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Abstract: Modern multitarget-multisensor tracking systems involve the develop-

ment of reliable methods for the data association and the fusion of multiple sensor

information, and more specifically the partitioning of observations into tracks. This

chapter discusses and compares the application of Dempster-Shafer Theory (DST)

and the Dezert-Smarandache Theory (DSmT) methods to the fusion of multiple sen-

sor attributes for target identification purpose. We focus our attention on the para-

doxical Blackman’s association problem and propose several approaches to outperform

Blackman’s solution. We clarify some preconceived ideas about the use of degree of

conflict between sources as potential criterion for partitioning evidences.

15.1 Introduction

T
he association problem is of major importance in most of modern multitarget-multisensor tracking

systems. This task is particularly difficult when data are uncertain and are modeled by basic

belief masses and when sources are conflicting. The solution adopted is usually based on the Dempster-

Shafer Theory (DST) [9] because it provides an elegant theoretical way to combine uncertain information.

This chapter is based on a paper [4] presented during the International Conference on Information Fusion, Fusion 2003,

Cairns, Australia, in July 2003 and is reproduced here with permission of the International Society of Information Fusion.
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326 CHAPTER 15. ON BLACKMAN’S DATA ASSOCIATION PROBLEM

However Dempster’s rule of combination can give rise to some paradox/anomaly and can fail to provide

the correct solution for some specific association problems. This has been already pointed out by Samuel

Blackman in [2]. Therefore more study in this area is required and we propose here a new analysis

of Blackman’s association problem (BAP). We present in the sequel the original BAP and remind the

classical attempts to solve it based on DST (including Blackman’s method). In the second part of the

chapter we propose and compare new approaches based on the DSmT with the free DSm model. The

last part of the chapter provides a comparison of the performances of all the proposed approaches from

Monte-Carlo simulation results.

15.2 Blackman’s Data Association Problem

15.2.1 Association Problem no. 1

Let’s recall now the original Blackman’s association problem [2]. Consider only two target attribute

types corresponding to the very simple frame of discernment Θ = {θ1, θ2} and the association/assignment

problem for a single attribute observation Z and two tracks (T1 and T2). Assume now the following two

predicted basic belief assignments (bba) for attributes of the two tracks:

mT1(θ1) = 0.5 mT1(θ2) = 0.5 mT1(θ1 ∪ θ2) = 0

mT2(θ1) = 0.1 mT2(θ2) = 0.1 mT2(θ1 ∪ θ2) = 0.8

We now assume to receive the new following bba drawn from attribute observation Z of the system

mZ(θ1) = 0.5 mZ(θ2) = 0.5 mZ(θ1 ∪ θ2) = 0

The problem is to develop a general method to find the correct assignment of the attribute measure mZ(.)

with the predicted one mTi
(.), i = 1, 2. Since mZ(.) matches perfectly with mT1(.) whereas mZ(.) does

not match with mT2(.), the optimal solution is obviously given by the assignment (mZ(.)↔ mT1(.)). The

problem is to find an unique general and reliable method for solving this specific problem and for solving

all the other possible association problems as well.

15.2.2 Association Problem no. 2

To compare several potential issues, we propose to modify the previous problem into a second one by

keeping the same predicted bba mT1(.) and mT2(.) but by considering now the following bba mZ(.)

mZ(θ1) = 0.1 mZ(θ2) = 0.1 mZ(θ1 ∪ θ2) = 0.8

Since mZ(.) matches perfectly with mT2(.), the correct solution is now directly given by (mZ(.)↔ mT2(.)).

The sequel of this chapter in devoted to the presentation of some attempts for solving the BAP, not only
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for these two specific problems 1 and 2, but for the more general problem where the bba mZ(.) does not

match perfectly with one of the predicted bba mTi
, i = 1 or i = 2 due to observation noises.

15.3 Attempts for solutions

We examine now several approaches which have already been (or could be) envisaged to solve the general

association problem.

15.3.1 The simplest approach

The simplest idea for solving BAP, surprisingly not reported by Blackman in [2] is to use a classical

minimum distance criterion directly between the predictions mTi
and the observation mZ . The classical

L1 (city-block) or L2 (Euclidean) distances are typically used. Such simple criterion obviously provides

the correct association in most of cases involving perfect (noise-free) observations mZ(.). But there exists

numerical cases for which the optimal decision cannot be found at all, like in the following numerical

example:

mT1(θ1) = 0.4 mT1(θ2) = 0.4 mT1(θ1 ∪ θ2) = 0.2

mT2(θ1) = 0.2 mT2(θ2) = 0.2 mT2(θ1 ∪ θ2) = 0.6

mZ(θ1) = 0.3 mZ(θ2) = 0.3 mZ(θ1 ∪ θ2) = 0.4

From these bba, one gets dL1(T1, Z) = dL1(T2, Z) = 0.4 (or dL2(T1, Z) = dL2(T2, Z) ≈ 0.24) and no

decision can be drawn for sure, although the minimum conflict approach (detailed in next section) will

give us instead the following solution (Z ↔ T2). It is not obvious in such cases to justify this method

with respect to some other ones. What is more important in practice [2], is not only the association

solution itself but also the attribute likelihood function P (Z|Ti) ≡ P (Z ↔ Ti). As we know many

likelihood functions (exponential, hyper-exponential, Chi-square, Weibull pdf, etc) could be build from

dL1(Ti, Z) (or dL2(Ti, Z) measures but we do not know in general which one corresponds to the real

attribute likelihood function.

15.3.2 The minimum conflict approach

The first idea suggested by Blackman for solving the association problem was to apply Dempster’s rule

of combination [9] mTiZ(.) = [mTi
⊕mZ ](.) defined by mTiZ(∅) = 0 and for any C 6= ∅ and C ⊆ Θ,

mTiZ(C) =
1

1− kTiZ

∑

A∩B=C

mTi
(A)mZ(B)

and choose the solution corresponding to the minimum of conflict kTiZ . The sum in previous formula is

over all A,B ⊆ Θ such that A ∩ B = C. The degree of conflict kTiZ between mTi
and mZ is given by
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∑

A∩B=∅mTi
(A)mZ(B) 6= 0. Thus, an intuitive choice for the attribute likelihood function is P (Z|Ti) =

1−kTiZ . If we now apply Dempster’s rule for the problem 1, we get the same result for both assignments,

i.e. mT1Z(.) = mT2Z(.) with mTiZ(θ1) = mTiZ(θ2) = 0.5 for i = 1, 2 and mTZ(θ1 ∪ θ2) = 0, and more

surprisingly, the correct assignment (Z ↔ T1) is not given by the minimum of conflict between sources

since one has actually (kT1Z = 0.5) > (kT2Z = 0.1). Thus, it is impossible to get the correct solution for

this first BAP from the minimum conflict criterion as we firstly expected intuitively. This same criterion

provides us however the correct solution for problem 2, since one has now (kT2Z = 0.02) < (kT1Z = 0.1).

The combined bba for problem 2 are given by mT1Z(θ1) = mT1Z(θ2) = 0.5 and mT2Z(θ1) = mT2Z(θ2) =

0.17347, mT2Z(θ1 ∪ θ2) = 0.65306.

15.3.3 Blackman’s approach

To solve this apparent anomaly, Samuel Blackman has then proposed in [2] to use a relative, rather than

an absolute, attribute likelihood function as follows

L(Z | Ti) , (1 − kTiZ)/(1− kmin
TiZ)

where kmin
TiZ

is the minimum conflict factor that could occur for either the observation Z or the track Ti

in the case of perfect assignment (when mZ(.) and mTi
(.) coincide). By adopting this relative likelihood

function, one gets now for problem 1







L(Z | T1) = 1−0.5
1−0.5 = 1

L(Z | T2) = 1−0.1
1−0.02 = 0.92

Using this second Blackman’s approach, there is now a larger likelihood associated with the first

assignment (hence the right assignment solution for problem 1 can be obtained now based on the max

likelihood criterion) but the difference between the two likelihood values is very small. As reported by

S. Blackman in [2], more study in this area is required and we examine now some other approaches. It

is also interesting to note that this same approach fails to solve the problem 2 since the corresponding

likelihood functions for problem 2 become now






L(Z | T1) = 1−0.1
1−0.5 = 1.8

L(Z | T2) = 1−0.02
1−0.02 = 1

which means that the maximum likelihood solution gives now the incorrect assignment (mZ(.)↔ mT1(.))

for problem 2 as well.

15.3.4 Tchamova’s approach

Following the idea of section 15.3.1, Albena Tchamova has recently proposed in [3] to use rather the L1

(city-block) distance d1(Ti, TiZ) or L2 (Euclidean) distance d2(Ti, TiZ) between the predicted bba mTi
(.)
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and the updated/combined bba mTiZ(.) to measure the closeness of assignments with

dL1(Ti, TiZ) =
∑

A∈2Θ

| mTi
(A)−mTiZ(A) |

dL2(Ti, TiZ) = [
∑

A∈2Θ

[mTi
(A) −mTiZ(A)]2]

1/2

The decision criterion here is again to choose the solution which yields the minimum distance. This

idea is justified by the analogy with the steady-state Kalman filter (KF) behavior because if z(k + 1)

and ẑ(k + 1|k) correspond to measurement and predicted measurement for time k + 1, then the well-

known KF updating state equation [1] is given by (assuming here that dynamic matrix is identity)

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(z(k + 1) − ẑ(k + 1|k)). The steady-state is reached when z(k + 1)

coincides with predicted measurement ẑ(k + 1|k) and therefore when x̂(k + 1|k + 1) ≡ x̂(k + 1|k). In

our context, mTi(.) plays the role of predicted state and mTiZ(.) the role of updated state. Therefore it

a priori makes sense that correct assignment should be obtained when mTiZ(.) tends towards mTi
(.) for

some closeness/distance criterion. Monte Carlo simulation results will prove however that this approach

is also not as good as we can expect.

It is interesting to note that Tchamova’s approach succeeds to provide the correct solution for problem

1 with both distances criterions since (dL1(T1, T1Z) = 0) < (dL1(T2, T2Z) ∼ 1.60) and (dL2(T1, T1Z) =

0) < (dL2(T2, T2Z) ∼ 0.98), but provides the wrong solution for problem 2 since we will get both

(dL1(T2, T2Z) ∼ 0.29) > (dL1(T1, T1Z) = 0) and (dL2(T2, T2Z) ∼ 0.18) > dL2(T1, T1Z) = 0).

15.3.5 The entropy approaches

We examine here the results drawn from several entropy-like measures approaches. Our idea is now to use

as decision criterion the minimum of the following entropy-like measures (expressed in nats - i.e. natural

number basis with convention 0 log(0) = 0):

• Extended entropy-like measure:

Hext(m) , −
∑

A∈2Θ

m(A) log(m(A))

• Generalized entropy-like measure [5, 8]:

Hgen(m) , −
∑

A∈2Θ

m(A) log(m(A)/|A|)

• Pignistic entropy:

HbetP (m) , −
∑

θi∈Θ

P{θi} log(P{θi})
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where the pignistic(betting) probabilities P (θi) are obtained by

∀θi ∈ Θ, P{θi} =
∑

B⊆Θ|θi∈B

1

|B|m(B)

It can be easily verified that the minimum entropy criterion (based on Hext, Hgen or HbetP ) computed

from combined bba mT1Z(.) or mT2Z(.) are actually unable to provide us correct solution for problem

1 because of indiscernibility of mT1Z(.) with respect to mT2Z(.). For problem 1, we get Hext(mT1Z) =

Hext(mT2Z) = 0.69315 and exactly same numerical results for Hgen and HbetP because no uncertainty is

involved in the updated bba for this particular case. If we now examine the numerical results obtained

for problem 2, we can see that minimum entropy criteria is also unable to provide the correct solution

based on Hext, Hgen or HbetP criterions since one has Hext(mT2Z) = 0.88601 > Hext(mT1Z) = 0.69315,

Hgen(mT2Z) = 1.3387 > Hgen(mT1Z) = 0.69315 and HbetP (mT1Z) = HbetP (mT2Z) = 0.69315.

These first results indicate that approaches based on absolute entropy-like measures appear to be

useless for solving BAP since there is actually no reason which justifies that the correct assignment

corresponds to the absolute minimum entropy-like measure just because mZ can stem from the least

informational source. The association solution itself is actually independent of the informational content

of each source.

An other attempt is to use rather the minimum of variation of entropy as decision criterion. Thus,

the following min{∆1(.),∆2(.)} criterions are examined; where variations ∆i(.) for i = 1, 2 are defined as

the

• variation of extended entropy:

∆i(Hext) , Hext(mTiZ)−Hext(mTi
)

• variation of generalized entropy:

∆i(Hgen) , Hgen(mTiZ)−Hgen(mTi
)

• variation of pignistic entropy:

∆i(HbetP ) , HbetP (mTiZ)−HbetP (mTi
)

Only the 2nd criterion, i.e. min(∆i(Hgen)) provides actually the correct solution for problem 1 and

none of these criterions gives correct solution for problem 2.

The last idea is then to use the minimum of relative variations of pignistic probabilities of θ1 and θ2

given by the minimum on i of

∆i(P ) ,
2∑

j=1

|PTiZ(θj)− PTi
(θj)|

PTi
(θj)
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where PTiZ(.) and PTi
(.) are respectively the pignistic transformations of mTiZ(.) and mTi

(.). Unfortu-

nately, this criterion is unable to provide the solution for problems 1 and 2 because one has here in both

problems ∆1(P ) = ∆2(P ) = 0.

15.3.6 Schubert’s approach

We examine now the possibility of using a Dempster-Shafer clustering method based on metaconflict

function (MC-DSC) proposed in Johan Schubert’s research works [6, 8] for solving the associations prob-

lems 1 and 2. A DSC method is a method of clustering uncertain data using the conflict in Dempster’s

rule as a distance measure [7]. The basic idea is to separate/partition evidences by their conflict rather

than by their proposition’s event parts. Due to space limitation, we will just summarize here the principle

of the classical MC- DSC method.

Assume a given set of evidences (bba) E(k) , {mTi
(.), i = 1, . . . , n} is available at a given index

(space or time or whatever) k and suppose that a given set E(k + 1) , {mzj
(.), j = 1, . . . ,m} of new

bba is then available for index k+ 1. The complete set of evidences representing all available information

at index k + 1 is χ = E(k) ∪ E(k + 1) , {e1, . . . , eq} ≡ {mTi
(.), i = 1, . . . , n,mzj

(.), j = 1, . . . ,m} with

q = n + m. The problem we are faced now is to find the optimal partition/assignment of χ in disjoint

subsets χp in order to combine informations within each χp in a coherent and efficient way. The idea is

to combine, in a first step, the set of bba belonging to the same subsets χp into a new bba mp(.) having

a corresponding conflict factor kp. The conflict factors kp are then used, in a second step, at a metalevel

of evidence associated with the new frame of discernment Θ = {AdP,¬Adp} where AdP is short for

adequate partition. From each subset χp, p = 1, . . . P of the partition under investigation, a new bba is

defined as:

mχp
(¬AdP ) , kp and mχp

(Θ) , 1− kp

The combination of all these metalevel bba mχp
(.) by Dempster’s rule yields a global bba

m(.) = mχ1(.) ⊕ . . .⊕mχP
(.)

with a corresponding metaconflict factor denoted Mcf(χ1, . . . , χP ) , k1,...,P . It can be shown [6] that the

metaconflict factor can be easily calculated directly from conflict factors kp by the following metaconflict

function (MCF)

Mcf(χ1, . . . , χP ) = 1−
P∏

p=1

(1− kp) (15.1)

By minimizing the metaconflict function (i.e. by browsing all potential assignments), we intuitively

expect to find the optimal/correct partition which will hopefully solve our association problem. Let’s go

back now to our very simple association problems 1 and 2 and examine the results obtained from the
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MC-DSC method.

The information available in association problems is denoted χ = {mT1(.),mT2(.),mZ(.)}. We now

examine all possible partitions of χ and the corresponding metaconflict factors and decision (based on

minimum metaconflict function criterion) as follows:

• Analysis for problem 1:

– the (correct) partition χ1 = {mT1(.),mZ(.)} and χ2 = {mT2(.)} yields through Dempter’s rule

the conflict factors k1 , kT1Z = 0.5 for subset χ1 and k2 = 0 for subset χ2 since there is

no combination at all (and therefore no conflict) in χ2. According to (15.1), the value of the

metaconflict is equal to

Mcf1 = 1− (1− k1)(1 − k2) = 0.5 ≡ k1

– the (wrong) partition χ1 = {mT1(.)} and χ2 = {mT2(.),mZ(.)} yields the conflict factors

k1 = 0 for subset χ1 and k2 = 0.1 for subset χ2. The value of the metaconflict is now equal to

Mcf2 = 1− (1− k1)(1 − k2) = 0.1 ≡ k2

– since Mcf1 > Mcf2, the minimum of the metaconflict function provides the wrong assignment

and the MC-DSC approach fails to generate the solution for the problem 1.

• Analysis for problem 2:

– the (wrong) partition χ1 = {mT1(.),mZ(.)} and χ2 = {mT2(.)} yields through Dempter’s rule

the conflict factors k1 , kT1Z = 0.1 for subset χ1 and k2 = 0 for subset χ2 since there is

no combination at all (and therefore no conflict) in χ2. According to (15.1), the value of the

metaconflict is equal to

Mcf1 = 1− (1− k1)(1 − k2) = 0.1 ≡ k1

– the (correct) partition χ1 = {mT1(.)} and χ2 = {mT2(.),mZ(.)} yields the conflict factors

k1 = 0 for subset χ1 and k2 = 0.02 for subset χ2. The value of the metaconflict is now equal

to

Mcf2 = 1− (1− k1)(1− k2) = 0.02 ≡ k2

– since Mcf2 < Mcf1, the minimum of the metaconflict function provides in this case the correct

solution for the problem 2.

From these very simple examples, it is interesting to note that Schubert’s approach is actually exactly

equivalent (in these cases) to the min-conflict approach detailed in section 15.3.2 and thus will not provide
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unfortunately better results. It is also possible to show that Schubert’s approach also fails if one considers

jointly the two observed bbamZ1(.) andmZ2(.) corresponding to problems 1 and 2 withmT1(.) andmT2(.).

If one applies the principle of minimum metaconflict function, one will take the wrong decision since the

wrong partition {(Z1, T2), (Z2, T1)} will be declared. This result is in contradiction with our intuitive

expectation for the true opposite partition {(Z1, T1), (Z2, T2)} taking into account the coincidence of the

respective belief functions.

15.4 DSmT approaches for BAP

As within DST, several approaches can be attempted to try to solve Blackman’s Association prob-

lems (BAP). The first attempts are based on the minimum on i of new extended entropy-like measures

H?
ext(mTiZ) or on the minimum H?

betP (P ?). Both approaches actually fail for the same reason as for the

DST-based minimum entropy criterions.

The second attempt is based on the minimum of variation of the new entropy-like measures as criterion

for the choice of the decision with the new extended entropy-like measure:

∆i(H
?
ext) , H?

ext(mTiZ)−H?
ext(mTi

)

or the new generalized pignistic entropy:

∆i(H
?
betP ) , H?

betP (P ?{.|mTiZ})−H?
betP (P ?{.|mTi

})

The min. of ∆i(H
?
ext) gives us the wrong solution for problem 1 since ∆1(H?

ext) = 0.34657 and

∆2(H?
ext) = 0.30988 while min. of ∆i(H

?
betP ) give us the correct solution since ∆1(H?

betP ) = −0.3040

and ∆2(H?
betP ) = −0.0960. Unfortunately, both the ∆i(H

?
ext) and ∆i(H

?
betP ) criterions fail to pro-

vide the correct solution for problem 2 since one gets ∆1(H?
ext) = 0.25577 < ∆2(H?

ext) = 0.3273 and

∆1(H?
betP ) = −0.0396 < ∆2(H?

betP ) = −0.00823.

The third proposed approach is to use the criterion of the minimum of relative variations of pignistic

probabilities of θ1 and θ2 given by the minimum on i of

∆i(P
?) ,

2∑

j=1

|P ?TiZ
(θj)− P ?Ti

(θj)|
P ?Ti

(θj)

This third approach fails to find the correct solution for problem 1 (since ∆1(P ?) = 0.333 > ∆2(P ?) =

0.268) but succeeds to get the correct solution for problem 2 (since ∆2(P ?) = 0.053 < ∆1(P ?) = 0.066).
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The last proposed approach is based on relative variations of pignistic probabilities conditioned by

the correct assignment. The criteria is defined as the minimum of

δi(P
?) ,

|∆i(P
?|Z)−∆i(P

?|Ẑ = Ti)|
∆i(P ?|Ẑ = Ti)

where ∆i(P
?|Ẑ = Ti) is obtained as for ∆i(P

?) but by forcing Z = Ti or equivalently mZ(.) = mTi
(.) for

the derivation of pignistic probabilities P ?TiZ
(θj). This last criterion yields the correct solution for problem

1 (since δ1(P ?) = |0.333 − 0.333|/0.333 = 0 < δ2(P ?) = |0.268 − 0.053|/0.053 ≈ 4) and simultaneously

for problem 2 (since δ2(P ?) = |0.053− 0.053|/0.053 = 0 < δ1(P ?) = |0.066− 0.333|/0.333 ≈ 0.8).

15.5 Monte-Carlo simulations

As shown on the two previous BAP, it is difficult to find a general method for solving both these partic-

ular (noise-free mZ) BAP and all general problems involving noisy attribute bba mZ(.). The proposed

methods have been examined only for the original BAP and no general conclusion can be drawn from our

previous analysis about the most efficient approach. The evaluation of the global performances/efficiency

of previous approaches can however be estimated quite easily through Monte-Carlo simulations. Our

Monte-carlo simulations are based on 50.000 independent runs and have been done both for the noise-

free case (where mZ(.) matches perfectly with either mT1(.) or mT2(.)) and for two noisy cases (where

mZ(.) doesn’t match perfectly one of the predicted bba). Two noise levels (low and medium) have been

tested for the noisy cases. A basic run consists in generating randomly the two predicted bba mT1(.) and

mT2(.) and an observed bba mZ(.) according to a random assignmentmZ(.)↔ mT1(.) or mZ(.)↔ mT2(.).

Then we evaluate the percentage of right assignments for all chosen association criterions described in

this chapter. The introduction of noise on perfect (noise-free) observation mZ(.) has been obtained by

the following procedure (with notation A1 , θ1, A2 , θ2 and A2 , θ1 ∪ θ2): mnoisy

Z (Ai) = αimZ(Ai)/K

where K is a normalization constant such as
∑3
i=1m

noisy

Z (Ai) = 1 and weighting coefficients αi ∈ [0; 1]

are given by αi = 1/3± εi such that
∑3

i=1 αi = 1.

The table 1 shows the Monte-Carlo results obtained with all investigated criterions for the following

3 cases: noise-free (NF), low noise (LN) and medium noise (MN) related to the observed bba mZ(.).

The two first rows of the table correspond to simplest approach. The next twelve rows correspond to

DST-based approaches.
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Assoc. Criterion NF LN MN

Min dL1(Ti, Z) 100 97.98 92.14

Min dL2(Ti, Z) 100 97.90 92.03

Min kTiZ 70.01 69.43 68.77

Min L(Z|Ti) 70.09 69.87 67.86

Min dL1(Ti, TiZ) 57.10 57.41 56.30

Min dL2(Ti, TiZ) 56.40 56.80 55.75

Min Hext(mTiZ) 61.39 61.68 60.85

Min Hgen(mTiZ) 58.37 58.79 57.95

Min HbetP (mTiZ) 61.35 61.32 60.34

Min ∆i(Hext) 57.66 56.97 55.90

Min ∆i(Hgen) 57.40 56.80 55.72

Min ∆i(HbetP ) 71.04 69.15 66.48

Min ∆i(P ) 69.25 68.99 67.35

Min Mcfi 70.1 69.43 68.77

Table 1 : % of success of association methods

The table 2 shows the Monte-Carlo results obtained for the 3 cases: noise-free (NF), low noise (LN)

and medium noise (MN) related to the observed bba mZ(.) with the DSmT-based approaches.

Assoc. Criterion NF LN MN

Min H?
ext(mTiZ) 61.91 61.92 60.79

Min H?
betP (P ?) 42.31 42.37 42.96

Min ∆i(H
?
ext) 67.99 67.09 65.72

Min ∆i(H
?
betP ) 42.08 42.11 42.21

Min ∆i(P
?) 76.13 75.3 72.80

Min δi(P
?) 100 90.02 81.31

Table 2 : % of success of DSmT-based methods

15.6 Conclusion

A new examination of Blackman’s association problem has been presented in this chapter. Several

methods have been proposed and compared through Monte Carlo simulations. Our results indicate that

the commonly used min-conflict method doesn’t provide the best performance in general (specially w.r.t.

the simplest distance approach). Thus the metaconflict approach, equivalent here to min-conflict, does

not allow to get the optimal efficiency. Blackman’s approach and min-conflict give same performances.
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All entropy-based methods are less efficient than the min-conflict approach. More interesting, from the

results based on the generalized pignistic entropy approach, the entropy-based methods seem actually

not appropriate for solving BAP since there is no fundamental reason to justify them. The min-distance

approach of Tchamova is the least efficient method among all methods when abandoning entropy-based

methods. Monte Carlo simulations have shown that only methods based on the relative variations of

generalized pignistic probabilities build from the DSmT (and the free DSm model) outperform all methods

examined in this work but the simplest one. Analysis based on the DSmT and hybrid DSm rule of

combination are under investigation.
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