 1 — I} < N(Z). Clearly S is
not a semigroup neutrosophic vector space over S.

Thus we see here in example 3.1.1, S is not a semigroup.

Example 3.1.2: Let V= {3Z" I} c N(Z)and S {Z" U {0}}, a
semigroup under addition with 0. V is a neutrosophic semigroup
vector space over the semigroup S.

Example 3.1.3: Let V = {371, 5Z1, 2Z1} < N(Z) and S = Z the
semigroup under addition. V is a neutrosophic semigroup vector
space over the semigroup S.

Example 3.1.4: Let V={m-ml |m e Q" U {0}} and S = {QI}
be the semigroup under addition. V is a neutrosophic semigroup
vector space over the semigroup S.

Example 3.1.5: Let V= {QI} cN(Q)and S={m —ml | m €

Q" U {0}} = N(Q). V is a neutrosophic semigroup vector space
over the semigroup S.
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Example 3.1.6: Let V= {RI} c N(R)and S=R" U {0} R the
semigroup under addition. V is a neutrosophic semigroup vector
space over the semigroup S.

Example 3.1.7: Let V={m-ml |/m e R"U {0}} and S= Q" U
{0} the semigroup under addition. V is a neutrosophic
semigroup vector space over the semigroup S or semigroup
neutrosophic vector space over the semigroup S.

Example 3.1.8: Let V= {0, 1 +41, 1+ 4,2 + 31, 3 +2I}
N(Zs) and S = {Zsl} < N(Zs) be a semigroup, V is a
neutrosophic semigroup vector space over the semigroup S.

Example 3.1.9: Let V = {Q'I, ZI} < N(R) and S = Z the
semigroup under addition. V is a neutrosophic semigroup vector
space over the semigroup S.

Now we proceed onto define substructures.

DEFINITION 3.1.2: Let V < N(R) and S < N(R) where S is a
semigroup under addition such that V is a neutrosophic
semigroup vector space over the semigroup S.

Suppose W < V' is a proper subset of V such that W is itself
a neutrosophic semigroup vector space over the semigroup S
then we call W to be a neutrosophic semigroup vector subspace
of V or neutrosophic semigroup subvector space of V over the
semigroup S.

We will illustrate this situation by some examples.
Example 3.1.10: Let V = {Q'], ZI} c N(Q) and S = {Z'T} <
N(Q), a semigroup under addition. V is a neutrosophic

semigroup vector space over S. Take W= {Z' I} c V.

It is easily verified W is a neutrosophic semigroup subvector
space of V over S.

Example 3.1.11: Let

93



meQ*

321 0
V= ,m—ml,0
{ 0 ZZIJ

and 2 x 2 matrices with diagonal elements from 3ZI and 2ZI}
and S = Z'T U {0} be a semigroup under addition. V is a
neutrosophic semigroup vector space over S. Take W = {m —
ml, 0 | m € Q") < V. W is a neutrosophic semigroup vector
subspace of V over S.

DEFINITION 3.1.3: Let V be a neutrosophic semigroup vector
space over the semigroup S. Suppose W < V be a proper subset
of V.and T < S be a proper subsemigroup of S with | T | > 1
such that W is a neutrosophic semigroup vector space over the
semigroup S then we call W to be a neutrosophic subsemigroup
vector subspace of V over the subsemigroup T of S.

We will illustrate this situation by some examples.

Example 3.1.12: Let V = {ZI, R'T} c N(R) and S = {Z'I} be a
neutrosophic semigroup vector space over S. Take W = {R" I}
cVand T={3Z"1} c {Z" I} < S be a subsemigroup of S. W is
a neutrosophic subsemigroup vector subspace of V over the
subsemigroup T of S.

Example 3.1.13: Let V= {R'], Q, m —ml | m € Z"} < N(R)
and S = {Q'I} be a semigroup. Take W = {Ql, m —ml | m €
ZycVand T={Z I} c S. W is a neutrosophic subsemigroup
vector subspace of V over the subsemigroup T of S.

We see if a neutrosophic semigroup vector space has no
neutrosophic subsemigroup vector subspace over the semigroup
S then we define them to be simple.

DEFINITION 3.1.4: Let V be a neutrosophic semigroup vector
space over the semigroup S. If V has no neutrosophic
subsemigroup vector subspace over any subsemigroup T of the
semigroup S then we call V to be a neutrosophic semigroup
simple vector space over S.
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We will illustrate this situation by some examples.

Example 3.1.14: Let V={(000),(110), 1D, (0IT),(101),
(I110),(I110),(000I),(110D),(1101),(1111),(0000)}
be a neutrosophic semigroup vector space over the semigroup S
= {0, 1} where (1 + 1) = 1 . It is easily verified S has no
subsemigroup T such that | T | > 1. So V is a neutrosophic
semigroup simple vector space over S.

Example 3.1.15: Let

L O T
H [

be a neutrosophic semigroup over the semigroup S = {0, 1} with

1 +1=1.V is also a neutrosophic semigroup simple vector
space over S.

Example 3.1.16: Let V. = {(I11), (0 0 0)} be a neutrosophic
semigroup vector space over the semigroup S = {0, 1} with 1 +

1 = 1. V is a neutrosophic semigroup simple vector space over
S.

DEFINITION 3.1.5: Let V be a neutrosophic semigroup vector
space over the semigroup S. If V itself is a neutrosophic
semigroup under addition, then we call V to be a neutrosophic
semigroup linear algebra over the semigroup S, if s(vi + vy) =
sv; tswvy forall v;, voin Vand forall s € S.

We will illustrate this by some examples.

Example 3.1.17: Let V= {Z'TU {0}} x {Z'TuU {0}} x {Z'TuU
{0}} x {Z'T U {0}}. Take S = {3Z'T U {0}} = N(Z). Both V
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and S are semigroups under addition. So V is a neutrosophic
semigroup linear algebra over the semigroup S.

Example 3.1.18: Let

b
V:a c g
d e f h

and S = {Q'TuU {0}}. Both V and S are semigroups. Thus V is a
neutrosophic semigroup linear algebra over the semigroup S.

a,b,c,d,e,f,g,h eN(Q)}

The following theorem is left as an exercise for the reader to
prove.

THEOREM 3.1.1: Every neutrosophic semigroup linear algebra
is a neutrosophic semigroup vector space; but in general a
neutrosophic semigroup vector space is not a neutrosophic
semigroup linear algebra.

Now we proceed onto define the substructures in neutrosophic
semigroup linear algebras.

DEFINITION 3.1.6: Let V be a neutrosophic semigroup linear
algebra over the semigroup S.

Suppose W < V be a proper subset of V and W is a
neutrosophic semigroup linear algebra over S then we call W to
be a neutrosophic semigroup linear subalgebra of V over the
semigroup S.

We will illustrate this situation by some simple examples.

Example 3.1.19: Let

a a a a
AV 1 2 3 4
( ]
a; a, a; ag

a, e N(Q)l<i< 8}
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be a neutrosophic semigroup under matrix addition and S = Z" 1
u {0} < N(Q) be a semigroup, V is a neutrosophic semigroup
linear algebra over the semigroup S.

Take
W= a, a, 0 a,
a, 0 0 O

W is a neutrosophic semigroup linear subalgebra of V over the
semigorup S.

a, eN(Q);lSiS4} cV;

Example 3.1.20: Let V = {(Q'T U {0}) x (QI) x (Q'TuU {0}) x
QI} be a neutrosophic semigroup under component wise
addition. Take S = (Q'T U {0}) = N(Q), a semigroup. V is a
neutrosophic semigroup linear algebra over the semigroup S.

Choose W = {(0} x QI x (QTuU {0}) x {0}} =V, Wisa
neutrosophic semigroup linear subalgebra of V over the
semigroup S.

DEFINITION 3.1.7: Let V be a neutrosophic semigroup linear
algebra over the semigroup S and W < V be such that W is a
proper subset of V and W is a neutrosophic semigroup linear
algebra over the proper subsemigroup T of S, then we call W to
be a neutrosophic subsemigroup linear subalgebra of V over the
subsemigroup T of the semigroup S.

We shall illustrate this by some examples.

Example 3.1.21: Let

{(a bj
V=

c d
and S = (Q'T U {0}) be neutrosophic semigroups. V is a

neutrosophic semigroup linear algebra over the semigroup S.
Take

a,b,c,de N(Q)}
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{(a bj
W=

c d
and T = (Z'T U {0}) = S. W is a neutrosophic subsemigroup

linear subalgebra of V over the subsemigroup T of the
semigroup S.

a,b,c,deQ'Tu {O}} cV

Example 3.1.22: Let V = N(Q)[x] that is the collection of
polynomials in the variable x with coefficients from N(Q).
Clearly V is a neutrosophic semigroup under addition. Take S =
(QT U {0}) = N(Q), S is also a semigroup. We see V is a
neutrosophic semigroup linear algebra over the semigroup S.
Suppose

W = {All polynomials in V of the form

n .
2ax”

i=0

a,eN(Q);ne N} c V.

W is also a neutrosophic subsemigroup of V. Take T = (Z'1 U
{0}) < S. T is also a semigroup. We see W is a neutrosophic
subsemigroup linear subalgebra of V over the subsemigroup T
or the semigroup S.

We shall define simple neutrosophic semigroup linear algebra
of neutrosophic semigroup simple linear algebras.

DEFINITION 3.1.8: Let V be a neutrosophic semigroup linear
algebra over the semigroup S. If V has no proper neutrosophic
subsemigroup linear subalgebras then we define V to be a
neutrosophic semigroup simple linear algebra (or simple
neutrosophic semigroup linear algebra) over the semigroup S.

We will illustrate this by some simple examples.

Example 3.1.23: Let

e

a,b,c,d,e,f e N(Z3)}
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be a neutrosophic semigroup under matrix addition modulo 3.
Take S = Z;, a semigroup under addition. V is a simple
neutrosophic semigroup linear algebra over the semigroup S.
For S = Z; has no proper subsemigroups.

Example 3.1.24: Let V = {N(Zs) x N(Zs) x N(Zs) x N(Zs) x
N(Zs)} be a neutrosophic simple semigroup linear algebra over
the semigroup Zs.

It is easily verified V is a simple neutrosophic semigroup linear
algebra over the semigroup Zs.

DEFINITION 3.1.9: Let V be a simple neutrosophic semigroup
linear algebra over the semigroup S. If V has no neutrosophic
semigroup linear subalgebras then we call V to be doubly
simple neutrosophic semigroup linear algebra or neutrosophic
semigroup doubly simple linear algebra.

We shall illustrate these situations by some examples.

Example 3.1.25: Let V = {N(Z;) x N(Z7) x N(Z7) x N(Z7)} be a
neutrosophic semigroup linear algebra over the semigroup S =
Z5. V is a neutrosophic semigroup simple linear algebra over S
but V is not a doubly simple neutrosophic semigroup linear
algebra over S as W = {0} x N(Z7) x N(Z;) x {0} c Visa
neutrosophic semigroup linear subalgebra of V over S.

Example 3.1.26: Let V = {0, 1 + I} < N(Z,) be a neutrosophic
semigroup linear algebra over Z, = S. V is a doubly simple
neutrosophic semigroup linear algebra over S = Z,.

Example 3.1.27: Let V = {Z;1} < N(Z;) and S =Z;. V is doubly
simple neutrosophic semigroup linear algebra over S = Z,.

Now we proceed on to define for neutrosophic semigroup vector
spaces we can define the basis and generating set.
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DEFINITION 3.1.10: Let V be a neutrosophic semigroup vector
space over the semigroup S under addition. Let T = {v,, ..., v;;}
< V be a subset of V; we say T generates the neutrosophic
semigroup vector space V over S if every element v € V can be
gotas v=svy v, e Tands € 8.

Example 3.1.28: Let V = {3Z'1 U {0}} be a neutrosophic
semigroup vector space over the semigroup Z" U {0}. Take T =
{31} <V, T is generates V over S.

Example 3.1.29: Let V = Z»sI modulo integers 25. S = {0, 5, 10,
15, 20} < Zys is a semigroup under addition modulo 25. V is a
neutrosophic semigroup vector space over the semigroup S.

T = {11, 21, 31, 41, oI, 71, 81, 91, 111, 121, 131, 141, 161, 171,
181, 191, 211, 221, 231, 241} is a generating set of V over S.

We will illustrate by some examples that the generating set of V
is dependent in general on the semigroup over which V is
defined.

Example 3.1.30: Let V = Zyl be a neutrosophic semigroup
vector space over the semigroup S = {0,10}. The generating set
of Vover Sis T = {11, 21, 31, 41, 51, 6L, 71, 81, 91, 111, 121, 131,
141, 151, 161, 171, 181, 191}.

If we take S; = {0, 5, 10, 15} to be the semigroup over
which the same V is defined we see the generating set of V over
Sy is Ty = {11, 21, 31, 41, 51, 61, 71, 81, 91, 111, 121, 131, 141, 151,
161, 171, 181, 191}. We see T, = T.

Thus in general the generating set of a neutrosophic
semigroup vector space is dependent on the semigroup over
which it is defined.

Now we proceed onto define the generating set of a
neutrosophic semigroup linear algebra for which we also need
the concept of independent set.

DEFINITION 3.1.11: Let V be a neutrosophic semigroup linear

algebra over the semigroup S. T = {v;, ..., v} <V is an
independent set if v; #sv,, i #] for some s € S and
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m
Vi Z ZSiVi N
i=1

i< k<n m<n, ands; € S. We say T is a generating subset of
Vif T is a linearly independent set and every element v € V can
be represented as
v= Zs,.v, ;
i=1

s; €81 <i<n
We will illustrate this by some examples.

Example 3.1.31: Let V = Q1T U {0} be a neutrosophic
semigroup linear algebra over the semigroup S = Z'T U {0}. V
is an infinite generating set over the semigroup S.

Example 3.1.32: Let V = QT U {0} be the neutrosophic
semigroup linear algebra over the semigroup S = QT u {0}. V
is generated by the set B= {1} over S=Q'T U {0}.

DEFINITION 3.1.12: Let V be a neutrosophic semigroup vector
space over the semigroup S. Let W < V be such that W is a
neutrosophic semigroup linear algebra over S, then we call W
to be a pseudo neutrosophic semigroup linear subalgebra of 'V
over S.

If 'V has no pseudo neutrosophic semigroup linear
subalgebras then we call V to be a pseudo simple neutrosophic
semigroup vector space or pseudo neutrosophic semigroup
simple vector space.

We shall illustrate these situations by some simple examples.

Example 3.1.33: Let

Ve a b
= c d:(alazasa4)

be a neutrosophic semigroup vector space over the semigroup S
=Z'Tu {0}.

a,b,c,d,a, eQ*Iu{O};lSiS4}
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Take
{[a bj
c d

W, is also a pseudo neutrosophic linear subalgebra of V over
the semigroup S.

aieQ+Iu{0};1£iS4} cV.

Example 3.1.34: Let V= {(QTuU {0})[x], m—ml |m € Z'} be
a neutrosophic semigroup vector space over the semigroup S =
ZT U {0}. W={m -—ml | m e Z} c V is a pseudo
neutrosophic semigroup linear subalgebra of V over the
semigroup S.

Example 3.1.35: Let V = {1, 0, 1} < N(Z,) be a neutrosophic
semigroup vector space over the semigroup S = Z,. V has
pseudo neutrosophic semigroup linear subalgebra over S = Z, so
V is a pseudo neutrosophic semigroup simple vector space over
the semigroup S.

Now we proceed onto define the notion of semigroup linear
transformation.

DEFINITION 3.1.13: Let V and W be any two neutrosophic
semigroup vector spaces over the same semigroup S. We say a
map T from V to W is a neutrosophic semigroup linear

transformation if T(ce) = cT (a) forallc e Sand o € V.

Example 3.1.36: Let

{[a bJ
V=
c d
and W = {QT U {0} x QT U {0}} be two neutrosophic
semigroup vector spaces over the semigroup Z'T U {0}.

a,b,c,deQ'Tu {0}}

Define T: V—> W by
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3

T is a neutrosophic semigroup linear transformation of V to W.
Example 3.1.37: Let

V={QTuU {0} xQTu {0} xQTuU {0} xQTuU {0}}

and
a b e
W=
{c d f J
be two neutrosophic semigroup vector spaces define over the

semigroup S =Q'Tu {0}.
Define T: V> W by

T(abcd)—{(a 0 b}}
2D e a4 o)

T is a neutrosophic semigroup linear transformation of V to W.
When the domain space and the range space are the same

that is V = W then we call the neutrosophic semigroup linear

transformation as neutrosophic semigroup linear operator on V.

a,b,c,d,e,feQTuU {0}}

We will illustrate this by some examples.

Example 3.1.38: Let

al a2 a’3
— + 1<
V=4la, a, a,|la,eRTU{0};1<1<9
a7 a8 aQ

be a neutrosophic semigroup vector space over the semigroup

QTu {0}.
Define T: V> V by
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a'1 3.2 a’3 a'1 a’2 a}
Tia, a; ag|=|0 a; a
a, a; a, 0 0 a

It is easily verified T is a neutrosophic semigroup linear
operator on V.

Example 3.1.39: Let V= {QTuU {0} xQTuU {0} x QTu {0}
x QTu {0} x QTU {0}} = {(a1, a, a3, as, as) [ 4 € QT L {0};
1 <1< 5} be a neutrosophic semigroup linear algebra over the
semigroup S =Z'Tu {0}.
Define T: V> V by

T (al, ay, as, A4, 35) = (0, ay, as, O, 35).
It is easily verified that T is a neutrosophic semigroup linear
operator on V.

We see in case of neutrosophic semigroup linear algebras V and
W over a semigroup S we need an additional condition to be
satisfied by the neutrosophic semigroup linear transformation
T: Vo> W;T(cu+v)=cT(u)+T(v);c e Sandu, v € V.

We will illustrate this by some examples.

Example 3.1.40: Let

a, a, a
AV4 1 2 3
a, a; ag

a, eR+Iu{O};1SiS6}

and
a1 aZ
W=4la, a,|la,eRTU{0};1<i<6
aS a6

be two neutrosophic semigroup linear algebras over the
semigroup S = R'TU {0}. Let T: V — W be defined as
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1 2
a, a, a
1 2 3 _
T { j =la; a,
a, a; ag

a5  dg

It is easily verified T is a neutrosophic semigroup linear
transformation of V to W.

Example 3.1.41: Let

al a2 a3
V=410 a, a,|laeZTu{0};1<i<6
0 0 ag

and W = {(ZT U {0}) x (Z'TU {0}) x (ZT U {0})} = {(ai, as,
a3) | a; € Z'TuU {0}; 1 <i<3} be atwo neutrosophic semigroup
linear algebras over the semigroup S =2Z'T U {0}.
DefineamapT:V —»> W by

1 a’2 a’3
T=310 a, a;|r =(a; a4 a).
0 0 a,

It is easily verified T is a neutrosophic semigroup linear
transformation from V to W.

Example 3.1.42: Let

a, a,

a, a, . )
V= a cQTU0}1<i<8

a5 ag

a, a

be a neutrosophic semigroup linear algebra over the semigroup
S=Z"Tu {0}.
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Define T: V> V by

a, a, a, 0
a, a a, a
3 4 3 4
T =
as a, 0 a
a, a, a, 0

It is easily verified T is a neutrosophic semigroup linear
operator on V.

Example 3.1.43: Let

nel

V= {i ax'
i=0

and a; € QT U {0}; i.e., all polynomials in the variable x with
coefficient from Q'T U {0}} be a neutrosophic semigroup linear
algebra over the semigroup S = Z'T U {0}.

Define T: V> V by

n X n X
T Y ax' - >a,x”
i=1 i=1

It is easily verified T is a neutrosophic semigroup linear
operator on V.

Let T be a neutrosophic semigroup linear transformation from V
into W. We say T is set invertible if there exist a neutrosophic
semigroup linear transformation U from W into V such that U.T
and T.U are neutrosophic semigroup identity maps on V and W
respectively. If T is neutrosophic semigroup invertible, the map
U is called the neutrosophic semigroup inverse of T and is
unique and is denoted by T

The following theorem is left as an exercise for the reader to
prove.
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THEOREM 3.1.2: Let V and W be two neutrosophic semigroup
vector spaces over the semigroup S and T be a neutrosophic
semigroup linear transformation from V into W. If T is
invertible the inverse map T~ is a neutrosophic semigroup
linear transformation from W onto V.

DEFINITION 3.1.14: Let V be a neutrosophic semigroup linear
algebra over the semigroup S. Let W < V be a neutrosophic
subsemigroup linear subalgebra over the subsemigroup P of S.
P a proper subsemigroup of the semigroup S. Let T: V — W be
amap such that T (av+ u) = T(e) T(V) + T(u) for allu, vev
and T (o) € P. We call T a pseudo neutrosophic semigroup
linear operator on V.

Interested reader is requested to construct examples.

DEFINITION 3.1.15: Let V be a neutrosophic semigroup linear
algebra over the semigroup S. Let W be a neutrosophic
semigroup linear subalgebra of V over S. Let T be a
neutrosophic linear operator on V. T is said to be a
neutrosophic semigroup linear projection on W if T(v) = w; w
eWandT(ou+v) = aT(u) + T(v), T(u) and T(v) € W for all
aeSandu, vev.

We will illustrate this by a simple example.

Example 3.1.44: Let V= {(Z'T U {0}) x (Z'T U {0}) x (Z'T U
{0}) x (Z'T U {0})}. V is a neutrosophic semigroup linear
algebra over the semigroup Z'T L {0}. Let W = (2Z'T U {0}) x
(2Z'T U {0}) x {0} x {0} < V be a neutrosophic semigroup
linear subalgebra of V over Z'T U {0}.
Define T: V> V by

T (x,y, z, w) = (2%, 2y, 0,0)

It is easily verified that T is a neutrosophic semigroup linear
projection of V onto W.
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DEFINITION 3.1.16: Let V be a neutrosophic semigroup vector
space over the semigroup S. Let W < V be a neutrosophic
semigroup vector subspace of V over the semigroup S. A
neutrosophic linear operator T on V is said to be a neutrosophic
semigroup projection operator of a subspace of V onto W if for
T:V>W, TWV)cWthatis T (v) =w for every v € V and
weW.

We will illustrate this by a simple example.

Example 3.1.45: Let

a, a, a; a,)(0 0 0 O
V:

0 0 0 0)(b b, b, b,
be a neutrosophic semigroup vector space over the semigroup S
=Z"Tu{0}.

Let
W _ al a2 a3 a4
0O 0 0 O

be a neutrosophic semigroup vector subspace of V over the
semigroup S. Let T : V — V be defined by

T a8, a; a,)| (a3 a, a; a,
0 0 0 0 0 0 0 0
Lo 0o 0 03[ (000 0)
b, b, b, b, J[ 0 0 0 0)

then T is a neutrosophic semigroup projection of V on W.

ab, eQ'Tu {0}}

1<i<4

a, eQ*Iu{O};lSiS4}gV

and

We will now define the concept of direct union of neutrosophic
semigroup vector subspaces of a neutrosophic semigroup vector
space.
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DEFINITION 3.1.17: Let V be a neutrosophic semigroup vector
space over the semigroup S. Let Wi, W, ..., W, be a collection
of neutrosophic semigroup vector subspaces of V; if V.= U W,
and W; N W; = gor {0} if i #j then we say V is the direct union
of the neutrosophic semigroup vector subspaces of the
neutrosophic semigroup vector space V over S.

We will illustrate this by some examples.

Example 3.1.46: Let

a, a, a;,)(0 0 0Y)(0 O O b 21010
v=y0 0 0[|b b, b0 0 ol0GEZTVO

1<i<3
00 0)lo o0 0)lce ) "

be a neutrosophic semigroup vector space over the semigroup S

=ZTu {0}.
Take
a, a, a,
Wi=30 0 0 |la,eZTu{0};1<i<3
0 0
0 0 O
Wy=4|b, b, b,||beZTu{0};1<i<3
0 0 O
and
0 0 O
W;=40 0 0 |lc,eZTu{0};1<i<3
c, ¢ C

be a neutrosophic semigroup vector subspaces of V over the
semigroup S. Clearly V=W, U W, U W3 and
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Win W, = Jifizj 1<i,j<3.

S O O
S O O
oS o O

Thus V is a direct union of neutrosophic semigroup vector
subspaces of V over the semigroup S.

Example 3.1.47: Let

X, X, a;,b;,¢,,x, € Q' TU {0}
a
T xy x, 1<i<4,
a, ¢ G .
V= a | X5 Xg 5(b]b2b3)s[c C]lﬁjg:}),
X P <k <4,
) Xy Xy 1<t<10.

be a neutrosophic semigroup vector space over the semigroup S

=ZTu {0}.
Take
a1
a, . )
W, = a, eQITu{0};1<i<4;,
a’}
a4

X, X,
X; X,
W;=1]x, X, ||X,€QTU{0};1<i<10
X7 X8
Xy Xy

and
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c, ¢
W4 — 1 2
c, ¢,
be neutrosophic semigroup vector subspaces of V over the

semigroup S. Clearly V=W, U W, U W; U W,and W; " W; =
oifizj; 1<1,j<4.

c; eQ*Iu{O};lSiS4}

Now we proceed onto define the analogous notion for
neutrosophic semigroup linear algebras.

DEFINITION 3.1.18: Let V be a neutrosophic semigroup linear
algebra over the semigroup S. We say V is the direct sum of
neutrosophic semigroup linear subalgebras W;, W, ..., W, of V
if

() V=W, +..+W,

(2) WinW;={0}or ¢ifi=jI<i, j<n.

We will illustrate this situation by some simple examples.

Example 3.1.48: Let

al a2
V=1la, a,|la,eQTu{0};1<i<6
as A

be a neutrosophic semigroup linear algebra over the semigroup
S=ZTu {0}.
Take

&

0
0 alaa6eQ+IU{0} s

a

W]Z

oS O

6
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0 a,
W,=410 0 [a,eQTuU{0}¢,

0 0
0 0
Wi=4la, 0]a;,a,eQTu{0}
a;, 0
and
0 0
W,;=4/0 a, |la,eQTuU{0}
0 0

be neutrosophic semigroup linear subalgebras of V over the
semigroup S.
V:W1+W2+W3+W4
and
0 0

WiﬂWj: 0 0
0 0

ifi#j;1<1,j<4. This V is a direct sum of neutrosophic
semigroup linear subalgebras.

A neutrosophic semigroup linear algebra is strongly simple if it
cannot be written as a direct sum of neutrosophic semigroup
linear subalgebras and has no proper neutrosophic semigroup
linear subalgebras.

Example 3.1.49: Let V = {0, 1, 21, 31, ..., 101} < N(Z)) be a
neutrosophic semigroup linear algebra Z;I. Clearly V is a
strongly simple neutrosophic linear algebra.

In view of this we have a nice theorem which guarantees a class
of strongly simple neutrosophic linear algebras.
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THEOREM 3.1.3: Let V={0, 1, 21, ..., (p — DI | p is any prime}
c N(Z,) and S = Z,I be the semigroup. Clearly V is a strongly
simple neutrosophic semigroup linear algebra.

Proof: Since V has no proper neutrosophic semigroup linear
subalgebras we see V cannot be written as a direct sum of
neutrosophic semigroup linear subalgebras.

Hence the claim.

In the next section we proceed on to define neutrosophic group
vector spaces and neutrosophic group linear algebras.

3.2 Neutrosophic Group Linear Algebras

In this section we introduce the notion of neutrosophic group
linear algebras. Already the notion of neutrosophic groups have
been introduced in the chapter one of this book. We give several
interesting properties about them. Infact we illustrate these new
concepts by examples so that the reader can follow them easily.

DEFINITION 3.2.1: Let V be a non empty subset (say N(R), N(C)
or N(Z,) or N(Q) or N(Z)). Let G be a group under addition. We
call 'V to be neutrosophic group vector space over G if the
following conditions are true.

(1) Foreveryv e Vandg € G, gvandvgisinV.
(2) 0.v =0 foreveryv €V, 0 the additive identity of G.

Example 3.2.1: Let V = {0, 21, 41, 61, 81, 10I} be a subset of
N(Zy) and G = {0, 1, 21, 31, 41, 51, 61, 71, 81, 10L, 91, 111} <
N(Z;;) be a group under addition modulo 12. V is a
neutrosophic group vector space over the group G.

Example 3.2.2: Let
V= 0 0 0 O0)(b, b, by b,
a, a, a, a,){0 0 0 0
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0 0 O0)(a b
, a;,b;,c.,a,b,c,deQl;
¢, ¢ ¢)\c d

1<i<4,1<j<4and 1 <k<3}

and G = QI < N(Q) be a group under addition. V is a
neutrosophic group vector space over the group G.

Example 3.2.3: Let V = {(0, a,, 0, a,, 0, a3), (by, by, b3, by), (cy,
c,c3)|a,b,ckeZl; 1<i<3,1<j<4and1<k<3}andG=
Z1 be a group under addition. V is a neutrosophic group vector
space over G.

Example 3.2.4: Let

b 0 0 0 0 X, X, X,

a

=(0101J,a22,00,000,
a, b,J 0 0 0

Xs ||a,b;,x; € RE1<1,j<3and 1<k <6

and G = QI a group under addition. V is a neutrosophic group
vector space over the group G.

DEFINITION 3.2.2: Let V be a neutrosophic group vector space
over the group G. Suppose W < V be a proper subset of V. We
say W is a neutrosophic group vector subspace of V if W is itself
a neutrosophic group vector space over G.

We shall illustrate this situation by some examples.
Example 3.2.5: Let V = {(2ZI1)[X] and (5ZI)[x]; be polynomials
with coefficients from 2ZI and 5ZI respectively} and G = ZI a
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group under addition. V is a neutrosophic group vector space
over G. Take W = {(2Z])[x]} < V; W is a neutrosophic group
vector subspace of V over the group G.

Example 3.2.6: Let

a, 0 0) (b, 0 0)(0 0 b,)\|a.beRE
V=4{la, 0 0/,]0 b, 0] |b, 0 b,|li<i<3 I;
a, 0 0)10 0 b)) 0 b, 0)l1<j<7;

be a neutrosophic group vector space over the group G = ZI.
Take

0 0 b,
W=4{b, 0 b,||b,bs,b,.b,eRI} cV;
0 b, 0

W is a neutrosophic group vector subspace of V over the group
G.

Now we proceed onto define the concept of linearly
independent subset of a neutrosophic group vector space.

DEFINITION 3.2.3: Let V be a neutrosophic group vector space
over the group G.

We say a proper subset P of V to be a linearly dependent
neutrosophic subset of V if for any p;, p,in P (p; #p3) p1 = ap;
or p; = a; p; for some a, a; € G. If for no distinct pair of
elements p;, p; € P we have a;, a, € G such that p; = a; p; or p;
= ay p; then we say P is a linearly independent neutrosophic
subset of V.

We will illustrate this by some examples.

Example 3.3.7: Let
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a, a, 0 O 0 O
V=310 01||a a,[|,|0 O0]|la,a,eZl
0 0 0 O a, a,

be a neutrosophic group vector space over the group ZI.
Take

21 41 (I 21) (6l 12I) (51 10I
P=<0 00 O, O O01[]/0 O
0 0)\0 0)\ 0 O 0 0

N
<

P is a linearly dependent neutrosophic subset of V.
Take

0 0y (I 4Iy(0 O
Q=<1 1{,;j0 0|10 0|, V.
0 0){0 0)\5I el

Q is a linearly independent neutrosophic subset of V over G.
Take

8 1 0 0)(0 O
T=40 0,70 8|,|]0 0 |;cV,
0 010 O I 71

T is also a linearly independent neutrosophic subset of V over
G.

Now we will define the notion of generating neutrosophic
subset of a neutrosophic group vector space over a group G.

DEFINITION 3.2.4: Let V be a neutrosophic group vector space
over the group G. Suppose T is a subset of V which is a linearly
independent neutrosophic subset of T and if T generates V that
isusingt € Tand g € G we can get every v € V as v = gt then
we call T to be a generating neutrosophic subset of V over G.
The number of elements in G gives the dimension of V. If T is of
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finite cardinality we say V is of finite dimension. If T is of
infinite cardinality we say V is of infinite dimension.

Example 3.2.8: Let

o I

be a neutrosophic group vector space over the group ZI = G.

[ (T

T is generating neutrosophic subset of V. Clearly V is finite
dimensional we can have independent neutrosophic subsets of V
but they may not be generating subsets of V which will be
illustrated.

a,,b, e ZI}

Example 3.2.9: Let

Ve a, a,)(0 O

0 0)\b b,
be a neutrosophic group vector space over the group G = ZI1. We
have several linearly independent neutrosophic subsets of V but
V cannot be finitely generated over G. Thus dimension of V

over G is infinite.
Take

T_OOOOOOIOOIII
I 0)o 1){1 1)00 0)°{lo 0)°(0 0
is a linearly independent neutrosophic subset of V but T cannot
generate V over G.

a,,b, eZI;lSiSZ}
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Example 3.2.10: Let V = {(a aaaaa)|ae QI bea
neutrosophic group vector space over the group QI =G. T= (11
IT111)} <V is the generating subset of V over QI.

Example 3.2.11: Let V= {(aaaaaa)besuch thata € QI} be a
neutrosophic group vector space over the group G = ZI. Clearly
V is of infinite dimension over ZI.

However we have several finite linearly independent
subsets of V.

DEFINITION 3.2.5: Let V be a neutrosophic group vector space
over the group G. Let W < V be a proper subset of V. H < G be
a proper subgroup of G. If W is a neutrosophic group vector
space over H then we call W to be a neutrosophic subgroup
vector subspace of V over the subgroup H of G.

We will illustrate this by some simple examples.

Example 3.2.12: Let

b
V=1{(aaa), {a d} |a,b,c,d,x,y,z, w, € Ql}
C

5N < %

be a neutrosophic group vector space over the group G = QL

Take
{{a b}
W=
c d

contained in V and H = ZI < G be a subgroup of G; clearly W is
a neutrosophic subgroup vector subspace of V over the
subgroup H = ZI of G.

a,b,c.d e QI}

Example 3.2.13: Let V={QI x QI x QI} = {(X,y,2) | X,y,Z €
QI} be a neutrosophic group vector space over the group G =
ZLLet W={QIx QI x {0}} ={(X,¥,0) | X,y € QI} Cc V; W s
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a neutrosophic subgroup vector subspace of V over the
subgroup H = 2Z1 of G.

Example 3.2.14: Let

a, a, a;) (b, 0 0)|a;,b;eQl
V=40 a, a;|,|b b, 0|]1<i<6
0 0 ag)\by b, b/[1<j<6

be a neutrosophic group vector space over the group G = QL
Take

a1 aZ a3
W=410 a, a,|la,eZ;1<i<6
0 0 a,

contained in V. Let H = ZI < G be a subgroup of G. Clearly W
is a neutrosophic subgroup vector subspace of V over the
subgroup H of G.

Example 3.2.15: Let V = {Zsl x Zgl x Zsl x Zgl} be a
neutrosophic group vector space over the group G = Z¢l. Take
W= {000), dIII, 3L 3L 3)} < V; W is a neutrosophic
subgroup vector subspace of V over the subgroup H = {0, 31}
G. Clearly W is not a neutrosophic group vector subspace of V
over the group G.

In the view of this we have the following theorem.

THEOREM 3.2.1: Let V be a neutrosophic group vector space
over the group G. If W is a neutrosophic group vector subspace
of V then W need not be a neutrosophic subgroup vector

subspace of V.

The proof is left as an exercise for the reader.
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THEOREM 3.2.2: Let V be a neutrosophic group vector space
over a group G. Suppose S < V is a neutrosophic subgroup
vector subspace of V then S need not in general be a
neutrosophic group vector subspace of V over G.

This proof is also left as an exercise for the reader.

Next we proceed onto define a neutrosophic duo subgroup
vector subspace.

DEFINITION 3.2.6: Let V be a neutrosophic group vector space
over the group G. Let W V. If W is a neutrosophic subgroup
vector subspace over a proper subgroup H of G as well as W is
a neutrosophic group vector subspace of V over G then we call
W to be a neutrosophic duo subgroup vector subspace of V.

We will illustrate this by some examples.

Example 3.2.16: Let

a, 0 O
a'1 a'2 .
V= [0 aj, a, a, 0 ||la;eQLI<i<6
a, a; a,

be a neutrosophic group vector space over the group G = QL

Let
W — al a2
0 a,
be a neutrosophic group vector subspace of V over the group G.
It is easy to verify W is also a neutrosophic subgroup vector

subspace of V over the subgroup H=Z7I c QI  G. Thus W is a
neutrosophic due subgroup vector subspace of V.

a, eQI;lSiS3}gV

Example 3.2.17: Let V = {(x1, X2, X3, X4) | X; € QL; 1 <1< 4} be
a neutrosophic group vector space over the group G = ZI. Take
W = {(0, x, x3, 0)| X, X3 € QI} < V. W is a neutrosophic group
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vector subspace of V over G and W is also a neutrosophic sub-
group vector subspace of V over the subgroup H=71 c QI =G.
Thus W is a neutrosophic duo subgroup vector subspace of V.

The following theorem is evident from the very definition.

THEOREM 3.2.3: Let V be a neutrosophic group vector space
over the group G, if W is a neutrosophic duo subgroup vector
subspace of V then W is both a neutrosophic group vector
subspace of V as well as W is a neutrosophic subgroup vector
subspace of V.

DEFINITION 3.2.7: Let V be a neutrosophic group vector space
over the group G. Suppose V has no neutrosophic subgroup
vector subspace then we call V to be a neutrosophic simple
group vector space.

We will illustrate this situation by some examples.

Example 3.2.18: Let V = {Z“I X Z“I X Z“I X Z“I X Z“I} =
{x,y,z,w,t)/X,y, z, W, t, € Z11}. V is a neutrosophic simple
group vector space over the group G = Z;,1.

Example 3.2.19: Let
{(a b)
V =
c d
be a neutrosophic group vector space over the group G = Z31. V

is a neutrosophic simple group vector space over G as G has no
proper subgroups.

a,b,c,de ZBI}

We have the following nice theorem which guarantees the
existence of neutrosophic simple group vector spaces.

THEOREM 3.2.4: Let V be a neutrosophic group vector space
over a group G, which has no proper subgroups other than G
and {0}, then V is a neutrosophic simple group vector space
over G.
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Proof: Follows from the fact that G has no proper subgroup for
a proper subset W to be a neutrosophic subgroup vector
subspace; we need a proper subgroup in G over which W is a
group vector space.

If G has no proper subgroup the existence of neutrosophic
subgroup vector subspace is impossible.

We will now give a large class of neutrosophic simple group
vector spaces.

THEOREM 3.2.5: Let V = Z)] x Z,Ix ... x Z,] — n times be a
neutrosophic group vector space over the group Z,I = G, where
p is a prime. V' is a neutrosophic simple group vector space over
G=2l

Proof: Clear from the fact that Z,I has no proper subgroups.

DEFINITION 3.2.8: Let V be a neutrosophic group vector space
over the group G. Let W <V and S < G where S is a semigroup
under +. If W is a neutrosophic semigroup vector subspace of V
over S then we call W to be a neutrosophic pseudo semigroup
vector subspace of V over S.

We will illustrate this by some simple examples.

Example 3.2.20: Let V = ZI x Z1 x ZI be a neutrosophic group
vector space over the group G=Z1L. W=ZI xZI x {0} c V. W
is a neutrosophic pseudo semigroup vector subspace of V over
the subsemigroup S =Z'TuU {0} c ZI.

Example 3.2.21: Let
b
V={(QIXQIXQIXQI),(3 djla,b,c,deQI}
C

be a neutrosophic group vector space over the group G = QL.
Let
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{[a bJ
W=

c d
is a neutrosophic pseudo semigroup vector subspace of V over
the semigroup Z'Tu {0} < QI =G.

a,b,c,de Ql}g A\

Example 3.2.22: Let

a
V=<b|,[abcde]|a,b,c,d, e eRIl}
c

be a neutrosophic group vector space over the group G = QL.
Take W = {(a, b, c,d, e) | a, b,c,d, e € RI} c V be a
neutrosophic pseudo semigroup vector subspace of V over the
semigroup Z'Tu {0} c QI =G.

We now proceed onto define the notion of neutrosophic group
linear transformation.

DEFINITION 3.2.9: Let V and W be two neutrosophic group
vector spaces defined over the same group G. A map T from V
to W will be called as the neutrosophic group linear
transformation; if T(av) = aT(v) for all a € G and for all v €
V.

We will illustrate this by some simple examples.

Example 3.2.23: Let V=271 x ZI x Z1 and W = QI x QI x QI x
QI x QI be two neutrosophic group vector spaces over the group
G=ZLLetT:V—> Whbedefinedby T (x,y,2)=(z,V, X,Y, Z)
for all (x, y, z) € V. Clearly T is a neutrosophic group linear
transformation of V into W.

Example 3.2.24: Let
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e

| a,b,c,d e Ql}

a,b,c,deQI}

and

o o o W

be a neutrosophic group vector spaces over the group G = QI.
Define T: V—> W by

T is a neutrosophic group linear transformation of V into W.

DEFINITION 3.2.10: Let V be a neutrosophic group vector space
over the group G. Let T from V to V be a neutrosophic linear
transformation then we call T to be a neutrosophic group linear

operator on V.

We will illustrate this by some examples.

Example 3.2.25: Let V= {(a, b, c,d)|a, b, c,d € QI} be a
neutrosophic group vector space over G = QI. Define T from V
to V by T(a, b, ¢, d) = (d, ¢, b, a). Clearly T is a neutrosophic

group linear operator on V.

Example 3.2.26: Let

a b ¢
V=4|d e f|a,b,c,d,ef,gh,ieRI
g h i
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be a neutrosophic group vector space over the group G = ZI.
Define T: V> V by

S a e
S o O
S o

a b ¢
T|d e f|=
g h i
It is easily verified T is a neutrosophic group linear operator on
V. Define N(Mg (V,W)) = {collection of all neutrosophic group
linear transformations from V to W; V and W neutrosophic
group vector spaces over the group G} and N(Mg(V,V)) = {set
of all neutrosophic group linear operators from V to V, V a
neutrosophic group vector space over G}. The reader is
expected to study the algebraic structure of N(Mg(V,W)) and
NMg(V,V)).

We now proceed onto the notion of neutrosophic group linear
algebra over a group.

DEFINITION 3.2.11: Let V be a neutrosophic group vector space
over the group G. If V is again a neutrosophic group under the
operation of addition, then we call V to be a neutrosophic group
linear algebra over G.

Example 3.2.27: Let
a a a
V=<a a allaeQl;.
a a a

V is a neutrosophic group linear algebra over the group ZI1 = G.

Example 3.2.28: Let V = {(X, y, 2) | X, y, z € QI} be a
neutrosophic group linear algebra over the group G = QL.

It is important to mention at this juncture that every

neutrosophic group linear algebra is a neutrosophic group vector
space over a group G but however a neutrosophic group vector
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space over a group G in general is not a neutrosophic group
linear algebra over a group G.

We will illustrate this by an example.

Example 3.2.29: Let

Ve a by(0 O0)(fa 0)(0 d

0 0)(c d)\0 ¢)le 0

be a neutrosophic group vector space over the group G = QL
We see V is not a group under matrix addition. Thus V is only a

neutrosophic group vector space over the group G and V is not a
neutrosophic group linear algebra over the group G.

a,b,c,d,eeQI}

We proceed onto define the notion of dimension of a
neutrosophic group linear algebra.

DEFINITION 3.2.12: Let V be a neutrosophic group linear
algebra over the group G. X < V be a proper subset of V, we
say X is a linearly independent subset of V if X = {x,, ..., x,,}, for

some x; € G; 1 <i <n; Zaix,. = 0 if and only if each o; = 0. A

i=1
linearly independent subset X of V is said to be a generator of V
if every element v of V can be represented as

n
v = Zaixl.; o, € G (1 £i<n)
i=1

We will illustrate this situation by some examples.

Example 3.2.30: Let V = {(X,V,2) | X,y,z € Z,1; Z,= {0, I}}
be a neutrosophic group linear algebra over the group Z,I = G.
V is generated by the set X = {(I 0 0) (0 1 0), (0 0 I)}. Clearly X
is a linearly independent subset of V over the group G = Z,1.

Example 3.2.31: Let
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V=43la, a,|a,eZl;1<i<6

be the neutrosophic group linear algebra over the group G = ZI.
Let

I 0)(0 IY(O 0OY(O O)(O 0)(O O
X=3/0 0,0 Of,JT OO IO O0,j0 O|} <V
0 0){0 0){0 0)l0 0){I 0){0 1

is the generating subset of V over the group G = ZI.

We now proceed into define substructures of neutrosophic
group linear algebras.

DEFINITION 3.2.13: Let V be a neutrosophic group linear
algebra over the group G. Let W < V be a proper subset of V.
We say W is a neutrosophic group linear subalgebra of V over
G if W is itself a neutrosophic group linear algebra over G.

We illustrate this situation by some examples.
Example 3.2.32: Let
a b c
V=4|d e f|a,b,..,ieQl
g h i

be a neutrosophic group linear algebra over the group G = ZI.
Take

a a a
W=<b b biab,ceQl;cV;
c ¢ ¢
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W is a neutrosophic group linear subalgebra of V over the group
G.

Example 3.2.33: Let V = {(a, b, c) | a, b, ¢ € QI} be a
neutrosophic group linear algebra over the group G = ZI. Take
W= {(a b,c)|ab,ceZl cQl} cV; W is a neutrosophic
group linear subalgebra of V over the group G.

We will now proceed onto define the notion of direct sum of
neutrosophic group linear subalgebra of a neutrosophic group
linear algebra.

DEFINITION 3.2.14: Let V be a neutrosophic group linear
algebra over the group G. Let W;, W, ..., W, be neutrosophic
group linear subalgebras of V over the group G.

We say V is a direct sum of the neutrosophic group linear
subalgebras W;, W, ..., W, if

() V=w,+.+W,
(2) WinW;={0}ifi#j; 1 <i,j<n.

We will illustrate this by some examples.

Example 3.2.34: Let V = Z41 x Z141 x Z14] be a neutrosophic
group linear algebra over the group G = Z 4], the group under
addition modulo 14. Let W = Z,I x {0} x {0}, W, = {0} x Z4I
x Z14] be neutrosophic group linear subalgebras of V over the
group G.

Wesee V=W +W,and W, " W, =(000);ifi=#j;1<4,]
<3.

Example 3.2.35: Let

a 0 0
V=4b ¢ O0]|a,b,cde,feQl
d e f
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be a neutrosophic group linear algebra over G = ZI, the group
under addition.

Take
a 0 0
W;=4/0 0 0||a,feQl,
0 0 f
0 0O
W, = ¢ 0]lb,c eQlyp,
0 0
0 0O
W;=</0 0 0]ld eQIl
d
and
0 0O
W;=+<10 0 0}le €QI
0 e O

be neutrosophic group linear subalgebras of V over the group G.
Wesee V=W, +W,+ W;+ W, and

0 0 0
WiﬁWj: 0 0 O iij;lﬁi,jﬁ“-.
0 0 0

Now we proceed onto define the notion of pseudo direct sum of
a neutrosophic linear algebra over the group G.

DEFINITION 3.2.15: Let V be a neutrosophic group linear
algebra over the group G. Suppose W, W, ...,W, are distinct
neutrosophic group linear subalgebras of V over G. We say V is
a pseudo direct sum if
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() V=w,+..+W,

(2) Wi W; #{0} or ¢in general even if i #j

(3) We need W;’s to be distinct i.e., W; N W; = W;or W; if i
=i, 1<ij<n.

We will illustrate this situation by some examples.

Example 3.2.36: Let

al a2 a3
V=4la, a, a||a, e€QL1<1<9
a, a; a,

be a neutrosophic group linear algebra over the group G = ZI.
Take

a, a, 0
W;=+¢0 a; O0]l|a,a,,a;€Ql
0 0 O
0 a, O
W,=<¢a, 0 O0]|a,,a, €Ql
0 0 0
a, 0 O
Wis=4la, 0 0 ||a,a,a,,a4,a, QI
a, a, a,
and
a, 0 O
Wis=1la, a, ag|la;,a,a5,a,a5€Ql
0 a; O

to be neutrosophic group linear subalgebras of V over the group
G:ZI.WCSCCV:W1 +W2+W3+W4
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But

a, 0 a,
WlmW2= 0O 0 O ,W10W3: 0 0 O ,
0 0
a, 0 0 0 0 0
WlﬂW4: 0O 0 O ,WzﬂW}z a, 00 ,
0 0 O 0 0 0
0 0 0 a, 0 0
Wsz4: a, 00 andW3mW4= a, 0 O
0 0 0 0 a, 0

and W; x Wjfori=j; 1<i,j<4.

Thus V is a pseudo direct sum of neutrosophic group linear
subalgebras over the same group G.

Example 3.2.37: Let V = {Zpl x Zoyl x Zyl x Zyl} be a
neutrosophic group linear algebra over the group G = Zyl.
Take
Wi = {Zoal x Zpal x {0} x {0} },
W2 = {0 X { 2241} X ZZ4I X {0}} and
W3 = {{0} X 2241 X 2241 X 2241}

to be neutrosophic group linear subalgebras of V over G. We
see V=W;+ W, +W;

W1 M W2 = {O} X 2241 X {0} X {0}
W1 ﬁWg = {{0} X 2241 X {0} X {0}}
Wy N W3 = {0} x {0} x ZyI x {0}

Thus V is a pseudo direct sum of neutrosophic linear
subalgebras of V over the group G.
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Now we proceed onto define yet another new algebraic structure
in neutrosophic group linear algebras over a group G.

DEFINITION 3.2.16: Let V be a neutrosophic group linear
algebra over the group G. Let W < V be a proper subgroup of
V. Suppose H < G be a proper subsemigroup of G.

If W is a neutrosophic semigroup linear algebra over the
semigroup H then we call W to be a pseudo neutrosophic
semigroup linear subalgebra of the neutrosophic group linear
algebra V.

We will illustrate this situation by some examples.

Example 3.2.38: Let

a,b,...,m eQI

~ e o oW
- 5 o o

be a neutrosophic group linear algebra over the group G = ZI.

aeQI

O o o ®
[CEE
o o o ®

is a pseudo neutrosophic semigroup linear subalgebra of the
neutrosophic group linear algebra over the semigroup Z'T U

{0}

Example 3.2.39: Let V= {QI x QI x QI x QI x QI x QI} be a
neutrosophic group linear algebra over the group G = ZI. Take
W ={QI x {0} x QI x {0} x QI x {0}} < V; W is a pseudo
neutrosophic semigroup linear subalgebra of V over the
semigroup S =3Z'Tu {0} c G.
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It may so happen that at times we may have neutrosophic group
linear algebra V over a group G but may not have pseudo
neutrosophic semigroup linear subalgebras of V. This is given
by these classes of neutrosophic group linear algebras.

Example 3.2.40: Let V = Z,1 x Z,] x ... x Z,I be a neutrosophic
group linear algebra over the group G = Z,I (p a prime); V has
no pseudo neutrosophic semigroup linear subalgebras.

Example 3.2.41: Let V = {(aj)mn | aj € Z,1; p a prime} be a
neutrosophic group linear algebra over the group G = Z,I. V has
no pseudo neutrosophic semigroup linear subalgebra as G = Z,I
has no proper subset which is a semigroup under addition.

Example 3.2.42: Let V = {Z,] [x] | p is a prime and Z,I[x] is a
collection of polynomials in the variable x with coefficient from
Z,1} be a neutrosophic group linear algebra over the group G =
Z,1. V has no pseudo neutrosophic semigroup linear subalgebra
as G = Z,I has no proper subset which is a semigorup.

Now we proceed onto define yet another new algebraic structure
of the neutrosophic group linear algebra.

DEFINITION 3.2.17: Let V be a neutrosophic group linear
algebra over the group G. Let P be a proper neutrosophic
subset of V. P is just a set and it is not a closed structure with
respect to addition. If P is a neutrosophic group vector space
over G then we call P to be a neutrosophic pseudo group vector
subspace of V over G.

We will illustrate this by some simple examples.

Example 3.2.43: Let
V= a, a,)(a, a,}({0 O
0 0)\b b,) (b b,

be a neutrosophic group linear algebra over the group G = ZI.
Let

a,a,,b,b, eQI}
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a, a,\(0 O
W= , a,,a,,b,b, eQl, CV;
0 0)(b, b,
W is only a neutrosophic group vector space over the group G.

Thus W is a pseudo neutrosophic group vector subspace of V
over the group G.

Example 3.2.44: Let
al a2

0
V=4la, 01,0
0 0)l0

0Y(O0 O)(a, a,

a, €QI
0 0 0l,la, a, 1€Q

1<i<6

N

a
a; )\la, 0)la, a;

be a neutrosophic group linear algebra over the group G = QL.
Take

0 0
W=40 00 a, |aza,,a,€Ql;y CV,
0 a

a; 0 5

W is a pseudo neutrosophic group vector subspace of V over the
group G.

Example 3.2.45: Let

=006 06 )

be a neutrosophic group linear algebra over Z;1 = G.

=[5 00

is a pseudo neutrosophic group vector space over the group G.

a,b,c,de Z7I}

a,b,c,de ZJ} cV
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Chapter Four

NEUTROSOPHIC Fuzzy
SET LINEAR ALGEBRA

In this chapter we introduce the new notion of neutrosophic set
fuzzy linear algebra, neutrosophic semigroup fuzzy linear
algebra and neutrosophic group fuzzy linear algebra.

Recall, as fuzzy vector space (V, 1) or nV is an ordinary
vector space V over a field F with a map n: V — [0,1]
satisfying of following conditions:

(1) n (a+b) 2min {n(a), n(b)}
(2) n(=a)=n(a)

) nO=1

(4) n(ra) 2 n(a)

forall a,b €V and r € F where F is a field.

We now define the notion of neutrosophic set fuzzy linear
algebra.
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DEFINITION 4.1: Let V be a neutrosophic set linear algebra
over the set S. We say V with a map n is a neutrosophic fuzzy
set linear algebra if

n: V-0 1] v[0, 1])= N0, 1])

(Here N([0, 1]) = {a + bl | a, b € [0, I]). (N([0, 1]) will be
known as the fuzzy neutrosophic set or neutrosophic fuzzy set),
such that n (a + b) > min(n (a), n(b)) for all a, b € V and
n (1) = I and is denoted by Vn or nV or V(n).

Since we known in the neutrosophic set vector space V
merely we take V to be a set but in case of neutrosophic set
linear algebra we assume V is closed with respect to some
operation usually denoted as ‘+’ so the additional condition
n(a + b) >min(n(a), n(b)) is essential for every a, b €V.

We will illustrate this situation by some examples.
Example 4.1: Let V = Q'I be a neutrosophic set linear algebra

over the set S=Z'T.
Define n: V. — N([0, 1])

I if x = al
nx) =<1+ ! ifx=a+blanda+b>1
a+b
I+1 ifx=a+bland a+b<l1

Clearly Vn is a neutrosophic set fuzzy linear algebra.

Example 4.2: Let

al bl
V=
cl dl
be a neutrosophic set linear algebra over the set S = 10Z°L
Define n: V. — N([0, 1]) as follows:

a,b,c,de Z*I}
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1+1 ifasb
a
1+1 ifb>d
(al bIJ e MPS
"r] =
ol dI 1+l ifcsa
C
1.
I+— ifa>d
d

We see V,, is a neutrosophic set fuzzy linear algebra.

DEFINITION 4.2: Let V be a neutrosophic set vector space over
the set S. Let W <V be a neutrosophic set vector subspace of V
defined over the set S. If n: W — N([0, 1]) then W is called the
neutrosophic fuzzy set vector subspace of V.

We now proceed onto define the notion of neutrosophic fuzzy
set linear subalgebra.

DEFINITION 4.3: Let V be a neutrosophic set linear algebra
over the set S. Suppose W is a neutrosophic set linear
subalgebra of V over S. Let n: W — N([0, 1]). nW is a
neutrosophic set fuzzy linear subalgebra if n(a+b) > min {n(a),
n)} fora, b e W.

Now we proceed onto define the notion of neutrosophic fuzzy
semigroup vector spaces.

DEFINITION 4.4: A neutrosophic fuzzy semigroup vector space
or a fuzzy neutrosophic semigroup vector space (V, n) or Vn
where V is an ordinary neutrosophic semigroup vector space
over the semigroup S; with a map n : V — N([0, 1]) satisfying
the following condition; 1 (ra) 2n (a) for alla € Vandr € 8.

We will illustrate this by some examples.
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Example 4.3: Let V = (ajl, ayl, a3l, ayl, asl, agl, a;1) | a; Z'l, 1
<1< 7} be a neutrosophic set vector space over the set S = 5Z'1.

Define n: V — N([0, 1]) by

N(ail, a1, asl, a4l asl, a¢l, a;1) = ; +1
a, +..+a,

for every (ail, a1, a1, a4, asl, agl, a;I) in V. V,, is a neutrosophic
set fuzzy vector space.

Example 4.4: Let
[al a,l]
a,l a,l
V=<la]l al|la eQL1<i<10
a,l a,l
| a,l a,l]

be a neutrosophic set vector space over a set S = Z'I.
Define n: V — N([0, 1]) by

[al a,l]
1
a;I a,l —+1 ifja;|eZ
SI 41 la; |

a a =
2 6 I+1  otherwise

a,I agl . :

0 ifa,=0;i=12,...,10
ENEE:my

V,, is a neutrosophic set fuzzy vector space.

Example 4.5: Let

al bl
V=
{[ cl dlj

al,bLcLdl e Z'T U {0}}
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be a neutrosophic set linear algebra over the set S =3Z'T U {0}.
Letn : V— N([0, 1]). Define

1

I+ ifa+d=0
al bl at
n = 1 .
cl dlI I+ ifb+c#0
b+c
1 ifa+d=0andifb+c=0

Example 4.6: Let V = {(a|l, a1, a31, a41, as1, agl) |[a; 1 € QI; 1 <
i < 6} be a neutrosophic set linear algebra over the set S =Z'T U
{0}. Let W = {(a, a,l, asl, al, asl, agl) | a; 1 € Z'T U {0}} be a
neutrosophic set linear subalgebra of V over S.

Define n: W — N([0, 1]) by

I if atleast one a, #0 or 1
n@lal, ... ah) = I if all a,'s are 1
1 if alla,'sare 0;1<1<6

It is easily verified that W,, or n (W) is a neutrosophic fuzzy set
linear subalgebra.

Example 4.7: Let
V= al a,I a,l
aJl aJ al
be a neutrosophic set linear algebra over the set S = Z'T U {0}.

Let
W= al a,I a,l
a,l aJI a[l

be a neutrosophic set linear subalgebra over S.

a,l eRI;lSiSS}

aiIeZ+Iu{O};1SiS6} cV
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Define n: W — N([0, 1]) by

1 .
I+— if a,+a,+a,#0
a, +a,+a,
al a,l al) .
1 a,l aJ a,l I+——o ifa,+a;+a,#0
a,+ag+ag
1 if a,=0;1<1<6

W, is a neutrosophic set fuzzy linear subalgebra.

Example 4.8: Let
b,I b,l
V= {(al, a1, a;1),| b,I b,I||a;,b; e Z'Tu {0};
bl bl

1 <£i<3;1<j<6} be aneutrosophic set vector space over the
set S=3ZTuU {0}. Let W= {(a;], a,], a3]) | al € ZT L {0}; 1<
1< 3}. Define n: W — N([0,1])

I+i ifa, #0;1<1<3
n(al, a1, asl) =1+ a.

1

1 ifa, =0;1<1<3

W, is a neutrosophic set fuzzy vector subspace.

Example 4.9: Let

al a,J a,I) (0 0 0
V: 2 b

0 0 0){bl b bl
(a1, a1, a3, agl) | bl, al € Z'TU {0}}

be a neutrosophic set vector space over the set S = 5Z'TU {0}.
Let
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w={[ 0 0 O L aL asL a)|
= , (a1, a5l as1, a
bl bl b)) R

bl,al € ZTu {0},1<i<4and 1<j<3} cV

be a neutrosophic set vector subspace of V over S.
Define
0 0 0 I+i iftb,#0;1<1<3
n = b

bI b,I b, b .
1 if b,=0;1<1<3

and

I+ if Da,#0

Zai i

i

1 if Y a,=0

i

n(ail, a1, asl, asl) =

W, is a neutrosophic set fuzzy vector subspace.

Example 4.10: Let

al a,l 0 bl .
V= , |aj, bje ZTu {0};
0 aJ) (bl O

1 £i<3and 1 £j <2} be a neutrosophic semigroup vector
space over the semigroup S =3Z'T U {0}.

Letn : V- N([0,1]) be defined such that

a,l a,l I+; ifa,+a,+a, =0
n = a, +a, +a,
0 a,l

1 if a,+a,+a,; =0

and
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1 .
0 bl I+ if b, +b,#0
n = b, +b,
b,I 0 .
1 if bj+b,=0
V, is a fuzzy neutrosophic semigroup vector space or

neutrosophic fuzzy semigroup vector space or neutrosophic
semigroup fuzzy vector space.

Example 4.11: Let
al
a,l cl ¢, cl
V= » (bil, bol, bsl), |
a,l 0 cI O
a,l

4

al,bl,cl € Z'T{0};1<i<4,1<j<3and1<k<4}

be a neutrosophic semigroup vector space over the semigroup S
=Z'TuU {0}. Define n : V — N([0, 1]) as

I+ ! if a,+a, #0
a, +a,
al 1
a,l I+— ifa; #0
n = a
a,l !
a,l I[+— ifa,#0
ay
1 ifa =0;1<i<4

I+i ifb,#0;1<1<3
n(biL, byl, bil) = b,

1 ifb=0;1<i<3
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1
|:CII c,l CSI:| Zci
’r] =

0 ¢l 0 i
) 1 if 3¢, =0

+1if D ¢, #0

V,, is a neutrosophic semigroup fuzzy vector space.

Now we proceed onto define the notion of neutrosophic
semigroup fuzzy vector subspace.

DEFINITION 4.5: Let V be a neutrosophic semigroup vector
space over the semigroup S. Let W < V be a neutrosophic
semigroup vector subspace of V over S. We say W, is a
neutrosophic semigroup fuzzy vector subspace if
n: wW—->N({01])
such that
n=1
n(rx) 2n(x)
forallx,y e Wandr € 8S.

We will illustrate this situation by some simple examples.

Example 4.12: Let
V= a, a, a; 3, 0 0 0 O |
0 0 0 0)(b b, by b,
a,bj e QI 1<1<4,1<j<4}

be a neutrosophic semigroup vector space over the semigroup S
=Z'TuU {0}. Let

0 0 0 O ,
W= |bjeQL1<i<4} cV
b, b, b, b,

be a neutrosophic semigroup vector subspace of V over the
semigroup S.
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Define n: W — N([0,1]) by

[0 0 0 OJ 1+bi if b, #0;1<i<4
n = i
b, b, b, b

b 1 if b,=0;1<i<4

W, is a neutrosophic semigroup fuzzy vector subspace.

Example 4.13: Let

aleZTu{0};1<i<n}

V= {Z a,Ix,
i=1
be a neutrosophic semigroup vector space over the semigroup S
=ZTu {0}.
Let

ale2Z'Tu {0}} cV.

W= {Zn:ailx2i

i=1

W is a neutrosophic semigroup vector subspace of V over the
semigroup S.
Define n: W — N([0,1]) by

%H if > a, #0
1 if Y a,=0

W, is a neutrosophic semigroup fuzzy vector subspace.
Now we define neutrosophic semigroup fuzzy linear algebra.

DEFINITION 4.6: Let V be a neutrosophic semigroup linear
algebra over the semigroup S. We say V,, or nV or V(n) is a
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neutrosophic semigroup fuzzy linear algebra if n : V —
N([0,1]); such that

1 (x+y) 2min(1n (x), 1.(3));
1 (rx) = 1(x)
forr eSandy, x €V.

Example 4.14: Let V = {(Z'TU{0}) x (Z'TU{0}) x (Z'T U{0})
x (Z'T U{0})} be a neutrosophic semigroup linear algebra over
the semigroup S = (2Z'1U{0}). Define n : V — N([0,1]) where

I-I-i ifa, #0;1<i<4
n(ail, al, asl, asl) = a.

1

1 ifa,=0;1<i1<4

V,, is a neutrosophic semigroup fuzzy linear algebra.

Example 4.15: Let V = {(al, ..., aj))| al € Z;11; 1 <1< 10} be
a neutrosophic semigroup linear algebra over the semigroup S =
Z111. Define 1 : V — N([0,1])

i+I ifa, #0;1<1<10
1’](311, ceey a1()l) =939

1 ifa =0;1<i<I0

V., is a neutrosophic semigroup fuzzy linear algebra.
Now we can define neutrosophic semigroup fuzzy linear
subalgebra as in case of neutrosophic semigroup fuzzy vector
subspaces. We leave this task to the interested reader. However
we will illustrate that by some examples.
Example 4.16: Let

Ve al a0 aJd)(bl b, |

0 aJ)\al 0 (b b,I

al,bleQlfor1 <i<5;1<j<4}
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be a neutrosophic semigroup linear algebra over the semigroup
S=Z"Tu {0}.
Take

W= [all azlj
0 a,l
W is a neutrosophic semigroup linear subalgebra of V over the
semigroup S.

2, 1eQL1<i<3} V.

Define n: W — N([0,1]) by

1

+1 if ZaiZO

al ad) p%
1 0 a,l - I if Zai <0
1 if Ya =0

Wn is a neutrosophic semigroup fuzzy linear subalgebra.

Example 4.17: Let V = {QI [x] | all polynomials in the variable
x with coefficients from QI} be a neutrosophic semigroup linear
algebra over the semigroup S = Z'T U {0}.

Let W = {ZI [x] | all polynomials in the variable x with
coefficients from ZI} c V.

Define n: V — N([0,1]) by

1
 deatot) if d >1
(p(x) = ' deg(p(x)) if deg(p(x))
np I if deg(p(x)) = constant
! if p(x) =0

where constant is a neutrosophic number.
W, is a neutrosophic semigroup fuzzy linear subalgebra.
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Now we proceed onto define the notion of neutrosophic group
fuzzy linear algebra. Just we recall the definition of group fuzzy
linear algebra.

DEFINITION 4.7: Let V be a group linear algebra over the
group G. Let nn: V — [0,1] be such that

1 (a +b) 2min(n(a), (b))

n-a) = n(a
n0) =1
n(ra) =1 (a)

forall a, b € Vandr € G; we call V, the group fuzzy linear
algebra.

DEFINITION 4.8: Let V be a neutrosophic group vector space
over the group G.
Let nn: V — N([0,1]) be such that 1 (ra) > 1 (a) for alla € V
and n (1) =1 forall a € V. We call V,, or nV or V(n) to be the
neutrosophic group fuzzy vector space.

We will illustrate this situation by some examples.

Example 4.18: Let

"l(al bl

V= blI , 0 I 5 (all, bll, Cll) | all, blI, ClI € QI}
Cl

cl

be a neutrosophic group vector space over the group G = ZI.
Define forx € V

I+; ifa+b+c>1
_ a+b+c
n )= I ifa+b+c<l

1 if x has no neutrosophic component
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V,, is a neutrosophic group fuzzy vector space.

Example 4.19: Let

V= {Zn:ailx2i , i“ailx5i |a; € ZI}
i=1 i=1

be a neutrosophic group vector space over the group G = ZI.
Define
if deg(p(x))=>1

1
I+—
deg(p(x))
I if deg(p(x)) is neutrosophic constant

n(p(x)) =

1 if deg(p(x)) is an interger

V., is a neutrosophic group fuzzy vector space.

Example 4.20: Let
al a,l
a,I a,l ,
V= al € QL 1 <i<8}
aJl agl
al a.l

be a neutrosophic group linear algebra over the group G = ZI.
Define n: V — N([0,1]) by
al a,l
a;l a,l|
1 aJl acl

al agl

1. . .
I+E if at least one of the a, is non zero 1<i<8

1 of all the entrires in the matrix is zero
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V,, is a neutrosophic group fuzzy linear algebra.

Example 4.21: Let

V= {Zailxi lal € QL; 1 <i<n}

i=l1

be a neutrosophic group linear algebra over the group G = ZI.
Define n: V — N([0,1])

n (i aIx' j =
i=1

[+ —— if deg(p(x)) =1
deg(p(x))
I if deg(p(x)) is a neutrosophic constant
1 if deg(p(x)) is a constant, i.e., p(x)=0

V,, or nV is a neutrosophic group fuzzy linear algebra.
Next we proceed onto define fuzzy substructures.

DEFINITION 4.9: Let V be a neutrosophic group vector space
over the group G. Let W < V be a neutrosophic group vector
subspace of V over G. Define n: W — N([0,1]) as n(ra) > n(a)
forallr € Ganda € W. We call W, or nW to be a neutrosophic
group fuzzy vector subspace.

We will illustrate this situation by some simple examples.

Example 4.22: Let

al a,] aI\( 0 al O ,
V= , la,le QL 1<i<7}
0 al 0 )lal 0 a,l

be a neutrosophic group vector space over the group G = ZI.
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Let

0 aJl 0 .
W= lal € Ql,1=5,6,7} cV
aJl 0 a,l

be a neutrosophic group vector subspace of V over G.
Define n: W — N([0,1]) by

0 al 0)
n2161 0 a,l

1. . )
I+§ if at least one a, is non zero; i=35, 6, 7

1 ifa/'sare zero;i=5, 6, 7

W, is a neutrosophic group fuzzy vector subspace of V.

Example 4.23: Let

al a,l

a,l a,JJ| |al a,I a,l
V= {(alL aZL a3I)s 5
aJ aJ| |a,] aJ a(l
al agl
ale QL 1<i1L8}

be a neutrosophic group vector space over the group G = ZI. Let

al a,I a.l
W= cV
a,l aJ acl
be a subspace of V.
Define n: W — N([0, 1]) by

[all a,l 331 I+l ifa, #0fori=12, ..., 6
2

a,l al ad 1 ifa, =0; 1<i<6
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Wn is a neutrosophic group fuzzy vector subspace. Now as in
case of neutrosophic group fuzzy vector subspace we can define
neutrosophic group fuzzy linear subalgebra.

We will however give some examples of neutrosophic group
fuzzy linear subalgebras.

Example 4.24: Let

al a,I a,l
V=4la,l al al| aleQl;1<i<9}

a I al agl

be a neutrosophic group linear algebra over the group G = ZI.
Let

al a,I a,l
W=<laJl al al|laleZl;1<i<9}cV

a, I aJd agl

be a neutrosophic group linear subalgebra over the group G =
VAR
Define n: W — N([0,1]) by

a,l a,l ajl I+L ifa, #0;1<i<9
nlaJl aJd al|= |ai|

a,I aJl ayl 1 ifa,=0; 1<i<9

W, is a neutrosophic group fuzzy linear subalgebra.

Example 4.25: Let

V= {i aIx’
i=0

ale QI}
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be a neutrosophic group linear over the group G = ZI. Let

W= {Zailxi lal € ZI} c V

i=0

be a neutrosophic group linear subalgebra of V.
Define n: W — N([0,1]) by

n (iailxj () =

I+——— if p(x) is not a constant
deg(p(x))
1 if p(x) is zero
I if p(x) is a neutrosophic integer

W, is a neutrosophic group fuzzy linear subalgebra.

DEFINITION 4.10: Let V be a neutrosophic group linear algebra
over the group G. Let W < V, where W is a subgroup of V and
H < G be a proper subgroup of G, so that W is a neutrosophic
subgroup linear subalgebra of V over the subgroup H of G. Let
n: W — N([0,1]) if W, is a neutrosophic group fuzzy linear
algebra then we call Wn to be a neutrosophic subgroup fuzzy
linear subalgebra.

We will illustrate this by some simple example.

Example 4.26: Let

al a,l )
V= |aie QL 1<i1<3}
a,l 0

3

be a neutrosophic group linear algebra over the group G = ZI.
Let
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a.l

3

al a,l )
W= 0 la; e ZI,1<1<3} cV

be a neutrosophic subgroup linear subalgebra of V over the
subgroup H=3Z1 c G.
Definen: W — N([0,1])

1. .
(all aZIJ I+— ifa,#0;1<1<3
n = 2

a,l 0 1 ifa,=0; 1<i<3

Wn is a neutrosophic subgroup fuzzy linear subalgebra.

Example 4.27: Let
al a,I O )
V= la;leZl,1<i1<4}
a,l 0 a,l

be a neutrosophic group linear algebra over the group G = ZI.
Let

al a, O i
W= |al e SZI,1<i<4} cV
a,l 0 a,l

be a neutrosophic subgroup linear subalgebra over the subgroup
H=10Z1 c ZI.

Definen : W — N([0,1])

{alI a,l 0} 141 ifa, #0;1<i<4
n 5

sl 0 al 1 ifa,=0;1<i<4

Wn is a neutrosophic subgroup fuzzy sublinear algebra.
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The importance of this structure is we do not demand
neutrosophic field over which these structures are defined. Even
a neutrosophic set is sufficient we know when we define fuzzy
vector space or fuzzy linear algebra the field over which they
are defined do not play any prominent role.

Another advantage of working with these fuzzy
neutrosophic vector spaces is in most of the cases they become
fuzzy equivalent.

Further our transformation to fuzzy set up demands only
values from the set N [(0,1)] = {a+ bl |a, b € [0,1]}.

Further if we go for neutrosophic Markov process or
Markov chains the probability matrix is a square matrix with
positive entries from N([0,1]).

154



Chapter Five

NEUTROSOPHIC SET BIVECTOR SPACES

In this chapter we introduce the notion of neutrosophic set
bivector spaces and neutrosophic group bivector spaces. We
enumerate some of their properties. These are useful on the
study of mathematical models.

DEFINITION 5.1: Let V = V; UV, where V; and V, are two
distinct neutrosophic set vector spaces defined over the same set
S. Thatis V; ¢V, and Vy ¢V, we may have V; NV, = ¢ or non
empty. We call V to be the neutrosophic set vector bispace or
neutrosophic set bivector space over the set S.

We will illustrate this by some examples.

Example 5.1: Let V=V, U V, where
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al a,J)(a,] O
Vl = )
0 a0)lal O

and
2I +
Vy=4(al a,] ajl), aleZ'l
a

aJeQ*Iu{O};lSiSS}

be neutrosophic set vector spaces over the set S = 5Z'1. V is a
neutrosophic set bivector space over the set S.

Example 5.2: Let

al a,) (bl b,I b,l
V=+lal al|,|bl b baLbleZ,l; v
al aJd) (b1 b byl

{(ai], a1, asl, a41), 0, Z'T |al e ZTU {0}, 1 <i<4} =V, UV,
be such that V| is a neutrosophic set vector space over the set S
= {0, 1} and V; is a neutrosophic set vector space over the set S
= {0, 1}. Thus V is a neutrosophic set bivector space over the
setS={0, 1}.

Now we proceed onto define substructure in neutrosophic set
bivector spaces.

DEFINITION 5.2: Let V = V; UV, be a neutrosophic set bivector
space defined over the set S. A proper biset W =W, W, cV,;
uV,=V, (W, <V, and Wy, < V) such that W; and W, are
distinct and each W; is a neutrosophic set vector subspace of V;
over the set S; 1 <i <2 is called the neutrosophic set bivector
subspace of V over the set S.

We will illustrate this definition by some examples.
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Example 5.3: Let
V= V1 U V2 =

al
a,l [,(b,I,b,Lb,L, b,LbI)|aLbleZL1<i<3;1<j<5

a,l
al a,l
U WAl
a,l 0
be a neutrosophic set bivector space over the set S = {0, 1}.
Take W = W1 U Wz = {[bll, bzI, b3I, b4I, b51| bII S ZI, 1<1< 5}

U {ZI} < V; U V,; W is a neutrosophic set bivector subspace of
V over the set S = {0, 1}.

aiIeQI;ISiS.’)}

Example 5.4: Let
V=V,uV,= {371,571} U

al a,I a,l (bIbI)
a,l al al) ' 7

be a neutrosophic set bivector space over the set S = 10Z'1.
Take W = W1 ) Wz = {3Z+I} U {(blL bzI) | blL bzI € Z+I} c V1
U V,, W is a neutrosophic set bivector subspace of V over the
set S=10Z'L.

aiI,bjIGSZ+Iu{O};1SiS6;1£jS2}

DEFINITION 5.3: Let V =V, U V, be a neutrosophic set
bivector space over the set S. Let X = X; v X, <V, oV, =1,
we say X is a bigenerating biset of V if X; is the generating
neutrosophic set vector space of V; over S and X, is the
generating neutrosophic set vector space of V, over S. The
number of elements in X = X; U X is the bidimension of V and
is denoted by |X| = (|Xi|, |X2|) or | Xi| U |X5].

We will illustrate this by some examples.
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Example 5.5: Let
V=V,uV,=

{(a, b, c), ["' 2 XS}
X X X

4 5 6

a,b,c,x; € N(Q); 1<i<6}

U {(a, a, a, a, a), |a,b e N (2Z2)}

- o o o o

be a neutrosophic set bivector space over the set S =N (Z).

X = {(a, b, c), {X‘ o ﬂ a,b,c,x € N(Q); 1 <i<6}
X, X5 X

o {(la 19 17 19 1)9

eV G S i U w—y
)

= X1 o X2
is the bigenerating biset of V over S. Clearly |X| = (0, 2).

Example 5.6: Let

vllo o0 1o ok ol SG 1)
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o D0 oG o)

b 9 U
0o 1)1 0)lo o
{(001),(000),(1100),(0000),

(111),(101),0011),(1010)}
:V1UV2

be a neutrosophic set bivector space over the set S = {0, 1}.

(969 90 e )
N

£001),(1100),(111),(0011),(101)(1010)}

is the bigenerating biset of V over S. [X| = (|1Xy], |X3]) = (8, 6);
thus bidimension of V is finite.

Now we have special substructures which we define in the
following:

DEFINITION 5.4: Let V = V; U V, be a neutrosophic set
bivector space over the set S. Suppose W =W; OUW, cV;, UV,
= Vis such that W is only a set bivector space over the set S,
then we call W to be a pseudo neutrosophic set bivector
subspace of V over S.

DEFINITION 5.5: Let V = V; U V, be a neutrosophic set
bivector space over the set S. Suppose W =W, oUW, cV =1V,
U Vs is such that W, is a neutrosophic set vector subspace of 'V,
and W, is just a set vector subspace of V, then we call W to a
quasi neutrosophic set bivector subspace of V over S.
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We will illustrate the two definitions by some examples.

Example 5.7: Let
a by(0 O
V=V,uV,= ,
0 0)\c d

Y1 XiayJ' € N(Z)s
U (Xl,X27X3aX4,X5): y2 ISISS,

yv; )| 1<j<3

a,b,c,de N(Q)}

be a neutrosophic set bivector space over the set S = {0, 1}.

Take
a bY(0O O
W:W1UW2: 5
0 0)lc d

v )| Xi>Y; €N(2);
(X1:X25X35X4:X5)a Yy, ISISS,

V)| 1<j<3

a,b,c,de Q} U

cViuV,= V,
W is a pseudo neutrosophic set bivector subspace of V over S.

Example 5.8: Let V=V, U V, = {N(Q)[x]; that is N(Q)[x] is
the set of all polynomials in the variable x with coefficients
from N(Q)} v

{(Xa Y, Z)’ XY, 2, WEe N(Z7)}

3N < %
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be a neutrosophic set vector bispace over the set S = {0, 1}.
Take
W=W,uW,= {Q[X]} o {(X’ Y, Z) | X, ¥, z¢€ Z7}
cViuVy
W is a pseudo neutrosophic set bivector subspace over the set S
= {0, 1}.

At this juncture it is essential to make the following
observations.

THEOREM 5.1: Let V = V; UV, be a neutrosophic set bivector
space over the set S (Where S = ZI or mZ'I, me N or QI or Q"1
or RI, RI, or CI or Z,I; m < oo and m €{0, 1, ... n|n <o)
Then V has no pseudo neutrosophic set bivector subspace.

Proof: Given the set over which the neutrosophic set bivector
space V = V; U V, is defined is a pure neutrosophic set then by
the very definition of neutrosophic set bivector space both V;
and V, cannot have a set vector subspace hence the claim.

We will illustrate this by some examples.

Example 5.9: Let V=V, U V, = {N(Q)[x]; all polynomials in
the variable x with coefficients from the neutrosophic set N

Qj v

al a,I a,l )
,(al, al, al, al, al) | a;,a € QI; 1 <1< 6}
a,] a,I a/l

be a neutrosophic set bivector space over the set S = Z'L
Clearly we have in V; a subset W; = {Q[x]} which is a proper
subset of V| but however Q[x] is not a set vector space over the
set S = Z'I. Thus we see V does not have a pseudo neutrosophic
set bivector subspace.

Example 5.10: Let V=V, U V, = {Ms,c = (m;) is the collection
of all 5 x 6 matrices with entries from QI} U {(a(l, a,l, ..., a;iI)
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| a; € ZI; 1 <1< 11} be a neutrosophic set bivector space over
the set S = Z'I. Clearly V has no pseudo neutrosophic set
bivector subspace.

DEFINITION 5.6: Let V =V, UV, where V; is a neutrosophic
set vector space over the set S and V, is just a set vector space
over the same set S. We call V to be a quasi neutrosophic set
bivector space over S.

Note: It is important to note the set S in the definition can only
be a subset of reals or complex or rationals or integers and is
never a neutrosophic subset. Thus for quasi neutrosophic set
bivector space to be defined the set over which it is defined is
only an ordinary set.

We will illustrate this situation by some examples.

Example 5.11: Let

{(a b)
V = Vl U VZ =
c d

al bl «cI
| al, bl, cL, dI, fI € ZI}

a,b,c,deQ}u

dl 0 fI

be a quasi neutrosophic set bivector space over the set S = Z.

Example 5.12: Let

V=V,uUV,
a b 0
a,b,c,x; €Q;
=<4 b[(x, x, X. X, X '
(%% %)l s
al a,] aI\(0 0 0)|albleZl
0 0 0)(bl 0 bJ)|I<i<4,1<j<2
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be a quasi neutrosophic set bivector space over the set S = 3Z"
v {0}.

It is important to note that quasi neutrosophic set bivector
spaces can either have quasi neutrosophic set bivector subspaces
or pseudo neutrosophic set bivector subspaces. Clearly quasi
neutrosophic set bivector spaces do not contain neutrosophic set
bivector subspaces.

DEFINITION 5.7: Let V = V; U V, be a quasi neutrosophic
bivector space over the set S. Suppose W =W, W, cV, UV,
is a proper subset of V and W is also a quasi neutrosophic
bivector space over S then we define W to be a quasi
neutrosophic bivector subspace of V over the set S.

We will illustrate this by some examples.

Example 5.13: Let
V= Vl o V2
b, b
b2 lanb eQ;
a, a, & b, b, .
= 5 ISIS 6
a'4 3.5 a'6 bS b6 1< .<8
b, bl 71

U {(5Z1 x 5Z1 x 3Z1), (7Z1 x 13Z1 x 11ZI x 17ZI)}

be a quasi neutrosophic vector space over the set S = Z. Let

W= W1 U Wz
a a a
= {( b 3}} U {(5Z1 x 5Z1 x 3ZI)}
a, as; ag
cViuUV,,

W is a quasi neutrosophic bivector subspace of V over the set S.
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Example 5.14: Let

V=V,uV,= (QXQ), a, ||a,eZ;1<i<5; U

1<i<4

al a,)(al a,I a,l

a,l a1/l 0 al 0
be a quasi neutrosophic bivector space over the set S = 5Z.
Take

ale QI;}

W=W,uUW,
a'1
a2
) al a,l )
=1l a; ||la, €eZl<i<5: U a,leQLl1<i1<4
a,I a,l
a4
aS
cViuV,,

W is a quasi neutrosophic bivector subspace of V over the set S.

DEFINITION 5.8: Let V = V; UV, be a quasi neutrosophic set
bivector space over the set S. Choose W =W, oUW, cV, UV,
such that W is a set bivector space over the set S then we call W
to be a pseudo quasi neutrosophic set bivector subspace of V
over the set S.

We will illustrate this situation by some examples.
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Example 5.15: Let

V:V1UV2

LR 06 A6
(5 S Mo e wITIG )

be a quasi neutrosophic set bivector space over the set S = 5Z"
w {0}. Take

a,b,c eQ} U

al,ble ZI
x,ye5Z

2K e

cViuVy
W is pseudo quasi neutrosophic set bivector space over the
set S.

X,y € SZ}

Example 5.16: Let
V= V1 o V2

a b

a b ¢
= ,, ¢ d|.(a,b,c,d),
d 0 0
0 0

Ae )

be a quasi neutrosophic set bivector space over the set S = Z.
Take

a

b
a,b,c,deZ

c

d

o

a,b,c,de N(Q)}
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W:W1UW2:

a b ¢
,(a,b,c,d)|a,b,c,deS5N; U
d 00
a b be.deQ
a,b,c,de
c d
cV,uV,

is a pseudo quasi neutrosophic set bivector subspace of V over
the set S.

DEFINITION 5.9: Let V = V; UV, be a quasi neutrosophic set
bivector space over the set S. Suppose W =W, W, cV, UV,
and W is a quasi neutrosophic set bivector space over the set T,
T a proper subset of S, then we call W to be a quasi
neutrosophic subset bivector subspace of V over the subset T of
S.

We will illustrate this situation by some examples.

Example 5.17: Let
a b
V=V,uV,= {( d] a,b,c,deN(ZzO)} o
c
a
{Z0 x Zyy x Z0, | b || 2, b, c € Zy}
c

be a quasi neutrosophic set bivector space over the set S = Z,,.
Take

W=W,uW,
a
al bl
= al,bl,cL,dle Z,)1; U 3| b ||a,b,ceZ,,
cl dI
C
c ViU Vy
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W is a quasi neutrosophic subset bivector subspace of V over
the set T = {0, 5, 10, 15} < S.

Example 5.18: Let
V= Vl U Vz

a b ¢
= ﬂ(aﬂb,cid’eﬂf)
d e f

a,b,c,d,e,f eN(Q)} U

a
b
{(ZxZxZxZ),|c||ab,c,deecZ}
d
e

be a quasi neutrosophic set bivector space over the set 2Z = S.
Take

W=W uW,=

a b ¢
,(a,b,c,d,e,f)
d e f

U{(ZXZxZxZ)} ViUV,

a,b,c,d,e,f e N(Q)}

W is a quasi neutrosophic subset bivector subspace of V over
the set T=10Z < S.

Now we proceed onto define the notion of neutrosophic set
bilinear algebras.

DEFINITION 5.10: Let V = V; v V, be such that V; is a
neutrosophic set linear algebra over the set S and V, is also a
neutrosophic set linear algebra over the same set S, then we call
V to be a neutrosophic set bilinear algebra over the set S only if
VizV, and V, zViorV, V..

We will illustrate this situation by some examples.
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Example 5.19: Let

[

be a neutrosophic set bilinear algebra over the set S = Zs.

V:V1UV2:

a,b,c,de N(ZIS)} ) {2151 X ZlSI X Zl5I X lel}

Example 5.20: Let
V=V,uV,

= {(a1], ayl, a1, a4l, asl, agl) | al € QL; 1 <i<6}}

uab b I
Oca,,ceQ

be a neutrosophic set bilinear algebra over the set S = QL.

Now we proceed onto define substructure of neutrosophic set
bilinear algebras.

DEFINITION 5.11: Let V = V;, v V, be a neutrosophic set
bilinear algebra over the set S. Suppose W =W, W, cV;, U
V, is a proper bisubset of V and W itself is a neutrosophic set
bilinear algebra over the set S then we call W to be a
neutrosophic set bilinear subalgebra of V over the set S.

We will illustrate this by some examples.

Example 5.21: Let

1)

(= {(al, bL, cL, dI) | al, b, cI, dI € ZI})

V=V,uV,

a,b,c,de N(Z)} UA{ZI x Z1 x Z1 x Z1}

be a neutrosophic set bilinear algebra over the set S = 5Z. Take
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W= W1 o W2
_|fal bl
cl dI

W is a neutrosophic set bilinear subalgebra of V over the set S =
5Z.

al,bL,cL,dl ZI} U {ZI x ZI x {0} x {0}}

cViuVy

Example 5.22: Let
V= Vl o V2

_|fa b ¢
d e f
{[a bj
U
c d
be a neutrosophic set bilinear algebra over the set S = Z,,.
Take
a b c
W =
o2
a b
0 0

=W1UW2gV1uV2;

a,b,c,d,e.f e N(Zzz)}

a,b,c,de N(Zzz)}

a,b,c,de N(Zzz)} U

abe N(Z22)}

W is a neutrosophic set bilinear subalgebra of V over the set S.

We have the following result the proof of which is left as an
exercise to the reader.

THEOREM 5.2: Every neutrosophic set bilinear algebra V over
a set S is always a neutrosophic set bivector space over the set S
but however in general every neutrosophic set bivector space
over a set S is not a neutrosophic set bilinear algebra over S.
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DEFINITION 5.12: Let V =V, v V, be a neutrosophic set
bilinear algebra over the set S. Suppose X =X; v Xo <V, UV,
= V' is such that X, is a generating set of V; over S and X, is a
generating set of V, over S then we call X = X; U X, to be the
generating bisubset of V over S. The bidimension of V is the
cardinality of X = X; U X; denoted by | X| = (|Xi], |X5)).

We will illustrate this situation by some examples.

Example 5.23: Let

a a
V:V1UV2:{[ j
a a

be a neutrosophic set bilinear algebra over the set S = ZI.
Clearly
I 1
X = {[I I]} U{LLLLLD}=X,UX;

bigenerates V over ZI. The bidimension of V is (1, 1).

X, € ZI}

be a neutrosophic set bilinear algebra over the set S = ZI.

) I 0 0y(O I O0)(0 O I
X={L Ix, Ix", ...} U , ) )
0 0 0)lo 0 0){0 O O

0 0 0Y(O O OY(O O O
s ) QVIUVZ
I 0 0){0 I 010 O I

aeNI} U {(a,a,a,aaa)|aeZl}

Example 5.24: Let

X, X5 X4

Xl X2 XS
V=V,uV,=ZIx] v
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is a bigenerator of V over the set S. Clearly bidimension of V is
infinite as |X| = (|Xy], [X3|) = (o0, 6).

DEFINITION 5.13: Let V = V; U V, be a neutrosophic set
bilinear algebra over the set S. Suppose W =W, W, cV;, U
V, is such that W = W; U W, is only a neutrosophic set bivector
space over the set S then we call W to be a pseudo neutrosophic
set bivector subspace of V over the set S.

We will illustrate this by some examples.

Example 5.25: Let

ey

be a neutrosophic set bilinear algebra over the set S = ZI.

T

{5Z1 x 3ZI x {0}, {0} x {0} x ZI} c V, U V,

a,b,c,deZI} UZIxZIxZI} =V,uU 'V,

a,be ZI} U

Then, W is only a neutrosophic set bivector space over the set S
= ZI. Thus W is a pseudo neutrosophic set bilinear subalgebra
over S.

Example 5.26: Let

a, a, a, .
V= laie QL 1<i<6} U

a, a5 ag

{QI[x]; all polynomials in the variable x with coefficients from

QI} =V, U V, be a neutrosophic set bilinear algebra over the
set S = ZI. Choose
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W:W1UW2:

a, 0 0)O0 a, O

0 0 agj)la, 0 ag
{5Z1]x], 3Z1[x] where 5ZI [x] denotes the set of all polynomials
in the variable x with coefficients from 5ZI and 3ZI [x] denotes
the set of all polynomials in the variable x with coefficients for

371} < V; U V,. W is a pseudo neutrosophic set bivector space
over the set S = ZI.

a,,a.,a,,4a, eQI} v

DEFINITION 5.14: Let V = V; U V, be a neutrosophic set
bilinear algebra over the set S. Let W = W; U W, be such that
W is a neutrosophic set linear subalgebra of V; over S and W,
is only a neutrosophic set vector subspace of V, then we call W
= W; U W, to be a quasi neutrosophic set bilinear subalgebra
of V over the set S.

We will illustrate this by some simple examples.
Example 5.27: Let

a b a, a, a,
V=V,uV,= a,b,c,deQI v
c d a, a; ag

such that a; € QI; 1 <1 <6} be neutrosophic set bilinear algebra
over the set S = ZI.
Consider

W:W1UW2

_ a 0 0 b beql
0 0/l0 o)*°¢ ~
al az a3
a, a; a,

c ViU Vy

aieZI;lsiS6}
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W is only a quasi neutrosophic set bilinear subalgebra of V over
the set S = ZI.

Example 5.28: Let

a, 4,
33 34 .
V= a, eQL1<i<8; L
a5 a4
a; dag
a, a, a, a, a .
[ b SJ a,eZl;1<1<10
dg a; dg 3y Ay
:V1UV2

be a neutrosophic set bilinear algebra over the set S = ZI. Take

W:W1UW2

= , a,eQL1<i<8; U

[al a, a, a, ag
dg A, dg A9 dy

c ViU Vy

aiESZI;ISiSIO}

W is a quasi neutrosophic set bilinear subalgebra of V over the
set S.
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DEFINITION 5.15: Let V = V; v V, be such that V; is a
neutrosophic set linear algebra over the set S and V, is a only a
set linear algebra over a set S then we call V to be a quasi
neutrosophic set bilinear algebra over the set S.

We shall illustrate this situation by some examples.

Example 5.29: Let

a b

V:V1UV2: {( dj
C

al aZ a3

a, ay ag

where V is a neutrosophic set linear algebra over the set S = Z"
U {0} and V, is a set linear algebra over the same set S =Z" U

{0}. We see V = V; U V, is a quasi neutrosophic set bilinear
algebra over the set S.

a,b,c,d eQI} U

aieZI;lsiS6}

Example 5.30: Let V = V; U V, where V|, = {Z[x]; all
polynomials in the variable x with coefficients from the ring Z}
is a set linear algebra over the set S =Z and V, = {QI x QI x QI
x QI xQ x Q x QI} be a neutrosophic set linear algebra over the
set S=Z7Z.V =V, U V,is a quasi neutrosophic set bilinear
algebra over the set S.

DEFINITION 5.16: Let V = V; UV, where V; is a neutrosophic
set linear algebra over the set S and V, is a neutrosophic set
vector space over the same set S then we call V to be a pseudo
neutrosophic set bilinear algebra over the set S.

We will illustrate this by some examples.

Example 5.31: Let
V=V,uV,
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_|fa, a, aj;)(a 0 O
0 a, 0)la, 0 a,
a b
c d

be a pseudo neutrosophic set bilinear algebra over the set S =
Z1.

aieZI;lsi£6} )

a,b,c,de QI}

Example 5.32: Let

V=V,uV,

a a a a ajfa a a
= b
a a a a aj)la a a

aeQI}

be a pseudo neutrosophic set bilinear algebra over the set S =
Z'1; here V| is only a neutrosophic set vector space over S = Z'1
and V, is a neutrosophic set linear algebra over the set S = Z'I.

We define neutrosophic set bilinear transformation of these in
the following.

DEFINITION 5.17: Let V =V, vV, and W = W; U W, be any
two neutrosophic set bivector spaces defined over the same set
S.AmapT=T1 L/Tgfl"OWl V= V] UVglO W] quisa
neutrosophic set bilinear transformation of the neutrosophic set
bivector spaces if T; : Vi, = W; and T, : V, — W, are
neutrosophic set linear transformations of the neutrosophic set
vector spaces.

Here T=T,uT,: V=V, UV, > W=W, UW, where T, :
Vl—)WlUTzZVz—)WzZTZV—)W:TlUTz:VIUV2—)
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W; U W,. On similar lines one can define neutrosophic set
bilinear transformations of neutrosophic set bilinear algebras.

If W=W; U W, is replaced by V=V, U V, we call such
neutrosophic set bilinear transformations as neutrosophic set
bilinear operators on V.

We denote the collection of all neutrosophic set bilinear
transformations of V to W by NHomg (V=V; U V,, W =W, U
W,) and that of the neutrosophic set bilinear operators of V to V
by NHoms (V = V] U Vz), V= V] U Vz)

We will illustrate this situation by some examples.

Example 5.33: Let
V= Vl U Vz

e oy
(M

a,b,c,deQI} )

aieQI;ISiS6}

and
W:W1UW2
={QI x QI x QI x QI}
a, a, 0 0 |
Uil a; a, |, a,eQL1<1<6
aS a6
0 0

be neutrosophic set bivector spaces defined over the set S = ZI.
Definen=mun=V=V,UV, > W=W, UW, where n;
:Vi—> Wiandn,: V, > Wy as

2 0 @b, 0,0
i b O_{(aa s Vs )}5
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0 b
i ( d]: {(Oa 0’ ba d)},

0
a4, a,
4, 4, 4a;
=la, a,|,
1'12[0 0 a4j 3 Ay
0 O

and
0 0 0 0) (0 O
nz21521600 a; a, )
It is easily verified that ) : V — W is a neutrosophic set bilinear
transformation of V to W.

Example 5.34: Let

=130 D6 00

Uf{abc0),0O0a,(00ab0c)|ab ceZl} bea

neutrosophic set bivector space over the set S = ZI.

Definen:V —> Vas
n=mun:ViuVv,=vV->V,uV,=V

M : Vi > V; is such that

vlo o6
:
)

a,b,ce QI}

S O
o o

=
TN
o o
o
N

Il
R R
(=R
o

and

b
2

=
TN
oS O
o ®
N

I
R
c o
S

3
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M2 : Vo = V, is such that
1, (a, b, c,0)=(0,0,a,b,0,c)
M, (00a)=(00a)
and
1, (0,0,a,b,0,c)=(a,b,c,0).

It is easily verified thatn: V>V (M : Vi > V)um:: V., >
V,) is a neutrosophic set bilinear operator on V.

Interested reader can study the structure of NHomg (V, W) and
NHomg (V, V) where V and W are neutrosophic set bivector
space over the set S.

Next we proceed onto give examples of neutrosophic set
bilinear algebra transformations.

Example 5.35: Let

a b
V=V1UV2={( J
c d

be the collection of all polynomials in the variable x with
coefficients from QI} and

a,b,c,de QI} U {zaixi =p(x)
i=1

W:W1UW2: {(a,b,C,d)|a,b, C,dE QI}
v, {Zaix2i =q(x)
i=1
be the collection of polynomials in the variable x of even degree
with coefficients from QI} be two neutrosophic set bilinear
algebra over the set S = ZI.

Definen=mun:ViuV,=VoW UW,=Wasn,:
V;— W and 1, : V, > W, such that

a b
nl [ j:{aabac,d}
c d

and
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n (Zn:aixiJ = Zn:aiXZi :
i=1 i=1

It is easily verified that m is a neutrosophic set bilinear
transformation from V to W.

Example 5.36: Let

V=V,uV,=
a, a, a, .
a, eQL1<i<6; U
a, a; ag
al a2 a3
a, a; ag|la,eQL1<i<9
a, ag a,

be a neutrosophic set bilinear algebra over the set S = ZI.
DeﬁnenIm UT]z:V:VI uV,> V=V, UVzby

n:Vi=>Viandn,: V, >V,

a, a, a, a, a, a,
i

a, a; ag a, a, a,
and
a, 4, a, a; ag 4,
N2 3y a5 8| 7|, 8 8
a, a; a a, a, a

It is easily verified that i} is a neutrosophic set bilinear operator
onV.

We proceed onto define the notion of neutrosophic biset
bivector spaces.

179



DEFINITION 5.18: Let V =V, « V, be such that V; is a
neutrosophic set vector space over the set S; and V, is a
neutrosophic set vector space over the set Sy, S; #85; S; & So.
We define V = V; UV, to be the neutrosophic biset bivector
space over the biset S = S; LS.

We will illustrate this by some examples.

Example 5.37: Let V=V, U V, where .

Vi={(a,b,c¢), a,b,c,d e Ql}

o o o

be a neutrosophic set vector space over the set S; = 5ZI and

Vv, - a 0 , a, a, a,
b 0) (a, a5 ag
be a neutrosophic set vector space over the set S, = 7Z°T U {0}.

V =V, U V; is a neutrosophic biset bivector space over the
biset S = Sl U Sz.

a,b,a,eZ;1<i<6}

Example 5.38: Let V=V, U V, where V| = {ZI[x]; i.e., all
polynomials in the variable x with coefficients from ZI} is a
neutrosophic set vector space over the set S; =3Z'T U {0} and
a b
Vz={(a,b,0),[ Jla,b,c,deﬂ}
c d
be a neutrosophic set vector space over the set S, =5Z" 1 U {0}.

V =V, U V, is a neutrosophic biset bivector space over the set
S= Sl U Sz.
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These types of algebraic structures will find their applications in
mathematical models.

Example 5.39: Let V=V, U V, where V; = {(00 0), (10 0), (0
11),(00000),(0001),(0000),d11I1),(1010)(1,1,0,0,
I), (0011 1)} is a neutrosophic set vector space over the set S;
=7,=1{0,1} and

a b c)yfa 0 O
Vo,=4/d 0 el,|b 0 0|la,b,c,def,geZl
0 0 f)le 0 g

is a neutrosophic set vector space over the set S; = Zs [. Thus V
=V, U V, is a neutrosophic biset bivector space over the biset S
= Sl o Sz.

DEFINITION 5.19: Let V = V; U V, be a neutrosophic biset
bivector space over the biset S =S, US,. Let W =W, W, <
V, UV, if Wis a neutrosophic biset bivector space over the set
S =8, US; then we call W to be a neutrosophic biset bivector
subspace of 'V over the biset S = S; U S.,.

Example 5.40: Let V=V, U V, where

a a
v, = { J ae lel}
a a

is a neutrosophic set vector space over the set S; = Z,1 and

a, a, a;\(0 0 O
V, = , a,eZl
0 0 O0)\a, a; ag

is a neutrosophic set vector space over the set S; = Z;sI. V=V,
U V, is a neutrosophic biset bivector space over S = S; U S,.
Let W =W, U W, where
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e {3

be a neutrosophic set vector subspace of V; over S; and

W2 — al a2 a3
0 0 0
be the neutrosophic set vector subspace of V, over S, W = W,

v W, < V; U V, is a neutrosophic biset bivector subspace of V
over the biset S=S;, U S,.

ae{0, 3L 61, 91}} c Vi

a, e lel} =V,

Example 5.41: Let V=V, U V, where
al
Vi=14la, |,(a;,a,,a;)|a, € ZL1<i1<3

a3

is a neutrosophic set vector space over the set S; = ZI and

a, 0
a, 0 a, O 0 a, ,
V,= , a,eZ,I1<i<4
0 a, 0 a,)|a, O
0 a,

be a neutrosophic set vector space over the set S, = Zys[. V=V,
U V, is a neutrosophic biset bivector space over the biset S = S,
U Sz.
Take W=W, U W, cV, UV, where
W, ={(a;, &, a3) g € ZI; 1 <i<3} c V,

be the neutrosophic set vector subspace of V; over S; and
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a, 0 a, O
W2 =
0 a, 0 a,
be the neutrosophic set vector subspace of V, over S,. Then W

= W, U W, is a neutrosophic biset bivector subspace of V over
the biset S=S;, U S,.

a, eZzSI;ISiS4} cV,

DEFINITION 5.20: Let V = V; U V; be a neutrosophic biset
bivector space over the biset S = S; US,.

If X=X, vX, cV, UV,is such that X; generates V; over
S; and X, generates V, over S, then we say X = X; U X, is the
bigenerator of the neutrosophic biset bivector space V =V, U
V, over the biset S = S; U S,.

The bicardinality of X = X; U X; denoted by | X| = |X; U X))
= |X)| U|X;| or (1Xi|, |1X2|), gives the bidimension of V over S.

We will illustrate this situation by some examples.

Example 5.42: Let

V={(aaaa), |aeZI} u

IR

a a
{(a, a,a,a,a,a,a), [ ) |a € Z,1}.
a a
V| U V, be a neutrosophic biset bivector space over the biset S
=7ZIv ZlSI = Sl U le.

Take
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X={1111),

11
V(L LLLLLD, (1 1]}

:X1UX2gV1UV2;

—_ = =

clearly X bigenerates V and bidimension of V is (2, 2).

Example 5.43: Let V = V| U V,, where V|, = {ZI[x]; all
polynomials in the variable x with coefficients from ZI} is a
neutrosophic set vector space over the set S; = ZI and

ol

be a neutrosophic set vector space over the set S, = Z;1. V=V,
U V; is a neutrosophic biset bivector space over the biset S = S,
U S,. V is infinitely generated by any X = X; U X, over S = S
|\ Sz.

a,b,c,de Z3I}

Now we proceed onto define neutrosophic biset bilinear algebra
and enumerate few of their properties.

DEFINITION 5.21: Let V = V; U V, where V; is a set linear
algebra over the set S; and V, another neutrosophic set linear
algebra over the set S; which is distinct and different from V,;
further S; =S, or S; @ S, or S, & Sy, then we call V to be the
biset bilinear algebra over the biset S = S; U S.

We will illustrate this by some examples.

Example 5.44: Let V=V, U V, where
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ol

is a neutrosophic set linear algebra over the set S; = ZsI and V,
= {QI x QI x QI x QI} is a neutrosophic set linear algebra over
the set S; = QL. Now V = V| U V, is a neutrosophic biset
bilinear algebra over the biset S =S; U S,.

{0 06

v {(,0,0,0),(0,1,0,0), (0, 0,1, 0), (0,0, 0, )}
:X1 UXzQVl UVz,

a,b,c,de ZSI}

X bigenerates V as a neutrosophic biset bilinear algebra over the
biset S =S; U S,. The bidimensin of V is (4, 4).

Example 5.45: Let V=V, U V, where

a, a, a
AV 1 2 3
a, a; ag

is a neutrosophic set linear algebra over the set S; = ZI and

o

be a neutrosophic set linear algebra over the set S, = Q' V =
V, U V, is a neutrosophic biset bilinear algebra over the biset S
=S, U S,. Clearly both V, and V, are infinitely generated as
neutrosophic set linear algebras over the sets S; and S,
respectively.

aieQI;ISiS6}

a,b,c,deRI}

185



We now proceed onto define the substructures in neutrosophic
biset bilinear algebras.

DEFINITION 5.22: Let V = V; U V; be a neutrosophic biset
bilinear algebra over the biset S = S; U S, Let W=W, UW, c
Vi OV, if Wis a neutrosophic biset bilinear algebra over the
biset S = S; U S, then we call W to be a neutrosophic biset
bilinear subalgebra of V over the biset S = S; U S,.

Example 5.46: Let V=V, U V, where V| = {ZI x ZI x ZI x
ZI} is a neutrosophic set linear over the set S; = 5Z'T and

a, a,

be a neutrosophic set linear algebra over the set S, = 7Z'1. V =
V| U V; is a neutrosophic biset bilinear algebra over the biset S
=S, uUS, Take W=W, uUW,cV, UV, where

aieQI;lsiS4}

W, = {ZI x {0} x {0} x ZI} c V,

sz{[al 32]
a, a,

W =W, U W, is a neutrosophic biset bilinear subalgebra of V
over the biset S=S;, U S,.

and

aieZI;lsiS4} <V

Example 5.47: Let V=V, U V, where

a'1 a'2 a}
Vi=4/ 0 a, aglla,eZl<i<6
0 0 a

is neutrosophic set linear algebra over the set S; = 11Z'T U {0}
and
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V2={(a, a, a, a, a5)|aieQI;1£iS5}

be a neutrosophic set linear algebra over the set S, = 1721 U
{0}. V =V, U V, is a neutrosophic biset bilinear algebra over
the biset S=S;, U S,.

Take W=W; U W, cV, UV, where

al a2 a3
Wi=<0 a, a;l|la,eZI<i<6;,cV,
0 a

Wz:{(al a, a; a, a5)|ai€ZI;1§iS5}gV2;

W is a neutrosophic biset bilinear subalgebra of V over the biset
S= Sl |\ Sz.

Now we proceed onto define the notion of quasi neutrosophic
biset bilinear algebra.

DEFINITION 5.23: Let V = V; UV, where V; is a neutrosophic
set vector space over the set S; and V, is a neutrosophic set
linear algebra over the set S, where V; # Vo, V; ¢ Vo, Vo V)
and S; #82, S; ¢S, and S, ¢ S;. We define V=V, UV, to be a
quasi neutrosophic biset bilinear algebra over the biset S = §;
(2 Sz.

We will illustrate this by some examples.

Example 5.48: Let V=V, U V, where

V1 = {(al, ay, as, 34) , | A |ai € ZI, 1 SISS}
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is a neutrosophic set vector space over the set S; =3Z" T U {0}
and

a, a, 3
Vo=4la; a, a,||a, eQLl<i<9
ag a, a,

is a neutrosophic set linear algebra over the set S, = 5Z" U {0}.
V =V, U V, is a quasi neutrosophic biset bilinear algebra over
the biset S=S; U S,.

Example 5.49: Let V=V, U V, where

V]Z a

where a; € QI; 1 <1 < 12} is a neutrosophic set vector space
over the set S; = ZI and

a, 2, 2,
Vo=14la, a; a,|la,eQTu{0};1<i<9
a, ag a,

is a neutrosophic set linear algebra over the set S, = Q'T U {0}.
Thus V = V| U V, is a quasi neutrosophic biset bilinear algebra
over the biset S=S; U S,.

It is important to mention here that we have substructure
defined on them.

DEFINITION 5.24: Let V = V; U V, where V is a quasi
neutrosophic biset bilinear algebra over the biset S = §; U S,
Take W =W, oW, cV; UV, if Wis a quasi neutrosophic biset
bilinear algebra over the biset S = S; U S,, then we define W to
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be a quasi neutrosophic biset bilinear subalgebra of V over the
biset S = S] USZ.

We will illustrate this situation by some examples.

Example 5.50: Let V=V, U V, where

a, a,

a, a, a, )

V= ,la; a,||la, eZLI<i<5

0 a, a
a; 0

is a neutrosophic set vector space over the set S, = 3Z'T U {0}
and V, = {(aj, a5, a3, a4, as, 36, a7) | 3, € QL 1 <1 <7} is a
neutrosophic set linear algebra over the set S, = 13Z'T U {0}. V
=V, U V, is a quasi neutrosophic biset bilinear algebra over the
biset S=S;, U S,.

Take W =W, U W, cV, UV, where

a1 3.2 a’3 .
W, = ,a; a,||a; €3ZL1<i<5

and WZ = {(ala 03 az, 0’ as, 05 a7) | a;, a3, a5, 7 € QI}a Wis a
quasi neutrosophic biset bilinear subalgebra of V over the biset
S= Sl o Sz.

Example 5.51: Let V = V, U V, where V, = {Z'I[x]; all
polynomials in the variable x with coefficients from Z'T U {0}}
is a neutrosophic set linear algebra over the set S; =3Z'T U {0}
and V, = {3ZI[x] and 7ZI[x]; that all polynomials in the
variable x with coefficients from the 3ZI and 7ZI respectively}
is a neutrosophic set vector space over the set S, = 82T U {0}.
Thus V = V| U V, is a quasi neutrosophic biset bilinear algebra
over the biset S=S;, U S,.

Take W = W U W, where W| = {The set of all even degree
polynomials in the variable x with coefficients from Z'T U {0}}
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c V, and W, = {3Z1 [x] and 7Z'T [x]; collection of all
polynomials in the variable x with coefficients from 3Z'T U {0}
and 7Z"U {0} respectively} < Vo; W = W, U W, is a quasi
neutrosophic biset bilinear subalgebra of V over the biset S = S,
U Sz.

It may so happen that a neutrosophic biset bilinear algebra
contain quasi neutrosophic bilinear subalgebra. We now define
this concept.

DEFINITION 5.25: Let V = V; U V; be a neutrosophic biset
bilinear algebra over the biset S = S; U S,. Suppose W =W, v
Wy, <V, UV, where Wi is just a proper subset of Vi but W, is
only a neutrosophic set vector space over the set S; and W, is
proper subset of V, and W, is a neutrosophic set linear algebra
over the set Sy, We call W =W, W, <V, UV, to be a quasi
neutrosophic biset bilinear subalgebra of V over the biset S = S,
USQ.

We will illustrate this situation by some simple examples.

Example 5.52: Let
V=V,uV,

= {(a1 a, a, a, a5)|aieQI;1£i35}
a, a
O {[ | 2J
a, a,
be a neutrosophic biset bilinear algebra over the biset S = S; U

S, where S; = QT U {0} and S, = 3ZI. Take W =W, U W,
V., U V, where

a, eZI;lSiS4}

W1={(a1 a, 0 a, a4)|aieQI;1£i£4}gV1

is only a neutrosophic set vector space over the set S; = Q'T U

{0},
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0 a,
W2 =
a, 0
be a neutrosophic set vector space over the set S, = 3ZI. W =

W, U W, € V; U V, is a quasi neutrosophic biset bilinear
subalgebra of V over the biset S =S, U S,.

a, e3Z'Li= 2,3} =V,

Example 5.53: Let

4 &
V= V1 ) V2 =
a, a,

{ZI[x]; all polynomials in the variable x with coefficients from
ZI1} be a neutrosophic biset bilinear algebra over the biset S = S,
U S, =3Z1u 77Z1.

Take
a b
W=W,uUW,= {( j
0 ¢

{3Z1]x] and 7ZI[x]; all polynomials in the variable x with
coefficients from 3ZI and 7ZI respectively} < V; U Vi, W is
only a quasi neutrosophic biset bilinear subalgebra over the
biset S.

aieZI;ISiS4} )

a,b,ce ZI} U

Now we proceed onto define yet another new substructure.

DEFINITION 5.26: Let V =V, U V; be a neutrosophic biset
bivector space (bilinear algebra) over the biset S = §; U S,. Let
W=W, oW, cV, UV, be aproper subbiset of Vi U V,. Let T
=T, T, cS; vS, =S8, where T is also a proper subbiset of S
= 8; US,. If Wis a neutrosophic biset bivector space (bilinear
algebra) over the biset T then we call W to be a neutrosophic

subbiset bivector subspace (bilinear subalgebra) of V over the
subbiset T of S.

We will illustrate this situation by some examples.
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Example 5.54: Let V=V, U V, where

e {3090 Y

be a neutrosophic set vector space over the set S; = ZI and

a,b,c,d,e,f e QI}

V,= a,b,c,d,e,f,g,h e QI

SR
o
- o
0@ o
=R =N
~—

o a0 o o

be a neutrosophic set vector space over the set S, = QLV=V,
U V, is a neutrosophic biset bivector space over the biset S = S,
U Sz.
Take

W=W,uUW,

a,b,c,d,e e QI

e )

a,b,c,d,e,f e ZI} U

o o o o e

c Vl U Vz
and T = 3Z1 U 7Z1 < S; U S;; W is a neutrosophic subbiset
bivector subspace of V over the subbiset T = T; U T, = 3Z1 U
721 S; U S, =S.

Example 5.55: Let V =V, U V, = {Ql[x], the set of all
polynomials in the variable x with coefficients from QI} U
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a b c
d e f|la,b,c.d,ef,g,h,ieRI
g h

i

be the neutrosophic biset bilinear algebra over the biset S = S,
US,=Z1uQ'l

Take W = W, U W, = {ZI [x]; that is the set of all
polynomials in the variable x with coefficients from ZI} U

i

a b ¢
d e f|la,b,c,d,ef,ghicZl
g h

W is a neutrosophic subbiset bilinear subalgebra of V over the
subbiset T=T, UT,=3Z1UZTc S, US,.

Now we proceed onto define the new notion of neutrosophic
semigroup bivector space over the semigroup S.

DEFINITION 5.27: Let V =V; U Vywhere (V; #V,, Vi <V, and
V, & V) Vi is a neutrosophic semigroup vector space over the
semigroup S and V, is a neutrosophic semigroup vector space
over the semigroup S, then we say V =V, U V, to be the
neutrosophic semigroup bivector space over the semigroup S.

We will illustrate this situation by some examples.

Example 5.56: Let V=V, U V,={ZI xZI x Z'1 x 3Z'T} U

ey

be a neutrosophic semigroup bivector space over the semigroup
S=Z"1

a,b,c,d,e,f eQI}
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Example 5.57: Let V=V, U V,={(a,b,c),(a,b,c,d,e)|a,b,
c,d, e e Zl} v

a,b,c,de Z,1

o o 9 ®
- o o
o o o o

be a neutrosophic semigroup bivector space over the semigroup
= Z7I

Now we proceed onto define the notion of neutrosophic
semigroup bivector subspace.

DEFINITION 5.28: Let V = V;, v V, be a neutrosophic
semigroup bivector space over the semigroup S. Let W = W,
Wy, cV, oV, =1V be aproper biset of V; if W is a neutrosophic
semigroup bivector space over the semigroup S then we call W
to be a neutrosophic semigroup bivector subspace of V over the
semigroup S.

We will illustrate this definition by some examples.

Example 5.58: Let

a a a
V:V1UV2:{( J
a a a

a,b,c,de Z'TU {0}

a eZ*Iu{O}} )

o o & o
o o & o
o o o o

be a neutrosophic semigroup bivector space over the semigroup
S=3Z"Tu {0}.
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Take

a a a
W=W,UW,= { JaeSZ*Iu{O}}u
a a a

a,b,c,deZ'TU{0} VU V,,

o o o e

W is a neutrosophic semigroup bivector subspace of V over the
semigroup S.

Example 5.59: Let V=V, U V,={000),(111),(0000), 1
111),1101),(0010),(00000),T11110)} U {ZIxZ,Ix
7,1 x 7,1 x Z,1} be a neutrosophic semigroup bivector space
over the semigroup S = {0, 1} = Z, = (addition modulo 2).
Consider W=W; UW,={0000),I111I),(1101),(00I
0)} W {Zol x ZoI x {0} x {0} x {0} < Vi L Vy; Wiis a
neutrosophic semigroup bivector subspace of V over the
semigroup S = Z,.

DEFINITION 5.29: Let V =V, v V, be such that V; is a
neutrosophic semigroup linear algebra over the semigroup S
and V, is a neutrosophic semigroup linear algebra over the
semigroup S; (Vi #Vy VigVyand V, g V). V=V, UV, is
defined as the neutrosophic semigroup bilinear algebra over the
semigroup S.

We will illustrate this definition by some examples.

Example 5.60: Let
V=V, uV,
a a a
=4+la a aflaeZ,ly U{(aaaaaaa)|aecZ,l}

a a a
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be a neutrosophic semigroup bilinear algebra over the
semigroup S =Z,l.

Example 5.61: Let V=V, U V, = {Z;] [x]; all polynomials in
the variable x with coefficients from Zsl} U {Zsl x Zsl x Zsl}
be a neutrosophic semigroup bilinear algebra over the
semigroup S = Zsl.

It is important at this juncture to mention that every
neutrosophic semigroup bilinear algebra is a neutrosophic
semigroup bivector space but a neutrosophic semigroup bivector
space in general is not a neutrosophic semigroup bilinear
algebra.

The interested reader can prove the above statement.

Now we proceed onto define the notion of bigenerator and
bidimension of this algebraic structure.

DEFINITION 5.30: Let V = V; U V, be a neutrosophic
semigroup bivector space (bilinear algebra) over the semigroup
S. Let X = X; X, oV, vV, if X; generates V; as a
neutrosophic semigroup vector space (linear algebra) over the
semigroup S and if X, generates V, as a neutrosophic
semigroup vector space (linear algebra) over the semigroup S
then, X = X; U X, is called the bigenerator of the neutrosophic
semigroup bivector space (bilinear algebra) over the semigroup
S.

The bidimension of V is |X| = (|Xi| v |X3]) or (1X1], |X5|)
over the semigroup S. Even if one of |X;| or |X5| are infinite we
say the bidimension of V is infinite only when both |X;| and |X,|
is finite we say bidimension of V is finite.

We will illustrate this by some simple examples.

Example 5.62: Let V=V, U V, = {(, 0, 0), (1, 0, 0), (0 0 0),
0,0), LD, (1,1, I, 0 D} v {(aaa)|aeZl} bea
neutrosophic semigroup bivector space over the semigroup S =
7, X=X uX,={(1,0,0),(1,0,0) I,D (1, 1), (1,D, (I, D} v
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{11, dID} <V, U V,is the bigenerator of V and the
bidimension of V is (6, 2).

Example 5.63: Let

_|la a
a a
be a neutrosophic semigroup linear algebra over the semigroup

S=7I
Take

11
X = {L J} V{11111 1) =X, uXac VU Vy;

V=V,uV,

anI} U{(aaaaaa)|aeZl}

X bigenerates V and bidimension of V is (1, 1).

DEFINITION 5.31: Let V = V; UV, where V; is a neutrosophic
semigroup vector space over the semigroup S and V, is a
neutrosophic semigroup linear algebra over the semigroup S,
then we call V to be a quasi neutrosophic semigroup bilinear
algebra over the semigroup S.

We will illustrate this by some examples.

Example 5.64: Let
V=V,uV,

={(aaa),(aaaa),(aa),(aaaaaa)|ac Zl} U

a a a a
a a a allaeZl

a a a a

be a neutrosophic semigroup quasi bilinear algebra over the
semigroup S = Zsl.
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Example 5.65: Let

V=V,uV,

a,beZl; U {(aabb)|a,beZl}

o o &
o o & o

be a quasi neutrosophic semigroup bilinear algebra over the
semigroup S = ZI.

Now we proceed onto define another substructure.

DEFINITION 5.32: Let V = V; U V, be a quasi neutrosophic
semigroup bilinear algebra over the semigroup S. Let W = W,
U W,V UV, be aproper subset of V such that W is a quasi
neutrosophic semigroup bilinear algebra over the semigroup S,
then we call W to be a quasi neutrosophic semigroup bilinear
subalgebra of V over the semigroup S.

Example 5.66: Let

U {(aaaaaa)|aeZl}

be a quasi neutrosophic semigroup bilinear algebra over the
semigroup S = ZI.
Take

W=W,uUW,

a a a a a
a a a a a

aeSZI} U {(aaaaa)|aeSZI}

cViuUV,,
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W is a quasi neutrosophic semigroup bilinear subalgebra of V
over the semigroup S = ZI.

Example 5.67: Let

a b
V=V,uV,=
c d
a a
,[ }|anI}
a a

be a quasi neutrosophic semigroup bilinear algebra over the

semigroup S = ZI. Take
a a
anI} U {(a, a), { }}
a a

a a
W:W1UW2:{( J
a a

c V; U V,; W is a quasi neutrosophic semigroup bilinear
subalgebra of V over the semigroup S = ZI.

a,b,c,de ZI} U

{(a, ),

[-IE I )

Now we proceed onto define the new notion of neutrosophic
group bivector space and neutrosophic group bilinear algebras.

DEFINITION 5.33: Let V=V, UVybe such that V; #V, V; &V,
and Vy, ¢ Vi, Vi and V, are neutrosophic group vector spaces
over the same group G then we call V to be a neutrosophic
group bivector space defined over the group G.

Note: The group G can be an ordinary group or a neutrosophic
group.

We will illustrate this by some examples.

Example 5.68: Let
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a a
V:V1UV2:{( j
a a

V =V, U V; is a neutrosophic group bivector space over the
group G = Z;l. In fact V=V, U V, is also a neutrosophic group
bivector space over the group G = Z;.

anJ} U {(aaaa)|ae Zl}.

Example 5.69: Let

V = Vl O VZ = {(09 09 0) (L Ia I)a (09 Ia I) (L Oa I) (09 O’ 07 07 O) (I’
L 05 L I) (I’ 0’ I> O’ I) (09 O’ L I> 0) (0’ 0, 03 0) (L L L I) (I’ Ia 05 0)

(0,0, 1, D} v
ae ZZI}

6

be a neutrosophic group bivector space over the group G = Z,l.

Now we proceed onto define the neutrosophic group bivector
subspace.

DEFINITION 5.34: Let V = V; U V; be a neutrosophic group
bivector space over the group G. W =W, UW, cV, UV, is
said to be a neutrosophic group bivector subspace of V over G

if W itself'is a neutrosophic group bivector space over the group
G.

We will illustrate this by some examples.

Example 5.70: Let

a a a
V:V1UV2: ( ], a€Z5I o

[T R - B - )
[T R - B - )
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{(a,a,a)(a,a)(a,a,a,a,a)|aecZsl}

be a neutrosophic group bivector space over the group G = Zsl.

Let
a a a
W=W1uW2g{( jaezsl}u
a a a

{(a,a)(a,a,a)|aeZsl} ViUV,

W is a neutrosophic group bivector subspace of V over the
group G = Zsl.

Example 5.71: Let
a by(fa a a a
V=V,uV,= {( ],{ j a,b,c,deQI} o
c d/jla a a a
o]
a
alla
a
{(aaaaaaa),(aaa),(aa) Jal,al||aeQl}
a
alla
a
_a_

be a neutrosophic group bivector space over the group G = ZI.

W=W,UW,= {: Zj a,b,c,deQI} U
o
alla
{(aaa)|a|,la|,(a,a)]a e Ql}
alla
a
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c V| U V; is a neutrosophic group bivector subspace of V over
the group G = ZI.

Now we proceed onto define the notion of pseudo neutrosophic
semigroup bivector subspace of V.

DEFINITION 5.35: Let V = V; U V, be a neutrosophic group
bivector space over the group G. Let W =W, UW, cV, UV,
and H < G be a semigroup of the group G. If W is a
neutrosophic semigroup bivector space over the semigroup H
then we call W to be a neutrosophic pseudo semigroup bivector
subspace of V.

We will illustrate this by some examples.

Example 5.72: Let V=V, U V, = {ZI[x]} U {(abc)|a,b,c e
Z1} be a neutrosophic group bivector space over the group G =
Z1. Take W=W, UW,={Z'T[x]} U {(abc)|a,b,c e Z'T}
V; U V,. W is a neutrosophic semigroup bivector space over the
semigroup Z'1 < ZI. W is a pseudo neutrosophic semigroup
bivector subspace of V over the semigroup Z'1  Z.

Example 5.73: Let

a b c
V:V1UV2:
{d e f]

U {(a,b,c,d, e)|a b,c,d e e ZI} be a neutrosophic group
bivector space over the group ZI.
Take

a b 0
W=W,uW,=
{[c d OJ

U {(a,a,a,a,a)aecZl} cV,U V..

a,b,c,d,e,f e ZI}

a,b,c,deZ'Tu {O}}

W is a neutrosophic semigroup bivector subspace of V over the
semigroup 2Z'T U {0}.
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DEFINITION 5.36: Let V = V; U V, be a neutrosophic group
bivector space over the group G. Let W =W, oW, cV, vV, =
V: take S a proper subset of G. If W is a neutrosophic set
bivector space over the set S then we call W to be the pseudo
neutrosophic set bivector subspace of V over the set S.

We will illustrate this situation by some simple examples.
Example 5.74: Let
V= Vl U Vz

b
—{@ab,c,d)|a,b,c,de 27} u{a d]
C

a,b,c,de ZI}
be neutrosophic group bivector space over the group G = ZI.
Take

W:W1UW2
={(@ab,c,d)|a,b,c,d e 2ZTU {0}} U

a b

c d
W is a neutrosophic pseudo set bivector subspace of V over the
set S = {0, 21, 2, 2°L, ..., 2" |n € N}.

a,b,c,ded4Z'Tu {0}} .

Example 5.75: Let
V=V,uV,={QI xZI x QI x QI} L
a b
c d
be a neutrosophic group bivector space over the group G = ZI.
Take

a,b,c,de 3ZI}
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W=W, UW,={QTx {0} x {0} xQT} U
a a
a a

c V| U V,; W is a neutrosophic pseudo set bivector subspace of
V over the set S = {0, 31, 3L, ..., 3" | n € N}.

a,b,c,de 9Z*I}

Now we proceed onto define yet another new notion, viz.
neutrosophic bisemigroup bivector space.

DEFINITION 5.37: Let V = V; UV, where V; is a neutrosophic
semigroup vector space over the semigroup S; and V, is also
neutrosophic semigroup vector space over the semigroup S,. (S;
=8, S gSg anng gS1 and V,zV, V,; ng and VggVJ) we
call V to be the neutrosophic bisemigroup bivector space over
the bisemigroup S = S; US,.

We illustrate this by some examples.

Example 5.76: Let V=V, U V, where

a
VIZ {( Ja (a: a, 4, a, a)|a€ Z7I}
a

and

V,= JallaeZT;.

o o o ®

[ I R )

V is a neutrosophic bisemigroup bivector space over the
bisemigroup S=S, U S, =Z,1 U Z'L.

DEFINITION 5.38: Let V =V, UV, where V; is a neutrosophic

semigroup linear algebra over the semigroup S; and V, is a
neutrosophic semigroup linear algebra over the semigroup S,
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(V] ZV, ViazV, and V,zV; andS, #55.,5 gS], S; gSg) Vis
a neutrosophic bisemigroup bilinear algebra over the
bisemigroup S = S; US,.

We will illustrate this by some examples.

Example 5.77: Let

a b c
V=V,uV,=
{d e fj

{ZI[x]; all polynomials in the variable x with coefficients from
Z1} be a neutrosophic bisemigroup bilinear algebra over the
bisemigroup S=S, U S, =Q'TuU ZL

a,b,c,d,e,f e QI} U

Example 5.78: Let

V=V,uV,={x,y)|x,y € Z;l} U

a a a
{[ j ae ZI2I}
a 0 a

be a neutrosophic bisemigroup bilinear algebra over the
bisemigroup S=S; U S, =Z ;1 U Z,L

DEFINITION 5.39: Let V = V, v V, be a neutrosophic
bisemigroup bivector space over the bisemigroup S = S; U S..
W=Ww, oW, cV, UV,is called a neutrosophic bisemigroup
bivector subspace of V over the bisemigroup S if W is a

neutrosophic bisemigroup bivector space over the bisemigroup
S.

We give examples of the definition.

Example 5.79: Let
V=V, uV,={(x,¥,2),(a,a,a,a) |X,y,z,a € Zpl} U
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a,beZz,l

[
—_
R
(ox
~—

be a neutrosophic bisemigroup bivector space over the
bisemigroup S=S, U S, =Z, U Zy L.

Take
W=W,uW,
a
a
={xYy,2)|x,y,zeZpl} U ilallaeZ,l; cV, U Vy
a
a

W is a neutrosophic bisemigroup bivector subspace of V over
the bisemigroup S.

Example 5.80: Let
V= Vl U Vz
={QIxQL ZI x ZI x ZI} u

a,b,c,d,e,f,g,heZ,l

5 - o o

be a neutrosophic bisemigroup bivector space over the
bisemigroup S=S; U S, =ZI U Z,l.
Take

W:W1UW2
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= {QI x QI} u{[a a}} CVI UV,
a a

W is a neutrosophic bisemigroup bivector subspace of V over
the bisemigroup S.

DEFINITION 5.40: Let V = V, v V, be a neutrosophic
bisemigroup bilinear algebra over the bisemigroup S = S; U S..
W =W, W, cV, UV, is defined as the neutrosophic
bisemigroup bilinear subalgebra of V over S; U S, =Sif Wis a
neutrosophic  bisemigroup  bilinear algebra over the
bisemigroup S = S; US,.

We will give an example.

Example 5.81: Let

V:V1UV2
a
a b ¢
= a,b,c,d,e,feQl; U <lalaeZ,l
d e f
a

be a neutrosophic bisemigroup bilinear algebra over the
bisemigroup S=S, U S, =Z1 U Z,L.

Take
a
a

{:

W is a neutrosophic bisemigroup bilinear subalgebra of V over
the bisemigroup S.

W=W,uUW,
a
ae QI} v 4| a ||a € {0,21,41,61, 81,101}
a

cViuVy
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DEFINITION 5.41: Let V = V;, U V, be a neutrosophic
bisemigroup bivector space (bilinear algebra) over the
bisemigroup S=8, us.. Take W = W, oW, _C(V] qu) (W] Z
W, W, W,, Wg_CW]) and T =T, v, S uvs, (T] =T T,
gTyand T, ¢ T;) be a subbisemigroup of S =S; US,. If Wis a
neutrosophic bisemigroup bivector space (bilinear algebra)
over the bisemigroup T = T; U T, then we call W to be a
neutrosophic subbisemigroup subbivector space (subbilinar
algebra) of V over the subbisemigroup T of S = S; U S.

We will illustrate this by some simple examples.

Example 5.82: Let
V= Vl o V2

_|fa b
- c d a(aaa,a,aaa)
a a a a
{[ J,(x,y)
a a a a

be a neutrosophic bisemigroup bivector space over the
bisemigroup S=S; U S, =Z;,1 U ZI. Take W =W, U W,

{2

W is a neutrosophic subbisemigroup bivector subspace of V
over the subbisemigroup T =T, U T, = {0, 21, 41, 6l, 81, 101} U
{Z'Tu {0}} = S; U S, of the bisemigroup S.

a,b,c,de lel} )

a,X,ye€ ZI}

a,b,c,de lel} U{x,y)]|x,y e ZIl}

cViuVy

Example 5.83: Let
V=V,uV,
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a a a a a
a a a a a

a,b, c,d,e,f,g,heZ,l

aeQI} )

©Q o o
5oh oo o

be a neutrosophic bisemigroup bilinear algebra over the
bisemigroup S=S; U S, = Ql U Z,4l.

Take
W=W,uUW,
a a
a a a a a a a
={[ JanI}u aeZ,l
a a a a a a a
a a
cViuV,,

W is a neutrosophic subbisemigroup bilinear subalgebra of V
over the subbisemigroup T = T, U T, = ZI U 2Zyl of the
bisemigroup S =S; U S, = QI U Zyl.

Now we proceed onto define the bidimension.

DEFINITION 5.42: Let V = V;, U V, be a neutrosophic
bisemigroup bivector space (bilinear algebra) over the
bisemigroup S = S; U S, Take X = X, X, <V, UVyy if X,
generates V; as a neutrosophic semigroup vector space (linear
algebra) over the semigroup S; and X, generates V, as a
neutrosophic semigroup vector space (linear algebra) over S,
then we say X = X; U X, bigenerates V over the bisemigroup S
= S] USZ.

The cardinality of X = X; U X, denoted by | X;| U |X;| or
(X:l, |1Xz|) is called the bidimension of the neutrosophic
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bisemigroup bivector space (bilinear algebra) V =V, U V..
Even if one of X; or X, is of infinite dimension then we say the
bidimension of V is infinite, only when both X; and X, are of
finite cardinality we say V is of finite bidimension over the
bisemigroup S = §; U S,

We will illustrate this by some simple examples.

Example 5.84: Let V=V, U V,={(0,0), (1, 1), (0,0,0), (I, I)
00000), (10,10, I} U {5 D), (0, 0), (101, 10I), (151,
150), (201, 20D), (51, 0), (10L, 0), (20L, 0), (151, 0)} be a
neutrosophic bisemigroup bivector space over the bisemigroup
S=S,uS,=7Z1u Zysl.

Take X=X, X, {(IL,D, (L LD, 0,1 0, D} v (5] 5D),
(51, 0)} € V, U V,. X is a bigenerator of V and the bidimension
of Vis (3, 2)

Example 5.85: Let
V= Vl o V2

a b ¢
=4dla b clla,bceZl;u

a b c

a
b |la,b,ce QI

C

o o
- o
o o
o o

o
o

be a neutrosophic bisemigroup bilinear algebra over the
bisemigroup S=S, U S, =ZIU Q'L
Take X = X] U X2

1 0 0)(0O 1 0Y(O O 1
=410 0,0 1 0[,J]O0 0 1
1 0 0/){010){0 01
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1 111100 O0O0O)(0OO0O0OO0O
us0 0 0 0 O, 11 1T 1,40 0 0 0 O
000O0OO0OIO0O0OO0OO0OO/\L 1T 111

c V1 U V,, X bigenerates V over the bisemigroup S =S, U S,.
The bidimension of the neutrosophic bisemigroup bilinear
algebra V =V, U V; over the bisemigroup S =S, U S, is (3, 3)

Now we proceed onto define the notion of neutrosophic bigroup
bivector space over the bigroup.

DEFINITION 5.43: Let V=V, UV, be such that V; #V, V, &
Vyand V, g Vi. If V; is a neutrosophic group vector space over
the group G; and V, is a neutrosophic group vector space over
the group G, and G; #G,, G; ¢ G, and G, & Gy then we call V
=V; UV, to be a neutrosophic bigroup bivector space over the
bigroup G = G; U G,.

We will illustrate this by some examples.

Example 5.86: Let V.=V, UV, = {(0, 0), (I, T), (1, 1), (0, 0, 0),
(ID I’ I)’ (17 O) I’ 0) I’ O I) (07 O’ 07 O’ 0, 07 0)7 (17 17 1, 17 1), (I, I’ I’
I’ I)’ (0’ 07 0, 05 0)} U

a a a
{[ j,( j, (a,a), (3, a, a)}
a a a

such that a € Z;,I be a neutrosophic bigroup bivector space over
the bigroup G = G; U G, = {N(Z,) U Zpl}.

Example 5.87: Let
X

V=V,uV,={DIxZIxZ |y||X Y,z Z]} U

V4
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a b)) D labedez
Cd,b,(c,)|a,,c,e}

be a neutrosophic bigroup bivector space over the bigroup G =
G1 \ G2 =71 U ZI.

We now proceed onto define substructures in the neutrosophic
bigroup bivector spaces.

DEFINITION 5.44: Let V = V; UV, be a neutrosophic bigroup
bivector space over the bigroup G = G; UG, W=W, UW, c
Vi, v V, is defined to be a neutrosophic bigroup bivector
subspace of V. =V, UV, over the bigroup G = G; UG, if W =
W, v W, is itself a neutrosophic bigroup bivector space over
the bigroup G = G; UG,

DEFINITION 5.45: Let V = V; UV, be a neutrosophic bigroup
bivector space over the bigroup G = G; UGy Let W =W, UW,
cV,uVsand H=H, UH, c G; UG, be such that H, is a
proper subset of G; and is a semigroup under the operations of
G, and H; is also a proper subset of G, and is a semigroup of
G, If W =W, v W, is a neutrosophic bisemigroup bivector
space over the bisemigroup H = H; U H, then we define W =
W, oW,cV, b, (W] =W, W, ¢ W,, andeng with H; #
H, H;, ¢ H, and H, ¢ H;) to be a pseudo neutrosophic
bisemigroup bivector subspace of V over the bisemigroup H =
H;, UH; contained in G = G; UG,.

DEFINITION 5.46: Let V = V; UV, be a neutrosophic bigroup
bivector space over the bigroup G = G; UGy Let W =W, UW,
cV,uVy,and P =P, P, c G, UG, is such that P; is a
proper subgroup of G, i=1, 2 if W is a neutrosophic bigroup
bivector space over the bigroup P = P, U P, (P; #P,, P, & P,
and Py & P;) then we call W to be a neutrosophic subbigroup
bivector subspace of V over the subgroup P of the bigroup G.

We will illustrate these definitions by some examples.
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Example 5.88: Let

V:V1UV2

a b
= J, alla,b,c,deQIl; U
c d

a

(a,a,a,a,a), aeZ,l

IR

be a neutrosophic bigroup bivector space over the bigroup G =
Ql U Z,1. Take P=P;, U P, =ZI U {0, 21, 41, 6l, 81, 101} be a
subbigroup of G.

{2

W is a neutrosophic subbigroup bivector subspace of V over the
Subbigroup P= Pl |\ P2 c G1 |\ G2 = QI |\ leI.

W:W1UW2

a,b,c,de QI} U {(a,a,a,a,a) |a € Zul}

cViuV,,

Example 5.89: Let
V= Vl U Vz

_abc
d e f/)

a,b,c,d,e,feQl} U

[
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a b
¢ d|,(a,a,a,a,a,a)la,b,c,d,e,f €Z,I
e f

be a neutrosophic bigroup bivector space over the bigroup G =
QI U Zyl = Gl |\ Gz.
Take

W:W1UW2: aeQI

[T I )

U {(a,a,a,a,a,a)aeZyl}cViuVy,andP=P, U P, =71
v {0, 10I} < G; U G; = QI U Zyl. W is a neutrosophic
subbigroup subbivector space over the subbigroup P = P; U P,
c G] U Gz.

Example 5.90: Let V=V, UV,

d

a, a, a, a,\(0 0 0 a,

a, 0 0 a )\0 a, a, 0O
be a neutrosophic bigroup bivector space over the bigroup G =
G1 \ G2 = {QI} U Zygl. Take W = W, U W,

a
a b
= [ J, a|,[a,a,a,a,a] |a,b,c,deQl; U
c
a

a, ezl Siﬁ6}

a b .
= ,lalla,b,c,deQl}; U
c d
a
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a a a a
b2 Ml ez, L1<i<6
a;, 0 0 a

cViuV,=V,

W is a neutrosophic bigroup subbivector space over the bigroup
G=G 1Y Gz.

Example 5.91: Let

V=V,uV,=
_a_
a a
a a a
{(a,a)a a |362251}U [ j, a aEQI
a a a
a a

a

be a neutrosophic bigroup bivector space over the bigroup G =
G1 U G2 = Zzsl U QI
Take

W=W,uW,

a a a
|anzsl}u{( j
a a a

W is a neutrosophic bigroup subbivector space over the bigroup
G=G uG,.

aeQI} cViuV,,

Il
I
o e e e

Example 5.92: Let
a b ¢
a b
V=V,uV,=4/0 d e ,{ d}a,b,c,d,e,feQI
00 f)L°
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a
v qlal,(x,y,2) |a,x,y,ze ZI

a

be a neutrosophic bigroup bivector space over the bigroup G =
G1 |\ Gz =371 v 8ZI.

Choose
W=W,UuW,
a b ¢
=<0 d e]||la,b,c,d,e,f QI
0 0 f

o {(X’ y, Z) | (X, Y, Z) € 2361} - Vl U V23

W is a pseudo neutrosophic subbisemigroup bivector subspace
over the subbisemigroup H = H, U H, = {3Z'T U 4821} < G,
|\ Gz.

Example 5.93: Let

Vv=V,uV,
a
a b c b
= ) a,b,c,d,e,feZl} U
d e f c
d
a b
¥ d ,(a,b,C,d,e) a,b,C,d,e,fEQI
e f

be a neutrosophic bigroup bivector space over the bigroup G =
G, UG, =5Z1u 771
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Consider
W= W1 o W2

a,b,c,deZl; U {[a,b,c,d,e]|a,b,c,d e e Ql}

o o o o

cViuVy

W is a pseudo neutrosophic subbisemigroup bivector subspace
of V over the subsemigroup

52'1u7Z1< 5Z1 U 771

Now we proceed onto define neutrosophic pseudo bigroup
bivector space.

DEFINITION 5.47: Let V = V; UV, where V; is a neutrosophic
semigroup vector space over the semigroup S; and V, is a
neutrosophic group vector space over the group G, (S; z G;, G,
8,8, 2G, V2V, V, Vs and Vng1) Wecall V="V v
V, to be a neutrosophic pseudo bigroup bivector space over the
pseudo bigroup G =S, UG,

We will illustrate this situation by some examples.

Example 5.94: Let
V= Vl o V2

{[a b} . } {a a a} }
= a,b,c,de Z'TU{0}; L aeQlI
c d a a a

is a pseudo neutrosophic bigroup bivector space over the pseudo
bigroup

G=(ZTu {0})) UQIl=G; UG.
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Example 5.95: Let
V=V,uV,=

a
al,(a,a,a,a,a)|lae3ZTU{0}; U

a

a b)(a b c

c d){d e f
be a pseudo neutrosophic bigroup bivector space over the
pseudo bigroup G=S, UG, = {3Z'Tu {0}} U QL

a,b,c,d,e,f EQI}
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Chapter Six

NEUTROSOPHIC Fuzzy GROUP BILINEAR
ALGEBRA

In this chapter we proceed onto define the neutrosophic fuzzy
analogue of the definition given in chapter four of this book.
Through out this book N([0, 1]) = {a + b; | a, b € [0, I]} is the
fuzzy neutrosophic set or neutrosophic fuzzy set.

DEFINITION 6.1: Let V =V, U V, be a neutrosophic set
bivector space over the set S. We say the neutrosophic set
bivector space V =V, U V, with the bimap n = n, U n;is a
neutrosophic fuzzy set bivector space or neutrosophic set fuzzy
bivector space if n: n; U, V=V, oV, > [0, 1] and

n(ria; Urya) = (m U (rra; Ur ay)

= mi(rra) Unar: a) 2 ni(a;) U nyaz)
foralla; eV, i=1,2andr, ry €8S.
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Wecall V,=V,= (V,OV,), , or nV = (m vmn) (Vi

U V) to be the neutrosophic fuzzy set bivector space over the
set S.

We will illustrate this by some examples.

Example 6.1: Let

a6 s

be a neutrosophic set bivector space over the set S = {0, 2, 27,
...,2"|n e N}.

Define n: V — N([0, 1])
re,m=mnuUn::VyUV,—>N(O0,1]) as

a a I+l ifaz0
ni = 2
1 ifa=0

V:V1UV2

|a e ZI}

ae QI} U {(a, a, a, a),

O 0
S 0 e

a a a I+l ifa#0
i = 4

0 a 0] | ifa=0
and
|
I+— ifa=0
n2(a, a,a,a)= 5
1 ifa=0
a a .
a a I+— ifa=#0
N2 0 = 8 .
a 1 ifa=0
a 0
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Vy=(V,UV,), .., 1saneutrosophic fuzzy set bivector space.
Example 6.2: Let
V= Vl o V2
a b
a a
= (b b]’ a blla,beZ,l; U
a b
a a)fa
b b||b
, ,(a,b,c,d)|a,b,c,deZ,I
c cf||c
d d)\d

be a neutrosophic set bivector space over the set S = {0, 1}.
Definen=m1uUmn,: V=V, UV, > N(O0, 1]) wheren; : V; >
N([0, 1]) and n, : V2 — N([0, 1]).

Defined by
(a aj I+% ifaz0orb=0
nl = s
b b | ifa=b=0
a b 1.
I+— ifa#0orb=0
nl a b = 6 s
a b 1 ifa=b=0
a a
b b I+% ifaz0orb#0orcz0o0rd=0
N2 = 5
© ¢ 1 ifa=b=c=d=0
d d
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a 0
1 ..|b 0

I+— if #
N2 4 C 0

d 0
1 ifa=b=c=d=0

oo o ®

and

I+L ifaz0orb#0orc#0o0rd=0
N2(a, b, c,d)= 18 )

1 ifa=b=c=d=0

Va=(V,uV,) is a neutrosophic set fuzzy bivector space.

N

Now we proceed onto define the notion of neutrosophic set
fuzzy bilinear algebra.

DEFINITION 6.2: Let V =V, UV, be a neutrosophic set bilinear
algebra over the set S. A neutrosophic set fuzzy bilinear algebra
or neutrosophic fuzzy set bilinear algebra (V, n) = (V; UV, 1,
U?]g) or (771 U?]g) (V] UVQ) isabimap n=mn uvumn: V1 UVZ
—> N/(0, 1)] such that
1 (a; + by) 2min(1; (ay, 1; (b))
ni(riay) 2 n; (ay)
fora, b eV, reS i=12.

We illustrate this by some examples.

Example 6.3: Let
V=V,uV,

— (ZIx ZI x ZI} U {[a a] aeQI}
a a

be a neutrosophic set bilinear algebra over the set S = Z'L
Definen=m,un,: V=V, UV, 5N(0, 1]) where n; : V; >
N([0, 1]) and 1, : Vo — N([0, 1]) such that
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1+1 if (a,b,c) % (0,0,0)

T (aa ba C) = 1 3
3 if (a,b,c) =(0,0,0)
and
1 ..[a a 0 0
I+— if #
a a 4 a a 0 0
N2 =
a a 1 _(a a 0 0
— if =
4 a a 00
Va=(V,UV,), ., 1saneutrosophic set fuzzy bilinear algebra.
Example 6.4: Let

V:V1UV2

SN

a,b,c,d,e,f eQTuU {0}}

a,b,c,d,e,f e QTU {0}

- o a6 o W

be a neutrosophic set bilinear algebra over the set S = Z".
Define n: V. — N([0, 1])
n=mumn:V=V,uV,-N(0,1])

by

n : Vi > N(O, 1])
and

nZ : VZ - N([Oa 1])
as
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1 .(a b ¢ d 0 0 0O
I+— if #
a b c d) 8 e f g h 0 00O
Me ¢t g n 1 (a b cd) (0000
p— 1 =
8 e f g h 0 00O
a 0
b 0
1 C 0
I+— if #
a 9 d 0
b e 0
cl f 0
g a 0
e b 0
f 0
1 if “l=-
9 d 0
e 0
f 0
Vi=(V,UV,), .., Isaneutrosophic set fuzzy bilinear algebra.

Now we proceed onto define the notion of neutrosophic set
fuzzy bivector subspace.

DEFINITION 6.3: Let V =V; UV, be a neutrosophic setbivector
space over the set S and W = W; o W, c V; UV, be the
neutrosophic set bivector subspace of V over the set S. Define n
=m U W=W; W, > N[(0, 1)] then W, = (W, OW,),

is called the neutrosophic set fuzzy bivector subspace of V.

1\

We will illustrate this situation by some examples.

Example 6.5: Let V=V, UV,
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={(ZTxZTxZTxZ), |a,b,c,deZ'l

{(a b] (a a a aJ . }
o ) a,b,ceZ’l
0 c)la a a a

be a neutrosophic set bivector space over the set S = Z'1.
Let

o o o W

W=W,uW,
a
b . a b .
= |a,b,c,deZ1; U a,b,ceZ’l
Y 0 c
d
c VUV,

be a neutrosophic set bivector subspace of V over the set S.
Define

n=mni UT]zZWl UWz—)N([O, 1])
by

M2 Wi — N([0, 1])
such that

o o o e
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then W, = (W, UW,) is a neutrosophic set fuzzy bivector

subspace of V.

mN,

Example 6.6: Let

V=V,uUV,={Z1[x],(a,a,a,a) |aec Z'T} U

b
d
¢ ,(a,a,a,a,a),
h

Q@ o o

{aaaaa

’b3 ’d, ’f’ ’h +I
b b b bb}a “debeheQl

be a neutrosophic set bivector space over the set S = 3Z'1. Take

W:W1UW2
—{@aaaaczTiullt PP Y Habezny
b bbb b
QVIUVZ

to be a neutrosophic set bivector subspace of V over the set S.
Define n =n; U ma: Wy U W, = N([0, 1]) where 1, : W, >
N([0, 1]) and 1, : W, — N([O, 1]);

1

a,aaa)=1+—

M ( ) 20
a a a a a —I+1
Ty b bbb 8

Wy = (W UW,)
subspace of V.

and

aon, 18 @ neutrosophic set fuzzy bivector
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Now we proceed onto define the notion of neutrosophic fuzzy
semigroup bivector space.

DEFINITION 6.4: A neutrosophic semigroup fuzzy bivector
space or a neutrosophic fuzzy semigroup bivector space Vn (or
nvor (V,OV,),. ., ) is a neutrosophic semigroup bivector space
V=V, UV, over the semigroup S, with a bimap n=n, U n, :
V=V, vV, > N([0, 1]) satisfying the following conditions;

n(ra) = n(ra; Ura)
=(m un)(ria Urray)
=n(rra) U (r2a) 2 (a) Unz(ay);
i.e, n(r, ay)) =n; (a) and n, (raz) = n; (ay)

foralla;, €V, a, € Vyandr, ry €8S.
We will illustrate this situation by some examples.

Example 6.7: Let

V:V1UV2
={ZIXxZIx ZIx Z1, Z'T x Z'T x Z'T} U

a d

a a a a a

e, a,b,c,d,e,f eZ'1
[b b b b b}

c

be a neutrosophic semigroup bivector space over the semigroup
S=Z'L. Definen=m,Un,: V=V, UV, > N[0, 1)] where
M : Vi > N([0, 1]) and np : Vo = N([0, 1]) with

1
I+— ifabcd
m (aa b’ (& d): 4 ( )

1 ifa=b=c=d=0
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and

a a a a a 1
N2 =08+ —.
b b bbb 6
Vo= (V,uV,), ., Isaneutrosophic semigroup fuzzy bivector

space.

Example 6.8: Let
V=V,uV,

Il
o o e

b ¢
d el|a,b,c,d,e,f € ZJ] U {Zsl x ZsI x Zs] x Zsl}
0 f

be a neutrosophic semigroup bivector space over the semigroup
S=Z¢ Definen : Vo> N(0, I])thatisn=m,umnz: ViUV,
— N [(0, 1)] where

M = Vi = N([0, 1])

and
M2 Vo= N([0, 1])
by
. a b ¢ 0 0 O
b 0.9I+§ if|]0 d e[#|0 0 O
aboc 00 f) |00 o0
|0 e = b 00 0
00 f a ¢
1 iflo d el=[0 0 0
00 f) oo o
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and
I+1 if(abye,d)%(0,0,0,0)
N2 (az b, c, d) = 5 .
1 if (a,b,c,d)=(0,0,0,0)

Vi= MV uV,)

space.
Now we proceed onto define the notion of neutrosophic
semigroup fuzzy bivector subspace. This is defined in two
ways.

aom, 18 @ neutrosophic semigroup fuzzy bivector

DEFINITION 6.5: Let V =V, UV, be a neutrosophic semigroup

bivector space over the semigroup S. V, = (V,VV,), , be a

neutrosophic semigroup fuzzy bivector space. Suppose W = W,
UW, cV; UV, be a neutrosophic semigroup bivector subspace
of V, then we define W =W, OW,), , to be the neutrosophic

semigroup fuzzy bivector subspace of V,,, where n : W — N(/0,
1]) is such that 1 = 1, U n, is the restriction of nto Wi.e n, :
W: = N([0, 1]) where ij; : Vi > N([0, 1]). i =1, 2.

DEFINITION 6.6: Let V = V; UV, be a neutrosophic semigroup
bivector space defined over the semigroup S. Let W = W, U W,
< Vi UV, be a neutrosophic semigroup bivector subspace of 'V
over the semigroup S. Let = n;, U, : W= W; oW, - N([0,
1]) be a bimap such that Wn is a neutrosophic semigroup fuzzy

bivector space; then we call W, = (W,UW,), . to be a

neutrosophic semigroup fuzzy bivector subspace of V.

It is important to note the following. In general the two
definitions are not equivalent for n : W =W, U W, = N([0, 1]),
1 may not be defined on V\ W =V, \ W,u V, \ W,, where as
n : W— N([0, 1]) is only a restriction bimap.

Here we give examples of both the definitions.

229



Example 6.9: Let

V:V1UV2
a
={(a,b,c,d,e), |a|la,b,c,deecZT}u
a

b
(ZTxZTx 7', {a ]
c d

be a neutrosophic semigroup bivector space over the semigroup
S=ZT.Letn=muUmn:V=V,UV, > N(0, 1]) where n,
:V1 = N([0, 1]) and np :V, = N([0, 1]) are defined by

a,b,c,de Z+I}

ni(a, b, c,d, e)= I+%

1 1
al||=1I+=, a,a,a)= I+—
ll 3 2 ( ) 2

Vi =(V,uV,), ., Isaneutrosophic semigroup fuzzy bivector
space. Let
W=W,uUW,
a
a b
={lallaeZl} U { j a,b,c,deZ*I}
c d
a

230



ng UVz.

Define n: W =W, U W, = N([0, 1]) as follows,n =1, U n,:
W, U W, — N([0, 1])
N+ Wi > N([0, 1])
and
M, : W2 = N([0, 1])
is such that

and

W, = (WuW,)
bivector space of V.. 1 is clearly the restriction bimap of n on
Ww.

non, 18 the neutrosophic semigroup fuzzy

Example 6.10: Let
V=V,uV,

a a a a
= , a,beZ'l; U
(b b b bj

c o o o o o

[ R R )

a b ¢
{(a,a,a,a,a),[d . J

be a neutrosophic semigroup bivector space over the semigroup
S=Z'L

a,b,c,d,e,f e Q*I}
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Definen=m,umn,=V =V, U V; > N(0, 1]) where n, : V,
— N([0, 1]) and 1, : V, = N([0, 1]) are such that

aaaa_I+1
Mlb bbb g

b
a b
a b
a b I 1
= +_
L P 12
a b
a b
and
N2 (a,a,a,a,a)= I+g
a b c| I+ 1
Pl et 6
Vi, = (V,UV,), ., Isaneutrosophic semigroup fuzzy bivector
space. Let

W=W,uUW,

ae Z*I} U {(a,a,a,a,a)lae Q1T}

S

be a neutrosophic semigroup bivector subspace of V over the

semigroup S.
Define

cV,uV,

n=nuvn, : WiuW, - N(0, 1])

where
ﬁl . Wl - N([Oz 1])
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and
M, : W= N([0, 1])

_(a a a a 1
nl( J:I""_
a a a a 8

_ 1
n, (a,a,a,a,a)= I+§.

are such that

and

WT] = Wﬁ :(Wluwz)

bivector space of V.

o, 18 @ neutrosophic semigroup fuzzy

Example 6.11: Let

V:V1UV2
a
={(a,b,c,d,e),|a||ab,c de ZT}
a

b
UIZTxZTxZ'T, (a dj la,b, ¢, d, e ZT)
C

be a neutrosophic semigroup bivector space over the semigroup
Z'1. Let

W:W1UW2
a
a b
=<lal|laeZ’l u{( dj a,b,c,deZ*I}ngqu
c
a

be a neutrosophic semigroup bivector subspace of V over the

semigroup S. Define 1 : W — N([0, 1]) i.e.,
n=muvmn=W;uUW,— N(0, 1])

where
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N1 Wi = N([0, 1])
and

M2 : Wa = N([0, 1])
are such that

: |
al=Tl+—

n 100
a

and
a b =1+ !
L P 200

W, = (WuW,) is a neutrosophic semigroup fuzzy

bivector space of V. Clearly W and W, are distinct given in

N,

examples 6.9 and 6.11 respectively.

Example 6.12: Let
V=V,uV,
a b
a b
a a a a)la b .
B (b b b bj’a b |[¢07!
a b
a b

a b c
u{(a,a,a,a,a),{d . f}

be a neutrosophic semigroup bivector space over the semigroup
S=Z"1
Let

a,b,c,d,e,f e Q*I}

W:W1UW2
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S

be a neutrosophic semigroup bivector subspace of V over the
semigroup S = Z'L.
Definen=mn;uUn,=W;, U W,=W — N([0, 1]) where

N 2 Wi—> N([0, 1])

ae Z*I} U {(a,a,a,a,a)|aecQT}

QV1UV2

and
nZ:W2_>N([07 1])
with
a a a a
Th[ j:I"‘l
a a a a
and

n2 (a, a,a,a,a)=1+0.5.

Wy = (WUW,)
bivector space of V. Clearly W, and W, are different in

wom, 1S @ neutrosophic semigroup fuzzy

examples 6.10 and 6.12 respectively.

Now we proceed onto define the notion of neutrosophic
semigroup fuzzy bilinear algebra.

DEFINITION 6.7: Let V = V; UV, be a neutrosophic semigroup
bilinear algebra over the semigroup S. We say V, =
NIV, om0r (1 o) (Vi OV3) is a neutrosophic semigroup
fuzzy bilinear algebraif n=n, om: V=V, vV, > N0, 1])
is such that n; : V; = N([0, 1]) and n, : V; = N([0, 1]) satisfy
the conditions 1; (x; + yi) = min (1; (x), 1 (v); mi (rxi) = ray;

(x;); i=1, 2 foreveryr € Sand x;, y; € V;; i=1, 2.
We will illustrate this situation by some examples.
Example 6.13: Let V=V, UV,

={(a,a,2,8,3,8,a)|ac QT} U

235



a b
{[ j a,b,c,de Z*I}

c d
be a neutrosophic semigroup bilinear algebra over the
semigroup S = Z'L.
Definen=m,uUmn,=V =V, UV, > N(O0, 1]) where n; : V;
— N([0, 1]) and 1, : V, = N([0, 1]) are such that

1
N (a,a,a,a,a,a,a)= I+§

Vy=(V,uV,)
algebra.

aon, 18 @ neutrosophic semigroup fuzzy bilinear

Example 6.14: Let
V= Vl o V2

_fal a,l asl
a,l aJ a

Vz = {(all, 321, 331, 341) | aiI S ZzI, 1<i< 4}

aiIeZZI;ISiS6}

and

be a neutrosophic semigroup bilinear algebra over the
semigroup S = Z,. Define n=1n; U, : V; U V, = N([0, 1])
where 1; : Vi = N([0, 1]) and 1, : V, = N([0, 1]); such that

al a,I a,l I+l if a, # 0 for somei,1<i<6
m = 6
a,l aJ al

1 ifa,=0fori=1,2,3,4,5,6
and
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I+l if a, #0 forsomei=1,2,3,4
Ma(ail, asl, asl, asl) = 4

1 ifa,=0;1<1<4

Va=(ViUV))
algebra.

aon, 18 @ neutrosophic semigroup fuzzy bilinear

The reader is expected to define the two types of neutrosophic
semigroup fuzzy bilinear subalgebra as in case of neutrosophic
semigroup bivector spaces.

DEFINITION 6.8: Let V = V; v V; be a neutrosophic group
bivector space over the group G. Define n=mn, omn: V=V, v
Vy, = N([0, 1]) a bimap such that

n Vi =>N([0,1])

and
n2: V2 —>N([0, 1])
where
i (a; + b)) >min (n; (ay), 1; (by);
ni(a) = 1; (— ay)
n:(0) =1

m (ra)> 1) (@)

foralla, b; eV, r € Gfori=1,2. Wecall V,,= (V,UV,)

be the neutrosophic group fuzzy bivector space.

/) to

It is pertinent to mention here that the concept of neutrosophic
group fuzzy bilinear algebra and neutrosophic group fuzzy
bivector spaces and fuzzy equivalent.

We will illustrate this by some examples.

Example 6.15: Let

_|fal bl «cI
dl el fI

V=V,uV,

al,bl,cl,dl,el,fle ZI} u {ZI x Z1}
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be a neutrosophic group bivector space over the group Z.
Let
n=mni unz:V=V1 UVz—)N([O, 1])
be defined as follows:

N1 Vi = N([0, 1])
and
N2 : Vo= N([0, 1])

I+L ifaz0
la|
1 .
I+— ifb#0
|b]

I+— ifa=0=bandc#0

al bl cI 1 .
ni =4ql+— ifa=b=c=0and d=0
dl el fI

I+— ifa=b=c=d=0;e=0

lel

|
I+m ifa=b=c=d=e=0;f=0
1 ifa=b=c=d=e=f=0

1
I+— if (x,y) #(0,0)
N2 (Xs Y) = 2
0 if (x,y) =(0,0)
Vn = (V,uV,) is a neutrosophic group fuzzy bivector

space.

N,

Example 6.16: Let
V=V,uV,
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_|fa b
c d
be a neutrosophic group bilinear algebra over the group G = QI.

Definen=mn; U mn: V=V, U V,; > N([0, 1]) where
mi 2 Vi = N([0, 1])

a,b,c,deQI} w {QI x QI x QI}

and
M2 : Vo = N([0, 1])
with
| )
a b I+= if [ad=bc |20
LR c d = 5

0 if lad=bc|=0

and

I-l—l if atleast one of a or b or ¢ is non zero
nZ(a, bs C) = 5

0 ifa=b=c=0

Vo = (UV,)

algebra. Now we proceed onto define neutrosophic group fuzzy
bilinear subalgebra or neutrosophic group fuzzy bivector
subspace as both are fuzzy equivalent.

aon, 18 @ neutrosophic group fuzzy bilinear

DEFINITION 6.9: Let V = V; U V, a neutrosophic group
bivector space over the group G. Let V,, = (V,UV,) be the

mn,
neutrosophic group fuzzy bivector space of V. Let W = W; U W,
< Vi UV, be a proper neutrosophic group bivector subspace of
V- W,=W,OW,),. ;. is a neutrosophic group fuzzy bivector
subspace of V, if n.= n, v n,: W, o W, = N([0, 1]) is the
restriction bimap of n: n;, wn, : V, OV, > N([0, 1]) ie, 1, :

W; — N([0, 1]) is the restriction map, n; : V; = N([0, 1]) for i =
1,2

We will illustrate this by an example.
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Example 6.17: Let

{3

V=V,uV,

a,b,c,deQI} U {QI x QI x QI}

be a neutrosophic group bivector space over the group G = QL
Definen=n;uUn,:V, U V,— N([0, 1]) where

and

Define

ab_
nlcd

nZ(aa b: C) =

Vn = (VuV,)

space.

Let

M,

N

: Vi —= N([0, 1])

N2 : V2 = N([0, 1])

I+-—

ifaz0,b#0,c20,d=0
if one of a,b,or ¢ or d is zero

if two of a,b,c,or d is zero

if only one of a,b,c or d is non zero
ifa=b=c=d=0

ifaz0,b#0,c#0

if one of a,b,or cis zero

if one of a or b or ¢ is non zero
ifa=b=c=0

is a neutrosophic group fuzzy bivector

W:W1UW2
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a,beQI} U (QI x QI x {0}}

{53

be a neutrosophic group bivector space over the group G = QI.
Define n=1n, U n, : W; U W, = N([0, 1]) by; where
N, : Wi > N([0, 1])

QV1UV2

and
M, : Wo = N([0, 1])
is such that
I+1 if one of a or b is non zero
_(a b 1 .
n =3I+= ifa#0,b=0
0 0 2
1 ifa=0=>b

I+l ifa#0,b#0

@5, 0)= 91 1 e 0orb=0
1 ifa=b=0

sun, 18 @ neutrosophic group fuzzy bivector

W =(W,uW,)
subspace of V.

DEFINITION 6.10: Let V = V; U V; be a neutrosophic group
bivector space over the group G. Let W =W, oW, cV, UV,
be a neutrosophic group bivector subspace of V over G. Define
a blmap?] =1 U n W] (> W2 e d N([O, ]]) so that W’? =
wuw,) is a neutrosophic group fuzzy bivector space then

we call Wn to be the neutrosophic group fuzzy bivector
subspace of V.

min,

We will illustrate this definition by an example.
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Example 6.18: Let
V= Vl o V2

b
:{21lelele}u{(a ]
c d

a,b,c,d eQI}

be a neutrosophic group bivector space over the group G = ZI.
Let

W:W1UW2

:{znzllex{O}}u{[a bJ
0 d

QV1UV2

a,b,deQI}

be a neutrosophic group bivector space over the group G.

Define n : W — N([0, 1]); thatisn=m UM : W=W, U W,
— N([0, 1]) where 11 : W; — N(J0, 1]) and 1, : W — N([O,
).

| .
I+— if atleast one of x,y,zis non zero
nl (X: y: z, 0): 3

1 if x=y=2z=0

a b I+ 1 if atleast one of a,b, d is non zero
"o 4q

1 ifa=b=d=0

Wn = (W,UW,)
subspace of V.

2o, 18 @ neutrosophic group fuzzy bivector

DEFINITION 6.11: Let V = V; UV, be a neutrosophic biset
bivector space over the biset S =S; U S, Let n=n, U n, : V;
U Vo> N[0, 1]) where n; : Vi = N([0, 1]) and 1, : V> — N(/0,
1]) such that n;(r; a;) = ni(a;) for all v, € S; and a; € V; and
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n (1”2 Clg) 27]2(G2)f0]’ all s ESZ Clﬂdag € Vg. V’? = (VI UVZ)

is a neutrosophic biset fuzzy bivector space.

min,

We will give an example of this definition.

Example 6.19: Let
V= Vl o V2
a a a a
={(Z1xZ xZ} u { j ae Z*I}
a a a a

be a neutrosophic biset bivector space over the biset 32" U Z'1
=S= Sl U Sz.

Definen=mn; U Ny : Vi U V, > N([0, 1]) where n; : V| >
N([0, 1]) and 1, : Vo, = N([0, 1]) given by

1
a,b,c)=1+—
M ( ) b

Vo= (V,UV,), ., Isaneutrosophic biset fuzzy bivector space.

Now the notion of neutrosophic biset fuzzy bilinear algebra is
left as an exercise for the reader to define and give examples of
it. The two types of neutrosophic biset fuzzy bivector subspaces
can also defined analogous to earlier definitions.

DEFINITION 6.12: Let V = V;, v V, be a neutrosophic
bisemigroup bivector space over the bisemigroup S = S; U S,
Letn=n umn: V=V, oV, > N0, 1]) be a bimap, if n; (a
+ b;) >min (ni(a;), n:(by) : mi(ria;) = rin(ay) for all v; € S; and a;
b e Vi i =1 2 then we call V,, = (V,UV,) to be a

m-in,

neutrosophic bisemigroup fuzzy bivector space.
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We will illustrate this by an example.

Example 6.20: Let
V= Vl o V2

={(a,a,a)|a e Zd} L aeZ,l

(I I

be a neutrosophic bisemigroup bivector space over the
bisemigroup S=S;, U S, =Zs U Z;.

Define
n=mumn:V,u V- N(0,1])
where
mi: Vi = N([0, 1])
and
n2: Vo = N([0, 1])
by
I+= ifaz0
N (a,a,a)=
1 ifa=0
and
a
a I+— ifaz0
N2 = .
o ifa=0
a
Va=(V,UV,), .., 1s a neutrosophic bisemigroup fuzzy bivector
space.
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Next we proceed onto define the notion of neutrosophic bigroup
fuzzy bivector spaces.

DEFINITION 6.13: Let V = V; UV, be a neutrosophic bigroup
bivector space over the bigroup G = G; UG, Let n=n, Umn;:
Vi oV, = N([0, 1]) be a bimap where 1n; : V; — N([0, 1]) and
n o Vy = N(0, 1]) are such that V; n; and V, 1, are

neutrosophic group fuzzy vector spaces then V,, = (V, VV,),

=Vin, UV,yn,is a neutrosophic bigroup fuzzy bivector space.
We will illustrate this situation by some example.

Example 6.21: Let
V= Vl U Vz

1)

U{ZTxZTxZTxZTxZT}

a,b,c,de ZZOI}

be a neutrosophic bigroup fuzzy bivector space over the bigroup
G=ZyUZl

Define
n:V->N(O0, 1))
where
n=mumn: VUV, N(O0, 1]);
N1 Vi—=> N([0, 1])
and
M2 Vo — N([0, 1]).
1 .
a b I+= if Jad—bc|#0
i d = 8
¢ 1 if ad—bc=0
and
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1% if (a,b,c,d,e) # (0,0,0,0,0)

N2 (a,b,c,d, e)=
1 if (a,b,c,d,e)=(0,0,0,0,0)
Va=(V,UV,), ., Iisaneutrosophic bigroup fuzzy bivector
space.

As in case of neutrosophic biset vector space we can define
two types of neutrosophic bigroup fuzzy bivector subspaces.
This task is left as an exercise for the reader.
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Chapter Seven

SUGGESTED PROBLEMS

) Find all mixed neutrosophic integer set subspace of the
mixed neutrosophic integer set vector space V = {201, 0, 40
— 1,251 - 5,451 - 3,281 -4, 12 + 41, 3 + 41, 40 — 41, 101,
201, 281, 54} = N(Z) over the set S= {0, 1} < Z.

a. Does V have pseudo pure neutrosophic integer set
vector subspace?

b. Does V contain any pseudo set integer set vector
subspace?

2) Find all pure neutrosophic integer set vector subspaces of
the pure neutrosophic integer set vector space V = {0, I, 28I,
42 + 1, - 79 + 31, 442, 891, 2001 + 4002, 421 + 381, 4511}
over the set S= {0, 1} c Z.

(3) Let V= {3nl, Sml +2n, 0,2m | m,n € Z "} be the mixed
neutrosophic integer set vector space over S = {0, 1} < Z.
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“)

)

(6)

a. Find 3 mixed neutrosophic integer set vector
subspace of V.

b. Find 3 pseudo pure neutrosophic integer set vector
subspaces of V.

Find 3 pseudo set integer set vector subspace of V.

d. Can V have mixed neutrosophic integer subset
vector subspace? Justify your claim.

al b 0 0)(0 nZ
Let V = 5 )
c dI)(3nl 0){0 pzl

be a pure neutrosophic integer set vector space over Z < Z.

n,p,a,b,c,d e Z*}

a. Find atleast 5 pure neutrosophic integer set vector
subspace of V over Z .

b. Find atleast 5 pure neutrosophic integer subset
vector subspace of V.

Let V= {21, 0, 31 +2, 27, 38 — 31, 541 — 47, 2801, 249} and
W = {411, 1561, 31 —1, 481, 56 + 471, 56, 0, 27 + 481, 561 +
21} be two mixed neutrosophic integer set vector spaces
over the set S= {0, 1} < Z.

a. Find a neutrosophic integer set linear
transformation of V to W.

b. Find atleast one neutrosophic integer set subspace
preserving linear transformation.

c. Find one neutrosophic integer set pseudo set
subspace preserving linear transformation.

d. Find one neutrosophic integer pseudo pure subspace
preserving linear transformation.

Let V= {0, 21, 251, 31 — 2, 48 — 51, 281 + 4} < PN(Z) be a
pure neutrosophic integer set vector space over the set S =
{0,1} c Z.

Find all neutrosophic set linear operators on V. How many
of them preserve the pure neutrosophic integer set
subspaces of V.
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(7

®)

©

(10)

Let V=1{0,21+8,27—31,4I,-51,481-3,27 - 81,91 + 8,
— 51,49 — IM 28M — 26, 42, — 21} < N(Z) be the mixed
neutrosophic integer set vector space over S = {0, 1}.

a. How many neutrosophic integer set linear operators
can be defined on V?

b. Find those neutrosophic integer set linear operators
on V which preserves subspaces of V.

Let V={I,2I,0,191 - 3,27 -1, 1 + 4, 28, 48 — 311, 1511}
be a neutrosophic integer set vector space over the set S =
{0, 1}.

a. Find all neutrosophic integer set vector subspace of
V over S.

b. Find atleast 3 neutrosophic integer linear operators
on V which preserves all types of subspaces.

Let V= {271, 5Z, m + nl | m, n € Z} be the neutrosophic
integer set linear algebra over the set Z.

a. Find at least 5 neutrosophic integer subset linear
subalgebras of V over S ¢ Z.

b. Find 5 pseudo neutrosophic integer set vector
subspaces of V.

c. Find 5 neutrosophic integer set linear subalgebras
of V.

d. Find at least 5 neutrosophic integer set linear
operators which preserves atleast one of the three
substructures.

e. Does there exist any neutrosophic integer set linear
operator on V which preserves simultaneously all
the three substructures mentioned in the problem.

Let V = {3ZI1, 2571, 41Z, 9Z + 3271} be a neutrosophic
integer set vector space over the set Z.

a. Find neutrosophic integer set subvector spaces of V
over Z.

b. Find neutrosophic integer set linear operators on V.
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C.

Find neutrosophic integer subset subvector spaces
of V.

(11)  LetV={21,0,411,21-1,4,431,25+ 31,27 -1,1-42, 3,
481 + 90} < N(Z) be a neutrosophic integer set vector space
over the set {0, 1}. Find a neutrosophic integer set generator

of V.

(12)  Let V= {3Zl,41Z, 28721 + 31Z} < N(Z) be a neutrosophic
integer set vector space of V over Z " .

a.

Find a neutrosophic integer set generator of V over
Z +

If V is defined over Z what will be the neutrosophic
integer set generator of V over Z.

If V is defined over 3Z ~ what will be the
neutrosophic integer set generator of V over 3Z".

If V is defined over S = {0, 1} what will be the
neutrosophic integer set generator of V over S.

If V is defined over the set S = {— 1, 2, 0, 1}, what
will be the neutrosophic integer set generator of V
over S.

(13)  LetV=1{3ZI,2Z, m + nl | m, n € Z} be a neutrosophic
integer set linear algebra over Z.

a.

Find the neutrosophic integer set generator of V
over Z.

Find the neutrosophic integer set generator of V
when the same V is defined over the set S = {0, 1}.

Suppose the neutrosophic integer set linear algebra
V is defined over 3Z " what will be the neutrosophic
integer set generator of V over the set 3Z ™.

What will be the neutrosophic integer set generator
of V if V is defined over the set S= {0, 1,2, -1, —
237

(14)  Give some interesting properties about neutrosophic integer
set linear algebras.
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(15)

(16)

)

(18)

(19)

(20)

e2y)

(22)

(23)

24

(25)

Give an example of a neutrosophic integer set linear algebra
which has no neutrosophic integer set linear subalgebra.

Give an example of a neutrosophic integer set linear algebra
which has no neutrosophic integer subset linear subalgebra.

Give some interesting results on substructures of
neutrosophic integer set vector spaces.

Obtain some interesting properties about n-n set vector
spaces.

Find all n-n set vector subspaces of the n-n set vector space
V= {7+ 71271, 48 £ 481, 56, 421, 7 £ 701, — 28, 56 — 561, —
28 +£ 281, 0} defined over the set S= {0, 1, 1 —I}.

Let V be a neutrosophic integer set vector space over a set S
c Z. Let NHomg (V, V) denote the collection of all linear
operators of V, what is the algebraic structure enjoyed by
NHomg (V, V)?

Let W and V be neutrosophic integer set vector space over a
set S ¢ Z. Let NHomg (V, W) denote the set of all linear
transformation of V into W. Find the algebraic structure
enjoyed by NHomg (V, W).

Give some interesting properties about n-n set linear
algebra.

Let V = {241, 22 — 1, 90 + 41, 22 + 21, 0, 21 + 91, 211, 30I,
941} < N(Z) be a n-n set vector space over the set S = {0, 1,
I}. Find all n-n set vector subspaces of V over S.

Let V={m-ml|m € Z} be a n-n set linear algebra over S
=40, 1, 1 — I} < N(Z2). Find the set of all n-n set linear
operators on V.

Let V= {21, 31 - 2, 0, 441 — 20, 271 + 9, 22 + 1, 1, 241, 361,
231} < N(Z) and W = {5 — 51, 20 — 201, 30 — 301, I, 44 —
441, 261, 721} < N(U) be n-n set vector space over the set S
= {1, 0, I}. Find atleast 5 distinct n-n set linear
transformation from V to W which preserves n-n set vector
subspaces of V and one n-n set linear transformation from V
to W which does not preserve subspaces!
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(26)

@7

(28)

(29)

(30)

€2))

(32)

Find the algebraic structure enjoyed by NHomg(V, W)
where V and W are n-n set vector spaces defined over S;
where NHomg (V, W) is the collection of all n-n set linear
transformations of V to W.

What is the algebraic structure of NHomg(V, V); where
NHomg(V, V) is the collection of all n-n set linear operators
of a n-n set vector space over the set S < N(Z)?

When V and W in problem 26 is replaced by n-n set linear
algebra, what is the structure of NHomg(V, W)?

When V in the problem 27 is replaced by n-n set linear
algebra, what is the structure of NHomg(V, V)?

m—ml 0
LetV= 0 m-ml |meZ" } < N(Z) be the n-n set
m—-ml m-ml
linear algebra over the set S= {0, 1, 1 — [} < N(Z).
a. Find NHomg (V, V).
b. Find n-n subset linear subalgebras of V over F.
c. Does V have pseudo n-n set vector subspaces?

d. Does there exist a n-n set linear operator on V
which does not preserve any n-n set linear
subalgebras?

Obtain some interesting properties about set neutrosophic
integer vector spaces.

Let V = {ZI} < N(Z) be a set neutrosophic integer linear
algebra over the set S=Z".

a. Find at least 3 set neutrosophic sublinear algebras
of V.

b. Does V have pseudo set neutrosophic integer
subvector spaces?

c. Find some subset neutrosophic integer sublinear
algebras of V.
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(33)

(34

(35)

(36)

(37

(38%)

(39)

(40)

Let V={3+35+5I0,3I 8 +8I 7,42 + 421} < N(Z
(I)); V is a set neutrosophic integer vector space over the set
S=1{0,1,1, 1 - I} = N(Z) or equivalently N(Z(I)).

a. Find atleast 3 set neutrosophic integer vector
subspaces over the set S.

b. Does there exist subset neutrosophic integer vector
subspace in V?

Obtain some interesting properties about set neutrosophic
integer linear algebras.

Let V < N(Z,) be a set neutrosophic modulo integer vector
space over the set S = {0, 1}; find some interesting
properties about V.

Let V= {1, 0, 31, 141, 5I, 251, 10, 10I, 3, 14} < N(Zx) be a
set neutrosophic modulo integer vector space over the set S
={0, 1,1, 1+251,25+1}.

a. Find a set neutrosophic modulo integer vector linear
operator T on V which preserves all substructures.

b. Find NS (Homg (V, V)). What is the | NSHomg (V,
V)| ?

Prove V = {0, 1, 21, ...., 221} < N(Zy;) is doubly simple
neutrosophic modulo integer linear algebra over the set S =
{0, 1, 1 +231}.

Obtain some interesting properties about V= {0, [+ (p— 1),
P-DI+1,2I+(p-2),p-2)I+2, (p-3)+3L (p-3) 1
p—1 p+l1 ’ p+1 I+

2 2
prime, a set neutrosophic modulo integer algebra over the
setS=Vu {0, 1,]1}.

Obtain some interesting properties about set neutrosophic
real matrix vector spaces.

+3, .., I+ pz_l}gN(Zp);pa

Can there exist a set neutrosophic real matrix linear algebra
which has finite cardinality?
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(41)

(42)

(43)

(44)

(45)

(46)

47

(48)

(49)

Give an example of a neutrosophic group linear algebra of
infinite cardinality.

Does there exist a neutrosophic set linear algebra which is
simple?

Give an example of a neutrosophic group linear algebra of
finite dimension.

Obtain some interesting results on neutrosophic group
vector space.

Define a linear transformation from the neutrosophic
semigroup vector space V to W where

al a,I a.l i
V= a,leQ;1<1<6
a,l aJg a/l

bl bl bl
W=1{bJ bl bl
bl bl b,l

and

bleQL1<i<9;.

Does there exists a linear transformation T from V to W
such that T ' exists?

Does there exists neutrosophic set vector spaces V and W
defined over the set S such that there does not exist any T :
V — W such that T exist? Justify your claim.

If G is a simple group, can we say if V is a neutrosophic
group vector space defined over G also is simple?

Give an example of a simple neutrosophic group linear
algebra.

al bl
Let V =
{[cl dIJ

group linear algebra defined over the group G = pZI (p a
prime). Find proper neutrosophic group linear subalgebras
of V.

aI,bI,cI,dIeQI} be a neutrosophic
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(50)

(51

(52)

(53)

(54

(55)

(56)

(57)

(58)

Can V contain proper neutrosophic subgroup linear
subalgebras? Justify your answer!

Give some interesting properties about neutrosophic
semigroup linear algebras.

Give an example of a simple neutrosophic semigroup linear

algebra.

Does the neutrosophic semigroup linear algebra V =
al bl
cl dI|aLblcl,dLel,fle Z,I; defined over S = Z,I
el fI

have proper neutrosophic subsemigroup linear subalgebra?
Justify your claim. Can V have proper neutrosophic
semigroup linear subalgebras?

—

Can a neutrosophic semigroup linear algebra have pseudo
neutrosophic semigroup linear subalgebra? If so give
examples of them?

Let V = {Z;1 [x] where Z;I [x] consists of all polynomials
with coefficients from Z;I} be a neutrosophic semigroup
linear algebra over the semigroup S = Z;I. Can V have
pseudo neutrosophic semigroup linear subalgebras? Justify
your claim.

Prove if V is any neutrosophic semigroup linear algebra
over a semigroup S = ZI (or Z "I or Q "I or R "I or QI or RI)
then V cannot contain pseudo neutrosophic semigroup
linear subalgebras.

Give some interesting properties about the substructures of
a neutrosophic group vector space.

Give an example of a neutrosophic group vector space
which is simple.

Give an example of a neutrosophic group linear algebra
which has no proper pseudo neutrosophic group linear
subalgebras.
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(39)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

Give an example of a simple neutrosophic group linear
algebra defined over a group G where the group G is not
simple.

al al
LetV=
{[al aIJ

algebra over the group G = N(Z;). Is V simple? Justify your
claim. Can this problem be generalized for any prime p?

ale Z7I} be a neutrosophic group linear

Find all neutrosophic set vector subspaces of V =

al 0 0 al al
: J(aLbLel),| | [,Z,IxZ, 1
bl 0) (bl cl bl

over the set S = Z;;1.

al,bl,cl Z”I}

Find all neutrosophic subset vector subspaces of V =

al al)(al O
s s (aL aIa aI)
0 al)lal al

set S = {0, 5, 10}.

Find all neutrosophic subset vector subspaces of V = {(al,
bl, cl) | al, bl, cI € Zyyl} defined over the set N(Zy).

aIeZZOI} defined over the

Can we say if V is a neutrosophic set vector space over the
set S and if V has a proper neutrosophic set vector
subspaces over the set S then V has a proper neutrosophic
subset vector subspace?

Is the claim if V a neutrosophic set vector space over the set
S has proper neutrosophic subset vector subspace then V
has proper neutrosophic set vector subspace? Justify your
answer.

Given V =
al a,I a,l
al bl cl a,b,c,c,d,a, € Z,/1
.| a0 al a/l|,(al,al,al,al)| =
0 dl 0 1<i<9

a,l a,I a,l

is a neutrosophic set vector space over the set S = N(Zys).
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(67)

(68)

(69)

(70)

(71)

(72)

a. Find all proper neutrosophic subset vector
subspaces of V.

b. Find all proper neutrosophic set vector subspaces of
V.

c. Does V have pseudo neutrosophic set linear
subalgebra?

d. Can V have pseudo neutrosophic set vector
subspaces?

Is Z51 a simple neutrosophic semigroup?

a. Construct a neutrosophic set vector space V over
7131 which is a simple neutrosophic set vector space
(over Z5]).

b. Construct a neutrosophic set vector space V over
N(Z;3) which is a simple neutrosophic set vector
space (over N(Z13)).

al al al al
Let V =

al al al al
semigroup vector space over the semigroup S = Zl. Is V
simple? Justify your claim.

anwI} be a neutrosophic

Let V in problem (68) be taken as a neutrosophic group
vector space over S = N(Zy9). Is V simple?

Is V defined in problems (68) and (69) neutrosophic
semigroup linear algebra over S = Z;yl and neutrosophic
group linear algebra over the group S = N(Z19) respectively?

Give some interesting properties about the collection of
linear transformation operators of a neutrosophic group
linear algebras V over G. Does the collection of such linear
operators of V form a neutrosophic group linear algebra
over G?

. al al
Given V =
al al

linear algebra over the group G = N(Z,;). Find the set of all

al e 2231} be a neutrosophic group
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(73)

(74)

(75)

(76)

(77

(78)

linear operators of V to V. Does the collection of linear
operators of V to V form a neutrosophic group linear
algebra over the group G = N(Z,3)?

Let V be a neutrosophic set vector space over the set S. Let
N(Homg (V, V)) denote the set of all linear operators of V
to V. What is the algebraic structure of NHomg (V, V)?

Suppose V is a neutrosophic semigroup linear algebra over
the semigroup S. Let N(Homs (V, V)) denote the collection
of all linear operators of V to V. Is N(Homg (V, V)) a
neutrosophic semigroup linear algebra over the semigroup
S?

Let V and W be neutrosophic semigroup vector spaces over
the semigroup S. Suppose N(Homg (V, W)) denote the
collection of all linear transformations of V to W, what is
the algebraic structure enjoyed by the collection N(Homg
(V, W)? Suppose IN(Homg(V, W)) denote the collection of
all invertible linear transformations of V to W what is the
algebraic structure of IN(Homg (V, W)?

If N(Homg (V, W) denote the collection of all linear
transformations of W to V can we find any relation between
the collections N(Homs (V, W)) and N(Homg(W, V))?

Does these exist any relation between I[(NHoms(V, W)) and
INHomg (W, V)?

Give some important properties about [NHomg(V, W) (ii)
INHomg(W, V) where V and W are neutrosophic group
linear algebras defined over the group G.

What is the difference between the algebraic structures of
N(Homg(V, W)) and (NHomg(V, W)? (Here V and W are
neutrosophic semigroup linear algebras defined over the
semigroup S and V and W are neutrosophic group linear
algebras defined over the group G respectively).

If V and W are finite dimensional neutrosophic set vector
spaces over the set S, what can be said about the dimension
of NHomg(V, W)? Is N(Homg(V, W) finite dimensional?
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(79)

(80)

(81)

(82)

(83)

(84)

(85)

Does there exist any relation between the dimensions of V
and W and that of the dimension of N(Homg (V, W))?

Does the structures V, W and N(Homg(V, W)) enjoy any
common algebraic properties? (Here V and W are
neutrosophic set vector spaces defined over the set S).

What happens if V and W are neutrosophic set linear
algebras defined over S?

Let V be a neutrosophic group linear algebra over the group
G of dimension say N(n < «). Suppose N(Hg(V, V)) denote
the set of all linear operators on V. CaN(NHomg(V, V))
have any form of dimension associated with it?

al al
LetV =

al al
space over the group G = Z;;I. Find N(Homg(V, V)).
Suppose V is realized as a neutrosophic semigroup linear
algebra what can be said about N(Homg(V, V))? Suppose V
is realized only as a neutrosophic set linear algebra over G,

what can we say about the algebraic structure of
N(Homg(V, V))?

ale Z”I} be a neutrosophic group vector

Obtain some interesting properties about V.= V; U V,
where V is a neutrosophic set bivector space.

Give an example of a neutrosophic set bivector space.

al bl
Let V= V1 Y V2 =
cd 0

al,bl,cl e ZI} v {(al, al, al,
al, al) | al € ZI} be a neutrosophic set bivector space over
the set S=3Z"1

Find neutrosophic set bivector subspaces of V.

b. Find pseudo neutrosophic set bilinear sub algebras
of V.

c. Does V have pseudo neutrosophic set bilinear
subalgebras?
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(86)

87

(88)

(89)

Obtain some interesting properties about neutrosophic biset
bivector spaces.

Prove a neutrosophic biset bivector space in general is not a
neutrosophic biset bilinear algebra.

Let V=V, U V; be a neutrosophic biset bivector space over
a

a
the biset S = Z»51 U ZI where V, = , Zosl x ZysI x ZosT}

fov)

IS

b

and V, = {(a, b, c, d, ), ( j|a, b,c,d, e, feZI}.

a c

d f

a. Find atleast 5 neutrosophic biset bivector subspaces
of V.

b. Find three distinct neutrosophic biset bivector
operators on V.

c. Find three distinct neutrosophic subset bilinear
bivector subspaces of V.

d. What is the algebraic structure enjoyed by
N(Homg(V, V)) = {set of all bilinear operators on
V}?

e. Can V have pseudo neutrosophic biset bilinear
subalgebras?

LetV=V1uV2

a a a

_ Iuab
a a allaeQ e d

a a a

a,b,c,d eQI}

be a neutrosophic group bivector space over the group Z =
G. Find the bidimension of V over Z. What is the dimension
of S(Homg(V, V)) a neutrosophic group vector space over
G or a neutrosophic group linear algebra over G or a
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(90)

C2))

92)

93)

94)

95)

(96)

7

(98)

neutrosophic group bivector space over G? Justify your
claim!

Let V = V; U V, be a neutrosophic semigroup bivector
space over a semigroup S. Prove in general V is not a
neutrosophic group bivector space even if S is a group!

a b ¢
LetV=V1uV2={£ fj

a,b,c,d,e,f e lel} U

d e
a a
b b . .
a,b,c,deZ,I; be a neutrosophic bigroup
c c
d d
bivector over the bigroup G = Z;, U Zy. Find a

neutrosophic bigroup bivector subspace W of V. Define a
neutrosophic linear operator T which preserves this
subspace; that is T (W) < W. What is the bidimension of
S(Homg (V, V))? Find the algebraic structure enjoyed by
S(Homg (V, V)).

Give some interesting properties of neutrosophic semigroup
bivector spaces.

What is the difference between neutrosophic bisemigroup
bivector space and neutrosophic semigroup bivector space?

Obtain some interesting features especially enjoyed by
neutrosophic group bilinear algebra.

Give an example of a neutrosophic bigroup bivector space
of bidimension (7, 5) over a bigroup G = G; U G,.

Can one claim the neutrosophic bidimension in general is
reduced if we consider neutrosophic bigroup bilinear
algebra instead of neutrosophic bigroup bivector spaces?

What is the advantage of neutrosophic set linear algebras
over a neutrosophic linear algebras?

What is the benefit of using neutrosophic biset bivector
spaces instead of a neutrosophic set bivector space?
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99)

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)

(111)

(112)

Give some nice applications of neutrosophic bisemigroup
bilinear algebras.

Which bispace is wuseful in neutrosophic modeling;
neutrosophic bigroup bivector space or neutrosophic group
bivector space?

What is the advantage of using neutrosophic bigroup
bivector space instead of using a neutrosophic group
bivector space?

Is their any benefit in using a neutrosophic set bivector
space instead of a neutrosophic set vector space?

What is the advantage of studying neutrosophic bigroup
bivector space in the place of neutrosophic bigroup bilinear
algebra?

Does there exist any generalized neutrosophic bistructures
other than the neutrosophic set bivector spaces?

Give an example of a (11, 19) bidimensional neutrosophic
bigroup bivector space.

Can one say a neutrosophic bigroup bivector space of
bidimension (p;, p2) (p1 and p,, two distinct primes) is
always bisimple?

Can a neutrosophic group bivector space of bidimension say
(12, 15) be simple? Justify your claim!

Give an example of a neutrosophic group bilinear algebra of
finite bidimension, which is simple.

Give an example of a neutrosophic group bilinear algebra of
infinite bidimension, which is simple.

Can one say a neutrosophic group bilinear algebra of
bidimension (1, 1) is always simple? Justify your claim.
Give an example of a neutrosophic group bilinear algebra of
bidimension (1, 1).

What is the difference between a simple neutrosophic group
bivector space and a simple neutrosophic group bilinear
algebra?
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(113)

(114)

(115)

(116)

(117)

(118)

(119)

Suppose V = V; U V, is a neutrosophic group bivector
space defined over the group G = {(0, 1, 2, ..., p — 1) such
that p is a prime}. Is V a simple neutrosophic bivector space
over G?

Find a bigenerating subset of the neutrosophic group

. a b ¢
bivector space V =
d e f

a,b,c,d,e,f e lel} U

a a a a
{( j |ae lel} over the group G = Z,1.
a a a a

a a a
Let V = V1 U Vz = {[ ]
a a a

ae ZHI} U

aeZ,l; be a neutrosophic bigroup bilinear

0
0 0

algebra over the bigroup G = G, U G, = Z;; U Z3. Find a
bigenerating subset of V. If V =V, U V, is a neutrosophic
bigroup bilinear algebra over the bigroup G = G; U G, =
Zil U Zy51, what is the bidimension of the bigenerating
subset of V? If V =V, U V, is a neutrosophic bigroup
bilinear algebra over the bigroup G = G; U G, = N(Z;) U
N(Z13), what is the bigenerating subset of V?

When is V simple?

Give an example of a (7, 14) bidimension neutrosophic
semigroup bivector space.

Give an example of a neutrosophic semigroup bilinear
algebra of bidimension (7, 14).

Compare the algebraic structure in problems (116) and
(117).

Give by an real model that neutrosophic set vector space is
useful than a neutrosophic vector space.
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(120) Obtain some interesting properties about neutrosophic set
fuzzy bilinear algebras.

(121) Let V=V, UV,

a b
a b c
= ¢ dilla,b,c,d,e,f eQl} U
d e f
e f
a a
b b .
(a,a,a,a,a), a,beZ’l
c c
d d

be a neutrosophic set bivector space over the set S = Z " I.

a b ¢
LetW=W1uW2={[ fj

a,b,c,d,e,er*I} U
d e

{(a,a,a,aa)|aeZ I} €V, UV, be aneutrosophic set
bivector subspace of V over the set S. Find neutrosophic
linear bioperator on V which preserves W. Find one
neutrosophic linear bioperator of V which does not preserve
W. Find V,, and W..

(122) Give some interesting properties about neutrosophic
semigroup fuzzy bivector spaces.

(123) Prove the notion of neutrosophic semigroup fuzzy bilinear
algebra and neutrosophic semigroup fuzzy bivector space
are fuzzy equivalent.

(124) LetV=V, UV,

a b
a a a
a b
=<la a a|], b ,(a,b,a,b,a,b) a,beZ'1uU
a
b b b
a b
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(125)

(126)

(127)

a a a a
a a a

0O bbb )
0 b b, a,beZ’l

0 0 a a
0 0 a

0 0 0 b

be a neutrosophic semigroup bivector space over the
semigroup S =Z "1 U {0}. Define n : V — N([0, 1]) so that

A (V1 UV, )munz is a neutrosophic semigroup fuzzy
bivector space. Define a n so that W, does not exist for any
proper neutrosophic semigroup bivector subspace W of V
where 1 is the restriction of 1 to W.

LCtV:V1UV2

a a
=1la al|(aaaaa)lacZ,l

a a

a a a
Usla a al, aeZ,l

a a a

O v o

be a neutrosophic bigroup bivector space over the bigroup
G=ZysluZyl Findan:V —> N[Z, 1] so that 1 is a
substructure preserving neutrosophic bigroup fuzzy bivector
space.

Obtain some interesting properties about neutrosophic
bigroup fuzzy bivector spaces over a bigroup G = G; U Gy.

LetV=V,uV,=

a a a
a a al|laeZ,l; v

a a a
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a a a a a a
a a a a a a

a EZWI}

be a neutrosophic bigroup bilinear algebra over the bigroup
G= G1 U G2 = 2231 U ZlgI.

a.

b.

Find a bigenerator of V.

If G is replaced by Z,; U Zjy, what is the
bigenerator of V?

Define n:V — N([0, 1]) so that V, = (V1 qu)wn
is a neutrosophic bigroup fuzzy bilinear algebra.

Can V = V| U V; have any proper neutrosophic
bigroup bilinear subalgebras?
Is V simple?

Define two neutrosophic bigroup fuzzy bilinear
algebras say 1 and 0 so that |} and 0 do not agree on
any element on V.

(128) Let V and W be any two distinct neutrosophic bisemigroup
bivector spaces over the same bisemigroup S = S; U S,.
Find N(Homg (V, W)).

(129) Obtain some interesting properties about the neutrosophic
bigroup bilinear algebras.

(130) Let

a b
a a a a
a b
V=<b b b b, a,b,ceZl; U
a b
c ¢c ¢ ¢
a b

a a a a a

(x,y),/b b b b b|[aa,a,a]xyabceZl

c ¢ ¢ ¢ ¢
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(131)

(132)

(133)

(134)

(135)

a b c)la 0 O
0 a bl,Ja b Ofla,bceZ'l} U
0 0 c/|la b ¢

a
(5]

v {
b ¢ d
f g h ,(a,b,c,d,e,f) a,b,c,d,e,f,g, h,i, j,k,1eZI
j k1

i

be any two neutrosophic set bivector spaces over the set S =
Z * 1. Find N(Homg(V, W)). What will happen if S is
replaced by S; = {0, 1, 2, 3, 4}.

a. Will this affect the bigenerating subset of V and W?

b. What is bidimension of V and W are neutrosophic
set bivector spaces over the set S?

c. What is the bidimension of V and W as
neutrosophic set bivector spaces over the set S;?

Can one prove bidimension depends on the set over which
the neutrosophic set bivector space is defined?

Prove or disprove the bigenerator of a neutrosophic
semigroup bilinear algebra V is dependent on the semigroup
over which V is defined.

Obtain some interesting properties about bidimension and
bigenerators of the neutrosophic set bivector spaces.

Suppose V = V| U V, is such that V can be treated as a
neutrosophic set bivector space as well as neutrosophic set
bilinear algebra over the same set S. Will they have
different sets of bigenerators when V = V| U V, is just a
neutrosophic set bivector space and another set of
bigenerator when the same V is a neutrosophic set bilinear
algebra over the same S.? Justify your claim.

Let V =V, U V;, be any neutrosophic bigroup bivector
space over the bigroup G.
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(136)

(137)

(138)

(139)

(140)

a. Is it possible for V to have more than one
bigenerating bisubset of V?

b. Will the bidimension of V be the same if V has
more than one bigenerating bisubset?

LetV=V1uV2=

2
(W

be a neutrosophic bigroup bivector space over the bigroup

G=27Z]1uv Zs1.
a. What is the bidimension of V?

a,b,c,d,e,fe ZZI} U

a,b,c,de Z3I}

b. How many bigenerating bisubset V has?

Characterize those neutrosophic bigroup bivector spaces
which have a unique generating subbiset!

Give an example of a neutrosophic bigroup bivector space
which has more than one bigenerating bisubset.

LetV=V1uV2=

a a a a a a
b b bjabeceZ,luila a alaeZyl
c c ¢ a a a

be a neutrosophic bigroup bilinear algebra over the bigroup
G= 2,1 U Zysl.

a. Find a bigenerating bisubset of V.
b. How many sets of bigenerating bisubset of V exist?
c. What is the bidimension of V?

LetV=V,0UV,=
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X yl|x y z
(X,y,2), s , X,y,Z,weZl; U
z w||0 y O

X
y
Z

w

abcd

defh 00 h i
000Tf

o]
abcg b 0Oef g .
( j,(a,b,c,d), c a,b,c,d,e,f,g,h,ieZI
d
_e_

be a neutrosophic group bivector space over the group G =
Z1.

What is the bidimension of V?
b. Find a bigenerator of V?

c. Find all proper neutrosophic group bivector
subspaces of V. Is that collection finite or infinite?

d. Define n : V — N([0, 1]) which can preserve all
proper neutrosophic group bivector subspaces; V,, is
the neutrosophic group fuzzy bivector space.

e. Findan:V — N([0, 1]) which does not yield even
a single W, where W is a proper neutrosophic

group bivector subspace of V; 1 the extension of n
on V.

f. Can V have pseudo neutrosophic semigroup
bivector subspaces?

g. If group ZI is replaced by pZI, p a prime will V =
V. w V, have different bidimension and
bigenerator? Justify your answer.

(141) Give an example of neutrosophic bigroup bilinear algebra
which is simple but of infinite bidimension.
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(142)

(143)

(144)

Give an example of a neutrosophic group bivector space
which is simple and of finite bidimension (n, m), n and m
are not prime.

Suppose V = V; U V, is a neutrosophic bigroup bilinear
algebra over a bigroup G = G; U G,, where V is of finite
bidimension, can one conclude V has only a finite number
of neutrosophic bigroup bilinear subalgebras? Justify your
claim.

LetV=V,0UV,=

a 0 0 0

a a a
a a 0 0

0 a allaeZ]l; v aeZ,l
a a a 0

0 0 a
a a a a

be a neutrosophic bigroup bilinear algebra over the bigroup
G= G] U G2 = Z5I U Zol.

a. Define n : V — N[0, 1)] so that V, is a
neutrosophic bigroup fuzzy bilinear algebra.

b. Can V have neutrosophic bigroup bilinear
subalgebras?

c. Can V have pseudo neutrosophic subbisemigroup
bilinear subalgebras?

Hence or otherwise if V = V| U V, is a neutrosophic
bigroup bilinear algebra over a bigroup G=Z,] U Z,I (p a
prime and n not a prime) of the form;

a 0 00
a a a
a a 0 0
V=40 a aflaeZl;u aeZl
P a a a0
0 0 a
a a a a

answer the above three questions.

What will happen if
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(145)

(146)

(147)

(148)

V:V1UV2

a b ¢
=4/0 d ella,bedefeZl; U
0 0 f]
a 0 0 0
b c 00 .
a,b,c,d,e,f,g,h,ieZ I
d e £ 0
g h i |

is a neutrosophic bigroup bilinear algebra over the bigroup;
a. ifG=ZJIuZ]I?
b. IfoverG=27Z,U Z,?

Give an example of a neutrosophic bigroup bilinear algebra
over a bigroup which has entries from N(C).

Let V =V, U V, be a neutrosophic biset bilinear algebra
over the biset S = S; U S,. Let N(Mg (V, V)) denote the set
of all neutrosophic biset linear operators from V to V.

What is the algebraic structure of N(Mg (V, V))?

Does the bidimension of a neutrosophic bisemigroup
bilinear algebra depend on the bisemigroup over which it is
defined?

Let V=V, uUV,= {lel x 212l x Z151 % lel} |\ { 7151 x

a a
lel X lel X lel X leI X lel, |: :| anIZI} be a
a a

neutrosophic set bivector space over S = Zi,.

What is the bidimension of V? Find a bigenerating bisubset
of V. What is the bidimension of V if S = Z,1?

Will the bigenerating bisubset be different?

b. What is the bidimension of V if S if replaced by S,
=10, 61}?

271



(149) Let V=V, U V,=7s51[x] U Z,1][x] be a neutrosophic
bigroup bilinear algebra over the bigroup G =Zs U Zo.

a. What is the bidimension of V over G?

b. If G is replaced by G, = Zs; U Z,I; what is the
bidimension of V?

c. If G is replaced by G, = Zs U Z,I; what is the
bidimension?

d. If G is replaced by H = ZsI U Z,; what is the
bidimension of V?

(150) LetV=V,uUV,=

o

anI} U {ZI x Z1 x ZI}

and
a b
W=4|c d]}|a,b,c,d,e,feZl; U
e f
a a a a
b b b bjla,bceZl
c ¢c c ¢

be neutrosophic group linear algebras over the group G =
ZI.

a. Find bidimensions of V and W.
b. What is the bidimension of N(My; (V, W))?

c. If G is replaced by pZI, p a prime find the
bidimensions of V and W.

d. What is the bidimension of N(M,z; (V, W))?
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c.

Find Vn a neutrosophic group fuzzy bilinear
algebra.

(151) LetV=V,UV,=

(152)

(153)

lad

a a a

a,b,c,d,e,fe Z3OI} U

a a allaeZ,]l

a a a

be a neutrosophic group bilinear algebra over the group G =

Zl.

a.

b.

C.

Can V have pseudo neutrosophic semigroup
bilinear algebras over G = Z3(I?

What is the bidimension of V over G?

What is the bidimension of N(Mg (V, V))?

Let V=V, UV, ={Zgx Zgx Zgx Zgl} U {Zgl x Zg1 x Zg1
x Zgl x Zg1 x Zg 1} be a neutrosophic group bilinear algebra
over the group G = {0, 4} addition under modulo 8.

d.

Find the bidimension of V over G = {0, 4}.
What is the bigenerating set of V over G = {0, 4}?

If G is replaced by H = {0, 2, 4, 6}, what is the
bidimension of V and the bigenerating set of V over
H?

What is the bidimension of N(My(V, V))?

Let V =V, U V,; be a neutrosophic group bilinear algebra
over the group G. Suppose H;, H,, ..., H, be n distinct
subgroups of G. Suppose V = V; U V, is also a
neutrosophic group bilinear algebra over each of the
subgroups H, Hy, ..., H,; compare them.
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(154)

(155)

(156)

(157)

(158)

et

be a neutrosophic semigroup bilinear algebra over the
semigroup S = Zs.

a,b,c,deZlgl} U{(aaaa)|aeZ;l}

a. Define n =mn; U ny: V= N([0, 1]) so that V,; is a
neutrosophic semigroup fuzzy bilinear algebra.

b. Is every bimap n: V — N([0, 1]) is such that, Vn is
a neutrosophic semigroup fuzzy bilinear algebra?

LetV=V, UV, ={ZIXxZxZIxZI x Z} U

lae

be a neutrosophic group bilinear algebra over the group G =
Z.

a,b,ceZl,d,e,f,e Z}

Find n : V = N([0, 1]) so that Vn is a neutrosophic group
fuzzy bilinear algebra.

Give some interesting properties about neutrosophic group
fuzzy bivector spaces.

Let V =V, U V, be any neutrosophic quasi semigroup
bilinear algebra over the semigroup S.

Find some interesting properties about this algebraic
structure.

Let V=V, UV, = Z),I[x] U Z'I[x] be a neutrosophic
bisemigroup bivector space defined over the bisemigroup S
= lel uZ N I.

a. Find a neutrosophic bisemigroup bivector subspace
of V.

b. Find a bigenerating bisubset of V.
c. What is the bidimension of V?
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(159) LetV=V,UV,=

[

a,b,c,de N(ZIZI)} U IN(Z )T [X]}

be a neutrosophic group bivector space over the group G =

le.

Find pseudo group bivector subspace of V.
Find the bidimension of V.

If G is replaced by G, = Z,I can V have pseudo
group bivector subspaces?

Define n : V — N([0, 1]) such that Vn is a
neutrosophic group fuzzy bivector space.

Can V have pseudo neutrosophic group bilinear
subalgebras?

(160) Let V=V, U V, = {(Z1)"?} U {(Zs)*}be a neutrosophic
bigroup bivector space over the bigroup G =Z; U Zg.

(161)

a. What is bidimension of V over G?
b. If G is replaced by G, = Z;1 U Z¢l what is the
bidimension of V over G?
c. Does V have a pseudo neutrosophic bisemigroup
bivector subspace W of V over G?
LetV=V,0UV,=

[y
[

a,b,c,de SZI} U

a,b,c,de SZI}

be a neutrosophic bigroup bivector space over the bigroup
G=3Z1uU 571
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If
W:W1UW2:

o tleesa) o 5 ol

c V| U V, is a neutrosophic bigroup bivector subspace of
V, find the bidimension of W over G.
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In this book, we introduce
three types of neutrosophic
linear algebras: neutrosophic
set linear algebra, neutrosophic
semigroup linear algebra, and
neutrosophic group linear
algebra. These are generalization

of neutrosophic linear algebra. These

new algebraic structures can pave way
to applications in several fields like
mathematical modelling.

RN G 2




