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Abstract

In this paper, the neutrosophic refined relation (NRR) defined on the
neutrosophic refined sets( multisets) [13] is introduced. Various properties
like reflexivity, symmetry and transitivity are studied.
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1 Introduction

Recently, several theories have been proposed to deal with uncertainty, impre-
cision and vagueness. Theory of probability, fuzzy set theory[18], intuitionistic
fuzzy sets[17], rough set theory[49] etc. are consistently being utilized as efficient
tools for dealing with diverse types of uncertainties and imprecision embedded
in a system. But, all these above theories failed to deal with indeterminate
and inconsistent information which exist in beliefs system. In 1995, inspired
from the sport games (wining/tie/defeating), from votes (yes/ NA/ no), from
decision making (making a decision/ hesitating/not making) etc. and guided by

the fact that the law of excluded middle did not work any longer in the mod-
ern logics, F. Smarandache[10] developed a new concept called neutrosophic
set (NS) which generalizes fuzzy sets and intuitionistic fuzzy sets. NS can be
described by membership degree, indeterminate degree and non-membership
degree. This theory and their hybrid structures have proven useful in many
different fields such as control theory[32], databases[20, 21], medical diagnosis
problem[1], decision making problem [24, 2], physics[8], topology [9], etc. The
works on neutrosophic set, in theories and applications, have been progressing
rapidly (e.g. [3, 6, 35, 41, 48, 19]).
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Combining neutrosophic set models with other mathematical models has at-
tracted the attention of many researchers. Maji et al.[22] presented the concept
of neutrosophic soft sets which is based on a combination of the neutrosophic set
and soft set models. Broumi and Smarandache[33, 36] introduced the concept
of the intuitionistic neutrosophic soft set by combining the intuitionistic neutro-
sophic sets and soft sets. Broumi et al. presented the concept of rough neutro-
sophic set[39] which is based on a combination of neutrosophic sets and rough set
models. The works on neutrosophic sets combining with soft sets, in theories and
applications, have been progressing rapidly (e.g. [34, 37, 38, 14, 15, 40, 16, 42]).

The notion of multisets was formulated first in [31] by Yager as generaliza-
tion of the concept of set theory and then the multiset was developed in [7] by
Calude et al. Several authors from time to time made a number of generaliza-
tions of the multiset theory. For example, Sebastian and Ramakrishnan[46, 45]
introduced a new notion called multi fuzzy sets, which is a generalization of the
multiset. Since then, Several researchers [30, 44, 4, 5] discussed more properties
on multi fuzzy set. And they [47, 23] made an extension of the concept of Fuzzy
multisets to an intuitionstic fuzzy set, which was called intuitionstic fuzzy mul-
tisets (IFMS). Since then in the study on IFMS , a lot of excellent results have
been achieved by researchers [43, 25, 26, 27, 28, 29]. An element of a multi fuzzy
set can occur more than once with possibly the same or different membership
values, whereas an element of intuitionistic fuzzy multiset allows the repeated
occurrences of membership and non–membership values. The concepts of FMS
and IFMS fail to deal with indeterminacy. In 2013 Smarandache [11] extended
the classical neutrosophic logic to n-valued refined neutrosophic logic, by refin-
ing each neutrosophic component T, I, F into respectively T1, T2, ..., Tm, and
I1, I2, ..., Ip, and F1, F2, ..., Fr. Recently, Deli et al.[13] used the concept of
neutrosophic refined sets and studied some of their basic properties. The con-
cept of neutrosophic refined set (NRS) is a generalization of fuzzy multisets and
intuitionistic fuzzy multisets.

The neutrosophic refined relations are the neutrosophic refined subsets in
a cartesian product of the universe. The purpose of this paper is an attempt
to extend the neutrosophic relations to neutrosophic refined relations (NRR).
This paper is arranged in the following manner. In section 2, we present some
definitions of neutrosophic set and neutrosophic refined set theory which help us
in the later section. In section 3, we study the concept of neutrosophic refined
relations and their operations. Finally, we conclude the paper.
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2 Preliminary

In this section, we mainly recall some notions related to neutrosophic set[10],single
valued neutrosophic set (SVNS)[12] and neutrosophic refined set relevant to the
present work. See especially[20, 21, 1, 3, 6, 35, 24, 2, 9, 8, 12] for further details
and background.

Smarandache[11] refine T , I, F to T1, T2,..., Tm and I1, I2,..., Ip and F1,
F2,..., Fr where all Tm , Ip and Fr can be subset of [0,1]. In the following
sections ,we considered only the case when T ,I and F are split into the same
number of subcomponents 1,2,...p, and T j

A IjA,F j
A are single valued neutrosophic

number.

Definition 2.1 [10] Let U be a space of points (objects), with a generic element
in U denoted by u. A neutrosophic set (N-set) A in U is characterized by a
truth-membership function TA, a indeterminacy-membership function IA and a
falsity-membership function FA. TA(x); IA(x) and FA(x) are real standard or
nonstandard subsets of ]−0, 1+[. It can be written as

A = {< u, (TA(x), IA(x), FA(x)) >: x ∈ E, TA(x), IA(x), FA(x) ∈]−0, 1+[}.

There is no restriction on the sum of TA(x); IA(x) and FA(x), so −0 ≤
supTA(x) + supIA(x) + supFA(x) ≤ 3+.

For application in real scientific and engineering areas,Wang et al.[12] proposed
the concept of an SVNS, which is an instance of neutrosophic set. In the fol-
lowing, we introduce the definition of SVNS.

Definition 2.2 [12] Let U be a space of points (objects), with a generic element
in U denoted by u. An SVNS A inX is characterized by a truth-membership func-
tion TA(x), a indeterminacy-membership function IA(x) and a falsity-membership
function FA(x), where TA(x), IA(x), and FA(x) belongs to [0,1] for each point
u in U. Then, an SVNS A can be expressed as

A = {< u, (TA(x), IA(x), FA(x)) >: x ∈ E, TA(x), IA(x), FA(x) ∈ [0, 1]}.

There is no restriction on the sum of TA(x); IA(x) and FA(x), so 0 ≤
supTA(x) + supIA(x) + supFA(x) ≤ 3.

Definition 2.3 [13] Let E be a universe. A neutrosophic refined set (NRS) A
on E can be defined as follows:

A = {< x, (T 1
A(x), T 2

A(x), ..., TP
A (x)), (I1A(x), I2A(x), ..., IPA (x)),

(F 1
A(x), F 2

A(x), ..., FP
A (x)) >: x ∈ E}

where,

T 1
A(x), T 2

A(x), ..., TP
A (x) : E → [0, 1],
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I1A(x), I2A(x), ..., IPA (x) : E → [0, 1],

and
F 1
A(x), F 2

A(x), ..., FP
A (x) : E → [0, 1]

such that
0 ≤ supT i

A(x) + supIiA(x) + supF i
A(x) ≤ 3

(i = 1, 2, ..., P ) and

T 1
A(x) ≤ T 2

A(x) ≤ ... ≤ TP
A (x)

for any x ∈ E.
(T 1

A(x), T 2
A(x), ..., TP

A (x)), (I1A(x), I2A(x), ..., IPA (x)) and (F 1
A(x), F 2

A(x), ..., FP
A (x))

is the truth-membership sequence, indeterminacy-membership sequence and falsity-
membership sequence of the element x, respectively. Also, P is called the di-
mension(cardinality) of NRS A. We arrange the truth-membership sequence in
decreasing order but the corresponding indeterminacy-membership and falsity-
membership sequence may not be in decreasing or increasing order.

The set of all Neutrosophic refined sets on E is denoted by NRS(E).

Definition 2.4 [13] Let A,B ∈ NRS(E). Then,

1. A is said to be NR subset of B is denoted by A⊆̃B if T i
A(x) ≤ T i

B(x),
IiA(x) ≥ IiB(x) ,F i

A(x) ≥ F i
B(x), ∀x ∈ E.

2. A is said to be neutrosophic equal of B is denoted by A = B if T i
A(x) =

T i
B(x), IiA(x) = IiB(x) ,F i

A(x) = F i
B(x), ∀x ∈ E.

3. the complement of A denoted by Ac̃ and is defined by

Ac̃ = {< x, (F 1
A(x), F 2

A(x), ..., FP
A (x)), (I1A(x), I2A(x), ..., IPA (x)),

(T 1
A(x), T 2

A(x), ..., TP
A (x)) >: x ∈ E}

4. If T i
A(x) = 0 and IiA(x) = F i

A(x) = 1 for all x ∈ E and i = 1, 2, ..., P then
A is called null ns-set and denoted by Φ̃.

5. If T i
A(x) = 1 and IiA(x) = F i

A(x) = 0 for all x ∈ E and i = 1, 2, ..., P ,
then A is called universal ns-set and denoted by Ẽ.

Definition 2.5 [13] Let A,B ∈ NRS(E). Then,

1. the union of A and B is denoted by A∪̃B = C1 and is defined by

C = {< x, (T 1
C(x), T 2

C(x), ..., TP
C (x)), (I1C(x), I2C(x), ..., IPC (x)),

(F 1
C(x), F 2

C(x), ..., FP
C (x)) >: x ∈ E}

where T i
C = T i

A(x) ∨ T i
B(x), IiC = IiA(x) ∧ IiB(x) ,F i

C = F i
A(x) ∧ F i

B(x),
∀x ∈ E and i = 1, 2, ..., P .

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

231



2. the intersection of A and B is denoted by A∩̃B = D and is defined by

D = {< x, (T 1
D(x), T 2

D(x), ..., TP
D (x)), (I1D(x), I2D(x), ..., IPD(x)),

(F 1
D(x), F 2

D(x), ..., FP
D (x)) >: x ∈ E}

where T i
D = T i

A(x) ∧ T i
B(x), IiD = IiA(x) ∨ IiB(x) ,F i

D = F i
A(x) ∨ F i

B(x),
∀x ∈ E and i = 1, 2, ..., P .

3. the addition of A and B is denoted by A+̃B = E1 and is defined by

E1 = {< x, (T 1
E1

(x), T 2
E1

(x), ..., TP
E1

(x)), (I1E1
(x), I2E1

(x), ..., IPE1
(x)),

(F 1
E1

(x), F 2
E1

(x), ..., FP
E1

(x)) >: x ∈ E}

where T i
E1

= T i
A(x) + T i

B(x) − T i
A(x).T i

B(x), IiE1
= IiA(x).IiB(x) ,F i

E1
=

F i
A(x).F i

B(x), ∀x ∈ E and i = 1, 2, ..., P .

4. the multiplication of A and B is denoted by A×̃B = E2 and is defined by

E2 = {< x, (T 1
E2

(x), T 2
E2

(x), ..., TP
E2

(x)), (I1E2
(x), I2E2

(x), ..., IPE2
(x)),

(F 1
E2

(x), F 2
E2

(x), ..., FP
E2

(x)) >: x ∈ E}

where T i
E2

= T i
A(x).T i

B(x), IiE2
= IiA(x) + IiB(x) − IiA(x).IiB(x) ,F i

E2
=

F i
A(x) + F i

B(x)− F i
A(x).F i

B(x), ∀x ∈ E and i = 1, 2, ..., P .

Here ∨, ∧, +, ., − denotes maximum, minimum, addition, multiplication,
subtraction of real numbers respectively.

3 Relations on Neutrosophic Refined Sets

In this section, after given the Cartesian product of two neutrosophic refined sets
(NRS), we define a relations on neutrosophic refined sets and study their desired
properties. The relation extend the concept of intuitionistic multirelation [27] to
single valued neutrosophic refined relation. Some of it is quoted from [13, 27, 10].

Definition 3.1 Let ∅ 6= A,B ∈ NRS(E) and j ∈ {1, 2, ..., n}. Then, cartesian
product of A and B is a neutrosophic refined set in E × E, denoted by A × B,
defined as

A×B = {< (x, y), T j
A×B(x, y)), IjA×B(x, y), F j

A×B(x, y) >: (x, y) ∈ E × E}

where
T j
A×B(x, y), IjA×B(x, y), F j

A×B(x, y) : E → [0, 1]

,

T j
A×B(x, y) = min

{
T j
A(x), T j

B(x)
}
,

IjA×B(x, y) = max
{
IjA(x), IjB(x)

}
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and
F j
A×B(x, y) = max

{
F j
A(x), F j

B(x)
}

for all x, y ∈ E.

Remark 3.2 A Cartesian product on A is a neutrosophic refined set in E×E,
denoted by A×A, defined as

A×A = {< (x, y), T j
A×A(x, y)), IjA×A(x, y), F j

A×A(x, y) >: (x, y) ∈ E × E}

where j = 1, 2, ..., n and T j
A×A, I

j
A×A, F

j
A×A : E × E → [0, 1].

Example 3.3 Let E = {x1, x2} be a universal set and A and B be two Nm-sets
over E as;

A = {< x1, {0.3, 0.5, 0.6}, {0.2, 0.3, 0.4}, {0.4, 0.5, 0.9} >,
< x2, {0.4, 0.5, 0.7}, {0.4, 0.5, 0.1}, {0.6, 0.2, 0.7} >}

and

B = {< x1, {0.4, 0.5, 0.6}, {0.2, 0.4, 0.4}, {0.3, 0.8, 0.4} >,
< x2, {0.6, 0.7, 0.8}, {0.3, 0.5, 0.7}, {0.1, 0.7, 0.6} >}

Then, the cartesian product of A and B is obtained as follows

A×B = {< (x1, x1), {0.3, 0.5, 0.6}, {0.2, 0.4, 0.4}, {0.3, 0.8, 0.9} >,
< (x1, x2), {0.3, 0.7, 0.8}, {0.2, 0.5, 0.7}, {0.1, 0.7, 0.9} >,
< (x2, x1), {0.4, 0.5, 0.6}, {0.2, 0.5, 0.4}, {0.3, 0.8, 0.7} >,
< (x2, x2), {0.4, 0.7, 0.8}, {0.3, 0.5, 0.7}, {0.1, 0.7, 0.7} >}

Definition 3.4 Let ∅ 6= A,B ∈ NRS(E) and j ∈ {1, 2, ..., n}. Then, a neutro-
sophic refined relation from A to B is a neutrosophic refined subset of A × B.
In other words, a neutrosophic refined relation from A to B is of the form
(R,C), (C ⊆ E × E) where R(x, y) ⊆ A×B ∀(x, y) ∈ C.

Example 3.5 Let us consider the Example 3.3. Then, we define a neutrosophic
refined relation R and S, from A to B, as follows

R = {< (x1, x1), {0.2, 0.6, 0.9}, {0.2, 0.4, 0.5}, {0.3, 0.8, 0.9} >,
< (x1, x2), {0.3, 0.9, 0.8}, {0.2, 0.8, 0.7}, {0.1, 0.8, 0.9} >,
< (x2, x1), {0.1, 0.9, 0.6}, {0.2, 0.5, 0.4}, {0.2, 0.8, 0.7} >}

and

S = {< (x1, x1), {0.1, 0.7, 0.9}, {0.2, 0.5, 0.7}, {0.1, 0.9, 0.9} >,
< (x1, x2), {0.3, 0.9, 0.8}, {0.2, 0.8, 0.8}, {0.1, 0.8, 0.9} >,
< (x2, x1), {0.1, 0.9, 0.7}, {0.2, 0.9, 0.4}, {0.2, 0.8, 0.9} >}
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Definition 3.6 Let A,B ∈ NRS(E) and, R and S be two neutrosophic refined
relation from A to B. Then, the operations R∪̃S, R∩̃S, R+̃S and R×̃S are
defined as follows;

1.

R∪̃S = {< (x, y), (T 1
R∪̃S(x, y), T 2

R∪̃S(x, y), ..., Tn
R∪̃S(x, y)),

(I1
R∪̃S(x, y), I2

R∪̃S(x, y), ..., In
R∪̃S(x, y)),

(F 1
R∪̃S(x, y), F 2

R∪̃S(x, y), ..., Fn
R∪̃S(x, y)) >: x, y ∈ E}

where

T i
R∪̃S(x, y) = T i

R(x) ∨ T i
S(y),

IiR∪̃S(x, y) = IiR(x) ∧ IiS(y),

F i
R∪̃S(x, y) = F i

R(x) ∧ F i
S(y)

∀x, y ∈ E and i = 1, 2, ..., n.

2.
R∩̃S = {< (x, y), (T 1

R∩̃S(x, y), T 2
R∩̃S(x, y), ..., Tn

R∩̃S(x, y)),
(I1

R∩̃S(x, y), I2
R∩̃S(x, y), ..., In

R∩̃S(x, y)),
(F 1

R∩̃S(x, y), F 2
R∩̃S(x, y), ..., Fn

R∩̃S(x, y)) >: x, y ∈ E}

where

T i
R∩̃S(x, y) = T i

R(x) ∧ T i
S(y),

IiR∩̃S(x, y) = IiR(x) ∨ IiS(y),

F i
R∩̃S(x, y) = F i

R(x) ∨ F i
S(y)

∀x, y ∈ E and i = 1, 2, ..., n.

3.

R+̃S = {< (x, y), (T 1
R+̃S

(x, y), T 2
R+̃S

(x, y), ..., Tn
R+̃S

(x, y)),

(I1
R+̃S

(x, y), I2
R+̃S

(x, y), ..., In
R+̃S

(x, y)),

(F 1
R+̃S

(x, y), F 2
R+̃S

(x, y), ..., Fn
R+̃S

(x, y)) >: x, y ∈ E}

where

T i
R+̃S

(x, y) = T i
R(x) + T i

S(y)− T i
R(x).T i

S(y),

Ii
R+̃S

(x, y) = IiR(x).IiS(y),

F i
R+̃S

(x, y) = F i
R(x).F i

S(y)

∀x, y ∈ E and i = 1, 2, ..., n.
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4.

R×̃S = {< (x, y), (T 1
R×̃S(x, y), T 2

R×̃S(x, y), ..., Tn
R×̃S(x, y)),

(I1
R×̃S(x, y), I2

R×̃S(x, y), ..., In
R×̃S(x, y)),

(F 1
R×̃S(x, y), F 2

R×̃S(x, y), ..., Fn
R×̃S(x, y)) >: x, y ∈ E}

where

T i
R×̃S(x, y) = T i

R(x).T i
S(y),

IiR×̃S(x, y) = IiR(x) + IiS(y)− IiR(x).IiS(y),

F i
R×̃S(x, y) = F i

R(x) + F i
S(y)− F i

R(x).F i
S(y)

∀x, y ∈ E and i = 1, 2, ..., n.

Here ∨, ∧, +, ., − denotes maximum, minimum, addition, multiplication,
subtraction of real numbers respectively.

Example 3.7 Let us consider the two neutrosophic refined relation R and S,
from A to B, as follows

R = {< (x1, x1), {0.2, 0.3, 0.4}, {0.4, 0.5, 0.6}, {0.3, 0.8, 0.9} >,
< (x1, x2), {0.3, 0.4, 0.6}, {0.2, 0.3, 0.4}, {0.5, 0.6, 0.7} >,
< (x2, x1), {0.1, 0.6, 0.3}, {0.2, 0.5, 0.6}, {0.2, 0.3, 0.4} >}

and

S = {< (x1, x1), {0.1, 0.4, 0.5}, {0.3, 0.5, 0.7}, {0.2, 0.7, 0.1} >,
< (x1, x2), {0.2, 0.3, 0.4}, {0.5, 0.6, 0.7}, {0.2, 0.3, 0.6} >,
< (x2, x1), {0.4, 0.5, 0.6}, {0.2, 0.3, 0.4}, {0.1, 0.2, 0.3} >}

Then,

R∪̃S = {< (x1, x1), {0.2, 0.3, 0.4}, {0.4, 0.5, 0.6}, {0.3, 0.7, 0.1} >,
< (x1, x2), {0.3, 0.3, 0.4}, {0.5, 0.3, 0.4}, {0.5, 0.3, 0.6} >,
< (x2, x1), {0.4, 0.5, 0.3}, {0.2, 0.3, 0.4}, {0.2, 0.2, 0.3} >}

and

R∩̃S = {< (x1, x1), {0.1, 0.4, 0.5}, {0.3, 0.5, 0.7}, {0.2, 0.8, 0.9} >,
< (x1, x2), {0.2, 0.4, 0.6}, {0.2, 0.6, 0.7}, {0.2, 0.6, 0.6} >,
< (x2, x1), {0.1, 0.6, 0.6}, {0.2, 0.5, 0.6}, {0.1, 0.3, 0.4} >}

Assume that ∅ 6= A,B,C ∈ NRS(E). Two neutrosophic refined relations
under a suitable composition, could too yield a new neutrosophic refined relation
with a useful significance. Composition of relations is important for applications,
because of the reason that if a relation on A and B is known and if a relation on
B and C is known then the relation on A and C could be computed and defined
as follows;
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Definition 3.8 Let R(A→ B) and S (B→ C) be two neutrosophic refined re-
lations. The composition S ◦R is a neutrosophic refined relation from A to C,
defined by

S ◦R = {< (x, z), (T 1
S◦R(x, z), T 2

S◦R(x, z), ..., Tn
S◦R(x, z)),

(I1S◦R(x, z), I2S◦R(x, z), ..., InS◦R(x, z)),
(F 1

S◦R(x, z), F 2
S◦R(x, z), ..., Fn

S◦R(x, z)) >: x, z ∈ E}

where
T j
S◦R(x, z) = ∨

y

{
T j
R(x, y) ∧ T j

S(y, z)
}

IjS◦R(x, z) = ∧
y

{
IjR(x, y) ∨ IjS(y, z)

}
and

F j
S◦R(x, z) = ∧

y

{
F j
R(x, y) ∨ F j

S(y, z)
}

for every (x, z) E × E, for every y ∈ E and j = 1, 2, ..., n.

Definition 3.9 A neutrosophic refined relation R on A is said to be;

1. reflexive if T j
R(x, x) = 1, IjR(x, x) = 0 and F j

R(x, x) = 0 for all x ∈ E

2. symmetric if T j
R(x, y) = T j

R(y, x), IjR(x, y) = IjR(y, x) and F j
R(x, y) =

F j
R(y, x) for all x, y ∈ E

3. transitive if R ◦R ⊆ R.

4. neutrosophic refined equivalence relation if the relation R satisfies reflex-
ive, symmetric and transitive.

Definition 3.10 The transitive closure of a neutrosophic refined relation R on

E × E is
ˆ

R = R∪̃R2∪̃R3∪̃...

Definition 3.11 If R is a neutrosophic refined relation from A to B then R−1

is the inverse neutrosophic refined relation R from B to A, defined as follows:

R−1 =
{〈

(y, x), T j
R−1(x, y)), IjR−1(x, y), F j

R−1(x, y)
〉

: (x, y) ∈ E × E
}

where
T j
R−1(x, y) = T j

R(y, x), IjR−1(x, y) = IjR(y, x), F j
R−1(x, y) = F j

R(y, x) and
j = 1, 2, ..., n.

Proposition 3.12 If R and S are two neutrosophic refined relation from A to
B and B to C, respectively. Then,

1. (R−1)−1 = R
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2. (S ◦R)−1 = R−1 ◦ S−1

Proof

1. Since R−1 is a neutrosophic refined relation from B to A, we have

T j
R−1(x, y) = T j

R(y, x), IjR−1(x, y) = IjR(y, x) and F j
R−1(x, y) = F j

R(y, x)

Then,

T j
(R−1)−1(x, y) = T j

R−1(y, x) = T j
R(x, y),

Ij(R−1)−1(x, y) = IjR−1(y, x) = IjR(x, y)

and
F j
(R−1)−1(x, y) = F j

R−1(y, x) = F j
R(x, y)

therefore (R−1)−1 = R.

2. If the composition S ◦ R is a neutrosophic refined relation from A to C,
then the composition R−1 ◦ S−1 is a neutrosophic refined relation from C
to A. Then,

T j
(S◦R)−1(z, x) = T j

(S◦R)(x, z)

= ∨
y

{
T j
R(x, y) ∧ T j

S(y, z)
}

= ∨
y

{
T j
R−1(y, x) ∧ T j

S−1(z, y)
}

= ∨
y

{
T j
S−1(z, y) ∧ T j

R−1(y, x)
}

= T j
R−1◦S−1(z, x)

,

Ij(S◦R)−1(z, x) = Ij(S◦R)(x, z)

= ∧
y

{
IjR(x, y) ∨ IjS(y, z)

}
= ∧

y

{
IjR−1(y, x) ∨ IjS−1(z, y)

}
= ∧

y

{
IjS−1(z, y) ∨ IjR−1(y, x)

}
= IjR−1◦S−1(z, x)

and
F j
(S◦R)−1(z, x) = F j

(S◦R)(x, z)

= ∧
y

{
F j
R(x, y) ∨ F j

S(y, z)
}

= ∧
y

{
F j
R−1(y, x) ∨ F j

S−1(z, y)
}

= ∧
y

{
F j
S−1(z, y) ∨ F j

R−1(y, x)
}

= F j
R−1◦S−1(z, x)

Finally; proof is valid.
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Proposition 3.13 If R is symmetric ,then R−1is also symmetric.

Proof: Assume that R is Symmetric then we have

T j
R(x, y) = T j

R(y, x),

IjR(x, y) = IjR(y, x)

and
F j
R(x, y) = F j

R(y, x)

Also if R−1 is an inverse relation, then we have

T j
R−1(x, y) = T j

R(y, x),

IjR−1(x, y) = IjR(y, x)

and
F j
R−1(x, y) = F j

R(y, x)

for all x, y ∈ E
To prove R−1 is symmetric, it is enough to prove

T j
R−1(x, y) = T j

R−1(y, x),

IjR−1(x, y) = IjR−1(y, x)

and
F j
R−1(x, y) = F j

R−1(y, x)

for all x, y ∈ E
Therefore;

T j
R−1(x, y) = T j

R(y, x) = T j
R(x, y) = T j

R−1(y, x);

IjR−1(x, y) = IjR(y, x) = IjR(x, y) = IjR−1(y, x)

and
F j
R−1(x, y) = F j

R(y, x) = F j
R(x, y) = F j

R−1(y, x)

Finally; proof is valid.

Proposition 3.14 If R is symmetric ,if and only if R = R−1.

Proof: Let R be symmetric , then

T j
R(x, y) = T j

R(y, x);

IjR(x, y) = IjR(y, x)

and
F j
R(x, y) = F j

R(y, x)
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and
R−1 is an inverse relation, then

T j
R−1(x, y) = T j

R(y, x);

IjR−1(x, y) = IjR(y, x)

and
F j
R−1(x, y) = F j

R(y, x)

for all x, y ∈ E
Therefore; T j

R−1(x, y) = T j
R(y, x) = T j

R(x, y).
Similarly

IjR−1(x, y) = IjR(y, x) = IjR(x, y)

and
F j
R−1(x, y) = F j

R(y, x) = F j
R(x, y)

for all x, y ∈ E.
Hence R = R−1

Conversely, assume that R = R−1 then, we have

T j
R(x, y) = T j

R−1(x, y) = T j
R(y, x).

Similarly
IjR(x, y) = IjR−1(x, y) = IjR(y, x)

and
F j
R(x, y) = F j

R−1(x, y) = F j
R(y, x).

Hence R is symmetric.

Proposition 3.15 If R and S are symmetric neutrosophic refined relations,
then

1. R∪̃S,

2. R∩̃S,

3. R+̃S

4. R×̃S

are also symmetric.

Proof: R is symmetric, then we have;

T j
R(x, y) = T j

R(y, x),

IjR(x, y) = IjR(y, x)

and
F j
R(x, y) = F j

R(y, x)
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similarly S is symmetric, then we have

T j
S(x, y) = T j

S(y, x),

IjS(x, y) = IjS(y, x)

and
F j
S(x, y) = F j

S(y, x)

Therefore,

1.
T j

R∪̃S(x, y) = max
{
T j
R(x, y), T j

S(x, y)
}

= max
{
T j
R(y, x), T j

S(y, x)
}

= T j

R∪̃S(y, x)

,

Ij
R∪̃S(x, y) = min

{
IjR(x, y), IjS(x, y)

}
= min

{
IjR(y, x), IjS(y, x)

}
= Ij

R∪̃S(y, x),

and

F j

R∪̃S(x, y) = min
{
F j
R(x, y), F j

S(x, y)
}

= min
{
F j
R(y, x), F j

S(y, x)
}

= F j

R∪̃S(y, x)

therefore, R∪̃S is symmetric.

2.

T j

R∩̃S(x, y) = min
{
T j
R(x, y), T j

S(x, y)
}

= min
{
T j
R(y, x), T j

S(y, x)
}

= T j

R∩̃S(y, x),

Ij
R∩̃S(x, y) = max

{
IjR(x, y), IjS(x, y)

}
= max

{
IjR(y, x), IjS(y, x)

}
= Ij

R∩̃S(y, x),

and
F j

R∩̃S(x, y) = max
{
F j
R(x, y), F j

S(x, y)
}

= max
{
F j
R(y, x), F j

S(y, x)
}

= F j

R∩̃S(y, x)

therefore; R∩̃S is symmetric.
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3.
T j

R+̃S
(x, y) = T j

R(x, y) + T j
S(x, y)− T j

R(x, y)T j
S(x, y)

= T j
R(y, x) + T j

S(y, x)− T j
R(y, x)T j

S(y, x)

= T j

R+̃S
(y, x)

Ij
R+̃S

(x, y) = IjR(x, y)IjS(x, y)

= IjR(y, x)IjS(y, x)

= Ij
R+̃S

(y, x)

and
F j

R+̃S
(x, y) = F j

R(x, y)F j
S(x, y)

= F j
R(y, x)F j

S(y, x)

= F j

R+̃S
(y, x)

therefore, R+̃S is also symmetric

4.
T j

R×̃S(x, y) = T j
R(x, y)T j

S(x, y)

= T j
R(y, x)T j

S(y, x)

= T j

R×̃tS(y, x)

Ij
R×̃S(x, y) = IjR(x, y) + IjS(x, y)− IjR(x, y)IjS(x, y)

= IjR(y, x) + IjS(y, x)− IjR(y, x)IjS(y, x)

= Ij
R×̃S(y, x)

F j

R×̃S(x, y) = F j
R(x, y) + F j

S(x, y)− F j
R(x, y)F j

S(x, y)

= F j
R(y, x) + F j

S(y, x)− F j
R(y, x)F j

S(y, x)

= F j

R×̃S(y, x)

hence, R×̃S is also symmetric.

Remark 3.16 R◦S in general is not symmetric, as

T j
(R◦S)(x, z) = ∨

y

{
T j
S(x, y) ∧ T j

R(y, z)
}

= ∨
y

{
T j
S(y, x) ∧ T j

R(z, y)
}

6= T j
(R◦S)(z, x)

Ij(R◦S)(x, z) = ∧
y

{
IjS(x, y) ∨ IjR(y, z)

}
= ∧

y

{
IjS(y, x) ∨ IjR(z, y)

}
6= Ij(R◦S)(z, x)
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F j
(R◦S)(x, z) = ∧

y

{
F j
S(x, y) ∨ F j

R(y, z)
}

= ∧
y

{
F j
S(y, x) ∨ F j

R(z, y)
}

6= F j
(R◦S)(z, x)

but R◦S is symmetric, if R◦S = S◦R, for R and S are symmetric relations.

T j
(R◦S)(x, z) = ∨

y

{
T j
S(x, y) ∧ T j

R(y, z)
}

= ∨
y

{
T j
S(y, x) ∧ T j

R(z, y)
}

= ∨
y

{
T j
R(y, x) ∧ T j

R(z, y)
}

T j
(R◦S)(z, x)

Ij(R◦S)(x, z) = ∧
y

{
IjS(x, y) ∨ IjR(y, z)

}
= ∧

y

{
IjS(y, x) ∨ IjR(z, y)

}
= ∧

y

{
IjR(y, x) ∨ IjR(z, y)

}
Ij(R◦S)(z, x)

and

F j
(R◦S)(x, z) = ∧

y

{
F j
S(x, y) ∨ F j

R(y, z)
}

= ∧
y

{
F j
S(y, x) ∨ F j

R(z, y)
}

= ∧
y

{
F j
R(y, x) ∨ F j

R(z, y)
}

F j
(R◦S)(z, x)

for every (x, z) ∈ E × E and for y ∈ E.

Proposition 3.17 If R is transitive relation, then R−1 is also transitive.

Proof : R is transitive relation, if R ◦ R ⊆ R, hence if R−1 ◦ R−1 ⊆ R−1,
then R−1 is transitive.

Consider;

T j
R−1(x, y) = T j

R(y, x) ≥ T j
R◦R(y, x)

= ∨
z

{
T j
R(y, z) ∧ T j

R(z, x)
}

= ∨
z

{
T j
R−1(x, z) ∧ T j

R−1(z, y)
}

= T j
R−1◦R−1(x, y)

IjR−1(x, y) = IjR(y, x) ≤ IjR◦R(y, x)

= ∧
z

{
IjR(y, z) ∨ IjR(z, x)

}
= ∧

z

{
IjR−1(x, z) ∨ IjR−1(z, y)

}
= IjR−1◦R−1(x, y)
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and
F j
R−1(x, y) = F j

R(y, x) ≤ F j
R◦R(y, x)

= ∧
z

{
F j
R(y, z) ∨ F j

R(z, x)
}

= ∧
z

{
F j
R−1(x, z) ∨ F j

R−1(z, y)
}

= F j
R−1◦R−1(x, y)

hence, proof is valid.

Proposition 3.18 If R is transitive relation, then R ∩ S is also transitive

Proof: As R and S are transitive relations, R ◦R ⊆ R and S ◦ S ⊆ S.
also

T j

R∩̃S(x, y) ≥ T j

(R∩̃S)◦(R∩̃S)
(x, y)

Ij
R∩̃S(x, y) ≤ Ij

(R∩̃S)◦(R∩̃S)
(x, y)

F j

R∩̃S(x, y) ≤ F j

(R∩̃S)◦(R∩̃S)
(x, y)

implies R∩̃S) ◦ (R∩̃S) ⊆ R ∩ S, hence R ∩ S is transitive.

Proposition 3.19 If R and S are transitive relations, then

1. R∪̃S,

2. R+̃S

3. R×̃S

are not transitive.

Proof:

1. As

T j

R∪̃S(x, y) = max
{
T j
R(x, y), T j

S(x, y)
}

Ij
R∪̃S(x, y) = min

{
IjR(x, y), IjS(x, y)

}
F j

R∪̃S(x, y) = min
{
F j
R(x, y), F j

S(x, y)
}

and
T j

(R∪̃S)◦(R∪̃S)
(x, y) ≥ T j

R∪̃S(x, y)

Ij
(R∪̃S)◦(R∪̃S)

(x, y) ≤ Ij
R∪̃S(x, y)

F j

(R∪̃S)◦(R∪̃S)
(x, y) ≤ F j

R∪̃S(x, y)

2. As
T j

R+̃S
(x, y) = T j

R(x, y) + T j
S(x, y)− T j

R(x, y)T j
S(x, y)

Ij
R+̃S

(x, y) = IjR(x, y)IjS(x, y)

F j

R+̃S
(x, y) = F j

R(x, y)F j
S(x, y)

and
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T j

(R+̃S)◦(R+̃S)
(x, y) ≥ T j

R+̃S
(x, y)

Ij
(R+̃S)◦(R+̃S)

(x, y) ≤ Ij
R+̃S

(x, y)

F j

(R+̃S)◦(R+̃S)
(x, y) ≤ F j

R+̃S
(x, y)

3. As
T j

R×̃S(x, y) = T j
R(x, y)T j

S(x, y)

Ij
R×̃S(x, y) = IjR(x, y) + IjS(x, y)− IjR(x, y)IjS(x, y)

F j

R×̃S(x, y) = F j
R(x, y) + F j

S(x, y)− F j
R(x, y)F j

S(x, y)

and
T j

(R×̃S)◦(R×̃S)
(x, y) ≥ T j

R×̃S(x, y)

Ij
(R×̃S)◦(R×̃S)

(x, y) ≤ Ij
R×̃S(x, y)

F j

(R×̃S)◦(R×̃S)
(x, y) ≤ F j

R×̃S(x, y)

Hence R∪̃S, R+̃S and R×̃S are not transitive.

Proposition 3.20 If R is transitive relation, then R2 is also transitive.

Proof: R is transitive relation, if R ◦ R ⊆ R, therefore if R2 ◦ R−2 ⊆ R2,
then R2 is transitive.

T j
R◦R(y, x) = ∨

z

{
T j
R(y, z) ∧ T j

R(z, x)
}
≥ ∨

z

{
T j
R◦R(y, z) ∧ T j

R◦R(z, x)
}

= T j
R2◦R2(y, x),

IjR◦R(y, x) = ∧
z

{
IjR(y, z) ∨ IjR(z, x)

}
≤ ∧

z

{
IjR◦R(y, z) ∨ IjR◦R(z, x)

}
= IjR2◦R2(y, x)

and

F j
R◦R(y, x) = ∧

z

{
F (y, z) ∨ F j

R(z, x)
}
≤ ∧

z

{
IjR◦R(y, z) ∨ F j

R◦R(z, x)
}

= F j
R2◦R2(y, x)

Finally, the proof is valid.
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5 Conclusion

In this paper, we have firstly defined the neutrosophic refined relations(NRR).
The NRR are the extension of neutrosophic relation (NR) and intuitionistic
multirelation[27]. The notions of inverse, symmetry, reflexivity and transitivity
on neutrosophic refined relations are studied. The future work will cover the
application of the NRR in decision making, pattern recognition and in medical
diagnosis.
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